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Abstract. The extreme learning machine (ELM) concept provides some
effective training algorithms to construct single hidden layer feedforward
networks (SHLFNs). However, the conventional ELM algorithms were
designed for the noiseless situation only, in which the outputs of the
hidden nodes are not contaminated by noise. This paper presents two
noise-resistant training algorithms, namely noise-resistant incremental
ELM (NRI-ELM) and noise-resistant convex incremental ELM (NRCI-
ELM). For NRI-ELM, its noise-resistant ability is better than that of
the conventional incremented ELM algorithms. To further enhance the
noise resistant ability, the NRCI-ELM algorithm is proposed. The con-
vergent properties of the two proposed noise resistant algorithms are also
presented.

Keywords: Node noise · Extreme learning machines · Incremental
algorithm

1 Introduction

Single hidden layer feedforward networks (SHLFNs) can act as universal approx-
imators [1]. With the traditional training algorithms, such as backpropagation
based algorithms, we need to estimate all the connection weights, including the
input weights from the input layer to the hidden layer, and the output weights
from the hidden layer to the output node. Training all the connection weights
may have some problems, such as local minimum. Huang et al. [2] proposed the
extreme learning machine concept, where the hidden nodes are generated ran-
domly. Besides, they showed that SHLFNs with the ELM concept can act as
universal approximators too. In [2,3], Huang et al. developed the incremental
ELM (I-ELM) [2] algorithm and the convex incremental ELM (CI-ELM) algo-
rithm [3]. The mean square error (MSE) performances of these two algorithms
are very well under the noiseless situation, where there is no node noise in the
implementation.

In the implementation of neural networks, noise take place unavoidably [4].
When we use the finite precision technology to implement a trained network,
multiplicative noise or additive noise would be introduced [5]. Also, when the
implementation is at the nano-scale, transient noise may occur [6]. For traditional
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neural network models, some batch mode learning algorithms for trained neural
networks under the imperfection situation were reported [8]. To the best of our
knowledge, there are not many literatures related to the noise-resistant ELMs.

This paper considers the multiplicative node noise and the additive node noise
as the imperfect conditions for the SHLFN model. We first derive the training
set error expression of noisy SHLFNs. Afterwards, we develop two noise-resistant
incremental ELM algorithms, namely noise-resistant I-ELM (NRI-ELM) and
noise-resistant CI-ELM (NRCI-ELM). For the NRI-ELM algorithm, we keep all
the previously trained weights unchanged, and we adjust the output weight of the
newly inserted node. The noise-resistant performance of the NRI-ELM algorithm
is better than that of I-ELM and CI-ELM. For the NRCI-ELM algorithm, we
use a simple rule to update all the previously trained weights, and we estimate
the output weight of the new node to maximize the reduction in the training set
error of noisy SHLFNs. The noise-resistant ability of the NRCI-ELM algorithm
is much better than that of I-ELM, CI-ELM, and NRI-ELM. In addition, we
prove that in terms of the training set error of noisy SHLFNs, the NRCI-ELM
algorithm and the NRCI-ELM algorithm converges.

The rest of this paper is organized as follows. Section 2 presents the back-
ground of the ELM concept and the node noise models. Section 3 derives the
two proposed noise resistant incremental ELM algorithms. Section 4 presents
the simulation result. Section 5 concludes the paper.

2 ELM and Node Noise

The nonlinear regression problem is considered in this paper. The training set
is denoted as Dt =

{
(xk, ok) : xk ∈ R

M , ok ∈ R, k = 1, . . . , N
}
, where xk and ok

are the input and the target output of the k-th sample, respectively. The test set
is denoted as Df =

{
(x′

k′ , o′
k′) : x′

k′ ∈ R
M , o′

k′ ∈ �, k′ = 1, . . . , N ′}. In a SHLFN
with n hidden nodes, the network output is given by fn(x) =

∑n
i=1 βihi (x),

where hi(x) is the output of the ith hidden node, and βi is the output weight of
the ith hidden node. In this paper, we use the sigmoid function as the activation
function. Hence the output of the ith hidden node is given by

hi(x) =
1

1 + exp{−(wT
i x + bi)} , (1)

where bi is the input bias of the ith hidden node, and wi is the input weight
vector of the ith hidden node.

In the ELM approach [2,3], the bias terms bi’s and the input weight vectors
wi’s are randomly generated. We only need to estimate the output weights βi’s.
For a trained SHLFN, the training set error is given by

E =
N∑

k=1

(yk −
n∑

i=1

βihi(xk))2 =

∥
∥
∥
∥
∥
o −

n∑

i=1

βihi

∥
∥
∥
∥
∥

2

2

, (2)

where o = [o1, . . . , oN ]T, and hi = [hi(x1), . . . , hi(xN )]T.
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In the implementation of a network, node noise may not be avoided. When we
use the digital implementation, finite precision can be modelled as multiplicative
node noise or additive node noise [5]. When we use the floating point approach,
the round-off error can be modelled as multiplicative noise. On the other hand,
when we use the fixed point approach, the round-off error can be modelled as
additive noise.

Given the kth input vector, when a hidden node is affected by the multi-
plicative noise and additive noise concurrently, its output can be modelled as

h̃i(xk) = (1 + δik)hi(xk) + εik,∀i = 1, . . . , n and ∀k = 1, . . . , N, (3)

where δik’s are the noise factors that describe the deviation due to the multi-
plicative node noise, and εik’s are the noise factors that describe the deviation
due to the additive node noise. Note that in the multiplicative noise case, the
magnitude of the noise component “δikhi(x)” is proportional to the magnitude
of the output hi(x). This paper assumes that the noise factors δik’s and εik’s are
zero-mean identically independently distributed random variables with variances
equal to σ2

δ and σ2
ε , respectively.

From [3], the CI-ELM algorithm works very well for the noiseless situation.
For example, as shown in Fig. 1(a), the network outputs fit the training samples
very well. However, when node noise exists, the network outputs contain a lot
of noise with large magnitude, as shown in Fig. 1(b). When our proposed NRCI-
ELM is used, the noise in the network outputs can be greatly suppressed, as
shown in Fig. 1(c) and (d).
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Fig. 1. Illustration of the noise resistant ability of CI-ELM and NRCI-ELM. (a) The
network output of a noiseless network with CI-ELM. (b) The network output of a noisy
network with CI-ELM. (c) The network output of a noiseless network with NRCI-
ELM. (d) The network output of a noisy network with NRCI-ELM. In this example,
σ2

ε = σ2
δ = 0.01.

3 Noise Resistant Incremental Learning

For a SHLFN with a particular noise pattern, the training set error can be
expressed as

Ẽ =
N∑

k=1

(

ok−
n∑

i=1

βih̃i(xk)

)2

. (4)
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According to the properties of δik’s and εik’s, the statistics of h̃i(xk)’s are
given by

〈h̃i(xk)〉 = hi(xk), (5)
〈h̃2

i (xk)〉 = (1 + σ2
δ )h2

i (xk) + σ2
ε , (6)

〈h̃i(xk)h̃j(xk)〉 = hi(xk)hj(xk),∀ i �= j. (7)

Taking the expectation over all possible noise patterns, we obtain the training
set error of noisy SHLFNs, given by

〈
Ẽ
〉

=

〈
N∑

k=1

(

ok−
n∑

i=1

βi

(
(1+δik)hi(xk)+εik

)
)2〉

. (8)

From (5)–(7), Eq. (8) becomes

〈
Ẽ
〉

=

∥
∥
∥
∥
∥
o−

n∑

i=1

βihi

∥
∥
∥
∥
∥

2

2

+σ2
δ

n∑

i=1

β2
i ‖hi‖22 + σ2

εN
n∑

i=1

β2
i . (9)

Similarly, we can obtain the test set error of noisy SHLFNs, given by

〈
Ẽt

〉
=

∥
∥
∥
∥
∥
o′−

n∑

i=1

βih
′
i

∥
∥
∥
∥
∥

2

2

+ σ2
δ

n∑

i=1

β2
i ‖h′

i‖22 + σ2
εN

′
n∑

i=1

β2
i , (10)

where o′ = [o′
1, . . . , o

′
N ]T, and hi = [hi(x′

1), . . . , hi(x′
N ′)]T.

For the NRI-ELM, at the nth iteration, a new hidden node hn(·), whose
input bias and input weight vector are randomly generated, is inserted into the
network. We keep the output weights {β1, . . . , βn−1} of the previously inserted
hidden nodes unchanged. We need to estimate the output weight βn of the nth
hidden node. From (9), the training set error of the noisy networks at the nth
iteration is

Ln =

∥
∥
∥
∥
∥
o−

n∑

i=1

βihi

∥
∥
∥
∥
∥

2

2

+ σ2
δ

n∑

i=1

β2
i ‖hi‖22 + σ2

εN
n∑

i=1

β2
i . (11)

Define

f =
n∑

i=1

βihi, en = o −
n∑

i=1

βihi, vn =
n∑

i=1

β2
i ‖hi‖22, un = N

n∑

i=1

β2
i . (12)

From (12), Eq. (11) can be rewritten as

Ln = ‖en‖22 + σ2
δvn + σ2

ε un. (13)

From (13), the change in the training set error between the nth-iteration and
(n − 1)th-iteration is given by

	n = Ln − Ln−1 = −2βne
T
n−1hn + (1 + σ2

δ )β2
n‖hn‖22 + σ2

ε β2
nN. (14)
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Since 	n is a quadratic function of βn with a minimum value equal to a negative
value, the optimal value of βn to maximize the decrease in the training set error
is given by

βn =
eTn−1hn

(1 + σ2
δ )‖hn‖22 + Nσ2

ε

. (15)

With (15), the change in the training set error between two consecutive
iterations is

	n = −
(
eTn−1hn

)2

(1 + σ2
δ ) ‖hn‖22 + Nσ2

ε

. (16)

Equation (16) means that when we inserted a new hidden node, the training
set error of noisy networks decreases. That means, in terms of the training set
MSE of noisy network, the NRI-ELM algorithm converges. Algorithm1 shows
the proposed NRI-ELM algorithm. From Steps (5)–(8) in Algorithm 1, for the
NRI-ELM algorithm, the computational complexity is O(N) for each iteration.

Algorithm 1. NRI-ELM
1: Set n equal to zero (n = 0), e0 = y, and f 0 = 0.
2: while n ≤ nmax do
3: n = n + 1.
4: Insert a new hidden node.
5: Compute the output vector hn of this hidden node.

6: Compute the output weight of the newly inserted node: βn =
eT

n−1hn

(1+σ2
δ
)‖hn‖2

2+Nσ2
ε
.

7: fn = fn−1 + βnhn.
8: en = y − fn.
9: end while

In [3], the CI-ELM algorithm was proposed. Under the noiseless situation [3],
the training set error of the original CI-ELM algorithm is better than that of
I-ELM algorithm. However, as shown in Sect. 4, the original CI-ELM algorithm
has a very poor noise resistant ability. Hence it is interesting to develop a noise
resistant version of CI-ELM, namely NRCI-ELM.

In the NRCI-ELM case, after we estimate the output weight βn at the nth
iteration, we update all the previously trained weights by

βnew
i = (1 − βn)βi, (17)

for i = 1 to n−1. Hence we have the recursive definitions for fn, en, vn and un

fn = (1 − βn)fn−1 + βnhn, en = y − fn,

vn = (1 − βn)2vn−1 + β2
n ‖hn‖22 , un = (1 − βn)2un−1 + β2

nN,
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where f0 = o, e0 = y, v0 = 0, and u0 = 0. With this new updating scheme
for the previously trained output weights, the change in the training set error
between the nth-iteration and (n − 1)th-iteration is given by

	n = Ln − Ln−1 = −2βn

(
eTn−1rn + σ2

δvn−1 + σ2
ε un−1

)

+β2
n

(
‖rn‖22 + σ2

δ (vn−1 + ‖hn‖22) + σ2
ε (un−1 + N)

)
, (18)

where rn = hn − fn−1.
Similar to the NRI-ELM case, to maximize the decrease in the training set

error of noisy networks, βn should be given by

βn =
eTn−1rn + σ2

δvn−1 + σ2
ε un−1

‖rn‖22 + σ2
δ (vn−1 + ‖hn‖22) + σ2

ε (un−1 + N)
. (19)

With (19), the change in the training set error between two consecutive
iterations is

	n = −
(
eTn−1rn + σ2

δvn−1 + σ2
ε un−1

)2

‖rn‖22 + σ2
δ (vn−1 + ‖hn‖22) + σ2

ε (un−1 + N)
. (20)

Equation (20) means that when we insert a new hidden node, the training set
error of noisy networks decreases. That means, in terms of the training set error
of noisy network, the NRCI-ELM algorithm converges too. Algorithm 2 shows
the proposed NRCI-ELM algorithm. At each each iteration, the complexity of
the NRCI-ELM algorithm is “O(n) + O(N)”. Compared to the NRI-ELM case
whose complexity is equal to O(N), the additional complexity O(n) is due to
the update of the previous weights.

Algorithm 2. NRCI-ELM
1: Set n = 0, e0 = y, f 0 = 0, v0 = 0, v0 = 0 and r0 = 0.
2: while n ≤ nmax do
3: n = n + 1.
4: Insert a new hidden node whose bn and wn are randomly generated.
5: Compute the output vector hn for this new hidden node.
6: Compute rn = hn − fn−1.

7: Compute the new weight: βn =
eT

n−1rn+σ2
δvn−1+σ2

ε un−1

‖rn‖2
2+σ2

δ
(vn−1+‖hn‖2

2)+σ2
ε (un−1+N)

.

8: fn = (1 − βn)fn−1 + βnhn.
9: en = y − fn.

10: vn = (1 − βn)2vn−1 + β2
n‖hn‖2

2.
11: un = (1 − βn)2un−1 + β2

nN .
12: βi = (1 − βn)βi, for all i = 1, . . . , n − 1.
13: end while
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4 Simulation

Two real life datasets from the UCI data repository are used. They are
Abalone [9] and Housing Price [10]. The Abalone dataset has 4,177 samples.
Each sample has eight inputs and one output. Two thousand samples are ran-
domly taken as the training set. The other 2,177 samples are used as the test
set. The Housing Price dataset has 506 samples. Each sample has 13 inputs and
one output. The training set contains 250 samples, while the test set has 256
samples.

This section considers four incremented algorithms. They are the original
I-ELM algorithm, the original CI-ELM algorithm, the proposed NRI-ELM algo-
rithm, and the proposed NRCI-ELM algorithm, respectively. Figure 2 shows the
MSE performance versus the number of hidden nodes, where the noise level is
equal to σ2

ε = σ2
δ = 0.09. It can be seen that the proposed NRI-ELM algorithm

is better than the two original incremental algorithms. Also, the MSE perfor-
mance of the original CI-ELM algorithm is very poor. When we use more hidden
nodes, the performance of the CI-ELM algorithm suddenly becomes very poor.
To sum up, the proposed NRCI-ELM algorithm is much better than the original
I-ELM algorithm, the original CI-ELM algorithm and the proposed NRI-ELM
algorithm.

Table 1 shows the average test set MSE values of noisy networks over 100
trials for various node noise levels. In Table 1, the number of hidden nodes is
equal to 500. It can be seen that the performance of the CI-ELM algorithm is
very poor. The noise resistant ability of the NRI-ELM algorithm is better than
that of the I-ELM algorithm. In addition, the NRCI-ELM algorithm is much
better than the other three algorithms. For instance, in the Abalone dataset
with noise level σ2

ε = σ2
δ = 0.01, the test set MSE of I-ELM is equal to 0.01421.

When the NRI-ELM is used, the test set error is reduced to 0.01367. The NRCI-
ELM algorithm can further reduce the test set error to is 0.00815.

For high noise levels, the improvement of the NRCI-ELM algorithm is more
significant. For instance, with the node noise level equal to σ2

ε = σ2
δ = 0.09

The test set MSE of the I-ELM algorithm is equal to 0.05855. With the
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Fig. 2. The performance of the four incremental methods versus the number of additive
nodes. The noise level is σ2

ε = σ2
δ = 0.09. The Abalone dataset is considered.
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Table 1. Average test set MSEs of noisy networks. The average values are taken over
100 trials. There are 500 hidden nodes.

Node noise

level

σ2
ε , σ2

δ

I-ELM

mean(std)

NRI-ELM

mean(std)

CI-ELM

mean(std)

NRCI-ELM

mean(std)

Abalone 0.01, 0.01 0.01421(0.00180) 0.01367(0.00142) 0.06153(0.03175) 0.00815(0.00007)

0.09, 0.09 0.05855(0.01561) 0.03386(0.00312) 0.49954(0.28633) 0.01002(0.00009)

0.25, 0.25 0.14723(0.04334) 0.04648(0.00202) 1.37555(0.79548) 0.01174(0.00015)

Housing 0.01, 0.01 0.02558(0.00649) 0.02425(0.00440) 0.05488(0.02510) 0.01478(0.00029)

0.09, 0.09 0.11266(0.05269) 0.05921(0.00706) 0.39941(0.22699) 0.02026(0.00044)

0.25. 0.25 0.28682(0.14524) 0.08081(0.00450) 1.08848(0.63079) 0.02528(0.00050)

NRI-ELM algorithm, the test set MSE is reduced to 0.03386. When the NRCI-
ELM algorithm is used, the test MSE is reduced to 0.01002.

Another interesting property of the NRCI-ELM algorithm is that the test
set error is insensitive to the node noise level. In the Abalone dataset, when the
noise level is σ2

δ = σ2
ε = 0.01, the test set error of the NRCI-ELM algorithm is

equal to 0.00815. When the noise level is greatly increased to σ2
δ = σ2

ε = 0.25,
the test set error of the NRCI-ELM algorithm is slightly increased to 0.01174
only.

One may suggest that we should use the NRCI-ELM algorithm only because
its test set error of noisy network is the best. The difference between the NRCI-
ELM algorithm and the NRI-ELM algorithm is the computation complexity.
For the NRI-ELM algorithm, the complexity is O(N). But for the NRCI-ELM
algorithm, the computation complexity is “O(N) + O(n)”.

5 Conclusion

This paper proposed two incremental ELM algorithms, namely NRI-ELM and
NRCI-ELM, for handling node noise. They insert the randomly generated hid-
den nodes into the network in the one-by-one manner. The NRI-ELM algorithm
adjusts the output weight of the newly inserted hidden node only. Its noise-
resistant ability is better than that of the original I-ELM algorithm and the
original CI-ELM algorithm. Besides, we proposed the NRCI-ELM algorithm. It
estimates the output weight of the newly additive node, and uses a single rule
to modify the previously trained output weights. In addition, we prove that for
the two proposed algorithms, the training set MSE of noisy networks converges.
Simulation examples illustrate that the noise resistant ability of the NRI-ELM
algorithm and NRCI-ELM algorithm is better than that of I-ELM and CI-ELM.
In addition, the NRCI-ELM algorithm has the best noise resistant ability, com-
pared to other three incremental algorithms. For the NRI-ELM algorithm, the
complexity is O(N). For the NRCI-ELM algorithm, the computation complexity
is “O(N) + O(n)”.
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