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Abstract. In this study, a nonquadratic performance function is intro-
duced to overcome the saturation nonlinearity in actuators. Then a novel
solution, generalized policy iteration adaptive dynamic programming
algorithm, is applied to deal with the problem of optimal control. To
achieve this goal, we use two neural networks to approximate control
vectors and performance index function. Finally, this paper focuses on
an example simulated on Matlab, which verifies the excellent convergence
of the mentioned algorithm and feasibility of this scheme.
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1 Introduction

In the control field, saturation nonlinearity of the actuators is universal phe-
nomenon. So optimizing control of systems in which actuators have problem
of saturating nonlinearity, is a major and increasing concern [1,2]. However,
these traditional methods were proposed without considering the optimal control
problem. In order to overcome this shortcoming, Lewis et al. [3] used adaptive
dynamic programming (ADP) algorithm. The ADP algorithm [4–6], an effec-
tive brain-like method, which can give the solution to Hamilton-Jacobi-Bellman
(HJB) equation forward-in-time, provides an important way of obtaining policy
of optimizing control. The value and policy iteration algorithms [7,8] are key
of the ADP algorithms. Considering the superiority of ADP algorithm, growing
researchers chose ADP algorithm in terms of optimal control. Zhang et al. [9]
used greedy ADP algorithm to design the infinite-time optimal tracking con-
troller. Qiao et al. [10] applied ADP algorithm to a large wind farm and a
STATCOM, with focusing on Coordinated reactive power control. Liu et al. [11]
developed an optimizing controller for some systems which were discrete-time
nonlinear and had control constraints by DHP. As mentioned in [12], ADP algo-
rithm is also suitable for time-delay systems with the same saturation challenge
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as above. However, in order to realize constrained optimal control, there is still
no research using the generalized policy iteration ADP algorithm.

This paper focuses on the generalized policy iteration ADP algorithm. The
present algorithm has i-iteration and j-iteration. When j is equal to zero, the
proposed algorithm will be a value iteration algorithm, while becoming a policy
iteration algorithm when j approaches the infinity. Firstly, the nonquadratic per-
formance function is introduced to overcome the saturation nonlinearity. Then,
the process of the generalized policy iteration algorithm is given. Lastly, the
simulation results verify the efficiency of the developed method.

2 Problem Statement

We will study the following discrete-time nonlinear systems:

xk+1 = F (xk, uk)
= f(xk) + g(xk)uk (1)

where uk ∈ R
m is control vector, xk ∈ R

n is the state vector, f(xk) ∈ R
n

and g(xk) ∈ R
n×m are system functions. We denote Ωu = {uk|uk =

[u1k, u2k, . . . , umk]
T ∈ R

m, |uik| ≤ ui, i = 1, 2, . . . ,m}, where ui can be regarded
as the saturating bound. Let U = diag[u1, u2, . . . , um].

The generalized nonquadratic performance index function is J(xk, uk) =
∞∑

i=k

{
xT
i Qxi + W (ui)

}
, where uk = {uk, uk+1, uk+2, . . .}, the weight matrix Q

and W (ui) ∈ R are positive definite.
Inspired by the paper [3], we can introduced W (ui) = 2

∫ ui

0
Λ−T(U

−1
s)URds,

where R is positive definite, s ∈ R
m, Λ ∈ R

m, Λ−T denotes (Λ−1)T, and Λ(·)
can choose tanh(·).

Then we can use J∗(xk) = min
uk

J(xk, uk) to stand for the optimal perfor-

mance index function and use u∗
k to be the optimal control vector. So from

the principle of discrete-time Bellman’s optimality, we can obtain the optimal
performance index function as

J∗(xk) = min
uk

{

xT
kQxk + 2

∫ uk

0

Λ−T(U
−1

s)URds + J∗(xk+1))
}

. (2)

And we can use the following equation to stand for the optimal control vector:

u∗
k = arg min

uk

{

xT
kQxk + 2

∫ uk

0

Λ−T(U
−1

s)URds + J∗(xk+1)
}

. (3)

The goal of this paper is to get the optimal control vector u∗
k and the optimal

performance index function J∗(xk).
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3 Derivation of the Generalized Policy Iteration ADP
Algorithm

From [16], it’s known that the traditional ADP algorithm just have one iter-
ation procedure. However, the generalized policy iteration ADP algorithm has
i-iteration and j-iteration. Specially, for i-iteration, the generalized policy iter-
ation ADP algorithm doesn’t need to solve the HJB equation, which speed the
convergence rate of the developed ADP algorithm.

According to [17], if a control vector can stabilize the system (1) and make
the performance index function finite at the same time, it can be concluded that
the control vector is admissible.

Next, we will get that the control vector and cost function of the developed
generalized policy iteration ADP algorithm are updated in each iteration. First,
the cost function V0(xk) can be initialed as follows:

V0(xk) = xT
kQxk + 2

∫ v0(xk)

0

Λ−T(U
−1

s)URds + V0(F (xk, v0(xk)), (4)

where the v0(xk) is an initial admissible control vector. Then, for i = 1, the
control vector v1(xk) can be gained by:

v1(xk) = arg min
uk

{

xT
kQxk + 2

∫ uk

0

Λ−T(U
−1

s)URds + V0(F (xk, uk))
}

. (5)

Then, we will introduced the second iteration procedure. Define an arbitrary non-
negative integer sequence, that is {L1, L2, L3, . . .}. L1 is the upper boundary of
j1. When j1 increases from 0 to L1, we can have the iterative cost function by

V1,j1+1(xk) = xT
kQxk + 2

∫ v1(xk)

0

Λ−T(U
−1

s)URds + V1,j1(F (xk, v1(xk))), (6)

where

V1,0(xk) = xT
kQxk + 2

∫ v1(xk)

0

Λ−T(U
−1

s)URds + V0(F (xk, v1(xk))). (7)

In the second iteration, the cost function changes to be V1(xk) = V1,L1(xk).
For i = 2, 3, 4, . . ., the control vector and cost function of the developed ADP
algorithm are updated by:

(1) i-iteration

vi(xk) = argmin
uk

{
xT
kQxk + 2

∫ uk

0

Λ−T(U
−1

s)URds + Vi−1(F (xk, uk))

}
, (8)

(2) j-iteration

Vi,ji+1(xk) = xT
kQxk + 2

∫ vi(xk)

0

Λ−T(U
−1

s)URds + Vi,ji(F (xk, vi(xk))), (9)
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where ji = 0, 1, 2, . . . , Li,

Vi,0(xk) = xT
kQxk + 2

∫ vi(k)

0

Λ−T(U
−1

s)URds + Vi−1(F (xk, vi(xk))) (10)

and we can get the iterative cost function by

Vi(xk) = Vi,Li
(xk). (11)

From (4)–(11), we make use of Vi,ji(xk) to approximate J∗(xk) and vi(xk)
to approximate u∗

k. In the following, an example is applied to illustrate the
convergence and feasibility of the presented ADP algorithm.

4 Simulation Example

The following nonlinear system is mass-spring system:

x(k + 1) = f(xk) + g(xk)u(k), (12)

where

xk =
[
x1k

x2k

]

,

f(xk) =
[

x1k + 0.05x2k

−0.0005x1k − 0.0335x3
1k + x2k

]

,

g(xk) =
[

0
0.05

]

,

and the system is controlled with control constraint of |u| ≤ 0.6. The cost func-
tion is defined by

J(xk) =
∞∑

i=k

{

xT
i Qxi + 2

∫ ui

0

tanh−T(U
−1

s)URds

}

,

where Q =
[

1 0
0 1

]

, R = 0.5, U = 0.6.

The developed iteration ADP algorithm is implemented by NNs. The hidden
layers of the critic network and action network both are 10 neurons. For each
iteration step, we train the networks for 4000 training steps so as to make the
training error become minimum. The learning rate of the above two networks
both are 0.01.

From Fig. 1(a) and (b), we can get the convergent process of the cost function
Vi,ji(xk) and the subsequence Vi(xk). Next, we use the optimal control vectors
to control the system (12) with the initial state x(0) = [1,−1]T for 200 time
steps. Figure 1(c) and (d) display the changing curves of the state x and the
control u. The effective of the presented ADP algorithm in handling optimal
control problem for discrete-time nonlinear systems with actuator saturation is
verified through the simulation results.
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Fig. 1. Simulation results (a) Convergence of Vi,ji (b) Convergence of Vi (c) State
trajectories (d) Control vectors

5 Conclusion

In this paper, a novel ADP algorithm is chosen to treat the optimal control
problem for discrete-time nonlinear systems with control constraint. One exam-
ple demonstrates the convergence and feasibility of the presented iteration ADP
algorithm. Since the time-delay problem is another hot topic in the control field,
it’s significant to use the developed ADP algorithm to handle the time-delay
systems in the future.
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