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Abstract. Adaptive dynamic programming is a hot research topic
nowadays. Therefore, the paper concerns a new local policy adaptive
iterative dynamic programming (ADP) algorithm. Moreover, this algo-
rithm is designed for the discrete-time nonlinear systems, which are used
to solve problems concerning infinite horizon optimal control. The new
local policy iteration ADP algorithm has the characteristics of updat-
ing the iterative control law and value function within one subset of the
state space. Morevover, detailed iteration process of the local policy iter-
ation is presented thereafter. The simulation example is listed to show
the good performance of the newly developed algorithm.
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1 Introduction

Adaptive dynamic programming (ADP) is always a hot research area since pro-
posed by Werbos [1]. ADP is a very useful and significant intelligent way to
solve nonlinear system problems. With the aim of getting optimal control law,
the corresponding iterative learning methods are applied to analyze the conver-
gence and optimality characteristics of ADP [2–7].

It has to be admitted that the iterative control laws and the iterative value
functions usually have to be updated in the whole state space [8–18], which are
also as “global policy iteration algorithms”. Moreover, the global policy iteration
algorithms have the disadvantages of low efficiency during applications. Most of
time, the algorithm has to pause to wait for the accomplishment of a search of the
whole state area. Correspondingly, the computation efficiency goes down in the
global policy iteration algorithm. The constraint has hindered the development
of this research area. Therefore, useful policy iteration algorithms need to be
proposed to increase computation efficiency.
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This paper has proposed a new “local policy iteration algorithm” concerning
the discrete nonlinear systems. It proves its usage to iterative in a small area.
The algorithm has the ability to update the iterative control laws and also the
iterative value functions within the given area of the state space. Despite the
fact of iterative control laws updating within a preset state space, the system
still has the ability to keep stable under any kind of iterative control law. At the
end, the simulation part shows the good performance of this newly developed
method.

2 Problem Statement

We assume a deterministic discrete-time nonlinear system here

sk+1 = F (sk, ck), k = 0, 1, 2, . . . , (1)

where sk ∈ R
n is the state vector. Besides, ck ∈ R

m is the control vector.
Assume s0 as the initial state and F (sk, ck) as the system function. Assume
ck = (ck, ck+1, . . . ) as an arbitrary sequence of controls. The performance index
function can be defined as

J(s0, c0) =
∞∑

k=0

U(sk, ck), (2)

for state s0 under the control sequence c0 = (c0, c1, . . . ). The utility function
U(xk, ck) is a positive definite function for sk and ck. It is noted that ck changes
from k to ∞.

We aim to find an optimal scheme. The scheme has the ability to minimize
performance index function (2) while stabilizing system (1).

Assume the control sequence set as Uk =
{
ck : ck = (ck, ck+1, . . .), ∀ck+i ∈

R
m, i = 0, 1, 2, . . .

}
.

Then, for an arbitrary control sequence ck ∈ Uk, the optimal performance
index function is

J∗(sk) = inf
ck

{J(sk, ck) : ck ∈ Uk} . (3)

Based on Bellman principle of optimality, J∗(sk) meet the requirement of
the discrete-time HJB formula

J∗(sk) = inf
ck

{U(sk, ck) + J∗(F (sk, ck))} . (4)

Define the law of optimal control as

c∗(sk) = arg inf
ck

{U(sk, ck) + J∗(F (sk, ck))} . (5)

Therefore, the HJB Eq. (4) is

J∗(sk) = U(sk, c∗(sk)) + J∗(F (sk, c∗(sk))). (6)

Overall, there exists the curse of dimensionality. So it is very difficult to obtain
the numerical results for the traditional dynamic programming algorithms. Con-
sidering this situation, we have proposed a new ADP algorithm thereafter.
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3 Descriptions of This New Local Iterative ADP
Algorithm

We have designed a new local iterative ADP algorithm. This section gives a
detailed description of the algorithm. It is designed to have the ability to get the
optimal control law for system (1) correspondingly. Assume {Θi

s} as the state
sets, Θi

s ⊆ Ωs, ∀ i. The value iteration functions and the control laws of the
newly developed algorithm have to be updated iteratively.

For all sk ∈ Ωs, assume v0(sk) as an admissible control law. Besides, assume
V0(xs) as the initial iterative value function for all sk ∈ Ωs. The function satisfies
the generalized HJB (GHJB) equation

V0(sk) = U(sk, v0(sk)) + V0(sk+1), (7)

where sk+1 = F (sk, v0(sk)). Then, for all sk ∈ Θ0
s , the local iterative control law

v1(sk) is computed as

v1(sk) = arg min
ck

{U(sk, ck) + V0(sk+1)} (8)

and let v1(sk) = v0(sk), for all sk ∈ Ωs\Θ0
s .

For all sk ∈ Ωs, assume V1(sk) as the iterative value function. Therefore,
V1(sk) satisfies the GHJB equation

V1(sk) = U(sk, v1(sk)) + V1(F (sk, v1(sk))). (9)

For i = 1, 2, . . ., assume Vi(sk) as the iterative value function. So Vi(sk) can
satisfy the following GHJB equation

Vi(sk) = U(sk, vi(sk)) + Vi(F (sk, vi(sk))). (10)

For all sk ∈ Θi
x, the iterative control law vi+1(sk) should be computed as

vi+1(sk) = arg min
ck

{U(sk, ck) + Vi(sk+1)}
= arg min

ck
{U(sk, ck) + Vi(F (sk, ck))} , (11)

and for all sk ∈ Ωs\Θi
s, let vi+1(sk) = vi(sk).

The local policy iteration algorithm will be updated within the preset subset
of state space according to Eqs. (7) and (11). The given subset is part of whole
state space. Therefore, during iterations, once local data of state space is got,
the newly developed algorithm can be performed immediately. The advantage
is that the algorithm can save lots of time while competing all the data of the
whole space in traditional algorithms. Therefore, the computation efficiency can
be improved greatly and save a lot of trouble. Besides, if the preset subset of
state space is enlarged to all, local policy iteration algorithms equal to the global
policy iteration ones.
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4 Simulation Examples

First, we have chosen a discretized nonaffine nonlinear system as follows

s1(k+1) = (1 − ΔT )s1k + ΔTs2kck,

s2(k+1) = (1 − ΔT )x2k + ΔT (1 + s21k)ck + ΔTc3k. (12)

We choose the utility function as Q = I1 and R = I2. Thereafter, We choose
the state space as Ωs. While I1 and I2, are denoted as the identity matrices with
suitable dimensions. Let the initial state be s0 = [1,−1]T. Based on Algorithm 1
in [16].

The iterative value functions and iterative control laws should be updated
accordingly. After 30 iterations, the algorithm has reached corresponding com-
puting precision of ε = 0.001. Figure 1(a) shows that the iterative value function

Fig. 1. Simulation results of the new local policy iteration algorithm. (a) Corresponding
iterative value function. (b) Corresponding state trajectories. (c) Corresponding control
trajectories. (d) Corresponding optimal state and control trajectories.
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is monotonically nonincreasing. More importantly, the value function converges
to the optimum. Figure 1(b) illustrates the trajectories of simulation states while
Fig. 1(c) shows the simulation functions. In Fig. 1(d), we have shown the optimal
trajectories of control and also states correspondingly.

5 Conclusion

We proposed a new local policy iteration ADP algorithm in this paper. The
algorithm has the ability to greatly improve the computation efficiency of tradi-
tional ADP algorithm concerning discrete time nonlinear systems. Therefore, it
can reduce computation time greatly which contrast to traditional global policy
iteration algorithms. The characteristic concerning this newly developed algo-
rithm is that the iteration control laws and iterative iteration control laws are
updated within a preset area of the state space. Besides, the simulation results
have proven its effectiveness of the newly developed algorithm.
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