
Adaptive Neural Network Control
for Constrained Robot Manipulators

Gang Wang1, Tairen Sun1, Yongping Pan2, and Haoyong Yu2(B)

1 Jiangsu University, Zhenjiang 212013, China
973196357@qq.com, suntren@gmail.com

2 National University of Singapore, Singapore 117583, Singapore
{biepany,bieyhy}@nus.edu.sg

Abstract. This paper presents an adaptive neural network (NN) control
strategy for robot manipulators with uncertainties and constraints. Posi-
tion, velocity and control input constraints are considered and tackled by
introducing barrier Lyapunov functions in the backstepping procedure.
The system uncertainties are estimated and compensated by a locally
weighted online NN. The boundedness of the closed-loop control system
and the feasibility of the proposed control law are demonstrated by the-
oretical analysis. The effectiveness of the proposed control strategy has
been verified by simulation results on a robot manipulator.
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1 Introduction

Control of robot manipulators has gained more and more attention for its appli-
cations in industries, agricultures, and teleoperated surgeries. The difficulties in
control of robot manipulators mainly include uncertainties and constraints in the
position, velocity, and control input. On the one hand, uncertainties always exist
in robot manipulator models due to modeling errors and disturbances. On the
other hand, control input constraints always exist due to limited control powers,
and motion constraints (e.g. position constraints and velocity constraints) are
needed to avoid collision or injury to human beings, especially in human-robot
interaction. Therefore, the control design for robot manipulators with uncertain-
ties and constraints deserves more research.

Many robust control strategies have been developed for robot manipulators,
including sliding mode control [1–3], neural network (NN) control [3–8], fuzzy
control [9,10], adaptive control [11], etc. However, sliding mode control usu-
ally suffers from chattering and the need of high-frequency bandwidth, adap-
tive control usually only handles structured uncertainties, and fuzzy control
highly depends on the experiences of control engineers. Compared with other
control approaches, NN control has its own advantages. NNs can approximate
both structured and unstructured uncertainties due to their inherent function
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approximation abilities. The use of NNs estimators in control is possible to obtain
desired control performances without high control gains.

Since constraints in robot manipulators need to be considered and ignor-
ing constraints may deteriorate the control performance, some results have been
obtained on control of constrained robot manipulators. Set-point regulation con-
trol and tracking control laws were designed in [12] and [13] for robot manip-
ulators with velocity constraints, respectively. Quadratic programming-based
kinematic control was developed in [14,15] for velocity constrained redundant
manipulators. Joint position constraints were considered and optimal control was
designed based on adaptive dynamic programming in [16]. Recently, adaptive
control was developed for robot manipulators where output or state constraints
are tackled by bounding barrier Lyapunov functions (BLFs) in [17,18]. Based on
the above analysis, one can see that only position or joint velocity constraints
are considered in existing robot manipulators control approaches.

In this paper, an adaptive NN control law is proposed for robot manipulators
with uncertainties and constraints, including position, velocity and control con-
straints. The uncertainties are approximated by locally weighted adaptive NNs
and compensated by the NN estimator in the control law. In locally weighted
NNs, estimators composed of independently adjusted local models are used to
reach the desired approximation accuracy. Thus, fewer neurons are needed to
approximate smooth functions in the desired accuracy compared with other NNs.
The system constraints are tackled by using BLFs in the backstepping control
[19,20] design for robot manipulators, which extends BLFs-based control for
output and state constrained systems [17] to state and control constrained sys-
tems. It is demonstrated that uniform boundedness of all closed-loop signals is
obtained while the constraints are not violated in theory.

2 Problem Statement

Consider a n-link robot manipulator with the following dynamics:

M(q)q̈ + Vm(q, q̇)q̇ + F q̇ + G(q) = τ (1)

where q = q1 = [q11, q12, · · · , q1n]T ∈ Rn is a joint angle, q2 = q̇1 = [q21, q22, · · · ,
q2n]T is a joint velocity, M(q) ∈ Rn×n is an inertia matrix, Vm(q, q̇) ∈ Rn×n

is a centripetal and Coriolis matrix, F q̇ ∈ Rn denotes a viscous friction torque,
G(q) ∈ Rn denotes a gravitation torque, and τ ∈ Rn denotes a control torque.

Assumption 1. M(q) satisfies the following inequalities:

m1||x||2 ≤ xT M(q)x ≤ m2||x||2, x ∈ Rn (2)

where m1, m2 ∈ R are positive constants.

Assumption 2. The uncertain function f(q, q̇) = M−1(q)[Vm(q, q̇)q̇ + F q̇ +
G(q)] is continuous.
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Assumption 3. The reference trajectory is described as yd(t) = [yd1, yd2, · · · ,
ydn]T ∈ Rn and satisfies |ydi| ≤ Ai and |ẏdi| ≤ Yi, i = 1, · · · , n.

The objective is to design an adaptive NN control law for the system (refeq1)
to track desired trajectory qd(t) and to satisfy the following constraints:

|q1i| ≤ b1i, |q2i| ≤ b2i, |τi| ≤ τdi, i = 1, 2, · · · , n. (3)

3 BLF-Based Neural Control

3.1 Control Design

Let e1 = [e11, e12, e13]T = q1 −yd be a tracking error. Consider BLFs as follows:

V1 =
1
2

n∑

i=1

k2
1i

k2
1i − e21i

(4)

with k1i to k1n being positive design parameters. The time derivative of V1 is

V̇1 =
n∑

i=1

e1i

k2
1i − e21i

(q2i − ẏdi). (5)

Design the following virtual control input:

α1i = ẏdi − λ1ie1i, i = 1, 2, ·, n (6)

with λ1i, i = 1, 2, · · · , n being positive parameters.
Let e2 = [e21, · · · , e2n]T = [q21 − α11, · · · , q2n − α1n]T . Then, one has

V̇1 = −
n∑

i=1

λ1i
e21i

k2
1i − e21i

+
n∑

i=1

e1ie2i

k2
1i − e21i

. (7)

Consider the following BLFs:

V2 = V1 + Λ1, (8)

Λ1 =
n∑

i=1

1
2

log
k2
2i

k2
2i − e22i

(9)

with k2i to k2n being positive design parameters. The time derivative of Λ1 is

Λ̇1 =
n∑

i=1

e2i

k2
2i − e22i

(q̇2i − α̇1i)

= ξT (f(q1, q2) + M−1(q1)τ − [α̇11, · · · , α̇1n]T ) (10)

where

ξ =
[

e21
k2
21 − e221

, · · · ,
e2n

k2
2n − e22n

]T

. (11)



Adaptive Neural Network Control for Constrained Robot Manipulators 121

Design the reference signal τr for τ as

τr = [τr1, · · · , τrn]T = M(q1)(−λ2e2 − f̂(q1, q2) − s) (12)

where λ2 is a positive design parameter, f̂(q1, q2) is an estimate of f(q1, q2), and

s =
1
2
ξ − [α̇11, · · · , α̇1n]T + [(k2

21 − e221)e11/(k2
11 − e211),

· · · , (k2
2n − e22n)e1n/(k2

1n − e21n)]T . (13)

Define e3 = [e31, · · · , e3n]T = τ − τr. From (7)–(13), one obtains

V̇2 = −
n∑

i=1

λ1i
e21i

k2
1i − e21i

−
n∑

i=1

λ2
e22i

k2
2i − e22i

+ ξT (f̃ + M−1e3) − 1
2
ξT ξ (14)

Consider the following BLF:

V3 = V2 + Λ2, (15)

Λ2 =
n∑

i=1

1
2

log
k2
3i

k2
3i − e23i

(16)

with k3i to k3i being positive design parameters. Time derivative of Λ2 is

Λ̇2 = ηT (τ̇ − τ̇r) (17)

where

η = [
e31

k2
31 − e231

, · · · ,
e3n

k2
3n − e23n

]T (18)

If the control law for the robot manipulator (1) is designed as follows:

τ = −λ3

∫ t

0

e3(σ)dσ −
∫ t

0

[diag{k2
3i − e23i}M−1(q1)ξ](σ)dσ + τr(t) (19)

where λ3 is a positive parameter, then one gets

V̇3 = −
n∑

i=1

λ1i
e21i

k2
1i − e21i

−
n∑

i=1

λ2
e22i

k2
2i − e22i

−
n∑

i=1

λ3
e23i

k2
3i − e23i

+ ξT f̃ − 1
2
ξT ξ.

(20)

3.2 Locally Weighted Online NN Approximation

Let X = [X1, · · · ,X2n]T = [qT
1 , qT

2 ]T and D = {X : |Xi| ≤ b1i, |Xn+i| ≤ b2i, i =
1, · · · , n}. The locally weighted NN approximation of f(X) is described by

f̂(X) =
∑N

k=1 wk(X)f̂k(X)
∑N

k=1 wk(X)
(21)
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where wk(X), k = 1, · · · , N as weighted functions, and the local estimator f̂k(X)
is described as follows:

f̂k(X) = θT
k φk(X), φk(X) = [1, (X − ck)T ]T . (22)

with ck being the center of the k-th local estimator.
Assume D ⊆ ∪N

k=1Sk, where Sk = {X : wk �= 0}, k = 1, 2, · · · , N are a series
of compact sets. Define wk(X) as follows:

wk(X) =

{
(1 − (||X − ck||/μk)2)2, if ||X − ck|| ≤ μk

0, otherwise
(23)

where μk is the radius of Sk. Let w̄k(X) = wk(x)/
∑

k wk(X). Then, (20) can
be equivalently expressed as follows:

f̂(X) =
N∑

k=1

w̄kf̂k(X). (24)

Define the optimal parameter θ∗
k for X ∈ Sk as follows:

θ∗
k = arg min

θk

(∫

X∈D

wk(X)||f(X) − f̂k(X)||2dX

)
. (25)

Also, define the error εk as follows:

εk =

{
f(X) − f̂k(X), on S̄k

0, on D − S̄k

(26)

and assume |εk| ≤ ε with ε as a positive constant. Then, f(x) and its locally
weighted NN approximation can be expressed to be

f =
N∑

k=1

w̄kθ∗T
k φk +

N∑

k=1

w̄kεk, (27)

f̂ =
N∑

k=1

w̄kθT
k φk. (28)

It is obvious that |∑N
k=1 w̄kεk| ≤ max(|εk|)∑Ni

k=1 w̄k ≤ ε.
Let θ̃k = θ∗

k − θk and Ωk � {θk : ||θk|| ≤ cθk}, and define

c = max
θ∗
k,θk∈Ωk

N∑

k=1

θ̃T
k θ̃k/η

with η being a positive design parameter. Design the update law of θk to be

θ̇k = Proj
(
ηw̄kφkξT

)
(29)

where Proj(.) is a projection operator given by

Proj(.) =

⎧
⎪⎨

⎪⎩

0, if θk = −cθk and . < 0
0, if θk = cθk and . > 0
., otherwise

(30)
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3.3 Stability Analysis

Theorem. Consider the system (1) with constraints (3). Assume Assump-
tions 1–3 hold and X(0) ∈ D, τ(0) = 0, and the control law is designed as
(19). Let

A1i = max
(e1i,ydi)∈Ω1i

|α1i(e1i, ydi)|, (31)

Ari = max
((ē2i,ȳdi))∈Ωri

|τri(ē2i, ȳdi)|, (32)

where ē2i = [e1i, e2i]T , ȳdi = [ydi, ẏdi]T , and

Ω1i = {[e1i, ydi] : |e1i| ≤ k1i, |ydi| ≤ Ai}, (33)
Ωτi = {[ē1i, ȳdi] : |e1i| ≤ k1i, |e2i| ≤ k2i, |ydi| ≤ Ai, |ẏdi| ≤ Yi}. (34)

If there exist λ1i, i = 1, · · · , n, λ2, λ3 such that

b1i ≥ k1i + Ai, b2i ≥ k2i + A1i, τdi ≥ k3i + Ari, i = 1, · · · , n, (35)

then the constraints (3) are satisfied and the signals in the closed-loop control
system are uniformly ultimately bounded.

Proof. Consider the following Lyapunov function:

V = V3 +
1
2η

tr{
N∑

k=1

θ̃T
k θ̃k} (36)

Based on (20) and (36), one obtains

V̇ = −
n∑

i=1

λ1i
e21i

k2
1i − e21i

−
n∑

i=1

λ2
e22i

k2
2i − e22i

−
n∑

i=1

λ3
e23i

k2
3i − e23i

− 1
2
ξT ξ

+ξT (
N∑

i=1

w̄kθ̃T
k φk +

N∑

i=1

w̄kεk) − 1
η
tr{

N∑

k=1

θ̃T
k

˙̂
θk}

= −
n∑

i=1

λ1i
e21i

k2
1i − e21i

−
n∑

i=1

λ2
e22i

k2
2i − e22i

−
n∑

i=1

λ3
e23i

k2
3i − e23i

− 1
2
ξT ξ

−1
η
tr{

N∑

k=1

θ̃T
k ( ˙̂

θk − ηw̄kφkξT )} + ξT
N∑

i=1

w̄kεk. (37)

Substituting (29) into (37), one obtains

V̇ ≤ −
n∑

i=1

λ1i
e21i

k2
1i − e21i

−
n∑

i=1

λ2
e22i

k2
2i − e22i

−
n∑

i=1

λ3
e23i

k2
3i − e23i

+
1
2
ε2 (38)

As log[k2
ji/(k2

ji − e2ji)] ≤ e2ji/(k2
ji − e2ji) for j = 1, 2, 3. [21], one gets

V̇ ≤ −2λV3 +
1
2
ε2 ≤ −2λV + β (39)
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where λ = min{λ1i, i = 1, · · · , n, λ2, λ3} and β = λc + 1/2ε2. It is concluded
from (39) that V and all closed-loop signals are bounded. Then, based on the
forms of BLFs Vi, i = 1, 2, 3 and X(0) ∈ D, one gets |e1i| ≤ k1i, |e2i| ≤ k2i and
|e3i| ≤ k3i. Since (35) holds, one concludes |q1i| ≤ b1i, |q2i| ≤ b2i and |τi| ≤ τdi.
According to (39), one also obtains

V (t) ≤ exp(−λt)(V (0) − β

2λ
) +

β

2λ
. (40)

Since log k2
1i

k2
1i−e2

1i
≤ 2V (t) for i = 1, · · · , n, one gets

log
k2
1i

k2
1i − e21i

≤ 2 exp(−λt)(V (0) − β

2λ
) +

β

λ
(41)

from which one obtains

lim sup
t→∞

k2
1i

k2
1i − e21i

≤ exp(β/λ), (42)

lim sup
t→∞

|e1i| ≤ k1i

√
1 − exp(β/λ). (43)

4 Simulation Results

To illustrate the effectiveness of the proposed BLFs-based locally weighted learn-
ing control law, simulations are carried out for a one-link robot manipulator with
the reference trajectory yd = 0.5 cos(0.2t). The dynamics of the manipulator is
given by

ml2q̈ + dq̇ + 0.5mgl cos(q) = τ, (44)

where m = 1 kg, l = 1 m, g = 9.8 m/s2, and d = 1kg.m2/s. The constraints are
|q1| ≤ 1, |q2| ≤ 1 and |τ | ≤ 10 with q1 = q, q2 = q̇. In the simulation, the initial
system states are q1(0) = 0.2, q2(0) = 0.2.

The control is designed as

τ = −7
∫ t

0

e3dσ −
∫ t

0

92 − e23
0.62 − e22

e2dσ + τr (45)

where e1 = q1 − yd, e2 = q2 − α1, e3 = τ − τr and are constrained in |e1| ≤ 0.5,
|e2| ≤ 0.6 and |e3| ≤ 7, and the virtual control α1, τr are described by

τr = −5e2 + α̇1 − f̂ − 0.5
e2

0.62 − z22
− 0.62 − e22

0.52 − e21
e1

α1 = −2e1 + ẏd

where f̂ is a localized adaptive NN approximation of f = −q2 + 9.8/2 cos(q1).
In the NN approximation, the centers location are chosen as c1 = [−1, 1]T ,
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c2 = [0, 1]T , c3 = [1, 1]T , c4 = [−1, 0]T , c5 = [0, 0]T , c6 = [1, 0]T , c7 =
[−1,−1]T , c8 = [0,−1]T , c9 = [1,−1]T , c10 = [−0.5, 0.5]T , c11 = [0.5, 0.5]T , c12 =
[−0.5,−0.5]T , c13 = [0.5,−0.5]T , cθk = 0.5, η = 100, μk = 1.5, and the basis
functions are chosen as φi = [1, q1, q2]T − [0; ci], i = 1, · · · , 13.

Simulation results are presented in Fig. 1(a)–(c), where Fig. 1(a) shows the
tracking errors e1, e2 and e3, Fig. 1(b) shows the performance of the states q1, q2
and the control input τ , and Fig. 1(c) shows the NN approximation error f − f̂ .
From Fig. 1(a), the tracking error is near to 0 after 2 s and the constraints sat-
isfaction |e1| ≤ 0.5, |e2| ≤ 0.6, |e3| ≤ 7 and |q1| ≤ 1, |q2| ≤ 1, |τ | ≤ 10 is easily
seen from Fig. 1(a)–(b). From Fig. 1(c), one sees that the approximation error
f − f̂ converges to a small neighborhood of zero after 2 s. Therefore, the designed
adaptive NN control law makes the system state and control input constraints
fulfilled and the tracking error converge to a small neighborhood of 0.
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Fig. 1. Control trajectories by the proposed controller. (a) The tracking errors e1, e2
and e3. (b) The states q1, q2 and control input τ . (c) The NN approximation error
f − f̂ .
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5 Conclusions

A BLFs-based adaptive NN control law was designed for robot manipulators with
position, velocity and control constraints. The uncertainties were approximated
by locally weighted adaptive NNs and the system constraints were tackled by
using BLFs in the backstepping procedure. The control feasibility and uniform
boundedness of all closed-loop signals were verified by theoretical analysis. From
simulation results, we can see that under the proposed control the system con-
straints were never violated and absolute value of the tracking error converged
to a small neighborhood of zero.
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