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Preface

The twin volumes of Lecture Notes in Computer Science constitute the proceedings
of the 14th International Symposium on Neural Networks (ISNN 2017) held during
June 21–26, 2017, in Sapporo, Hakodate, and Muroran, Hokkaido, Japan. Building on
the success of the previous events, ISNN has become a well-established series of
popular and high-quality conferences on the theory and methodology of neural net-
works and their applications. This year’s symposium was held for the third time outside
China, in Hokkaido, a beautiful island in Japan. As usual, it achieved great success.
ISNN aims at providing a high-level international forum for scientists, engineers,
educators, and students to gather so as to present and discuss the latest progress in
neural network research and applications in diverse areas. It encouraged open dis-
cussion, disagreement, criticism, and debate, and we think this is the right way to push
the field forward.

Based on the rigorous peer-reviews by the Program Committee members and
reviewers, 135 high-quality papers from 25 countries and regions were selected for
publication in the LNCS proceedings. These papers cover many topics of neural
network-related research including intelligent control, neurodynamic analysis, mem-
ristive neurodynamics, computer vision, signal processing, machine learning, opti-
mization etc. Many organizations and volunteers made great contributions toward the
success of this symposium. We would like to express our sincere gratitude to City
University of Hong Kong and Hokkaido University for their sponsorship, the IEEE
Computational Intelligence Society, the International Neural Network Society, and the
Japanese Neural Network Society for their technical co-sponsorship. We would also
like to sincerely thank all the committee members for all their great efforts in orga-
nizing the symposium. Special thanks go to the Program Committee members and
reviewers whose insightful reviews and timely feedback ensured the high quality of the
accepted papers and the smooth flow of the symposium. We would also like to thank
Springer for their cooperation in publishing the proceedings in the prestigious Lecture
Notes in Computer Science series. Finally, we would like to thank all the speakers,
authors, and participants for their support.

April 2017 Fengyu Cong
Andrew C.-S. Leung

Qinglai Wei
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Abstract. This work focuses on a nonlinear robust control of a human
arm-like robot arm by using a bio-inspired method based human arm
musculoskeletal characteristics, mainly consisting of multi-joint viscos-
ity and multi-joint stiffness. The multi-joint viscosity and multi-joint
stiffness are used in designing a bio-inspired operator controller, and
the time-varying on estimated human arm multi-joint viscoelasticity
(HAMV) data is fed to the designed controller in simulation. Using the
designed control architecture, the sufficient robust stable conditions are
derived in the presence of uncertainties of modelling and measurement
errors, and the control output tracking performance is also realized.

Keywords: HMJA viscoelasticity · Bio-inspired controller · RRCF
approach · Robot arm control

1 Introduction

In the last 60 years, the robot arms have always played the some roles of “replac-
ing” and “confronting” the human being, and been mainly focused on industrial
fields. However, with the evolution of technology, applications of robot rams
research have been broadened taking interest in not only to aiding humans in
repetitive tasks, but aiding them in our everyday lives, medical rehabilitation,
and social services [1], and these robot arms have always been inspired by the
human or animal bodies [2]. Because there are many potential and practical
applications, some robots with human arm-inspired motion characteristics which
can perform actions smoothly and dexterous as the human arms are still a hot
research point in both academic and industrial fields [3,4].

During the last decade, the bio-inspired robot arms have become more and
more agile like the human multi-joint arm (HMJA) by measuring or capturing
the HMJA motion and converting it to motion of the robot arm [5,6]. Studies
on control strategis imitating the movement principle of HMJAs can be consid-
ered in developing some bio-inspired robot arms as the humans can control their
HMJAs flexibly and robustly. Many concepts that describe the motion principle

c© Springer International Publishing AG 2017
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DOI: 10.1007/978-3-319-59081-3 1



4 Y. Chang et al.

of HMJA have been applied in the robot arms control, for example equilibrium-
point control hypothesis, cost functions, and electromyography (EMG) signal-
based methods. The various given trajectories can be obtained by using the
optimal principles of the above methods based the learned and obtained infor-
mation pairs in advance. However, in order to generate multifarious movement
mode to the same movement assignment, the information pairs are needed to
achieve online control. This is difficult in practice.

Assuming that the HMJA has a model similar to a regular connected robot
arm, the mechanical properties of the HMJA musculoskeletal system can be
mainly modelled by using a called HMJA viscoelasticity [7,8]. The HMJA vis-
coelasticity includes the multi-joint stiffness and the multi-joint viscosity, which
are regulated by the central nervous system (CNS) to make the HMJA can
move Arbitrarily to the external different environments or various movements
(see Fig. 1). The HMJA viscoelasticity has been widely used in diseases diagnosis,
vehicle driving system, and rehabilitation training fields by measuring viscoelas-
tic properties of HMJA [9]. Similarly, if the viscoelastic properties during HMJA
can be adapted effectively in the robot arm control, many skillful strategies of
the HMJA may be embed into the robot arm control.

Fig. 1. A human motion control system

Moreover, there not only exist measurement errors from HMJA viscoelasticity
estimating data, and but also the robot arms have highly nonlinear, disturbances
and model uncertainties. Therefore, it is very difficult to achieve the robustness
and output tracking performances. Address these issues, many approaches, such
as, state or disturbance observer methods, Lyapunov-based methods, and cost
function are used. However, the most existing approaches require that the con-
trolled objects have the precise state space equations in designing a controller,
whilst in many cases, the existing methods are used to obtain the approximation
model based on a real system. To improve this question, and also for the practical
application consideration, the operator-based robust right coprime factorisation
(RRCF) approach [10] is becoming an effective and practicable method in linear
or nonlinear control system analysis and design.

Addressing the existing challenges, the paper focus on a human-like robot arm
robust nonlinear control using a bio-inspired controller with uncertain proper-
ties. We propose a new control approach that is inspired by the biological model
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of HMJA viscoelasticity. The bio-inspired controller is design by using HMJA
viscoelastic properties, and there not only exist measurement uncertainties in
HMJA viscoelasticity estimating. The objective is that the robot arm can per-
form a random wide variety of dexterous operations based on the remote motions
by the human arm in unstructured environments. Addressing the designed con-
trol system, we will discuss the controller design, investigate the robustness and
tracking performance.

2 Preliminaries

2.1 Robot Arm

The two-link robot arm dynamics can be modeled as [9],

M(θ)θ̈ + H(θ̇, θ) = τ (1)

where, θ is angular, and θ = (θ1, θ2)T , θi(t) (i = 1, 2) is the ith link joint angle.
τ = (τ1, τ2)T , τi(t) is the ith link control input torque. H and M are the Coriolis-
Centrifugal force vector and inertial matrix, and

M =

[
Z1 + 2Z2 cos θ2 Z3 + Z2 cos θ2

Z3 + Z2 cos θ2 Z3

]
, H =

[
−Z2 sin θ2(θ̇2

2
+ 2θ̇1θ̇2)

Z2θ̇1
2
sin θ2

]
(2)

where Z1 = m1l
2
g1 + m2(l21 + l2g2) + I1 + I2, Z2 = m2l1lg2, and Z3 = m2l

2
g2 + I2

are the structural parameters.

2.2 Human Multi-joint Arm

Imitating the robot arm, the two-link HMJA dynamics can also be modeled,

MA(q)q̈ + HA(q̇,q) = τA(q̇,q,u) (3)

where, q is angular, and q = [θs(t), θe(t)]T , θs(t) is the shoulder joint angle and
θe(t) is the elbow joint angle, the subscripts s and e denote the shoulder joint
and the elbow joint, respectively. τA = [τs, τe]T denote the multi-joint torque.
MA and HA have the same definition and structure as M and H in (1).

From (3), we have,

δτA = −RA(t)δq̇ − KA(t)δq +
∂τA

∂u
δu (4)

where, RA(t) and KA(t) represent human arm multi-joint viscosity and multi-
joint stiffness, and

− ∂τA

∂q̇
≡ RA(t) =

[
RA−ss RA−se

RA−es RA−ee

]
, − ∂τA

∂q
≡ KA(t) =

[
KA−ss KA−se

KA−es KA−ee

]
(5)
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3 Control System Design and Analysis

The proposed control system based on HMJA viscoelastic properties is given in
Fig. 2, where the component units, consisting of the robot arm dynamics P +ΔP ,
the controller operator A, the bio-inspired controller operator B with measure-
ment uncertainties ΔB, and the tracking controllers operator C are connected.
r = (θ1d, θ2d) and y = (θ1, θ2) are the control reference angular inputs and the
plant control angular outputs.

Fig. 2. The proposed robust nonlinear tracking control system

To control the robot arm joint angular, an robust nonlinear control archi-
tecture shown in Fig. 3 is designed firstly based operator-RRCF approach. For
the robot arm dynamics with uncertainties, the operator model P̃ = (P̃1, P̃2),
includes two parts, the nominal plant P = (P1, P1) and the uncertain plant
ΔP = (ΔP1, ΔP2), namely, P̃ = P + ΔP . The nominal plant P and the real
plant P̃ are assumed to have right factorization as Pi = NiD

−1
i (i = 1, 2) and

P̃i = Pi +ΔPi = (Ni +ΔNi)D−1
i (i = 1, 2), respectively, Ni, ΔNi, and Di (i = 1,

2) are the stable operators, Di is invertible, ΔNi is unknown. Addressing the
robot arm dynamic in (1), the right factorizations N1 and D1 can be modeled
as

Di(ω)(t) = Mi(ω(t))ω̈(t) + Hi(ω̇(t), ω(t)) (6)
Ni(ω)(t) = ω(t) (7)

For the proposed control architecture shown in Fig. 2, the controllers oper-
ator A, B, ΔB are designed controller operators to ensure the robustness and
stability. B is a bio-inspired operator controller which is designed to obtain
the expected motion mechanism of HMJA by using time-varying on estimating
HMJA viscoelasticity. In order to satisfy that Ti = AiNi + BiDi (i = 1, 2), the
controller operator A is designed,

A(y)(t) = I(y)(t) (8)
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And the controller operator B is,

B−1(s)(t) = −R(t)ė1(t) − K(t)e1(t) (9)

here R(t), K(t) are the expected two-joint viscosity and two-joint stiffness,
respectively, and which can be modelled and obtained by using the robot arm
dynamic model, like Eqs. (4) and (5). Here, the two-joint viscosity R(t) and two-
joint stiffness K(t) are replaced by the estimating viscoelasticity data RA(t) and
KA(t) of a HMJA.

Fig. 3. The proposed robust control architecture

Based on the designed Ni(ω)(t), Di(ω)(t), A(y)(t) and B−1(s)(t), we can
find

Ti = AiNi + BiDi = 2ω(t) (10)

is an unimodular operator. Addressing the designed control architecture in Fig. 2,
if there does not exist measurement errors of HMJA viscoelasticity and conditon
(10) is satisfied, and the robust stability is guaranteed [10]. However, there are
the measurement errors or uncertainties of HMJA viscoelasticity, which usually
can be described as ΔB. In order to ensure the system robustness and stability,
a new condition related to ΔB is discussed.

Theorem 1. For the Fig. 3, the Bezout identity of the nominal model and the
real model are AiNi + BiDi = Ti ∈ u(W,U), Ai(Ni + ΔNi) + (Bi + ΔBi)Di =
T̂i ∈ u(W,U), respectively. If∥∥∥∥(

ΔNi + ΔBiDi

)
T−1

i

∥∥∥∥ < 1, i = 1, 2 (11)

is satisfied, and the robustness and stability can be guaranteed.
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Fig. 4. The equivalent control architecture of Fig. 2

Based on the above condition (11), the robustness and stability can be guar-
anteed. However, the tracking performance does not be obtained. Based on the
proposed conditions, the equivalent control architecture of Fig. 3 can be obtained
and shown in Fig. 4. To obtained the control output tracking performance, an
controller operator C is designed in the following condition, namely,

(Ni + ΔNi)T̂−1
i C = I (12)

Namely, under (12), Ni + ΔNi + (Bi + ΔBi)Di = T̂i are unimodular operators,
which implies that y(t) = (Ni+ΔNi) T̂−1

i Cr(t). Hence, the expected joint angu-
lar output y can track the given reference control input r under the condition
(Ni + ΔNi)T̂−1

i C = I. However, because the ΔNi is unknown, and ΔBi has
also uncertainties. Therefore, based on the condition of (12), we can not design
directly the perfect tracking controller C in expected tracking control perfor-
mance. SO, in the paper, we design a tracking controller C is to improve control
tracking performance, it is,

C = Γαiei(t) + Γβi

∫ t

0

ei(τ)dτ (13)

where Γαi, Γβi) are the designed controller parameters.

4 Simulation Results

According to the presented HMJA viscoelasticity online estimating method in
[11], the stiffness data and viscosity data of a multi-joint HMJA are measured
in Fig. 5(a) and (b), where, the HMJA moves from the starting point (x, y) =
[−41.7596, 33.8013] (cm) to the end point (x, y) = [20.4489, 42.4762 (cm).

In control simulation, the controlled objet is assumed as a HMJA model,
the expected movement trajectory is the above experimental path in estimat-
ing HMJA viscoelasticity. The measured HMJA multi-joint stiffness data and
multi-joint viscosity data are fed to the controller operator B. The robot arm
structural parameters uncertainties is to be Zi = Z∗

i +ΔZi, Δ = 0.05, where Z∗
i
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Fig. 5. Measured experimental data: (a) Stiffness; (b) Viscoesity (Color figure online)

can be assumed to be real value. The unknown external disturbances are to be
τd = 0.5 + 0.05 ∗ sin(2πt). The effect of structural uncertainties and distur-
bances can be as ΔN . Moreover, the uncertainties of controller operator ΔB is
be ΔB = ΔB∗ +σΔB, σ = 0.05, where ΔB∗ can be assumed to be a real value.
The control parameters are Kα1 = Kα2 = 50, and Kβ1 = Kβ2 = 0.02. Using the
proposed architecture, the tracking simulation results consisting of joint angles
movement and endpoint position motion of robot arm are shown in Fig. 6(a) and
(b), respectively. From Fig. 6(a) and (b), the expected results can be achieved,
namely robustness, stability, and tracking can be obtained.
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Fig. 6. Simulation results: (a) Angles; (b) Position (Color figure online)
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5 Conclusions

This paper has investigated a robot arm robust nonlinear control by using a new
bio-inspired method based on HMJA viscoelastic properties, the robot arm end-
point position can be controlled by using the estimated online HMJA viscoelas-
ticity. Based on operator-based RRCF theory, for the designed architecture, the
sufficient conditions of robustness and stability were derived in the presence of
coupling effects, and the control output tracking was also realized.
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Abstract. In this paper, the problem of fault-tolerant control (FTC)
is investigated for a class of nonlinear single input and single output
(SISO) systems in the non-strict feedback form. The considered sys-
tem possess unknown nonlinear functions, unmeasured states, unknown
time-varying delays, unknown control direction and actuator faults (bias
and gain faults). Neural networks (NNs) are adopted to approximate
the unknown nonlinear functions. Then, a state observer is constructed
to solve the problem of unmeasured states. In the frame of adaptive
backstepping design technique, by combining with Nussbaum gain func-
tion and Lyapunov-Krasobskii functional theory, an adaptive NNs output
feedback FTC method is developed. It is shown that all signals in the
closed-loop system are proved to be bounded, and the system output can
follow the given reference signal well.

Keywords: Nonstrict-feedback nonlinear systems · Fault-tolerant con-
trol · Adaptive NNs control

1 Introduction

In the past decades, fuzzy systems and NNs have been popularly used in fuzzy
modeling and controller design for uncertain nonlinear systems [1,2]. However,
the results obtained in [1,2] are only suitable for those systems that all the
components of the considered systems are in good operating conditions, i.e.,
the faults did not occur in the considered systems. In practical control systems,
there are usually some faults [1]. These faults will make the stability of the
system decreased, and even affect the safety and reliability of the control system.
Thus, some researches have been done on the problem of FTC for the controlled
system, and a deal of effective adaptive neural networks (NNs) or fuzzy FTC
design methods have been developed [4–6]. Among, [4] investigated the adaptive
NNs FTC problem under the assumption that the states of the systems can
be measured directly. Adaptive fuzzy backstepping output-feedback-based fault-
tolerant method is developed in [5,6] with unmeasured states. It is worth to be

c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part II, LNCS 10262, pp. 11–19, 2017.
DOI: 10.1007/978-3-319-59081-3 2
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noticed that the above-mentioned FTC problems are aiming at the systems in
the pure-feedback or strict-feedback forms.

Therefore, the above method cannot be used for non-strict feedback sys-
tems [7]. In general, compared with nonlinear strict-feedback systems (or pure-
feedback systems), non-strict feedback systems have the unknown nonlinear func-
tions, which contain the whole state vector of each subsystems. And also, the
intermediate control functions are the function including whole state vector. If
the control method for strict-feedback systems (or pure-feedback systems) were
adopted with the aim to solve the control design problem for non-strict feedback
systems, the algebraic loop problem may occur. In order to avoid this problem,
the study for non-strict feedback systems has gained considerable interest in the
past years and some considerable efforts have been developed, for example [8–
10]. In addition, the work in [8–10] did not consider the problem of time-varying
delay and unknown control direction. Therefore, they cannot be utilized to deal
with the control design problem considered in this paper.

In this paper, by using NNs and fuzzy state observer to approximate the
unknown nonlinear functions and estimate the unmeasured states, respectively.
Combining with Nussbaum gain function methods, and in the frame of adaptive
backstepping design technique, an adaptive NNs output feedback FTC method
is developed. The proposed method can not only guarantee that all the signals
in the closed-loop system are bounded, but also the system output can follow
the given reference signal well.

2 Problem Formulations and Preliminaries

2.1 Nonlinear System and Actuator Fault Model

Consider an uncertain SISO nonlinear system with actuator faults.
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

τ̇i = fi(τ̄) + τi+1 + hi(y(t − σi(t))), i = 1, . . . , n − 1,
...

τ̇n = fn(τ̄) + guq + hn(y(t − σn(t))),
y = τ1

(1)

where τ̄ = [τ1, · · · , τn]T is a state vector, g denotes an unknown constant, while
hi(y(t − σ(t))) and fi(y) are unknown nonlinear functions, uq denotes the control
input of the system.

Therefore, according to [2,8], The bias and gain faults are as the following
form:

uq(t) = (1 − m)u(t) + ω(t) (2)

where ω(t) denotes a bounded function, which can be given in the next section.
0 ≤ m ≤ 1 denotes the lost control rate, which is an unknown constant.

In this paper, the control objective is to develop an observer-based adaptive
NNs backstepping FTC strategy for the system (1) with bias and gain faults (2),
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which can not only validate the boundeness of the whole signals yr in the closed-
loop system, but also ensure that the system output can follow the given reference
signal y well.

To achieve the above objective, several assumptions are given.

Assumption 1: There exist known constants di, (1 ≤ i ≤ n), such that the
time delays |σi(t)| ≤ di

Assumption 2: hi(·) is a nonlinear function, and it satisfies the following
inequality:

|hi(y(t))|2 ≤ z1(t)Hi(z1(t)) + h̄i(yr(t)) + �i (1 ≤ i ≤ n) (3)

where hi(·) is a bounded function and hi(·) = 0, Hi(·) is a known function, �i

are unknown constants.

2.2 Neural Network System

In this paper, the unknown nonlinear functions existed in controlled system are
approximated by employing NNs. The general form of neural network system is
f(τ) = ξT φ(τ), where ξ ∈ Rυ, the NN node number υ > 1 and ξ is the parameter
estimation vector. φ(τ) are chosen as the form of Gaussian functions, i.e. Then
ξT φ(τ) can approximate any given function f(τ) in a compact set, i.e.

f(τ) = ξT φ(τ) + δ (4)

where δ is the approximation error with |δ| ≤ δ∗ and δ∗ is an unknown positive
parameter.

2.3 Nussbaum-Type Function

A Nussbaum gain technique-based design method is adopted in this paper, and
Nussbaum-type function N(ς) owns the following characteristics:

lim
m→∞ sup 1

m

∫ m

0
N(ς)dς = ∞

lim
m→∞ sup 1

m

∫ m

0
N(ς)dς = −∞ (5)

Nussbaum common features are ς2 cos(ς), ς2 sin(ς) and exp(ς2) cos(ς2). In
this paper, the form of exp(ς2) cos(ς2) is adopted.

Lemma 1: For system (1), define N(ς) = exp(ς2) cos(ς2),0 ≤ ς < t, there exists a
function V (t) ≥ 0, positive constants C and D, such that the following inequality
holds:

V̇ (t) ≤ −CV (t) +
∑n

i=1
�j [βiN

′(ςi) + 1]ς̇i + D (6)
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3 Design of Fuzzy State Observer

Since the states of the considered systems are partial measurable, a state observer
is needed with the aim to estimate the unmeasured states.

Let η = g(1 − m), xi = τ̄ /η = [τ1/η, τ2/η, · · · τn/η]T , thus the system (1)
becomes

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋi = xi+1 + fi(τ̄)
η + 1

η hi(y(t − σi(t))), i = 1, 2, · · · n − 1
...

ẋn = u(t) + fi(τ̄)
η + 1

η hn(y(t − σn(t)))
ẏ = f1(τ̄) + ηx2 + h1(y(t − σ1(t)))

(7)

According to the transformation from (1) to (7), the coefficient of u(t)
becomes 1, while the coefficient of x2, which is in the last equation of (7), is
η, rather than 1. Hence, the Nussbaum technique should be adopted in this
paper with the aim to erase the effect of η.

Constructing a state observer for system (7) as
{

˙̂xi = −kix̂1 + x̂i+1 + kiy, i = 1, 2, · · · , n − 1
˙̂xn = −knx̂1 + u(t) + kiy

(8)

Let ei = xi − x̂i be the observer errors, where x̂i = [x̂1, · · · x̂n]T . Based on (7)
and (8), we have

ėi = ẋi − ˙̂xi = Aei + B
ω(t)
η

+
F

η
+

h

η
(9)

where F = [f1(τ̄), · · · , fn(τ̄)]T , h = [h1(y(t − σ1(t))), · · · hn(y(t − σn(t)))], B =

[0, · · · , 0
︸ ︷︷ ︸

n−1

1]
T

and A =

⎡

⎢
⎣

−k1
... I(n−1)×(n−1)

−kn 0 · · · 0

⎤

⎥
⎦

According to selecting the appropriate vector [k1, · · · , kn]T , thus the matrix
A can be guaranteed a Hurwitz form. And also, for any given Q = QT > 0, there
exists P = PT > 0 such that

AT P + PA = −Q (10)

Consider a Lyapunov function candidate:

V0 = eT Pe/2 + W0 (11)

where

W0 =
1

2b(1 − σ∗)
‖P‖2e−rt

∑n

i=1

∫ t

t−σ(t)

ermz1(m)(Hi(z1(m)))dm (12)

where b is a known constant. The time derivative of V0 is

V̇0 = −1
2
eT Qe + eT P (B

ω(t)
η

+
F

η
+

h

η
) + Ẇ0 (13)
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Thus, from mean value theorem, the function fi(τ̄) can be represented as
the following formula

fi (τ̄) = yf̄i (τ̄) (14)

According to (4), the nonlinear function ‖P‖2 ∑n
i=1 yf̄2

i (τ̄)/η2 can be
approximated by NNs, one has

‖P‖2
n∑

i=1

yf̄2
i (τ̄)
η2

= Ψ∗T φ(τ̄) + ε (15)

where b′ = berσ and |ω(t)/η| ≤ κ where κ is an unknown constant and |ε| ≤ ε∗,
then we can obtain

V̇0 ≤ −(λmin(Q) − 1
2 − 1

2b′ − b′
2η )‖e‖2 + y(Ψ∗T φ(τ) + ε)

+ b′
2 ‖P‖2

n∑

i=1

κ2 + 1
2b(1−σ∗)‖P‖2

n∑

i=1

z1H1(z1) − rW0 + d∗
0

(16)

where d∗
0 is a constant and d∗

0 ≥ ‖‖2(h̄i(yr(t)) + �i)
/

2b′

4 Neural Networks Control Design

In this section, according to the backstepping technique, an adaptive fuzzy out-
put feedback fault tolerate controller design method will be presented, and the
Lyapunov function stability theory is adopted to verify the stability of the con-
sidered system. The coordinate transformation of n-step backstepping control
design is chosen as

z1 = y − yr, zi = x̂i − αi−1 , (i = 2, · · · n) (17)

where z1 is the system’s tracking error. αi−1 denotes the virtual control input.

Step 1: From (7) and (17), we have

ż1 = f1(τ̄) + ηx2 + h1(y(t − σi(t))) − ẏr (18)

Consider a Lyapunov function candidate:

V1 =
1
2
z21 +

1
2γ1

θ̃21 +
1

2γ2
θ̃22 + W1 + V0 (19)

where γ1 > 0 and γ2 > 0 are design constants, and

W1 =
1

2b(1 − σ∗)
e−rt

∫ t

t−σ1(t)

ermz1(m)(H1(z1(m)))dm (20)

According to (4), we use NN to approximate the unknown nonlinear function
f1(τ̄) as:

f1(τ̄) = Φ∗T ξ(τ̄) + μ1(τ̄) (21)
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Where |μ1(x)| ≤ μ∗. Define θ∗
1 = Ψ∗T

1 Ψ∗
1 , θ∗

2 = Φ∗T
1 Φ∗

1, θ̂1 and θ̂2are used to
estimate θ∗

1 and θ∗
2 , respectively. The estimation error is θ̃i = θ∗

i − θ̂i (i = 1, 2).
The time derivative of V1 is

V̇1 ≤ −(λmin(Q) − 1
2b′ − b′

2η − 1 − η̄2

b′ )‖e‖2 + 1
γ2

θ̃T
2 (γ2

21z2
1

4λ − θ̇2)

+z1( z1
2 + b′η̄z1

4 + b′z1
2 + θ̂1z1

4λ + θ̂2z1
4λ + 1

2b(1−σ∗)z1H1(z1))

+z1
1

2b(1−σ∗)‖P‖2
n∑

i=1

z1Hi(z1) + 1
γ1

θ̃T
1 (γ2

1z2
1

4λ − θ̇1)

+ηz1z2 + ηz1α1 − z1ẏr + d∗
0 + d̄1 + D1 − rW0 − rW1

(22)

where D1 = b′‖P‖2 ∑n
i=1 κ2

/

2+y2/2+θ∗
1+2ε2+μ2

1(τ̄)+2λ and d̄1 = d∗
0

/

‖P‖2.
The virtual control α1 and the parameters adaptive functions θi (i = 1, 2) as:

α1 = Ṅ(ς)[c1z1 − ẏr + z1
2 + b′η̄z1

4 + b′z1
2 + θ̂1z1

4λ + θ̂2z1
4λ

+ n
2b(1−σ∗)H1(z1) + 1

2b(1−σ∗)‖P‖2
n∑

i=1

z1Hi(z1)]
(23)

ϑ̇ = z1
	 [c1z1 − ẏr + z1

2 + b′η̄z1
4 + b′z1

2 + θ̂1z1
4λ + θ̂2z1

4λ

+ n
2b(1−σ∗)H1(z1) + 1

2b(1−σ∗)‖P‖2
n∑

i=1

z1Hi(z1)]
(24)

θ̇1 =
γ2
1z21
4λ

− ρ1θ1, θ̇2 =
γ2
2z21
4λ

− ρ2θ2 (25)

Substituting (23)–(25) into (22) results in

V̇1 ≤ −(λmin(Q) − 1
2b′ − b′

2η − 1 − η̄2

b′ )‖e‖2 + ηz1z2 − c1z
2
1

+�1(ηN ′(ς) + 1)ς̇ − n−1
2b(1−σ∗)z1H1(z1) +

2∑

i=1

ρi

γi
θ̃T

i θ̂i

+d∗
0 + d̄1 + D1 − rW0 − rW1

(26)

Step i : From (8), (9) and (18), we have

żi = zi+1 + αi − kix̂1 − ∂α1
∂y (ΦT

1 ξ(τ) + μ1(τ) + ηx̂i + ηei

+h1(y(t − σ1(t)))) −
i∑

j=1

∂αi−1

∂y
(j−1)
r

y
(j)
r −

2∑

i=1

∂αi−1
∂θi

θ̇i
(27)

where i = 2, 3, · · · n − 1, then construct a Lyapunov function Vi as

Vi = Vi−1 +
1
2
z2i + W1 (28)

Similar to α1, the virtual control input αi as:

αi = −cizi + kix̂1 − zi−1 − zi

2 (∂αi−1
∂y )2 − zi

4λ (∂αi−1
∂y )2 +

2∑

j=1

∂αi−1
∂θj

θ̇j

− zi

4λ (∂αi−1
∂y )2x̂2

2 − b′
2 (∂αi−1

∂y )2zi +
i∑

j=1

∂αi−1

∂y
(j−1)
r

y
(j)
r

(29)
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The time derivative of Vi is

V̇i ≤ −(λmin(Q) − 1
2b′ − b′

2β − 1 − η̄2

b′ − (i − 1)λη̄2)‖e‖2 + zizi−1

− n−i
2b(1−σ∗)z1H1(z1) −

i∑

j=1

cjz
2
j +

2∑

i=1

ρi

γi
θ̃T

i θ̂i − rW0

−irW1 + �1(ηN ′(ς) + 1)ϑ̇ + ηz1z2 + d∗
0 + id̄1 + Di

(30)

where Di = Di−1 + λη̄2 + θ∗
2 + μ∗2

i .

Step n: In this step, the actual control input u(t) appears. From (7), (8) and
(17), we have

żn = u(t) − knx̂1 −
n∑

i=1

∂αn−1

y
(i−1)
r

y
(i)
r −

2∑

i=1

∂αn−1
∂θ1

θ̇i − ∂α1
∂y (ΦT

1 ξ(τ)

+μ1(τ) + ηx̂2 + ηe2 + h1(y(t − σ1(t))))
(31)

Construct a Lyapunov function Vn as:

Vn = Vn−1 +
1
2
z2n + W1 (32)

Design the actual controller u(t) as:

u(t) = knx̂1 +
n∑

i=1

∂αn−1

y
(i−1)
r

y
(i)
r +

2∑

i=1

∂αn−1
∂θ1

θ̇i − b′
2 (∂αn−1

∂y )2

− z2
n

4λ (∂αn−1
∂y )2x̂2

2 − z2
n

2 (∂αn−1
∂y )2 − z2

n

4λ (∂αn−1
∂y )2 − cnzn − zn−1

(33)

From (33), one has

V̇n ≤ −(λmin(Q) − 1
2b′ − b′

2η − 1 − η̄2

b′ − (n − 1)λη̄2)‖e‖2

−(cn − 1
2 η̄2)z21 − (cn − 1

2 η̄2)z22 −
2∑

i=1

ρi

γi
θ̃2i −

n−1∑

j=3

cjz
2
j

+
2∑

i=1

ρi

2γi
θ∗2

i + d∗
0 + nd̄1 + Dn − rW0 − nrW1 + �1(ηN ′(ς) + 1)ς̇

(34)

The inequality (34) can be rewritten as

V̇n ≤ −CVn + D (35)

where

C = min{−(λmin(Q) − 1/2b′ − b′/2η − 1 − η̄2/b′ − (n − 1)λη̄2),
2(c1 − η̄2/2), 2(c2 − η̄2/2), 2c3, 2c4 · · · 2cn−1, ρ1/2γ1, ρ2/2γ2} (36)

There exists a constant D̃ such that D̃ ≥ ς1(ηN ′(ς) + 1)ϑ̇, and

D = d∗
0 + nd̄1 + Dn − rW0 − nrW1 + D̃ +

2∑

i=1

ρi

2γi
θ∗2

i (37)
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Integrate the differential inequality (35), we have

V = Vn ≤ e−ct(V (0) − D/C) + D/C (38)

From (38) and Lemma 1, the boundeness of the whole signals in the closed-
loop system can be obtained.

The above design and analysis are summarized in the Theorem1.

Theorem 1: For system (1) with fault, under Assumptions 1, 2 and Lemma 1,
the controller functions (33), state observer (8), the intermediate control func-
tions (23) and (29), and the parameter adaptation functions (25) obtained based
on the above derivations, the following properties can hold: (1) The boundeness
of the whole signals in the closed-loop system can be validated; (2) The system
output can follow the given reference signal well.

5 Conclusions

This paper has presented an observer-based adaptive NNs FTC method. Firstly,
NNs have been utilized for approximating the unknown nonlinear functions,
and the states observers have been constructed for estimating the unmeasured
states. Then, by using the properties of Nussbaum gain function and Lyapunov-
Krasobskii functional theory, and combining with adaptive backstepping design
technique, the problem of FTC with unknown time-varying delays, unmeasured
states, and unknown control direction has been solved. It is shown that not only
all signals in the closed-loop system are proved to be bounded, but the system
output can follow the given reference signal well.

Acknowledgments. This work was supported by the National Natural Science
Foundation of China (Nos. 61573175, 61572244) and Liaoning BaiQianWan Talents
Program.
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Abstract. This paper considers the neural adaptive dynamic surface
control with partially constrained tracking errors and input saturation for
a class of strict-feedback nonlinear systems with uncertain parameters.
An error transformation method is utilized to guarantee the prescribed
performance control of the partially constrained states, which restricts
the partial states located in the prescribed bounds all through. Reduced-
order interceptive signals are used to solve the problem of input satura-
tion. Neural networks are utilized to online estimate the uncertainties of
the system, and dynamic surface control technique is incorporated to cir-
cumvent the complexity explosion problem. The stability of the resulted
system and all the signals in the system are proved by the Lyapunov
stability theorem. At last, a simulation is presented to demonstrate the
effectiveness of this control scheme.

Keywords: Neural adaptive control · Dynamic surface control · Par-
tial tracking error constrained · Prescribed performance control · Input
saturation · Uncertain nonlinear system

1 Introduction

In recent years, considerable developments on adaptive control for uncertain non-
linear systems to handle the uncertainties from the practical requirements and
theoretical challenges. Subsequently, neural networks (NNs) have been incorpo-
rated into the adaptive control relying on the parallel processing and function
approximation capacities [2–4], then, NNs-based adaptive backstepping control
becomes an research hotpot for various high-order nonlinear system for unknown
parameters and modeling uncertainties [7,12,15].

However, undesirable transient behaviors appear widely in the NNs-based
approximations methods caused by the convergence rate of precise approxima-
tion of NNs. Moreover, although the NNs-based control approaches satisfy the
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Lyapunov stability in the infinite time, the partial tracking errors in finite time
are difficult to be kept in some prescribed bounds. Then, to solve the prob-
lem mentioned above, a smooth adaptive neural controller was proposed in [14]
where an integral-type Lyapunov function was introduced to solve the prob-
lem of guaranteeing transient performance. Furthermore, the barrier Lyapunov
function (BLF)-based control method with full state constraints has been active
research area for the nonlinear system, see [11]. An error-transformation (ET)
method, which aims at transforming the “constrained” error into an equivalent
“unconstrained” one for the strict feedback nonlinear uncertain systems was
proposed in [1]. At the same time, many control systems encounter constraints
on the control inputs, that is, the control signals implemented are usually lim-
ited in magnitude caused by the physical constrains, control design with input
saturation is another necessary point, since the input saturation may cause per-
formance degradation even instability of closed-loop systems [8,9,13].

In this paper, we design a neural adaptive dynamic surface control (DSC) for
some strict feedback nonlinear systems with unmeasurable states, partially con-
strained states, and input saturation. NNs-based observer is designed to online
estimation the unmeasurable states, the ET-based and dynamic surface control
methods proposed [1,10] are utilized to guarantee the partially constrained track-
ing errors and to circumvent the complexity explosion problem. And, partially
inspired by the method in [9], where a full-order auxiliary system is designed to
compensate the effect caused by input saturation, this paper presents a reduced-
order auxiliary-based design method to compensate the complicated nonlineari-
ties caused by the input saturation, it is also noticeable that the method in [9]
requires all the states in the controller while in this paper, only output informa-
tion is required.

2 Preliminaries and Problem Formulation

The considered nonlinear SISO system with uncertainties is given as follows:
⎧
⎪⎨

⎪⎩

ẋ1 = x2 + f1(x1) + d1(t),
ẋi = xi+1 + fi(xi) + di(t), i = 2, 3, · · · , n − 1
ẋn = sat(u(t)) + fn(X) + dn(t)

(1)

where xi = [x1, · · · , xi]T ∈ Ri, (i = 2, 3, · · · , n) is state vector, and xn = X is
full state vector; fi(·) is the smooth nonlinear function with unknown parame-
ters; di(t) is the bounded external disturbances where |di(t)| � d∗

i and d∗
i is an

unknown constant; u is the control input, sat(u) is the input with saturation. The
states are partitioned into two parts xj = [x1, · · · , xj ] ∈ Rl, (j = 1, 2, · · · , l) is the
constrained part for the states error are constrained while xk = [xl+1, · · · , xk] ∈
Rr(k = l +1, · · · , n) is the free part, where l + r = n. The constrained errors for
the state xj is constrained in the set |zj(t)| < ρj(t), j = 1, 2, · · · , l. sat(u(t)) = u
when |u(t)| < uM , and sat(u(t)) = sign(u(t))uM when |u(t)| ≥ uM , where uM is
the bound of u(t). And y = x1 is the output of the system. It is noticed that the
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partially constrained errors problem becomes the full-state constraints problem
studied in [6] if xj = [x1, · · · , xn] and the output constraint problem studied in
[16] if xj = x1.

For the given system (1), our goal is to design a neural adaptive dynamic
surface control u(t) such that i) the states in the closed-loop system are uniformly
bounded, ii) the tracking error of the output and the reference signal remain in
the certain of the prescribed bounds.

Assumption 1. The desired trajectory yr(t) and its derivatives y
(1)
r (t), y

(2)
r (t)

are given and both are bounded functions.

Assumption 2. There exists a set of constant bi (i = 1, 2, · · · , n), ∀X1,X2 ∈
Ri, the inequality is satisfied as follows: |Fi(X1) − Fi(X2)| � bi‖X1 − X2‖.

A performance function ρj(t) is defined to guarantee the tracking error
remaining in the range of prescribed constraints: ρj(t) = (ρ0j −ρ∞j)e−ajt +ρ∞j

where ρ0j , ρ∞j and aj are positive constants. Then, the transient tracking errors
can be guaranteed with the prescribed range as follows:

− δjρj(t) < zj(t) < ρj(t), if zj(0) ≥ 0 (2)

ρj(t) < zj(t) < δjρj(t), if zj(0) < 0 (3)

where 0 < δj ≤ 1 is parameter to adjust the prescribed constraint scale. ρ∞j

restrain the tracking error in a pretty small size when the system is nearly steady.
aj adjusts the decreasing rate of the performance function, which requires the
performance of convergence. Then, the transformed tracking error ξj can be
defined as: ξj = zj

ηj(t)
, ηj = qη̄j + (1 − q)η

j
where q = 1 if zj(t) � 0, and q = 0 if

zj(t) < 0. The parameters η̄j , η
j

are defined as follows:

{
η̄j = ρj

η
j

= −δjρj(t)
if zj(0) � 0,

{
η̄j = δjρj(t)
η

j
= −ρj(t)

if zj(0) < 0 (4)

Lemma 1. [5]: Eq. (4) holds if and only if ρ0j, ρ∞j, aj and δj are selected
satisfying (2) and (3): 0 < ξ < 1,∀t > 0.

3 Observer Design Using Neural Networks

In this part, a state observer is established to estimate the states in system (1)
which are not available to measure. The system (1) can be written in another
way:

Ẋ = AX + Ky +
n−1∑

i=1

Bifi(x̂i) + Bn[fn(X) + sat(u)] + ΔF + d (5)

And y = CX. x̂i, X̂ stand for the estimates of xi and X respectively. ΔFi =
fi(xi) − fi(x̂i), ΔFn = fn(X) − fn(X̂), (i = 1, 2, · · · , n − 1), X = [x1, · · · , xn]T,
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A =

⎡

⎢
⎣

−k1
... I

−kn 0 · · · 0

⎤

⎥
⎦, K =

⎡

⎢
⎣

k1
...

kn

⎤

⎥
⎦, Bi = [0 · · · 0︸ ︷︷ ︸

i

1 · · · 0]T, Bn = [0, · · · , 1]T, ΔF =

[ΔF1, · · · ,ΔFn]T, C = [1 · · · 0 · · · 0], and d = [d1, · · · , dn]T. There exists a vector
K ensuring the matrix A a strict Hurwitz one. Then, there exists a symmetric
matrix P that satisfies ATP + PA = −Q when given a matrix Q = QT. Then,
the function can be written as follows: fi(x̂i) = f̂i(x̂i | θ∗

i ) + ε∗
i = θTi ϕi(x̂) + ε∗

i ,
(i = 1, 2, · · · , n), where ε∗

i is the neural approximation error and |ε∗
i | < εm, θ∗

i

is the value of one θ that makes neural approximation error minimum. θ∗
i is

defined as follows: θ∗
i = arg min

θi∈Ui

[

sup
x̂i∈Ωi

|f̂i(x̂i | θ∗
i ) − fi(x̂i)|

]

, where Ui is com-

pact region for θi.
Design a state observer as:

{
˙̂xi = x̂i+1 + f̂i(x̂i) + ki(y − x̂1), i = 1, 2, · · · , n − 1
˙̂xn = sat(u(t)) + fn(X̂) + kn(y − x̂1)

(6)

The observer error e is defined: e = [e1, e2, · · · , en]T = X − X̂. Then, ė can
be written as ė = Ae + ε +

∑n
i=1 Biθ̃

T
i ϕi + ΔF + d(t), where ε = [ε1, · · · , εn]T,

and θ̃i = θ∗ − θi, i = 1, · · · , n.
Selecting the following Lyapunov function: V0 = eTPe, then the time deriv-

ative form of V0 can be get: V̇0 � −λmin(Q)‖e‖2 + 2eTP (ε +
∑n

i=1 Biθ̃
T
i ϕi +

ΔF + d(t)). where λmin(Q) is the smallest eigenvalue of matrix Q. Using the
fact that ϕiϕ

T
i � I and some inequalities, we can turn the above equation into

the following form:

V̇0 � −P0‖e‖2 +
n∑

i=1

θ̃Ti θi + L0 (7)

where r = 2
∑n

i=1 bi‖P‖, P0 = λmin(Q) − r − 1 − nσ‖P‖2 − n‖P‖, L0 =
‖P‖2‖ε∗‖2 +

∑n
i=1 d∗2

i .

Remark 1. From (7), it can be concluded that the observation errors cannot be
guaranteed to convergence and is not sufficient for a stable system, thus needing
to be considered next.

4 Partial Tracking Error Constrained Adaptive
Controller Design

The controller design is divided into three parts including n steps. The first
part includes the first nth states with error constrained and input saturation,
the other part deals the input saturation only. For the first part, we change the
coordinates as follows: z1 = y − yr, zj = x̂j − ϑj , χj = ϑj − αj−1, ξj = zj

ηj
, Sj =

ξj
1−ξj

, j = 1, · · · , l. For the second part, we change the coordinates as follows:
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zk = x̂k − ϑk, χk = ϑk − αk−1, Sk = ϑk − αk−1, ḣk = −ckhk + hk+1, ḣn =
−cnhn +(sat(u)−u), k = l+1, · · · , n−1 where zi is error surface; ϑi is obtained
through a first-order filter on intermediate control function αi−1, and χi is the
output error of the first-order filter; Sj is the transformed error surfaces.

Step 1 : First we can get the time derivative form of the error surface S1:

Ṡ1 = q1(e2 + z2 + α1 + χ2 + θT1 ϕ1 + θ̃T1 ϕ1 + ε1 + ΔF1 + d1 − ẏr − η̇1ξ1) (8)

where q1 = 1
(1−ξ1)2η1

. Choose the Lyapunov function candidates as V1 = V0 +
1
2S2

1 + 1
2γ1

θ̃T1 θ̃1 where γ1 is the design constant matrice.
Considered the Lyapunove theory, we choose the intermediate control α1

and the adaptive law θ1 as α1 = −β1S1η1 − β1
S1
q1

− z2 − θT1 ϕ1 + ẏr + η̇1ξ1, θ̇ =
γ1S1q1ϕ1−τ1θ1, where β1 and τ1 are design parameters. To avoid the explosion of
complexity, variable ϑ2 is introduced and is obtained as: ς2ϑ̇2 +ϑ2 = α1, ϑ2(0) =
α1(0). By the definition of χ2 = ϑ2 − α1, it can be obtained that ϑ̇2 = −χ2

ς2
,

and χ̇2 = ϑ̇2 − α̇1 = χ2
ς2

+ H2, where H2(·) is a continuous function of variables
S1, S2, χ2, yr, ẏr, ÿr and θ1, its expression can be described as: H2(·) = β1Ṡ1η1 +
β1

Ṡ1
q1

+ ξ2η̇2 + θT
1 ∂ϕ1(x̂1)

∂x̂1

˙̂x1 − ÿr − η̈1ξ1. The first-order filter before each step is
similar, and we omit it in the next following steps.

Step j (2 � j � l − 1): Similar to step 1, we have

Ṡj = qj(żj − η̇jξj) = qj(θTj ϕj + zj+1 + αj + χj+1 − ϑ̇j + kje1 − η̇jξj) (9)

where qj = 1
(1−ξj)2ηj

. The Lyapunov function is choosen as Vj = Vj−1 + 1
2S2

j +
1

2γj
θ̃Tj θ̃j + 1

2χ2
j where γj > 0 is the constant matrix. Noticing that the Lyapunov

function in the following steps are similar, we omit them in the next writting.
To maintain the stability of the system, the intermediate control αj and the

adaptive function θj are chosen as: αj = −βjSjηj − βj
Sj

qj
− zj+1 + ϑj − kje1 +

η̇jξj , θ̇j = γjSjqjϕ1 − τjθj where βj and τj are design parameters.

Step l : The lth state is the last one with error constrained, and we have

Ṡl = ql(żl − η̇lξl) = ql(θTl ϕl + zl+1 + αl + χl+1 + hl+1 − ϑ̇l + kle1 − η̇lξl) (10)

where ql = 1/(1 − ξl)2ηl.
Similar to step j, the intermediate control αl and the adaptive law θl are as

follows: αl = −βlSlηl − βl
Sl

ql
− zl+1 + ϑl − kle1 + η̇lξl − hl+1, θ̇l = γlSlqlϕl − τlθl.

where βl and τl are design parameters.

Step k(l + 1 � k � n − 1): The time derivative form of Sk can be expressed as

Ṡk = ˙̂xk − ϑ̇k − ḣk = Sk+1 + χk+1 + αk + θTk ϕk + kke1 − ϑ̇k + ckhk (11)

Similar to the former steps, αk and θk can be chosen as follows: αk =
−ck(x̂k − ϑk) − σSk − θTk ϕk + ϑ̇k − kke1, θ̇k = γkSkϕk − τkθk where ck and
τk are design parameters.



Neural Adaptive Dynamic Surface Control of Nonlinear Systems 25

Step n : In this step, the control input u will be designed. First give the time
derivative of Sn as

Ṡn = ˙̂xn − ϑ̇n − ḣn = θTk ϕk + kne1 − ϑ̇n + cnhn + u (12)

To make the Lyapunov function negative definite, the input u and the adap-
tive law θl are chosen as: u = −cn(x̂n − ϑn) − σSn − θTn ϕn + ϑ̇n − kne1, θ̇n =
γnSnϕn − τnθn. where cn and τn are design parameters. Then we can get

V̇n � −P1‖e‖2+
1
σ

n∑

i=1

θ̃Ti θ̃i+L1 − (2β1 − 2q∗
1)S

2
1+

l∑

i=1

Siqiχi+1−
l∑

i=2

(2βi − σ

q∗
i )S2

i +
n∑

i=1

τi

ri
θ̃Ti θi+

n∑

i=2

χk(−χk

ς
+ Hk)+

1
σ

n∑

i=2

θ̃Ti θ̃i−
n∑

i=l+1

ciS
2
i +

n−1∑

i=l+1

Siχi+1

(13)
where Vn is the final Lyapunov function concluding all the signals in each step.

Let Ωi = {(e, Si, θi, χi) : [eTe+ 1
2

∑n
i=1 S2

i +
∑n

i=1
1
2ri

θ̃Ti θ̃i+ 1
2

∑n
i=2 χ2

i ] � Di}
where Di is a known positive constant. Since Ωi is a compact set and Hi+1 is
a continuous function, there exists a positive constant Mi+1 such that |Hi+1| �
Mi+1 on Ωi. Consequently, we have |χi+1Hi+1| � 1

2χ2
i+1 + 1

2M2
i+1. Then, (13)

can be written as

V̇n � − P1‖e‖2 + L2 −
n∑

i=1

(
τi

2ri
− 2

σ
)θ̃Ti θi +

1
σ

θ̃T1 θ1 −
l∑

i=2

(2βi − σq∗
i − 1

2
q∗
i )S2

i

+
1
2
c2n − (2βi − 5

2
q∗
i )S2

1 −
n∑

i=l+1

(ci − 1
2
)S2

i −
l∑

i=1

(
1
ς

− 1
2

− 1
2
q∗
i )χ2

i+1

−
n−1∑

i=l+1

(
1
ς

− 1)χ2
i+1

where L2 = L1 +
∑n

i=1
τi
2ri

‖θ∗
i ‖2 +

∑n
i=2

1
2M2

i .
Choose P1 > 0, τi

2ri
− 2

σ > 0(i = 1, 2, 3, · · · , n), τi
2ri

− 1
σ > 0(i = 1, 2, 3, · · · , n),

2βi − σq∗
i − 1

2q∗
i > 0(i = 2, 3, · · · , l), 2β1 − 5

2q∗
1 > 0, ci − 1

2 > 0(i = l + 1, · · · , n),
1
ς − 1

2 − 1
2q∗

i > 0(i = 1, · · · , l), 1
ς − 1 > 0(i = l + 1, · · · , n − 1), and define

C = min{P1λmin(P ), τi
2ri

− 2
σ (i = 1, · · · , n), τi

2ri
− 1

σ > 0(i = 1, · · · , n), 2βi −
σq∗

i − 1
2q∗

i > 0(i = 2, · · · , l), 2β1 − 5
2q∗

1 , ci − 1
2 > 0(i = l+1, · · · , n), 1

ς − 1
2 − 1

2q∗
i >

0(i = 1, · · · , l), 1
ς − 1 > 0(i = l + 1, · · · , n − 1)} and D = L2. As a result, the

inequality V̇n � −CVn +D can be obtained, the remainder of the detailed proof
is similar to [1], which is not studied in details here.

5 Simulation Example and Results Analysis

Consider the second-order system in (1), where fi(xi) = x2
1 sinx1, fn(X) =

−a − b − cx2
2, and a, b are known constants. The nominal values of the states



26 H. Dong et al.

are x1(0) = 0.2, x2(0) = 0. The reference signal is yr(t) = sin(t). Our goal is
to make the tracking error convergent subject to the performance function as
follows: ρ1(t) = (ρ10 − ρ1∞)e−a1t + ρ1∞ , where ρ10 = 0.7, ρ1∞ = π/20. The
controller u, intermediate control α1 and adaptive laws are chosen as follows:
α1 = −c1S1 − z2 + ẏr − h(t) − f̂1, u = −(c2 + 0.5)S2/q2 − f̂2 − k2e1 + θ̇2 −
h(t) + η̇2ξ2 − c2S2q2, θ̇1 = −τ1θ1 + γ1S1q1ϕ1, θ̇2 = −τ2θ2 + γ2S2ϕ2; The design
parameters are chosen as τ1 = 0.1, γ1 = 10, τ2 = 0.1, γ2 = 10, k1 = 2, k2 = 2,
ς1 = 0.01, β1 = β2 = 12, and the input saturation is set to be 10.

0 5 10 15
time

-10

-8

-6

-4

-2

0

2

4

6

8

10

sa
t(u

)

0 0.1 0.2
-10

-5

0

0 0.5
0

5

10

Fig. 1. sat(u)

510150
time

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

tra
ck

in
g 

er
ro

r

tracking error
up prescribed performance function
down prescribed performance function

Fig. 2. Constrained tracking error

The simulation results with the use of the mentioned adaptive control method
are shown in Figs. 1 and 2, where Fig. 1 shows the trajectory of control input with
saturation, and Fig. 2 shows the track error z1(t) with error constrained. The
proposed control method is proved to guarantee the convergence of all variables.
What’s more, the transient performance of tracking error with constrained is
guaranteed all the time.

6 Concluding Remarks

In this paper, a neural adaptive output-feedback DSC method with partial pre-
scribed tracking errors and input saturation has been proposed for a class of strict
feedback nonlinear systems. By applying the constraint bounds to the transfor-
mation of the tracking errors into new error variables, the transient performance
is guaranteed for all the time and the tracking errors within the prescribed
bounds. Using the Lyapunov stability theorem, the states in the whole system
are proved to be stable.
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Abstract. This paper presents two-fold adaptive linear neural networks
(ADALINE) to gain the current operating state of power system for a
fast and accurate estimation. On the one hand, the Slave-ADALINE
applies the fixed and larger step-size least mean square algorithm to
accelerate the convergence speed of weights. On the other hand, the
Master-ADALINE follows least mean square with a variable step-size
factor to achieve the minimum of steady-state error. In this paper the
IEEE-30 network of power system is used to verify the effectiveness of
the proposed method, and comparisons of simulation results with Particle
Swarm Optimization algorithm and single ADALINE are also provided.

Keywords: State estimation · Master-Slave ADALINE · Least mean
square (LMS) · Power system

1 Introduction

In the last years, a rapid progress from the conventional electrical grids toward
the new smart grids has happened to deal with the increasing requirements of
customers [1]. In fact, various power system applications such as optimal power
flow, economic dispatch, and security assessment rely on the state variables of
power systems under management that are filtered initially by state estimation
[2]. Real time monitoring of power systems has therefore become very important,
and the timely detection of contingencies has also become important in order
to allow the undertaking ofremedial actions to avoidany potentially dangerous
situation [3].

F.C. Schweppe, in the 1970s, firstly presented the concept of the power sys-
tem state estimation and applied weighted least squares (WLS) method to solve
this problem [4]. But, with the high development of the Distributed Generations,
the complexity of power system, operation and communication will also affect
the optimal state estimation. In response to these challenges, various methods
especially based on the evolutionary algorithms have been proposed in many

Z. Wang—This work was supported by the National Natural Science Foundation of
China (Grant Nos. 61473070, 61433004, 61627809), and SAPI Fundamental Research
Funds (Grant No. 2013ZCX01).

c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part II, LNCS 10262, pp. 28–35, 2017.
DOI: 10.1007/978-3-319-59081-3 4



An Application of Master-Slave ADALINE 29

literatures. In the 2015, Reza used the firefly algorithm to solve state estimation
problems [1]. A hybrid method based on Particle Swarm Optimization (PSO)
was proposed [5,6] for distribution state estimation with the Distributed Gen-
erations. Specially for the PSO, many researchers have tried to improve the
performance of PSO, focusing on the individual best position (Pbest) and global
best position (Gbest) [7,8]. In order to improve the performance of PSO, a new
PSO is proposed in [9]. The algorithm can adaptively change the initial trajec-
tory of a particle to make the particle explore a new region. Nevertheless, the
above methods still need to use more memory resources.

In recent years, adaptive linear neural network (ADALINE) has been widely
used in harmonic analysis [10–14]. In 2014, a new algorithm minimizes an objec-
tive function based on weighted square of the error and using a modified recursive
Gauss Newton (MRGN) method was introduced by Nanda [15]. The method in
[10–15] can minimize the tracking error, and has a faster convergence rate. Mean-
while, its multi-input and single-output structure can reduce the complexity of
the system design. However, the ADALINE technique prematurely converges
during the estimation of the signal with time-varying parameters, affecting the
accuracy of estimation. Therefore, in 2009, G.W. Chang presented a two-stage
ADALINE for harmonics and interharmonics measurement [16], but the com-
puting time is double. In this paper, the authors will use a two-fold ADALINE
structure, i.e. applying the Master-Slave ADALINE to solve the state estimation
of power system. Compared with the reference [16], the proposed method has
parallel processing characteristics, which can improve the speed of computation.
The IEEE-30 network of power system is used to verify the achievability of the
way, and comparisons of simulation results with PSO algorithm [9] and single
ADALINE [15] is tested.

The rest of this paper is organized as follows. Section 2 shows the power
system state estimation of specific implementation. Section 3 presents the MS
ADALINE structure and algorithm. Section 4 presents the simulation results of
IEEE-30 network of power system and the simulation results are compared with
PSO algorithm and single ADAINE. Section 5 draws some conclusions of the
present paper.

2 Specific Accomplishment of State Estimation

Before presenting the master-slave adaptive linear neural network structure and
algorithm in detail, we need to get the mathematical model of the state esti-
mation of voltage. So, in this section will introduce the common mathematical
model of power lines and branch power flow calculation formula, and the specific
processes of state estimation of voltage.

In the steady-state analysis of power system, mathematical model of power
lines is based on the resistance, reactance, and admittance, serial or parallel con-
ductance through the equivalent circuits. Figure 1 shows the π-type equivalent
circuit of transmission line. Among them, Z = R + jX, where R is the resistor
of power line, X is the inductance of power lines. Y = jB is the admittance
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Fig. 1. The π-equivalent circuit of transmission line

of power lines. The active and reactive power calculation formula of the branch
from node i to node j is defined as follows,

Pij = |Vi|2|yij | cos(−αij) − |Vi||Vj ||yij | cos(δi − δj − αij) (1)

Qij = |Vi|2|yij | sin(−αij) − |Vi||Vj ||yij | sin(δi − δj − αij) (2)

where, |Vi| and δi are the amplitude and phase of the voltage node i, respectively.
|Vj |, δj are the amplitude and phase of the voltage node j. |yij |, αij are the
admittance modulus and phase of the branch from node i to node j (yij =
|yij |∠αij), respectively.

By comparing Eq. (1) with (2), let

W1 = 1,W2 = |Vj | cos(δj),W3 = |Vj | sin(δj) (3)

Therefore, from the (1)–(2),we can derive the following formulas,

|Vj | =
√

W 2
2 + W 2

3 (4)

δj = arctan(W3/W2) (5)

3 Structure of MS ADALINE

This section will introduce ADALINE method to solve the power system
state estimation problem. Figure 1 is the structure diagram of MS ADA-
LINE. The structure is formed by two conventional master ADALINE and
slave ADALINE, whose weights are denoted as {ŵ1M (n), ŵ2M (n), ŵ3M (n)}
and {ŵ1S(n), ŵ2S(n), ŵ3S(n)}. At the same time, the master and slaver ADA-
LINE have the same reference signal of input and desired output, which is
{I1(n), I2(n), I3(n)} and D(n), and the corresponding feedback signal of error is
{EM (n), ES(n). The error feedback signal is transferred to the decision controller
to adjust the real-time weights. The Slave-ADALINE applies fixed, larger step-
size least mean square (LMS) algorithm to weights for accelerating the speed of
convergence. At the moment, the Master-ADALINE follows least mean square
with a variable step-size factor, in order to accomplish the minimum of steady-
state error. Finally, after some iterations MS ADALINE weights can be obtained
to calculate amplitude and phase of the node j, the formulas are as follows,
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Fig. 2. The framework of MS ADALINE for power state estimation

|Vj | =
√

ŵ2M (n)2 + ŵ3M (n)2 (6)
δj = arctan(ŵ3M (n)/ŵ2M (n)) (7)

symbols Si and δi are the amplitude and phase of the harmonic i, respectively.
Weights of MS ADALINE are adjusted as follows.

Step-1: The adjustment of weights {ŵ1S(n), ŵ2S(n), ŵ3S(n)} of the Slave-
ADALINE.

ŵ1S(n) = 1 (8)
ŵ2S(n + 1) = ŵ2S(n) + μSES(n)I2(n) (9)
ŵ3S(n + 1) = ŵ3S(n) + μSES(n)I3(n) (10)

ES(n) = D(n) − YS(n) (11)
YS(n) = [ŵ1S , ŵ2S , ŵ3S ][I1, I2, I3]T (12)

symbol D(n) is the desired output, YS(n) is the output of the Slave-ADALINE
respectively.

Step-2: The adjustment of weights {ŵ1M (n), ŵ2M (n), ŵ3M (n)}Li=1 of the
Master-ADALINE.

ŵ1M (n + 1) = 1 (13)

hatw2M (n + 1) =
{

ŵ2S(n + 1), if(AS(m) < AM (m))
ŵ2M (n) + μMEM (n)I2(n), else (14)

ŵ3M (n + 1) =
{

ŵ3S(n + 1), if(AS(m) < AM (m))
ŵ3M (n) + μMEM (n)I3(n), else (15)

AS(m) =
Q∑

m=0

E2
S(m) AM (m) =

Q∑
m=0

E2
M (m) (16)

EM (n) = D(n) − YM (n) (17)
YM (n) = [ŵ1M (n), ŵ2M (n), ŵ3M (n)][I1(n), I2(n), I3(n)]T (18)
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symbol YM (n) is the output of the Master-ADALINE. After the end of each
iteration, AS(m) and AM (m) will be calculated. Decision controller based on
the results of comparison of the two calculated values is used to predict the
Master-ADALINE updated weights.

Step-3: Update the variable step of Master-ADALINE.

μM (n + 1) =
{

µM (n)+µS

2 , if(AS(m) < AM (m))
max[C1μM (n), μmin], else

(19)

From the formula (19), one can see taht, if the tracking performance of
Master-ADALINE is better, Master-ADALINE step value is the average value
of Master-ADALINE step and Slaver-ADALINE step, which makes the Master-
ADALINE, converges faster. In order to obtain small steady-state error, the step
value of Master-ADALINE should be further reduced.

Step-4: According to the formula (1) and (2), the amplitude and phase of the
voltage of the node j can be calculated, respectively.

In order to obtain a good convergence efficiency, the values of C1, μmin, μS

and μM need to be chosen. The above discussions show that μS determines the
global convergence of MS ADALINE, μM determines the accuracy of conver-
gence, therefore, the selection of these two values plays a key in the performance
of the network. These two main values can be determined based on previous
experience.

The weights of the Master-ADALINE are updated by the expected outputs
until them no long changed obviously, or the maximum number of iterations is
reached. The active power and reactive power are alternating as the expected
input of the MS ADALINE. The reference input signals as shown in Table 1.

Table 1. The reference input signals

Input signals Pij Qij

Input1 |Vi|2|yij | cos(−αij) |Vi|2|yij | cos(−αij)

Input2 −|Vi||yij | cos(δi − αij) −|Vi||yij | sin(δi − αij)

Input3 −|Vi||yij | sin(δi − αij) |Vi||yij | cos(δi − αij)

Remark 1. The proposed method used to deal with the state of power system
needs less memory space compared with previous method, like PSO [9]. So, this
needs less time to compute the results.

Remark 2. Compared with [16], the proposed method has parallel processing
characteristics, which can improve the speed of computation.

Remark 3. Compared with the single ADALINE [15], the proposed method has a
two-fold structure, i.e. master ADALINE and slave ADALINE. The slave ADA-
LINE mainly is used to improve the speed of convergence, at the same time, the
master ADALINE could accomplish the minimum of steady-state error.
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4 Simulation Results

A IEEE-30 network of power system is used to verify the achievability of the
proposed method. Meanwhile, some comparisons of simulation results with PSO
[9] and single ADALINE [15] are presented. Then the simulation results indicate
that the proposed method has better accuracy than the PSO algorithm and
the single ADALINE, and convergence rate of which is faster than the single
ADALINE.

Figure 3 shows the comparisons between the results of the MS ADALINE and
PSO algorithms and the single ADALINE. MS ADALINE and single ADAINE
have better performance than PSO for the ability of voltage amplitude and
phase estimation. What’s more, MS ADALINE voltage amplitude estimated
average error is 0.0015769, phase estimated average error is 0.0047077. PSO
voltage amplitude estimated average error is 0.035515, phase estimated average
error is 0.022969. The single ADALINE voltage amplitude estimated average
error is 0.0022536, phase estimated average error is 0.021897. So MS ADALINE
results are better than the PSO algorithm and single ADALINE. MS ADALINE
results are more accurate, and MS ADALINE model has obvious advantages on
simulation time, whose value is 0.015 s, and PSO is 0.103 s (CPU 887 1.5 GHz).

Fig. 3. The comparisons of estimated voltage amplitude and phase

Figure 4 shows the comparisons of tracking performance of MS ADALINE,
Single ADALINE and PSO. The PQ12 is the actual measured value. It can be
seen from the right simulation diagram that MS ADALINE coincides with the
expected waveform after 16 iterations, PSO converges after the 37th iteration,
and single ADALINE converges to the expected value after the 25th iteration.
The left diagram is a comparison of the MS ADALINE and PSO algorithms
of node 2, the horizontal axis is the number of iterations, and the vertical axis
is the error degree. The error degree is defined as Δ = (V̂i(k) − Vimeas)2 +
(δ̂i(k) − δimeas)2, where, V̂i(k), δ̂i(k) are the estimated values of each iteration
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Fig. 4. The comparisons of tracking performance of MS ADALINE, Single ADALINE
and PSO

and Vimeas, δimeas are the actual measured values of the node. Above, the PSO
algorithm has a lower convergence rate, and the estimation accuracy is worse.
The estimation precision of MS ADALINE is better than PSO and single ADA-
LINE. Therefore, MS ADALINE not only can improve the accuracy of the esti-
mate, but also could ameliorate convergence rate.

5 Conclusion

This study introduces a master-slave adaptive linear neural network (ADALINE)
approach to deal with power system state estimation problem. MS ADALINE
has a two-fold structure, and the characteristics of parallel processing. This paper
uses a IEEE-30 network to verify the achievability of the way, and comparisons
of simulation results with Particle Swarm Optimization algorithm and single
ADAINE. Simulation results shows MS ADALINE not only can improve the
accuracy of the estimate, but also could ameliorate convergence rate.
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Abstract. The arrival of an aging society brings up many challenges, including
the demanding need in medical resources. In responding, the exoskeleton robot
becomes one of the focuses, which provides assistance for people with loco-
motive problems. Motivated by it, our laboratory has developed a wearable
upper-limb exoskeleton robot, named as HAMEXO. It is of 2 DOF and intended
to provide motion assistance for users in their daily activities. To serve the
purpose, HAMEXO is equipped with a visual system to detect objects in the
environment, and also a motion controller for its governing. To deal with the
coupling involved during the movements of the two joints and the need to adapt
to various users, we adopted the learning approach for controller design.
Experiments are performed to demonstrate its effectiveness.

Keywords: Upper-limb exoskeleton robot � Motion and visual control �
Learning

1 Introduction

Along with the coming of an aging society, the number of people with limb mobility is
increasing, Consequently, medical staffs, caregivers, and medical resources are highly
demanded for providing assistance in walking, nursing care, and daily lives. It solicits
the introduction of robots to relieve the workloads from their human counterparts.
Among them, the exoskeleton robot, which can be worn on the human body directly
and operated in concert with the wearer, has received much attention [1–3]. The
exoskeleton robots can basically be classified into three types: upper-body, lower-body,
and full-body [2–7]. Among previous research, they have been applied for rehabili-
tation, daily activities, and others. NTUH-ARM [6] and ETS-MARSE [7] were
developed for full-arm rehabilitation, which were heavy and fixed to a base. TTL-Exo
[5], a light and portable 6-DOF dual arm, was also developed for rehabilitation. Being
mounted on a base or wheelchair, they can be applied for eating, drinking, brushing,
etc. [1, 4]. Meanwhile, EMAS II [2] and HAL-UL [3] were designed to be light for
higher portability.

When used for assistance, the exoskeleton robot can operate in either passive,
active-assisted, or active-resistive mode [6, 7]. In the passive mode, the robot dictates
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the entire motion without any force from the user. It is generally adopted for the cases
that the user was almost unable to move his/her arm. In the active-assisted or
active-resisted mode, the user joins force with the robot to move. The robot usually
takes a supporting role when the user executes the task. For these active types of
assistance, it is crucial for the robot to come up with proper assistive force. For that,
biological signals from the user, such as electromyography (EMG) and electroen-
cephalography (EEG) [1], are frequently used to detect user’s motion intention.
Another approach is to determine the assistive force by sensing the applied force from
the user [8]. Meanwhile, these two approaches can also be combined together by using
both biological and force information [1].

Motivated by the demand of motion assistance for people with weak mobility, our
laboratory has developed a wearable 2-DOF upper-limb exoskeleton robot, named as
HAMEXO. For the use in daily life, such as object picking or drinking, we equip the
HAMEXOwith a visual system for detecting the objects in the working environment. To
execute the motion solicited via the visual system, we develop a motion controller for its
governing. As the coupling is present during the movements of the two joints and the
adaptability is demanded in applying it for different users, we propose using the learning
approach for controller design. The adaptive network-based fuzzy inference system
(ANFIS) is adopted for its execellence at adaptation [9]. In this stage of research, we
focus on the passive mode of assistance. Meanwhile, the effectiveness of the proposed
motion and visual control system is demonstrated via the experiments for object fetching.

2 Design and Development for HAMEXO

HAMEXO (Human and Machine Exoskeleton) is developed to be a 2-DOF upper-body
wearable exoskeleton robot. It is designed based on the human upper-body anatomy
and dynamics for better fitting in wearing [10, 11]. The two DOFs are intended for the
flexion and extension of the shoulder (h1) and elbow (h2), which should provide the
freedoms for simple picking and reaching tasks in daily activities. Referring to the
actual range of motion of human body, the ranges of h1 and h2 are designed to be

0
� � h1 � 90

�
; 0

� � h2 � 135
� ð1Þ

The 3D CAD modeling of HAMEXO is as shown in Fig. 1. Its frame is made of
aluminum for providing the demanded strength and lightness. For each of the two links,
there is a PLA (polylactide) 3D printed platform together with a strap belt for securing
user’s arm to the exoskeleton. The upper-arm, forearm, shoulder, and backpack are all
equipped with sliding parts to accommodate to variations in human bodies. The
brushless DC motors (BLDCMs) were adopted as the actuators, coupled with reduction
gears and also incremental encoders for position feedback. Other designs include: hard
foam as padding between the user and exoskeleton for comfort and power-kill switch for
safety concern. Note that, as HAMEXO is designed to be wearable, it can also be fixed
to a work station to relieve the user from its load. As shown in Fig. 2, HAMEXO can be
hung on the rack of the work station and the casters allow it to move. Figure 3(a) shows
the photo of the developed HAMEXO and Fig. 3(b) a user wearing it.
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Fig. 1. 3D CAD modeling of HAMEXO.

Fig. 2. HAMEXO with the work station.

(a)                               (b) 

Fig. 3. (a) The HAMEXO and (b) a user wearing HAMEXO.
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3 Proposed Motion and Visual Control System

The proposed system consists of mainly a visual system for object detection and an
ANFIS PID position controller for motion governing. Figure 4(a) shows the setup of
the visual system, which includes two cameras for locating the objects in the 3D
workspace. Their locations are arranged according to the task, so that they well observe
the objects involved. To be portable to go along with HAMEXO, we adopted the
CMUcam5 pixy (shown in Fig. 4(b)) as the camera [12], which is light and also with
the ability of color recognition. The calibration procedure has been performed to derive
accurate parameters for the two cameras. The 2D imagines obtained by them can then
be used to determine the 3D object location.

After both the locations of the object and HAMEXO are identified, the ANFIS PID
controller, shown in Fig. 5, is applied to move HAMEXO to reach the object. In Fig. 5,
according to the relative locations between the object and HAMEXO, the motion
planner first generates a path ðhd) for execution. For smoothness consideration, we
utilize the B-spline method to generate the path. The planned path ðhd) is forwarded to

(a)                                (b) 

Fig. 4. The visual system for object detection: (a) the arrangement of the two cameras and
(b) the CMUcam5 pixy.

HAMEXO

Fig. 5. The proposed motion controller based on ANFIS.
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the ANFIS-PID position controller for execution. The controller then derives proper
control commands in current (Icmd PID) according to the feedbacks of position
error (e) and position error rate (ec), which shall drive the motors to move HAMEXO
to follow the path ðhd).

The ANFIS, famous for its excellence on adaptation, has been applied for speed
control of the BLDCM [13]. In our previous work, it has been applied to determine
system parameters for a multi-DOF robot control system based on EMG signals, and
achieved desirable performance [14]. Figure 6 shows the system block diagram of the
proposed ANFIS-PID position controller, equipped on each of the two links of
HAMEXO. It is basically a PID controller with adjustable Kp;KI ;KD gains tuned by
the ANFIS. The controller starts with a set of initial gains (KP0;KI0;KD0). Through a
learning process, the ANFIS shall determine proper amount of DKP;DKI ;DKDð Þ added
to Kp0;KI0;KD0

� �
for adjustment according to position error (e) and position error

rate (ec):

KP ¼ KP0 þDKP

KI ¼ KI0 þDKI

KD ¼ KD0 þDKD

8
<

:
ð2Þ

Current control signal Icmd PID tð Þ generated by the ANFIS-PID position controller
will drive the motors to move HAMEXO, formulated as

Icmd PID tð Þ ¼ KPe tð ÞþKI

Z t

0
e tð ÞdtþKD _e tð Þ ð3Þ

The ANFIS uses the neural network structure to realize the Takagi-Sugeno (T-S)
fuzzy model [15]. The IF-THEN rules are formulated as

Ri : IF eisAj
� �

and ecisBj
� �

THEN fi ¼ pieþ qiecþ rið Þ
for i ¼ 1; � � � ;m and j ¼ 1; � � � ; n ð4Þ

HAMEXO 

Fig. 6. Block diagram of the proposed ANFIS-PID position controller.
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where Ri is the i’s rule of the ANFIS, fi the output variable (DKp), (Aj;Bj) fuzzy sets
characterized by the membership function in the antecedent, and (pi; qi; ri) inference
parameter sets in the consequent, respectively. The architecture of ANFIS for deriving
DKp, DKI and DKD can be constructed by referring to [16].

4 Experiment

To evaluate the performance of the proposed motion and visual system, we invited
three young subjects, two males and one female (shown in Fig. 7), to conduct the
experiments. They were all right-handed with the height of 160 (female), 165, and
171 cm and weight of 50, 70, and 62 kg, respectively. For safety concern, the maxi-
mum motor speeds for the shoulder and elbow were set to be 300 and 250 rpm,
respectively. Evaluation on the proposed ANFIS PID position controller, including its
ability in tackling the coupling effect between joints and in adapting to various users,
has been reported in our previous work [16]. Here, we concentrate on how it can be
linked with the visual system for object fetching. During the experiments, we applied
the visual system to locate the object first and the motion controller to move HAMEXO
in carrying the arm to fetch the object. We arranged the object to appear in an arbitrary
manner, so that the subject did not know where it would be in advance. Figure 8 show
the experimental setup for subject A, in which the cup was put on the desk first
(Fig. 8(a)), lifted up to the air (Fig. 8(b)), and then put back to the desk (Fig. 8(c)).
Figure 9 shows the trajectories of both the shoulder and elbow joints during the
motion, in which the blue dots 1, 2, and 3 represent the three object locations, the red
line the trajectory designed by the motion planner based on these locations, and the
blue line the actual trajectory executed by HAMEXO. In Fig. 9, the actual joint tra-
jectories followed the planned ones quite well, and all three target locations were
reached. Similar results were also observed for the experiments conducted by subjects
B and C, indicating the effectiveness of the proposed system.

(a)                (b)                  (c) 

Fig. 7. Photos of subjects A, B, and C invited for the experiments.
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To further investigate the effect of learning for the proposed motion controller, we
also used a pure fuzzy system, i.e., not a neural-fuzzy type of system, to tune Kp;KI ;KD

gains for the PID controller shown in Fig. 6. For this object-fetching task involving
only two joints, the fuzzy system was able to derive suitable gains that led to satis-
factory performance at the expense of time. In fact, the derived gains were quite close
to those tuned by the proposed ANFIS. Meanwhile, to be more effective on gain tuning
and also able to deal with more complicated tasks, we consider the proposed
ANFIS PID position controller is more appropriate for future system development.

5 Conclusion

In this paper, we have proposed a motion and visual control system for the upper-limb
exoskeleton robots, and applied it to HAMEXO, a such kind of robot developed in our
laboratory. Experiments have been conducted to evaluate its effectiveness. In future
works, we will enhance the visual system in its portability and also the ANFIS-based
motion controller in its learning, including further study on the transferability for
different wearers, so that HAMEXO can be applied for more complicated tasks and
more adaptive to various users.

(a)                  (b)                 (c)  

Fig. 8. Setup for the experiment of object feching: (a) reach point 1, (b) reach point 2, and
(c) back to point 1.

(a)                              (b) 

Fig. 9. Experimental results (subject A): trajectories for (a) shoulder and (b) elbow. (Color
figure online)
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Abstract. This paper presents an adaptive neural control design for an n-link
rigid robot with both output constraint and unknown time-varying delays. The
main design difficulties caused by both the output constraint and unknown
time-varying delayed states. In order to overcome these difficulties, the novel
Barrier Lyapunov Functions (BLF) and iterative backstepping procedures are
employing to guarantee constraints satisfaction of the position of the robot. The
Lyapunov-krasovskii functionals (LKFs) are utilized to eliminate and compen-
sate the effect of unknown functions with time-varying delayed states in com-
munication channels. By using the Lyapunov analysis, the stability of
closed-loop systems is proven.

Keywords: Neural networks � Adaptive control � Backstepping � Barrier
Lyapunov functions � Time-varying delay systems

1 Introduction

In recent year, adaptive control designs have been got much attention on the nonlinear
systems with unknown function. Based on the approximation characteristic of fuzzy
logic systems and neural networks, the adaptive tracking control schemes were pro-
posed for nonlinear SISO systems [1–4] and MIMO system [5, 6] with unknown
function, the adaptive controllers have been proposed. In [7–9], the early researches
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were studied for robot by employing the adaptive robust neural networks controllers.
However, the above research results omitted the effect of constrains.

It is indispensable that constraints often appear in the real systems, such as the
flexible crane systems [10], the stirred tank reactor systems [11] and the robotic
manipulator systems [12, 13]. Adaptive controller designs for several classes of SISO
nonlinear systems with output constraint in [14] and state constraints in [15, 16] have
been studied using the BLFs. Adaptive NN control design was presented for nonlinear
MIMO systems with state constraints in [17]. Some subsequent studies have extended
constant constraints to time-varying constraints. As the main factor effecting system
performance, time delays are not considered in the above-mentioned works.

To meet the needs of practical systems, the handling of time delays in the real
systems have become an active research domain, for example magnetic levitation
systems in [18], chemical systems in [19] and crane systems in [20]. The stabilization
analysis and adaptive controllers were studied for nonlinear systems in [21–23] to
compensate for the unknown time-delay based on backstepping technique and LKFs.
Based on the LKFs and robust control, [24] proposed an tracking control for the n-link
flexible-joint manipulator with unknown time-delay states. It is a field worthy of further
study that how to control both the time-varying states and constraints in an uncertain
robot.

In this paper, we try to deal with the problem of adaptive neural tracking control for
the nonlinear uncertain robot with both time-varying states and output constraint. The
main contributions of the present method are summarized that: Based on the BLFs, the
transgression of constraints is overcome in the uncertain robot; the unknown
tine-varying functions are eliminated by the LKFs. Finally, the proposed control
method can guarantee that the semiglobal uniform ultimate boundedness (SGUUB) of
the closed-loop signals and output constraint is not violated.

2 System Descriptions

The motion equation of an n-link rigid robotic system with time-varying delayed states
can be described by

M qð Þ€qþC q; _qð Þ _qþH q t � s1 tð Þð Þ; _q t � s2 tð Þð Þð ÞþG qð Þ ¼ u� JT qð Þf tð Þ ð1Þ

where q; _q; €q 2 Rn are the position, velocity and acceleration vectors, respectively.
M qð Þ 2 Rn�n stands for the symmetric positive definite inertia matrix, C q; _qð Þ _q 2 Rn is
the unknown Centripetal and Coriolis torques, JT qð Þ is the unknown reversible Jaco-
bian matrix, f tð Þ represents the constrained force with being bounded uniformly, G qð Þ
denotes the unknown gravitational force, u 2 Rn is the applied torques, H �ð Þ represents
the unknown time-delayed function, s1 and s2 are the unknown time-varying states in
communication channels which satisfy si tð Þ� smax and _si tð Þ� s� 1 with smax and s
being known constants.

For the definitions of x1 ¼ q and x2 ¼ _q, the dynamic of n-link rigid robotic sys-
tems are transformed into the state-space expressions as
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_x1 ¼ x2

_x2 ¼ M�1 x1ð Þ �H x1 t � s1 tð Þð Þ; x2 t � s2 tð Þð Þð Þ � C x1; x2ð Þx2ð
�G x1ð Þ � J�T x1ð Þf tð Þþ u

�
y1 ¼ x1

8>>>><
>>>>:

ð2Þ

The control objective of this paper is to design an adaptive NN controller u for
system (1) to ensure that link position y1 ¼ x1 ¼ q1; . . .; qn½ �T tracks the design refer-
ence trajectory yd ¼ yd1 ; . . .; ydn½ �T , while the states and all signals in the close-loop
system is SGUUB and all the output constrain are not violated.

Assumption 1 [17]: For all t[ 0, there are positive constants kc1 and A0;A1; � � �An,
such that the desired trajectory yd tð Þ satisfies yd tð Þj j �A0 � kc1 , and its time derivative

y jð Þ
d tð Þ satisfies y jð Þ

d tð Þ
��� ����Aj, j ¼ 1; 2; � � � ; n.

Assumption 2 [24]: For the unknown nonlinear continuous function H �ð Þ is bounded
by the positive continuous function �H �ð Þ, the inequality hold H x1; x2ð Þk k� �H x1; x2ð Þ.
Assumption 3 [24]: There are some positive continuous functions q1 �ð Þ and q2 �ð Þ, the
inequality holds �H x1; x2ð Þ� q1 x1ð Þ x1k kþ q2 x1; x2ð Þ x2k k with functions q1 x1ð Þ and
q2 x1; x2ð Þ are abbreviated to q1 and q2.

3 The Controller Design and Stability Analysis

Based on the first equation of system (1), define the tracking error as z1 ¼ x1 � yd ¼
x11 � yd1 ; . . .; x1n � ydn½ �T and z2 ¼ x2 � a1 ¼ x21 � a11; . . .; x2n � a1n½ �T , it is easy to
get _z1 ¼ _x1 � _yd ¼ x2 � _yd ¼ z2 þ a1 � _yd and _z1i ¼ _x1i � _ydi ¼ z2i þ a1i � _ydi with the
adaptive neural tracking controller a1 will be defined liter on.

Choose the BLF as VB1 ¼ 1=2
Pn

i¼1 log k
2
bi

.
k2bi � z21i, where kbi , i ¼ 1; . . .; n is a

design constant. Based on the tracking error z1, the differentiating of VB1 yields

_VB1 ¼
Xn
i¼1

z1i
k2bi � z21i

z2 þ a1 � _ydð Þ ð3Þ

Choose the virtual controller a1 as

a1 ¼ �k1z1 þ _yd ð4Þ

where k1 ¼ diag k1ið Þ with k1i, i ¼ 1; . . .; n is the design positive constant.
Based on (4), the equality (3) becomes

_VB1 ¼ �
Xn
i¼1

kiz21i
k2bi � z21i

þ
Xn
i¼1

z1iz2i
k2bi � z21i

ð5Þ
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Define the tracking error z2 ¼ x2 � a1, and its derivative is given as _z2 ¼ _x2 � _a1
and consider the second equation of system (1), we have

_z2 ¼ M�1 x1ð Þ �H x1 t � s1ðtÞð Þ; x2 t � s2ðtÞð Þð Þð
�G x1ð Þ � C x1; x2ð Þx2 � J�T x1ð Þf ðtÞþ u

�� _a1
ð6Þ

where _a1 is defined as _a1i ¼ @a1i=@x1ix2i þ
P1

k¼0 @a1i
.
@ykdi y

kþ 1ð Þ
di .

Choose the BLF as VB2 ¼ VB1 þ 1=2zT2M x1ð Þz2 þ 1=2d
Pn

i¼1
~hiC

�1
i
~hi, where ~hi is

weight estimation error. Based on (6), the differentiating of VB2 yields

_VB2 ¼ zT2 �C x1; x2ð Þx2 � G x1ð Þð �M x1ð Þ _a1 � J�T x1ð Þf tð Þ�
þ 1

d

Xn
i¼1

~hiC
�1
i

_̂hi þ zT2uþ _VB1 � zT2H x1 t � s1 tð Þð Þ; x2 t � s2 tð Þð Þð Þ ð7Þ

Form Assumption 2, using the Young’s inequality, the following inequality holds

�zT2H x1 t � s1 tð Þð Þ; x2 t � s2 tð Þð Þð Þ� 1
4�m

zT2 z2 þ�m�H2 x1 t � s1 tð Þð Þ; x2 t � s2 tð Þð Þð Þ ð8Þ

where the variable �m ¼ 1� s.
The unknown function U Zð Þ is defined by

U Zð Þ ¼ �C x1; x2ð Þx2 � G x1ð Þ �M x1ð Þ _a1

� J�T x1ð Þf tð Þþ 1
zT2

X2
k¼1

exp sk tð Þð Þ q2k xk tð Þk k2
� � ð9Þ

The NN approximation U Zð Þ are defined as U Zð Þ ¼ h�TS Zð Þþ e Zð Þ, where U Zð Þ
is a function of x1; x2; yd; � � � ; _yd and Z ¼ xT1 ; x

T
2 ; yd ; � � � ; _yd

� �T2 X1, there is a design
positive constant �d which is upper bounded of the approximation error e Zð Þ,
i.e., e Zð Þj j ��e.

The signal function is defined as following:

d z2ð Þ ¼ 0; z2 ¼ 0; 0; . . .; 0½ �T
1; Otherwies

�
ð10Þ

Consider z2¼ 0; 0; . . .; 0½ �T , From a practical point of view, once the system reaches
its origin, control performance is best, i.e., no control action should be taken for
less power consumption. According to the definitions of VB1 and VB2, we can get

_VB2 ¼ �Pn
i¼1

kiz21i
.
k2bi � z21i � 0 with neural networks is not need to be added in VB2.
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For z2 6¼ 0; 0; . . .; 0½ �T , the unknown function U Zð Þ can be approximated by RBF
neural works. By substituting (8), (9) and (10) into (7), we obtain

_VB2 � �
X2
k¼1

exp sk tð Þð Þ q2k xk tð Þk k2
� �

þ 1
d

Xn
i¼1

~hiC
�1
i

_̂hi þ zT2uþ
1
4�m

zT2 z2

þ _VB1 þ zT2h
�TS Zð Þþ zT2 e Zð Þþ�m�H2 x1 t � s1 tð Þð Þ; x2 t � s2 tð Þð Þð Þ

ð11Þ

Using the Young’s inequality, we obtain

zT2
Xn
i¼1

e Zð Þ� 1
2gi

zT2 z2 þ
1
2

Xn
i¼1

gi�e
2
i ð12Þ

where gi is a design constant.
Introduce the actual controller u and the NN adaptation law as

u ¼ d z2ð Þ �k2z2 � N� ĥTS Zð Þ � 1
2g

z2 � 1
4�m

z2

	 

ð13Þ

_̂hi ¼ d z2ð ÞCidi z
T
2S Zið Þ � riĥi

h i
ð14Þ

where ri is a design constant. The weight estimation error by ~hi¼ĥi � h�i . The unknown
optimal weight vector h�i is estimated by the estimation weight vector ĥi and

N ¼ z11
.
k2b1 � z221; . . .; z1n

.
k2bn � z22n

h iT
, k2 ¼ diag k2ið Þ with k2i, i ¼ 1; . . .; n is design

positive constant.
For z2 6¼ 0; 0; . . .; 0½ �T , substituting (5), (12), (13) and (14) into (11) leads to

_VB2 � �
X2
k¼1

exp sk tð Þð Þ q2k xk tð Þk k2
� �

�
Xn
i¼1

ri~h
T
i ĥi �

Xn
i¼1

kiz21i
k2bi � z21i

þ 1
2

Xn
i¼1

gi�e
2
i � zT2 k2z2 þ�m�H2 x1 t � s1 tð Þð Þ; x2 t � s2 tð Þð Þð Þ

ð15Þ

Notion the term
Pn

i¼1 ri
~hTi ĥi in (15) and the equality ĥi ¼ ~hi þ h�i , we have

�
Xn
i¼1

ri~h
T
i ĥi � � 1

2

Xn
i¼1

ri ~hi
�� ��2 þ 1

2

Xn
i¼1

ri h�i
�� ��2 ð16Þ

Noting Assumption 3, the time-delay function �H �ð Þ in (15) can be rewritten as

�mH2 x1 t � s1 tð Þð Þ; x2 t � s2 tð Þð Þð Þ��m q21x
2
1 t � s1 tð Þð Þþ q22x

2
2 t � s2 tð Þð Þ� � ð17Þ

Substituting (16) and (17) into (15) leads to
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_VB2 � �
X2
k¼1

exp sk tð Þð Þ q2k xk tð Þk k2
� �

�
Xn
i¼1

kiz21i
k2bi � z21i

þ 1
2

Xn
i¼1

gi�e
2
i � zT2 k2z2

� 1
2

Xn
i¼1

ri ~hi
�� ��2 þ 1

2

Xn
i¼1

ri h�i
�� ��2 þ q21x

2
1 t � s1 tð Þð Þþ q22x

2
2 t � s2 tð Þð Þ

ð18Þ

Choose the Lyapunov-Krasovskii function candidates

VK ¼ d z2ð Þ
X2
k¼1

exp � t � sk tð Þð Þð Þð
Z t

t�sk tð Þ
exp sð Þ Q xk sð Þð Þð Þds

!
ð19Þ

where the function Q �ð Þ ¼ q21 x1k k2 þ q22 x2k k2.
For z2 6¼ 0; 0; . . .; 0½ �T , the time derivative of VK is given by

_VK ¼
X2
k¼1

exp sk tð Þð Þ q2k xk tð Þk k2
� �

� �m q21x
2
1 t � s1 tð Þð Þþ q22x

2
2 t � s2 tð Þð Þ� �� �mVK ð20Þ

Define the Lyapunov function as V ¼ VB2 þVK . For z2 6¼ 0; 0; . . .; 0½ �T , based on
(18) and (20), the time derivative of the Lyapunov function V can be rewritten as

_V � � VK � 1
2

Xn
i¼1

ri ~hi
�� ��2 þ 1

2

Xn
i¼1

ri h�i
�� ��2 �Xn

i¼1

kiz21i
k2bi � z21i

þ 1
2

Xn
i¼1

gi�e
2
i � zT2 k2z2

ð21Þ

The equality (21) can be rewritten as

_V ¼ �qV þC ð22Þ

where q ¼ min 2min k2 � Ið Þkmin M x1ð Þð Þ; min 2k1ið Þ; rikmin Cið Þ; i ¼ 1; . . .; ngf

C ¼ 1
2

Xn

i¼1
gi�e

2
i þ

1
2

Xn

i¼1
ri h�i
�� ��2

Theorem 1: Consider the n-link rigid robotic systems (1) under Assumptions 1 and 2.
Under the set Xz, the virtual controller a1 in (4), the actual controller u in (13) and the
adaptive law in (14), if the design parameters are chosen appropriately, the designed
adaptive control strategy can ensure that: (1) the output constraint is not never violated;
(2) the tracking errors will converge in a compact set about zero; (3) the closed–loop
systems is SGUUB.

Proof: The proof process is similar to previous Lyapunov analysis method. Thus, the
proof process is omitted here.
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4 Conclusion

In order to stabilize an n-link rigid robotic system with unknown time-varying delayed
states and output constraint, an adaptive neural tracking control scheme has been
developed. The appropriate BLF and iterative backstepping design are employed to
prevent violation of the output constraint. The unknown time-varying delayed states
have been compensated by LKF. By using the Lyapunov analysis, it can be proved that
the boundedness of all signals in the closed-loop, tracking errors converge to a bounded
compact set and the output constraint is not violated.
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Abstract. This paper investigates the power tracking control problem
of wind farm consisting of a large number of wind turbines, each of which
is to deliver certain amount of power so that the combined power from the
wind farm is able to meet the total power demand. For such power track-
ing control problem, the precise total demanded power is unavailable and
there involve modeling uncertainties as well as external disturbances. To
address the issue of unknown power trajectory, an analytical model is
proposed to reconstruct the unknown desired power profile. Neural net-
work based control scheme is developed to ensure stable power tracking.

Keywords: Wind farm · Unknown desired power profile · Neural
network · Power tracking

1 Introduction

As one of the most attractive renewable energy resources due to its environ-
mental friendly and economically competitive nature, wind energy has become
more and more prolific rendering control technology an enabling one for uti-
lizing this kind of resource to its full efficiency [1], while various speed wind
turbine control is challenging. These challenges can be attributed to the energy
resource itself (the wind), and its stochastic nature. How to design an intelligent
and robust control scheme to keep power trajectory close along with uncer-
tain power demand remains an interesting yet challenging problem. A common
practice in addressing the nonlinear natures of WT is based on linear system
theory [2], and this inevitably causes approximation error. Also various nonlin-
ear controllers have been proposed. For example, Song et al. [3] have presented
a nonlinear and adptive controller to track asymptotically a desire rotor speed.
A sling mode observer is adopted to estimate the aerodynamic torque in spite
of system uncertainties [4]. She et al. [5] have proposed a improved strategy
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by using adaptive backstepping controller based on neural networks. However,
the resultant solutions in the aforementioned literature are not only structurally
complicated and computationally expensive, but also is based on the assump-
tion that the required tracking curve is known a priori precisely. In this paper
we focus on a low-cost neuro-adaptive proportional (P) control for wind farm
to maintain satisfactory power delivery to the load side and the literature as
most closely related to our work, and alongside such control has salient feature
of simplicity in structure and low complexity in computation.

In power system planning and dispatching, its often required to control power
output of the power plant to meet (balance) the short-term or long-term power
demand from customer side. Most previous power control schemes are based on
the assumption that such demand (required power trajectory) is known a prior
precisely. However, the power demand from power user side is always uncertain
and hard to be precisely predicted. So it is more crucial to investigate the power
tracking problem in wind power system where the desired power trajectory is
unavailable. To our best knowledge, it has not been well addressed by using
existing wind power controllers. This paper aims to synthesize and implement a
robust neural-adaptive feedback control based torque control architecture in the
presence of unknown power demand for variable speed wind turbines (VSWTs)
during below-rated operation in wind field.

The remainder of this paper is organized as follows. Section 2 gives the prob-
lem formulates the problem and reviews some preliminaries for the control of
wind turbine systems. Section 3 elucidates neuroadaptive feedback control design
for wind energy conversion systems with detail stability analysis, where power
tracking is achieved, followed by some concluding remarks in Sect. 4.

2 Problem Formulation and Preliminaries

2.1 Overall Control Scheme for Wind Farm

The main objective of the distributed control system is to adjust the out power
of each WT so that the output power of entire wind farm can track desired
power asymptotically. In this work, we use proportional distributed algorithm to
generate the reference power of WTs. Further a neuro-adative feedback controller
is proposed without using the uncertain information of WT parameters and
known power demands, and the control scheme is easy for implementation.

The proportional power distribution scheme therefore given as follows,

P ∗
sum = P ∗

1 + P ∗
2 + · · · + P ∗

n

= α1P
∗
sum + α2P

∗
sum + · · · + αnP ∗

sum (1)

where α1 + α2 + · · · + αn = 1, P ∗
sum is the total output electric power that

the entire wind farm should generate, and P ∗
i (i = 1, 2, · · · , n) is the reference

distributed power for the ith WT, and αi denotes the distribution ratio.
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2.2 Neural Networks

NNs have been widely applied to many engineering fields as approximation model
for the any continuous function over a compact set with sufficient accuracy [6–8].
For any continuous function, it holds that

f(z) = W ∗TS(z) + η(z) (2)

where z = [z1, z2, · · · , zq]T ∈ Rq is the input vector of the approximator, W ∗ ∈
RP is the ideal weight matrix, S(z) = [s1(z), s2(z), · · · , sp(z)]T ∈ RP is the basic
function vector, η(z) is the approximation error which satisfies |η(z)| < η̄, and η̄
is an unknown bound parameter. If the number of nodes in the NN p is chosen
large enough, then the approximation error can be made arbitrarily small. Also
it is worth noting that ‖S(z)‖ ≤ Sm < ∞ and ‖W ∗‖ ≤ Wm < ∞, where and
are some positive constants. A NN unit will be embedded to the controller to
compensate the uncertainties in the system as detailed in follows.

2.3 System Description

Here, we consider the ith (i = 1, 2, · · · , n) VSWT with the help of [1] in the wind
farm whose dynamics shown in Fig. 1 is described by

Jtiω̇ri = Tai − Ktiωri − ngiTemi − ξi(·) (3)

where Tai = Kai(λ)ω2
r with Kai (λi) = 1

2ρπR5 CPi

λ3
i

being a time-varying and
uncertain coefficient. For a WT, Kai(λi) is a single peak and bounded continu-
ous function of λi, ξi(·) = ci(ωr1, ωr2, · · · ωr(i−1), ωr(i+1), · · · ωrn) denotes all the
possible external bounded disturbances associated with rotate speeds from other
wind turbines.

Note that the output power is described by

Pgi = Temiωgi = ngiTemiωri (4)

Fig. 1. Drive train dynamics.



Neural Network Based Power Tracking Control of Wind Farm 55

Then by (3) we get

Ṗgi = ngiṪemiωri + ngiTemiω̇ri

= ngiṪemiωri + 1
Jti

Kai (λi) ωriPgi − Kti

Jti
Pgi

− 1
Jtiω2

ri
P 2

gi − di(·)
Jtiωri

Pgi

(5)

which can be expressed in a matrix form as

Ṗgi = bi(t)ui + fi(·) (6)

where

bi (t) = ngiωri

ui = Ṫemi

fi (·) = 1
Jti

Kai (λi) ωriPgi − Kti

Jti
Pgi

− 1
Jtiω2

ri
P 2

gi − ξi(·)
Jtiωri

Pgi

The output power form a wind farm can then be expressed as

Ṗ = B(t)U + F (·) (7)

where P = (Pg1, Pg2, · · · Pgn)T ∈ Rn is output electric power that every wind
turbine generates. B(t) = diag (b1(t), b2(t), · · · bn(t)) is the unknown and time-
varying control gainmatrix of the system, andF (·) = (f1(·), f2(·), · · · fn(·))T ∈ Rn

can be treated as the lumped bounded disturbances. U = (u1, u2, · · · un)T ∈ Rn

presents the derivation of control vector of the wind energy conversion systems.

Remark 1: For a WT, Kai(λi) is a single peak and bounded continuous func-
tion of λi. Also note that since ωri > 0, it holds that min{eig(B(t))} > 0 and
‖B(t)‖ is bounded as long as ωri is bounded as seen clearly from the definition
of bi(t).

2.4 Reconstructing the Unknown Power Trajectory

The desired power set points from the load side is very difficult, if not impossible,
to be obtained in advance, which has been widely overlooked in the literature.
Now we address this issue. As a first step, we reconstruct the unknown desired
power trajectory P ∗ using Pd estimated power curve [9] via

⎧
⎨

⎩

Pd(t) = d0(·)P ∗(t) + εd0(·)
0 < d0 ≤ ‖d0(·)‖ ≤ d0 < ∞
‖εd0(·)‖ ≤ εd

0 < ∞
(8)

where Pd(t) = (Pd1(t), Pd2(t), · · · Pdn(t))T ∈ Rn is the estimation of the power
target trajectory P ∗(t) = (P ∗

1 (t), P ∗
2 (t), · · · P ∗

n(t))T ∈ Rn, d0(t) ∈ Rn×n is an
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unknown and time-varying diagonal matrix and εd0 ∈ Rn is the estimation
error. Here, d0, d0, εd

0 are some unknown positive constants. Similarly,
⎧
⎨

⎩

Ṗd(t) = d1(·)Ṗ ∗(t) + εd1(·)
0 < d1 ≤ ‖d1(·)‖ ≤ d1 < ∞
‖εd1(·)‖ ≤ εd

1 < ∞
(9)

where d1(t) ∈ Rn×n is an unknown and time-varying diagonal matrix and εd1 ∈
Rn is the estimation error. Here, d1, d1, εd

1 are some unknown positive constants.
In this paper, we define e = P − P ∗ ∈ Rn as the output tracking error, the

control objective is to desire adaptive tracking controller for wind system, such
that the actual P closely follows the desired trajectory P*. However the precise
P* is not available for control design, most existing ways are invalid, calling for
more dedicated approach for control design.

For later technical development, the following assumption is required:

Assumption: The desired target trajectory P ∗ and Ṗ ∗ are uncertain yet
bounded, and the estimation of the target state Pd and Ṗd are available for
control design.

To facilitate the design, em = P − Pd ∈ Rn is defined, in which em is com-
putable error. Now, we establish the relation between e and em, ė and ėm. First,
it is straightforward to derive

em = P − Pd = P − P ∗ + P ∗ − Pd

= e + P ∗ − d0(t)P ∗ − εd0(t)
= e + (I − d0(t)) P ∗ − εd0 = e + δ1

(10)

with
δ1 = (I − d0(t)) P ∗ − εd0. (11)

Similarly, it holds that

ėm = Ṗ − Ṗd = Ṗ − Ṗ ∗ + Ṗ ∗ − Ṗd

= ė + Ṗ ∗ − d1(t)Ṗ ∗ − εd1(t)
= ė + (I − d1(t)) Ṗ ∗ − εd1 = e + δ2

(12)

with
δ2 = (I − d1(t)) Ṗ ∗ − εd1. (13)

Remark 2: In view of Assumption and according to (8), (9), (11) and (13), it
holds that δ1 and δ2 are bounded. Hence, from (10), we can see that if em ∈ �∞
then e ∈ �∞.

Now we reexpress (12) as

ėm = ė + δ2 = Ṗ − Ṗ ∗ + δ2
= B(·)U + F (·) − Ṗ ∗ + δ2

(14)
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Note that in (14), B(·) and F (·) are all quite complex and time varying,
meanwhile, uncertain desired power demand is involved. Here in this work, we
exploit a neural-adaptive proportional control scheme to deal with this prob-
lem with no need the specific information on system model and parameters, as
detailed in the next section.

3 Control Design and Stability Analysis

Note that matrix B(·) is time-dependent but positive definite, and then there
exists an unknown positive constant b0 satisfying

0 < b0 ≤ min {eig (B(·))} (15)

From (14), we have

ėm = B(·)U + F (·) − Ṗ ∗ + δ2 = B(·)U + Q(·) (16)

in which

Q(·) = F (·) − Ṗ ∗ + δ2 ≤ ‖F (·)‖ +
∥
∥
∥Ṗ ∗

∥
∥
∥ + ‖δ2‖ = φ(P, Ṗ ∗) (17)

As we can see that φ(·) contains significant nonlinearities and uncertainties.
Since NN has been proven effective in approximating unknown nonlinear function
in compact set with given precision [1,3]. Hence, we reconstruct φ(·) via a NN
estimator as

φ(·) = W ∗TS(z) + η(z) (18)

where W ∗ ∈ RL is the weight vector and η(z) is the NN approximation error,
where |η(z)| < ηN < ∞. Here, ηN is some unknown constant. S(z) ∈ RL is the

basic function with z =
n∑

i=1

(|Pi| +
∣
∣
∣Ṗdi

∣
∣
∣) being the actual training signal to the

NN. Then

φ(·) = W ∗TS(z) + η(z) ≤ ‖W ∗‖ · ‖S(z)‖ + ηN ≤ aΦ(z) (19)

where Φ(z) = ‖S(z)‖ + 1, a = max{‖W ∗‖ , ηN}.
The corresponding control strategy turns out to be simpler since the required

computation cost is relatively inexpensive and it is of the following P structure,

U = − (kP1 + ΔkP1(·)) em (20)

where (ΔkP1(·)) is time varying, and is updated adaptively by

ΔkP1(·) = c1âΦ2(z) (21)

Further, the adaptive law for â to approximate its actual value a is given as

˙̂a = −γâ + c1Φ
2(z)‖em‖2 (22)

where kP1, c1 and γ are positive parameters chosen by the designer. Now we are
ready to present the following result on the stability of the proposed P control
for the power system:
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Theorem: Consider the nonlinear system (6) with the error dynamics defined
by (14). If the control algorithm specified in (20) is implemented, the tracking
error e is ensured to be ultimately uniformly bounded (UUB).

Proof: To show the stability, we define ã = a − b0â, and integrate it into the
following Lyapunov function candidate

V =
1
2
em

Tem +
1

2b0
ã2 (23)

Considering (16) and (19), and differentiating V yields:

V̇ = em
Tėm − ˙̂aã

= em
T (B(·)U + Q(·)) − ˙̂aã

= em
TB(·)U + em

TQ(·) − ˙̂aã

≤ em
TB(·)U + ‖em‖ ‖Q(·)‖ − ˙̂aã

≤ em
TB(·)U + ‖em‖ aΦ(·) − ˙̂aã

(24)

Taking into account U derived in (20) and B(·) as fore-mentioned, (24)
becomes

V̇ ≤ aΦ(z) ‖em‖ − (kP1 + ΔkP1(·)) b0‖em‖2 − ã ˙̂a (25)

Using Young’s inequality and Inserting ΔkP1(·) and ˙̂a given in (21) and (22)
respectively, one immediately gets that for any c1 > 0,

V̇ ≤ a(c1Φ2(z)‖em‖2 + 1
4c1

) − (
kP1 + c1âΦ2(z)

)

b0‖em‖2 − ã(−γâ + c1Φ
2(z)‖em‖2) (26)

Note that
ãâ =

1
b0

(aã − ã2) ≤ 1
2b0

(a2 − ã2) (27)

Then, (26) can be reexpressed as

V̇ ≤ ac1Φ
2(z)‖em‖2 + a

4c1
− kP1b0‖em‖2

−c1âΦ2(z)b0‖em‖2 + γãâ − c1ãΦ2(z)‖em‖2
≤ −kP1b0‖em‖2 − γ

2b0
ã2 + γ

2b0
a2 + a

4c1≤ −Λ1V + Θ1

(28)

with Λ1 = min (2kP1b0, γ), Θ1 = γ
2b0

a2 + a
4c1

being some constants. Clearly (33)
implies that V ∈ �∞, thus ã ∈ �∞ (also â) and em ∈ �∞, then e ∈ �∞, ˙̂a ∈ �∞,
and U ∈ �∞.

Remark 3: As reflected in the error residual set Θ1, the developed neora-
adaptive algorithm offers the obvious recipe for improving the control precision
by enlarging kP1 and c1 and reducing γ properly.

Remark 4: An analytical model linking the desired power curve with the esti-
mated power trajectory is established, and a neuroadaptive proportional control
scheme is developed to ensure stable power tracking, which is simple in structure
and inexpensive in computation.



Neural Network Based Power Tracking Control of Wind Farm 59

Remark 5: It is worth noting that the proportional gain in the strategy is
tuned automatically using the proposed algorithm without the need for human
interference.

4 Conclusion

This work explicitly addressed the power tracking problem in wind farms in the
presence of uncertain dynamics and unknown power target trajectory. A low-cost
neuroadative tracking control scheme with no need for precise target trajectory
is developed. The proposed method allows P gains to tune adaptively, avoiding
the trail and error process.

References

1. Meng, W.C., Yang, Q.M., Ying, Y., Sun, Y., Yang, Z.Y., Sun, Y.X.: Adaptive power
capture control of variable-speed wind energy conversion systems with guaranteed
transient and steady-state performance. IEEE Trans. Energy Convers. 28(3), 716–
725 (2013)

2. Liu, F.: Stabilization of switched linear system with bounded disturbances and unob-
servable switchings. Sci. China Ser. F Inf. Sci. 50(5), 711–718 (2007)

3. Song, Y.D., Dhinakaran, B., Bao, X.Y.: Variable speed control of wind turbines
using nonlinear and adaptive algorithms. J. Wind Eng. Ind. Aerodyn. 85(3), 293–
308 (2000)

4. Beltran, B., Ahmed-Ali, T., Benbouzid, M.: High-order sliding mode control of
variable-speed wind turbines. IEEE Trans. Ind. Electron. 56(9), 3314–3321 (2009)

5. She, Y., She, X., Baran, M.: Universal tracking control of wind conversion system for
purpose of maximum power acquisition under hierarchical control structure. IEEE
Trans. Energy Convers. 26(3), 766–775 (2011)

6. Ge, S.S., Lee, T.H., Wang, J.: Adaptive control of non-affine nonlinear systems using
neural networks. Proc. IEEE Int. Symp. Intell. Control 180(17), 13–18 (2000)

7. Battilotti, S., De Santis, A.: Robust output feedback control of nonlinear stochastic
systems using neural networks. IEEE Trans. Neural Netw. Learn. Syst. 14(1), 103–
116 (2003)

8. MohammadZadeh, S., Masoumi, A.A.: Modeling residential electricity demand using
neural network and econometrics approaches. In: International Conference on CIE,
pp. 1–6 (2010)

9. Song, Y.D., Zhang, B.B., Zhao, K.: Neuroadaptive control of unknown MIMO
systems tracking uncertain target under sensor failures. Automation (2016, under
review)



A Generalized Policy Iteration Adaptive
Dynamic Programming Algorithm for Optimal
Control of Discrete-Time Nonlinear Systems

with Actuator Saturation

Qiao Lin, Qinglai Wei(B), and Bo Zhao

University of Chinese Academy of Sciences, Beijing 100190, China
{linqiao2014,qinglai.wei,zhaobo}@ia.ac.cn

Abstract. In this study, a nonquadratic performance function is intro-
duced to overcome the saturation nonlinearity in actuators. Then a novel
solution, generalized policy iteration adaptive dynamic programming
algorithm, is applied to deal with the problem of optimal control. To
achieve this goal, we use two neural networks to approximate control
vectors and performance index function. Finally, this paper focuses on
an example simulated on Matlab, which verifies the excellent convergence
of the mentioned algorithm and feasibility of this scheme.

Keywords: Adaptive dynamic programming · Neural network ·
Optimal control · Saturating actuators

1 Introduction

In the control field, saturation nonlinearity of the actuators is universal phe-
nomenon. So optimizing control of systems in which actuators have problem
of saturating nonlinearity, is a major and increasing concern [1,2]. However,
these traditional methods were proposed without considering the optimal control
problem. In order to overcome this shortcoming, Lewis et al. [3] used adaptive
dynamic programming (ADP) algorithm. The ADP algorithm [4–6], an effec-
tive brain-like method, which can give the solution to Hamilton-Jacobi-Bellman
(HJB) equation forward-in-time, provides an important way of obtaining policy
of optimizing control. The value and policy iteration algorithms [7,8] are key
of the ADP algorithms. Considering the superiority of ADP algorithm, growing
researchers chose ADP algorithm in terms of optimal control. Zhang et al. [9]
used greedy ADP algorithm to design the infinite-time optimal tracking con-
troller. Qiao et al. [10] applied ADP algorithm to a large wind farm and a
STATCOM, with focusing on Coordinated reactive power control. Liu et al. [11]
developed an optimizing controller for some systems which were discrete-time
nonlinear and had control constraints by DHP. As mentioned in [12], ADP algo-
rithm is also suitable for time-delay systems with the same saturation challenge

c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part II, LNCS 10262, pp. 60–65, 2017.
DOI: 10.1007/978-3-319-59081-3 8
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as above. However, in order to realize constrained optimal control, there is still
no research using the generalized policy iteration ADP algorithm.

This paper focuses on the generalized policy iteration ADP algorithm. The
present algorithm has i-iteration and j-iteration. When j is equal to zero, the
proposed algorithm will be a value iteration algorithm, while becoming a policy
iteration algorithm when j approaches the infinity. Firstly, the nonquadratic per-
formance function is introduced to overcome the saturation nonlinearity. Then,
the process of the generalized policy iteration algorithm is given. Lastly, the
simulation results verify the efficiency of the developed method.

2 Problem Statement

We will study the following discrete-time nonlinear systems:

xk+1 = F (xk, uk)
= f(xk) + g(xk)uk (1)

where uk ∈ R
m is control vector, xk ∈ R

n is the state vector, f(xk) ∈ R
n

and g(xk) ∈ R
n×m are system functions. We denote Ωu = {uk|uk =

[u1k, u2k, . . . , umk]
T ∈ R

m, |uik| ≤ ui, i = 1, 2, . . . ,m}, where ui can be regarded
as the saturating bound. Let U = diag[u1, u2, . . . , um].

The generalized nonquadratic performance index function is J(xk, uk) =
∞∑

i=k

{
xT
i Qxi + W (ui)

}
, where uk = {uk, uk+1, uk+2, . . .}, the weight matrix Q

and W (ui) ∈ R are positive definite.
Inspired by the paper [3], we can introduced W (ui) = 2

∫ ui

0
Λ−T(U

−1
s)URds,

where R is positive definite, s ∈ R
m, Λ ∈ R

m, Λ−T denotes (Λ−1)T, and Λ(·)
can choose tanh(·).

Then we can use J∗(xk) = min
uk

J(xk, uk) to stand for the optimal perfor-

mance index function and use u∗
k to be the optimal control vector. So from

the principle of discrete-time Bellman’s optimality, we can obtain the optimal
performance index function as

J∗(xk) = min
uk

{

xT
kQxk + 2

∫ uk

0

Λ−T(U
−1

s)URds + J∗(xk+1))
}

. (2)

And we can use the following equation to stand for the optimal control vector:

u∗
k = arg min

uk

{

xT
kQxk + 2

∫ uk

0

Λ−T(U
−1

s)URds + J∗(xk+1)
}

. (3)

The goal of this paper is to get the optimal control vector u∗
k and the optimal

performance index function J∗(xk).
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3 Derivation of the Generalized Policy Iteration ADP
Algorithm

From [16], it’s known that the traditional ADP algorithm just have one iter-
ation procedure. However, the generalized policy iteration ADP algorithm has
i-iteration and j-iteration. Specially, for i-iteration, the generalized policy iter-
ation ADP algorithm doesn’t need to solve the HJB equation, which speed the
convergence rate of the developed ADP algorithm.

According to [17], if a control vector can stabilize the system (1) and make
the performance index function finite at the same time, it can be concluded that
the control vector is admissible.

Next, we will get that the control vector and cost function of the developed
generalized policy iteration ADP algorithm are updated in each iteration. First,
the cost function V0(xk) can be initialed as follows:

V0(xk) = xT
kQxk + 2

∫ v0(xk)

0

Λ−T(U
−1

s)URds + V0(F (xk, v0(xk)), (4)

where the v0(xk) is an initial admissible control vector. Then, for i = 1, the
control vector v1(xk) can be gained by:

v1(xk) = arg min
uk

{

xT
kQxk + 2

∫ uk

0

Λ−T(U
−1

s)URds + V0(F (xk, uk))
}

. (5)

Then, we will introduced the second iteration procedure. Define an arbitrary non-
negative integer sequence, that is {L1, L2, L3, . . .}. L1 is the upper boundary of
j1. When j1 increases from 0 to L1, we can have the iterative cost function by

V1,j1+1(xk) = xT
kQxk + 2

∫ v1(xk)

0

Λ−T(U
−1

s)URds + V1,j1(F (xk, v1(xk))), (6)

where

V1,0(xk) = xT
kQxk + 2

∫ v1(xk)

0

Λ−T(U
−1

s)URds + V0(F (xk, v1(xk))). (7)

In the second iteration, the cost function changes to be V1(xk) = V1,L1(xk).
For i = 2, 3, 4, . . ., the control vector and cost function of the developed ADP
algorithm are updated by:

(1) i-iteration

vi(xk) = argmin
uk

{
xT
kQxk + 2

∫ uk

0

Λ−T(U
−1

s)URds + Vi−1(F (xk, uk))

}
, (8)

(2) j-iteration

Vi,ji+1(xk) = xT
kQxk + 2

∫ vi(xk)

0

Λ−T(U
−1

s)URds + Vi,ji(F (xk, vi(xk))), (9)
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where ji = 0, 1, 2, . . . , Li,

Vi,0(xk) = xT
kQxk + 2

∫ vi(k)

0

Λ−T(U
−1

s)URds + Vi−1(F (xk, vi(xk))) (10)

and we can get the iterative cost function by

Vi(xk) = Vi,Li
(xk). (11)

From (4)–(11), we make use of Vi,ji(xk) to approximate J∗(xk) and vi(xk)
to approximate u∗

k. In the following, an example is applied to illustrate the
convergence and feasibility of the presented ADP algorithm.

4 Simulation Example

The following nonlinear system is mass-spring system:

x(k + 1) = f(xk) + g(xk)u(k), (12)

where

xk =
[
x1k

x2k

]

,

f(xk) =
[

x1k + 0.05x2k

−0.0005x1k − 0.0335x3
1k + x2k

]

,

g(xk) =
[

0
0.05

]

,

and the system is controlled with control constraint of |u| ≤ 0.6. The cost func-
tion is defined by

J(xk) =
∞∑

i=k

{

xT
i Qxi + 2

∫ ui

0

tanh−T(U
−1

s)URds

}

,

where Q =
[

1 0
0 1

]

, R = 0.5, U = 0.6.

The developed iteration ADP algorithm is implemented by NNs. The hidden
layers of the critic network and action network both are 10 neurons. For each
iteration step, we train the networks for 4000 training steps so as to make the
training error become minimum. The learning rate of the above two networks
both are 0.01.

From Fig. 1(a) and (b), we can get the convergent process of the cost function
Vi,ji(xk) and the subsequence Vi(xk). Next, we use the optimal control vectors
to control the system (12) with the initial state x(0) = [1,−1]T for 200 time
steps. Figure 1(c) and (d) display the changing curves of the state x and the
control u. The effective of the presented ADP algorithm in handling optimal
control problem for discrete-time nonlinear systems with actuator saturation is
verified through the simulation results.
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Fig. 1. Simulation results (a) Convergence of Vi,ji (b) Convergence of Vi (c) State
trajectories (d) Control vectors

5 Conclusion

In this paper, a novel ADP algorithm is chosen to treat the optimal control
problem for discrete-time nonlinear systems with control constraint. One exam-
ple demonstrates the convergence and feasibility of the presented iteration ADP
algorithm. Since the time-delay problem is another hot topic in the control field,
it’s significant to use the developed ADP algorithm to handle the time-delay
systems in the future.
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Abstract. In this paper, the stability of neutral T-S fuzzy neural
networks with impulses is considered. By extending a singular impul-
sive differential inequality to the fuzzy version, some new criteria are
established for the exponential stability of network under consideration.
The results obtained improve some related works in previous literature.
A numerical example is given to illustrate the effectiveness of the theo-
retical methods.

Keywords: Fuzzy neural network · Exponential stability · Impulse ·
Neutral delays

1 Introduction

The neural network has become the focus of research over the last decades
because of its wide applications in many areas such as associative memory, pat-
tern classification, and optimization. Due to the finite speed of switching of
neuron amplifiers and signal propagation, time delays are unavoidable and may
lead to some more complicated dynamic behaviors including oscillation, diver-
gence, chaos, instability and so on. In particular, many practical systems are
modeled as the delayed differential systems of neutral type, which depend on
not only the derivative term of the current state but also the derivative term of
the past state. In recent years, a great deal of research interest has been focused
on the stability of neural networks with neutral delays [1–4].

In real world, impulsive phenomena are encountered in many fields such as
biological neural networks, bursting rhythm models and optimal control models,
etc. [5]. Therefore, it is of prime importance to consider both impulses and
delays on the dynamical behaviors of the system. There have been many papers
to consider dynamic behaviors of the differential systems with both impulses and
delays [6,7].

T-S fuzzy systems are nonlinear systems described by a set of IF-THEN
rules. Some nonlinear dynamical systems can be approximated by the overall
fuzzy linear T-S model for the purpose of stability analysis [8]. The stability
c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part II, LNCS 10262, pp. 66–74, 2017.
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analysis of T-S fuzzy neural networks with delays has been widely considered
[9–15]. To the best of authors’ knowledge, the exponential stability of neutral
T-S fuzzy neural networks with impulses has not been fully investigated, which
is very challenging and remains as an open issue.

Motivated by the above discussion, we will investigate the exponential sta-
bility of neutral T-S fuzzy neural networks with impulses. By using the property
of M-matrix and fuzzy logic method, we extend the inequality in [3] to a new
fuzzy version which enables us to study the exponential stability of the network
under consideration. The results obtained in this paper improve some related
results in literature. An example is given to illustrate the effectiveness of the
theoretical results.

2 Model Description and Preliminaries

Let Rn be the space of n-dimensional real column vectors, N Δ=
{1, 2, . . . , n}, N

Δ= {1, 2, . . .}, and Rm×n denote the set of m × n real matri-
ces. For A, B ∈ Rm×n or A, B ∈ Rn, the notation A ≤ B means that each pair of
corresponding elements of A and B satisfies the inequality “ ≤ ”. E denotes the
identity matrix with compatible dimension. Let C[X,Y] be the space of contin-
uous mappings from the space X to the space Y. PC[I,Rn] = {ψ : I → Rn|ψ(s)
is continuous for all but at most countable points s ∈ I and at these points
s ∈ I, ψ(s+) and ψ(s−) exist and ψ(s) = ψ(s+)}. PC1[I,Rn] = {ψ :
I → Rn|ψ(s) is continuous differentiable for all but at most countable points
s ∈ I and at these points s ∈ I, ψ(s+), ψ(s−), ψ′(s+) and ψ′(s−) exist and
ψ(s) = ψ(s+), ψ′(s) = ψ′(s+)}. Here, I ⊂ R is an interval, ψ(s+) and ψ(s−)
denote the right-hand and left-hand limits of the function ψ(s) at time s, respec-
tively, ψ′(s) denotes the derivative of the function ψ(s). In particular, we denote
C Δ= C[[−τ, 0], Rn], PC Δ= PC[[−τ, 0], Rn] and PC1 Δ= PC1[[−τ, 0], Rn].

For x ∈ Rn, A, B ∈ Rn×n, ϕ ∈ PC[I, Rn], we define

[x]+ = (|x1|, . . . , |xn|)T , [A]+ = (|aij |)n×n, A ◦ B = (aijbij)n×n

[ϕ(t)]+τ = (|ϕ1(t)|τ , . . . , |ϕn(t)|τ )T , |ϕi(t)|τ = sup
−τ≤s≤0

|ϕi(t + s)|, i ∈ N .

Let D+ϕ(t) be the upper-right-hand derivative of ϕ(t) at time t. For ϕ ∈ PC1

and ψ ∈ PC1, we introduce the following norms ‖ϕ‖τ = max
1≤i≤n

{ max
−τ≤s≤0

|ϕi(s)|},

‖ψ‖1τ = max
1≤i≤n

{ max
−τ≤s≤0

|ψi(s)|, max
−τ≤s≤0

|ψ′
i(s)|}. For an M-matrix D, we denote

ΩM(D) Δ= {z ∈ Rn|Dz > 0, z > 0}.
In this paper, we consider the following neutral T-S fuzzy neural networks

with impulses
Plant Rule l.
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IF θ1(t) is ηl
1 and · · · and θp(t) is ηl

p, THEN
⎧
⎪⎪⎨

⎪⎪⎩

dx(t)
dt = −Dlx(t) + (Al ◦ F (x(t)))en + (Bl ◦ G(x(t − τ(t))))en

+(Cl ◦ H(x′(t − r(t))))en, t ≥ t0, t 	= tk,
x(tk) = Ik(x(t−k )), t = tk,
x(t0 + s) = φ(s), −τ ≤ s ≤ 0,

(1)

where x(t) = (x1(t), · · · , xn(t))T is the state vector associated with the neu-
rons, en = (1, 1, . . . , 1)T . For any l = 1, . . . , r, ηl

s(s = 1, . . . , p) is the fuzzy set,
θ(t) = (θ1(t), . . . , θp(t))T is the premise variable vector, r is the number of fuzzy
IF-THEN rules. Dl = diag{dl

1, . . . , d
l
n} with dl

i > 0(i = 1, . . . , n, l = 1, . . . , r),
Al = (al

ij)n×n , Bl = (bl
ij)n×n, Cl = (cl

ij)n×n (l = 1, . . . , r) are the connec-
tion weight matrices. F (x(t)) = (fij(xj(t)))n×n, G(x(t − τ(t))) = (gij(xj(t −
τij(t))))n×n, H(x′(t − r(t))) = (hij(x′

j(t − rij(t))))n×n are activation functions.
For some constant τ > 0, the time-varying delays τij(t), rij(t) satisfy that
0 ≤ τij(t) ≤ τ, 0 < rij(t) ≤ τ for i, j ∈ N . φ(s) = (φ1(s), φ2(s), . . . , φn(s))T ∈
PC1 is the initial function vector. Ik = (I1k, . . . , Ink)T ∈ C[Rn, Rn] represents
the the impulsive function. The fixed impulsive moments tk (k ∈ N) satisfy
t0 < t1 < t2 < · · · and lim

k→∞
tk = ∞.

The defuzzified output of neural network (1) is represented as follows:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dx(t)
dt =

r∑

l=1

hl(θ(t)) × [−Dlx(t) + (Al ◦ F (x(t)))en

+(Bl ◦ G(x(t − τ(t))))en + (Cl ◦ H(x′(t − r(t))))en], t 	= tk,
x(tk) = Ik(x(t−k )), t = tk,
x(t0 + s) = φ(s), −τ ≤ s ≤ 0,

(2)

where hl(θ(t)) = νl(θ(t))
r∑

l=1
νl(θ(t))

, νl(θ(t)) =
p∏

s=1
ηl

s(θs(t)).

The following definition will be used in later discussion.

Definition 1. [3] The zero solution of (2) is said to be globally exponentially
stable if there are constants λ > 0 and M ≥ 1 such that for any solution x(t, t0, φ)
with the initial functions φ ∈ PC1

‖x(t, t0, φ)‖1τ ≤ M‖φ‖1τe−λ(t−t0), t ≥ t0.

Let y(t) = x′(t), then neural network (2) can be transformed to the following
2n-dimensional singular T-S fuzzy delayed neural network with impulses

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t)
dt =

r∑

l=1

hl(θ(t)) × [−Dlx(t) + (Al ◦ F (x(t)))en

+(Bl ◦ G(x(t − τ(t))))en + (Cl ◦ H(y(t − r(t))))en],

0 =
r∑

l=1

hl(θ(t)) × [−y(t) − Dlx(t) + (Al ◦ F (x(t)))en

+(Bl ◦ G(x(t − τ(t))))en + (Cl ◦ H(y(t − r(t))))en], t 	= tk,
x(tk) = Ik(x(t−k )), y(tk) = y(t+k ), t = tk,
x(t0 + s) = φ(s), y(t0 + s) = φ′(s), −τ ≤ s ≤ 0.

(3)
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It is clear to conclude that the global exponential stability of the zero solution
of the network (2) is evidently equivalent to the global exponential stability of
the zero solution of the network (3).

3 Main Results

Theorem 1. Let u(t) = (u1(t), . . . , ur(t))T ≥ 0 be a solution of the following
fuzzy singular delay differential inequality

⎧
⎨

⎩

KD+u(t) ≤
m∑

l=1

el(t)[Plu(t) + Ql[u(t)]τ ], t ∈ [σ, b),

u(s) ∈ PC[[σ − τ, σ], Rr
+],

(4)

where σ < b ≤ +∞, ui(t) ∈ C[[σ, b), R+] for i ∈ S ⊂ N ∗ Δ= {1, . . . , r}, ui(t) ∈
PC[[σ, b), R+] for i ∈ S∗ Δ= N ∗ − S and

(P1) K = diag{k1, . . . , kr} satisfies ki > 0, i ∈ S and ki = 0, i ∈ S∗.

(P2) Πl = −(Pl+Ql) are M−matrices for l = 1, . . . , m and
m⋂

l=1

ΩM(Πl) is non-

empty, where Ql = (ql
ij)r×r ≥ 0, Pl = (pl

ij)r×r satisfy pl
ij ≥ 0, i 	= j, i, j ∈ N ∗,

el(t) satisfy el(t) ≥ 0 and
m∑

l=1

el(t) = 1 for all t ∈ [σ, b).

Then we have
u(t) ≤ ze−λ(t−σ), t ∈ [σ, b), (5)

provided that the initial function satisfies

u(s) ≤ ze−λ(s−σ), σ − τ ≤ s ≤ σ, (6)

in which λ > 0 and z = (z1, . . . , zr)T ∈
m⋂

l=1

ΩM(Πl) satisfy that for l = 1, . . . , m

(
λK + Pl + Qle

λτ
)
z ≤ 0 (7)

Proof. The proof is similar to that of [3]. So we omit it here.

In order to study the stability issue, we further introduce the following
assumptions.

(H1) There exist nonnegative constants uij , vij and wij such that

|fij(z)| ≤ uij |z|, |gij(z)| ≤ vij |z|, |hij(z)| ≤ wij |z|, i, j ∈ N , z ∈ R.

(H2) Let Π̂l = −(P̂l + Q̂l) (l = 1, . . . , r) be M−matrices, where

P̂l =
(−Dl + [Al]+ ◦ U 0

Dl + [Al]+ ◦ U −E

)
Δ= (p̂l

ij)2n×2n ∈ R2n×2n,
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Q̂l =
(

[Bl]+ ◦ V [Cl]+ ◦ W
[Bl]+ ◦ V [Cl]+ ◦ W

)
Δ= (q̂l

ij)2n×2n ∈ R2n×2n,

with U = (uij)n×n, V = (vij)n×n, W = (wij)n×n.

(H3) There exist nonnegative matrices Rk = (r(k)ij )n×n such that

[Ik(x)]+ ≤ Rk[x]+, x ∈ Rn, k ∈ N.

(H4) The set Ω =
r⋂

l=1

ΩM(Π̂l) is nonempty (i.e., Ω 	= ∅), for a given z =

(z1, . . . , z2n)T ∈ Ω, the scalar λ > 0 satisfies

(λK̂ + P̂l + Q̂le
λτ )z < 0 (l = 1, . . . , r), (8)

where

K̂ =
(

E 0
0 0

)
Δ= diag{k̂1, . . . , k̂2n}. (9)

(H5) Let z = (zT
x , zT

y )T , zx = (z1, . . . , zn)T , zy = (zn+1, . . . , z2n)T . There
exists a constant γ such that

lnγk

tk − tk−1
≤ γ < λ, k ∈ N, (10)

where γk ≥ 1 and Rkzx ≤ γkzx, k ∈ N.

Theorem 2. Assume that (H1) − (H5) hold. Then the zero solution of the
neural network (3) is globally exponentially stable in PC with the exponentially
convergent rate λ − γ.

Proof. By calculating the upper-right-hand derivative D+[x(t)]+ along the solu-
tion of (3), we get for t ∈ (tk−1, tk), k ∈ N

D+[x(t)]+ ≤
r∑

l=1

hl(θ(t)){(−Dl + [Al]+ ◦ U)[x(t)]+

+([Bl]+ ◦ V )[x(t)]+τ + ([Cl]+ ◦ W )[y(t)]+τ }. (11)

From the second formula in (3) and (H1), we have

|yi(t)| ≤
r∑

l=1

hl(θ(t))

⎡

⎣dl
i|xi(t)| +

n∑

j=1

|al
ij |uij |xj(t)|

+
n∑

j=1

|bl
ij |vij |xj(t − τij(t))| +

n∑

j=1

|cl
ij |wij |yj(t − rij(t))|

⎤

⎦ , (12)
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which implies that

0 ≤
r∑

l=1

hl(θ(t)){−[y(t)]+ + (Dl + [Al]+ ◦ U)[x(t)]+

+([Bl]+ ◦ V )[x(t)]+τ + ([Cl]+ ◦ W )[y(t)]+τ }, t ∈ (tk−1, tk), k ∈ N. (13)

Let
u(t) = (xT (t), yT (t))T ∈ R2n. (14)

Then from (9), (11), (13), (14) and (H2), we get

K̂D+[u(t)]+ ≤
r∑

l=1

hl(θ(t))
{

P̂l[u(t)]+ + Q̂l[u(t)]+τ
}

, t ∈ (tk−1, tk). (15)

Let N ∗ = {1, . . . , 2n}, S = {1, . . . , n} = N and S∗ = N ∗ − S = {n + 1, . . . , 2n}.
Then we get

k̂i > 0, i ∈ S and k̂i = 0, i ∈ S∗, Q̂ = (q̂ij)2n×2n ≥ 0,

p̂ij ≥ 0, i 	= j and p̂ij = 0, i 	= j, i ∈ N ∗, j ∈ S∗,

ui(t) = xi(t) ∈ C[[tk−1, tk), R], i ∈ S, k ∈ N,

ui(t) = yi−n(t) ∈ PC[[tk−1, tk), R], i ∈ S∗, k ∈ N.

Combining (15) with the initial condition, it follows from Theorem 1 that

[u(t)]+ ≤ z‖φ‖1τe−λ(t−t0), t0 ≤ t < t1. (16)

Suppose that for all m = 1, 2, . . . , k the inequalities

[u(t)]+ ≤ γ0γ1 · · · γm−1z‖φ‖1τe−λ(t−t0), tm−1 ≤ t < tm. (17)

hold, where γ0 = 1.
It is easy to conclude that

[u(tk)]+ ≤ γ0 · · · γk−1γkz‖φ‖1τe−λ(tk−t0). (18)

Let
z̃ = (z̃1, . . . , z̃2n)T = γ0 · · · γk−1γk‖φ‖1τe−λ(tk−t0)z.

Then, by the property of ΩM(Π̂l), we get the vector z̃ ∈ Ω. Thus, one has

[u(t)]+ ≤ z̃e−λ(t−tk), t ∈ [tk − τ, tk]. (19)

Therefore, from (H2), (8), (19) and Theorem 1, we get

[u(t)]+ ≤ z̃e−λ(t−tk) = γ0 · · · γk−1γk‖φ‖1τze−λ(t−t0), t ∈ [tk, tk+1), (20)
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Applying induction gives that

[u(t)]+ ≤ eγ(t1−t0) · · · eγ(tk−1−tk−2)‖φ‖1τze−λ(t−t0)

= ‖φ‖1τze−(λ−γ)(t−t0), ∀ t ∈ [t0, tk), k ∈ N, (21)

which means
[u(t)]+ ≤ ‖φ‖1τze−(λ−γ)(t−t0), t ≥ t0.

The proof is completed.

Remark. In particular, when r = 1 in Theorem 2, we get the main results
in [3]. Furthermore, Theorem 2 has a wider range of applications than those
results in [1,4,9,11,15] due to the simultaneous presence of the fuzzy factor, the
impulses and the neutral delay. In addition, Theorem2 removes the monotonicity
of active functions and the boundedness of the derivative of the delay which
usually required in previous literature [1,9,11].

4 Numerical Example

Example. Consider the neutral T-S fuzzy neural network with impulses as
follows:

Plant Rules
Rule 1: IF {θ1(t) is η1}, THEN
{

x′
1(t) = −5x1(t) + 1

2 sin x2(t) + sin x2(t − τ12(t) + 1
4x′

1(t − r11(t))
x′
2(t) = −6x2(t) − 1

3 sin x1(t) + x1(t − τ21(t)) + 1
4x′

2(t − r22(t))
(22)

Rule 2: IF {θ2(t) is η2}, THEN
{

x′
1(t) = −6x1(t) − sin x2(t) + x1(t − τ11(t) + 1

5x′
2(t − r12(t))

x′
2(t) = −5x2(t) + sinx1(t) + x2(t − τ22(t)) − 1

5x′
1(t − r21(t))

(23)

for t 	= tk, with the membership functions for Rule 1 and Rule 2 are η1 =
1

e−2θ1(t) , η2 = 1 − η1. When t = tk, the impulses
{

x1(tk) = α1kx1(t−k ) + β1kx2(t−k )
x2(tk) = −β2kx1(t−k ) + α2kx2(t−k )

, t = tk, (24)

where α1k = 2
5e0.1k, β1k = 3

5e0.1k, α2k = 3
4e0.1k, β2k = 1

4e0.1k and tk−tk−1 = 2k,

τij(t) = 1
2 | sin(i + j)t| ≤ 1

2

Δ= τ, rij(t) = 1
2 − 1

3 | cos(i + j)t| for i, j = 1, 2,.
We calculate that Π̂1 and Π̂2 are nonsingular M-matrix. By choosing z =

(1, 1, 12, 10)T ∈ ΩM(Π̂1)
⋂

ΩM(Π̂2), zx = (1, 1)T and λ = 0.095, we get the
inequalities

(λK̂ + P̂1 + Q̂1e
λτ )z = (−0.2259, −1.9156,−2.3159,−0.0056)T < (0, 0, 0, 0)T ,

(λK̂ + P̂2 + Q̂2e
λτ )z = (−1.7719, −0.3535,−1.8619,−0.4435)T < (0, 0, 0, 0)T .
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Let γk = max{α1k + β1k, α2k + β2k}, then we derive

γk = e0.1k ≥ 1 and
lnγk

tk − tk−1
=

lne0.1k

2k
= 0.05 = γ < λ = 0.095.

By following from Theorem 2, we deduce that the zero solution is globally expo-
nentially stable with the exponential convergence rate 0.045. The simulation
result is presented in Fig. 1.
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Fig. 1. The simulation result for example
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Abstract. Neural networks (NN) are applied to the tracking control of
a three-link manipulator attached to an autonomous underwater vehicle
(AUV). Lyapunov design is employed to obtain the NN based robust
controller. The interaction between the AUV and the manipulator is
considered. Nonlinearity in the plant is compensated by NN based iden-
tification. To illustrate the validity of the proposed controller, numeri-
cal simulation is performed and the comparison between the NN based
controller and a conventional proportional-derivative (PD) controller is
conducted.

Keywords: Underwater vehicle-manipulator system · Neural networks ·
Robust control · Uncertainties

1 Introduction

Underwater vehicles play an supporting role in the undersea exploration by
human beings. Usually three kinds of underwater vehicle are available in per-
forming underwater missions, which refer to as HOVs (human occupied vehi-
cles), ROVs (remotely operated vehicles) and AUVs (autonomous underwater
vehicles). A underwater vehicle-manipulator system (UVMS) is formed when
a n-link manipulator is attached to an underwater vehicle such as ROV and
AUV. By means of UVMS, complicated underwater missions can be fulfilled for
instance undersea sampling, fixing or repairing. In the meantime, the safety and
operability of an UVMS become more important, comparing an UVMS with an
AUV or ROV. A control system with high performance can guarantee the safety
and operability requirements.

One of the difficulties in obtaining a high-performance controller for an
UVMS is how to deal with the uncertainties in the plant. Such uncertainties
result from the disturbance by environment (e.g., current, oceanic internal wave),
variation of payload and tether force, noises in the mechanical equipments, para-
metric perturbation, etc. Consequently, the robustness of the control system of
an UVMS is of great importance. During the past years, developing an adaptive
robust controller for an UVMS is of interest for many researchers. For example,
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Mohan and Kim presented a coordinated motion control scheme using a distur-
bance observer for an autonomous UVMS [1]. Xu et al. proposed a neuro-fuzzy
approach to the control of UVMS in the presence of payload variation and hydro-
dynamic disturbance [2]. Han and Chung presented the use of restoring moments
to the motion control of an UVMS with uncertainties caused by external distur-
bances [3]. Korkmaz et al. proposed the inverse dynamics control algorithm for
the trajectory tracking of an underactuated UVMS in the presence of parameter
uncertainty and disturbance [4]. Antonelli and Cataldi addressed the low level
control of an UVMS affected by external disturbance using a recursive adap-
tive control scheme [5] and a virtual decomposition approach [6]. Barbalata et
al. proposed a proportional-integral limited controller for a lightweight UVMS
affected by disturbance [7]. Ji et al. presented the motion control of an UVMS
affected by uncertainties and disturbances using zero moment point equation
[8]. Woolfrey et al. studied the kinematic control of an UVMS affected by wave
disturbance using model predictive control [9].

This paper presents a neural network approach to the tracking control of the
manipulator of a UVMS. A three-link manipulator is considered to be attached
to an AUV. In the study, it is assumed that the AUV is hovering when the
manipulation is being performed. The interaction between the AUV and the
manipulator is viewed as an external disturbance to the control of manipulator.
An on-line forward neural network is applied to identify the nonlinearity that
involves the disturbance. The overall control system is obtained using Lyapunov
design to guarantee the stability of controller.

2 Problem Formulations

For an underwater vehicle with a n-link manipulator, a general model can be
described as

M(q)ζ̇ + C(q, ζ)ζ + D(q, ζ)ζ + g(q,RI
B) = τ. (1)

where q ∈ R
n is the vector of joint position, ζ ∈ R

(6+n) is the vector of gen-
eralized velocity, RI

B is the transformation from the body-fixed frame to the
inertia frame, M(q) ∈ R

(6+n)×(6+n) is the inertia matrix, C(q, ζ)ζ ∈ R
(6+n) is

the vector of Coriolis and centripetal terms, D(q, ζ)ζ ∈ R
(6+n) is the vector

of dissipative effects, g(q,RI
B) ∈ R

(6+n) is the vector of gravity and buoyancy
effects, τ ∈ R

(6+n) is the vector of generalized forces [10]. An UVMS with a
3-link manipulator and the coordinate system can be depicted as Fig. 1, where
o − xyz denotes the inertia (or earth-fixed) reference frame while oi − xiyizi
denote the body-fixed reference frames.

When the vehicle is kept hovering while the manipulator is working, the
body-fixed frame o0 − x0y0z0 can be viewed as an inertia frame. The dynamics
of the manipulator can be described as

M(q)q̈ + C(q, q̇)q̇ + D(q, q̇)q̇ + g(q) + w = τm. (2)

where w represents the interaction between the vehicle and the manipulator.
Since it is difficult to express such an interaction in precise mathematical equa-
tion, w is taken as an external disturbance to the plant. In the study, it is assumed
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Fig. 1. An UVMS with 3-link manipulator

that the first link of the manipulator rotates around axis o0z0 (as shown in Fig. 1)
with the angle q1; the second and the third links rotate in the plane o0z0x1 with
q2 and q3 respectively. Such a motion allocation guarantees the end effector can
reach the object through the rotation of the three links.

Suppose the three links are driven by DC motors, the force vector τm in (2)
can be calculated by

τm = KmI. (3)

where Km is the conversion coefficient matrix from electrical current to torque,
I is the vector of electrical current.

The dynamics of the electrical circuit can be described as

Lİ + RI + Kq̇ = ue. (4)

where L is the matrix of armature inductance, R is the matrix of armature
resistance, K is the voltage constant matrix, ue is the vector of armature voltage.

Equations (2) and (4) constitute a cascaded system involving a mechanical
subsystem and an electrical one. As can be recognized, the output of the cascaded
system is the vector q = [q1, q2, q3]T while the controller input is ue.

3 Control Design

3.1 NN Based Controller

To obtain the torque in the mechanical subsystem, a desired signal is designed
as

Id = K−1
m (M(q)q̈d + C(q, q̇)q̇d + D(q, q̇)q̇ + g(q) + u1). (5)

where qd is the desired trajectory, u1 is introduced as an auxiliary con-
troller. Similarly, another auxiliary controller can be introduced in the electrical
subsystem:

ue = RId + Kq̇d + u2. (6)

Define e = qd − q, η = Id − I, ξ = ė + αe(α > 0), one has

M(q)ξ̇ = (αM(q) − C(q, q̇))ė + w + Kmη − u1, (7)
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and
Lη̇ = −Rη − K(ξ − αe) + Lİd − u2. (8)

Lyapunov design is applied to the error systems (7) and (8). A positive defi-
nite Lyapunov function can be defined as

V1 =
1
2
(eT e + ξTMξ + ηTLη). (9)

Its derivative is

V̇1 = − αeT e + ξT (Kmη + αM(q)ė + αC(q, q̇)e + e + w − u1)
+ ηT (−Rη − K(ξ − αe) + Lİd − u2). (10)

On-line forward neural networks are applied to identify the nonlinearities in
the above equation. In detail, let:

f1 = αM(q)ė + αC(q, q̇)e + e + w = WT
1 φ(X1) + ε1, (11)

f2 = Kmξ − Rη − K(ξ − αe) + Lİd = WT
2 φ(X2) + ε2. (12)

where Wi are weight matrices, Xi are net inputs, εi are approximation errors
[11].

The two auxiliary controllers u1 and u2 can be designed as:

u1 = WT
1eφ(X1) + α1M(q)ξ, (13)

and
u2 = WT

1eφ(X2) + α2Lη. (14)

where Wie are updated weight matrices, αi are control gains.

3.2 Stability Analysis

Substituting Eqs. (13) and (14) into (10) yields:

V̇1 = − αeT e + (ξT ε1 + ηT ε2)
+ ξT W̃T

1 φ(X1) + ηT W̃T
2 φ(X2) − α1ξ

TM(q)ξ − α2η
TLη. (15)

where W̃i = Wi − Wie are weight error matrices. To guarantee the robustness of
the net weight, the algorithms of updated weight matrices are designed as:

Ẇ1e = k1φ(X1)ξT − k2 ‖ξ‖ W1e, (16)

Ẇ2e = k1φ(X2)ηT − k2 ‖ζ‖ W2e. (17)

where ζ = [ξ, η]T is an augmented error vector. A stepping Lyapunov function
is defined as

V2 = V1 +
1

2k1
(
∥
∥
∥W̃1

∥
∥
∥

2

F
+

∥
∥
∥W̃2

∥
∥
∥

2

F
). (18)
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Its derivative is

V̇2 ≤ − 2α0V2 + (ξT ε1 + ηT ε2) − a(α1ξ
TM(q)ξ + α2η

TLη)

+
k2
k1

‖ζ‖ ((W̃1,W1)F + (W̃2,W2)F − a
∥
∥
∥W̃1

∥
∥
∥

2

F
− a

∥
∥
∥W̃2

∥
∥
∥

2

F
), (19)

where a ∈ [0, 1], α0 = min{(1 − a)α1, (1 − a)α2, (1 − a)k2 ‖ξ‖ , (1 − a)k2 ‖ζ‖}.
Define a compact set U(ζ) = {ζ| ‖ζ‖ ≤ b, b > 0}, the following inequality can be
obtained:

V̇2 ≤ −2α0V2 + λ, (λ > 0) (20)

when ζ is within the set U(ζ). Otherwise, if ‖ζ‖ > b, the following inequality
can be derived

V̇2 ≤ −2α0V2, (21)

by selecting appropriate controller parameters.
It can be concluded from inequalities (20) and (21) that the tracking system is

stable. Moreover, it should be noted that UUB (uniformly ultimately bounded)
stability rather than asymptotic stability can be guaranteed.

4 Numerical Simulation

To demonstrate the validity of the proposed controller, an example is studied
with respect to an AUV-manipulator system. The particulars of the manip-
ulator are: l1 = l2 = l3 = 1m, m1 = m2 = 1kg, m3 = 2m1, L =
diag(0.1, 0.1, 0.1)H, R = diag(1, 1, 1)Ω, K = diag(0.5, 0.5, 0.5)V·s/rad,
Km = diag(1, 1, 1)N·m/A. The interaction between the vehicle and the manip-
ulator is assumed as a disturbance acted on the first link of the manipulator. In
the study, it is selected as an uniformly distributed pseudorandom signals in the
interval [0, 200N]. Moreover, a disturbance is assumed to act on the end effector
at the time t = 1.5–1.7 s with the amplitude 200N.

The controller parameters are selected as: α1 = α2 = 200, k1 = 50, k2 =
0.8. Sigmoid function is employed as the activation function of hidden layers.
The initial weights are set as zeros. To confirm the advantage of the proposed
controller over conventional controllers, a PD controller is taken as:

ue = λ1ė + λ2e, (22)

by selecting λ1 = λ2 = 300.
Figure 2 presents the tracking results of the joint positions. Figures 3 and 4

show the results of the trajectory tracking of the end effector. As can be recog-
nized from the comparison results, better performance of the NN controller pro-
posed in the study is achieved.
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Fig. 2. Tracking results of the joint positions
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Fig. 3. Tracking results of the trajectory of the end effector
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Fig. 4. Space tracking results of the trajectory of the end effector

5 Conclusions

Neural networks are applied to the control of the manipulator of an UVMS.
To guarantee the robustness of the controller, Lyapunov design is incorporated.
Simulation results show the validity of the proposed control scheme. It should be
noted however that a specific case is studied in the paper. The vehicle is assumed
to be hovering while the manipulation is being performed, which means that the
manipulator can be dealt with as a ground robot. The validity of the proposed
control scheme should be verified in a more complicated case, e.g., both the
vehicle and the manipulator are under controlled.
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Abstract. In this paper, a nonsingular terminal sliding mode (NTSM)
based tracking control (NTSMTC) scheme for an autonomous surface
vehicle (ASV) subject to unmodelled dynamics and unknown distur-
bances is proposed. The salient features of the NTSMTC scheme are as
follows: (1) The NTSMTC scheme is designed by combining the NTSM
technique with an established finite-time unknown observer (FUO) which
enhances the system robustness significantly and achieves accurate track-
ing performance; (2) By virtue of the NTSMTC scheme, not only that
unknown estimation errors are controlled to zero but also tracking errors
can be stabilized to zero in a finite time; (3) The finite-time conver-
gence of the entire closed-loop control system can be ensured by the Lya-
punov approach. Simulation studies are further provided to demonstrate
the effectiveness and remarkable performance of the proposed NTSMTC
scheme for trajectory tracking control of an ASV.

Keywords: Nonsingular terminal sliding mode (NTSM) · Finite-time
stability · Finite-time unknown observer (FUO) · Trajectory tracking
control · Autonomous surface vehicle (ASV)

1 Introduction

In last decades, autonomous surface vehicles (ASVs) have drawn more and more
attention mainly due to important roles in military and civilian applications.
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However, suffering from a variety of external disturbance variations including
winds, waves and currents, ASVs are highly nonlinear and the exact ASV model
can hardly be known, which makes it much challenging and difficult when design-
ing a controller for ASVs.

Traditionally, fuzzy logic systems (FLS) [1] and fuzzy neural networks (FNN)
[2] are usually employed for tracking control of an ASV, which can explicitly take
into account complicated unknowns including external disturbances and even
unmodelled dynamics. As a result, the previous approximation-based methods
can achieve many good properties including disturbance rejection capacity and
high steady-state accuracy. However, it should be pointed out that only asymp-
totic or exponential convergence can be obtained in the previous works rather
than finite-time convergence.

Recently, finite-time control theorems have been increasingly studied; for
example, nonsingular terminal sliding mode (NTSM) technique [3], homogene-
ity [4] and adding a power integrator (API) [5] approaches. Note that fast con-
vergence rate and high robustness can be achieved pertaining to the foregoing
finite-time based methods. Motivated by the above observations, finite-time tra-
jectory tracking and heading controller have been established by Wang in [6] and
[7], respectively. However, finite-time control problems of an ASV in the pres-
ence of complicated unknowns is still largely open. It is mainly for this reason
that finite-time convergence is pursued in this paper in order to achieve fast and
precise tracking performance.

In this paper, a nonsingular terminal sliding mode (NTSM) based tracking
control (NTSMTC) scheme is proposed. To be more specific, the NTSM tech-
nique and the designed finite-time unknown observer (FUO) are integrated to
preserve the advantages of each method, i.e., fast convergence and high robust-
ness. Moreover, rigorously proof has been given to ensure the overall closed-loop
system to be finite-time stable and it has been proven that tracking errors can
be stabilized to zero in a finite time, which as a result leads to accurate tracking
performance.

2 Problem Formulation

The kinematics and dynamics of an ASV moving in a planar space can be
expressed as follows:

{
η̇ηη = J(ψ)ννν
Mν̇νν = NNN (ηηη,ννν) + τττ + τττδ

(1)

where

NNN (ηηη,ννν) = −C(ννν)ννν − D(ννν)ννν − g(ηηη,ννν) (2)

Here, ηηη = [x, y, ψ]T is the 3-DOF position (x, y) and heading angle (ψ) of
the ASV, ννν = [u, v, r]T is the corresponding linear velocities (u, v), i.e., surge
and sway velocities, and angular rate (r), i.e., yaw, in the body-fixed frame,
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τττ = [τ1, τ2, τ3]T and τττδ := MRT(ψ)δδδ(t) with δδδ(t) = [δ1(t), δ2(t), δ3(t)]T denote
control input and mixed external disturbance, and J(ψ) is a rotation matrix
governed by

J(ψ) =

⎡
⎣ cos ψ − sin ψ 0

sin ψ cos ψ 0
0 0 1

⎤
⎦ (3)

with the following properties:

JT(ψ)J(ψ) =I, and ‖J(ψ)‖ = 1, ∀ ψ ∈ [0, 2π] (4a)

J̇(ψ) = J(ψ)S(r) (4b)

JT(ψ)S(r)J(ψ) = J(ψ)S(r)JT(ψ) = S(r) (4c)

where S(r) =

⎡
⎣0 −r 0

r 0 0
0 0 0

⎤
⎦, the inertia matrix M = MT > 0, the skew-symmetric

matrix C(ννν) = −C(ννν)T, and the damping matrix D(ννν) can be written as follows:

M =

⎡
⎣m11 0 0

0 m22 m23

0 m32 m33

⎤
⎦ (5a)

C(ννν) =

⎡
⎣ 0 0 c13(ννν)

0 0 c23(ννν)
−c13(ννν) −c23(ννν) 0

⎤
⎦ (5b)

D(ννν) =

⎡
⎣d11(ννν) 0 0

0 d22(ννν) d23(ννν)
0 d32(ννν) d33(ννν)

⎤
⎦ (5c)

where m11 = m−Xu̇, m22 = m−Yv̇, m23 = mxg−Yṙ, m32 = mxg−Nv̇, m33 =
Iz − Nṙ; c13(ννν) = −m11v − m23r, c23(ννν) = m11u; d11(ννν) = −Xu − X|u|u|u| −
Xuuuu2, d22(ννν) = −Yv − Y|v|v|v|, d23(ννν) = −Yr − Y|v|r|v| − Y|r|r|r|, d32(ννν) =
−Nv − N|v|v|v| − N|r|v|r| and d33(ννν) = −Nr − N|v|r|v| − N|r|r|r|. Here, m is the
mass of the ASV, Iz is the moment of inertia about the yaw rotation, Yṙ = Nv̇,
and symbols X∗, Y∗, N∗ represent corresponding hydrodynamic derivatives.

Consider the desired trajectory generated by{
η̇ηηd = J (ψd)νννd
Mν̇ννd = NNN d(ηηηd,νννd) + τττd

(6)

where

NNN d(ηηηd,νννd) = −C(νννd)νννd − D(νννd)νννd (7)

Here, ηηηd = [xd, yd, ψd]T and νννd = [ud, vd, rd]T represent the desired position and
velocity vectors.

The objective in this context is to design a control law such that the actual
trajectory in (1)–(2) can track exactly the desired targets generated by (6)–(7)
in a finite time 0 < T < ∞, i.e., ηηη(t) ≡ ηηηd(t) and ννν(t) ≡ νννd(t),∀ t > T .
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3 Controller Design and Stability Analysis

3.1 Controller Design

Consider the following transformations on ννν and νννd:

ωωω = Jννν (8a)
ωωωd = Jdνννd (8b)

where ωωω = [ω1,ω2,ω3]T, ωωωd = [ωd1,ωd2,ωd3]T, J = J(ψ) and Jd = J(ψd).
Combining (1)–(2) with (8a) yields

{
η̇ηη = ωωω

ω̇ωω = JM−1τττ + HHH(ηηη,ωωω) + δδδ(t)
(9)

where

HHH(ηηη,ωωω) = S(ω
3
)ωωω + JM−1NNN (ηηη,JTωωω). (10)

From (6)–(7) and (8b) yields
{

η̇ηηd = ωωωd

ω̇ωωd = JdM−1τττd + HHHd(ηηηd,ωωωd)
(11)

where

HHHd(ηηηd,ωωωd) = −JdM−1
(
C

(
JT
dωωωd

)
+ D

(
JT
dωωωd

))
JT
dωωωd

+S(ω
d3

)ωωωd. (12)

Using (9)–(10) and (11)–(12), we have
{

η̇ηηe = ωωωe

ω̇ωωe = JM−1τττ + HHHe(ηηη,ωωω,ηηηd,ωωωd) + fffu(ηηη,ωωω,δδδ, t)
(13)

where

HHHe(·) = (JdM−1(C(JT
dωωωd) + D(JT

dωωωd))JT
d )ωωωd

+ Sωωω − Sdωωωd − JdM−1τττd (14a)

fffu(·) = δδδ + JM−1NNN (ηηη,JTωωω) (14b)

Here, S = S(ω3), Sd = S(ωd3), ηηηe = ηηη−ηηηd := [ηe1,ηe2,ηe3]T and ωωωe = ωωω−ωωωd :=
[ωe1,ωe2,ωe3]T.

Assumption 1. The unknown term fffu in (13)–(14) satisfies
∣∣∣
∣∣∣f̈ffu

∣∣∣
∣∣∣ ≤ Lfu (15)

for a bounded constant Lfu < ∞.
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Fig. 1. Control system diagram.

In the light of (13)–(14), we define the nonsingular terminal sliding mode
(NTSM) manifold as follows:

σσσ(t) = ηηηe(t) +
1
β
ωωωp/q

e (t) (16)

where σσσ(t) = [σ1(t), σ2(t), σ3(t)]
T.

Differentiating σσσ(t) with respect to time, we obtain

σ̇σσ = ωωωe +
p

q β
diag(ωωω(p/q)−1

e )ω̇ωωe (17)

where diag(ωωω(p/q)−1
e ) := diag(ω(p/q)−1

e1 ,ω
(p/q)−1
e2 ,ω

(p/q)−1
e3 ) and ω̇ωωe :=

[ω̇e1, ω̇e2, ω̇e3]T.
Concerning the ASV tracking error dynamics (13)–(14) and sliding functions

(16)–(17), the NTSM based tracking control (NTSMTC) scheme can be designed
accordingly

τττ = −MJ−1

(
β

q

p
(Jννν − Jdνννd)

[2−(p/q)] + κκκsgn (σσσ)
)

−MSννν + MJ−1
(
SdJdνννd + JdM−1τττd

)
+MJ−1

(
JdM−1NNN d(ηηηd,νννd) − θθθ1

)
(18)

Here, β > 0, p > 0 and q > 0 are positive old integers satisfying 1 < p/q <
2, κκκ = diag(κ1, κ2, κ3) with positive constants κj(j = 1, 2, 3), and sgn (σσσ) =
[sgn(σ1), sgn(σ2), sgn(σ3)]

T, with θθθ1 derived by the following finite-time unknown
observer (FUO):

θ̇θθ0 = ζζζ0 + JM−1τττ + HHHe(·)
ζζζ0 = −λ1 LLL1/3sig2/3(θθθ0 − ωωωe) + θθθ1

θ̇θθ1 = ζζζ1

ζζζ1 = −λ2 LLL1/2sig1/2(θθθ1 − ζζζ0) + θθθ2

θ̇θθ2 = −λ3 LLLsgn(θθθ2 − ζζζ1) (19)

where θθθi := [θi1, θi2, θi3]T, i = 0, 1, 2, ζζζk := [ζk1, ζk2, ζk3]T, k = 0, 1, λj > 0, j =
1, 2, 3 and LLL = diag(�1, �2, �3). The corresponding control system diagram are
also illustrated in Fig. 1.
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3.2 Stability Analysis

The key result ensuring finite-time stability of the closed-loop is now stated.

Theorem 1 (NTSMTC). Consider the closed-loop system composed of (13)–
(14), (16)–(17) and (18)–(19), the actual trajectory and velocity of the ASV
system (1)–(2) will converge to the desired signals generated by (6)–(7) in a
finite time 0 < T < ∞, i.e., ηηη(t) ≡ ηηηd(t) and ννν(t) ≡ νννd(t),∀ t > T .

Proof. Consider the Lyapunov function as follows:

V =
1
2
σσσTσσσ. (20)

Differentiating V along (13)–(14) yields

V̇ = σσσTσ̇σσ

= σσσT

(
ωωωe +

p

q β
diag(ωωω(p/q)−1

e )ω̇ωωe

)

= σσσT

(
ωωωe +

p

q β
diag(ωωω(p/q)−1

e )
(
RM−1τττ + HHHe(·) + fffu

))
. (21)

Substituting (18) into (21) yields

V̇ = σσσT

[
ωωωe +

p

q β
diag(ωωω(p/q)−1

e )
(

− β
q

p
ωωω[2−(p/q)]

e

− κκκsgn (σσσ) + fffu − θθθ1

)]
. (22)

Define unknown observation errors as follows:

z1 = θθθ0 − ωωωe, z2 = θθθ1 − fffu, z3 = θθθ2 − ḟffu (23)

Then the error dynamics can be derived as

ż1 = −λ
1
LLL1/3sig2/3(z1) + z2

ż2 = −λ
2
LLL1/2sig1/2(z2 − ż1) + z3

ż3 = −λ
3
LLLsgn(z3 − ż2) − f̈ffu (24)

i.e.,

ż1j = −λ
1

�
1/3
j sig2/3(z1j) + z2j

ż2j = −λ
2

�
1/2
j sig1/2(z2j − ż1j) + z3j

ż3j ∈ −λ
3

�jsgn(z3j − ż2j) + [−Lfu, Lfu]. (25)
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According to [8], zzz1,zzz2 and zzz3 can be stabilized to zero in a finite time, and
this yields

θθθ0 ≡ ωωωe, θθθ1 ≡ fffu, θθθ2 ≡ ḟffu. (26)

Combining (22) and (26) we have

V̇ = σσσT

(
ωωωe +

p

q β
diag(ωωω(p/q)−1

e )
(

− β
q

p
ωωω[2−(p/q)]

e − κκκsgn (σσσ)
))

≤ − min
j=1,2,3

{
p

q β

(p/q)−1
ω
ej

κ
j

} 3∑
j=1

| σ
j
| (27)

Define

ρ =
√

2 · min
j=1,2,3

{
p

q β

(p/q)−1
ω
ej

κ
j

}
. (28)

Clearly, when ωej 	= 0, since p and q are positive old integers and 1 < p/q < 2,
we have ρ > 0. Thus,

V̇ ≤ − ρ V 1/2. (29)

Then finite-time stability can be ensured according to [9, Theorem 1].
When ωej = 0, substituting control law (18) into (13)–(14), we have

ω̇ωωe = − β
q

p
ωωω[2−(p/q)]

e − κκκsgn(σσσ) + fffu − θθθ1 (30)

Hence,

ω̇ej = − β
q

p
ω

[2−(p/q)]
ej − κ

j
sgn(σ

j
) (31)

And this yields

ω̇ej = − κ
j
sgn(σj) (32)

with j = 1, 2, 3.
Therefore, ω̇ej < 0 when σj > 0, and ω̇ej > 0 when σj < 0. Clearly, ω̇ej = 0

is not an attractor. It can be concluded that manifold (16) can be reached in a
finite time t∗1 > 0.

Next, we will prove that once the manifold is reached, tracking errors ηηηe and
ωωωe will converge to zero along the manifold in a finite time.

When σσσ = 0, from (16), we have

ηηηe +
1
β
ωωωp/q

e = 0 (33)

i.e.,

ηej +
1
β
η̇
p/q
ej = 0, j = 1, 2, 3. (34)
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It follows that tracking errors ηej and ωej can be stabilized to zero along
σj = 0 at time t∗2 = p β(−q/p) · η[1−(q/p)]

ej (t∗1)/(p − q) + t∗1.
Now we can get the conclusion that the closed-loop system (13)–(14), (16)–

(17) and (18)–(19) is finite-time stable. This completes the proof.

Remark 1. If p = q = 1, the NTSMTC scheme (18) will degrade to a sliding
mode control SMC scheme (τττSMC) accordingly

τττSMC = − MJ−1 (β (Jννν − Jdνννd) + κκκsgn (σσσ))

− MSννν + MJ−1
(
SdJdνννd + JdM−1τττd

)
+ MJ−1

(
JdM−1NNN d(ηηηd,νννd) − θθθ1

)
(35)

with θθθ1 derived by (19).

Remark 2. The chattering can be reduced by replacing the sgn(σj) function with
a saturation function described by

fsat(σ
j
; ε,ϑ) =

{
sgn(σj), |σj | > ε
sigϑ(σj)

εϑ , |σj | ≤ ε
(36)

with ε > 0 and 0 < ϑ < 1.

4 Simulation Studies

This section assesses the control performance of the proposed NTSMTC law in
terms of trajectory tracking of an ASV. Simulations studies are conducted on a
well-known ASV named CyberShip II [10].

Assume external disturbances in (1) are governed by

δδδ(t) =

⎡
⎣3 cos(0.1πt − π/3)

4 cos(0.2πt + π/4)
6 cos(0.3πt + π/6)

⎤
⎦ . (37)

Consider the desired trajectory generated by (6)–(7), assume τττd =
[4, 3 cos2(0.1πt), sin2(0.1πt)]T, the initial conditions are ηηη(0) = [15.5, 8, π/4]T,
ννν(0) = [0, 0, 0]T, ηηηd(0) = [16, 7.8, π/3]T and νννd(0) = [1, 0, 0]T.

Correspondingly, parameters of the FUO are: λ1 = 2.2, λ2 = 1.1, λ3 = 0.8,
LLL = diag(30, 30, 30); and parameters of the NTSMTC scheme are: β = 1, p = 5,
q = 3, κκκ = diag(3.6, 3.6, 3.6), ε = 6.8, ϑ = 0.58.

In comparison with the traditional SMC approach τττSMC in (35), it can be
clearly seen from Fig. 2 that the actual trajectory (solid line) can track the
desired (dashed line) one with faster convergence rate. Correspondingly, the
actual position ηηη = [x, y, ψ]T and the desired signal ηηηd = [xd, yd, ψd]T are shown
in Fig. 3, which exhibits the higher tracking accuracy. In addition to precise
position tracking, actual velocity vector ννν = [u, v, r]T can track the desired target
νννd = [ud, vd, rd]T very quickly, as shown in Fig. 4. The time-varying unknowns
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fffu = [fu1, fu2, fu3]T and the finite-time identification results θθθ1 = [θ11, θ12, θ13]T

are shown in Fig. 5, which shows the remarkable unknown estimation ability
associated with the proposed FUO. It should be noted that trajectory tracking
errors can be rendered to zero in a finite time, as shown in Fig. 6. Moreover,
control inputs of the NTSMTC scheme are plotted in Fig. 7, which shows the
smooth control actions dynamically.

5 Conclusion

In this paper, to pursue finite-time control of an autonomous surface vehicle
(ASV) in the presence of unmodelled dynamics and external disturbances, a
nonsingular terminal sliding mode (NTSM) based tracking control (NTSMTC)
scheme has been proposed. Under the NTSMTC scheme, not only that unmod-
elled dynamics and unknown disturbances can be completely identified but also
finite-time convergence property can be achieved, and thereby contributing to
fast convergence rate and high robustness. In addition, comprehensive simula-
tion studies have also been presented to confirm not only the closed-loop control
performance but also the effectiveness of the NTSMTC scheme in terms of exact
unknown observation.
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control [2,3], adaptive control [4,5], neural network control [8–13,15–17,19],
fuzzy control [6,7], L1 adaptive control [20], disturbance-observer-based control
[18], model reference adaptive control [6], to extended-state-observer-based con-
trol [14,21]. In particular, neural networks and fuzzy systems are widely explored
for approximating vehicle kinetics [8,9,11–13,15–17,19]; however, the constraint
problem in vehicle kinetics is not touched.

Constraints are ubiquitous in a practical system. Violating constraints may
degrade performance, and even lead to instability in some circumstances. In the
existing works, three types of constraint problem are mainly targeted, namely,
input constraint [22–24], state constraint [24], and output constraint [25,26].

In this paper, a practical design method is presented for saturated kinetic
control of autonomous surface vehicles with unknown kinetics and limited control
torques. The unknown kinetics may be caused by parametric model uncertainty,
unmodelled hydrodynamics, and environmental forces due to wind, waves, and
ocean currents. By approximating the unknown kinetics using neural networks,
a bounded kinetic control law is proposed based on a saturated function. A
key advantage of the developed control law is that the control input is known
as a priori. The resulting closed-loop kinetic control system is input-to-state
stable and the error signals are proved to be uniformly ultimately bounded via
Lyapunov analysis. The developed saturated kinetic control law can be used in
a variety of motion control scenario such as target tracking, trajectory tracking,
path following, and formation control of marine vehicles subject to unknown
kinetics and limited control torques.

In the following, the problem formulation is stated in Sect. 2. Then, the sat-
urated kinetic controller design and analysis is presented in Sect. 3. Finally, con-
clusions are drawn in Sect. 4.

2 Preliminaries and Problem Formulation

2.1 Neural Networks

Given a continuous function f(x) : Rn → R, there exists an ideal wight W such
that the function can be approximated by a neural network as

f(x) = WT β(x) + ε(x), x ∈ Ω, (1)

where β(x) is a known activation function; ε(x) is the approximation error; Ω is
a compact set; Besides, there exist positive constants ε∗, β∗, and W ∗ such that
‖ε(x)‖ ≤ ε∗, ‖β(x)‖ ≤ β∗, and ‖W‖F ≤ W ∗, where ‖ · ‖ denotes the 2-norm and
‖ · ‖F denotes the Frobenius norm.

2.2 Problem Formulation

According to [1], the kinetics of surface vehicles can be expressed by (Fig. 1)

Mν̇ = τ − C(ν)ν − D(ν)ν + g(ν, η) + τw(t), (2)
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where M = MT ∈ R
3×3 is a known inertial matrix; ν = [u, v, r]T ∈ R

3 is a vector
denoting surge velocity, sway velocity, and angular velocity expressed in the
body-fixed reference frame; C(ν) = −C(ν) ∈ R

3×3 is a centrifugal and coriolis
matrix; D(ν) ∈ R

3×3 is a damping matrix; τw = [τwu, τwv, τwr]T ∈ R
3 is a vector

of environmental forces that are assumed to be bounded; τ = [τu, τv, τr]T ∈ R
3

denotes the control input to be designed;

( , )x y

X

Y

EX

EY

Fig. 1. Reference frames.

The objective is to develop a saturated kinetic control law for vehicle kinetics
(2) with unknown kinetics and limited control torques to track a velocity set-
point νr ∈ �3.

3 Saturated Kinetic Control Law Design and Analysis

3.1 Estimation of Unknown Kinetics

Rewrite the vehicle kinetics (2) as

Mν̇ = τ + f(·), (3)

where f(·) = −C(ν)ν − D(ν)ν + g(ν, η) + τw(t).
Similar to [27,28], the following lemma is introduced.

Lemma 1. Given ε∗
k > 0 for k = 1, 2, 3, there exists a set of bounded weights

W = [W1,W2,W3] ∈ �n×3 with Wk ∈ �n such that the continuous function
f(ϑ) is approximated by using a neural network as

f(ϑ) = WT β(ϑ) + ε, ϑ ∈ Ω, (4)
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where ϑ = [ν̄T (t), τT (t)]T ∈ �6 with ν̄(t) = ν(t) − ν(t − t∗d), t
∗
d is the sample

period, and ε = [ε1, ε2, ε3]T ∈ �3 satisfies |εk| ≤ ε∗
k.

Let ν̂ = [û, v̂, r̂]T ∈ �3 be an estimate of ν, and then an estimator for the
vehicle kinetics (3) is devised as

M ˙̂ν = −F (ν̂ − ν) + τa + τ, (5)

where τa = ŴT β(ϑ) and F = diag{k1, k2, k3} ∈ �3×3 is a control gain. k1, k2,
and k3 are positive constants. Ŵk is an estimate of Wk that updated as

˙̂
Wk(t) = −Γ Proj[Ŵk(t), β(ϑ)ν̃k], (6)

where ν̃ = ν̂ − ν = [ν̃1, ν̃2, ν̃3]3 denotes the velocity estimation error; Γ ∈ �
denotes an adaptation gain; Proj[·, ·] denotes the projection operation [29].
According to [29], the projection operation assures that there exists a constant
ε satisfying ‖Ŵ (t)‖F ≤ W ∗ + ε.

As a result, the estimation subsystem is expressed by{
M ˙̃ν = −F ν̃ + W̃T β(ϑ) − ε,
˙̃Wk = −Γ Proj[Ŵk, β(ϑ)ν̃k].

(7)

Lemma 2. The subsystem (7) is input-to-state stable provided that the control
parameter is selected as

λmin(K) − 1
2 > 0. (8)

Proof. Construct the Lyapunov function as V = 1
2{ν̃T Mν̃+Γ−1

∑3
k=1(W̃

T
k W̃k)},

which is bounded by λmin(P )‖E‖2/2 ≤ V ≤ λmax(P )‖E‖2/2 with E =
[ν̃T , W̃T

1 , W̃T
2 , W̃T

3 ]T and P = diag{M,Γ−1}.
Tacking the time derivative of V and using (7), it leads to

V̇ = −ν̃T F ν̃ − ν̃T ε. (9)

Substituting the inequality −ν̃T ε ≤ 1/2‖ν̃‖2 + 1/2‖ε‖2 into (9), one has

V̇ ≤ −
(
λmin(F ) − 1

2

)
‖ν̃‖2 +

1
2
‖ε‖2. (10)

Letting α = λmin(F ) − 1
2 , it follows that V̇ ≤ −α‖E‖2 + 1

2‖ε‖2 + α‖W̃‖2F under
the condition (8). Note that ‖E‖ ≥ ‖ε‖/

√
α +

√
2‖W̃‖F renders

V̇ ≤ − α

2
‖E‖2. (11)

As a consequence, the subsystem (7) is input-to-state stable, and

‖E(t)‖ ≤ κ1(E(0), t) + κ2(‖ε‖) + κ3(‖W̃‖F ), (12)
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where κ1 is a class KL function and

κ2(s) =

√
λmax(P )
λmin(P )

s√
α

, κ3(s) =

√
λmax(P )
λmin(P )

√
2s. (13)

The boundenss of W̃ is guaranteed by projection operation [29]. Besides, the
upper bound for W̃ is given by ‖W̃‖ ≤ 2W ∗ + ε.

3.2 Kinetic Control Law Design

Let the velocity tracking error be denoted by e = ν−νr and an estimated velocity
tracking error be denoted by ê = ν̂ − νr.

Taking the time derivative of ê along (16) yields

M ˙̂e = τ + τa − F (ν̂ − ν). (14)

To stabilize ê, a saturated kinetic control law is taken as

τ = − Kê√‖ê‖2 + Δ2
− τa, (15)

where K = diag{k4, k5, k6} with k4, k5, k6 being constants; Δ ∈ � is a positive
constant.

Substituting (15) into (16), it follows that

M ˙̂e = − Kê√‖ê‖2 + Δ2
− F ν̃, (16)

A key feature of the kinetic control law (15) is that the control torques
are bounded, and the bounds are known as a priori to a designer. Since
‖ê‖/

√‖ê‖2 + Δ2 < 1, the explicit bound for τ is given by

||τ || ≤ K∗ + (W ∗ + ε)β∗, (17)

where ‖K‖F ≤ K∗.

Lemma 3. The subsystem (16) is input-to-state stable provided that

λmin(K)
c0

− Δ ≥ ξ, (18)

where ξ is defined in (24).

Proof. Letting Ξ =
√‖ê‖2 + Δ2, construct the Lyapunov function

V =Ξ − Δ, (19)

which is bounded as ‖ê‖2

2Ξ ≤ Ξ − Δ ≤ ‖ê‖2

Ξ .
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The time derivative of V along (16) is given by

V̇ = − êT Kê

Ξ2
− êT F ν̃

Ξ
,

≤ − c0
‖ê‖2
Ξ

+ (c0 − c)
‖ê‖2
Ξ

+ ‖F ν̃‖, (20)

where c = λmin(K)/Ξ. Provided that

λmin(K)
c0

≥ Δ + ‖ê‖, (21)

it follows that V̇ ≤ −c0
‖ê‖2

Ξ + ‖F ν̃‖ since Δ + ‖ê‖ ≥ √
Δ2 + ‖ê‖2.

Noting that ‖ê‖√
Ξ

≥
√

2‖F ν̃‖
c0

renders V̇ ≤ − c0
2

‖ê‖2

Ξ , it is concluded that sub-
system (16) is input-to-state stable and

‖ê(t)‖ ≤ max{κ4(ê(0), t), κ5(‖ν̃‖)} (22)

where κ4 is a KL function and

κ5(s) = μ−1

(
2

√
‖F‖F s

c0

)
. (23)

where μ(‖ê‖) = ‖ê‖/
√

Ξ. Letting

ξ = max{κ4(ê(0), 0), κ5(‖ν̃∗‖)}, (24)

where ν̃∗ is a constant satisfying ‖ν̃‖ ≤ ν̃∗, it follows that a sufficient condition
for (21) is given in (18).

The stability of cascade system formed by (16) and (7) is presented in
Theorem 1.

Theorem 1. Under the conditions (8) and (18), the cascade system formed by
(16) and (7) is input-to-state stable. Besides, the error signals of e and ê are
uniformly ultimately bounded.

Proof. By Lemma C.4 in [30], it follows that the cascade system formed by (16)
and (7) is input-to-state stable, implying the boundedness of ê. Besides, noting
that ‖e‖ = || − ν̃ + ê‖ ≤ ‖ê‖ + ‖ν̃‖, it follows that the kinetic tracking error e is
uniformly ultimately bounded. This completes the proof.

4 Conclusions

In this paper, a design method is presented for bounded kinetic control of
autonomous surface vehicles subject to unknown kinetics and limited con-
trol torques. The unknown kinetics comes from parametric model uncertainty,
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unmodelled hydrodynamics, and environmental forces. A bounded kinetic con-
trol law is proposed based on a saturated function and neural networks. A key
advantage of the proposed saturated kinetic control law is that the control input
is known as a priori. It is proved that the resulting closed-loop kinetic control
system is input-to-state stable and the error signals are uniformly ultimately
bounded. The proposed design method can be used in various motion control
scenario such as target tracking, trajectory tracking, path following, and forma-
tion control of marine vehicles subject to unknown kinetics and limited control
torques.
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Abstract. In this paper, a sliding mode controller is presented for the trajectory
tracking by a group of ships with an established formation along a given
parametrized path via neural network and sliding mode control technique. The
control objective for each ship is to keep its relative positon in the formation
while a virtual Formation Reference Point (FRP) tracks a predefined path. We
first solve the virtual structure formation problems via sliding mode control
method due to its excellent adaptability to external disturbance and system
perturbation. Moreover, a radial basis function NN is considered in the design of
the controller to approximate the unknown uncertainties efficiently. Some
simulations are given to verify the theoretical results in this paper.

Keywords: Formation control � Virtual structure � Sliding mode control �
Neural networks

1 Introduction

Over the past few years, the formation control of multiagent systems attracted great
attention. This is mainly due to the increasing demand for utilizing multiple agents to
perform difficult tasks to improve efficiency, reduce the energy loss and greater tol-
erance and adaptability. The ships formation system by applying multiagent theory
shows a great prospect of application in military and industrial production areas,
including fleet combat, underway ship replenishment, environmental monitoring, oil
and natural gas prospecting and so on.

Several methods have been proposed to achieve the desired formation including
leader-follower method [1–3], virtual structure strategy [4–6], behavior-based method
[7], graph theory-based method, artificial potential field [8] and so on. Using the virtual
structure strategy, we regard the formation as a rigid object, and define a virtual point in
the rigid object called Formation Reference Point (FRP). So each individual ship will
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have a relative position to the FRP. The control objective can be divided into the
geometric task and the dynamic task. Actually, in some real-world practical applica-
tions, agents are governed by both position and velocity states, which brings us the
problem about second-order dynamics. Therefore, the sliding mode control method [8–
10] has been widely investigated due to its easy implementation and high robustness
against uncertain disturbances. Moreover, the unknown nonlinear functions which is
difficult to obtain are ubiquitous in physical systems. The neural network (NN) tech-
nique is a powerful tool to approximate arbitrary functions [11–14].

Thus, in this paper, we choose virtual structure strategy to solve the formation
problems, although lack of the overall flexibility and robustness. We focus more on the
abilities of formation keeping and transformation.

2 Problem Description

2.1 Vehicle Dynamics

We consider a ship formation system including i ships whose structures are
well-regulated and symmetric, and the dynamic of each ship is represented in [15]

_xi ¼ ui coswi � vi sinwi
_yi ¼ ui sinwi þ vi coswi
_wi ¼ ri
_ui ¼ fui þ s1i=m11i

_vi ¼ fvi þ s2i=m22i

_ri ¼ fri þ s3i=m33i

8>>>>>><
>>>>>>:

ð1Þ

In the formula, ½xi; yi� stands for the actual coordinate of the ship. ½ui; vi; ri� stands
for the speed along each axis. mjji; j ¼ 1; 2; 3 stands for the proper and added mass
along each axis of the ship, which is a known item. fui; fvi; fri are unknown functions.

2.2 Virtual Structure Formation

Figure 1 shows the basic geometric structure about five ships in a virtual structure
formation which is created by a set of formation designation vectors. The idea is for the
FRP to follow a given parametrized path gd with a desired formation speed along it.

Fig. 1. Illustration of a formation system.
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The individual path for ship i is given by

gdi ¼ ½xdi; ydi;wdi�T ¼ gd þRðwiÞli ð2Þ

where li ¼ ½lxi; lyi;/i�, lxi and lyi stand for the expected transverse and longitudinal
distance between ship i and the FRP in its horizontal body axes system. /i stands for
the difference of the heading angle between ship i and the FRP.

For ships sailing on the sea, the output is the 3 DOF vector g ¼ ½x; y;w�T, where
ðx; yÞ is the coordinate and w is the heading angle. The desired path is given by
gd ¼ ½xd ; yd;wd�T. Then the desired heading angle can be defined as follow

wd ¼ arctanðy0d
�
x0dÞ ð3Þ

The orthogonal rotation matrix RðwiÞ for the ships is given by

RðwiÞ ¼
coswi � sinwi 0
sinwi coswi 0
0 0 1

2
4

3
5 ð4Þ

Control Objective: The control objective is to design control inputs si for ship i to track
the FRP with desired signal gd and to guarantee the formation tracking error arbitrarily
small.

3 Controller Design

To facilitate the controller design, define the transformation of coordinates as

z1i ¼ xi coswi þ yi sinwi

z2i ¼ �xi sinwi þ yi coswi

z3i ¼ ri

ð5Þ

whose time derivative is given by

_z1i ¼ ui þ z2iri
_z2i ¼ vi � z1iri
_z3i ¼ ri

ð6Þ

Define the coordinate transformation as

z1di ¼ xdi coswdi þ ydi sinwdi

z2di ¼ �xdi sinwdi þ ydi coswdi

z3di ¼ wdi

ð7Þ
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whose time derivative is given by

_z1di ¼ _xdi coswdi þ _ydi sinwdi þ _wdiz2di

_z2di ¼ � _xdi sinwdi þ _ydi coswdi � _wdiz1di

_z3di ¼ _wdi

ð8Þ

Define the error variables as

z1ei ¼ z1i � z1di
z2ei ¼ z2i � z2di
z3ei ¼ z3i � z3di

ð9Þ

whose time derivative is given by

_z1ei ¼ _z1i � _z1di
_z2ei ¼ _z2i � _z2di
_z3ei ¼ _z3i � _z3di

ð10Þ

The first sliding-mode manifold can be designed in the form as follows:

S1i ¼ c1iz3ei þ _z3ei; c1i [ 0 ð11Þ

Consider a scalar function V1 ¼ S21i
�
2, whose time derivative satisfies

_V1 ¼ S1i _S1i ¼ S1iðc1i _z3ei � €z3di þ fri þ s3i=m33iÞ ð12Þ

where fri is an unknown function, the radial basis function neural network (RBFNN) is
used to approximate the unknown function fri

fri ¼ WT
riHriðgi; _giÞþ eri ð13Þ

Define the estimation of the unknown function fri as f̂ri. The estimation of fri can be
written as

f̂ri ¼ ŴT
riHriðgi; _giÞ ð14Þ

Choose the control law as

s3i ¼ m33i½�c1i _z3ei þ€z3di þ f̂ri � k1S1i � g1isgnðS1iÞ� ð15Þ

then, (12) becomes

_V1 � � k1S
2
1i � g1i S1ij j þ S1ið~friÞ
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The second sliding-mode manifold can be designed in the form as follows:

S2i ¼ c2iz1ei þ _z1ei; c2i [ 0 ð16Þ

Consider a scalar function V2 ¼ S22i
�
2, whose time derivative satisfies

_V2 ¼ S2i _S2i ¼ S2i½c2i _z1ei � €z1di þ fui þ s1i=m11i þ _z2iri þ z2iðfri þ s3i=m33iÞ� ð17Þ

Define the estimation of the unknown function fui as f̂ui. The estimation of fui can be
written as

f̂ui ¼ ŴT
uiHuiðgi; _giÞ ð18Þ

Choose the control law as

s1i ¼ m11ið�c2i _z1ei þ€z1di � f̂ui � _z2iri � z2i f̂ri � z2is3i=m33i � k2iS2i � gisgnðS2iÞÞ
ð19Þ

then, (17) becomes

_V2 � � k2iS
2
2i � g2i S2ij j þ S2i½~fui þ z2i~fri�

The third sliding-mode manifold can be designed in the form as follows:

S3i ¼ c3iz2ei þ _z2ei; c3i [ 0 ð20Þ

Consider a scalar function V3 ¼ S23i
�
2, whose time derivative satisfies

_V3 ¼ S3i _S3i ¼ S3iðc3i _z2ei � €z2di þ fvi þ s2i=m22i þ _z1iri þ z1iðfri þ s3i=m33iÞÞ ð21Þ

Define the estimation of the unknown function fvi as f̂vi. The estimation of fvi can be
written as

f̂vi ¼ ŴT
viHviðgi; _giÞ ð22Þ

Choose the control law as

s2i ¼ m22ið�c3i _z2ei þ€z2di � f̂vi � _z1iri � z1i f̂ri � z1is3i=m33i � k3iS3i � g3isgnðS3iÞÞ
ð23Þ

then, (21) becomes

_V3 � � k3iS
2
3i � g3i S3ij j þ S3i½~fvi þ z1i~fri�
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Construct the following Lyapunov function candidate

V ¼ V1 þV2 þV3 þ ~WT
ui
~Wui=2c1i þ ~WT

vi
~Wvi=2c2i þ ~WT

ri
~Wri=2c3i ð24Þ

whose time derivative is given by

_V ¼ _V1 þ _V2 þ _V3 � ~WT
ui
_̂Wui=c1i � ~WT

vi
_̂Wvi=c2i � ~WT

ri
_̂Wri=c3i

�
X3
n¼1

�kniS2ni � gni Snij j þ~friðS1i þ z2iS2i þ z1iS3iÞþ S2i~fui þ S3i~fvi

� ~WT
ui
_̂Wui=c1i � ~WT

vi
_̂Wvi=c2i � ~WT

ri
_̂Wri=c3i

�
X3
n¼1

�kniS
2
ni � gni Snij j � ~WT

uið _̂Wui=c1i � S2iHuiÞ � ~WT
við _̂Wvi=c2i � S3iHviÞ

� ~WT
ri ½ _̂Wri=c3i � HriðS1i þ z2iS2i þ z1iS3iÞ�

ð25Þ

Choose the adaptive laws as

_̂Wui ¼ c1iS2iHui

_̂Wvi ¼ c2iS3iHvi

_̂Wri ¼ c3iðS1i þ z2iS2i þ z1iS3iÞHri

ð26Þ

then, (26) with (25) is

_V �
X3
n¼1

�kniS
2
ni � gni Snij j

Which means the proposed control law can guarantee all the signals in the
closed-loop system uniformly ultimately bounded. And consider the control laws in
(15), (19), (23), adaptive laws in (26), the formation tracking error can be arbitrarily
small. Therefore, we can conclude the main result of this paper as follows.

Theorem 1: Consider the closed loop system (1) under the control laws in (15), (19),
(23), adaptive laws in (26). Given any positive number p, for bounded initial conditions
satisfying Vð0Þ\p, there exist a set of designed parameters, which guarantees the
formation tracking error can be made arbitrarily small.

4 Simulation

To verify the theoretical analysis in this paper, consider a multiagent system with 3
same ships whose parameters are given by m11 ¼ 200; m22 ¼ 250; m33 ¼ 80,
d11 ¼ 70; d22 ¼ 100; d33 ¼ 50, the reference signal of the Formation Reference
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Point(FRP) is given by xd ¼ 0:01t, yd ¼ r0 sinðw0tÞ, wd ¼ a tan½r0w0 cosðw0tÞ�, the
expected formation is given by l1 ¼ ½0:15; 0:2; 0�, l2 ¼ ½�0:2; 0:2; 0�, l3 ¼ ½0;�0:5; 0�.

Figure 2 shows the formation trajectories in the process of sailing, which is
well-regulated and stable.

5 Conclusion

In this paper, an NN-based sliding mode control approach for ships by a specified
formation without any leaders has been proposed, which solves the strict formation
keeping, the bounded disturbances and parameter variations and the unknown terms
problems. The stability of the system is proved based on Lyapunov stability theory,
which guarantees all signals in the closed-loop system are bounded. Simulation results
are given to demonstrate the effectiveness of the controller.
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Abstract. This paper presents an adaptive tracking control scheme
for asymmetrically actuated wheeled mobile robot (WMR) with uncer-
tain/unknown mass center. First, we establish the WMR dynamic model
with consideration of the fact that its center of mass is normally unknown
or even shifting due to dynamic loading and/or load shifting. Second,
a structurally simple controller is developed to deal with time-varying
unknown control gain and parametric/non-parametric uncertainties of
WMR, where the asymmetric and non-smooth input saturation with no
a prior knowledge of bounds of input saturation is addressed.

Keywords: Adaptive control · Inputs saturation · WMR · Neural
network · Uncertain load

1 Introduction

Significant progress has been made in control developments of WMR during the
past decades [1–9]. However, there exists some drawbacks, such as sliding mode
control involves the notorious chattering problem and feedback lineralization
schemes require exact kinematic and dynamic model.

Furthermore, most existing works commonly assume that the center of mass
(CM) of WMR is certain and known. However, in many practical applications,
CM might not be precisely available or even be shifting with time, due to, for
instance, payload loading/unloading and shifting during WMR operation. As a
result, most well-known dynamic models established in literature that are based
on known and fixed CM are no longer valid, making the underlying control
problem more challenging as the skew-symmetric property of the matrix ˙̄M −2V̄
(definitions of M̄ and V̄ can be found in [10]) has changed.

In addition, it is important to design controller for systems with input sat-
uration, that is because any actuator always has a limitation of the physical
inputs. Unfortunately, only a few researchers have focused on the design of con-
trollers with saturated inputs for WMR [11,12], however, the bounds of input
constraints is known for control design and non-linear functions in the saturation
internal must be known and smooth, which is rather restrictive in practice.

c© Springer International Publishing AG 2017
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The main contributions of the work can be summarized as follows:

(1) A new WMR model that accounts for uncertain/time-varying shifting CM
due to payload loading/unloading is developed in which slipping/skidding
uncertainties are reflected.

(2) By using a well-defined smooth function, the actuator inputs saturation are
handled without requiring the prior knowledge of bounds of input saturation.

(3) Introducing the virtual parameter based neural network adaptive control
approach, it leads to a low-cost and user-friendly control scheme for WMR.

2 Modeling and Problem Formulation

2.1 Kinematic Model of WMR

To proceed, we give the variable definition: (f1, f2) denotes the coordinate of the
load in WMR. h denotes the displacement from geometric center of the robot to
the center point of the drive axis, r denotes the radius of motorized wheels, m1

denotes the mass of the robot body, m2 denotes the mass of load, mw denotes
the mass of the derived wheel, I1 denotes the inertia of the robot body about the
vertical axis through point o, I2 denotes the inertia of the loaded about its center
of mass, Iw denotes the inertia of the drived wheel, b denotes the half length of
the drive axis, c denotes the constant equals to r/2b, and (c1, c2) denotes the
coordinate of the CM in WMR.

Consider the WMR with two motorized wheels on an axis driven indepen-
dently, as illustrated in Fig. 1. Then taking into account the slipping and skidding
impact, we have the following three equations:

ẏo cos φ − ẋo sinφ = μ (1)

ẋo cos φ + ẏo sinφ + bφ̇ = r(θ̇1 − ζ̇1) (2)

ẋo cos φ + ẏo sinφ − bφ̇ = r(θ̇2 − ζ̇2) (3)

where (xo, yo) is the coordinate of point o in the fixed reference coordinated
frame X −Y , and φ is the heading angle of the mobile robot measured from X −
axis, θ1 and θ2 are the angular positions of the two driving wheels, respectively.
μ indicates the lateral skidding velocity. ζ1 and ζ2 denote perturbed angular
velocities because of the slipping in two actuated wheels, respectively [13].

By combining (2) and (3), we arrive at

2bφ̇ = r(θ̇1 − θ̇2 − (ζ̇1 − ζ̇2)) (4)

ẋo cos φ + ẏo sin φ = cb(θ̇1 + θ̇2 − (ζ̇1 + ζ̇2)) (5)

From (4) and (5), we get the following compact form of the system model,
A(qo)q̇o = ξ, where qo =

[
xo yo θ1 θ2

]T , and

A(qo) =
[− sin φ cos φ 0 0

− cos φ − sin φ cb cb

]
, ξ =

[
μ

cb(ζ1 + ζ2)

]
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According to (1) and (5), we obtain the kinematics of WMR

q̇o = S(qo)(θ̇ − ζ̇) + ϕ(qo, μ) (6)

in which θ̇ =
[
θ̇1 θ̇2

]T
, ζ̇ =

[
ζ̇1 ζ̇2

]T
, and

ϕ(qo, μ) = [μ sin φ,−μ cos φ, 0, 0]T , S(qo) =
[

cb cos φ, cb sin φ, 1, 0
cb cos φ, cb sin φ, 0, 1

]T

In addition, we have from (6) that

q̈o = S(qo)(θ̈ − ζ̈) + Ṡ(qo)(θ̇ − ζ̇) + ϕ̇(qo, μ) (7)

2.2 Dynamic Equations of WMR

Because the potential energy of the robot is zero. Therefore, the Lagrangian

energy K is given by K = 1
2

ni∑

i=1

[
vi

T mivi + wi
T Iiwi

]
[14]. That is

K = 1
2m1ẋ

2
o + 1

2m1ẏ
2
o + 1

2mw(ẋo − bφ̇ cos φ)2 + 1
2mw(ẏo − bφ̇ sinφ)2

+ 1
2mw(ẋo + bφ̇ cos φ)2 + 1

2mw(ẏo + bφ̇ sin φ)2 + 1
2Iw(θ̇21 + θ̇22)

+ 1
2m2(ẋo − φ̇f2sinφ + φ̇f1 cos φ + ḟ1 sin φ + ḟ2 cos φ)2

+ 1
2m2(ẏo + φ̇f2 cos φ + φ̇f1 sin φ − ḟ1 cos φ + ḟ2 sinφ)2

+ 1
2I1φ̇

2 + 1
2I2φ̇

2 + Iwφ̇2

(8)

Furthermore, the dynamical equations of the WMR can be expressed in the
matrix form [15]

M(qo)q̈o + Vm(qo, q̇o)q̇o + d1(·) = E(qo)τo − A(qo)T λ12 (9)

where M(qo) is a positive definite symmetric inertia matrix, Vm(qo, q̇o) is the
centripetal and coriolis matrix, d1(·) denotes unknown but bounded disturbances
including unstructured unmodeled dynamics, E(qo) is the input transformation
matrix, τo is the input vector, and λ12 is the vector of constraint forces.

Multiplying (9) by S(qo)T , we obtain the dynamic model of WMR as

ST (qo)M(qo)q̈o + ST (qo)Vm(qo, q̇o) + ST (qo)d1(·) = τo (10)

Upon substituting equation (7) into equation (10), it follows from (4) that

M̄(θ̈ − ζ̈) + V̄ (θ̇ − ζ̇) + ST M(qo)ϕ̇(qo, μ) + ς = τo (11)

where M̄ = ST (qo)M(qo)S(qo), V̄ = ST (qo)M(qo)Ṡ(qo)+ST (qo)Vm(qo, q̇o)S(qo),
ς = ST (qo)d1(·) + ST (qo)Vm(qo, q̇o)ϕ(qo, μ), and

M̄ =
[

m̄11 mc2b2 − Ic2

mc2b2 − Ic2 m̄22

]
, V̄ =

[
0 2m2c

2bf2φ̇

−2m2c
2bf2φ̇ 0

]

in which, m̄11 = mc2b2+2m2c
2bf1+Ic2+Iw, m̄22 = mc2b2−2m2c

2bf1+Ic2+Iw.
Also, M̄ is a positive definite symmetric matrix. Examining the expression of
m̄11 and m̄22 in M̄ and V̄ reveals that, due to payload loading/unloading and
shifting, the skew-symmetric property of the matrix ˙̄M −2V̄ disappears, making
the control design and stability analysis much more involved.
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2.3 State Space Realization

We establish a state space realization of the interest point p [16] with coordinates
(xp, yp) in the XY plane. According to the relation between point o and p, we
have xp = xo + h cos φ, yp = yo + h sin φ. and according to (4) and (6), we get

Ṗ = J(θ̇ − ζ̇) + ϕ1 (12)

where P = [xp, yp]T , ϕ1 = [μ sin φ,−μ cos φ]T and

J =
[

cb cos φ − ch sin φ cb cos φ + ch sin φ
cb sin φ + ch cos φ cb sin φ − ch cos φ

]

In addition, considering input saturation, τo is no longer designed control
input τ = [τ1, τ2]T , the τo is expressed as B(τ) = [b1(τ1), b2(τ2)]T here. To
facilitate the description, we use bi(τi), i = 1, 2 to denote b1(τ1) and b2(τ2). bi(τi)
denotes the inputs subject to asymmetric non-smooth saturation nonlinearity as
follows,

bi(τi) =

⎧
⎨

⎩

δ̄i, τi > τmb1i

�i(t)τi, −τmb2i ≤ τi ≤ τmb1i

−δi, τi < −τmb2i

(13)

where �i(t) is a time-varying function. τmb1i > 0 and −τmb2i < 0 represent
the break points. δ̄i and δi are the unknown bounds of input τi. A smooth
function wi(τi) = (δ̄ie

(εsi+αsiτi) − δie
−(εsi+αsiτi))/e(εsi+αsiτi) + e−(εsi+αsiτi)) is

introduced [17], with εsi = 0.5 ln(δi/δ̄i) and αsi > 0 is a constant, to deal with
the non-smooth and asymmetric actuation nonlinearities.

Then bi(τi) be expressed as bi(τi) = wi(τi) + δi(τi) where δi(τi) is the differ-
ence between bi(τi) and wi(τi). And the function δi(τi) is bounded, i.e. |δi(τi)| ≤
δ2, where δ2 is a positive and unknown constant. Then we employ the mean value
theorem on function wi(τi) to get wi(τi) = wi(τi0)+

∂wi(τi)
∂τi

∣
∣
∣
τi=τλ

i

(τi−τi0), where

τi
λ = λτi + (1 − λ)τi0 with 0 < λ < 1. By choosing τi0 = 0 and using the fact

that wi(0) = 0, we have wi(τi) = ∂wi(τi)
∂τi

∣
∣
∣
τi=τλ

i

τi = gi(·)τi. Note that wi(τi) is

always bounded in the set (−δi, δ̄i) and there exists some positive constant gmax

such that 0 < ∂wi(τi)/∂(τi) = gi ≤ gmax ≤ ∞, for all τi ∈ � [17,18].
According to the above analysis, from (11) and (12), we obtain

{
ẋ1 = x2

ẋ2 = M2
−1(JT )−1Gτ + L(·) (14)

where x1 = P , M2 = (JM̄−1JT )−1, G = diag{gi}, τ = [τ1, τ2]T , and L(·) =
J̇ θ̇ + JM̄−1δ(τ) + d(·) with δ(τ) = [δ1(τ1), δ2(τ2)]T and d(·) = −JM̄−1V̄ θ̇ +
JM̄−1V̄ ζ̇ − JM̄−1ς − JM̄−1ST M(q)ϕ̇ − J̇ ζ̇ + ϕ̇1.

Property 1. (1) λmin‖�‖2 ≤ �T (JT )−1GJ−1� ≤ λmax‖�‖2, where λmax ≥
λmin > 0 denotes the maximum and minimum eigenvalues of (JT )−1GJ−1,
respectively. And M2 is a positive definite symmetric matrix.
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The objective in this paper is: designing a neural adaptive controller to make
the interest point p of WMR track the desired trajectory.

3 Neural Networks and Functional Approximation

According to the well-known approximation property, any continuous function
ψ(Z), there exists an ideal the radial basis function neural networks(RBFNN)
capable of approximation it [19], on a compact set Ωz ∈ �l, with sufficient
accuracy, i.e., ψ(Z) = W ∗T ϑ(Z) + η(Z), where W ∗ is the optimal constant
weight, η(Z) denotes the approximation error and ϑ(Z) = [ϑ1(Z), · · · , ϑn(Z)]T

is the basis function vector.
One of the typical choices for ϑ(Z) is ϑj(Z) = exp(−(Z − αj)

T (Z − αj)/νj
2)

where αj = [αj1, · · · , αjn]T , j = 1, · · · , n denote the center of the receptive field,
and νj is the width of the Gaussian function. Widespread practical application
of RBFNNNs show that, if NNs node number n is chosen large enough, then
η(Z) can be reduced to an arbitrarily small value in a compact set.

4 Control Design and Stability Analysis

In this section, we design the adaptive controller for WMR. In this work, suppose
that the desired trajectory is x∗(t), with its 1st and 2nd derivatives ẋ∗ and ẍ∗,
each of which is available and bounded, ∀t ≥ 0. For the analysis convenience, we
define intermediate variable s in terms of the tracking error as

s = ė + βe (15)

where e = x1 − x∗ =
[
exp

, eyp

]T , and β > 0 is a positive design parameter [20].
Taking the time derivative of the filtered error s along the system model (14)
yields that

ṡ = ẋ2 − ẍ∗ + β(ẋ1 − ẋ∗) = M2
−1(JT )−1Gτ + N(·) (16)

where N(·) = η11+L(·), η11 = −ẍ∗+β(ẋ1−ẋ∗). In addition, we need assumption
as follows

Assumption 1.
∥
∥
∥Ṁ2

∥
∥
∥ ≤ γq(φ̇), where q(φ̇) is a known and computable positive

function and γ is an unknown positive constant. L(·) is bounded by an unknown
constant Lm, i.e., ‖L(·)‖ ≤ Lm < ∞.

Note that 2 ‖M2‖ ‖N(·)‖ is continuous and well defined over the compact set,
thus it can be approximated by NNs as, 2 ‖M2‖ ‖N(·)‖ = W ∗T ϑ(Z) + η(Z) ≤
a1F1 with F1 = ϑ(Z) + 1, a1 = max(‖W ∗‖ , ‖η(Z)‖), Z = [sT , x1

T ]. Therefore,
2 ‖M2‖ ‖N(·)‖ +

∥
∥
∥Ṁ2

∥
∥
∥ ‖s‖ ≤ a1F1 + γq(φ̇) ‖s‖ ≤ aF , where F = F1 + q(φ̇) ‖s‖,

a = max(a1, γ). If both x1 and x2 are bounded, so is F . Upon using Young’s
inequality, it is seen that

∥
∥sT

∥
∥ (2 ‖M2‖ ‖N(·)‖ +

∥
∥
∥Ṁ2

∥
∥
∥ ‖s‖) ≤ aF ‖s‖ ≤ 1

ρλmin
+

ρλmina
2F 2‖s‖2.
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Theorem 1. Consider system (14) with Assumption 1, if it is controlled by

τ = J−1
(
−ks − ρ

2
ŵF 2s

)
(17)

where k > 0, and ρ > 0 are design parameters, and ŵ is the estimate of w = a2,
with the updated law,

˙̂w = ρF 2‖s‖2 − σŵ (18)

with σ > 0 being a design parameter chosen by designer, then (1) the tracking
error e is ensured to be ultimately uniformly bounded; (2) all of the signals in
the controlled closed-loop system are bounded and continuous.

Proof. Choosing the Lyapunov function as V = sT M2s + λmin
2 w̃2, where w̃ =

w − ŵ is the virtual parameter estimation error, and taking the time derivative
of V along (16) and (18), we then arrive at

V̇ = 2sT M2ṡ + sT Ṁ2s + λminw̃(− ˙̂w)
= 2sT (JT )−1Gτ + 2sT M2N(·) + sT Ṁ2s − λminw̃ ˙̂w
≤ 2sT (JT )−1GJ−1(−ks − ρ

2 ŵF 2s) + 1
ρλmin

+ ρλminwF 2‖s‖2
−λminw̃(ρF 2‖s‖2 − σŵ)

≤ −2kλmin‖s‖2 + ρλminw̃F 2‖s‖2 + 1
ρλmin

− λminw̃(ρF 2‖s‖2 − σŵ)
≤ −2kλmin‖s‖2 + 1

ρλmin
+ σλmin

2 w2 + σλmin
2 w̃2 − σλminw̃

2

≤ −μ1V + χ

(19)

where μ1 = min(2kλmin
λmax 1

, σ), with λmax 1 being the maximum eigenvalue of M2,
and χ = 1

ρλmin
+ σλmin

2 w2.
Therefore, we can conclude that V (t) ∈ L∞, which then implies that s ∈ L∞

and ŵ ∈ L∞. From the definition of s in (15), it thus follows that e ∈ L∞
and ė ∈ L∞, which further imply that x1 ∈ L∞ and ẋ1 ∈ L∞. Thus F ∈ L∞.
Furthermore, it holds that τ ∈ L∞ and ˙̂w ∈ L∞. That is, all of the signals in
the closed-loop system are bounded and continuous. In addition, V̇ will become
negative as long as s /∈ Ωs = {s| ‖s‖ ≤ √

χ/(kλmin)}. That is, s is confined
in the set Ωs. This further implies that the uniformly ultimately boundedness
(UUB) of s is ensured and thus the UUB of e is also ensured.

5 Numerical Simulations

To verify the result obtained in Theorem1, the simulation runs under the
condition that the desired trajectory is x∗ = [2 sin(t), 3 cos(t)]T ; the system
parameters are chosen as m1 = 10, m2 = 6 + 2 sin(t), mw = 1, I1 = 2.5,
I2 = 0.4 + 0.1 sin(t), Iw = 0.02, r = 0.05, b = 0.5, h = 0.3; the coordinate of the
load in WMR is chosen as f1 = 0.45 sin(t), f2 = 0.6 cos(t)+0.5; slipping/skidding
uncertainties are μ = 0.01, ζ = [0.001 sin(t), 0.002 cos(t)]T ; and the asymmetric
input saturation is considered as δ̄1 = 20, �1 = 1, δ1 = 15, δ̄2 = 50, �2 = 1,
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Fig. 1. Nonholonomic
wheeled mobile robot

Fig. 2. The system
tracking error

Fig. 3. The designed
control input

Fig. 4. The saturation
control input bi(τi)

Fig. 5. The variable
position of CM in
WMR

Fig. 6. Evolution of the
virtual parameter

δ2 = 20. We take the design parameters as β = 11, k = 6, ρ = 5, σ = 0.08,
and initial conditions x1 = [xp, yp]T = [0.1, 3.01]T , θ = [θ1, θ2]T = [0, 0]T . The
simulation results are shown in Figs. 2, 3, 4, 5 and 6. From Fig. 2, we see that
position tracking error maintain in a small compact set. It is seen that both the
control input signals and the saturation control input signals are continuous and
bounded from Figs. 3 and 4; Figs. 5 and 6 show the variable position of CM in
WMR and the evolution of the virtual parameter, respectively.

6 Conclusion

While there is a rich collection of technical results on control of WMR, the
vast majority of existing works have been focused on the scenario with known
and fixed mass center, ignoring either input saturation, or slipping/skidding
uncertainties. This paper address these challenging issues simultaneously. First,
we establish a model for WMR with the consideration of uncertain mass center
due to the impact of uncertain load. Second, by using neural networks, a user-
friendly control scheme without the need for precise information on WMR model
is developed, which is able to achieve uniformity ultimately bounded trembling,
as authenticated theoretically by Lyapunov method and confirmed numerically
by simulation.
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Abstract. This paper presents an adaptive neural network (NN) control
strategy for robot manipulators with uncertainties and constraints. Posi-
tion, velocity and control input constraints are considered and tackled by
introducing barrier Lyapunov functions in the backstepping procedure.
The system uncertainties are estimated and compensated by a locally
weighted online NN. The boundedness of the closed-loop control system
and the feasibility of the proposed control law are demonstrated by the-
oretical analysis. The effectiveness of the proposed control strategy has
been verified by simulation results on a robot manipulator.

Keywords: Adaptive control · Backstepping · Neural network · System
constraint · Barrier Lyapunov function · Robot manipulator

1 Introduction

Control of robot manipulators has gained more and more attention for its appli-
cations in industries, agricultures, and teleoperated surgeries. The difficulties in
control of robot manipulators mainly include uncertainties and constraints in the
position, velocity, and control input. On the one hand, uncertainties always exist
in robot manipulator models due to modeling errors and disturbances. On the
other hand, control input constraints always exist due to limited control powers,
and motion constraints (e.g. position constraints and velocity constraints) are
needed to avoid collision or injury to human beings, especially in human-robot
interaction. Therefore, the control design for robot manipulators with uncertain-
ties and constraints deserves more research.

Many robust control strategies have been developed for robot manipulators,
including sliding mode control [1–3], neural network (NN) control [3–8], fuzzy
control [9,10], adaptive control [11], etc. However, sliding mode control usu-
ally suffers from chattering and the need of high-frequency bandwidth, adap-
tive control usually only handles structured uncertainties, and fuzzy control
highly depends on the experiences of control engineers. Compared with other
control approaches, NN control has its own advantages. NNs can approximate
both structured and unstructured uncertainties due to their inherent function
c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part II, LNCS 10262, pp. 118–127, 2017.
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approximation abilities. The use of NNs estimators in control is possible to obtain
desired control performances without high control gains.

Since constraints in robot manipulators need to be considered and ignor-
ing constraints may deteriorate the control performance, some results have been
obtained on control of constrained robot manipulators. Set-point regulation con-
trol and tracking control laws were designed in [12] and [13] for robot manip-
ulators with velocity constraints, respectively. Quadratic programming-based
kinematic control was developed in [14,15] for velocity constrained redundant
manipulators. Joint position constraints were considered and optimal control was
designed based on adaptive dynamic programming in [16]. Recently, adaptive
control was developed for robot manipulators where output or state constraints
are tackled by bounding barrier Lyapunov functions (BLFs) in [17,18]. Based on
the above analysis, one can see that only position or joint velocity constraints
are considered in existing robot manipulators control approaches.

In this paper, an adaptive NN control law is proposed for robot manipulators
with uncertainties and constraints, including position, velocity and control con-
straints. The uncertainties are approximated by locally weighted adaptive NNs
and compensated by the NN estimator in the control law. In locally weighted
NNs, estimators composed of independently adjusted local models are used to
reach the desired approximation accuracy. Thus, fewer neurons are needed to
approximate smooth functions in the desired accuracy compared with other NNs.
The system constraints are tackled by using BLFs in the backstepping control
[19,20] design for robot manipulators, which extends BLFs-based control for
output and state constrained systems [17] to state and control constrained sys-
tems. It is demonstrated that uniform boundedness of all closed-loop signals is
obtained while the constraints are not violated in theory.

2 Problem Statement

Consider a n-link robot manipulator with the following dynamics:

M(q)q̈ + Vm(q, q̇)q̇ + F q̇ + G(q) = τ (1)

where q = q1 = [q11, q12, · · · , q1n]T ∈ Rn is a joint angle, q2 = q̇1 = [q21, q22, · · · ,
q2n]T is a joint velocity, M(q) ∈ Rn×n is an inertia matrix, Vm(q, q̇) ∈ Rn×n

is a centripetal and Coriolis matrix, F q̇ ∈ Rn denotes a viscous friction torque,
G(q) ∈ Rn denotes a gravitation torque, and τ ∈ Rn denotes a control torque.

Assumption 1. M(q) satisfies the following inequalities:

m1||x||2 ≤ xT M(q)x ≤ m2||x||2, x ∈ Rn (2)

where m1, m2 ∈ R are positive constants.

Assumption 2. The uncertain function f(q, q̇) = M−1(q)[Vm(q, q̇)q̇ + F q̇ +
G(q)] is continuous.
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Assumption 3. The reference trajectory is described as yd(t) = [yd1, yd2, · · · ,
ydn]T ∈ Rn and satisfies |ydi| ≤ Ai and |ẏdi| ≤ Yi, i = 1, · · · , n.

The objective is to design an adaptive NN control law for the system (refeq1)
to track desired trajectory qd(t) and to satisfy the following constraints:

|q1i| ≤ b1i, |q2i| ≤ b2i, |τi| ≤ τdi, i = 1, 2, · · · , n. (3)

3 BLF-Based Neural Control

3.1 Control Design

Let e1 = [e11, e12, e13]T = q1 −yd be a tracking error. Consider BLFs as follows:

V1 =
1
2

n∑

i=1

k2
1i

k2
1i − e21i

(4)

with k1i to k1n being positive design parameters. The time derivative of V1 is

V̇1 =
n∑

i=1

e1i

k2
1i − e21i

(q2i − ẏdi). (5)

Design the following virtual control input:

α1i = ẏdi − λ1ie1i, i = 1, 2, ·, n (6)

with λ1i, i = 1, 2, · · · , n being positive parameters.
Let e2 = [e21, · · · , e2n]T = [q21 − α11, · · · , q2n − α1n]T . Then, one has

V̇1 = −
n∑

i=1

λ1i
e21i

k2
1i − e21i

+
n∑

i=1

e1ie2i

k2
1i − e21i

. (7)

Consider the following BLFs:

V2 = V1 + Λ1, (8)

Λ1 =
n∑

i=1

1
2

log
k2
2i

k2
2i − e22i

(9)

with k2i to k2n being positive design parameters. The time derivative of Λ1 is

Λ̇1 =
n∑

i=1

e2i

k2
2i − e22i

(q̇2i − α̇1i)

= ξT (f(q1, q2) + M−1(q1)τ − [α̇11, · · · , α̇1n]T ) (10)

where

ξ =
[

e21
k2
21 − e221

, · · · ,
e2n

k2
2n − e22n

]T

. (11)
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Design the reference signal τr for τ as

τr = [τr1, · · · , τrn]T = M(q1)(−λ2e2 − f̂(q1, q2) − s) (12)

where λ2 is a positive design parameter, f̂(q1, q2) is an estimate of f(q1, q2), and

s =
1
2
ξ − [α̇11, · · · , α̇1n]T + [(k2

21 − e221)e11/(k2
11 − e211),

· · · , (k2
2n − e22n)e1n/(k2

1n − e21n)]T . (13)

Define e3 = [e31, · · · , e3n]T = τ − τr. From (7)–(13), one obtains

V̇2 = −
n∑

i=1

λ1i
e21i

k2
1i − e21i

−
n∑

i=1

λ2
e22i

k2
2i − e22i

+ ξT (f̃ + M−1e3) − 1
2
ξT ξ (14)

Consider the following BLF:

V3 = V2 + Λ2, (15)

Λ2 =
n∑

i=1

1
2

log
k2
3i

k2
3i − e23i

(16)

with k3i to k3i being positive design parameters. Time derivative of Λ2 is

Λ̇2 = ηT (τ̇ − τ̇r) (17)

where

η = [
e31

k2
31 − e231

, · · · ,
e3n

k2
3n − e23n

]T (18)

If the control law for the robot manipulator (1) is designed as follows:

τ = −λ3

∫ t

0

e3(σ)dσ −
∫ t

0

[diag{k2
3i − e23i}M−1(q1)ξ](σ)dσ + τr(t) (19)

where λ3 is a positive parameter, then one gets

V̇3 = −
n∑

i=1

λ1i
e21i

k2
1i − e21i

−
n∑

i=1

λ2
e22i

k2
2i − e22i

−
n∑

i=1

λ3
e23i

k2
3i − e23i

+ ξT f̃ − 1
2
ξT ξ.

(20)

3.2 Locally Weighted Online NN Approximation

Let X = [X1, · · · ,X2n]T = [qT
1 , qT

2 ]T and D = {X : |Xi| ≤ b1i, |Xn+i| ≤ b2i, i =
1, · · · , n}. The locally weighted NN approximation of f(X) is described by

f̂(X) =
∑N

k=1 wk(X)f̂k(X)
∑N

k=1 wk(X)
(21)
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where wk(X), k = 1, · · · , N as weighted functions, and the local estimator f̂k(X)
is described as follows:

f̂k(X) = θT
k φk(X), φk(X) = [1, (X − ck)T ]T . (22)

with ck being the center of the k-th local estimator.
Assume D ⊆ ∪N

k=1Sk, where Sk = {X : wk �= 0}, k = 1, 2, · · · , N are a series
of compact sets. Define wk(X) as follows:

wk(X) =

{
(1 − (||X − ck||/μk)2)2, if ||X − ck|| ≤ μk

0, otherwise
(23)

where μk is the radius of Sk. Let w̄k(X) = wk(x)/
∑

k wk(X). Then, (20) can
be equivalently expressed as follows:

f̂(X) =
N∑

k=1

w̄kf̂k(X). (24)

Define the optimal parameter θ∗
k for X ∈ Sk as follows:

θ∗
k = arg min

θk

(∫

X∈D

wk(X)||f(X) − f̂k(X)||2dX

)
. (25)

Also, define the error εk as follows:

εk =

{
f(X) − f̂k(X), on S̄k

0, on D − S̄k

(26)

and assume |εk| ≤ ε with ε as a positive constant. Then, f(x) and its locally
weighted NN approximation can be expressed to be

f =
N∑

k=1

w̄kθ∗T
k φk +

N∑

k=1

w̄kεk, (27)

f̂ =
N∑

k=1

w̄kθT
k φk. (28)

It is obvious that |∑N
k=1 w̄kεk| ≤ max(|εk|)∑Ni

k=1 w̄k ≤ ε.
Let θ̃k = θ∗

k − θk and Ωk � {θk : ||θk|| ≤ cθk}, and define

c = max
θ∗
k,θk∈Ωk

N∑

k=1

θ̃T
k θ̃k/η

with η being a positive design parameter. Design the update law of θk to be

θ̇k = Proj
(
ηw̄kφkξT

)
(29)

where Proj(.) is a projection operator given by

Proj(.) =

⎧
⎪⎨

⎪⎩

0, if θk = −cθk and . < 0
0, if θk = cθk and . > 0
., otherwise

(30)
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3.3 Stability Analysis

Theorem. Consider the system (1) with constraints (3). Assume Assump-
tions 1–3 hold and X(0) ∈ D, τ(0) = 0, and the control law is designed as
(19). Let

A1i = max
(e1i,ydi)∈Ω1i

|α1i(e1i, ydi)|, (31)

Ari = max
((ē2i,ȳdi))∈Ωri

|τri(ē2i, ȳdi)|, (32)

where ē2i = [e1i, e2i]T , ȳdi = [ydi, ẏdi]T , and

Ω1i = {[e1i, ydi] : |e1i| ≤ k1i, |ydi| ≤ Ai}, (33)
Ωτi = {[ē1i, ȳdi] : |e1i| ≤ k1i, |e2i| ≤ k2i, |ydi| ≤ Ai, |ẏdi| ≤ Yi}. (34)

If there exist λ1i, i = 1, · · · , n, λ2, λ3 such that

b1i ≥ k1i + Ai, b2i ≥ k2i + A1i, τdi ≥ k3i + Ari, i = 1, · · · , n, (35)

then the constraints (3) are satisfied and the signals in the closed-loop control
system are uniformly ultimately bounded.

Proof. Consider the following Lyapunov function:

V = V3 +
1
2η

tr{
N∑

k=1

θ̃T
k θ̃k} (36)

Based on (20) and (36), one obtains

V̇ = −
n∑

i=1

λ1i
e21i

k2
1i − e21i

−
n∑

i=1

λ2
e22i

k2
2i − e22i

−
n∑

i=1

λ3
e23i

k2
3i − e23i

− 1
2
ξT ξ

+ξT (
N∑

i=1

w̄kθ̃T
k φk +

N∑

i=1

w̄kεk) − 1
η
tr{

N∑

k=1

θ̃T
k

˙̂
θk}

= −
n∑

i=1

λ1i
e21i

k2
1i − e21i

−
n∑

i=1

λ2
e22i

k2
2i − e22i

−
n∑

i=1

λ3
e23i

k2
3i − e23i

− 1
2
ξT ξ

−1
η
tr{

N∑

k=1

θ̃T
k ( ˙̂

θk − ηw̄kφkξT )} + ξT
N∑

i=1

w̄kεk. (37)

Substituting (29) into (37), one obtains

V̇ ≤ −
n∑

i=1

λ1i
e21i

k2
1i − e21i

−
n∑

i=1

λ2
e22i

k2
2i − e22i

−
n∑

i=1

λ3
e23i

k2
3i − e23i

+
1
2
ε2 (38)

As log[k2
ji/(k2

ji − e2ji)] ≤ e2ji/(k2
ji − e2ji) for j = 1, 2, 3. [21], one gets

V̇ ≤ −2λV3 +
1
2
ε2 ≤ −2λV + β (39)
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where λ = min{λ1i, i = 1, · · · , n, λ2, λ3} and β = λc + 1/2ε2. It is concluded
from (39) that V and all closed-loop signals are bounded. Then, based on the
forms of BLFs Vi, i = 1, 2, 3 and X(0) ∈ D, one gets |e1i| ≤ k1i, |e2i| ≤ k2i and
|e3i| ≤ k3i. Since (35) holds, one concludes |q1i| ≤ b1i, |q2i| ≤ b2i and |τi| ≤ τdi.
According to (39), one also obtains

V (t) ≤ exp(−λt)(V (0) − β

2λ
) +

β

2λ
. (40)

Since log k2
1i

k2
1i−e2

1i
≤ 2V (t) for i = 1, · · · , n, one gets

log
k2
1i

k2
1i − e21i

≤ 2 exp(−λt)(V (0) − β

2λ
) +

β

λ
(41)

from which one obtains

lim sup
t→∞

k2
1i

k2
1i − e21i

≤ exp(β/λ), (42)

lim sup
t→∞

|e1i| ≤ k1i

√
1 − exp(β/λ). (43)

4 Simulation Results

To illustrate the effectiveness of the proposed BLFs-based locally weighted learn-
ing control law, simulations are carried out for a one-link robot manipulator with
the reference trajectory yd = 0.5 cos(0.2t). The dynamics of the manipulator is
given by

ml2q̈ + dq̇ + 0.5mgl cos(q) = τ, (44)

where m = 1 kg, l = 1 m, g = 9.8 m/s2, and d = 1kg.m2/s. The constraints are
|q1| ≤ 1, |q2| ≤ 1 and |τ | ≤ 10 with q1 = q, q2 = q̇. In the simulation, the initial
system states are q1(0) = 0.2, q2(0) = 0.2.

The control is designed as

τ = −7
∫ t

0

e3dσ −
∫ t

0

92 − e23
0.62 − e22

e2dσ + τr (45)

where e1 = q1 − yd, e2 = q2 − α1, e3 = τ − τr and are constrained in |e1| ≤ 0.5,
|e2| ≤ 0.6 and |e3| ≤ 7, and the virtual control α1, τr are described by

τr = −5e2 + α̇1 − f̂ − 0.5
e2

0.62 − z22
− 0.62 − e22

0.52 − e21
e1

α1 = −2e1 + ẏd

where f̂ is a localized adaptive NN approximation of f = −q2 + 9.8/2 cos(q1).
In the NN approximation, the centers location are chosen as c1 = [−1, 1]T ,
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c2 = [0, 1]T , c3 = [1, 1]T , c4 = [−1, 0]T , c5 = [0, 0]T , c6 = [1, 0]T , c7 =
[−1,−1]T , c8 = [0,−1]T , c9 = [1,−1]T , c10 = [−0.5, 0.5]T , c11 = [0.5, 0.5]T , c12 =
[−0.5,−0.5]T , c13 = [0.5,−0.5]T , cθk = 0.5, η = 100, μk = 1.5, and the basis
functions are chosen as φi = [1, q1, q2]T − [0; ci], i = 1, · · · , 13.

Simulation results are presented in Fig. 1(a)–(c), where Fig. 1(a) shows the
tracking errors e1, e2 and e3, Fig. 1(b) shows the performance of the states q1, q2
and the control input τ , and Fig. 1(c) shows the NN approximation error f − f̂ .
From Fig. 1(a), the tracking error is near to 0 after 2 s and the constraints sat-
isfaction |e1| ≤ 0.5, |e2| ≤ 0.6, |e3| ≤ 7 and |q1| ≤ 1, |q2| ≤ 1, |τ | ≤ 10 is easily
seen from Fig. 1(a)–(b). From Fig. 1(c), one sees that the approximation error
f − f̂ converges to a small neighborhood of zero after 2 s. Therefore, the designed
adaptive NN control law makes the system state and control input constraints
fulfilled and the tracking error converge to a small neighborhood of 0.
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Fig. 1. Control trajectories by the proposed controller. (a) The tracking errors e1, e2
and e3. (b) The states q1, q2 and control input τ . (c) The NN approximation error
f − f̂ .
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5 Conclusions

A BLFs-based adaptive NN control law was designed for robot manipulators with
position, velocity and control constraints. The uncertainties were approximated
by locally weighted adaptive NNs and the system constraints were tackled by
using BLFs in the backstepping procedure. The control feasibility and uniform
boundedness of all closed-loop signals were verified by theoretical analysis. From
simulation results, we can see that under the proposed control the system con-
straints were never violated and absolute value of the tracking error converged
to a small neighborhood of zero.
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Abstract. Extensive studies suggest that the brain integrates multisen-
sory signals in a Bayesian optimal way. In this work, we consider how
the couplings in a neural network model are shaped by the prior infor-
mation when it performs optimal multisensory integration and encodes
the whole profile of the posterior. To process stimuli of two modalities,
a biologically plausible neural network model consists of two modules,
one for each modality, and crosstalks between the two modules are car-
ried out through feedforward cross-links and reciprocal connections. We
found that the reciprocal couplings are crucial to optimal multisensory
integration in that their pattern is shaped by the correlation in the joint
prior distribution of sensory stimuli. Our results show that a decentral-
ized architecture based on reciprocal connections is able to accommodate
complex correlation structures across modalities and utilize this prior
information in optimal multisensory integration.

Keywords: Recurrent neural networks · Multisensory processing ·
Bayesian inference

1 Introduction

Extracting information reliably from ambiguous environments is crucial for the
survivorship of organisms. The brain solves this problem by exploiting multiple
sensory modalities to gather, from different aspects, as much information as pos-
sible about the same entity of interest. It has been reported in a large number of
psychophysical and neurobiological studies that the brain can integrate sensory
cues in an optimal way, as predicted by Bayesian inference [1–3].

Despite the accumulated behavior evidence, exactly how the brain imple-
ments optimal multisensory integration remains largely unknown. In the present
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study, we adopt a theoretical approach to address this challenging issue. We for-
mulate multisensory integration as a mathematical problem of optimizing net-
work structure under the constraint that for a given prior distribution of stimuli,
the network’s output matches the posterior distribution. This is equivalent to
requiring that the network realizes Bayesian inference when the sensory cues are
sampled form their prior over many trials. We introduce different prior distribu-
tions of the multisensory stimuli and investigate how network structures depend
on the choice of priors. We look for evidence to see where information about
the prior and that about the likelihood are represented in the network consist-
ing of recurrent and reciprocal connections, cross-links and direct links. These
results generate predictions about the structural pre-requisites for multisensory
integration. They can be tested in future experiments and shed light on our
understanding of how the brain can achieve multisensory integration optimally.

2 Optimal Multisensory Inference with a Composite
Prior

Utilizing prior information is important for multisensory information processing.
A variety of studies have suggested that the prior distributions are taken into
account when animals make perceptual decisions [4–6]. Specifically, multisensory
processing relies on the experience about correlations among sensory cues, which
usually benefits us in forming a unified and coherent perception of the external
world [7], yet sometimes evokes interesting illusions [8,9].

Fig. 1. Three types of the prior. (a) The joint prior distribution constructed from the
congruent copula c1. The marginal priors, which are the same for s1 and s2, are plotted
to the sides of (a). (b) The joint prior distribution constructed from the opposite copula
c2. (c) The joint prior distribution constructed from the mirror copula c3. The color
code for (a)–(c) are the same and shown to the right of (c). Parameters: for all three
cases, κs = 0.2, κp = 11.6, pc = 0.246. For the opposite prior in (b) and the mirror
prior in (c), α = 0.5. (Color figure online)

Different specific forms of the prior distribution have been brought up to
characterize different perceptual tasks (see [10] for a review). In general, the
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joint prior should be composed of an independent part and a correlated part.
Suppose s1 and s2 are two sensory stimuli in different modalities, whose marginal
prior densities are p(s1) and p(s2), respectively. The joint prior can be described
as p(s1, s2) = (1 − pc)p(s1)p(s2) + pcq(s1, s2). Here, q(s1, s2) is a correlated
distribution and pc ∈ [0, 1] describes how often s1 and s2 are originated from
that distribution. Ideally, q(s1, s2) should only affect the correlation between
the two underlying stimuli without changing their marginal distributions. This
requirement can be satisfied by using a copula, which is a multivariate proba-
bility distribution, whose marginal distribution of each variable is uniform [11].
Consider a two-dimensional copula c(ξ1, ξ2), satisfying the property that its mar-
ginals over ξ1 or ξ2 are equal to 1. According to the Sklar’s theorem [12], q(s1, s2)
can be constructed as q(s1, s2) = c(F (s1), F (s2))p(s1)p(s2), where F (si) is the
cumulative distribution function of p(si). It can be verified that the marginal
distributions of q(s1, s2) are exactly p(s1) and p(s2).

In the present work, we consider stimuli such as heading direction residing on
a circular space [−π, π). We use the von Mises distribution as the marginal prior
distribution, p(si) ∝ eκs cos si , i = 1, 2, where κs is the concentration parameter,
and ∝ indicates proportionality. For simplicity, we consider the case that the
marginal priors are the same for the two modalities, and centered at the origin.
In order to observe the dependence of network structure on the prior, three forms
of copulas are chosen due to their distinctive profiles:

1. Congruent copula [c1(ξ1, ξ2) ∝ eκp cos 2π(ξ1−ξ2)], which is derived from the von
Mises distribution. Similar forms of such prior are widely applied in describing
a pair of correlated sensory cues when they are originated from a common
cause [8,13]. Larger κp indicates higher correlation between the stimuli in the
two modalities.

2. Opposite copula [c2(ξ1, ξ2) = αc1(ξ1, ξ2)+(1−α)c1(ξ1, ξ2 +1/2)]. The second
term in c2 indicated that s1 and s2 may come in opposition directions.

3. Mirror copula [c3(ξ1, ξ2) = αc1(ξ1, ξ2) + (1 − α)c1(ξ1,−ξ2)]. The second term
in c3 indicates that s1 and s2 might be the mirror image of each other.

Examples of three different kinds of joint prior distributions p(s1, s2) are shown
in Fig. 1(a)–(c).

The two stimuli s1 and s2 give rise to sensory observations x1 and x2, respec-
tively. The sensory observations are corrupted by independent noises in different
sensory pathways. We use the von Mises distribution to represent the likelihood
functions, p(xi|si) ∝ eκi cos(xi−si), i = 1, 2, where κi is the concentration para-
meter, which can be understood as the reliability of the sensory input in the
corresponding modality.

These uni-sensory observations are supposed to be fed into higher level mul-
tisensory regions, where optimal multisensory estimates ŝ1 and ŝ2 are made.
According to the Bayes’ theorem, the marginal posterior distribution is given by

p(s1|x1, x2) ∝
∫

p(x1|s1)p(x2|s2)p(s1, s2) ds2. (1)
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External
stimuli

Internal
representation

(a)

Input 1 Input 2

Module 1 Module 2

Cross-links

Reciprocal couplings(b)

Fig. 2. The multimodal Bayesian inference problem and the recurrent neural network
model. (a) A graphical illustration of the Bayesian inference problem. (b) Each small
circle portraits one neuron, with the attached arrow indicating the neuron’s preferred
stimulus. Besides being recurrently connected to each of themselves, the two modules
of the network model interact with each other through feedforward cross-links (Wff

12

and Wff
21) and reciprocal couplings (Wrec

12 and Wrec
21 ). The inputs of the two modules

represent uni-sensory observations, corresponding to x1 and x2 in (a). The outputs are
multisensory representations, corresponding to ŝ1 and ŝ2 in (a).

Usually the expected value of s1 from the posterior distribution is chosen as
a Bayesian optimal estimate ŝi for the underlying stimulus, which minimizes a
mean squared error cost function [10]. For circular random variables considered
in this work, the Bayesian estimates for the stimuli in two modalities are given by,
ŝi = arg

[∫
p(si = φ|x1, x2)ejφ dφ

]
, for i = 1, 2, where j ≡ √−1 is the imaginary

unit. This Bayesian inference framework for multisensory processing is shown
schematically in Fig. 2(a).

3 A Bi-modular Recurrent Neural Network Model

Bi-modular recurrent neural network models have been applied in many studies
on the multisensory integration to explain experimental findings and provide
insights into the functional roles of connections between brain areas [14,15].
We will explore the capability of such bi-modular recurrent network models in
encoding an arbitrary prior distribution and optimally integrating multisensory
information based on that prior. Consider a bi-modular recurrent neural network
model with its dynamical equation [16],

τs
∂

∂t

[
u1

u2

]
= −

[
u1

u2

]
+

[
Wrec

11 Wrec
12

Wrec
21 Wrec

22

] [
r1
r2

]
+

[
Wff

11 Wff
12

Wff
21 Wff

22

] [
I1
I2

]
. (2)

Here, ui is a N -element vector, whose mth element ui,m is the synaptic input of
the mth neuron in module i. The mth element of the vector ri, ri,m, is the firing
rates of the mth neuron in module i. The firing rate is related to the synaptic
input ui through an activation function ri = f(ui). Ii is the external inputs
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applied on module i. Wff
ij is the feedforward weight matrix from module j to

module i. Wrec
ij is the recurrent weight matrix from module j to module i. The

preferred stimuli of neurons in each module are supposed to be evenly distributed
over a circle, φm = (2πm)/N − π. In the following results, both modules consist
of N = 32 neurons. The architecture of this network model is illustrated in
Fig. 2(b).

Fig. 3. Comparison of model structures. Network architecture and connection weights
for: (a) model 1, a fully connected model; (b) model 2, where feedforward cross-links
are cut; and (c) model 3, where reciprocal couplings are cut. All three structures are
optimized for congruent copula c1. Parameters: κs = 0.2, κp = 11.6, pc = 0.246, κ̃1 =
κ̃2 = 10.7.

The inputs of the neural network are the neural population representation
of the uni-sensory observations of the external stimuli. Due to the uncertain
nature of the external world and noisy neuronal firings, the neural population
representation is constantly fluctuating, hypothetically sampling the likelihood
function. In a similar way, the outputs of the multisensory neural population
should sample the posterior distribution. If we consider a time scale that is
much longer than this sampling process, the temporal average of the neuronal
inputs and outputs should resemble the likelihood function and the network’s
estimate of the posterior distribution, respectively. Therefore, the external input
vector Ii is set to be the same as the likelihood functions p(xi|si = φm), and
the stationary firing rates ri

∗ will eventually approach the network’s estimate
of the marginal posterior pi, whose mth element is p(si = φm|x1, x2), during the
network optimization described below.

We use a divisive normalization function as the activation function. Recently,
due to its success in accounting for important features of multisensory integra-
tion, such as the principle of inverse effectiveness and the spatial principle [17],
the divisive normalization model was proposed to be a canonical integration
operation [18,19]. Here, we follow the form of divisive normalization in a contin-
uous attractor neural network model [20], ri,m = [ui,m]2+ /{1+kI

∑
n [ui,n]2+}, for

i = 1, 2, and m,n = 1, 2, . . . , N . Here, [x]+ ≡ max(x, 0), and kI is the strength of
global inhibition. The performance of the network is the best with divisive nor-
malization function, compared with sigmoid or piece-wise linear functions (data
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not shown here). In the present work, we fix kI = 0.1, while small changes in kI

does not affect the results very much.

3.1 Optimize the Connection Weights Through Stochastic Gradient
Descent

We optimize the connection weights in order to minimize the mean squared error
L between the stationary network activity r∗ and the marginal posterior distri-
bution pi, L ≡ 〈∑i=1,2 ‖r∗

i −pi‖2〉p(x1,x2). Usually a recurrent neural network is
trained using back-propagation through time [21,22]. Since only the steady state
is relevant in this work, we use a simple stochastic gradient descent algorithm
to optimize the steady state. Samples of training inputs (I1, I2) and training
outputs (p1,p2) are generated in the following way. Given the prior distribution
p(s1, s2) and the mean reliabilities of sensory inputs κ̃1 and κ̃2, we first draw the
true value of external stimuli s1 and s2 from the prior distribution and draw the
reliabilities for each sensory input κ1 and κ2 independently from log-normal dis-
tributions lnN (κ̃i, σ

2
κ). In this work, we always set σκ to be 0.5. Secondly, draw

the sensory input xi from the von Mises distribution p(xi|si) ∝ eκi cos(si−xi).
Then, the training inputs and the training outputs can be calculated according
to the Bayes’ theorem in Eq. (1).

4 Results

4.1 Model Comparison

Crosstalks between different sensory areas may happen at different levels. In
general, we consider two types of communication across modalities: the feedfor-
ward cross-links (Wff

ij for i 	= j), and the reciprocal couplings (Wrec
ij for i 	= j).

By forcing either of them to be zero, we tested three different model struc-
tures (Fig. 3). Model 1 is the fully connected model (Fig. 3(a)). In model 2, the
interaction between the two modules are limited to the reciprocal connections,
with the feedforward cross-links forced to be zero (Fig. 3(b)). In model 3, the
reciprocal connections are set to be zero (Fig. 3(c)). We also tested a purely feed-
forward network structure, model 4, to see if recurrent connections are essential
for optimal multisensory integration. We found that model 1, 2 and 3 are almost
indistinguishable in their performances, while the purely feedfoward structure,
model 4, is obviously worse than the others (data not shown here). Examples
of the connection weights for model 1, 2 and 3 are shown in the lower parts of
Fig. 3(a)–(c). In the following part of this work, we will focus on model 2, while
general results are similar for model 1 and model 3.

4.2 Coupling Weights for Different Priors

To reveal the impact of the prior information on the recurrent neural network
model, we compare the coupling weights of networks optimized with different
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Fig. 4. The optimized coupling weights for three types of the prior. (a) The connection
weights of model 2 trained with the congruent prior in Fig. 1(a). (b) The connection
weights of model 2 trained with the opposite prior in Fig. 1(b). (c) The connection
weights of model 2 trained with the mirror prior in Fig. 1(c). Parameters: for all three
cases, κ̃1 = κ̃2 = 10.7.

prior distributions. Three examples are shown in Fig. 4. The prior distributions
share the same marginal distributions, and are then constructed using three
different types of copulas: the congruent copula c1 (Fig. 1(a)), the opposite cop-
ula c2 (Fig. 1(b)) and the mirror copula c3 (Fig. 1(c)). Coupling weights of the
networks trained with the three priors are shown in Fig. 4(a)–(c). The same-
side connection weights (Wff

11,W
ff
22,W

rec
11 and Wrec

22 ) are nearly identical for
the three cases. However, the reciprocal couplings (Wrec

12 and Wrec
12 ) exhibit

patterns resembling the corresponding prior distribution. This result strongly
suggests that the reciprocal connections, as a bridge between different sensory
modules, are able to encode the information of the joint prior distribution, taking
the correlation structure between sensory stimuli into account when performing
multisensory integration.

5 Conclusion

We have developed a framework to link the network structure of the multisen-
sory processing brain region to the statistical structure of Bayesian inference.
We found that a recurrent network structure appears to be necessary for imple-
menting optimal multisensory integration. Furthermore, we have studied the
dependence of the network structure for multisensory information processing on
the choice of the priors and likelihoods. We found clear evidence that informa-
tion about the prior is encoded in the indirect couplings (reciprocal connections
and cross-links). This can be seen from the correspondence between the profiles
of the indirect couplings and the correlation pattern in the joint prior of the
stimuli. In the present models, the priors can be encoded in either cross-links or
reciprocal connections or both. In the future, we can consider how biological con-
straints can narrow down these possibilities for realistic architecture exploited
by the neural system.

Multisensory integration is not limited to biological systems. In other artifi-
cial intelligence applications, such as computer vision and robotics, integrating
signals optimally from multiple sensors is also a fundamental technique. The
optimal structure we found has implications to the decentralized architecture for
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multisensory information processing. It demonstrates that composite prior distri-
butions can be encoded in a decentralized fashion in the reciprocal connections.
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Abstract. In this paper, a filtered sliding mode control (FSMC) scheme
based on fuzzy uncertainty observer (FUO) for trajectory tracking con-
trol of a quadrotor unmanned aerial vehicle (QUAV) is proposed. To be
specific, the dynamics model of QUAV is decomposed into three sub-
systems. By virtue of the cascaded structure, sliding-mode-based vir-
tual control laws can be recursively designed. In order to remove the
smoothness requirements on intermediate signals, a series of first-order
filters are employed to reconstruct sliding mode control signals together
with their first derivatives. Moreover, fuzzy uncertainty observers are
employed to indirectly estimate lumped unknown nonlinearities includ-
ing system uncertainties and external disturbances and make compensa-
tion for the QUAV system. Stability analysis and uniformly ultimately
bounded tracking errors and states can be guaranteed by the Lyapunov
approach. Simulation studies demonstrate the effectiveness and superi-
ority of the proposed tracking control scheme.

Keywords: Quadrotor unmanned aerial vehicle · Trajectory tracking
control · Sliding mode control · Fuzzy uncertainty observer

1 Introduction

Compared with traditional single rotor UAV, the most significant advantage of
the quadrotor unmanned aerial vehicles (QUAV) is that the latter has better
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stability, more compact structure and larger load, etc.. So the QUAV pertains
to a wide area of possible applications including patrolling for forest fires, traffic
monitoring, surveillance rescue, etc., and as a remarkable platform for the UAV,
the QUAV has been attracting numerous research [1–6].

The QUAV is a complex nonlinear strongly coupled system with more than
one input and output, and thereby leading to great challenges in controller design
and synthesis. In [7], PID control scheme is used to achieve the trajectory track-
ing control. However, this control method is classical linear control scheme, which
only work better when the QUAV is near hovering state. Backstepping control
scheme has an extensive application in controlling the QUAV in recent years.
In [8], the QUAV dynamic system has been divided into two subsystems, i.e.,
translational subsystem and rotational subsystem and two subcontrollers have
been designed. However, general backstepping control schemes need accurate
model parameters and is not robust to model uncertainties and external distur-
bances, for this reason, adaptive integral backstepping control scheme [9] has
been applied in the QUAV, which Only suitable for the model uncertainty and
external disturbances are slow-varying or constant. Sliding mode control is a
powerful control method with characteristics of simple and robust [10]. Com-
bining with adaptive control strategy or observer [11], this kind control meth-
ods have widespread used various systems, however, chattering phenomenon is
inevitable for the continuous switching logic. Adaptive fuzzy backstepping con-
trol has been used to the trajectory tracking control for the QUAV in [12], in
which the fuzzy system is employed to approximate directly a model using back-
stepping techniques. For the reason of underactuation, the virtual controller is
designed in most control schemes for the QUAV, while, the derivative of the
virtual controller will be complex. In this context, we focus on a QUAV with the
lumped unknown nonlinearity including system uncertainties and external dis-
turbances, and a filtered sliding mode trajectory tracking control scheme based
on fuzzy uncertainty observer (FUO) for the QUAV is proposed.

2 QUAV Dynamics and Problem Formulation

As shown in Fig. 1, defining the earth-fixed coordinate OX0Y0Z0 and the body-
fixed coordinate O′XY Z which are respectively considered with the origin coin-
ciding to the starting point and the gravity center of the QUAV. Vectors (x, y, z)
and (φ, θ, ψ) are respectively denote the positions of the QUAV in earth-fixed
coordinate OX0Y0Z0 and the Euler angles in body-fixed coordinate O′XY Z, in
which φ refers as to roll angle, θ refers as to pitch angle and ψ refers as to yaw
angle.

The position dynamics can be described as follows:{
η̇ηη11 = ηηη12

η̇ηη12 = fff1 (ηηη12) + uuu1 (ηηη2, τ) + ddd1 (ηηη11, ηηη12, t)
(1)
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Fig. 1. The configuration of a QUAV. Fig. 2. The overall control diagram.

with the lumped model uncertainties and/or external disturbances ddd1 =
[d11, d12, d13]T , fff1 = [Dxẋ2,Dy ẏ2,Dz ż

2 − g]T and

uuu1 (ηηη2, τ) =
τ

m

⎡
⎣CφSθCψ + SφSψ

CφSθSψ − SφCψ

CφCθ

⎤
⎦ (2)

where ηηη11 = [x, y, z]T and ηηη12 = [ẋ, ẏ, ż]T are vectors of the positions and linear
velocities in the earth-fixed frame, respectively, m is the mass of the QUAV, g
is the acceleration of the gravity, C∗ and S∗ are the functions cos(∗) and sin(∗),
respectively, τ is the total thrust.

The vector of Euler angles ηηη2 = [φ, θ, ψ]T is governed by

η̇ηη2 = ggg2(ηηη2)uuu2(ηηη3) + ddd2(ηηη2, t) (3)

with the lumped model uncertainties and/or external disturbances ddd2 =
[d21, d22, d23]T , and

ggg2(ηηη2) =

⎡
⎣1 SφTθ CφTθ

0 Cφ −Sφ

0 Sφ

Cθ

Cφ

Cθ

⎤
⎦ (4)

uuu2(ηηη3) = ηηη3 (5)

where T∗ denotes the function tan(∗), ηηη3 = [p, q, r]T is the angular velocity vector
in body-fixed coordinate given by the following dynamics:

η̇ηη3 = fff3(ηηη3) + ggg3uuu3 + ddd3(ηηη3, t) (6)

with the diagonal matrix ggg3 = diag (1/Jx, 1/Jy, 1/Jz) where Ji(i = x, y, z)
is the moment of inertia with respect to each axis, ddd3 = [d31, d32, d33]T

include unmodeled dynamics and/or external disturbances, and fff3(ηηη3) =
[Jy−Jz

Jx
qr, Jz−Jx

Jy
pr,

Jx−Jy

Jz
pq]T , where uuu3 = [u31, u32, u33]T is the control input

and the final control input vector of the QUAV system is uuu = [τ,uuuT
3 ]T .
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The control objective in this study is to design filtered sliding mode con-
troller of the QUAV with FUO and achieve the trajectory tracking control
(x → xd, y → yd, z → zd, ψ → ψd) in presence of the external disturbances
and system uncertainties. Before ending this section, the following assumption
is introduced:

Assumption 1. The desired trajectory and its time derivatives are bounded.

3 Filtered Sliding Mode Controller Design

In this section, three subcontrollers will be designed. The overall control diagram
is as shown in Fig. 2.

3.1 Position Controller

Given a reference trajectory ηηη11d := [xd, yd, zd]T , combining with position
dynamics (1), we design sliding surfaces as follows:

sss11(t) = eee11(t) + kkk11

∫ t

0

eee11(τ)dτ (7)

sss12(t) = eee12(t) + kkk12

∫ t

0

eee12(τ)dτ (8)

where kkk11 = diag(k111, k112, k113) > 0, kkk12 = diag(k121, k122, k123) > 0, eee11 =
ηηη11 −ηηη11d, eee12 = ηηη12 − η̄ηη12d, and η̄ηη12d is the filtered output of the virtual control
signal ηηη12d given by

ε1 ˙̄ηηη12d + η̄ηη12d = ηηη12d (9)

here, ε1 > 0 is an user-defined filtering time constant and let yyy1 = η̄ηη12d − ηηη12d.
In this context, the virtual control signal ηηη12d can be selected as follows:

ηηη12d = −ppp11sss11 + η̇ηη11d − kkk11eee11 − eee12 (10)

where ppp11 = diag(p111, p112, p113) > 0 and a desired position control law for
sub-system (1) can be designed as follows:

uuu1 = − ppp12sss12 − fff1(ηηη12) + ˙̄ηηη12d − kkk12eee12 − d̂dd1 (11)

with the FUO given by

d̂dd1(ωωω1 | ϑ̂ϑϑ1) = ϑ̂ϑϑ
T

1 ξξξ1(ωωω1) (12)

Choosing the parameter matrix update rule as

˙̂
ϑϑϑ1 = −r11ϑ̂ϑϑ1 + r12ξξξ1(ωωω1)(sss12 + εεε1)T (13)
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where r11 > 0 and r12 > 0 are user-defined positive definite parameters, ωωω1 =
[ηηηT

11, ηηη
T
12]

T is the input vector of the fuzzy system, εεε1 = ηηη12−υυυ1 is the observation
error vector with

υ̇υυ1 = − r13υυυ1 + fff1(ηηη12) + uuu1 + d̂dd1(ωωω1|ϑ̂ϑϑ1) + r13ηηη12 (14)

where r13 > 0 is user-defined positive definite parameter.

3.2 Euler Angle Controller

Substituting the control law (11) into the input nonlinearity (2), we can obtain⎧⎪⎪⎨
⎪⎪⎩

τ = m‖uuu1‖
φd = arcsin

(
m
τ (Sψd

u11 − Cψd
u12)

)
θd = arcsin

(
m
τ u11−Sψd

Sφd

Cψd
Cφd

) (15)

Let ηηη2d := [φd, θd, ψd]T and η̄ηη2d := [φ̄d, θ̄d, ψ̄d]T where η̄ηη2d is the filtered
output of ηηη2d given by

ε2 ˙̄ηηη2d + η̄ηη2d = ηηη2d (16)

here, ε2 > 0 is an user-defined filtering time constant and let yyy2 = η̄ηη2d − ηηη2d.
Combining with Euler angles dynamics (3), we design a sliding surface as

follows:

sss2(t) = eee2(t) + kkk2

∫ t

0

eee2(τ)dτ (17)

where eee2 = ηηη2 − η̄ηη2d, kkk2 = diag(k21, k22, k23) > 0.
In this context, a desired Euler angles control law for sub-system (3) can be

designed as follows:

uuu2 = ggg−1
2 (ηηη2)[ ˙̄ηηη2d − kkk2eee2 − ppp2sss2 + yyy2 − d̂dd2] (18)

with the FUO given by

d̂dd2(ωωω2 | ϑ̂ϑϑ2) = ϑ̂ϑϑ
T

2 ξξξ2(ωωω2) (19)

Choosing the parameter matrix update rule as

˙̂
ϑϑϑ2 = −r21ϑ̂ϑϑ2 + r22ξξξ2(ωωω2)(sss2 + εεε2)T (20)

where ppp2 = diag(p21, p22, p23) > 0, r21 > 0 and r22 > 0 are user-defined positive
definite parameters, ωωω2 = [ηηηT

2 , η̇ηηT
2 ]T is the input vector of the fuzzy system,

εεε2 = ηηη2 − υυυ2 is the observation error vector with

υ̇υυ2 = − r23υυυ2 + ggg2(ηηη2)uuu2 + d̂dd2(ωωω2|ϑ̂ϑϑ2) + r23ηηη2 (21)

where r23 > 0 is user-defined positive definite parameter.
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3.3 Angular Velocity Controller

Let ηηη3d := [pd, qd, rd]T = uuu2, together with angular velocity dynamics (6), we
design a sliding surface as follows:

sss3(t) = eee3(t) + kkk3

∫ t

0

eee3(τ)dτ (22)

where eee3 = ηηη3 − η̄ηη3d, kkk3 = diag(k31, k32, k33) > 0 and η̄ηη3d := [p̄d, q̄d, r̄d]T is the
filtered output of ηηη3d given by

ε3 ˙̄ηηη3d + η̄ηη3d = ηηη3d (23)

here, ε3 > 0 is an user-defined filtering time constant and let yyy3 = η̄ηη3d − ηηη3d.
Accordingly, an nominal angular velocity control law for sub-system (6) can

be governed as follows:

uuu3 = ggg−1
3 [ ˙̄ηηη3d − fff3(ηηη3) − kkk3eee3 − ppp3sss3 + yyy3 − d̂dd3] (24)

with the FUO given by

d̂dd3(ωωω3 | ϑ̂ϑϑ3) = ϑ̂ϑϑ
T

3 ξξξ3(ωωω3) (25)

Choosing the parameter matrix update rule as

˙̂
ϑϑϑ3 = −r31ϑ̂ϑϑ3 + r32ξξξ3(ωωω3)(sss3 + εεε3)T (26)

where ppp3 = diag(p31, p32, p33) > 0, r31 > 0 and r32 > 0 are user-defined positive
definite parameters, ωωω3 = [ηηηT

3 , η̇ηηT
3 ]T is the input vector of the fuzzy system,

εεε3 = ηηη3 − υυυ3 is the observation error vector with

υ̇υυ3 = − r33υυυ3 + fff3(ηηη3) + ggg3uuu3 + d̂dd3(ωωω3|ϑ̂ϑϑ3) + r33ηηη3 (27)

where r33 > 0 is user-defined positive definite parameter.
Then, the final control law is

uuu :=
[

τ
uuu3

]
=

[
m‖uuu1‖

uuu3

]
(28)

4 Stability Analysis

Theorem 1. Consider an uncertain QUAV system (1)–(3)–(6), together with
control scheme (11), (18), (24) with FUO given by (12), (19), (25), all sys-
tem states and signals and all tracking errors are globally uniformly ultimately
bounded.
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Proof. Together with system (14), (21) and (27), we have

ε̇εεi + ri3εεεi = dddi − d̂ddi(ωωωi|ϑ̂ϑϑi) (29)

where i = 1, 2, 3.
Define the optimal parameter as

ϑϑϑ∗
i = arg min

ϑ̂ϑϑi∈Mϑϑϑi

( sup
ωωωi∈Mωωωi

‖dddi − d̂ddi‖) (30)

where Mϑϑϑi
and Mωωωi

are bounded sets.
Then we have

dddi = d̂ddi(ωωωi|ϑϑϑ∗
i ) + ζζζi(ωωωi) (31)

where ζζζi(ωωωi) is reconstruction error vector and ‖ζζζi(ωωωi)‖ < ζ̄i, ζ̄i > 0. Let ϑ̃ϑϑi =
ϑϑϑ∗

i − ϑ̂ϑϑi, together with system (29), we can obtain

ε̇εεi + ri3εεεi = ϑ̃ϑϑ
T

i ξξξi(ωωωi) + ζζζi(ωωωi) (32)

Combining with system (12), (19), (25), (31), the following equation holds

dddi − d̂ddi = ϑ̃ϑϑ
T

i ξξξi(ωωωi) + ζζζi(ωωωi) i = 1, . . . , 3 (33)

then together with system (8), (17), (22) and (33), we can obtain
{

ṡss12 = −ppp12sss12 + ϑ̃ϑϑ
T

1 ξξξ1(ωωω1) + ζζζ1(ωωω1)

ṡssi = −pppisssi + yyyi + ϑ̃ϑϑ
T

i ξξξi(ωωωi) + ζζζi(ωωωi) i = 2, 3
(34)

Choosing the following Lyapunov function

V =
1
2

[ 3∑
i=1

(
yyyT

i yyyi + εεεT
i εεεi +

tr(ϑ̃ϑϑ
T

i ϑ̃ϑϑi)
ri2

)
+ sssT

11sss11 + sssT
12sss12 + sssT

2 sss2 + sssT
3 sss3

]
(35)

Together with system (32) and (34), the time derivative of (35) can be given
as

V̇ =
3∑

i=2

(
− sssT

i pppisssi + sssT
i yyyi − ri3εεε

T
i εεεi + (sssT

i + εεεT
i )ζζζi(ωωωi) + yyyT

i ẏyyi

)
− sssT

11ppp11sss11

+ sssT
11yyy1 − sssT

12ppp12sss12 − r13εεε
T
1 εεε1 + (sssT

12 + εεεT
1 )ζζζ1(ωωω1) + yyyT

1 ẏyy1

+
3∑

i=2

(
(sssT

i + εεεT
i )ϑ̃ϑϑ

T

i ξξξi(ωωωi) − tr(ϑ̃ϑϑ
T

i
˙̂
ϑϑϑi)

ri2

)
+ (sssT

12 + εεεT
1 )ϑ̃ϑϑ

T

1 ξξξ1(ωωω1) − tr(ϑ̃ϑϑ
T

1
˙̂
ϑϑϑ1)

r12︸ ︷︷ ︸
M

(36)
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together with systems (13), (20) and (26), we can obtain

M =
3∑

i=2

( 3∑

j=1

(ϑ̃ϑϑ
T

ij((sij + εij)ξξξi(ωωωi) −
˙̂
ϑϑϑij

ri2
))

)
+

3∑

j=1

(ϑ̃ϑϑ
T

1j((s12j + ε1j)ξξξ1(ωωω1) −
˙̂
ϑϑϑ1j

r12
))

=

3∑

i=1

ri1
ri2

tr(ϑ̃ϑϑ
T

i ϑ̂ϑϑi) (37)

where sss12 = [s121, s122, s123]T , sssi = [si1, si2, si3]T , εεεi = [εi1, εi2, εi3]T , ϑ̃ϑϑi =

[ϑ̃ϑϑi1, ϑ̃ϑϑi2, ϑ̃ϑϑi3] and ˙̂
ϑϑϑi = [ ˙̂ϑϑϑi1,

˙̂
ϑϑϑi2,

˙̂
ϑϑϑi3] with i = 1, 2, 3.

Together with systems (9)–(10) and Assumption 1, we can obtain∥∥∥∥ẏyy1 +
yyy1

ε1

∥∥∥∥ ≤ z1(ṡss11, ¨̄χχχ11d, ėee11, ėee12) (38)

where z1 is continuous bounded function. Then, we have

yyyT
1 ẏyy1 ≤ −yyyT

1 yyy1

ε1
+

1
2
yyyT
1 yyy1 +

1
2
z21 (39)

Similarly, there exists continuous bounded function z2(·) and z3(·), such that

yyyT
i ẏyyi ≤ −yyyT

i yyyi

εi
+

1
2
yyyT

i yyyi +
1
2
z2i , i = 2, 3 (40)

In addition, using the Young’s inequality, we have

3∑
i=1

(
ri1

ri2
tr(ϑ̃ϑϑ

T

i ϑ̂ϑϑi)
)

≤
3∑

i=1

(
ri1

2ri2
tr(ϑϑϑ∗T

i ϑϑϑ∗
i ) − ri1

2ri2
tr(ϑ̃ϑϑ

T

i ϑ̃ϑϑi)
)

(41)

Substituting system (37), (39), (40) and (41) into system (36), it is easy to
obtain

V̇ ≤
3∑

i=2

(
− sssT

i (pppi − III)sssi −
(

1
εi

− 1
)

yyyT
i yyyi −

(
ri3 − 1

2

)
εεεT

i εεεi − ri1

2ri2
tr(ϑ̃ϑϑ

T

i ϑ̃ϑϑi)
)

− sssT
11

(
ppp11 − III

2

)
sss11 − sssT

12

(
ppp12 − III

2

)
sss12 −

(
r13 − 1

2

)
εεεT
1 εεε1 −

(
1
ε1

− 1
)

yyyT
1 yyy1

− r11
2r12

tr(ϑ̃ϑϑ
T

1 ϑ̃ϑϑ1) +
3∑

i=1

(
ζ̄2i +

ri1

2ri2
tr(ϑϑϑ∗T

i ϑϑϑ∗
i ) +

z̄2i
2

)
(42)

where z̄i(t) is the upper bound value of zi(t).
Selecting the following design parameters

pppj ≥ 2 + α

2
III,

1
εi

≥ 1 +
α

2
, ppp11 ≥ 1 + α

2
III, ppp12 ≥ 1 + α

2
III, ri3 ≥ 1 + α

2
,
ri1

ri2
≥ α
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with j = 2, 3 and i = 1, . . . , 3, we have

V̇ ≤ − αV + C (43)

with

C =
3∑

i=1

(
ζ̄2i +

ri1

2ri2
tr(ϑϑϑ∗T

i ϑϑϑ∗
i ) +

z̄2i
2

)
(44)

Together with the system (35) and (42), the following inequality holds

0 ≤ V (t) ≤ V (0)e−αt + (1 − e−αt)
C

α
< ∞ (45)

It is obvious that the function V (t) is bounded and together with system
(35), we can find that the trajectory error eee11 and the other error signals are
uniformly ultimately bounded.

5 Simulation Studies

In this section, the effectiveness of the proposed control scheme for the QUAV
is evaluated. The lumped uncertainties and/or external disturbances are given
by dddi(t) = 3[sin t, cos t, sin t]T + 0.1ηηηi, where ηηη1 = ηηη11 + ηηη12, i = 1, 2, 3.

The reference tracking trajectory is given as [xd, yd, zd, ψd] = [−2 sin t/2,
2 cos t/2, 2 sin t+3, sin t] and the initial conditions of the QUAV are set as follows:
x(0) = 2, y(0) = −0.5, z(0) = 2, φ(0) = 1.

Figure 3 shows the tracking of three positions and the yaw, where FSMC
denotes the proposed filtered sliding mode control scheme and SMC denotes the
traditional sliding mode control scheme. From Fig. 3 we can find that both the
proposed control scheme and the SMC scheme are able to robustly stabilize the

Fig. 3. States of x, y, z and ψ. Fig. 4. Unknown nonlinearities.
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QUAV and make it track the desired trajectory, while it is obvious that the pro-
posed control scheme has faster response and higher accuracy. Figure 4 shows
the estimate state of the FUO for the lumped unknown nonlinearities including
system uncertainties and external disturbances on the trajectory, i.e., x, y, z and
the yaw ψ, from which we can see, although the unknown lumped nonlinearities
continuous change along with the time, FUO can estimate the unknown nonlin-
earities well. In summary, we can conclude that the proposed tracking control
approach can achieve remarkable performance in terms of tracking accuracy and
disturbance rejection.

6 Conclusion

In this paper, a filtered sliding mode control scheme based on FUO for tra-
jectory tracking of a QUAV has been proposed. To be specific, three cascaded
sub-controllers are designed by incorporating underactuation constraints. First-
order filters are employed to reconstruct sliding mode control signals together
with their first derivatives, and thereby decoupling the iterative design within
the QUAV tracking control scheme. Furthermore, FUOs have been designed to
estimate the lumped unknown nonlinearities. By the Lyapunov approach, we
have proven that all system states and signals and tracking errors are globally
uniformly ultimately bounded. Simulation studies have demonstrated the effec-
tiveness and superiority of the proposed tracking control scheme.
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Abstract. Adaptive dynamic programming is a hot research topic
nowadays. Therefore, the paper concerns a new local policy adaptive
iterative dynamic programming (ADP) algorithm. Moreover, this algo-
rithm is designed for the discrete-time nonlinear systems, which are used
to solve problems concerning infinite horizon optimal control. The new
local policy iteration ADP algorithm has the characteristics of updat-
ing the iterative control law and value function within one subset of the
state space. Morevover, detailed iteration process of the local policy iter-
ation is presented thereafter. The simulation example is listed to show
the good performance of the newly developed algorithm.

Keywords: Nonlinear systems · Approximate dynamic programming ·
Local policy iteration · Optimal control · Discrete time

1 Introduction

Adaptive dynamic programming (ADP) is always a hot research area since pro-
posed by Werbos [1]. ADP is a very useful and significant intelligent way to
solve nonlinear system problems. With the aim of getting optimal control law,
the corresponding iterative learning methods are applied to analyze the conver-
gence and optimality characteristics of ADP [2–7].

It has to be admitted that the iterative control laws and the iterative value
functions usually have to be updated in the whole state space [8–18], which are
also as “global policy iteration algorithms”. Moreover, the global policy iteration
algorithms have the disadvantages of low efficiency during applications. Most of
time, the algorithm has to pause to wait for the accomplishment of a search of the
whole state area. Correspondingly, the computation efficiency goes down in the
global policy iteration algorithm. The constraint has hindered the development
of this research area. Therefore, useful policy iteration algorithms need to be
proposed to increase computation efficiency.
c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part II, LNCS 10262, pp. 148–153, 2017.
DOI: 10.1007/978-3-319-59081-3 18
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This paper has proposed a new “local policy iteration algorithm” concerning
the discrete nonlinear systems. It proves its usage to iterative in a small area.
The algorithm has the ability to update the iterative control laws and also the
iterative value functions within the given area of the state space. Despite the
fact of iterative control laws updating within a preset state space, the system
still has the ability to keep stable under any kind of iterative control law. At the
end, the simulation part shows the good performance of this newly developed
method.

2 Problem Statement

We assume a deterministic discrete-time nonlinear system here

sk+1 = F (sk, ck), k = 0, 1, 2, . . . , (1)

where sk ∈ R
n is the state vector. Besides, ck ∈ R

m is the control vector.
Assume s0 as the initial state and F (sk, ck) as the system function. Assume
ck = (ck, ck+1, . . . ) as an arbitrary sequence of controls. The performance index
function can be defined as

J(s0, c0) =
∞∑

k=0

U(sk, ck), (2)

for state s0 under the control sequence c0 = (c0, c1, . . . ). The utility function
U(xk, ck) is a positive definite function for sk and ck. It is noted that ck changes
from k to ∞.

We aim to find an optimal scheme. The scheme has the ability to minimize
performance index function (2) while stabilizing system (1).

Assume the control sequence set as Uk =
{
ck : ck = (ck, ck+1, . . .), ∀ck+i ∈

R
m, i = 0, 1, 2, . . .

}
.

Then, for an arbitrary control sequence ck ∈ Uk, the optimal performance
index function is

J∗(sk) = inf
ck

{J(sk, ck) : ck ∈ Uk} . (3)

Based on Bellman principle of optimality, J∗(sk) meet the requirement of
the discrete-time HJB formula

J∗(sk) = inf
ck

{U(sk, ck) + J∗(F (sk, ck))} . (4)

Define the law of optimal control as

c∗(sk) = arg inf
ck

{U(sk, ck) + J∗(F (sk, ck))} . (5)

Therefore, the HJB Eq. (4) is

J∗(sk) = U(sk, c∗(sk)) + J∗(F (sk, c∗(sk))). (6)

Overall, there exists the curse of dimensionality. So it is very difficult to obtain
the numerical results for the traditional dynamic programming algorithms. Con-
sidering this situation, we have proposed a new ADP algorithm thereafter.
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3 Descriptions of This New Local Iterative ADP
Algorithm

We have designed a new local iterative ADP algorithm. This section gives a
detailed description of the algorithm. It is designed to have the ability to get the
optimal control law for system (1) correspondingly. Assume {Θi

s} as the state
sets, Θi

s ⊆ Ωs, ∀ i. The value iteration functions and the control laws of the
newly developed algorithm have to be updated iteratively.

For all sk ∈ Ωs, assume v0(sk) as an admissible control law. Besides, assume
V0(xs) as the initial iterative value function for all sk ∈ Ωs. The function satisfies
the generalized HJB (GHJB) equation

V0(sk) = U(sk, v0(sk)) + V0(sk+1), (7)

where sk+1 = F (sk, v0(sk)). Then, for all sk ∈ Θ0
s , the local iterative control law

v1(sk) is computed as

v1(sk) = arg min
ck

{U(sk, ck) + V0(sk+1)} (8)

and let v1(sk) = v0(sk), for all sk ∈ Ωs\Θ0
s .

For all sk ∈ Ωs, assume V1(sk) as the iterative value function. Therefore,
V1(sk) satisfies the GHJB equation

V1(sk) = U(sk, v1(sk)) + V1(F (sk, v1(sk))). (9)

For i = 1, 2, . . ., assume Vi(sk) as the iterative value function. So Vi(sk) can
satisfy the following GHJB equation

Vi(sk) = U(sk, vi(sk)) + Vi(F (sk, vi(sk))). (10)

For all sk ∈ Θi
x, the iterative control law vi+1(sk) should be computed as

vi+1(sk) = arg min
ck

{U(sk, ck) + Vi(sk+1)}
= arg min

ck
{U(sk, ck) + Vi(F (sk, ck))} , (11)

and for all sk ∈ Ωs\Θi
s, let vi+1(sk) = vi(sk).

The local policy iteration algorithm will be updated within the preset subset
of state space according to Eqs. (7) and (11). The given subset is part of whole
state space. Therefore, during iterations, once local data of state space is got,
the newly developed algorithm can be performed immediately. The advantage
is that the algorithm can save lots of time while competing all the data of the
whole space in traditional algorithms. Therefore, the computation efficiency can
be improved greatly and save a lot of trouble. Besides, if the preset subset of
state space is enlarged to all, local policy iteration algorithms equal to the global
policy iteration ones.
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4 Simulation Examples

First, we have chosen a discretized nonaffine nonlinear system as follows

s1(k+1) = (1 − ΔT )s1k + ΔTs2kck,

s2(k+1) = (1 − ΔT )x2k + ΔT (1 + s21k)ck + ΔTc3k. (12)

We choose the utility function as Q = I1 and R = I2. Thereafter, We choose
the state space as Ωs. While I1 and I2, are denoted as the identity matrices with
suitable dimensions. Let the initial state be s0 = [1,−1]T. Based on Algorithm 1
in [16].

The iterative value functions and iterative control laws should be updated
accordingly. After 30 iterations, the algorithm has reached corresponding com-
puting precision of ε = 0.001. Figure 1(a) shows that the iterative value function

Fig. 1. Simulation results of the new local policy iteration algorithm. (a) Corresponding
iterative value function. (b) Corresponding state trajectories. (c) Corresponding control
trajectories. (d) Corresponding optimal state and control trajectories.



152 Q. Wei et al.

is monotonically nonincreasing. More importantly, the value function converges
to the optimum. Figure 1(b) illustrates the trajectories of simulation states while
Fig. 1(c) shows the simulation functions. In Fig. 1(d), we have shown the optimal
trajectories of control and also states correspondingly.

5 Conclusion

We proposed a new local policy iteration ADP algorithm in this paper. The
algorithm has the ability to greatly improve the computation efficiency of tradi-
tional ADP algorithm concerning discrete time nonlinear systems. Therefore, it
can reduce computation time greatly which contrast to traditional global policy
iteration algorithms. The characteristic concerning this newly developed algo-
rithm is that the iteration control laws and iterative iteration control laws are
updated within a preset area of the state space. Besides, the simulation results
have proven its effectiveness of the newly developed algorithm.

Acknowledgments. This work was supported in part by the National Natural Sci-
ence Foundation of China under Grants 61233001, 61273140, 61374105, and 61304079.

References

1. Werbos, P.: Advanced forecasting methods for global crisis warning and models of
intelligence. Gen. Syst. Yearb. 22, 25–38 (1977)

2. Fu, Y., Fu, J., Chai, T.: Robust adaptive dynamic programming of two-player zero-
sum games for continuous-time linear systems. IEEE Trans. Neural Netw. Learn.
Syst. 26, 3314–3319 (2015). doi:10.1109/TNNLS.2015.2461452

3. Abouheaf, M., Lewis, F., Vamvoudakis, K., Haesaert, S., Babuska, R.: Multi-agent
discrete-time graphical games and reinforcement learning solutions. Automatica
50(12), 3038–3053 (2014)

4. Zargarzadeh, H., Dierks, T., Jagannathan, S.: Optimal control of nonlinear
continuous-time systems in strict-feedback form. IEEE Trans. Neural Netw. Learn.
Syst. 26(10), 2535–2549 (2015)

5. Wei, Q., Liu, D.: Data-driven neuro-optimal temperature control of water gas
shift reaction using stable iterative adaptive dynamic programming. IEEE Trans.
Industr. Electron. 61(11), 6399–6408 (2014)

6. Heydari, A.: Revisiting approximate dynamic programming and its convergence.
IEEE Trans. Cybern. 44(12), 2733–2743 (2014)

7. Lewis, F., Vrabie, D., Vamvoudakis, K.: Reinforcement learning and feedback con-
trol: using natural decision methods to design optimal adaptive controllers. IEEE
Control Syst. 32(6), 76–105 (2012)

8. Wei, Q., Liu, D., Lin, H.: Value iteration adaptive dynamic programming for opti-
mal control of discrete-time unknown nonlinear systems with disturbance using
ADP. IEEE Trans. Neural Netw. Learn. Syst. 27(2), 444–458 (2016)

9. Wei, Q., Liu, D., Yang, X.: Inifinite horizon self-learning optimal control of non-
affine discrete-time nonlinear systems. IEEE Trans. Neural Netw. Learn. Syst.
26(4), 879–886 (2015)

http://dx.doi.org/10.1109/TNNLS.2015.2461452


Local Policy Iteration Adaptive Dynamic Programming 153

10. Wei, Q., Song, R., Yan, P.: Data-driven zero-sum neuro-optimal control for a class
of continuous-time unknow nonlinear systems with disturbance using ADP. IEEE
Trans. Neural Netw. Learn. Syst. 27(2), 444–458 (2016)

11. Wei, Q., Wang, F., Liu, D., Yang, X.: Finite-approximation-error based discrete-
time iterative adaptive dynamic programming. IEEE Trans. Cybern. 44(12),
2820–2833 (2014)

12. Wei, Q., Liu, D., Shi, G., Liu, Y.: Optimal multi-battery coordination control
for home energy management systems via distributed iterative adaptive dynamic
programming. IEEE Trans. Ind. Electron. 42(7), 4203–4214 (2015)

13. Wei, Q., Liu, D., Shi, G.: A novel dual iterative Q-learning method for optimal
battery management in smart residential environments. IEEE Trans. Ind. Electron.
62(4), 2509–2518 (2015)

14. Wei, Q., Liu, D.: A novel iterative θ-adaptive dynamic programming for discrete-
time nonlinear systems. IEEE Trans. Autom. Sci. Eng. 11(4), 1176–1190 (2014)

15. Wei, Q., Liu, D.: Adaptive dynamic programming for optimal tracking control
of unknown nonlinear systems with application to coal gasification. IEEE Trans.
Autom. Sci. Eng. 11(4), 1020–1036 (2014)

16. Liu, D., Wei, Q.: Policy iteration adaptive dynamic programming algorithm for
discrete-time nonlinear systems. IEEE Trans. Neural Netw. Learn. Syst. 25(3),
621–634 (2014)

17. Xu, X., Hou, Z., Lian, C., He, H.: Online learning control using adaptive critic
designs with sparse kernel machines. IEEE Trans. Neural Netw. Learn. Syst. 24(5),
762–775 (2013)

18. Liu, D., Yang, X., Wang, D., Wei, Q.: Reinforcement-learning-based robust con-
troller design for continuous-time uncertain nonlinear systems subject to input
constraints. IEEE Trans. Cybern. 45(7), 1372–1385 (2015)



A Method Using the Lempel-Ziv Complexity
to Detect Ventricular Tachycardia

and Fibrillation

Deling Xia1(&), Yuetian Li1, Qingfang Meng2, and Jie He3

1 The Information Office, Liaocheng Vocational and Technical College,
Liaocheng 252000, China
xiadeling@yeah.net

2 The School of Information Science and Engineering,
University of Jinan, Jinan 250022, China

3 The Basic Department, Liaocheng Vocational and Technical College,
Liaocheng 252000, China

Abstract. This paper use the Lempel-Ziv complexity to automatically detect
ventricular fibrillation (VF) and ventricular tachycardia (VT) based on Wavelet
transform (WT) and empirical mode decomposition (EMD). We respectively
select WT and EMD to decompose original signals into different sub-bands.
Electrocardiogram (ECG) signals were first decomposed into five sub-bands
based on Wavelet transform and EMD. Then the complexity of each sub-band
was used as a feature to detect VF and VT. A public dataset was utilized.
Experimental results show the new method can distinguish VT from VF with the
accuracy up to 99.50%.

Keywords: Ventricular fibrillation � Ventricular tachycardia � The L-Z
complexity � Wavelet transform � EMD

1 Introduction

The incidence of cardiovascular disease (CVD) is increasing. In the study of cardio-
vascular disease, the function of cardiac functional decline and lesions hold a large
proportion of heart disease. SCD means the end of life if not treatment timely; because
of that, many national medical departments of health and biomedical research centers
are conducting the research. The researches and experiments show the vast majority of
cases of SCD are due largely to ventricular fibrillation (VF) and ventricular tachycardia
(VT). Therefore, a kind of efficient automatic detection of VT and VF algorithm is very
pressing for the researchers.

Various VF and VT detection methods have been proposed for Electrocardiogram
(ECG) arrhythmia recognition in the literature, like the combination of ECG parameters
in different domains and nonlinear analysis method [1–4, 8, 19] and so on. Nonlinear
analysis methods haven put the nonlinear of VT and VF into consideration. A lots of
nonlinear analysis methods for classification of VT and VF have been proposed in
recent decade, such as Lyapunov exponent method [8], the Lempel-Ziv complexity
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algorithm [7, 9–11], correlation dimension method [6], approximate entropy and
modified approximate entropy method [12], sample entropy and modified sample
entropy method [14, 18], empirical mode decomposition method [15].

In 1976, Lempel and Ziv suggested the Lempel-Ziv complexity algorithm. After
that, the Lempel-Ziv complexity algorithm has been widely applied to study brain
function [7, 10], schizophrenia [9] and mechanomyography [11]. However, this
method appeared with some limitations [7].

Decomposition of a time series into a set of components is particularly useful for
obtaining the most essential information considering the evolution behaviors of a
dynamic system. Over the past few decades, to solve several problems in nonlinear
dynamics, many time-series decomposition methods have been reported and success-
fully applied, including wavelet transform, empirical mode decomposition (EMD) and
so on.

The wavelet transform (WT) is a time-scale representative [14, 16]. The signal of
interest is stationary in the Fourier transform. But for the WT, all these disadvantages
are overcome. EMD is an intuitive and adaptive signal-dependent decomposition,
which was first proposed in 1998 [10, 16, 20].

The complete paper encompasses three principal stages: First we introduce the
method of the Lempel-Ziv complexity, wavelet transform, EMD and our proposed
method to discriminate VF from VT. Then we report the results by using the
Lempel-Ziv complexity and our proposed methods. Finally, discuss the advantages of
the new method and other methods, and then give the conclusions. The proposed
method suits short data length recording in physiological signals.

2 Data and Method

2.1 Data Selection

The data were selected from MIT-BIH Database and CU Database. A total of 35
single-channel records are contained in CU Database, the length of each records is
about 8 min. In the MIT-BIH Database, it contains 35 records, and each record is about
35 min and is saved to three files. In addition, both of the databases are the same in the
data format. The sampling rate is 250 Hz and the resolution is 12 bit. 100 VF episodes
and 100 VT episodes are extracted. The length of the data is four-second times.

2.2 New Method Proposed in This Paper

In this paper, we used two time-series decomposition: the wavelet transforms (WT) and
EMD. In this paper, the WT is performed according to Mallat’s, and the method is
restricted to binary analysis [17]. The LZ complexity analysis is based on a
coarse-graining of the measurements [7, 13, 16].

We first decompose a time series into a set of components containing the essential
information reflecting the evolution behaviors of a dynamic system. In this process,
we selected two time-series decomposition methods: wavelet transform and EMD.
After time-series decomposition, we get five sub-band signals which reflect different
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frequency band’s information. For instance, the first sub-band is the one connected
with the locally highest frequency, while the fifth sub-band contains the lowest fre-
quency. Each sub-band contains the information of original signals, so the complexity
of each sub-band was used as a feature to detect VF and VT.

The proposed algorithm is defined as follows:

(1) Given a discrete-time signal X;X ¼ X1;X2. . .XN
� �

, where N represents the sam-
ples of X. Define XM ¼ fX N�1ð Þ�mþ 1;X N�1ð Þ�mþ 2; . . .X N�1ð Þ�mþmg M ¼ 1�Nð Þ,
m represents the length of each sample.

(2) According to the following formula, make these samples be normalized.

X0
M ¼ ðXM � �xÞ=r ð1Þ

Where �x and r represent the mean and the standard deviation of the sample XM.
(3) Repeat step (2) until all samples is normalized. Calculate the LZ complexity of

VT and VF using those samples first, and then get the accuracy for detection of
VT and VF according to the assessment formula of the algorithm performance. In
this paper, we used 0–1 sequence conversion method. The average value is
estimated as a threshold Td. By comparing with the threshold, the signal data are
converted into a 0–1 sequence S = u (1), u (2) …, u(r), and x(i) < Td, u(i) = 0;
else u(i) = 1.

(4) Get sub-bands of ECG signals. Mallat’s algorithm [5] is applied to decompose
and reconstruct ECG signals into five wavelets and five Scales respectively. The
first five Scales were finally used in this paper. According to the same principle,
we used EMD technique to decompose ECG signals into the first five intrinsic
mode functions (IMFs), compared to the wavelet transforms. In this paper, we
decomposed original signals into five sub-bands signals.

(5) Calculate the complexity of the first Scales of VT and VF, and directly based the
feature to classify VT and VF. Repeat this step until other scales are calculated.
Similarly, calculate the complexity of the IMFs. After decomposition, the coef-
ficients of variation and fluctuation indexes of VT and VF are different, so we can
distinguish VF from VT.

3 Classifications on VF and VT

The LZ complexity analysis is performed first. The results are presented in Fig. 1.
Because the clinical signals are very complex, so the results are not good. According
to the two time-series decomposition methods, Electrocardiogram (ECG) signals
were decomposed into five sub-bands and the complexity of each sub-band is com-
puted. The performances are shown in Tables 1, 2, 3. By using the LZ complexity-
Mallat algorithm methods, the sensitivity and specificity can reach 99.00% and 100%,
respectively.
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From Tables 1, 2, 3, it can be found that the accuracy of each sub-band for dis-
tinguish of VT from VF is higher than only using the LZ complexity. According to the
relevant literature, the frequency of VT is 150–200 bmp, while the frequency of VF is
the 200–500 bmp. After time-series decomposition, ECG signal is decomposed into five
sub-bands. The same scale of VT and VF are used as a feature in order to discriminate
between VF and VT. Each sub-band contains the important information of the original
signals, so the results are better than only using the LZ complexity. Furthermore, from

Fig. 1. The complexity is calculated for different VT and VF episodes.

Table 1. The detection of VF and VT using the Lempel-Ziv complexity

Method Component VF VT ACC(%)
Sensitivity
(%)

Specificity
(%)

Sensitivity
(%)

Specificity
(%)

L-Z
complexity

62.09 64.11 64.11 62.09 63.10

Table 2. The Lempel-Ziv complexity and the proposed method for CU and MIT-BIH data(一)

Method Component VF VT ACC(%)
Sensitivity
(%)

Specificity
(%)

Sensitivity
(%)

Specificity
(%)

L-Z complexity
and Wavelet
transform

Scale1 86.08 100.00 100.00 86.08 93.04
Scale2 73.23 89.14 89.14 73.23 81.19
Scale3 83.17 96.08 96.08 83.17 89.63
Scale4 63.12 64.07 64.07 63.12 63.60
Scale5 69.25 84.23 84.23 69.25 76.74
Scale1-2 92.87 97.65 97.65 92.87 95.26
Scale1-3 100.00 99.00 99.00 100.00 99.50
Scale1-4 98.55 96.00 96.00 98.55 97.28
Scale2-3 90.13 96.21 96.21 90.13 93.17
Scale2-4 93.15 90.21 90.21 93.15 91.68
Scale3-4 90.16 92.18 92.18 90.16 91.17
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the Tables 2 and 3, we can conclude that using the middle and high frequency of VT and
VF to detect VF and VT can get good results. This is fit with the theory that the
frequency of VT and VF are in the middle and high frequency band. The proposed
method has greatly improved the effect of the classification. In the clinic application, we
can use the middle and high frequency of VT and VF to distinguish VF from VT.

For a purpose of comparison, we respectively use the approximate entropy and the
sample entropy to detect VF and VT. In the experiment, the number of the sample and
the length of the data is the same; all samples are normalized before being used. The
results can be found in the Table 4. From the Table 4, the accuracy of the proposed
method is far higher than that using the LZ complexity, approximate entropy and
sample entropy. This also fully proves that the new method was suit for the classifi-
cation of VF and VT.

Table 3. The Lempel-Ziv complexity and the proposed method for CU and MIT-BIH data(二)

Method Component VF VT ACC
(%)Sensitivity

(%)
Specificity
(%)

Sensitivity
(%)

Specificity
(%)

L-Z complexity and
EMD

IMF1 87.12 100.00 100 87.12 93.56
IMF2 82.04 68.16 68.16 82.04 75.10
IMF3 73.67 70.18 70.18 73.67 71.93
IMF4 88.13 90.28 90.28 88.13 89.21
IMF5 98.15 96.01 96.02 98.35 97.08
IMF1-2 84.97 86.85 86.85 84.97 85.91
IMF1-3 85.75 85.5 85.5 85.75 85.63
IMF1-4 92.06 94.17 94.17 92.06 93.12
IMF2-3 94.00 75.00 75.00 94.00 84.50
IMF2-4 96.00 90.00 90.00 96.00 93.00
IMF3-4 97.00 84.00 84.00 97.00 90.50

Table 4. The comparison of different methods for CU and MIT-BIH data

Method TH VF VT ACC
(%)Sensitivity

(%)
Specificity
(%)

Sensitivity
(%)

Specificity
(%)

L-Z complexity 0.1823 62.09 64.11 64.11 62.09 63.10
Approximate entropy 0.2142 96.00 91.00 91.00 96.00 93.50
Sample entropy 0.1823 91.00 90.00 90.00 91.00 90.50
L-Z complexity and
EMD

0.1356 98.15 96.01 96.02 98.35 97.08

L-Z complexity and
Wavelet transform

0.8685 100.00 99.00 99.00 100.00 99.50
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4 Discussion and Conclusions

In this paper, a new method that is being used the Lempel-Ziv complexity and the
time-series decomposition method for detection of VF and VT is proposed. We
selected two time-series decomposition methods: wavelet transform and EMD. The
selection of the length of VT and VF is four seconds (1000 points) in the analysis of
our proposed method, which is based on the previous work [15]. The accuracy of each
sub-band in distinguishing of VT from VF is much higher than only using the LZ
complexity. In the clinic application, we can use the middle and high frequency of VT
and VF to distinguish VT from VF. This method has greatly improved the classification
rate. For a validation using this method, other dataset(s) would be required.
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Abstract. This note investigates finite-time synchronization (FTS) between
two uncertain complex networks based on a special unilateral coupling control
method. The two networks contain nonidentical nodes, time-varying coupling
delayed, unknown parameters and uncertain topological structure. According to
the finite-time stability theory and LaSalle’s principle, an effective unilateral
coupling control scheme and corresponding adaptive laws are proposed to
guarantee the FTS. Simultaneously, the unknown parameters are estimated
successfully and the weight values of uncertain topology can automatically
adaptive to the suitable value. Finally, simulation results are shown the cor-
rectness of the theoretical method.

Keywords: Complex networks � Finite-time synchronization (FTS) �
Uncertain � Unilateral coupling

1 Introduction

Network synchronization [1] has got much more attention, because it has theoretically
and practically value in many fields including sociology, telecommunications, and
engineering [2]. Although several kinds of synchronization among complex networks
have been studied, most of existing studies concern with basic synchronization types
such as global exponential or asymptotic synchronization [3, 4] which synchronization
time is infinity. However in reality, people expect a faster convergence rate and to
calculation convergence time [5]. Compared to basic types, the FTS can not only
compute the maximum of synchronization time but also have a stronger robustness.

The complexity of the complex network is reflects in the complex topology, the
diversity and dynamics of the node, other factors interference [6]. Moreover, the net-
work synchronization is unavoidably affected by all these factors. However, in most of
the existing researches, the papers [7, 8] suppose all of network nodes have identical
dynamics. And some papers [9–11] consider the networks which contain different
nodes can achieve basic asymptotic synchronization that the synchronization time is
infinity. In addition, most of the topology and node parameters of real-world networks
can’t be exactly known in advance. And other interference factors such as time delay
are also a common phenomenon in practical engineering. People want to find some
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effective methods to overcome the influence of these factors and implementing the
network synchronization simultaneously. Some new advances have been reported. In
[12, 13], node parameters are unknown, but the topological structure is assumed cer-
tain. In [14, 15], the synchronous control is realized and the unknown topological
structure and parameters are identified successfully. While, both the two articles are of
general asymptotic synchronization and the node dynamic systems are identical.

As is well known, many existing researches are using external input controller for
synchronization, and a few other researches take the bidirectional coupling control
method [7, 17, 18]. In [17, 18], the two networks are of asymptotic synchronization
with identical node and known topology. In [7], one of the method is adopted bidi-
rectional coupling control approach, comparative the [18], to realize the FTS. However,
it assumed node dynamical identical as well. Compared with the existing results, in this
paper, we investigate the FTS based on a new unilateral coupling control scheme and
consider the two networks are of nonidentical nodes, unknown parameters, uncertain
topology and time-varying delayed. The proposed method reduces the amount of the
coupling and the problem into account is more comprehensive and practical. Finally,
simulation results are shown that the method can effective implement the FTS control.

2 Model Description

We consider two uncertain complex networks and take them as drive-response net-
works respectively.

_ziðtÞ ¼ AziðtÞþFiðziðtÞÞþ SiðziðtÞÞ#i þ
PN
j¼1

ĉijzjðt � lðtÞÞ; i ¼ 1; 2. . .;N 0

_ziðtÞ ¼ BziðtÞþGiðziðtÞÞþ TiðziðtÞÞbi þ
PN
j¼1

ĉijzjðt � lðtÞÞ; i ¼ N 0 þ 1;N 0 þ 2; . . .;N

8>>><
>>>:

ð1Þ

_wiðtÞ ¼ CwiðtÞþHiðwiðtÞÞþMiðwiðtÞÞni þ
PN
j¼1

ĉijwjðt � lðtÞÞþ riwiðtÞ � ziðtÞÞ;
i ¼ 1; 2; . . .;N�

_wiðtÞ ¼ DwiðtÞþPiðwiðtÞÞþ LiðwiðtÞÞti þ
PN
j¼1

ĉijwjðt � lðtÞÞþ riwiðtÞ � ziðtÞÞ;
i ¼ N� þ 1;N� þ 2; . . .;N

8>>>>>><
>>>>>>:

ð2Þ

where ziðtÞ 2 Rn and wiðtÞ 2 Rn are the state vectors of the i-th node of drive-response
networks respectively. iðtÞ� 0 is time-varying coupling delay. F;G;H;P : Rn ! Rn

are continuous vector functions. Note that A;B;C;D are constant matrixes. S : Rn !
Rn�m1 ; T : Rn ! Rn�m2 ; M : Rn ! Rn�m3 ; L : Rn ! Rn�m4 are continuous function
matrixes. #i 2 Rm1 ; bi 2 Rm2 ; n 2 Rm3 ; ti 2 Rm4 are the unknown parameter vectors.
#̂i 2 Rm1 ; b̂i 2 Rm2 ; n̂ 2 Rm3 and t̂i 2 Rm4 are the estimator of unknown parameters
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respectively. riði ¼ 1; 2; . . .;NÞ is unilateral external coupling. We assume N 0 [N�

and both the external and internal nodes are different. Ĉ ¼ ½ĉij�N�N is uncertain cou-
pling configuration matrix, which is defined as: ĉij [ 0 it there is a connection from
node j to node iði 6¼ jÞ otherwise, ĉij ¼ 0.

Define error system as eiðtÞ ¼ wiðtÞ � ziðtÞði ¼ 1; 2; . . .;NÞ and the corresponding
parameters error as ~#i ¼ #̂i � #i; ~bi ¼ b̂i � bi;

~ni ¼ n̂i�ni;~ti ¼ t̂i � ti The networks
(1) and (2) can achieve FTS if eiðtÞ ! 0 as t ! t1.

3 Main Results

By using unilateral coupling control method, the FTS of networks (1) and (2) is studied
and the uncertain topology and parameters are estimated.

The unilateral external coupling ri and updating laws of uncertain topological
structure and parameters are shown below:

_ri ¼ ki½rieiðtÞ=r2i ð�ðC � AÞziðtÞ � HiðwiðtÞÞþFiðziðtÞÞ �MiðwiðtÞÞn̂i
þ SiðziðtÞÞ#̂iÞþK�; i ¼ 1; 2; . . .;N�

_ri ¼ ki½rieiðtÞ=r2i ð�ðD� AÞziðtÞ � PiðwiðtÞÞþFiðziðtÞÞ � LiðwiðtÞÞt̂i
þ SiðziðtÞÞ#̂iÞþK�; i ¼ N� þ 1;N� þ 2; . . .;N�

_ri ¼ ki½rieiðtÞ=r2i ð�ðD� BÞziðtÞ � PiðwiðtÞÞþGiðziðtÞÞ � LiðwiðtÞÞt̂i
þ TiðziðtÞÞb̂iÞþK�; i ¼ N 0 þ 1;N 0 þ 2; . . .;N

8>>>>>>><
>>>>>>>:

ð3Þ

_̂cij ¼ �dijðeTi ðtÞejðt � tðtÞÞ � k ĉij
�� ��=ĉij ffiffiffiffiffi

dij
p Þ i ¼ 1; 2; . . .;N ð4Þ

_̂
#i ¼ �l1iðSTi ðziðtÞÞeiðtÞþ ksignð~#iÞ= ffiffiffiffiffiffi

l1i
p Þ i ¼ 1; 2; . . .;N 0

_̂
bi ¼ l2iðTT

i ðziðtÞÞeiðtÞþ ksignð~biÞ= ffiffiffiffiffiffi
l2i

p Þ i ¼ N 0 þ 1;N 0 þ 2; . . .;N
_̂
ni ¼ l3iðMT

i ðwiðtÞÞeiðtÞþ ksignð~niÞ= ffiffiffiffiffiffi
l3i

p Þ i ¼ 1; 2; . . .;N�
_̂ti ¼ l4iðLTi ðwiðtÞÞeiðtÞþ ksignð~tiÞ= ffiffiffiffiffiffi

l4i
p Þ i ¼ N� þ 1;N� þ 2; . . .;N

8>>>>>><
>>>>>>:

ð5Þ

where ki; dij; l1i; l2i; l3i; l4i are any positive constant.

K ¼� ð1þ nÞeTi ðtÞeiðtÞ � ksignðriÞ=
ffiffiffiffi
ki

p

þ rieiðtÞð�ksignðeiðtÞÞ � k=2ð1� cÞð
Z t

t�iðtÞ
eTi ðuÞeiðuÞduÞ1=2Þ=r2i

Thus, the proposed unilateral external coupling (3), the adaptive laws of uncertain
topological structure and unknown parameters (4), (5) will guarantee the realization of
networks synchronization and estimation the uncertain parameters and topology in a
finite time.

Theorem 1. Suppose the error system is controlled with unilateral external coupling
controller (3) and adaptive laws (4), (5). Within the time t1, The convergence of
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synchronization error can be realized. That means the two networks can achieve FTS,
and t1 determined by t1 � 2V1=2ðt0Þ=

ffiffiffiffiffi
2k

p
(Based on the Lemma 1in [7]).

Proof. Consider Lyapunov-Krasovskii function candidate below:

V ¼ 1
2

XN
i¼1

eTi ðtÞeiðtÞþ
1
2

XN 0

i¼1

~#T
i
~#i þ 1

2

XN
i¼N 0 þ 1

1
l2i

~bTi
~bi þ

1
2

XN�

i¼1

1
l3i

~nTi
~ni

þ 1
2

XN
i¼N� þ 1

1
l4i

~tTi ~ti þ
1
2

XN
i¼1

XN
j¼1

1
dij

ĉ2ij þ
1
2

XN
i¼1

1
ki
r2i þ

1
2ð1� cÞ

Z t

t�tðtÞ

XN
i¼1

eTi ðuÞeiðuÞdu

ð6Þ

Take the derivative of (6) along the trajectories of eiðtÞ, and substituting the net-
works (1) and (2), adaptive laws (3), (4), (5), we have

_V ¼
XN�

i¼1

eTi ðtÞCeiðtÞþ
XN

i¼N� þ 1

eTi ðtÞDeiðtÞ � f
XN
i¼1

eTi ðtÞeiðtÞ � k
XN
i¼1

eTi ðtÞsignðeiðtÞÞ

� k
XN 0

i¼1

1ffiffiffiffiffiffi
l1i

p ~#T
i signð~#iÞ � k

XN
i¼N 0 þ 1

1ffiffiffiffiffiffi
l2i

p ~bTi signð~bTi Þ � k
XN�

i¼1

1ffiffiffiffiffiffi
l3i

p ~nTi signð~nTi Þ

� k
XN

i¼N� þ 1

1ffiffiffiffiffiffi
l4i

p ~tTi signð~tTi Þ � k
XN
i¼1

XN
j¼1

1ffiffiffiffiffi
dij

p ĉij
�� ��� k

XN
i¼1

1ffiffiffiffi
ki

p risignðriÞþ 1
2ð1� cÞ

XN
i¼1

eTi ðtÞ

eiðtÞ � k
XN
i¼1

1
2ð1� cÞð

Z t

t�tðtÞ
eTi ðuÞeiðuÞduÞ1=2 �

1� iðtÞ
2ð1� cÞ

XN
i¼1

eTi ðt � lðtÞÞeiðt � tðtÞÞ

ð7Þ

That, suppose satisfied Lemma 1 in [17], we have.

_V �
XN�

i¼1

eTi ðtÞvCeiðtÞþ
XN

i¼N� þ 1

eTi ðtÞvDeiðtÞ � f
XN
i¼1

eTi ðtÞeiðtÞ � k
XN
i¼1

eiðtÞk k

� k
XN0

i¼1

1ffiffiffiffiffiffi
l1i

p ~hi
�� ��� k

XN
i¼N 0 þ 1

1ffiffiffiffiffiffi
l2i

p ~bi
�� ��� k

XN�
i¼1

1ffiffiffiffiffiffi
l3i

p ~ni
�� ��� k

XN
i¼N� þ 1

1ffiffiffiffiffiffi
l4i

p ~tij j

� k
XN
i¼1

XN
j¼1

1ffiffiffiffiffi
dij

p ĉij
�� ��� k

XN
i¼1

1ffiffiffiffi
ki

p rij j � k
XN
i¼1

1
2ð1� cÞð

Z t

t�tðtÞ
eTi ðuÞeiðuÞduÞ1=2

þ 1
2ð1� cÞ

XN
i¼1

eTi ðtÞeiðtÞ �
1� iðtÞ
2ð1� cÞ

XN
i¼1

eTi ðt � iðtÞÞeiðt � iðtÞÞ

ð8Þ

where vC; vD are largest eigenvalue of symmetric matrices ðCþCTÞ=2, ðDþDTÞ=2.
By employing Lemma 2 and Lemma 3 in [7], we set eðtÞ ¼ ðeT1 ðtÞ; eT2 ðtÞ; . . .;
eTNðtÞÞT 2 Rn�N , it yields
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_V � eTðtÞveðtÞ � feTðtÞeðtÞ � k
XN
i¼1

eiðtÞj j � k
XN 0

i¼1

1ffiffiffiffiffiffi
l1i

p ~#i

�� ��� k
XN

i¼N 0 þ 1

1ffiffiffiffiffiffi
l2i

p ~bi
�� ��� k

XN�

i¼1

1ffiffiffiffiffiffi
l3i

p ~ni
�� ��� k

XN
i¼N� þ 1

1ffiffiffiffiffiffi
l4i

p ~tij j � k
XN
i¼1

XN
j¼1

1ffiffiffiffiffi
dij

p ĉij
�� ��� k

XN
i¼1

1ffiffiffiffi
ki

p rij j

� k
XN
i¼1

1
2ð1� cÞð

Z t

t�lðtÞ
eTi ðuÞeiðuÞduÞ1=2 þ

1
2ð1� cÞ e

TðtÞeðtÞ � 1� iðtÞ
2ð1� cÞ e

Tðt � iðtÞÞeiðt � iðtÞÞ

� ðvþ 1
2ð1� cÞ � fÞeTðtÞeðtÞ � kð

XN
i¼1

eiðtÞk k�
XN 0

i¼1

1ffiffiffiffiffiffi
l1i

p ~#i

�� ��� XN
i¼N 0 þ 1

1ffiffiffiffiffiffi
l2i

p ~bi
�� ���XN�

i¼1

1ffiffiffiffiffiffi
l3i

p

~ni
�� ��� XN

i¼N� þ 1

1ffiffiffiffiffiffi
l4i

p ~tij j �
XN
i¼1

XN
j¼1

1ffiffiffiffiffi
dij

p ĉij
�� ���XN

i¼1

1ffiffiffiffi
ki

p rij j�
XN
i¼1

1
2ð1� cÞ ð

Z t

t�lðtÞ
eTi ðuÞeiðuÞduÞ1=2Þ

ð9Þ

where v ¼ vCInN
� 0

0 vDInðN � N�Þ
� �

. Take f[ vþ 1
2ð1�cÞ, from Lemma 1 in [7],

thus we can further get

_V � �
ffiffiffi
2

p
k½1
2

XN
i¼1

eTi ðtÞeiðtÞþ
1
2

XN 0

i¼1

1
l1i

~#T
i
~#þ 1

2

XN 0

i¼N 0 þ 1

1
l2i

~bTi
~bi þ

1
2

XN�

i¼1

1
l3i

~nTi
~ni þ

1
2

XN
i¼N� þ 1

1
l4i

~tTi ~ti þ
1
2

XN
i¼1

XN
j¼1

1
dij

ĉ2ij þ
1
2

XN
i¼1

1
ki
r2i þ

1
2ð1� cÞ ð

Z t

t�iðtÞ

XN
i¼1

eTi ðuÞeiðuÞduÞ�

� �
ffiffiffi
2

p
kV1=2

ð10Þ

According to Lemma 1 in [7], the error ei can converge to zero in
t1 � 2V1=2ðt0Þ=

ffiffiffi
2

p
k. Obviously, there exists function of unilateral coupling riði ¼

1; 2; . . .;NÞ making the differential of V negative definite. So according to the LaSalle’s
invariance principle [16], eiðtÞ ! 0 and ~#i ! #i; b̂i ! bi; n̂i ! ni; t̂i ! ti; Ĉ ! C as
t ! t1. That means all of the uncertain parameters can be successful estimated, and the
two networks can achieve FTS. This completes the proof.

Remark 1. The driver-response complex networks contain two types of different node
systems respectively. However, if the networks own more types of different nodes,
similar work is easy to be generalized.

4 Illustrative Examples

For further confirm the correctness of the theoretical analysis, a simulation experiment
has been carried out. We construct the drive and response networks with well-known
Lorenz system, Chen system, Liu system and Rossler system. The system parameters
value of Lorenz system are a1 ¼ 10; a2 ¼ 28; a3 ¼ 8=3. Chen system parameters are

Finite-Time Synchronization of Uncertain Complex Networks 165



d1 ¼ 35; d2 ¼ 3; d3 ¼ 28. Liu system parameters are b1 ¼ 10; b2 ¼ 40; b3 ¼ 1;
b4 ¼ 2:5; b5 ¼ 4. Rossler system parameters are m1 ¼ 0:2;m2 ¼ 0:2;m3 ¼ 5:7.

For simplicity, we choose the drive-response networks of size N 0 ¼ 6 and N� ¼ 4.
The drive network is consisted of six Lorenz systems ði ¼ 1; 2; . . .; 6Þ and four Liu
systems ði ¼ 7; 8; . . .; 10Þ. And the response complex network is consisted of
four Rossler systems ði ¼ 1; 2; . . .; 4Þ and six Chen systems ði ¼ 5; 6; . . .; 10Þ.
a1iði ¼ 1; 2; . . .; 6Þ; b2iði ¼ 7; 8; . . .; 10Þ are the unknown parameters of drive network
and m1iði ¼ 1; 2; . . .; 4Þ; d2iði ¼ 5; 6; . . .; 10Þ are the unknown parameters of response
network. That the real value of the unknown parameters are a1i ¼ 10;
b2i ¼ 40;m1i ¼ 0:2; d2i ¼ 3;, respectively. Taking initial value of the estimator
â1ið0Þ ¼ ð12; 14; 6; 8; 4; 5ÞT , b̂2ið0Þ ¼ ð35; 38; 42; 43ÞT , m̂1ið0Þ ¼ ð0:3; 0:2; 0:5; 0:4ÞT ,
d̂2ið0Þ ¼ ð2; 5; 4; 1; 5; 3ÞT . And l1i ¼ l2i ¼ l3i ¼ l4i ¼ 1, k ¼ 2; ki ¼ 2; dij ¼ 1;
iðtÞ ¼ 2.

Based on Theorem 1, applying the unilateral coupling (3) and adaptive laws (4) and
(5), the FTS can be achieved and the unknown parameters and the uncertain coupling
configuration matrix are also obtained. In Fig. 1, the synchronous errors
ei1ðtÞ; ei2ðtÞ; ei3ðtÞ converge to zero after t[ 2:5. Under the action of coupling between
the two networks, we can see that the three dimension synchronous error curves
starting from the different initial values and after a period of fluctuation, they are
stabilized at the origin. Moreover, the error curves are smooth and without shaking
behavior. In Fig. 2, the weight values of uncertain topological structure ĉij adapt to the
appropriate constants rapidly. We find that the network topology changes can be well
track and the weight topology structure values can be rapidly adaptive to the appro-
priate value. Figures 3 and 4 show the estimation of the unknown parameters
a1i; b2i; d1i and m1i. It is shown that all the parameters can be estimated successfully.
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5 Conclusions

In this paper, the FTS between delayed networks with nonidentical nodes based on
estimation of uncertain topological structure and parameters has been investigated.
A new unilateral coupling control method is proposed to guarantee the realization of
FTS and the corresponding updating laws are also obtained successfully. The simu-
lation results are shown our scheme is feasible.

Acknowledgments. This work was supported by the National Natural Science Foundation of
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Abstract. In a power system, a price-based demand-response program
offers end electricity users time-varying prices, incentivizing them to shift
demand from high-price hours to low-price hours during a day. Heat-
ing/cooling (H/C) loads are typical flexible loads to be shifted. Specifi-
cally, end users optimize the hourly H/C load to balance electricity costs
and comfort. In this paper, a two-time-scale neurodynamic optimization
approach is applied for this multi-objective optimization problem. As a
result, optimal use of H/C loads is derived that yields significant savings
and acceptable comfort. A case study of the Houston City is presented
to show the effectiveness of the proposed neurodynamic approach.

Keywords: Demand response · Power system economics ·
Multi-objective optimization · Two-time-scales · Neurodynamics

1 Introduction

Under the traditional regulated utility structure, most customers are metered
monthly andbilled aflat average rate for the total amount of electricity used.Nowa-
days, some demand-response programs have launched in the unbundled electric
power system, whereby household and small industrial consumers are organized
into coalitions [10] who have opted to limit consumption during energy peaks. In
exchange, they also enjoy lower energy costs. The price signals, i.e., variable hourly
energy tariffs, provide incentives to the end-use customers to reduce load at peak
times of the day when prices are high. Such load control scheme have been sup-
ported by FERC in the USA and the European Commission in Europe [18] to vary
consumers’ consumption habits. It is shown that load control has a dramatic effect
on both consumer utility and system-wide peak load.

In the end customers side, heating/cooling (H/C) loads are typical flexible
loads which could be rearranged. The human comfort zone is not a point but
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a range. In addition, heating or cooling a house can benefit subsequent hours
because thermal insulation enables houses to store heat. As H/C loads repre-
sent a considerable portion of residential load, electricity consumers are willing
to optimize conditioning costs and comfort by increasing air conditioning use
within those hours when prices are off-peak so to maintain indoor temperatures
at a desired level, and decreasing air conditioning use within hours character-
ized by peak prices. Considering the conditioning costs and comfort level, this
optimal strategy would require the definition and solution of a multi-objective
optimization problem.

Remarkable research has been done with respect to the optimal strategy. In
[10], air conditioning loads are scheduled to minimize energy purchase costs. For
example, in [18], air conditioning loads are allowed to be self-scheduled by individ-
ual consumers by estimating consumers tradeoff between electricity bill savings
and living comfort. [2] proposes a simple flexible household utility function that
can be calibrated with minimal data to describe diverse household behaviors and
reveal household responses to different prices. A two-stage bidding strategies and
compensation policies are introduced in [3] considering uncertainties in electricity
prices, weather, non-H/C load, and thermal-related house characteristics. Accord-
ing to the changes in electric usage by end-use customers, some state-of-the-art
transactive energy approaches have been discussed in [1].

For multi-objective optimization problems, various methods have been devel-
oped based on the preference related objectives [17]. Solution techniques with
a prior articulation of preferences require a criterion to aggregate the different
objectives into a single one before starting the optimization, and then a single
solution is obtained. Several objectives are combined using weighted sum meth-
ods, value function methods and goal programming methods [6]. Such kind of
approaches could only capture one single solution. The whole Pareto front, which
is a posteriori articulation of preferences is missing during the combination. Evo-
lutionary algorithms have been widely investigated to find the Pareto front by
repeatedly running the weighted method with a varying weights [7]. However,
for high-dimension and large-scale problems, the aforementioned methods may
require a long time and computing burden to depict the whole optimal region.

Inspired by their biological counterparts, recurrent neural networks have shown
great promises in many applications such as classification and regression, time
series analysis, and automatic control. Neurodynamic optimization is a promising
continuous-time optimization approach, which enjoys the inherent nature of par-
allel computing and the potential of electronic implementation. In addition, recent
advances in neurodynamic engineering offer availability of hardware implementa-
tion of neural networks [5], which shows a great potential to run neurodynamic
models much faster than iterative methods by orders of magnitude.

Past thirty years witnessed the great developments of neurodynamic optimiza-
tion since the pioneer work of [21]. From then on, Kennedy and Chua proposed a
dynamical canonical nonlinear programming circuit to approximate optimal solu-
tions to nonlinear optimization problems [11]. Wang proposed a deterministic
annealing network for convex programming [22]. Forti et al. proposed a general-
ized neural network for nonsmooth nonlinear programming based on differential
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inclusions [9]. In recent years, a few neurodynamic optimization models have been
developed for nonsmooth or generalized convex optimization with wide applica-
tions [4,12,13,16]. Some approaches have been also proposed for more complex
optimization problems,such as bilevel programming [20],biconvex problems [14],
minimax problems [15] and multi-objective problems [24].

Inspired by above discussions, this paper aims to apply the neurodynamic
approach for multi-objective optimization in order to achieve strategic bidding
of electricity market. According to the neurodynamic model in [24], a weight
vector is varying continuously under the guidance of a dynamical system, where
the weights are set to evolve at a relative quite slow rate in comparison with
the real-time convergence speed of neural networks. To obtain a description of
the whole Pareto-front, the whole neural network has two time scales, which
consisting of a “fast-varying” subsystem of neural network and a “slow-varying”
subsystem of weight dynamics. This model is proved to be convergent to the
Pareto-optimal front. The optimization model is then applied in the strategic
bidding bi-objective problem successfully. As a result, the Pareto front has shown
the posteriori articulation of preferences for the electricity consumers to achieve
economic benefits and enjoy the comparable comforts.

The remain part of this paper is organized as follows. In Sect. 2, preliminary
concepts and notations of strategic bidding of electricity market are introduced.
In Sect. 3, the neurodynamic models for solving multi-objective functions are
applied. In Sect. 4, a case study is presented to illustrate the proposed approach.
Section 5 concludes this paper.

2 Preliminaries

Electricity consumers can optimize conditioning costs and comfort level by com-
bining two strategies: increasing the desired indoor temperature but nonetheless
taking advantage of the time-varying electricity prices. Indeed, they increase
air conditioning use within those hours when prices are off-peak to maintain
indoor temperatures at a desired level, and then they decrease air condition-
ing use within hours characterized by peak prices. dcomfi is then introduced to
show the degradation of living comfort by the deviation from the ideal indoor
temperature T ideal

i .

dcomfi = (Ti − T ideal
i )2, (1)

where Ti and T ideal
i are, respectively, the actual and ideal residence indoor tem-

peratures at the ith time period when the end users need the air conditioning.
The degradation of living comfort is a penalty for the consumers welfare and has
been transformed into a cost.

The bi-objective optimization problem can be modeled as follows [18]:

min F = [
N−1∑

i=0

Piqi,
∑

i∈S

dcomfi] (2)
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s.t. T0 − TN = 0, q0 − qN = 0 (3)

Ti = αTi−1 + βqi−1 + (1 − α)T out
i−1, i = 1, . . . , N (4)

Tmin ≤ Ti ≤ Tmax, i ∈ S (5)
0 ≤ qi ≤ qmax, i = 0, 1, . . . , N − 1 (6)

As is shown in the objective function (2), there are two objectives for minimiza-
tion. One objective (

∑N−1
i=0 Piqi) is used for saving energy and the other one

(
∑

i∈S dcomfi) is used for measuring comfort level. S is a time region that the
end users need the air conditioning. The above optimization problem is then a
bi-objective optimization problem. Pi is the electricity price at the ith period, qi

is the energy consumption at the ith period. α is the residence thermal dispersion
coefficient, β (in kWh/◦C) represents the reciprocal of total thermal capacity
of the residence, T out

i , Tmin and Tmax are, the outdoor temperature, lower and
upper bounds of the indoor temperature. The decision variables of the problem
are the amounts of conditioning energy consumption q = [q0, q1, . . . , qN−1]T and
the indoor temperatures T = [T0, T1, . . . , TN−1]T . Constraints (3) indicate that
initial and final indoor temperatures and energy consumptions are assumed the
same. Constraint (4) is derived from the thermal model. Constraint (5) defines
the maximum temperature variation of the consumers’ tolerance. Constraint (6)
shows the limitation of air conditioning capacity.

3 Neurodynamic Approaches

In order to solve the optimization problem (2), a neurodynamic optimization
approach is then introduced. For some general cases, a multi-objective optimiza-
tion problem can be described as follows:

min F (x) = [F1(x), F2(x), . . . , Fk(x)]T

s.t. Ax = b, x ∈ Ω (7)

where x ∈ �n is the vector of decision variables, F (x) ∈ �k is a vector of
objective functions or criteria with Fi(x)(i = 1, 2, . . . , k). The state matrix A ∈
�p×n has a full row rank. Ω ⊂ �n is a closed convex set. Then the feasible region
is defined as the set {x ∈ �n : Ax = b, x ∈ Ω}.

There always exist tradeoff among all the objectives for multi-objective opti-
mization. If a decision vector x∗ ∈ X is called Pareto optimal if there does
not exist x ∈ X such that Fi(x) ≤ Fi(x∗) for all (i = 1, 2, . . . , k). Weighted
sum method is a common approach for solving multi-objective optimization as
follows:

min
k∑

i=1

= wiFi(x)

s.t. Ax = b, x ∈ Ω, 0 ≤ wi ≤ 1, w ∈ �k (8)
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Fig. 1. Dynamic interaction of variables w and x.

where wi is the weight of the ith objective function. It has been proved in [19]
that if (7) is strictly convex, then the optimal solution for (8) is equivalent to the
optimal solution to (7). The neurodynamic model has been proposed for solving
(8) in [24], which consists of two cooperative parts: neurodynamic system and
weights updating dynamics, as depicted in Fig. 1. When the number of objective
k = 2, the neurodynamic model can be present as follows.

ε1ẋ = −QPΩ(x) − (I − Q)(x − PΩ(x) + α∇F ((I − Q)PΩ(x) + q)w) − q

ε2ẇ = v, (9)

where Q = AT (AAT )−1A, q = AT (AAT )−1b, v = [1,−1]T and let the initial
value w0 = [0, 1]T , and ε1 and ε2 are two scaling values which satisfy ε1 � ε2.
Set ε1 = 10−5 and ε2 = 10−2. As t goes, the weight vector w will move from
[0, 1]T to [1, 0]T and covers all the nodes in S2. PΩ in (9) is a projection operator.
If Ω = {xi ∈ �n : li ≤ xi ≤ hi, i = 1, 2, . . . , n}, PΩ is defined as

PΩ(xi) =

⎧
⎨

⎩

li, xi < li
xi, li ≤ xi ≤ hi

hi, hi < xi

(10)

4 Simulation Results

A case study is presented in this section, where the coalition in Houston submits
bids and purchases electricity for its clients. According to [3], the typical values
of α and β are chosen as 0.97 and 0.315 ◦C/kW/15 min, respectively. The max-
imum power output qmax is set to 8 kW. Desired household temperature T ideal

is 22 ◦C. Highest acceptable household temperature Tmax is 24 ◦C and lowest
acceptable household temperature Tmin is 20 ◦C. The energy delivery day of
interest is Dec. 8th, 2016. Figure 2 described the reference outdoor temperature
in Dec. 8th 2016 in Houston [23]. The market prices of electricity in Houston is
time-varying. Figure 3 demonstrated the transient behavior of electricity price in
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Fig. 2. Reference outdoor temperature
in Dec. 8th 2016 in Houston.
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Fig. 3. Transient behavior of electricity
price in Dec. 8th 2016 in Houston.

Dec. 8th in Houston [8]. The market prices and temperature data are collected
every 15 min. As a result, the length of our case study is N = 96. Assume the
end-users stay at home from (0:00–8:00) and (17:00–24:00), then S of our interest
is {N = 1, 2, . . . , 32, 69, 70, . . . , 96}.

Figure 4 demonstrated transient behaviors of state variables {Ti} with w =
[0.5, 0.5]T on integral hours (1:00 am, 2:00 am,. . . ) using two-time-scales neuro-
dynamic model (9). The state variables are convergent in less then 2 ms, which
shows the real-time capability of the neural network. Figure 5 shows Pareto front
generated from neurodynamic optimization. When w = [0, 1]T , it shows that the
comfort level is maximized. Similarly, w = [1, 0]T means the electricity cost is
mostly saved.
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Fig. 4. The transient behaviors of {Ti}
with w = [0.5, 0.5]T on integral hours
(1:am, 2:am,. . . )
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Fig. 5. Pareto front generated from
neurodynamic model.

Figure 6 shows the comparison results of load profiles on Dec. 8th before and
after implementing the multi-objective optimization. The optimization shifts
load from peak hours (6:00 pm–8:00 pm) to off-peak hours. By shifting H/C
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Fig. 6. Comparison results of load profiles
before and after implementing optimiza-
tion in different situations.
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Fig. 7. Comparison results of tempera-
ture profiles before and after implement-
ing optimization in different situations.

loads from high-price hours to adjoining low-price hours, the electricity cost has
reduced 29.3% for mostly saved cases. Figure 7 shows the comparison results
temperature profiles before and after implementing optimization in different sit-
uations (w = [0, 1]T , [0.5, 0.5]T , [1, 0]T ). This strategy could be adopted in all
situations to avoid heating the house using expensive electricity while maintain-
ing an acceptable temperature for the household.

5 Conclusions

This paper shows the application of two-time-scales neurodynamic optimiza-
tion approach for solving bi-objective optimization problems. Two objectives,
comfort level and the electricity costs are considered in the optimization problem.
A case study of Houston in one day has been simulated for demonstrating the
effectiveness of the proposed model. Compared to the previous approaches, a
Pareto optimal region other than several optimal points has been denoted. In
addition, as the electricity market prices and temperature information vary in
real time, the proposed method is able to optimize the objectives in real time.
After implementing the optimization strategy,“smart” use of air conditioning
could be achieved. Future study will consider the unpredictable market prices
and temperature changes, and different human habits.
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Abstract. This paper studies the quasi-containment and asymptotic
containment problems of networking uncertain agents with multiple lead-
ers over a fixing communication graph. A kind of containment controller
consisting of a linear feedback term, a neuro-adaptive approximation
term as well as a non-smooth feedback term is designed to complete
the goal of quasi-containment. Under the assumption that the subgraph
depicting the underlying communication configuration among multiple
followers is detail-balanced and each follower can be at least indirectly
influenced by one leader, it is proven that quasi-containment can be real-
ized if the containment controller are appropriately designed. The results
are then extended to asymptotic containment of networking uncertain
agents with multiple leaders.
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1 Introduction

One key scientific problem in the field of distributed multi-agent systems (MASs)
is to understand how macroscopic coordination dynamic behavior can emerge
from local interactions among neighboring agents [1]. Addressing this question
is not only theoretically interesting but also practically significant [2]. A great
quantity of attention has been recently paid to the study of emergence for coor-
dination behaviors of MASs [1].
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As one of the most interesting coordination behaviors of MASs, containment
of MASs has recently received particular attention [3–8]. Within the field of
MASs, the coordination objective of containment is to make the states of all
followers in the networking agent systems converge eventually onto a convex
hull spanned by those of the multiple dynamic leaders. For MASs with a sin-
gle leader, the containment problem will reduce to leader-following cooperative
tracking problem. In [3], an interesting stop-go strategy was proposed to real-
ize containment in first-order integrator-type MASs with hierarchical structure
and multiple leaders. Then, containment problems of first-order integrator-type
MASs with directed switching topologies was studied in [4]. Containment con-
trol for a class of networking Lagrangian systems in the presence of parametric
uncertainties under a directed fixing graph was studied in [5]. Robust contain-
ment of uncertain linear MASs with a undirected topology was addressed in [6]
via designing a non-smooth containment controller. In [7], distributed contain-
ment of linear MASs with multiple dynamic leaders subject to possibly nonzero
control inputs was studied. Distributed observer-type containment protocol was
designed in [8] to solve containment problem for a class of general linear MASs
under directed fixing topology.

This paper is mainly concerned with the quasi-containment and asymptotic
containment problems of general linear MASs with multiple leaders subject to
nonzero control inputs. Unlike most existing related references where the fol-
lowers have only nominal dynamics, the dynamic evolution of followers in the
considered MASs are allowed to be effected by unknown nonlinear dynamics and
external disturbances. A class of containment controllers consisting of a linear
feedback term, a neuro-adaptive approximation term as well as a non-smooth
feedback term are first designed to make the containment error vector of the
closed-loop MASs being uniformly bounded. Under the assumption that the
subgraph depicting the coupling configuration among the multiple followers is
detail-balanced and each follower can be at least indirectly influenced by one
leader, it is proven that quasi-containment can be realized if the structure of
the feedback gain matrix and the control gain in the proposed containment con-
troller are appropriately designed. At last, a new kind of containment controllers
are designed to achieve asymptotic containment.

Notations. R
n×m represents the set of n × m real matrices. Suppose that all

the eigenvalues of P are real, λmin(P ) and λmax(P ) denotes respectively its
smallest and largest eigenvalues. Notation diag{A1, · · · , An} denotes a block-
diagonal matrix with Ai as its i-th (i = 1, · · · , n) diagonal element. Symbol ⊗
denotes the Kronecker product. Symbols ‖ · ‖ and ‖ · ‖F denote the Euclidian
norm of a vector and the Frobenius norm of a matrix, respectively. The ∞-norm
of a vector x = (x1, · · · , xn)T ∈ R

n is denoted by ‖x‖∞. Notation tr(A) indicates
the trace of matrix A, for any given A ∈ R

N×n.



180 G. Wen et al.

2 Preliminaries on Graph Theory, Matrix Theory
and Problem Statement

2.1 Preliminaries

Let G(A) be a digraph associated with a set of nodes V = {v1, · · · , vN}, a set
of edges E ⊆ V × V, and an adjacency matrix A = [aij ]N×N with non-negative
elements aij . An edge eij in G(A) is represented by ordered pair of nodes (vj , vi),
where vj and vi are respectively called the parent and child nodes. And, eij ∈ E if
and only if aij > 0. A directed path from node vi to vj on G(A) is a finite ordered
sequence of edges, (vi, vk1), (vk1 , vk2), · · · , (vkl

, vj), with distinct nodes vkm
,

m = 1, · · · , l. A directed graph G(A) is said to be detail-balanced if there exist
some scalars φk > 0, k = 1, · · · , N , to make the following hold: φiaij = φjaji,
for all i, j = 1, · · · , N [9]. Let L = [lij ]N×N be the Laplacian matrix of G(A),
defined as follows lij = −aij for i �= j, and lii =

∑N
k=1,k �=i aik.

Lemma 1 [10]. For any given A ∈ R
n×m, and B ∈ R

m×n, one has |tr(AB)| ≤
‖A‖F ‖B‖F , of which ‖A‖F =

√
tr(AT A) and ‖B‖F =

√
tr(BT B).

2.2 Problem Statement

The underlying interaction topology among N agents is determined by a digraph
G(A) associated with V = {1, · · · , N} as the set of nodes where each node
represents an agent in the considered MAS. It is assumed that there are M
(M < N) leaders and N − M followers in the considered MAS. Assume further
that the agents labeled from 1 to M (M > 1) are the leaders, and the agents
labeled from M + 1 to N are the followers. Usually, the leaders take the role of
exosystems or command generators generating desired trajectories to be tracked
by followers. Based on the above statements, one has that it is reasonable to
further assume that the leaders have no neighbor, indicating that the evolution
of each leader will not be affected by those of the other leaders or the followers.
Based on the aforementioned analysis, one obtains that the nodes labeled by
1, · · · ,M in graph G(A) have no neighbor. For convenience, use L = {1, · · · ,M}
and F = {M + 1, · · · , N} to represent, respectively, the leader and the follower
sets.

Since the nodes labeled by 1, · · · ,M in graph G(A) have no neighbor, the
Laplacian matrix L of digraph G(A) can be written as

L =

[
0M 0M×(N−M)

L1 L2

]
∈ R

N×N , (1)

where L1 ∈ R
(N−M)×M , 0M and 0M×(N−M) are respectively the M × M and

M × (N − M) zero matrices, and L2 ∈ R
(N−M)×(N−M).

Assumption 1. For each follower i ∈ F, there exists at least one leader j ∈ L

from which there is a directed path to follower i.
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Assumption 2. The induced subgraph with vertex set F in G(A) is detailed bal-
anced, that is, there exists a vector φ = (φM+1, · · · , φN )T with φi > 0 for all
i = M + 1, · · · , N , such that ΦA2 = AT

2 Φ, where A2 is the adjacency matrix of
the induced subgraph with vertex set F in G(A), and Φ = diag{φM+1, · · · , φN}.

Lemma 2 [5]. Under Assumption 1, one gets that all the eigenvalues of L2

(defined in (1)) have positive real parts, each row of −L−1
2 L1 has sum equal

to 1, and each entry of −L−1
2 L1 is nonnegative.

The evolution equations of leaders and followers are, respectively, given as

ẋi(t) = Axi(t) + Bui(t), i ∈ L, (2)

and
ẋi(t) = Axi(t) + B [fi(xi(t)) + gi(t) + ui(t)] , i ∈ F, (3)

where A ∈ R
n×n, xi(t) ∈ R

n is the state vector of the i-th agent, B ∈ R
n×m,

ul
i(t) is the control input of leader i, ui(t) ∈ R

m is the control input acting on
follower i, fi(xi(t)) represents the unknown input nonlinearity which is assumed
to be smooth, gi(t) ∈ R

m describes the bounded matching disturbances such
that

‖gi(t)‖∞ ≤ κ0, (4)

for some given scalar κ0 > 0. According to Stone-Weierstrass approximation
theorem [11] and the fact that the nonlinear functions fi(xi(t)), i ∈ F, in (3) are
smooth, fi(xi(t)) can be thus approximated on a compact set Ω ⊂ R

m by

fi(xi(t)) = WT
i ϕi(xi(t)) + εi, ∀xi(t) ∈ Ω, (5)

where ϕi(·) : Rn → R
s is a known basis function, Wi ∈ R

s×m represents ideal
neural network (NN) weight matrix which is a constant real matrix, εi ∈ R

m

is the NN approximation error vector such that ‖εi‖∞ ≤ εM for all i ∈ F. For
convenience, let W = diag{WM+1, · · · ,WN}. One then gets that there exists a
positive scalar WM to make the following holds: ‖W‖F ≤ WM .

Definition 1. Quasi-containment of MASs with leaders given by (2) and fol-
lowers given by (3) is said to be achieved, if there exist some nonnegative scalars
pij ≥ 0 with

∑M
j=1 pij = 1, such that

lim
t→∞

∥
∥xi(t) − ΣM

j=1pijxj(t)
∥
∥ ≤ 	, i ∈ F, (6)

for some given positive scalar 	. Asymptotic containment of MASs with leaders
given by (2) and followers given by (3) is said to be achieved if 	 = 0 in (6).

3 Main Theoretical Results

Generally, Wi in (5) is unknown. To compensate for the unknown nonlinearities
and motivated by the consensus protocols given in [12], a new kind of neuro-
adaptive based containment controller is designed in this paper:

ui(t) = −αKδi(t) − βsign(Kδi(t)) − ŴT
i (t)ϕi(xi(t)), i ∈ F, (7)
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of which δi(t) =
∑N

j=1 aij(xi(t)−xj(t)); α and β are the coupling strength to be
chosen, K ∈ R

m×n is the feedback gain matrix to be designed; sign(·) denotes
the element-wise signum operation; Ŵi(t) is the current estimation of the ideal
weights for follower i.

3.1 Quasi-Containment of Uncertain MASs

Quasi-containment problem of the considered MASs is studied in this subsec-
tion. To complete the goal of quasi-containment, the following neuro-adaptive
evolution law for Ŵi(t) in (7) is proposed:

˙̂
Wi(t) = νi[φiϕi(t)δT

i (t)(P−1B) − ciŴi(t)], i ∈ F, (8)

of which νi and ci are two positive scalars, φi is provided in Assumption 2, P
is a positive definite matrix to be designed later. In this paper, the trajectory
solutions of all differential systems with non-smooth right-hands should be con-
sidered as those in the sense of Filippov.

Take δ(t)=(δT
M+1(t), · · · , δT

N (t))T , xf (t)=(xT
M+1(t), · · · , xT

N (t))T , and xl(t) =
(xT

1 (t), · · · , xT
M (t))T . Obviously, δ(t) = (L1⊗In) xl(t)+(L2⊗In)xf (t). Set e(t) =

xf (t) − (−L−1
2 L1 ⊗ In)xl(t) as the containment error vector of the considered

networking agents. It can be derived from the above analysis that e(t) = (L−1
2 ⊗

In)δ(t). This means that
‖e(t)‖ ≤ �‖δ(t)‖, (9)

with � being the largest singular value of L−1
2 , i.e., � =

√
λmax

(
(L−1

2 )T L−1
2

)
.

Then, combing (7) together with (2)–(5), we have

δ̇(t) =
[
(IN−M ⊗ A) − α(L2 ⊗ BK)

]
δ(t) + (L1 ⊗ B)ul(t) + (L2 ⊗ B)g(t)

− (L2 ⊗ B)(W̃T Ψ − ε) − β(L2 ⊗ B)sign((IN−M ⊗ K)δ(t)), (10)

where ul(t) = (uT
1 (t), · · · , uT

N (t))T , g(t) = (gT
M+1(t), · · · , gT

N (t))T , W̃ = diag
{ŴM+1(t) − WM+1, · · · , ŴN (t) − WN}, ε=(εT

M+1(t), · · ·, εT
N (t))T ∈ R

(N−M)m,
Ψ=(ϕT

M+1(t), · · · , ϕT
N (t))T ∈ R

(N−M)s. To facilitate the analysis in the next
section, the following assumption is made.

Assumption 3. For any given xl(0) ∈ R
Mn, there exist two positive constants

η(xl(0)) and η̂(xl(0)) such that

‖xl(t)‖∞ ≤ η(xl(0)), ‖ul(t)‖∞ ≤ η̂(xl(0)), for all t ≥ 0. (11)

For notational brevity, let φmin = mini=M+1,M+2,··· ,Nφi.

Theorem 1. Suppose that Assumptions 1–3 hold and the matrix pair (A, B)
is stabilizable. Then, quasi-containment for MASs with leaders given by (2)
and followers given by (3) under protocol (7) with β > εM + η̂(xl(0)) + κ0,
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α >
χ0λmax(ΦL−1

2 )
2φmin

for some given χ0 > 0 and K = BT P−1, where P > 0 is a
solution of the following linear matrix inequality (LMI):

AP + PAT − χ0BBT + θ1P < 0, (12)

of which κ0 is defined in (4), θ1 is a given positive scalar.

Proof. Under Assumption 2, one knows that there exists a positive vector
φ = (φM+1, φM+2, · · · , φN )T > 0 such that ΦL2 = LT

2 Φ of which Φ =
diag{φM+1, φM+2, · · · , φN} > 0. On the other hand, it can be obtained from
Assumption 1 and Lemma 2 that L2 is nonsingular. Since Φ > 0, we obtain
that ΦL2 is also a nonsingular matrix. The above analysis indicates that ΦL2

is a nonsingular and symmetric real matrix. Thus, ΦL2 is positive definite. As
L2Φ

−1 = Φ−1 (ΦL2) Φ−1, one knows L2Φ
−1 is also positive definite. Based upon

the above analysis, we may constructive the following Lyapunov function for
system (10):

V (t) = δT (t)
(
ΦL−1

2 ⊗ P−1
)
δ(t) +

N∑

i=M+1

tr
( 1

νi
W̃T

i (t)W̃i(t)
)
, (13)

where W̃i(t) = Ŵi(t) − Wi, i = M + 1, · · · , N, P > 0 is a solution of LMI (12).
Calculating the time derivative of V (t) along the solution of (10) and invoking
K = BT P−1 give that

V̇ (t) =δT (t)
[
ΦL−1

2 ⊗ (P−1A + AT P−1) − 2αΦ ⊗ (P−1BBT P−1)
]
δ(t)

+ 2δT (t)
(
ΦL−1

2 L1 ⊗ P−1B
)
ul(t) + 2δT (t)

(
Φ ⊗ P−1B

)
g(t)

− 2δT (t)(Φ ⊗ P−1B)(W̃T Ψ − ε) − 2β‖(Φ ⊗ BT P−1)δ(t)‖1 (14)

+ 2
N∑

i=M+1

tr
(
W̃T

i (t)φiϕi(t)δT
i (t)(P−1B)

)
− 2

N∑

i=M+1

tr
(
ciW̃

T
i (t)Ŵi(t)

)
.

By Hölders inequality, one obtains

2δT (t)
(
ΦL−1

2 L1 ⊗ P−1B
)
ul(t)

≤2‖(L−1
2 L1 ⊗ In)ul(t)‖∞ · ‖(Φ ⊗ BT P−1

)
δ(t)‖1. (15)

Based on the fact ‖(L−1
2 L1⊗In)ul(t)‖∞ ≤ ‖(L−1

2 L1⊗In)‖∞·‖ul(t)‖∞ ≤ η̂(xl(0)),
it can be got from (15) that

2δT (t)
(
ΦL−1

2 L1 ⊗ P−1B
)
ul(t) ≤ 2η̂(xl(0))‖(Φ ⊗ BT P−1

)
δ(t)‖1. (16)

Similarly, one gets 2δT (t)
(
Φ ⊗ P−1B

)
g(t)≤2κ0‖

(
Φ ⊗ BT P−1

)
δ(t)‖1. According

to the above analysis, we may further get

V̇ (t) ≤ − θ1δ
T (t)

(
ΦL−1

2 ⊗ P−1
)
δ(t) − 2

N∑

i=M+1

tr
(
ciW̃

T
i (t)W̃i(t)

)

+ 2
N∑

i=M+1

tr
(
ciW̃

T
i (t)Wi

)
, (17)
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where the last inequality is derived by using LMI (12), the facts β > εM +
η̂(xl(0))+κ0 and −2

∑N
i=M+1 tr

(
ciW̃

T
i (t)W̃i(t)

)
≤ 0. By using Lemma 1, it can

be got from (17) that

V̇ (t) ≤ −c0V (t) + 2cMWM‖W̃ (t)‖F , (18)

of which c0 = min{θ1, 2cmνm}. Some mathematical calculations give that

2cMWM‖W̃ (t)‖F ≤ 2cMWM
√

νM

√
V (t) (19)

where νM = maxi∈{M+1,M+2,··· ,N}νi. Based upon the above analysis, we get

d

dt

(√
V (t)

)
≤ −(c0/2)

√
V (t) + c̄0/2, (20)

where c̄0 = 2cMWM
√

νM . Integrating both sides of (20) from 0 to t gives
√

V (t) ≤
√

V (0)e− c0
2 t +

c̄0
c0

(1 − e− c0
2 t) ≤

√
V (0) +

c̄0
c0

. (21)

The above inequalities indicate that ‖δ(t)‖ is uniformly bounded for any given
V (0). Recalling λmin(ΦL−1

2 ⊗ P−1)‖δ(t)‖2 ≤ V (t), we may get

‖δ(t)‖ ≤ (
√

V (0) + c̄0/c0)/
√

λmin(ΦL−1
2 ⊗ P−1). (22)

The proof can be thus completed by combing (9) and (22). �

3.2 Asymptotic Containment of Uncertain MASs

Asymptotic containment problem is addressed in this subsection. Based on the
analysis given in the Subsect. 3.1 and motivated by the structures of distributed
adaptive controllers given in [12,13], the following neuro-adaptive evolution law
for Ŵi(t) in (7) is proposed:

˙̂
Wi(t) = νi[φiϕi(t)δT

i (t)(P−1B) − ci(Ŵi(t) − W i(t))],

Ẇ i(t) = ci(Ŵi(t) − W i(t)), i ∈ F,
(23)

of which νi and ci are two positive scalars, P is a positive definite matrix to
be specified later, φi is provided in Assumption 2, W i(t) is an auxiliary weight
matrix.

Theorem 2. Suppose that Assumptions 1–3 hold and the matrix pair (A, B)
is stabilizable. Then, asymptotic containment for MASs with leaders given by
(2) and followers given by (3) under protocol (7) associated with adaptive law
(23) will be achieved if the control parameters are appropriately designed such

that α >
χ1λmax(ΦL−1

2 )
2φmin

for some given χ1 > 0, β > εM + η̂(xl(0)) + κ0 and
K = BT P−1, where P > 0 is a solution of the following LMI:

AP + PAT − χ1BBT + θ2P < 0, (24)

of which κ0 is defined in (4), θ2 is a given positive scalar.
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Proof. Consider the following Lyapunov function for system (10):

V1(t) = δT (t)
(
ΦL−1

2 ⊗ P−1
)
δ(t) +

N∑

i=M+1

tr
( 1

νi
W̃T

i (t)W̃i(t)
)

+
N∑

i=M+1

tr
(
W̃

T

i (t)W̃ i(t)
)
, (25)

where W̃i(t) = Ŵi(t) − Wi and W̃ i(t) = W i(t) − Wi, P > 0 is a solution of
LMI (24). This theorem can be then proven by performing some similar steps as
those in the proof of Theorem1. �

4 Conclusions

Quasi-containment and asymptotic containment problems have been investi-
gated in this paper for a class of networking linear uncertain MASs with multiple
dynamic leaders. The dynamic evolution of leaders in the considered MASs model
may be subjected to nonzero control inputs and the evolution of followers may be
effected by unknown dynamics. A class of containment controllers consisting of
a linear feedback term, a neuro-adaptive approximation term and a non-smooth
feedback term have been constructed to ensure quasi-containment. The results
are extended to asymptotic containment by designing a new kind of weighting
matrix update law.
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Abstract. We present an efficient method for detecting anomalies in
videos. Recent applications of convolutional neural networks have shown
promises of convolutional layers for object detection and recognition,
especially in images. However, convolutional neural networks are super-
vised and require labels as learning signals. We propose a spatiotemporal
architecture for anomaly detection in videos including crowded scenes.
Our architecture includes two main components, one for spatial feature
representation, and one for learning the temporal evolution of the spa-
tial features. Experimental results on Avenue, Subway and UCSD bench-
marks confirm that the detection accuracy of our method is comparable
to state-of-the-art methods at a considerable speed of up to 140 fps.

Keywords: Anomaly detection · Feature learning · Regularity ·
Autoencoder

1 Introduction

With the rapid growth of video data, there is an increasing need not only for
recognition of objects and their behaviour, but in particular for detecting the
rare, interesting occurrences of unusual objects or suspicious behaviour in the
large body of ordinary data. Finding such abnormalities in videos is crucial for
applications ranging from automatic quality control to visual surveillance.

Meaningful events that are of interest in long video sequences, such as sur-
veillance footage, often have an extremely low probability of occurring. As such,
manually detecting such events, or anomalies, is a very meticulous job that often
requires more manpower than is generally available. This has prompted the
need for automated detection and segmentation of sequences of interest. How-
ever, present technology requires an enormous amount of configuration efforts
on each video stream prior to the deployment of the video analysis process, even
with that, those events are based on some predefined heuristics, which makes
the detection model difficult to generalize to different surveillance scenes.

Recent effort on detecting anomalies by treating the task as a binary classi-
fication problem (normal and abnormal) [12] proved it being effective and accu-
rate, but the practicality of such method is limited since footages of abnormal
c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part II, LNCS 10262, pp. 189–196, 2017.
DOI: 10.1007/978-3-319-59081-3 23
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events are difficult to obtain due to its rarity. Therefore, many researchers have
turned to models that can be trained using little to no supervision, includ-
ing spatiotemporal features [3,11], dictionary learning [10] and autoencoders [7].
Unlike supervised methods, these methods only require unlabelled video footages
which contain little or no abnormal event, which are easy to obtain in real-world
applications.

This paper presents a novel framework to represent video data by a set of
general features, which are inferred automatically from a long video footage
through a deep learning approach. Specifically, a deep neural network composed
of a stack of convolutional autoencoders was used to process video frames in
an unsupervised manner that captured spatial structures in the data, which,
grouped together, compose the video representation. Then, this representation
is fed into a stack of convolutional temporal autoencoders to learn the regular
temporal patterns.

Our proposed method is domain free (i.e., not related to any specific task,
no domain expert required), does not require any additional human effort, and
can be easily applied to different scenes. To prove the effectiveness of the pro-
posed method we apply the method to real-world datasets and show that our
method consistently outperforms similar methods while maintaining a short run-
ning time.

2 Methodology

The method described here is based on the principle that when an abnormal
event occurs, the most recent frames of video will be significantly different than
the older frames. Inspired by [2], we train an end-to-end model that consists of a
spatial feature extractor and a temporal encoder-decoder which together learns
the temporal patterns of the input volume of frames. The model is trained with
video volumes consists of only normal scenes, with the objective to minimize
the reconstruction error between the input video volume and the output video
volume reconstructed by the learned model. After the model is properly trained,
normal video volume is expected to have low reconstruction error, whereas video
volume consisting of abnormal scenes is expected to have high reconstruction
error. By thresholding on the error produced by each testing input volumes, our
system will be able to detect when an abnormal event occurs.

2.1 Feature Learning

We propose a convolutional spatiotemporal autoencoder to learn the regular pat-
terns in the training videos. Our proposed architecture consists of two parts —
spatial autoencoder for learning spatial structures of each video frame, and
temporal encoder-decoder for learning temporal patterns of the encoded spa-
tial structures. As illustrated in Fig. 1, the spatial encoder and decoder have
two convolutional and deconvolutional layers respectively, while the temporal
encoder is a three-layer convolutional long short term memory (LSTM) model.
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Fig. 1. Our proposed network architecture. It takes a sequence of length T as input, and
output a reconstruction of the input sequence. The numbers at the rightmost denote
the output size of each layer. The spatial encoder takes one frame at a time as input,
after which T = 10 frames have been processed, the encoded features of 10 frames are
concatenated and fed into temporal encoder for motion encoding. The decoders mirror
the encoders to reconstruct the video volume.

Convolutional layers are well-known for its superb performance in object recog-
nition, while LSTM model is widely used for sequence learning and time-series
modelling and has proved its performance in applications such as speech trans-
lation and handwriting recognition.

Autoencoder. Autoencoders, as the name suggests, consist of two stages:
encoding and decoding. It was first used to reduce dimensionality by setting
the number of encoder output units less than the input. The model is usually
trained using back-propagation in an unsupervised manner, by minimizing the
reconstruction error of the decoding results from the original inputs. With the
activation function chosen to be nonlinear, an autoencoder can extract more
useful features than some common linear transformation methods such as PCA.

Spatial Convolution. The primary purpose of convolution in case of a convo-
lutional network is to extract features from the input image. Convolution pre-
serves the spatial relationship between pixels by learning image features using
small squares of input data. Suppose that we have some n×n square input layer
which is followed by the convolutional layer. If we use an m × m filter W , the
convolutional layer output will be of size (n − m + 1) × (n − m + 1).
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Convolutional LSTM. A variant of the long short term memory (LSTM)
architecture, namely Convolutional LSTM (ConvLSTM) model was introduced
by Shi et al. in [8] and has been recently utilized by Patraucean et al. in [6]
for video frame prediction. Compared to the usual fully connected LSTM (FC-
LSTM), ConvLSTM has its matrix operations replaced with convolutions. By
using convolution for both input-to-hidden and hidden-to-hidden connections,
ConvLSTM requires fewer weights and yield better spatial feature maps. The
formulation of the ConvLSTM unit can be summarized with (7) through (12).

ft = σ(Wf ∗ [ht−1, xt, Ct−1] + bf ) (1)

it = σ(Wi ∗ [ht−1, xt, Ct−1] + bi) (2)

Ĉt = tanh(WC ∗ [ht−1, xt] + bC) (3)

Ct = ft ⊗ Ct−1 + it ⊗ Ĉt (4)

ot = σ(Wo ∗ [ht−1, xt, Ct−1] + bo) (5)

ht = ot ⊗ tanh(Ct) (6)

In contrast to the FC-LSTM, the input is fed in as images, while the set
of weights for every connection is replaced by convolutional filters (the symbol
∗ denotes a convolution operation). This allows ConvLSTM work better with
images than the FC-LSTM due to its ability to propagate spatial characteristics
temporally through each ConvLSTM state. Note that this convolutional variant
also adds an optional ‘peephole’ connections to allow the unit to derive past
information better.

2.2 Regularity Score

Once the model is trained, we can evaluate our models performance by feeding
in testing data and check whether it is capable of detecting abnormal events
while keeping false alarm rate low. To better compare with [2], we used the
same formula to calculate the regularity score for all frames, the only difference
being the learned model is of a different kind. The reconstruction error e of all
pixel values in frame t of the video sequence is taken as the Euclidean distance
between the input frame x(t) and the reconstructed frame fW (x(t)):

e(t) = ||x(t) − fW (x(t))||2 (7)

where fW is the learned weights by the spatiotemporal model. We then compute
the abnormality score sa(t) by scaling between 0 and 1. Subsequently, regularity
score sr(t) can be simply derived by subtracting abnormality score from 1:

sa(t) =
e(t) − e(t)min

e(t)max
(8)

sr(t) = 1 − sa(t) (9)
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3 Experiments

3.1 Datasets

We train our model on five most commonly used benchmarking datasets: Avenue
[3], UCSD Ped1 and Ped2 [4], Subway entrance and exit datasets [1]. All videos
are taken from a fixed position for each dataset. All training videos contain only
normal events. Testing videos have both normal and abnormal events.

3.2 Results and Analysis

Quantitative Analysis: ROC and AUC. Table 1 shows the frame-level AUC
and EER of our and of other methods on all five datasets. We outperform all
other considered methods in respect to frame-level EER.

Table 1. Comparison of area under ROC curve (AUC) and Equal Error Rate (EER) of
various methods. Higher AUC and lower EER are better. Most papers did not publish
their AUC/EER for avenue, subway entrance and exit dataset.

Method AUC/EER (%)

Ped1 Ped2 Avenue Subway entrance Subway exit

Adam [1] 77.1/38.0 −/42.0

SF [5] 67.5/31.0 55.6/42.0

MPPCA [4] 66.8/40.0 69.3/30.0 N/A

MPPCA+SF [4] 74.2/32.0 61.3/36.0

HOFME [9] 72.7/33.1 87.5/20.0 N/A 81.6/22.8 84.9/17.8

ConvAE [2] 81.0/27.9 90.0/21.7 70.2/25.1 94.3/26.0 80.7/9.9

Ours 89.9/12.5 87.4/12.0 80.3/20.7 84.7/23.7 94.0/9.5

We also present a run-time analysis on our proposed abnormal event detection
system, on CPU (Intel Xeon E5-2620) and GPU (NVIDIA Maxwell Titan X)
respectively, in Table 2. The total time taken per frame is well less than a quarter
second per frame for both CPU and GPU configuration.

Qualitative Analysis: Visualising Frame Regularity. Figures 2, 3, and 4
illustrate the output of the proposed system on samples of the Avenue dataset,
Subway entrance and exit scenes respectively; our method detects anomalies
correctly in these cases even in crowded scenes.

From Fig. 5, it is easy to see that our method has detected more abnormal
events with fewer false alarms compared to [2]. Also, as observed in Fig. 6, our
method is able to produce higher regularity score during normal activities and
lower scores when there are abnormalities.
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Table 2. Details of run-time during testing (second/frame).

Time (in sec)

Preprocessing Representation Classifying Total

CPU 0.0010 0.2015 0.0002 0.2027 (∼5fps)

GPU 0.0010 0.0058 0.0002 0.0070 (∼143fps)

Fig. 2. Regularity score of video #5 (top) and #15 (bottom) from the Avenue dataset.

Fig. 3. Regularity score of frames 115000-120000 from the Subway Entrance video.

Fig. 4. Regularity score of frames 22500-37500 from the Subway Entrance video.
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Fig. 5. Comparing our method with ConvAE [2] on Avenue dataset video #7 (top)
and #8 (bottom). Best viewed in colour.

Fig. 6. Comparing our method with ConvAE [2] on Subway Entrance video frames
120000-144000. Best viewed in colour.

4 Conclusion

In this research, we have successfully applied deep learning to the challenging
video anomaly detection problem. We formulate anomaly detection as a spa-
tiotemporal sequence outlier detection problem and applied a combination of
spatial feature extractor and temporal sequencer ConvLSTM to tackle the prob-
lem. The ConvLSTM layer not only preserves the advantages of FC-LSTM but is
also suitable for spatiotemporal data due to its inherent convolutional structure.
By incorporating convolutional feature extractor in both spatial and temporal
space into the encoding-decoding structure, we build an end-to-end trainable
model for video anomaly detection. The advantage of our model is that it is
semi-supervised – the only ingredient required is a long video segment contain-
ing only normal events in a fixed view. Despite the models ability to detect
abnormal events and its robustness to noise, depending on the activity complex-
ity in the scene, it may produce more false alarms compared to other methods.
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Abstract. This paper summarizes some new results in improving the left
Mastcam images of the Mars Science Laboratory (MSL) onboard the Mars rover
Curiosity. There are two multispectral Mastcam imagers, having 9 bands in
each. The left imager has wide field of view, but low resolution whereas the
right imager is just the opposite. Our goal is to investigate the possibility of
fusing the left and right images to form high spatial resolution and high spectral
resolution data cube so that stereo images and data clustering performance can
be improved. Many pansharpening algorithms have been investigated. Actual
Mastcam images were used in our experiments. Preliminary results indicate that
the pansharpened images can indeed enhance the data clustering performance
using both objective and subjective evaluations.

Keywords: Mastcam � Curiosity rover � Pansharpening � Image fusion

1 Introduction

Curiosity rover landed on Mars in 2012. Onboard the Curiosity, there is the Mars
Science Laboratory (MSL), which has a few instruments [1, 24, 25] for characterizing
the Mars surface. There are two Mastcam multispectral imagers in MSL, separated by
24.2 cm [1]. Specifically, the left Mastcam (34 mm focal length) has three times the field
of view of the right Mastcam (100 mm focal length). That is, the right imager has 3 times
higher resolution than that of the left. Each camera has 9 bands with 6 overlapping
bands. For stereo image formation (combining the left and right images to create stereo
pairs) and image fusion (merging of the left and right bands to form a 12-band image
cube), the current practice is to downsample the right images to the resolution of the left,
avoiding artifacts due to Bayer pattern and also lossy JPEG compression. This practice is
certainly practical, but may limit the full potential of Mastcams. First, although down-
sampling of the right images can preserve the spectral integrity and avoid certain artifacts
of the image data, the process will throw away very informative high spatial resolution
pixels in the right bands. Second, the current stereo images have lower resolution, which
may degrade the augmented reality or virtual reality experience of science fans.

In recent years, significant advances have been made in image super-resolution and
new and high performance pansharpening algorithms have been proposed regularly. In
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light of the above development, a natural research question is: can we keep the 9 high
resolution bands in the right imager and improve the resolution of all the left bands in
the left imager while maintaining the spectral integrity of the left bands? Answering the
above question will enhance both the user experience of using high resolution stereo
images, as well as the surface characterization performance using 12 bands of high
resolution images.

In this research, we investigated the applicability of state-of-the-art pansharpening
algorithms to enhance the resolution of the left Mastcam images. Some algorithms were
found to be not applicable. For the applicable ones, we performed extensive studies by
using over 100 pairs of left and right Mastcam images, selected from over 500,000
images in the NASA database. Both objective and subjective metrics have been used to
evaluate the different algorithms. Our studies show that it is indeed possible to enhance
the spatial resolution of left bands while maintaining the spectral integrity of the left
bands. Here, spectral integrity means that the pansharpened and fused data cube will
not perform worse than that of using the images in the original resolution of the left
imager in applications such as data clustering [26]. Moreover, our experiments also
showed the pansharpened images can be merged with the right bands to form a high
spatial resolution 12-band cube, which can improve the clustering performance. Both
objective (5 metrics) and subjective evaluations have been used.

This paper is organized as follows. Section 2 briefly reviewed the Mastcam. Sec-
tion 3 briefly describes those key algorithms used in this study. Section 4 summarizes
the data used and all the experimental results. Finally, we conclude the paper and point
out some research directions in Sect. 5.

2 Mastcam

Mastcam imager information is shown in Fig. 1. There are 6 overlapping bands and 3
non-overlapping bands (L3, L4 and L5 from the left camera and R3, R4, and R5 from
the right camera). More details about Mastcam can be found in [1] and [2].

Fig. 1. Normalized MSL/Mastcam system-level spectral response profiles for the left eye M-34
camera (top panel) and the right eye M-100 camera (bottom panel) [1].
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3 Key Algorithms

3.1 Image Registration

A two-step image alignment approach was developed [2] and the signal flow is shown
in Fig. 2. The first step of the two-step image alignment approach is using RANSAC
(Random Sample Consensus) technique [4] for an initial image alignment. In this first
step, we use the two RGB stereo images from the left and right Mastcams. First, SURF
features [5] and SIFT features [7] are extracted from the two stereo images. These
features are then matched within the image pair. This is followed by applying RAN-
SAC to estimate the geometric transformation. Assuming the right camera image is the
reference image, the left camera image content is then projected into a new image that
is aligned with the reference image using the geometric transformation.

The second step of the two-step alignment approach uses this aligned image with
RANSAC and the left camera image as inputs and applies the Diffeomorphic Regis-
tration [6] technique. Diffeomorphic Registration is formulated as a constrained opti-
mization problem, which is solved with a step-then-correct strategy [6]. This second
step reduces the registration errors to subpixel levels so that pansharpening can be
performed.

3.2 Pansharpening Algorithms

Pansharpening has found wide spread usage in many applications [3, 8–12, 19, 21].
The goal of pan-sharpening is to fuse a low-spatial resolution but high-spectral reso-
lution multispectral (MS) data with a high-spatial resolution panchromatic image
(PAN) of a different spectral band, resulting in a data cube with the spectral resolution
of the former and the spatial resolution of the latter [8]. In our case, after the two-step
registration, the aligned images from the left camera can be considered as blurred
versions of the right ones. Therefore, we tentatively apply the pan-sharpening concept

Fig. 2. Block diagram of the two-step image alignment approach.
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to sharpen the aligned versions from the left camera using high spatial resolution
images in different filter bands from the right camera as the panchromatic reference
image.

Pan-sharpening techniques can be classified into two main categories: (1) the
component substitution (CS) approach and (2) the multiresolution analysis (MRA) ap-
proach [8]. The former is based on the substitution of a component with the PAN image
and the latter relies on the injection of spatial details that are obtained through a mul-
tiresolution decomposition of the PAN image into the resampled MS bands. In this
paper, we focus on CS-based approach which generally relies upon the projection of the
higher spectral resolution image into another space that is capable to separate the
spectral information from the spatial structure in different components. Under the
assumption that the components containing the spatial structure of multispectral images
at all spectral bands are highly correlated, the transformed low-resolution MS images
can be enhanced by substituting the components containing the spatial structure of the
PAN image through a histogram matching. The output pan-sharpened data are finally
achieved by applying the inverse transformation to project the data back to the original
space.

4 Experimental Studies

4.1 Data

The Mastcam dataset downloaded from the Planetary Data System (PDS) resource
contains a total of more than 500,000 images collected at different times and locations
since 2012. Since left and right Mastcams are independently controlled and do not
always collect data simultaneously, we have to perform extensive pre-processing,
which exhaustively screens through all images to only select pairs of image sets that
consist of images of all available spectral bands in both left and right Mastcam cameras.
After preprocessing and cleaning up the image sets, we can construct a total of 133
LR-pairs.

4.2 Experimental Results

We extensively compared the performance of enhancing the resolutions of aligned left
Mastcam images to the same scale of right Mastcam images using various
pan-sharpening algorithms including three conventional CS-based techniques, namely
the fast intensity-hue-saturation (indicated as fast IHS or simply IHS) [9], Brovey
transform (Brovey) [8], and Gram Schmidt (GS) [10]; and two more advanced
CS-based algorithms which are band dependent spatial detail (BDSD) [11], and partial
replacement adaptive CS (PRACS) [12]. In each case, the reference PAN image for
each of the three blurred left images in non-overlapped bands was selected as the
original right image of closest filter band (i.e. the selected PAN images for L4, L3 and
L5 bands are R0R, R3 and R4 bands, respectively).

Furthermore, we used 6 overlapped bands to evaluate the performance of pan-
sharpening by examining the correspondence between the super-resolved versions of
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aligned images and the original right images at the same filter bands. Figure 3 shows
one example that illustrates the pan-sharpened outputs of the 5 pan-sharpening methods
mentioned above for LR-pair that use R0 Gb filter band as PAN reference images to
sharpen aligned image from L1 filter band. In each figure, the bigger red rectangles in
the top-left corners display the magnified versions of the smaller ones. We can clearly
observe the sharpening effects of all methods in comparison with the blurriness in the
aligned images (sub-figure (b)). In this example, the peak signal-to-noise ratio (PSNR)
of the pan-sharpened image to the original high-resolution right image of PRACS is
highest, followed by BDSD algorithm. Lastly, Table 1 summarizes the comparison of
PSNRs of the pan-sharpening results, averaged over all tested LR-pairs for the 6
overlapped bands. For each of the overlapped bands, we used the right band as the pan
band to pansharpen the corresponding left band.

Fig. 3. Pan-sharpening performance of an LR-pair on sol 0726 taken on 08-22-2014 for L1 filter
band aligned image using R0 Gb filter image as pan-sharpening reference. (a) Original R1 filter
band image; (b) low-resolution aligned image from L1 filter band - PSNR = 27.33 dB;
(c) pan-sharpening reference R0 Gb filter image; (d) pan-sharpened image of (b) via IHS - PSNR =
29.95 dB; (e) pan-sharpened image of (b) via Brovey - PSNR = 30.02 dB; (f) pan-sharpened image
of (b) via GS - PSNR = 30.05 dB; (g) pan-sharpened image of (b) via BDSD - PSNR = 30.54 dB;
and (h) pan-sharpened image of (b) via PRACS - PSNR = 31.45 dB. (Color figure online)

Table 1. Comparison of pan-sharpening performance averaged over all LR-pairs.

Methods Averaged PSNRs (dB)

Aligned image (bicubic) 27.93
IHS 30.28
Brovey 30.32
GS 30.31
BDSD 31.04
PRACS 31.52
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4.3 Influence of Image Fusion on Data Clustering Performance

In this section, we will evaluate the impact of Mastcam image fusion on some dis-
crimination applications such as data clustering by comparing the performance of the
combined 12-band image data with that of the original 9-band right image data. The
clustering results were validated only for the registered results of the 2-step registration
with right camera high resolution (i.e., the aligned left images are interpolated to have
the same resolution scale of the right camera using bicubic interpolation). In this paper,
we perform more thorough evaluation by comparing the outcome results of the original
9-band data with those of the 12-band fused versions after 2nd registration steps at
right-camera resolutions, as well as the enhanced data via pan-sharpening algorithms.
We only select BDSD and PRACS for comparison since they are the two methods that
perform the best for Mastcam data among the techniques studied in the previous
section. Specifically, we compare the 4 multispectral data versions:

1. Original 9-band right camera MS cube.
2. 12-bandMS cube after 2nd registration step withM-100 resolution (higher-resolution

option) using bicubic interpolation for the 3 non-overlapping bands.
3. 12-band MS cube with M-100 resolution using BDSD pan-sharpening for the

3 non-overlapping bands.
4. 12-band MS cube with M-100 resolution using PRACS pan-sharpening for the

3 non-overlapping bands.

It is further noted that all registration results used in this section use SIFT features,
as it is observed to perform better than SURF features.

We verify the effectiveness of the registration-based Mastcam image fusion on
data clustering using the benchmarked K-means [13] and Gaussian Mixture Model
(GMM) [14] clustering models. Figure 4 visualizes the clustering results by color at
pixel level of K-means method on one LR-pair example for the 4 multispectral
Mastcam data versions listed above. The number of clusters are set to be six (suggested
by the Gap statistic method [17] for estimating the best number of clusters in Mastcam
data). In each figure, one clustering region are enlarged to show the performance in
details. By visual inspection, we can have several observations:

(a) The clustering results of the two-step registration using 12 bands (9 bands from
the right and 3 bicubic interpolated bands from the left) are better than that of
using 9 bands. This implies that more spectral information will certainly enhance
the clustering performance;

(b) With fewer randomly clustered pixels, pan-sharpened data offer the best clustering
results, both in clustering performance as well as spatial detail. This is probably
due to the fact that, unlike the bicubic interpolation, pansharpening algorithms do
not amplify those debayering and JPEG artifacts.

Due to the lack of ground-truth information in the dataset (i.e., the true class labels),
the accuracy of clustering results cannot be truly evaluated via quantitative compar-
isons. Therefore, we propose to use some internal validity indices to measure the
clustering quality by using only features and information inherent in the dataset. Par-
ticularly, the data clustering results are evaluated using widely used clustering
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performance indicators including Silhouette index [15], Calinski-Harabasz (CH) index
[16], Gap statistic criteria [17], Davies-Bouldin (DB) index [18], and the averaged
clustering variance of all classes. Among these indicators, a larger value of Silhouette,
CH or Gap index indicates a better quality of a clustering result, while a low value of
DB index or clustering variance implies the presence of more compact and
well-separated clusters. Tables 2 and 3 demonstrate these cluster validity analysis of
the 4 MS data versions using the 5 indicators for K-means and GMM methods. The
values are averaged over all LR-pair test sets. These quantitative clustering evaluations
are consistent with the visual inspection and they further reinforce the effectiveness of
using the combination of our proposed two-step image registration with pan-sharpening
techniques in data clustering application.

Fig. 4. K-means clustering performance with 6 classes of an LR-pair on sol 0812 taken on
11-18-2014. (a) original RGB right image; (b) original RGB left image with the aligned area
from the right image; (c) clustering via 9-band right camera MS cube; (d) clustering via 12-band
MS cube after 2nd registration step with higher (M-100) resolution; (e) clustering via
pan-sharpened images by BDSD; and (f) clustering via pan-sharpened images by PRACS.
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5 Conclusions

Through extensive experiments, we thoroughly evaluated a number of pansharpening
algorithms in the literature for enhancing the left Mastcam images. First, we observed
that BDSD and PRACS performed better than others in terms of both PSNR and
subjective visualization. Second, the parsharpened left images were fused with the right
images to form a 12-band data cube. It was found that the fused image data cube can
yield better data clustering performance than that of using left images only.

Some potential research directions include the following. First, our current
implementation of the pansharpening is simple and efficient. Instead of using a single
band from the right bands to fuse a corresponding left band, we plan to use the average
of all bands from the right to create the pan band. Second, since some of the more
sophisticated algorithms require point spread function (PSF) of the imager in the
pansharpening process, we plan to estimate the PSF of the left imager and use it for
pansharpening. Third, we are also exploring the possibility of using deep learning
based approaches to enhancing the Mastcam images. Fourth, we plan to investigate the
application of anomaly detection algorithms [20–23] to the pansharpened images.

Table 2. Comparison of averaged K-means clustering results via different cluster validity
indices over all LR-pairs.

MS data versions CH index Silhouette
index

Gap
index

DB
index

Variance

Original 9-band right camera 1.293 � 105 0.398 1.389 1.684 2.67 � 10-4

2nd registration step with M-100
resolution

1.518 � 105 0.491 1.614 1.475 1.89 � 10-4

Pan-sharpening using BDSD 1.614 � 105 0.508 1.651 1.422 1. 80 � 10-4

Pan-sharpening using PRACS 1. 623 � 10 5 0.512 1.653 1.424 1.81 � 10-4

Table 3. Comparison of averaged GMM clustering results via different cluster validity indices
over all LR-pairs.

MS data versions CH index Silhouette
index

Gap
index

DB
index

Variance

Original 9-band right
camera

1.355 � 105 0.377 1.898 1.229 2.48 � 10-4

2nd registration step with
M-100 resolution

1.578 � 105 0.598 2.574 0.948 1.73 � 10-4

Pan-sharpening using
BDSD

1.607 � 105 0.605 2.618 0.826 1.65 � 10-4

Pan-sharpening using
PRACS

1.611 � 10 5 0.604 2.624 0.822 1.62 � 10-4
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Abstract. In this paper, a collective neurodynamic optimization app-
roach is proposed to nonnegative tensor factorization. Tensor decomposi-
tions are often applied in the data analysis. However, it is often a noncon-
vex optimization problem, which would cost much time and usually trap
into the local minima. To solve this problem, a novel collective neurody-
namic optimization approach is proposed by combining recurrent neural
networks (RNN) and particle swarm optimization (PSO) algorithm. Each
RNN still carries out local search. And then the best solution of each
RNN improves through PSO framework. In the end, the global optimal
solutions of nonnegative tensor factorization are obtained. Experiments
results demonstrate the effectiveness for the nonconvex optimization with
constraints.

Keywords: Neurodynamic optimization · Particle swarm optimization ·
Nonnegative tensor factorization

1 Introduction

Tensor decompositions are appearing as new approaches for data processing,
which capture inner structures in multi-dimension datasets and extract latent
components hidden in the complex relationships [1,2]. It includes two categories,
one is the Canonical Decomposition (CANDECOMP)/Parallel Factor Model
(PARAFAC) [3,4], the other is Tucker decomposition [5]. The accuracy of tensor
decompositions directly impacts on the effect of feature extractions etc. Nonneg-
ative features are important for the data analysis.
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However, the nonnegative tensor factorization is a nonconvex optimization
problem. The multiplicative update (MU) algorithm is a classic method with sim-
ple calculation process. However, it often traps into local optimal [6]. Another
common method, alternating least squares (ALS) algorithm, has been employed
to tensor decomposition. Due to gradient and Hessian matrix are used in the
ALS algorithm, it takes high time calculation cost [7]. Furthermore, a hierarchi-
cal alternating least squares (NTD-HALS) is modified for nonnegative Tucker
decomposition with some constrained cost functions [8]. But these algorithm
could not guarantee the nonconvex global optimization and converge slowly.

Neurodynamic optimization, as a global optimization method, is a powerful
alternative way to these matrix factorization optimization problems. For convex
optimization with bound constraints, recurrent neural networks are available with
global convergence to the optimal solution. Classic LU matrix decomposition and
Cholesky factorization are analyzed through recurrent neural networks [9]. Neuro-
dynamic optimization is a promising matrix factorization approach to real-time
optimization [10]. However, a single RNN could not deal with nonconvex opti-
mization problems [11]. Swarm intelligent, such as Particle Swarm Optimization
(PSO) etc. [12], obtain global optimal through stochastic improvement [13]. How-
ever, it is deficient in constraint optimization. The advantages of neurodynamic
optimization and particle swarm optimization may combine effectively.

To address the above mentioned drawbacks, a collective neurodynamic opti-
mization (CNO) approach is proposed for the optimization problem of nonneg-
ative tensor factorization (NTF) in this paper. Under the PSO framework, a
serials of RNNs model as particles in swarm, are combined to deal with NTF
problems. Each RNN carries out its own local research. Then, after the infor-
mation share, the RNN population are improved based on PSO framework. By
iteratively calculating and initialing each RNN model to find the global optimal
solutions of nonnegative tensor factorization.

The remainder of this paper is organized as follows. The problem formulation
of nonnegative tensor decomposition is presented in Sect. 2. The collective neu-
rodynamic optimization for NTF problem is described in Sect. 3. Experimental
results are demonstrated in Sect. 4. And conclusion is obtained in the end.

2 Nonnegative Tensor Decomposition

The source signal based on canonical model [14] is represented as

Q̄cdef ≈
n∑

r=1

kracra
∗
dra

∗
erafr (1)

where acr, a
∗
dr, a

∗
er, afr are factors of the canonical model, respectively. And kr

is the kurtosis of the r-th source signal. Q̄ = cum(X,X∗,X∗,X) ∈ Rm×m×m×m

is the fourth-order cumulant tensor of the observed signals, X∗ is conjugate of
X. Q̄ can be expressed as

Q̄cdef =
n∑

r=1

kr(Er)cd(Er)∗
ef (2)
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where Er are Hermitean matrices and mutually orthonormal. kr are considered
as eigenvalues of the cumulant tensor Q̄cdef , which can be represented as

Q = (A � A∗)K(A � A∗)H (3)

here K = diag(k1, · · · , kn) and the diagonal elements of K are eigenvalues of
the matrix Q; � is the Khatri-Rao product. Eq. (1) is expressed as

Q̄ = K̄ ×1 A(1) ×2 A(2) ×3 A(3) ×4 A(4) + Ē

=
n∑

r=1
kr(a

(1)
r ◦ a

(2)
r ◦ a

(3)
r ◦ a

(4)
r ) + Ē

(4)

where A(o) = [a(o)
1 , a

(o)
2 , · · · , a

(o)
n ] is all factor of tensor, and the symbol “◦”

represents the vector outer product o = 1, 2, 3, 4, Ē is residual tensor.
According to (1), the objective function with Frobenius norm is expressed as,

DF (a(1)
r , a

(2)
r , a

(3)
r , a

(4)
r )

= 1
2

∥∥∥∥Q̄ −
n∑

r=1
kr(a

(1)
r ◦ a

(2)
r ◦ a

(3)
r ◦ a

(4)
r )

∥∥∥∥
2

F

(5)

In order to further simplify the formulation, (5) is rewritten as

DF (a(1)
r , a(2)

r , a(3)
r , a(4)

r ) =
1
2

∥∥∥Q̄(o)
r − kra

(o)
r {ar}�−oT

∥∥∥
2

F
(6)

where

{ar}�−oT = [a(N)
r ]T � · · · � [a(o+1)

r ]T � [a(o−1)
r ]T � · · · � [a(1)

r ]T (7)

and

Q̄r = Q̄ −
n∑

p�=r

kp(a
(1)
p ◦ a

(2)
p ◦ a

(3)
p ◦ a

(4)
p )

= Q̄ −
n∑

p=1
kp(a

(1)
p ◦ a

(2)
p ◦ a

(3)
p ◦ a

(4)
p )

+kr(a
(1)
r ◦ a

(2)
r ◦ a

(3)
r ◦ a

(4)
r )

= Q̄ − ˆ̄Q + kr(a
(1)
r ◦ a

(2)
r ◦ a

(3)
r ◦ a

(4)
r )

= Ē + kr(a
(1)
r ◦ a

(2)
r ◦ a

(3)
r ◦ a

(4)
r )

(8)

The gradient of the objective function (6) is given by

∂DF

∂a
(o)
r

= −krQ̄
(o)
r {ar}�−o + k2

ra
(o)
r {ar}�−oT {ar}�−o

= −krQ̄
(o)
r {ar}�−o + k2

ra
(o)
r γ

(o)
r

(9)
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here, the symbol “Θ” represents the Hadamard product, and the scaling coeffi-
cients γ

(o)
r can be calculated as follows,

γ
(o)
r = {ar}�−oT {ar}�−o

= {aT
r ar}Θ−o

= {aT
r ar}Θ/a

(o)T
r a

(o)
r

= (a(N)T
r aN

r )/a
(o)T
r a

(o)
r

=
{

a
(N)T
r aN

r , o �= N
1, o = N

(10)

Through taking into account ||a(l)
r ||2 = 1, l = 1, 2, · · · , N − 1,∀r, γ

(o)
r , a

updating principle of a
(o)
r can be used by making �(9) to zero,

a(o)
r ← 1

kr
Q̄(o)

r {ar}�−o . (11)

3 Collective Neurodynamic Optimization for NTF

From (5), the fourth-order tensor factorization is a nonconvex optimization prob-
lem. A serial of recurrent neural networks are exploited collectively for tensor
decomposition. It can be also seen as a integrated model between PSO in the
swarm intelligent field and neurodynamic optimization in the neural networks
field.

3.1 Precise Local Search

Considering the objective function (5) is a nonconvex optimization problem, a
one-layer projection neural network [15] is adopted for NTF nonconvex problem
expressed as

ẋ(t) = −x(t) + PΩ(x(t) − ∇f(x(t))) (12)

where x is the state of RNN, which are corresponding to the independent variable
of NTF algorithm. The gradient of f is defined as,

∇f =
1
kr

Q̄(o)
r {ar}�−o (13)

Projection operator PΩ is represented as

PΩ(u) = arg min
v∈Ω

‖u − v‖ (14)

In the NTF optimization problem, Ω is a box set. And Ω = {u ∈ �4mn : li ≤
ui ≤ hi}, PΩ is defined specifically as

PΩ(ui) =

⎧
⎨

⎩

li, ui < li
ui, li ≤ ui ≤ hi

hi, ui > hi

(15)

here li ≥ −∞ and hi ≤ +∞, which can control the resolution space.
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3.2 Information Exchange

The basic principle of particle swarm optimization [12] fully considers pop-
ulation intelligence. The location of the RNN is represented as ui = {ui1,
ui2, · · · , · · · , uiD}. The best previous position Pbest of the ith RNN is denoted
as pi = (pi1, pi2, · · · , piD). Let vi = (vi1, vi2, · · · , viD) be the current veloc-
ity. The position PGbest of the best one among all the RNNs represented as
pg = (pg1, pg2, · · · , pgD). So the update rule is expressed as

⎧
⎨

⎩

vid(k + 1) = wvid(k) + c1rand1d[pid(k) − uid(k)]
+c2rand2d[pgd(k) − uid(k)]

uid(k + 1) = uid(k) + vid(k + 1)
(16)

where w ∈ [0, 1] is the inertia weight, rand1, rand2 ∈ [0, 1] denote random
numbers, and c1, c2 are acceleration constants, respectively.

The better search information are exchanged among these RNNs according to
(16). The better initial positions of each RNN are refreshed to begin new round
optimization process. Hence, the advantages of neurodynamic optimization and
swarm intelligent optimization are combined appropriately.

4 Experimental Results for Blind Identification

In this section, the ICALAB benchmark dataset for signal processing is used
for qualitative performance evaluations of the proposed collective neurodynamic
optimization for nonnegative tensor factorization (NTF-CNO). Three public
benchmark datasets are considered in the experiment, which are Speech4. Let
ε = 10−6, the number of recurrent neural networks is five in Speech4 experiment.
100 times tests are run with different random initialization. The number of the
observed signals m is referenced to [14], so m = 3.

Fig. 1. The original source signals
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The original source signals are deficted in Fig. 1 to demonstrate the similarity
intuitively. Let observed signal dimension be 3. A is randomly generated by
MATLAB shown as follows,

A =

⎡

⎣
0.2165 0.4787 0.0787 0.8905
0.7245 0.1826 0.8434 0.4099
0.8671 0.3817 0.4260 0.1802

⎤

⎦ (17)

Figure 2 describes the estimated source signals obtained by NTD-HALS app-
roach. Figure 3 shows the estimated source signals obtained of Speech4 dataset
by proposed NTF-CNO method. It is seen that NTF-CNO approach can obtain
the most similar estimated source signals to the original ones.

Fig. 2. The estimated source signals by NTD-HALS approach

Fig. 3. The estimated source signals by NTF-CNO approach
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5 Conclusion

A CNO approach is proposed for nonnegative tensor factorization. A serial of
RNNs are integrated in framework of PSO, which has superior capabilities of
handling global optimization. NTF-CNO can sufficiently guarantee the noncon-
vex global optimization and performance effectiveness.
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Abstract. Saliency detection is one of the critical issues in computer
vision. The location of saliency object is a widely used cue in the proce-
dure of detecting saliency map, which is named as spatial information.
Center prior and Harris-points are two popular cues of spatial informa-
tion. In this paper, we propose a novel spatial information model which
is different from center prior and Harris-points. In the proposed method,
a cost function and a rectangle are used to seek the saliency object
accurately, and to discriminate the saliency object from background
effectively. The model can be used to optimize previous saliency detec-
tion approaches. In the experiment, the model is used to optimize five
state-of-the-art approaches on two popular datasets ASD and ECCSD.
The experiment results demonstrate the feasibility and validity of our
method. And the performance of our method is better than center prior
and Harris-points.

Keywords: Saliency detection · Spatial information · Image processing

1 Introduction

Saliency detection is an efficient way to understand and analyze image. Its goal
is to discriminate the salient region from background in an image, which can
be applied in image editing [1], segmentation [2], image retargeting [3], object
detection and recognition [5].

In addition to color contrast [4,6,7] and background prior [8,9] which are
widely used in saliency detection, spatial information is another popular cue.
Spatial information represents the geometric information of a saliency map, on
which the location of the salient region can be determined, and then the unde-
termined regions away from the salient region can be suppressed. Up to now,
there are two methods to obtain the spatial information:

1. Center prior [1,6]. It is assumed that the salient region is placed near the
center of an image. It is obvious that this cue is not accurate enough for
detecting saliency map, because the salient region can be anywhere in an
image. In other words, the salient region may be placed at the corner or the
boundary in a natural image.

c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part II, LNCS 10262, pp. 214–221, 2017.
DOI: 10.1007/978-3-319-59081-3 26
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2. Harris-points [10]. Harris-points are those points which have great rate of
change on vertical and horizontal directions. Combined with convex hull,
Harris-points can determine the salient region [11,12]. For an image with sim-
ple and smooth background, this cue performs better. However, if the scene
of the image is complex, Harris-points has a greater probability of missing
the salient region.

Considering the aforementioned issues, we propose a novel spatial informa-
tion which can accurately explore the position of salient region and can be used
to optimize the saliency map generated by most of present detection approaches.
The experiment results demonstrate that our method performs better than cen-
ter prior and Harris-points on datasets. The remainder of this paper is organized
as: in Sect. 2, our method is presented detailedly. In Sect. 3, we evaluate and com-
pare our method with center prior and Harris-points on 2 benchmark dataset,
and the conclusion follows in Sect. 4.

2 Refined Spatial Information

Our method can optimize the saliency map which is generated by commonly
using saliency detection approaches. In this section, for convenience, we employ
RBD [9] approach as an instance to generate an initial saliency map. The initial
saliency map is denoted as SM(i) indicating the salient score of the ith pixel in
the map. The working flow of our method is shown in Fig. 1.

Fig. 1. Working flow of our method. (a) Source image. (b) The saliency map generated
by RBD [9]. (c) Binarization using OTSU [13]. (d) Optimization with our method and
the final saliency map.
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2.1 The Model of Our Method

In order to reduce the cost of floating-point calculation, we use OTSU [13] algo-
rithm to process SM(i), and obtain a binary map BM(i) (as shown in Figs. 1(c)
and 2) whose size is assumed as w×h in pixel (where w and h donate width and
height respectively). In BM(i), there are some regions including the saliency
object and noisy regions.

Fig. 2. Seeking the saliency object with Ω and ξ(Ω) in BM(i).

For seeking the saliency object in BM(i), we design a rectangle Ω to cover
it according to the cost function:

ξ(Ω) = arg min
Ω

{
∑

BM(x,y)∈Ω

(BM(x, y) − 1)2

︸ ︷︷ ︸
E1

+
∑

BM(x,y)/∈Ω

(BM(x, y) − 0)2

︸ ︷︷ ︸
E2

}
(1)

Where (x, y) and BM(x, y) are coordinate of pixel and its value in BM respec-
tively. Obviously, BM(x, y) is 0 or 1. The cost function ξ(Ω) contains two terms,
E1 and E2, which impose different constraints on Ω:

1. E1 encourages Ω to cover fewer pixels of background.
2. E2 encourages the outside area of Ω to contain fewer salient pixels.

When ξ(Ω) achieves the minimum, Ω just covers the saliency object in BM(i).
For example, as shown in Fig. 2, we have ξ(Ω1) > ξ(Ω2) > ξ(Ω3). It is obvious
that Ω3 is more suitable than Ω1 and Ω2. Then we can use Ω and Eq. 1 to seek
the saliency object in BM(i) map.

2.2 Procedure of Seeking Saliency Object

Owing to the size of BM(i) map is (w×h), we will generate (w×h)2 rectangles
approximately to cover the saliency object. If all these rectangles are put into
Eq. 1, the processing time consumption must be expensive. We propose a simple
and effective way to solve this problem in two steps.

Step 1. As shown in Fig. 3, we initialize a rectangle Ω0 with fixed size of (w/N×
h/N) at the top-left corner in BM(i). Then we move Ω0 toward the right and
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Fig. 3. Adjusting the edges of Ωk to cover the saliency object.

down direction at regular step w/M and h/M respectively, by which r rectangles
must be generated. These rectangles are expressed as Ω = {Ω0, Ω1, Ω2, · · · , Ωr},
in which we choose the rectangle whose ξ(·) is minimum. Let us assume that Ωk

is the chosen one, which expresses the coarse position of the saliency object.
Ωk possibly covers part of the saliency object or all of the saliency object, so it
needs to be adjusted. We will present how to adjust Ωk in next step. The specific
procedure of Step 1 is presented in Algorithm 1.

There are two parameters N and M , which control the size of Ω0 and its
moving step size. For N , we set it as 4, in order to ensure that the Ω0 is larger
than noisy region. M is set as 8, which ensures that Ω0 moves faster and does
not miss the salient region.

Step 2. The four edges of Ωk are adjusted respectively until Ωk just covers
the salient region. As showed in Fig. 3, each edge of Ωk can be adjusted on two
directions which will change ξ(Ωk). So we adjust the four edges in turn on the
direction of making ξ(Ωk) decrease until ξ(Ωk) achieves minimum. As shown in
Fig. 3, Ωk is adjusted to the position where Ωf is. Then the rectangle just covers
the salient region. The specific procedure of this step is presented in Algorithm2.

2.3 Application in Saliency Detection

By using Algorithms 1 and 2, the rectangle Ωf can be identified accurately, which
is named as the refined spatial information (RSI) and can be used to optimize
the initial saliency map SM(i). Ωf covers the salient region in BM(i), and
then its centroid can be viewed as the centroid of the salient region, which is
denoted as (Xc, Yc). We introduce it into SM(i), and obtain the final saliency
map SM SP (i):

SM SP (i) = SM(i) × exp{− (Xi − Xc)2 + (Yi − Yc)2

2σ2
} (2)

Where Xi and Yi denotes the normalized coordinates of pixel i, and σ controls the
effect of spatial information. In this paper, we set σ as 0.4 with pixel coordinate
normalized to [0, 1].
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Algorithm 1. Seeking Ωk whose ξ(Ωk) is minimum.
Require: BM , w, h, N, M;
Ensure: Ωk=(upedgek,bottomedgek,leftedgek,rightedgek);

Initialize Ω0: upedge0 = leftedge0=0,
bottomedge0=h/N, rightedge0=w/N;

% Place Ω0 at the top-left corner in BM.
Ωk=Ω0;
while bottomedge0�h do

if ξ(Ω0)<ξ(Ωk) then
Ωk=Ω0;

end if
for rightedge0�w do

Moving Ω0 toward the right direction at step size w/M. If Ω0 beyond the border
of BM at step size w/M, just moving Ω0 to the right border of BM ;
if ξ(Ω0)<ξ(Ωk) then

Ωk=Ω0;
end if

end for
Moving Ω0 toward the down direction at step h/M. If Ω0 beyond the bottom of
BM at step size w/M, just moving Ω0 to the bottom border of BM ;

end while
Return Ωk;

Algorithm 2. Adjusting Ωk to obtain Ωf which just covers the saliency object.
Require: Ωk, BM(i), ε=0.01

% ε is used to determine whether ξ(·) achieves minimum or not.
Ensure: Ωf=(upedgef ,bottomedgef ,leftedgef ,rightedgef )

Ωf = Ωk;
while 1 do

upedgef=upedgef+1;
if ξ(Ωk)<ξ(Ωf ) then

upedgef=upedgef -2;
if ξ(Ωk)<ξ(Ωf ) then

upedgef=upedgef+1;
end if

end if
bottomedgef , leftedgef , rightedgef are adjusted as same as upedgef ;
if |ξ(Ωk)-ξ(Ωf )|<ε then

Break;
else

Ωk = Ωf ;
end if

end while
Return Ωf ;
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3 Experiments

In this section, beside RBD, other four state-of-the-art approaches (MDF [15],
DRFI [7], DSR [17], MC [18]) are employed as optimized object. We use the five
approaches to generate the initial saliency maps, on which we make a comparison
among our method, center prior and Harris-points. The experiments are tested
on two publicly available datasets: ASD [16] and ECSSD [14]. ASD contains
1000 images, whose background is simple and smooth. Those images in ECSSD
have complex scenes, and the saliency objects are harder to be detected than
the images in ASD. Similar with Achanta [16], we also use the precision-recall
(PR) rate to demonstrate the accuracy of the saliency map. The experiments
are made at a PC with Inter Core i5-4460 CPU@3.20 GHz and 8 GB RAM.

Fig. 4. Experiment on ASD and ECCSD datasets. Our model, center prior and Harris-
points are used respectively to optimize the saliency map generated by RBD. In the
figure, “BD” means RBD approach; “BD+Center”, “BD+Harris” and “BD+Our SP”
mean the optimization with center prior, Harris-points and our model respectively.

Experiment on RBD: The results are shown in Fig. 4, in which the PR curves
demonstrate that our method can improve the performance of RBD, and per-
forms better than center prior and Harris-points. Our method can identify the
saliency object and suppress the noisy regions effectively, and the performance
is improved significantly compared with RBD, center prior and Harris-points
(as shown in Fig. 4(a)). However, the performance improved on ASD is not as
good as that on ECCSD (as shown in Fig. 4(b)). There are two reasons: (1) The
background of the images in ASD are simple and smooth, so there are few noisy
regions in the initial saliency maps; (2) The main purpose of RSI is to suppress
the noisy regions. Thus the improvement is not significant on ASD.

Experiment on MDF, DRFI, DSR, MC: The results are shown in Fig. 5,
from which we can see that our method performs much better than original
approach, center prior and Harris-points. Compared with traditional approaches
that only use low level cues, the performance of DRFI is the best one [19].
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Fig. 5. Evaluation for optimization of MDF [15], DRFI [7], DSR [17] and MC [18] on
ESCCD dataset. Same with the first experiment, our model, center prior and Harris-
points are introduced to optimize the saliency maps generated by the four approaches.

MDF is a new approach based on deep learning, and its performance is much
better than almost all traditional approaches [15]. When our method is intro-
duced into DRFI and MDF, the performance can be further improved (as shown
in Fig. 5(a) and (b)).

4 Conclusion

In the paper, we propose a novel model as a new spatial information cue to
detect the saliency object. In the model, we construct a cost function to produce
a rectangle, by which the saliency object can be sought out accurately. Then the
saliency object can be effectively discriminated from the background in an image.
Our model can be introduced into saliency detection approaches to improve
their performances. The results of experiments on ASD and ECCSD datasets
demonstrate that the performance of our method is better than center prior and
Harris-points. Actually, our work has a limitation that the saliency map with
only one saliency object can be detected accurately. If there are more than two
detached saliency objects in an image, the proposed method could not work
effectively. Then, the main task of our future work will focus on how to solve
this problem.
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Abstract. Nonlocal self-similarity sparse representation models exhibit good
performance in single image super-resolution (SR) application. However, due to
the independent coding process of each image patch, the global similarity
information among all similar image patches in whole image is lost. Conse-
quently, the similar image patches may be encoded as the totally different code
coefficients. In this paper, considering that low-rank constraint is better at
capturing the global similarity information, a new sparse representation model
combining the global low-rank prior and the nonlocal self-similarity prior
simultaneously is proposed for single image super-resolution. The weighted
nuclear norm minimization (WNNM) method is then introduced to effectively
solve the proposed model. Extensive experimental results validate that the
presented model achieves convincing improvement over many state-of-the-art
SR models both quantitatively and perceptually.

Keywords: Single image super-resolution � Sparse coding �Global and nonlocal
self-similarity � Low-rank constraint �Weighted nuclear norm minimization

1 Introduction

Image super-resolution, one of the active research topics in the image processing
community, is dedicated to restore the high resolution (HR) image from its degraded
version. To handle the ill-posed nature of SR problems, a variety of image super-
resolution methods have been proposed including interpolation methods, reconstruc-
tion based methods and example learning methods. Recent studies put more emphasis
on example learning methods for its strong image super-resolution capability.

Example learningmethod plays a significant role in SR problems. It presumes that the
high-frequency details lost in low-resolution (LR) image can be predicted by learning the
co-occurrence relationship between LR- HR training patches. Freeman et al. [1] first
proposed aMarkov networkmodel to estimate the co-occurrence relationship. Yang et al.
[2] proposed a SRmethod based on sparse coding in consideration of the assumption that
LR-HR image patch pairs share the same sparse codes with respect to their own dic-
tionaries. Several works aiming at obtaining more image priors to improve the accuracy
of sparse codes have been proposed. The so-called nonlocal self-similarity (NSS) prior
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which means that a local patch can find many similar patches across the whole image has
demonstrated its great success in image restoration. Dong et al. [3] presented the non-
locally centralized sparse representation (NCSR) framework by unifying the NSS prior
and the sparsity prior to improve the robustness of SR results. Exploring both the column
and row NSS priors among the sparse code matrix, Li et al. [4] presented a dual-sparsity
regularized sparse representation (DSRSR) model. However, due to the independent
coding process of each image patch via these NSS sparse representation models, the
global similarity in whole image is lost despite the NSS prior is fully utilized.

Recent researches have demonstrated that the low-rank constraint is better at
capturing the global similarity information [5]. Inspired by [5], we propose a new
sparse representation model, which concerns the global low-rank prior and nonlocal
self-similarity prior simultaneously to preserve such global and nonlocal self-similarity
information. The weighted nuclear norm minimization [6] is introduced to solve the
proposed model. Experimental results show that our method outperforms many
state-of-the-art SR methods in terms of subjective and objective qualities. The rest of
the paper is organized as follows: Sect. 2 describes our formulation and solution of the
presented model for SR. Section 3 presents the extensive experimental results together
with relevant discussions and Sect. 4 concludes the paper.

2 Proposed Method

The idea of sparse representation for SR is to approximate each input patch xi with a
weighted linear combination of a few elementary atoms chosen from a redundancy
dictionary /. First for an image x 2 R

N , let xi ¼ Rix denote an image patch of size
p� p extracted at location i. Then, xi can be approximated as xi ¼ /si by a straight-
forward least-square solution [7]:

xi � / � si ¼ ð
XN

i¼1
RT
i RiÞ�1

XN

i¼1
ðRT

i /sx;iÞ ð1Þ

we can reformulate Eq. (1) as the following minimization problem [2]

si ¼ argmin
s

xi � /sik k22 þ k sik k1 ð2Þ

Because of the degradation of the observed image, using only the local l1-norm
sparsity prior ignores image structures and leads to an inaccurate SR results. The SR
model incorporating NSS prior has been boosted studied. In the NCSR framwork [3],
the general NSS sparse representation model is modeled as

si ¼ argmin
s

yi � H/sik k22 þ k1 sik k1 þ k2 si � bik k22 ð3Þ

where bi ¼
Pq

j¼1
wjsj is a good estimation of si, sj is the coefficient corresponding to the j-

th similar image patch of xi, and the regularization parameters k1, k2 quantify the
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tradeoff between the sparsity and the NSS prior. The iterative shrinkage algorithm [8]
can be used to solve Eq. (3), therefore, in each interation, si can be solved as

slþ 1
i jð Þ ¼ Tsðv lð Þ

i;j � biðjÞÞþ biðjÞ ð4Þ

where vðlÞ ¼ /T � HTðY � H/ � a lð ÞÞ=cþ a lð Þ, s is a parameter to guarantee the con-
vexity of Eq. (4) and TsðÞ is the classic soft-thresholding operator.

2.1 WNNM for Global Low-Rank Constraint

Clearly, it is expected that similar image patches should be encoded as totally similar
code coefficients in whole image. However, due to the independence of sparse coding
for each image patch in traditional NSS methods, similar image patches may be
encoded totally differently. Therefore, it is necessary to impose a constraint on all
similar code coefficients for preserving the global similarity information.

Recent researches have demonstrated that the latent structure underlying image
similar patches forms a low-dimensional subspace [9]. The general matrix rank min-
imization problem can be expressed as

min rankðSÞ
subject to S 2 C

ð5Þ

where S 2 R
m�n is a matrix and C is a convex set. In view of that Eq. (5) is hard to

solve, the nuclear norm minimization (NNM) was presented as a convex relaxation of
matrix rank minimization problem. The nuclear norm minimization of a matrix S,
denoted by Sk k�, is defined as the sum of its singular values, i.e.,

Sk k�¼
X

i
riðSÞj j1 ð6Þ

where riðSÞ denote the i-th singular values of the matrix S. It is proposed by Cai et al.
[10] that soft-thresholding operation on the singular values of matrix S can easily solves
the NNM based low rank matrix approximation. In other words, the solution of

Ŝ ¼ argmin
s

S� S0k k2F þ s Sk k� ð7Þ

where s is a positive constant, can be obtained by

Ŝ ¼ UTsðRÞVT ð8Þ

where S ¼ URVT is the SVD of S0 and TsðRÞ is the soft-thresholding operator on R
with parameter s. However, the standard NNM treats each singuar value equally and
ignores the prior knowledge on the matrix singular values. In [6], the NNM has been
extended to weighted nuclear norm minimization and achieved excellent results in
image denoising. The WNNM problem can be expressed as
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Sk kw;�¼
X

i
wiriðSÞj j1 ð9Þ

where wi ¼ ½w1. . .wn� and w1 	 0 is the weight assigned to riðSÞ.

2.2 Global and Nonlocal Self-similarity Prior Guided SR Model

In [3], Dong et al. proposed the NCSR framework to estimate the sparse code by
nonlocal similar patches, which ignores the global self-similarity in whole image. To
overcome this defect, we introduce low-rank constraint to preserve the global similarity
information. In our model, we cluster all image patches into M categories by K-means
method, then the columns of the global similar coefficient matrix S are composed of
similar code coefficients whose corresponding image patches belong to the same cat-
egory. The low-rank constraint of similar code coefficient matrix S can be defined as:

R Sð Þ ¼ Sk k� ð10Þ

To incorporate Eq. (10) into the nonlocal self-similarity sparse representation
model, we rewrite Eq. (3) as

S ¼ argmin
S

Y � H/Sk k2F þ k1 Sk k1 þ k2 S� SWk k2F ð11Þ

where the matrix Y is composed of all similar image patches yi to be encoded in whole
image. The matrix S is the code coefficient matrix corresponding to the matrix Y.

By combining Eqs. (10) and (11), the proposed sparse representation model can be
defined as follows:

S ¼ argmin
S

Y � H/Sk k2F þ k1 Sk k1 þ k2 S� SWk k2F þ k3 Sk k� ð12Þ

The first term in Eq. (12) is the data error term that measures the error between
sparse linear combination and real values. The second term is the sparsity prior and the
third term is the NSS prior that assumes code coefficients to be predicted by weighted
average of neighborhoods. The last term is low-rank constraint to ensure global similar
image patches can be encoded as similar code coefficients.

2.3 Algorithm of the Proposed Method for SR

The proposed SR method is composed of two parts: the learning phase and the image
reconstruction phase. In learning phase, we utilize a set of compact Principal Com-
ponents Analysis (PCA) sub-dictionaries which are trained by using the adaptive sparse
domain selection (ASDS) strategy proposed in [7]. We first extract patches across
different image scales from the training images to obtain training examples and then
cluster the image patches into K clusters fL1; L2; . . .Lkg with the certain iteration loop
by K-means clustering method. Finally, K sub-dictionaries f/1;/2; . . ./kg are trained
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with the PCA method. For each image patch, we adaptively select one of PCA
sub-dictionaries to code it. It enforces the code coefficients of the coded patch over
other sub-dictionaries to be 0, which ensures the sparsity of the code coefficients. Thus,
the sparsity regularization term can be removed, we can rewrite Eq. (12) as

S ¼ argmin
S

Y � H/Sk k2F þ k2 S� SWk k2F þ k3 Sk k� ð13Þ

In image reconstruction phase, we first select a PCA sub-dictionary to code the
patch by Eq. (4), and then we cluster these image patches into M clusters via K-means
clustering. For all patches belong to the same category, the corresponding coefficient
matrix S can be solved by using low-rank approximation. Compared Eq. (8) with
Eq. (9), we have

Ŝi ¼ UTwiðRÞVT ð14Þ

The main procedure of SR algorithm is summarized in Algorithm 1.
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3 Experimental Results

In this section, numerous experimental studies on SR were carried out to validate the
performance of our SR model. We compare the proposed method with several
state-of-the-art image super-resolution methods including NE [1], SCSR [2], ASDS [7],
NCSR [3], A+ [11], SRCNN [12] and evaluate the quality by Peak Signal to Noise
Ratio (PSNR) and Structural Similarity (SSIM). The source codes of all competing
algorithm are obtained from their original authors and we use the default parameter
settings. In the experiments, the basic parameters are set as follows: two testing
benchmarks Set5 and Set14 containing 5 and 14 commonly used images respectively
are adopted and they are down-sampled by a decimated factor of s, blurred by 7 � 7
Gaussian filter with standard deviation 1.6 to generate LR images. By experience, we
set the scaling factors s to be 2, 3. The patch size is 5 � 5 and the number of cluster
used to train dictionary K is set to 70. For image super-resolution, d ¼ 3:5, k2 ¼ 7,
N = 40, I = 6 and J = 160 respectively. For low-rank approximation of code coeffi-
cients, combining the noise knowledge, we make the weight wi of ith category to be
wi ¼ c � 2 ffiffiffi

2
p

r2i =ðk3 þ �Þ; where c and ri represent the number of coefficients and the
mean value of patch noise respectively, and k3 ¼ 1.

Table 1 lists some quantitative comparison results in terms of PSNR index. It can
be seen that our reported PSNR scores are higher than the aforementioned methods. In
Table 2, we show the average PSNR and SSIM values of reconstructed images for

Table 1. PSNR(dB) results for scaling factors 3� for reconstructed images

Images NE SCSR ASDS NCSR A+ SRCNN Proposed

Bird 31.18 33.04 35.53 35.73 34.65 33.04 35.96
Butterfly 22.49 23.38 27.35 28.10 26.32 23.37 28.69
Woman 27.35 28.69 31.43 31.84 30.36 29.14 32.12
Pepper 22.52 30.78 32.43 33.10 32.24 30.37 33.51
ppt3 24.20 22.88 25.57 25.94 25.46 22.81 26.44
Zebra 23.32 24.81 28.97 29.32 28.16 24.64 29.47
Average 25.18 27.26 30.21 30.67 29.53 27.23 31.03

Table 2. Aveage PSNR(dB)/SSIM results for scaling factors 2�, 3� for reconstructed images

Images Ratios NE SCSR ASDS NCSR A+ SRCNN Proposed

Set5 2 29.85 28.59 33.77 35.10 33.57 28.74 35.22
0.8658 0.8467 0.9506 0.9349 0.9220 0.8447 0.9356

3 28.62 29.73 32.64 32.97 31.86 29.72 33.20
0.8263 0.8647 0.9053 0.9104 0.8958 0.8590 0.9133

Set14 2 26.07 26.68 31.09 31.18 29.94 26.53 31.33
0.6947 0.7526 0.8731 0.8756 0.8418 0.7473 0.8768

3 26.21 26.93 28.91 29.01 28.63 26.81 29.15
0.7286 0.7640 0.8168 0.8205 0.7993 0.7688 0.8223
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NE/22.49dB SCSR/23.38dB ASDS/27.35dB NCSR/28.10dB 

A+/26.32dB SRCNN/23.37dB Proposed/28.69dB Ground truth

Fig. 1. Comparison of super resolution results by 3� on “butterfly” image (Color figure online)

NE/24.20dB SCSR/22.88dB ASDS/25.57dB NCSR/25.94dB 

A+/25.46dB SRCNN/22.81dB Proposed/26.44dB Ground truth

Fig. 2. Comparison of super resolution results by 3� on “ppt3” image (Color figure online)
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scaling factors of 2 and 3. It indicates that when compared with these competing
methods, the proposed method achieves the highest PSNR and SSIM measures on test
images regradless of the scaling factor. For 3� scaling factor, the average PSNR gains
of the proposed method over the second best method (i.e., the NCSR method) and the
third best method can be up to 0.23 dB and 0.56 dB respectively on Set5, 0.14 dB and
0.24 dB respectively on Set14. Figures 1 and 2 present some subjective results for 3�
scaling factor to further validate the superiority of our method. The red block with its
corresponding magnification on the left-bottom corner of each image shows the
reconstruction details. Because of introducing the global and nonlocal self-similarity,
the proposed method can recover fewer artifacts, sharper edges and fine details.

4 Conclusion

In this paper, we developed a SR model containing the global low-rank prior and the
nonlocal self-similarity prior simultaneously for solving the ill-posed SR problem. The
global low-rank prior is utilized to capture global similarity information in whole
image. A WNNM algorithm is introduced to effectively solve the global low-rank
approximation of code coefficients. Extensive experiments demonstrate that the pre-
sented model achieves convincing improvement over many state-of-the-art SR methods
in PSNR, SSIM and visual quality assessment. Moreover, we can recover sharper edges
and richer textures, which indicates the effectiveness of our model in preserving the
global similarity information.
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Abstract. A novel and outstanding saliency detection approach based
on color features and background prior is proposed in this paper. Specif-
ically, background prior is used in saliency detection widely, which con-
siders the image boundaries as part of background. Then we propose
an extended manifold ranking (EMR) algorithm to propagate the back-
ground prior to other image regions. Compared with GMR, EMR elim-
inates the negative effect of the initial assumption that non-boundary
areas are all saliency regions. Furthermore, gradient boosting decision
tree (GBDT) is introduced to refine the saliency map generated by EMR.
The experimental results on three benchmark datasets demonstrate that
our algorithm outperforms 10 state-of-the-art methods based on low-level
features.

Keywords: Background prior · Manifold ranking · EMR · GBDT

1 Introduction

Saliency detection is an efficient way to understand and analyze images. Its goal
is to distinguish the saliency object of an image. Generally, saliency models can
be roughly categorized into top-down [1] and bottom-up [2–4] approaches. The
former one is by task-driven and the later one is by data-driven. In this paper,
we focus on bottom-up approach to detect saliency objects.

The color contrast [3] is widely used to detect saliency object. Most of the
previous works use LAB mean color feature to describe images. In this paper,
it is found that the color contrast computed in different color spaces could show
different performances. Moreover, color histogram features can describe images
more specifically. Hereby, the mean color features and color histogram features
extracted from Lab,HSV,RGB color spaces are employed in the paper.

On the other hand, background prior [2,4,5] is a widely used cue, which
chooses the image boundaries as part of background. Yang et al. [2] (GMR) uti-
lize the manifold ranking to propagate background prior to the whole image and
obtain a satisfied result. Specifically, in addition to choose the image boundaries
as background, GMR assumes the non-boundary areas are all saliency regions,
then applies manifold ranking to revise the saliency regions based on background
c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part II, LNCS 10262, pp. 231–238, 2017.
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Fig. 1. The pipeline of our method. Firstly, the image is segmented into multi-scale
superpixels and six different color features are extracted. Based on each color feature,
the background prior is propagated to get the saliency map via EMR. Finally, GBDT
is applied to refine the saliency map, the positive and negative samples are extracted
based on EMR map. The progress is repeated at multiple scales and results are fused.

prior. However, the assumption is inappropriate, since it can bring the nega-
tive effect to detect the background regions. To address the above problem, an
extended manifold ranking (EMR) algorithm is proposed in this paper. By using
the background prior alone and making no any assumption on saliency regions,
EMR could perform much better than GMR.

For the refinement part, the most believable saliency and background regions
are extracted from the saliency map generated by EMR, and are combined into a
feature vector. Gradient boosting decision tree (GBDT) [6] is applied to learn the
relationship among these features automatically. The pipeline of the proposed
approach is showed in Fig. 1.

In summary, contributions of this paper can be summarized as follows: (1)
The mean color features and color histogram features are both extracted. (2)
An extended manifold ranking method is proposed to diffuse the background
prior. (3) GBDT is introduced to seek the relationship of different features
automatically.

2 Image Pre-processing

2.1 Multi-scale Segmentation

As in [4,5], SLIC [8] is used to segment the whole image into N superpixels with
l different scales. l = 5 and N = 100, 150, 200, 400 are considered in this paper.
For each scale, a saliency map will be generated based on our approach, and
the averaged saliency maps can achieve a better result. Next, we will take one of
these scales as an instance. The superpixel set is defined as V = {P1, P2, . . . , Pn},
where n is the number of superpixels and Pi is one superpixel of them.
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2.2 Graph Construction

A single layer graph G = (V,E) is used to represent the relationship of different
superpixels, where V denotes the set of nodes and E denotes the set of undirected
edges. In this paper, each node is defined as a superpixel, and the edges E are
weighted by an affinity matrix W = [wij ]n×n. Here, wij denotes the similarity
between any two adjacent superpixels.

As discussed before that the mean color features and color histogram features
extracted from three different color spaces can describe the images from different
perspectives. Considering this fact, for the mean color feature, the color contrast
CCij between Pi and Pj is computed as follows: CCk

ij = ‖CSk
i − CSk

j ‖2, k =
1, 2, 3. where CSk

i denotes the mean color of Pi in three color spaces respectively.
For the histogram feature, The contrast between two histograms is computed
by chi-squared distance as follows: CCk

ij =
∑K

m=1
2(hik(m)−hjk(m))2

hik(m)+hjk(m) , k = 4, 5, 6
Where K denotes the number of bins(K = 8 in this paper).

Based on the above features, in the paper, the similarity matrix W is defined
as follows:

wij =
{ 1

CCij+ε Pj ∈ N(i)
0 i = j or otherwise

(1)

where N(i) denotes the neighbor superpixels of Pi, and ε > 0 is a constant to
avoid CCij = 0. In this paper, ε is set to 10−4.

We can obtain six similarity matrixes respectively. Based on the similarity
matrixes, six saliency maps will be obtained using the proposed propagation
method and the average of them could reach a better result.

3 Propagation

In the following section, the graph-based manifold ranking [2] (GMR) for saliency
detection will be briefly introduced, and then the proposed approach (EMR) will
be presented in detail.

3.1 Manifold Ranking

Background prior is widely used in saliency detection. In the superpixel set V ,
the superpixels which locate at the image boundaries are labelled as queries and
the rest need to be ranked according to their relevances. GMR aims to assign a
ranking value fi to each superpixel Pi, and the ranking values can be viewed as
a vector f = [f1, f2, . . . , fn]T . Let y = [y1, y2, . . . , yn]T be an indication vector, in
which yi = 1 if Pi is a query, and yi = 0 otherwise. Given the affinity matrix W ,
the degree matrix is denoted as D = diag{d11, d22, . . . , dnn}, where dii =

∑
j wij .

Then the ranking value of f can be solved as follows:

f∗ = arg min
f

1
2
(

n∑

i,j=1

wij‖ fi√
dii

− fj√
djj

‖2 + μ

n∑

i=1

‖fi − yi‖2) (2)
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In Eq. (2), the first term ensures that the ranking values of two adjacent super-
pixels which have similar color features should not change to much(smoothness
constraint), and the second term ensures the optimal result f∗ should not differ
too much from the initial query assignment(fitting constraint). μ acts as a bal-
ance parameter(in [2], μ is set to 0.99). The optimal solution of Eq. (2) can be
obtained as: f∗ = (D −αW )−1y. Then, the saliency of superpixels are measured
using the normalized ranking score 1 − f∗.

3.2 Extended Manifold Ranking

In Eq. (2), the superpixels labelled as queries (yi = 1) are part of the background.
For those background superpixels labelled as non-queries (yi = 0), the optimal
ranking values restrained by the second term in Eq. (2) (fitting constraint) should
not differ too much from 0. However, to be judged as background, the ranking
values of background pixels are desired to be 1. So the second term in Eq. (2)
has a negative effect on those background pixels labelled as non-queries.

To solve the problem, we remove the second term in Eq. (2), and introduce
an extern term to highlight the saliency regions. Let L be a superpixel set, which
consists of all the boundary superpixels, and s = [s1, s2, . . . , sn]T be the saliency
value of each superpixel. si is fixed to a small value ε(ε = 0.01) if si ∈ L. In this
paper, the proposed extended manifold ranking algorithm can be obtained by
minimizing the following energy function:

arg min
s

1
2

n∑

i,j

wi,j(si − sj)2 −
n∑

i=1

si

s.t. si = ε,∀si ∈ L
(3)

Compared with Eq. (2), in Eq. (3), the first term is simplified for better com-
prehending and solution, and the second term is used to highlight the saliency
regions. To gain a more comprehensive interpretation, we minimize Eq. (3) with
respect to s by setting its derivative to zero and obtain the following solution:

si =
1

∑
j wi,j

∑

j

wi,jsj +
1/2

∑
j wi,j

(4)

As the similarity matrix W defined in Sect. 2.2, wi,j > 0 only if Pi is adja-
cent to Pj . According to Eq. (4), the saliency value of Pi is only affected by its
surrounding superpixels. The more similar is Pj to Pi, the larger impact Pj has
on Pi. If Pi is similar to one or more of its surrounding superpixels, there exists
at least one wi,j which is large, then the second term in Eq. (4) is small. Con-
sequently, Eq. (4) can ensure the two adjacent superpixels which show similar
color characteristic have similar saliency values.

The key of detecting the saliency regions is the second term in Eq. (3). Since
the proposed approach is based on the background prior, it required to propagate
the background prior to the whole image. According to Eq. (4), when the saliency
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values of boundary superpixels are fixed to a small value, then other background
superpixels will be also updated to small values. While for the saliency regions,
we have not fixed the saliency values to them, and the background has fewer
impact on them. So in order to minimize the Eq. (3), the saliency values of them
should be large, consequently.

To solve the energy function in Eq. (3), matrix L = D − W will be used,
where D is given in Sect. 3.1. We re-order the saliency value vector s as s =

[sT
l sT

u ]T and L =
[
Lll Llu

Lul Luu

]

where l indicates the boundary superpixel set

and u corresponds to the no-boundary superpixel set. The energy minimization
problem can then be re-written as follows:

s∗ = arg min
s

1
2
sT Ls − sT1n (5)

where 1n := [1, . . . , 1]T ∈ R
n. By setting the derivative of Eq. (5) to be zero, the

final saliency values of no-boundary superpixels are computed as:

su = L−1
uu [−1

2
(Lulsl + LT

lusl) + 1u] (6)

4 Refinement

In this paper, we employ gradient boosting decision tree(GBDT) [6] to refine
the saliency map. To train GBDT, samples are extracted from the saliency map
that generated by EMR. We set a high threshold Th and a low threshold Tl. If
si > Th, the superpixel Pi acts as a positive sample, and if si < Tl, Pi acts as
a negative sample. In this paper, we set Th = max[1.5 × s, 0.1], and Tl = 0.05.
s denotes the mean saliency value of the saliency map.

Following this way, we can consider all the features in an uniform way, and
GBDT can seek the relationship of different features. Different from other super-
vised methods for saliency detection [1], the positive and negative samples are
extracted from the saliency map instead of the ground truth labeled by humans.

5 Experiments

We evaluate the proposed approach on three benchmark datasets: MSRA10K
[3], ECSSD [7], and DUT-OMRON [2]. These datasets have been widely used to
evaluate the performance of saliency detection.

5.1 Quantitative Evaluation

All methods are evaluated by precision-recall curve. Usually, neither precision
nor recall can evaluate the quality of a saliency map comprehensively. In most
cases, high precision and recall are both required. So we also use F-measure to
measure the overall performance:
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Fβ =
(1 + β2) · precision · recall

β2 · precision + recall
(7)

As suggested in [9], we set β2 = 0.3 to emphasize the precision value.

5.2 Analysis of Our Model

In this section, we will analyze the performance of three components in our
approach: low-level features, extended manifold ranking, and refinement.

In this experiment, we generate the saliency maps respectively via EMR with-
out refinement on ECSSD dataset. The P-R curves are shown in Fig. 2(a). From
the figure, we can see that the features extracted from HSV color space perform
best, and the color histogram features outperform the mean color features by
a large margin. The average of these saliency maps can achieve a better result
(red line in Fig. 2(a)).

As shown in Fig. 2(b), by applying the GBDT to refine the saliency map, the
result can be improved significantly.
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Fig. 2. The performance of six features and refinement. (a) PR curves of saliency maps
generated by six features, and the values shown in the parenthesis are the max value
of F-measure. (b) The performance of refinement. (Color figure online)

We compare the proposed EMR with GMR on the three datasets. In this
experiment, we only take the mean color feature to generate the saliency maps
in a single layer (N = 200). The results are shown in Fig. 3. As it can be found
that the proposed EMR outperforms GMR by a large margin.

5.3 Comparison with State-of-the-Art Approaches

We compare the proposed approach with ten of the state-of-the-art approaches,
including DRFI [1], EQCUT [5], RBD [4], ST [10], GMR [2], RC [3], HDCT [11],
BSCA [12], IDCL [13], BL [14]. The saliency maps of the first seven methods
on different datasets are provided by Borji’s work et al. [15]. The others are
achieved by running available codes.
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Fig. 3. The comparison between the proposed EMR and GMR [2] on three datasets.

As shown in Fig. 4, our approach performs best on these datasets, especially
on MSRA10K and ECSSD. It is noted that DRFI is a supervised method which
is also based on the low-level cues, while it is expensive for data collection. Our
approach does not rely on the ground truth labeled by humans and just use six
simple features.
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Fig. 4. Comparison with ten state-of-art methods on three benchmark datasets
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6 Conclusion

In this paper, an extended manifold ranking method (EMR) is proposed for
saliency detection. Compared with GMR, EMR can eliminate the negative of ini-
tial assumption, which assumes all the non-boundary areas are saliency regions.
Furthermore, we extract mean color and color histogram features from three
color spaces to describe the image more detailedly, and use GBDT to seek the
relationship of different features.
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Abstract. Most of blur kernel estimation models may fail when the blurred
image contains some complex structures or is contaminated by large blur. In this
paper, we propose a hybrid order l0-regularized blur kernel estimation model for
solving the problem. Firstly, we regularize the latent image in a hybrid order
case involving both first-order and second-order regularization term, in which l0
sparse prior is introduced. Secondly, we introduce an improved adaptive
adjustment factor into the model for removing detrimental structures and
obtaining more useful information. Finally, we develop an efficient optimization
algorithm based on the half-quadratic splitting technique to obtain an accurate
blur kernel. Extensive experiments results on both synthetic and some chal-
lenged real-life images show that proposed model can estimate a more accurate
blur kernel and can effectively recover the latent image when it contains com-
plex structures or is contaminated by large blur.

Keywords: Blur kernel estimation � Image blind deblurring � Hybrid order l0-
regularized � Adaptive adjustment factor � Half-quadratic splitting technique

1 Introduction

Blur kernel estimation is a key problem in image blind deblurring. There are many blur
kernel estimation methods were proposed [1–12]. Image prior information plays an
important role in blur kernel estimation model. Fergus et al. [4] adopted a zero-mean
mixture of Gaussian to fit the heavy-tailed statistical properties of natural image gra-
dient, and a mixture of exponential distribution to approximate the sparse prior of blur
kernel, which can acquire a better estimate result, but also exist some staircase effect.
Levin et al. [5] used the same prior as Fergus et al. [4] but followed a different
optimization algorithm by searching for the blur kernel that brings the distribution of
the deblurred image closest to that of observation in [6]. Goldstein and Fattal [7]
introduced a model and a spectral whitening formula to calculate the power spectrum of
the blur kernel, which is efficiency but cannot operate on small images. Shan et al. [8]
exploited two piecewise continuous functions to match the heavy-tailed natural image
prior, and used the l1 norm of the blur kernel intensities to regularize the sparsity of the
blur kernel, which can recover more details. Xu and Jia [9] found sharp edges are very
useful in estimating a more accurate blur kernel but the details remarkably damage it,
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thus they performed a small-scale structures removal strategy to adaptively select
useful edges for blur kernel estimation, but the deblurred results of this method strongly
depends on the image filters. Krishnan et al. [10] introduced a normalized sparse prior
to estimate the blur kernel, which favored latent images over blurred ones. Xu et al.
[11] used the l0 sparse prior for estimating the blur kernel and established a unified
framework for both uniform and non-uniform image deblurring, which effectively
improved the quality of the deblurred image.

Besides the above analysis, most of the mentioned methods may fail when blurred
image contains some complex tiny structures or is contaminated by large blur. So, this
paper proposes a hybrid order l0-regularized blur kernel estimation model for solving
the problem. The hybrid order l0-regularized term can recover the step-edges as well as
possible and eliminates the staircase effect at the same time and the l0 sparse prior can
effectively reflect the sparse characteristic of original image. Then we introduce an
improved adaptive adjustment factor to choose reliable structures of image. And we
develop the half-quadratic splitting technique to obtain an accurate blur kernel.
Extensive experiments results demonstrate the efficiency of the proposed model on the
blurred image that contains some complex tiny structures or is contaminated by large
blur.

2 Proposed Hybrid Order l0-Regularized Blur Kernel
Estimation Model

It is difficult to estimate an accurate blur kernel when image is contaminated by large
blur, as shown in Fig. 1 or contains some complex structures, as shown in Fig. 2.

Xu et al. [11] found the extracted structures of image in the middle procedure often
contain more salient edges, which are usually sparse and the l0 sparse prior is a most
natural choice to recover the original sparsity. Hence, they introduced the l0 sparse
prior into a unified model to estimate a better blur kernel for blind deblurring in
uniform and non-uniform blurred images. But when image contains some complex tiny
structures or is contaminated by large blur, their model can’t effectively remove the
ringing effects.

Fig. 1. Images are contaminated by blur
kernels in different size. (a) clear image.
(b) blur kernel size is 5 � 5. (c) blur kernel
size is 27 � 27.

Fig. 2. Real-life images with different
structures. (a) image contains simple
structure. (b) image contains complex
structures.
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2.1 Proposed Blur Kernel Estimation Model

This paper proposes a hybrid order l0-regularized blur kernel estimation model, and
then the estimated blur kernel is used for the non-blind deblurring frame [15] to recover
the latent clean image.

At each scale level, our proposed model for spatially uniform blurring is:

min
@L;k

@L� k � @Bk k22 þ c kk k22 þxk r @Lk k0 þ @2L
�� ��

0

� �n o
ð1Þ

where @L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2x þ L2y

q
, Lx and Ly denote the first order finite difference of sharp image

L in x and y direction, respectively. @B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
x þB2

y

q
, Bx and By denote the first order

finite difference of sharp image B in x and y direction, respectively. @2L denotes the

second-order finite difference of L, @2L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLxxÞ2 þðLxyÞ2 þðLyxÞ2 þðLyyÞ2

q
. Lxx and

Lxy denote the first order finite difference of Lx in x and y direction, respectively. Lyx and
Lyy denote the first order finite difference of Ly in x and y direction, respectively. @Lk k0
and @2L

�� ��
0 are the l0-norm that count the number of non-zero values of @L and @2L,

the scalar weights c, k and r control the relative strength of the blur kernel and image
regularization terms. x is the adaptive structure selection factor.

Compared to the model proposed in Ref. [11], our proposed model mainly has the
following advantages.

(1) The blur kernel estimation model is done in the image gradient domain, and the
data fidelity term is rf �ru� kk k22 for acquiring a large amount of helpful
information in salient edges of the blurred image.

(2) Introduce the hybrid order and l0 sparse prior into image regularization term
r ruk k0 þ r2u

�� ��
0 to protect the sparsity of the image edges, and effectively

suppress noise in the intermediate image even though the image contains some
complex tiny structures or is contaminated by large blur.

(3) Introduce an improved adaptive adjustment factor x to remove detrimental
structures of image, which can adjust the value of k, defined as:

x ¼ exp � r pð Þj j23
� �

; where r pð Þ ¼

P
q2Nh pð Þ

@B qð Þ
�����

�����
2P

q2Nh pð Þ
@B qð Þk k2 þ 0:5

ð2Þ

in which NhðpÞ is an h � h window centered at pixel p. A large x implies that the
local region is flat where need a strong penalty, and a small x means that there
exist strong image structures in the local window.
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2.2 Developed Optimization Algorithm for Proposed Model

For convenience of description, we introduce two auxiliary variables x and y denote @L
and @B, respectively. The proposed model is rewritten as following:

min
x;k

x� k � yk k22 þ c kk k22 þxk r xk k0 þ @xk k0
� � ð3Þ

where the term x� k � yk k22 is the data fidelity to ensure the recovered data consistent
with the observation. The term c kk k22 is the l2-norm based regularization on k used to
stabilize the blur kernel estimation with a fast solver. The term xkðr xk k0 þ @ xk k0Þ is
the hybrid l0 regularization term on x that can preserve the sparsity of natural image
gradients.

We first estimate x with k. The x sub-problem is given by:

min
x

x� k � yk k22 þxk r xk k0 þ @xk k0
� � ð4Þ

This sub-problem is seriously non-convex due to the incorporation of new hybrid l0
regularization term. Based on the half-quadratic splitting technique [14], we develop an
efficient optimization algorithm to solve the problem by alternating minimization. We
first introduce two auxiliary variables u and g ¼ ðgh; gvÞT corresponding to x and @x,
respectively, and rewrite the objective function as:

min
x;u;g

x� k � yk k22 þ b x� uk k22 þ g @x� gk k22 þxk r uk k0 þ gk k0
� � ð5Þ

where b and g are two positive penalty parameters which will be varied during the
optimization. As b and g are close to ∞, the solution of Eq. (5) converges to that of
Eq. (4). With this formulation, we alternate minimizing x, u and g independently by
fixing the remaining two variables.

We first update x by giving a fixed u and g produced by previous iterations, and the
values of u and g are initialized to be zeros, the objective function Eq. (5) reduced to

min
x

x� k � yk k22 þ b x� uk k22 þ g @x� gk k22 ð6Þ

The closed-form solution for this quadratic minimizing problem can be easily
obtained using Fast Fourier Transform.

And then update u and g. Because u and g are not coupled with each other in
Eq. (5), we can optimize them independently by solving two separate objective
functions:

min
u

b x� uk k22 þxkr uk k0 ð7Þ

min
g

g @x� gk k22 þxk gk k0 ð8Þ
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Equations (7) and (8) involve a discrete optimization problem, which is difficult to
solve by traditional gradient decent methods. We can obtain the solutions of u and
g based on [14].

u ¼ x; xj j2 � xkr
b

0; otherwise

�
; g ¼ @x; @xj j2 � xk

g
0; otherwise

�
ð9Þ

After estimating x, we estimate k with x. The k sub-problem is given by:

min
k

x� k � yk k22 þ c kk k22 ð10Þ

Obviously, Eq. (10) is a least square minimization problem whose closed-form
solution can be computed in the frequency domain by FFT. After obtaining k, a
dynamic threshold constraint is used to eliminate the noises during the iterative process.
And the constraints on kernel k (non-negativity) are following from the physical
principles of blur formation.

3 Experimental Results and Evaluations

We execute some experiments to evaluate different models which include
state-of-the-art methods [6, 10, 11, 13, 16] on synthetic images and real-life images.

Our proposed model is executed in a multi-scale setting using a coarse-to-fine
pyramid of image resolution similar to the method [4] to ensure the model converges to
global optimal solution. Initial size of the estimated blur kernel in multi-scale setting
should be a square matrix and odd number larger than 3. The sampling ratio between
the upper and the lower level are

ffiffiffi
2

p
. The parameters c, k and r in our model are

empirically set to 0.001, 0.04 and 1, respectively. bmax and gmax are set to 23 and 1e5,
which are calculated by the minimum value of e according to the reference literature
[4]. The number of iteration T is set to 5.

3.1 Experiments with Synthetically Blurred Images

We first implement our model on the public available dataset from [5]. For fairness, we
compare the estimated blur kernels by our model with those of, Refs. [6, 10, 11, 13,
16], and perform image non-blind deblurring using the algorithm of [15] with the same
parameter settings. We measure the quality of estimated blur kernel using the error
metric proposed by Ref. [5].

To facilitate the description process, we name the 4 clear images and 8 blur kernels
from [5] in Fig. 3. In addition, the name of the formed blurred images are concatenated
by the names of clear image and blur kernel, such as the clear image im01 is con-
taminated by blur kernel ker01 form a blurred image is named im01_ker01.
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Figure 4 are the experiment results on above-mentioned dataset. Figure 4(a) shows
the cumulative error ratios where higher curve denotes a more accurate result, and the
horizontal axis is the number of n shows the percentage of test cases whose deblurring
error ratios are below n. As indicated in [5], error ratios over 2 will make the result
visually implausible. Our model outperforms the other models as a whole, with 83% of
the images achieving an error ratio less than 2. The whole 32 estimated blur kernels by
our model, show in Fig. 4(b), and are very close to the ground-truth blur kernels.

For a more objective evaluation of the various models, we employ PSNR (peak
signal to noise ratio) to evaluate the quality of deblurred images. Table 1 shows the
evaluation results, and we can see that our model is better than other methods.

Figure 5 shows one example named im04_ker04 with a blur kernel size 27 � 27
from the test dataset. As we can see, Refs. [10, 13] fail to provide reasonable blur
kernel, and their image deblurring results still contain some obvious blur or ringing
artifacts. The deblurring results of Refs. [6, 16] look better, but the estimated kernels
still contain some noises. In contrast, our model generates a better blur kernel which is
noiseless and sparse. Moreover, the deblurring result of our method can comparable
with method of Ref. [11].

Fig. 3. The 4 clear images and 8 blur kernels from literature [5]

(a)                                  (b)
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Fig. 4. Evaluation of blur kernels estimation results on the dataset from [5]. (a) Cumulative
histogram of the estimated blur kernel error ratios across test examples. (b) Estimated blur kernels
by our model and the ground-truth kernels
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3.2 Experiments with Real-Life Blurred Images

We evaluate the performance of our model on some challenged real-life blurred images
and comparison with some state-of-the-art deblurring methods.

Figure 6 shows a challenging example that selected from internet. Due to the
complex contour structures of building, most of the existing methods fail to choose the
appropriate image structures for blur kernel estimation, which would lead to a bad
restored result. The deblurring result of Ref. [10] contain some obvious blur. The
results of Ref. [16] seem better but still contain ringing artifacts. Note that our
deblurring result is visually comparable with that of Ref. [6, 11, 13] seeming more
nature.

Table 1. The PSNR of the deblurred images by various methods

Name [10] [6] [11] [16] [13] Ours

im04_ker01 21.05 27.62 28.06 28.11 27.53 28.56
im04_ker02 22.05 27.13 27.23 26.89 26.31 27.52
im04_ker03 22.19 26.39 27.64 27.15 26.86 28.13
im04_ker04 17.35 22.43 23.12 23.01 22.34 24.29
im04_ker05 23.28 28.67 28.32 28.33 27.86 28.43
im04_ker06 20.19 24.32 25.31 26.05 25.86 26.54
im04_ker07 18.54 23.24 23.76 24.18 23.05 24.73
im04_ker08 18.12 24.67 24.86 24.64 24.33 25.12

Fig. 5. Deblurring results on synthetic image. (a) Blurred image and the ground truth blur
kernel. (b)–(f) are the deblurring results of Refs. [10], [6], [11], [16], [13], respectively. (j) is our
deblurring results.

Fig. 6. Deblurring results on real-life image with complex contour structures. (a) Blurred image,
(b)–(f) are the deblurring results of Refs. [10], [6], [11], [16], [13], respectively. (g) is our
deblurring result.
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4 Conclusion

This paper proposes an effective blur kernel estimation model for blind deblurring from
a single image. The proposed model impose hybrid order l0-regularization term on
image, and introduce improved adaptive adjustment factor to increase its robustness.
Although the l0-regularized problem is hard to be optimized, we developed an efficient
optimization algorithm based on a half-quadratic splitting technique to get an accurate
blur kernel. Both quantitative and qualitative evaluations on synthetic and some
challenged real-life images verify the effectiveness of our purposed model.
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Abstract. We propose an unsupervised saliency optimization method
mainly via modified secondary manifold ranking and blurring depression
(SMBD). Generally, saliency object is detected insufficiently by most
methods. To solve this problem, a modified manifold ranking is circu-
lated twice to detect saliency object completely. A blurry degree detec-
tion approach is introduced to locate blurring regions, which is more
likely to be background. As a result, blurring regions are depressed
by SMBD to avoid mistaking background as foreground. Our method
is performed based on hierarchical luminance for better performance.
Extensive experimental results demonstrate that SMBD is able to pro-
mote the performances of state-of-the-art saliency detection algorithms
significantly.

Keywords: Saliency detection · Manifold ranking · Blurring depression

1 Introduction

Saliency detection aims to predict the position of the most important part of
an image and it is increasingly popular with the rapid development of computer
vision. Saliency detection has been applied to a great number of vision tasks. For
instance, image segmentation [12], image cropping [13] and video summarization.

There exist two categories of saliency detection, top-down and bottom-up
methods. Top-down methods [14,15] are task-driven while bottom-up methods
[2,4] are data-driven. In this paper, we mainly focus on bottom-up saliency
detection methods.

Prior principles are essential in saliency detection. Generally, image bound-
aries are more likely to be background, which is called boundary prior [4]. In
contrast, center prior is proposed by the principle that the nearer to the image
center, the more possibility of the object is salient according to photographing
habit of people. Besides, contrast prior is considered regularly. Color variation,
texture gradient and hue histogram are frequently employed to calculate the
contrast between foreground and background [2]. Various methods for saliency

c© Springer International Publishing AG 2017
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detection have been proposed during the past few decades. However, saliency
object is not detected completely almost by all of these methods. To address this
problem, we propose modified secondary manifold ranking (MSMR) to improve
the results of existing approaches. A modified secondary circulation is conducted
by manifold ranking, whose source image is removed partly based on original
saliency map to detect saliency objects completely. People always set the most
important object on focal plane when they are taking photos. The regions out-
side the focal plane are blurry and they are more likely to be background. This
principle is introduced into our algorithm to further promote the accuracy of our
method. Blurring regions of source image are detected and corresponding loca-
tions on saliency map are depressed as background. Contrast between objects
will be altered as the change of luminance. Better saliency detection result can
be delivered by integrating saliency maps got from multiple luminance.

Contributions in this paper include: (1) MSMR tends to detect more
saliency objects than state-of-the-art saliency detection methods. (2) Back-
ground can be accurately depressed by detecting blurry regions of an image.
(3) Integrating various saliency maps based on multiple luminance is an effec-
tive optimization method.

2 Related Work

Itti et al. [1] predict visual fixation by combining multi-scale image features, who
firstly propose the principle of saliency detection. Then, numerous unsupervised
algorithms are raised by introducing saliency cues contrast such as color, spatial
position, hue and texture [2,3]. Certain methods are proposed based on boundary
prior, since [4] makes use of boundary superpixels.

Some algorithms [6] make use of the influence of similar neighbors through
iterations, which are proved quite effective for further reinforcing foreground
and suppressing background. A uniformly high-response saliency map can be
obtained by using a hierarchical framework that infers importance values from
three image layers in different scales [16]. Recently, deep learning grows rapidly
in saliency detection [10,11], which has achieved favorable result. However, deep
learning requires expensive training time and hand-craft images are difficult to
collect.

3 Proposed Method

Our algorithm optimizes saliency detection via three main processes. MSMR and
blurring region depression are complementary to each other. Multi-luminance is
an effective optimization hierarchical method, which is firstly proposed by us.

3.1 Modified Secondary Manifold Ranking

Different from previous methods, our MSMR algorithm is carried out on the
basis of source image whose saliency object is removed. After obtaining saliency
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map of the changed source image by manifold ranking in [4], its saliency object
is merged with original saliency map. Figure 1 is the procedure chart of MSMR
algorithm.

Fig. 1. Procedure of MSMR. (a) Source images, (b) original saliency maps got by MR
method, (c) secondary saliency maps, (d) final saliency maps and (e) Ground truth.

Firstly, we segment the source image into N superpixels by the simple linear
iterative clustering (SLIC) algorithm. Then, a graph structure M = (V,E) is
constructed. Nodes V represent superpixels and edges E are established based
on the connections of any two nodes in M .

Mean saliency value for each superpixel i of original saliency map is denoted
as Si and we set I

′
i = Ii. Then saliency object is found out and removed from

corresponding source image as follows:

I
′
i(Si > ξ) = ∅, (i = 1, 2, ..., N) (1)

where ∅ is empty set. Ii represents source image and I
′
i stands for the image

whose saliency object has been removed. Next, we take a secondary circulation
on I

′
i via Eq. 2 [4], then the secondary saliency map Ss

i can be obtained as follows:

f∗ = (D − αW )−1y (2)

where yi = 1 if superpixel i belongs to boundary, and yi = 0 otherwise. D =
diag(d1, ..., dn) is the degree matrix, in which di =

∑
j wij . The weight matrix

is denoted as:

wij = exp(−||ci − cj ||2
σ2

) (3)

where ci and cj are the mean CIE Lab colors of nodes i and j.
Finally, we set Sm

i = Si and then the saliency object of Ss
i is merged with

Si. So, the merged saliency map Sm
i can be obtained:

Sm
i (Ss

i > ψ) = 255, (i = 1, 2, ..., N) (4)



Modified Secondary Manifold Ranking and Blurring Depression 251

Fig. 2. If the blurring value of a patch is large, then the patch will be background. (a)
Source image. (b)–(f) Blurring detection maps with patch size of 10, 20, 30, 40 and
50. (g) Fusion of the five images ahead. (h) Final saliency map obtained by modified
secondary manifold ranking. (i) Saliency map with blurring regions being depressed.
(j) Saliency map optimized via Single-layer Cellular Automata. (k) Ground truth.

As shown in the second row of Fig. 1, if original saliency map has been fully
detected, the boundaries of secondary saliency map will be bright owing to exist-
ing no highly contrast objects in it. So, we define boundary brightness (BB) to
judge if the MSMR is necessary for different images. Let St, Sb, Sl, and Sr denote
the sum of saliency values of pixels in top, bottom, left and right boundaries. If
BB is higher than threshold TBB , then we will choose the original saliency map
as the final saliency map Sf

i :

BB = St + Sb + Sl + Sr (5)

Sf
i =

{
Si BB > TBB

Sm
i BB < TBB

3.2 Blurring Regions Depression

With the popularization of single-lens reflex camera, there are a large number of
pictures with blurring background. As we know, saliency objects should be on
focal plane in an image and they are definitely clear, while blurring regions in
an image are more likely to be background.

As a pre-processing procedure, an image is divided into numerous little
patches Pr with five different sizes. Then blurring value (BV) of every patch
is measured in turn based on gray map G. A Gaussian filter is used on G, and
Gs can be obtained.

SSIM(x,y) is proposed to measure image quality [19]. In this paper, we use
it to measure the blurry degree of images:

SSIM(x, y) =
(2μxμy + C1)(2σxy + C2)

(μ2
x + μ2

y + C1)(σ2
x + σ2

y + C2)
(6)

where μx and μy are mean pixel values of a patch for G and Gs. Standard
deviations of the patches in maps G and Gs are denoted as σx and σy. σxy is
defined as:
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σxy =
1

L − 1

L∑

i=1

(xi − μx)(yi − μy) (7)

where L is the pixel number of patch r. xi and yi denote pixel values of patch r
in G and Gs. The clearer patch Pr is, the larger difference exists between it and
Gs. So, BV (Pr) is large for blurry patch and small for clear patch as:

BV (Pr) = SSIM(G,Gs) (8)

Table 1. F-measure values of MR, RBD, MC, ST, DRFI methods and optimized
by SMBD and SCA on JuddDB, ECSSD and MSRA-10K datasets. Ori are original
F-measure values. Opt are optimized values by SMBD and Pro are the percentage of
promotion.

Method JuddDB ECSSD MSRA-10K

Ori Opt Pro Ori Opt Pro SCA SCA-Pro Ori Opt Pro

MR 0.454 0.476 +2.2% 0.743 0.756 +1.3% 0.742 −0.1% 0.846 0.863 +1.7%

RBD 0.457 0.481 +2.4% 0.720 0.759 +3.9% 0.749 +2.9% 0.855 0.874 +1.9%

MC 0.460 0.484 +2.4% 0.739 0.759 +2.0% 0.745 +0.6% 0.848 0.867 +1.9%

ST 0.455 0.491 +3.6% 0.747 0.776 +2.9% 0.759 +1.2% 0.867 0.882 +1.5%

DRFI 0.475 0.504 +2.9% 0.786 0.790 +0.4% 0.769 −1.7% 0.881 0.890 +0.9%

After calculating all the blurring values of patches in the whole image, we
make some changes to saliency map Sf

i . If BV (Pr) > threshold TBV , then the
patch r will be depressed as background, as shown in Fig. 2. The final blurring
map Sb

r is obtained by fusing the five blurring detection maps with different
sizes together. Rough outline of saliency object in Fig. 2(a) has been delineated
by Fig. 2(h). If pixel value of blurring map Sb

r is lower than TBM , then the pixel
is treated as background in saliency map Sf

i , got by modified secondary manifold
ranking. We set Sbv

r = Sf
i and denote the new saliency map as:

Sbv
r (Sb

r < TBM ) = 0 (9)

Figure 2 shows the advantages of blurring region depression. However,
saliency map obtained from blurring regions depression is not smooth enough.
So, applying an optimization step proposed by [6], named Single-layer Cellular
Automata (SCA), will further improve the saliency map. We denote the opti-
mized saliency map got by SCA as Sop, as shown in Fig. 2(j).

3.3 Hierarchical Luminance

Contrast between foreground and background is varied as the change of lumi-
nance. As a result, multi-scale contrast information can be detected all sidely
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by applying hierarchical luminance. In this paper, luminance of source image
is changed to L ∈ (1, 0.7, 0.5, 0.3, 0.1) of initial value respectively. All of the
optimization steps aforementioned are applied on source images with the five
luminance. Finally, saliency maps obtained from five scale luminance are inte-
grated by Eq. 10.

SH
l =

∑
Sop
l (l = 0.1, 0.3, 0.5, 0.7, 1) (10)

4 Experiments

4.1 Datasets

We test our optimization method, SMBD on three publicly available datasets:
MSRA-10K [3], ECSSD [16] and JuddDB [17]. MSRA-10K contains 10,000 rel-
ative simple images. While ECSSD and JuddDB are made up of 1000 and 900
images severally, including more complex scenes compared with MSRA-10K.

Fig. 3. (a)–(c) P-R curves on the ECSSD, JuddDB and MSRA-10K datasets. Dotted
lines represent original saliency map generated by MR, RBD, MC, ST and DRFI
methods respectively. Solid lines represent saliency maps optimized by our SMBD
method. (d) P-R curves of SMBD for RBD method on ECSSD dataset, in which steps
A-D represent modified secondary manifold ranking, blurring background depression,
SCA optimization and hierarchical luminance.

4.2 Experimental Setup

We set the number of superpixel nodes N as 200 in our experiments. These
parameters are empirically chosen, σ2 = 0.1, α = 0.99, C1 = 0.2 and C2 = 0.6.
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ξ and ψ are set as 150 and 180 according to experimental results. The larger σ and
α are, the more saliency objects in Si and Ss

i will be included. We set threshold
TBB as 800000 to avoid mistaking background as saliency object. Blurry degree
of source image is measured by threshold TBV , which is set as 0.18, 0.04, 0.025,
0.02 and 0.02 respectively for the five scale patches. Background is depressed
efficiently when TBM = 40.

4.3 Precision and Recall

To analyze the accuracy of our method, we employ Precision-Recall curve and
F-measure value. P-R curve is generated by varying the threshold from 0 to
255 and compared with corresponding ground-truth map. F-measure value fuses
precision and recall together:

F =
(1 + β2) · precision · recall

β2 · precision + recall
(11)

We set β as 0.3 because precision values more in this experiment [18].

Fig. 4. First row are original saliency maps obtained by existing methods. Second row
are optimized saliency maps by SMBD.

Figure 3(d) shows the P-R curves of several steps in our SMBD method.
We find out that twice circulations for manifold ranking are enough by exten-
sive experimental results. Saliency map optimized by step C is better than just
applying SCA for original saliency map owing to A and B steps, which can also
be seen from Table 1. The last step further promotes accuracy effectively via
changing the luminance of source image.

The proposed algorithm is applied for five existing methods, MR [4], MC [7],
ST [8], RBD [5] and DRFI [9]. P-R curves of refined saliency maps are plotted in
Fig. 3(a), (b) and (c). The closer curve locates to (1,1), the better performance
does the algorithm possess. Obviously, our optimization method can improve
the performance of the five methods above significantly no matter in simple or
complex datasets. F-measure values of refined saliency maps obtained by our
optimization method are summarized in Table 1. No matter in which dataset,
SMBD can improve F-measure values of state-of-the-art saliency detection algo-
rithms greatly, demonstrating the universality of our method.
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SCA method is conducted directly on original saliency maps and F-measure
values of SCA saliency maps for ECSSD are showed in Table 1. Compared with
our algorithm, SCA can only promote F-measure value slightly or even make it
worse for MR and DRFI methods. Figure 4 illustrates that even though original
saliency maps are varied and unsatisfying, they are all optimized by our method
to similar and favorable results.

5 Conclusion

In this paper, we propose a novel optimization method (SMBD) for saliency
detection algorithms. SMBD takes advantage of modified manifold ranking in
order to detect overall saliency objects. Then the background of an image is
depressed according to the principle that blurring regions are more likely to be
background. Introducing hierarchical luminance further promotes the accuracy
of our method. The results of experiments demonstrate that our optimization
method performs favorably on the MSRA-10K, ECSSD and JuddDB datasets.
In the future, we will further explore different kinds of hierarchical modes for
saliency detection.
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Abstract. The extreme learning machine (ELM) concept provides some
effective training algorithms to construct single hidden layer feedforward
networks (SHLFNs). However, the conventional ELM algorithms were
designed for the noiseless situation only, in which the outputs of the
hidden nodes are not contaminated by noise. This paper presents two
noise-resistant training algorithms, namely noise-resistant incremental
ELM (NRI-ELM) and noise-resistant convex incremental ELM (NRCI-
ELM). For NRI-ELM, its noise-resistant ability is better than that of
the conventional incremented ELM algorithms. To further enhance the
noise resistant ability, the NRCI-ELM algorithm is proposed. The con-
vergent properties of the two proposed noise resistant algorithms are also
presented.

Keywords: Node noise · Extreme learning machines · Incremental
algorithm

1 Introduction

Single hidden layer feedforward networks (SHLFNs) can act as universal approx-
imators [1]. With the traditional training algorithms, such as backpropagation
based algorithms, we need to estimate all the connection weights, including the
input weights from the input layer to the hidden layer, and the output weights
from the hidden layer to the output node. Training all the connection weights
may have some problems, such as local minimum. Huang et al. [2] proposed the
extreme learning machine concept, where the hidden nodes are generated ran-
domly. Besides, they showed that SHLFNs with the ELM concept can act as
universal approximators too. In [2,3], Huang et al. developed the incremental
ELM (I-ELM) [2] algorithm and the convex incremental ELM (CI-ELM) algo-
rithm [3]. The mean square error (MSE) performances of these two algorithms
are very well under the noiseless situation, where there is no node noise in the
implementation.

In the implementation of neural networks, noise take place unavoidably [4].
When we use the finite precision technology to implement a trained network,
multiplicative noise or additive noise would be introduced [5]. Also, when the
implementation is at the nano-scale, transient noise may occur [6]. For traditional
c© Springer International Publishing AG 2017
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neural network models, some batch mode learning algorithms for trained neural
networks under the imperfection situation were reported [8]. To the best of our
knowledge, there are not many literatures related to the noise-resistant ELMs.

This paper considers the multiplicative node noise and the additive node noise
as the imperfect conditions for the SHLFN model. We first derive the training
set error expression of noisy SHLFNs. Afterwards, we develop two noise-resistant
incremental ELM algorithms, namely noise-resistant I-ELM (NRI-ELM) and
noise-resistant CI-ELM (NRCI-ELM). For the NRI-ELM algorithm, we keep all
the previously trained weights unchanged, and we adjust the output weight of the
newly inserted node. The noise-resistant performance of the NRI-ELM algorithm
is better than that of I-ELM and CI-ELM. For the NRCI-ELM algorithm, we
use a simple rule to update all the previously trained weights, and we estimate
the output weight of the new node to maximize the reduction in the training set
error of noisy SHLFNs. The noise-resistant ability of the NRCI-ELM algorithm
is much better than that of I-ELM, CI-ELM, and NRI-ELM. In addition, we
prove that in terms of the training set error of noisy SHLFNs, the NRCI-ELM
algorithm and the NRCI-ELM algorithm converges.

The rest of this paper is organized as follows. Section 2 presents the back-
ground of the ELM concept and the node noise models. Section 3 derives the
two proposed noise resistant incremental ELM algorithms. Section 4 presents
the simulation result. Section 5 concludes the paper.

2 ELM and Node Noise

The nonlinear regression problem is considered in this paper. The training set
is denoted as Dt =

{
(xk, ok) : xk ∈ R

M , ok ∈ R, k = 1, . . . , N
}
, where xk and ok

are the input and the target output of the k-th sample, respectively. The test set
is denoted as Df =

{
(x′

k′ , o′
k′) : x′

k′ ∈ R
M , o′

k′ ∈ �, k′ = 1, . . . , N ′}. In a SHLFN
with n hidden nodes, the network output is given by fn(x) =

∑n
i=1 βihi (x),

where hi(x) is the output of the ith hidden node, and βi is the output weight of
the ith hidden node. In this paper, we use the sigmoid function as the activation
function. Hence the output of the ith hidden node is given by

hi(x) =
1

1 + exp{−(wT
i x + bi)} , (1)

where bi is the input bias of the ith hidden node, and wi is the input weight
vector of the ith hidden node.

In the ELM approach [2,3], the bias terms bi’s and the input weight vectors
wi’s are randomly generated. We only need to estimate the output weights βi’s.
For a trained SHLFN, the training set error is given by

E =
N∑

k=1

(yk −
n∑

i=1

βihi(xk))2 =

∥
∥
∥
∥
∥
o −

n∑

i=1

βihi

∥
∥
∥
∥
∥

2

2

, (2)

where o = [o1, . . . , oN ]T, and hi = [hi(x1), . . . , hi(xN )]T.
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In the implementation of a network, node noise may not be avoided. When we
use the digital implementation, finite precision can be modelled as multiplicative
node noise or additive node noise [5]. When we use the floating point approach,
the round-off error can be modelled as multiplicative noise. On the other hand,
when we use the fixed point approach, the round-off error can be modelled as
additive noise.

Given the kth input vector, when a hidden node is affected by the multi-
plicative noise and additive noise concurrently, its output can be modelled as

h̃i(xk) = (1 + δik)hi(xk) + εik,∀i = 1, . . . , n and ∀k = 1, . . . , N, (3)

where δik’s are the noise factors that describe the deviation due to the multi-
plicative node noise, and εik’s are the noise factors that describe the deviation
due to the additive node noise. Note that in the multiplicative noise case, the
magnitude of the noise component “δikhi(x)” is proportional to the magnitude
of the output hi(x). This paper assumes that the noise factors δik’s and εik’s are
zero-mean identically independently distributed random variables with variances
equal to σ2

δ and σ2
ε , respectively.

From [3], the CI-ELM algorithm works very well for the noiseless situation.
For example, as shown in Fig. 1(a), the network outputs fit the training samples
very well. However, when node noise exists, the network outputs contain a lot
of noise with large magnitude, as shown in Fig. 1(b). When our proposed NRCI-
ELM is used, the noise in the network outputs can be greatly suppressed, as
shown in Fig. 1(c) and (d).
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Fig. 1. Illustration of the noise resistant ability of CI-ELM and NRCI-ELM. (a) The
network output of a noiseless network with CI-ELM. (b) The network output of a noisy
network with CI-ELM. (c) The network output of a noiseless network with NRCI-
ELM. (d) The network output of a noisy network with NRCI-ELM. In this example,
σ2

ε = σ2
δ = 0.01.

3 Noise Resistant Incremental Learning

For a SHLFN with a particular noise pattern, the training set error can be
expressed as

Ẽ =
N∑

k=1

(

ok−
n∑

i=1

βih̃i(xk)

)2

. (4)
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According to the properties of δik’s and εik’s, the statistics of h̃i(xk)’s are
given by

〈h̃i(xk)〉 = hi(xk), (5)
〈h̃2

i (xk)〉 = (1 + σ2
δ )h2

i (xk) + σ2
ε , (6)

〈h̃i(xk)h̃j(xk)〉 = hi(xk)hj(xk),∀ i �= j. (7)

Taking the expectation over all possible noise patterns, we obtain the training
set error of noisy SHLFNs, given by

〈
Ẽ
〉

=

〈
N∑

k=1

(

ok−
n∑

i=1

βi

(
(1+δik)hi(xk)+εik

)
)2〉

. (8)

From (5)–(7), Eq. (8) becomes

〈
Ẽ
〉

=

∥
∥
∥
∥
∥
o−

n∑

i=1

βihi

∥
∥
∥
∥
∥

2

2

+σ2
δ

n∑

i=1

β2
i ‖hi‖22 + σ2

εN
n∑

i=1

β2
i . (9)

Similarly, we can obtain the test set error of noisy SHLFNs, given by

〈
Ẽt

〉
=

∥
∥
∥
∥
∥
o′−

n∑

i=1

βih
′
i

∥
∥
∥
∥
∥

2

2

+ σ2
δ

n∑

i=1

β2
i ‖h′

i‖22 + σ2
εN

′
n∑

i=1

β2
i , (10)

where o′ = [o′
1, . . . , o

′
N ]T, and hi = [hi(x′

1), . . . , hi(x′
N ′)]T.

For the NRI-ELM, at the nth iteration, a new hidden node hn(·), whose
input bias and input weight vector are randomly generated, is inserted into the
network. We keep the output weights {β1, . . . , βn−1} of the previously inserted
hidden nodes unchanged. We need to estimate the output weight βn of the nth
hidden node. From (9), the training set error of the noisy networks at the nth
iteration is

Ln =

∥
∥
∥
∥
∥
o−

n∑

i=1

βihi

∥
∥
∥
∥
∥

2

2

+ σ2
δ

n∑

i=1

β2
i ‖hi‖22 + σ2

εN
n∑

i=1

β2
i . (11)

Define

f =
n∑

i=1

βihi, en = o −
n∑

i=1

βihi, vn =
n∑

i=1

β2
i ‖hi‖22, un = N

n∑

i=1

β2
i . (12)

From (12), Eq. (11) can be rewritten as

Ln = ‖en‖22 + σ2
δvn + σ2

ε un. (13)

From (13), the change in the training set error between the nth-iteration and
(n − 1)th-iteration is given by

	n = Ln − Ln−1 = −2βne
T
n−1hn + (1 + σ2

δ )β2
n‖hn‖22 + σ2

ε β2
nN. (14)
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Since 	n is a quadratic function of βn with a minimum value equal to a negative
value, the optimal value of βn to maximize the decrease in the training set error
is given by

βn =
eTn−1hn

(1 + σ2
δ )‖hn‖22 + Nσ2

ε

. (15)

With (15), the change in the training set error between two consecutive
iterations is

	n = −
(
eTn−1hn

)2

(1 + σ2
δ ) ‖hn‖22 + Nσ2

ε

. (16)

Equation (16) means that when we inserted a new hidden node, the training
set error of noisy networks decreases. That means, in terms of the training set
MSE of noisy network, the NRI-ELM algorithm converges. Algorithm1 shows
the proposed NRI-ELM algorithm. From Steps (5)–(8) in Algorithm 1, for the
NRI-ELM algorithm, the computational complexity is O(N) for each iteration.

Algorithm 1. NRI-ELM
1: Set n equal to zero (n = 0), e0 = y, and f 0 = 0.
2: while n ≤ nmax do
3: n = n + 1.
4: Insert a new hidden node.
5: Compute the output vector hn of this hidden node.

6: Compute the output weight of the newly inserted node: βn =
eT

n−1hn

(1+σ2
δ
)‖hn‖2

2+Nσ2
ε
.

7: fn = fn−1 + βnhn.
8: en = y − fn.
9: end while

In [3], the CI-ELM algorithm was proposed. Under the noiseless situation [3],
the training set error of the original CI-ELM algorithm is better than that of
I-ELM algorithm. However, as shown in Sect. 4, the original CI-ELM algorithm
has a very poor noise resistant ability. Hence it is interesting to develop a noise
resistant version of CI-ELM, namely NRCI-ELM.

In the NRCI-ELM case, after we estimate the output weight βn at the nth
iteration, we update all the previously trained weights by

βnew
i = (1 − βn)βi, (17)

for i = 1 to n−1. Hence we have the recursive definitions for fn, en, vn and un

fn = (1 − βn)fn−1 + βnhn, en = y − fn,

vn = (1 − βn)2vn−1 + β2
n ‖hn‖22 , un = (1 − βn)2un−1 + β2

nN,
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where f0 = o, e0 = y, v0 = 0, and u0 = 0. With this new updating scheme
for the previously trained output weights, the change in the training set error
between the nth-iteration and (n − 1)th-iteration is given by

	n = Ln − Ln−1 = −2βn

(
eTn−1rn + σ2

δvn−1 + σ2
ε un−1

)

+β2
n

(
‖rn‖22 + σ2

δ (vn−1 + ‖hn‖22) + σ2
ε (un−1 + N)

)
, (18)

where rn = hn − fn−1.
Similar to the NRI-ELM case, to maximize the decrease in the training set

error of noisy networks, βn should be given by

βn =
eTn−1rn + σ2

δvn−1 + σ2
ε un−1

‖rn‖22 + σ2
δ (vn−1 + ‖hn‖22) + σ2

ε (un−1 + N)
. (19)

With (19), the change in the training set error between two consecutive
iterations is

	n = −
(
eTn−1rn + σ2

δvn−1 + σ2
ε un−1

)2

‖rn‖22 + σ2
δ (vn−1 + ‖hn‖22) + σ2

ε (un−1 + N)
. (20)

Equation (20) means that when we insert a new hidden node, the training set
error of noisy networks decreases. That means, in terms of the training set error
of noisy network, the NRCI-ELM algorithm converges too. Algorithm 2 shows
the proposed NRCI-ELM algorithm. At each each iteration, the complexity of
the NRCI-ELM algorithm is “O(n) + O(N)”. Compared to the NRI-ELM case
whose complexity is equal to O(N), the additional complexity O(n) is due to
the update of the previous weights.

Algorithm 2. NRCI-ELM
1: Set n = 0, e0 = y, f 0 = 0, v0 = 0, v0 = 0 and r0 = 0.
2: while n ≤ nmax do
3: n = n + 1.
4: Insert a new hidden node whose bn and wn are randomly generated.
5: Compute the output vector hn for this new hidden node.
6: Compute rn = hn − fn−1.

7: Compute the new weight: βn =
eT

n−1rn+σ2
δvn−1+σ2

ε un−1

‖rn‖2
2+σ2

δ
(vn−1+‖hn‖2

2)+σ2
ε (un−1+N)

.

8: fn = (1 − βn)fn−1 + βnhn.
9: en = y − fn.

10: vn = (1 − βn)2vn−1 + β2
n‖hn‖2

2.
11: un = (1 − βn)2un−1 + β2

nN .
12: βi = (1 − βn)βi, for all i = 1, . . . , n − 1.
13: end while
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4 Simulation

Two real life datasets from the UCI data repository are used. They are
Abalone [9] and Housing Price [10]. The Abalone dataset has 4,177 samples.
Each sample has eight inputs and one output. Two thousand samples are ran-
domly taken as the training set. The other 2,177 samples are used as the test
set. The Housing Price dataset has 506 samples. Each sample has 13 inputs and
one output. The training set contains 250 samples, while the test set has 256
samples.

This section considers four incremented algorithms. They are the original
I-ELM algorithm, the original CI-ELM algorithm, the proposed NRI-ELM algo-
rithm, and the proposed NRCI-ELM algorithm, respectively. Figure 2 shows the
MSE performance versus the number of hidden nodes, where the noise level is
equal to σ2

ε = σ2
δ = 0.09. It can be seen that the proposed NRI-ELM algorithm

is better than the two original incremental algorithms. Also, the MSE perfor-
mance of the original CI-ELM algorithm is very poor. When we use more hidden
nodes, the performance of the CI-ELM algorithm suddenly becomes very poor.
To sum up, the proposed NRCI-ELM algorithm is much better than the original
I-ELM algorithm, the original CI-ELM algorithm and the proposed NRI-ELM
algorithm.

Table 1 shows the average test set MSE values of noisy networks over 100
trials for various node noise levels. In Table 1, the number of hidden nodes is
equal to 500. It can be seen that the performance of the CI-ELM algorithm is
very poor. The noise resistant ability of the NRI-ELM algorithm is better than
that of the I-ELM algorithm. In addition, the NRCI-ELM algorithm is much
better than the other three algorithms. For instance, in the Abalone dataset
with noise level σ2

ε = σ2
δ = 0.01, the test set MSE of I-ELM is equal to 0.01421.

When the NRI-ELM is used, the test set error is reduced to 0.01367. The NRCI-
ELM algorithm can further reduce the test set error to is 0.00815.

For high noise levels, the improvement of the NRCI-ELM algorithm is more
significant. For instance, with the node noise level equal to σ2

ε = σ2
δ = 0.09

The test set MSE of the I-ELM algorithm is equal to 0.05855. With the
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Fig. 2. The performance of the four incremental methods versus the number of additive
nodes. The noise level is σ2

ε = σ2
δ = 0.09. The Abalone dataset is considered.
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Table 1. Average test set MSEs of noisy networks. The average values are taken over
100 trials. There are 500 hidden nodes.

Node noise

level

σ2
ε , σ2

δ

I-ELM

mean(std)

NRI-ELM

mean(std)

CI-ELM

mean(std)

NRCI-ELM

mean(std)

Abalone 0.01, 0.01 0.01421(0.00180) 0.01367(0.00142) 0.06153(0.03175) 0.00815(0.00007)

0.09, 0.09 0.05855(0.01561) 0.03386(0.00312) 0.49954(0.28633) 0.01002(0.00009)

0.25, 0.25 0.14723(0.04334) 0.04648(0.00202) 1.37555(0.79548) 0.01174(0.00015)

Housing 0.01, 0.01 0.02558(0.00649) 0.02425(0.00440) 0.05488(0.02510) 0.01478(0.00029)

0.09, 0.09 0.11266(0.05269) 0.05921(0.00706) 0.39941(0.22699) 0.02026(0.00044)

0.25. 0.25 0.28682(0.14524) 0.08081(0.00450) 1.08848(0.63079) 0.02528(0.00050)

NRI-ELM algorithm, the test set MSE is reduced to 0.03386. When the NRCI-
ELM algorithm is used, the test MSE is reduced to 0.01002.

Another interesting property of the NRCI-ELM algorithm is that the test
set error is insensitive to the node noise level. In the Abalone dataset, when the
noise level is σ2

δ = σ2
ε = 0.01, the test set error of the NRCI-ELM algorithm is

equal to 0.00815. When the noise level is greatly increased to σ2
δ = σ2

ε = 0.25,
the test set error of the NRCI-ELM algorithm is slightly increased to 0.01174
only.

One may suggest that we should use the NRCI-ELM algorithm only because
its test set error of noisy network is the best. The difference between the NRCI-
ELM algorithm and the NRI-ELM algorithm is the computation complexity.
For the NRI-ELM algorithm, the complexity is O(N). But for the NRCI-ELM
algorithm, the computation complexity is “O(N) + O(n)”.

5 Conclusion

This paper proposed two incremental ELM algorithms, namely NRI-ELM and
NRCI-ELM, for handling node noise. They insert the randomly generated hid-
den nodes into the network in the one-by-one manner. The NRI-ELM algorithm
adjusts the output weight of the newly inserted hidden node only. Its noise-
resistant ability is better than that of the original I-ELM algorithm and the
original CI-ELM algorithm. Besides, we proposed the NRCI-ELM algorithm. It
estimates the output weight of the newly additive node, and uses a single rule
to modify the previously trained output weights. In addition, we prove that for
the two proposed algorithms, the training set MSE of noisy networks converges.
Simulation examples illustrate that the noise resistant ability of the NRI-ELM
algorithm and NRCI-ELM algorithm is better than that of I-ELM and CI-ELM.
In addition, the NRCI-ELM algorithm has the best noise resistant ability, com-
pared to other three incremental algorithms. For the NRI-ELM algorithm, the
complexity is O(N). For the NRCI-ELM algorithm, the computation complexity
is “O(N) + O(n)”.
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Abstract. The phase response of speech is an important part in speech
separation. In this paper, we apply the complex mask to the speech
separation. It both enhances the magnitude and phase of speech. Specif-
ically, we use a deep neural network to estimate the complex mask of two
sources. And considering the importance of the phase, we also explore a
phase constraint objective function, which can ensure the phase of the
sum of estimated sources that is close to the phase of the mixture. We
demonstrate the efficiency of the method on the TIMIT speech corpus
for single channel speech separation.

Keywords: Speech separation · Deep neural network · Objective func-
tion · Complex mask

1 Introduction

Speech separation is an important part of source separation, and it plays an
important role in real life. This problem becomes even more challenging in the
single channel case [16]. Researchers have devoted to solving this problems from
various aspects, which can be divided into two parts from whether to consider
the phase response.

Traditional method based non-negative matrix factorization (NMF)
processes the mixture in the time-frequency (T-F) domain by enhancing the
magnitude response [9]. Recently with the rising of method based on deep neural
network (DNN), Kang et al. combine NMF with DNN by using DNN to learn
the encoding vectors of NMF [5]. Besides supervised mask estimation based on
DNN also has been shown to improve separation result in very noisy conditions
[3,6]. This method solves this problem by learning a mask, such as binary or soft
mask [7,13,14] for the magnitude of the source. And mask mostly operates in the
magnitude domain and uses the noisy phase during signal reconstruction. The
above methods all ignore the phase part mainly because of the studies in [12].
In [12] some well-designed experiments have shown that enhancing speech phase
cannot improve speech quality significantly. Besides the research by Ephraim
c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part II, LNCS 10262, pp. 266–273, 2017.
DOI: 10.1007/978-3-319-59081-3 32
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and Malah [1] reveals that we do not need to enhance the phase response when
the minimum-mean square error (MMSE) is applied to enhancing noisy speech.

However recently a study made by Paliwal et al. showed that only enhancing
the phase of sources also can lead to the speech quality improvements [8]. This
research has led some researchers to consider phase recover in the speech sepa-
ration. Based on phase enhancement research, Erdogan used the phase-sensitive
masking for the speech separation [2]. Wang combined a subnet as the inverse
fast Fourier transform to obtain the clean time-domain signal [15], but it still
uses the phase of mixture. And Williamson et al. [16] provided a complex mask-
ing for both enhancing magnitude and phase response simultaneously with deep
neural network.

In this paper, we apply the complex mask to the speech separation of two
speakers and obtain the complex spectrum of two sources together. Moreover,
a new objective function which has a constraint between the phase of the sum
of two sources and mixture is also provided. The organization of this paper
is as follows: Sect. 2 introduces the proposed methods, including the complex
mask and phase constrained objective function, Sect. 3 presents the experimental
setting and results evaluated on the TIMIT corpus. The conclusion is given is
Sect. 4.

2 Proposed Method

2.1 Problem Formulation

In this paper, we assume the observed signal is a mixture of source signals of
two speakers [10]. Ignored the noise, the problem can be formulated as

y(t) = s1(t) + s2(t) (1)

where s1(t) and s2(t) represent the two sources.

2.2 System Framework

The proposed framework is showed in Fig. 1. Firstly, the feature of the speech is
fed to the network. Then with the network output, we can obtain the complex
spectrum of estimated sources using the Eqs. (2) and (6). Next we process the
magnitude of estimated sources with ideal ratio mask (IRM) due to the powerful
role of time-frequency masking [14]. Finally, an overlap add method is used to
synthesize the time domain signal with the processed magnitude and estimated
phase.

2.3 Complex Mask

The time-frequency mask is a powerful tool for speech separation. Traditional
mask is defined in the magnitude domain, and based on the research in phase
enhancement [16], Williamson provided a complex mask in the complex domain,
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Fig. 1. System framework

which can obtain the complex spectrum of the clean speech from the spectrum
of mixture [11]. This part is a brief derivation for the proposed complex mask.
They define a mask Mt,f to get the clean source signal St,f directly from the
complex spectrum of mixture signal Yt,f as follows:

St,f = Mt,f ∗ Yt,f (2)

where t, f represents different time-frequency (T-F) unit. The following defi-
nitions are operated on each T-F unit and these subscripts do not show for
simplicity. ‘∗’ indicates complex multiplication, and Mt,f is the complex mask.
The complex mask M can be obtained from the Eq. (2) as followings:

M =
S

Y
=

Sr + iSi

Yr + iYi
=

YrSr + YiSi

Y 2
r + Y 2

i

+ i
YrSi − YiSr

Y 2
r + Y 2

i

= Mr + iMi (3)

where the subscripts r and i represent the real and imaginary components respec-
tively.

Note that the range of real and imaginary of M is belong to R because of
Sr, Si, Yr and Yi ∈ R, and it is not easy to estimate for the DNN. Therefore
they deal with this mask as follow:

cIRMx = K
1 − e−CMx

1 + e−CMx
(4)

where x can be r or i, indicating the real and imaginary components of the
complex mask. This process makes mask values within [−K, K]. During testing,
the unprocessed mask can be obtained by the following inverse function:

∧
Mx = − 1

C
log(

K − Ox

K + Ox
) (5)

where the O is the output of the DNN.

2.4 New Objective Function

In this paper, DNN is trained to learn the processed complex mask of
sources from the mixed magnitude spectrum. The output of DNN, O =
[cIR̂M1; cIR̂M2], is the processed masking of two sources and is expected to
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have small error with the target output, where cIR̂M1, cIR̂M2 represent DNN
estimation of target output cIRM1, cIRM2, so conventionally one can optimize
the neural network parameters by minimizing the mean squared error:

JMSE = d(O1
r , cIRM1

r ) + d(O1
i , cIRM1

i )
+d(O2

r , cIRM2
r ) + d(O2

i , cIRM2
i ) (6)

where the O represents the output of the DNN, and the subscript indicates the
real and imaginary of the processed complex mask of two sources. And d(a, b)
represents the mean square error within a and b.

We present a new objective function with phase constraints. Given ŝ1, ŝ2 as
the complex spectrum of recovered two sources, the sum of them is expected to
have small error with the mixture source:

ŝ1 + ŝ2 = (M̂1 + M̂2) ∗ y = y (7)

where the y is the complex spectrum of the mixture. Considering ŝ1, ŝ2 and y
all are complex number, we can divide them into real and imaginary parts.

M̂1 = M̂1r + M̂1ii (8)

M̂2 = M̂2r + M̂2ii (9)

where the r and i represents the real and imaginary parts of the two sources.
Then we can get the following equation from the Eq. (8):

M̂1 + M̂2 = 1 (10)

where M̂1r, M̂2r, M̂1i and M̂2i are obtained from the output of the DNN, and
the relations between the imaginary parts can be obtained from the above three
equations:

0 = M̂1i + M̂2i (11)

M̂1i = − 1
C

log
(

K − O1
i

K + O1
i

)
(12)

M̂2i = − 1
C

log
(

K − O2
i

K + O2
i

)
(13)

where the Eq. (11) can ensure that the phase of the sum of estimated speech is
equal to mixture. And the Eqs. (12) and (13) are obtained from Eq. (5). We can
further derive the final result through the above three equations:

0 = O1
i + O2

i (14)

Taking into account of the importance of phase, we add this phase constraint
to the original objective function in Eq. (6):

J = d(O1
r , cIRM1

r ) + d(O1
i , cIRM1

i )
+d(O2

r , cIRM2
r ) + d(O2

i , cIRM2
i ) + 1

2α
∑∥∥O1

i + O2
i

∥∥2

2

(15)

the above equation is the proposed objective function, and the last part repre-
sents the phase constraint and α is determined experimentally.
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3 Experiments

3.1 Setting

We conduct experiments for single channel speech separation on TIMIT corpus
[17] to evaluate the proposed method. Two speakers, same gender or opposite
gender, are selected from database. We select eighty percent of the sentences for
training, ten percent of the sentences for development set and the remaining for
testing from each speaker. The sentences are mixed at 0 dB signal-to-noise ratio
(SNR). We also circularly shift the signal from one speaker and mix it with the
other source in order to increase the number of training data [4].

In order to compare with DNN [4], the neural network consists of 2 hidden
layers which have 160 Rectified Linear Unit (ReLU) units each. And the input
feature is a 257-dimensional log energy spectrum, computed using a 32 ms win-
dow with a frame shift of 16 ms. Empirically, the function in Eq. (4) the value of
parameters K and C is setted 10 and 0.1.

The separation performance is evaluated in terms of three metrics, signal to
distortion ratio (SDR), signal to interference ratio (SIR), and signal to artifacts
ratio (SAR) [11]. SDR reflects the distortion of original source. It is valid as a
global performance measure. SIR shows the ability of rejection of interferences
caused by other sources and SAR reports errors caused by extraneous artifacts
introduced during the source separation procedure. The higher SDR, SIR and
SAR are, the better performance a method achieves [4].

We compare the experimental results with those standard NMF and based on
DNN [4]. For standard NMF, the basis matrices D1 and D2 are first learned from
the training data of two speakers respectively, then we can obtain two coefficients
H1, H2. Finally a soft mask is applied to obtaining the final results, and the
estimated time frequency representations of two sources can be obtain by:

ŝ1(t, f) =
D1H1

D1H1 + D2H2
� y(t, f) (16)

ŝ2(t, f) =
D2H2

D1H1 + D2H2
� y(t, f) (17)

where � denotes element-wise multiplication. ŝ represents the spectrum of recov-
ered source and the y is the spectrum of the mixture. As for the method based
on DNN, the architecture in [4] is applied here.

3.2 Experimental Results

First, we conduct experiments with opposite gender and the results are displayed
in Table 1. DNNcIRM represents the method based DNN with complex mask and
objective function in Eq. (6). As for DNNcIRM-dis, the new objective function is
added in the above method. It can be seen that the method based neural network
achieves better results compared to standard NMF, which confirms that neural
network has better generalization and separation capacity. Comparing the last
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two rows in Table 1, we can find that SIR, SDR and SAR all have improved
0.3–0.8 dB. It verify that it is useful to add the phase constraint in the object
function. Besides, we compare the results between [4] and proposed method.
We find that the results of only using complex mask are close to the [4], which
may because the estimation of phase is not accurate enough. But when it uses
new object function, the SIR achieves around 1.3 dB gain compared to [4], and
the other two are close. These results show that phase is helpful to the speech
separation.

Table 1. Speech separation results of female and male.

Method Measurement (dB)

SDR SIR SAR

NMF 6.008 8.722 7.624

DNN [16] 7.70 11.53 8.07

DNNcIRM 7.40 12.00 7.50

DNNcIRM-dis 7.67 12.83 7.89

It is more difficult for the same gender speech separation. Derived from the
above results, we only compare the results between the [4] and DNNcIRM-dis
method.

Table 2. Speech separation results of two females.

Method Measurement (dB)

SDR SIR SAR

DNN [16] 5.71 9.19 6.08

DNNcIRM-dis 6.18 9.79 6.77

The results are displayed in Tables 2 and 3. For the separation between same
gender, obviously the result is worse than the opposite gender. And the pro-
posed method achieves a 0.2–0.7 dB gain in SDR, SIR and SAR which is similar
with the opposite gender. This shows that proposed method can also play an
important role in the same gender separation.

Table 3. Speech separation results of two males.

Method Measurement (dB)

SDR SIR SAR

DNN [16] 5.67 8.19 6.38

DNNcIRM-dis 5.81 8.79 6.77



272 Z. Miao et al.

4 Conclusions

In this paper, a framework for jointly separating the magnitude and phase of the
sources with a deep neural network has been proposed. And we can obtain two
source signals at the same time. Besides, an improvement has been proposed
to further enhance the separation performance. The phase constraint on the
objective function can ensure the phase of the sum of two source which is close
to the mixture. The proposed algorithm achieves better results through a series
of experiments on speech separation. But it is still speaker-dependent. The future
work will consider extending it to the case of speak-independent.
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Abstract. Restricted Boltzmann Machine (RBM) is a two layer undi-
rected graph model that capable to represent complex distributions.
Recent research has shown RBM-based approach has comparable perfor-
mance with or even better performance than previous models on many
collaborative filtering (CF) tasks. However, the intractable inference
makes the training of RBM sophisticated, which prevents it from prac-
tical application. We present a novel feedforward neural framework for
collaborative filtering called NACF, which is extended from the Neural
Autoregressive Distribution Estimator (NADE). Because of the autore-
gressive feed-forward architecture, NACF can be trained with efficient
stochastic gradient descent, instead of slow and hard-to-tune truncated
Gibbs sampling for RBM. By introducing linear visible units and dual
reversed ordering, NACF show faster convergence and better results than
Probabilistic Matrix Factorization (PMF) and corresponding RBM mod-
els on MovieLens dataset. Besides, by combining NACF results, the rat-
ing prediction of efficientsignificantly improved, showing NACF is an
effective and efficient model for collaborative filtering.

Keywords: Neural network · Collaborative filtering · RBM · NADE

1 Introduction

In recent years, recommendation system not only gives people easier access to
news, movies, music or other products or services on the Internet, but also brings
more and more business opportunities for companies. One of the most common
recommendation problem is user-item rating prediction, and Collaborative Fil-
tering is a simple but effective approach for this problem. Memory-based models
[11] use the user-item ratings to calculate similarity of the users or items, while
model-based methods can model the ratings by learning latent factors of users
or items. Dimension reduction methods such as Singular Value Decomposition
(SVD) [1,7], principle component analysis (PCA) [3,6] can deal with the scala-
bility problem and giving good rating predictions despite the sparsity problem.

Restricted Boltzmann Machine (RBM) is often used as a generative model,
to model the distribution of the input vector. Recent research also bring it into
the problem of CF tasks [2,10]. It has been shown to have good performance as
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matrix decomposition models like SVD. And combining the result can improve
the predicted ratings. Combining the results of RBM and Probabilistic Matrix
Factorization (PMF) reduces the RMSE 7% than baseline on Netflix competition
dataset [9]. However, the RBM is undirected graphic model which is intractable
to inference. So another neural latent factor model, Neural Autoregressive Den-
sity Estimator (NADE) [8], is extended from RBM for providing tractable distri-
bution estimation using an autoregressive approach. In this paper, we introduce
a novel Neural Autoregressive framework for Collaborative Filtering (NACF) to
the task of user-item rating prediction, and evaluate it in different ways.

The rest of the paper is organized as follows: Sect. 2 presents preliminary
knowledge for our model, Sect. 3 illustrates the NACF model and how we extend
it to adapt to CF tasks, Sect. 4 describes our experiments and analysis and Sect. 5
concludes this paper.

2 Preliminaries

2.1 RBM for Collaborative Filtering

RBM is an undirected graphical model, a bipartite whose distribution is energy
based. The energy function of binary hidden and visible units is

E(v,h) = −hTWv − bTh− cT v (1)

The marginal distribution of visible units is given by

p(v) =
∑

h exp(−E(v,h))
∑

v
′
,h exp(−E(v′

,h)))
(2)

W is the weight matrix, v, h represent the visible input vector and hidden vector
respectively. b is the bias for visible units, c is the bias for the hidden units. For
parameter learning, usually use the Gibbs sampling to sample between hidden
and visible layers. The Contrastive Divergence (CD) algorithm use the truncated
instead of full Gibbs sampling, to approximate the gradient, yields good results
for RBM training [4].

For CF task, given N × M user-item matrix, N is the number of users, M
is the number of items, each rating entry is a integer value from 1 to K. The
corresponding RBM has M visible softmax units to model 1 to K ratings, F
binary hidden units, and weight matrix W size is M × F × K. Each row of the
matrix, which is the ratings for all the items of a particular user, is a training case
of the RBM. For different users, the missing rating entries tend to be different.
In the training procedure, we just ignore the corresponding entries of W , which
means the structure of the RBM varies between different training cases, yet
sharing the same weight matrix. In the inference procedure, we use non-empty
item ratings to get the hidden values and then construct unseen ratings.
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2.2 Neural Autoregressive Distribution Estimator

NADE is a generative model extended from RBM by factoring the marginal
distribution of the visible units p(v) to conditional distribution

p(v) =
D∏

i=1

p(vi,v<i)
p(v<i)

=
D∏

i=1

∑
v>i

∑
h exp(−E(v,h))

∑
v≥i

∑
h exp(−E(v,h))

(3)

D is the dimension of the visible input vector. From Eq. (2) we can derive the
p(vi = 1|v<i) is intractable because of its partition function. However, it can
be obtained by finding q(vi,v>i,h|v<i) to approximate the true conditional
p(vi,v<i,h|v<i) by minimizing the KL-divergence [8]. The conditional distrib-
ution is computed in an autoregressive feed forward approach:

hi(v<i) = sigm(c + W T
:<iv<i) (4)

p(vi|v<i) = sigm(b + V:<ih
i(v<i)) (5)

Like previous definition for RBM, W is the weight matrix from visible units
to hidden units, c and b are the bias of hidden and visible units respectively. V is
the weight matrix from hidden units to visible units. This is different from RBM,
the untied weight matrix V can lead to better distribution estimator [8]. v<i is
the visible units left to vi, W T

:<i and V:<i is the corresponding weight matrix
for v<i. hi(v<i) denotes the hidden activation contributed by visible units left
to vi and its superscript i denotes that it is only for calculating the conditional
distribution p(vi|v<i). v̂i is the expectations for p(vi = 1) which is calculated
from the contributions from v<i. For the first visible unit, the expectation is
given only by the bias c. Thus, the neural network can be trained by standard
back-propagation algorithm to minimize the cross-entropy error.

3 The Theoretical Model

3.1 The Neural Autoregressive Framework for CF

Now we bring in the NACF model. As the RBM model for CF, we want it to
ignore the missing ratings for a particular user in the training process. As shown
in Eq. (5) the conditional distribution is directly calculated from hi(v<i), so
we can just ignore the contribution of missing rating entries when calculating
hi(v<i) using Eq. (4).

As shown in Fig. 1, if there are continuous missing entries between two visible
units, the activation of hidden units remains the same. That’s to say, if a rating
for a visible unit vi is missing, the corresponding hidden status for calculating
hi(v<i) is the same as hi−1(v<i−1). This might introduce some extra bias to
predict some empty ratings when they are the left most in the specific ordering.
We show how to address this effect later in Sect. 3.
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Fig. 1. Figure for NACF model. For a
user-based NACF, the visible units are
the rating for all items of a user. The
visible units with dashed border like v1,
v3 and v4 represent the empty entries
of item rating. Because there’s no con-
tribution from v1, v3 and v4, we have
h1 = h2, h3 = h4 = h5.

Fig. 2. Dual reversed ordering NACF
(Dual-NACF) is composed by two
NACF with reversed orderings denoted
as part a and part b. The white hol-
low arrows represents the autoregres-
sive directions, and the two orderings
are exactly reversed.

3.2 Modeling Rating Values

We demonstrate that a basic NACF model can be easily applied to modeling
the binary ratings. RBM model use softmax visible units which are overpara-
meterized and the training complexity should times K. However, because of the
autoregressive approach to model the conditional distribution, we need to find
other approaches to bypass the problem.

We first try to normalize each entry of user-item ratings to zero mean, stan-
dard deviation, just like RBM with Gaussian visible units [5]. We denote this as
Gaussian-NACF, and its training and inference procedure is the same as basic
NACF model.

We also extend the NACF to linear visible units instead of binary stochastic
units, and this brings many advantages. First, with the linear units, it is easy
to adapt to any possible rating values, keeping the number of parameters to
M ×F instead of M ×F ×K for RBM. Second, the linear visible units are also
naturally more fit to rating values than 1-of-K representation [2]. If we want to
use linear units, we also need to change the error function from cross entropy to
mean square error E(v̂) = 1

D

∑D
i=1(v̂i − vi)2.

Another point is that, different user or item have different rating bias [7]. For
user-based NACF, the visible unit bias can be seen as item specific bias, however
the user bias are not considered. We add a user specific bias term r̂u,i = v̂u,i+bu.
Similarly, an item specific bias term are added to item-based NACF.

3.3 Multiple Orderings to Improve Rating Prediction

Because the ordering of conditional distribution chain of NACF brings extra
bias of the data, we can improve the rating prediction by reducing this effect.
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As explained before in Sect. 3, some visible units may have few of other units
left to them, and the corresponding hidden states may have enough information
to predict the ratings precisely.

Random orderings of input units have different biases, we can reduce the bias
by combining all possible orderings. However, the number of all possible order-
ings is O(D!), which is computationally impossible for NACF of considerable
input size. [12] introduced a method to generate NADE ensembles, but it still
takes O(D!) time complexity to inference the result.

Instead we introduce a new ensemble method for NACF. It brings more
improvement than simply averaging models of different orderings, and keeping
the same training time complexity. As shown in Fig. 2, the output of dualordering
NACF model is computed by the two NACF components. The two parts have
different hidden units and different weight matrix, but they share the input
data, and the final output is calculated by averaging of the two outputs. The
two components have reversed orderings. By using reversed orders, each visible
unit can ’see’ the contribution from exactly all visible units except itself, which
might have better predictions than single random ordering model.

The way to calculate the output is defined as:

v̂i = (v̂a
i + v̂b

i )/2 (6)

The v̂a
i and v̂b

i is the output value of visible unit i in part a and part b respectively.
When updating the weight matrix in part a and b, we use v̂i instead of v̂a

i or
v̂b
i to calculate error. Our experiments show this approach is much better than

simply averaging the output of several different orderings.

4 Experiments

4.1 Datasets and Metrics

We evaluate the NACF and its variations on two MovieLens datasets with dif-
ferent size. All the user-item ratings of both two datasets are from 1 to 5. The
MovieLens-100k dataset has 100,000 user-item ratings for 1,682 items by 943
users. The MovieLens-1M dataset has 1,000,000 ratings by 6,040 movies for
3,952 items. As previous research usually did, we use 5-fold cross validation
training/testing datasets to evaluate the performance. We use Root Mean Square
Error (RMSE) and Mean Absolute Error (MAE) as evaluation metrics for the
1 to 5 score prediction.

RMSE =

√∑
i,j(rij − r̂ij)2

Nt
MAE =

∑
i,j |rij − r̂ij |

Nt
(7)

4.2 Experiment Setup

Without much parameter tuning, we fix the learning rate of NACF model to
0.1, weight decay parameter λ fixed to 0.001. The number of visible units and
hidden units varies from 10 to 50 regard to different datasets and NACF imple-
mentations.
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4.3 Result of Modeling Rating Values

The RMSE on MovieLens-100k of different visible units are as Fig. 3(a) shows.
We can see that, the decrease speed of RMSE of NACF with linear visible unit
is the fastest. The Gaussian visible units, initially converge faster than linear
units, but later its RMSE and MAE becomes higher. The reason is that, the
Gaussian units are more sensible to learning rate than binary units or linear
units [5]. Note that for experiments after this section, our result all is given by
NACF with linear visible units. From Fig. 3(b) we can see that NACF with bias
terms, converge faster and get better rating prediction results than raw NACF.

(a) (b) (c)

Fig. 3. The results for NACF on MovieLens-100k dataset. (a) Convergence curve for
different visible units; (b) convergence curve for NACF with/without bias; (c) conver-
gence curve for NACF ensemble of different orderings and Dual-NACF.

4.4 Result of Multiple Orderings

We test NACF with different orderings, and evaluate the dual reversed ordering
NACF (denoted as Dual-NACF) on the MovieLens-100k. As shown in Fig. 3(c),
the RMSE and MAE of NACF with 2, 4 and 6 orderings decreases with incor-
porating more orderings. However, we can see that the RMSE and MAE for 6
orderings and 8 orderings are almost the same. This means simply averaging the
results from more NACF with different orderings does not help. Our proposed
Dual-NACF outperforms simple averaging approach significantly.

4.5 Result of Comparison with Previous Existing Models

Here we compare the performance with previous collaborative filtering models
on MovieLens-100k and MovieLens-1M. We evaluate the Dual-NACF and the
single ordering NACF with linear visible units without combining any other
information. The result of RBM-based models comes from [2], while the PMF
and NACF results are evaluated with common 5-fold cross validation.

For the MovieLens-100k dataset, our NACF models, despite its single ran-
dom ordering, performs better than corresponding user based or item based
RBM model. And the Dual-NACF performs better than corresponding NACF
model. For the MovieLens-1M dataset, we can see from Table 1 that, our I-NACF
and I-Dual-NACF model outperforms I-RBM model. The U-RBM, I-RBM,
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Table 1. MAE results

(a) MAE of CF models on
MovieLens-100k dataset.

CF Model MAE

PMF 0.729
U-RBM 0.779
I-RBM 0.775
U-NACF 0.772
I-NACF 0.727
U-Dual-NACF 0.750
I-Dual-NACF 0.715
I-RBM+INB 0.699
I-Dual-NACF+INB 0.695

(b) MAE of CF models on
MovieLens-1M dataset.

CF Model MAE

PMF 0.689
U-RBM 0.711
I-RBM 0.710
U-NACF 0.694
I-NACF 0.693
U-Dual-NACF 0.688
I-Dual-NACF 0.686
I-RBM+INB 0.669
I-Dual-NACF+INB 0.664

I-RBM+INB are from RBM based methods [2]. I-RBM+INB is a neighborhood
based method that utilizing the results of itembased RBM. I-Dual-NACF+INB
is the neighborhood boosted method use the results from item-based dual version
of NACF.

4.6 Result of Combining Tests

Ensemble of different CF models can improve the final results. Linear regression
is usually used to combine rating predictions of different models. As shown in
Table 2, NACF model tend to be a good model to combine. And the coefficients
indicate NACF is an effective CF model.

Table 2. Model ensemble results and coefficients. RMSE↓ and MAE↓ indicate the
decreasing rate of results corresponding to the first model. COEF1 and COEF2 are the
linear regression weights of the first and second model respectively.

CF Model RMSE MAE RMSE↓ MAE↓ COEF1 COEF2

PMF+NACF 0.8534 0.6710 1.49% 2.19% 0.5047 0.5282

RBM+PMF 0.8654 0.6837 3.87% 3.70% 0.1575 0.8474

PMF+NACF 0.8595 0.6755 4.52% 4.86% 0.2464 0.7557

5 Concluding Remarks

In this paper, we present a novel neural autoregressive model for collaborative
filtering, and evaluate the model in different ways. By introducing linear visible
units and user/item specific bias, our model converges faster and yields better
results than RBM, showing its efficiency. By boosting the result using the aver-
age outputs of NACF with exactly reversed orderings, the model get significant
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improvement compared to simply average several models. And experiments show
NACF is actually an effective model. In future work, we are going to adapt the
extensions of NACF to more datasets to integrate heterogeneous kinds of infor-
mation and going to implement more efficient CPU or GPU parallel training
algorithms for NACF.
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Abstract. This study proposes a content-based pigmented skin lesion image
retrieval scheme on semantic hash clustering on the output of the deep neural
networks. The skin lesion images are acquired with standard digital cameras or
mobile phones. To retrieval skin lesion images efficiently online, semi-
supervised deep convolutional neural network incorporated with hash func-
tions jointly learn feature representations, for preserving similar semantics
between skin lesion images, and mappings to hash codes. The target candidates
are clustered by Affinity Propagation (AP) for ranking, which are selected
among the outputs of layer F7 based on the Hamming distance of their semantic
hash codes. Experiments on 4 disease categories of pigmented skin lesions of a
set of 239 images yielded a specificity of 93.4% and a sensitivity of 80.89%.

Keywords: Semantics hash coding � Pigmented skin lesion � Image retrieval �
Affinity propagation cluster

1 Introduction

With the deterioration of environmental problems, skin diseases are becoming a
common high incidence of common diseases. Pigmented skin lesions, such as a deadly
cancer of malignant melanoma, threat to human health seriously. Traditional diagnosis
for skin disease is highly dependent on subjective judgment of physicians, but the
differentiation of the pigmented skin lesions from others is not trivial even for expe-
rienced dermatologists. With emerging development of computer vision and image
processing, computer-aided diagnosis (CAD) for skin lesions receives more and more
attentions. Based on image processing and artificial intelligence, automatic image-
based diagnosis of skin lesions can both benefit patients and dermatologists. Patients
can identify roughly the skin lesion through a retrieval system without going to hos-
pital, while physician can be guided by predicting the disease of a particular case and to
assist them in diagnosis.

However, the majority of CAD for skin lesions development so far has been mainly
focused on dermoscopic images, which have constant illumination, different texture
patterns, and characteristics that are not measurable in regular camera images, such as

© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part II, LNCS 10262, pp. 282–289, 2017.
DOI: 10.1007/978-3-319-59081-3_34



lesion area and perimeter. One of the most widely used methods for dermoscopic skin
lesion images is the Asymmetry, Border, Color and Diameter, called ABCD rule [1].

The image retrieval in this work is designed for images of skin lesions taken by a
non-professional digital camera or mobile phone, which is convenient, no damage to
patients as well as easy to operate, while generally suffer from lack of high quality
images. As can be seen in Fig. 1, general camera images of pigmented skin lesions
typically contain various noises such as hair, uneven illumination and shading areas,
which will decrease the efficiency of image analysis. In order to reduce image artifacts,
preprocessing techniques should be adopted, such as hair removal [2], image
enhancement and segmentation [3].

Semantic-preserving feature representations are essential for a content-based image
retrieval (CBIR) system. The learned deep features capture rich image representations
and provide better performance than the handcrafted features on image retrieval [4]. In
our work, for automatically analyzing the actual contents of the skin lesion image based
on computer vision and machine learning, deep semantic-preserving features are jointly
learned through a semi-supervised deep convolutional neural network [5] incorporated
into hash functions, which avoids the limitation of semantic representation power of
hand-crafted features.

A typical CBIR system ranks the relevance between the query image and any target
image in proportion to a similarity measure calculated from the features. CLUE
(cluster-based retrieval of images by unsupervised learning) has been proposed to
retrieves image clusters rather than a set of ordered images [6]. In this study, we apply
Affinity Propagation, proposed by Frey and Dueck in the journal of SCIENCE [7], to
cluster the target candidates which are selected among the outputs of layer F7 based on
the Hamming distance of their semantic hash codes.

The rest of this paper is organized as follows. In the next section, we review related
work and technologies. Section 3 presents our proposed scheme. In Sect. 4, the exper-
iments and the results are shown. We finally conclude and discuss future work in Sect. 5.

2 Related Works

There exists many semantic structure preserving hash methods. For multi-label images
retrieval, a deep semantic ranking based hashing incorporates deep convolutional neural
network into hash functions to jointly learn feature representations and mappings from

Fig. 1. Sample images used in our work
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them to hash codes [4]. Semi-supervised hashing minimizes an empirical error over the
labeled pairs of points and makes hash codes balanced and uncorrelated to avoid
over-fitting [8]. Our method leverages deep learning model to discover deep semantic
similarity of skin lesion images.

Deep convolutional neural networks (CNNs) have achieved great success in image
classification, retrieval and object detection [9, 10] since it can learn image similarity
metric. Krizhevsky et al. [5] achieved a set of feature vectors from the 7th layer of a
deep CNN for image retrieval on ImageNet. Yang et al. [11] applied a supervised
learning algorithm of semantics-preserving hashing with deep neural networks for
large-scale image search.

A CBIR system has the capability of finding out nearest images to the query image
and outputs the sorted results to the display. Taking into consideration of relations
among retrieved images, the query image and neighboring target images are clustered
by Affinity Propagation cluster [7], which can be treated as a procedure on searching
for minima of an energy function that depends on a set of K hidden labels corre-
sponding to the K data points. Each label represents the exemplar to which the point
belongs, so the similarity of each data point to its exemplar can be calculated. AP views
each data point as a node in a network and recursively transmits real-valued messages
along edges of the network until a good set of exemplars and corresponding clusters.

3 The Proposed Image Semantics Learning and Retrieval
Ranking

3.1 Deep Learning of Binary Hash Codes for Skin Lesion Image
Retrieval

Inspired by [11], we apply the semi-supervised semantics-preserving deep hashing for
pigmented skin lesion image retrieval, by learning the rich mid-level image descriptors
based on deep CNN, as shown in Fig. 2. A set of semantic labels are hypothetically
associated with a set of latent attributes for classification.

Fig. 2. Framework of the proposed scheme
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Hash functions can be treated as a set of mapping of data inputs onto binary codes.
Given a dataset of N images L ¼ Inf gNn¼1 and their associated M classes of label vectors
y ¼ ynf gM�N , where yn is 1 if an image In belongs to the corresponding class and 0
otherwise, our goal is to learn a hash function h : L! 0; 1f gK�N which maps images
to their k-bit binary codes B ¼ bnf g 2 0; 1f gK�N , while preserving the semantic
similarity between image data.

The binary encoding function is given by [10]

bn ¼ sign r a7nW
H þ eH

� �� 0:5
� � ¼ signðaHn � 0:5Þ ð1Þ

Where sign vð Þ ¼ 1 if v[ 0 and 0 otherwise.WH 2 Rd�K is the weight matrix in the
latent layer of the network, a7n 2 Rd denotes the feature vector of layer F7 of an image
In, aHn ¼ r a7nW

H þ eH
� �

is the activations of the units in H, where eH is the bias term
and r zð Þ ¼ 1= 1þ exp �zð Þð Þ is the logistic sigmoid function with real value z.

When the data labels are available, binary hash codes can be learned by employing
a hidden layer of a CNN model for representing the latent concepts that dominate the
class labels. Hash functions are constructed as a latent layer of a deep CNN in which
binary hash codes are learned by the optimization of an objective function defined over
classification error and other properties of hash codes as:

argmin
W
ðða

XN

n¼1
Lðyn; ynÞþ k Wk k2Þ � b

XN

n¼1
aHn � 0:5E

!���
���þ c

XN

n¼1
ðmeanðaHn Þ � 0:5Þ2Þ

ð2Þ

where ŷn is the output of the layer F8, W
C 2 RK�M denotes the weights of the network,

Lð�Þ is a loss function that minimizes classification error, k governs the relative
importance of the regularization term, a; b and c are parameters that control the
weighting of each term.

With this scheme, classification and retrieval are unified in a single learning model
where the image similarity metric can be learned to preserve the semantic similarity
among images. In addition, hash functions are constructed through incorporating the
CNN model to learn image representations as hash codes in a point wised manner
which is naturally scalable to large-scale datasets. Semi-supervised semantics-
preserving deep hashing is quite simple and can be easily realized by a slight modi-
fication of an existing deep architecture for classification.

3.2 The Hierarchical Retrieval Ranking on Hash-AP

To rank the target candidates according to the semantic similarities among skin lesion
images, we apply AP to cluster the target candidates selected among the outputs of
layer F7 based on the Hamming distance of their semantic hash codes, output of the
latent layer, which is named Hash-AP.
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The input of AP is a similarity matrix SMði,kÞ ¼ � xi � xkk k2 representing the
log-likelihood of identity point i and its exemplar point k. Let availability matrix be
AMði; kÞ, then the responsibility RMði; kÞ can be computed as

RMði; kÞ  SMði; kÞ �max
k 6¼k0
fAMði; k0Þ þ SMði; k0Þg ð3Þ

The availability AMði; kÞ is updated by

AMði; kÞ  minf0;RMðk; kÞþ
X

i0 62fi;kg
maxf0;RMði0; kÞgg; i 6¼ k

or AMði; kÞ  
X

i0;s:t;i0 6¼k
maxf0;RMði0; kÞg; i ¼ k

ð4Þ

The goal of AP is to have the clusters reach high aggregation by actual value
interaction of each group of nodes. At any point during affinity propagation, avail-
abilities and responsibilities can be combined to identify exemplars by

RMði; kÞþAMði; kÞ  SMði; kÞþAMði; kÞ �max
k0 6¼k
fAMði; k0Þ þ SMði; k0Þg ð5Þ

The point k is the cluster-head if the value of RMði; kÞþAMði; kÞ greater than zero.
We construct the hash functions as a latent layer with MðM� 4096Þ units between

the image representation layer and classification outputs in a CNN model, originally
comprising 5 convolutional layers, 2 fully connected layers, and an output layer.
Hash-AP takes inputs from images and learns image representations, binary codes, and
classification through the optimization of an objective function that combines a clas-
sification loss with desirable properties of hash codes. Similarity matching is carried
out between the query and candidate images based on Hamming distance.

3.3 Performance Measures

Performancemeasures such as precision and recall quantifies the retrieval efficiency [12].
These measures are calculated by:

precision ¼ number of retrieved relevant images
number of all retrieve images

ð6Þ

recall ¼ number of retrieved relevant images
number of all images in the database

ð7Þ
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4 Experiments

We test the proposed scheme on clinical skin lesion image dataset provided by Sichuan
Institute of Dermatology and Sichuan Provincial People’s Hospital. This dataset con-
tains about 800 skin lesion images of 4 disease categories such as melanoma, basal cell
carcinoma, nevi and seborrheic keratosis shown in Fig. 1. All the dermatosis images
have been taken by regular digital cameras or mobile phones. All the samples were
resized to 256 � 256 prior to training or testing.

Among the skin lesion image database, 189 images of 4 skin lesion categories are
randomly selected for training and retrieval, and 50 images of 4 different classes are
randomly selected for testing queries.

We implements the proposed methods based on open source Caffe [13] framework.
In our experiments, the Hamming threshold is set to 0.3. The ranking performance of
top-5 relevant items of Hamming distance to the target image less than 0.3 is evaluated.
We have implemented a fusion strategy color, texture and shape feature vectors which
are extracted by conventional handcrafted methods for image retrieval. In the CaffeNet
deep learning framework, the size of feature vector learned from layer F7 is 4096. After
the deep semantic hash codes are translated, the size is reduced to 48. Figure 3 shows
the result of iterations of 10000 with loss of 0.5 and accuracy of 75%, where the
accuracy is acceptable though nonsignificant due to insufficient dermatologist-labelled
image data.

Some features output from layer F7 are applied to Hash-AP module for clustering
and ranking. Table 1 shows that the proposed methods can effectively retrieval skin
lesion images. Comparing the proposed methods with the conventional methods based
on handcrafted fusion features, it shows that the performance of our method is sig-
nificantly better than the method based on handcrafted features. By using the CNN
model to construct hash functions and clustering by AP, our method have higher

Fig. 3. Results of iterations 10000 times
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learning capability and is able to exploit more semantic information than both the
conventional methods based on handcrafted features as well as the deep hash features
only, which potentially suffer from some crucial information loss.

However, the precision of Melanoma is relatively low. The possible reason may be
that its sample size is too small to applying deep learning framework, which is a kind of
rare skin disease in Southwest of china.

5 Conclusions

Based on semantics-preserving hashing via deep neural networks, we have presented a
CBIR system as a diagnostic aid for pigmented skin lesion images. Hash functions are
constructed through incorporating the CNN model to learn image representations as
semantics hash codes, while AP is applied to cluster the target candidates selected
among the outputs of layer F7 based on the Hamming distance of their semantic hash
codes. Experiments demonstrate that the proposed methods can learn the semantics
hash codes on simple CNN model and the ranking quality can be significantly
improved after applying AP cluster.
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Abstract. Training large neural network models from scratch is not fea-
sible due to over-fitting on small datasets and time-consuming on large
datasets. Hence, to utilize the feature extracting capacity learned by large
models, many investigations have been done on various neural network
models. At the classifying stage of those models, they employ either a lin-
ear SVM classifier or a Softmax classifier, which is the only trained part
of the whole model. In this paper, following this line of work, we propose
a classifier based on conceptors called Fast Conceptor Classifier (FCC),
which is simple to construct and GPU accelerate. Its evaluations with
pre-trained and no fine-tuning neural networks have been investigated on
Caltech-101 and Caltech-256 datasets, where it achieves state-of-the-art
results with the training time reduced by a factor of 60 on average.

Keywords: Conceptors · Pre-trained neural networks · Convolutional
neural networks

1 Introduction

In the last decade, deep neural networks (DNNs) have risen to the skies
of machine learning [11,12,15,21]. Especially, convolutional neural networks
(CNNs) have recently achieved a great success in the large-scale image and
video recognition [15,18,22]. In the advance of deep visual recognition architec-
tures, the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) [17]
has played an important role, due to its difficulty brought by a large number
of data (1.2 million images) over a large number of classes (1000 categories).
Although deep CNNs have demonstrated impressive classification performance
on the ImageNet benchmark, they still suffer from the long training time, even
accelerated by modern Graphics Processing Units (GPUs). Besides the high
requirements of the computational capacity and the experimenters of signifi-
cant professional skills and experience, this issue is another tremendous obstacle
preventing deep learning from practical applications.

Therefore, various approaches have been proposed to address this issue, such
as non-iterative methods [2,3] and transfer learning [9,20,22], the major idea
of which is to simplify the training procedure and improve the training speed.
c© Springer International Publishing AG 2017
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Non-iterative methods in neural networks mainly remove iterative training pro-
cedures, like backpropagation (BP), and attempt to obtain the analytic solution
in a very short time. Such approach settles the problem in some sense, but it usu-
ally causes the reduction of the classification performance and brings a tradeoff
between the classifying quality and the training speed. As it turns out that deep
image representations learned on ImageNet generalize well to other datasets [20],
there has been a lot of interest in such a use case [4,5,19,22]. In practice, train-
ing an entire CNN with random initialization from scratch is rare, because of
the insufficient size of data. Instead, it is common to pre-train a CNN on a very
large dataset, like ImageNet, and then use the CNN either as an initialization or
a fixed feature extractor for the task of interest. Since the visualization of CNN
and a well designed CNN motivated by the visualizing method are proposed in
[22], this brief idea becomes prevalent, especially in the industrial practice. A
further delicate CNN model presented in [9], introducing spatial pyramid pooling
(SPP), achieves the state-of-the-art classifying accuracy 93.42% on Caltech-101
[6]. VGG Nets [20], which spread quickly in the deep learning community, have
contributed the guidance of building very deep CNNs by using very small con-
volution filters. They achieve the state-of-the-art classifying accuracy 86.2% on
Celtech-256 [8].

In this paper, we propose a classifier based on conceptors [13], called Fast
Conceptor Classifier (FCC) and evaluate it with VGG-16 Net [20], Resnet-50
and Resnet-152 [10], all of which are pre-trained by ImageNet datasets and
without fine-tuning, on Caltech-101 and Caltech-256 classification benchmarks.
FCC is in several aspects inspired by echo state networks [14] and conceptors. It
is essentially a quadratic classifier so that it is faster to train such a classifier than
Support Vector Machine (SVM) [1] and Softmax classifiers. Besides, it is easy to
construct and almost parameterless, namely, only 1 parameter called aperture.
According to the experimental results, we demonstrate that FCC boosts the
accuracy of a variety of pre-trained CNN architectures despite their different
designs. With these advantages, FCC should in general not only improve all
pre-trained image classification methods but also accelerate the training step of
classifiers.

The rest of this paper is organized as follows. We provide preliminaries in
Sect. 2. In Sect. 3 we describe our proposed model in detail. In Sect. 4, experi-
mental results on Caltech-101 and Caltech-256 are reported. Finally, discussion
and conclusion are given in Sect. 5.

2 Preliminaries

For most classifiers, it is better to apply them on extracted features instead
of raw data, because the representations of features on a higher dimension are
likely more separable, i.e. to be better classified. In this paper, several prevalent
pre-trained CNNs are adopted for the feature extraction. Then, the extracted
features are fed into FCC to complete the classifying task. As CNN is well
known, we only introduce the fundamental aspects of conceptors, which are the
inspirations of FCC.
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2.1 Conceptors

Conceptors, proposed in [13] for recurrent neural networks (RNNs), can be
understood as filters which characterize temporal neural activation patterns.
Conceptors take the form of soft projection matrices, which achieves a direction-
selective damping of high-dimensional network signals. So far conceptors have
been applied to temporal neural data, but here we make use of the same con-
structions for static data that arise in the pre-trained neural networks. In order to
accomplish this, several necessary changes have been done to original conceptors
to fit static data.

Here is a brief explanation of conceptors. A conceptor is a square matrix C
which linearly transforms an n-dimensional input vector x to an n-dimensional
vector y,

y = Cx. (1)

The defining objective of a conceptor matrix is to replicate the input as
accurately as possible while having small matrix entries, which leads to the
empirical loss function

L =
∥
∥X − CX

∥
∥
2

fro
+ α−2

∥
∥C

∥
∥
2

fro
, (2)

where X ∈ R
N×M collects M sample inputs x as columns and α ∈ (0,∞) is a

balancing parameter named aperture in a conceptor context. The matrix norm in
(2) is the Frobenius norm. It is easily derived [13] that this loss is minimized by

C = R
(

R + α−2I
)−1

, (3)

where R = 1/M XXT is the input data correlation matrix. Conceptor matrices
are positive semi-definite and have eigenvalues (= singular values for positive
semi-definite matrices) of at most unit size. A conceptor matrix computed from
empirical data typically has a low numerical rank, that is, most singular val-
ues are so close to zero that they can be neglected. This circumstance admits
representing conceptor matrices economically by their low-rank Singular Value
Decomposition (SVD), a fact that we exploit to trim down computation times
in the latter phase.

2.2 Conceptors Based Classifier

When input data X come in different classes Xj , for each class a separate con-
ceptor Cj = Rj(Rj + α−2

j I)−1 is computed, where Rj = 1/Mj XjX
T
j .

Given j = 1, . . . , K input pattern classes, and having computed conceptors
Cj , they can be used to classify a test pattern x ∈ R

n by computing the K
positive evidences [13]

E+(x, i) = xT Ci x (4)

and deciding for class j = argmaxi E+(x, i).
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3 Classification Framework

An FCC classification framework is made from two components, a pre-trained
CNN for feature extraction and an FCC for classification. Compared with other
classifiers, the advantages of FCC are summarized as follows:

Simple. FCC is as simple as a Softmax classifier and easy to implement by any
programming language. Although the linear SVM classifier is also available
as a function library, it’s much more complicated inside.

Fast. FCC mainly involves singular value decomposition (SVD) and matrix mul-
tiplication, both of which are fundamental linear algebra operations and can
be GPU accelerated easily, while only a few GPU implementations exist for
SVM. Besides, even the only training targets are the weights of the last fully-
connected layer attached to the Softmax classifier, it costs much longer time
by using a gradient descent algorithm, which is an iterative optimization
method.

High-Performance. According to our experimental results, FCC achieves a
better classification performance than linear SVM and Softmax on equal con-
ditions. In addition, FCC with Resnet-152, which is, to our best knowledge,
the deepest CNN available publicly, achieves the state-of-the-art classifying
performance on Caltech-101 and Caltech-256.

3.1 Feature Extraction

The most straightforward way to extract features is to keep pre-trained CNN
weights fixed and feed the input into the CNN to get the generated features. Only
minor changes of the network structure have to be done, including removing the
last fully-connected layer, which performs 1000-way ImageNet classification, and
replacing the Softmax classifier with FCC. This strategy is carried out on FCC
with Resnet-50 and FCC with Resnet-152. However, to take advantage of the
benefit of the aggregation of multi-scale features, the fully-connected layers have
to be converted to convolutional layers, namely a fully convolutional network
(FCN) [16]. The conventional CNNs require a fixed input image size, which
limits both the aspect ratio and the scale of the input image. When fed with
images of arbitrary sizes, those CNNs demand a pre-processing step to generate
images with the fixed size. This pre-processing step could be cropping [15,22],
warping [5,7] or simply resizing, which prejudices either the aspect ratio or the
scale of the original image. This technical issue can be easily handled by an FCN,
as it only involves convolving and pooling operations so that it can accept images
of arbitrary sizes. VGG Nets are evaluated on Caltech-101 and Caltech-256 in
this way and achieves the state-of-the-art performance.

Due to the tolerance of high dimensionality and the low requirement of com-
putational capacity of FCC, it is possible to implement another extracting strat-
egy, i.e. the extraction of intermediate features generated by any layer in a CNN.
Such approach is quite rare if an SVM classifier or a Softmax classifier is used.
In general, the intermediate layers in neural networks possess more hidden units
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than the penultimate layer, namely the last layer before the classifier layer, since
more hidden units mean better feature extracting ability but the final features
should be manageable for the future demand. Moreover, as the feature hierar-
chies become deeper, they learn increasingly powerful features [22]. With this
premise supported by a lot of literature, features generated by the intermediate
layers are usually neglected. Thanks to the simplicity of FCC, classifying the
intermediate features is affordable.

3.2 Classification

Conceptors were introduced in [13] in a context of recurrent neural networks as
filters for recurrent states. Here we adopt the basic definition of conceptors (com-
pare (3)) for CNNs and employ them for the final classification layer, using (4).
In order to save the computation times for the SVD, that is implicitly computed
in (3), within reasonable bounds, we use the compact SVD.

By applying compact SVD, the correlation matrix can be computed as follows
⎧

⎨

⎩
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where r is the rank of the matrix X ∈ R
N×M . In our case, r = min(N,M) is

usually decided by the number of samples, because most of time, the matrix X is
full rank and the number of samples of each class is far less than the dimension of
features. The explicit solution of a conceptor matrix in Eq. (3) can be rewritten as
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and the computation of a positive evidence becomes

E+(x, j) = xTCjx = xTUrjSrjU
T
rjx, (7)

where j stands for the jth class and x is a test sample. In fact, as a classifier,
the conceptor matrix is only needed in testing. Moreover, instead of storing a
huge conceptor matrix, compact SVD components Urj and Srj are stored to
avoid generating a huge matrix in training and used to compute the evidence in
testing.

4 Experiments and Results

In this section, we present the image classification results achieved by VGG-
16 Net, Resnet-50 and Resnet-152 on Caltech-101 and Caltech-256 with and
without FCC. Caltech-101 contains 9 K images labeled into 102 classes (101
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object categories and a background class), while Caltech-256 is larger with 31 K
images and 257 classes. On Caltech-101, 30 images per category are randomly
sampled for training and up to 50 images per category are randomly sampled
for testing. On Caltech-256, 60 images per category are randomly sampled for
training and the rest is used for testing.

4.1 VGG-16 Net, Resnet-50 and Resnet-152 with FCC

VGG Nets are very successful deep convolutional networks and achieve several
state-of-the-art results. Two best-performing CNN models in VGG Nets, VGG-
16 Net and VGG-19 Net, are available publicly. As VGG-16 Net and VGG-19
Net possess very close classification performances and the structures of them are
also similar, only VGG-16 Net is investigated in our experiments. The only pre-
processing we do is subtracting the mean RGB value, computed on the training
set, from each pixel. Also, as in [20], the evaluation is carried out over multiple
scales and 4096-D activations of the penultimate layer are collected as features.
In our case, three scales Q ∈ {256, 384, 512} have been used. In the meanwhile,
to further investigate whether FCC can work with a very deep network, we have
also implemented FCC with Resnet-50 and Resnet-152, which are deepest net-
works available publicly so far. Since no obvious performance improvement by
involving multiple scales on Resnets, only the scale 224 is employed. The results
of the comparison experiments between FCC and the state-of-the-art methods
on Caltech-101 and Caltech-256 are listed in Table 1.

Table 1. Classification accuracy on Caltech-101 and Caltech-256

Method Caltech-101 Caltech-256

Zeiler and Fergus [22] 86.5 74.2

Chatfield et al. [4] 88.4 77.6

He et al. [9] 93.4 -

VGG-16 Net [20] 91.8 84.57

Resnet-50 [10] 92.65 82.43

Resnet-152 [10] 95.23 90.24

FCC (VGG-16 Net) 91.87 84.67

FCC (Resnet-50) 93.08 82.81

FCC (Resnet-152) 95.55 90.87

As can be seen, on Caltech-256, FCC with VGG-16 Net outperforms [20].
On Caltech-101, FCC (VGG-16 Net) is competitive with the approach of [9]
and better than original VGG-16 Net, the pre-trained neural network FCC is
based on. It suggests that FCC can improve the classification performance on
a pre-trained neural network. Both on Caltech-101 and Caltech-256, Resnet-
152 with FCC achieves the state-of-the-art classification accuracy. Besides FCC,
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we suppose that the good results benefit from the better generalized feature
extracting capacity because Resnet-152 is trained on a larger ImageNet dataset
over 11 K classes.

4.2 Evaluation on Features of Different Layers

As mentioned before, the intermediate features can be easily utilized by FCC.
The features, generated by the intermediate layers before the global average pool-
ing layer, are different in size, so spatial pyramid pooling (SPP) [9] is employed
to generate features in the same size (as the same as the feature generated by
a 224 × 224 input image). The classification accuracy of features from the last
3 layers (last pooling layer, the penultimate fully-connected layer and the last
fully-connected layer before the Softmax layer) in VGG-16 Net and the last
two layers (last pooling layer and the activation layer before) in Resnet-50 and
Resnet-152 are listed in Table 2.

Table 2. Classification accuracy on features from different layers of VGG-16 Net,
Resnet-50 and Resnet-152 with FCC

Layer Caltech-101 Caltech-256

VGG-16 Net [20] Pool5 93.96 83.96

FC6 91.87 84.67

FC7 90.92 84.02

Resnet-50 [10] ReLU 94.32 83.83

Pool 93.08 82.81

Resnet-152 [10] ReLU 95.59 91.27

Pool 95.55 90.87

From this evaluation, we can observe that some intermediate features are
better than the final features. In our opinions, this is caused by the inevitable
information loss of the last few layers, where the dimensional reduction is nec-
essary to guarantee a manageable feature size.

4.3 Runtime Comparisons

Besides the good classifying performance, the runtime of FCC is also impressive.
The CPU (Intel Xeon CPU E5-2620 v3 @ 2.40 GHz) runtime of VGG-16 Net,
Resnet-50, and Resnet-152 with different classifiers are listed in Table 3.

The classifier compared in our experiments is linear SVM. If a Softmax classi-
fier is used instead, it will take much longer time and perform worse. As indicated
in Table 3, the training time of FCC is extremely little. Because the main step
SVD in the training stage is applied on a sample collection matrix Xj ∈ RN×Mj

of class j, where N >> Mj , its consumed time is rather little. Compared with lin-
ear SVM, the training time of FCC is reduced by a factor of 60 on average. Even
for the testing time, FCC only needs at most half of what linear SVM demands.
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Table 3. The runtime (second) of VGG-16 Net, Resnet-50, and Resnet-152 with dif-
ferent classifiers

Method Caltech-101 Caltech-256

Training Testing Training Testing

VGG-16 Net 118.31 118.28 2345.07 3114.48

FCC(VGG-16 Net) 1.76 65.2 26.16 1103.25

Resnet-50 16.03 21.59 82.43 554.12

FCC(Resnet-50) 0.33 15.19 2.64 220.99

Resnet-152 13.07 20.24 229.93 497.93

FCC(Resnet-152) 0.32 15.33 2.73 223.21

5 Conclusions

In this paper, a classifier named FCC, which is simple to construct and GPU
accelerate, is proposed. Meanwhile, a classification framework embracing various
pre-trained networks and FCC is also presented. Experiments have been con-
ducted to test FCC on VGG16-Net, Resnet-50, and Resnet-152. Among them,
FCC outperforms linear SVM and Softmax classifier at a significantly reduced
runtime. Compared with linear SVM, FCC reduces the training time by a fac-
tor of 60 on average. In particular, FCC with Resnet-152 achieves the state-of-
the-art classification performance on Caltech-101 and Caltech-256. Given those
experimental results, we suppose that it’s promising to extend FCC to more
neural network models. Under runtime sensitive and pre-trained neural network
employed circumstances, FCC is also preferable.
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Abstract. Much work has been done in fire detection by using color
model and hand-designed features. However, these methods are difficult
to meet the needs of various fire detection scenarios. In this paper we
propose a new method of video-based fire detection by combining image
saliency detection and convolutional neural networks. Our method con-
sists of two modules: (1) utilize saliency detection method to extract
flame candidate region proposals. (2) extract features from each candi-
date region by using convolutional neural networks, and then classify
these features into fire or non-fire. This method can automatically learn
effective features from video sequences. The experimental results show
that our method achieves classification results superior to some hand-
designed features for fire detection. We also compare color model method
and saliency detection method for obtaining flame candidate regions.

Keywords: Video-based fire detection · Saliency detection · CNNs

1 Introduction

The occurrence of fire disaster is usually unpredictable and its consequences
are always incalculable. Fire accidents frequently cause economic and ecologic
damage as well as endangering people’s lives. Thus it’s critical to find the fire
as early as possible. Heat sensors, smoke sensors, gas detectors, as the typical
traditional fire detection technologies, have a number of limitations. For instance,
they require a close proximity to fire sources so that they aren’t enough suitable
for the outdoor scene, e.g., forest, open land, stadiums. In contrast, video-based
fire detection can be effectively applied to open or large spaces and offer us much
extra information, such as flame spreading trend, growing rate and so on. And in
recent years, many video-based fire detection methods have been proposed and
achieve better true positive rate and lower false alarm in order to make possible
a commercial exploitation. However, previous work on video-based fire detection
heavily rely on hand-designed features.

In this paper, we propose a new video-based method for fire detection,
which can automatically learn effective features for further classification. In our
method, we firstly utilize a general saliency detection algorithm to extract can-
didate flame regions. Furthermore, on the basis of the saliency detection, we add
c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part II, LNCS 10262, pp. 299–309, 2017.
DOI: 10.1007/978-3-319-59081-3 36
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fire-pixels color confidence measure to further acquire accurate flame regions.
Secondly, those region proposals are feed into a convolutional neural network for
automatically learning effective features and classification. Contrasting to hand-
designed features methods, our method achieves a better true positive rate on
our fire dataset including indoor, outdoor and forest fire occasions.

2 Related Work

Previous work on fire detection has focused on color extraction and hand-
designed features. Both color and motion are very distinct characteristics of
flame and generally used to determine candidate flame areas in videos. Chen
et al. [1] propose three decision rules based on RGB color model, (1) R ≥ G > B;
(2) R > RT (3) S > (255−R)ST RT , to identify fire pixels from an image, which
is one of the earliest flame detection methods for flame candidate region extrac-
tion. However, in fact, some high intensity pixels may not satisfy R > G. Celik
et al. [2] make a set of rules in YCbCr color space. Besides RGB and YCbCr,
various color spaces such as HSV, Lab, HIS and so on, are tried to extract flame
pixels in [3–9]. In [3], the authors use a large amount of labeled samples to esti-
mate class conditional probability densities of flame and background, and they
propose four detection rules with difference of RGB channels and five discrim-
inate models to achieve the extraction of flame pixels. Liu et al. [10] propose a
flame detection algorithm that is based on a saliency detection technique and
uniform local binary pattern (ULBP), but its computational efficient is lower
than the method in [2]. In recent years, various spatiotemporal features, such
as flickering, spatiotemporal energy, are proposed to model the fire behavior.
For example, in [11], authors divide fire videos into spatiotemporal blocks and
use covariance-based features extracted from these blocks to detect fire, and the
method can be extented to non-stationary cameras. However, its computational
efficient is lower than the method proposed in [10].

However, These features are designed with much expert experiences and prob-
lem domain knowledge. Different from traditional hand-designed features, fea-
ture learning methods can automatically get effective feature representations
based on raw input data. In recent years, deep learning methods, such as convo-
lutional neural networks (CNNs), have been applied with great success to many
computer vision tasks, for example, scene classification [12], marine animal clas-
sification [13], vehicle detection tasks [14] and so on. In [15], authors propose
a new combination method of region proposals and CNNs: Regions with CNN
features (R-CNN). This method firstly generates category-independent region
proposals by selective search, and then it uses a large convolutional neural net-
work to extract a feature vector from each region. Finally, a set of class-specific
linear SVMs are applied to classification. The algorithm gives a 30% relative
improvement over the best previous results on PASCAL VOC 2012.
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3 Our Method

Inspired by the idea of R-CNN, we propose a new method for fire detection with
image saliency detection method and convolutional neural network. Figure 1
shows the basic flowchart of our approach, which consists of two modules.
Firstly, we extract flame candidate regions by saliency detection from input video
sequences, and apply fire-pixels color confidence measure to further acquire accu-
rate flame regions. The second module is a convolutional neural network that
learns effective features from each region and distinguish it into fire or non-fire
region. In this section, we will describe the design for each module in detail.

Fig. 1. Framework of proposed fire detection method

3.1 Candidate Region Extraction

In the most real-world scenarios, as shown in Fig. 2, it is obvious that flame pixels
are in red-yellow color range. The method, proposed by Chen et al. [1], uses three
decision rules based on RGB color model that can obtain decent results. And it
has lower computational complexity and spends less running time. However, as
we all know, due to the differences in the material of the combustion, the flame
presents different colors, such as red-yellow, blue, white, etc., which is shown
in Fig. 3. So it’s difficult for meeting various circumstances by using color space
methods (RGB, HIS, YCbCr, etc.).

Saliency detection, as shown in Fig. 4, which aims to identify the most impor-
tant and conspicuous object regions in an image, has received increasingly more
interest in recent years. Serving as a preprocessing step, it can efficiently extract
the interesting image regions related to specific tasks and broadly facilitates
computer vision applications such as segmentation, image classification and so
on. Generally, the fire or flame is very salient in various scenes, so we can use
saliency detection to obtain candidate flame regions.
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Fig. 2. An example of common
RGB values of flame pixels (Color
figure online)

Fig. 3. Different materials presents differ-
ent colors (Color figure online)

Fig. 4. Some saliency detection results on PASCAL-S data sets. GT: Ground truth.
CA [16], HC [17], RC [17], SF [18], PISA [19].

In our paper, we use the Pixelwise Image Saliency Aggregating (PISA) pro-
posed by Wang. [19] to extract candidate flame regions. On the basis of the
saliency detection, we add fire-pixels color confidence measure to further acquire
accurate flame regions.

The objective of PISA is to extract salient objects automatically and assign
consistently high saliency levels to them. This method introduces two types of
features to capture contrast information of salient regions, they are a color-based
contrast feature U c(p) and a structure-based feature Ug(p). This method also
considers some spatial priors that salient pixels tent to distribute near the image
center and away from the image boundary. Thus they use Dc(p) and Dg(p)
to denote the integration of image center spatial distance and image boundary
exclusion and to reweight the color and structure contrast measurement. So
computing the feature-based saliency confident f̂ for each pixel p by aggregating
the two contrast measures with the spatial priors, as

f̂(p) = U c(p) · Dc(p) + Ug(p) · Dg(p) (1)

and then a sigmoid-like function is used to normalize the saliency confidence to
the discrete saliency level set {0, 1, . . . , L − 1}:

f(p) = R(
L − 1

1 + exp(−f̂(p))
) (2)

where R is a round down function.
The goal of PISA is to assign a saliency level Sp for each pixel according

the normalized saliency confidence under some constrains. In addition, to sup-
press spurious and non-uniform saliency assignment, this method requires that
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the assigned saliency level Sp should be consistent with its neighborhood pixels
within its local observation region Ωp in the image domain. And this coherence
constraint C(Sp) is defined as

C(Sp) =
∑

q∈Ωp

ωpq||Sp − Sq||22 (3)

where q represents a neighboring pixel to p in Ωp, and Sq is the saliency level
assigned to q. ωpq encodes the similarities between p and q within Ωp.

According to the above theory, we can compute the assigned saliency level
Sp for each pixel p by minimizing the following energy function

E =
∑

q∈I

A(Sp) + C(Sp) (4)

where A(Sp) represents the cost of labeling pixel p with the saliency level Sp,
and A(Sp) = ||Sp − f(p)||22.

Saliency detection aims at highlighting salient foreground objects automati-
cally from the background. So the results of saliency detection may contain other
objects which are considered to be conspicuous, such as pedestrian, traffic signs,
light and so on. For the results, we expect that flame pixels can be remained
as far as possible, while removing irrelevant information. Because flame regions
are further analyzed by the convolutional neural network, we just extract the
minimum enclosing rectangle containing flame pixels. Based on the above con-
siderations, we propose two confidence measures.

Fc =
∑

f(x, y)∑
R(x, y)

(5)

Sc > Th (6)

The fire-confidence Fc denotes the probability of that the extracted mini-
mum enclosing rectangle region is flame or includes flame. Where f(x, y) = 1
indicates that the pixel located at (x, y) of rectangle region belongs to flame
pixel, and f(x, y) = 0 otherwise;

∑
R(x, y) represents the number of the pixels

in region; The saliency-confidence Sc describes a rough saliency level used to the
adjustment of image binarization. Th is a threshold to extract minimum enclos-
ing rectangle. Figure 5 presents the extracted flame bounding box postprocessed
with same saliency-confidence and different fire-confidence. It’s obvious that Fc

could remove some invalid saliency areas. Figure 6 presents the extracted flame
bounding box using different saliency-confidence and same fire-confidence. It
shows that the appropriate threshold can decrease redundance pixels.

We also compare RGB color model method [1] and saliency detection method.
More details are discussed in Sect. 4.

3.2 Feature Learning and Classification

We learn features from each processed flame region using the CNN described
by Krizhevsky et al. [20] on Caffe platform. Features are computed by forward
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Fig. 5. Flame bounding box with different fire-confidence

Fig. 6. Flame bounding box with different saliency-confidence

propagating a mean-subtracted 227×227 RGB image through five convolutional
layers and three fully connected layers. The details of the architecture are listed in
Table 1. Each layer contains learnable parameters and consists of a linear trans-
formation followed by a nonlinear mapping, which is implemented by Rectified
Linear Unites (ReLUs) to accelerate the training process. Response-normalized
is applied to the all layers to help generalization. And Max pooling is applied to
the first, second and firth convolutional layers for translational invariance. The
dropout procedure is used after the first and the second fully connected layers
to avoid overfitting. Finally, we use a softmax regression model in the output
layer to classify regions into fire (1) or non-fire (0).

Table 1. Architecture details of networks. C: convolutional layer; R: ReLUs; N:
response-normalized; D: dropout

Networks Architecture

Layer 1 2 3 4 5 6 7 8

Input size 227*227*3 27*27*96 13*13*256 13*13*348 13*13*348 6*6*256 4096 4096

Type C+R+N C+R+N C+R C+R C+R F+R+D F+R+D F+S

Output 96 256 384 384 256 4096 4096 2

Filter size 11*11 5*5 3*3 3*3 3*3 - - -

Pooling size 3 3 - - 3 - - -

Pooling stride 2 2 - - 2 - - -
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In training stage, for the video clips without label information provided, we
manually label fire regions on images in the training set. At test stage, we obtain
candidate regions by using the saliency detection method mentioned above. Sim-
ilarly, convert these candidate regions into 227 × 227. And then these wrapped
candidate regions are feed into the CNN to extract features for determining
whether regions are fire regions or non-fire regions.

4 Experiments

4.1 Datasets

There are no public and standard data sets for fire detection available on Inter-
net. Therefore, we build our own data sets which use some small public data and
other fire videos from the Internet and the real life. This dataset is composed
of 102 fire and non-fire video clips. There are 16 forest fire clips, 23 indoor fire
clips, 22 outdoor fire clips and 41 non-fire clips among them. About 1/4 data
is used for testing, the rest for training. So the test set contains 4 forest fire
clips, 5 indoor fire clips, 5 out fire clips and 10 non-fire clips. Each video con-
tains 200∼300 frames. For negative samples, we capture some videos containing
similar flame, such as including car light, red-moving flag, neon lamp and so on.
Figure 7 shows some example frames of the dataset.

Fig. 7. Sample images of different scenarios from the collected data set. Top is positive
samples including forest, indoor, outdoor scenarios. Below is negative samples including
similar-flame factor. (Color figure online)

4.2 Experimental Results and Discussion

We compare our method with other previous fire detection methods. We also
carry out experiments to compare different methods for flame candidate region
extraction. We evaluate the methods using the true detection rate and the false
alarm rate. The true detection rate (TDR) is defined as:

TDR =
TF

F
(7)

where TF is the number of correctly classified frames, which contain fire, in test
video; F is number of frames which contain fire in test video.
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The false alarm rate(FAR) is defined as:

FAR =
FF

N
(8)

where FF is the number of mis-classified frames, which do not contain fire, in
test video; N is number of frames which do not contain fire in test video.

In Table 2, we present the results of the true detection rate using RGB color
model method, YCbCr color model method and saliency detection method (with
and without confidence measures) for 14 test videos including 4 forest fire, 5
indoor fire and 5 outdoor fire clips. We notice that the RGB color rules can
achieve better performance on some forest and outdoor fire test data because of
containing red-yellow flame. And YCbCr color rules are effective for the bright
light of the outdoors or indoors. But on the whole, our method performs better
on different fire scenarios.

Table 2. Comparison of color-model methods and saliency detection for the candidate
flame regions. TDR indicates true detection rates.

TDR: true detection rates

RGB YCbCr Saliency Saliency+Conf

forest01 163/195(83.5%) 148/195(76.1%) 166/195(85.3%) 172/195(88.2%)

forest02 164/203(81.0%) 153/203(75.6%) 166/203(81.8%) 178/203(87.9%)

forest03 246/295(85.3%) 217/295(73.4%) 254/295(86.1%) 261/295(88.5%)

forest04 189/231(86.2%) 177/231(76.7%) 200/231(86.4%) 203/231(87.7%)

indoor01 178/211(60.5%) 148/211(70.1%) 158/211(74.9%) 171/211(81.2%)

indoor02 150/281(53.5%) 183/281(65.1%) 209/281(74.4%) 206/281(73.3%)

indoor03 125/197(63.7%) 141/197(71.6%) 149/197(75.6%) 152/197(77.2%)

indoor04 114/223(51.1%) 171/223(76.7%) 162/223(72.6%) 165/223(74.2%)

indoor05 96/213(45.1%) 157/213(73.7%) 160/213(75.0%) 178/213(83.4%)

outdoor01 211/241(87.5%) 145/241(60.2%) 212/241(88.1%) 212/241(88.1%)

outdoor02 211/263(85.1%) 187/263(71.1%) 227/263(85.3%) 238/263(90.6%)

outdoor03 168/201(83.6%) 138/201(68.7%) 167/201(83.2%) 175/201(87.1%)

outdoor04 85/181(47.3%) 146/181(80.7%) 145/181(80.2%) 149/181(88.2%)

outdoor05 128/253(50.5%) 199/253(78.8%) 201/253(79.3%) 203/253(80.1%)

We compare our method with covariance matrix-based method [11] which
is popular in video-based fire detection. Table 3 shows the true detection rates
of the two methods, and Table 4 shows the false alarm rates. The results show
that our method performs better than covariance matrix-based method for fire
detection.
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Table 3. Comparison of our method with covariance matrix-based method (Cov). TDR
indicates true detection rates.

TDR/#of frames TDR/#of frames

Cov Our method Cov Our method

forest01 73.3%(195) 88.2%(195) indoor04 65.9%(223) 74.2%(223)

forest02 73.7%(203) 87.9%(203) indoor05 71.8%(213) 83.4%(213)

forest03 75.6%(295) 88.5%(295) outdoor01 80.4%(241) 88.1%(241)

forest04 72.9%(231) 87.7%(231) outdoor02 86.3%(263) 90.6%(263)

indoor01 70.9%(211) 81.2%(211) outdoor03 69.6%(201) 87.1%(201)

indoor02 68.7%(281) 73.4%(281) outdoor04 70.9%(181) 88.2%(181)

indoor03 71.0%(197) 77.2%(197) outdoor05 72.1%(253) 80.1%(253)

Table 4. Comparison of our method with covariance matrix-based method (Cov). FAR
indicates false alarm rates.

FAR/#of frames FAR/#of frames

Cov Our method Cov Our method

neg01 0.0%(304) 0.0%(304) neg06 10.2%(249) 2.3%(249)

neg02 51.9%(216) 53.1%(216) neg07 0.0%(233) 0.0%(233)

neg03 0.0%(258) 0.0%(258) neg08 0.0%(347) 0.0%(347)

neg04 5.7%(266) 3.5%(266) neg09 3.7%(219) 0.8%(219)

neg05 4.3%(318) 0.0%(318) neg10 0.0%(206) 2.7%(206)

5 Conclusion

In this paper, we propose a new video-based method for fire detection by combin-
ing image saliency detection and convolutional neural networks. We use saliency
detection algorithm to extract flame candidate regions, which are refined by the
fire-confidence and saliency-confidence measures. Compared with color-model
methods, saliency detection can adapt to various fire scenes and achieve better
detection results generally. In addition, we apply convolutional neural networks
to the extracted candidate regions for automatically learning effective features
and classification, and the experimental results show that our method outper-
forms covariance matrix-based method in fire detection.
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Abstract. Precipitation forecasting for short duration is an important
problem in weather prediction. In this work, we propose a deep learn-
ing based approach for precipitation forecasting using Doppler weather
radar data. Our approach uses convolutions within recurrence structure
in vanilla recurrent neural networks exploiting both spatial and temporal
dependencies in the data. We show that this approach can be applied
for fine grained precipitation forecast with similar accuracy as that of
complex models while reducing the model size by 4 times. Results are
presented on the task of echo state prediction and skill scores for rain-
fall estimates on the data from Seattle, WA, USA as well as from cross
testing the model, trained on Seattle data, on unseen data from Albany,
NY, USA.

1 Introduction

Estimating precipitation for short and long duration is an important part of
weather prediction. Doppler Weather Radar (DWR) is commonly used for pre-
cipitation nowcasting as an input for Numerical Weather Prediction(NWP) mod-
els for better accuracy. DWR provides high resolution echo maps covering a large
area which can be converted into rainfall estimates and for hydrometeor classifi-
cation etc. These estimates can be used for planning by civil authorities, as well
as in critical services like disaster management in emergency situations. Data
from DWR is also used in calibration and forecasts from NWP.

Prediction of future state of radar echo maps has been studied recently from
machine learning point of view and can be formulated as a sequence forecasting
problem [9]. Spatio temporal prediction from deep learning perspective is a rela-
tively new area and recent works addressing this problem use some combination
of Convolution Neural Network (CNN) and Recurrent Neural Network (RNN)
structures [1,8,9]. Commonly used architectures in RNNs for learning long term
dependencies use some variant of Long Short Term Memory (LSTM)[3]. Combi-
nation of convolutions with recurrent structures is a hybrid learning approach for
c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part II, LNCS 10262, pp. 310–317, 2017.
DOI: 10.1007/978-3-319-59081-3 37
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spatio-temporal sequence learning. In these approaches, convolutions are either
used before recurrence units or within recurrence. These hybrid structures can
also be stacked to learn hierarchical spatio-temporal dependencies.

In this work, we propose to use convolutions within vanilla recurrent units for
a sequence to sequence forecasting problem of DWR echo state prediction and
show that even with sharing of convolution kernels in plain recurrent structure
of vanilla RNN, we can predict radar echo maps with high accuracy. We compare
against strong baselines and test our model on Seattle, USA radar echo dataset.
We want to see how transferable the model is which is learnt on Seattle data.
To test the Seattle trained model’s generalization ability, we test it on Albany,
NY data also, which model hasn’t seen during training and report results on it
too.

2 Related Work

Short duration precipitation prediction, also known as precipitation nowcasting,
is commonly performed using some variant of physical model which incorporate
the characteristics of regional atmosphere and geography of the area. Earlier
work like Li et al. [5] uses motion vectors from Doppler radar while Madapaka
et al. [6] uses a Lagrangian extrapolation based method. Current methods use
flow based techniques for this problem [2].

From machine learning point of view, recent work from Shi et al. [9] formulate
the problem of precipitation nowcasting as a sequence to sequence forecasting.
They used convolutions in LSTM to predict radar echo states for nowcasting in
Hong Kong region.

Using convolutions and recurrent units together have been explored from dif-
ferent perspectives and for different tasks. Recently, Nicolas et al. [1] used convo-
lutions in GRU (Gated Recurrent Unit) for various tasks like activity recognition,
video captioning etc. Shi et al. [9] and Nicolas et al. [1] both use convolutions
within recurrence where convolution kernels are shared across both the space
and time. Ji et al. [4] uses 3D kernels with convolutions before recurrence starts.

3 Motivation

Our motivation for this work is to see if convolutions can work in vanilla recurrent
units where we use convolution operations instead of usual multiplication oper-
ation in recurrent network. Using convolutions with vanilla recurrent network
reduces parameters by 4 times as compared to using with LSTM structure. This
leads to faster training and reduced overall model size for efficient deployment
to resource critical environments.

We want to explore such an approach for the task of DWR echo state pre-
diction which is used for high resolution precipitation forecasting.
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4 Our Approach

4.1 Preliminaries

Recurrent Neural Network. Recurrent neural network has shared weights
across time to capture dependency and have an implicit notion of ordering within
the input.

Vanilla RNN has recurrent structure for input Xt, at time t, where weights
Wih, Whh, Why are shared across time.

ht = σ(WihXt + Whhht−1 + bih) (1)

yt = f(Whyht + bhy) (2)

where Xt, ht, yt are the input, hidden state and output at time t. Usually σ(x) =
tanh(x) and f(x) = sigmoid(x). Wih,Whh,and bhy, bhh are the weight matrices
and biases respectively.

Convolution Neural Network. A convolution neural network (CNN) has
kernels shared across space in the input.

Xs = Xt ∗ Ws (3)

where Ws is the shared kernel, Xs is the feature map generated using convolution
operator ∗ from input Xt.

4.2 Proposed Hybrid Structure

Convolutional Recurrent Neural Network. We combine both of these
approaches in a hybrid structure which exploits both spatial and temporal
strengths of the above methods.

In Convolutional Recurrent Neural Network, recurrent structure is,

ht = σ(Wih ∗ Xt + Whh ∗ ht−1 + bih) (4)

yt = f(Why ∗ ht + bhy) (5)

where ∗ is the convolution operator used in CNN. Similar to RNN weights, here
kernels are shared across time.

In convolutional recurrent structure (Eqs. 4, 5), inputs (Xt), hidden states
(ht) and outputs (yt) all are 3D tensors of dimensions (channels, height, width).

Similar to vanilla recurrent neural networks, such convolutional recurrent
structure can be stacked hierarchically to form layers. To maintain the consis-
tency between consecutive layers,

channelso(Ll−1) = channelsi(Ll) (6)

where channelso = output channels and channelsi = input channels, Ll = lth

layer.
The architecture used in this paper is shown in Fig. 1. We refer feature maps

and hidden states interchangeably and both mean the same in the description
below. Details of the architecture are described below,
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Fig. 1. Multi-layer convolutional RNN encoder-decoder architecture.

1. The architecture shown is for 2 hidden layers only. It may be extended to
more layers easily.

2. In our task, both the input and output are sequences of images with 1 channel
(Grey scale) which we show in this Fig. 1. Though the same structure can be
used for many channels (RGB etc.).

3. Number of time steps are t, t−1 in input and t+1, t+2 for the output. It may
be different for encoder and decoder.

4. The last hidden states, H1
t and H2

t are copied from encoder to decoder.
5. In decoder, D1

t+1 and D2
t+1 are the copied states from encoder and D2

t+1 is
conditioned on D1

t+1 too.
6. p, q, w are the kernel sizes in input to hidden, hidden to hidden and hidden

to output layers respectively.
7. Number of feature maps for layer 1 is K and layer 2 is M.
8. In decoder, Yt+1 and Yt+2 are the outputs from the model.
9. W 1

1 denotes input to hidden layer kernels in encoder. Similarly, W 2
2 denotes

hidden to output kernels in decoder.

5 Doppler Weather Radar Echo State Prediction

5.1 Problem Details

Radar Echo Prediction. In this problem, we attempt to estimate future states
of the radar echo using previous states. The number of future states corresponds
to the length of prediction, and time interval between the states sampling in past
data which may vary from 5 min to 20 min on a given day. The predicted radar
echo states can be converted to rainfall rate using Marshall-Palmer [7] formula:
Z = aRb where Z = Reflectivity (dBZ), R = Rainfall rate (mm/h), a, b =
constants. We have a = 200, b = 1.6 from American Meteorological Society1.
1 http://glossary.ametsoc.org/wiki/Marshall-palmer-relation.

http://glossary.ametsoc.org/wiki/Marshall-palmer-relation
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5.2 Evaluation Metrics

We discuss some metrics used for evaluating prediction performance.

Binary Cross Entropy Loss. Since, radar echo states are predicted with
normalized pixel values between (0, 1), we use binary cross entropy loss which
reduces the pixel level deviation between predicted and ground truth. We use
binary cross entropy loss for optimization and evaluation.

loss = − 1
∑

s,t,p

sequences∑

s

time∑

t

pixels∑

p

Ts,t,p log Ps,t,p+(1−Ts,t,p) log(1−Ps,t,p) (7)

where T = Ground Truth Frame, P = Predicted Frame.

Binary Classification Metrics. As our task is to predict high resolution
rainfall estimates, we evaluate our predictions using binary classification metrics
also.

We use a threshold of 2 mm/h to convert rainfall rates to binary values {0, 1}
representing absence of rainfall (N) and rainy events (P) respectively. For tp =
true positive (predicted = P, truth = P), tn = true negative (predicted = N,
truth = N), fp = false positive (predicted = P, truth = N) and fn = false
negative (predicted = N, truth = P), we evaluate using precision, recall and F1
score.

6 Experimental Detail

6.1 Datasets

We use Doppler radar data from Seattle, USA and Albany, NY, USA2. The
Albany dataset is used for cross evaluating our proposed approach to see whether
the model trained on dataset can be used for predictions at other locations.

For the current task, we consider only reflectivity at 10 time steps ahead for
prediction and input of past 10 time steps. Time duration between consecutive
radar echo varies from 5–15 min.

Seattle Dataset: We select top 83 rainy days (similar strategy as in [9]) between
year 2008 to 2015 from Seattle, USA (NEXRAD code: KATX). Using overlapping
strategy for splitting, we have 10, 577 sequences with 20 radar scans in each
sequence. We use 7000 for training, 2000 for testing and 1577 for validation.

Albany Dataset: For robust testing, we cross-evaluate our best model which is
trained on Seattle data only and test it on Albany dataset and compare against
baselines. For this dataset, we select the top 64 rainy days data from Albany, NY
(NEXRAD code: KENX) between year 2009 to 2014. We use the same splitting
strategy as we do for Seattle dataset. This dataset has 12046 sequences with 20
radar scans in every sequence. The Albany dataset is used for cross evaluation
of the models only.
2 https://aws.amazon.com/noaa-big-data/nexrad/.

https://aws.amazon.com/noaa-big-data/nexrad/
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6.2 Methodology

DWR data has reflectivity echoes at different elevation angles. We use mean
projection to lowest elevation which captures the reflectivity variation along the
altitude. We resize echo maps from 720 × 1832 (polar) to 100 × 100 (cartesian).
This projection preserves the overall motion and shape information.

We use 10 Doppler radar images of 100 × 100 for input and predict for the
next 10 radar images of the same size. We optimize using RMSProp [10] with
learning rate = 0.001.

We use Eulerian persistence as a trivial baseline which involves taking last
frame as the predicted frame for all time steps. We evaluate Convolutional RNN
(Conv-RNN) in single layer and stacked structure using different kernel sizes
and number of feature maps and compare against Convolutional LSTM (Conv-
LSTM).

7 Results

7.1 Seattle Dataset

We experiment with varying number of feature maps to (32, 64 and 128) and
kernel sizes 3 × 3, 5 × 5, 9 × 9 for Conv-RNN. We use the same kernel size
across all convolution operations for a given model. The same kernel size gives
increasing receptive field when used in hierarchical structure.

Table 1. Comparison of Conv-RNN in stacked structure with different layer sizes and
baseline models. p × p denotes kernel size p (same kernel used across all layers) and
Conv −Model −M −N− denotes two layers with number of feature maps = M and
N respectively corresponding to that particular ‘Model′.

Model Aggregate loss

Eulerian persistence 0.060

Conv-RNN- 32-(3 × 3) 0.0443

Conv-RNN- 128 -(9 × 9) 0.0457

Conv-RNN-64-64-(5 × 5) 0.0440

Conv-RNN-32-64-(3 × 3) 0.0433

Conv-RNN-64-64-(3× 3) 0.0430

Conv-LSTM-64-64-(3× 3) 0.0429

Results for different architectures are shown in Table 1 and binary classifi-
cation metrics shown in Fig. 2. In Fig. 2, horizontal axis is the number of time
steps in future ahead. We show some of the predictions for sampled time steps
(t = 0, 3, 6, 8) from a test sequence in Fig. 3.
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Fig. 2. Evaluation metrics for Seattle dataset

Fig. 3. Model predictions from Seattle dataset. Top row is ground truth and bottom
row is the corresponding predictions.

7.2 Cross Testing on Albany Dataset

We take our best models i.e. Conv-LSTM-64-64-(3 × 3) and Conv-RNN-64-64-
(3 × 3) respectively, trained on Seattle dataset and test it on Albany dataset.
Table 2 shows the loss and skill scores for this dataset.

Table 2. Model Cross-evaluation on Albany dataset

Model Loss (Binary cross entropy) Precision Recall F1 score

Conv-RNN-64-64-(3 × 3) 0.0439 0.60 0.51 0.55

Conv-LSTM-64-64-(3 × 3) 0.0437 0.61 0.52 0.56

8 Discussion

Results from Table 1 suggest that multi layer Conv-RNN outperforms single layer
architecture with high margin. Conv-RNN with 3×3 kernel performs best among
all kernel sizes which is intuitive as our task require high spatial precision for
prediction. The difference between Conv-RNN-64-64-(3×3) and Conv-LSTM-64-
64-(3 × 3) is 0.0001 in aggregate loss while the number of parameters is reduced
by 4 times.

Figure 2 shows binary classification metrics. The result is in line with our
intuition that accuracy of the Conv-RNN model overall decreases with increas-
ing number of future states ahead. Conv-RNN and Conv-LSTM models have
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precision, recall and F1-score with a deviation of 7% with major deviation in
last time steps.

Our cross testing experiment on Albany dataset (Table 2) suggest that Conv-
RNN is able to learn general features from Doppler weather radar phenomenon.
Though, we cannot claim that it will generalize well on other places too due to
limited scope of these experiments which needs to be investigated further.

9 Conclusion

In this paper we proposed Convolution-RNN. Convolutional structures in vanilla
RNN use lesser parameters compared to other hybrid approaches. One benefit
of convolutions in recurrence is that it explicitly encodes the spatio-temporal
correlations using kernels shared across both time and space.

The problem of weather radar echo prediction, we attempt here, involves
complex interdependencies among various factors like topography, atmospheric
conditions etc. This make it really difficult to accurately predict the future states.
But high spatial and temporal correlation exist between successive states which
can reduce uncertainty in predictions. We attempt to exploit these correlations
using conv-RNN architecture proposed in this paper.
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Abstract. The work focus on the position and velocity tracking control
problem of high speed train with uncertain system model and exter-
nal disturbance as well as unknown traction/braking actuation charac-
teristics. Neuroadaptive Proportion-integral-derivative (PID)-like fault-
tolerant control algorithms are developed to achieve uniformly ultimately
bounded (UUB) stable position/velocity tracking control of high speed
train by using a well defined smooth function. Unlike the traditional PID
control, the resultant control scheme is of PID structure and able to deal
with unknown system parameters and nonlinearities and actuator fail-
ures without the need for any “trial and error” process to determine the
PID gains. The effectiveness of the proposed control strategy is confirmed
by theoretical analysis and numerical simulations.

Keywords: Neural network · PID-like high speed train · Input nonlin-
earities · Actuator failure

1 Introduction

Safe and reliable operation of high speed train rely on advanced automatic train
operation system (ATO). The core problem of ATO is how to real-time control
the train system to get the control objectives that consist of making the train
track the pre-planned ‘ideal’ speed-position curve under different environments
via certain control algorithms. As a simple and reliable control method with easy
adjustment, Proportion-integral-derivative (PID)-based controllers are widely
used in engineering systems consisting of vehicle systems [1–4]. Besides, fuzzy
control was also proposed for train systems these years [5,6]. Neural network(NN)
attracts more and more attention in intelligent control system design, owing to
its unique capabilities in approximating any nonlinear function with arbitrary
precision if the NN is constructed properly, and there are some successful appli-
cations of NN in industrial systems with nonlinearities and uncertainties [7,8].
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However, the system model or system parameters are required as a priori in some
of the methods. In [9], a data-based neroadaptive control method is developed,
where traction/braking dynamics and the uncertain nature of the resistance
coefficients are addressed explicity.

It is noted that, as a nonlinear nonaffine system, it is very difficult to get the
precise system model of high speed train, and there are nonlinearities in basic
resistance. Also, the nonlinear impact on system dynamics becomes increasingly
significant. Besides, precise determination of the key parameters such as train
mass and rotary mass coefficient as well as resistance coefficients is very difficult,
if not impossible, to obtain in practice because such coefficients depend on many
factors such as vehicle type, structure, train speed, weather condition, wind
speed, wind direction, friction between vehicle surface and air, wheel and rail,
etc. [10]. Furthermore, actuation faults may occur during the system operation,
it is important to address the fault-tolerant control issue explicitly. Evidently,
the velocity and position tracking control problem of high speed train becomes
interesting yet challenging when concurrently considering the uncertainties and
nonlinearities.

Motivated by the work of [11], we develop a neuroadaptive PID-like con-
trol method for high speed train in the presence of modeling uncertainties and
unknown tracking/braking actuation characteristics and unexpected actuator
failures.

2 Modeling and Problem Statement

By Newton’s law, the dynamic motion equation for each vehicle can be estab-
lished as (1 + ri)miẍi = λifai − fdi + fini−1 − fini

, where ri ≥ 0 represents the
rotary mass coefficient of the ith vehicle. During the whole operation, ri is not
always considered [13]. mi is the mass of the ith vehicle. xi denotes the distance
between the center of the ith vehicle and the reference point. λi ≥ 0 is a dis-
tribution constant determining the power/braking effort of the ith vehicle.fai

is the actual traction/braking force of the ith vehicle and the designed trac-
tion/braking force fi is not identical anymore, instead, they are related to
through fai = ρiψi(fi)+υi. ψi(fi) is traction/braking force with unknown actu-
ation characteristics, which has two typical models- asymmetric nonsmooth sat-
uration with unknown slope and asymmetric nonsmooth saturation with dead
zone [12]. 0 ≤ ρi ≤ 1 is the “powering/braking health indicator” for the ith vehi-
cle, which has the same physical meanings as in [9]. To address the control design
problem, we consider the case that some or all actuators suffer from partial actu-
ation failures, that is, 0 < ρi ≤ 1. |υi| ≤ ῡi < ∞ is the uncertain part caused by
the actuator failure.fdi consists of mechanical resistance and aerodynamic resis-
tance which can be described as fdi = a0 + a1ẋi + a2ẋi

2 + fri + fci + fti, where
a0, a1 and a2 are the resistance coefficients for the ith vehicle, fri, fci and fti are
additional resistances. Significant nonlinearities and uncertainties are involved
in fdi, particularly for high-speed and long distance operations, which should
explicitly be addressed in the control design for high speed trains. However, it
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is reasonable to assume that fci, fti, and fdi are bounded. fini
is the in-train

force from the couplers connecting the adjacent vehicles and obviously fin0 = 0
and finn

= 0 because no such in-train force exists for the first and the last vehi-
cle. Actually, it is extremely difficult to model or precisely measure fini

due to
the nonlinear and elastic nature of the couplers. [9] has tried to develop control
algorithms to compensate the in-train forces based on some assumptions. In the
work, the constraints and assumptions are no longer needed.

For simple notation, we rewrite the above model equations as:

(I + R)MẌ = ΛFa − Fd + (T − I)Fin (1)

and Fa = ρΨ(F ) + Υ , where R = diag(ri), M = diag(mi), Λ = diag(λi) is
the power/braking effectiveness distribution matrix, Fa = [fa1, fa2, . . . , fan]T ,
Fd = [fd1, fd2, . . . , fdn]T and Fin = [fin1 , fin2 , . . . , finn

]T . Ẋ is the velocity

vector, Ẍ is the acceleration vector, and
[

01∗(n−1) 1
I(n−1)∗(n−1) 0(n−1)∗1

]
, with I being

the identity matrix. ρ = diag{ρi}, Ψ(F ) = [ψ1(f1), ψ2(f2), . . . , ψn(fn)]T , and
Υ = [υ1, υ2, . . . , υn]T . ||Υ || ≤ ῡ < ∞ because of |υi| ≤ ῡi < ∞, and ῡ is an
unknown constant. For all of the above symbolic description, i = 1, 2, . . . , n. For
simplicity, let M̄ = (I + R)M . It is noted that M̄ is reversible, then the above
model (1) can be reformed as

Ẍ = M̄−1ΛρΨ(F ) + M̄−1ΛΥ + M̄−1[−Fd + (T − I)Fin] (2)

The control objective is to design control force F = [f1, f2, . . . , fn] so that,
for any given desired velocity-displacement Ẋ∗ − Ẋ∗ pair, it is ensured that
||E|| ≤ e0<∞ and ||Ė|| ≤ e1<∞ for some small constants e0 and e1 related
to control precision (uniformly ultimately confined within a small compact set
containing the origin), where E = X −X∗ and Ė = Ẋ − Ẋ∗ denote the position
tracking error and velocity tracking error respectively. X = [x1, x2, . . . , xn]T and
Ẋ = [ẋ1, ẋ2, . . . , ẋn] are the displacement vector and velocity vector respectively,
and Ẋ∗ and X∗ are the desired velocity and position, assumed to be smooth and
bounded, produced from the train operation planning unit.

Remark 1. It should be emphasized that the precise information of ri is difficult
to measure precisely, and considering ri makes sense only the vehicle accelera-
tion/deceleration is not zero [13]. Besides, precise determination of train mass
and resistance coefficients is very difficult. It is important and challenging to
develop a control method without using the precise information of these para-
meters and coefficients.

3 Control Design and Stability Analysis

To facilitate the PID-like controller design, we define a filtered variable first, i.e.,
S = Ė + βE, in which β = diag(βi) for i = 1, 2, . . . , n, and βi > 0 is chosen
by the designer. It ban be readily shown that the boundedness of S implies the
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boundedness of E and Ė [14]. E and Ė are defined as before. In order to carry
out the analysis, a generalized error S̄ is defined as S̄ = S + α

∫ t

0
Sdτ , with

α = diag(αi), αi > 0, i = 1, 2, . . . , n. Before establishing the main results, the
following lemma is needed. In light of the definition S and S̄, one has from the
system model (2) that

˙̄S = M̄−1ΛρΨ(F ) + M̄−1ΛΥ + M̄−1[−Fd + (T − I)Fin]
+L(X,X∗, t) + αS (3)

in which L(X,X∗) = −Ẍ∗ + β(Ẋ − Ẋ∗).

Remark 2. Clearly, the relationship between the applied control ψi(fi) and the
control input fi has a sharp corner when fi reaches the saturation value or
break point [12]. In order to develop the PID-like technique, the saturation is
approximated by a smooth function defined as gi(fi) = fgie

ωifi −flie
−ωifi

eωifi+e−ωifi
in which

the parameter ωi > 0 is chosen by designer, and different values of ωi may lead
to different approximation to ψi(fi), and fgi > 0 and fli > 0 are the uncertain
saturation value of fi.

Then with the help of gi(fi), ψi(fi) can be expressed as ψi(fi) = gi(fi) +
δi(fi), where δi(fi) = ψi(fi)−gi(fi) is the approximate error and it is a bounded
function in time and its bound can be obtained as |δi(fi)| = |ψi(fi) − gi(fi)| ≤
max{fgi, fli} + fli = δi0, in which δi0 is an uncertain positive constant. i =
1, 2, . . . , n. Therefore, it can be established that Ψ(F ) = G(F ) + Δ(F ), where
G(F ) = [g1(f1), g2(f2), . . . , gn(fn)]T , and Δ(F ) = [δ1(f1), δ2(f2), . . . , δn(fn)]T .
With |δi(fi)|, it can be obtained that ||Δ(F )|| ≤ δ0, where δ0 is an unprecise
positive constant. Furthermore, since G(F ) is a smooth function of F , it can
be obtained G(F ) = G(0) + G(ξ)F , with using Lagrange’s mean value theorem,

where G(ξ) =

⎡
⎢⎢⎣

∂g1
∂f1

|ξ11 . . . ∂g1
∂fn

|ξ1n

...
. . .

...
∂gn

∂f1
|ξn1 . . . ∂gn

∂fn
|ξnn

⎤
⎥⎥⎦, if fj ≥ 0, ξij ∈ (0, fj), and, if fj < 0,

ξij ∈ (fj , 0). In view of Ψ(F ) and G(F ) with using the generalized error dynamic
Eq. (3), we get that

˙̄S = M̄−1ΛρG(ξ)F + M̄−1ΛρG(0) + M̄−1ΛρΔ(F ) + M̄−1ΛΥ

+M̄−1[−Fd + (T − I)Fin] + L(X,X∗) + αS (4)

Let H = M̄−1ΛρΔ(F )+M̄−1ΛΥ +M̄−1[−Fd +(T −I)Fin]+L(X,X∗)+αS,
then (4) can be readily expressed as

˙̄S = M̄−1ΛρG(ξ)F + H(X,X∗, F ) (5)

where G(0) = 0 is used. Note that although H is a nonlinear function of
(X,X∗, F ) and totally unavailable, it satisfies ||H|| ≤ ||M̄−1Λρ||δ0+||M̄−1Λ||ῡ+
||M̄−1[−Fd + (T − I)Fin]|| + ||L(X,X∗)|| + α||S|| = �(X,X∗).



322 Q. Song and T. Sun

Remark 3. It should be pointed out that it is not advisable to use NNs to approx-
imate H directly, because H is a vector nonlinear function of F . If we use NNs
to approximate H directly, it may not only create notorious algebra-loop prob-
lem, but also involve heavy computation when the controlled system is of higher
dimension. In order to avoid this problem, NNs are employed online to approx-
imate the scalar nonlinear function �(X,X∗) which is interdependent of F .

RBF NNs are popular for their simplicity, fast learning, and universal
approximation properties. In order to develop the neuroadaptive PID-like con-
trol, RBF NNs are used to approximate the upper bound of H as: � =
WT Φ(Z)+κ(Z). Φ(Z) = [φ1(Z), φ2(Z), . . . , φN (Z)]T ∈ RN is the basic function
with Z = [X,X∗]T (measurement noises are not considered in this paper), and
W ∈ RN is the optimal constant weight vector. φk(.) = e−∑q

j=1(zj−ckj)
2/2σ2

kj (k =
1, 2, . . . , N), where Z = [z1, . . . , zq]T is the input vector of NN. Ckj =
[ck1, . . . , ckq]T and Qkj = [σk1, . . . , σk1]T are the center states and standard devi-
ations of Gaussian associated with each element of the input vector, respectively,
and N is the number of hidden-layer neurons. By the universal approximation
theory, it is reasonable to assume that the NN reconstruction error |κ| ≤ κ0 < ∞.
For control design in the forllowing subsection, further treatment on � is needed
as |�| ≤ μ(1+Φ(Z)), with μ = max{||WT ||, κ0} is a non-negative constant. Let
Θ = M̄−1ΛρG(ξ), then (5) can be expressed as ˙̄S = ΘF + H.

With the definition of M̄−1, Λ, ρ, and G(ξ), it can be shown that Θ is an
unknown and time-varying n × n square matrix, which make the neuroadaptive
PID-like fault-tolerant control design possible. Furthermore, define ℵ = (Θ +
ΘT )/2, and ℵ̄ = (Θ − ΘT )/2. It can be seen that ℵT = ℵ, and ℵ̄T = −ℵ̄, which
implies ℵ is symmetric and ℵ̄ is skew symmetric. As most existing works in
addressing MIMO systems, ℵ is either positive definite or negative definite here,
which guarantees that the system considered in the work is controllable. Without
loss of generality, we consider that ℵ is positive definite, such that for all X is
the domain of interest, there exists some unknown positive constant ζ satisfying
0 < ζ ≤ min{eig(ℵ)}. The analysis above leads to the following theorem.

Theorem. Consider the train dynamics as described by (1). If the following
control algorithm is applied

F = kαE(0) − k(α + β)E − kαβ

∫ t

0

Edτ − kĖ (6)

and k = c0 + c1μ̂(1 + Φ(Z))2, with ˙̂μ = −c2μ̂ + c1(1 + Φ(Z))2||S̄||2, where α and
β are defined as before. c0 > 0, c1 > 0 and c2 > 0 are chosen by the designer. μ̂
is the estimation of μ = max{||W ||, κ0}. Then the velocity and position tracking
error E and Ė is ensured to be ultimately uniformly bounded (UUB), and all the
internal signals in the system are bounded, and the control signal is continuous
and smooth everywhere.
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Proof. Consider the Lyapunov function candidate as

V =
1
2
S̄T S̄ +

1
2ζ

(μ − ζμ̂)2 (7)

It can be shown with the proposed control algorithms and |�| ≤ μ(1+Φ(Z)),
˙̄S, S and S̄ that

V̇ ≤ −kS̄T ΘS̄ + μ(1 + Φ(Z))||S̄|| − ˙̂μ(μ − ζμ̂) (8)

Upon using the definition of ℵ = (Θ + ΘT )/2 and ℵ̄ = (Θ − ΘT )/2 and
0 < ζ ≤ min{eig(ℵ)}, we further have

V̇ ≤ −(c0 + c1μ̂(1 + Φ(Z))2)ζ||S̄||2

+μ[c1(1 + Φ(Z))2||S̄||2 +
1

4c1
] − ˙̂μ(μ − ζμ̂) (9)

where 1
2 S̄T ℵ̄S = 0, (1+Φ(Z))||S̄|| ≤ c1(1+Φ(Z))2||S̄||2 + 1

4c1
and the aforemen-

tioned unpdating scheme for k were employed. Upon substituting in μ̂, regroup-
ing, and completing the square, it is not difficult to further express V̇ as

V̇ ≤ −2c0ζ
||S̄||2

2
− c2

(μ − ζμ̂)2

2ζ
+

c2μ
2

2ζ
+

μ

4c1
≤ −ι1V + ι2 (10)

where ι1 = min{2c0ζ, c2}, ι2 = c2μ2

2ζ + μ
4c1

< ∞. And μ̂(μ − ζμ̂) ≤ μ2−(μ−ζμ̂)2

2ζ is

used. Meanwhile, because μ̂(μ − ζμ̂) ≤ μ2

4ζ and μ̂(μ − ζμ̂) ≤ μ2

2ζ with using the
fundamental inequality, the following inequalities holds,

V̇ ≤ −c0ζ||S̄||2 + ι2 (11)

and
V̇ ≤ −c0ζ||S̄||2 + ι3 (12)

with ι3 = c2μ2

4ζ + μ
4c1

.
From wich it holds that V̇ < 0 if S̄ is outside of either the compact regions

Ω1 = {||S̄|| ≤ √
ι2/c0ζ or Ω2 = {||S̄|| ≤ √

ι3/c0ζ. Because ι2 > ι3, Ω1 encloses
Ω2. Then the system error trajectory may move in or out of Ω2 (the small
region), but once inside the set Ω1, it cannot go out of it. Thus UUB tracking is
ensured with the proposed control scheme, therefore, E and Ė are UUB by the
definition of S and S̄ by using the Lemma in [14].

Remark 4. It is noted that the proposed neuroadaptive PID-like algorithm con-
tains proportional term, integral term and differential term. This PID-like algo-
rithm gives a better convergence property than using integral term alone or both
proportional and integral terms.
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4 Simulation Studies

To test the performance of the proposed control strategies, simulation tests are
carried out on a train similar to CRH-5 with eight vehicles. The travel distance
tested in the simulation covers two acceleration phases, four cruise phases and
three braking phases. Curve, slope and tunnel are considered in the operation
condition. The goal is to make the actual velocity and position track the desired
velocity and desired position with high precision, respectively. With three fading
actuators, the neuroadaptive PID-like fault tolerant control algorithms are tested
and the results are presented in the figure, from which one can observe that the
proposed control scheme performs well even if some of the actuator lose their
effectiveness during the system operation (Fig. 1).

Fig. 1. Velocity and position tracking process and errors.

5 Conclusions

The problem of velocity and position tracking control of high speed train was
studied in this paper. Uncertain mass and rotary mass coefficient, uncertain
resistance, and unknown tracking/braking actuation characteristics including
input nonlinearities and actuator failures were considered explicitly. Neuroad-
aptive PID-like fault tolerant control was proposed based on Lyapunov stability
theory. The attraction feature of the developed control lies in its simplicity in
design and implementation. The independence of the PID-like controller from
the high speed train system model renders it relatively insensitive to system
model uncertainties and perturbations as well as actuation faults.
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Abstract. Based on the electrical properties of memristor, the spintronic
memristor is introduced into analog circuit design. Through programming the
memristor by pulse signals, a programmable memristor potentiometer is
designed in this paper. The potentiometer has the advantages of simple structure,
small volume and continuous variable dynamic range. Based on the poten-
tiometer above, this paper presents an amplifier circuit whose magnification is
precisely adjustable and an active memristor-filter whose cut-off frequency and
phase are adjustable as well. The circuit is characterized with smaller size,
higher integration and lower power consumption, and its correctness and fea-
sibility are verified by SPICE simulation. The research in this paper will pro-
mote the application of memristor in analog circuit, in addition, the performance
of programmable memristor-analog circuit is satisfactory, which provides a new
way for the integrated circuit design in the future.

Keywords: Meminductor �Model comparison �Variation control �Manufacture

1 Introduction

In 1971, Chua proposed a clear definition of memristor, predicted that memristor is the
fourth basic circuit element except resistor, inductor and capacitor, and analyzed some
unique circuitry properities of memristor in detail [1–4].

However, in 2009, Chen Yiran proposed a spintronic memristor model with current
threshold, which is similar to the actual memristor [5]. It does not only have the
advantages of a common HP model, but it can also effectively overcome its short-
comings: The rapid change of resistance greatly improves the speed of data storage; the
antijamming capability is so strong that only if the current density passing the device is
larger than the threshold current density, will the resistance change and then effectively
avoid the influence of signal noise [6].

In order to achieve adjustable cut-off frequency, the potentiometer is generally used
to replace the resistor in traditional analog filter circuits by adjusting the resistance of the
potentiometer. Now, analog mechanical potentiometer and digital potentiometer are the
two kinds of potentiometers widely used [7]. However, low stability of mechanical
potentiometer makes it not easy to realize automatic control, meanwhile, due to the
discrete resistance and narrow passband of digital potentiometer, both greatly affect
the accuracy and stability of analog filter. Memristance variation is nonlinear and
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continuous, and its precision is higher than the digital potentiometer. So, because of the
requirement for higher accuracy of cut-off frequency, the memristor-based filter circuit
structure is simpler. The memristive control signal is pulse voltage, whose control and
adjustability of memristance are more convenient compared with programming control
digital potentiometer [10, 11].

As a result, in this paper the digital potentiometer based on spintronic memristor is
designed by introducing it into the analog circuit, and then it is applied to multiple
precision adjustable amplifying circuits and the MC active filter with continuously
adjustable cut-off frequency and amplitude can be realized [14, 15].

2 Spintronic Memristor-Based Potentiometer

2.1 Spintronic Memristor

The spintronic memristor has a variety of physical structures, in this paper the model
build on the basis of promoting the magnetic domain wall technical theory is discussed
[7, 8]. As shown in Fig. 1 (Fig. 1(a) is the structure of spintronic memristor. Figure 1(b)
is the equivalent circuit).

In Fig. 1(a), D, h, z are the length, height and width of the device respectively,
which are 1000 nm, 7 nm and 10 nm. w is the width of the domain wall. Under the
effect of voltage, the domain wall moves, and the length in the two magnetization
directions change, so the memristance of the whole device changes correspondingly. rL
and rH denote the memristance of per unit length of segment of low- and high-
resistance states respectively. By ignoring the width of the domain wall in Fig. 1(b), the
total memristance is calculated by:

M xð Þ ¼ ½rHxþ rLðD� xÞ� ð1Þ

x is the distance of the domain wall movement. Its velocity v is proportional to the
current density J , the relation is:

v ¼ dx
dt

¼ Cv � J ¼ Cv
h � z �

dq
dt

ð2Þ

Cv is the scaling factor, the magnitude is related to the structure of the device and the
nature of the material. The expression is: Cv ¼ PuB

eMS
. P is magnetic susceptibility of the

Fig. 1. The structure and equivalent circuit of spintronic memristor.
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material, uB is Bonr magneton, e is elementary charge and MS is saturation magneti-
zation. e and uB are constants. The magnitude of P and MS is only related to the
material.

Substituting Eq. (2) into Eq. (1), we can get the relationship of the memristance
and charge as follows:

M qð Þ ¼ rL � Dþ rH � rLð ÞCq tð Þ½ � ð3Þ

Here C ¼ Cv
h�z, which is the ratio of the scaling factor and the cross-sectional area of the

device. By considering the effect of domain wall on the memristance, then Eq. (1) is
written as [8]:

M xð Þ ¼ rH � x� w
2

� �
þRdw þ rL � D� x� w

2

� �h i
ð4Þ

Rdw and w are the memristance and width of domain wall respectively. Supposing that
the domainwall is located the middle of whole width, the resistance per unit length
changes linearly from rL to rH , then:

M xð Þ ¼ rH � x� 2
w

� �
þ rH þ rLð Þ � 2

w
þ rL � D� x� w

2

� �� �

¼ rH � xþ rL � D� xð Þ½ �
ð5Þ

Equation (5) is the same as Eq. (1), which shows that the width of domain wall
does not affect the variation of the resistance when 0\x\D.

2.2 Spintronic Memristor-Based Design of the Digital Potentiometer

In order to observe the typical characteristic curve of spintronic memristor, a Sine
signal, whose amplitude is 35 V and frequency is 5 MHz, is applied to the SPICE
model of spintronic memristor. The V-I characteristic curve and the change curve of
memristance are obtained and shown in Fig. 2 [9]. From Fig. 2(a), we can find that
excited by Sine signal voltage, the V-I characteristic curve of spintronic memristor has
hysteresis effect. As it shown in Fig. 2(b), it can be verified that the memristance is kept
constant when the voltage is smaller than 7 V, but when the voltage is between 7 V and
35 V, whether the memristance varies with the voltage is determined by the magnitude
of memristance at that time.

Applying different pulse signals with different voltage amplitudes and different duty
cycles to the SPICE model of spintronic memristor, as shown in Fig. 3, different pulse
inputs lead to different variations of memristance. Here, D is the duty cycles and U is
pulse signal voltage.

According to the curves, we can get the following conclusions: under the condition
of the same pulse duration, the larger the pulse voltage amplitude is, the greater the
resistance changes; in the case of consistent pulse voltage amplitude, the longer the
pulse duration is, the greater the resistance changes.
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2.3 The Programming Circuit of Spintronic Memristor

To realize the programmable operation in the spintronic memristive circuit, this paper
designs the following two programming circuits: The half-bridge programming circuit,
which is used to program the memristance with a port connected with ground. It has
simple circuit structure and obvious effects. The whole-bridge programming circuit,
which is used to program the memristance with two ports connected with ground.
Although the circuit structure is more complex, its application is more widespread.

(a)      (b)
I(U1:PLUS)

-10mA 0A 10mA
V(U1:PLUS)

-40V

0V

40V

V(U1:PLUS)

-40V 0V 40V
V(U1:PLUS) / I(U1:PLUS)

0

5K

10K

Fig. 2. The characteristic curve of spintronic memristor (a) V-I characteristic curve (b) Change
curve of memristance.

(a)                                            (b) (c)
Time

0s 5ns 10ns
V(U5:PLUS) / I(U5:PLUS)

2.8K

1.8K
SEL>>

V(S6:4)
0V

50V

Time

0s 5ns 10ns
V(U5:PLUS) / I(U5:PLUS)

2.8K

1.8K

V(S6:4)
0V

50V

SEL>>

Time

0s 5ns 10ns
V(U5:PLUS) / I(U5:PLUS)

2.8K

1.8K
SEL>>

V(S6:4)
0V

50V

D=0.1
U=45V

D=0.2
U=35V

D=0.1
U=35V

Fig. 3. The pulse characteristics of spintronic memristor. (a) The pulse 1 with D = 0.1, U = 45;
(b) The pulse 2 with D = 0.2, U = 35; (c) The pulse 3 with D = 0.1, U = 35.
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The Half-Bridge Programming Circuit
The half-bridge programming circuit is shown in Fig. 4(a), which controls the off-on of
the two P-channel enhancement mode Field effect transistors (PFET) by exporting
positive pulse Vpulse1 and Vpulse2 from the two pulse signal sources. V1 and V2 are
the given programming voltages, whose amplitudes are 35 V and −35 V respectively.
After the source Vpulse1 exports 11 pulses and delays a period of time, the source
Vpulse2 exports 8 pulses (the duty cycles are all 0.2). Due to the switch effect of FET,
the pulse waveform imported to the memristor and the change of memristance are
obtained and shown in Fig. 4(b).

According to the figures, it is shown that when positive pulse is applied to mem-
ristor, memristance increases in a ladder shape, but when negative pulse is applied to
the memristor, memristance decreases. The process of adjustment is similar to that of
the digital potentiometer. Consequently, the half-bridge programming circuit can effi-
ciently program the memristance to obtain the resistance required by the circuit.

The Whole-Bridge Programming Circuit
The whole-bridge programming circuit is shown in Fig. 5(a), which controls the off-on
of the four PFETs in the same way as half-bridge programming circuit, V1 and V2 are
same too. In this circuit, after which, the source Vpulse1 exports 15 pulses and delays
a period of time, the source Vpulse2 exports 11 pulses (the duty cycles are all 0.2). Due
to the switch effect of FET, the pulse waveform imported to memristor and the change of
memristance are obtained and shown in Fig. 5(b).

According to the figures, the programming effects of the whole- and half- bridge
programming circuits are the same, which can both adjust memristance greatly. For the
two programming circuits mentioned above, we can obtain different resistance by
importing different number of pulses. Then Table 1 is obtained.

According to the Table 1, different memristance can be obtained by importing
different number of pulses. By this way, the uncertainty of memristance is easily
converted into the control of pulse number, the aim of programming memristance can

Fig. 4. The half-bridge programming circuit. (a) The circuit diagram of half-bridge program-
ming circuit and the equivalent model; (b) The pulse waveform imported to memristor and the
change of memristance.

330 J. Tan et al.



be realized through a convenient method. In addition, the change of memristance
caused by a single pulse can be obtained by setting the programming voltage and
duration of pulse. That is to say, the accuracy of the digital potentiometer ba sed on
spintronic memristor is adjustable. To conclude, the random memristance can be
obtained in a wide range of memristance.

3 The Application of Spintronic Memristor in Programmable
Circuit

3.1 Programmable Operational Amplifier Based on Spintronic Memristor

To collect the signal, a front-end circuit needs to be set to amplify or reduce the
sampled signal, i.e. operational amplifier circuit. A novel programmable operational
amplifier is designed in this paper, the circuit structure is shown in Fig. 6(a), in which
the resister R and R1 are 1 K and 10 K respectively. The same as the common
operational amplifier, the input signal is applied to the positive port, and the negative

Fig. 5. The whole-bridge programming circuit (a) the circuit diagram of whole-bridge
programming circuit and the equivalent model (b) the pulse waveform imported to memristor
and the change of memristance.

Table 1. The corresponding memristance of different numbers of input pulse

The number
of pulse

Memristance/K

0 2.00
5 3.960
10 5.220
15 6.235
20 7.108
25 7.882
30 8.588
35 9.239
40 9.58
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port is connected with the spintronic memristor and feedback resistance. According to
virtual open and virtual short, the magnification is calculated as [12, 13]:

Av ¼ 1þ R1

M
ð6Þ

Memristance varies by adjusting the bridge programming circuit, thus the output
with different magnifications is obtained, which is similar to the property of input
waveform. When importing 10 and 30 positive pulses (the duty ratio is 0.2), the input
and output waveform is shown in Fig. 6(b), in which the green is input, and the yellow,
blue, and red are the output of 30 pulses, 10 pulses, and 0 pulse respectively. The
amplifier gain of the amplifier is obtained by the constant memristance variation, as is
shown in Table 2. Compared with common programmable gain amplifier circuit, the
proposed operation amplifier can realize adjustable constantly gain, which is not lim-
ited by the current like the common digital potentiometer anymore. Its application
range is wide under the condition of fulfilling the need of adjustable gain.

Fig. 6. Programmable operational amplifier based on spintronic memristor (a) The circuit
diagram (b) The result of different number of pulses. (Color figure online)

Table 2. The corresponding magnification of the amplifier with different number of pulses

The number
of pulse

Memristance/K Magnification

0 2 6.00
5 3.96 3.525
10 5.22 2.916
15 6.235 2.604
20 7.108 2.407
25 7.882 2.269
30 8.588 2.164
35 9.239 2.082
40 9.85 2.015
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3.2 The Programmable Active Low-Pass Filter Based on Spintronic
Memristor

Through adding a spintroinc memristor-based phase proportion amplifier on the output
end of MC low-pass filter, a first-order active low-pass filter is obtained and shown in
Fig. 7(a), where C ¼ 10lF; R ¼ 10KX. Because of the high input impedance and low
output impedance, the load capacity is reinforced.

From the figures, when x ¼ 0, the Passband voltage gain A0 is the ratio of output
voltage Vout and input voltage Vin. In this circuit, the Passband voltage gain equals to
the voltage gain AVF in non-inverting proportion amplifier, that is:

A0 ¼ AVF ¼ 1þ R
M2

ð7Þ

the amplitude-frequency response equation is obtained as follows:

A jwð Þj j ¼ Vout jwð Þj j
Vin jwð Þj j ¼

A0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ w

w0

� �2
r ð8Þ

Fig. 7. The programmable active low-pass filter based on spintronic memristor (a) The circuit
diagram; (b) The gain curve; (c) The amplitude- and phase-frequency response.
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From Eqs. (7) and (8), once the memristance M2 changes, A0 changes corre-
spondingly, so that the filter’s passband gain changes. The cut-off frequency varies with
memristance M1 which is consistent with MC passive low-pass filter. The SPICE
simulation result is given in Fig. 7(b). Keeping memristance M2 constant, we change
the memristance M1, different number of pulses are imported to M1 by programming
circuit, and the corresponding amplitude and phase frequency curve are shown in
Fig. 7(b). It is suggested that the cut-off frequency and phase of first-order active
low-pass filter vary with the difference of input pulse’s number. However, keeping
memrictance M1 constant, when importing different number of pulses to M2, the
filter’s passband gain curve is shown in Fig. 7(c). It is shown that the gain changes with
the change of pulse’s number.

To conclude, the filtering property of the first-order active low-pass filter based on
programmable spintronic memristor is determained by two memristors. Through which
the programming circuit exports different number of pulses to adjust memristance, the
filter’s cut-off frequency, phase response and gain change, so that the proposed filter
can perfectly select the job characteristics under different situations, resulting in wider
application and higher efficiency.

4 Conclusions

In this paper, spintronic memristor is introduced to analog circuit. The half- and whole-
bridge circuits are proposed to program memristance. The programmable memristive
potentiometer which has the advantages of simple structure, small size and continuously
adjustable dynamic range is realized. Applying it into the amplifier circuit, we design a
novel memristive amplifier with continuously adjustable gain. In addition, a new filter,
whose cut-off frequency and phase are continuously adjustable, is built by introducing
the proposed potentiometer to passive low- and high- pass filter and active low- and
high- pass filter. The novel filter can control the dynamic range of passband and make up
the drift of input signal to a certain extent. The SPICE result and analysis have verified
its validity and superiority. Here, based on spintronic memristor with good performance,
the proposed programmable analog circuit can provide new idea for the future integrated
circuit design and improve memristive application in analog circuit.
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Abstract. Geometric constraints have been widely applied to image matching
to gain additional advantages over feature points. A rapid triangle matching
(RTM) algorithm was such an algorithm for matching triangles formed by three
feature points using 38-dimensional floating-point descriptors. The RTM was
faster than SIFT, but it was still hard to meet the real-time requirement. As such,
we designed two kinds of binary descriptors including FREAK and rBRIEF
used in ORB to replace the floating-point descriptors of RTM, and compared the
improved RTM algorithms with original RTM algorithm and SIFT based on
simulated and actual binocular images. The results demonstrate that our algo-
rithms greatly improve the speed as well as the precision and matching score.
Furthermore, our algorithms can match additional points compared to SIFT and
the original RTM when applied to structural scenes.

Keywords: Image matching � RTM � Binary descriptors � FREAK � rBRIEF

1 Introduction

Image matching algorithms have been widely used in various applications including
object recognition, image retrieval and visual navigation. Local feature points are
frequently used by matching algorithms at the feature point extraction and description
stage [1, 2]. The local feature points generally include blobs (e.g. SIFT [3] and SURF
[4, 5]) and corners (e.g. Harris [6] and Fast [7, 8]). Descriptors can be divided into
floating-point descriptors (e.g. SIFT and SURF) and binary descriptors (e.g. BRIEF [9],
rBRIEF of ORB [10] and FREAK [11]). While the floating-point descriptors show
matching precision advantages, the binary descriptors provide a very efficient method
for time-constrained applications with good matching accuracy [12].

Recently, people have been paying more attention to adding geometric constraints
and geometric features to image matching in an effort to gain additional advantages
over purely using feature points. Triangular constraint was one of them. Zhang et al.
utilized the angle and normalized length information of triangles to describe the corners
after detecting corners and constructing triangle net [13]. Liu and An decomposed each
triangle into six sub-triangles and obtained the relative moment invariant of each part
after triangulation. Subsequently, the six descriptors were used for calculating the
similarity of two triangles [14]. Yang et al. linked the k nearest neighbors of a given
corner to build triangle chain and matched them based on comparing the angles and
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lengths’ ratio of triangles [15]. Cao proposed a rapid triangle matching (RTM) algo-
rithm in [16]. The RTM algorithm not only used the length and angle information but
also combined the grey information to describe triangles. Compared with SIFT, RTM
reduced the dimension of descriptors so that the speed was increased. However, it was
still hard to meet the real-time requirement. As such, the aim of this study is to improve
the speed of RTM algorithm with no degradation in precision. We designed two kinds
of binary descriptors including FREAK (512 bits) or rBRIEF (256 bits) of ORB to
describe the triangle. The efficacy was tested using simulated and actual binocular
images. The results demonstrated that our algorithms improved the speed largely and
the precision in most cases.

The rest of this study is organized as follows. Section 2 introduces the floating-point
descriptors of original RTM algorithm. In Sect. 3, we present the improved algorithms
in detail. Section 4 describes experimental conditions and evaluation indexes. Section 5
shows the results of experiments. Finally, conclusions and future works are given in
Sect. 6.

2 Floating-Point Descriptors in RTM Algorithm

In RTM algorithm, every triangle was described by a 38-dimensional floating-point
descriptor as follows:

Desc F ¼ ½ShapeDesc F; BlockDesc F� ¼ l
0
1; l

0
2; l

0
3; h

0
1; h

0
2; h

0
3; f1; f2; � � � ; f32

h i
ð1Þ

where the floating-point descriptor Desc F consists of a shape descriptor ShapeDesc F
and a block descriptor BlockDesc F. Variables l

0
1; l

0
2; l

0
3 represent three normalized

lengths of the triangle; h
0
1; h

0
2; h

0
3 are three angles which were balanced with l

0
1; l

0
2; l

0
3 in

the weights; f1; f2; � � � ; f32 denote a 32-dimensional SIFT descriptor. Thus, the
38-dimensional descriptor includes 6-dimensional shape descriptor ðl01; l

0
2; l

0
3; h

0
1; h

0
2; h

0
3Þ

and 32-dimensional block descriptor f1; f2; � � � ; f32ð Þ.
The description of RTM is shown in Fig. 1(a), where A, B and C are the three

feature points forming the triangle DABC; D is the centroid of the triangle; DE
�!

is the

dominant orientation that is the counterclockwise direction of the longest length ðCA�!Þ
in the triangle. The description radius is a certain proportion of the longest length in the
triangle. The three lengths and angles of the triangle are all normalized as the

6-dimensional shape descriptor. Based on D, DE
�!

and the description radius, the
32-dimensional SIFT descriptor is computed as the block descriptor.

3 Improved RTM Algorithm with Binary Descriptors

In order to improve the speed of original RTM algorithm with the floating-point
descriptors, we utilized the binary descriptors, including 512 bits FREAK and 256 bits
rBRIEF in ORB, to describe the triangle respectively. For convenience, we call them
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RTM_FREAK and RTM_rBRIEF respectively. Similarly, we call the original RTM as
RTM_SIFT.More precisely, we constructed the binary descriptor for a triangle as follows:

Desc B ¼ ½ShapeDesc B; BlockDesc B� ¼ l
00
1; l

00
2; l

00
3; h

00
1; h

00
2; h

00
3; b1; b2; � � � ; bN

h i
ð2Þ

where the binary descriptor Desc B is also formed by a binary shape descriptor
ShapeDesc B and a binary block descriptor BlockDesc B; l

00
1; l

00
2; l

00
3 and h

00
1; h

00
2; h

00
3 rep-

resent the binary values of l
0
1; l

0
2; l

0
3 and h

0
1; h

0
2; h

0
3 in Eq. (1); b1; b2; � � � ; bN are N bits

binary string defined by FREAK or rBRIEF descriptor, N can be 512 or 256.
A binary string F was formed as:

F ¼ bNbN�1 � � � b1 ¼
X

0� a\N

2aTðPaÞ ð3Þ

where a is the ath bit, N is the desired size of the descriptor, and

TðPaÞ ¼ 1
0

�
if ðIðPr1

a Þ � IðPr2
a ÞÞ[ 0;

otherwise;
ð4Þ

where P is a sampling field; Pr1
a means the first field in the ath pair of sampling fields

and Pr2
a is the second; IðPr1

a Þ refers to the smoothed intensity of Pr1
a .

Figure 1(b) shows the sampling pattern of FREAK. There are 43 sampling points
including the centroid D of DABC and 7 concentric circles with 6 sampling points for
each circle. Thus, 43 sampling fields are built based on 43 sampling points with certain
radius. According to Eqs. (3) and (4), there will be C2

43 pairs of binary tests, which will
lead to a large descriptor. When we use 512-bit descriptor, 512 pairs with low corre-
lations (means of 0.5) are selected to form b1; b2; � � � ; b512.

In addition, we used the rBRIEF descriptor to describe the triangle as shown in
Fig. 1(c). In DABC, the description patch is wp � wp and each sampling field (P) is a
ws � ws sub-window. We set wp ¼ 31 and ws ¼ 5, there are C2

ð31�5þ 1Þ2 binary tests

according to Eqs. (3) and (4). Let N = 256, a greedy search was used to find 256 low
correlated tests with means near 0.5. Hence, the 256 bits will be b1; b2; � � � ; b256.

The dominant 
orientation

A

B C

E

D

A

B C

D

E

A

CB

D

E sw

pw

sw p
w

(a) (b) (c)

Fig. 1. Illustration of description in RTM_SIFT, RTM_FREAK and RTM_rBRIEF (a) SIFT
description in RTM_SIFT. (b) Sampling pattern of FREAK in RTM_FREAK. Every circle
represents a sampling field. (c) Approach of rBRIEF description in RTM_rBRIEF. The description
patch is wp � wp and every sub-window ws � wsð Þ is a sampling field.
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The main steps of our improved RTM algorithms are as follows:

(1) Detect and select feature points for two images to be matched. The feature
points can be blobs or corners. Steady points can be selected by setting certain
thresholds.

(2) Construct triangulation according to the Delaunay [17] algorithm and remove
triangles with too large or small sides.

(3) Describe the triangles with binary descriptors, referring to Eqs. (2) and (3).
(4) Match the images by computing the ratio of the closest neighbor Hamming dis-

tance between two descriptors for the two images to the second-closest neighbor
Hamming distance.

(5) Extract feature points corresponding to all matched triangles.
(6) Eliminate the error matching points using RANSAC [18] algorithm.

4 Experimental Conditions and Evaluation Indexes

4.1 Image Datasets and Experimental Conditions

Experimental images included simulated and actual binocular images. The simulated
image datasets were provided by Mikolajczyk et al. [19] of the Oxford University.
Since RTM was suitable for matching images with relatively small changes in scale and
viewpoint, we chose the first and second images of the six sets (bikes, boat, graf,
leuven, ubc, wall) from the datasets. The actual binocular images were from the KITTI
Vision Benchmark Suite [20]. We selected synchronous frames from them. Visual
Studio 2010 and OpenCV2.4.9 were development tools. All the experiments have been
taken on the platform with Intel Core i7-4790 processor, 3.6 GHz frequency and
16 GB memory. It is worth noticing that the parameters were consistent for all
experiments. We detected and selected 200 Harris [6] points for all algorithms and ran
every experiment 10 times to compute the average time.

4.2 Evaluation Indexes

We used the matching speed, precision [19] and matching score [21] to evaluate our
proposed algorithms. The matching speed was specifically evaluated using the average
total time and average description time. The total time was the time from detecting
feature points to outputting the correct matches, the description time was the time
consumed by constructing descriptors for all feature points, and the average total time
and average description time were defined by averaging the total time and the
description time over all experimental runs, respectively.

The precision is computed as follows:

precision ¼ # correct matches
#matches

ð5Þ
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where #matches is the number of total matching points; # correct matches is the
number of correct matches after eliminating the wrong matches.

The matching score is represented as follows:

matching score¼# correct matches
minðn1; n2Þ ð6Þ

where n1 and n2 are the numbers of detected feature points in the pair of images to be
matched, respectively.

5 Experimental Results

We compared our proposed RTM_FREAK and RTM_rBRIEF with RTM_SIFT and SIFT
based on the simulated and actual images in terms of speed (average total time and
average description time), precision and matching score. Finally, we showed the
additional feature points that our algorithms matched.

5.1 Simulated Images

Figure 2 shows the average total time (Fig. 2(a)) and average description time (Fig. 2
(b)) consumed by SIFT, RTM_SIFT, RTM_FREAK and RTM_rBRIEF based on six sets of
images. We can see that in one case (bikes), the average total time and average
description time for RTM_SIFT were longer than those for SIFT. Our algorithms solved
the problem by using binary descriptors instead of float-point descriptors. More pre-
cisely, for the average total time, RTM_FREAK was twice as fast as RTM_SIFT in the
best case and 1.3 times faster in the worst case; RTM_rBRIEF was 2.3–4.2 times faster
than RTM_SIFT. When comparing the average description time, FREAK description
was 1.6 times faster than SIFT description and rBRIEF was 18 times faster than SIFT.
On average, referring to the last columns in Fig. 2(a) and (b), RTM_rBRIEF is the
fastest, followed by RTM_FREAK, RTM_SIFT, and SIFT.
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Fig. 2. Comparison of SIFT, RTM_SIFT, RTM_FREAK and RTM_rBRIEF based on average total
time (a) and average description time (b). The last column is the average over the six sets.
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The results of precision (Fig. 3(a)) and matching score (Fig. 3(b)) for the four
algorithms are demonstrated in Fig. 3. We see that RTM_FREAK and RTM_rBRIEF were
mostly better than RTM_SIFT in terms of the precision, and achieved similar or slightly
better matching scores than RTM_SIFT. The improvements were mainly due to the
increase of description dimension, as compared to RTM_SIFT. Note that SIFT obtained
the best precision and matching score for the simulated images. Due to no constraints
were added to SIFT, it yielded more feature points than RTM-related algorithms which
imposed triangle constraints upon the feature points.

5.2 Binocular Images

Table 1 includes comparative results for the four algorithms in terms of the average
total time, the average description time, the precision, and the matching score. These
results were much similar with those for the simulated images. RTM_SIFT, RTM_FREAK
and RTM_rBRIEF were 1.25–3 times faster than SIFT, RTM_FREAK and RTM_rBRIEF
were 1.1–2.2 times faster than RTM_SIFT, and RTM_rBRIEF were the fastest. The
precision and matching score of RTM_FREAK and RTM_rBRIEF were higher than
RTM_SIFT. As for the precision and matching score, RTM_rBRIEF and RTM_FREAK
achieved similar performance compared with SIFT.
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Fig. 3. Comparison of SIFT, RTM_SIFT, RTM_FREAK and RTM_rBRIEF in terms of precision
(a) and matching score (b). The last column is the average over the six sets.

Table 1. Comparison of SIFT, RTM_SIFT, RTM_FREAK and RTM_rBRIEF in terms of average
total time, average desciption time, precision and matching score

SIFT RTM_SIFT RTM_FREAK RTM_rBRIEF
Average total time (s) 0.25 0.20 0.19 0.09
Average description time (s) 0.18 0.11 0.09 0.01
Precision 0.51 0.39 0.44 0.60
Matching score 0.31 0.26 0.31 0.36
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5.3 Additional Feature Points Matched by RTM Algorithms

By taking advantage of triangle constraints, RTM algorithms can match additional
feature points which SIFT may skip. We used the bikes images to show the results.
Figure 4(a) shows the corner points detected in the images. The sub-images in red
frame of Fig. 4(a) are enlarged and shown in Fig. 4(b) for identification. It is worth
noticing that we used the homography matrix of the two images to compute the
correspondences [19], as shown in Fig. 4(c). The correspondences were ground truth
for all algorithms.

Figure 5 shows the matched feature points for SIFT, RTM_SIFT and RTM_rBRIEF.
Compared with the correspondences displayed in Fig. 4(c), we can see that these
results in Fig. 5 were correct. However, the matches were mostly different for the three
algorithms. RTM_rBRIEF yielded much more matching corners than RTM_SIFT, while
RTM_SIFT matched more corners than SIFT, suggesting that our algorithms can match
additional points compared to SIFT and the original RTM when applied to structural
scenes.

6 Conclusions

This study improved the RTM algorithm by designing large dimension binary
descriptors for triangles. The experimental results using both simulated and actual
images showed that our improved algorithms were better than original RTM in terms of

(a)

(b)

(c)

Fig. 4. Feature points detected for two bike images and correspondences of them. (a) Feature
points detected in bikes1 (left) and bikes2 (right). (b) Enlarged sub-images in red frames of (a).
(c) Correspondences of feature points computed using homography matrix. (Color figure online)

(c)(b)(a)

Fig. 5. The matched feature points for different algorithms. (a) SIFT. (b) RTM_SIFT.
(c) RTM_rBRIEF.
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speed, precision, and matching scores. When applied to structural images, the proposed
RTM can match additional feature points compared to the original RTM and SIFT.
Dealing with images with large scale variance deserves our future work.
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Abstract. In this paper the improved symbol entropy algorithm based on
empirical mode decomposition (EMD) was proposed to detect ventricular
tachycardia (VT) and ventricular fibrillation (VF). The original symbol entropy
arithmetic needed longer time series to distinguish VT and VF by high accuracy
while the algorithm we proposed can distinguish VT and VF in shorter time
series by high accuracy. Otherwise the execution time of new arithmetic was
shorter than original algorithm. The classification accuracy of original arithmetic
was 93.5%, and the improved arithmetic was 97.75%. The computer time of
feature was 33.32 times less than original.

Keywords: Symbol entropy � Empirical mode decomposition � Ventricular
tachycardia � Ventricular fibrillation

1 Introduction

VT and VF were both life-threatening arrhythmia. Treatment protocols of VT and VF
were different. The VF patients need to be electric shocked. The VT patient need drug
therapy. The VF was misinterpreted ad VT, that’s life-threatening. If VT is incorrectly
interpreted as VF, the patients’ hearts will be shocked and damaged. There is clinical
research significance to use an efficient detecting method to distinguish VT from VF [1].

In recent years, the VT and VF detecting methods mainly include time domain
analysis [2], frequency-domain analysis [3] and nonlinear analysis [4]. There were
overlaps of the heart rate between VT and VF, so according to the heart rate to
distinguish the VT and VF while occur high error rate. To overcome this problem,
scholars had proposed many quantitative analysis methods [5–9]. But these methods
had certain limitations. With the rapid development of neural computing, scholars
applied neural networks to distinguish VF and VT. This can distinguish two class by
nonlinear [10]. But the execution time of the algorithm was high relatively.

Wang and Chen [11] proposed a method based on Symbol dynamics to research VF
and VT. The research showed that the symbol sequence entropy suddenly showed
decreased, the patients most likely to enter ventricular tachycardia in the sample, which
is an important sample for clinical treatment of patients.
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Empirical Mode Decomposition (EMD) [9] was adaptive processing method for
nonlinear and nonstationary signals. This method was especially suitable for the
nonlinear analysis of non-stationary signal processing. Defined as the instantaneous
frequency, a finite set of band limited signals called the intrinsic mode function
(IMF) is decomposed into the original signal.

In this paper, we proposed an improved symbol entropy based on EMD for
detecting VT and VF. The method displayed a higher accuracy rate in the classification
of VF and VT with shorter time series than original symbol entropy. Furthermore, the
execution time of the algorithm was shorter than original symbol entropy.

2 The Method of Symbol Entropy and EMD

2.1 Empirical Mode Decomposition

EMD is an adaptive signal processing method. This method is especially suitable for
processing signal which is nonlinear and nonstationary. Research showed that the ECG
is non-stationary signals, so we can use EMD to decompose the VF and VF.

Given a signal x(t), we use EMD to decompose x(t). We can get IMF1(t)-IMFn(t)
and a residue which is marked as r. The x(t) can be expressed by Eq. (1).

xðtÞ ¼
XM
i¼1

IMFmðtÞþ r ð1Þ

Algorithm steps:

Step 1: Set rðtÞ ¼ gðtÞ ¼ xðtÞ; j ¼ 0; i ¼ 1.
Step 2: Get the ith IMF.

(1) Set h0ðtÞ ¼ ri�1ðtÞ; j ¼ 1.
(2) The local-maximum and local-minimum values of hj�1ðtÞ are obtained.
(3) Fitting envelope of upper and lower elðtÞ and euðtÞ by cubic spline

interpolation respectively technology.
(4) Calculate the average value of the envelope elðtÞ and euðtÞ, marked asm(t):

mðtÞ ¼ elðtÞþ euðtÞ
2

ð2Þ

(5) hjðtÞ is defined:

hjðtÞ ¼ hj�1ðtÞ � mj�1ðtÞ ð3Þ

(6) If hj(t) satisfies two basic conditions, set IMFi(t) = hj(t);

If hj(t) doesn‘t satisfies two basic conditions, then j ¼ jþ 1, go to step2-(2).

Step 3: Cauculate riðtÞ ¼ ri�1ðtÞ � IMFiðtÞ.
Step 4: If the num of local-maximums and local-minimums is greater than 2, set

i ¼ iþ 1 and go to step 2, else stop.
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2.2 Symbol Entropy

Symbol entropy is a kind of time series analysis method. Symbol entropy originates
from chaotic time series analysis, symbolic dynamics theory and information theory.
Signal‘s fundamental characteristics can be reacted by symbol entropy. The VT/VT’s
effective information mainly distributed in the low frequency band.

Given that VF/VT‘s sample is marked as X, and X ¼ ðx1; x2; . . .; xi; . . .; xNÞ, the N
is the length of sample.

Algorithm steps:

Step 1:
By the specified rule, we converted original time series into symbol time sequence,

which markes as S ¼ ðs1; s2; . . .; si; . . .; sNÞ. The rule we used was as followed. If the
average value is greater than x, we mark as ‘0’. If the average value is less than x, we
mark as ‘1’. The mathematical model was followed.

sðiÞ ¼ ‘0’ xðiÞ�meanðXÞ
‘1’ xðiÞ[meanðXÞ

�
ð4Þ

i ¼ 1; 2; . . .;N, and xðiÞ represents the ith point‘s value.
Step 2:
We put 3 adjacent symbols into a group which we called “3-bit word”. Given that

the symbolic time series S = “111100101…”, therefore S can be grouped by operation
of sliding window and get S‘{111,111,110,100,….}. Each “3-bit word” contained ‘0’
and ‘1’. The number of different combinations of “3-bit word” was 2^3. Through the
above operation, we get S0 ¼ s

0
1; s

0
2. . .; s

0
i; . . .s

0
M

� �
, and M = N-3 + 1.

Step 3:
We coding each 3-bit word of S’ by decimal and the coded sequence is marked as

D = {d1, d2,…, dM}. Then we statistical histogram of D, and the histogram was
marked as H = {h0, h1,…, h7}. And calculated frequency of occurrence of hi by
pi = hi/M. The symbol entropy was defined by Eq. 5.

En ¼ �
X7
i¼0

pðh0
iÞ log2 pðh

0
iÞ ð5Þ

2.3 Improved Symbol Entropy

The 0–1 symbol series of symbol entropy retains little detail information. In order to
retain more details, we proposed a multi-valued symbol entropy. The symbol series of
multi-valued symbol entropy contains variety of symbols rather than two.

Given that VF/VT‘s sample is marked as X, define X ¼ ðx1; x2; . . .; xi; . . .; xNÞ, and
sample length was N.
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Step 1:
By the specified rule, we converted original time series into symbol time sequence,

which markes as S ¼ ðs1; s2; . . .; si; . . .; sNÞ. First, to find the maximum value Mu of X
and the minimum value Md of X, and get Mj j ¼ Mu �Md . Second, confirm the symbol
space X, and the size of X is L. Last, according to Mu;Md andM, get the symbol
sequence S.

S ið Þ ¼

XM�1 if MdLþ Mj j L�1ð Þ
L � xi � MdLþ Mj jL

L

XM�2 if MdLþ Mj j L�2ð Þ
L � xi\

MdLþ Mj j L1ð Þ
L

..

.

X1 if MdLþ Mj j
L � xi\

MdLþ 2 Mj j
L

X0 if Md � xi\
MdLþ Mj j

L

8>>>>>><
>>>>>>:

ð6Þ

i ¼ 1; 2; . . .;N, and xðiÞ represents the ith point‘s value.
Step 2:
We can get the symbol sequence S, and count for each symbol in S. The di is the

count Xi. Therefor get D ¼ d1; d2; . . .; di; . . .; dLf g. And the Xi probability pi ¼ di
sumðDÞ :

The probability vector H ¼ p1; p2; . . .; pi; . . .; pLf g.
Setp 3:
The Symbol Entropy was defined as:

En ¼ �
XL

i¼0
pilog2pi ð7Þ

Calculate the symbol entropy.
We decompose VT and VF into n sub-signals, which is IMF1-IMFn. And calculate

symbol entropy respectively. The Fig. 1 shows the algorithm flow. According to the
symbol entropy, distinguish theVT andVF. The classificationwas operated by threshold.

3 Experimental Results and Analysis

3.1 Data Description

We selected the data from MIT-BIH Database and CU Database. The sampling fre-
quency of MIT-BIH Database and CU Database are both 250 Hz. We extracted 100 VF
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samples and 100 VT samples from CU Database and MIT-BIH Database respectively.
All the data’s mean and variance were normalized.

The field waveform of VT was plotted in Fig. 2. Ans the field waveform of VT was
plotted in Fig. 3.

3.2 Experimental Results and Analysis

We have experiment when n = 6, the classification accuracy of IMF3-IMF5 is higher
than other IMFS.When n = 4, the symbol entropy of the classification accuracy is 93.5%.
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While the classification accuracy of the improved symbol entropy is lower than the
former. But when calculate the symbol entropy and the improved symbol entropy of
IMF3 + IMF4 + IMF5, the classification accuracy of the improved symbol entropy is
97.75%. The conclusions are drawn as follows: the classification accuracy of the
improved symbol entropy is greater than the original symbol entropy.

According to the experimental result, we can know that the symbol entropy has
higher classification accuracy on sub-signal, but the improved symbol entropy has
higher classification accuracy on the sum of sub-signals (IMF3 + IMF4 + IMF5).
Table 1 shows that the improved symbol entropy can improve the sensitivity, the
specification and the classification accuracy.

Now compare the execution efficiency of the symbol entropy and the improved
symbol entropy. According to the experimental result, the execution time of the
improved symbol entropy is shorted than the symbol entropy. With the increase of the
length of the sample, the execution time of symbol entropy and the improved symbol
entropy are all increased. Because the symbol entropy needs “3-bit word”, it is
time-consuming. The time-consuming comparison is shown in Fig. 4.

Table 1. The result of classification of symbol entropy and improved symbol

Sensitivity Specificity Accuracy

Symbol entropy 91.87% 95.82% 93.5%
Improved symbol entropy 97.99% 97.51% 97.75%
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With the growth of the sample length, the classification accuracies present different
performances. When the time of duration of the sample is less than 0.5 s, the classifi-
cation accuracies are all less than 90%. When the time of duration of the sample is less
than 3 s, the classification accuracy of the improved symbol entropy improves rapidly.
But the symbol entropy’s classification accuracy growths slowly and less than the
improved symbol entropy. Figure 5 shows this experimental result. It follows that the
improved symbol entropy can distinguish VT from VF in higher classification accuracy
with the small sample whose duration between 1 s–4 s than the symbol entropy.

4 Conclusions

To distinguish VF and VT with high classification accuracy has clinical research
significance. We proposes an improved method based on symbol entropy. The method
can detect VF and VT using less time-points. From the experimental results, the
computation of the improved method is greater than original symbol entropy. The
proposed method can be embedded into Automated External Defibrillator (AED) to
defibrillate VF in real-time. This can contribute to the timely rescue of the patient’s life.
Certainly there is a weakness of this paper that the improved symbol entropy method
should be tested and verified by other data-sets of VF and VT.
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Abstract. Concept drift is one of the key challenges that incremental
learning needs to deal with. So far, a lot of algorithms have been pro-
posed to cope with it, but it is still difficult to response quickly to the
change of concept. In this paper, a novel method named Selective Trans-
fer Incremental Learning (STIL) is proposed to deal with this tough
issue. STIL uses a selective transfer strategy based on the well-known
chunk-based ensemble algorithm. In this way, STIL can adapt to the
new concept of data well through transfer learning, and prevent negative
transfer and overfitting that may occur in the transfer learning effectively
by an appropriate selective policy. The algorithm was evaluated on 15
synthetic datasets and three real-world datasets, the experiment results
show that STIL performs better in almost all of the datasets compared
with five other state-of-the-art methods.

Keywords: Incremental learning · Transfer learning · Concept drift

1 Introduction

In the age of big data, incremental learning is becoming more and more impor-
tant. However, the distribution of training data in incremental learning may be
nonstationary over time, especially for real-world applications, which is called
the concept drift phenomenon [1]. Despite the significance of concept drift for
studying incremental learning, the concept change is difficult to be handled effec-
tively and quickly due to the unpredictable dynamic environments.

In recent years, three categories of approaches have been proposed to cope
with concept drift, including sliding window [2,3], drift detection [4] and ensem-
ble method [5–7]. Among them, Ensemble method is the only one which preserves
the history knowledge and use it to reinforce the learning of new circumstances.
Transfer-based ensemble learning is a new type of ensemble method combining
transfer learning with the traditional chunk-based ensemble algorithm, which
was introduced by TransferIL [8]. TransferIL could make preserved historical
models adapt to the new coming data by transfer learning.
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In this paper, a novel method is proposed called Selective Transfer Incre-
mental Learning (STIL). In the new method, all the preserved historical models
are not transferred blindly as TransferIL does, because the massive transfer
operations are time-consuming and some inappropriate transfer may cause neg-
ative transfer and overfitting. Moreover, when the number of models in ensemble
reaches the maximum threshold, STIL will replace the least relevant model with
the new model learned from recent data chunk, which is more reasonable than
the traditional accuracy policy.

The rest of this paper is organized as follows. Section 2 reviews related work
and describes specific problems to be solved. Section 3 presents STIL in details,
and the experimental studies of STIL are shown in Sect. 4. Finally, Sect. 5 con-
cludes the paper.

2 Related Work

There are three types of methods for handling concept drift in the data stream,
including sliding window [2,3], drift detection [4], and ensemble method [5–7].
The sliding window maintains the most recent examples to assist learning from
current data, while drift detection will remind to rebuild the current model once
concept drift is detected in the data stream, otherwise the model is updated
directly. Different from the above two methods, ensemble method preserves some
of the historical knowledge learned from the past data and uses it to boost the
learning of new data.

In ensemble methods, there is a popular algorithm called chunk-based ensem-
ble. Chunk-based ensemble means every model in the ensemble is trained from
one chunk of data in the data stream [6]. Once the model number in ensemble
exceeds the limit, one of the existing models should be replaced by the new
model. There have been some algorithms handling concept drift based on the
idea of chunk-based ensemble. Typical examples are Streaming Ensemble Algo-
rithm (SEA) [5] and Accuracy Updated Ensemble (AUE2) [6]. SEA is one of
the early-stage chunk-based algorithm, which uses a simple majority voting pol-
icy to combine the outputs of all base models. Accuracy Updated Ensemble
(AUE2) uses accuracy-based weighting mechanisms for combining outputs, and
the preserved base models are updated incrementally with the new data as well.

For chunk-based ensemble learning, due to the existing of concept drift, his-
torical knowledge may have inconsistent information with the knowledge of cur-
rent circumstance. Hence, a transfer-based ensemble learning strategy is pro-
posed in TransferIL [8]. Transfer-based ensemble learning transfers the preserved
historical models using current data chunk first, instead of using them directly in
the ensemble, to adapt the models to the new circumstance. The transfer oper-
ation in TransferIL will keep the related knowledge of the old model and update
the unrelated part using new data. Then, TransferIL combines the transferred
models and the newly trained model to form the final ensemble model.

Despite the good adaptability, there may be some inappropriate transfer in
TransferIL, which may cause negative transfer and overfitting problems. On the
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other hand, the massive transfer operation is time-consuming. Hence, transfer
all the preserved historical models blindly is unreasonable.

3 The Proposed Approach

In this paper, a new method named STIL is proposed. STIL will not transfer all
the preserved historical models as TransferIL does. Instead, it adopts a selection
policy that picks up two categories of historical models which not doing the
transfer operation to avoid the negative transfer and overfitting problems. The
two categories are the less relevant model with the new coming data and the less
transfer effective historical model.

3.1 Method

The Less Relevant Model. When the source domain is not related to the
target domain, brute-force transfer may be unsuccessful and may degrade the
performance of learning in the target domain [9]. This is called negative transfer
in the transfer learning area. In transfer-based ensemble learning, when the his-
torical model is almost not related to the new coming data chunk, there will be
very few useful knowledge that could be used in the new circumstance. Hence it
makes no sense to do the transfer operation.

To find the less relevant model of the current new data chunk, firstly, STIL
uses current data chunk to get a model through training, then uses Q-statistic
[10], as shown in (1), to compute the correlation between every preserved histor-
ical model and the newly trained model.

Qfi,fj =
N11N00 − N01N10

N11N00 + N01N10
. (1)

where fi and fj are two classifiers. Nyiyj is the number of examples for which the
classification result is yi by fi and yj by fj . If classifier recognizes the example
correctly then y = 1, and otherwise y = 0. The result of Qfi,fj varies between
−1 and 1. If the two classifiers are statistically independent then Qfi,fj = 0; if
the correctness of two classifiers is exactly the same then Qfi,fj = 1; else if they
are totally opposite, then Qfi,fj = −1 [11].

Hence, in STIL, when the value of Q-statistic is close to 0, the computed
history model is a less relevant model to the new chunk of data.

The Less Transfer Effective Model. If the operation of transfer has less
effect on the preserved historical model, which means this model fits the new
chunk of data well, there will be no need to do the time-consuming operation of
transfer. On the other hand, if the operation of transfer had been done in this
situation, it would make the model too complicated and may cause overfitting.

STIL finds the less transfer effective model by computing the gain of transfer.
As the implementation in TransferIL, decision tree is used as the base model.
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STIL makes data chunk fall into the leaf nodes of the model, and counts the
number of leaf nodes which satisfy the condition of change if transfer happened.
The change could be label change or continue splitting of the leaf node, as
introduced in TransferIL. Then STIL sets the proportion of such leaf nodes in
all the leaves as the standard of measuring transfer gain, as shown in (2).

TG = (Nlabelchange + Nsplitting)/M. (2)

where TG is the predicted gain of transfer, Nlabelchange and Nsplitting are the
number of leaves which satisfy the condition of label change and continue split-
ting of leaf, respectively. M is the total number of leaves.

By predicting the gain of transfer, STIL avoids the transfer learning process
of the less transfer effective model. What’s more, in fact, the operation of putting
data chunk to fall into the leaf nodes had been done when computing the clas-
sification result in Eq. (1) for finding the less relevant model.

Fig. 1. Illustration of how to construct the alternative model. In this example, at time
step t, fx1 and ft−1 are assumed as the less relevant models to the new data. Obviously,
ft−1 is the newly added model at last time step t − 1, which replaced fx2 . Moreover,
fx3 is assumed as the less transfer effective model at time t.

Construction of Alternative Model. For the two kinds of non-transfer mod-
els, a strategy is also proposed for STIL to construct alternative models in ensem-
ble. Some existing model is used as the replacement of the original transferred
model, as shown in Fig. 1.

For the less relevant model to current data chunk, the model is completely
out-of-date to new circumstance, so it will not be used in the ensemble for pre-
dicting. However, if it is deleted, the model number in the ensemble will decrease,
which may also hurt the performance. STIL uses a trick to solve this problem by
using the less relevant historical model’s transferred model produced during the
last time step t − 1, such as f t

x1
does in Fig. 1. The effect of such operation will

be using the transferred model created by adapting the historical model to its
most recently relevant data chunk, which can make the historical model adapt to
the new circumstance and avoid transferring in unrelated historical model and
data. But if it is unfortunate that the less relevant model is the new added one
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at last time step t − 1, which will only occur in suddenly concept drift, there is
no choice but to maintain this old model, such as f t

t−1 does in Fig. 1.
For the less transfer effective model, STIL simply maintains the historical

model in the ensemble, such as f t
x3

does in Fig. 1.

3.2 Algorithm

The pseudo code of STIL is presented in Algorithm 1. The lines 4–12 describe the
operation for different kind of historical models. Lines 14–18 show the process of
how to choose the preserved historical model set. Here a new strategy of removing
the least relevant historical model is employed. The relevant computation result
for line 4 can be used directly here. Moreover, the relevant strategy is more
reasonable than the traditional accuracy policy.

Algorithm 1. STIL
Input: D1, D2, ..., Dt: the divided chunk in data stream, St: the set of preserved
historical models at time t, m: the max number of preserved historical models
Output: Ft: the ensemble model at time t

1: for all the data chunks Dt do
2: ft ← new component classifier trained by Dt

3: for every model fi in St do
4: if fi is a less relevant model then
5: if fi is not the new added model in time t-1 then
6: f t

i ← f t−1
i

7: else
8: f t

i ← fi
9: else if fi is a less transfer effective model then

10: f t
i ← fi

11: else
12: f t

i ← transfer model fi with Dt

13: ωt
i ←evaluate the model f t

i

14: if |St−1| < m then
15: St ← St−1 ∪ ft
16: else
17: fw ←the least relevant model in St

18: replace fw with ft in St

19: Ft = (
∑

i wt
if

t
i + ft)/(

∑
i wt

i + 1)

4 Experiment

4.1 Experimental Setting

The accuracy and speed of STIL were compared with five state-of-the-art algo-
rithms namely TransferIL [8], SEA [5], Learn++.NSE [7], AUE2 [6] and TIX [12].
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They are all proposed to handle the concept drift problem in incremental learn-
ing, SEA, Learn++.NSE and AUE2 are chunk-based ensemble methods, while
TIX treats history knowledge as new features.

The compared algorithms, in general, can accommodate any type of base
models. To be fair, the base model of all algorithms was set as a decision tree.
In SEA, Learn++.NSE and TIX the traditional decision tree model CART was
used. However, the base model needs to be updated incrementally in AUE2, so
an online decision tree named Hoeffding tree [14] was used instead.

The limit of preserved models was set as 25 in SEA, AUE2, TransferIL and
STIL according to the suggestion in [5]. In STIL, two parameters were defined, k1
represents the number of the less relevant models and k2 represents the number
of the less transfer effective models. In the experiment we set k1 = 8 and k2 = 5.

The experiment was performed on 15 synthetic datasets and three real-world
datasets. Synthetic datasets create the changing concept along time by modifying
certain parameters continuously. Based on previous research, five different kinds
of widely used synthetic datasets SEA [5], ROT [6,7], CIR [4], SIN [4] and
STA [16] were employed in our research and represented five different types of
concept drift. Three public real-world datasets Covertype [15], PokerHand [15]
and Electricity [4,6] were also used to evaluate the algorithms.

Table 1. Average accuracy (%) of every chunk (± indicates the standard deviation of
the accuracy for each chunk) for the tested algorithms. The values in boldface indicate
the highest accuracy on the data stream. The last two rows show the result of the
Friedman test and Wilcoxon test (with a 0.05 significance level)

Data STIL TransferIL SEA Learn++.NSE AUE2 TIX

SEA200A 96.18±2.89 94.80±3.03• 86.31±11.43• 89.07±5.13• 94.66±4.94 87.77±3.97•
SEA200G 95.20±2.54 94.15±2.55• 88.90±10.02• 90.02±4.98• 94.58±3.80 86.90±4.26•
SEA500G 97.26±1.99 96.39±1.66• 89.37±10.17• 91.10±3.45• 95.02±4.05• 88.85±2.54•
ROT200A 71.89±14.14 71.59±14.21 37.88±18.17• 62.19±11.49• 52.72±9.99• 65.02±11.45•
ROT200G 73.86±13.81 72.36±14.48 54.61±17.45• 63.41±12.84• 55.43±9.76• 64.97±12.16•
ROT500G 85.27±11.67 83.92±12.61 69.81±14.29• 74.77±11.57• 74.34±11.34• 76.98±10.44•
CIR200A 86.02±3.26 84.90±4.00• 79.90±10.10• 81.33±5.79• 82.21±5.29• 78.98±5.30•
CIR200G 86.22±3.03 84.90±3.61• 83.86±8.60• 83.27±4.38• 84.06±4.63• 80.04±4.65•
CIR500G 87.18±2.16 86.49±2.20• 84.32±8.43• 83.60±3.00• 84.87±4.36• 80.20±2.70•
SIN200A 83.40±3.28 82.58±3.14• 65.78±8.44• 78.02±4.00• 71.91±3.69• 77.05±3.91•
SIN200G 84.04±3.09 82.49±3.16• 74.12±8.11• 79.07±3.27• 74.32±5.48• 77.23±3.70•
SIN500G 85.79±2.07 85.14±1.90• 73.76±7.80• 80.67±2.51• 78.22±4.71• 78.36±2.84•
STA200A 89.23±5.01 89.50±2.32 70.07±21.57• 82.74±7.88• 86.06±10.93• 89.85±2.01

STA200G 89.27±3.86 89.54±2.48 76.01±15.71• 83.56±7.54• 86.58±9.06 89.77±2.32

STA500G 89.38±3.54 90.00±1.34 76.43±15.35• 84.78±7.25• 87.47±7.73 90.00±1.34

Covertype 90.65±10.08 91.44±8.55◦ 71.46±15.14• 84.11±12.45• 87.09±8.74• 88.32±9.15•
PokerHand 52.44±1.69 51.95±1.79• 56.36±2.54◦ 45.86±1.87• 51.31±1.79• 47.23±1.73•
Electricity 76.74±8.27 74.90±8.34 72.35±13.99 75.54±8.09 76.47±8.70 73.55±8.72

Friedman-test 1.39 2.11 5.28 3.50 3.67 4.00

Wilcoxon-test - 10-7-1 16-1-1 17-1-0 13-5-0 14-4-0
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4.2 Experimental Result

The results in terms of accuracy are shown in Table 1. They indicate that STIL
achieved the highest accuracy value in almost all of the datasets, compared with
the other five state-of-the-art algorithms. Although STIL did not achieve the best
results in five different datasets: STA200A, STA200G, STA500G, Covertype and
PokerHand, it still got competitive results.

The nonparametric Friedman test was conducted on the results in terms of
accuracy. The test statistic FF = 6.3125 and the critical value for α = 0.05
is 2.32, hence we reject the null-hypothesis that there is no difference among
the performance of all the tested algorithms. We also compute the critical
difference(CD) chosen by the Nemenyi test, and got CD = 1.78, which means
that STIL performs significantly better than SEA, Learn++.NSE, AUE2 and
TIX. Moreover, the Wilcoxon rank-sum test gives a detailed information to
the comparison of pairs of algorithms, as shown in the last row of Table 1.
Comprehensively, STIL performs significantly better than any of the compared
algorithms.

Table 2. Runtime of each algorithm (unit:second)

Data STIL TransferIL SEA Learn++.NSE AUE2 TIX

SEA200A 1.40e2 2.08e2 3.17e1 2.09e1 5.09e0 2.06e1

SEA200G 1.36e2 2.16e2 3.20e1 1.97e1 5.73e0 2.04e1

SEA500G 3.20e2 4.80e2 7.27e1 2.64e1 1.21e1 2.52e1

ROT200A 1.65e2 2.58e2 9.00e1 8.41e1 6.51e0 3.14e1

ROT200G 1.63e2 2.84e2 1.03e2 8.40e1 6.70e0 3.13e1

ROT500G 3.87e2 6.07e2 2.63e2 1.03e2 1.53e1 3.69e1

CIR200A 1.41e2 2.57e2 3.42e1 1.99e1 4.91e0 2.73e1

CIR200G 1.38e2 2.24e2 4.14e1 2.40e1 4.83e0 3.12e1

CIR500G 3.20e2 4.80e2 9.68e1 2.94e1 1.25e1 3.38e1

SIN200A 1.55e2 2.46e2 3.83e1 2.26e1 4.93e0 2.43e1

SIN200G 1.49e2 2.41e2 3.90e1 2.19e1 4.90e0 2.28e1

SIN500G 3.26e2 5.27e2 9.59e1 2.91e1 1.07e1 2.80e1

STA200A 1.10e2 1.76e2 3.84e1 2.89e1 5.88e0 2.14e1

STA200G 1.24e2 1.75e2 5.04e1 2.10e1 5.99e0 2.12e1

STA500G 3.27e2 6.14e2 9.32e1 2.57e1 1.68e1 2.36e1

Covertype 1.39e3 1.43e3 1.55e3 1.02e3 5.41e2 9.66e2

PokerHand 7.27e3 9.45e3 8.83e2 7.75e3 2.86e2 6.09e3

Electricity 6.58e1 7.61e1 2.83e1 1.53e1 1.22e1 5.49e0

The runtime results are shown in Table 2. The experiment was run on a laptop
with 8 GB RAM and a CPU which is Intel i5 with 2 cores, 2.7 GHz. In comparison
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to TransferIL, STIL could reduce the runtime almost to all the datasets by
only picking up sub-models to transfer. However, due to the additional selecting
process and the high costs of transfer operation in unselected models, the runtime
is still more than the other algorithms except for TransferIL.

5 Conclusion

In this paper, we propose a selective transfer method for incremental learn-
ing named STIL, which only transfers some of the preserved history models.
The selective policy of STIL can avoid negative transfer by not transferring less
relevant models and avoid overfitting by not transferring less transfer effective
models. The experimental results show that STIL could not only reduce run-
time compared with transfer all the preserved old models, but also raise up the
performance to make it achieve the highest accuracy in almost all the datasets
used in the empirical studies.
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Abstract. Boolean functions (BFs) can be represented by using polynomial
functions when −1 and +1 are used represent True and False respectively. The
coefficients of the representing polynomial can be obtained by exact interpola-
tion given the truth table of the BF. A more parsimonious representation can be
obtained with so called polynomial sign representation, where the exact inter-
polation is relaxed to allow the sign of the polynomial function to represent the
BF value of True or False. This corresponds exactly to the higher order neuron
or sigma-pi unit model of biological neurons. It is of interest to know what is the
minimal set of monomials or input lines that is sufficient to represent a BF. In
this study, we approach the problem by investigating the (small) subsets of
monomials that cannot be absent as a whole from the representation of a given
BF. With numerical investigations, we study low dimensional BFs and introduce
a graph representation to visually describe the behavior of the two-element
monomial subsets as to whether they cannot be absent from any sign repre-
sentation. Finally, we prove that for any n-variable BF, any three-element
monomial set cannot be absent as a whole if and only if all the pairs from that set
has the same property. The results and direction taken in the study may lead to
more efficient algorithms for finding higher order neuron representations with
close-to-minimal input terms for Boolean functions.

Keywords: Boolean function � Higher order neuron � Sigma-pi neuron model �
Polynomial sign representation � Weight elimination � Minimum fan-in
representation

1 Introduction

When −1 and +1 are used to represent True and False respectively, a Boolean function
is identified by a real valued vector function f:{−1, 1}n ! {− 1, 1}. In particular, a
unique polynomial function can be constructed by using Lagrange interpolation to
realize f. This polynomial may have up to 2n terms, i.e. monomials, and its coefficients
correspond to the weights of a higher order neuron or sigma-pi units (Giles and
Maxwell 1987, Schmitt 2005) that compute f. In general, in a sigma-pi unit the output
of the neuron is obtained after the application of an activation function. When this is
chosen as the sign function the weights of the input lines are no more unique;
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moreover, not all input lines are necessary to compute the BF. In particular, a small
number of input lines (i.e. fan-in of the neuron) are desirable from a computational
point of view. This might also have implications for the neural organization of the
brain.

In this paper, we focus our attention on the infeasibility of the simultaneous absence
of the set of monomials from any sign representation given a BF to represent. We think
that the regularities observed then can be used to derive efficient algorithms for rep-
resenting all or particular class of Boolean functions compactly with higher order
neurons. In the literature, there have been several studies for developing algorithms to
find low fan-in solutions to given BFs (Ghosh and Shin 1992, Guler 2001, Oztop 2009)
and mathematical results indicating that it is always possible to represent an n-variable
BF with a higher order neuron that has at most 0:75� 2n input lines. In other words, at
least 25% of the weights of higher order neuron can be zeroed; however, this bound is
not tight, and thus algorithmic and theoretical improvements are needed (Oztop 2006).
For example, recently it has been shown that with 11 monomials any 5-variable
Boolean function; and with 26 monomials any 6-variable Boolean function can be
sign-represented (Sezener and Oztop 2015).

Higher Order Neurons and Polynomial Sign Representation
Higher order neurons or sigma-pi units are neural models that compute the following
function

f x1; x2; � � � ; xnð Þ ¼ sign
X2n
i¼1

wSi

Y
k2Si

xk

 !
where Si � 1; 2; � � � ; nf g

The full representation capacity of this unit is easily obtained by adopting a highly
symmetrical vector notation for the product term and assignments. This gives raise to
so called Sylvester-type Hadamard matrix Dn (Siu et al. 1995) for n-dimensional
Boolean functions, which sets up a one-to-one mapping between positive real vectors
and solving weights (i.e. polynomial coefficients). Dn comes with handy properties,
such as recursive definition and orthogonality properties (i.e. DnDn ¼ 2nI). We drop
the subscript n when it is clear from the context. Noting that Boolean functions can be
considered as 2n dimensional vectors according to the adopted order, it can be shown
that for a given n-variable BF f (or in vector form f, which we use from now on) all the
solutions are determined with aT ¼ kTdiag fð ÞD where kT ¼ k1; k2; � � � ; k2n½ �T [ 0
(Oztop 2006). This means that for having a higher order neuron represent f with
minimum number of input terms (i.e. monomials), we must find ki > 0 values so as to
have maximum number of zero elements in a. As each element of a is the coefficient of
a unique monomial we often talk of ‘zeroability’ of a monomial.

Definition (Zeroability): A set of monomials ðmz1 ;mz2 . . .;mzr Þ are called zeroable for
a BF f , if there exists a positive vector k such that aT ¼ kTdiag fð ÞD results in zeros at
the positions corresponding the monomials, i.e. az1 ¼ az2 . . . ¼ azr ¼ 0.
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2 Zeroability Patterns of Monomials in the Higher Order
Neuron Representation of Boolean Functions

2.1 Equivalent Classes of Polynomial Boolean Functions

It is known that the transformations 1–5 below do not change the threshold density of a
Boolean function (i.e. the minimum number of monomials that would be sufficient to
sign represent it) (Sezener and Oztop 2015).

1. Negation of input variables (e.g., f (x1, x2, x3) ! f (x1, x2, −x3))
2. Permutation of input variables (e.g., f (x1, x2, x3) ! f (x2, x1, x3))
3. Negation of the output (e.g., f (x1, x2, x3) ! −f (x1, x2, x3))
4. XORing an input variable with other variables (e.g., f (x1, x2, x3) ! f (x1,

x2 ⊕ x3 ⊕ x1, x3))
5. XORing the function with input variables (e.g., f (x1, x2, x3) ! x1 ⊕ x2 ⊕ f (x1,

x2, x3))

These transformations were used in the spectral classification of BFs introduced by
Edwards (1975). The first three of these transformations are more common and usually
called NPN (negation-permutation-negation) transformations. Any combination of
these transformations creates so called equivalence classes over BFs. Since any pair of
functions from an equivalence class can be converted to each other by transformations
1–5, the zeroability properties of the monomials can be studied by looking at one
representative function from each equivalence class. Thus, in this study, we identify
each equivalent class with one of its member function and study the properties of these
functions. A natural labeling system for functions is used as illustrated in Table 1 by
adopting a fixed ordering over the function arguments.

2.2 Numerical Investigations on Monomial Zeroability

Assume that we’re given a Boolean function f and are asked to find a higher order neuron
representation without the monomials mz1 ;mz2 . . .;mzrð Þ. Then the zeroability of these
monomials induces a set of linear equations to be solved with positivity constraints.

Table 1. The function output vector [−1 1−1 1−1 1−1 1] can be mapped (with t(b) = (1−b)/2)
to the binary number 10101010 that is 0xaa in hexadecimal notation.

Arguments Function
x3 x2 x1 value

1 1 1 −1

1 1 −1 1

1 −1 1 −1

1 −1 −1 1

−1 1 1 −1

−1 1 −1 1

−1 −1 1 −1

−1 −1 −1 1
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As aT ¼ kTdiagðf ÞD ¼ kTQ for any kT ¼ k1; k2; � � � ; k2n½ �T [ 0 is a solution, we must
ensure kTR ¼ 0 where R is submatrix of Q composed of columns qz1 ; qz2 . . .; qzr that
correspond to the monomials mz1 ;mz2 . . .;mzr . So we have r equations with 2n positive
unknowns. If no positive k exists to satisfy kTR ¼ 0 then it is concluded that the problem
is infeasible withoutmz1 ;mz2 . . .;mzr . If such k exists, a

T ¼ kTQwill be theweights of the
higher order neuron that represents f. The (difficult) question of interest is to find the
maximum r so as to have kTR ¼ 0 satisfiable. Finding the maximum r for a given BF can
be performed through an easy yet very costly exhaustive search over all the column
subsets of Q (i.e. subsets of system of linear equations 0T ¼ kTQ). This approach can
only be applied to low dimensional problems due to combinatorial explosion of the
number of subsets. Even the help of equivalence classes to reduce the number of BFs
becomes irrelevent after 6 or more variable functions. So, it would be of great value if we
could exploit the smaller (un)feasible subsets of the linear equation system 0T ¼ kTQ to
infer about larger subsets. Towards this end, we have first explored all subsets of linear
equations in three and four dimensions for all functions and obtained a full picture of the
zeroability patterns of all monomial subsets. For this we used the following exhaustive
search algorithm.

Algorithm 1.
1. Input: :function ( vector) 
2. Output: 
    a. zeroable_counter 
    b. zeroable_index_list (number of zeroable subsets, and the list of index sets that achieve this)
3. Initialization: 
    a. Dimension of the problem: 

b. Compute ( Slyvester-type Hadamard matrix)
    c. Potential coeffients of the system of linear equations: 
    d. zeroable_counter[ ]=0;    for all 
    e. zeroable_index_list[ ] ={} for all  
4. for

a. for all -column subset of  ( for 
i. if feasible (check with  Linear Programming)

ii. zeroable_counter( ) = zeroable_counter( )  + 1
iii. add   to the zeroable_index_list( ) list
iv. endif

b. endfor 
    5. if zeroable_counter( ) == 0
            break, since there cannot be anymore zeroable solution

6. end  
7. endfor  
8. return zeroable_counter, zeroable_index_list

3-Variable Boolean Functions: According to adopted equivalence class, there are
essentially three types of 3-variable Boolean functions, i.e. there are only three
equivalence classes. For each of these classes, the number of zeroable subsets as
obtained by Algorithm 1 is shown in Table 2. This zeroability pattern necessarily
covers all the 3-variable BFs since all functions are equivalent to one of these functions
in terms of their zeroability pattern. Note that the first function class (0xaa) covers the
functions that can be represented with single input lines, i.e. those that have minimum
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threshold density equal to 1. So these functions are essentially the monomials them-
selves (e.g. f x1; x2; x3ð Þ ¼ x2x3 or f x1; x2; x3ð Þ ¼ x1)

4-Variable Boolean Functions: According to adopted equivalence class above, there
are essentially only 8 different 4-variable Boolean functions. For each of these classes,
the number of zeroable subsets is shown in Table 3. Again, this result necessarily
reflects the zeroability patterns for all 4-variable BFs.

2.3 Pairwise Zeroability of Monomials from Sign Representations

As introduced before, for a given BF f, a sign representing polynomial or the weights of
a higher order neuron to represent f can be find by an arbitrary choice of k > 0 with

Table 2. Number of zeroable subsets for each function class is given for each subset cardinality

Function
label

1-sized
subsets

2-sized
subsets

3-sized
subsets

4-sized
subsets

5-sized
subsets

6-sized
subsets

7-sized
subsets

8-sized
subsets

0xaa 7 21 35 35 21 7 1 0
0xab 8 21 35 28 0 0 0 0
0xac 8 22 28 17 4 0 0 0
Total 8 28 56 70 56 28 8 1

Table 3. Number of zeroable subsets for each function class is given for each subset cardinality

Function
label

1-sized
subsets

2-sized
subsets

3-sized
subsets

4-sized
subsets

5-sized
subsets

6-sized
subsets

7-sized
subsets

8-sized
subsets

0xaa55 15 105 455 1365 3003 5005 6435 6435

0xab55 16 105 455 1365 3003 5005 6435 6420
0xbb55 16 113 483 1414 2996 4690 5426 4573

0xaba5 16 117 521 1551 3156 4356 4236 3084
0xaaff 16 114 484 1375 2772 4092 4488 3663
0xaba4 16 119 546 1675 3388 4113 3490 2124

0xab12 16 120 560 1740 3492 4077 2910 1425
0xac90 16 120 560 1760 3648 4096 1600 0

Total 16 120 560 1820 4368 8008 11440 12870

Function
label

9-sized
subsets

10-sized
subsets

11-sized
subsets

12-sized
subsets

13-sized
subsets

14-sized
subsets

15-sized
subsets

16-sized
subsets

0xaa55 5005 3003 1365 455 105 15 1 0
0xab55 4900 2688 840 0 0 0 0 0

0xbb55 2724 1085 259 28 0 0 0 0
0xaba5 1684 672 144 0 0 0 0 0
0xaaff 2200 946 276 49 4 0 0 0

0xaba4 928 256 32 0 0 0 0 0
0xab12 400 61 6 0 0 0 0 0

0xac90 0 0 0 0 0 0 0 0
Total 11440 8008 4368 1820 560 120 16 1
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aT ¼ kTdiagðfÞD where a is weights of the higher order neuron (or the coefficients of
the sign representing polynomial). Fourier-Motzkin elimination is a procedure for
eliminating the variables of a given inequality system and thus can be used to assess the
infeasibility of the system (Chandru 1993). In particular, FM elimination can be applied
on a selected set of columns C ¼ fci1 ; ci2 ; . . .cirg of Q ¼ diagðfÞD to yield a QFM

which can be easily converted to a sign-representation where mi1 ;mi2 ; . . .;mir are zero
by taking the row sum of QFM ðaT ¼ 1TQFMÞ (Oztop 2006). To find a minimal sign
representation then one needs to find a maximum cardinality index set C such the FM
elimination zeroes the selected columns. However searching over index sets is of
O 22

n� �
running time complexity for n-variable BFs. Therefore, it would be very

beneficial in terms of computational load if smaller index sets can be used to construct
larger zeroable index sets. To this end we have obtained this result:

Theorem: For any n-variable BF f, let Q ¼ diagðfÞD and take any three columns from
Q, if all columns cannot be zeroed with FM then there must be a pair of columns from
those three that cannot be zeroed by FM.

Proof: We prove this by exhaustive search on all possible unique r � 3 matrices with
1� r� 8. First we make this simple observation.

Observation: Note that although the space of 8� 3 matrices with elements �1 appears
to be large ð224Þ, when duplicate rows are eliminated and the row order is disregarded

there can be only 255 possible unique matrices; to be concrete
8
r

� �
many r � 3 sized

unique matrices is possible with 1� r� 8 (i.e. the non-empty subset of all possible
3-bit patterns).

Assume now, we try to eliminate any 3 columns from Q ¼ diagðfÞD using FM
elimination. The eliminability of the columns is equivalent to the infeasibility of
Q0a[ 0 where Q0 is a 2n � 3 sub-matrix of Q. As Q0 will at most have 8 unique rows,
the infeasibility of Q0a[ 0 is equivalent to the infeasibility of Ra[ 0 where R is a
sub-matrix of Q0 composed of unique rows of Q0. Therefore regardless of problem
dimension n, we need to check only a small number of possible R matrices. Due to the
observation above, there can be only 255 many such R matrices. So, checking the
correctness of the claim of the theorem for all possible R matrices will complete the
proof. We do this by doing the search on a computer with the following algorithm:

Algorithm 2   
1. claim = true; 
2. for all possible unique made up of (of size  where ) do
    a. Apply FM elimination to the columns of 
    b. if FM cannot eliminate all 3-columns 

i. For each pair of columns from , apply FM elimination 
ii. If any pair can be eliminated, a counterexample is found so set claim= false

    c. endif
3. endfor
4. return claim
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The execution of the code indeed does not find any counterexample (i.e. Claim is
returned as true) thus the theorem is proven.

Corollary 1: For any n-variable BF, take any three-element monomial set M. If all
2-subsets of M can be zeroed then so M must be zeroable.

Proof: Assume the contrary, i.e. M cannot be zeroed; but then due to Theorem, not all
2-subsets of M can be zeroed, a contradiction.

Corollary 2: For a BF f , if a sign representation cannot be constructed without the
monomials M ¼ m1;m2;m3f g then if follows that f cannot be sign-represented without
either m1;m2f g or m2;m3f g or m1;m3f g.
Proof. Given the premise assume the contrary case that sign-representations are
possible without any of the 2-subsets of M. This means that all 2-pair subsets of M are
zeroable, which implies the zeroability of M due to Corollary 1. Thus a sign repre-
sentation without m1;m2;m3f g can be constructed. A contradiction.

It is tempting to ask whether this kind of statement be made for more number of
monomials. Unfortunately, this appears to not work as we found counterexamples for 4
and 5 variable Boolean functions. For example consider, the 4-variable Boolean
function f defined by f ðx1; x2; x3; x4Þ ¼ ðx1 AND x2ÞXOR ðx3 AND x4Þ which has label
0x111e in hex and (0001000100011110 in binary), and happens to be a Bent function.
If one is not allowed to use the monomials M ¼ fx1; x2; x1x3; x2x3g then it is not
possible to construct a sign representation for f; however it is possible to construct sign
representations when one of the elements in M is permitted in the sign representation1.

Pair-Wise Zeroability and Incompatibility Graph
We have noted that for finding a higher order neuron representation with minimal
number of input lines (or a minimal sign representation) for a n-variable BF one needs
to search over all possible monomial subsets. It may be possible to develop methods to
speed up this process by looking at pairwaise zeroability for some Boolean function
classes. We define a formal graph based on the notion of non-zeroability.

Definition (Incompatibility Graph). For an n-variable BF f, define the graph Gf ¼
V ;Eð Þ with vertices V and edges E. Each vertex is identified by a monomial of the form
mi ¼

Q
k2Si xk where Si � 1; 2; � � � ; nf g, and E contains edge eij if only if mi andmi

cannot be zeroed together (i.e. there does not exist k[ 0 such that k mi mi½ � ¼ 0
where mi andmj are the vector representations of m1 andm2).

With this definition we can give this simple Lemma.

Lemma. Given an n-variable Boolean function f, 3-vertex independent sets of Gf are
always zeroable.

1 Example sign representation with x1; x2; x1x3f g absent: f(x1,x2,x3,x4) = 689 − 689x1x2 + 689x3 +
1056x2x3 – 689x1x2x3 + 689x4 + 977x1x4 + 977x2x4 − 689x1x2x4 − 689x3x4 − 977x1x3x4
− 977x2x3x4 + 689x1x2x3x4.
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Proof. In an independent set any two vertex is not connected; therefore, any to
monomials in this set can be zeroed due to the definition of Gf. Thus the result follows
from Corollary 1.

The above Lemma suggest that when searching for zeroable monomial subsets we
should start from independent sets, and avoid dense subsets such as cliques. The
problems of finding maximum independent set and maximum clique problems are
computationally equivalent. If S is a maximum independent set in a graph G then it will
be a maximum clique in the complementary graph of G. In general, the problem of
finding maximum independent sets (and so is finding maximum cliques) is np-hard but
there exists several efficient heuristic algorithms for solving these problems (e.g.
Busygin et al. 2002). Consider the graph Gf for 0xaaff shown in Fig. 1 (left); it has a
4-clique (and the maximum independent set size is 12), meaning that the monomials
1; x1; x4; x1x4f g cannot be eliminated together. It turns out that the minimum monomial

sign representation for this function can be constructed from this set, namely by taking
3 out of these 4 monomials (shown by computer search). Looking at the function
incompatibility graph of 0xaba5 (Fig. 1, right), we see that monomial x1x3 cannot be
zeroed with three others, although they do not form a clique. In this case, it turns out
that all minimum monomial sign representations must include x1x3 and a two-subset
from x1; x1x4; x1x3x4f g plus two other monomials (shown by computer search). Overall
these observations suggest that incompatibility graph contains important hints on the
structure of the minimal sign representation. A final note on the incompatibility graph
is that all the Boolean functions from a single equivalence class as defined via the
transformations 1–5 of Sect. 2.1 have isomorphic incompatibility graphs. However, the
reverse of this remark is not true.

3 Conclusion

In this paper our efforts for finding algorithms to construct low fan-in higher order
neuron representations of Boolean function are presented. In contrast to the earlier
works, we try to find out the indispensability of a group of input lines, i.e. monomials
together under a given BF. It seems that existence of certain monomials say, set A allow
the elimination of others set B, but absence of A + B renders the representation
impossible. This is curious because for example for a given BF their projection on the
monomial vectors (i.e. the spectral coefficients) does not give a clue on which

Fig. 1. Incompatibility graphs of two example 4-variable Boolean functions is shown

On the Co-absence of Input Terms in Higher Order Neuron 369



monomials are ‘connected’ in this sense. Especially this is more so for Bent functions
whose spectral coefficients have the same magnitude, and which seem to emerge in
complex forms as dimension increases (e.g. see Mesnager 2016). To this end, we first
investigated low dimensional ‘simultaneous zeroability’ patterns. It is trivially true that
if A is set of monomials that cannot be zeroed, then for any super set B of A cannot be
zeroed. What is desired, is something in the other direction; i.e. to be able to infer the
zeroability of larger sets from smaller ones. In fact, with numerical investigations in
lower dimension (3 and 4) we have found that the zeroability of three monomial pairs
that mutually intersect can be used to infer the zeroability of the union of them. We then
questioned whether this can be a general pattern for all n-variable BFs. With an ele-
mentary proof, indeed we could prove this general result. Finally, to visualize the
monomial pair non-zeroability we introduced the notion of incompatibility graph for a
BF which may be used to find zeroable monomial candidates for low fan-in represen-
tations of BFs. Intriguingly, all the functions from a single equivalence class (as defined
in the text) must necessarily have isomorphic compatibility graphs. However, the
reverse is not true: isomorphic graphs does not necessarily map to a single equivalence
class. This suggests that compatibility graph can be used to classify the equivalence
classes into different types. Future work should be directed towards how to utilize the
incompatibility graph and enrich it for obtaining compact higher order neuron repre-
sentations (i.e. sign-representations with small number of monomials) for Boolean
functions. Furthermore, the identification of the Boolean functions that are amenable to
fast minimal sign-representation construction may be also a fruitful research direction.
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Abstract. Inspired by the data fusion principle, we proposed a genetic
approach to fusion of algorithms for CS to improve reconstruction per-
formance. Firstly, several compressive sensing reconstruction algorithms
(CSRAs) are executed in parallel to provide their estimates of the under-
lying sparse signal. Next, genetic algorithm is used to fuse these estimates
for achieving a new estimate that is better than the best of these esti-
mates. The proposed approach provides flexible design of fitness function
and mutation strategy of genetic algorithm, and various participating
CSRAs can be used to recover the sparse signal. Experiments were con-
ducted on both synthetic and real world signals. Results indicate that the
proposed approach has three advantages: (1) it performs well even when
the dimension of measurements is very low, (2) reconstruction perfor-
mance is better than any participating CSRAs, and (3) it is comparable
or even superior to other fusion algorithm like FACS.

Keywords: Compressive sensing · Reconstruction algorithm · Data
fusion principle · Genetic algorithm

1 Introduction

For compressive sensing (CS), lots of sparse reconstruction algorithms have been
proposed in recent years [4]. Because the performance of those algorithms is
associated with several factors like sparsity level, dimension of measurements
and statistical characteristics of the underlying sparse signal, so that estimates
of compressive sensing reconstruction algorithms (CSRAs) differ from each other
due to their different strategies [5,7,11].

According to data fusion principle, the relevant information from two or more
data sources can be combined in intelligent ways into a single one that provides
a more accurate description than any of the individual data sources [10]. In CS
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framework, there are two different ways to get multiple estimates to be fused. The
first way is using a same CSRA to obtain multiple estimates via different sparse
basis [9,15]. The other way is to obtain multiple estimates by using different
CSRAs [1–3]. In [1], Amba et al. developed a fusion based scheme termed fusion
of algorithms for compressed sensing (FACS) and it has been shown that fusion
of the estimates of a set of CSRAs result in an estimate better than the best one
in this set.

Since the work by Ambat et al. [1,2] used only a simple least-squares based
approach to identify true elements of union of support sets estimated by partic-
ipating CSRAs, here we try to propose a new fusion strategy for further perfor-
mance improvement. In this paper, we introduce a genetic approach to the fused
based scheme which is referred to as genetic fusion of reconstruction algorithms
(GFRA) for seeking out more true elements of union set than prior works did,
especially at small compression ratio. Genetic algorithm (GA) is commonly used
to generate high-quality solutions to optimization and search problems by rely-
ing on bio-inspired operators such as mutation, crossover and selection [14]. In
GFRA, the participating CSRAs provide estimates of the sparse signal indepen-
dently in the first stage and then these estimates are fused by genetic algorithm
in the second stage. In GFRA, individuals, fitness function and mutation strat-
egy are customized for the procedure of genetic algorithm.

The rest of this article is organized as follows. In Sect. 2, we briefly introduce
CS theory. And then we prove that the union of support sets is likely to contain
more number of true elements than any individual support set in Sect. 3. In
Sect. 4, GFRA is proposed to improve reconstruction performance. Experiments
were conducted on both synthetic and real world signals, and results are analyzed
in Sect. 5. Finally, we draw our conclusions in Sect. 6.

2 Compressive Sensing Theory

Compressed sensing is a signal processing theory for efficiently acquiring and
reconstructing a sparse signal, by finding solutions to underdetermined linear
systems [6,8].

Consider a linear system of equations

y = Φx + n (1)

where x is an N × 1 sparse signal and y is the M × 1 (M � N) measurement.
Φ is an underdetermined M × N measurement matrix and n is the additive
measurement noise. The problem is to estimate the signal x , subject to the
constraint that x is a K-sparse signal (K ≤ M). K-sparse implies that only K
elements of x are non-zero and the rest are zero, i.e. ||x ||0 = K. Sparsity level
K plays a significant role in CS reconstruction, for this reason, many CSRAs
such as OMP [16], CoSaMP [13], etc. usually require a prior value of K. The
estimate of a CSRA consists two important components: (1) the indices of non-
zero elements (known as support set denoted by S, and |S| = K which denotes
its cardinality), and (2) the magnitudes of the non-zero elements. Estimates of
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different CSRAs have different support sets, and a better estimate of the support
set leads to a better CS reconstruction performance.

3 Union of Support Sets

As mentioned before, the support sets estimated by different CSRAs may contain
different subsets of the true support set. Hence the union of these support sets
is likely to contain more number of true elements than any individual support
set [1].

Consider a Gaussian sparse signal (GSS) with length of N = 500 and sparsity
level of K = 20. The GSS is measured by a Gaussian random measurement
matrix at different ratio Ratio = M/N = 0.12, 0.14, 0.16 and 0.18. And then
we employ OMP algorithm and SP algorithm [7] to recover this sparse signal
independently. The true support set of sparse signal is denoted by St and |St| =
K. Support set provided by OMP is denoted by Ŝo, and the set of true elements
in Ŝo can be obtained by calculating an intersection Ŝt

o = Ŝo ∩ St. Similarly, we
use Ŝs and Ŝt

s = Ŝs ∩ St to represent support set and the set of true elements
in Ŝs, respectively. Let Ŝt

u denote the true elements in the union of the support
sets, we have Ŝt

u = Ŝt
o ∪ Ŝt

s. According to the assumption that the union set is
likely to contain more number of true elements than any individual support set,
we have |Ŝt

u| ≥ max{|Ŝt
o|, |Ŝt

s|} and |Ŝt
u| ≤ K. Tests were carried out Nt = 1000

times to reduce the effects of the Gaussian random measurement matrix. The
average values of |Ŝt

o|, |Ŝt
s| and |Ŝt

u| at all range of Ratio are illustrated in Fig. 1.
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Fig. 1. Average number of true elements estimated by OMP, SP and the union set

From Fig. 1, we can find that the number of true elements in union set is
closer to the actual value K than that of any individual support set at all range
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of Ratio. For exemple, at Ratio = 0.16, average |Ŝt
o| is 12.4 and average |Ŝt

s| is
15.2, while the average number of true elements in the union set is 16.7. The
results shown in Fig. 1 prove that union set always contains at least as many
true elements as the best individual support set.

4 Genetic Fusion of Reconstruction Algorithms

As mentioned before, we can achieve a better CS reconstruction performance if
we can identify more true elements of the union set. In this section, we introduce
a genetic approach to fusion of algorithms which is referred to as genetic fusion
of reconstruction algorithms (GFRA) for identifying as many true elements as
possible. The proposed GFRA has two main algorithmic stages. In the first
stage, several participating CSRAs are executed in parallel, independently. Any
CSRA can be used in GFRA scheme. Then, in the second stage, the support
sets estimated by the participating CSRAs are combined together to form a
new union set and genetic algorithm is adopted to identify true elements. Once
the true indices of non-zero elements are obtained by genetic algorithm, the
magnitudes of the non-zero elements can be efficiently calculated accordingly.

4.1 Obtaining Union Set

For i-th CSRA used by GFRA scheme, the recovered sparse signal is denoted
by x̂ i and support set of x̂ i is denoted by Ŝi = supp(x̂ i). As we employ P ≥ 2
different CSRAs in the scheme, a union of P support sets, denoted by Ŝu can be
obtained through Ŝu = ∪P

i=1Ŝi. The number of elements in union set is denoted
by |Ŝu| = L > K. We assume that all true elements are contained in union set,
so that we have St ⊂ Ŝu.

4.2 Genetic Algorithm in GFRA Scheme

After obtaining the union of support sets, we try to find out all of the true
elements in the union set by using genetic algorithm (GA).

Population and Individuals. Firstly, we randomly generate a population
Nind = 80 individuals for initialization of GA. d j denotes the j-th individual
in the population. Individuals in GA are represented by the binary alphabet
{0, 1}. As designed in this paper, individuals are encoded with L bits. Figure 2
illustrates the transformational rule between an individual and a support set.
We can see that an individual represents a support set and each one support
set is a subset of the union set. We use Ŝd

j to denote the support set that is

corresponding to d j , and |Ŝd
j | = K.
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Fig. 2. The transformational rule between an individual and a support set

Objective and Fitness Function. An objective function is used to provide
a measure of how individuals have performed and a fitness function is normally
used to transform the objective function value into a measure of ralative fit-
ness. To calculate the fitness value of each individual, we should transform the
individuals into support sets according to the transformational rule (see Fig. 2).

An objective value of each support set can be obtained by

f(d j) = ‖y − ΦŜd
j

Φ†
Ŝd
j

y‖22 (2)

where Φ†
Ŝd
j

is the pseudo-inverse of ΦŜd
j

. ΦS denotes the column sub-matrix

of where the indices of the columns are the elements of the set S. In the case
of (2), the most fit individuals will have the lowest numerical value of objective
function. The objective value is non-negative, so that we can give the most fit
individuals the biggest fit value according to the fitness function (3).

F (d j) =
1

f(d j)
∑Nind

j=1
1

f(dj)

(3)

Once individual has been assigned a fitness value, it can be selected from the
population with the probability psi = F (d j) to conduct crossover. In our paper,
the typical roulette wheel selection method and multi-point crossover method
were used for selection and crossover, respectively.

Mutation Strategy. In our problem, a common used mutation strategy is
unsuitable. After the process of crossover, kj = |Ŝd

j | would be smaller than
sparsity level K, equal to K or bigger than K. To keep the value of kj equal
to K, we have to adopt a new mutation strategy of GA. The new matution
strategy used here obeys three rules: (1) when kj < K, K−kj random 0 s would
be replaced by 1 s, (2) when kj = K, a random 0 and a random 1 would swap
their positions with a mutation probability pma, and (3) when kj > K, kj − K
random 1 s would be replaced by 0 s. The mutation probability pma is set to
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0.2 in our paper. This mutation strategy can ensure that each one individual
includes K 1 s, which means that the number of elements in each support set is
equal to K.

4.3 Reconstruction

As the fitness values of a population may remain static for a number of genera-
tions before a superior individual is found, so that after a pre-specified number
of generations which we refer as number of iteration Niter, genetic procedure
will be terminated. The best individual of the newest generation was chosen and
transformed to a candidate support set Ŝgene. In [1], FACS obtained the final
support set Ŝfacs = supp(x̂K

Ŝu
), where x̂K

Ŝu
is the best K-sparse approximation

of x̂ Ŝu
. xS denotes the sub-vector formed by those elements of whose indices are

listed in the set S.
As we know that a support set can be transformed to an individual in genetic

algorithm, so that we compare the fitness value of Ŝgene with that of Ŝfacs to
find the best true support set of x̂ by (4).

Ŝt =
{ Ŝgene ifF (Ŝgene) ≥ F (Ŝfacs)

Ŝfacs Otherwise
(4)

We know that the recovered sparse signal x̂ is consist of non-zeros values and
zero values, and we can have non-zero values x̂ Ŝt through (5).

y = ΦŜtx Ŝt + n (5)

At last we have the true support set Ŝt and reconstruction of GFRA x̂ . Note
that, any CSRA without any modification can be used as a participating algo-
rithm in GFRA as same as FACS. The number of CSRAs is not limited and the
performance of GFRA mostly depends on the information that is contained in
Ŝu and Ŝt. Those true elements that are not in the union set can not be found
due to the fusion strategy of GFRA. Experimental results indicated that when
the Ratio is small, GFRA performed better than FACS due to that GFRA can
identify more true elements than FACS did.

5 Experiments

We evaluated the performance of GFRA using GSS (synthetic signal) and ECG
signals (real-world signals). CSRAs like SP, OMP, and BP [17] are adopted
as participating algorithms. Since that BP would not estimate the support set
directly, so that we chose the indices of the K largest magnitudes of signal as
the estimated support set. An average error ratio (AER) which is defined as
AER =

∑Nt

i=1 ‖x i‖22/
∑Nt

i=1 ‖x i − x̂ i‖22 was used to evaluate the reconstruction
performance. x i and x̂ i denote the original and recovered signal in i-th trial, and
Nt = 10000 was the total number of trials in the experiments. Niter in genetic
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algorithm was set to 20 for all experiments. When SP and OMP were used as
participating algorithms, the reconstruction results of GFRA and FACS were
denoted as GFRA (SP, OMP) and FACS (SP, OMP), respectively. When BP
was also added to the group of participating algorithms, GFRA (SP, OMP, BP)
and FACS (SP, OMP, BP) were used to denote the corresponding results.

5.1 Experiment on GSS

As the experiment in section (3), we conducted experiment using GSS to test
the signal reconstruction for small values of Ratio in GFRA. We followed the
simulation setup used in Sect. 5 of [1]. The dimension of GSS was N = 500
and sparsity level was K = 20. All of K non-zero values were chosen from
N(0, 1) independently and randomly located. The signal to measurement noise
ratio (SMNR) is set to 20 dB. The dimension of measurements was M = N ×
Ratio(0.14 < Ratio < 0.24). Figure 3 shows the AER results for GSS. From
Fig. 3, BP performed better than SP and OMP at small Ratio, while SP and
OMP outperformed BP at big Ratio. At all range of Ratio, GFRA gave a better
result than the best CSRA. So that when the prior knowledge of sparse signal is
unknown, GFRA can also have a good performance. The best improvements were
obtained at small Ratio because the difference of the numbers of true elements
in the union set and individual support sets was biggest at that time. When
Ratio was big enough, the values of GFRA (SP, OMP) and GFRA (SP, OMP,
BP) would be the same as that of the best participating CSRA.
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Fig. 3. The AER results for GSS
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5.2 Experiment on ECG Signals

We compare the performance of GFRA with FACS to show the advantages of
our proposed method. We conducted experiments on ECG signals selected from
MIT-BIH Arrhythmia Database [12]. ECG signals are compressible and good for
sparse decompositions. We processed N = 1024 samples of ECG and assumed the
sparsity level K = 128. Compression ratio is from 0.3 to 0.4 with an increments
of 0.02. The performance comparison of GFRA with FACS in terms of AER is
shown in Fig. 4.
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Fig. 4. The performance comparison of GFRA with FACS on ECG signals

GFRA (SP, OMP) gave 0.9 dB and 0.1 dB AER improvement over FACS (SP,
OMP) at Ratio = 0.3 and Ratio = 0.36, respectively. Similarly, GFRA (OMP,
SP, BP) further improved the performance of FACS (OMP, SP, BP). It may be
noted that impovement of GFRA over FACS is getting smaller as Ratio becomes
bigger. That’s to say, GFRA and FACS resulted in an almost similar AER when
Ratio ≥ 0.36.

6 Conclusion

In this paper, GFRA is proposed to fuse the support sets estimated by several
CSRAs and leads to a better compressive sensing reconstruction performance.
Participating CSRAs in GFRA need not require any modification and any CS
reconstruction algorithms can be used. GFRA also results in seamless scalability
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and robustness, because genetic fusion strategy can be replaced with other well
designed fusion strategies to obtain advanced performance. From the experimen-
tal results, GFRA not only shows the advantages over participating CSRAs, but
also outperforms other fusion algorithm like FACS.
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Abstract. Pipeline transportation plays a significant role in modern industry,
and it is an important way to transport many kinds of oils and natural gases.
Industrial oil pipeline leakage will cause many unexpected circumstances, such
as soil pollution, air pollution, casualties and economic losses. An extreme
learning machine (ELM) method is proposed to detect the pipeline leakage
online. The algorithm of ELM has been optimized based on the traditional
neural network, so the training speed of ELM is much faster than traditional
ones, also the generalization ability has become stronger. The industrial oil
pipeline leakage simulation experiments are studied. The simulation results
showed that the performance of ELM is better than BP and RBF neural net-
works on the pipeline leakage classification accuracy and speed.

Keywords: Pipeline leak detection � ELM � Neural networks � Signals
classification

1 Introduction

In modern industry society, pipeline transportation is one of the main methods of
transporting products like gas, oil products and so on, which has played an important
role in the protection of energy demand of industrial and social and economic devel-
opment. Since the day that pipeline transportation technology was invented, pipeline
leakage has always been a big problem which consistently bothered everyone who
involved in this field. After the pipeline leakage, the petroleum products will not only
bring to the enterprise loss, but also will pollute the environment. So the pipeline leak
detection technology has an important role of protecting the natural environment and
people’s life safety. At the same time, the development of pipeline leak detection
technology could reduce the economic loss, enhance the competitive ability
of enterprises.

As one of the most popular methods of pipeline leak detection, negative pressure
wave method (NPW) is very convenient and effective [1]. Thus this paper also uses the
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negative pressure wave method for pipeline leak detection. An extreme learning
machine method (ELM) is proposed to detect the pipeline leakage online. ELM is a
kind of single-hidden layer feedforward neural networks algorithm. ELM can randomly
select the number of hidden layer neurons and types of them in the network, to
construct different learning algorithms. After randomly selecting the weights of input
layer and hidden layer neurons deviation, to obtain the weights of hidden layer output
by analysing. ELM algorithm has a lot advantages such as great generalization ability,
fast learning speed [2, 3]. The experiments are based on industry pipeline transportation
data, the sampling frequency of the pipe pressure locale acquisition signals is 20 Hz,
from 15 h of continuous signals. The acquisition signals contains small leakage signals,
normal signals and valve adjusting signals.

Back propagation (BP) is a kind of multilayer feedforward networks that has been
trained by error back propagation algorithm, it is one of the most widely used neural
network models nowadays. The topological structure of BP neural network model
contains input, hide layer, and output layer. The learning process composed by forward
propagating of signals and backward propagating of error [4, 5].

Radial basis function (RBF) methods are fundamental tools for interpolating
scattered data especially in multidimensional spaces. Its excellent function approxi-
mation capability makes it widely used in pattern recognition, economic forecasts, and
other fields [6, 7]. So in this paper, we compared the classification accuracy and speed
of ELM with the BP, RBF methods in the simulation experiments.

This paper is organized as follows. In Sect. 2, we introduce the ELM algorithm. In
Sect. 3, the performance of the ELM is compared with BP, RBF on the mixed pressure
signals classification of oil pipeline through negative pressure wave theory. Finally, the
conclusion is given in Sect. 4.

2 Extreme Learning Machine Algorithm

The model of the single-hidden layer feedforward neural networks is shown in the
Fig. 1. Output of single-hidden layer feedforward neural networks (SLFNs) which has
N̂ hidden layer neurons is:

fN̂ðxÞ ¼
XN̂
i¼1

biGðwi; bi; xÞ; x 2 Rn;wi 2 Rn; bi 2 Rm ð1Þ

In formula (1), Gðwi; bi; xÞ is the ith hidden layer neutron corresponding output of

input x. b ¼ bTi1; b
T
i2; � � � ; bTim

� �T
is the linking weight vector between ith hidden layer

neutron and output neutron.
While activation function gðxÞ is the additive neutron, the corresponding output of

ith hidden layer neutron is:

G wi; bi; xð Þ ¼ gðwi � xþ biÞ; bi 2 R ð2Þ
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In formula (2), wi ¼ wi1;wi2; � � � ;win½ �T is the weight vector between ith hidden
layer neutron and input neutron, bi is the error of ith hidden neutron.

While activation function is the RBF neutron, the corresponding output is:

G wi; bi; xð Þ ¼ gðbi x� wik kÞ; bi 2 Rþ ð3Þ

In formula (3), wi is the kernel of radial basis function and bi is the influencing
factor (width), Rþ is positive real numbers set.

To N any input samples ðxj; tjÞ, xj ¼ xj1; xj2; � � � ; xjn
� � 2 Rn,

tj ¼ tj1; tj2; � � � ; tjm
� � 2 Rm, given N̂ hidden neutron and activation function G wi; bi; xð Þ,

there must be the presence of bi;wi; bi, to make SLFNS approach N sample points
without error.

XN̂
i¼1

biG wi; bi; xj
� � ¼ tj; j ¼ 1; 2; � � � ;N ð4Þ

Formula (4) could also be written by matrix form:

Hb ¼ T ð5Þ

In formula (5),

Hðw1; � � � ;wN̂ ; b1; � � � ; bN̂ ; x1; � � � ; xNÞ ¼
G w1; b1; x1ð Þ . . . G wN̂ ; bN̂ ; x1

� �

..

. . .
. ..

.

G w1; b1; xNð Þ � � � G wN̂ ; bN̂ ; xN
� �

0
B@

1
CA

N�N̂

b ¼ bT1 ; � � � ; bTN̂
� �T

N̂�m
T ¼ tT1 ; � � � ; tTN

� �T
N�m

Fig. 1. Single-hidden layer feedforward neural networks model
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H is the hidden layer output matrix of this neural network. The ith column of H is
the corresponding output of ith hidden layer neutron of input x1; x2; � � � ; xN .

For a single hidden layer forward neural network, ELM is available for any infi-
nitely differentiable activation function, thereby expand the choice space of forward
neural network activation function. ELM is different from the traditional function
approximation theory, the input layer weight wi and the hidden layer error bi could be
chosen randomly. To a feedforward neural networks, during network training, it’s not
necessary to adjust the input layer weight value or hidden layer error, since those
parameters had been determined and network training started, hidden layer output
matrix H keeps invariant.

We may summarize the ELM algorithm as:
Given a training sample set xj; tj

� �jxj 2 Rn; tj 2 Rm; j ¼ 1; � � � ;N� �
, activation

function g xð Þ, the number of hidden neutron is N̂.

Step 1: randomly set the input layer weight wi and error bi, i ¼ 1; � � � ; N̂.
Step 2: compute the hidden layer output matrix H.
Step 3: compute the output layer weight b, b̂ ¼ H þ T ; T ¼ t1; � � � ; tN½ �T . H þ is the

Moore-Penrose generalized inverse of H.

3 Simulation Experiment

3.1 Industrial Oil Pipeline Leakage Detection System

The diagram of the industrial oil pipeline leakage detection system is shown in Fig. 2
and the sample of the negative pressure signals is shown in Fig. 3. In the Fig. 2,

Fig. 2. Diagram of the industrial oil pipeline leakage detection system
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x: Distance between upstream detection station and leakage point;
L: Distance between upstream detection station and downstream detection station;
a: Speed of negative pressure wave;
v0: Speed of liquid;
Dt: Time difference between upstream and downstream receiving the leakage signals.

It can be concluded:

x
a� m0

� L� x
aþ m0

¼ Dt ð6Þ

Thereby it can be concluded:

x ¼ 1
2a

L a� m0ð Þþ a2 � m20
� �

Dt
� � ð7Þ

In this section, we use the negative pressure wave theory to judge the leakage
exiting or not. Normally, there are 3 kinds of signals constitute the oil pipeline pressure
signals, including small leakage signals, normal signals, valve adjusting signals. In this
paper, we make a simulative pipeline leakage experiment as follows:

Total length of pipeline: 67.3 km from upstream station A to downstream station B;
Freight volume of pipeline: 900–1400 m3/h; Output pressure of station A: 1.0 Mpa;
Input pressure of station B: 0.4 Mpa; The pipeline leakage point located in where was
42.2 km away from station A. From 13:00 to 18:00 in one day, we drained oil in
simulative pipeline leakage point 6 times, amount of leaking oil are 37.9 tons. By
formula (7), it’s obviously that Dt is the most important variable, other variables are
much easier to obtain. This paper use 3 kinds of algorithm to detect the leaking
moment, to obtain a preciser Dt, thereby the leakage point can be located precisely.

Fig. 3. Negative pressure signals
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3.2 Simulation Experiment Results

We make experiments based on MATLAB 2015b, the sampling frequency of the pipe
pressure locale acquisition signals is 20 Hz, from 15 h of continuous signals, there were
extracted by the extraction width of 15000 to 200 groups of signals, and the feature
values were extracted by the formulas of the signal characteristic, there were totally
extracted 8 kinds of feature values, which has formed a 200 � 8 characteristic matrix.

And the feature values were extracted by the formulas of the signal characteristic,
there were totally extracted 8 kinds of feature values, including mean value, variance,
standard deviation, peak value, root mean square value, mean square amplitude, margin
factor, kurtosis factor, which has formed a 200 � 8 characteristic matrix to be the
experimental database. We use the former 120 vectors to form training set, the latter 80
vectors to form testing set. Both sets contain 3 kinds of signals and there is no two same
vector exits in both sets. In this paper, we did 10 times repeated experiments, obtained
the average results after calculating.

Experimental results based on the BP, RBF and ELM methods are shown in the
Table 1 and Figs. 4 and 5. Obviously, as it is showed in Fig. 5 and Table 1, ELM is
better in prediction of testing accuracy than other 2 kinds of algorithms, it only has 4
error which mistakenly regards a leakage situation as non-leakage situation. The BP
and RBF are not as much good as ELM, they have 8 errors separately. In those 8 errors,
BP and RBF both mistakenly regards 4 leakage situations as non-leakage situations,

Table 1. Data comparison of 4 kinds of algorithms

Algorithm
type

Testing
accuracy

Test
amount

Error
amount

Training
time/s

Testing
time/s

Total
time/s

BP 90.00% 80 8 1.4040 0.1092 1.5132
RBF 90.00% 80 8 0.9360 0.5148 1.4508
ELM 95.00% 80 4 0.1248 0.0312 0.1560
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Fig. 4. ELM prediction of training set
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and regards 4 non-leakage situations as leakage situations. ELM is also fast, its training
time and testing time are both much shorter than the others, the total time of ELM is
only 0.1560 s.

4 Conclusion

In this paper, we use the BP, RBF, ELM methods to analyze the pipeline pressure
mixed signals for leakage detection through the negative pressure theory. The acqui-
sition signals contain small leakage signals, normal signals and valve adjusting signals.
The experimental results show that, compared with BP, RBF, the method of ELM has a
higher testing set classification accuracy and a much shorter total classification time,
ELM is much more suitable for industrial pipeline leak detecting.
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Abstract. Audio source separation from a monaural mixture, which is
termed as monaural source separation, is an important and challenging
problem for applications. In this paper, a monaural source separation
method using convolutional neural network in the time domain is pro-
posed. The proposed neural network, input and output of which are
both time-domain signals, consists of three convolutional layers, each of
which is followed by a max-pooling layer, and two fully-connected layers.
There are two key ideas behind the time-domain convolutional network:
one is learning features automatically by the convolutional layers instead
of extracting features such as spectra; the other is that the phase can
be recovered automatically since both the input and output are in the
time domain. The proposed approach is evaluated using the TSP speech
corpus for monaural source separation, and achieves around 4.31–7.77
SIR gain with respect to the deep neural network, the recurrent neural
network and nonnegative matrix factorization, while maintaining better
SDR and SAR.

Keywords: Monaural source separation · Convolutional neural net-
work · Deep learning

1 Introduction

Monaural source separation is a fundamental and important problem in the
field of speech processing. It could be a previous procedure to some advanced
speech applications. For instance, separating a speech from background noise
can improve the performance of speech recognition [10], and separating a music
from singing voice can enhance the accuracy of chord recognition [1]. However,
monaural source separation is difficult since it is an underdetermined inverse
problem.

Nonegative matrix factorization (NMF) based method [5] decomposes the
amplitude of time-frequency spectrogram to nonegative bases and actives.
c© Springer International Publishing AG 2017
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For monaural source separation problem, a NMF-based method learns the dictio-
nary of each sources using train data firstly, and then separates the real mixture
by fixing the base to the dictionary [8].

Recently, a number of end-to-end methods based on the deep neural net-
work (DNN) were proposed to solve the monaural source separation problem.
Wang et al. introduced DNN to perform binary classification for speech sep-
aration [12] and suggested that the ideal ratio mask (IRM) should be pre-
ferred over the ideal binary mask (IBM) in terms of speech quality [11]. Huang
et al. [2,3] used DNN and the recurrent neural network (RNN) to minimize
the reconstruction loss of the spectra of two premixed speaking’s by embedding
the IRM into the loss function. Wang and Wang proposed joint training with
an inverse fast Fourier transform (IFFT) layer to reconstruct the time-domain
signal directly [13]. Williamson et al. [14] proposed a framework for performing
monaural speech separation in the complex domain and showed that enhancing
of the phase spectrum of noisy speech leads to perceptual quality improvements.

All the mentioned DNN-based methods used the time-frequency representa-
tion as the input of the networks. In other words, features, e.g. short time Fourier
transform coefficients and Mel Frequency Cepstrum Coefficients, were extracted
firstly and then were passed to the neural network [2,13].

Differing from above approaches, in this paper, we explore the convolutional
neural network (CNN) with time-domain audio signals as the inputs, which
is referred to as time domain-CNN for short, for monaural speech separation.
There are two key ideas behind the time domain-CNN: (1) it can learn features
automatically by convolutional layers of CNN instead of extracting particular
features manually, and (2) it does not need to deal with the phase recovery since
both the input and output are time-domain signals.

This paper is organized as follows. Section 2 discusses the relation to pre-
vious works. Section 2 introduces the proposed method. Section 3 presents the
experimental settings and results. Finally we make a conclusion in Sect. 4.

2 Proposed Method

2.1 Why CNN

Let us consider the discrete Fourier transform used in the feature extracting in
almost all the audio processing methods:

X (k) =
N−1∑

n=0

x (n) e−j2π k
N n (1)

where k is the frequency-domain scale. For a given k, Eq. (1) means the cumula-
tive sum of product of the signal and the trigonometric functions. In fact, Eq. (1)
computes the correlation between the signal and the base function. On the other
hand, in neural network, the output of one neuron in a 1-Dimensional (1-D)
convolutional layer is as follows:
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x = a

(
M−1∑

i=0

z (i) ∗ m (i) + b

)
(2)

where m is the filter kernel, b is the bias, a(·) denotes the activation function,
and M is the length of the filter kernel. Ignoring the activation function and
bias, the Eqs. (1) and (2) are very similar. This means that the filter kernel can
play similar role with the base function. So using time domain-CNN in source
separation can combime the feature extraction and separation as a whole sys-
tem. Moreover, the filters are learnable and each convolutional layer is followed
by a pooling layer, which make feature learning of CNN more targeted and
powerful.

2.2 Framework

The proposed framework is a two-stage method which supervised training firstly
and then separating with the trained network. The illustration of the framework
is shown in Fig. 1(a).

In the training stage, as an input, two pieces of training speech are mixed
instantaneously with 0 dB SNR. The original sources are the target of the net-
work. We adopt the Euclidean distance as the cost function of the network, hence
the source separation is treated as a regression problem.

In the recovery, i.e., testing stage, the mixture is inputed to the network
and then the estimation of the two sources can be obtained from the network’s
outputs. Noteworthy, the outputs are time-domain signals directly, therefore
there is no need to do inverse STFT and the phase recovery problem does not
exist.

mix
preprocess mixture

target
supresived training

preprocess mixture

CNN

Source 1
Source 2

S1
S2

Mixture

training stage

separation stage

(a) Framework

m
ax pooling

conv+relu

m
ax pooling

conv+relu

m
ax pooling

full connetct
full connetct

mixture
(time-domain)

conv+relu

output
(time-domain)

s2

s1

(b) Time domain-CNN architecture

Fig. 1. Illustration of the proposed framework and network architecture.

2.3 Architecture

1-D convolutional layer is adopted in the CNN architecture, hence the kernel
filters are 1-D dimensional. As shown in Fig. 1(b), the time domain-CNN consists
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of three convolutional layers, each of which is followed by a max-pooling layer,
and two fully-connected layers.

An input sample of the network is one frame of time-domain audio signal of
which length is set to 1024. The sample is transported to the first convolutional
layer of which the filter kernel length should be longer than the following two
convolutional layers. We use the rectified linear unit (ReLU) [6] as the nonlinear
activation function of the convolutional layer. After ReLU, a max pooling layer,
kernel and stride length of which are both 2, is adopted to downsample. For
the sake of concision, we refer the collection of the convolutional, ReLU and the
max pooling layer to conv-layer-group. The network contains three conv-layer-
groups in total and the filter kernel length reduces layer by layer. The length
and number of 1-D convolutional kernel in the network’s convolutional layers
are given by (75, 96)-(29, 96)-(15, 128) in our experiments. The following two
layers are fully-connected layers which contain 2048 neurons each layer. The first
fully-connected layer is activated by tanh function while the last one is a linear
output layer of which the front 1024 values of neuron output denote the source
1, and the others denote source 2.

2.4 Pre- and Post-processing

Training Pre Processing. In the training phase, there are three pre-precessing
procedures, dividing to frames with window function, data regularization, and
data gain.

The audio signal is 1-D sequence satisfying short-time stationary, hence it
can be divided to a series of frames. Meanwhile, a window function may be used
for each frame in order to reduce spectrum leakage.

The data regularization is a common and useful method to accelerate opti-
mization convergence in the field of machine learning. For the time domain-CNN,
unlike computer vision tasks which normalize the data to (0, 1), we normalize
the audio data to (−1, 1) as follow:

yi =
si

max (si)
, i = 1, 2 (3)

where si denotes i-th source and yi denotes the i-th normalized source.
The data gain is a technique to generate data set with more samples from

relatively small data set. It plays an important role when the training data are
not very large. Here we perform data gain by loopshift mixing as follow:

x =
W−1

Φ
k=0

(Ψ (y1, k · τ) + y2) (4)

where Φ denotes stacking W vectors into one and τ is the circular shift length.
W amounts to L/τ , and L means the length of audio source vector s. Ψ denotes
the loopshift operator:

Ψ(y, β)i =
{
y (i + β) 1 ≤ i ≤ L − β
y (i − L + β) L − β < i ≤ L

(5)
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Testing Pre- and Post-processing. In the testing phase of separation, data
should do the same pre-processing, like applying window function to the frames
and data normalization, as what have been done in the training phase. Particu-
larly, in the separation phase, we need more overlap between the neighbor frames
than that in the training phase.

In the post processing procedure, overlap corresponds to averaging separation
predictions of more frames at each time-bin and a more accurate separation result
can be expected. The recovery at point t can be obtained by:

s̃i (t) =
1
T

T∑

j=1

ŝi (t, j) (6)

where ŝi (t, j) denotes the value of j-th frame containing the point t for the
source i. T denotes the number of frames containing the point t

3 Experiments

3.1 Experimental Setup

We evaluate the performance of the proposed approach for the monaural speech
separation task using the TSP corpus [4]. There are 1444 utterances, with average
length 2.372 s, spoken by 24 speakers (half male and half female). We choose four
speakers, FA (female), FB (female), MC (male), and MD (male), from the TSP
speech database. After concatenating together 60 sentences for each speaker, we
use 80% of the signals for training, 10% for development, and 10% for testing.
The signals are downsampled to 16 kHz. The time domain-CNN networks are
trained on three different mixing cases: FA versus MC, FA versus FB, and MC
versus MD. These setups are the same as Huang’s setting in [3]. Since FA and
FB are female speakers while MC and MD are male, the latter two cases are
expected to be more difficult due to the similar frequency ranges from the same
gender. The separation performance is assessed using the Signal-to-Distortion
Ratio (SDR), the Signal-to-Interference Ratio (SIR) and the Signal-to-Artifacts
Ratio (SAR) in decibels (dB), according to the BSS-EVAL toolbox [9] and its
Python reimplementation [7]. SDR indicates the overall quality of each estimated
source compared to the target, while SIR reveals the amount of residual crosstalk
from the other sources and SAR is related to the amount of musical noise.

3.2 Experiments Results

We compared the proposed approach with NMF method, and the DRNN+
discrim architectures, one with spectra features and another with log-mel fea-
tures which obtained the best results in Huang’s experiments [3]. The experiment
parameters configuration for the proposed time domain-CNN is depicted as fol-
lows. In the training phase, the frames are taken with half-overlapping hamming
window of 1024 sample. The circular shift length for loopshift mixing is set to
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τ = 10000. We train the time domain-CNN network using stochastic gradient
descent (SGD) method with mini batchsize 256 and learning rate 0.01. In sep-
aration phase, the frame hop is set to 128 while the frame length and window
are the same as training settings.
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Fig. 2. TSP speech separation results. Three settings are considered. (a) Female vs.
Male, (b) Female vs. Female, and (c) Male vs. Male. From the left to the right, the
results are obtained from NMF, the DRNN+discrim architectures with spectra features
and log-mel features, and the proposed method.

The speech separation results of cases, FA versus MC, FA versus FB, MC
versus MD, are shown in Fig. 2(a), (b), and (c), respectively. For FA versus
MC case, the proposed time domain-CNN approach improves SIR by 7.77 dB to
Huang’s DNN-based methods [3] with the best settings, while achieves a little bit
of better SDR and SAR performance. For the FA versus FB case, our approach
achieves 4.31 dB SIR gain with respect to the DRNN-discrim-logmel, although
SDR and SAR descend around 0.4 dB. For the MC versus MD case, our approach
outperforms the comparison method in SDR, SIR, and SAR by 1.66 dB, 5.82
dB, and 1.23 dB respectively.

On the whole, our approach has outstanding performance in SIR so that
achieves a better separation results with less interference and crosstalk in the
recovered sources. Meanwhile, the proposed approach maintaines better SDR
and SAR. The sound examples are available online.1

To examine the performance of the using of CNN architecture, the results of
full-connect DNN and time domain-CNN networks with different convolutional
layer parameters are summarized in the Table 1. The time domain-DNN network
has two or three full-connect layers of 2048 neurons with time-domain input.

As shown in Table 1, the time domain-DNN cannot achieve the separation
goal almost since its low SDR, SIR and SAR performances. Meanwhile the time
domain-CNN works well. Furthermore, a 3-conv-layers network achieves bet-
ter performance with respect to the 2-conv-layers CNN network. The length
of convolutional filter kernel is an important parameter for time domain-CNN.
Experimental results demonstrate that time domain-CNN with a longer kernel
length achieves better separation performance while consuming more training
1 http://pengzhxyz.github.io/bss-time-cnn.

http://pengzhxyz.github.io/bss-time-cnn
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time. These experiment results prove that the convolutional layer is crucial for
separation in time-domain and learning feature using the time domain-CNN
performs well.

Table 1. FA versus MC separation results of time domain-DNN and time domain-CNN
networks. The first column denotes the kernel length of each convolutional layers. E.g.
(75-29-15) means the length of three convolutional layers are 75, 29, and 15 respectively.

Method SDR SIR SAR Training time

Time domain-DNN (2 hide layers) 1.67 2.54 11.14 0.12 h

Time domain-DNN (3 hide layers) 1.64 2.54 10.94 0.13 h

Time domain-CNN (75-29) 9.32 17.69 10.12 1.10 h

Time domain-CNN (75-29-15) 10.36 20.57 10.92 1.23 h

Time domain-CNN (75-39-19) 10.85 20.93 11.36 1.83 h

Time domain-CNN (75-55-27) 11.18 22.56 11.59 2.50 h

Time domain-CNN (55-29-15) 10.46 20.82 10.97 1.35 h

Time domain-CNN (95-29-15) 10.76 21.42 11.22 1.31 h

Time domain-CNN (95-55-27) 10.94 22.21 11.37 2.46 h

4 Conclusion

In this paper, a monaural source separation method using convolutional neural
network in the time domain is proposed. The input and output of the network
are both in the time domain, and there are three convolutional layers and two
full-connected layers in total. It has two major advantages, it can learn features
by network automatically and can recover phase automatically. The experimen-
tal results demonstrate that the proposed approach outperforms the DNN-based
methods with manual feature extraction (spectra or log-mel features). Our app-
roach achieves 4.31–7.77 dB SIR gain with respect to Huang’s DRNN network [3],
while maintaining better SDR and SIR performance. The further works would
be using of big data and exploring what does the time domain-CNN network
learn.
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dation of China under Grant 61071208.
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Abstract. In the application of a linear neural network (LNN) to linear system
identification and parameter estimation, it is important to determine the input
dimension of the LNN so that the identification can be performed efficiently. In
the LNN for linear system identification, both the input and output data are taken
as input of the LNN. The output data are delayed and are fed-back to input of the
LNN. The input dimension determination is to determine the right number of
past inputs should be applied to its input and the right number of past outputs
should be fed-back to its input also. The sampled input and output data are used
to train the LNN. The performance errors are collected during training and are
used in the evaluation by Akaike’s Information Criterion to determine the input
dimension. The advantage of LNN method is its simplicity and effectiveness.
Satisfactory results from simulation are provided to show the effectiveness of the
proposed algorithm.

Keywords: System identification � Linear neural network � Input dimension

1 Introduction

Linear system identification is about how to build a model that best match the structure
and system parameters of the actual system from the measured input and output data
samples. Structure for a single input and single output linear discrete system is simply
the order. Model order estimation has been widely researched, e.g., ratio of determinant
of covariance matrix method [16], Akaike’s Information Criterion [1], Instrumental
variable Product Moment method [14]. After the order is identified, the parameter
estimation can be done by a variety of available traditional estimation methods, for
example, the maximum likelihood, the LS and instrumental techniques [7, 13].

Lately, neural network methods [5, 8] are studied and applied for system identi-
fication. Popular neural networks for this purpose are within the type of recurrent or
feedback neural networks, such as, feedback Backpropagation [11] and Hopfield neural
network [6]. However, most neural network for system identification methods are for
nonlinear systems [3, 9, 10, 12]. Other neural networks have also been used, such as:
Hopfield [2, 4], Support Vector and Self-Organizing Map. A Generalized ADALINE
neural network based method for linear systems was proposed by the author [17].
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However, input dimension determination of the neural network for this purpose has
been less studied.

Presented in this work is a method for determining the input dimension of a linear
neural network (LNN) for system identification of linear discrete systems. For efficient
system identification, especially for parametric system identification, the input
dimension of such network has to be determined so that a mapping to the system order
can be established, that is, the input dimension is equal to the sum of number of poles
(Order of the system) and number of zeros (Less than the order) of the system. In the
LNN for linear system identification, not only the input data are used as its input but
also the output data. Both the input and output data are delayed and output data are
fed-back to input. The input dimension determination is to determine the right number
of past inputs be applied to its input and the right number of past outputs be fed-back to
its input also. The measured input and output data set are used to train the LNN. The
performance errors are collected during training and are used in the evaluation by
Akaike’s Information Criterion to determine the input dimension. The advantage of the
proposed algorithm is that it is computational simple. Simulation is performed to show
the effectiveness the proposed algorithm. The rest of paper is organized as: Sect. 2
describes the order and parameter estimation problem of linear discrete systems, Sect. 3
presents the LNN based method for the input dimension determination, Sect. 4 pro-
vides the results of some simulation cases and the last section is for the conclusion.

2 Linear System Identification

The linear discrete time single input and single output system is considered as stable
and observable. The output and input data are measured for N samples over an interval
of time and formulated into an input-output pair data set: {u(kT), y(kT)}, where k = 1,
2, …, N, and T is a constant – the period of sampling, so the data set can be simplified
as {u(k), y(k)}. Then the below difference equation can be used to model the system,

y kð Þ ¼ � a1yðk � 1Þ � a2yðk � 2Þ � . . .� anayðk � naÞþ b1uðk � 1Þþ b2uðk � 2Þ
þ . . .þ bnbuðk � nbÞþ e kð Þ ð1Þ

or in the form of a polynomial difference equation,

y kð Þ ¼ �Pðz�1Þy kð ÞþQðz�1Þu kð Þþ e kð Þ
P z�1
� � ¼ a1z

�1 þ a2z
�2 þ . . .þ anaz

�na; and

Qðz�1Þ ¼ b1z
�1 þ b2z

�2 þ . . .þ bnbz
�nb

ð2Þ

where z−1 is the operator for unit delay, e is the noise, ai and bj are system coefficients,
i = 1, 2, …, na and j = 1, 2, …, nb. na and nb are order parameters, nb � na, na is the
order of the system.
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3 Input Dimension Determination of the LNN

The main method is build the LNN for the system model in (1), whose number of input
is m = nb + na, and na is number of delayed outputs and nb the number of delayed
inputs, and whose input weights are corresponding to the coefficient bj and ai. By
adjusting the order nb and na and training the LNN, the training performance error are
collected and evaluated to determine proper values for nb and na, thus determining m.

The configuration of our LNN for system identification is indicated in Fig. 1, note
the bias term is not needed, each system input is fed to a series of tapped delay line to
form multiple inputs and the system output is also delayed through a series of tapped
delay line to be fed-back to the input. Then the inputs to the LNN are u1 * um, and the
output a can be calculated as,

a ¼
Xm

1
wiui ¼ wTu ð3Þ

where u is the input vector and w is the weight vector,

u ¼ u1u2. . .um½ �T¼ u k�1ð Þ. . .u k�nbð Þ�y k�1ð Þ. . .�y k�nað Þ½ �T ð4Þ

w ¼ w1w2. . .wm½ �T¼ b1b2. . .bnba1a2. . .ana½ �T ð5Þ

By arranging both u andw in this manner, obviously, the input dimension is given by,

m ¼ na þ nb
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Fig. 1. LNN configuration
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3.1 LNN Training

From Fig. 1 and Eq. (4), the training data set can be formed as,

u 1ð Þ; t 1ð Þf g; . . .; u kð Þ; t kð Þf g; . . .; u Nð Þ; t Nð Þf g ð6Þ

where input vector and the target at time step k are given as,

u kð Þ ¼ u k�1ð Þ. . .u k�nbð Þ�y k�1ð Þ. . .�y k�nað Þ½ �T
t kð Þ ¼ y kð Þ

The LNN learning algorithm is developed from the original LMS algorithm.
Training is performed by applying each data pair over the entire data set as shown in
(6), calculating the error of the output from the target and adjusting the weights by
minimization of the following error function (the Mean Square Error, denoted as MSE),

J wð Þ ¼ 1
N

XN

1
e2ðkÞ ð7Þ

where k is the time step and e(k) is given by,

e kð Þ ¼ t kð Þ�a kð Þ ð8Þ

where t(k) is the desired output at time k and a(k) = wT(k)u(k) as in (3).
In LMS learning, the MSE in (7) is approximated by the instantaneous squared

error at time k,

J wð Þ � e2 kð Þ ¼ ðt kð Þ�a kð ÞÞ2 ¼ ðt kð Þ�wT kð ÞuðkÞÞ2 ð9Þ

This replacement works because (7) is minimized if squared error at each step
e2(k) is minimized. Now, the gradient of J can be found as,

rJ wð Þ ¼ r e2 kð Þ� � ¼ 2e kð Þ @e kð Þ
@w

¼ �2e kð Þu kð Þ ð10Þ

Then, the weight adjustment in LMS learning algorithm is given in the steepest
descent (the negative gradient) direction by,

w kþ 1ð Þ ¼ w kð ÞþDw kð Þ ¼ w kð Þþ 2ge kð Þu kð Þ ð11Þ

where η is the learning rate parameter, a small positive value.

3.2 Input Dimension Determination

Here determination of input dimension is to calculate the two order values ka and bb
(versus true order values na and nb) respectively. Ideally, if there is some a priori
information for the system under identification, then experiential guess can be used to
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determine a proper range of values for na and nb, and the estimation for ka and kb
should be limited within the range na ± C1 and nb ± C1, here C1 is the range
parameter for each order value and it should be a small integer, e.g. 3 or 4. When there
is no a priori information is available, the estimation should start from 1 and increase to
C2 (a number similar to C1 but just a little bigger such as 6). In order to estimate the
input dimension, in a way similar to the Akaike’s Information Criterion (AIC) in
traditional order estimation method, the LNN will be trained by LMS learning on each
order pair (ka and kb) in the range as discussed above. During training for all the order
pairs, the average squared training errors (MSE) are calculated as by Eqs. (6) and (7).
Then the AIC value for each pair ka and kb can be established as,

AIC ka; kbð Þ ¼ Nlog

PN
1 e2 kð Þ
N

 !
þ 2ðka þ kbÞ ð12Þ

where log is the natural log and N the sample size of the measured data. According to
Akaike, once ka = na and kb = nb, the AIC value will be minimized. Then the model
order pair can be chosen as (na, nb) = min(AIC(ka, kb)).

The Input Dimension Determination method for the LNN can be organized into an
algorithm, termed IDD algorithm:

(i) Select a small value for η, e.g. 0.1. Set weight w to uniformly distributed small
randomly generated numbers in the range, say (−0.1, +0.1).

(ii) Set ka = 1, kb = 1
(iii) Perform training on LNN for k = 1 to N
(iv) Evaluate AICðka; kbÞ ¼ Nlogð1=N RN

1 e2ðkÞÞþ 2ðka þ kbÞ
(v) Increment kb until ka, this makes sure nb � na in (2)
(vi) Increment ka until C2

(vii) Let (na, nb) = min(AIC(ka, kb))
(viii) Let [b1 b2 … bnb] = [w1 w2…wnb]
(ix) Let [a1 a2 …ana] = [wnb+1 wnb+2…wna+nb]

3.3 Implementation of the IDD Algorithm

The IDD algorithm can be readily programmed with any high level language. We
implemented it in MATLAB. Like many methods using neural network, the trial and
error process is used to select suitable values for the η for solving different problems.
A rule of thumb is to start η with a small value such as 0.01 and increase gradually, say
by 0.01. It is important that η should be kept smaller than the upper bound 1/kmax,
where kmax is the maximal eigenvalue of the mean input data correlation matrix E
[uuT], given by [15]. It should be also noted that the system under estimation should be
stable, meaning all the roots of Eq. (1) are within unit circle.

400 W. Zhang



4 Simulation Results

Simulation of a couple of example systems that often appear in the literature has done
to show the effectiveness of the proposed algorithm. The AIC criteria are calculated to
determine the input dimension from the order parameters, and parameter estimates are
obtained from the corresponding the weight vector.

Example 1. The difference equation of a 2nd order linear system is,

y kð Þ ¼ 1:5yðk � 1Þ � 0:7yðk � 2Þþ 1:0 uðk � 1Þþ 0:5uðk � 2Þ

The input signal is a PRBS and the output is calculated for N = 1000 samples. The
first 50 samples of input and output are drawn in Fig. 2. The AIC matrix are obtained
as in the following for learning rate η = 0.01, where first 300 samples are skipped to
avoid transient period of LMS training, as seen in parameter trajectories indicated in
Fig. 3 for the determined order.

In the AIC matrix ka is the row number and kb is the column number Minimum AIC
is found as, AIC(2,2) = −4532.2, then the order and parameters should be selected as,

na ¼ 2; nb ¼ 2; so m ¼ 4:

Fig. 2. Input and output signals for Example 1
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b1 b2 a1 a2½ � ¼ 1:0000 0:5000�1:5000 0:7000½ �

AIC4;4 ¼
800:65 1 1 1

�928:17 �4532:2 1 1
�677:23 �2331:8 �4424:6 1
483:85 �2117:2 �3851:9 �4241:8

0
BB@

1
CCA

Here, the input dimension is found to be m = na + nb = 4, and the parameter esti-
mates are very close to the true values. Notice that AIC(3, 3) is small and the order is 3 by
3, but no significant reduction. The training trajectories for this case are shown in Fig. 3.

Example 2. A third order system given in [7],

y kð Þ ¼ 1:0 yðk � 1Þþ 0:15 yðk � 2Þ � 0:35 yðk � 3Þþ 1:0 uðk � 1Þþ 0:5 uðk � 2Þ

The simulation is done with N = 1000 samples on a PRBS input signal. The AIC
matrix is obtained for η = 0.01, where first 300 samples are similarly skipped to avoid
transient period of LMS training. The parameter trajectories are shown in Fig. 4 for the
determined order.

The Minimum AIC is found as, AIC(3, 2) = −5533.4, then the order and param-
eters are,

na ¼ 3; nb ¼ 2 ! m ¼ 5

Fig. 3. Parameter trajectories for Example 1
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b1 b2 a1 a2 a3½ � ¼ 1:0000 0:5082�0:9917�0:1626 0:3554½ �

Notice that the estimated parameters are slightly off. The reason could be
multi-fold: the magnitude of the input vector is large even the error is smaller after
training convergence, the level of persistent excitation of the input applied is not 100%
and the existence of roots of the system (1) is near the unit circle.

AIC5;5 ¼

�132:38 1 1 1 1
�3681:6 �2224:0 1 1 1
�2392:9 �5533:4 �4761:9 1 1
�2412:1 �3829:6 �5187:0 �5119:7 1
�2148:7 �3885:1 �4140:7 �4319:2 �4843:0

0
BBBB@

1
CCCCA

5 Conclusions

Presented in this work is a method for determining the input dimension of the LNN
used for linear system identification. The training of the neural network is performed on
different order combinations, i.e., kb past inputs and ka past outputs are applied as
inputs to the network, so input dimension is the sum: ka + kb. The mean square errors
are calculated for each order pair during training of the network. The order of the two
system polynomials are then determined as the pair (ka, kb) corresponding to the
minimum AIC and polynomial coefficients are estimated as the weights at the same
time as order obtained. The input dimension is then the sum of (ka, kb). The perfor-
mance of the proposed method is shown by the simulation results.

Fig. 4. Parameter trajectories for Example 2
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Abstract. In Chinese, a word is usually composed of several characters,
the semantic meaning of a word is related to its composing characters
and contexts. Previous studies have shown that modeling the characters
can benefit learning word embeddings, however, they ignore the exter-
nal context characters. In this paper, we propose a novel Chinese word
embeddings model which considers both internal characters and external
context characters. In this way, isolated characters have more relevance
and character embeddings contain more semantic information. There-
fore, the effectiveness of Chinese word embeddings is improved. Experi-
mental results show that our model outperforms other word embeddings
methods on word relatedness computation, analogical reasoning and text
classification tasks, and our model is empirically robust to the proportion
of character modeling and corpora size.

Keywords: Word embeddings · Neural network · NLP

1 Introduction

In natural language processing, word representation is always a heated topic.
Recently, distributed word representation, also known as word embeddings, is
proved to be effective in capturing both semantic and regularities in language
[2,10,12], and experimentally superior to discrete representations [1]. Word
embeddings have benefited natural language processing in many tasks including
entity recognition and disambiguation [7,15], syntactic parsing [13], word sense
disambiguation [5], semantic composition [16] and knowledge extraction [9].

Existing word embeddings models extract vectors representing word mean-
ing by relying on the distributional hypothesis, namely, these models typically
learn word embeddings according to the contexts of words in large-scale cor-
pora. However, in Chinese, the semantic meaning of a word is also related

This work was supported by NSFC (No. 61632019) and 863 project of China (No.
2015AA015403).
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to its composing characters and external context characters. Take a Chinese
sentence “ ” (technology changes life) for example, the exter-
nal context characters of target word “ ” (change) are “ ” (department),
“ ” (technique), “ ” (grow) and “ ” (live). Recently, a number of researchers
have demonstrated the usefulness of exploiting the internal structure of words
and modeling the basic units, such as morphemes in English or characters in
Chinese [3,6]. Botha and Blunsom [3] introduced a log-bilinear model which
used addition as composition function to derive word vectors from morpheme
vectors. Chen et al. [6] extended their idea, assuming that the word semantics
is composed of the meanings of its characters and its particular meaning, and
constructed a character-enhanced word embeddings model (CWE). In Chinese,
CWE outperformed the original word-based models in varieties tasks.

However, integrating only character semantics into word semantics causes
some problems. First, CWE tends to produce similar word embeddings for words
with common characters, e.g. the relatedness of word pair “ ” (singer) and
“ ” (sailor) are overestimated due to having the common character (“ ”).
Second, CWE updates character embeddings directly using the updating expres-
sion of word embeddings, this limits the quality of character embeddings.

To solve the above problems and optimize Chinese word embeddings that
score robustly across multiple test sets, in this paper we propose a novel exter-
nal context characters-enhanced Chinese word embedding model (ECWE). Our
main contribution are summarized as follows:

• We take advantages of both internal characters and external context char-
acters to make more relevance among isolated characters and weakens the
influence of internal characters to word semantic, thus solving the problem of
similar word embeddings for words with common characters in CWE.

• In ECWE, we generate a new updating expression for character embeddings,
this updating expression ensures that character embeddings contain more
semantic information.

• Extensive experimental results show the superiority of our proposed model
in terms of effectiveness and robustness.

2 Related Work

In recent years, many researches are proposed to find a better method on learning
word embeddings. Some researchers explore sub-word units and how they can be
used to compose word embeddings. Collobert et al. [7] used extra features such as
capitalization to enhance their word vectors, however, it can not generate high-
quality word embeddings for rare words. Sun et al. [14] proposed SEING model,
which consider that these words which contain common morphemes have similar
semantic, it requires word embeddings in line with the context distribution and
internal morphemes distribution, that destroyed the distribution hypothesis.

Some other works try to join external knowledge, Botha et al. [3] proposed a
scalable method for integrating compositional morphological representations into
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a log-bilinear language model. Chen et al. [4] presented an approach which first
initializes the word sense embeddings through learning sentence level embed-
dings from WordNet glosses, then the initialized word embeddings are used to
generate word embeddings. Cotterell et al. [8] exploited existing morphological
resources that can enumerate a word’s component morphemes, then combine
the latent variables represent embeddings of morphemes to create words embed-
dings. However, these models are mostly sophisticated and task-specific, they
are non-trivial to be applied to other scenarios.

ECWE presents a simple and general way to integrate the internal characters
knowledge and external contexts knowledge to learn Chinese word embeddings
which are capable in various tasks.

3 Preliminaries

3.1 CBOW

Continuous bag-of-words model (CBOW) [10] aims at predicting the target word,
given context words in a sliding window. In this model, each word w ∈ W is
associated with the vector vw ∈ R

d, where W is the word vocabulary and d
is the vector dimension. Formally, the objective of CBOW is to maximize the
average log probability, shown as Eq. (1),

L(θ) =
1
M

∑

w∈W

logp(w|Context(w)), (1)

where M is the size of word vocabulary and Context(w) is the context words of
w. CBOW formulates the probability p(w|Context(w)) using a softmax function
as Eq. (2),

p(w|Context(w)) =
exp(x�

w · vw)∑
w′∈W exp(x�

w · vw′)
, (2)

where xw is the average of all context word vectors of the target word w, and
xw is defined by Eq. (3).

xw =
1

2K

∑

j

vj ,

where j = w − K, . . . , w − 1, w + 1, . . . w + K

(3)

In Eq. (3), K is the context window size of a target word. In order to make
the learning model more effective, the techniques of hierarchical softmax and
negative sampling [11] are used.

3.2 CWE

CBOW treats each word as a basic unit and fails to capture the internal struc-
ture of words. CWE [6] considers internal character embeddings to improve the
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effectiveness of Chinese word embeddings. The key idea of this model is to rep-
resent the word with both word embeddings and character embeddings:

vw = vw +
1

Nw

Nw∑

k=1

cwk , (4)

where vw is the word embedding of w, Nw is the number of characters in w, cwk
is the embedding of the k -th character in w.

While CWE outperformed the original word-based models in many tasks,
there are some problems in CWE. As show in Eq. (4), CWE represents a word
with word embeddings and character embeddings together. When CWE updates
word embeddings and character embeddings, it uses the same updating expres-
sion as Eq. (5), which limit the quality of character embedding.

v := v + η
∑

u∈{w}∪NEG(w)

∂L(w, u)
∂xw

(5)

In Eq. (5), v indicates the word embeddings or character embeddings which
need to be updated, η is the learning rate.

4 Our Proposed Framework

4.1 ECWE

As we discussed above, the semantic meaning of a Chinese word is related to its
composing characters and contexts, and CWE can not obtain excellent character
embeddings. So, in order to make the characters contain richer semantic infor-
mation, we consider the external context characters. We represent a character
using the distribution of its context words, with this method, put characters into
the word semantic space, and modeling characters more effectively. In order to
achieve the joint training of characters and words, we optimize the conditional
probability L(θ) of context words to target word w and context characters to
target word w at the same time, the objective of ECWE as is shown as Eq. (6).

L(θ) =
1
M

∑

w∈W

[(1 − β)logp(w|Context(w)) + βlogp(w| ̂Context(w))] (6)

̂Context(w) is the context characters of w, and β is an adjustable weight
parameter, which indicates the proportion of character modeling. In order to
optimize the calculation, we formulate the probability p(w|Context(w)) and
p(w| ̂Context(w)) using negative sampling, as shown in Eqs. (7) and (8).

p(w|Context(w)) =
∏

u∈{w}∪NEG(w)

[σ(x�
wθu)]L

w(u) · [1 − σ(x�
wθu)]1−Lw(u) (7)
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External context charactersTarget wordContexts (consider internal characters)

Fig. 1. The architectures of ECWE. Here “ (technology) (change)
(life)” is a word sequence. The word “ ” (technology) is composed of characters
“ ” (department) and “ ” (technique), and the word “ ” (life) is composed of
characters “ ” (grow) and “ ” (live). (Color figure online)

In Eq. (7), NEG(w) is the negative sampling set. Lw(u) is the label of a
sample u, Lw(u) = 1 when u = w, and Lw(u) = 0 when u �= w. θu is the
parameter vector representation.

p(w| ̂Context(w)) =
∏

u∈{w}∪NEG(w)

[σ(c�
wθu)]L

w(u) · [1 − σ(c�
wθu)]1−Lw(u) (8)

In Eq. (7), xw is the average of all context word vectors of the target word w
with internal character embeddings. Chinese characters does not have semantics,
but when they combined to words, they will have different semantics in different
words. To solve the problem of Chinese characters ambiguous, we use the solution
proposed in [6]. We keep three embeddings(cB , cM , cE) for each character c,
corresponding to its three types of positions(‘Begin’,‘Middle’,‘End’) in a word.
Formally, xw is represented as Eq. (9).

xw =
1

2K

∑

j

(vj +
1

Nj
(cB1 +

Nj−1∑

k=2

cMk + cENj
))

where j = w − K, . . . , w − 1, w + 1, . . . w + K

(9)

In Eq. (8), cw is the average of all context characters vectors of the target
word w. Similarly, we need solve character ambiguous.

cw =
1

2K

∑

j

1
Nj

Nj∑

k=1

(cB1 +
Nj−1∑

k=2

cMk + cENj
)

where j = w − K, . . . , w − 1, w + 1, . . . w + K

(10)

The framework of ECWE is shown in Fig. 1. Word embeddings (yellow boxes
in figure) and character embeddings (green boxes) are composed together to get
new embeddings (orange boxes), the new embeddings are combined together to
get the embeddings (gray box) for the prediction of the target word. In addition,
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the character embeddings are composed together to get new embeddings, which
are combined together for predicting the target word at the same time.

In ECWE, both each word and each character have its corresponding vec-
tor. Different vector representations have the same dimension. From Eqs. (9)
and (10), the vector representation of context words and characters have differ-
ent expressions, thus, in the update phase, the word embeddings and character
embeddings have different updating expressions, shown as Eqs. (11) and (12)
respectively.

v(w̃) := v(w̃) + η
∑

u∈{w}∪NEG(w)

∂L(w, u)
∂xw

, w̃ ∈ Context(w) (11)

v(c̃) := v(c̃) + η
∑

u∈{w}∪NEG(w)

∂L(w, u)
∂cw

, c̃ ∈ ̂Context(w) (12)

There are many words in Chinese which do not exhibit semantic compo-
sitions from their characters. Such as single-morpheme multi-character words,
transliterated words, and entity names. CWE proposes to neglect characters
when learning these words, and artificially building a word list to store these
words. This step is important to the effectiveness of CWE, but it’s far more com-
plicated. Our proposed model introduce external context characters, weaken the
effect of internal characters, so we need not to collect non-compositional words.
Therefore, the complex process of building the list can be removed.

4.2 Initialization and Optimization

We randomly initialize both word and character embeddings. And we use sto-
chastic gradient descent (SGD) to optimize ECWE. Gradients are calculated
using the back-propagation algorithm.

4.3 Complexity Analysis

Table 1 compares the complexity of CBOW, CWE and ECWE. These models
are all based on Neural Netword approaches.

In the table, the dimension of vector is d, the word vocabulary size is |W |,
the character vocabulary size is |C|, and the number of character positions in a
word is P = 3. The window size is 2K, the corpus size is M, the average number
of characters of each word is N, and the computational complexity of negative
sampling for each target word is F.

From the complexity analysis, we can observe that, compared with CWE,
the ECWE model has same parameters. ECWE have additional computation
complexity O(2KMN), because in parameters update phase, we need more time
to compute the updating expression of character embeddings, this ensures getting
better character embeddings.
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Table 1. Model complexity.

Model Model parameters Computational complexity

CBOW |W |d 2KMF

CWE (|W | + P |C|)d 2KM(F + N)

ECWE (|W | + P |C|)d 2KM(F + 2N)

5 Experiments

In this section, we first describe our experimental settings, including datasets
and model parameters. Then we compare our models with baseline methods on
three tasks: (1) Word relatedness computation, (2) Analogical Reasoning, and
(3) Document classification. Last, We deeply discuss the robustness of ECWE.

5.1 Datasets and Settings

We use Wikipedia Chinese corpus1 for learning word embeddings. This cor-
pus has 182 million words. The word vocabulary size is 457 thousand and the
character vocabulary size is 9 thousand. We use ICTCLAS2 toolkit for word
segmentation.

We introduce CBOW [11], GloVe [12] and CWE [6] as baseline methods. We
set vector dimension as 200 and context window size as 5, and default set β = 0.5.
For optimization, we use 5-word negative sampling and the initial learning rate
is 0.05.

5.2 Word Relatedness Computation

In this task, each model is required to compute semantic relatedness of given
word pairs. The performance of each model is measured as the correlations
between results of models and human judgements. In this paper, we select two
datasets which was provided in [6], in the following abbreviated as ws296 and
ws240. In ws240, there are 240 pairs of Chinese words and human-labeled relat-
edness scores. Of the 240 word pairs, the words in 227 word pairs have appeared
in the learning corpus. In ws296, the words in 279 word pairs have appeared in
the learning corpus.

We compute the Spearman correlation ρ between relatedness scores from a
model and the human judgements for comparison. The relatedness score of two
words are computed via cosine similarity of word vectors.

The evaluation results of ECWE and baseline methods on ws240 and ws296
are shown in Table 2. From the evaluation results, we observe that: ECWE sig-
nificantly outperforms all baseline methods on these both datasets.

1 https://dumps.wikimedia.org/zhwiki/latest/.
2 http://ictclas.nlpir.org.

https://dumps.wikimedia.org/zhwiki/latest/
http://ictclas.nlpir.org
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Table 2. Evaluation results on ws240 and ws296 (ρ × 100).

Model ws240 ws296

227 pairs 240 pairs 279 pairs 296 pairs

CBOW 56.05 51.09 59.09 54.83

Glove 55.70 48.91 47.96 43.01

CWE 55.77 51.52 60.22 55.86

ECWE 57.44 52.90 61.36 57.68

5.3 Analogical Reasoning

This task quantitatively evaluate the linguistic regularities between pairs of word
representations. The task consists of questions like “ (man) is to
(woman) as (father) to ?”. To answer such question, we need to find a
word w such that its vector x is close to vec ( ) − vec ( ) + vec ( )
according to the cosine similarity. The question is judged as correctly answered
only if x is exactly the answer in the evaluation set. The evaluation metric for
this task is the percentage of questions answered correctly. We use Chinese anal-
ogy dataset from [6]. The dataset contains 1,124 analogies and 3 analogy types:
capitals of countries (687 groups); states/provinces of cities (175 groups); and
family words (240 groups). Table 3 shows the evaluation results on analogical
reasoning.

Table 3. Evaluation accuracies (%) on analogical reasoning

Model Total Capital State Family

CBOW 71.51 71.79 72.06 70.33

GloVe 74.04 74.00 76.89 72.12

CWE 71.62 68.40 81.86 69.67

ECWE 74.56 75.21 75.86 71.15

From Table 3, we observe that: ECWE performs better than all baseline
methods on average. GloVe also performs good, but it’s based on matrix decom-
position, compared with ECWE, its computational complexity is too high, espe-
cially when the corpus size is large.

5.4 Document Classification

In this task, we regard the average of the word vector representations in that doc-
ument as the document representation, which can be evaluated with document
classification. We use Logistic regression models for the classification task.
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Table 4. Results on document classification (ρ × 100).

Model Accuracy

CBOW 80.53

GloVe 83.12

CWE 81.34

ECWE 84.73

We run experiments on the dataset Fudan corpus3 of text categorization.
This dataset contains 20 categories and about 9804 documents and is split into
training set and test set with 1:1. Each document belongs to only one category.
From Table 4, we can observe that ECWE method performs significantly better
than all baseline methods.

5.5 The Robustness of ECWE

In order to further show the effectiveness and robustness of ECWE, we adjust
corpus size and the parameter β in Eq. (5), analyze the effect of ECWE in
different settings.

In ECWE, β indicates the proportion of character modeling. For comparison,
we adjust the proportion of character modeling in CWE model. β = 0 indicates
these models only modeling on words, such that, all these models are equivalent
to CBOW. The results on ws296 show in Fig. 2(a). In Fig. 2(b), We list the
results of CBOW and CWE and ECWE on ws296 with various corpus size from
10 MB to 500 MB.
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Fig. 2. Results on ws296 task with different setting.

3 http://www.datatang.com/data/44139.
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From Fig. 2(a), we observe that: Overall, gradually increase the proportion
of character modeling, the evaluation accuracy on ws296 of ECWE model rises
in the first stage, and then decrease. CWE model has a similar tendency, but
the performance is always worse than ECWE. From Fig. 2(b), we observe that:
ECWE can quickly achieve much better performance than CWE and CBOW
when the learning corpus is still relatively small. The reason is that, ECWE
takes advantage of external context characters to contact the original isolated
characters and expand the contexts, therefore, promotes the word embeddings
contain more semantic information.

6 Conclusion

In this paper we propose a compositional neural language models which incor-
porates internal characters and external context characters for obtaining high-
quality Chinese word embeddings. We investigate the effectiveness of our model
in three tasks. ECWE consistently and significantly performs better on word
relatedness computation, analogical reasoning and document classification tasks.
We demonstrate the robustness of ECWE across different settings. These indi-
cate the necessity of considering external characters information for Chinese
word representations.

References

1. Baroni, M., Dinu, G., Kruszewski, G.: Don’t count, predict! A systematic compar-
ison of context-counting vs. context-predicting semantic vectors. In: ACL (1), pp.
238–247 (2014)

2. Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C.: A neural probabilistic language
model. J. Mach. Learn. Res. 3, 1137–1155 (2003)

3. Botha, J.A., Blunsom, P.: Compositional morphology for word representations and
language modelling. In: ICML, pp. 1899–1907 (2014)

4. Chen, T., Xu, R., He, Y., Wang, X.: Improving distributed representation of word
sense via wordnet gloss composition and context clustering. Association for Com-
putational Linguistics (2015)

5. Chen, X., Liu, Z., Sun, M.: A unified model for word sense representation and
disambiguation. In: EMNLP, pp. 1025–1035. Citeseer (2014)

6. Chen, X., Xu, L., Liu, Z., Sun, M., Luan, H.B.: Joint learning of character and
word embeddings. In: IJCAI, pp. 1236–1242 (2015)

7. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.:
Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12, 2493–
2537 (2011)

8. Cotterell, R., Schütze, H., Eisner, J.: Morphological smoothing and extrapolation
of word embeddings. In: Meeting of the Association for Computational Linguistics,
pp. 1651–1660 (2016)

9. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings
for knowledge graph completion. In: AAAI, pp. 2181–2187 (2015)

10. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. Computer Science (2013)



Joining External Context Characters to Improve Chinese Word Embedding 415

11. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in Neural
Information Processing Systems, pp. 3111–3119 (2013)

12. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word repre-
sentation. In: EMNLP, vol. 14, pp. 1532–1543 (2014)

13. Socher, R., Bauer, J., Manning, C.D., Ng, A.Y.: Parsing with compositional vector
grammars. In: ACL (1), pp. 455–465 (2013)

14. Sun, F., Guo, J., Lan, Y., Xu, J., Cheng, X.: Inside out: two jointly predictive
models for word representations and phrase representations. In: AAAI, pp. 2821–
2827 (2016)

15. Turian, J., Ratinov, L., Bengio, Y.: Word representations: a simple and general
method for semi-supervised learning. In: Proceedings of the 48th Annual Meeting
of the Association for Computational Linguistics, pp. 384–394. Association for
Computational Linguistics (2010)

16. Zhao, Y., Liu, Z., Sun, M.: Phrase type sensitive tensor indexing model for semantic
composition. In: AAAI, pp. 2195–2202 (2015)



Enhancing Auscultation Capability
in Spacecraft

Jin Zhou and Chiman Kwan(&)

Signal Processing, Inc., Rockville, MD 20850, USA
ferryzhou@gmail.com, chiman.kwan@signalpro.net

Abstract. In this research, we developed an adaptive filtering system for
enhancing auscultation performance in noisy environments such as spacecraft
and International Space Station (ISS). The system uses a stethoscope, a
microphone, and an adaptive filter. Four filtering algorithms (least mean square
(LMS), normalized LMS (NLMS), recursive least square (RLS), and our
patented algorithm known as Frequency-domain Minimum Square Error with
length N and Signal Detection (FMSENSD)) were implemented and compared.
Extensive experiments using actual data collected by several commercial
stethoscopes clearly demonstrated the performance of the system under noisy
conditions up to 79 dBA.

Keywords: Auscultation enhancement � Noisy spacecraft � Adaptive filter

1 Introduction

NASA is planning to have a medical suite in spacecraft for future long duration
manned missions to Mars. One of the capabilities in the suite is accurate auscultation in
noisy environments. Typical noise level in spacecraft can reach 73 dBA and beyond.
Due to high noise environment caused by fans and pumps in the spacecraft, conven-
tional stethoscopes do not work well in noisy environment beyond 66 dBA [1]. To
reliably assess the health condition of astronauts, novel and high performance tech-
nology for auscultation is needed.

There are several potential approaches to enhancing the auscultation performance.
First, beamforming using various array configurations [2–4, 9–14] can be applied.
Although this approach may have great potential, it will involve a complete redesign of
stethoscopes. This is undesirable based on NASA’s evaluation. Second, speech
enhancement techniques using a single sensor [17, 18] have advanced over the past two
decades and can be used. However, based on our past experience in speech
enhancement in high noise environments such as battlefield, this approach only works
well in stationary noise environment. Moreover, the color noise artifacts are very
undesirable for medical diagnostics. The third approach is to use one additional
microphone or another sensor [6, 15, 16] to pick up the background noise and we found
this approach to be promising because (1) it can deal with non-stationary noise;
(2) conventional stethoscopes can be used without any modification.
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We first applied LMS [5], NLMS [5], RLS [5], and FMSENSD [6] algorithms to
the data collected by Wyle Inc., which is a contractor of NASA Johnson Space Center.
FMSENSD was developed by our team recently and a patent was granted [6]. There
were 3 stethoscopes in Wyle’s data and the noise environment was 66 dBA. We found
that RLS performed better than LMS and NLMS, and FMSENSD performed better
than RLS. In general, the signal-to-noise (SNR) improvement was 5 to 10 dB. Second,
in order to investigate how well our algorithm will perform in noise conditions beyond
66 dBA, we set up our own testbed, which can emulate noisy conditions at 45, 66, 73,
and 79 dBA. Data were collected under the above 4 noisy conditions using 6 internal
body sounds, 2 stethoscopes (Thinklabs and 3M), and 4 signal levels. Third, we
thoroughly evaluated the performance of RLS and FMSENSD using our own data. It
was found that FMSENSD performed the best. SNR improvement was 10 to 20 dB
under various noisy conditions.

This paper is organized as follows. Section 2 briefly review two key algorithms:
RLS and FMSENSD even though we have implemented two other algorithms (LMS
and NLMS). Section 3 summarizes all the experimental results. We first summarize the
application of RLS and FMSENSD to data supplied by NASA. We then describe how
we set up our own testbed and the comparative results. Two commercial stethoscopes
were used in our experiments. Three noise levels (66 dBA, 73 dBA, and 79 dBA) were
investigated. Extensive experiments demonstrated that our own algorithm outper-
formed RLS in almost all experimental conditions by 10 to 20 dB. Finally, some
concluding remarks and future research directions will be mentioned in Sect. 4.

2 Technical Approach

Several time-domain adaptive filter algorithms were applied to process the various data
sets. These include LMS (Least Mean Square), NLMS (Normalized Least Mean
Square), and RLS (Recursive Least Squares) [5]. Since RLS performed better than
LMS and NLMS, we only briefly summarize RLS and FMSENSD algorithms below in
order to save some space.

2.1 RLS Filter

RLS is a well-known adaptive filter and has been widely used in many applications. It
is a time-domain filtering approach, meaning that no Fourier transform is needed. The
adaptation is done with a matrix of coefficients and hence the convergence speed is
faster than other time-domain filters such as LMS and NLMS. The principle of RLS is
shown in Fig. 1. Of course, this principle is applicable to all other filters. Essentially,
the adaptive filter adjusts the phase and amplitude of the noise and cancels the cor-
responding noise component in the stethoscope.
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2.2 FMSENSD Algorithm

In contrast, FMSENSD stands for frequency mean square error n-coefficient with signal
detection and works in the frequency domain. FMSENSD was developed by us in this
project and a patent has been approved [6]. There are several key steps. First, it
computes spectrogram of both the stethoscope signals and the noise channel signals.
Second, it estimates noise only regions. Third, it estimates filter coefficients using noise
only regions. Finally, it generates filtered signals by performing subtraction. The
principle of FMSENSD is shown in Fig. 2. Although there are 4 steps, the computa-
tional complexity is quite low.

FMSENSD is very efficient and converges fast. FMSENSD has better preservation
of signal details and introduces less distortions. It also works well in reverberant
environments. We estimate the channel response hh with noise only section, i.e.

afriðoÞ � hh ¼ afxiðoÞ

where o is the indices of noise only frames. The noise indices are estimated based on
the strength of estimated signal. The detailed algorithm is as follows:

Adaptive
Filter

Stethoscope

2nd 
mic

+

-

Enhanced 
stethoscopic
signals

S(t)+N1(t)

N2(t)

S(t)

Recorder with processor

Background noise

Internal body sound

Fig. 1. Principle of RLS.

Fig. 2. Principle of FMSENSD. x is the stethoscope signal and r is the reference mic signal.
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3 Experimental Results

3.1 Algorithm Evaluation Using Wyle’s Data

The data were recorded by Wyle Inc. and provided to us by NASA. The data were
recorded in both quiet and noisy environments. Since our goal is to evaluate the
performance of adaptive filters in noisy environments, we only focused on the noisy
data, which has an actual noise level of 66 dBA. Four types of stethoscopes were used
in recording: (a) Andromed iStethos; (b) Welch-Allyn Meditron; (c) Cardionics
e-Scope II; and (d) 3M 4000. Two types of body sounds were recorded: heart and lung.
Note that only the first three types of data contain both stethoscope outputs and noise
data (recorded by a separate microphone). In our experiments, we applied adaptive
filtering techniques to the first three types of data.
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We applied two different adaptive filters to Wyle data that contain 3 stethoscopes:
(a) Andromed iStethos; (b) Welch-Allyn Meditron; (c) Cardionics e-Scope II. This is
because the recordings have two channels: one saves the stethoscope data and one
saves the data from a microphone which recorded the background noise. We first
compared the performance of the LMS, NLMS, and RLS and found that RLS per-
formed the best among these time-domain filters [9]. We then focused on the com-
parison of FMSENSD (frequency-domain adaptive filter) and RLS (time-domain
adaptive filter). In FMSENSD, we set window length 1,024, overlap 960 and filter
length 4. In RLS, the filter length was 128. The 3M 4000 stethoscope does not have a
second channel to record the background noise.

Figure 3 shows sample FMSENSD results for 3 types of commercial stethoscopes
mentioned earlier. One heart sound and one lung sound were recorded. The RLS results
are not shown here due to page limitation. From the figures, we can observe that the
filtered results have much better signal-to-noise (SNR) than original signals, especially
for Fig. 3(b) and (c). Figures 4, 5 and 6 show the comparison charts of SNR of
different types of data. In Fig. 4, results from 4 heart and 9 lung recordings using

(a) Andromed iStethos;   (b) Welch-Allyn Meditron;  

(c) Cardionics e-Scope II 

Fig. 3. Sample filtered results by FMSENSD. Top two rows of each sub-figure show the heart
sounds (original and filtered) and bottom two rows of each sub-figure show the lung sound
(original and filtered).
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(a) 4 sets of heart data (b) 9 sets of lung data 

Fig. 4. SNR charts for type-A stethoscope (Andromed iStethos) data.

(a) 3 sets of heart data (b) 5 sets of lung data  

Fig. 5. Comparison charts of type-B (Welch-Allyn Meditron) data.

(a) Heart data                      (b) Lung data 

Fig. 6. Comparison charts of type-C (Cardionics e-Scope II) data.
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type-A stethoscope were displayed. RLS improves the SNR, but our FMSENSD
performed even better. In Fig. 5, results from 3 heart and 5 lung recordings using
type-B stethoscope were displayed. In Fig. 6, results from 5 heart and 8 lung recordings
using type-C stethoscope were displayed. In all of the above figures, we observe that
FMSENSD always provides significant SNR gain, while RLS cannot. The FMSENSD
average gain is about 8 dB. Subjective listening also confirmed the above observations.

3.2 Algorithm Evaluation Using Data Collected from Testbed in Our
Laboratory

The comparative study in Sect. 3.1 used actual data collected under 66 dBA envi-
ronment. It is natural to ask whether FMSENSD still outperforms RLS in even higher
noise environments. To answer this question, we will need to build our own testbed.

Experimental Setup
The whole experiment setup is shown in Fig. 7. To simulate different levels of signal to
noise ratio (SNR), we set 4 different levels of noise and 4 different levels of signals.
The signals are scaled by 100%, 75%, 50% and 25%, and played to a headphone to
emulate heart or lung sound. Here, 100% means the volume of signal is adjusted to the
maximum of output. 50% means half of the maximum signal output. We compared
headphone recordings with true body sound and found 50% signal scaling is close to
actual body sound. To simulate the noise, we played the pink noise file with Coby
300W 5.1-Channel Home Theater Speaker System [7]. A sound meter [8] was used to
measure the dBA of the noise level. We manually adjusted the amplitude of the noise to
achieve three different dBA levels: 79 dBA, 73 dBA and 66 dBA. We also recorded
one set of data without playing the noise, which is labeled 45 dBA, which is the normal
noise level in an office with computers.

Two stethoscopes, Thinklabs and 3M, were used. For both stethoscopes, we
recorded 96 files (4 noise levels, 4 signal levels, and 6 sounds). Both 3M and Thinklabs
data have sampling rate of 4,000 Hz. Using smaller sampling rate has many advan-
tages: (1) time domain adaptive filtering can be more effective due to longer filter time;
(2) data size is smaller and (3) processing is faster. Since the stethoscope signal are low

Fig. 7. Experimental setup.
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pass filtered (usually the bandwidth is less than 1500 Hz), 4000 Hz sampling rate is
enough to retain all the information.

From the recordings, we observed that 3M has better SNR than Thinklabs due to its
built-in noise canceling technology. At 79 dBA noise level, all the signals are buried
in noise.

Data Using Thinklabs Stethoscope
Since we have the ground truth heart and lung sounds, we can easily generate the SNR.
The SNR comparison charts are shown in Figs. 8, 9 and 10. We observe that both
FMSENSD and RLS significantly improve SNR; FMSENSD is significantly better
than RLS. In general, FMSENSD can achieve at least 20 dB gain.

Data Using 3M Stethoscope
The SNR comparison charts are shown in Figs. 11, 12 and 13. We can observe that
FMSENSD significantly improves SNR and RLS can only improve a little bit;
FMSENSD is significantly better than RLS. In most cases, FMSENSD can achieve at
least 10 dB gain.

Fig. 8. Comparison charts of Thinklabs data
at 66 dBA (signal volume: 50%).

Fig. 9. Comparison charts of Thinklabs data
at 73 dBA (signal volume: 50%).

Fig. 10. Comparison charts of Thinklabs data
at 79 dBA (signal volume: 50%).

Fig. 11. Comparison charts of 3M data at
66 dBA (signal volume 50%).
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Comparison of Thinklabs and 3M Stethoscopes
Figures 14, 15 and 16 show comparison charts of Thinklabs results and 3M results.
From the figures we observe that the for lung sounds, the Thinklabs filtered results are
always better than 3M filtered results. In the signal scaling of 50% case, when noise
level is over 66 dBA, 3M recordings are not acceptable without filtering. However,
after filtering, the results become acceptable even at 79 dBA. For Thinklabs’ stetho-
scope, the heart sound results are not acceptable in 79 dBA. This is probably because
Thinklabs’ stethoscope cuts more low frequency signals and hence attenuates the
magnitude of heart sounds. In contrast, 3M preserves more low frequency signals.

4 Conclusion

A high performance auscultation system under noisy conditions was developed and
evaluated. Extensive evaluations using actual data in extremely noisy environments
were performed to demonstrate the performance of the proposed system. Two adaptive

Fig. 12. Comparison charts of 3M data at
73 dBA (signal volume 50%).

Fig. 13. Comparison charts of 3M data at
79 dBA (signal volume 50%).

Fig. 14. Comparison charts of Thinklabs and
3M at 66 dBA (signal scaling 50%).

Fig. 15. Comparison charts of Thinklabs and
3M at 73 dBA (signal scaling 50%).
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filters were thoroughly evaluated. In extremely noisy conditions (73 dBA and 79 dBA),
the raw data were useless without filtering because the SNRs are negative. After
filtering, the SNRs have been improved quite significantly. Both subjective and
objective evaluations showed that our own algorithm performed a lot better than the
conventional RLS filter.

One future direction of our research is to develop a compact (cell phone size), light
weight, and low power prototype that can perform real-time auscultation in noisy
conditions. The prototype should be standalone in that it is detached from the stetho-
scope. So if astronauts prefer to use the original stethoscope, they can bypass our device.

Acknowledgement. This research was supported NASA under contract # NNX11CD44P.

References

1. Bacal, K., Rasbury, J., McCulley, P., Ownby, M., Paul, B.: Will a Conventional Stethoscope
Function Effectively in the Noisy International Space Station Environment? Research
Report. Wyle Inc. (2011)

2. Li, Y., Vicente, L., Ho, K.C., Kwan, C., Lun, D.P.K., Leung, Y.H.: A study of partially
adaptive concentric ring array. J. Circ. Syst. Sig. Process. 27(5), 733–748 (2008)

3. Li, Y., Ho, K.C., Kwan, C.: Design of broad-band circular ring microphone array for speech
acquisition in 3-D. In: International Conference on Acoustics, Speech, and Signal Processing
(2003)

4. Li, Y., Ho, K.C., Kwan, C.: A novel partial adaptive algorithm for broadband beamforming
using concentric circular array. In: IEEE International Conference on Acoustics, Speech and
Signal Processing, Montreal, pp. 177–180, 17–21 May 2004

5. Haykin, S.: Adaptive Filter Theory. Prentice Hall, Upper Saddle River (2002)
6. Kwan, C., Zhou, J.: Compact Plug-In Noise Cancellation Device. Patent # 9,117,457 (2015)
7. Speaker System. http://www.radioshack.com/product/index.jsp?productId=4098578
8. Sound Meter. http://www.radioshack.com/product/index.jsp?productId=2103667

Fig. 16. Comparison charts of Thinklabs and 3M at 79 dBA (signal scaling 50%).

Enhancing Auscultation Capability in Spacecraft 425

http://www.radioshack.com/product/index.jsp?productId=4098578
http://www.radioshack.com/product/index.jsp?productId=2103667


9. Vicente, L.M., Ho, K.C., Kwan, C.: An improved partial adaptive narrow-band beamformer
using concentric ring array. In: IEEE International Conference on Acoustics, Speech, and
Signal Processing (2006)

10. Li, Y., Ho, K.C., Kwan, C., Leung, Y.H.: Generalized partially adaptive concentric ring
array. In: IEEE International Symposium on Circuits and Systems ISCAS05, pp. 3745–3748.
Kobe, Japan (2005)

11. Xu, R., Mei, G., Ren, Z., Kwan, C., Stanford, V., Aube, J., Rochet, C.: A real time speaker
verification demonstration on the smart flow system. In: IEEE International Symposium on
Intelligent Multimedia, Video and Speech Processing (2004)

12. Kwan, C., Yin, J., Ayhan, B., Chu, S., Liu, X., Puckett, K., Zhao, Y., Ho, K. C., Kruger, M.,
Sityar, I.: An integrated approach to robust speaker identification and speech recognition. In:
IEEE International Joint Conference on Neural Networks (IEEE World Congress on
Computational Intelligence) (2008)

13. Kwan, C., Ho, K.C., Mei, G., Li, Y., Ren, Z., Xu, R., Zhang, Y., Lao, D., Stevenson, M.,
Stanford, V., Rochet, C.: An automated acoustic system to monitor and classify birds.
Eurosip J. Appl. Sig. Process. 1, 54–64 (2006)

14. Li, Y., Ho, K.C., Kwan, C.: 3-D array pattern synthesis with frequency invariant property for
concentric ring array. IEEE Trans. Sig. Process. 54(2), 780–784 (2006)

15. Xu, R., Ren, Z., Dai, W., Lao, D., Kwan, C.: Multimodal Speech Enhancement in Noisy
Environment. In: IEEE International Symposium on Intelligent Multimedia, Video and
Speech Processing (2004)

16. Kwan, C., Li, X., Lao, D., Deng, Y., Raj, B., Singh, R., Stern, R.: Voice driven applications
in non-stationary and chaotic environment. In: IEEE International Conference on Robotics
and Biomimetics (ROBIO) (2005)

17. Kwan, C., Chu, S., Yin, J., Liu, X., Kruger, M., Sityar, I.: Enhanced speech in noisy multiple
speaker environment. In: IEEE International Joint Conference on Neural Networks (IEEE
World Congress on Computational Intelligence) (2008)

18. Deng, Y., Li, X., Kwan, C., Xu, R., Raj, B., Stern, R., Williamson, D.: An integrated
approach to improve speech recognition rate for non-native speakers. INTERSPEECH 2006
- ICSLP, Ninth International Conference on Spoken Language Processing, Pittsburgh, PA,
USA (2006)

426 J. Zhou and C. Kwan



Underwater Moving Target Detection Based
on Image Enhancement

Yan Zhou1,2(&), Qingwu Li1,2, and Guanying Huo1,2

1 College of Internet of Things Engineering,
Hohai University, Changzhou 213022, China

strangeryan@163.com, huoguanying@163.com,

liqw@hhuc.edu.cn
2 Key Laboratory of Sensor Networks and Environmental Sensing,

Changzhou 213022, China

Abstract. Motion detection in underwater video scenes is very important for
many underwater computer vision tasks, such as target location, recognition and
tracking. However, due to the strong optical attenuation and light scattering in
water, underwater images are essentially characterized by their poor visibility,
especially the low contrast and distorted information. To solve these situations,
underwater moving target detection algorithm based on image enhancement is
presented. The algorithm improves the contrast and clarity of the target by an
adaptive underwater color image enhancement, and then extracts the moving
targets by using ViBe background model. Experimental results show that the
proposed algorithm can effectively extract the complete moving target by
overcoming the impact of underwater environment.

Keywords: Underwater moving target detection � Adaptive image
enhancement � ViBe model � Background subtraction

1 Introduction

Underwater moving target detection is an important means for underwater vehicles to
acquire underwater target information. Effective underwater moving target detection
contributes to many scientific researches and engineering applications, such as marine
biology, seabed topography, marine environment monitoring and marine exploration
[1]. At present, the common detection methods can be divided into three categories:
inter-frame difference, optical flow and background subtraction [2]. Inter-frame dif-
ference method [3], which extracts the moving targets by the difference of several
adjacent frames, is real-time and simple. However, generally, moving targets extracted
are not complete and have the void phenomenon. Optical flow method, which detects
moving targets by using its optical flow characteristics over time, has high computa-
tional complexity and is sensitive to illumination variation [4].

Background subtraction methods construct a model for the background and com-
pare the background model with the current frame so as to detect the regions where a
significant difference occurs. The Gaussian Mixture Model is one of the most popular
parametric background subtraction methods [5]. It can handle the multi-modal
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appearance of the background under dynamic environments. However, the parameter
estimation of the model may become difficult for noisy images. ViBe (for ‘Visual
Background Extractor’) is a samples-based background subtraction method. Due to the
use of memoryless update strategy, spatial information propagation method, and
instantaneous initialization technique, it shows an outstanding detection rate and
robustness to noise [6, 7].

However, due to the serious underwater interference and dynamic change of
underwater scenes, it becomes very difficult to accurately extract underwater moving
targets. The strong optical attenuation and light scattering caused by the water medium
and suspended particles will obviously reduce the contrast between the target and the
background. These low quality video image data seriously hamper the underwater
computer vision tasks. In order to solve the problems in underwater moving target
detection, this paper proposes an underwater moving target detection algorithm based
on image enhancement [8]. An adaptive underwater color video image enhancement
algorithm is presented to improve the contrast and clarity of the target and inhibit
inhomogeneous illumination. Then, the moving targets are extracted by using ViBe
background model. The proposed method has high dynamical adaptability in the
underwater target extraction task and strong robustness to the underwater environment.
The experiment results prove its efficiency in target detection under the complex
underwater optical environments.

Section 2 describes our new underwater moving target detection algorithm.
Experimental results are detailed in Sect. 3. Section 4 concludes the paper.

2 Underwater Moving Target Detection Based on Image
Enhancement

Underwater environment is complex and dynamic, in which there are plenty of dis-
turbances, e.g. wave, illumination changes, light absorption and scattering. Underwater
video scenes are notorious for poor visibility, low contrast, edge-blurring and being full
of noise. Therefore, motion detection in underwater video scenes is more difficult than
that in air. It is necessary to improve the visual quality of underwater images for
subsequent accurate motion detection. So we propose an underwater moving target
detection algorithm based on image enhancement. Firstly, an adaptive underwater
video image enhancement algorithm inspired by the human visual system (HVS) is
used to suppress noise and improve the edge sharpness. Then, underwater moving
targets are detected from background model by using ViBe background subtraction
algorithm. Experimental results show that the proposed algorithm can extract under-
water moving targets accurately and completely.

2.1 Algorithm Flow

The algorithm flow of underwater moving target detection based on image enhance-
ment is shown in Fig. 1.
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2.2 Adaptive Underwater Video Image Enhancement

In this paper, an adaptive underwater video image enhancement algorithm is proposed
to improve the contrast and clarity of the target. Firstly, the color video image is
converted from RGB to HSV color space. Secondly, the multiscale retinex
(MSR) approach is used in nonsubsampled contourlet transform (NSCT) domain of V
channel in order to eliminate non-uniform illumination, and threshold denoising
method is adopted to suppress noise. Thirdly, the luminance masking (LM) and con-
trast masking (CM) characteristics of the HVS are integrated into NSCT to yield the
HVS-based NSCT contrast. Subsequently, a nonlinear mapping function and a non-
linear gain function are designed to manipulate the HVS-based NSCT contrast coef-
ficients and the NSCT lowpass subband coefficients respectively and automatically.
Lastly, the enhanced V channel image can be reconstructed from NSCT coefficients,
and the enhanced color image is obtained by the conversion from HSV to RGB color
space. This adaptive color image enhancement algorithm, which is free of parameters
adjusting, can effectively emphasize weak edges, suppress noise, remove uneven
illumination and increase the identifiable characteristic information of the target. It will
help to improve the accuracy of the subsequent target detection.

Start

Read video frame

Adaptive color image 
enhancement

The first frame?

ViBe Background 
initialization

Background
model update

Foreground
detection

Postprocessing

The last frame?

Output
detection result

End

Yes

No

Yes

No

Fig. 1. Flow chart of underwater moving target detection
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The block diagram of the adaptive underwater video image enhancement algorithm
is shown in Fig. 2. The NSCT is one kind of multiscale and multidirectional geometric
transform, so it is able to effectively capture geometry and directional information of
images. Furthermore, since each pixel of the NSCT subbands corresponds to that of the
original image in spatial domain, we can collect the geometrical information pixel by
pixel from the NSCT coefficients. We enhance the color video image in HSV color
space by RGB to HSV conversion. The H and S component are kept unchanged, and
only V component is handled. After NSCT decomposition on V channel, the lowpass

NSCT decomposition
Bandpass
directional 
subbands

Lowpass subband 
Nonlinear enhancement

HVS-based NSCT contrast 
nonlinear mapping

NSCT reconstruction

Original color image

Enhanced color image

Lowpass
 subband 

MSR threshold  denoising

Luminance Masking

Contrast Masking 

Inverse Contrast Masking 

Inverse Luminance 
Masking

V  component

 HSV to RGB conversion

RGB to HSV conversion

Fig. 2. Block diagram of adaptive underwater video image enhancement algorithm
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subband, which is nearly noiseless, includes overall contrast information. While
bandpass directional subbands contain not only edges but also noise.

Taking into account of the presence of non-uniform illumination in the underwater
image, the NSCT lowpass subband is manipulated with MSR algorithm. In this stage,
dynamic range is properly compressed to eliminate shadows and uneven illumination.

Because edges correspond to the large NSCT coefficients and noise corresponds to
the small NSCT coefficients in bandpass directional subbands, noise can be effectively
suppressed by thresholding. Thresholds for each bandpass directional subband can be
chosen according to:

Ts;d ¼ kr
ffiffiffiffiffiffiffi
~rs;d

p ð1Þ

The noise standard deviation r of the original image is estimated by using the
robust median operator, i.e.,

r ¼ medianðabsðCÞÞ=0:6745 ð2Þ

where C refers to the NSCT coefficients in the finest scale. ~r2s;d refers to the approx-
imate value of the individual variances at the directional subband indexed by scale
s and direction d, which is calculated by using Monte-Carlo simulations.

Subsequently, HVS-based masking model in NSCT domain is constructed to yield
the HVS-based NSCT contrast. To obtain HVS-based NSCT contrast, two steps are to
be conducted. Firstly, the LM contrast in NSCT domain is measured by

CLMðs;dÞ ¼
yðs;dÞ

yðs;0Þ
�� ��þ c

ð3Þ

where yðs;dÞ is the original NSCT bandpass directional subband indexed by scale s and
direction d. yðs;0Þ is the original NSCT lowpass subband at the sth scale. In an N level
NSCT decomposition of an image, s = N denotes the scale after performing NSCT
decomposition procedure one time (i.e., the finest scale), and s = 1 denotes the scale
after performing NSCT decomposition procedure N times (i.e., the coarsest scale). c is
a small constant to avoid dividing by 0. CLMðs;dÞ is the output of LM contrast indexed
by scale s and direction d. Secondly, the LM contrast is masked with Contrast Masking
to yield the LCM contrast, which is the HVS-based NSCT contrast. The multiscale
LCM contrast, which is a function of the LM contrast, is defined as

CLCMðs;dÞ ¼
CLMðs;dÞ

CLMðs�1;dÞ
�� ��0:62 þ c

ð4Þ

where c is a small constant to avoid dividing by 0.
We also propose a nonlinear mapping function to modify the HVS-based NSCT

contrast coefficients at each scale and direction independently and automatically so as
to achieve multiscale contrast enhancement. The proposed nonlinear mapping function
is given by:
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ĈLCMðs;dÞ ¼ s � maxð CLCMðs;dÞ
�� ��Þ � signðCLCMðs;dÞÞ � sinðp

2
� CLCMðs;dÞ

�� ��
maxð CLCMðs;dÞ

�� ��ÞÞ
" # ffiffi

p
p

ð5Þ

where

p ¼
logðmeanð CLCMðs;dÞj jÞ

maxð CLCMðs;dÞj jÞ Þ

log½sinðp2
meanð CLCMðs;dÞj jÞ
maxð CLCMðs;dÞj jÞ Þ�

ð6Þ

CLCMðs;dÞ is the original HVS-based NSCT contrast coefficient at the subband

indexed by scale s and direction d. ĈLCMðs;dÞ is the modified HVS-based NSCT contrast
coefficient. max CLCMðs;dÞ

�� ��� �
denotes the maximum absolute contrast coefficient

amplitude at the subband indexed by scale s and direction d. mean CLCMðs;dÞ
�� ��� �

denotes
the mean value of absolute contrast coefficient amplitude at the subband indexed by
scale s and direction d. Given an N scale NSCT decomposition of an image, CLCMðs;dÞ
includes N-1 scales (i.e., 1\s�N), according to Eq. (4).

This nonlinear mapping function can well enhance the low-contrast areas, and also
avoid over-enhancement of the high-contrast areas simultaneously [8].

Furthermore, the global dynamic range of the image can be adjusted by using one
nonlinear gain function in the lowpass subband at the coarsest scale of NSCT
decomposition. The nonlinear gain function is defined as follows:

ŷð1;0Þ ¼ maxð yð1;0Þ
�� ��Þ � signðyð1;0ÞÞ � sinðp

2
� yð1;0Þ

�� ��
maxð yð1;0Þ

�� ��ÞÞ
" #q

ð7Þ

where

q ¼
logðmeanð yð1;0Þj jÞ

maxð yð1;0Þj jÞ Þ

log½sinðp2
meanð yð1;0Þj jÞ
maxð yð1;0Þj jÞ Þ�

ð8Þ

yð1;0Þ is the NSCT lowpass subband coefficient at the first scale (i.e., the coarsest
scale). ŷð1;0Þ is the modified NSCT lowpass subband coefficient at the first scale.

The modified LM contrast can be calculated from the modified LCM contrast by
Inverse Contrast Masking:

ĈLMðs;dÞ ¼ ĈLCMðs;dÞ � ð ĈLMðs�1;dÞ
�� ��0:62 þ cÞ ð9Þ

The modified bandpass directional subband coefficients of NSCT are calculated
from the modified LM contrast by Inverse Luminance Masking:
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ŷðs;dÞ ¼ ĈLMðs;dÞ � ð ŷðs;0Þ
�� ��þ cÞ ð10Þ

Finally, the enhanced V channel image can be reconstructed from NSCT coeffi-
cients, and the enhanced color image is obtained by the conversion from HSV to RGB
color space.

2.3 ViBe Model

ViBe is one kind of powerful samples-based background subtraction method. The
background model is initialized from only single frame by using a random selection
policy. Background model is updated dynamically by using a memoryless update
strategy and a neighborhood propagation mechanism. It mainly includes three parts:
background modeling, foreground target detection and model updating.

Background Modeling and Initialization. ViBe builds a model for each background
pixel with a set of samples instead of with an explicit pixel model. Denote f ðxÞ by the
pixel value located at x in the image in a given Euclidean color space, and fi by a
background sample value with an index i. The background pixel located at x is modeled
by a collection of N background sample values as follows:

MðxÞ ¼ f1; f2; . . .; fNf g ð11Þ

Considering that adjacent pixels share a similar temporal distribution, ViBe ini-
tializes the background model from a single frame. Each pixel model contains N values
randomly extracted from the spatial neighborhood of each pixel in the first frame.
Assume that t = 0 denotes the first frame and NGðxÞ is a spatial neighborhood of a pixel
located at x, thus the model M0ðxÞ is as follows:

M0ðxÞ ¼ f 0ðy y 2 NGðxÞj Þ� � ð12Þ

Foreground Target Detection. If we consider the background subtraction as a clas-
sification problem, we want to classify a new pixel as a background or foreground pixel
with respect to its neighborhood. To classify a pixel value f ðxÞ according to its cor-
responding model MðxÞ, we compare it to the closest values within the set of samples
by defining a sphere SRðf ðxÞÞ of radius R centered on f ðxÞ. The pixel value f ðxÞ is then
classified as background if the cardinality, denoted #TðxÞ, of the set intersection
between the sphere and the model sample set is greater than or equal to a given
threshold #min.

#TðxÞ ¼ #fSRðf ðxÞÞ \ ðf1; f2; . . .; fNÞg ð13Þ

Assume that t = k denotes the k frame and that f kðxÞ is the value of the pixel located
at x in the k frame, with its corresponding model Mk�1ðxÞ. To classify a pixel value as
foreground or not as follows:
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f kðxÞ ¼
background; #TðxÞ�#min and

f f kðxÞ � f k�1
i ðxÞ�� ���R; i ¼ 1; . . .;Ng

foreground; else
;

8<
: ð14Þ

Update Background Model. ViBe can ensure a smooth decaying lifespan for the
samples in the background pixel models by using a memoryless update strategy. The
random time subsampling method is used to expand the time windows covered by the
background pixel models. A time subsampling weighting factor u is designed to
control the probability of background pixel model updating. A background pixel value
has one chance in u to be selected to update its pixel model and also has the same
chance to be selected to update its neighboring pixel model. By using spatial consis-
tency in background samples propagation, a spatial diffusion of information about the
background evolution is achieved. Therefore, this background model can adapt to
structural evolutions and varying illumination.

3 Experimental Results and Analysis

All the tests are implemented at MATLAB R2011b platform on a PC with 2.4-GHz
Intel(R) Xeon(R) CPU and 8-GB RAM. ViBe parameters are set as follows: N ¼ 20,
R ¼ 20, #min ¼ 2, u ¼ 16.

Simulation platform detects moving targets from video scenes by the underwater
still camera. Figure 3 is the experimental results of video ‘Diver’. The 19th frame in the
original video is shown in Fig. 3(a), and its corresponding enhanced video image is
shown in Fig. 3(b). It can be seen that the enhanced image is clearer and the contrast

 (a) Original video image(#19 frame)           (b) Enhanced video image(#19 frame)

         (c) ViBe                                         (d) the proposed algorithm 

Fig. 3. Moving target detection results of video ‘Diver’
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between the target and the background is higher. Figure 3(c) and (d) are detection
results of ViBe and the proposed algorithm, respectively. The visual results show that
the proposed algorithm can extract the complete moving diver accurately.

Figure 4 is the experimental results of video ‘Turtle’. The 30th frame in the original
video is shown in Fig. 4(a), and its corresponding enhanced video image is shown in
Fig. 4(b). The turtle in the enhanced image is clearer than that in the original image.
Figure 4(c) and (e) are the detection results by using ViBe, and Fig. 4(d) and (f) are the
results by using the proposed algorithm. The proposed algorithm can detect the target
accurately in 30th frame, but ViBe cannot. ViBe algorithm finds the target until 38th

frame, and the detection window is slightly offset.

4 Conclusions

In this paper, we present an underwater moving target detection algorithm based on
image enhancement. The proposed algorithm achieves the adaptive underwater color
video image enhancement so as to improve the contrast and clarity of the target and
inhibit inhomogeneous illumination, and then efficiently extracts underwater moving

(a) Original video image (#30 frame) (b) Enhanced video image (#30 frame)

(c) ViBe(#30 frame) (d) the proposed algorithm(#30 frame)

(e) ViBe(#38 frame) (f) the proposed algorithm (#38 frame)

Fig. 4. Moving target detection results of video ‘Turtle’
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targets by ViBe model. The experiments show that the proposed algorithm can accu-
rately detect the moving targets under the complex underwater environment.
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Abstract. With the increasing incidence of epilepsy, we need to detect the
epilepsy with high efficiency to avoid the disease attack. In this paper, we
proposed two novel feature extraction methods for automatic epileptic seizure
detection with high performance based on the statistic properties of complex
network. One is the degree centrality combined with the linear features as the
features to classify the epileptic EEG signal. Firstly, we transformed the time
series into complex network by using horizontal visibility graph (HVG). Then
we extracted the degree centrality of the complex network combined with the
fluctuation index and variation coefficient as the three-dimensional features and
the classification accuracy is up to 95.98%. To enhance the difference of the
degree centrality feature, we put the other new feature. That is the improved
degree centrality and chose the improved degree centrality as the single feature
to classify the signal. Experimental results showed that the classification accu-
racy of this single feature is 96.50%.

Keywords: Feature extraction method � Degree centrality � Horizontal
visibility graph � Fluctuation index � Variation coefficient � Epileptic seizure
detection

1 Introduction

Epilepsy is an ancient disease which influenced the life of patients for a long time.
Detection for epilepsy is main work for the scholars from past to present and has a
profound significance on the patients. In the beginning, professional doctor detected the
epilepsy by judging electroencephalogram with their eyes. But this way consumed a lot
of manpower. Later, by studying the signal further researchers utilized nonlinear time
series analysis method, which depicts the nonlinear information of original time series
to complete the detection of epileptic.
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Some scholars utilized traditional nonlinear characteristic to detect the epileptic
EEG. Jing and Takigawa analyzed epileptic EEG and normal EEG by utilizing the
correlation dimensions [1] and showed that the correlation dimension of the epileptic
EEG is larger than the normal EEG’s. Osowski analyzed the epileptic seizure based on
the largest Lyapunov exponent [2]. Nurujjaman researched the Hurst exponent [3] of
the epileptic EEG and discovered that the normal EEG is uncorrelated whereas the
epileptic EEG is long range anti-correlated. Kannathal [4] researched the epileptic by
utilizing the approximate entropy and confirmed that different states had different
entropies. Y. Song put up with optimized sample entropy [5, 6], which was applied to
seizure detection, which removes the calculation redundancy.

Later, the theory of complex network provided a new perspective to study the
nonlinear time series. Jie zhang [7] used the theory of complex network to describe
pseudo-periodic time series. Zhang and Small [8] put forward the pioneering algorithm.
They analyzed the complex network and extracted the degree distribution of complex
network as the feature and the experimental results showed that different types of time
series have different degree distributions. With the increasing incidence of epilepsy, the
classification performance of these methods need to be improved. So we need to
explore more efficient methods. In 2008, Lacasa come up with the visibility graph
algorithm [9] firstly and this algorithm can transform any time series to complex
networks. Some scholars utilized the visibility graph to study exchange rate series [10]
and fractional Brownian motions [11, 12]. Later, researchers improved the rule of
visibility graph by studying this algorithm and put forward the horizontal visibility
graph [13]. The algorithm has also been used widely.

In this paper, we built on complex network perspective and utilized the topological
statistical properties of complex network to analyze the time series. The methods we
proposed were introduced in detail in prat two.

2 Feature Extraction Methods Based on Degree Centrality
and Linear Features

In this section, we presented the conversion algorithm and introduced the feature
extraction methods. During this conversion process, we used horizontal visibility graph
to complete the construction of complex network. Compared to proximity network, this
conversion algorithm omits the selection of the threshold. Then we took the degree
centrality feature combined with linear features and the single improved degree cen-
trality feature as the extracted features respectively.

2.1 Horizontal Visibility Graph

Horizontal visibility graph provides a better way to complete the conversion. The
specific algorithm of horizontal visibility graph is described below. Firstly, we use fxig
i 2[1 M] to denote an EEG signal, where xi is the ith sampling point. The length of time
series is M. To construct complex network, we need to construct node set and edge set.
In this conversion algorithm, each sampling point of time series presents a node, so the
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whole time series constitute the node set. Whether there is an edge between two nodes
depends on the local convex constraints. As for two sampling point xi and xj, if
xk\min (xi, xj) for all k with ti\tk\tj, there is an edge between the node xi and xj; if
not, there is no edge between the node xi and xj. We can get the edge set according to
this principle. Compared to horizontal visibility graph, the criteria of visibility graph is
xk\xj þ xi � xj

� � tj�tk
tj�ti

. When the values of the two time samples satisfy the rule, there

is an edge between the two nodes; if not, there is no edge. Through the conversion
algorithm, we can get the adjacency matrix of complex network.

Proximity network is also a kind of conversion algorithm, which is used widely.
The computational process of the algorithm is different from the horizontal visibility
graph. At first, the time series is segmented and each segment is treated as a node of
complex network. Secondly, we achieve the distance matrix by calculating the distance
between two nodes. To obtain the adjacent matrix, we need to judge the edge between
nodes. The judgement rule is defined below.

aij ¼ 1; dij\th
0; dij � th

�
ð1Þ

The th presents the threshold. If the distance between nodes is greater than the
threshold, there is no edge between nodes; if the distance is smaller than the threshold,
there is an edge between nodes.

From the above, it’s clear that horizontal visibility graph is not involved in selecting
any threshold. But the proximity network needs to select the threshold. Thus it can
be seen that horizontal visibility graph decreases the subjectivity greatly.

2.2 The Degree Centrality and Improved Degree Centrality

In the theory of complex network, degree centrality describes the center of degree. The
degree centrality of complex network is defined as:

cD xð Þ ¼ k xð Þ
n� 1

ð2Þ

As for one node, k xð Þ is the number of the edges, which connect to this node; n is
the total number of nodes in complex network. This property reflects some information
of original time series. To further improve the classification accuracy, we modify the
degree centrality. The improved degree centrality enhances the degree centrality. The
formula is listed below:

cDD xð Þ ¼ k xð Þ2
n� 1

ð3Þ

k xð Þ describes the degree of the node. This property enhances some mathematical
characteristics of feature, so the performance of the classification is better.
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2.3 The Fluctuation Index and Variation Coefficient

As for EEG signal, the signal fluctuation during a seizure is larger than the normal.
Fluctuation index describes the fluctuation of signal intensity. It is defined as:

F ¼ 1
n

Xn�1

i¼1

x iþ 1ð Þ � x ið Þj j ð4Þ

x ið Þ stands for the ith point of original signal and n is the length of the signal. The
fluctuation index reflects the fluctuation of time series.

Variation coefficient presents the change of signal amplitude. It is denoted as:

Vc ¼ d2

l2
ð5Þ

d is standard deviation of the EEG signal and l is the mean of the EEG signal.

3 Experiment Result and Analysis

All the simulations were based on a 2.60 GHz quad-core Inter Pentium processor with
4 GB memory. The code was executed in environment of MATLAB 7.0. Experimental
data is from Bonn University, which is in Germany. We select dataset D and dataset E
from it, which are digitized at 173.6 samples per second at 12-bit resolution and have
23.6 s time duration. The data, which is from dataset D, describe the interictal periods
of epilepsy patients, while the data from dataset E describe the ictal periods epilepsy
patients. Dataset D and dataset E contain 100 sets of datum respectively. Each datum
has the 4097 sampling points. Experimental data is described in Fig. 1. In this
experiment, the length of each sample datum we adopt is 1024.

Fig. 1. (a) An interictal EEG sample in dataset D, (b) An ictal EEG sample in dataset E
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Degree centrality describes the internal information of the EEG signal and reflects
some information of original time series. We calculate it according to the formula 2. So
we can obtain the degree centrality of complex network corresponding to the time
series. We extract it as the classification feature to complete the classification process.
In the Figs. 3 and 5, + presents ictal EEG signal, * presents interictal EEG signal.
From the Figs. 2 and 3, we can see that different states have different value range of
degree centrality. To some extent, degree centrality feature can distinguish the
experimental datum well. As we all know, fluctuation index describes the fluctuation of
signal intensity. From the Fig. 1, we can find that the fluctuation of EEG signal during
a seizure is larger than the normal. It seems that fluctuation index can contain some
information of EEG signal. Variation coefficient is the linear feature which describes
the change of signal amplitude. So in order to increase the accuracy rate, we put
forward the following feature extraction method. At first, we extract the degree cen-
trality feature combined with fluctuation index and variation coefficient as
three-dimensional features. Then we normalize the three-dimensional features and put
it to the support vector machine [14–17] to classify the EGG signal. Compared to other
existing methods, the method we proposed achieves the higher accuracy rate which is
up to 95.98%. The comparison between various methods is described in Table 1. In
Table 1, recurrence quantification analysis (RQA) is a kind of nonlinear time series

Table 1. The classification results of the proposed feature and other features.

Feature ACC(%)

Approximate entropy +SVM 89.00
Sample entropy +SVM 91.00
Degree centrality +SVM 93.92
RQA + SVM 94.00
Degree centrality +linear +SVM 95.98
Improved degree centrality 96.50

Fig. 2. The boxplot of degree centrality Fig. 3. The distribution graph of degree centrality
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analysis which is based on recurrence plot. From the Table 1, we can see that the
feature extraction method has the better performance, which depicts that the
three-dimensional features can clearly classify the different state of epilepsy.

To enhance the difference of the degree centrality feature, we analyzed the EEG
signal deeply and improved the degree centrality feature. We calculate the square of
degree centrality feature, so as to enhance the difference of the degree centrality feature.
We can reference to formula 3. After calculating the improved degree centrality, we
treat it as the single feature to classify the data. Figure 4 clearly shows that the latter
eigenvalues is generally higher than the former. It means that the improved degree
centrality feature values have a bigger difference in different state. We can distinguish
the EEG signal whether it is during a seizure or the normal according to the improved
degree centrality feature. From the Fig. 5, we can find that most points can be classified
correctly except for a few points. The straight line in Fig. 5 is the best classification
threshold and the classification accuracy is 96.5%. In general, classier can improve the
classification efficiency. So, compared with other features the improved degree cen-
trality feature as the single feature can obtain better performance in classifying EEG
data. Results show the classification accuracy of the improved degree centrality com-
bined with SVM would not be higher than the single improved degree centrality. It
depicts this feature does well in classifying the EEG signal and the SVM can’t enhance
the classification result. In the Table 1, different methods are summarized and we can
conclude that the methods we proposed have the better performance than other methods.

4 Conclusions

In this paper, we put forward two novel feature extraction methods for epileptic seizure
detections which have better performance. We build on complex network perspective
and utilize the topological statistical properties of complex network to analyze the
signal. Firstly, we transform the original time series into complex network by using the

Fig. 4. The boxplot of improved degree
centrality

Fig. 5. The classification result of the improved
degree centrality
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horizontal visibility graph algorithm. From the above calculation, we can find hori-
zontal visibility graph omits the choice of threshold and decreases the subjectivity
greatly, compared with proximity network. Fluctuation index and variation coefficient
are the linear features, which both describe the change of signal. Then we extract the
degree centrality combined with fluctuation index and variation coefficient as
three-dimensional features. After the three-dimensional features normalized, we use the
support vector machine to deal with it. The classification accuracy of the
three-dimensional features is 95.98%. To enhance the difference of the degree cen-
trality, we improve the degree centrality feature and extract it as the single feature. The
classification result shows the improved degree centrality feature has the better clas-
sification performance which is up to 96.5%. In Table 1, we can see the feature
extraction methods we proposed achieve higher classification accuracy compared to
other existing methods. From experimental results, we can reach the conclusion that
the statistic properties of complex network can describe the EEG signal better and we
propose new methods to distinguish ictal EEG from interictal EEG. With the increasing
incidence of epilepsy, the detection methods are helpful to the diagnosis and treatment
of epilepsy patients. In this paper, the research ideas and classification algorithms are of
great significance to the study of medical signals and contribute to improve the medical
level.
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Abstract. Two motion-onset visual patterns are proposed in this paper. The
difference between two patterns is the motion pattern of stimuli. One motion
pattern is dot diffusion and another motion pattern is dot contraction. The per-
formances of two patterns in terms of classification accuracy, comfort level and
interference level (feedback from the participants) are compared with each other.
Although no significant difference can be found at the online accuracy
(p = 0.0861) and comfort level (p = 0.7804), the single-trial accuracy of the
contraction pattern is significantly higher than the diffusion pattern (p = 0.0084)
and the interference level is significantly lower than the diffusion pattern
(p = 0.0243). The results demonstrate that the contraction pattern can decrease
the interference from other stimuli and improve the classification accuracy.

Keywords: ERPs � Visual � Motion � P300 � BCI � Classification accuracy �
Diffusion � Contraction

1 Introduction

Brain computer interfaces (BCIs) can perform users’ commands and intentions of users
without relying on the peripheral nerve and muscles [1]. People who suffer amy-
otrophic lateral sclerosis (ALS) or stroke lose ability to control their muscles and this
situation will severely reduce their life quality [1]. BCIs are available for this group to
help them interact with external environment. The first visual BCI based on event
related potentials (ERPs) which was called P300 speller was proposed by Farwell and
Donchin [2]. P300 component is usually evoked in the oddball paradigm, which is also
used in the Farwell and Donchin’s work. P300 component appears at *300 ms after a
rare attended stimuli or event happen [3]. It is an endogenous component of ERPs,
which is related to the selective attention and information processing of brain [4]. In
[2], some problems such as the double-flash effect and the interference from the
adjacent characters (adjacency-distraction errors), blocked the BCI system from better
performance. Since then, to improve the property of BCI, many researchers proposed
meaningful and practical methods. It has been proved that the stimuli of paradigm had
impacts on the performance of BCI [5].
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The double-flash effect would happen if the target flashed consecutively and this
might result errors because P300 component could not be evoked or could be over-
lapped [6]. The adjacency-distraction errors would appear when the non-targets near
the target were flashing and the attention of users was distracted by the flashing of
non-targets [7].

To reduce the errors, researchers split an 8 � 9 symbol matrix into two 6 � 6
matrixes that the adjacent symbols were not in the same matrix and optimized the
flashing interval between targets [8]. This paradigm was called the checkerboard
paradigm (CBP) and it was optimized further through avoiding any of eight adjacent
items of target flashing simultaneously with target [7].

Another work proposed a new stimulus presentation way which based on the
binomial coefficients to improve the performance of BCI [9]. The design in this work
also avoided the double-flash errors and improved the practical bit rate comparing with
the conventional RC paradigm.

In this study, we explore a novel method based on the work [10] to investigate
whether a contraction motion-onset pattern will perform better in items of decreasing
the interference from the adjacent stimuli.

The visual motion-onset paradigm was first proposed at 2008 [11]. The brain
response elicited by the visual motion-onset paradigm is the motion-onset visual
evoked potential (mVEP), which typically contains P1, N2 and P2 components [12].
The main purpose using visual motion-onset stimuli in this study is to explore whether
motion-onset patterns will guide the attention of users and affect the performance of
BCI systems.

2 Method

2.1 Stimuli

A 6 � 6 character matrix was presented on the screen as shown in the Fig. 1. In the
diffusion pattern, instead of the flashing rows or columns, there was a small white dot
appearing on the left of the characters which were to be illuminated. The white dot
would divide into six small dots with arranging in a hexagonal shape and then
enlarging the shape. In the contraction pattern, the motion way was opposite with the
diffusion pattern. Six white dots were arranged in a big hexagonal shape on the left of
the characters and then the six dots would contract to one dot. The procedures of the
motions in two patterns are demonstrated in the Fig. 2. The size of each picture was 80
pixels. The stimuli lasted 120 ms, and the inter-stimuli-interval (ISI) was 200 ms.

2.2 Participants and Experimental Setup

Ten students (four female, age range from 22–25, mean age 23.50 ± 1.27 years old)
participated in this study. All subjects have normal or corrected-to-normal vision. All
the subjects are right-handed. Before experiments, the subjects signed a written consent
about the study.
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The EEG data was recorded through 14 electrodes of a 64-channel ‘g.EEGcap’ and
a 16-channel g.USBamp amplifier (Guger Technologies, Graz, Austria). The electrodes
were F3, Fz, F4, C3, Cz, C4, CP3, CP4, P3, Pz, P4, P7, P8 and Oz. The EEG data was
sampled at 256 Hz and the band pass filter was between 0.1–30 Hz. The notch filter
was at 50 Hz. The right mastoid was chosen as the reference and the FPz was chosen as
the ground. The impedances of all electrodes were below 10 KX.

Fig. 1. Screenshot of the visual stimuli. The top characters are the targets in the offline
experiments. The ‘Feedback’ region is used to demonstrate the results in the online experiments.
This picture shows one moment during the stimuli presenting.

Fig. 2. The details of the motion. The motions in the both patterns are presented through
refreshing the four pictures sequentially. Each picture lasts 30 ms and the total time of stimuli on
is 120 ms. After four pictures are displayed, a flash (a sub-trial) is completed.
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2.3 Experiment Procedure

Before the experiments, subjects were given an oral introduction about the experiments
and they were asked to avoid eye blinking and body movements.

The whole experiments included two parts: the offline experiments and the online
experiments. In the offline experiments, there were three sessions. Each session con-
tained five runs. The training process of one target was called one run. Each run
included sixteen trials and each trial contained several sub-trials. The amount of
sub-trials in a trial was determined by an approach proposed by [9]. As shown in the
Fig. 1, fifteen target-selections were executed in the offline experiments. After one
session was completed, subjects had 3–5 min to rest.

The online experiments were copy spelling tasks. Subjects were asked to spell 36
given characters. The online target-selection results would be printed on the ‘Feedback’
region (see Fig. 1). Instead of a fixed number of trials in the offline experiments, the
number of trials in one run was determined by an adapted stopping method designed in
[13]. The number of trials ranged from 2 to 16, which meant that at least two trials were
needed to output one target-selection result and the maximum number of trials was
sixteen. The criterion to get an output was that if the classification results of two
successive trials were same then BCI system decided that this result was the target or if
sixteen trials were completed but no successive results appeared and then the result of
the last trial (the sixteenth trial) would be regarded as the output.

After the online experiments, subjects needed to answer two questions as two of the
indexes of evaluating the property of the patterns. The questions were as following:

(1) How comfortable do you feel in these patterns? Please rate the two patterns in a
scale from 0 to 10. The higher score indicates stronger agreement.

(2) Does this pattern make you easy to be interfered by non-target stimuli? Please rate
the two patterns in a scale from 0 to 10. The higher score indicates stronger
agreement.

2.4 Feature Extraction and Classification

The EEG data obtained from the offline experiments were used to training the classi-
fication model. A third order Butterworth band pass filter between 0.5–30 Hz was used
to filter the raw EEG data. The EEG data after filter was downsampled from 256 Hz to
36.6 Hz by picking every 7th sample from the data. The time window of EEG data was
from each stimulus on to 1000 ms later and the feature vector size was 14 � 36 (14
channels by 36 time points).

In this study, we chose linear discriminant analysis (BLDA) as classification
algorithm for its high classification accuracy and ability to avoid over-fitting phe-
nomenon which was caused by the high dimension data [14]. The details of BLDA
could be found in [15].
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3 Results

3.1 ERPs

The grand average amplitudes of ERPs for two patterns are shown in the Fig. 3. It can
be seen that the target amplitudes between two patterns have differences at all elec-
trodes. The obvious differences mainly appear at the central and posterior regions such
as electrodes Cz, CP3, CP4 and Pz.

3.2 Offline Classification Accuracy

The offline classification accuracies of two patterns of each subject are demonstrated in
the Fig. 4. The accuracies can achieve 100% after several iterations for each subject in
both patterns. The group mean accuracy of the contraction pattern is higher than that of
the diffusion pattern in the early trials. To analyze the offline accuracies further, the
single-trial classification accuracies of two patterns of each subject are computed and
displayed in the Fig. 5. A paired t-test is used to valid the difference of the single-trial
accuracies between the two patterns. It is found that the single-trial accuracies of the
contraction pattern were significantly higher than the diffusion pattern (p = 0.0084).

3.3 Online Accuracy

The averaged online accuracies of each subject in two patterns are presented in the
Fig. 6. Although no significant difference is shown between two patterns (p = 0.0861),
the group mean online accuracy of the contraction pattern is higher.

Fig. 3. The grand averaged amplitudes of 14 electrodes across 10 subjects for the diffusion
pattern and the contraction pattern. The black line indicates the target amplitude of the diffusion
pattern and the red line indicates the target amplitude of the contraction pattern. (Color figure
online)
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3.4 Feedback of Questions

The feedback of the questions mentioned before was collected from each subject. The
feedback about the comfort level and interference level is displayed in the Fig. 7. No
significant difference is found at the comfort level between two patterns (p = 0.7804),
but the interference level shows a significant difference (p = 0.0243). It manifests that
the contraction pattern has less interference from the non-target stimuli than the dif-
fusion pattern.

4 Discussion

In this study, two motion-onset patterns are compared in items of ERP waveforms,
classification accuracy, comfort level and interference level to investigate whether
different motion-onset ways will influence the performance of BCI. The results show
that the contractive motion-onset way (the contraction pattern) has better performance
than the diffused motion-onset way (the diffusion pattern).

Clear differences can be observed on the N200 component and P300 component.
The shorter peak latency is the major difference for the contraction pattern from the
diffusion pattern. The morphology of ERPs can be affected by the different experiment

Fig. 4. The offline classification accuracies of two patterns of each subject. The black line was
the accuracy of the diffusion pattern and the red line referred to the accuracy of the contraction
pattern. (Color figure online)
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Fig. 5. The single-trial accuracies of each subject. The black bar indicates the single-trial
accuracy of the diffusion pattern. The red bar indicates the single-trial accuracy of the contraction
pattern. (Color figure online)

Fig. 6. The online accuracies of each subject. The blue bar indicates the online accuracy of the
diffusion pattern. The red bar indicates the online accuracy of the contraction pattern. (Color
figure online)
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conditions and the stimuli property [16]. It was found that P300 latency would increase
with the difficulty of stimulus distinguishing [17]. The diffused motion-onset may
increase the difficulty to classify the stimulus. The single-trial accuracies of the con-
traction pattern are higher than the diffusion pattern. According to the feedback from
the subjects, in the contraction pattern they were not susceptible to the non-target
stimuli as in the diffusion pattern. This might reflect that the contractive motion could
guide subjects’ attention on the target well. P300 component is an index of attention
resources distributing [18]. And it had been approved that visual motion had influence
on attention [19]. Hence, the patterns in this study may have similar effects on guiding
attention.

In the visual BCI system, the errors coming from the adjacent stimuli are a problem
that affects the performance. One of the reasons why subjects could concentrate on the
target easily in the contraction pattern than the diffusion pattern might be that the
contractive motion led the sight focusing on a smaller region rather than a larger range.

Fig. 7. The scores of the questions from each subject. The blue bar indicates the diffusion
pattern and the red bar indicates the contraction pattern. (A) The comfort level of the two patterns
from each subject. The higher is the better. (B) The interference level of the two patterns from
each subject. The lower is the better. (Color figure online)
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5 Conclusion

In this paper, two motion-onset patterns are compared to explore the effect of the
motion way on the BCI performance. The results demonstrate that different motion
ways have different influences on the BCI performance and the contractive motion way
can help users concentrate on the target easily. The future work is to compare the
contraction pattern with other proposed patterns to valid its property.
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Abstract. Research has attempted to detect the community structure of the
brain network using rs-fMRI data to determine differences in brain networks.
Traditional clustering methods used to detect the community structure of the
brain network, require a priori specification of cluster numbers. However, the
cluster number of the brain network remains unknown. In this paper, we propose
a new method, GAcut, to detect the community structure of real-world networks
and brain functional networks. Here, genetic algorithm is applied to change the
connection between nodes, based on optimized modularity Q, and to automat-
ically detect community structure, realizing true, unsupervised analysis. GAcut
was then applied to rs-fMRI data to compare differences between autism
spectrum disorders (ASDs) and normal controls. Utilizing modularity Q and
NMI as measurement indices for differentiation, some characteristic and
meaningful network communities that feature in ASDs.

Keywords: Resting-state network � Community structure � Autism

1 Introduction

The human brain is an extremely complicated system. In recent decades, functional
magnetic resonance imaging has provided a technical method for studying and ana-
lyzing brain networks. In 1995, Biswal, et al. studied the bilateral motor cortices and
found functional connectivity present in the resting state [1]. In recent years, functional
integration has become more and more increasingly popular. Scientists have applied
investigated functional integration by a variety of methods, such as functional con-
nectivity [1] and ICA [2].

Community detecting is a kind of clustering technology based on the graph model.
Almost all real systems possess community structure, such as biological systems, social
systems and economic systems [3]. As a significant property in of the complex systems,
community structure has for several years been a global research hotspot. Brain The brain
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is one of the most complicated systems in nature, which means it probably possesses
community structure. In fact, community structure is an important direction of rs-fMRI
research, in which various methods have been used to explore community structure. Van,
et al. used Ncut to partition the brain functional network [4]. Wang, et al. applied a
hierarchical clustering method to detect community structure [5]. These methods show
relatively reasonable results in brain networks, while certain parameters must be set or
adjusted certain parameters, such as the number of communities, before segmentation
and during the segmentation. In fact, the number of communities in the human brain
network remains thus far undefined. Therefore, setting the community numbers and any
other parameters in advance could lead to a negative effect on community division.

In this paper, we propose a new community detection method, based on optimized
modularity Q [6], and GAcut, which combines the random walk model and a genetic
algorithm to detect community structure in networks without any parameters.We applied
GAcut to different brain networks in both ASDs and typical controls. Finally, we ana-
lyzed the difference in community structures of brain networks that evidence pathologies.

2 Dataset and Preprocessing

2.1 Data Acquisition

The resting-state fMRI datasets used were acquired from the Autism Brain Imaging Data
Exchange (http://fcon_1000.projects.nitrc.org/indi/abide/index.html). In this paper, two
resting-state fMRI datasets were utilized. Dataset 1 was collected by California Institute
of Technology, and includes 19 individuals with ASD and 19 typical controls. Dataset 2
was collected by University of Michigan, and includes 13 individuals with ASD and 22
typical controls. More specific information can be found on the ABIDE website.

2.2 Data Preprocessing

Data preprocessing was performed using DPARSF (Yan and Zang, 2010, http://www.
restfmri.net), which is based on SPM8 (http://www.fil.ion.ucl.ac.uk/spm) and REST
(http://www.restfmri.net). We ran the software on MATLAB R2012a.

First, we removed the first 10 s in the datasets to make ensure a steady signal.
Based on a 6-parameter, rigid body image registration, head motion correction was
applied. The functional data were transformed into MNI space, then resampled to
3 � 3 � 3 mm voxel size. To avoid mixing signals between different regions, spatial
smoothing was not performed. Temporal filtering (0.01–0.08 Hz) was then applied to
the time series of each voxel to reduce the effect of low-frequency drifts and
high-frequency noise.

2.3 Correlation Analysis and Network Construction

Applying DPARSF software, the time series for each AAL brain region was extracted
[7]. To obtain the correlation matrix, each brain region was treated as a node and
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Spearman correlation was used to calculate the correlation coefficients between any two
brain regions. In this way, we calculated the correlation matrix for every subject,
including datasets 1 and 2. To analyze all the subjects within each group, we computed
a group mean correlation matrix including both ASDs and typical controls for each
dataset. Each correlation matrix must be converted to an unweighted adjacency matrix
by choosing a specific threshold, R. If the absolute value of the correlation matrix is
greater than R, it must be assigned to 1, otherwise, to 0. The two datasets were divided
into four groups: ASD 1, Controls 1, ASD 2 and Controls 2. To compare the subject
networks on different scales, we totally computed 31 complete adjacent matrixes for
each group, with the edge numbers from 100 to 400 in steps of 10.

3 GAcut

To obtain a more accurate similarity matrix, every unweighted matrix was converted
into a corresponding similarity matrix using the random walk model. During the
chromosome coding step, the nearest neighbor method was applied to encode various
community structures as chromosomes. From there, the genetic method was applied to
optimize modularity Q and to obtain a corresponding community structure. It is
unnecessary to set certain parameters in advance, since GAcut can automatically detect
community structure and obtain the optimal modularity Q.

3.1 Community Structure Detection

Widely utilized in social network analysis, community structure detection algorithm is
a graph partitioning method. The graph model represents a complex network in the
abstract by, G ¼ ðV;EÞ, where V represents vertices, and E represents the edges
between any two vertices. The adjacent matrix, A ¼ ½n; n�, can be utilized to represent
the relationship between different vertices in networks, where n is the number of
vertices. The modularity function, Q, has been proposed to assess the quality of a
community structure, and to transform community discovery into an optimization
problem.

Q ¼ 1
2m

X

ij

ðAij � kikj
2m

ÞdðCi;CjÞ ð1Þ

where ki and kj are the respective degrees of node i and node j. Ci is the community that
node i belongs to, while m is the number of edges in the network. dij is the Kronecker
delta function, which equals 1 when node i and node j are in the same community, and
0 when said nodes are elsewhere. modularity Q lies between 0 and 1. However, for an
unweighted network, Q is always between 0.3 and 0.7. A larger Q value indicates
stronger community structure, While a value for Q lower than 0.3 can be considered as
having no obvious community structure in the networks. In this paper, modularity Q is
utilized as the objective function to detect community structure in both the real-world
networks and in brain networks.
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3.2 Coding and Decoding

To avoid setting parameters in advance, a new encoding and decoding method is
proposed. First, the adjacent matrix A is converted into the similarity matrix, S, via the
random walk model [8], by which the nearest neighbor node is found next, based on the
similarity matrix. The nearest neighbor node is unique, since the similarity matrix is a
weighted matrix. We also use the backtracking-forbidden method, to prevent excessive
division of the community. For example, if node M is the nearest neighbor to node N,
and N is the nearest neighbor to M as well, only one of them is allowed to regard the
other node as the nearest neighbor. As well, the remaining node is required to discover
the secondary second-nearest neighbor node in the network. As shown in Fig. 1(b),
node 1 and node 3 are the nearest neighbor node to each other, since both S(1,3) and
S(3,1) are the minimum value in their own rows separately, which means they are quite
similar to each other. To avoid excessive partition, node 5 is treated as the nearest
neighbor node to node 3, instead of node 1. The backtracking-forbidden method was
used in GAcut to code chromosomes.

In the process of decoding, node 1 and node 3 are linked, because node 3 is the
nearest neighbor to node 1, while the other nodes are treated in the same way. Each
chromosome in the population can represent a certain kind of community, structure. As
shown in the Fig. 1(d), two communities are discovered directly by decoding process,
and without any parameters in the network.

3.3 Genetic Algorithm

Population Initialization. To develop the encoding method used here, numerous
chromosomes are produced as the initial population. Different community structures can
then be revealed through the decoding method. Every kind of community structure
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Fig. 1. Coding and decoding: (a) The exemplary network comprises ten nodes. (b) The
backtracking-forbidden method (c) The exemplary network is coded into a chromosome. The
first row represents ten nodes. The second row represents the chromosome. (d) The exemplary
network is partitioned into two communities by decoding process.
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corresponds to a value of modularity Q, while chromosome corresponding to the largest
Q value is selected as the parent generation to carry out the following operations.

Crossover and Mutation. Two parents produce two offspring by crossover operation,
and new offspring correspond to new community structures and their modularity Q
values. In the crossover operation, the chromosomes of the two parents randomly
recombine to form offspring. Mutation operation can effectively prevent premature
phenomenon and maintain population diversity. In GAcut, we randomly select a gene
position, i, then we search its minimum similarity node, j. Because i and j are most
likely to be divided into the same community, exchange next occurs between the value
of i and the value of j.

4 Results

4.1 Community Structure in rs-fMRI

Modularity Q Analysis. GAcut was applied to four groups of constructed networks
which have been constructed: ASD 1, Controls 1, ASD 2 and Controls 2. To
demonstrate that brain networks feature modularity, rather than random networks, some
comparable random networks with the same number of nodes and edges were also
built.

Figure 2 depicts the results for dataset 1, where modularity Q of Controls 1 is
slightly greater than that of ASD 1 in most cases; that is the community structure of
Controls 1 is stronger than that of ASD 1 to a less extent. However, in Fig. 3, we
cannot reach the foregoing conclusion, since the modularity Q values of ASD 2 and
Controls 2 are very close. In this sense, there is no reason to distinguish between ASD
and Controls solely according to the modularity Q.

Recent literature indicates only limited evidence in autism for abnormal resting-
state connectivity at the regional level and no evidence for altered connectivity at the
whole-brain level [9]. The same conclusion could be drawn from calculating the
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modularity Q in this paper. Furthermore, the modularity Q values of ASDs and typical
controls are larger than the random networks, which indicates that the brain networks
have community structure.

NMI Analysis. To compare the similarity of community structures in different brain
networks, NMI (Normalized Mutual Information) was used as the evaluation standard.
The value for NMI lies between 0 and 1. The, while the larger NMI value is, the more
similar the two given community structures are. Three kinds of contrast experiments
were studied in this paper: (1) Controls 1 and Controls 2 (2) Controls 1 and ASD 1
(3) Controls 2 and ASD 2, for which. The results are shown in Fig. 4. Based on Fig. 4,
most situations show NMI of Controls 1 and Control 2 as greater than the NMI of
Controls and ASD. This indicates that the differences of community structure exist
between typical controls and ASDs.

To further analyze the differences between ASD and Controls, we selected the
result with 260 edges in dataset 1 because the NMI values of Controls 1 and Control 2
are relatively high (0.4531) and while the NMI of Controls 1 and ASD 1 is relatively
low (0.3517). Furthermore, dataset 1 shows the correspondingly greater difference in
Modularity Q between ASD 1 (0.3664) and Controls 1 (0.4203). The ASD 1 brain
network is divided 7 modules with 2 small prominent modules and one large module.
The Controls 1 brain network comprised 8 modules (as shown in Fig. 4).

The brain network of Control 1 with 260 edges comprises 8 communities. Com-
munity size ranges from 8 brain regions to 16 brain regions, and sizes of communities
in Controls 1 do not vary greatly. The division of labor is clear-cut; every community is
charged with specific responsibilities.

Community sizes in ASD brain networks range from 24 brain regions to 2 brain
regions. In comparison, there are two small communities in the ASD brain network,
which indicates that these communities are not closely related to the other communi-
ties. One of the two modules comprises bilateral caudate nuclei, which are involved
primarily in cognitive learning and have a close relation with classification processes.
Bilateral caudate nuclei form the regulatory pathway connecting thalamus, amygdala
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and other nerve nuclei to the frontal and temporal lobe cortices. Studies have indicated
that there is an abnormal increase of caudate nuclei in adult ASD patients, which is
associated with severity of repetitive stereotyped behavior. In the Controls 1 brain
network, however, caudate nuclei are included in a big module with other brain
regions, such as lenticular putamen and lenticular pallidum. These brain regions belong
to the regions of basal nuclei. The main functions of the basal nuclei are to control
independent movement, as well as integration and adjustment of conscious activity and
movement reaction. Basal nuclei also participate in memory, emotion, reward learning
and other advanced cognitive functions. Many kinds of locomotive and cognitive
disorders, including Parkinson’s disease and Huntington’s disease, are caused by
lesions in basal nuclei. The basal nucleus module for ASD lacks a caudate nucleus,
which incomplete module may be related to ASD.

A large number of studies have indicated that CSTC (cortico-striatal-thalamic-
cortical) circuits play an important role in restricted and repetitive behaviors. Caudate
nuclei are clearly separated from the other brain regions in the circuits. Imbalance
between direct and indirect pathways in circuits has been confirmed as closely related
to restricted and repetitive behaviors in ASD patients. The other small community
comprises the superior frontal gyrus and medial orbital, which are related to human
emotion cognitive and mental activities.

In addition, there is a large community in the brain network for ASD 1, which
comprises most regions of the prefrontal lobe and occipital gyrus, occipital gyrus,
inferior occipital gyrus, fusiform gyrus etc. The brain network of Controls 1 does not
contain such a large community, but is divided into a number of small communities,
suggesting that ASD behaviors may be related to prefrontal regions. Some studies have
indicated that the prefrontal lobe region exhibits significant functional change in aut-
ism. The community structure supports some conclusions in those researches.

There is another significant feature of community structures in patients with autism:
inadequate connection between cerebral hemispheres. For example, the left anterior
central gyrus and right anterior central gyrus divide into two different communities,
while similar cases also occur in some brain regions of frontal lobe and cuneus. The
corpus callosum links both sides of the cerebral hemispheres corresponding to the
cortex, and whose main function is to integrate the activities of both hemispheres. The
corpus callosum also relates to memory, retrieval, attention, awakening, language,
auditory and visual information transmission. A lack of connectivity between the
cerebral hemispheres may suggest an abnormality in the corpus callosum. Studies have
indicated that autism is associated with a lack of connection in corpus callosum.

5 Conclusion

In this paper, a new genetic algorithm, GAcut, is proposed, which automatically
determines, without parameters. The brain networks of both ASDs and typical controls
possess obvious community structure, while at the whole-brain level, no clear differ-
ences between ASDs and typical controls appear when using modularity Q as indicator.
By comparing NMI values, however, we found that NMI values between typical
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controls are significantly higher than between ASDs and typical controls overall.
Finally, we clarify major characteristics of the ASD community structure by comparing
results.
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Abstract. A method of Printed Circuit Board (PCB) pin defect inspection is
proposed in this paper. First, we input the pin location image. Then, we align
images with Circle Hough Transform (CHT) [4]. Finally, we train cascade
classifier with adaptive boosting [3] and Local Binary Pattern (LBP) [5], and
detect pin defect to reduce false alarm rate and miss detection rate and thus
enhance pin production yield rate.

Keywords: X-ray inspection � Pin � Circle Hough Transform � Adaptive
boosting � Cascade training

1 Introduction

In industry, factory automation is getting more important; including manufacturing,
transporting, packaging, and defect inspection. Defective products lead to bad brand
reputation and product recall and repair cost, so defect inspection plays an important
role in gaining profits. Our goal is to decrease false alarm and miss detection rates.
However, miss detection may cause defective final product and higher repair cost, and
thus has higher weight than false alarm rate. Nowadays, Haar-like feature and Local
Binary Pattern (LBP) are two main features used at cascade classifier training; we will
compare their differences in next section.

We aim to implement the pin defect inspection with X-ray image. Generally, many
factors affect this issue, including X-ray intensity, the distance between X-ray tube and
board, the angle between X-ray tube and camera, the intensity of light source, and so
on. These factors affect the quality of X-ray images.

In this paper, we will focus on defect inspection by using adaptive boosting with
Local Binary Pattern (LBP) feature. Our approach consists of two parts, analysis and
detection.

Since pins are physically on Printed Circuit Board (PCB), in different images, pins
may not locate at the same location and have different values in x, y axes. Different light
source intensities also generate different pin image intensities. This may cause dis-
placement in X-ray image and also affect the image quality. Thus alignment is the first
step to carry out, helping to align pin positions.
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Pin X-ray images have many types, including different sizes and directions, and
also background pixels. Thus, training has to consider different pin locations, hole
sizes, and image intensities to improve performance. Therefore, we adopt Circle Hough
Transform (CHT) to clip background pixels and resize to retain only hole and pin
region to align our input images.

In defect inspection, we use adaptive boosting to collect a group of inferior clas-
sifiers. Each classifier’s hit rate should be above 50%, so it is better than random
guessing. The higher the hit rate, the more likely it will be chosen.

At last, we aim to improve final defect inspection performance. There are many
methods to achieve lower false alarm rate, but we aim to lower miss detection rate due
to final defective product and high repair cost. In this problem, we use intersection of
two cascades (each cascade with 20 stages) to decrease miss detection rate, because it
takes too much time to group two times of inferior classifiers into one cascade (with 40
stages which takes roughly 30 times more computation than 20 stages).

Some important techniques used in our approach will be introduced in Sect. 2. The
detailed procedure of our approach will be described in Sect. 3. Our experimental
results will be demonstrated in Sect. 4. Section 5 concludes this paper, and the final
section is the list of references.

2 Background

2.1 Circle Hough Transform

The Circle Hough Transform (CHT) [4] is a prime algorithm used in Digital Image
Processing to find circular objects in a digital image, and also a feature extraction
technique to detect circles. CHT is a special form of Hough Transform. CHT aims to
find circles in imperfect image inputs. The circle candidates are generated by “voting” in
the Hough parameter space and then select the local maxima in an accumulator matrix.

In a two-dimensional space, a circle can be described by:

ðx� aÞ2 þðy� bÞ2 ¼ r2

where a and b is the center point of the circle, and radius is represented by r. The
parameter space would be three-dimensional that consists of a, b, and r. Moreover, all
the parameters that satisfy (x, y) would lie on the surface of an inverted right-angled
cone whose apex is at (x, y, 0). In the 3D space, the circle parameters can be identified
by the intersection of many tapered appearances which are defined by points on the 2D
circle. This process can separate into 2 main stages. One stage is to find the optimal
center of circles in a 2D parameter space by fixing radius. Another stage is to find the
optimal radius in a one dimensional parameter space (Fig. 1).

An accumulator matrix is introduced to detect the cross point in the parameter space
in practice. First, we need to partition the parameter space into “buckets” using a grid
and generate an accumulator matrix according to the grid. The element in the accu-
mulator matrix denotes the number of “circles” in the parameter space passing through
the corresponding grid cell in the parameter space. The number is also called “voting
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number”. At first, all elements in the matrix default to zero. For each “edge” point in
the original space, we can formulate a circle in the parameter space and increase the
voting number of the grid cell where the circle passes through. This process is called
“voting”. After voting, we can find local maxima in the accumulator matrix. The
positions of the local maxima correspond to the circle centers in the original space.

2.2 Adaptive Boosting [3]

Adaptive Boosting is a machine learning meta-algorithm. Many other types of learning
algorithms can use it to improve and enhance their capability. According to these
learning algorithms, we can combine them into a weighted sum, which stands for the
final result of boosted classifier.

Adaptive Boost is sensitive to outliers and noisy data. In some problems, it can be
less susceptible to the overfitting problem than other learning algorithms. The single
learners can be inferior, but as long as correct rate of each learner is briefly better than
random guessing (e.g., correct rate of random guessing is 0.5, and correct rate of single
learner is above 0.5 for binary classification), we can prove a superior learner be
converged by previous inferior learners.

Adaptive Boost implies a specific method of boosted classifier training. A boost
classifier is a classifier in the form

Fr xð Þ ¼
XT

t¼1

ftðxÞ

where each ft is an inferior learner that takes an object x as input and returns a binary
value showing the category of the input object. Similarly, the Tth classifier will be
correct if the sample has faith in being correct class and wrong otherwise.

For each case in the training set, each inferior learner generates an output,
hypothesis hðxiÞ. An inferior learner is chosen and given a coefficient at such that the
sum training error Et of the resulting t-stage boost classifier is minimized at each
iteration t.

Et ¼
X

i

E½Ft�1 xið Þþ athðxiÞ�

Fig. 1. Four points on a circle in (a) the original image [4]. The Circle Hough Transform’s result
is shown in the right side (b). The intersection of all the circles shows the center of the circle in (a).
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where Ft�1 is the boosted classifier that has been composed of the previous classifier of
training, E Fð Þ is a function that count error rate and ft xð Þ ¼ ath xð Þ is the inferior
learner that is being believed for addition to final output. A weight xt is given to each
sample in the training set according to the current error E Ft�1 xið Þð Þ on that sample at
each iteration of the training process. We can use these weights to know the training
property of inferior learners, for instance, inferior learner with high weights will split
more branches than low weights in decision trees (Fig. 2).

2.3 Visual Descriptor [6]

Visual descriptors or image descriptors, in computer vision, are descriptions of the
visual features of the contents in videos, applications, images or algorithms that gen-
erate these descriptions. They depict elementary characteristics such as texture, shape,
motion or color, and so on.

There are two main groups in Visual Descriptor: General information descriptors:
they contain low-level descriptors which give a description about the texture, the shape,
the motion or the color, and so on. Specific domain information descriptors: they give
information about objects and events in the scene.

2.3.1 Local Binary Pattern (LBP) [5]
Local Binary Patterns (LBP) is a type of visual descriptors used for classification in
computer vision. LBP is the particular case of the Texture Spectrum model proposed in
1990.

In its purest way, LBP feature vector is produced by the following pattern: Partition
the examined window into cells (e.g. 9 � 9 pixels for each cell). For each pixel in a
cell, compare the center pixel with each of its 8 neighbors. Along the direction of the
edge of the circle (i.e. clockwise or counter-clockwise). If the center pixel’s value is
less than the neighbor’s value, assign “1”. Else, assign “0” (Fig. 3).

Fig. 2. The schematic diagram of adaptive boosting with three inferior learner [2].

Fig. 3. Follow the pixels along a circle, and give value after comparing each pixel with center
pixel [1].
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This produces an 8-bit binary number (it is convenient to convert to decimal value).
Calculate the histogram of the occurrence of each “number” occurring. This histogram
can be seen as a 256-dimensional feature vector, which shows some feature points in
the examined window (Fig. 4).

3 Methodology

The flow of our proposed algorithm is as follows (Fig. 5):

In our approach, our input images have several types. The target we detect may be
anywhere and any direction in input image (Fig. 6).

We have to clip some useless region in order to enhance our performance. How do
we know where is important and where is ignorable in our original image. Since the
hole of the pin is circular, we use Circle Hough Transform and set a particular range to
find this special circular hole.

Fig. 4. The result of Lena after running our own Local Binary Pattern [5].

Fig. 5. The flow of our proposed algorithm.
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Our goal is to rotate image to make direction uniform. Now we use Microsoft
Office Picture Manager to manually rotate 66 � 66 pixels good and defect images
counterclockwise 90° to make both pins horizontal (Fig. 7).

In this step, we face serious problems. Due to weak intensity of X-ray images,
Circle Hough Transform cannot find pins and hole in some images. We have about 200
images failing to find pins and hole. There are two problems: no pins and hole found
and incorrect hole position (Fig. 8).

After Circle Hough Transform, there may be several different sizes of image. We
can optionally resize images.

Fig. 6. Different types of input images. (a) 82 � 70 pixels good image. (b) 82 � 69 pixels
defect image. (c) 66 � 66 pixels good image. (d) 67 � 67 pixels defect image. (e) 52 � 52
pixels good image. (f) 52 � 52 pixels defect image.

Fig. 7. The result of pin images (a) before and (b) after Circle Hough Transform and clipping.

Fig. 8. Circle Hough Transform result. Blue circle shows the Circle Hough Transform output of
detected hole and good pin center and radius. Circle Hough Transform cannot detect hole and good
pin for defect image thus no center and radius output. (a) Part of 130 images no pins and hole found:
10 images. (b) Part of 60 images with incorrect hole position: 10 images. (Color figure online)
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Then, it is time to train classifier. At each stage, we choose some adjacent rect-
angles from pool, and select the highest correct rate from good and defect images.

Fr xð Þ ¼
XT

t¼1

ftðxÞ

Because next stage’s learner is related to previous learner, and we expect the
increasing of correct rate when our stage gets larger. Under this condition, an inequality
is applied as follows

Fr xð Þ�Fr�1 xð Þ

to make sure our correct rate iterates higher (Fig. 9).

In Sect. 1, we train 2 cascade classifiers (each with 20 stages) and take intersection
to decrease miss detection rate (Fig. 10).

Now, we take intersection of two cascade classifiers to enhance our performance
(Fig. 11).

At last, we show images mis-classified as good, but it is physically defect. Thus
manufacturer knows what kind of images will be identified as a good image even they
are defective.

False Alarm Rate Miss Detection Rate 
Classifier 1 0% 2.5% 
Classifier 2 0% 4.1% 

Fig. 10. Two cascade classifier miss detection rates and false alarm rates.

Experimental Environment 
1. OS: Windows 10 Enterprise 
2. CPU: 3.1GHz Intel Core i5 
3. Memory: 8 GB 
4. Platform: Visual Studio 2012 with OpenCV 3.0.0

Step Name Time Cost 
Circle Hough Transform 0.1 second / 1200 images 
Cascade Classifier 1 Training Time 52 minutes 
Cascade Classifier 2 Training Time 37 minutes 
Intersection of 2 Cascade Classifiers 0.001 second 
Defect Inspection  0.2 second / 240 images 

Fig. 9. Time table of each step.
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4 Experimental Result

We have 1430 good images and 1430 defect images. Their base solutions are between
44 � 44 pixels and 60 � 60pixels at 8-bit/pixel images.

Wedivide into two parts, training data and test data (training data have 1190 images and
test data have 120 images for both good images and defect images, respectively) (Fig. 12).

False Alarm Rate Miss Detection Rate 
%8.0%0

Fig. 11. Miss detection rate and false alarm rate of intersection of two cascade classifiers
(originally each with 20 stages).

Fig. 12. Our final intersection of two cascade classifiers output. Green circle shows the classifier
output of detected hole and good pin center and radius. Cascade classifier cannot detect hole and good
pin for defect image thus no center and radius output. (a) Part of 120 good input images: 64 images.
(b) Part of 120 correctly classified as good images: 64 images. 0 good image mis-classified as defect.
(c) Part of 120 defect input images: 64 images. (d) Part of 119 correctly classified as defect images: 63
images. (e) 1 defect images mis-classified as good images (0.8% = 1/120). (Color figure online)
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5 Conclusion

Defective products lead to bad brand reputation and product recall and repair cost. Miss
detection rate is a critical element for the successful automation of manufacture. The
pin defect inspection is a challenging problem due to the complex background. In our
work, we propose a method for this purpose based on Circle Hough Transform to clip
and resize to enhance images, and cascade classifier training and cascade classifier
intersection to detect pin defect. Our experiment result shows that the proposed method
can reduce miss detection rate to 0.8% for pin defect inspection.
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Abstract. Hippocampus is a region in the mammalian brain largely
responsible for short term memory and spatial navigation. In this paper
we present a model to simulate a part of hippocampus called CA3b.
We show that our model is capable of producing waveforms in Theta
rhythm range. Then, we introduce two types of lesions in the structure
and analyze their effect on the collective behavior of neurons in CA3b.

Keywords: Spiking neural networks · Theta · Oscillations · Lesion ·
CA3 · Hippocampus

1 Introduction

The human brain has always been a most fascinating structure in which, billions
of neurons, in conjunction with each other, perform highly complex tasks. Each
region in the brain, while communicating with the other regions, is in charge of
specific tasks. Hippocampus is one of these areas that is responsible for memory
and spatial navigation and its structure has been subject to extensive analyses
[1,5,21]. Several of the brain’s most prominent rhythms such as gamma and theta
can be induced and/or detected in this region [9,15]. For many years, the medial
septum was widely believed to be the source of the Theta rhythm generation [4]
in the brain. However, recently it was shown that an intact Hippocampus with-
out any external connections is capable of generating a Theta rhythm in vitro
[9]. This capability of Hippocampus in generating Theta rhythm independent of
the medial septum is studied and shown in other literature as well [5,14]. Our
simulation experiments have shown that a “Hippocampal” structure is capable of
exhibiting Theta rhythm behavior. Whether the Hippocampus is solely respon-
sible of generating this rhythm or the Theta rhythm is a result of interactions
between several regions in the brain [16], is out of the scope of this study. The
focus of the work reported here is to study the dynamics of the Theta rhythm
as an essential part of the inner workings of the Hippocampus [18].

Hippocampus is divided into 5 main sections: CA1, CA3, Dentate Gyrus,
Subiculum and Entorhinal Cortex [1]. Each of these regions posses unique struc-
tures which enables them to carry out different tasks compared to the other
regions. In the study of rhythms of hippocampus, CA3 with the biggest network
of recurrent connections, is of high interest. CA3 itself, comprises 3 sections:
c© Springer International Publishing AG 2017
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CA3a, CA3b and CA3c amongst which, CA3b has the highest percentage of
recurrent connections [1].

The structure of the brain and its properties have always been the center of
attention in many studies. However, because of the limitations of in vivo studies,
simulation of the neuronal structures has been a popular alternative. In one of the
earliest simulations of the nervous system [6], the stability of the cerebellum, as
an essential part in keeping balance in mammals, has been analyzed. Since then,
many studies have examined various parts of the nervous system to understand
their structural properties [5,11,19].

One of the main challenges in simulation of the nervous system is the com-
putational power available. There are billions of neuron cells in the human brain
and simulation of such a large structure is a very difficult task. That being said,
in recent years with the advances in the architecture of processors, simulation of
large-scale neuronal networks has become possible.

From the earliest simulations of Hippocampus [7,21] to the stability analysis
of cerebelum [6] and from the inner dynamics of the working memory [19] to the
effects of plasticity in recurrent neuronal networks [23], the main aim is to have
a better understanding of the behavior of the nervous system.

Physiological studies have shown that damage to the neuronal structures in
human brain, visibly alters the behavior of these structures [2]. Thus, our moti-
vation in simulating the CA3 structure in Hippocampus is to study the effects
of lesions on the collective behavior of neurons in CA3 [17]. More specifically,
our main interest is to determine the functional resilience of CA3 to lesions. We
perform this inspection by analyzing the frequency of the theta waveform as a
measure of the functionality of CA3. Theta waveform is a prominent rhythm
in Hippocampus; it has been the subject of many studies since its discovery in
1938 [13] and it is believed to be responsible for learning and spatial navigation
in mammalian brains [1]. Therefore, in our studies, we focus on the frequency of
the Theta rhythm and its variations in response to changes in the (hippocampal)
structure.

The rhythmic behavior of CA3 structure using Izhikevich’s model was docu-
mented in our previous study [12]. However, our simulations did not succeed in
demonstrating the presence of theta rhythm (a strong frequency component in
the range of 4–10 Hz). For the experiments reported in this study, we replaced
the Izhikevich’s neuron model with the more physiologically accurate model of
Hodgkin Huxley’s. In addition, we added spontaneous firing of neurons to all
of the neuron cells throughout the structure [3]. In this paper we will continue
our study of the behavior of large groups of neuronal networks in Hippocam-
pus examining the impact of the more physiologically relevant Hodgkin-Huxley
model in the generation of rhythmic behavior. The overall structure of the model
of CA3b region is the one developed in our previous work [12]. In addition, we will
investigate the appearance and the dynamics of the rhythmicity as it depends
on the strengths (weights) of the interneurons and the presence and distribution
of lesions in the structure.
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As we shall show the structure is capable of generating rhythmic behavior
in the Theta wave region (4–10 Hz) and that this behavior is rather stable for a
large variability of interconnection strengths. Furthermore, we shall show that
the introduction of lesions starts affecting this behavior when the said lesions
become prominent.

In the following section, we will summarize the model of CA3b which was
presented in [12]. Then, in Sect. 3, we will present the sequence of simulation
experiments we performed using the developed model. Finally, we will summarize
our results in Sect. 4

2 The Model of CA3b

In our simulations of CA3b, we utilize 3 distinct classes of neurons: Pyramidal,
Basket and Axo-axonic cells. Pyramidal cells are the only excitatory class in
the structure and are the main driving force in CA3b. Pyramidal cells outnum-
ber the Basket and Axo-axonic cells by a large margin. Basket and axo-axonic
cells are the two inhibitory classes of neurons in the structure and their main
responsibility seems to be to control and modulate the firings of Pyramidal cells
[12]. Figure 1 shows the structure of the connectivity in CA3b. The recurrent
connections between the pyramidal cells, which is a signature of CA3b, and the
relationships between the three classes of neurons are shown in Fig. 1.

Fig. 1. The connectivity of the various classes of neurons in CA3b. Lines marked
with“+” (“−”) represent excitation (inhibition) [12].

An in-depth description of the model is presented in [12]. NEST [8] v2.2 was
our neuronal simulator of choice to carry out the experiments. In our simulations,
we used the Hodgkin Huxley based neuron model modified with Traub channel
dynamics [21] which is a most biologically plausible model for the behavior of a
neuron. This model describes the behavior of potential of the axon membrane
using the three ionic flows in and out of the membrane and an external excitation:
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C
dv

dt
= −gn0m

3h(v − VNa) − gkn
4(v − VK) − gr(v − Vr) + Iap (1)

dm

dt
= αm(v)(1 − m) − βm(v)m (2)

dn

dt
= αn(v)(1 − n) − βn(v)n (3)

dh

dt
= αh(v)(1 − h) − βh(v)h (4)

where n is the probability of activation of the potassium channel, m and h are
the probability of activation and deactivation of sodium channels, VK , VNa and
Vr are the current equilibrium potentials, C is the capacitance of the membrane,
gn0, gk and gr are the conductances for each of the three ionic currents, α and
β are transition rates between open and closed states of the ionic channels for
each flow based on the membrane voltage.

In our simulations, we used the default values of the neuron model as
described in [21] and implemented in NEST [8] with a few alterations: we used
the stimulus current to tune the firing behavior of our neurons [20]. For the pyra-
midal cells, the stimulus current (Ie) was tuned to −31.81 pA so the firings of an
isolated neuron were limited to 0.2 Hz. This was to ensure that without an exter-
nal incoming signal, the pyramidal cells fire at the lowest possible frequency. For
interneurons, we set this stimulus current to 9.6 pA to create a resting potential
of −57 mv [10] when the neuron is not receiving any other input. In addition, for
the interneurons, we set the conductances of sodium and potassium channels to
10% of their respective values for the pyramidal cells as suggested in [22].

The initial voltages of all of the neurons in the network were initialized to a
random value from a uniform interval of −60 to −35 mv. To simulate the effects
of external input and spontaneous firing of neurons themselves, all the excitatory
and inhibitory cells randomly fire following a Poisson distribution with a mean
of 2.5 times per second [3]. The parameters used in the model are presented in
Table 1.

3 Experiments

In our experiments, we were most interested in demonstrating that CA3b is
capable of creating a low frequency rhythm in the Theta frequency band. In
addition to that, we were interested in investigating how this rhythm changes
with the growth of lesions. We define a lesion as an area where the neurons
contained within are “dead”. However, in our experiments, we consider that
axons of other neurons traversing a lesion are unaffected and continue operating
normally. The behavior of the structure is observed for 10000 ms to ensure stable
behavior of the system. The time a spike is generated by any neuron is recorded
during this simulation interval. To exclude the warm-up of the simulations and
the early transient effects, the first 2000 ms of each simulation was excluded from
the analysis.
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Table 1. The parameters of the CA3b model

Pyramidal Basket Axo-axonic

Number of layers 5 1 1

Dimension of the layer (neurons) 333 × 27 107 × 7 85 × 3

Dimension of the layer (µm) 4995 × 405 1605 × 105 1275 × 45

Number of cells in the model 44955 749 255

Number of source cells a pyramidal
receives input from

3000 25 7

Number of source cells a basket
receives input from

1500 60 0

Number of source cells an
AACreceives input from

1500 0 0

Maximum length of the axon (mm) 3 0.825 0.825

Minimum weight of the connection 0.005 −25 −25

Maximum weight of the connection 0.4 −2000 −2000

Connection probability function 0.54e−
d
20 0.54e−

d
20 0.54e−

d
20

Synaptic delay (ms) 1 0.1 0.1

Speed of signal down the axon (m/s) 0.5 [21] 0.2 [22] 0.2

3.1 The Base Model

The firing pattern of the neurons for the model explained above, and a closer look
at the progression of these firings in space and time, are shown in Fig. 2(a) and
(b) respectively. The horizontal and vertical axes are time in ms and indices of
pyramidal neurons in the network respectively. The neurons in adjacent locations
in different layers appear next to each other. The frequency spectrum of the
firings (DC component is filtered out) is shown in Fig. 2(c). The fundamental
frequency of the model in this experiment is 4.062 Hz.

It should be noted that the behavior of the structure is consistent over wide
ranges of variability of weights and spread of connections. Even for 50% increase
or decrease in the interconnection weights or in the decay rate of the exponential
probability functions (used to determine the connections between the neurons),
there are no significant changes in the fundamental frequency of the structure.
As it can be seen from Fig. 3, the fundamental frequency of the system does not
show any significant sensitivity to the changes of the interconnection weights.
The subsequent simulation experiments were designed to analyze the effects of
lesions on the rhythmic behavior of the structure.

3.2 Lesions: Increase in the Number and/or the Size of the Lesions

We define a lesion as a region in which all of the neurons are dead and do not
respond to input or produce any output; However, the traversing axons (that
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Fig. 2. Firing patterns of pyramidal cells (a), a close up of progression of the firings in
the structure (b) and their frequency spectrum (c)

Fig. 3. Sensitivity of the fundamental frequency to the maximum possible weights of
the connections

do not emanate from the dead neurons) are not affected. In order to analyze
the effects of these lesions on the collective behavior of neurons, we consider two
scenarios. In the first scenario, the radius of all of the lesions is constant and
similar to each other; however, the number of these lesions varies. In the second
scenario, although the radius of all of the lesions change, the number of lesions is
constant. In the first scenario, we used a lesion radius of 5 neurons (each lesion
includes 69, 9 and 3 pyramidal, basket and AAC neurons respectively) and for
the second scenario we set the number of lesions to 10. In both scenarios, we
distributed the lesions randomly throughout our structure.

As previously explained, we collected the time series of the occurring spikes
and obtained their frequency spectrum. Additionally, we calculated the total
power and the ratios of the power of the fundamental frequency with respect to
the total power. The results are shown in Fig. 4. The horizontal axes show the
ratio of the “dead” neurons to the total population, while the vertical axes rep-
resent the fundamental frequency in each experiment. The size of each marker
represents the normalized ratio of the power of the fundamental frequency to the
total power of the signal including the DC component of the signal. Figure 4a
shows experiments where the number of constant-radius lesions increases while
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Fig. 4b, presents experiments where, while the number of lesions remains con-
stant, their sizes increase.

From these results, our main observation is that as the lesions grow (the
neurons “die out”), the value of the fundamental frequency of the signal slowly
increases. In addition to that, we also observe that as the lesions grow, the power
of the fundamental frequency compared to the power of the signal diminishes.

For the small lesions (the first scenario), the frequency increases more rapidly
compared to the lesions (the second scenario). However, at about 50% dead,
the power decreases and no theta rhythm is detectable. For the large lesions,
although the Theta rhythm is maintained, the power of the signal rapidly
decreases.

Increase in the number of the small lesions seems to have more effect on the
behavior of the structure compared to the increase in the radius of the large
lesions (in comparisons, we consider the equal or close ratios of dead neurons).
The reason might be that a wide spread of small size lesions are more powerful in
destroying the underlying synchronizations and modulations between the exci-
tatory and inhibitory neurons. On the other hand, for the large lesions, we think
that relatively sizable regions of the structure are unaffected and they maintain
the overall working mechanism of the CA3b. These “local” substructures may be
the main factor in maintaining the Theta rhythm; however, since fewer neurons
are involved, the power of the Theta rhythm is diminished significantly as it is
observed in Fig. 4(b) for high ratios of “dead” neurons. More experiments are
needed to fully qualify these observations.

Fig. 4. The fundamental frequency versus the ratio of the dead neurons in the pop-
ulation: increase in the number of lesions with a constant radius of 5 units (left) and
increase in the radius of 10 lesions are shown (right)

4 Conclusion and Future Work

In this paper we presented a model for Hippocampus and we showed that it was
capable of producing rhythms in the Theta frequency range. We showed that this
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model is able to produce waveforms in the theta rhythm frequency range. After
that, we analyzed the effects of two types of lesions on the collective behavior
of neurons in CA3b. We demonstrated that, regardless of the type of the lesion,
an increase in the fundamental frequency of the rhythms in the structure can be
observed as the size of the lesions grows. In one case, the Theta rhythm is not
exhibited when a large number of small lesions exist. When a small number of
large lesions exist, the Theta rhythm is manifested albeit a markedly diminished
power as the lesions grow, until at a limit, it also stops.

In our subsequent studies, we plan to conduct new experiments to study the
effect of the size and the number of lesions on the Theta rhythm. In addition,
we plan to incorporate additional neural classes to create a more biologically
plausible model of CA3b.
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Abstract. Transporters, embedded in glial plasma membranes, can reg-
ulate ambient GABA levels. We proposed here a neural network model
with a GABAergic gliotransmission mechanism, and simulated the model
to investigate how the type of GABA receptors on glia affects neuronal
information processing. Although the synaptic interneuron-glia signal-
ing via GABAb receptors slows the modulation of ambient GABA levels
compared to that via GABAa receptors, it could increase principal cell
activity and accelerate their reaction speed to an applied feature stimu-
lus. Our preliminary simulation result suggests that GABAb receptors,
generally expressed by glia (astrocytes), may improve the perceptual
performance of the sensory cortex.

Keywords: Ambient GABA · GABAergic gliotransmission · Tonic inhi-
bition · Sensory information processing · GABAb receptor

1 Introduction

Gamma-aminobutyric acid (GABA) mediates phasic inhibition by activating
intrasynaptic GABA receptors; i.e., GABA receptors in the synaptic cleft. Tonic
inhibition occurs when extracellular GABA activates receptors in membranes
outside synapses [1]. GABA molecules in extracellular space are referred as
“ambient GABA” and GABA receptors in extrasynaptic membranes as “extrasy-
naptic GABA receptor”. Extrasynaptic GABAa receptors were evidenced in the
cerebellum as well in the cortex [2]. A presynaptic action potential triggers a
release of GABA (one millimolar level) into the synaptic cleft, while ambient
GABA is maintained within a range of submicromolar to several micromolar
levels. This is sufficient to activate extrasynaptic but not intrasynaptic GABAa

receptors, leading to inhibiting neuronal activity in a tonic manner.
Our previous study [3] demonstrated that GABA transporters, embedded in

glial plasma membranes, regulated ambient GABA levels. Synaptic interneuron-
glia signaling via GABAa receptors contributed to importing (removing) GABA
c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part II, LNCS 10262, pp. 483–490, 2017.
DOI: 10.1007/978-3-319-59081-3 56
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from the extracellular space, thereby enhancing neuronal activity. However, a
recent study suggested that GABAb but not GABAa receptors are expressed by
astrocytes [4]. Employing GABAb receptors on glia will slow the modulation of
ambient GABA levels and affect neural activity. The purpose of this study is
to examine whether the type of GABA receptors in glial cell membranes has a
significant influence on neuronal information processing.

2 Neural Network Model

The neural network model is shown in Fig. 1 and the transporter model is
schematically illustrated in the inset. Dynamic evolution of membrane poten-
tial of the ith E cell that belongs to cell assembly n is defined by

cE
m

dvE
n,i(t)
dt

= −gE
m(vE

n,i(t) − vE
rest) + IEE

n,i (t) + IEB
n,i (t)

+Iext
n,i (t) + Iinp

n (t), (1)
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Fig. 1. The neural network model. Each cell assembly (1 ≤ n ≤ 8) comprises excita-
tory principal cells (E), inhibitory interneurons (A, B), and glial cells (G). The open
and filled triangles denote excitatory and inhibitory synapses, respectively. A constant
excitatory current is provided to E cells when presented with a feature stimulus as
an input; see “Feature n”. Inset: A schematic illustration of GABAergic gliotransmis-
sion. Transporters on a G cell import or export GABA molecules depending on glial
membrane potential. Ambient GABA molecules are accepted by extrasynaptic GABAa

receptors and tonically inhibit an E cell.

where IEE
n,i (t) is an excitatory synaptic current from other E cells, IEB

n,i (t) an
inhibitory synaptic current from B cells, Iext

n,i (t) an inhibitory nonsynaptic cur-
rent mediated by ambient GABA via extrasynaptic receptors, and Iinp

n (t) an
excitatory input current. These currents are defined by

IEE
n,i (t) = −ĝAMPA(vE

n,i(t) − vAMPA
rev )

N∑

j=1(j �=i)

wEE
n,ij(t)r

E
n,j(t), (2)
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IEB
n,i (t) = −ĝGABAa

(vE
n,i(t) − vGABAa

rev )
N∑

j=1

wEB
n,ijr

B
n,j(t), (3)

Iext
n,i (t) = −ĝGABAa

(vE
n,i(t) − vGABAa

rev )δErext
n,i (t), (4)

Iinp
n (t) = Iinp, (5)

where δE denotes the amount of extrasynaptic GABAa receptors embedded in E
cell membrane. Excitatory current Iinp is supplied to E cells during a stimulus
presentation period. Dynamic evolution of membrane potential of the ith A or
B cell that belongs to cell assembly n is defined by

cα
m

dvα
n,i(t)
dt

= −gα
m(vα

n,i(t) − vα
rest) + IαE

n,i (t), (α = A,B) (6)

where IαE
n,i (t) is an excitatory synaptic current from E cell(s). These currents are

defined by

IAE
n,i (t) = −ĝAMPA(vA

n,i(t) − vAMPA
rev )wAE

n,i rE
n,i(t), (7)

IBE
n,i (t) = −ĝAMPA(vB

n,i(t) − vAMPA
rev )

M∑

n′=1(n′ �=n)

wBE
nn′,ir

E
n′,i(t). (8)

Dynamic evolution of membrane potential of the ith G cell that belongs to cell
assembly n is defined by

cG
m

dvG
n,i(t)
dt

= −gG
m(vG

n,i(t) − vG
rest) + IGA

n,i (t), (9)

where IGA
n,i (t) is an inhibitory synaptic current from an A cell. This current is

defined by

IGA
n,i (t) = −ĝGABAb

(vG
n,i(t) − vGABAb

rev )wGA
n,i

sl
n,i(t)

sl
n,i(t) + Kds

, (10)

dsl
n,i(t)
dt

= Kacr
A
n,i(t) − Kdasl

n,i(t). (11)

In these equations, rE
n,j(t) is the fraction of AMPA receptors in the open state

triggered by presynaptic action potentials of the jth E cell. rB
n,j(t) and rA

n,j(t) are
the fractions of intrasynaptic GABAa and GABAb receptors in the open state
triggered by presynaptic action potentials of the jth B and A cells, respectively.
rext
n,i (t) is the fraction of extrasynaptic GABAa receptors, located on the ith E

cell, in the open state provoked by ambient GABA. sl
n,i(t) is the concentration of
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activated G-protein with l binding sites and Kds is the dissociation constant of
the binding of G-protein on K+ channels. Kac and Kda are G-protein activation
and deactivation rates, respectively [5].

AMPA and GABA receptors are described by

drE
n,j(t)
dt

= αAMPA[Glu]n,j(t)(1 − rE
n,j(t)) − βAMPArE

n,j(t), (12)

drA
n,j(t)
dt

= αGABAb
[GABA]An,j(t)(1 − rA

n,j(t)) − βGABAb
rA
n,j(t), (13)

drB
n,j(t)
dt

= αGABAa
[GABA]Bn,j(t)(1 − rB

n,j(t)) − βGABAa
rB
n,j(t), (14)

drext
n,j (t)
dt

= αGABAa
[GABA]ext

n,j (t)(1 − rext
n,j (t)) − βGABAa

rext
n,j (t), (15)

where [Glu]n,j(t), [GABA]An,j(t) and [GABA]Bn,j(t) are concentrations of glu-
tamate and GABA in synaptic clefts, respectively. [Glu]n,j(t) = 1 mM,
[GABA]An,j(t) = 1 mM, and [GABA]Bn,j(t) = 1 mM for 1 ms when the presy-
naptic jth E, A, and B cells fire, respectively. Otherwise, [Glu]n,j(t) = 0 and
[GABA]An,j(t) = [GABA]Bn,j(t) = 0.

Neuronal firing occurs in a probabilistic manner [6], defined by

Prob[Yn,j(t); firing] =
1

1 + e−ηY (uY
n,j(t)−ζY )

.(Y = E,A,B) (16)

When a cell fires, its membrane potential is depolarized to −10 mV, which is
kept for 1 msec and then reset to the resting potential.

The concentration of ambient GABA around the ith E cell that belongs to
cell assembly n is defined by

d[GABA]extn,i (t)

dt
= −γtrn([GABA]extn,i (t) − [GABA]0)

+ TG{[GABA]max − [GABA]extn,i (t)}{[GABA]extn,i (t) − [GABA]min}
× (vG

n,i(t) − vG
rev), (17)

where γtrn and [GABA]0 are a decay constant and the basal ambient GABA con-
centration, respectively. TG determines the modulation rate of ambient GABA
concentration. GABAmax and GABAmin restrict ambient GABA concentration
to a maximum and a minimum, respectively. vG

rev is the reversal potential of the
GABA transporter. For model parameters and their values, see Table 1 and our
previous studies [6–8].
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Table 1. List of parameters

Description Parameter Value

Membrane capacitance of type
K (K = E, A, B, G)

cKm cEm = 500, cAm = 200,
cBm = 600, cGm = 45[pF ]

Membrane conductance gKm gEm = 25, gAm = 20,

gBm = 15, gGm = 9[nS]

Resting potential uK
rest uE

rest = −65, uA
rest = uB

rest =
uG
rest = −70[mV ]

Maximal conductance for type Z
receptors
(Z = AMPA, GABAa, GABAb)

ĝZ ĝAMPA = ĝGABAa =
ĝGABAb

= 1.0[nS]

Reversal potential uZ
rev uAMPA

rev = 0, uGABAa
rev =

−80, u
GABAb
rev = −95[mV ]

Number of cell-units within cell
assemblies

N 20

Number of cell assemblies M 8

Synaptic weight from j to i th E cell that
belongs to cellasembly n

ωE,E
n,ij 2.0

Synaptic weight from j th B to i th E cell ωE,B
n,ij 10.0

Synaptic weight from i th E cell to A cell ωA,E
n,i 40.0

Synaptic weight from i th E cell to B cell
between different(n′ �= n)cell assemblies

ωB,E
nn′,i 35.0

Synaptic weight from i th A to G cell ωG,A
n,i 6.5

Amount of extrasynaptic GABA
receptors on E cell

δP 8 × 102

Channel opening rate for type Z receptor

(Z = AMPA, GABAa, GABAb)

αZ αAMPA = 1.1×106, αGABAa =

5 × 106, αGABAb
=

90 × 103[M−1sec−1]

Channel closing rate βZ βAMPA = 190, βGABAa =
180, βGABAb

= 1.2[sec−1]

Steepness of sigmoid function for type Y
cell (Y = E, A, B)

ηY ηE = 250, ηA = 310, ηB = 310

Threshold of sigmoid function θY ζE = −36, zetaA = −37,
zetaB = −34[mV ]

Decay constant for ambient GABA
concentration

γtrn 2.5

Basal ambient GABA concentration [GABA]0 1[μM ]

Maximal ambient GABA concentration [GABA]max 3.5[μM ]

Minimal ambient GABA concentration [GABA]min 0[μM ]

GABA transfer coefficient TG 0.7 × 109

Reversal potential of transporter uG
rev −70[mV ]

Activating rate for G-protain Kac 180[μMsec−1]

Deactivating rate for G-protain Kda 34[sec−1]

Dissociation constant of the binding of
G-protain on K+ channels

Kds 100[μM4]

The number of binding sites l 4
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3 Results

Figure 2A (top) shows how the network responds to a sensory stimulus
(Feature 2), whose period is indicated by a horizontal bar. The second and
bottom panels present membrane potentials of G cells and ambient GABA con-
centrations around E cells for respective cell assemblies: 1 ≤ n ≤ 4 (among
1 ≤ n ≤ 8). The E cell responds to the stimulus, evoking a train of spikes (see
the top panel: n = 2), which in turn activates the A cell (not shown), hyperpo-
larizes the G cell (see the second panel: n = 2), reduces the ambient GABA level
(see the bottom panel: n = 2), and enhances the stimulus-evoked E cell activity
(see the top panel: n = 2).

Figure 2B present those when GABAa instead of GABAb receptors were
expressed by G cells. The amount of hyperpolarization in G cell (see the sec-
ond panel: n = 2) is less than that when the GABAb receptor worked (see the
second panel of Fig. 2A: n = 2), resulting in less reduction in ambient GABA lev-
els and thus in weak stimulus-evoked E cell activity. Interestingly, the GABAb

receptor accelerates the reaction speed of the network: compare the onsets of
stimulus-evoked spike trains in the top panels.
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Fig. 2. Response of the network to sensory stimulation. (A) Membrane potentials of E
(top), G (middle) cells, and ambient GABA concentrations around E cells (bottom).
The GABAb receptor-mediated synaptic A-to-G signaling worked. (B) Those when the
GABAa receptor worked. (C) Top: Stimulus-evoked E cell activity. Middle: G cell mem-
brane potential. Bottom: Ambient GABA level. The open and filled bars denote those
when the GABAb and GABAa receptor-mediated synaptic A-to-G signaling worked,
respectively.

Figure 2C quantitatively shows stimulus-evoked E cell activity (top), G cell
membrane potential (middle), and the level of ambient GABA (bottom) for each
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condition; i.e., when the GABAb (see the open bars) or GABAa (see the filled
bars) receptor worked. These results indicate that the increase in stimulus-evoked
E cell activity (see the top panel) arises from a decrease in local ambient GABA
levels around stimulus-relevant E cells (see the bottom panel), which is triggered
by the hyperpolarization of G cells (see the middle panel).

4 Discussion

We proposed a neural network model and simulated the model to investigate
how the type of GABA receptors on glia affects neuronal information processing.
Synaptic interneuron-glia signaling via GABAb (but not via GABAa) receptors
increased stimulus-evoked principal cell activity and accelerated their reaction
speed to an applied feature stimulus. Our preliminary simulation result suggests
that GABAb receptors, generally expressed by glia (astrocytes), may improve
the perceptual performance of the sensory cortex. We will further this study in
order to elucidate why the brain employ GABAb (but not GABAa) receptors
on glia.

To regulate ambient GABA levels, we employed here the glial transporter
model [7]. Various types of gliotransmission have been proposed [9], including
release from storage organelles via exocytosis and release from the cytosol via
plasma membrane ion channels. For both types, experimental studies suggest
that Ca2+ is the key regulator. However, less is known about their mechanisms
based on which we could construct a GABAergic gliotransmission model. In
contrast, the mechanism of GABAergic gliotransmission via transporters can
be explained theoretically, which allowed us to construct the glial transporter
model.
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Abstract. High accuracy of epilepsy EEG automatic detection has important
clinical research significance. The combination of nonlinear time series analysis
and complex network theory made it possible to analyze time series by the
statistical characteristics of complex network. In this paper, based on the tran-
sition network the feature extraction method of EEG signals was proposed.
Based on the complex network, the epileptic EEG data were transformed into
the transition network, and the variance of degree sequence was extracted as the
feature to classify the epileptic EEG signals. Experimental results show that the
single feature classification based on the extracted feature obtains classification
accuracy up to 98.5%, which indicates that the classification accuracy of the
single feature based on the transition network was very high.

Keywords: Transition network � Variance of degree sequence � Epilepsy EEG
automatic detection

1 Introduction

Epilepsy is a chronic recurrent transient brain dysfunction syndrome. At present,
complex epilepsy EEG data is enormous in clinical medicine, and the efficiency of
artificial classification is low and the accuracy is not high. Therefore, the automatic
detection method of epilepsy EEG has important significance for clinical research.

The Hurst exponent of the epileptic EEG was discussed in [1] and the results shown
that the normal EEG was uncorrelated whereas the epileptic EEG was long range
anti-correlated. Spectral entropy and embedding entropy, which could be used to
measure the system complexities, were introduced to epilepsy detection in [2, 3].
Combined with these classification features, the classifiers, such as artificial neural
network (ANN) and support vector machine (SVM), had also been widely applied into
the epilepsy detection algorithm [4–9]. From these literature, we can conclude that an
excellent classification feature not only obtains better classification accuracy but also
spends less computational complexity because of it does not need combined with
classifier. These advantages are significant for the clinical application.
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Recently, complex networks theory provided a new perspective for nonlinear time
series analysis. Zhang and Small [10] proposed an algorithm that transformed the
pseudo-periodic time series into complex networks. A bridge between nonlinear time
series analysis and complex networks theory had been built. Lacasa et al. [11] first
proposed the visibility graph algorithm, which could convert arbitrary time series into a
graph. Time series conversion to complex network algorithm made it possible to the
application of complex network theory researching time series. Sun et al. [12] took the
Rossler chaotic system as an example to give a concrete algorithm for the conversion of
nonlinear time series into transition network. Based on the statistical properties of
complex networks, Sun et al. gave a detailed analysis of the different periods of the
Rossler system, thus converting the nonlinear time series into transition network to
maturity. In the paper [13], an improved method for converting nonlinear time series
into transition networks was proposed, and the possibility of transforming any time
series into transition networks was proved. In paper [14], the transformation of
epileptic EEG to proximity network was proposed. According to the statistical char-
acteristics of complex network, the classification of epileptic EEG could be realized by
combining classification method.

In this paper, we improve the method that transform nonlinear time series into
transition network mentioned by Sun et al. [12], so the operation rate and classification
accuracy are raised. According to the statistical characteristics of complex networks,
we extract the variance of degree sequence to classify the epileptic EEG and the
classification accuracy up to 98.5%. So we improve the accuracy of the automatic
detection of epilepsy EEG.

2 The Feature Extraction Method

2.1 A Method of Constructing Complex Network by Time Series

Sun et al. [12] gave a concrete algorithm for the conversion of nonlinear time series
into transition network. The method as follows:

• given a time series xtf g, take a window of length L, sliding along this series and
denote the windowed segment at time t as Xtf gt. The ordinal pattern ps ¼
ðs1; s1; s1; . . .. . .sLÞ of Xt is defined as the permutation of ð1; 2; 3; . . .. . .LÞ, satis-
fying xðt�1Þþ s1\xðt�1Þþ s2\xðt�1Þþ s2\ � � � xðt�1Þþ s2 . To better capture more details
of the system behavior, add amplitude information. Specifically, a pair of symbols
were used to describe the segment in a window. One symbol described the
amplitude level and the other was the ordinal pattern. The former symbol was
obtained by splitting the range of the time series [a, b] into Q equal regions. Each
region was labeled by an index. Then each node was symbolized as
Si ¼ a; psf gf gi¼1.

• To investigate the transitions among the different states identified by modification, a
weighted and directed network was constructed with fixed Q as follows: Si repre-
sents a node in a complex network, thus we got the node set of complex network;
Naturally, built the corresponding connections, the link starting from the node
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corresponding to Si ends at the node corresponding to Siþ 1. The weight Wij of the
link directed from node i to j is given by

Wij ¼ #ðSi!SjÞ ð1Þ

#ðSi!SjÞ finally, the adjacency matrix Wij ¼ ðwijÞM�M was used to represent the
generated networks.

However, the efficiency of this method was low and classification accuracy rate was
not high. The value of sliding window length L had a great influence on classification
accuracy. So, in this paper, this method had been improved. The time series was
segmented by the maximum value, and then the nodes were constructed. This method
eliminated the influence of L and improved the efficiency of operation and the accuracy
of classification.

The improved method as follows: Given a time series ðxijÞ. Then, found all the
maximum value in the time series. The time series between every two adjacent max-
imum value was defined as one sub-segment contained a maximum value, labeled ðXmÞ
and L was the length of each sub-segment. The ordinal pattern of was defined as
ps ¼ ðs1; s1; s1; . . .. . .sLÞ of Xm was defined the permutation of ð1; 2; 3. . .. . .LÞ. To
distinguish same ordinal pattern. but amplitude differently (while maintaining the
useful features of the ordinal representation), we proposed the simple modification of
adding amplitude information. We first found the maximum Xmax of each sub-segment
and the minimum Xmin of this time series, then we used rounded operation formula
computing the value of M

M =
Xmax � Xmin

Q

� �
ð2Þ

Finally each sub-segment was symbolized as Si ¼ M; psf gki¼1. Thus we got the node
set of complex network. The building the corresponding connections method employed
the above method given by Sun and Small. So we got the improved transition network.

2.2 Feature Extraction

The complex network with adjacency matrixWij was obtained by the transition networks
construction algorithm. The geometric topological structure stored the dynamic char-
acteristic information of the original time series, and the characteristics of the epileptic
EEG were extracted by studying the statistical properties of the complex network.

The node degree was defined as the number of connected edges between a certain
node and the remaining nodes. According to the adjacency matrix Wij, the node degree
of the node i was

ki ¼
XM

j¼1
aij ¼ kiin þ kiout ð3Þ
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kin was the number of edge connections for other nodes to connect to the first node,
kout was the number of edge connections for the first node to join the other nodes.

The structure of complex networks was different in time series with different
dynamic structures, In other words, the degree of complex network was different. The
variance of degree sequence was considered as an indicator of the network hetero-
geneity, and it can be calculated as follows

r ¼ M�1
X

K
k2MðKÞ � kh i2 ð4Þ

where kh i was the average degree, and MðKÞ was the number of nodes, which had
degree k. The smaller the value of r, the consistency of the degree was better, The
epileptic seizure EEG owned lower complexity than that of intermittent EEG, and the
chaos was weakened. And consistency of complex network’s degree based on epileptic
seizure EEG was better. So it could be used as epileptic EEG signal classification.

3 Experiment Results and Analysis

In this study, we use a clinical epileptic EEG data set from the University of Bonn,
Germany. The epileptic EEG data file contains 100 ictal EEG data and 100 interictal
EEG data. Every EEG datum was sampled at a rate of 128 Hz, and has 4096 points and
EEG data such as manual or eye movement disturbances were removed. In the
experiment, we set the sample length of 512 and 1024, respectively, to construct a
complex network. Further more, we evaluate the performance of EEG feature extrac-
tion method and epileptic EEG automatic detection algorithm.

Experiments set the Q values are 100 and 120, the data length of 512 and 1024,
respectively, the detailed classification results in Table 1. When the Q value is 120 and
the data length is 1024, the classification accuracy is the highest, reaching 98.5%.
When the Q value is 120, the classification results with data lengths of 512 and 1024
are shown in Figs. 1 and 2, respectively. The classification threshold shows by the solid
line in the figure separates the two types of epileptic EEG. The variance of degree
sequence in the interictal period is significantly higher than that of the ictal period. This
conclusion is consistent with one fact that the complexity of ictal EEG data is lower
than that of the interictal EEG data.

As can be seen from the Table 1, Q has little effect on the classification accuracy
rate. The proposed method in this paper is good for small data analysis.

Table 1. Result of the feature automatic detection of transition network

Method Data length Data length ACC

Transition network 512 100 95.5
512 120 96.5
1024 100 97.5
1024 120 98.5
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Table 2 shows the accuracy of epileptic EEG single feature classification based on
transition network and other methods. It can be seen from the table that the accuracy of
classification by the extracted single feature based on improved transition network is

Fig. 1. Classification results with data lengths of 512

Fig. 2. Classification results with data lengths of 1024
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significantly higher than that of single-feature classification of epileptic EEG based on
other methods, achieved highest the classification accuracy of the single feature based
on the complex network.

4 Conclusion

Combined with the theory of complex network, the epilepsy EEG data was constructed
as a transition network firstly and the construction method was improved.

We extracted the variance of degree sequence that was applied to classify the
epileptic EEG data set. As the global topological structure of complex network based
on nonlinear time series r, characterize the non-linear dynamic characteristics of the
original nonlinear time series, which could be used to distinguish EEG with different
nonlinear dynamic modes. Compared with the single feature classification accuracy of
proximity networks, we got higher classification accuracy. The feature extracted in this
paper improved the performance of automatic detection classification algorithm of
epilepsy effectively.
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Abstract. This paper introduces a deep learning approach to the feature
extraction of P300 cognitive component existing in electroencephalogram sig-
nals collected in an autobiographical paradigm test. A thorough belief mecha-
nism is used for the extraction of deep characteristics rather than raw feature
vectors to train the classifier. It is shown that the classification accuracy is
satisfactory by learning deep from the experimental data. Experiments have
validated the usefulness of the algorithm. The hidden information has been
obtained accurately with a single electroencephalogram channel. Moreover,
performances of support vector machine with different feature extraction
methods are compared.

Keywords: Electroencephalogram � Concealed information test � Deep feature
extraction � Deep belief networks

1 Introduction

In recent years, EEG-based concealed information test has drawn considerable atten-
tion in the field of criminal investigation. Many effective methods have been used for
EEG signal analysis in Concealed Information Test (CIT) [1]. Compared to traditional
methods based on physiological responses which are easily affected by emotions and
stress, cognitive behavior based polygraph is considered more reliable and scientific
that can reduce the risk in false positive errors [2]. In addition, EEG is more conve-
nient, more harmless and more economical than other brain activity monitoring
methods such as PET, MEG and fMRI [3].

Due to the complexity and particularity of actual criminal investigation tasks and
poor ratio of signal intensity to noise intensity (SNR), increasing performance of
recognition of raw EEG signals remains a live problem. In which, methods based on
machine learning algorithms have achieved the most effective results. Numerous fea-
ture extraction approaches have been adopted in machine learning algorithms such as
time or periodicity methods [4], model parameter methods [5], as well as methods on
the basis of wavelet decomposition [6], etc. [7]. However, the distinguishability of a
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certain feature is uncertain in different tasks, which may lead to a failure of recognition.
Therefore, feature extraction methods which are capable of feature self-learning are
necessary to be studied in this field. Recently, deep learning strategy has made great
progress and the related algorithms have also been adopted in various fields such as
EEG signal processing [8]. It can be viewed as a computational intelligent method
since its similar mechanism to human brain. To improve the generalization perfor-
mance of EEG feature, deep belief networks (DBN) is adopted to learn features
automatically.

In this paper, we use the CIT technique and focus primarily on the feature
extraction process of different brain waves evoked by relevant stimulus and control
stimulus. DBN was applied to self-learn features of EEG signals. Then support vector
machine (SVM) was implemented as the classifier. The classification performance is
satisfactory and the runtime is acceptable.

2 Methods

2.1 Data Description

Data in this paper were from an autobiographical paradigm test [9]. There were 11
volunteering subjects in total participated who were all males at the age of between 22
and 35. They are all used to using the right hand and their vision are all normal or
corrected to normal range. They have no idea what the test is based on and just know
how to carry out the test. All the subjects were required to offer five numbers which all
contained 4 digits and one of the numbers was the year of birth. The experimenter was
not informed by the subjects of the birth date number until when the experiment ended.
In the experiment, subject 11 took part in 3 runs while other subjects were involved in 2
runs. Due to wrong target stimulus counting (as was shown below), subject 1, 3, and 7
saw one of their runs vetoed. Finally, the study applied a total of 20 runs in the
experiment. To achieve whole stimuli, in each run, the subject was exposed to each
number with random for thirty times. Each number was revealed for one second and
there was a two-second blank in the screen between the numbers. The experiment
required the subjects to count how many times the number of the birth year was revealed
instead of responding to the items. The subjects did not know that the entire target
stimulus were displayed with 30 repetitions. EEG signals sampled at 256 Hz digitally
were recorded at the Fz, Cz and Pz electrode positions of the 10–20 international
electrode placement system (Fig. 1). The electrodes referred to linked mastoids. For the
purpose of blink artifact detection, the experiment also recorded vertical EOG signals.

2.2 Methods

For the complexity and weak anti-interference capability of EEG, it is not easy to
recognize effective data from raw signals. Figure 2 shows the raw waveforms. It is
observed that the potential offset value of each sample belonging to the same category
is quite different and there is no obvious distinction between samples belonging to
separate categories.
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Figure 3 shows that the signal process mainly includes data collection, pre-
processing, feature exaction and pattern classification.

(1) Pre-processing

This process consists of electrodes selection, segmentation of signals, superposition
and filtering. For low SNR of EEG signals, the stimulations are repeated to remove
unnecessary signals and enhance useful signals. Because the P300 frequency is pri-
marily allocated in area with low frequency, the experiment designed a 6-order band
pass Chebyshev Type I filter with cut-off frequencies 0.5 and 35 Hz to penetrate each
epoch. Moreover, the data information matrix is designed into a range from 0 to 1
according to Eq. (1).

xnorm ¼ x� xmin=xmax � xmin ð1Þ

Fig. 1. 10–20 system of electrode placement
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(2) Deep Feature Extraction

To begin with, k-means method is adopted to represent features preliminary as
described in [11]. Using subject 1 as an example, some differences between the two
categories can be seen in Fig. 4 after the initial feature extraction. However, the dif-
ference is still too small to distinguish samples. Further feature extraction is imple-
mented as following.

DBN could be considered to be a stack of RBMs (Restricted Boltz-man Machines),
which are motivated from the idea of equilibrium from the statistical physics literature
[12]:

E v; h; hð Þ ¼ �
X
j

ajvj �
X
i

bihi �
X
i;j

vjhiwij ð2Þ

Where wij is the symmetric interaction term between distinct unit vj and covered
unit hi, ai as well as bj are both the bias term. h ¼ w; a; bf g is the model parameter
need to be learned.

Equation (2) could be optimized in a tricky way by contrastive divergence that has
been usually applied to border on the expectation by a sample deriving from a certain
amount of Gibbs sampling iterations [13].

Raw EEG Pre-processing

Feature Extraction Classification

Fig. 3. The flowchart of signal processing
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When defined on a probability space, the joint distribution over v and h is:

P v; hð Þ ¼ 1
z
e�E v;hð Þ ð3Þ

where z is a standardized factor. Then

P vð Þ ¼
X
h

P v; hð Þ ¼ e�F vð Þ

z
ð4Þ

in which

F vð Þ ¼ � log
X
h

e�E v;hð Þ ð5Þ

Model (2) can be simplified by using binary input variables. The conditional
probabilities can be formulated as:

P hi ¼ 1 vjð Þ ¼ sigm bi þwivð Þ
P vj ¼ 1 hj� � ¼ sigm aj þw

0
jh

� � ð6Þ

Then

F vð Þ ¼ �a0v�
X
i

log 1þ e ci þwivð Þ
� �

ð7Þ

� @ logP vð Þ
@h

¼ @F vð Þ
@h

�
X
~v

P ~vð Þ @F ~vð Þ
@h

ð8Þ

To make RBM stability, the energy of system should be the minimum. By the above
formulas, P vð Þ should be maximized. The partial derivative of loss function �P vð Þ is
calculated as:

� @ logP vð Þ
@wij

¼ Ev P hi vjð Þ � vj
� �

� v ið Þ
j � sigm wi � v ið Þ þ ci

� �

� @ logP vð Þ
@ci

¼ Ev P hi vjð Þ½ � � sigm wi � v ið Þ
� �

� @ logP vð Þ
@bj

¼ Ev P vj hj
� �� �� v ið Þ

j

ð9Þ

Thus, the parameter h corresponding to maximum P vð Þ is obtained. DBN could
then be trained with the greedy layer-wise method [12]. Each RBM is trained greedily
and unsupervised [14]. The posterior distribution of the first RBM is used as the input
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distribution of the second RBM. Then the weights are fine-tuned by back propagation
(BP) neural network. Figure 5 shows the architecture of DBN model and Fig. 6 dis-
plays the comparison of mean values between two categories. The difference is sig-
nificant after feature learning by DBN.

•••

RBM

BP

Input

•••

•••

•••

Output (New Features)

RBM

Fig. 5. The architecture of DBN model
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Fig. 6. Comparison of mean values of the two categories
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(3) Classification

DBN model is viewed as a feature extraction system in this paper. Outputs of the last
model were used as the new input feature vectors with labels of samples to train the
SVM classifier.

3 Experiments

Responses to the birth year of the subject are expected to contain the P300 component,
which is a late positive component, which is considered as the most typical and common
event-related potential (ERP) closely related to human cognitive process. For the
time-locked conception between the stimulus and the response [15], the value of the
signal during 0–700 ms was set after stimulus onset. The experiment randomly assigned
the weights with an initial value and the turning parameters were set as: learning
rate = 0.07, momentum = 0.95. For the first RBM, the visible unit is set at 200 and the
hidden unit is 100. For the second RBM, the number of the visible units is 100 and that
of the hidden units is 50. The fifty-dimensional feature vector is input to libsvm.

To ensure the accuracy of training as well as testing data, a 10-fold cross-validation
method was employed. According to this technique, the dataset was divided into ten
subsets [16]. To improve the dependability, the 10-fold cross-validation procedure was
performed with ten repetitions. And in each time, only one subset was used as the
testing dataset and the other 9 ones were collected to constitute the training dataset.
Particularly, data from test fold is not be involved in the optimization procedure. All
final data were calculated by averaging the ten results.

4 Results and Discussion

This section made a test of performance of the DBN-SVM classification algorithm on
the basis of the dataset presented in Sect. 2.1. Table 1 and Fig. 7 reveal the results.
Specifically, Table 1 displays the recognition accuracy and runtime over all eleven
subjects. Figure 7 compares performances of classifiers adopted different effective
feature extraction methods for SVM classifier. All the experiments are repeated ten
times, and the average results are reported.

From the effects of perspective, a high average accuracy is obtained. In addition, as
shown in Fig. 7, compared with other features used methods, the performance of our
approach is significantly better.

Moreover, it is worth noticing that it does not require pre-processing operations
including artifact removal or bootstrapping which takes much time and allows the
approach possible to be applied to actual tasks.

However, the complex application environment and unpredictable interference will
definitely put forward higher requirements considering the practical applications in
crime information identification tasks. As for future works, it would be interesting to
investigate a way to overall fine-tune the weights of DBN model with regard to SVM
learning rule [13].
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5 Conclusion

In this paper, deep learning strategy is applied for signal processing in concealed
information test based on EEG. The introduction of DBN aims to better express
characteristics of different signals. We choose SVM as the classifier which can avoid
over-fitting effectively. According to the results, the method has been highly recog-
nized. The study in this paper suggests that it is valuable to do further development on
deep learning or other computational intelligence strategies applied in CIT based on
EEG as well as provide reliable supports to actual future explorations.

Acknowledgement. Special thanks would be expressed to Dr. V. Abootalebi and the Research
Center of Intelligent Signal Processing (RCISP), Iran, for the provision of the data. Besides, Dr.
Deng Wang with department of Computer Science and Technology, Tongji University also
deserves the appreciation, for the data support.

Table 1. Performances of the algorithm over all subjects

Subject Amount of samples Accuracy (%)

S1 150 95.5
S2 300 98.9
S3 300 97.6
S4 150 96.7
S5 150 97.5
S6 300 98.0
S7 300 97.0
S8 150 96.3
S9 300 97.6
S10 300 96.2
S11 450 98.9
Average 97.3
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Fig. 7. Comparison of classification performances over different feature extraction methods
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Abstract. Topographic analysis are references independent for Event-Related
Potentials (ERPs), and thus render statistically unambiguous results. This drives
us to develop an effective clustering approach to finding temporal samples
possessing similar topographies for analysing the temporal-spatial ERPs data.
The previous study called CARTOOL used single clustering method to cluster
ERP data. Indeed, given a clustering method, the quality of clustering varies
with data and the number of clusters, motivating us to implement and compare
multiple clustering algorithms via using multiple similarity measurements. By
finding the minimum distance among the various clustering methods and
selecting the most selected clustering algorithms with other methods via voting
the proposed method, a most suitable algorithm showing a considerable per-
formance for a given dataset can be found. This cluster aggregation approach
assists to use the most suitable founded cluster for each dataset. We demon-
strated the effectiveness of the proposed method by using ERP data for cognitive
neuroscience research.

Keywords: Cluster aggregation � Cognitive neuroscience � ERP data analysis �
Spatial � Temporal

1 Introduction

Event-related potentials (ERPs) are important tools for cognitive neuroscience by
analyzing peak measurements [1]. Usually, the mean amplitude of an ERP over a
certain time range is measured as the peak amplitude for statistical analysis. The
underlying assumption of this approach is that the topographies over that certain time
range do not change. In order to validate the assumption, the clustering has been
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applied the temporal-spatial ERP data to find the temporal samples sharing the similar
spatial topographies [2].

In the latest version of CARTOOL software 3.55 (2014), it is possible to use one of
the two Clusteringmethods named, K-means andHierarchical clustering with some good
selective options [2]. It could be considerable that clustering algorithm selection and the
quality of clustering would be affected by different conditions such as, dataset types,
quality of data and etc. In this study, we demonstrate that for given dataset the proposed
method can find a suitable clustering algorithm among various ones in a reliable way.

The following of the study is structured into 3 Sections; we start with clustering
techniques for data analysis in Sect. 2 and the cluster aggregation method is described,
Sect. 3 provides experimental results and discussion about the results and Sect. 4
includes conclusions and future works.

2 Method

Indeed, in clustering analysis, one solution to the question above is the use of numerical
clustering validation algorithms and assessing the quality of clustering results in terms of
many criteria. Since it is also true that no single clustering validation algorithm has been
claimed to impartially evaluate the results of any clustering algorithm, the use of clus-
tering validation is not an overwhelmingly reliable solution [3]. In this study, the two-way
clustering is applied. Since the multi-way analysis is significant for ERP data analysis [4],
it is worth extending the two-way clustering to the multi-way clustering. Consequently,
we propose a new approach for that, how to use cluster aggregation aim to deal with
uncertainty in datasets and clustering algorithms, using multiple clustering methods and
multiple similarity measurements for cluster aggregation to achieve reliable analysis.

2.1 Clustering Methods

In this study, five popular standard clustering algorithms are used and they are briefly
introduced as the following:

• K-means Clustering. Which for given a dataset with N data objects in an
M-dimensional feature space, this algorithm determines a partition of K groups or
clusters which detailed in [5].

• Hierarchical Clustering. Basically Hierarchical clustering algorithms are mainly
classified into methods (bottom-up methods) and divisive agglomerative methods
(top-down methods), based on how the hierarchical divide or merge is formed [6].

• Fuzzy C-means (FCM). Dunn developed fuzzy k-partition algorithms which
minimize certain fuzzy extensions of the k-means least-squared-error criterion
function [7]. Eventually, the generalised algorithm was named fuzzy c-means
(FCM) [8].

• Self-organizing Map (SOM). Clustering in the neural network literature is generally
based on competitive learning (CL) model, Kohonen made particularly strong
implementation of CL in his work on learning vector quantisation (LVQ) and
self-organisingmaps (SOM) also known as self-organising feature maps (SOFM) [9].
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• Diffusion Maps Spectral Clustering. Spectral clustering is an algorithm which is
very close to the graph cut clustering algorithm. It requires the computation of the
first k eigenvectors of a Laplacian matrix; Diffusion map is a dimensionality
reduction method that embeds the high-dimensional data to a low-dimensional
space. Clustering is performed within the low-dimensional space [10].

2.2 Similarity Measurements

Partition–Partition (P–P) Comparison approaches, equivalent to median partition
approaches, attempt to provide the solution of an optimization problem, which maxi-
mizes the total similarity to the given partitions [3]. In Eqs. 1 and 2, whichR is the number
of clustering algorithms and C* is the clustering with maximum similarity with the other
clusterings and minimum dissimilarity with them. In fact, here are several similarity
measurements for measuring similarity or dissimilarity between partitions see [3].

C� ¼ argmaxp2Px

XR

j¼1
CðC;CjÞ ð1Þ

C� ¼ argminp2Px

XR

j¼1
MðC;CjÞ ð2Þ

We used a number of similarity measurements aim to cluster aggregation. Briefly,
we describe them in below,

Fowlkes and Mallows Distance Function
The Wallace distance of two clustering algorithms C; C0 is,

WIðC;C0Þ ¼ N11P
k nkðnk � 1Þ=2 ð3Þ

WIIðC;C0Þ ¼ N11P
k n

0
kðn0k � 1Þ=2 ð4Þ

Where N11 is the number of pairs of objects that were clustered in the same clusters
in C and C0. They represent the probability that a pair of points which are in the same
cluster C; C0.

F C;C0ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WIðC;C0ÞWIIðC;C0Þ

p
ð5Þ

The index is used by subtracting the base-line and normalizing by the range, so that
the expected value of the normalized index is 0 while the maximum (attained for
identical clustering algorithms) is [11].

Rand Distance Function

R C;C0ð Þ ¼ N11 þN00

nðn� 1Þ=2 ð6Þ
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In the Eq. 6 N00 is the number of pairs of objects that were clustered in separate
clusters in C and also C0. A similar transformation was introduced for Rand index and
Adjusted Rand index.

Adjust Rand Distance Function

AR C;C0ð Þ ¼ R C;C0ð Þ � E R½ �
1� E R½ �

¼
P

i;j

ni;j
2

� �
� P

i

ni
2
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j

nj
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n
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� �
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n

2

� �
ð7Þ

The main motivation for adjusting indices like R and F is the observation that the
unadjusted R, F do not range over the entire [0, 1] interval (i.e. min R > 0, min F > 0).
There are other criteria in the literature, to which the above discussion applies. For
instance, the Jaccard index in [11].

Jaccard Distance Function
Jccard index for two clustering algorithms C; C0 is,

J C;C0ð Þ ¼ N11

N11 þN01 þN10
ð8Þ

2.3 Cluster Aggregation

Clustering comparison can be useful for examining whether the structures of the
clusters match to some predefined classification of the instances. In fact, researchers use
different distance algorithms, even clustering ensemble causes to obtain good results
most of the time, in this study an aggregation method is used with acceptable workload.
The consensus clustering problem is considered as an NP-hard problem [11] yet, we are
still able to provide approximation guarantees for many of the algorithms, we propose
via using a combination of different similarity measurements. Figure 1 illustrates the
proposed aggregation algorithm model.

Fig. 1. The cluster aggregation model.
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Clustering algorithms results can be compared together with the mentioned simi-
larity measurements. In this study four distance functions are used to make a reliable
comparison between clusterings. The idea is, the clustering algorithms are selected with
a maximum value of similarity by the other algorithms in the distance tables. Next
voting assisted to find which clustering has selected more than the others. The final
decision is made based on the voting table to find a suitable clustering algorithm.

3 Experimental Results and Discussion

We implemented the proposed algorithm using by five clustering algorithms and four
similarity measurements. First, because these algorithms are standard and also we need
to control the number of clusters in proposed algorithm. In this study, ERP data which
has been published in [12] form the gamboling task is used. We just selected one
subject and one stimulus data randomly and the size of dataset is 500 temporal samples
by 58 electrodes (features for each sample). Actually, we applied it to all the subjects’
data to find group behavior which is very important in cognitive neuroscience. Figure 2
presents the 5 algorithms clustering performance for the sample dataset. Indeed, we
considered the CARTOOL proposed algorithms (k-means and Hierarchical Clustering)
as it is shown in this figure. We applied clustering algorithms for this dataset with 6
clusters according to eigenvalues distribution and the explained variance value dia-
gram. Due to the limited space, they are not shown here.

Figure 3 demonstrates distance function tables based on 4 similarity measurements
(Rand, Adjusted Rand, Fowlkes and Mallow and Jaccard indices) and for five clustering
algorithms in the order with: K-means (1), Hierarchical (2), FCM (3), SOM (4) and
Diff-Spec (5). Moreover, Tables 1 and 2 illustrate aggregation algorithm process results.
Table 2 shows that the K-means have been selected 8 times by the other clustering
methods, as a result K-means is used as the suitable method after comparison.

Fig. 2. The 5 Clustering algorithms performance for given dataset.
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Fig. 3. Four distance function tables for 5 clustering algorithms.

Table 1. How the clustering algorithms select similar method based on similarity measure-
ments, the numbers 1, 2, 3, 4, 5 indicate the selected clustering’s code in selection.

No. Table no. Clustering meth. Selected meth. Similarity value

1 1 1 4 0.9912
2 1 2 5 0.8768
3 1 3 1 0.9162
4 1 4 1 0.9912
5 1 5 2 0.8768
6 2 1 4 0.9721
7 2 2 5 0.6136
8 2 3 1 0.7261
9 2 4 1 0.9721
10 2 5 2 0.6136
11 3 1 4 0.9776
12 3 2 5 0.6931
13 3 3 1 0.7781
14 3 4 1 0.9776
15 3 5 2 0.6931
16 4 1 4 0.9415
17 4 2 5 0.6221
18 4 3 1 0.6032
19 4 4 1 0.9712
20 4 5 3 0.4763

Table 2. Voting table for the selected methods.

K-means (1) Hierarchical (2) FCM (3) SOM (4) Diff_Spec (5)

8 3 1 4 4

512 R. Mahini et al.



Inner similarity of objects inside clusters is presented in Fig. 4, reasonable corre-
lation in order to objects in each cluster is appeared. Figure 5 shows the inter-cluster
correlation and it means that the clusters are enough separated. Moreover, it would be
very important to recognize important time windows corresponding to related ERP
waveform with related topography maps based on 6 number of clusters, this concept is
shown in Fig. 6. It is clearly seen that there are 6 different topography results for 6
clusters and it means that all the time points in each cluster have same topography and
we could consider them as a point, this advantage assists us to find the reasonable time
range to average the amplitudes for the ERP peak measurement, providing a reliable

Fig. 4. Correlation coefficient among centroids in clusters.

Fig. 5. Correlation between 6 clusters.
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and objective way for cognitive neuroscience research. Due to the length limitation of
the study, we will report the results of the full ERP dataset in the future study.

4 Conclusions and Future Works

In this study, we have proposed an effective approach to finding the temporal samples
sharing similar topographies of ERPs for cognitive neuroscience research. Using
several similarity measurements to find a better algorithm for clustering makes this
method more reliable and suitable for processing ERP data. In future works, we are
going to improve the method for brain signal processing by using clustering ensemble
and consider other different datasets for processing.
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Abstract. Epileptic seizure detection is the most important part in the diagnosis
of epilepsy. The automatic detection and classification of epileptic EEG signals
has great clinical significance. This paper proposes a novel method for epileptic
seizure detection using empirical mode decomposition (EMD) and sparse rep-
resentation based classification (SRC). Firstly, EMD was used to decompose
EEG into multiple Intrinsic Mode Function (IMF) components. Secondly, the
features like variation coefficient, fluctuation index, relative energy and relative
amplitude were extracted from the IMFs. Finally, in the framework of sparse
representation based classification (SRC), the feature vectors of test sample were
represented as a linear combination of the feature vector of training samples with
sparse coefficients. Experimental results show that the time consumed by one
epileptic EEG test sample is not more than 5.9 s, and the accuracy is up to
97.5%. In SRC, the raw EEG signals were replaced by extracted features, which
could reduce data dimension and computational cost. The algorithm has a good
performance in the recognition of ictal EEG. The higher recognition rate and fast
speed make the method suit for the diagnosis of epilepsy in clinical application.

Keywords: Epileptic EEG signal � Sparse representation based classification
(SRC) � Empirical mode decomposition (EMD)

1 Introduction

Epilepsy is a common neurological disorder characterized by the presence of recurring
seizures. Brain activity during seizure differs greatly from that of normal state with
respect to patterns of neuronal firing. The EEG (Electroencephalogram) has been a
valuable clinical tool to monitor the epileptic seizures, which contains important
information about the conditions and functions of the brain. Detection of epilepsy by
visual inspection is very tedious and time-consuming, particularly for long-term EEG
signals. In clinical practice, epileptic seizure detection is the most important part in the
diagnosis of epilepsy.

Due to the scalp EEG signals are complex and nonstationary, many techniques
have been developed for epileptic activity detection in several years. The methods
include feature extraction and the design of classifiers mainly. Wavelet transform has
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been used as a powerful signal processing technique since the EEG signals contain
non-stationary or transitory characteristics [1, 2]. Reference [2] used the wavelet
transform to analyze and characterize 3-Hz spike and wave complex in absence seizure.

Recently, the nonlinear dynamical methods have been widely applied since the
EEG signals are considered as nonlinear. The nonlinear parameters, like the Fractal
Intercept analysis [3], entropy [4, 5], recurrence quantification analysis [6], Hurst
Exponent [7], Linear Discriminate Analysis [8] are usually used as the extracted feature
value. Besides the feature extraction methods, the designs of classifiers also have an
important effect on the epileptic EEG classification. Various effective classifiers such as
artificial neural network [9], support vector machine [10, 11], relevance Vector
Machine [12] and extreme learning machine [13], have been used to improve the
performance of classification of epileptic EEG automatically. In Reference [10], EMD
decomposes a raw signal into a set of complete and almost orthogonal components
called intrinsic mode functions (IMFs). IMFs represent the natural oscillatory modes
embedded in the raw signal. It has the benefit of self-adaptive capacity and has been
widely used in physiological signals researches [14, 15].

Recently, sparse representation becomes a hot topic in pattern recognition. Sparse
representation comes from compressed sensing, potentially using lower sampling rates
than the Shannon-Nyquist bound. Sparse representation selects the most compact
subset with a pursuit of the least number of base elements to express signals. In the
scheme of the sparse representation based classification (SRC) developed by Wright
et al. [16], a test EEG sample is sparsely represented on the training samples. It has
been successfully used in lots of fields, such as blind speech signals separation [17],
face recognition [16–18], EEG signals detection [19, 20]. The employed dictionary
plays an important role in sparse representation. The history of dictionary design could
range from the Fast Fourier Transform (FFT), Principal Component Analysis (PCA),
wavelets to modern dictionary learning methods, such as KSVD, fisher discrimination
dictionary learning (FDDL) model. Meng Yang et al. [21] proposed a fisher discrim-
ination dictionary learning for sparse representation to improve the pattern classifica-
tion performance. Reference [22] proposed a kernel sparse representation learning
framework for time series classification with KSVD techniques.

In this paper, a novel method for epileptic seizure detection is presented based on
SRC and EMD. Firstly, EMD was used to decompose EEG into multiple Intrinsic
Mode Function (IMF) components. Secondly, the features like variation coefficient,
fluctuation index, relative energy and relative amplitude were extracted from the IMFs.
Finally, in the framework of sparse representation based classification (SRC), the
feature vectors of test sample were represented as a linear combination of the feature
vector of training samples by solving the l1-optimization problem.

2 Method

The technology of sparse representation originated from compressed sensing breaks
through the sampling rate restriction of traditional Nyquist-Shannon theorem in the area
of signal processing. Sparse representation has gained considerable attention in pattern
classification recently.
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2.1 Sparse Representation Based Classification (SRC)

Sparse representation based classification (SRC) presented by Wright et al. [16] have
exhibited excellent performance for face recognition. The basic idea of SRC is to
represent the input test sample as a sparse linear combination of the training samples
with sparse coefficients. Given the training set of the ith class as a matrix
Ai ¼ si1; si2; . . .; sin½ � 2 Rm�ni , where vij; j ¼ 1; 2; . . .; ni is an m-dimensional vector
stretched by the jth sample of the ith class. For a test sample y 2 Rm from the same
class, y could be well approximated by the linear combination of the training samples
associated with the class i:

y ¼
Xni

j¼1
aijsij ¼ Aiai ð1Þ

The ai ¼ ai1; ai2; . . .; ain½ �T2 Rn are coefficients. If the test sample y belongs to the
ith class, the coefficient vector of all the training samples should be a ¼ a1; a2;½
. . .; ak� ¼ 0; . . .; 0; ai1; ai2; . . .; aini ; 0; . . .; 0

� �T
.

When the solution a is sparse enough, the sparsest solution y ¼ Aa is NP-hard and
difficult to approximate. Based on the development of sparse representation and
compressed sensing theory, there is growing evidence that if the solution a is sparse
enough, the sparsest solution can be formulated as the following l1-optimization
problem:

â ¼ arg min ak k1 subject to Aa ¼ y ð2Þ

Since real data are usually contaminated with some additive noise, sparse solution
can be modified to account for an error tolerance e by solving the following stable
l1-minimization problem:

â ¼ arg min ak k1 subject to Aa� yk k2 � e ð3Þ

The solution can be obtained by using the MATLAB package provided by http://
cvxr.com/cvx/. To identify a new test sample, the test sample y can be assigned to the
object class with minimal reconstructed residual.

The SRC algorithm is as following:

Normalize the columns of A to have unit l2-norm.
Solve the sparse representation problems in (3) by convex optimization tool.
Reconstruct the test vector y by the coefficient vector associatedwith the ith class as (1).
Compute residue y� Adi âð Þ of each class.
Identify test vector y to the class with the least residue.

2.2 Empirical Mode Decomposition (EMD)

EMD is an adaptive and efficient method applied to analysis non-stationary signals.
The principle of empirical mode decomposition (EMD) technique is to decompose a

518 Q. Meng et al.

http://cvxr.com/cvx/
http://cvxr.com/cvx/


signal automatically into a set of the band limited functions named Intrinsic Mode
Functions (IMFs). Each IMF must satisfy two conditions: in the whole data set, the
number of extreme and the number of zero crossings must either equal or differ at most
by one; and at any point, the mean value of the upper envelope and lower envelope is
zero. The EMD algorithm for the signal x tð Þ can be summarized as follows:

(1) Identify the local maxima and minima of the original data x tð Þ, then connect
respectively by a cubic spline line to produce the upper and lower envelops Umax

and Umin.
(2) Obtain the mean value of corresponding data point

m1 ¼ Umax þUmin

2
ð4Þ

(3) Define the difference between x tð Þ and m1 as the first component

h1 ¼ x tð Þ � m1 ð5Þ

(4) Regard h1 as new x tð Þ and repeat the operation above until h1 satisfies the IMF
conditions, then obtain the first-order IMF, designate it as c1 ¼ h1

(5) Defined the residue r1 as x tð Þ minus c1

r1 ¼ x tð Þ � c1 ð6Þ

(6) Taking the residue r1 as a new data and repeating (1)–(5) and the second IMF
component is obtained. If c1 or r1 is smaller than a predetermined value, or r1
becomes a monotone function, the sifting process is stopped, or else repeated as
the last step. Thus, a series of IMF can be obtained. The signal x tð Þ can be
expressed as

x tð Þ ¼
Xm

i¼1
ci þ rm ð7Þ

EMD decomposes each EEG signal into m ¼ 1ð Þ frequency components. Here, m
intrinsic mode functions (IMFs) represent the different higher frequency components of
the original signals, while rm corresponding to the lower frequency residue.

2.3 Feature Extraction of IMF Components

Variation coefficient, fluctuation index, relative energy and relative amplitude were
extracted from the IMFs. The characteristic of ictal EEG signals are different from that
of the interictal EEG signals. Variation coefficient measures the change of the signal’s
amplitude. Fluctuation index measures the intensity fluctuations of signals.

For epileptic EEG, the noise and trivial information in the raw EEGs can make the
classification less effective and the complexity of sparse representation can be very high
when the number of training samples is big. Feature extraction can reduce data
dimension and computational cost. For long term EEG signals, the corresponding linear
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system is very large. For instance interictal EEG and ictal EEG signals contain 100
single-channel EEG epochs of 4097 points respectively. Each epoch is divided into
four segments and the size is 400 � 1024. Due to the high-dimensional signal is
sparse, selecting least than 4-D features can reduce the dimension of feature and
computational complexity.

3 Results

The EEG signals used in this paper come from Bonn epileptic EEG. The Bonn dataset
consists of five sets denoted as Z, O, N, F, and S, each containing 100 single-channel
EEG epochs with duration of 23.6 s. In this study, Set F over interictal period and Set S
over ictal period are examined. They all contain 100 epochs of 4097 points, and each
epoch is divided into four segments with the same length of 1024 points. The classi-
fication of interictal (Set F) and ictal (Set S) EEGs is more difficult to solve but closer to
clinical applications than the other classification problems based on this dataset.

For the recognition of ictal and interictal EEGs, half of the data per class (200
samples from each class) were chosen as the training samples, the rest samples from
each class were used to test the performance of this method. For Bonn EEG data, EEG
segments are decomposed by EMD firstly. By analyzing the spectrum of those IMFs
with Fast Fourier Transform, the frequency ranges of IMF components are as follows:
IMF1 (0–45 Hz), IMF2 (0–30 Hz), IMF3 (0–20 Hz), IMF4 (0–10 Hz), IMF5 (0–
7 Hz), and IMF6 (0–3 Hz). Figure 1 shows the IMF components of an ictal EEG
sample. From Fig. 1, the frequency of ictal EEG most concentrate on the IMF1–3
component (Table 2).

Fig. 1. The IMF components of an ictal EEG sample. The first one is the raw ictal EEG signal
sample with 1024 points. The second one is the IMF1 frequency component. One by one, the last
one is the fifth IMF component.
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Form Table 1, it is found that based on SRC, the classification accuracy of IMF1–
IMF3 component is better than the EEG sample without EMD. Especially the classi-
fication accuracy based on IMF1 linear feature can be up to 96.5%. In addition, the test
time decreased obviously, which suit for the real time seizure detection in clinical
application.

4 Conclusions

The sparse representation methods have been widely applied to pattern classification in
recent years. In the scheme of sparse representation based classification (SRC), a new
test EEG sample is sparsely represented on the training dataset.

In this work, we propose a seizure detection method using SRC and EMD to
classify the epileptic ictal EEG and interictal EEG. EMD is an adaptive and efficient
method applied to analysis non-stationary signals. To make full use of subbands fre-
quency characteristics, extracted the features such as variation coefficient, fluctuation
index, relative energy and relative amplitude from the IMFs. The feature extraction can
reduce the data dimension and computational cost. This method is faster than SVM,
which have better performance in the real-time diagnosis of epilepsy in the future.
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Table 1. Classification performance of IMF based on SRC

Component Sensitivity Specificity Accuracy

Raw EEG 87.00 89.00 88.50
IMF1 97.00 95.00 96.50
IMF2 93.00 95.00 94.00
IMF3 88.00 91.50 89.50
IMF4 – – 74.00
IMF5 – – 66.50
IMF12 95.00 96.00 95.50
IMF123 99.00 96.00 97.50

Table 2. Comparision of the classification method

Method Accuracy Test time(s)

EMD+SVM 88.50 1.4
SRC 97.88 ± 2.87 40.0
Kernel SRC 98.63 ± 2.80 3.9
EMD + SRC 97.50 ± 2.50 0.5
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Abstract. Autoencoding in deep learning has been known as a useful
tool for extracting image features in multiple layers, which are subse-
quently configured for classification by deep neural networks. A practi-
cal burden for the implementation of autoencoders is the time required
for training a large number of artificial neurons. This paper shows the
effects of scaling of texture in the histology of colorectal cancer, which
can result in significant training time reduction being approximately to
an exponential function, with improved classification rates.

Keywords: Deep neural networks · Image classification · Digital
pathology · Colorectal cancer · Tissue types

1 Introduction

Tumors are well-known to be different among patients, and within the tumor
itself at its tissue and its cell levels. In fact, tumor morphological heterogene-
ity has been recognized by pathologists, and used as the basis for many tumor
grading prognostic classification systems [1]. In colorectal cancer (CRC), tumor
architecture changes during tumor progression [2], and is related to patient prog-
nosis [3]. Therefore, quantifying images of tissue types in CRC is important in
digital histopathology [4]. In cancer research, the use of machine-learning tech-
niques for computerized histological image analysis is a key factor for advancing
methods of major diagnostic importance, minimizing human subjective error,
and providing vital clinical information [5–8].

Deep learning [9] is a machine-learning method that operates on nonlinear
processing layers known as autoencoders to extract useful features directly from
the raw data for object classification. A deep-learning model is trained with
a large set of data and a neural-network architecture of multiple layers. The
accuracy of a deep leaning model largely depends on the amount of data used
to train the model. In other words, to achieve an accurate deep-learning model,
thousands or even millions of training samples are required, which can take a
very large amount of time for the model training. Once a deep-learning model
is appropriately trained, it can be applied in real-time applications.
c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part II, LNCS 10262, pp. 524–532, 2017.
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This study aims to tackle a state-of-the-art problem in translational colorec-
tal cancer research with the application of deep learning and neural-network
classification in histological image analysis by effective handling of computa-
tional time requirement for the model training. The proposed texture scaling in
autoencoder training is promising for constructing a practical deep-NN-based
classifier that can provide precise and predictive diagnosis of the cancer with the
goal of providing a clinical decision support tool to help oncologists select the
best treatment plans for individual patients.

2 Scaling of Texture in CRC Histology

As texture can be synthesized to generate larger images of similar statistical
properties to improve texture retrieval [10], it can also be resampled to images
of smaller sizes that still preserve the spatial statistics of the same texture. By
resampling images of texture, the deep-learning training time required by the
autoencoders can be reduced. Here, bicubic interpolation, which is an extended
cubic interpolation for estimating data points on a two-dimensional regular grid,
is utilized for image resampling [11]. Bicubic interpolation is carried out using
cubic convolution algorithm, where the output pixel intensity is a weighted aver-
age of pixels in the nearest 4×4 neighborhood. In image processing, bicubic inter-
polation is preferred to bilinear interpolation. It is because images resampled
with bicubic interpolation are smoother and have fewer interpolation artifacts
than bilinear interpolation [11].

Figure 1 provides examples of histological images of CRC tumor and stroma
tissues, obtained from [7], that show visual appearance of textures. Figure 2
shows the experimental semivariograms [12] of CRC histological images of a
tumor tissue, a stroma tissue, and their resampled images. The experimental
semivariogram, denoted as γ(h), is a function that represents the spatial corre-
lation of spatial data measured with distances between all data pairs at sampled
locations, and mathematically defined as

γ(h) =
1

2N(h)

N(h)∑

i=1

[Z(xi) − Z(xi + h)]2 , (1)

where Z(xi), i = 1, 2, . . . , n, be a sampling of size n, N(h) is the number of
pairs of variables separated by distance h. In this study, the semi-variogram of
an image at a lag h is calculated by taking the sum of squared differences of the
intensity values of pixel pairs separated by h in both rows and columns, then
divided by the total number of the pixel pairs.

It can be observed from Fig. 2 that the semivariograms of the resampled tex-
tures preserve similar spatial structures to those of the original textures, where
the values of γ(h = 1) for 50 × 50 and 20 × 20 images increase proportionally
to the scaling factors with respect to the original 150 × 150 images. The semi-
variogram shapes of the tumor-tissue texture follows a spherical function of the
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Fig. 1. CRC histological images [7]: (a)–(f) tumor tissues, and (g)–(l) stroma tissues.



Scaling of Texture in Training Autoencoders for Classification 527

(a) (b) (c)

0 2 4 6 8 10 12 14 16 18 20

h

0

500

1000

1500

2000

2500

γ
(h

)

(d)

0 2 4 6 8 10 12 14 16

h

500

1000

1500

2000

2500

3000

3500

γ
(h

)

(e)

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

h

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

γ
(h

)
(f)

(g) (h) (i)

0 2 4 6 8 10 12 14 16 18 20

h

0

500

1000

1500

2000

2500

3000

3500

4000

γ
(h

)

(j)

1 2 3 4 5 6 7 8

h

500

1000

1500

2000

2500

3000

3500

4000

4500

γ
(h

)

(k)

1 2 3 4 5 6 7 8

h

0

1000

2000

3000

4000

5000

6000

γ
(h

)

(l)

Fig. 2. (a)–(c) are 150 × 150, resized 50 × 50, and resized 20 × 20 images of the same
CRC tumor tissue type, respectively, (d)–(f) are semivariograms of (a)–(c), respectively,
(g)–(i) are 150 × 150, resized 50 × 50, and resized 20 × 20 images of the same stroma
tissue type, respectively, and (j)–(l) are semivariograms of (g)–(i), respectively.
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theoretical semivariogram, whereas those of the stroma-tissue texture approxi-
mately exhibit a linear curve [13]. Thus, the preservation of the spatial statistical
structures of the scaled CRC histological images technically justify the notion
of their texture scaling for feature learning using the autoencoders.

3 Configuration of Autoencoders

The discovery of hidden and effective features of an object can be obtained by
deep learning with the implementation of an autoencoder that is an unsupervised
neural network. An autoencoder consists of two components: an encoder and a
decoder. An encoder in the hidden layer k maps the input x ∈ RDx to another
representation ak ∈ RDk

by means of a transfer function f :

ak = f(x) = f(Wk x + bk), (2)

where Wk ∈ RDk×Dx is a weight matrix, and bk ∈ RDk

is a bias vector.
Using a transfer function g, a decoder learns to reconstruct the original input

x, denoted as y, and is defined as

y = g[a(k+1)] = g[W(k+1) x + b(k+1)]. (3)

The optimal learning process of the autoencoder is performed by minimizing
the following loss function L [9]:

L = L(x,y) + λs Ω(a) + λr Ω(w), (4)

where L(x,y) is a loss function such as the mean squared error that imposes a
cost for the difference between x and its reconstructed signal y, Ω(a) is a sparsity
penalty, λs is the coefficient for the sparse penalty, Ω(w) is the L2 regularizer
and λr its coefficient. These terms are mathematically defined as follows.

Ω(a) =
n∑

i=1

KLD(p||p̃i), (5)

where KLD(p||p̃i) is the Kullback-Leibler divergence, which is used as a measure
of the difference between a sparsity parameter p and average activation value
p̃i, n is the number of neurons in the hidden layer. The value for p is close to
zero, typically taken as 0.05 [9] and used in all experimental cases in this study,
and p̃i is defined with rewriting ak

i as ak
i (xj) to explicitly express the activation

of a neuron i in hidden unit k when the network is given a specific input xj as
follows

p̃i =
1
N

N∑

j=1

ak
i (xj), (6)

where N is the total number of training samples.
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The L2 regularizer attempts to add a regularization term on the weights to
the loss function:

Ω(w) =
1
2

L∑

k=1

N∑

j=1

V∑

i=1

(wk
ji)

2 (7)

where L, N , and V are the numbers of hidden layers, training samples, and
training-data variables, respectively.

4 Results

The CRC histology image database [7], which is made publically available under
a Creative Commons License, was used in this study. The database consists
of RGB images of 8 texture classes in histological images of human colorectal
cancer, each class has 625 images. The deep-NN based classification of tumor
and stroma tissues with the configuration of the autoencoders described in the
foregoing section was carried out in this experiment. A neural network with
two hidden layers were trained individually in an unsupervised mode using the
autoencoders. The feature vectors produced from the first autoencoder were
passed to the second autoencoder to subsequently generate the second set of
feature vectors that were used as the input to train the softmax layer in a
supervised mode. The encoders from the autoencoders together with the softmax
layer were stacked together to form a deep neural network. Finally, the fine
tuning of the deep neural network was carried out to improve its classification
power by performing the backpropagation to retrain the whole network in a
supervised fashion. In the training of the two autoencoders, the sizes of the first
and second hidden layers for the original images (150×150 pixels) and resampled
images were chosen to be twice and half the number of image rows or columns,
respectively.

Table 1 shows the average two-fold cross-validation results and associated
computational times obtained from the deep neural networks for the two-class
classification problem with various resamplings of textures, in which the scaling
to 30 × 30 achieves the minimum classification error rates. Figure 3 shows the
plots of texture scaling vs. computational time, and scaling vs. classification
error, where the reduction in computational time for the autoencoder training
in terms of image size approximately follows an exponential function, and the
scaling of the CRC histology texture can be reduced 5 times with an improved
classification rate. It was also of interest to see the effect of selecting various sizes
for the hidden layers of the autoencoders using the resampled textures. Table 2
shows the average error rates obtained from the two-fold cross-validation using
the resampled texture images of 30 × 30 and 20 × 20 pixels. All the results are
also more favorable than the average error rate using the original images of a
much larger size.
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Table 1. Average classification error rates and computational times (seconds) of two-
fold cross-validation using various texture scalings.

Image size Hidden layer #1 Hidden layer #2 Error rate Computational time

150 × 150 450 225 0.25 6403

130 × 130 390 195 0.21 2506

100 × 100 300 150 0.29 1848

80 × 80 240 120 0.28 1020

60 × 60 180 90 0.32 435

50 × 50 150 75 0.34 280

40 × 40 120 60 0.22 148

30 × 30 90 45 0.19 65

20 × 20 60 30 0.20 26
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Fig. 3. Effects of CRC texture scaling in deep learning: (a) scaling vs. computational
time, and (b) scaling vs. classification error rates.

Table 2. Average classification error rates of two-fold cross-validation using resampled
images of smaller sizes.

Image size Hidden layer #1 Hidden layer #2 Error rate

30 × 30 400 400 0.22

30 × 30 300 300 0.16

30 × 30 200 200 0.18

20 × 20 300 300 0.23

20 × 20 200 200 0.19

20 × 20 100 100 0.19
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5 Conclusion

Large texture images in CRC histology are prone to excessive computational
time for data training in deep neural-network classification, otherwise the perfor-
mance of the classifier may suffer from achieving expected accuracy. This paper
proposed texture scaling in CRC histology that can alleviate the computational
burden in training the networks, while still produce better performance than the
use of a much larger image size of texture. The experimental results suggest that
the use of smaller texture image size with an appropriate selection of hidden
layer sizes can be more favorable for the training of the autoencoders in terms of
both time and accuracy. Furthermore, object recognition in 2D images is known
to be well suited to the application of convolutional neural network (CNN) archi-
tectures, which use 2D convolutional layers to convolve deep-learning features
with input image data for classification, and has become a popular deep-learning
technique [14]. In this study, only two hidden layers were created for deep learn-
ing as an example, a larger number of hidden layers would be expected to show
the higher performance of deep neural networks with respect to the increase in
classification accuracy and reduction in machine-learning time. Furthermore, a
future study will aim at the effective implementation of a CNN model for texture
classification of CRC histological images with the feasibility of the computational
speed.
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Abstract. In this paper, we develop a novel feature extraction approach for
multi-channel electroencephalography (EEG) classification. Inspired by con-
volutional neural networks (CNNs), we devise a fast convolutional feature
extraction approach for EEG classification. In our approach, convolutional filters
are first applied to extract features of multi-channel EEG signals. Then weak
classifier selection is adopted to adaptively choose important features, which
will be used for final classification. After that, we evaluate the performance of
selected features through classification accuracy. Experiments on BCI III IVa
competition dataset demonstrate the superior performance of our method,
compared with the same classifier without feature extraction and deep learning
methods, such as CNNs and long short term memory (LSTM). This work can be
used to form the framework of deep neural networks for EEG signal processing.

Keywords: EEG � Feature extraction � Convolutional filter � Classification

1 Introduction

Electroencephalography (EEG) is the recording of bio-potential, measured from the
scalp of human brain. How to classify the EEG signals becomes a hot research issue [1,
2]. Classification of EEG signals reveals brain states and intention, which is one of the
three major components of brain-computer interface (BCI) [3]. Researches in this field
cannot fully satisfy the demand of application and there is only a few products of BCI
in the market. This, to some extent, is due to the fact that most of EEG signal clas-
sification methods are traditional methods [1, 2], lagging behind the development of
machine learning, such as deep learning. It is rare to apply deep learning methods in
this area, which have brought fundamental breakthroughs in many other areas [4].

EEG signals are neither linear, nor stationary, and always interfered by the move-
ment and potential of eye and muscle [5]. This makes it challenging to classify EEG
signals using traditional methods. Directly inputting the raw data into classifier will not
only take a long time for computation but also consume huge memory resources. In
some cases, the signal-to-noise ratio can be increased by extracting features from
auxiliary samples [6]. In this sense, it is essential to extract the features of EEG signals
before their classification.
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Features of EEG signals can be extracted in time, space and frequency domains [3]
or through other methods. In the open literature, there have been some existing
methods for EEG feature extraction, such as Bayesian common spatial pattern (BCSP)
[6], source analysis [7], time-frequency feature extraction [8], and discrete cosine
transform (DCT) [9].

Existing methods for feature extraction, some focusing on single channel led to the
loss of information, some using multi-channel but failed to insure the channel location.
In this paper, we apply a new method of feature extraction to classify EEG signals
based on convolutional filter design. The proposed approach is inspired by convolu-
tional neural networks (CNNs) for sentence classification [10], which has already
demonstrated excellent results on nature language processing. The work in [10] uses
two-dimensional matrix to represent the one-dimension sentence based on word
embedding. Inspired by this, we strategically regard multi-channel EEG signals as a
two-dimensional matrix based on time dynamic and the location of electrodes. Then we
follow the convolutional rule of two-dimensional processing to extract features from
EEG signals. Several attempts are then made to find appropriate convolutional filters in
order to capture important features of EEG samples. Later, we work on selecting
representative features by adopting weak classifier selection algorithm implemented in
[11]. Then artificial neural networks (ANNs) and linear discriminant analysis
(LDA) are performed to classify EEG samples in order to evaluate the effectiveness of
the selected features. Our work can be regard as an exploration of transferring deep
learning methods into EEG signal processing to some extent.

Our experiments show that the proposed classifier with fast convolutional feature
extraction achieves better performance, which is about 5% higher than the accuracy of
the classifier without feature extraction. This shows that features extracted by convo-
lutional filter are beneficial to EEG classification. Additionally, the result also illus-
trates that further work can be done on filter and architecture design to make
convolutional neural networks suitable for EEG classification.

The rest of this paper is organized as follows. In Sect. 2 we present the proposed
method used for feature extraction and classification. In Sect. 3, we describe how to
carry out the experiment based on the BCI III IVa dataset to validate our method. We
compare its performance with that of other classification methods as well. At last, we
draw conclusions in Sect. 4.

2 Method

This section explains how our method works from feature extraction to classification
and Fig. 1 provides a block diagram of our method. The raw EEG signals are filtered
by band pass filter beforehand. Then, fast convolutional feature extraction is imple-
mented to accomplish feature selection. Based on the most important and represen-
tative features, we choose ANNs as classifier to evaluate the performance of selected
features.
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2.1 Fast Convolutional Feature Extraction with Weak Classifier Selection

Two-Dimensional Processing
Based on the preprocessed data, we form a two-dimensional matrix using all channels.
Then, we partition channels into several clusters to capture different channels’ repre-
sentative information. Considering time dependency of EEG signals, we divide EEG
signals into M frames. Let emi 2 R

k be the k-dimensional vector corresponding to the
clustered EEG signals of m-th frame at i-th time point from k clustered channels. Each
frame consists of T time instants, and m-th frame is represented as

em1:T ¼ em1 � em2 � . . .� emT ; ð1Þ

where � represents the concatenation operator. And the length of each frame T can be
adjusted to find the most suitable length to capture time dependency.

2D Convolutional Feature Extraction
Here is the way of using convolution for EEG feature extraction. This is analogous to
the convolution used for sentence classification in [10]. Let emi:iþ j refer to EEG signals
of m-th frame from i-th time instant to ðiþ jÞ-th time instant. Convolution operation
includes a filter w 2 R

hk, which filters a window of h time instants EEG signals to
produce a new feature. For example, using

f mi ¼ wemi:iþ h�1; ð2Þ

a feature f mi is generated. When apply this filter to each window of EEG signals from
particular frame em1:h; e

m
2:1þ h; . . .; e

m
T�hþ 1:T

� �
, a feature map

fm ¼ ½f m1 ; f m2 ; . . .; f mT�hþ 1� ð3Þ

is produced with fm 2 R
T�hþ 1, followed by a max-over-time pooling operation [12] to

take the maximum value of the feature map fm ¼ max fmf g to represent the most
important feature generated by corresponding convolution filter. Naturally, we regard it
as the feature of current filter. This is to capture the most remarkable feature for each
filter, i.e., the one with highest value from each feature map.

Filter Design
Apart from different channels’ information, EEG signals are also a kind of time series.
In this way, we design filters considering the time dynamic to capture both long-term
dependency and short-term dependency of EEG signals.

Fig. 1. The block diagram of classification method
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Inspired by edge detection of image processing, we design 3 types of filters to
capture different time characteristic shown in Fig. 2. Type 1 focuses on difference
between current time instant and previous n instants while Type 2 captures changes in
current instant and previous n instants as well as latter n instants. Type 3 detects the
amplitude variance of EEG signal with n time instants. Here, we set n ¼ 1; 2; . . .; 20.
And different lengths of filters aim to obtain both short-term and long-term dependency
of EEG signals. Figure 2 shows columns from convolution filters (we display in row
only to make it clear to understand). We expand each column into a two-dimensional
convolutional filter to process all clusters.

Weak Classifier Selection
Before classification, we use weak classifier selection algorithm [11] to learn the
importance of all features. Then, we choose the most representative features for later
classifier.

2.2 Classifier

With the selected features, we use classification result to evaluate the effect of our
algorithm. There are several popular ways for classification. Here, we focus on two
widely used machine learning algorithms for EEG classification, linear discriminant
analysis (LDA) [6] and artificial neural networks (ANNs) [9, 13].

3 Experiments and Results

3.1 Dataset and Evaluation

The dataset we used is BCI Competition III IVa1 [14] dataset containing EEG signals
from 5 subjects with 2 motor imagery movement classes, sampled at the rate of 100 Hz.
There are totally 560 samples with labeled motor imagery movement class and each was
cut to 3.5 s (350 time points) from the beginning of it. This makes it more challenging

Fig. 2. Three types of convolution filters used for feature extraction. n ¼ 20

1 http://www.bbci.de/competition/iii/.
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and drives us to classify. As for evaluation, we use the classification accuracy to evaluate
the performance of feature extraction. Below is how accuracy is calculated

accuracy ¼ ntrue
ntest

� 100; ð4Þ

where ntest denotes the number of total testing samples and ntrue denotes the number of
testing samples that are classified correctly.

3.2 Preparing Training Data

Before feature extraction, we applied bandpass filter to obtain the signal component in
bandwidth from 7 Hz to 30 Hz. EEG signals from different channels was filtered.
Then, we partitioned channels by k-means clustering and divided the data into several
frames. By adjusting the number of clusters and the length of frames, we can find the
most suitable combo of them.

3.3 Feature Extraction

Here, we applied 3 types of convolutional filters showed in Fig. 2 to capture the
features of each frame. And each type of filters had 20 kinds of different lengths. In this
way, each frame would have 60 features. After combining features from different
frames of single sample, we ranked the importance of the features. Table 1 below
shows the top 10 features in the important index when treating each sample as a frame.

3.4 Training Classifier

Initially, neural network is set with random weights and bias. With enough number of
training epochs, parameters of neural network will converge to the best weights with
highest accuracy. Considering the initialized random weight and bias, it is necessary to

Table 1. Top 10 important features treating each sample as a frame. fi;j denotes the feature
generated by filter wi;j (i for type, j for length)

Ranking Feature

1 f2,1
2 f3,19
3 f3,8
4 f3,6
5 f3,18
6 f2,2
7 f3,20
8 f3,17
9 f1,3
10 f3,16
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perform the experiment for several times and use the average accuracy to represent the
overall performance. For a given number of hidden layers and same transfer function,
both the size of the input vector and the representativeness of input features will
influence the accuracy of classification.

With calculated importance index, we selected top m number of features and set m
to 2, 3, 4, 5, 6, 7, 8, 9 and 10, respectively. We constructed the ANNs consisting of 10
hidden layers and 1 softmax layer, and adopted scaled conjugate gradient algorithm
[15] for supervised learning. Before training, we randomly divided the dataset into two
groups, 75% for training, the rest for testing, and used the testing group to calculate the
accuracy of our algorithm. Then, we calculated the average classification accuracy.
Base on that, we can find the best combo of features that is suitable for the classifier and
can represent the EEG sample well.

3.5 Result

We evaluated the suitable number of features for classifier by the average accuracy.
Figure 3 displays the performance of our algorithm, where the performance of LDA
and ANNs were compared with different size of input feature vectors, length of frame
and number of clusters.

Figure 3 below shows the accuracy of our methods with different number of input
features. Plot (a) and (b) in Fig. 3 indicate that when channels of current EEG sample
were partitioned into k clusters, classification accuracy of 32 clusters was the highest
among the result of 32, 64, 96 clusters and that without clustering. Plot (c) and (d) in
Fig. 3 demonstrate that when EEG sample was divided into several frames, dividing
the sample into 7 frames at the length of 50 time instants achieved highest accuracy for
classification.

When the channels of EEG signals were partitioned into 32 clusters with 7 frames,
ANNs and LDA achieved their highest accuracy of 59.13% with top 4 features and
57.81% with top 3 features, respectively. A common trend was that both two method
suffered performance degradation as the number of features used increasing. And it
shows that our feature extraction has its advantage to some extent.

Besides, we directly applied the CNNs of one-layer architecture followed by
max-time-over pool and softmax layer to realize the classification, and only got the
accuracy of 44.76%. The accuracy of long short term memory (LSTM) was 52.32%
which was only slightly higher than CNNs. ANNs and LDA were applied to EEG
signals with single channel as well. The highest accuracy of both methods are displayed
in Table 2. Among all methods, accuracy of classifier with our feature extraction
method was up to 5% higher than those without feature extraction.

The dataset we used is relatively small and comes from 5 subjects with more
individual difference. We randomly divided the data, which made the result more
dependable as well as the feature extraction method. In addition, we focus on the
performance of feature extraction and the result indicates the effectiveness of our
method with accuracy improvement.
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4 Conclusion

We proposed a new feature extraction method for multi-channel electroencephalog-
raphy (EEG) classification referring to convolutional neural networks (CNNs). Dif-
ferent from the use of normal CNNs in other areas, our work did not simply applying
the CNNs to multi-channel EEG signals. We designed convolutional filters focusing on
capturing characteristic of EEG signals.

In our method, based on convolutional filters, we extracted the remarkable features.
Then, we applied weak classifier selection algorithm to obtain the importance index.
Using classifier with same architecture but different from size of input vector, we found
out best combo among all the features ranking in the index. And comparing with the
other algorithms, such as traditional CNNs and classifier without feature extraction, our
method showed its merits in terms of higher accuracy. Even though the improvement is

Table 2. Result of other methods

Method CNN LSTM ANN with
single
channel

LDA with
single
channel

ANN with
feature
extraction

LDA with
feature
extraction

Accuracy % 44.76 52.32 54.36 52.93 59.13 57.81

Fig. 3. Classification accuracy of ANNs and LDA with selected features. Plots (a) (c) are shown
for accuracy of ANNs and plots (b) (d) are shown for accuracy of LDA
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not that significant, it paves the way for deep learning application in EEG signal
processing. For future work, we will use the fast convolutional feature extraction to
form the framework of deep neural networks to achieve higher performance in EEG
signal processing.

Acknowledgements. The authors gratefully acknowledge financial support from China Schol-
arship Council.
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Abstract. In order to develop an efficient computer-aided diagnosis system for
detecting left-sided and right-sided sensorineural hearing loss, we used artificial
intelligence in this study. First, 49 subjects were enrolled by magnetic resonance
imaging scans. Second, the discrete wavelet packet entropy (DWPE) was uti-
lized to extract global texture features from brain images. Third, single-hidden
layer neural network (SLNN) was used as the classifier with training algorithm
of adaptive learning-rate back propagation (ALBP). The 10 times of 5-fold cross
validation demonstrated our proposed method yielded an overall accuracy of
95.31%, higher than standard back propagation method with accuracy of
87.14%. Besides, our method also outperforms the “FRFT + PCA (Yang,
2016)”, “WE + DT (Kale, 2013)”, and “WE + MRF (Vasta 2016)”. In closing,
our method is efficient.

Keywords: Hearing loss �Multimedia data � Discrete wavelet packet entropy �
Single-hidden layer neural network

1 Introduction

Multimedia data is a combination content of different data forms: text, audio, image,
animation, and video. In medical application, the multimedia data offer refers to 3D
volumetric data obtained by different imaging techniques.
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The sensorineural hearing loss (SNHL) is a disease featuring in gradual deafness
[1]. SNHL contains thee types: (i) sensory hearing loss (SHL), (ii) neural hearing loss
(NHL), and (iii) both. SHL may be due to bad function of cochlear hair cell, and NHL
may be because of impairment of cochlear nerve function.

In this study, we aimed to use multimedia data obtained by magnetic resonance
imaging (MRI) scanning [2] to differentiate left-sided SNHL and right-sided SNHL.
The detection basis is that SNHL patients will have slight to severe structural change in
specific brain regions. Traditionally, the human eye-based detection is unreliable since
the human eyes cannot perceive slight atrophy. Thus, artificial intelligence is employed
in this study, which is aimed to develop a computer-aided diagnosis (CAD) system.

Traditional CAD systems mainly used discrete wavelet transform (DWT) [3–5] to
learn global image features, and then employed latest pattern recognition tools. For
example, Mao, Ma and Tian [6] used DWT to analyze the potential signals of local
field. Ikawa [7] employed DWT to performance auditory brainstem response
(ABR) operation. Nayak, Dash and Majhi [8] employed the DWT to identify brain
images. They used AdaBoost with random forests as classifiers. Lahmiri [9] utilized
three multi-resolution techniques: DWT, empirical mode decomposition (EMD), and
variational mode decomposition (VMD). Chen and Chen [10] used principal compo-
nent analysis (PCA) and generalized eigenvalue proximal support vector machine
(GEPSVM). Gorriz and Ramírez [11] proposed a directed acyclic graph support vector
machine method.

Nevertheless, DWT suffers from the disadvantage translational variance [12]. That
means, even a slight translation may lead to different decomposition result [13].
Besides, the DWT decomposition will lead to larger dimension space (*106) than
original image (*105) for a 256 � 256 size image, and it needs dimension reduction
techniques, such as principal component analysis [14].

To solve this problem, we introduced a relatively new technique: discrete wavelet
packet entropy (DWPE) [15–17] that can yield mere a few (*101) translational invariant
features. Besides, we used a single-hidden layer neural network as the classifier, which
was trained by gradient descent with adaptive learning rate back propagation method.

2 Materials

Subjects were enrolled from outpatients of department of otorhinolaryngology and
head-neck surgery and community. They were excluded if evidence existed of known
psychiatric or neurological diseases, brain lesions, taking psychotropic medications, as
well as contraindications to MR imaging.

Finally, the study collection includes 15 patients with left-sided SNHL (LSNHL),
14 patients with right-sided SNHL (RSNHL) and 20 age- and sex-matched healthy
controls (HC), as shown in Table 1.

Preprocessing was implemented on the software platform of FMRIB Software
Library (FSL) v5.0. The brain extraction tool (BET) was utilized to extract brain
tissues. The results are shown in Fig. 1. Then, the extracted brains of all subjects were
registered to MNI space. Three experienced radiologists were instructed to select the
most distinctive (around 40-th) slice between SNHLs and HCs.
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3 Methodology

3.1 Discrete Wavelet Packet Transform

In the field of signal processing, standard discrete wavelet transform (abbreviated as
DWT) [18, 19] decomposes the given signal at each level, by submitting the previous
approximation subband to the quadrature mirror filters (QMF) [20]. Its even-indexed
downsampling causes the translational invariance problem [21].

On the other hand, discrete wavelet packet transform (DWPT) [22] is an improve-
ment of standard DWT. DWPT passes both approximation and detail coefficients of
previous decomposition level to QMF, so it can create a full binary tree [23]. In general,
DWPT offers more features than DWT at the same decomposition levels [24].

Suppose x represents the original signal, c the channel index, d the decomposition
level, p the position parameter, D the decomposition coefficients, and w the wavelet
function, then DWPT is calculated as below:

Dc;d
p ¼

Z 1

�1
xðtÞwcð2�dt � pÞdt ð1Þ

Table 1. Subject characteristics

HC LSNHL RSNHL

Gender (f/m) 12/8 7/8 8/6
Education level (year) 11.5 ± 3.2 12.5 ± 1.7 12.1 ± 2.4
Age (year) 53.6 ± 5.4 51.7 ± 9.6 53.9 ± 7.6
Disease duration (year) – 17.6 ± 17.3 14.2 ± 14.9
PTA of left ear (dB) 22.2 ± 2.1 78.1 ± 17.9 21.8 ± 3.2
PTA of right ear (dB) 21.3 ± 2.2 20.4 ± 4.2 80.9 ± 17.4

(PTA = pure tone average)

(a) axial direction (b) coronal direction (c) sagittal direction

Fig. 1. The green lines label the edge of BET result (Color figure online)
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where. 2d sequences will be yielded. Based on d-level decomposition, the decompo-
sition results of (d + 1) level is:

D2c;dþ 1
k ¼

X

p2Z
hðp� 2kÞ � Dc;d

p ;D2cþ 1;dþ 1
k ¼

X

p2Z
lðp� 2kÞ � Dc;d

p ð2Þ

From Fig. 2, we can observe that for an image, DWT offer in total (1 + 3d)
coefficient subbands. In contrast, DWPT generates in total 4d coefficients subbands.
Thus, DWPT can provide much more information than DWT.

3.2 Shannon Entropy

Entropy was originally utilized to measure the system disorder degree [25]. It was
generalized by Shannon to measure information contained in a given message [26].
Suppose m the index of grey level, hm the probability of m-th grey level, and T the total
number of grey levels, we have the Shannon entropy S as:

S ¼ �
XT

m¼1
hm log2ðhmÞ ð3Þ

In the case of hm equals to zero, the value of 0log2(0) is taken to 0 [27]. We
calculated Shannon entropies of all subbands obtained from DWPT, and dubbed the
results as discrete wavelet packet entropy (DWPE). For a brain image with size of
256 � 256, it has originally 65,536 features. A two-level DWPE can finally reduce the
65,536 features to only 24 = 16 features.

3.3 Single-Hidden Layer Neural Network

The features were then presented into a classifier. There are many classifier in various
fields, such as logistic regression [28], linear regression classifier [29, 30], extreme
learning machine [31], decision tree [32, 33], etc.

(b) DWPT(a) DWT

x

LL LH HL HH

LL LH HL HH

x

LL LH HL HH

LL LH HL HH

LL LH HL HH

LL LH HL HH

LL LH HL HH

Fig. 2. Comparison between 2-level DWT and 2-level DWPT (x denotes for an image,
H denotes the high-pass filter result, L denotes the low-pass filter result)
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In this study, we chose the classifier as a single-hidden layer neural-network
(SLNN) [34] due to its superior performance. We did not employ multiple hidden
layers [35], because one-hidden layer model is complicated enough to express our data.
In a SLNN, the input nodes are connected to the hidden neuron layer, which is then
connected to the output neuron layer.

The hidden neuron number is usually assigned with a large value. Afterwards, its
value is decreased gradually till the classification performance reaches the peak result.
The gradient descent with adaptive learning-rate back propagation (ALBP) algorithm
[36] was employed to train the weights and biases of SLNN. Initial learning rate was
set to 0.01. The increasing ratio and decreasing ratio of learning rate were set to 1.05
and 0.07, respectively. The maximum epoch is set to 5000.

4 Experiments and Results

4.1 DWPT Result

The 2-level DWPT result of a left-sided SNHL image is shown in Fig. 3. Here we can
see in total 4 subbands are generated for 1-level decomposition, and 16 subbands are
generated for 2-level decomposition.

4.2 Accuracy Performance

We repeated 5-fold cross validation [37] 10 times. The brief accuracy performance by
BP algorithm is shown in left side in Table 2 with overall accuracy of 87.14%, and the
accuracy performance by ALBP algorithm is shown in right side in Table 2 with
overall accuracy of 95.31%. In these two tables, y/z represents y instances are suc-
cessfully detected out of z instances.

The 10 repetition of 5-fold cross validation results indicate that this proposed ALBP
performs better than classical BP algorithm. The reason lies in the adaptive
learning-rate can accelerate the training procedure [38]. In standard BP, the learning

(a) LSNHL Image (b) 1-level decomposition (c) 2-level decomposition 

Fig. 3. DWPT of a left-sided sensorineural hearing loss image

Hearing Loss Detection in Medical Multimedia Data 545



rate is unchanged, and thus the performance is sensitive to initial weight [39]. We see
from left side of Table 2 that the accuracy in each run of BP vary from 79.59% to
91.84%. While the ALBP makes the learning rate responsive to the local error surface,
and thus it is not as sensitive as BP. We see from right side of Table 2 that the accuracy
in each run of ALBP vary from 91.84 to 97.76%. Thus, ALBP is much more stable
than BP.

4.3 Comparison

Finally, we compared our DWPE + SLNN + ALBP approach with following three
methods: (i) The combination of fractional Fourier transform (FRFT) and principal
component analysis (PCA) method [40], which shall be abbreviated as FRFT + PCA.
(ii) The combination of wavelet entropy (WE) and decision tree (DT) method [41],
which is abbreviated as WE + DT. (iii) The hybrid system based on wavelet entropy
(WE) and Markov random field (MRF) [42], abbreviated as WE + MRF.

Table 3 shows that our method get superior overall accuracy of 95.31% to other
three methods: FRFT + PCA [40], WE + DT [41], and WE + MRF [42]. The reason
may be two folds: First, our method used DWPE, which combines two successful
components, DWPT and Shannon entropy. Second, the wavelet packet transform is
more efficient than fractional Fourier transform in image texture extraction. In the
future, we shall try to use advanced classifiers, such as sparse autoencoder [43], con-
volutional neural network [44], and shared-weight neural network [45].

Table 2. Accuracy performance by BP and ALBP (R = Run; F = Fold; T = Total)

BP F1 F2 F3 F4 F5 T Acc. ALBP F1 F2 F3 F4 F5 T Acc.

R1 10/10 9/10 7/9 10/10 8/10 44/49 89.80 R1 9/10 9/9 10/10 9/10 9/10 46/49 93.88

R2 10/10 10/10 9/10 7/9 8/10 44/49 89.80 R2 8/9 10/10 10/10 10/10 10/10 48/49 97.96

R3 9/9 9/10 9/10 8/10 10/10 45/49 91.84 R3 10/10 10/10 10/10 9/9 9/10 48/49 97.96

R4 6/10 10/10 7/9 9/10 7/10 39/49 79.59 R4 10/10 10/10 8/9 10/10 10/10 48/49 97.96

R5 9/10 9/10 8/9 8/10 8/10 42/49 85.71 R5 9/10 8/9 10/10 9/10 9/10 45/49 91.84

R6 9/10 9/9 8/10 7/10 9/10 42/49 85.71 R6 7/10 9/10 9/9 10/10 10/10 45/49 91.84

R7 8/10 8/10 9/10 9/9 10/10 44/49 89.80 R7 10/10 10/10 7/9 10/10 10/10 47/49 95.92

R8 10/10 10/10 9/10 7/9 9/10 45/49 91.84 R8 8/9 9/10 10/10 9/10 9/10 45/49 91.84

R9 7/10 9/10 9/10 9/9 6/10 40/49 81.63 R9 9/10 10/10 10/10 9/9 10/10 48/49 97.96

R10 9/9 8/10 9/10 9/10 7/10 42/49 85.71 R10 8/9 10/10 10/10 9/10 10/10 47/49 95.92

T 87.14 T 95.31

Table 3. Comparison with state-of-the-art methods

Method Overall accuracy

FRFT + PCA [40] 95.10%
WE + DT [41] 91.84%
WE + MRF [42] 91.02%
DWPE + SLNN + ALBP (Our) 95.31%
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5 Conclusions

We developed a new computer-aided diagnosis system in this paper for detecting
unilateral hearing loss, viz., left-sided or right-sided. The experiments gave promising
results. In the future, we shall collect more data to further validate our method.
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Abstract. Researches about the cortical processing mechanisms of emotions
have important scientific significance and application value. To probe cortical
processing differences of emotional face and scene images, electroencephalo-
gram (EEG) of sixteen volunteers was recorded while they watching emotional
images. Early-mid occipital ERPs (Event Related Potentials) under different
images were compared, and RMS (Root Mean Square) was calculated to ana-
lyze activities of the whole brain. Results showed that the N1 (170 ms)
amplitudes and P2 (250 ms) amplitudes induced by face images were respec-
tively larger and smaller than that induced by scene images, which embodied
specific processing of faces and reprocessing of complex scenes. Negative scene
images were processed preferentially and induced more obvious N1 than pos-
itive or neutral scene images. Comparisons of ERPs among the whole brain
displayed that occipital lobe was the main active region and frontal lobe
responsible for emotional regulation was activated mainly at moments of N1 and
P2. The early-mid ERPs comparisons explicitly showed cortical processing
differences of emotional face and scene images, which deserved further studies.

Keywords: Event Related Potentials (ERPs) � Emotional face � Emotional scene

1 Introduction

Emotion is a comprehensive state when people perceiving the outside world, which
includes psychological reaction, physiological reaction, related thinking and behaviors
[1–3]. In scientific researches, emotions were usually induced by images, videos or
recalling emotional events. Among them, images with specific meanings would do
better to induce unitary and specific emotion, such as face and scene images.

Face images not only provide specific identity information, but also contain rich
social information such as age, gender and emotion [4]. Cortical processing of face
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images was different from non-face images, which was embodied by prosopagnosia in
clinical researches, effects of inverted faces in behavioral researches and the fusiform
gyrus in functional magnetic resonance imaging studies [5, 6]. Face images with
specific expressions would produce special visual stimulation and emotion induction.
According to the mirror neurons empathy principles [7], participants’ emotions would
be induced partly when they viewing others’ emotional faces, along with similar brain
activities and biochemical reactions. Therefore, cortical processing of emotional face
images contains both emotional perception and specific processing of faces [8].

Scene images generally contain abundant contents of landscape, people and situ-
ations, which provides highly immersion to the viewer. Intense emotions usually could
be induced by emotional scene images with specific meanings [8], such as positive
family reunion images and negative disaster casualty images. Negative scenes are often
related to risk factors in the environment. In order to eliminate or avoid this situation,
the cerebral cortex tends to process negative emotions preferentially [9–11]. As
emotional scene images often contain faces, both emotion induction and specific
processing of faces were involved in the cortical processing.

Early-mid cortical processing of emotional images mainly includes the demand and
allocation of attention and emotion perception [1]. Previous ERP researches showed
that: faces evoked greater N170 [4] (a negative wave with the incubation period of
170 ms, mainly distributed in the right side of the occipito-temporal lobe) than
non-face objects, which was known as the specific ERP component of faces. As
stronger immersive and more occupied attention resources, emotional scene images
usually evoked more obvious ERP components than face images, such as EPN (Early
Posterior Negativity) and LPP (Late Positive Potential) [8].

However, when the complexity of scenes and the specificity of faces doing efforts
together on emotion induction, the cortical processing is unclear [11]. Even though
scene images provided much stronger immersion, the emotion area presented by face
images is much bigger. Therefore, the emotional processing activated by scene images
and face images need intensive study. The strength and progress of brain activities
induced by scene images and face images can’t be easily speculated. This study intends
to study temporal-spatial differences of ERP signals induced by emotional face and
scene images, taking advantages of non-invasive and real-time of ERP. Further, this
study aims to obtain more detailed and in-depth understanding about attention resource
allocation and emotional perception among scenes, faces, and emotions.

2 Materials and Methods

2.1 Experiments Protocols

Sixteen young students (7 males, average age 27 ± 3) were organized in the experi-
ments, with good mood and no history of mental illness.

Totally 45 scene images and 60 face images were selected from the web photo
gallery, and both were divided in three types of positive, negative and neutral.
Among scene images, specific emotional meanings were presented in positive (happy
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family gatherings and travels) and negative (disaster, hunger and death) scenes, but
not in neutral scenes (common daily items). Emotional face images contain complete
faces with positive (happy and joyful), negative (sad and disgusted) or neutral
expressions. The size and resolution of all images were adjusted to the most appropriate
parameters.

The face and scene images were divided into two groups in the experiments.
Images appeared randomly and each image was presented for 4 s. Subjects kept feeling
emotions as much as possible when images were presenting, so as to form certain
emotional experiences. When images disappeared, subjects pressed corresponding keys
to judge emotions into positive, negative or neutral. In order to calm the emotional state
caused by the previous image, a resting period of 4 s was set before the image pre-
senting and was prompted as the “+”.

2.2 Signal Acquisition and Pre-processing

The experiments were carried out in a private room with soft light and good sound
insulation. Subjects sat before the screen comfortably, and the signal acquisition
devices were placed on the right side of the subjects, as shown in Fig. 1. The EEG of
32 leads were recorded by ActiveTwo (Biosemi, Netherlands) with the sampling rate of
1024 Hz. In addition, perpendicular and horizontal electrooculogram (EOG) was
recorded for eliminating interference of eye movements in EEG.

Band-pass filtering of 0.1–60 Hz was applied to remove interference with high
frequency and drift with low frequency in EEG. Then, EEG of 32 leads was averaged
as the reference for data conversion. At last, independent component analysis
(ICA) was used to eliminate interference of EOG.

Fig. 1. Scene of the experiments
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2.3 Data Analysis

Firstly, accuracies and reaction time of all subjects when they performing emotion
judgment tasks were calculated, and the reaction time was defined as the interval
between the image disappearing and pressing the key.

Then, EEG induced by images of the same emotion was averaged and the mean
amplitude of EEG within 200 ms before image appearing was calculated as the
baseline for calibration. ERP signal was obtained as the Eq. (1).

St ¼ xt � 1
200

X0

j¼�200
xj ð1Þ

Where, S is the computed ERP signal, t = −200–1000 ms, which represents the
time interval from 200 ms before image appearing to 1000 ms after image appearing;
xt is the EEG signal.

ERP analysis examined changes of the ERP waveforms and components induced
by emotional images during a period of time with the time resolution of a few mil-
liseconds. As the images belong to visual stimulation essentially, this study mainly
compared ERP waveforms, amplitudes and incubation period of the occipital area
(primary visual cortex), focusing on ERP components of P1 (incubation period within
90–110 ms), N1 (incubation period within 160–180 ms) and P2 (incubation period
within 235–255 ms).

Finally, although ERP waveforms of all leads were roughly similar, peaks of ERP
components among all leads didn’t appear at the same time. Therefore, root mean
square (RMS) of four ERP components was calculated, including P1, N1, P2 and P3 of
all leads, to examine cortical neural activities of the corresponding brain regions in the
process of emotion induction.

3 Results

3.1 Behavior Analysis

Behavioral results showed that accuracies of all participants were above 95%, reaction
time was around 800 ms and no significant statistical difference was found among
different judgment tasks of emotions.

3.2 ERP Amplitude Comparisons of Oz

ERP waveforms induced by emotional face and scene images were similar on the
whole, as shown in Fig. 2. To quantify differences among the ERP waveforms,
amplitudes and incubation period of three ERP components were extracted, including
P1, N1 and P2. Paired sample T test was applied to do statistics significant analysis.

ERP amplitude comparisons of Oz between face and scene images were shown in
Fig. 3(a). Amplitudes of N1 under scene images were smaller than that under face
images (p = 0.0311), which was usually regarded as the specific ERP component of
faces [5]. Even though faces were often existed in scene images, they were not as
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obvious as that in face images. Amplitudes of P2 under scene images were bigger than
that under face images (p = 0.0104), which reflected obvious cortical reprocessing on
complex scene images. As lots of information was involved in the scene images, more
resources were needed for cortical reprocessing.

Fig. 2. ERP waveforms of Oz under face and scene images

Fig. 3. ERP amplitude comparisons of Oz under different images. (a) Comparisons of face and
scene images (b) Comparisons of scene images with different emotions
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ERP amplitude comparisons of Oz among positive, negative and neutral scene
images were shown in Fig. 3(b). Amplitudes of N1 under negative scene images were
bigger than that under positive or neutral scene images (p = 0.0193). Incubation period
of N1 under negative scene images (154 ms) were earlier than that under positive scene
images (162 ms, p = 0.0519) or neutral scene images (164 ms, p = 0.0049). As neg-
ative emotions were usually related with dangerous hazards, preferential cortical pro-
cessing and more attention was applied, which was accorded with the evolutionary
psychology [10, 11]. Amplitudes of P2 under neutral scene images were smaller than
that under positive (p = 0.0080) or negative (p = 0.0078). Therefore, emotional scene
images would evoke more cortical reprocessing than neutral scene images, though the
same complexity.

No significant statistics differences were found among ERP amplitudes of positive,
negative and neutral face images. As subjects mainly focused on judging emotions of
face images, they paid less attention on feeling emotions.

3.3 ERP Amplitudes Comparisons of the Whole Brain

To study activities of the whole brain under emotional images, RMS of P1, N1, P2 and
P3 was calculated as the Eq. (2).

RMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S21 þ S22 þ � � � þ S2n

n

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 S
2
i

n

r

ð2Þ

Where, n is the length of the period and S is the computed ERP signal based on
Eq. (1), i = 1, 2, …, n.

Periods of P1, N1, P2 and P3 were set as 72–112 ms, 148–180 ms, 234–262 ms and
335–365 ms successively. Topographic maps based on RMS were shown in Fig. 4.

Fig. 4. Topographic maps based on RMS of four ERP components
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The occipital cortex as the primary visual cortex was activated in the whole process
of viewing images, especially at moments of N1 and P2. The frontal cortex was
activated mainly at the moment of N1, which was related with emotion perception and
regulation. In addition, as emotional judgment tasks in the experiments were easier,
cortical activity at the moment of P3 was not obvious.

4 Discussion

4.1 Emotional Differences of Scene and Face Images

Emotional images are common stimulation materials to induce certain emotions, such
as scene images and face images. Scene images generally contain abundant contents of
landscape, people and situations, which provides highly immersion to the viewer. For
face images with specific expressions, special visual stimulation and emotion induction
would be induced according to the mirror neurons empathy principles [7]. That means,
participants’ emotions would be induced partly when they viewing others’ emotional
faces, along with similar brain activities and biochemical reactions. Even though scene
images provide much stronger immersion, the emotional area presented by face images
is much bigger. This study has compared the strength and progress of brain activities
induced by scene images and face images to probe corresponding cortical processing
mechanisms.

In results of ERP comparisons, the amplitudes of P2 under scene images were much
bigger than that under face images (p = 0.0104), especially for positive and negative
scene images, as shown in Fig. 2 (at the time of 240 ms) and Fig. 3(a). That is to say,
scene images could induce much stronger emotions than face images, at least in the
present experiments. Thus we speculate that immersion of emotional images is much
more important than the exposed emotional area. In the callback after experiments,
participants shared their subjective feeling and psychology when viewing images. They
all agreed with that scene images induced more stable and obvious emotions. For face
images, participants were more likely to recognize emotions of face images according
to the slight changes of facial structure with less feeling and experience of emotions.
Therefore, hand-picked images, optimized tasks and procedures are all needed to
induce stable and obvious emotions by facial expression images.

When considering mainly face images, results showed that amplitudes of N1 under
face images were significantly bigger than that under scene images (p = 0.0311), as
shown in Fig. 2 (at the time of 170 ms) and Fig. 3(a). Combining results in Figs. 3(a)
and 4(b), we found that the activated brain area of N1 is mainly the occipital cortex,
especially for the right cipito-temporal cortex. As previous studies have shown that
N170 was the specific ERP component for faces and mainly disturbed in right
oc-cipito-temporal cortex [4], results in this study verified that conclusion once again,
which suggested specific processing of face images.

4.2 Comparison of Emotional and Neutral Images

As the arousal of emotional image is much higher and the valence of emotional image
is much lower than that of neutral image, the corresponding brain activaty is much
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stronger. In the results of ERP comparison, amplitudes of P2 under neutral scene
images were much smaller than that under positive (p = 0.0080) or negative
(p = 0.0078) scene images, as shown in Fig. 2 (at the time of 240 ms) and Fig. 3(b).
Thus, emotional scene images do evoke more cortical reprocessing than neutral scene
images, which reflected the greater experience of emotional stimuli.

Previous studies about emotions induced by images showed that the LPP was more
obvious for emotional images than that for neutral images [8, 12–14]. In this study, the
trend of difference between emotional and neutral scene images is the same with
previous studies [8, 12]. But the waveform of ERP is different from the LPP in previous
studies [8, 12], which may be related with the stimuli-presenting mode of images.
Images were presented randomly in this study and intervals of two successive images
were relatively longer. However, in previous studies [8, 12], lots of images were
presented rapidly and continuously, which evoked accumulated emotional effects and
were shown as LPP. In addition, the P1 was usually related with physical properties of
images, including brightness and contrast. In this study, no significant statistics dif-
ference was found among face and scene images, which suggested good consistency on
the physical properties of selected images.

4.3 Relevance of Attention and Negative Emotion

Emotional images usually imply certain environmental factors, which would induce
specific action or action inclination [15]. From the evolutionary psychological per-
spective, the positive scene is beneficial to people’s survival, which guides people to
approach. On the contrary, negative scenes may endanger personal survival. It is very
important to quickly capture the source and orientation of the negative factors in the
environment [16]. Thus, negative scenes often attract more attention to guide the
corresponding physiological and behavioral changes, compared with the pleasure and
neutral scenes.

According the results in Fig. 4, brain activities during the time of T1 mainly
occurred in the occipital lobe, which showed the allocation of attention. As shown in
Fig. 3(b), amplitudes of N1 under negative scene images were bigger than that under
positive or neutral scene images (p = 0.0193). Thus, the occipital lobe of negative
scene picture was more activated than that of positive and neutral scene images, which
implied that more attention resources were occupied by negative scene images, which
is in line with the precious study.

5 Conclusion

This study confirmed differences on cortical emotional processing of face and scene
emotional images, based on the early-mid ERP comparisons (P1, N1 and P2) and whole
brain topography analysis. Especially, the results revealed that the immersion of emo-
tional images is much more important than the exposed emotional area. Furthermore,
this study figured out the significant relevance between attention and negative emotion,
and explained the physiological basis. The results of this study would provide important
reference for further exploration of the cortical emotional processing mechanism.
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However, the activated intensity, time course and spatial distribution is still not
enough. In next work, we will involve more nonlinear analysis methods to reveal the
internal relation and essence of emotion perception, such as the brain network analysis
and the EEG source analysis.
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Abstract. Functional network connectivity (FNC) and Granger causality have
been widely used to identify functional and effective connectivity for resting
functional magnetic resonance imaging (fMRI) data. However, the relationship
between these two approaches is still unclear, making it difficult to compare
results. In this study, we investigate the relationship by constraining the FNC
lags and the causality coherences for analyzing resting state fMRI data. The two
techniques were applied respectively to examine the connectivity within default
mode network related components extracted by group independent component
analysis. The results show that FNC and Granger causality provide comple-
mentary results. In addition, when the temporal delays between two nodes were
larger and the causality coherences were distinct, the two approaches exhibit
consistent functional and effective connectivity. The consensus between the two
approaches provides additional confidence in the results and provides a link
between functional and effective connectivity.

Keywords: Functional network connectivity � Granger causality � Resting state
fMRI � Group ICA � Default mode network

1 Introduction

Over the past decades, an increasing number of analytical methods have been introduced
to explore the functional and effective connectivity among brain functional networks [1,
2]. Functional network connectivity (FNC) is a powerful functional connectivity
approach for assessing temporal coherence among brain networks by utilizing lag shift
correlations between nodes [3]. On the other side, as a typical method for effective
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connectivity, Granger causality is a statistical method for exploring the predictability
and dependencies to establish causal relationships between brain networks [4].

FNC and Granger causality have been separately applied to fMRI data for identi-
fying typical resting connectivity networks. In particular, FNC had been used to dis-
tinguish the abnormal relationships among several specific networks in psychiatric
patients from the normal controls [5, 6]. Comparisons of functional network connec-
tivity during resting and task conditions showed that functional network connectivity
was stronger during rest compared to task [7]. As for Granger causality, its investi-
gation for functional brain organization also found that schizophrenia patients exhibited
significantly enhanced causal influence between specific regions [4, 8, 9].

Quite recently, FNC and Granger causality have both been utilized for analyzing
connectivity changes among different age stages based on resting and task fMRI data
[10]. FNC was employed to detect internetwork connectivity between the salience
network, executive control networks and default mode networks (DMNs), while
Granger causality was used to analyze the effective connectivity. In [10], FNC and
Granger causality were used as two entirely different approaches with no analysis about
connections between their results. As such, this study aims to directly compare the two
approaches and examine how to leverage any complementary information they provide
about the data. Eighty-two subjects of resting state fMRI data were used in the com-
parative analyses.

The rest of this paper is organized as follows. Section 2 introduces the resting state
fMRI data we used, the components we extracted, and the two key algorithms: FNC
and Granger causality. In Sect. 3, we presented the results of the two approaches, and
compared the results of FNC under different time-lags and those of Granger causality
with causality coherence constraint. Section 4 has the conclusions.

2 Methods

2.1 Materials

The fMRI Data from 82 subjects were collected using a 3T Siemens Trio scanner with
the parameters: repeat time (TR) = 2 s, echo time = 29 ms, field of view = 240 mm,
flip angle = 75º, slice thickness = 3.5 mm, gap = 1.05 mm, matrix size = 64 � 64
33, voxel size = 3.75 � 3.75 � 4.55 mm3, number of timepoints = 150. All subjects
were instructed to do nothing but keep their eyes open during the scan. Data were
preprocessed using the statistical parametric mapping (SPM) software package. After
motion correction, spatial normalization with isotropic resampling to voxels of
4 � 4�4 mm3 in standard Montreal Neurological Institute brain space, and spatial
smoothing with an 8 mm full width at half maximum Gaussian kernel, we obtained
fMRI datasets with dimension 53 � 53 � 46 � 150 for each subject.

2.2 Extraction of Components

Spatial group independent component analysis (ICA), which has been widely used for
extracting components from fMRI data, was performed for all 82 subjects using the
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toolbox GIFT (http://mialab.mrn.org/software/gift) [11]. Since high model order
enables us to evaluate multiple sub-networks within each network domain [12], we
separated 120 independent components (IC) using the Infomax algorithm. After ICA
separation, we further extracted seven DMN-related components based on their spatial
map references [13]. These components, as shown in Fig. 1, were medial prefrontal
cortex (MPFC) corresponding to IC10, left and right inferior parietal lobule
(IPL) corresponding to IC80, IC16, and posterior cingulate cortex (PCC) corresponding
to IC22, IC52, IC66, and IC71. Prior to being applied to FNC and Granger causality,
the time courses of these seven DMN-related components were low-pass filtered
(Butterworth, cutoff frequency 0.15 Hz).

2.3 Functional Network Connectivity (FNC)

FNC computes the lag-shift Pearson’s correlation coefficient between pairs of time
courses using the FNC toolbox (http://mialab.mrn.org/software):

qDt¼
XT
t0Yt0 þDtffiffiffiffiffiffiffiffiffiffiffiffi

XT
t0Xt0

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
YT
t0 þDtYt0 þDt

q ð1Þ

where qDt represents correlation between two time courses X and Y, while Dt stands for
the time shifting from the initial reference point t0. FNC recorded the maximal lagged

correlation qðkÞmax ¼ maxfqDtg and its corresponding lag DtðkÞ for a single subject k,
k = 1, …, K (K is the number of subjects), and then averaged across all subjects. The
statistical significance of these correlations and lags was finally calculated by using one
sample t-test at p < 0.05 corrected by false discovery rate (FDR), respectively [3].
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Fig. 1. Spatial maps of the seven DMN-related components. The final spatial maps were
z-scored and thresholded at |Z| � 2 and displayed at the three most informative slices.
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2.4 Granger Causality

Granger causality relies on linear regression models of a stochastic process. Specifi-
cally, if the information in the past of a time series can be used to improve the
prediction accuracy of the future of another time series, then the former is the Granger
cause of the latter. Let Xt, Yt be two stationary variables, i.e., the two time courses here,
the autoregressive model can be described as:

Xt ¼
Xm

j¼1

ajXt�j þ
Xm

j¼1

bjYt�j þ et; Yt ¼
Xm

j¼1

cjXt�j þ
Xm

j¼1

djYt�j þ gt ð2Þ

where aj, bj, cj, and dj are best fit regressors of the model, et and ηt are two zero-mean
uncorrelated white-noise series. The model order m can be determined by MDL cri-
terion. The measure of the strength of the causality X ! Y can be defined as,

Cxy! ¼ r4e ð1� dÞcj j2
ðr2e ð1� dÞj j2 þ r2g ðbÞj j2Þðr2e ðcÞj j2 þ r2g ð1� aÞj j2Þ ð3Þ

Similarly, the measure of the strength of the causality Y ! X ðCyx!Þ can be defined

with another numerator r4g ð1� aÞbj j2. We call ðCxy!Þ and ðCyx!Þ the causality coher-

ences. It should be noted that 0\ðCxy!Þ\1 and similarly for ðCyx!Þ [4, 14]. The

causality coherences were computed for all subjects and then averaged. After per-
forming one sample t-test (p < 0.05, corrected by FDR), the directional influence
between two components adopted the statistically significant causality with larger
values.

3 Results

3.1 FNC and Granger Without Lag and Causality Coherence
Constraints

Figure 2 demonstrates the results for FNC and Granger causality. The direction of an
arrow in FNC results indicates the time delay between two components. For example,
in Fig. 2(a), an arrow from IC10 to IC71 represents that IC10 precedes IC71 by certain
time units. Meanwhile, in Granger causality, Fig. 2(b), an arrow IC10 ! IC71 rep-
resents IC10 is the Granger cause of IC71.

For the FNC results shown in Fig. 2(a), the temporal correlations existed in every
pair of components and the time-lags varied in a large range from 0.0015 s to 0.650 s.
Causality was found in a subset of the components, as shown in Fig. 2(b). IC80 and
IC16 (bilateral IPL) were the Granger cause of IC66 and IC71 (PCC), and IC10
(MPFC) caused IC71 (PCC), which suggests that in the DMN, the PCC may work as a
special node that seldom generate but mostly receives Granger connections. The
internal connection of PCC shows that IC22 caused IC71, and IC52 was the Granger
cause of IC66 and IC71.
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When we focused on the common connectivity in both, it was not difficult to find
most connections showed the same directionality. For example, IC71 and IC66 which
lagged to IC80 and IC16 (bilateral IPL) in functional network connectivity were also
identified as caused by them in the Granger causality approach. This was also true of
connections within the PCC.

Nevertheless, it is obvious that the number of significant connections identified by
FNC was much larger than that in Granger causality, and there were also a few
discrepancies. The arrow direction was reverse for connections IC80 - IC10 as well as
IC66 - IC71. As such, we next added constraints to the lags and causality coherences to
investigate their influence on the connectivity.

3.2 FNC with Lag Constraints

In the analysis of FNC, correlation and lag values were simultaneously examined for
possible combinations, and the lag markers reflected the chronological order of the
related components. Considering that a small latency in FNC may be influenced by
noise in the time courses and thus hard to show precedence relationship in time, we
ignored lags less than 0.05 s in functional network connectivity. Figure 3 shows the
results. In Fig. 3(a), the values on the line represent the ‘lag (second)/correlation
coefficient’ between two connected components. Moreover, in Fig. 3(b) the arrow
A ! B is also expressed by the values of ‘C

AB
�!=C

BA
�!’.

After omitting the connections with small lags, we found that there were only ten
connections left in functional network connectivity and each of them corresponded to a
specific connectivity in Granger causality. The directional connectivity between
components obtained from FNC was quite similar to the directionality obtained from

)b()a(
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IC 52IC 16

IC 66IC 71
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IC 22IC 80

IC 52IC 16

IC 66IC 71

Fig. 2. Results for FNC and Granger. (a) Functional connectivity detected by FNC. (b) Effective
connectivity detected by Granger causality.
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Granger causality: there were 8/10 connections exhibiting a close correspondence
between time delay and causality. Two of the ten connections, those between IC80 -
IC10 and IC66 - IC71, showed reverse directions.

It was easy to see that the time delays between IC80 - IC10 and IC66 - IC71 were
also small (0.05 s for IC80 - IC10 and 0.14 s for IC66 - IC71). In addition, the
difference between the causality coherences ‘C

AB
�!=C

BA
�!’ was also small (less than or

equal to 0.05). We further constrained lags or causality coherences in order to focus on
consistent connectivity.

3.3 FNC and Granger with Both Lag and Causality Coherence
Constraints

Figure 4 illustrates the results of FNC and Granger causality with both lag and
causality coherence constraints. We ignored FNC connections with lags less than
0.15 s and kept Granger causality connections with ‘C

AB
�!=C

BA
�!’ difference greater

than 0.05. Taking the causality from A to B as an example, we find the causality is
distinct when C

AB
�! � C

BA
�![ 0:05 .

After selecting the connections with large lags and distinct causality, we found that
the directional functional connectivity obtained from FNC had the same directionality
obtained from Granger causality. As shown in Fig. 4, the bilateral IPL (IC16, IC80)
and the MPFC (IC10) actually preceded and caused IC71 of PCC. The direction within
the PCC showed consistent results in both FNC and Granger causality, which implied
in the DMN some specific components of PCC were in charge of receiving connections
from others. Ultimately, six connections with effective lags or causality were left, in

(b)
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IC 66IC 71
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Fig. 3. Comparison of FNC and Granger with lag constraints. (a) Functional connectivity
detected by FNC ignoring lags less than 0.05 s. (b) Effective connectivity detected by Granger
causality. Values on the line represent ‘lag (second)/correlation coefficient’ in (a), while on the
arrow A ! B also express ‘C

AB
�!=C

BA
�!’ in (b).
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which the two approaches can give consistent results. These results show that for these
cases the lags and causality coherences are more reliable for assessing temporal and
causal relationship between components than small ones which may be influenced by
noise. The consistent connections identified by both methods provide reliable and
stable results for estimating functional and effective connectivity.

4 Conclusions

The FNC approach detects the maximal shift lagged correlations between all pair-wise
components, while the Granger causality analyzes the causal relationship between
components. Previously, the two approaches have been used to detect distinct func-
tional connectivity and effective connectivity. In this study we compared the two
approaches by constraining the FNC lags and the causality coherences. When we
removed small FNC lags and causality coherences, we obtained consistent functional
and effective connectivity based on resting state fMRI data. The results support the
conclusion that time delay has a specific meaning to the Granger causality and is a main
factor driving the results. Our results also suggest that additional advantages can be
gained by using FNC and Granger causality in combination. We obtain unique
information from each approach, i.e., the correlation structure detected by FNC when
the lags are small, and the causal relationship found by Granger causality when the
difference between two reversing causality coherences is small, but also the convergent
information identified by both methods provides reliable and stable information for
enhancing the analysis of functional and effective connectivity. In the future, we will
test how the two approaches are connected in task fMRI data.
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Fig. 4. Comparison of FNC and Granger with lag constraints. (a) Functional connectivity
ignoring lags less than 0.15 s. (b) Effective connectivity with ‘C

AB
�!=C

BA
�!’ difference greater

than 0.05. Values on the line represent ‘lag (second)/correlation coefficient’ in (a), while on the
arrow A ! B also express ‘C

AB
�!=C

BA
�!’ in (b).
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Abstract. This study aims to investigate if neural oscillations can play a role as
a bridge between GABAergic systems and emotional behaviors. Mice were
divided into streptozotocin-induced diabetes mellitus (DM) group and control
(CON) group. After 8 weeks of successfully modeling, the diabetic mice
exhibited depression and anxiety, while the GABAAR a1 subunit expression and
the GABA level were significantly changed as well. There were increase power
percent at gamma (50–80 Hz) band in the power spectrum between these two
groups. However, DM attenuated the identical-frequency strength of phase
synchronization and information flow at both theta (8–13 Hz) and gamma
rhythms, and reduced the theta-gamma phase-amplitude coupling strength either
in the PP & DG regions or on PP-DG pathway. It suggests that DM changes the
pattern of neural oscillations by modulating the GABAAR a1 subunit expression
and the GABA level in depression and anxiety in diabetic mice.

Keywords: Neural oscillations � GABA � Depression � Anxiety

1 Introduction

Neural oscillations are generated by interaction and influence of neurons with each
other through excitatory and inhibitory synaptic connections. As known, the classifi-
cation for oscillations is usually identified with different frequencies, such as theta (3–
13 Hz) and gamma (30–100 Hz) [1]. Each frequency has its own distinctive effect on
corresponding to different physiological functions. GABA and its receptors, play an
key role in neural oscillations and fundamentally implicate in modulating all of fre-
quency bands [2]. However, the role of neural oscillations, in which depressive-like
behaviors are induced by GABAergic deficits in diabetic rodents, is yet to be eluci-
dated. In the study, a hypothesis was raised that neural synchronization as the critical
“middle ground” connecting GABAergic system with emotional behaviors could play a
role of bridge between behaviors and molecular biology. Accordingly, the diabetic
mouse-model was established and the alterations of emotional behaviors were exam-
ined. The protein expression of GABAAR a1 subunit and the concentration of GABA
were determined. In order to represent a potential neural mechanism, the functional role
of neural oscillations was extensively investigated.
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2 Materials and Methods

2.1 Animals and Treatment

In the study, eighteen male C57BL/6 J mice (22–24 g, around 7–8 week-old) were
used, which were purchased from the Laboratory Animal Center, Academy of Military
Medical Science of People’s Liberation Army. Mice were reared in a specific pathogen
free house with a 12 h light-dark cycle (8 am–8 pm), and they were free to food and
water under a constant temperature (22 ± 1 °C) and about 50% humidity. Protocols
were approved by the Animal Research Ethics Committee, School of Medicine, Nankai
University. And all efforts were made to minimize the number of animals used and
their suffering. Eighteen mice were randomly divided into control group (CON group,
n = 10) and diabetes mellitus group (DM group, n = 8). Mice in the DM group were
intraperitoneally injected 55 mg/kg/day streptozotocin (STZ) for consecutive five days.
At the same time, mice in the CON group were intraperitoneally injected the same
volume of sterile citrate buffer. On the 8th day, the glucose concentration of blood was
detected. If the glucose level was not lower than 16.7 mM, mice were identified as
hyperglycemia.

2.2 Biological Experiments

Behavioral tests including elevated plus maze, tail suspension and forced swimming
were performed. Then, electrophysiological experiments were carried out at the end of
the behavioral experiments. The signals of local field potential (LFPs) were recorded
from both the hippocampal perforant path (PP) and dentate gyrus (DG) regions. At last,
molecular biological tests including Western and HPLC were performed. The more
details cold be seen.

2.3 Neurodynamic Analysis

The following approaches provide the neural oscillations assessment at theta frequency
band (8–13 Hz) and gamma frequency band (50–80 Hz).

Power Spectrum Density (PSD) Analysis. PSD analysis was used to test the power
changes of different frequency in both the hippocampal PP and DG areas. Multitaper
Spectral Estimation is one of the most classical methods to perform PSD analysis. Its
advantage is that sequence data analysis can be performed by using an optimal set of
orthogonal localization windows (Slepian windows) to obtain direct spectrum and
average spectral estimation, thereby achieving a smaller variance and bias properties
for the estimation result.

Phase Locking Value (PLV). Phase synchronization of oscillations at an identical
frequency could promote neural communication [3]. PLV is a great identical frequency
algorithm to measure the strength of phase synchronization by the mean value of a
composite of phase difference between two brain areas. Before extracting the phase of
two signals, the original LFPs were filtered into theta and gamma frequency bands by
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the mean of eegfilt.m from EEGLAB toolbox [4]. The bandwidth was set to 1 Hz
incremented in 1 Hz steps. Afterward, the instantaneous phases of filtered LFPs (theta,
gamma) were obtained by Hilbert transform from the hippocampal PP and DG areas in
all these frequency bands. N was for the length of the signal. Then PLV was given as

PLV ¼ 1
N

XN
t¼1

exp i /PP tð Þ � /DG tð Þ½ �ð Þ
�����

����� ð1Þ

Generalized Partial Directed Coherence (gPDC). The gPDC algorithm has been
developed to assess the directional coupling in an identical frequency based on mul-
tivariate vector autoregressive model [5]. Actually, its meaning is the Granger causality
in the frequency domain. The method is characterized by analysis based on the signal
itself and direction recognition of information flow.

Mean Vector Length (MVL). Phase-amplitude coupling (PAC) has been by far the
most commonly reported in recent years as one of cross-frequency coupling types. In
order to assess the strength of PAC, the MVL method was employed in both the
hippocampal PP and DG areas as well as PP-DG pathway [6].

3 Results

3.1 DM Induced Depression and Changed GABAAR a1 and GABA

There was significant difference of FST immobility between these two groups
(t8.43 = −4.804, P = 0.001). Moreover, the time of immobility in the DM group was
higher than that in theCONgroup (t8.84 = −3.810,P = 0.004), whichwas consistent with
the results obtained from the FST. DM markedly decreased the expression of GABAAR
a1 subunit to 0.390 ± 0.028. The level of GABA in the hippocampus showed that there
was significant difference between the CON group and the DM group (Z = −39.273,
P < 0.001). The level of GABA in the CON group was 1.28 ± 0.23 lg/mg
protein. However, the level of GABA was increased to 5.63 ± 0.13 lg/mg protein in
the DM group.

3.2 Power Percent Increased at Gamma Band but Not at Theta Band

PSD analysis showed that DM decreased the power percent of gamma (t16 = −2.787,
P = 0.013) bands while there were no statistical changes of power percent at theta
(t16 = 1.857, P = 0.082) bands in the hippocampal PP area (Fig. 1C Left). The similar
results were also obtained from PSD estimating in the DG area at theta rhythm
(t8.85 = 0.174, P = 0.866) and gamma rhythm (Z = −2.488, P = 0.012) frequency
bands (Fig. 1C Right).
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3.3 Strength of Phase Synchronization Was Impaired by DM on PP-DG
Pathway

PLV measurement showed that the strength of phase synchronization was slightly
decreased at theta frequency band in the DM group compared to that in the CON group
(t9.02 = 2.105, P = 0.065). However, there was significant difference of the strength of
phase synchronization between these two groups in gamma band (t16 = 2.468,
P = 0.025, Fig. 2).

Fig. 1. There were significant changes of power at gamma frequency bands but not at theta
bands between the CON group and the DM group. (A) and (B) were representative power
spectrum in the CON and DM groups resulting from 40 s window at 1 Hz to 80 Hz, respectively.
(C) The statistical results of power spectrum distribution in PP (left) and DG (right) areas. The
n.s. represents no significant differences of power between the CON group and the DM group.

Fig. 2. The impairment of phase synchronization measured by PLV in an identical frequency on
PP-DG pathway in DM mice. *P < 0.05 and **P < 0.01 represent significant differences of PLV
between the CON group and the DM group.
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3.4 Direction of Coupling Was Significantly Altered by DM on PP-DG
Pathway

Figure 3 showed the gPDC analysis of PP-DG pathway in the CON and DM groups
over theta, gamma bands. The group values for the unidirectional influence from the PP
to DG were presented in Fig. 3A. It was found that the unidirectional influence indexes
in all three frequency bands were considerable decreased in the diabetic state, and the
statistical differences between the CON group and the DM group were found in the
theta band (Z = −3.554, P < 0.001) and gamma band (t16 = 7.825, P < 0.001),
respectively (Fig. 3A). Interestingly, bidirectional coupling indexes between PP and
the DG were greatly altered from positive values to negative values at the same bands
(theta: t7.79 = 9.168, P < 0.001; gamma: t16 = 7.935, P < 0.001, Fig. 3B). Together
with above indexes, it could be inferred that DM significantly attenuated unidirectional
information flow from PP to DG, and further altered the direction of bidirectional
information flow.

3.5 Strength of Phase-Amplitude Coupling Was Significantly
Impaired by DM

In order to measure cross-frequency coupling between PP and DG areas, MVL algo-
rithm was employed. There was a clear and strong theta-gamma PAC in the CON
group. (Figure 4A). Moreover, the strength of PAC was obviously decreased in the
DM group (Fig. 4A-right column). Again the similar changes of PAC were in either PP
or DG area. Statistical analysis showed that the coupling strength between theta and
gamma was significantly reduced in the PP area (Z = −2.132, P = 0.033, Fig. 4B), and
the DG area (Z = −2.932, P = 0.003, Fig. 4D). Most importantly, the strength of PAC
between PP and DG areas was also considerably decreased (Z = −3.465, P = 0.001,
Fig. 4C).

Fig. 3. The gPDC index represented the changes of coupling direction in an identical frequency
band on PP-DG pathway in DM mice. (A) Decreased unidirectional coupling gPDC index from
PP to DG in DM mice. (B) Altered bidirectional gPDC index in DM mice at these three
frequency bands. **P < 0.01 and ***P < 0.001 represent significant differences between the
CON group and the DM group.
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4 Discussion

4.1 Diabetes and Depression

The deleterious effects of diabetes on the CNS could cause the impairment of cognitive
functions, including learning, memory, problem solving, informative proposal, mental
and psychomotor speed in the patients [7]. In particular, the risk of depression incident
is twice in diabetes than that of counterparts, and the rates of depression in diabetes are
in the range of 11% to 13.5% a share. A battery of neuropsychological and neurobe-
havioral changes in diabetic subjects have been discovered on the experimental ani-
mals. In the present study, it was found that mice spend less time in the open arms,
presented less enteries into open arms, and had a lower percent of enteries into open
arms of EPM in the DM group compared to that in the CON group. It indicated that
mice became higher anxiety in DM group, which was consistent with Tang’s results.
Moreover, our data showed that mice in the DM group spent much longer time of
immobility in FST and TST, which was in accordance with the results of other research
groups [8].

4.2 GABAergic System and Diabetic Encephalopathy-Related
Depression

GABA, as one of the most important inhibitory amino acid neurotransmitters of CNS,
almost affects all neuronal activities, and about 1/3 of the neurons employ GABA as
their primary neurotransmitter. The relationship between GABA and depression is
widely investigated in both human and animals. In comparable animal models, rats

Fig. 4. Reduced MVL index at cross-frequency (theta-gamma) between the hippocampal PP
and DG regions as well as PP-DG pathway in DM mice. (A) Representative PAC of PP-DG
pathway between PP low frequency phase (6–14 Hz) and DG gamma band amplitude
(30–80 Hz) in a 40 s window of one mouse in the CON group (left) and another in the DM group
(right). (B–D) The statistical results of theta and gamma cross-frequency measured by MVL in
PP (B), PP-DG pathway (C), and DG (D), respectively. *P < 0.05, **P < 0.01 and
***P < 0.001 represent significant differences of the indexes between the CON group and the
DM group.
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exposed to CMS had lower hippocampal GABA levels accompanied by depression-
like symptoms [9]. A previous study reported that there was lower basal striatal GABA
levels in the experiment of STZ-induced diabetic rats [10]. GABAergic drugs were able
to reverse these depressive-like behaviors, suggesting that GABA treatment protected
against the development of diabetic complications in STZ-induced diabetic rats [11].
On the contrary, GABA level is obviously increased in the cerebrospinal fluid of
diabetic rats. Consequently, it is speculated that DM and depression induced the
species-specific, cerebral area-specific, and tissues-specific abnormal concentration of
GABA. As we known, most ionotropic GABAARs are comprised of two a, one b, and
two c subunits. GABAergic effects are mediated via ionotropic GABAARs, which are
functionally defined by their a subunits (a1�a6). Repeated swim-stress reduces
GABAAR a subunit mRNAs in the mouse hippocampus [12]. Furthermore, decreased
GABAAR clustering results in enhanced anxiety in mice heterozygous for the c2
subunit. But how about the protein expression of GABAAR a1 subunit in diabetic mice
still poorly understood. In this study, the protein expression of GABAAR a1 subunit
was dramatically reduced in hippocampus of diabetic mice compared to that of the
non-diabetic mice.

4.3 A Role of Neural Oscillations as a Bridge Between GABAergic
System and Emotional Behaviors

If the well-studied of GABAergic system was viewed as a “small ground” with
molecular level, and emotional behavior was viewed as a “large ground”with behavioral
level, then neural oscillations may be as a bridge between them. Based on this
hypothesis, both theta and gamma frequencies in the hippocampus were chosen to be the
bonds investigating mechanism in diabetic encephalopathy. Neural oscillations can be
measured at different levels or scales, such as large-scale electroencephalographic
(EEG), electrocorticogram (ECoG), and magnetoencephalography (MEG) recordings,
medium-scale LFPs, and small-scale action potential recordings. All of them are viewed
as the critical “middle ground” linking molecule to behavior. In the study, the data
showed that both the strength of phase coupling (Fig. 2) and the strength of unidirec-
tional coupling (Fig. 3A) on gamma between the hippocampal PP and DG was con-
siderably decreased by DM, suggesting that both low and high gamma rhythms were
implicated in anxiety-like and depression-like emotional behavior in DM mice. More-
over, gamma-band rhythmogenesis is a synchronous activity of fast-spiking inhibitory
interneurons, with the resulting rhythmic inhibition producing neural ensemble syn-
chrony by generating a narrow window for effective excitation. When applying the
GABAAR antagonist bicuculline to the hippocampal slice in vitro, gamma rhythmic
would be blocked. Our study also provided an evidence that the decreased expression of
GABAAR a1 subunit and the compensative increased GABA level were able to gen-
erate above kind of change at gamma frequency band in the hippocampus of DM mice.
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Abstract. A variety of network analysis methods that can reveal the neural
mechanism underlying the course of dealing information in the brain by char-
acterizing the topology and properties of brain networks have been applied to
investigate the complexity of brain activities.. Working memory refers to the
maintaining and handling of information in high-level cognition. It has been
demonstrated that working memory performances can be enhanced by training.
However, how working memory training affects the brain network topology and
behavioral performance remains unclear. In this study, independent component
analysis and graph theory were applied to the study of brain networks during real
time fMRI based working memory training. The results showed that the training
not only recruited the central execution network, the default-mode network, and
the salience network, but also exerted lasting effects on the brain minimum
spanning tree structure. These results demonstrated that the organization and
working pattern of brain networks were altered by the training and provide new
insights into the neural mechanisms underlying working memory training.

Keywords: Working memory � Independent component analysis � Minimum
spanning tree � Network topology � Training

1 Introduction

Working memory (WM) refers to a cognitive system which provides temporary
holding and manipulating of the important information for a range of complex cog-
nitive activities, and WM training is deemed to an effective approach to improve an
individual’s cognition [1]. Previous studies have found WM behavior training can
recruit and modulate several networks, which included the central executive network
(CEN) [2], the default-mode network (DMN) [3], and the salience network (SN) [4].
Previous study has demonstrated that WM training significantly changed the connec-
tion strength intra- and inter-network in these three networks, and there was a signif-
icant correlation between the strength alteration and behavioral improvement [5].
Further studies reported that WM training also affected the topological relationships of
these brain networks [6].
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The recently emerged neuro-feedback training based on real time functional
magnetic resonance imaging (fMRI) technology introduces a new method to feed back
and regulate the localized dynamic brain activities in individuals to achieve the
behavioral performance improvement [7]. Recent studies have demonstrated that the
brain activities in some localized regions can be regulated, such as insula [8], amygdala
[9], primary motor cortex (PMA) [10], and the left dorsal lateral prefrontal cortex
(DLPFC) [11]. Further studies found that the self-regulation of a localized region may
impact on its connection with other regions [12, 13]. However, these studies focused on
the impact of real time fMRI on the connection intra- and inter- networks, and few
studies involved the effect of real time fMRI on the topological property of networks,
which also play an important role in WM training and behavioral improvements.

Minimum spanning tree (MST) is an approach in graph theory to study the network
topology which can be used to reveal the evolution of brain disease or cognitive
function. Lee et al. found that the developmental stages of epilepsy can be classified
using the MST structure [14]. Ciftci reported the topological changes of the DMN
network in Alzheimer’s patients by constructing the MST of DMN network [15].
Boersma et al. indicated the measurement of MST has a high sensitivity in detection the
topological alterations of functional network during childhood brain development [16].
It is worth noting that the construction of the MST requires all network nodes, which
guarantees the integrity of information when researching the interaction among mul-
tiple brain networks [17]. However, the application of MST in fMRI study is still
relatively limited, especially in the application of cognitive function training.

In this study, independent component analysis (ICA) and MST were applied to
explore the brain network topology during WM training by real time fMRI. Based on
our previous work [11], ICA was firstly performed to determine the CEN, DMN and
SN that were recruited in the WM training. Then, the MST was used to investigate the
evolution of the brain network topology during the training. On the basis of previous
findings, we expect to explore the WM training effect on the organization and working
pattern of brain networks.

2 Methods and Materials

2.1 Subjects and Experimental Procedure

Thirty healthy right hand subjects took part in the real time fMRI based WM training
included the experimental group (8 males and 7 females) and the control group
(8 males and 7 females). All subjects signed the informed consent before the experi-
ment. The experiment was approved by the Institutional Review Board of the State Key
Laboratory of Cognitive Neuroscience and Learning in Beijing Normal University.

The experimental procedure included two real time fMRI feedback sessions, at an
interval of seven days. Each session included a T1-weighted scan, a digital 3-back
localizer run for selecting the target ROI to feedback, and four training runs. In each
training run, subjects were instructed to use a cognitive strategy to increase the number
of bars in the thermometer that represented the activities of target ROI, as high as
possible. The subjects in the control group performed the same experimental procedure
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with the same instructions, except that a sham feedback signal from the other subject
was presented to them. On the days before and after each session, all the subjects
performed behavioral tests including the forward digit span, backward digit span and
letter memory tasks. More details about the experimental procedure have been reported
in our previous study [11].

2.2 fMRI Data Acquisition

All images data were acquired in a SIEMENS 3.0 T scanner at the MRI center of
Beijing Normal University. A single-shot T2*-weighed echo-planar imaging (EPI) se-
quence (TE = 30 ms, TR = 2000 ms, flip angle = 90°, In-plane resolution = 3.125 �
3.125 mm2, matrix size = 64 � 64, slice = 33; slice thickness = 3.60 mm) was used
for fMRI image acquisition. A T1-weighted magnetization-prepared rapid gradient
echo (MPRAGE) sequence (matrix size = 256 � 256, 176 partitions, 1 mm3 isotropic
voxels, TR = 2530 ms, TE = 3.45 ms, flip angle = 7°) was used for structural image
acquisition.

2.3 Independent Component Analysis

Firstly, the fMRI images were preprocessed using SPM8 software which included slice
timing, head motion correction, normalization to the Montreal Neurological Institute
(MNI) space, reslicing into a resolution of 3 � 3 � 4 mm3, and spatial smoothing
using a Gaussian kernel with full-width at half maximum (FWHM) of 8 mm (http://
www.fil.ion.ucl.ac.uk/spm). Then, ICA was performed using GIFT 2.0 (http://mialab.
mrn.org/software/gift/) on the fMRI images from all training runs of all subjects in the
experimental and control groups to determine the brain networks involved in the WM
training. Using the minimum description length (MDL) criteria, the optimal number of
independent components was selected to 22. The Infomax ICA algorithm was used to
calculate the individual spatial maps and time courses for each subject. According to
the spatial patterns in previous studies [3, 18], CEN, DMN and SN were determined.
The ROIs in each network were defined as a spherical region centered on the local
activation maximum with a radius of 6 mm.

2.4 Minimum Spanning Tree Analysis

Minimum spanning tree (MST) is a kind of tree structure connecting all the nodes by
acyclic way with minimum cost. For constructing the MST, the first step was to extract
the time series of all nodes in the network, calculated their correlation coefficient for
each run of every subject and used the reciprocal of correlation coefficient as the
weights to build a connection graph. Then, Kruskal’s algorithm in Python 2.7.11
(https://www.python.org) was applied to carry out MST analysis. In each run, the
average connection graph across subjects was built for the experimental group and
control group respectively and adopted for generating the connection graph on the
group level.
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The difference degree between two MST X and Y is defined as D(X,Y) = D(Y|X)

+ D(X|Y). The D(Y|X) represents the sum of distance between node i and all its neighbors
in Y as follows.

DðYjXÞ ¼ 1
N

XN
i¼1

log
DYðiÞ
DXðiÞ

����
���� ð1Þ

Dx(i) is the sum of distance between node i and others in X. For each subject, the
difference degree between the first run and the others were calculated to evaluate the
influence of the training on the MST structure.

3 Results

The spatial distribution of twenty two independent components (brain network) on the
group level was acquired by the ICA analysis. Comparing with the spatial patterns in
previous studies [3, 18], the three network components of CEN, DMN, and SN were
determined by visual inspection. According to the local activation maximum, the
coordinates of all the nodes we choose are shown in Table 1.

The MST structure of experimental group and control group are shown in Fig. 1. It
revealed that the MST structures changed following the training stages which sug-
gested the brain network topological structures could be influenced by the training.
Based on the statistical analysis of difference degree, all MST structures of the brain
network from run 2 to run 8 were different with that in run 1, and the difference degree
to run 1 significantly increased in the experimental group (p = 0.027). However, there
was no same obvious changes in the control group (p = 0.33) (Fig. 2).

Table 1. MNI coordinates of the ROIs of the three networks.

Network Region No. [x, y, z] Tmax

CEN Left DLPFC B −42, 26, 38 30.5
Right DLPFC G 45, 23, 38 28.79
Left PPC E −45, −52, 46 33.95
Right PPC J 42, −52, 50 35.19

DMN vMPFC K −3, 47, −10 25.8
PCC F −3, −55, 22 23.45
Left MTG/AG D −45, −61, 26 18.77
Right MTG/AG I 51, −64, 26 12.69

SN ACC A 6, 23, 26 17.61
Left insula C −33, 20, 6 15.35
Right insula H 36, 20, 6 13.57
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Fig. 1. The MST of each training run in the experimental group (A) and the control group (B).
The letters from A to H represent the brain network nodes (See Table 1).

Fig. 2. The trend of difference degree in the experimental group (A) and the control group (B) as
the training progressed. The scattered points stand for the difference degree of MST between the
run 1 and the other runs.
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4 Discussion

The present study explored the global network topology of three networks including
the CEN, DMN, and SN, affected by the up-regulation of left DLPFC during a real time
fMRI based WM training. The results showed a persistent steady effect on MST
structure of brain network by training suggesting the organization and working pattern
of brain networks were altered by the training. It provides new insights into the neural
mechanisms underlying WM training.

Previous literatures have demonstrated CEN, DMN, SN are three core networks in
WM, each one has own function while is not completely isolated with others [19]. As a
prior knowledge, CEN has been shown vital to information holding and manipulating,
as well as to the decision making about goal-directive behaviors [20]. DMN always
contributes to the WM performances by means of the dynamic activity and the inter
connection [21, 22]. SN is responsible for salience processing and dynamic cognitive
behavioral control [23]. In consistent with these findings, our results also demonstrate
WM training was associated with the three networks, which suggested the spatial
patterns of brain networks were not affected by the WM training.

In the Fig. 1, the MST structures changed on different training stages. The differ-
ence degree in experimental group significantly increased linearly (Fig. 2A), indicating
that the relative relations of connection between nodes altered. It suggested that WM
training made the role of network nodes and their organization patterns constantly
changing. Meanwhile, there was no obvious alteration in the control group (Fig. 2B).
The MST in run 2, run 5, and run 8 were same as that in run 1, which implied shame
feedback training could not lead to the changes in brain network topology.

Many studies indicated that the regulation of the localized brain activities influ-
enced the cooperative pattern among the networks and induced the different activities
of brain networks. Our study found these influences also appeared on the brains global
network topology. The significant changing of the MST structures in the experimental
group but not in the control group during the training further confirms the brain
plasticity. Brain plasticity is a kind of inherent nature and the alteration of the brain
connections would exist although the brain development has been passed through [24].
In our study, the self-regulating to the target region using various memory strategies by
subjects can be regarded as a process to re-configure the brain network structure, which
suggested the feedback training could be applied in the cognitive improvement and
cognitive disorder rehabilitation.
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Abstract. The biologically inspired model (BIM) for invariant feature repre-
sentation has attracted widespread attention recently, which approximately fol-
lows the organization of cortex visuel. BIM is a computational architecture with
four layers. With the image data size increases, the four-layer framework is prone
to be overfitting, which limits its application. To address this issue, motivated by
biology, we propose a biologically inspired hierarchical model (BIHM) for image
feature representation, which adds two more discriminative layers upon the
conventional four-layer framework. In contrast to the conventional BIM that
mimics the inferior temporal cortex, which corresponds to the low level feature
invariance and selectivity, the proposed BIHM adds two more layers upon the
conventional BIM framework to simulate inferotemporal cortex, exploring higher
level feature invariance and selectivity. Furthermore, we firstly utilize the BIHM
in the image recommendation. To demonstrate the effectiveness of proposed
model, we use it in image recommendation task and perform experiment on
CalTech5 datasets. The experiment results show that BIHM exhibits higher per-
formance than conventional BIM and is very comparable to existing architectures.

Keywords: Visual cortex � Biologically inspired model � Classification �
Image recommendation

1 Introduction

Recently, there are a large number of digital images made every day in the internet.
Effective image recommendation, and retrieval tools are strongly demanded by con-
sumers, including fashion, shopping online, sensing, medicine, and so on [1–4].
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Efficient image retrieval techniques play important roles in the image recommendation
system. Among them, content based image retrieval (CBIR) has drawn widespread
research attentiveness in the last decade. The retrieval performance of a CBIR system
essentially depends on the feature representation, which has been carried out extensive
research by researchers for decades [5–7]. In the visual system, humans trend to adopt
high-level features (concepts) to represent images and measure their similarity. By
contrast, while the most computer vision techniques extracted features with low-level
features (color, shape, structure, texture and so on.) [8, 9].

In recent years, important developments have been made in the research of brain
science [10–13]. The findings in the primary visual cortex V1 area are of significance.
While researching the V1 area, Hubel and Wiesel discovered that the visual cortex
analyzes features into various ways with different spatial orientations and frequencies
[12]. The discovery gives an important support to early neuroscience theories. Based
on these theories, Riesenhuber and Poggio described an original calculation framework
for object recognition, called biologically inspired model (BIM) that tends to model the
cognitive mechanism of the visual cortex [13]. Serre et al. upgraded the original BIM
model and presented the standard BIM [16], which shows that the visual framework
significantly improve the performance of object recognition.

The standard BIM made a big step forward for extending neurobiological models to
deal with real-world vision tasks, and many enhanced models have been proposed
about on the basic framework of it. Mutch and Lowe modified the model by
constrain-ing the number of feature input, inhibiting S1/C1 outputs, and increasing
feature selection [17]. Qiao et al. introduced some preliminary cognition and active
attention mechanism based on the BIM framework [14, 15]. Lu et al. proposed a novel
receptive field in the S1 layers and upgraded the framework by novel patch selection
and matching processes [18–21]. These approaches obtain better performances by
incorporating some biologically motivated properties in addition. In conclusion, all
these systems have shown that the relevant biological findings are helpful for con-
structing more robust computer vision algorithms.

BIM is a calculation model with S1, C1, S2, and C2 four layers, which concentrates
on the invariance and selectivity of features [16]. With the image data size increases,
the four-layer framework is prone to be overfitting in the big data cases, which limits its
application. To address this weakness, we describe a biologically inspired hierarchical
model (BIHM), which adds two more discriminative layers upon the conventional
four-layer framework. In contrast to the conventional BIM that successfully mimics the
inferior temporal cortex (from V1 to V4) of the human visual system, which corre-
sponds to the low level feature invariance and selectivity, the proposed BIHM adds two
more layers based on the conventional BIM framework to simulate up to inferotem-
poral cortex (i.e., PIT and AIT), exploring higher level feature invariance and
selectivity.

The remaining part of the article is organized as follows: in Sect. 2, we give an
introduction about the conventional BIM; in Sect. 3, we propose the BIHM method
and utilize the BIHM in image recommendation; in Sect. 4, we show experimental
results based on Caltech05 database; finally, in Sect. 5, we concludes this paper.
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2 Biologically Inspired Model Review

The biologically inspired model (BIM) presented by Serre et al. has attracted
wide-spread attention recently. It has been successfully applied in various recognition
tasks: From single object recognition in the clutter condition to multi-categorization as
well as the understanding of complex scene.

The units in S1 layer are corresponding to the simple cells of the visual cortex,
which compute the response for input image by Gabor filter bank. The C1 layer is
corresponding to cortical complex cell layer and shows robustness to scale and shift
transformations by pooling the afferent S1 units with the MAX operation in the same
scale and orientation band. It tends to have larger receptive fields and increases the
robustness to deformations from layer S1 to C1.

In the S2 stage, units pool C1 units from a local neighborhood across all orienta-
tions. A mass of patches are chose from the C1 layers of training images at random
before that. Then the S2 units behave as radial basis function and pool over the C1 units
in a Gaussian-like tuning way on the Euclidean distance between an input patch and a
stored prototype. The C2 layer pools the S2 units over all scales and positions with a
global maximum operation, which devotes to obtain shift- and scale-invariant
responses. Therefore, for the sampled k prototype patches, a k-dimensional feature
vector is finally obtained after the four-stage features extraction, which has larger
receptive fields and shows shift-invariant and scale-invariant properties.

3 Biologically Inspired Hierarchical Model

Build upon Hubel and Wiesel’s theories on visual cortex [10–12], the simple cells are
not sensitive to illumination and need edge-like response at a particular phase, and
position. The complex cells respond well to bars with a particular phase, while they are
not sensitive to both phase and position of the bar in the receptive fields (RFs). At the
upper layers the hypercomplex cells not only respond to bars in the phase and position
invariant way, but also are selective to the bars with a specific length. Hubel and Wiesel
suggested that this increasingly invariant and complex feature representations should
be built by integrating the inputs from lower levels.

Two sort of functional layers exist in the visual cortex framework: the S layers
consisted of simple cells are interleaved with the C layers consisted of complex cells. In
brief, along the hierarchy, each S layer increase the feature selectivity by tuning to
features of increasing complexity, and each C layers increase the invariance to 2D
transformations such as slight changes in position and scale by a max pooling operation
[16, 22].

S3 stage: In the S3 stage, the similar step is iterated one more time to increase the
complexity of the prior response at the C2 level. The S3 unit presents the similarity
between a sampled patch and the previous C2 layer in a Gaussian-like tuning way by
Euclidean distance. These S3 units are interleaved with the C2 layers consisted of
complex cells. The mathematical equation of the corresponding S3 layers is given by:
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S3 ¼ expð�b �
XN

i¼1

ðC2ðj; kÞ � FiÞ2Þ; ð1Þ

where b defines the sharpness of the exponential function, C2ðj; kÞ is the afferent C2
layer with a specific scale j and orientation k, and Fi denotes a sampled patch from the
prior C2 layers, N is the number of the sampled patches.

C3 stage: In the C3 stage, the C3 units acquired by pooling the S3 units with the
same selectivity at adjacent scales and positions. The C3 units show the similar
selectivity to complex features with the S3 units, but with a broader size of invariance.
The S3 and C3 layers give a description of largely tuned shape. The set of invariant C3
responses can be calculated by doing a global maximum value of inputting S3 units
across all positions and scales. The responses of the C3 layers are given by:

C3 ¼ maxð i; j; rÞðS3ði; j; rÞÞ: ð2Þ

where ði; jÞ denotes the position of S3 units and r is the corresponding scale. The
export is a feature vector with C3 values. The vector is used as the C3 features in the
experiment tasks.

The S3 and C3 stages follow the operations in S2 and C2, their further interleaving
and max-like pooling with the inferior layers introduce better selectivity and invari-
ance. The deeper features with more robust and discriminative information benefit the
BIHM model in the cluttered recommendation tasks.

4 Experiments

In this part, we design an experiment to do the evaluation of BIHM in the image
recommendation tasks. We compare the BIHM with BIM and SIFT on Caltech05
database [16]. Figure 1 shows the sample images of the CalTech5 datasets. Given the

Fig. 1. Sample images of the CalTech5 datasets.
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various appearance transformation of the images, we applied the position-scale-invariant
C3 features of BIHM, and passed the features to a classifier to execute classification.
(In the experiments of this article, we select the linear Lib-SVM [23] as the classifier).

To make the experiment at a feature level and ensure a fair comparison between the
methods, we neglected the position information from SIFT, because it was shown in
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Fig. 2. Comparison of BIHM with standard BIM and SIFT on the CalTech5 dataset:
(a) aeroplanes, (b) cars, (c) leaves, (d) faces, and (e) motorcycles.
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[16, 24] that structural information does not appear to improve classification perfor-
mance. We use the same experimental setting in [16]. We compared the
position-scale-invariant C2 features from the conversional BIM and the updated C3
features from BIHM with the SIFT features. We pass these features to an SVM and
perform a present/absent classification task.

In this experiment, we chose 25 images at random from each category from the
CaltTech5 database as positive training images and 25 different images from
back-grounds as the negative training set. In the test stage, 100 different images (every
category of the CaltTech5 database) and 100 other background images were chosen at
random as a testing set. A various number of features (i.e., 10, 50, 100, 200, 500, 1000,
2000 and 4000) were obtained by selecting them from the 5,000 available at random to
train the models.

Figure 2 shows the experimental results of the CalTech5 database with different
numbers of features. Generally, it was demonstrated that BIHM exceeded BIM and
SIFT in precision in most classes in this database. The SIFT features are adept at the
detection of a transformed seen image, but they may lack discriminability in a more
general classification task [16]. BIHM and BIM significantly exceeded SIFT for the
faces, cars, leaves, and airplanes; in most cases, BIHM was clearly superior to BIM,
especially, when the feature number is bigger and bigger, the improvement of BIM
performance is limited due to the overfitting. In contrast, BIHM performance maintains
growth trend with the increasing feature number. Therefore, in most image categories,
BIHM shows superior performance.

5 Conclusion

In the article, we describe a novel biologically inspired hierarchical model by adding
S3 and C3 layers upon the conventional BIM framework to represent a high level
invariance and selectivity of features, and successfully applied the proposed model in
the image recommendation. The BIHM provides a balanced trade-off between the
features’ selectivity and invariance. The experiment on Caltech05 datasets showed our
proposed model qualifies in image recommendation tasks. Our research by far has
mainly concentrated on the performance upgrading of BIM. The improvement of
calculating speed upon BIM will be our future work.
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