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Abstract. In this paper, a nonsingular terminal sliding mode (NTSM)
based tracking control (NTSMTC) scheme for an autonomous surface
vehicle (ASV) subject to unmodelled dynamics and unknown distur-
bances is proposed. The salient features of the NTSMTC scheme are as
follows: (1) The NTSMTC scheme is designed by combining the NTSM
technique with an established finite-time unknown observer (FUO) which
enhances the system robustness significantly and achieves accurate track-
ing performance; (2) By virtue of the NTSMTC scheme, not only that
unknown estimation errors are controlled to zero but also tracking errors
can be stabilized to zero in a finite time; (3) The finite-time conver-
gence of the entire closed-loop control system can be ensured by the Lya-
punov approach. Simulation studies are further provided to demonstrate
the effectiveness and remarkable performance of the proposed NTSMTC
scheme for trajectory tracking control of an ASV.

Keywords: Nonsingular terminal sliding mode (NTSM) · Finite-time
stability · Finite-time unknown observer (FUO) · Trajectory tracking
control · Autonomous surface vehicle (ASV)

1 Introduction

In last decades, autonomous surface vehicles (ASVs) have drawn more and more
attention mainly due to important roles in military and civilian applications.
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However, suffering from a variety of external disturbance variations including
winds, waves and currents, ASVs are highly nonlinear and the exact ASV model
can hardly be known, which makes it much challenging and difficult when design-
ing a controller for ASVs.

Traditionally, fuzzy logic systems (FLS) [1] and fuzzy neural networks (FNN)
[2] are usually employed for tracking control of an ASV, which can explicitly take
into account complicated unknowns including external disturbances and even
unmodelled dynamics. As a result, the previous approximation-based methods
can achieve many good properties including disturbance rejection capacity and
high steady-state accuracy. However, it should be pointed out that only asymp-
totic or exponential convergence can be obtained in the previous works rather
than finite-time convergence.

Recently, finite-time control theorems have been increasingly studied; for
example, nonsingular terminal sliding mode (NTSM) technique [3], homogene-
ity [4] and adding a power integrator (API) [5] approaches. Note that fast con-
vergence rate and high robustness can be achieved pertaining to the foregoing
finite-time based methods. Motivated by the above observations, finite-time tra-
jectory tracking and heading controller have been established by Wang in [6] and
[7], respectively. However, finite-time control problems of an ASV in the pres-
ence of complicated unknowns is still largely open. It is mainly for this reason
that finite-time convergence is pursued in this paper in order to achieve fast and
precise tracking performance.

In this paper, a nonsingular terminal sliding mode (NTSM) based tracking
control (NTSMTC) scheme is proposed. To be more specific, the NTSM tech-
nique and the designed finite-time unknown observer (FUO) are integrated to
preserve the advantages of each method, i.e., fast convergence and high robust-
ness. Moreover, rigorously proof has been given to ensure the overall closed-loop
system to be finite-time stable and it has been proven that tracking errors can
be stabilized to zero in a finite time, which as a result leads to accurate tracking
performance.

2 Problem Formulation

The kinematics and dynamics of an ASV moving in a planar space can be
expressed as follows:

{
η̇ηη = J(ψ)ννν
Mν̇νν = NNN (ηηη,ννν) + τττ + τττδ

(1)

where

NNN (ηηη,ννν) = −C(ννν)ννν − D(ννν)ννν − g(ηηη,ννν) (2)

Here, ηηη = [x, y, ψ]T is the 3-DOF position (x, y) and heading angle (ψ) of
the ASV, ννν = [u, v, r]T is the corresponding linear velocities (u, v), i.e., surge
and sway velocities, and angular rate (r), i.e., yaw, in the body-fixed frame,



Nonsingular Terminal Sliding Mode Based Trajectory Tracking Control 85

τττ = [τ1, τ2, τ3]T and τττδ := MRT(ψ)δδδ(t) with δδδ(t) = [δ1(t), δ2(t), δ3(t)]T denote
control input and mixed external disturbance, and J(ψ) is a rotation matrix
governed by

J(ψ) =

⎡
⎣ cos ψ − sin ψ 0

sin ψ cos ψ 0
0 0 1

⎤
⎦ (3)

with the following properties:

JT(ψ)J(ψ) =I, and ‖J(ψ)‖ = 1, ∀ ψ ∈ [0, 2π] (4a)

J̇(ψ) = J(ψ)S(r) (4b)

JT(ψ)S(r)J(ψ) = J(ψ)S(r)JT(ψ) = S(r) (4c)

where S(r) =

⎡
⎣0 −r 0

r 0 0
0 0 0

⎤
⎦, the inertia matrix M = MT > 0, the skew-symmetric

matrix C(ννν) = −C(ννν)T, and the damping matrix D(ννν) can be written as follows:

M =

⎡
⎣m11 0 0

0 m22 m23

0 m32 m33

⎤
⎦ (5a)

C(ννν) =

⎡
⎣ 0 0 c13(ννν)

0 0 c23(ννν)
−c13(ννν) −c23(ννν) 0

⎤
⎦ (5b)

D(ννν) =

⎡
⎣d11(ννν) 0 0

0 d22(ννν) d23(ννν)
0 d32(ννν) d33(ννν)

⎤
⎦ (5c)

where m11 = m−Xu̇, m22 = m−Yv̇, m23 = mxg−Yṙ, m32 = mxg−Nv̇, m33 =
Iz − Nṙ; c13(ννν) = −m11v − m23r, c23(ννν) = m11u; d11(ννν) = −Xu − X|u|u|u| −
Xuuuu2, d22(ννν) = −Yv − Y|v|v|v|, d23(ννν) = −Yr − Y|v|r|v| − Y|r|r|r|, d32(ννν) =
−Nv − N|v|v|v| − N|r|v|r| and d33(ννν) = −Nr − N|v|r|v| − N|r|r|r|. Here, m is the
mass of the ASV, Iz is the moment of inertia about the yaw rotation, Yṙ = Nv̇,
and symbols X∗, Y∗, N∗ represent corresponding hydrodynamic derivatives.

Consider the desired trajectory generated by{
η̇ηηd = J (ψd)νννd
Mν̇ννd = NNN d(ηηηd,νννd) + τττd

(6)

where

NNN d(ηηηd,νννd) = −C(νννd)νννd − D(νννd)νννd (7)

Here, ηηηd = [xd, yd, ψd]T and νννd = [ud, vd, rd]T represent the desired position and
velocity vectors.

The objective in this context is to design a control law such that the actual
trajectory in (1)–(2) can track exactly the desired targets generated by (6)–(7)
in a finite time 0 < T < ∞, i.e., ηηη(t) ≡ ηηηd(t) and ννν(t) ≡ νννd(t),∀ t > T .
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3 Controller Design and Stability Analysis

3.1 Controller Design

Consider the following transformations on ννν and νννd:

ωωω = Jννν (8a)
ωωωd = Jdνννd (8b)

where ωωω = [ω1,ω2,ω3]T, ωωωd = [ωd1,ωd2,ωd3]T, J = J(ψ) and Jd = J(ψd).
Combining (1)–(2) with (8a) yields

{
η̇ηη = ωωω

ω̇ωω = JM−1τττ + HHH(ηηη,ωωω) + δδδ(t)
(9)

where

HHH(ηηη,ωωω) = S(ω
3
)ωωω + JM−1NNN (ηηη,JTωωω). (10)

From (6)–(7) and (8b) yields
{

η̇ηηd = ωωωd

ω̇ωωd = JdM−1τττd + HHHd(ηηηd,ωωωd)
(11)

where

HHHd(ηηηd,ωωωd) = −JdM−1
(
C

(
JT
dωωωd

)
+ D

(
JT
dωωωd

))
JT
dωωωd

+S(ω
d3

)ωωωd. (12)

Using (9)–(10) and (11)–(12), we have
{

η̇ηηe = ωωωe

ω̇ωωe = JM−1τττ + HHHe(ηηη,ωωω,ηηηd,ωωωd) + fffu(ηηη,ωωω,δδδ, t)
(13)

where

HHHe(·) = (JdM−1(C(JT
dωωωd) + D(JT

dωωωd))JT
d )ωωωd

+ Sωωω − Sdωωωd − JdM−1τττd (14a)

fffu(·) = δδδ + JM−1NNN (ηηη,JTωωω) (14b)

Here, S = S(ω3), Sd = S(ωd3), ηηηe = ηηη−ηηηd := [ηe1,ηe2,ηe3]T and ωωωe = ωωω−ωωωd :=
[ωe1,ωe2,ωe3]T.

Assumption 1. The unknown term fffu in (13)–(14) satisfies
∣∣∣
∣∣∣f̈ffu

∣∣∣
∣∣∣ ≤ Lfu (15)

for a bounded constant Lfu < ∞.
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Fig. 1. Control system diagram.

In the light of (13)–(14), we define the nonsingular terminal sliding mode
(NTSM) manifold as follows:

σσσ(t) = ηηηe(t) +
1
β
ωωωp/q

e (t) (16)

where σσσ(t) = [σ1(t), σ2(t), σ3(t)]
T.

Differentiating σσσ(t) with respect to time, we obtain

σ̇σσ = ωωωe +
p

q β
diag(ωωω(p/q)−1

e )ω̇ωωe (17)

where diag(ωωω(p/q)−1
e ) := diag(ω(p/q)−1

e1 ,ω
(p/q)−1
e2 ,ω

(p/q)−1
e3 ) and ω̇ωωe :=

[ω̇e1, ω̇e2, ω̇e3]T.
Concerning the ASV tracking error dynamics (13)–(14) and sliding functions

(16)–(17), the NTSM based tracking control (NTSMTC) scheme can be designed
accordingly

τττ = −MJ−1

(
β

q

p
(Jννν − Jdνννd)

[2−(p/q)] + κκκsgn (σσσ)
)

−MSννν + MJ−1
(
SdJdνννd + JdM−1τττd

)
+MJ−1

(
JdM−1NNN d(ηηηd,νννd) − θθθ1

)
(18)

Here, β > 0, p > 0 and q > 0 are positive old integers satisfying 1 < p/q <
2, κκκ = diag(κ1, κ2, κ3) with positive constants κj(j = 1, 2, 3), and sgn (σσσ) =
[sgn(σ1), sgn(σ2), sgn(σ3)]

T, with θθθ1 derived by the following finite-time unknown
observer (FUO):

θ̇θθ0 = ζζζ0 + JM−1τττ + HHHe(·)
ζζζ0 = −λ1 LLL1/3sig2/3(θθθ0 − ωωωe) + θθθ1

θ̇θθ1 = ζζζ1

ζζζ1 = −λ2 LLL1/2sig1/2(θθθ1 − ζζζ0) + θθθ2

θ̇θθ2 = −λ3 LLLsgn(θθθ2 − ζζζ1) (19)

where θθθi := [θi1, θi2, θi3]T, i = 0, 1, 2, ζζζk := [ζk1, ζk2, ζk3]T, k = 0, 1, λj > 0, j =
1, 2, 3 and LLL = diag(�1, �2, �3). The corresponding control system diagram are
also illustrated in Fig. 1.
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3.2 Stability Analysis

The key result ensuring finite-time stability of the closed-loop is now stated.

Theorem 1 (NTSMTC). Consider the closed-loop system composed of (13)–
(14), (16)–(17) and (18)–(19), the actual trajectory and velocity of the ASV
system (1)–(2) will converge to the desired signals generated by (6)–(7) in a
finite time 0 < T < ∞, i.e., ηηη(t) ≡ ηηηd(t) and ννν(t) ≡ νννd(t),∀ t > T .

Proof. Consider the Lyapunov function as follows:

V =
1
2
σσσTσσσ. (20)

Differentiating V along (13)–(14) yields

V̇ = σσσTσ̇σσ

= σσσT

(
ωωωe +

p

q β
diag(ωωω(p/q)−1

e )ω̇ωωe

)

= σσσT

(
ωωωe +

p

q β
diag(ωωω(p/q)−1

e )
(
RM−1τττ + HHHe(·) + fffu

))
. (21)

Substituting (18) into (21) yields

V̇ = σσσT

[
ωωωe +

p

q β
diag(ωωω(p/q)−1

e )
(

− β
q

p
ωωω[2−(p/q)]

e

− κκκsgn (σσσ) + fffu − θθθ1

)]
. (22)

Define unknown observation errors as follows:

z1 = θθθ0 − ωωωe, z2 = θθθ1 − fffu, z3 = θθθ2 − ḟffu (23)

Then the error dynamics can be derived as

ż1 = −λ
1
LLL1/3sig2/3(z1) + z2

ż2 = −λ
2
LLL1/2sig1/2(z2 − ż1) + z3

ż3 = −λ
3
LLLsgn(z3 − ż2) − f̈ffu (24)

i.e.,

ż1j = −λ
1

�
1/3
j sig2/3(z1j) + z2j

ż2j = −λ
2

�
1/2
j sig1/2(z2j − ż1j) + z3j

ż3j ∈ −λ
3

�jsgn(z3j − ż2j) + [−Lfu, Lfu]. (25)
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According to [8], zzz1,zzz2 and zzz3 can be stabilized to zero in a finite time, and
this yields

θθθ0 ≡ ωωωe, θθθ1 ≡ fffu, θθθ2 ≡ ḟffu. (26)

Combining (22) and (26) we have

V̇ = σσσT

(
ωωωe +

p

q β
diag(ωωω(p/q)−1

e )
(

− β
q

p
ωωω[2−(p/q)]

e − κκκsgn (σσσ)
))

≤ − min
j=1,2,3

{
p

q β

(p/q)−1
ω
ej

κ
j

} 3∑
j=1

| σ
j
| (27)

Define

ρ =
√

2 · min
j=1,2,3

{
p

q β

(p/q)−1
ω
ej

κ
j

}
. (28)

Clearly, when ωej 	= 0, since p and q are positive old integers and 1 < p/q < 2,
we have ρ > 0. Thus,

V̇ ≤ − ρ V 1/2. (29)

Then finite-time stability can be ensured according to [9, Theorem 1].
When ωej = 0, substituting control law (18) into (13)–(14), we have

ω̇ωωe = − β
q

p
ωωω[2−(p/q)]

e − κκκsgn(σσσ) + fffu − θθθ1 (30)

Hence,

ω̇ej = − β
q

p
ω

[2−(p/q)]
ej − κ

j
sgn(σ

j
) (31)

And this yields

ω̇ej = − κ
j
sgn(σj) (32)

with j = 1, 2, 3.
Therefore, ω̇ej < 0 when σj > 0, and ω̇ej > 0 when σj < 0. Clearly, ω̇ej = 0

is not an attractor. It can be concluded that manifold (16) can be reached in a
finite time t∗1 > 0.

Next, we will prove that once the manifold is reached, tracking errors ηηηe and
ωωωe will converge to zero along the manifold in a finite time.

When σσσ = 0, from (16), we have

ηηηe +
1
β
ωωωp/q

e = 0 (33)

i.e.,

ηej +
1
β
η̇
p/q
ej = 0, j = 1, 2, 3. (34)
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It follows that tracking errors ηej and ωej can be stabilized to zero along
σj = 0 at time t∗2 = p β(−q/p) · η[1−(q/p)]

ej (t∗1)/(p − q) + t∗1.
Now we can get the conclusion that the closed-loop system (13)–(14), (16)–

(17) and (18)–(19) is finite-time stable. This completes the proof.

Remark 1. If p = q = 1, the NTSMTC scheme (18) will degrade to a sliding
mode control SMC scheme (τττSMC) accordingly

τττSMC = − MJ−1 (β (Jννν − Jdνννd) + κκκsgn (σσσ))

− MSννν + MJ−1
(
SdJdνννd + JdM−1τττd

)
+ MJ−1

(
JdM−1NNN d(ηηηd,νννd) − θθθ1

)
(35)

with θθθ1 derived by (19).

Remark 2. The chattering can be reduced by replacing the sgn(σj) function with
a saturation function described by

fsat(σ
j
; ε,ϑ) =

{
sgn(σj), |σj | > ε
sigϑ(σj)

εϑ , |σj | ≤ ε
(36)

with ε > 0 and 0 < ϑ < 1.

4 Simulation Studies

This section assesses the control performance of the proposed NTSMTC law in
terms of trajectory tracking of an ASV. Simulations studies are conducted on a
well-known ASV named CyberShip II [10].

Assume external disturbances in (1) are governed by

δδδ(t) =

⎡
⎣3 cos(0.1πt − π/3)

4 cos(0.2πt + π/4)
6 cos(0.3πt + π/6)

⎤
⎦ . (37)

Consider the desired trajectory generated by (6)–(7), assume τττd =
[4, 3 cos2(0.1πt), sin2(0.1πt)]T, the initial conditions are ηηη(0) = [15.5, 8, π/4]T,
ννν(0) = [0, 0, 0]T, ηηηd(0) = [16, 7.8, π/3]T and νννd(0) = [1, 0, 0]T.

Correspondingly, parameters of the FUO are: λ1 = 2.2, λ2 = 1.1, λ3 = 0.8,
LLL = diag(30, 30, 30); and parameters of the NTSMTC scheme are: β = 1, p = 5,
q = 3, κκκ = diag(3.6, 3.6, 3.6), ε = 6.8, ϑ = 0.58.

In comparison with the traditional SMC approach τττSMC in (35), it can be
clearly seen from Fig. 2 that the actual trajectory (solid line) can track the
desired (dashed line) one with faster convergence rate. Correspondingly, the
actual position ηηη = [x, y, ψ]T and the desired signal ηηηd = [xd, yd, ψd]T are shown
in Fig. 3, which exhibits the higher tracking accuracy. In addition to precise
position tracking, actual velocity vector ννν = [u, v, r]T can track the desired target
νννd = [ud, vd, rd]T very quickly, as shown in Fig. 4. The time-varying unknowns
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fffu = [fu1, fu2, fu3]T and the finite-time identification results θθθ1 = [θ11, θ12, θ13]T

are shown in Fig. 5, which shows the remarkable unknown estimation ability
associated with the proposed FUO. It should be noted that trajectory tracking
errors can be rendered to zero in a finite time, as shown in Fig. 6. Moreover,
control inputs of the NTSMTC scheme are plotted in Fig. 7, which shows the
smooth control actions dynamically.

5 Conclusion

In this paper, to pursue finite-time control of an autonomous surface vehicle
(ASV) in the presence of unmodelled dynamics and external disturbances, a
nonsingular terminal sliding mode (NTSM) based tracking control (NTSMTC)
scheme has been proposed. Under the NTSMTC scheme, not only that unmod-
elled dynamics and unknown disturbances can be completely identified but also
finite-time convergence property can be achieved, and thereby contributing to
fast convergence rate and high robustness. In addition, comprehensive simula-
tion studies have also been presented to confirm not only the closed-loop control
performance but also the effectiveness of the NTSMTC scheme in terms of exact
unknown observation.
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