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Abstract. In this paper, a filtered sliding mode control (FSMC) scheme
based on fuzzy uncertainty observer (FUO) for trajectory tracking con-
trol of a quadrotor unmanned aerial vehicle (QUAV) is proposed. To be
specific, the dynamics model of QUAV is decomposed into three sub-
systems. By virtue of the cascaded structure, sliding-mode-based vir-
tual control laws can be recursively designed. In order to remove the
smoothness requirements on intermediate signals, a series of first-order
filters are employed to reconstruct sliding mode control signals together
with their first derivatives. Moreover, fuzzy uncertainty observers are
employed to indirectly estimate lumped unknown nonlinearities includ-
ing system uncertainties and external disturbances and make compensa-
tion for the QUAV system. Stability analysis and uniformly ultimately
bounded tracking errors and states can be guaranteed by the Lyapunov
approach. Simulation studies demonstrate the effectiveness and superi-
ority of the proposed tracking control scheme.

Keywords: Quadrotor unmanned aerial vehicle · Trajectory tracking
control · Sliding mode control · Fuzzy uncertainty observer

1 Introduction

Compared with traditional single rotor UAV, the most significant advantage of
the quadrotor unmanned aerial vehicles (QUAV) is that the latter has better
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stability, more compact structure and larger load, etc.. So the QUAV pertains
to a wide area of possible applications including patrolling for forest fires, traffic
monitoring, surveillance rescue, etc., and as a remarkable platform for the UAV,
the QUAV has been attracting numerous research [1–6].

The QUAV is a complex nonlinear strongly coupled system with more than
one input and output, and thereby leading to great challenges in controller design
and synthesis. In [7], PID control scheme is used to achieve the trajectory track-
ing control. However, this control method is classical linear control scheme, which
only work better when the QUAV is near hovering state. Backstepping control
scheme has an extensive application in controlling the QUAV in recent years.
In [8], the QUAV dynamic system has been divided into two subsystems, i.e.,
translational subsystem and rotational subsystem and two subcontrollers have
been designed. However, general backstepping control schemes need accurate
model parameters and is not robust to model uncertainties and external distur-
bances, for this reason, adaptive integral backstepping control scheme [9] has
been applied in the QUAV, which Only suitable for the model uncertainty and
external disturbances are slow-varying or constant. Sliding mode control is a
powerful control method with characteristics of simple and robust [10]. Com-
bining with adaptive control strategy or observer [11], this kind control meth-
ods have widespread used various systems, however, chattering phenomenon is
inevitable for the continuous switching logic. Adaptive fuzzy backstepping con-
trol has been used to the trajectory tracking control for the QUAV in [12], in
which the fuzzy system is employed to approximate directly a model using back-
stepping techniques. For the reason of underactuation, the virtual controller is
designed in most control schemes for the QUAV, while, the derivative of the
virtual controller will be complex. In this context, we focus on a QUAV with the
lumped unknown nonlinearity including system uncertainties and external dis-
turbances, and a filtered sliding mode trajectory tracking control scheme based
on fuzzy uncertainty observer (FUO) for the QUAV is proposed.

2 QUAV Dynamics and Problem Formulation

As shown in Fig. 1, defining the earth-fixed coordinate OX0Y0Z0 and the body-
fixed coordinate O′XY Z which are respectively considered with the origin coin-
ciding to the starting point and the gravity center of the QUAV. Vectors (x, y, z)
and (φ, θ, ψ) are respectively denote the positions of the QUAV in earth-fixed
coordinate OX0Y0Z0 and the Euler angles in body-fixed coordinate O′XY Z, in
which φ refers as to roll angle, θ refers as to pitch angle and ψ refers as to yaw
angle.

The position dynamics can be described as follows:{
η̇ηη11 = ηηη12

η̇ηη12 = fff1 (ηηη12) + uuu1 (ηηη2, τ) + ddd1 (ηηη11, ηηη12, t)
(1)
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Fig. 1. The configuration of a QUAV. Fig. 2. The overall control diagram.

with the lumped model uncertainties and/or external disturbances ddd1 =
[d11, d12, d13]T , fff1 = [Dxẋ2,Dy ẏ2,Dz ż

2 − g]T and

uuu1 (ηηη2, τ) =
τ

m

⎡
⎣CφSθCψ + SφSψ

CφSθSψ − SφCψ

CφCθ

⎤
⎦ (2)

where ηηη11 = [x, y, z]T and ηηη12 = [ẋ, ẏ, ż]T are vectors of the positions and linear
velocities in the earth-fixed frame, respectively, m is the mass of the QUAV, g
is the acceleration of the gravity, C∗ and S∗ are the functions cos(∗) and sin(∗),
respectively, τ is the total thrust.

The vector of Euler angles ηηη2 = [φ, θ, ψ]T is governed by

η̇ηη2 = ggg2(ηηη2)uuu2(ηηη3) + ddd2(ηηη2, t) (3)

with the lumped model uncertainties and/or external disturbances ddd2 =
[d21, d22, d23]T , and

ggg2(ηηη2) =

⎡
⎣1 SφTθ CφTθ

0 Cφ −Sφ

0 Sφ

Cθ

Cφ

Cθ

⎤
⎦ (4)

uuu2(ηηη3) = ηηη3 (5)

where T∗ denotes the function tan(∗), ηηη3 = [p, q, r]T is the angular velocity vector
in body-fixed coordinate given by the following dynamics:

η̇ηη3 = fff3(ηηη3) + ggg3uuu3 + ddd3(ηηη3, t) (6)

with the diagonal matrix ggg3 = diag (1/Jx, 1/Jy, 1/Jz) where Ji(i = x, y, z)
is the moment of inertia with respect to each axis, ddd3 = [d31, d32, d33]T

include unmodeled dynamics and/or external disturbances, and fff3(ηηη3) =
[Jy−Jz

Jx
qr, Jz−Jx

Jy
pr,

Jx−Jy

Jz
pq]T , where uuu3 = [u31, u32, u33]T is the control input

and the final control input vector of the QUAV system is uuu = [τ,uuuT
3 ]T .
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The control objective in this study is to design filtered sliding mode con-
troller of the QUAV with FUO and achieve the trajectory tracking control
(x → xd, y → yd, z → zd, ψ → ψd) in presence of the external disturbances
and system uncertainties. Before ending this section, the following assumption
is introduced:

Assumption 1. The desired trajectory and its time derivatives are bounded.

3 Filtered Sliding Mode Controller Design

In this section, three subcontrollers will be designed. The overall control diagram
is as shown in Fig. 2.

3.1 Position Controller

Given a reference trajectory ηηη11d := [xd, yd, zd]T , combining with position
dynamics (1), we design sliding surfaces as follows:

sss11(t) = eee11(t) + kkk11

∫ t

0

eee11(τ)dτ (7)

sss12(t) = eee12(t) + kkk12

∫ t

0

eee12(τ)dτ (8)

where kkk11 = diag(k111, k112, k113) > 0, kkk12 = diag(k121, k122, k123) > 0, eee11 =
ηηη11 −ηηη11d, eee12 = ηηη12 − η̄ηη12d, and η̄ηη12d is the filtered output of the virtual control
signal ηηη12d given by

ε1 ˙̄ηηη12d + η̄ηη12d = ηηη12d (9)

here, ε1 > 0 is an user-defined filtering time constant and let yyy1 = η̄ηη12d − ηηη12d.
In this context, the virtual control signal ηηη12d can be selected as follows:

ηηη12d = −ppp11sss11 + η̇ηη11d − kkk11eee11 − eee12 (10)

where ppp11 = diag(p111, p112, p113) > 0 and a desired position control law for
sub-system (1) can be designed as follows:

uuu1 = − ppp12sss12 − fff1(ηηη12) + ˙̄ηηη12d − kkk12eee12 − d̂dd1 (11)

with the FUO given by

d̂dd1(ωωω1 | ϑ̂ϑϑ1) = ϑ̂ϑϑ
T

1 ξξξ1(ωωω1) (12)

Choosing the parameter matrix update rule as

˙̂
ϑϑϑ1 = −r11ϑ̂ϑϑ1 + r12ξξξ1(ωωω1)(sss12 + εεε1)T (13)
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where r11 > 0 and r12 > 0 are user-defined positive definite parameters, ωωω1 =
[ηηηT

11, ηηη
T
12]

T is the input vector of the fuzzy system, εεε1 = ηηη12−υυυ1 is the observation
error vector with

υ̇υυ1 = − r13υυυ1 + fff1(ηηη12) + uuu1 + d̂dd1(ωωω1|ϑ̂ϑϑ1) + r13ηηη12 (14)

where r13 > 0 is user-defined positive definite parameter.

3.2 Euler Angle Controller

Substituting the control law (11) into the input nonlinearity (2), we can obtain⎧⎪⎪⎨
⎪⎪⎩

τ = m‖uuu1‖
φd = arcsin

(
m
τ (Sψd

u11 − Cψd
u12)

)
θd = arcsin

(
m
τ u11−Sψd

Sφd

Cψd
Cφd

) (15)

Let ηηη2d := [φd, θd, ψd]T and η̄ηη2d := [φ̄d, θ̄d, ψ̄d]T where η̄ηη2d is the filtered
output of ηηη2d given by

ε2 ˙̄ηηη2d + η̄ηη2d = ηηη2d (16)

here, ε2 > 0 is an user-defined filtering time constant and let yyy2 = η̄ηη2d − ηηη2d.
Combining with Euler angles dynamics (3), we design a sliding surface as

follows:

sss2(t) = eee2(t) + kkk2

∫ t

0

eee2(τ)dτ (17)

where eee2 = ηηη2 − η̄ηη2d, kkk2 = diag(k21, k22, k23) > 0.
In this context, a desired Euler angles control law for sub-system (3) can be

designed as follows:

uuu2 = ggg−1
2 (ηηη2)[ ˙̄ηηη2d − kkk2eee2 − ppp2sss2 + yyy2 − d̂dd2] (18)

with the FUO given by

d̂dd2(ωωω2 | ϑ̂ϑϑ2) = ϑ̂ϑϑ
T

2 ξξξ2(ωωω2) (19)

Choosing the parameter matrix update rule as

˙̂
ϑϑϑ2 = −r21ϑ̂ϑϑ2 + r22ξξξ2(ωωω2)(sss2 + εεε2)T (20)

where ppp2 = diag(p21, p22, p23) > 0, r21 > 0 and r22 > 0 are user-defined positive
definite parameters, ωωω2 = [ηηηT

2 , η̇ηηT
2 ]T is the input vector of the fuzzy system,

εεε2 = ηηη2 − υυυ2 is the observation error vector with

υ̇υυ2 = − r23υυυ2 + ggg2(ηηη2)uuu2 + d̂dd2(ωωω2|ϑ̂ϑϑ2) + r23ηηη2 (21)

where r23 > 0 is user-defined positive definite parameter.
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3.3 Angular Velocity Controller

Let ηηη3d := [pd, qd, rd]T = uuu2, together with angular velocity dynamics (6), we
design a sliding surface as follows:

sss3(t) = eee3(t) + kkk3

∫ t

0

eee3(τ)dτ (22)

where eee3 = ηηη3 − η̄ηη3d, kkk3 = diag(k31, k32, k33) > 0 and η̄ηη3d := [p̄d, q̄d, r̄d]T is the
filtered output of ηηη3d given by

ε3 ˙̄ηηη3d + η̄ηη3d = ηηη3d (23)

here, ε3 > 0 is an user-defined filtering time constant and let yyy3 = η̄ηη3d − ηηη3d.
Accordingly, an nominal angular velocity control law for sub-system (6) can

be governed as follows:

uuu3 = ggg−1
3 [ ˙̄ηηη3d − fff3(ηηη3) − kkk3eee3 − ppp3sss3 + yyy3 − d̂dd3] (24)

with the FUO given by

d̂dd3(ωωω3 | ϑ̂ϑϑ3) = ϑ̂ϑϑ
T

3 ξξξ3(ωωω3) (25)

Choosing the parameter matrix update rule as

˙̂
ϑϑϑ3 = −r31ϑ̂ϑϑ3 + r32ξξξ3(ωωω3)(sss3 + εεε3)T (26)

where ppp3 = diag(p31, p32, p33) > 0, r31 > 0 and r32 > 0 are user-defined positive
definite parameters, ωωω3 = [ηηηT

3 , η̇ηηT
3 ]T is the input vector of the fuzzy system,

εεε3 = ηηη3 − υυυ3 is the observation error vector with

υ̇υυ3 = − r33υυυ3 + fff3(ηηη3) + ggg3uuu3 + d̂dd3(ωωω3|ϑ̂ϑϑ3) + r33ηηη3 (27)

where r33 > 0 is user-defined positive definite parameter.
Then, the final control law is

uuu :=
[

τ
uuu3

]
=

[
m‖uuu1‖

uuu3

]
(28)

4 Stability Analysis

Theorem 1. Consider an uncertain QUAV system (1)–(3)–(6), together with
control scheme (11), (18), (24) with FUO given by (12), (19), (25), all sys-
tem states and signals and all tracking errors are globally uniformly ultimately
bounded.
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Proof. Together with system (14), (21) and (27), we have

ε̇εεi + ri3εεεi = dddi − d̂ddi(ωωωi|ϑ̂ϑϑi) (29)

where i = 1, 2, 3.
Define the optimal parameter as

ϑϑϑ∗
i = arg min

ϑ̂ϑϑi∈Mϑϑϑi

( sup
ωωωi∈Mωωωi

‖dddi − d̂ddi‖) (30)

where Mϑϑϑi
and Mωωωi

are bounded sets.
Then we have

dddi = d̂ddi(ωωωi|ϑϑϑ∗
i ) + ζζζi(ωωωi) (31)

where ζζζi(ωωωi) is reconstruction error vector and ‖ζζζi(ωωωi)‖ < ζ̄i, ζ̄i > 0. Let ϑ̃ϑϑi =
ϑϑϑ∗

i − ϑ̂ϑϑi, together with system (29), we can obtain

ε̇εεi + ri3εεεi = ϑ̃ϑϑ
T

i ξξξi(ωωωi) + ζζζi(ωωωi) (32)

Combining with system (12), (19), (25), (31), the following equation holds

dddi − d̂ddi = ϑ̃ϑϑ
T

i ξξξi(ωωωi) + ζζζi(ωωωi) i = 1, . . . , 3 (33)

then together with system (8), (17), (22) and (33), we can obtain
{

ṡss12 = −ppp12sss12 + ϑ̃ϑϑ
T

1 ξξξ1(ωωω1) + ζζζ1(ωωω1)

ṡssi = −pppisssi + yyyi + ϑ̃ϑϑ
T

i ξξξi(ωωωi) + ζζζi(ωωωi) i = 2, 3
(34)

Choosing the following Lyapunov function

V =
1
2

[ 3∑
i=1

(
yyyT

i yyyi + εεεT
i εεεi +

tr(ϑ̃ϑϑ
T

i ϑ̃ϑϑi)
ri2

)
+ sssT

11sss11 + sssT
12sss12 + sssT

2 sss2 + sssT
3 sss3

]
(35)

Together with system (32) and (34), the time derivative of (35) can be given
as

V̇ =
3∑

i=2

(
− sssT

i pppisssi + sssT
i yyyi − ri3εεε

T
i εεεi + (sssT

i + εεεT
i )ζζζi(ωωωi) + yyyT

i ẏyyi

)
− sssT

11ppp11sss11

+ sssT
11yyy1 − sssT

12ppp12sss12 − r13εεε
T
1 εεε1 + (sssT

12 + εεεT
1 )ζζζ1(ωωω1) + yyyT

1 ẏyy1

+
3∑

i=2

(
(sssT

i + εεεT
i )ϑ̃ϑϑ

T

i ξξξi(ωωωi) − tr(ϑ̃ϑϑ
T

i
˙̂
ϑϑϑi)

ri2

)
+ (sssT

12 + εεεT
1 )ϑ̃ϑϑ

T

1 ξξξ1(ωωω1) − tr(ϑ̃ϑϑ
T

1
˙̂
ϑϑϑ1)

r12︸ ︷︷ ︸
M

(36)
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together with systems (13), (20) and (26), we can obtain

M =
3∑

i=2

( 3∑

j=1

(ϑ̃ϑϑ
T

ij((sij + εij)ξξξi(ωωωi) −
˙̂
ϑϑϑij

ri2
))

)
+

3∑

j=1

(ϑ̃ϑϑ
T

1j((s12j + ε1j)ξξξ1(ωωω1) −
˙̂
ϑϑϑ1j

r12
))

=

3∑

i=1

ri1
ri2

tr(ϑ̃ϑϑ
T

i ϑ̂ϑϑi) (37)

where sss12 = [s121, s122, s123]T , sssi = [si1, si2, si3]T , εεεi = [εi1, εi2, εi3]T , ϑ̃ϑϑi =

[ϑ̃ϑϑi1, ϑ̃ϑϑi2, ϑ̃ϑϑi3] and ˙̂
ϑϑϑi = [ ˙̂ϑϑϑi1,

˙̂
ϑϑϑi2,

˙̂
ϑϑϑi3] with i = 1, 2, 3.

Together with systems (9)–(10) and Assumption 1, we can obtain∥∥∥∥ẏyy1 +
yyy1

ε1

∥∥∥∥ ≤ z1(ṡss11, ¨̄χχχ11d, ėee11, ėee12) (38)

where z1 is continuous bounded function. Then, we have

yyyT
1 ẏyy1 ≤ −yyyT

1 yyy1

ε1
+

1
2
yyyT
1 yyy1 +

1
2
z21 (39)

Similarly, there exists continuous bounded function z2(·) and z3(·), such that

yyyT
i ẏyyi ≤ −yyyT

i yyyi

εi
+

1
2
yyyT

i yyyi +
1
2
z2i , i = 2, 3 (40)

In addition, using the Young’s inequality, we have

3∑
i=1

(
ri1

ri2
tr(ϑ̃ϑϑ

T

i ϑ̂ϑϑi)
)

≤
3∑

i=1

(
ri1

2ri2
tr(ϑϑϑ∗T

i ϑϑϑ∗
i ) − ri1

2ri2
tr(ϑ̃ϑϑ

T

i ϑ̃ϑϑi)
)

(41)

Substituting system (37), (39), (40) and (41) into system (36), it is easy to
obtain

V̇ ≤
3∑

i=2

(
− sssT

i (pppi − III)sssi −
(

1
εi

− 1
)

yyyT
i yyyi −

(
ri3 − 1

2

)
εεεT

i εεεi − ri1

2ri2
tr(ϑ̃ϑϑ

T

i ϑ̃ϑϑi)
)

− sssT
11

(
ppp11 − III

2

)
sss11 − sssT

12

(
ppp12 − III

2

)
sss12 −

(
r13 − 1

2

)
εεεT
1 εεε1 −

(
1
ε1

− 1
)

yyyT
1 yyy1

− r11
2r12

tr(ϑ̃ϑϑ
T

1 ϑ̃ϑϑ1) +
3∑

i=1

(
ζ̄2i +

ri1

2ri2
tr(ϑϑϑ∗T

i ϑϑϑ∗
i ) +

z̄2i
2

)
(42)

where z̄i(t) is the upper bound value of zi(t).
Selecting the following design parameters

pppj ≥ 2 + α

2
III,

1
εi

≥ 1 +
α

2
, ppp11 ≥ 1 + α

2
III, ppp12 ≥ 1 + α

2
III, ri3 ≥ 1 + α

2
,
ri1

ri2
≥ α
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with j = 2, 3 and i = 1, . . . , 3, we have

V̇ ≤ − αV + C (43)

with

C =
3∑

i=1

(
ζ̄2i +

ri1

2ri2
tr(ϑϑϑ∗T

i ϑϑϑ∗
i ) +

z̄2i
2

)
(44)

Together with the system (35) and (42), the following inequality holds

0 ≤ V (t) ≤ V (0)e−αt + (1 − e−αt)
C

α
< ∞ (45)

It is obvious that the function V (t) is bounded and together with system
(35), we can find that the trajectory error eee11 and the other error signals are
uniformly ultimately bounded.

5 Simulation Studies

In this section, the effectiveness of the proposed control scheme for the QUAV
is evaluated. The lumped uncertainties and/or external disturbances are given
by dddi(t) = 3[sin t, cos t, sin t]T + 0.1ηηηi, where ηηη1 = ηηη11 + ηηη12, i = 1, 2, 3.

The reference tracking trajectory is given as [xd, yd, zd, ψd] = [−2 sin t/2,
2 cos t/2, 2 sin t+3, sin t] and the initial conditions of the QUAV are set as follows:
x(0) = 2, y(0) = −0.5, z(0) = 2, φ(0) = 1.

Figure 3 shows the tracking of three positions and the yaw, where FSMC
denotes the proposed filtered sliding mode control scheme and SMC denotes the
traditional sliding mode control scheme. From Fig. 3 we can find that both the
proposed control scheme and the SMC scheme are able to robustly stabilize the

Fig. 3. States of x, y, z and ψ. Fig. 4. Unknown nonlinearities.
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QUAV and make it track the desired trajectory, while it is obvious that the pro-
posed control scheme has faster response and higher accuracy. Figure 4 shows
the estimate state of the FUO for the lumped unknown nonlinearities including
system uncertainties and external disturbances on the trajectory, i.e., x, y, z and
the yaw ψ, from which we can see, although the unknown lumped nonlinearities
continuous change along with the time, FUO can estimate the unknown nonlin-
earities well. In summary, we can conclude that the proposed tracking control
approach can achieve remarkable performance in terms of tracking accuracy and
disturbance rejection.

6 Conclusion

In this paper, a filtered sliding mode control scheme based on FUO for tra-
jectory tracking of a QUAV has been proposed. To be specific, three cascaded
sub-controllers are designed by incorporating underactuation constraints. First-
order filters are employed to reconstruct sliding mode control signals together
with their first derivatives, and thereby decoupling the iterative design within
the QUAV tracking control scheme. Furthermore, FUOs have been designed to
estimate the lumped unknown nonlinearities. By the Lyapunov approach, we
have proven that all system states and signals and tracking errors are globally
uniformly ultimately bounded. Simulation studies have demonstrated the effec-
tiveness and superiority of the proposed tracking control scheme.
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