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Abstract. This paper presents two-fold adaptive linear neural networks
(ADALINE) to gain the current operating state of power system for a
fast and accurate estimation. On the one hand, the Slave-ADALINE
applies the fixed and larger step-size least mean square algorithm to
accelerate the convergence speed of weights. On the other hand, the
Master-ADALINE follows least mean square with a variable step-size
factor to achieve the minimum of steady-state error. In this paper the
IEEE-30 network of power system is used to verify the effectiveness of
the proposed method, and comparisons of simulation results with Particle
Swarm Optimization algorithm and single ADALINE are also provided.
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1 Introduction

In the last years, a rapid progress from the conventional electrical grids toward
the new smart grids has happened to deal with the increasing requirements of
customers [1]. In fact, various power system applications such as optimal power
flow, economic dispatch, and security assessment rely on the state variables of
power systems under management that are filtered initially by state estimation
[2]. Real time monitoring of power systems has therefore become very important,
and the timely detection of contingencies has also become important in order
to allow the undertaking ofremedial actions to avoidany potentially dangerous
situation [3].

F.C. Schweppe, in the 1970s, firstly presented the concept of the power sys-
tem state estimation and applied weighted least squares (WLS) method to solve
this problem [4]. But, with the high development of the Distributed Generations,
the complexity of power system, operation and communication will also affect
the optimal state estimation. In response to these challenges, various methods
especially based on the evolutionary algorithms have been proposed in many
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literatures. In the 2015, Reza used the firefly algorithm to solve state estimation
problems [1]. A hybrid method based on Particle Swarm Optimization (PSO)
was proposed [5,6] for distribution state estimation with the Distributed Gen-
erations. Specially for the PSO, many researchers have tried to improve the
performance of PSO, focusing on the individual best position (Pbest) and global
best position (Gbest) [7,8]. In order to improve the performance of PSO, a new
PSO is proposed in [9]. The algorithm can adaptively change the initial trajec-
tory of a particle to make the particle explore a new region. Nevertheless, the
above methods still need to use more memory resources.

In recent years, adaptive linear neural network (ADALINE) has been widely
used in harmonic analysis [10–14]. In 2014, a new algorithm minimizes an objec-
tive function based on weighted square of the error and using a modified recursive
Gauss Newton (MRGN) method was introduced by Nanda [15]. The method in
[10–15] can minimize the tracking error, and has a faster convergence rate. Mean-
while, its multi-input and single-output structure can reduce the complexity of
the system design. However, the ADALINE technique prematurely converges
during the estimation of the signal with time-varying parameters, affecting the
accuracy of estimation. Therefore, in 2009, G.W. Chang presented a two-stage
ADALINE for harmonics and interharmonics measurement [16], but the com-
puting time is double. In this paper, the authors will use a two-fold ADALINE
structure, i.e. applying the Master-Slave ADALINE to solve the state estimation
of power system. Compared with the reference [16], the proposed method has
parallel processing characteristics, which can improve the speed of computation.
The IEEE-30 network of power system is used to verify the achievability of the
way, and comparisons of simulation results with PSO algorithm [9] and single
ADALINE [15] is tested.

The rest of this paper is organized as follows. Section 2 shows the power
system state estimation of specific implementation. Section 3 presents the MS
ADALINE structure and algorithm. Section 4 presents the simulation results of
IEEE-30 network of power system and the simulation results are compared with
PSO algorithm and single ADAINE. Section 5 draws some conclusions of the
present paper.

2 Specific Accomplishment of State Estimation

Before presenting the master-slave adaptive linear neural network structure and
algorithm in detail, we need to get the mathematical model of the state esti-
mation of voltage. So, in this section will introduce the common mathematical
model of power lines and branch power flow calculation formula, and the specific
processes of state estimation of voltage.

In the steady-state analysis of power system, mathematical model of power
lines is based on the resistance, reactance, and admittance, serial or parallel con-
ductance through the equivalent circuits. Figure 1 shows the π-type equivalent
circuit of transmission line. Among them, Z = R + jX, where R is the resistor
of power line, X is the inductance of power lines. Y = jB is the admittance
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Fig. 1. The π-equivalent circuit of transmission line

of power lines. The active and reactive power calculation formula of the branch
from node i to node j is defined as follows,

Pij = |Vi|2|yij | cos(−αij) − |Vi||Vj ||yij | cos(δi − δj − αij) (1)

Qij = |Vi|2|yij | sin(−αij) − |Vi||Vj ||yij | sin(δi − δj − αij) (2)

where, |Vi| and δi are the amplitude and phase of the voltage node i, respectively.
|Vj |, δj are the amplitude and phase of the voltage node j. |yij |, αij are the
admittance modulus and phase of the branch from node i to node j (yij =
|yij |∠αij), respectively.

By comparing Eq. (1) with (2), let

W1 = 1,W2 = |Vj | cos(δj),W3 = |Vj | sin(δj) (3)

Therefore, from the (1)–(2),we can derive the following formulas,

|Vj | =
√

W 2
2 + W 2

3 (4)

δj = arctan(W3/W2) (5)

3 Structure of MS ADALINE

This section will introduce ADALINE method to solve the power system
state estimation problem. Figure 1 is the structure diagram of MS ADA-
LINE. The structure is formed by two conventional master ADALINE and
slave ADALINE, whose weights are denoted as {ŵ1M (n), ŵ2M (n), ŵ3M (n)}
and {ŵ1S(n), ŵ2S(n), ŵ3S(n)}. At the same time, the master and slaver ADA-
LINE have the same reference signal of input and desired output, which is
{I1(n), I2(n), I3(n)} and D(n), and the corresponding feedback signal of error is
{EM (n), ES(n). The error feedback signal is transferred to the decision controller
to adjust the real-time weights. The Slave-ADALINE applies fixed, larger step-
size least mean square (LMS) algorithm to weights for accelerating the speed of
convergence. At the moment, the Master-ADALINE follows least mean square
with a variable step-size factor, in order to accomplish the minimum of steady-
state error. Finally, after some iterations MS ADALINE weights can be obtained
to calculate amplitude and phase of the node j, the formulas are as follows,
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Fig. 2. The framework of MS ADALINE for power state estimation

|Vj | =
√

ŵ2M (n)2 + ŵ3M (n)2 (6)
δj = arctan(ŵ3M (n)/ŵ2M (n)) (7)

symbols Si and δi are the amplitude and phase of the harmonic i, respectively.
Weights of MS ADALINE are adjusted as follows.

Step-1: The adjustment of weights {ŵ1S(n), ŵ2S(n), ŵ3S(n)} of the Slave-
ADALINE.

ŵ1S(n) = 1 (8)
ŵ2S(n + 1) = ŵ2S(n) + μSES(n)I2(n) (9)
ŵ3S(n + 1) = ŵ3S(n) + μSES(n)I3(n) (10)

ES(n) = D(n) − YS(n) (11)
YS(n) = [ŵ1S , ŵ2S , ŵ3S ][I1, I2, I3]T (12)

symbol D(n) is the desired output, YS(n) is the output of the Slave-ADALINE
respectively.

Step-2: The adjustment of weights {ŵ1M (n), ŵ2M (n), ŵ3M (n)}Li=1 of the
Master-ADALINE.

ŵ1M (n + 1) = 1 (13)

hatw2M (n + 1) =
{

ŵ2S(n + 1), if(AS(m) < AM (m))
ŵ2M (n) + μMEM (n)I2(n), else (14)

ŵ3M (n + 1) =
{

ŵ3S(n + 1), if(AS(m) < AM (m))
ŵ3M (n) + μMEM (n)I3(n), else (15)

AS(m) =
Q∑

m=0

E2
S(m) AM (m) =

Q∑
m=0

E2
M (m) (16)

EM (n) = D(n) − YM (n) (17)
YM (n) = [ŵ1M (n), ŵ2M (n), ŵ3M (n)][I1(n), I2(n), I3(n)]T (18)
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symbol YM (n) is the output of the Master-ADALINE. After the end of each
iteration, AS(m) and AM (m) will be calculated. Decision controller based on
the results of comparison of the two calculated values is used to predict the
Master-ADALINE updated weights.

Step-3: Update the variable step of Master-ADALINE.

μM (n + 1) =
{

µM (n)+µS

2 , if(AS(m) < AM (m))
max[C1μM (n), μmin], else

(19)

From the formula (19), one can see taht, if the tracking performance of
Master-ADALINE is better, Master-ADALINE step value is the average value
of Master-ADALINE step and Slaver-ADALINE step, which makes the Master-
ADALINE, converges faster. In order to obtain small steady-state error, the step
value of Master-ADALINE should be further reduced.

Step-4: According to the formula (1) and (2), the amplitude and phase of the
voltage of the node j can be calculated, respectively.

In order to obtain a good convergence efficiency, the values of C1, μmin, μS

and μM need to be chosen. The above discussions show that μS determines the
global convergence of MS ADALINE, μM determines the accuracy of conver-
gence, therefore, the selection of these two values plays a key in the performance
of the network. These two main values can be determined based on previous
experience.

The weights of the Master-ADALINE are updated by the expected outputs
until them no long changed obviously, or the maximum number of iterations is
reached. The active power and reactive power are alternating as the expected
input of the MS ADALINE. The reference input signals as shown in Table 1.

Table 1. The reference input signals

Input signals Pij Qij

Input1 |Vi|2|yij | cos(−αij) |Vi|2|yij | cos(−αij)

Input2 −|Vi||yij | cos(δi − αij) −|Vi||yij | sin(δi − αij)

Input3 −|Vi||yij | sin(δi − αij) |Vi||yij | cos(δi − αij)

Remark 1. The proposed method used to deal with the state of power system
needs less memory space compared with previous method, like PSO [9]. So, this
needs less time to compute the results.

Remark 2. Compared with [16], the proposed method has parallel processing
characteristics, which can improve the speed of computation.

Remark 3. Compared with the single ADALINE [15], the proposed method has a
two-fold structure, i.e. master ADALINE and slave ADALINE. The slave ADA-
LINE mainly is used to improve the speed of convergence, at the same time, the
master ADALINE could accomplish the minimum of steady-state error.
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4 Simulation Results

A IEEE-30 network of power system is used to verify the achievability of the
proposed method. Meanwhile, some comparisons of simulation results with PSO
[9] and single ADALINE [15] are presented. Then the simulation results indicate
that the proposed method has better accuracy than the PSO algorithm and
the single ADALINE, and convergence rate of which is faster than the single
ADALINE.

Figure 3 shows the comparisons between the results of the MS ADALINE and
PSO algorithms and the single ADALINE. MS ADALINE and single ADAINE
have better performance than PSO for the ability of voltage amplitude and
phase estimation. What’s more, MS ADALINE voltage amplitude estimated
average error is 0.0015769, phase estimated average error is 0.0047077. PSO
voltage amplitude estimated average error is 0.035515, phase estimated average
error is 0.022969. The single ADALINE voltage amplitude estimated average
error is 0.0022536, phase estimated average error is 0.021897. So MS ADALINE
results are better than the PSO algorithm and single ADALINE. MS ADALINE
results are more accurate, and MS ADALINE model has obvious advantages on
simulation time, whose value is 0.015 s, and PSO is 0.103 s (CPU 887 1.5 GHz).

Fig. 3. The comparisons of estimated voltage amplitude and phase

Figure 4 shows the comparisons of tracking performance of MS ADALINE,
Single ADALINE and PSO. The PQ12 is the actual measured value. It can be
seen from the right simulation diagram that MS ADALINE coincides with the
expected waveform after 16 iterations, PSO converges after the 37th iteration,
and single ADALINE converges to the expected value after the 25th iteration.
The left diagram is a comparison of the MS ADALINE and PSO algorithms
of node 2, the horizontal axis is the number of iterations, and the vertical axis
is the error degree. The error degree is defined as Δ = (V̂i(k) − Vimeas)2 +
(δ̂i(k) − δimeas)2, where, V̂i(k), δ̂i(k) are the estimated values of each iteration
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Fig. 4. The comparisons of tracking performance of MS ADALINE, Single ADALINE
and PSO

and Vimeas, δimeas are the actual measured values of the node. Above, the PSO
algorithm has a lower convergence rate, and the estimation accuracy is worse.
The estimation precision of MS ADALINE is better than PSO and single ADA-
LINE. Therefore, MS ADALINE not only can improve the accuracy of the esti-
mate, but also could ameliorate convergence rate.

5 Conclusion

This study introduces a master-slave adaptive linear neural network (ADALINE)
approach to deal with power system state estimation problem. MS ADALINE
has a two-fold structure, and the characteristics of parallel processing. This paper
uses a IEEE-30 network to verify the achievability of the way, and comparisons
of simulation results with Particle Swarm Optimization algorithm and single
ADAINE. Simulation results shows MS ADALINE not only can improve the
accuracy of the estimate, but also could ameliorate convergence rate.
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