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Abstract. We present an efficient method for detecting anomalies in
videos. Recent applications of convolutional neural networks have shown
promises of convolutional layers for object detection and recognition,
especially in images. However, convolutional neural networks are super-
vised and require labels as learning signals. We propose a spatiotemporal
architecture for anomaly detection in videos including crowded scenes.
Our architecture includes two main components, one for spatial feature
representation, and one for learning the temporal evolution of the spa-
tial features. Experimental results on Avenue, Subway and UCSD bench-
marks confirm that the detection accuracy of our method is comparable
to state-of-the-art methods at a considerable speed of up to 140 fps.
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Autoencoder

1 Introduction

With the rapid growth of video data, there is an increasing need not only for
recognition of objects and their behaviour, but in particular for detecting the
rare, interesting occurrences of unusual objects or suspicious behaviour in the
large body of ordinary data. Finding such abnormalities in videos is crucial for
applications ranging from automatic quality control to visual surveillance.

Meaningful events that are of interest in long video sequences, such as sur-
veillance footage, often have an extremely low probability of occurring. As such,
manually detecting such events, or anomalies, is a very meticulous job that often
requires more manpower than is generally available. This has prompted the
need for automated detection and segmentation of sequences of interest. How-
ever, present technology requires an enormous amount of configuration efforts
on each video stream prior to the deployment of the video analysis process, even
with that, those events are based on some predefined heuristics, which makes
the detection model difficult to generalize to different surveillance scenes.

Recent effort on detecting anomalies by treating the task as a binary classi-
fication problem (normal and abnormal) [12] proved it being effective and accu-
rate, but the practicality of such method is limited since footages of abnormal
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events are difficult to obtain due to its rarity. Therefore, many researchers have
turned to models that can be trained using little to no supervision, includ-
ing spatiotemporal features [3,11], dictionary learning [10] and autoencoders [7].
Unlike supervised methods, these methods only require unlabelled video footages
which contain little or no abnormal event, which are easy to obtain in real-world
applications.

This paper presents a novel framework to represent video data by a set of
general features, which are inferred automatically from a long video footage
through a deep learning approach. Specifically, a deep neural network composed
of a stack of convolutional autoencoders was used to process video frames in
an unsupervised manner that captured spatial structures in the data, which,
grouped together, compose the video representation. Then, this representation
is fed into a stack of convolutional temporal autoencoders to learn the regular
temporal patterns.

Our proposed method is domain free (i.e., not related to any specific task,
no domain expert required), does not require any additional human effort, and
can be easily applied to different scenes. To prove the effectiveness of the pro-
posed method we apply the method to real-world datasets and show that our
method consistently outperforms similar methods while maintaining a short run-
ning time.

2 Methodology

The method described here is based on the principle that when an abnormal
event occurs, the most recent frames of video will be significantly different than
the older frames. Inspired by [2], we train an end-to-end model that consists of a
spatial feature extractor and a temporal encoder-decoder which together learns
the temporal patterns of the input volume of frames. The model is trained with
video volumes consists of only normal scenes, with the objective to minimize
the reconstruction error between the input video volume and the output video
volume reconstructed by the learned model. After the model is properly trained,
normal video volume is expected to have low reconstruction error, whereas video
volume consisting of abnormal scenes is expected to have high reconstruction
error. By thresholding on the error produced by each testing input volumes, our
system will be able to detect when an abnormal event occurs.

2.1 Feature Learning

We propose a convolutional spatiotemporal autoencoder to learn the regular pat-
terns in the training videos. Our proposed architecture consists of two parts —
spatial autoencoder for learning spatial structures of each video frame, and
temporal encoder-decoder for learning temporal patterns of the encoded spa-
tial structures. As illustrated in Fig. 1, the spatial encoder and decoder have
two convolutional and deconvolutional layers respectively, while the temporal
encoder is a three-layer convolutional long short term memory (LSTM) model.
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Fig. 1. Our proposed network architecture. It takes a sequence of length T as input, and
output a reconstruction of the input sequence. The numbers at the rightmost denote
the output size of each layer. The spatial encoder takes one frame at a time as input,
after which T = 10 frames have been processed, the encoded features of 10 frames are
concatenated and fed into temporal encoder for motion encoding. The decoders mirror
the encoders to reconstruct the video volume.

Convolutional layers are well-known for its superb performance in object recog-
nition, while LSTM model is widely used for sequence learning and time-series
modelling and has proved its performance in applications such as speech trans-
lation and handwriting recognition.

Autoencoder. Autoencoders, as the name suggests, consist of two stages:
encoding and decoding. It was first used to reduce dimensionality by setting
the number of encoder output units less than the input. The model is usually
trained using back-propagation in an unsupervised manner, by minimizing the
reconstruction error of the decoding results from the original inputs. With the
activation function chosen to be nonlinear, an autoencoder can extract more
useful features than some common linear transformation methods such as PCA.

Spatial Convolution. The primary purpose of convolution in case of a convo-
lutional network is to extract features from the input image. Convolution pre-
serves the spatial relationship between pixels by learning image features using
small squares of input data. Suppose that we have some n×n square input layer
which is followed by the convolutional layer. If we use an m × m filter W , the
convolutional layer output will be of size (n − m + 1) × (n − m + 1).
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Convolutional LSTM. A variant of the long short term memory (LSTM)
architecture, namely Convolutional LSTM (ConvLSTM) model was introduced
by Shi et al. in [8] and has been recently utilized by Patraucean et al. in [6]
for video frame prediction. Compared to the usual fully connected LSTM (FC-
LSTM), ConvLSTM has its matrix operations replaced with convolutions. By
using convolution for both input-to-hidden and hidden-to-hidden connections,
ConvLSTM requires fewer weights and yield better spatial feature maps. The
formulation of the ConvLSTM unit can be summarized with (7) through (12).

ft = σ(Wf ∗ [ht−1, xt, Ct−1] + bf ) (1)

it = σ(Wi ∗ [ht−1, xt, Ct−1] + bi) (2)

Ĉt = tanh(WC ∗ [ht−1, xt] + bC) (3)

Ct = ft ⊗ Ct−1 + it ⊗ Ĉt (4)

ot = σ(Wo ∗ [ht−1, xt, Ct−1] + bo) (5)

ht = ot ⊗ tanh(Ct) (6)

In contrast to the FC-LSTM, the input is fed in as images, while the set
of weights for every connection is replaced by convolutional filters (the symbol
∗ denotes a convolution operation). This allows ConvLSTM work better with
images than the FC-LSTM due to its ability to propagate spatial characteristics
temporally through each ConvLSTM state. Note that this convolutional variant
also adds an optional ‘peephole’ connections to allow the unit to derive past
information better.

2.2 Regularity Score

Once the model is trained, we can evaluate our models performance by feeding
in testing data and check whether it is capable of detecting abnormal events
while keeping false alarm rate low. To better compare with [2], we used the
same formula to calculate the regularity score for all frames, the only difference
being the learned model is of a different kind. The reconstruction error e of all
pixel values in frame t of the video sequence is taken as the Euclidean distance
between the input frame x(t) and the reconstructed frame fW (x(t)):

e(t) = ||x(t) − fW (x(t))||2 (7)

where fW is the learned weights by the spatiotemporal model. We then compute
the abnormality score sa(t) by scaling between 0 and 1. Subsequently, regularity
score sr(t) can be simply derived by subtracting abnormality score from 1:

sa(t) =
e(t) − e(t)min

e(t)max
(8)

sr(t) = 1 − sa(t) (9)
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3 Experiments

3.1 Datasets

We train our model on five most commonly used benchmarking datasets: Avenue
[3], UCSD Ped1 and Ped2 [4], Subway entrance and exit datasets [1]. All videos
are taken from a fixed position for each dataset. All training videos contain only
normal events. Testing videos have both normal and abnormal events.

3.2 Results and Analysis

Quantitative Analysis: ROC and AUC. Table 1 shows the frame-level AUC
and EER of our and of other methods on all five datasets. We outperform all
other considered methods in respect to frame-level EER.

Table 1. Comparison of area under ROC curve (AUC) and Equal Error Rate (EER) of
various methods. Higher AUC and lower EER are better. Most papers did not publish
their AUC/EER for avenue, subway entrance and exit dataset.

Method AUC/EER (%)

Ped1 Ped2 Avenue Subway entrance Subway exit

Adam [1] 77.1/38.0 −/42.0

SF [5] 67.5/31.0 55.6/42.0

MPPCA [4] 66.8/40.0 69.3/30.0 N/A

MPPCA+SF [4] 74.2/32.0 61.3/36.0

HOFME [9] 72.7/33.1 87.5/20.0 N/A 81.6/22.8 84.9/17.8

ConvAE [2] 81.0/27.9 90.0/21.7 70.2/25.1 94.3/26.0 80.7/9.9

Ours 89.9/12.5 87.4/12.0 80.3/20.7 84.7/23.7 94.0/9.5

We also present a run-time analysis on our proposed abnormal event detection
system, on CPU (Intel Xeon E5-2620) and GPU (NVIDIA Maxwell Titan X)
respectively, in Table 2. The total time taken per frame is well less than a quarter
second per frame for both CPU and GPU configuration.

Qualitative Analysis: Visualising Frame Regularity. Figures 2, 3, and 4
illustrate the output of the proposed system on samples of the Avenue dataset,
Subway entrance and exit scenes respectively; our method detects anomalies
correctly in these cases even in crowded scenes.

From Fig. 5, it is easy to see that our method has detected more abnormal
events with fewer false alarms compared to [2]. Also, as observed in Fig. 6, our
method is able to produce higher regularity score during normal activities and
lower scores when there are abnormalities.
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Table 2. Details of run-time during testing (second/frame).

Time (in sec)

Preprocessing Representation Classifying Total

CPU 0.0010 0.2015 0.0002 0.2027 (∼5fps)

GPU 0.0010 0.0058 0.0002 0.0070 (∼143fps)

Fig. 2. Regularity score of video #5 (top) and #15 (bottom) from the Avenue dataset.

Fig. 3. Regularity score of frames 115000-120000 from the Subway Entrance video.

Fig. 4. Regularity score of frames 22500-37500 from the Subway Entrance video.
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Fig. 5. Comparing our method with ConvAE [2] on Avenue dataset video #7 (top)
and #8 (bottom). Best viewed in colour.

Fig. 6. Comparing our method with ConvAE [2] on Subway Entrance video frames
120000-144000. Best viewed in colour.

4 Conclusion

In this research, we have successfully applied deep learning to the challenging
video anomaly detection problem. We formulate anomaly detection as a spa-
tiotemporal sequence outlier detection problem and applied a combination of
spatial feature extractor and temporal sequencer ConvLSTM to tackle the prob-
lem. The ConvLSTM layer not only preserves the advantages of FC-LSTM but is
also suitable for spatiotemporal data due to its inherent convolutional structure.
By incorporating convolutional feature extractor in both spatial and temporal
space into the encoding-decoding structure, we build an end-to-end trainable
model for video anomaly detection. The advantage of our model is that it is
semi-supervised – the only ingredient required is a long video segment contain-
ing only normal events in a fixed view. Despite the models ability to detect
abnormal events and its robustness to noise, depending on the activity complex-
ity in the scene, it may produce more false alarms compared to other methods.
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