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Abstract. Functional network connectivity (FNC) and Granger causality have
been widely used to identify functional and effective connectivity for resting
functional magnetic resonance imaging (fMRI) data. However, the relationship
between these two approaches is still unclear, making it difficult to compare
results. In this study, we investigate the relationship by constraining the FNC
lags and the causality coherences for analyzing resting state fMRI data. The two
techniques were applied respectively to examine the connectivity within default
mode network related components extracted by group independent component
analysis. The results show that FNC and Granger causality provide comple-
mentary results. In addition, when the temporal delays between two nodes were
larger and the causality coherences were distinct, the two approaches exhibit
consistent functional and effective connectivity. The consensus between the two
approaches provides additional confidence in the results and provides a link
between functional and effective connectivity.

Keywords: Functional network connectivity � Granger causality � Resting state
fMRI � Group ICA � Default mode network

1 Introduction

Over the past decades, an increasing number of analytical methods have been introduced
to explore the functional and effective connectivity among brain functional networks [1,
2]. Functional network connectivity (FNC) is a powerful functional connectivity
approach for assessing temporal coherence among brain networks by utilizing lag shift
correlations between nodes [3]. On the other side, as a typical method for effective
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connectivity, Granger causality is a statistical method for exploring the predictability
and dependencies to establish causal relationships between brain networks [4].

FNC and Granger causality have been separately applied to fMRI data for identi-
fying typical resting connectivity networks. In particular, FNC had been used to dis-
tinguish the abnormal relationships among several specific networks in psychiatric
patients from the normal controls [5, 6]. Comparisons of functional network connec-
tivity during resting and task conditions showed that functional network connectivity
was stronger during rest compared to task [7]. As for Granger causality, its investi-
gation for functional brain organization also found that schizophrenia patients exhibited
significantly enhanced causal influence between specific regions [4, 8, 9].

Quite recently, FNC and Granger causality have both been utilized for analyzing
connectivity changes among different age stages based on resting and task fMRI data
[10]. FNC was employed to detect internetwork connectivity between the salience
network, executive control networks and default mode networks (DMNs), while
Granger causality was used to analyze the effective connectivity. In [10], FNC and
Granger causality were used as two entirely different approaches with no analysis about
connections between their results. As such, this study aims to directly compare the two
approaches and examine how to leverage any complementary information they provide
about the data. Eighty-two subjects of resting state fMRI data were used in the com-
parative analyses.

The rest of this paper is organized as follows. Section 2 introduces the resting state
fMRI data we used, the components we extracted, and the two key algorithms: FNC
and Granger causality. In Sect. 3, we presented the results of the two approaches, and
compared the results of FNC under different time-lags and those of Granger causality
with causality coherence constraint. Section 4 has the conclusions.

2 Methods

2.1 Materials

The fMRI Data from 82 subjects were collected using a 3T Siemens Trio scanner with
the parameters: repeat time (TR) = 2 s, echo time = 29 ms, field of view = 240 mm,
flip angle = 75º, slice thickness = 3.5 mm, gap = 1.05 mm, matrix size = 64 � 64
33, voxel size = 3.75 � 3.75 � 4.55 mm3, number of timepoints = 150. All subjects
were instructed to do nothing but keep their eyes open during the scan. Data were
preprocessed using the statistical parametric mapping (SPM) software package. After
motion correction, spatial normalization with isotropic resampling to voxels of
4 � 4�4 mm3 in standard Montreal Neurological Institute brain space, and spatial
smoothing with an 8 mm full width at half maximum Gaussian kernel, we obtained
fMRI datasets with dimension 53 � 53 � 46 � 150 for each subject.

2.2 Extraction of Components

Spatial group independent component analysis (ICA), which has been widely used for
extracting components from fMRI data, was performed for all 82 subjects using the
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toolbox GIFT (http://mialab.mrn.org/software/gift) [11]. Since high model order
enables us to evaluate multiple sub-networks within each network domain [12], we
separated 120 independent components (IC) using the Infomax algorithm. After ICA
separation, we further extracted seven DMN-related components based on their spatial
map references [13]. These components, as shown in Fig. 1, were medial prefrontal
cortex (MPFC) corresponding to IC10, left and right inferior parietal lobule
(IPL) corresponding to IC80, IC16, and posterior cingulate cortex (PCC) corresponding
to IC22, IC52, IC66, and IC71. Prior to being applied to FNC and Granger causality,
the time courses of these seven DMN-related components were low-pass filtered
(Butterworth, cutoff frequency 0.15 Hz).

2.3 Functional Network Connectivity (FNC)

FNC computes the lag-shift Pearson’s correlation coefficient between pairs of time
courses using the FNC toolbox (http://mialab.mrn.org/software):

qDt¼
XT
t0Yt0 þDtffiffiffiffiffiffiffiffiffiffiffiffi

XT
t0Xt0

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
YT
t0 þDtYt0 þDt

q ð1Þ

where qDt represents correlation between two time courses X and Y, while Dt stands for
the time shifting from the initial reference point t0. FNC recorded the maximal lagged

correlation qðkÞmax ¼ maxfqDtg and its corresponding lag DtðkÞ for a single subject k,
k = 1, …, K (K is the number of subjects), and then averaged across all subjects. The
statistical significance of these correlations and lags was finally calculated by using one
sample t-test at p < 0.05 corrected by false discovery rate (FDR), respectively [3].
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Fig. 1. Spatial maps of the seven DMN-related components. The final spatial maps were
z-scored and thresholded at |Z| � 2 and displayed at the three most informative slices.
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2.4 Granger Causality

Granger causality relies on linear regression models of a stochastic process. Specifi-
cally, if the information in the past of a time series can be used to improve the
prediction accuracy of the future of another time series, then the former is the Granger
cause of the latter. Let Xt, Yt be two stationary variables, i.e., the two time courses here,
the autoregressive model can be described as:

Xt ¼
Xm

j¼1

ajXt�j þ
Xm

j¼1

bjYt�j þ et; Yt ¼
Xm

j¼1

cjXt�j þ
Xm

j¼1

djYt�j þ gt ð2Þ

where aj, bj, cj, and dj are best fit regressors of the model, et and ηt are two zero-mean
uncorrelated white-noise series. The model order m can be determined by MDL cri-
terion. The measure of the strength of the causality X ! Y can be defined as,

Cxy! ¼ r4e ð1� dÞcj j2
ðr2e ð1� dÞj j2 þ r2g ðbÞj j2Þðr2e ðcÞj j2 þ r2g ð1� aÞj j2Þ ð3Þ

Similarly, the measure of the strength of the causality Y ! X ðCyx!Þ can be defined

with another numerator r4g ð1� aÞbj j2. We call ðCxy!Þ and ðCyx!Þ the causality coher-

ences. It should be noted that 0\ðCxy!Þ\1 and similarly for ðCyx!Þ [4, 14]. The

causality coherences were computed for all subjects and then averaged. After per-
forming one sample t-test (p < 0.05, corrected by FDR), the directional influence
between two components adopted the statistically significant causality with larger
values.

3 Results

3.1 FNC and Granger Without Lag and Causality Coherence
Constraints

Figure 2 demonstrates the results for FNC and Granger causality. The direction of an
arrow in FNC results indicates the time delay between two components. For example,
in Fig. 2(a), an arrow from IC10 to IC71 represents that IC10 precedes IC71 by certain
time units. Meanwhile, in Granger causality, Fig. 2(b), an arrow IC10 ! IC71 rep-
resents IC10 is the Granger cause of IC71.

For the FNC results shown in Fig. 2(a), the temporal correlations existed in every
pair of components and the time-lags varied in a large range from 0.0015 s to 0.650 s.
Causality was found in a subset of the components, as shown in Fig. 2(b). IC80 and
IC16 (bilateral IPL) were the Granger cause of IC66 and IC71 (PCC), and IC10
(MPFC) caused IC71 (PCC), which suggests that in the DMN, the PCC may work as a
special node that seldom generate but mostly receives Granger connections. The
internal connection of PCC shows that IC22 caused IC71, and IC52 was the Granger
cause of IC66 and IC71.
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When we focused on the common connectivity in both, it was not difficult to find
most connections showed the same directionality. For example, IC71 and IC66 which
lagged to IC80 and IC16 (bilateral IPL) in functional network connectivity were also
identified as caused by them in the Granger causality approach. This was also true of
connections within the PCC.

Nevertheless, it is obvious that the number of significant connections identified by
FNC was much larger than that in Granger causality, and there were also a few
discrepancies. The arrow direction was reverse for connections IC80 - IC10 as well as
IC66 - IC71. As such, we next added constraints to the lags and causality coherences to
investigate their influence on the connectivity.

3.2 FNC with Lag Constraints

In the analysis of FNC, correlation and lag values were simultaneously examined for
possible combinations, and the lag markers reflected the chronological order of the
related components. Considering that a small latency in FNC may be influenced by
noise in the time courses and thus hard to show precedence relationship in time, we
ignored lags less than 0.05 s in functional network connectivity. Figure 3 shows the
results. In Fig. 3(a), the values on the line represent the ‘lag (second)/correlation
coefficient’ between two connected components. Moreover, in Fig. 3(b) the arrow
A ! B is also expressed by the values of ‘C

AB
�!=C

BA
�!’.

After omitting the connections with small lags, we found that there were only ten
connections left in functional network connectivity and each of them corresponded to a
specific connectivity in Granger causality. The directional connectivity between
components obtained from FNC was quite similar to the directionality obtained from

)b()a(
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Fig. 2. Results for FNC and Granger. (a) Functional connectivity detected by FNC. (b) Effective
connectivity detected by Granger causality.
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Granger causality: there were 8/10 connections exhibiting a close correspondence
between time delay and causality. Two of the ten connections, those between IC80 -
IC10 and IC66 - IC71, showed reverse directions.

It was easy to see that the time delays between IC80 - IC10 and IC66 - IC71 were
also small (0.05 s for IC80 - IC10 and 0.14 s for IC66 - IC71). In addition, the
difference between the causality coherences ‘C

AB
�!=C

BA
�!’ was also small (less than or

equal to 0.05). We further constrained lags or causality coherences in order to focus on
consistent connectivity.

3.3 FNC and Granger with Both Lag and Causality Coherence
Constraints

Figure 4 illustrates the results of FNC and Granger causality with both lag and
causality coherence constraints. We ignored FNC connections with lags less than
0.15 s and kept Granger causality connections with ‘C

AB
�!=C

BA
�!’ difference greater

than 0.05. Taking the causality from A to B as an example, we find the causality is
distinct when C

AB
�! � C

BA
�![ 0:05 .

After selecting the connections with large lags and distinct causality, we found that
the directional functional connectivity obtained from FNC had the same directionality
obtained from Granger causality. As shown in Fig. 4, the bilateral IPL (IC16, IC80)
and the MPFC (IC10) actually preceded and caused IC71 of PCC. The direction within
the PCC showed consistent results in both FNC and Granger causality, which implied
in the DMN some specific components of PCC were in charge of receiving connections
from others. Ultimately, six connections with effective lags or causality were left, in
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Fig. 3. Comparison of FNC and Granger with lag constraints. (a) Functional connectivity
detected by FNC ignoring lags less than 0.05 s. (b) Effective connectivity detected by Granger
causality. Values on the line represent ‘lag (second)/correlation coefficient’ in (a), while on the
arrow A ! B also express ‘C

AB
�!=C

BA
�!’ in (b).

564 C. Zhang et al.



which the two approaches can give consistent results. These results show that for these
cases the lags and causality coherences are more reliable for assessing temporal and
causal relationship between components than small ones which may be influenced by
noise. The consistent connections identified by both methods provide reliable and
stable results for estimating functional and effective connectivity.

4 Conclusions

The FNC approach detects the maximal shift lagged correlations between all pair-wise
components, while the Granger causality analyzes the causal relationship between
components. Previously, the two approaches have been used to detect distinct func-
tional connectivity and effective connectivity. In this study we compared the two
approaches by constraining the FNC lags and the causality coherences. When we
removed small FNC lags and causality coherences, we obtained consistent functional
and effective connectivity based on resting state fMRI data. The results support the
conclusion that time delay has a specific meaning to the Granger causality and is a main
factor driving the results. Our results also suggest that additional advantages can be
gained by using FNC and Granger causality in combination. We obtain unique
information from each approach, i.e., the correlation structure detected by FNC when
the lags are small, and the causal relationship found by Granger causality when the
difference between two reversing causality coherences is small, but also the convergent
information identified by both methods provides reliable and stable information for
enhancing the analysis of functional and effective connectivity. In the future, we will
test how the two approaches are connected in task fMRI data.
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Fig. 4. Comparison of FNC and Granger with lag constraints. (a) Functional connectivity
ignoring lags less than 0.15 s. (b) Effective connectivity with ‘C

AB
�!=C

BA
�!’ difference greater

than 0.05. Values on the line represent ‘lag (second)/correlation coefficient’ in (a), while on the
arrow A ! B also express ‘C

AB
�!=C

BA
�!’ in (b).
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