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Abstract. Extensive studies suggest that the brain integrates multisen-
sory signals in a Bayesian optimal way. In this work, we consider how
the couplings in a neural network model are shaped by the prior infor-
mation when it performs optimal multisensory integration and encodes
the whole profile of the posterior. To process stimuli of two modalities,
a biologically plausible neural network model consists of two modules,
one for each modality, and crosstalks between the two modules are car-
ried out through feedforward cross-links and reciprocal connections. We
found that the reciprocal couplings are crucial to optimal multisensory
integration in that their pattern is shaped by the correlation in the joint
prior distribution of sensory stimuli. Our results show that a decentral-
ized architecture based on reciprocal connections is able to accommodate
complex correlation structures across modalities and utilize this prior
information in optimal multisensory integration.

Keywords: Recurrent neural networks · Multisensory processing ·
Bayesian inference

1 Introduction

Extracting information reliably from ambiguous environments is crucial for the
survivorship of organisms. The brain solves this problem by exploiting multiple
sensory modalities to gather, from different aspects, as much information as pos-
sible about the same entity of interest. It has been reported in a large number of
psychophysical and neurobiological studies that the brain can integrate sensory
cues in an optimal way, as predicted by Bayesian inference [1–3].

Despite the accumulated behavior evidence, exactly how the brain imple-
ments optimal multisensory integration remains largely unknown. In the present
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study, we adopt a theoretical approach to address this challenging issue. We for-
mulate multisensory integration as a mathematical problem of optimizing net-
work structure under the constraint that for a given prior distribution of stimuli,
the network’s output matches the posterior distribution. This is equivalent to
requiring that the network realizes Bayesian inference when the sensory cues are
sampled form their prior over many trials. We introduce different prior distribu-
tions of the multisensory stimuli and investigate how network structures depend
on the choice of priors. We look for evidence to see where information about
the prior and that about the likelihood are represented in the network consist-
ing of recurrent and reciprocal connections, cross-links and direct links. These
results generate predictions about the structural pre-requisites for multisensory
integration. They can be tested in future experiments and shed light on our
understanding of how the brain can achieve multisensory integration optimally.

2 Optimal Multisensory Inference with a Composite
Prior

Utilizing prior information is important for multisensory information processing.
A variety of studies have suggested that the prior distributions are taken into
account when animals make perceptual decisions [4–6]. Specifically, multisensory
processing relies on the experience about correlations among sensory cues, which
usually benefits us in forming a unified and coherent perception of the external
world [7], yet sometimes evokes interesting illusions [8,9].

Fig. 1. Three types of the prior. (a) The joint prior distribution constructed from the
congruent copula c1. The marginal priors, which are the same for s1 and s2, are plotted
to the sides of (a). (b) The joint prior distribution constructed from the opposite copula
c2. (c) The joint prior distribution constructed from the mirror copula c3. The color
code for (a)–(c) are the same and shown to the right of (c). Parameters: for all three
cases, κs = 0.2, κp = 11.6, pc = 0.246. For the opposite prior in (b) and the mirror
prior in (c), α = 0.5. (Color figure online)

Different specific forms of the prior distribution have been brought up to
characterize different perceptual tasks (see [10] for a review). In general, the
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joint prior should be composed of an independent part and a correlated part.
Suppose s1 and s2 are two sensory stimuli in different modalities, whose marginal
prior densities are p(s1) and p(s2), respectively. The joint prior can be described
as p(s1, s2) = (1 − pc)p(s1)p(s2) + pcq(s1, s2). Here, q(s1, s2) is a correlated
distribution and pc ∈ [0, 1] describes how often s1 and s2 are originated from
that distribution. Ideally, q(s1, s2) should only affect the correlation between
the two underlying stimuli without changing their marginal distributions. This
requirement can be satisfied by using a copula, which is a multivariate proba-
bility distribution, whose marginal distribution of each variable is uniform [11].
Consider a two-dimensional copula c(ξ1, ξ2), satisfying the property that its mar-
ginals over ξ1 or ξ2 are equal to 1. According to the Sklar’s theorem [12], q(s1, s2)
can be constructed as q(s1, s2) = c(F (s1), F (s2))p(s1)p(s2), where F (si) is the
cumulative distribution function of p(si). It can be verified that the marginal
distributions of q(s1, s2) are exactly p(s1) and p(s2).

In the present work, we consider stimuli such as heading direction residing on
a circular space [−π, π). We use the von Mises distribution as the marginal prior
distribution, p(si) ∝ eκs cos si , i = 1, 2, where κs is the concentration parameter,
and ∝ indicates proportionality. For simplicity, we consider the case that the
marginal priors are the same for the two modalities, and centered at the origin.
In order to observe the dependence of network structure on the prior, three forms
of copulas are chosen due to their distinctive profiles:

1. Congruent copula [c1(ξ1, ξ2) ∝ eκp cos 2π(ξ1−ξ2)], which is derived from the von
Mises distribution. Similar forms of such prior are widely applied in describing
a pair of correlated sensory cues when they are originated from a common
cause [8,13]. Larger κp indicates higher correlation between the stimuli in the
two modalities.

2. Opposite copula [c2(ξ1, ξ2) = αc1(ξ1, ξ2)+(1−α)c1(ξ1, ξ2 +1/2)]. The second
term in c2 indicated that s1 and s2 may come in opposition directions.

3. Mirror copula [c3(ξ1, ξ2) = αc1(ξ1, ξ2) + (1 − α)c1(ξ1,−ξ2)]. The second term
in c3 indicates that s1 and s2 might be the mirror image of each other.

Examples of three different kinds of joint prior distributions p(s1, s2) are shown
in Fig. 1(a)–(c).

The two stimuli s1 and s2 give rise to sensory observations x1 and x2, respec-
tively. The sensory observations are corrupted by independent noises in different
sensory pathways. We use the von Mises distribution to represent the likelihood
functions, p(xi|si) ∝ eκi cos(xi−si), i = 1, 2, where κi is the concentration para-
meter, which can be understood as the reliability of the sensory input in the
corresponding modality.

These uni-sensory observations are supposed to be fed into higher level mul-
tisensory regions, where optimal multisensory estimates ŝ1 and ŝ2 are made.
According to the Bayes’ theorem, the marginal posterior distribution is given by

p(s1|x1, x2) ∝
∫

p(x1|s1)p(x2|s2)p(s1, s2) ds2. (1)
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Fig. 2. The multimodal Bayesian inference problem and the recurrent neural network
model. (a) A graphical illustration of the Bayesian inference problem. (b) Each small
circle portraits one neuron, with the attached arrow indicating the neuron’s preferred
stimulus. Besides being recurrently connected to each of themselves, the two modules
of the network model interact with each other through feedforward cross-links (Wff

12

and Wff
21) and reciprocal couplings (Wrec

12 and Wrec
21 ). The inputs of the two modules

represent uni-sensory observations, corresponding to x1 and x2 in (a). The outputs are
multisensory representations, corresponding to ŝ1 and ŝ2 in (a).

Usually the expected value of s1 from the posterior distribution is chosen as
a Bayesian optimal estimate ŝi for the underlying stimulus, which minimizes a
mean squared error cost function [10]. For circular random variables considered
in this work, the Bayesian estimates for the stimuli in two modalities are given by,
ŝi = arg

[∫
p(si = φ|x1, x2)ejφ dφ

]
, for i = 1, 2, where j ≡ √−1 is the imaginary

unit. This Bayesian inference framework for multisensory processing is shown
schematically in Fig. 2(a).

3 A Bi-modular Recurrent Neural Network Model

Bi-modular recurrent neural network models have been applied in many studies
on the multisensory integration to explain experimental findings and provide
insights into the functional roles of connections between brain areas [14,15].
We will explore the capability of such bi-modular recurrent network models in
encoding an arbitrary prior distribution and optimally integrating multisensory
information based on that prior. Consider a bi-modular recurrent neural network
model with its dynamical equation [16],

τs
∂

∂t
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]
= −
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u2

]
+

[
Wrec

11 Wrec
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Wrec
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]
+

[
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Wff
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22

] [
I1
I2

]
. (2)

Here, ui is a N -element vector, whose mth element ui,m is the synaptic input of
the mth neuron in module i. The mth element of the vector ri, ri,m, is the firing
rates of the mth neuron in module i. The firing rate is related to the synaptic
input ui through an activation function ri = f(ui). Ii is the external inputs
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applied on module i. Wff
ij is the feedforward weight matrix from module j to

module i. Wrec
ij is the recurrent weight matrix from module j to module i. The

preferred stimuli of neurons in each module are supposed to be evenly distributed
over a circle, φm = (2πm)/N − π. In the following results, both modules consist
of N = 32 neurons. The architecture of this network model is illustrated in
Fig. 2(b).

Fig. 3. Comparison of model structures. Network architecture and connection weights
for: (a) model 1, a fully connected model; (b) model 2, where feedforward cross-links
are cut; and (c) model 3, where reciprocal couplings are cut. All three structures are
optimized for congruent copula c1. Parameters: κs = 0.2, κp = 11.6, pc = 0.246, κ̃1 =
κ̃2 = 10.7.

The inputs of the neural network are the neural population representation
of the uni-sensory observations of the external stimuli. Due to the uncertain
nature of the external world and noisy neuronal firings, the neural population
representation is constantly fluctuating, hypothetically sampling the likelihood
function. In a similar way, the outputs of the multisensory neural population
should sample the posterior distribution. If we consider a time scale that is
much longer than this sampling process, the temporal average of the neuronal
inputs and outputs should resemble the likelihood function and the network’s
estimate of the posterior distribution, respectively. Therefore, the external input
vector Ii is set to be the same as the likelihood functions p(xi|si = φm), and
the stationary firing rates ri

∗ will eventually approach the network’s estimate
of the marginal posterior pi, whose mth element is p(si = φm|x1, x2), during the
network optimization described below.

We use a divisive normalization function as the activation function. Recently,
due to its success in accounting for important features of multisensory integra-
tion, such as the principle of inverse effectiveness and the spatial principle [17],
the divisive normalization model was proposed to be a canonical integration
operation [18,19]. Here, we follow the form of divisive normalization in a contin-
uous attractor neural network model [20], ri,m = [ui,m]2+ /{1+kI

∑
n [ui,n]2+}, for

i = 1, 2, and m,n = 1, 2, . . . , N . Here, [x]+ ≡ max(x, 0), and kI is the strength of
global inhibition. The performance of the network is the best with divisive nor-
malization function, compared with sigmoid or piece-wise linear functions (data
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not shown here). In the present work, we fix kI = 0.1, while small changes in kI

does not affect the results very much.

3.1 Optimize the Connection Weights Through Stochastic Gradient
Descent

We optimize the connection weights in order to minimize the mean squared error
L between the stationary network activity r∗ and the marginal posterior distri-
bution pi, L ≡ 〈∑i=1,2 ‖r∗

i −pi‖2〉p(x1,x2). Usually a recurrent neural network is
trained using back-propagation through time [21,22]. Since only the steady state
is relevant in this work, we use a simple stochastic gradient descent algorithm
to optimize the steady state. Samples of training inputs (I1, I2) and training
outputs (p1,p2) are generated in the following way. Given the prior distribution
p(s1, s2) and the mean reliabilities of sensory inputs κ̃1 and κ̃2, we first draw the
true value of external stimuli s1 and s2 from the prior distribution and draw the
reliabilities for each sensory input κ1 and κ2 independently from log-normal dis-
tributions lnN (κ̃i, σ

2
κ). In this work, we always set σκ to be 0.5. Secondly, draw

the sensory input xi from the von Mises distribution p(xi|si) ∝ eκi cos(si−xi).
Then, the training inputs and the training outputs can be calculated according
to the Bayes’ theorem in Eq. (1).

4 Results

4.1 Model Comparison

Crosstalks between different sensory areas may happen at different levels. In
general, we consider two types of communication across modalities: the feedfor-
ward cross-links (Wff

ij for i 	= j), and the reciprocal couplings (Wrec
ij for i 	= j).

By forcing either of them to be zero, we tested three different model struc-
tures (Fig. 3). Model 1 is the fully connected model (Fig. 3(a)). In model 2, the
interaction between the two modules are limited to the reciprocal connections,
with the feedforward cross-links forced to be zero (Fig. 3(b)). In model 3, the
reciprocal connections are set to be zero (Fig. 3(c)). We also tested a purely feed-
forward network structure, model 4, to see if recurrent connections are essential
for optimal multisensory integration. We found that model 1, 2 and 3 are almost
indistinguishable in their performances, while the purely feedfoward structure,
model 4, is obviously worse than the others (data not shown here). Examples
of the connection weights for model 1, 2 and 3 are shown in the lower parts of
Fig. 3(a)–(c). In the following part of this work, we will focus on model 2, while
general results are similar for model 1 and model 3.

4.2 Coupling Weights for Different Priors

To reveal the impact of the prior information on the recurrent neural network
model, we compare the coupling weights of networks optimized with different



134 H. Wang et al.

Fig. 4. The optimized coupling weights for three types of the prior. (a) The connection
weights of model 2 trained with the congruent prior in Fig. 1(a). (b) The connection
weights of model 2 trained with the opposite prior in Fig. 1(b). (c) The connection
weights of model 2 trained with the mirror prior in Fig. 1(c). Parameters: for all three
cases, κ̃1 = κ̃2 = 10.7.

prior distributions. Three examples are shown in Fig. 4. The prior distributions
share the same marginal distributions, and are then constructed using three
different types of copulas: the congruent copula c1 (Fig. 1(a)), the opposite cop-
ula c2 (Fig. 1(b)) and the mirror copula c3 (Fig. 1(c)). Coupling weights of the
networks trained with the three priors are shown in Fig. 4(a)–(c). The same-
side connection weights (Wff

11,W
ff
22,W

rec
11 and Wrec

22 ) are nearly identical for
the three cases. However, the reciprocal couplings (Wrec

12 and Wrec
12 ) exhibit

patterns resembling the corresponding prior distribution. This result strongly
suggests that the reciprocal connections, as a bridge between different sensory
modules, are able to encode the information of the joint prior distribution, taking
the correlation structure between sensory stimuli into account when performing
multisensory integration.

5 Conclusion

We have developed a framework to link the network structure of the multisen-
sory processing brain region to the statistical structure of Bayesian inference.
We found that a recurrent network structure appears to be necessary for imple-
menting optimal multisensory integration. Furthermore, we have studied the
dependence of the network structure for multisensory information processing on
the choice of the priors and likelihoods. We found clear evidence that informa-
tion about the prior is encoded in the indirect couplings (reciprocal connections
and cross-links). This can be seen from the correspondence between the profiles
of the indirect couplings and the correlation pattern in the joint prior of the
stimuli. In the present models, the priors can be encoded in either cross-links or
reciprocal connections or both. In the future, we can consider how biological con-
straints can narrow down these possibilities for realistic architecture exploited
by the neural system.

Multisensory integration is not limited to biological systems. In other artifi-
cial intelligence applications, such as computer vision and robotics, integrating
signals optimally from multiple sensors is also a fundamental technique. The
optimal structure we found has implications to the decentralized architecture for
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multisensory information processing. It demonstrates that composite prior distri-
butions can be encoded in a decentralized fashion in the reciprocal connections.
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