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Abstract. In order to develop an efficient computer-aided diagnosis system for
detecting left-sided and right-sided sensorineural hearing loss, we used artificial
intelligence in this study. First, 49 subjects were enrolled by magnetic resonance
imaging scans. Second, the discrete wavelet packet entropy (DWPE) was uti-
lized to extract global texture features from brain images. Third, single-hidden
layer neural network (SLNN) was used as the classifier with training algorithm
of adaptive learning-rate back propagation (ALBP). The 10 times of 5-fold cross
validation demonstrated our proposed method yielded an overall accuracy of
95.31%, higher than standard back propagation method with accuracy of
87.14%. Besides, our method also outperforms the “FRFT + PCA (Yang,
2016)”, “WE + DT (Kale, 2013)”, and “WE + MRF (Vasta 2016)”. In closing,
our method is efficient.

Keywords: Hearing loss - Multimedia data - Discrete wavelet packet entropy -
Single-hidden layer neural network

1 Introduction

Multimedia data is a combination content of different data forms: text, audio, image,
animation, and video. In medical application, the multimedia data offer refers to 3D
volumetric data obtained by different imaging techniques.
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The sensorineural hearing loss (SNHL) is a disease featuring in gradual deafness
[1]. SNHL contains thee types: (i) sensory hearing loss (SHL), (ii) neural hearing loss
(NHL), and (iii) both. SHL may be due to bad function of cochlear hair cell, and NHL
may be because of impairment of cochlear nerve function.

In this study, we aimed to use multimedia data obtained by magnetic resonance
imaging (MRI) scanning [2] to differentiate left-sided SNHL and right-sided SNHL.
The detection basis is that SNHL patients will have slight to severe structural change in
specific brain regions. Traditionally, the human eye-based detection is unreliable since
the human eyes cannot perceive slight atrophy. Thus, artificial intelligence is employed
in this study, which is aimed to develop a computer-aided diagnosis (CAD) system.

Traditional CAD systems mainly used discrete wavelet transform (DWT) [3-5] to
learn global image features, and then employed latest pattern recognition tools. For
example, Mao, Ma and Tian [6] used DWT to analyze the potential signals of local
field. Ikawa [7] employed DWT to performance auditory brainstem response
(ABR) operation. Nayak, Dash and Majhi [8] employed the DWT to identify brain
images. They used AdaBoost with random forests as classifiers. Lahmiri [9] utilized
three multi-resolution techniques: DWT, empirical mode decomposition (EMD), and
variational mode decomposition (VMD). Chen and Chen [10] used principal compo-
nent analysis (PCA) and generalized eigenvalue proximal support vector machine
(GEPSVM). Gorriz and Ramirez [11] proposed a directed acyclic graph support vector
machine method.

Nevertheless, DWT suffers from the disadvantage translational variance [12]. That
means, even a slight translation may lead to different decomposition result [13].
Besides, the DWT decomposition will lead to larger dimension space (~ 10°) than
original image (~ 10°) for a 256 x 256 size image, and it needs dimension reduction
techniques, such as principal component analysis [14].

To solve this problem, we introduced a relatively new technique: discrete wavelet
packet entropy (DWPE) [15—17] that can yield mere a few (~ 10") translational invariant
features. Besides, we used a single-hidden layer neural network as the classifier, which
was trained by gradient descent with adaptive learning rate back propagation method.

2 Materials

Subjects were enrolled from outpatients of department of otorhinolaryngology and
head-neck surgery and community. They were excluded if evidence existed of known
psychiatric or neurological diseases, brain lesions, taking psychotropic medications, as
well as contraindications to MR imaging.

Finally, the study collection includes 15 patients with left-sided SNHL (LSNHL),
14 patients with right-sided SNHL (RSNHL) and 20 age- and sex-matched healthy
controls (HC), as shown in Table 1.

Preprocessing was implemented on the software platform of FMRIB Software
Library (FSL) v5.0. The brain extraction tool (BET) was utilized to extract brain
tissues. The results are shown in Fig. 1. Then, the extracted brains of all subjects were
registered to MNI space. Three experienced radiologists were instructed to select the
most distinctive (around 40-th) slice between SNHLs and HCs.
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Table 1. Subject characteristics

HC LSNHL RSNHL
Gender (f/m) 12/8 7/8 8/6
Education level (year) |11.5 +32|125 £+ 1.7 |12.1 £ 2.4
Age (year) 53.6 £54|51.7 9.6 |539 7.6
Disease duration (year) | — 17.6 £ 17.3|14.2 + 149
PTA of left ear (dB) [22.2 +£2.1|78.1 £17.9|21.8 &+ 3.2
PTA of right ear (dB) [21.3 £2.2{20.4 £ 4.2 809 + 17.4

(PTA = pure tone average)

o

(a) axial direction b) coronal direction

(c) sagittail direction

Fig. 1. The green lines label the edge of BET result (Color figure online)

3 Methodology

3.1 Discrete Wavelet Packet Transform

In the field of signal processing, standard discrete wavelet transform (abbreviated as
DWT) [18, 19] decomposes the given signal at each level, by submitting the previous
approximation subband to the quadrature mirror filters (QMF) [20]. Its even-indexed
downsampling causes the translational invariance problem [21].

On the other hand, discrete wavelet packet transform (DWPT) [22] is an improve-
ment of standard DWT. DWPT passes both approximation and detail coefficients of
previous decomposition level to QMF, so it can create a full binary tree [23]. In general,
DWPT offers more features than DWT at the same decomposition levels [24].

Suppose x represents the original signal, ¢ the channel index, d the decomposition
level, p the position parameter, D the decomposition coefficients, and i/ the wavelet
function, then DWPT is calculated as below:

Dt = [ st pa ()

o0
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where. 29 sequences will be yielded. Based on d-level decomposition, the decompo-
sition results of (d + 1) level is:

20d+1 Zh(p 2k XDLd 2L‘+ld+1 Zl(p 2k ><Dcd (2)

1254 peEZ

(a) DWT (b) DWPT

Fig. 2. Comparison between 2-level DWT and 2-level DWPT (x denotes for an image,
H denotes the high-pass filter result, L denotes the low-pass filter result)

From Fig. 2, we can observe that for an image, DWT offer in total (1 + 3d)
coefficient subbands. In contrast, DWPT generates in total 4% coefficients subbands.
Thus, DWPT can provide much more information than DWT.

3.2 Shannon Entropy

Entropy was originally utilized to measure the system disorder degree [25]. It was
generalized by Shannon to measure information contained in a given message [26].
Suppose m the index of grey level, 4, the probability of m-th grey level, and T the total
number of grey levels, we have the Shannon entropy S as:

S=-3"" hulog(hy) (3)

In the case of h,, equals to zero, the value of 0log,(0) is taken to 0 [27]. We
calculated Shannon entropies of all subbands obtained from DWPT, and dubbed the
results as discrete wavelet packet entropy (DWPE). For a brain image with size of
256 x 256, it has originally 65,536 features. A two-level DWPE can finally reduce the
65,536 features to only 2% = 16 features.

3.3 Single-Hidden Layer Neural Network

The features were then presented into a classifier. There are many classifier in various
fields, such as logistic regression [28], linear regression classifier [29, 30], extreme
learning machine [31], decision tree [32, 33], etc.
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In this study, we chose the classifier as a single-hidden layer neural-network
(SLNN) [34] due to its superior performance. We did not employ multiple hidden
layers [35], because one-hidden layer model is complicated enough to express our data.
In a SLNN, the input nodes are connected to the hidden neuron layer, which is then
connected to the output neuron layer.

The hidden neuron number is usually assigned with a large value. Afterwards, its
value is decreased gradually till the classification performance reaches the peak result.
The gradient descent with adaptive learning-rate back propagation (ALBP) algorithm
[36] was employed to train the weights and biases of SLNN. Initial learning rate was
set to 0.01. The increasing ratio and decreasing ratio of learning rate were set to 1.05
and 0.07, respectively. The maximum epoch is set to 5000.

4 Experiments and Results

4.1 DWPT Result

(a) LSNHL Image (b) 1-level decomposition (c) 2-level decomposition

Fig. 3. DWPT of a left-sided sensorineural hearing loss image

The 2-level DWPT result of a left-sided SNHL image is shown in Fig. 3. Here we can
see in total 4 subbands are generated for 1-level decomposition, and 16 subbands are
generated for 2-level decomposition.

4.2 Accuracy Performance

We repeated 5-fold cross validation [37] 10 times. The brief accuracy performance by
BP algorithm is shown in left side in Table 2 with overall accuracy of 87.14%, and the
accuracy performance by ALBP algorithm is shown in right side in Table 2 with
overall accuracy of 95.31%. In these two tables, y/z represents y instances are suc-
cessfully detected out of z instances.

The 10 repetition of 5-fold cross validation results indicate that this proposed ALBP
performs better than classical BP algorithm. The reason lies in the adaptive
learning-rate can accelerate the training procedure [38]. In standard BP, the learning
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Table 2. Accuracy performance by BP and ALBP (R = Run; F = Fold; T = Total)

BP | Fl F2 F3 | F4 F5 T Acc. | ALBP | F1 F2 F3 F4 F5 T Acc.

R1 | 10/10 | 9/10 | 7/9 | 10/10 | 8/10 | 44/49 | 89.80 | R1 9/10 | 9/9 10/10 | 9/10 | 9/10 | 46/49 | 93.88
R2 | 10/10 | 10/10 | 9/10 | 7/9 8/10 | 44/49 | 89.80 | R2 8/9 10/10 | 10/10 | 10/10 | 10/10 | 48/49 | 97.96
R3 | 9/9 9/10 | 9/10 | 8/10 | 10/10 | 45/49 | 91.84 | R3 10/10 | 10/10 | 10/10 | 9/9 9/10 | 48/49 | 97.96
R4 | 6/10 |10/10 | 7/9 |9/10 |7/10 |39/49 | 79.59 | R4 10/10 | 10/10 | 8/9 10/10 | 10/10 | 48/49 | 97.96
R5 |9/10 |9/10 |8/9 |8&/10 |810 |42/49|85.71|RS5 9/10 | 8/9 10/10 | 9/10 | 9/10 | 45/49 | 91.84
R6 | 9/10 |9/9 8/10 | 7/10 | 9/10 | 42/49 | 85.71 | R6 7/10 | 9/10 | 9/9 10/10 | 10/10 | 45/49 | 91.84
R7 | 8/10 |8/10 |9/10|9/9 10/10 | 44/49 | 89.80 | R7 10/10 | 10/10 | 7/9 10/10 | 10/10 | 47/49 | 95.92
R8 | 10/10 | 10/10 | 9/10 | 7/9 9/10 | 45/49 | 91.84 | R8 8/9 9/10 | 10/10 | 9/10 | 9/10 | 45/49 | 91.84
R9 | 7/10 | 9/10 |9/10 | 9/9 6/10 | 40/49 | 81.63 | R9 9/10 | 10/10 | 10/10 | 9/9 10/10 | 48/49 | 97.96
R10 | 9/9 8/10 | 9/10 | 9/10 | 7/10 | 42/49 | 85.71 | R10 8/9 10/10 | 10/10 | 9/10 | 10/10 | 47/49 | 95.92
T 87.14 | T 95.31

rate is unchanged, and thus the performance is sensitive to initial weight [39]. We see
from left side of Table 2 that the accuracy in each run of BP vary from 79.59% to
91.84%. While the ALBP makes the learning rate responsive to the local error surface,
and thus it is not as sensitive as BP. We see from right side of Table 2 that the accuracy
in each run of ALBP vary from 91.84 to 97.76%. Thus, ALBP is much more stable
than BP.

4.3 Comparison

Finally, we compared our DWPE + SLNN + ALBP approach with following three
methods: (i) The combination of fractional Fourier transform (FRFT) and principal
component analysis (PCA) method [40], which shall be abbreviated as FRFT + PCA.
(i) The combination of wavelet entropy (WE) and decision tree (DT) method [41],
which is abbreviated as WE + DT. (iii) The hybrid system based on wavelet entropy
(WE) and Markov random field (MRF) [42], abbreviated as WE + MRF.

Table 3. Comparison with state-of-the-art methods

Method Overall accuracy
FRFT + PCA [40] 95.10%
WE + DT [41] 91.84%
WE + MREF [42] 91.02%
DWPE + SLNN + ALBP (Our) |95.31%

Table 3 shows that our method get superior overall accuracy of 95.31% to other
three methods: FRFT + PCA [40], WE + DT [41], and WE + MRF [42]. The reason
may be two folds: First, our method used DWPE, which combines two successful
components, DWPT and Shannon entropy. Second, the wavelet packet transform is
more efficient than fractional Fourier transform in image texture extraction. In the
future, we shall try to use advanced classifiers, such as sparse autoencoder [43], con-
volutional neural network [44], and shared-weight neural network [45].
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5 Conclusions

We developed a new computer-aided diagnosis system in this paper for detecting
unilateral hearing loss, viz., left-sided or right-sided. The experiments gave promising
results. In the future, we shall collect more data to further validate our method.
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