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Abstract. In this paper, a class of complex-valued neural networks
including two additive time-varying delay components has been dis-
cussed. By making use of the combinational Lyapunov-Krasovskii func-
tional and free weighting matrix method, as well as matrix inequality
technique, a delay-dependent criterion of stability is derived.
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1 Introduction

With the application of artificial intelligence technology, the research of artificial
neural networks (NNs) is becoming more and more important. Especially, in the
past twenty years, neural networks have been applied in many fields, such as
optimization problem, associative memory, model identification, pattern recog-
nition, signal processing, and other engineering and scientific areas, so the neural
network is attracting more and more attention [1]. As we all know, in the process
of the realization of neural networks, time delays often occur, which may lead
to the performance of neural networks to reduce, or even induce instability [2].
Therefore, the research of delayed NNs have attracted great interest, also many
stability criterion have been obtained [1-5].

Meanwhile, in the literature [6], the authors introduced a new type of time-
varying delay with two additive components in the state of neural networks. In
many practical applications, such as remote control, network control system, etc.,
we may encounter such a system. For example, in networked controlled systems,
the signal transmitted from one location to another location may experience
some segments of networks, which can possibly cause a series of delays. Due to
the uncertain network transmission conditions, the delay of the sensor to the
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controller has different characteristics with the controller to actuator delay. This
means that the study of the system having time-vary delays will become more
complicated and more meaningful. Therefore, the stability of the NNs having
additive time-varying delays have been widely investigated [6-9].

Complex-valued NNs is an extension of real-valued NNs, due to its practical
applications of complex-valued neural networks in physical systems for process-
ing quantum waves, electromagnetic, ultrasonic and light, complex-valued NNs
consisting of complex-valued states, outputs, connection weights, and activation
functions has also become a research hot spot [10]. In addition, some problems
can be only solved by complex-valued NNs, but cannot be solved by real-valued
NNs [11]. At present, some achievements have been obtained in the study of sta-
bility of various complex-valued neural networks, relevant results are available in
[12-20]. In [12-16], the methods used to examine the stability of complex-valued
NNs were still using the method of analyzing the stability of real-valued NNs.
It is a method of dividing complex-valued NNs into two parts, real parts and
imaginary parts. However, this method will bring two questions. One problem
is that the dimension of the real-valued NNs is twice as much as the complex-
valued neural network. This will result in the difficulty of analysis. The other is
that the real and imaginary parts of the activation function need to be distinct,
but there is lack of a analytical form to express such difference. In [17-20], under
the condition that both the real and imaginary portions of the complex-valued
neural network were not split, the stability of the system was explored. Several
criteria for the stability of the system were obtained.

In the above complex-valued NNs, the time delay in a state was only a sin-
gular form. However, as far as we know, few scholars have studied the stability
of the complex-valued NNs having additive time-varying delays so far. Based on
the above analysis, we study the problem. In the second section of this article, we
described the problem and made some preparatory work. In the third section, we
did the analysis of delay dependent stability of complex-valued NNs having addi-
tive time-varying delay. Then by making hybrid use of the Lyapunov-Krasovskii
functional and the free weighting matrix approach, innovative delay dependent
stability criteria are derived.

2 Problem Description and Preliminaries

The stability analysis of complex-valued NNs having two additive time-varying
delays components is examined.

i(s) = =Cz(s) + Af(2(s)) + Bf (2(s = m(s) —7a(s))) + J (1)

s >0, 2(8) = (21(8),22(5), -+, zn(s))T € C", where z(s) is the state of the
ith neuron at time ¢, i = 1,2,---,n; f(2(5)) = (f1(21(5)), fa(22(8)), -,
falza(s))T € C™ is the vector-valued activation function; A = (a3 )nxn €
C™™ and B = (bij)nxn € C™*™ are the connection weight matrices; C =
diag{cy, o, -+ ,cn} € R™*™ is the self-feedback connection weight matrix, where
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¢; > 0; the input vector is J = (J1, Jo, -+, J,)T € C"; 71(s) and m»(s) are two
time-varying delays.

The following assumptions are made:

(H1). Two time-varying delays should meet the following conditions

0<7i(s) <71, 0L ma(s) <o, 71(s) <1, 7To(s) < o,
where 71, 79, 11, pio are constants, and we denote
7(s) =71(s) +m2(s), T=T14+T2, p=p1+ .

(H2). There exists a diagonal matrix L = diag{l1,ls, - ,1,} such that

[fi(v1) = fil)l < lilyi —elsi = 1,2, ,n

for all 41,72 € C, where [; > 0.

The initial conditions of model (1) are z;(u) = ¢;(u), u € [—7, 0], where ¢; is
continuous and bounded on [-7,0], i =1,2,--- ,n.

To simplify the model, suppose that Z is an equilibrium point of system (1),
using the transform y(s) = z(s) — 2, (1) is converted to the following system

y(s) = =Cy(s) + Ag(y(s)) + Bg(y(s — 11 (s) — 72(s))), (2)

where g(y(s)) = f(y(s) + 2) = f(2).

3 Main Result

Theorem 1. Under the assumptions of (H1) and (H2), system (2) is glob-
ally asymptotically stable given the seven positive-definite Hermite matrices
P, (i =1,2,---,7), two real-valued positive diagonal matrices R and S, four

complex-valued matrices Q; (i = 1,2, 3,4) such that the following complex-valued
LMI holds:

II = (IT;;)11x11 <0, (3)

Where Hll = 7P10*CP1+P2+P3+P4+P5+C(T1P6+TQP7)C+Q2+Q§+KRK,
H12 = —Q27 H16 = PlA - C(T1P6 + TQP7)A, H17 = PlB - C(’Tl.PG + ’7'2]37).87
IIg = Q2, ITyy = —(1 — )P + Q1 + QF, IIaz = —Q1, IIyy = Q1, II33 =
—P3+ Qa4+ Q% 34 = —Qu, 1310 = Qu4, gy = —(1—p) Py + Q3+ Q35 + KSK,
s = —Q3, 11411 = Q3, IIs5 = —Ps, Ilgg = A*(11Ps + 2Pr)A — R, g7 =
A*(11Ps + 72 P7)B, Il77 = B* (11 Ps + 12 P7) B — S. Ilgg = *lep& Ilyy = *%Pﬁv
o0 = —7—12P7, 101 = —%P7, others are zero.

Proof. The Lyapunov-Krasovskii functional candidate for model (2) is
constructed as follows

V(s) = Vi(s) + Va(s) + Va(s) + Va(s), (4)



Stability of Complex-Valued Neural Networks 567

where
Vi(s) = y*(s)Pry(s), (5)
V) = [ T OPOD | vory@un (6)
Va(s) = / o )y*(amy(e)dw / ACLTCI G

/ / 0) Py (0)d0de + / / 0)Pri(0)dode.  (8)
—T1 +§ —T1—T2 +§

From assumption (H1), calculating the time derivative of Vi(s), Va(s), Va(s)
and Vj(s), we get that

Vi(s) = y*(s)Pry(s) + 4" (s) Pry(s)
= —y"(s)(PC + CP)y(s) + y"(s)PrAg(y(s)) + 9" (y(s)) A" Pry(s)
+y*(s)P1Bg(y(s — 7(s))) + 9" (y(s — 7(s))) B* Pry(s), 9)

Va(s) < y*(s) (P2 + P3)y(s) — (1 = pa)y* (s — 71(s)) Pay(s — 71(s))
—y* (s — 1) Psy(s — 1), (10)

Va(s) <y (s) (P + Ps)y(s) — (1 — p)y* (s — 7(s)) Pay(s — 7(s))
—y" (s = 7)Psy(s — 7), (11)

Vils) = () Po +Pr)is) — [0 O)Poi0)d0

- I RUIO

=y (s)C(11Ps + 12 P7)Cy(s)

—y"(8)C(11Ps + 12P71) Ag(y(s)) — " (y(s)) A" (11 Ps + m2P71)Cy(s)
=y (8)C(m1Ps + 12Pr) Bg(y(s — 7(s)))
—g"((s = 7(s)))B*(11Ps + 12 P7)Cy(s)

+9"(y(s))A™ (11 Ps + m2P7) Ag(y(s))

+9"(y(8))A™(11Ps + m2P7) Bg(y(s — 7(s)))

+9"(y(s — 7(s)))B* (11 Ps + 72P7) Ag(y(s))

+9"(y(s — 7(5)))B* (11 Ps + 72P7) Bg(y(s — 7(s)))

s—T1 (s
- / 0) Pei(0)d0 — / ) Py (0
S—T1 S T1

s—7(s) s—T1
oo [ g epiem (12)
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From assumption (H2), we can get

0 <y"(s)LRLy(s) — g"(y(s))Rg(y(s)), (13)

0<y"(s = 7(s))LSLy(s — 7(s)) — " (y(s — 7(s)))Sg(y(s — 7(s))). (14)

By Newton-Leibniz formula, we have

0= (6= )@ (s ) ~wts i~ [ o))

s—71(8) %
Hols—n@) -ss-m) - [ iO)®) Qiyls - (). 15)

0=y"(s )Q2( (s )—y(s—ﬁ(s))—/@sT(S)Z)(H)d&)

S

Hu —sts—ntsn - [

s—71(s)

(0)do

) Qiyts), (16)

0= (uts 7o) ~vts =~ [ 50)8) Qints )

(s = 7(6))Qa (ws = 7(5) s =)~ [

S—T1

0= ((s=m)-u(s =7 - [

s—7(s)

s = m)Qa((s = 7) —yls = () - [

Ss—

By Egs. (12), (15), (16), (17), (18) and inequality (13), (14

s—7(s)
y(e)de), (17)

S—T

§(6)d0)«Qiy(s — )

S—T1

y(a)de). (18)
~(s)

), we can get

V@gy@(4unca+&+&+a+%+0@&+mﬂm

+Q2+ Q3 + LRL)y(s) = " (s)Qay(s = i(s)) -

Y (s —11(s))Q3y(s)

e [ i ([ i) e

4@%(3A—aﬁ&+mﬂm)@@)
—i—g*(y(s))(A*Pl 7’1P6 + 7’2P7 C y

4-@KHB aﬁ&+mﬂ))@@

7(s)))
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+9*(y(s — 7(9))) (B*P1 — B* (11 Ps + 72P7)C)y(s)

+y*(s = m1()) (@1 = (1= p) P2 + Q1 (s = 7i(s)

(s = 71(5)Quy(s — 1) = " (s = 71)Qiy(s — 71 (s))
s—T11(s)

W-n [ i

_ ( /::1(5) g(a)de)*Qiy(s —71(s))

(s = 71)(Qa — Py + Q3 )y(s — 1)
(s = 7)Quy(s = 7()) =y (s — 7(5))Qiy(s — )

S—T1 S—T1

o [ i —( [ i) Qiats —m)

(s = () (@5 = (1 = )Py + Q4 + LSL)y(s — ()
“(s = 7)Q3y(s = 7(5)) ¥ (s = 7(5))Quy(s — )
s—7(s)

Y
Y
- ( /j—T(s) y(e)de)*ng(S —7(s)) =y (s —7(5))Qs / §(0)do

—y*(s —7)Psy(s — 7)

+9" () (A" (71 Ps + 2Pr) A = R) g(y(s))

9" (y()) A" (11 P + 72 Pr) By(y(s — 7(5))

9" (yl(s = 7(s)) B (1 Ps + 72Pr) Agly(s)

+9" (y(s = 7(s) (B* (11 Ps + 12P)B = S ) )g (s — 7(5)))

s—T1 7(s)
S AR RGO R RO O
s—71(s) s—T

“(s)IIn(s) + m1(s)y* (s)Q2Ps ' Q5y(s)

71— 71(8))y" (s — T1(5))@Q1 P ' Qiy(s — 7i(s))
y (s —7(5))Qs Py ' Q3y(s — 7(s))

(s) = m)y" (s — 1)QuP; ' Qiy(s — 1)

\/S (s) [y"(s)Q2 + 97 (0) F] Py [QQ?J( )+ Psy(6)]do
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s—71(8)
- / [y* (s = 71.(5) Q1 + 5" (0) Ps] P5 ' [Q1y (s — 7u(s)) + Poy(6)]dd

s—7(s
- /7 [y™(s = 7())Qs + 5" (0) Pr| P ' [Q5y(s — 7(s)) + Pry(0)]do
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- / QA O PIP Qs —m) + Pri0)as
< 0 (8)[Tn(s) + Ty (5) Qe P Qi (s)

(s — 71 () QP Qs — 71(5)

ey (s — () Qs P Q5u(s — 7(s)

+72y" (8 — 1) Qu Py ' Qhy(s — 1)
= " (5)21(s), (19)

where

n(s)=(y"(s),y"(s=71(s)), " (s—71), 4" (s=7(5)), " (s—7), 9(y(s)), g(y(s—7(s)))",
I = (Ilij)7x7, Hji = 11, 2 = (2i5)7x7, $25i = 275, 11 = —PIC—CPy + Py +
P;+ P+ Ps+ C(T1P6 +T2P7)C+ Q2 + Q; + LRL, IIys = —Qq, Il = P/ A —
C(T1P6 +TQP7)A, H17 = PlB—C(Tlpﬁ +7'2P7)B, H22 = —(1—/11)PQ+Q1+QT,
Iz = —Q1, IIsz = —Ps+ Qu+ Qf, Iza = —Qu, [Tny = —(1 — p) Py + Q3 +
Q3 + LSL, Ilys = —Q3, Ilss = —Ps5, Ilgs = A*(11Ps + 2Pr)A — R, Ilg; =
A*(1\Ps + 19P;)B, ITy; = B*(11Ps + mP7)B — S. 11 = Iy + 11QoP; 'Q3,
o9 = Ilos + T1Q1 Py 'Q3, 253 = 33 + 7QuP; ' Qf, Qa4 = Iy + 7Q3 P51 Q3
and the rest of II;; and §2;; are zero.

By Schur complement, we know that II < 0 in (3) be equivalent to £2 < 0,
which means the system (2) is globally asymptotically stable. The proof is ended.

4 Conclusions

In this article, the stability for the complex-valued NNs model having two
additive time-varying delay components has been studied. A delay-dependent
stability criterion has been obtained by making use of the Lyapunov-Krasovskii
functional and free weighting matrix method, and using matrix in-equality
technique. The obtained result in this paper is to generalize some well-known
research.
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