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Abstract. In recent years, increasing studies have shown that the net-
works in the brain can reach a critical state where dynamics exhibit
a mixture of synchronous and asynchronous firing activity. It has been
hypothesized that the homeostatic level balanced between stability and
plasticity of this critical state may be the optimal state for performing
diverse neural computational tasks. Motivated by this, the role of critical
state in neural computation based on liquid state machines (LSM), which
is one of the neural network application model of liquid computing, has
been investigated in this note. Different from a randomly connect struc-
ture in liquid component of LSM in most studies, the synaptic weights
among neurons in proposed liquid are refined by spike-timing-dependent
plasticity (STDP); meanwhile, the degrees of neurons excitability are
regulated to maintain a low average activity level by Intrinsic Plasticity
(IP). The results have shown that the network yield maximal computa-
tional performance when subjected to critical dynamical states.

Keywords: Computation capability · LSM · Critical dynamic · STDP ·
IP

1 Introduction

Recently, many studies have been advanced to study the critical state of the
network in the brain [1–3]. A remarkable phenomena that critical state exhibits
is power law distributions of the spontaneous neuronal avalanches sizes approxi-
mately with a slope of −1.5 [4]. The functional rule of this dynamical criticality
can bring about optimal transmission [1], storage of information [5] and sen-
sitivity to external stimuli [6]. The influences of network structures on critical
state have been widely researched considering from the perspective of complex
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network, such as scale-free network [7,8], small-world network [9,10] and hier-
archical modular network [11,12]. However, critical dynamics are rarely used in
computational neuroscience.

In this paper, the influences of critical state on the computational perfor-
mance of LSM for real-time computing have been studied. As shown in Fig. 1(a),
LSMs include three components: input component, liquid component, readout
component [13]. Synaptic inputs, which are integrated from the input parts, are
send to the neurons in liquid component and then it can be described in a higher
dimensional state known as liquid state. As to specific assignments, the outputs
of liquid component are projecting to the readout component, which plays a role
as a memory-less function. In the process of computations, all the connections
in the liquid component will always keep unchanged once the structure is setted
up, except that readouts are trained through linear regression algorithm. As a
result, many researchers are concentrating on studying the network dynamics
under a predefined topological network. Considering the flexibility of neuronal
connectivity in the brain, it is more reasonable to consider self-organizing neural
networks based on neural plasticity.

One of the widely known forms of synaptic plasticity is the spike-timing-
dependent plasticity [14]. In our previous work [15], we have given a novel liquid
component of LSM refined by STDP. Compared with the LSM with tradition
random liquid, LSM with new liquid has better computational performance on
complex input streams. Besides, recent experimental results show that the intrin-
sic excitability of individual biological neurons can be adjusted to match the
synaptic input by the activity of their voltage gated channels [17]. This adap-
tion of neuronal intrinsic excitability called intrinsic plasticity (IP) has been
observed in cortical areas and plays an important role on cortical functions of
neural circuits [18]. It is hypothesized that IP can keep the mean firing activ-
ity of neuronal population in a homeostatic level [19], which is essential for
avoiding highly intensive and synchronous firing caused by the STDP learning.
Therefore, it is necessary to investigate it in combination with existing network
learning algorithms to maximize the information capacity.

In this paper, we have refined the liquid component of LSM though STDP and
IP learning. Therein, the synaptic weights among neurons in liquid are updated
by STDP; while IP learning regulates the degrees of neurons excitability. The
influence of critical dynamics on the computational performance of proposed
LSM has been investigated. Results demonstrate that the network yield maximal
computational performance when subjected to critical dynamical states. These
results may be very significant in finding out the relationship between network
learning and efficiency of information processing.

2 Network Description

2.1 Network Architecture

In this paper, as described in Fig. 1(a), we have added four different inputs to
four equivalently divided groups in the liquid component. Each input is made
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Fig. 1. (a) Network structure. Neurons marked with different colors are subjected to
different inputs. (b) Left: Four independent input. Right: The response of neurons
in STDP+IP network(up) and the corresponding output of the readouts (bottom)
according to the target signal r1 + r3. (Color figure online)

of eight independent signal streams and generated by the Poisson process with
randomly varying rates as ri(t), i = 1, ...4 (Fig. 1(b)-left), which are chosen as
follows [20]. The baseline firing rates for input 1 and 2 are chosen to be 5 Hz, with
randomly distributed bursts of 120 Hz for 50 ms. The rates for input 3 and 4 are
periodically updated, by randomly drawn from the two values of 30 Hz and 90 Hz.
The curves in Fig. 1(b)-left represents the final firing rates. Figure 1(b)-right show
the responses of the neurons in liquid networks and the corresponding outputs
of LSM compared with the target teaching signal r1 + r3. The results show that
input signal can be expressed well as the high-dimensional liquid state, where
information can be encoded into the intrinsic dynamical of neuronal population,
thus the high precision of computational capability can be realized.

2.2 Neuron Model

The network used in this article is composed of 200 Izhikevich neuron [21]
described by

v̇i = 0.04v2
i + 5vi + 140 − ui + I + Isyn

i

u̇i = a(bvi − ui) + Dξi
(1)

if vi > 30 mV, then
{

vi ← c
ui ← ui + d

(2)

where i = 1, 2, ..., 200. vi and ui is the membrane potential and membrane recov-
ery variable of the neurons, respectively. The parameters a, b, c, d are constant.
Choosing different values of these parameters can obtain various firing dynamic
[21]. The parameter ξi stand for the independent Gaussian noise with zero mean
and intensity D is the noisy background. I is the external current. Isyn

i is the
total synaptic current through neuron i and is governed by the dynamics of the
synaptic variable sj :



398 X. Li et al.

Isyn
i = −∑N

1(j �=i) gjisj(vi − vsyn)
ṡj = α(vj)(1 − sj) − sj/τ
α(vj) = α0/(1 + e−vj/vshp)

(3)

here, α(vj) is the synaptic recovery function. If the presynaptic neuron is in the
silent state vj < 0, sj reduces to ṡj = −sj/τ ; if not, sj jumps quickly to 1. The
excitatory synaptic reversal potential vsyn is set to be 0. The synaptic weight
gij will be updated by the STDP function F :

Δgij = gijF (Δt)

F (Δt) =
{

A+ exp(−Δt/τ+) if Δt > 0
−A− exp(Δt/τ−) if Δt < 0

(4)

where Δt = tj −ti, ti and tj is the spike time of the presynaptic and postsynaptic
neuron, respectively. τ+ and τ− determine the temporal window for synaptic
modification. F (Δt) = 0 when Δt = 0. A+ and A− determine the maximum
amount of synaptic modification. Here, τ− = τ+ = 20, A+ = 0.05 and A−/A+ =
1.05. The synaptic weights are distribute in [0, gmax], where gmax = 0.015 is the
maximum value.

Particularly, parameter b has a significant influence on the neurons excitabil-
ity. To get a heterogeneous network, the initial values of b are randomly dis-
tributed in [0.12, 0.2]. The neurons with larger value b can exhibit stronger
excitability, thus fire with a higher frequency. As a result we consider plastic
modifications of b as a representative scheme describing IP mechanisms. The
model we proposed is based on neurons’ inter-spike interval (ISI), in which a
function φi is used to determine the amount of excitability modification:

Δbi = biφi

φi =

⎧⎨
⎩

−ηIP · exp(Tmin−ISIi
Tmin

) if ISIi < Tmin

ηIP · exp( ISIi−Tmax

Tmax
) if ISIi > Tmax

0, others

(5)

where ηIP is learning rate. The neuronal inter-spike interval (ISI) is ISIk
i =

tk+1
i − tki , where tki is the kth firing time of neuron i; Tmin and Tmax are thresh-

olds, they determine the expected ranges of ISI. During the learning process,
the most recent ISI is examined every tck time and used to adjust the neuronal
excitability: If ISIi is larger than the threshold Tmax, the neuronal excitability
is strengthened to make the neuron more sensitive to input stimuli; if ISIi is
less than the threshold Tmin, the neuronal excitability is weakened to make the
neuron less sensitive to input stimuli. The histogram of firing rate response dur-
ing IP learning for a randomly driven network is shown in Fig. 2, from which an
normal distribution of firing rate is observed, and this result is consistent with
the theory that the maximum-entropy distribution is Gaussian if the desired
(p(x) = exp[−(x−μ)2/2σ2]

σ
√
2π

) variance is fixed. It indicates that our IP model is
reasonable. Additionally, the values of other parameters are α0 = 3, τ = 2,
Vshp = 5, a = 0.02, c = −65, d = 8, D = 0.1, Tmax = 110, Tmin = 90.
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Fig. 2. Histogram of firing rate response by IP learning and its Gassian fit: μ = 11.2795,
σ = 0.1736.
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Fig. 3. Network structures obtained from learning rules. Left: STDP alone; Right:
STDP plus IP. (a) Schematic diagram of the normalized synaptic matrix. (b) Histogram
of the normalized synaptic weights. (c) Scatter plots of neurons strong synaptic weights
for in-degrees and out-degrees.

At the beginning of the learning, each neuron in liquid network is bidirec-
tionally connected to each other with the same synaptic weight of gmax/2 and
the same external current of 6. After sufficient time the updated network struc-
ture by STDP alone or STDP+IP is shown in Fig. 3. Figure 3(a) indicates the
active-neuron dominant structure obtained by STDP learning, where the strong
connections are mainly distributed to the synapses from neurons with large val-
ues of b to inactive ones with small values of b, and most of the synapses are
rewired to be either 0 or 1; while IP strengthens the competition among different
neurons and makes the connectivity structure more complex and the distribu-
tion is not bimodal, but rather is skewed toward smaller values. The degree
distribution for different networks are also examined, the out-degree(out) and
in-degree(in) are defined as in [16]. It is demonstrated that neurons with larger
values of b have larger out-degrees and smaller in-degrees in STDP condition,
while only neurons with intermediate sensitivity keep this principle when IP is
switched on.
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3 Results

In this section, lists of real-time computational tasks were conducted to investi-
gate the influence of critical dynamic on the computational perfromance of LSM
updated by STDP+IP. To characterize and quantify the computational perfor-
mance of networks systematically, we purposely tested the sensitivity of different
types of LSM by varying the external current I. The results of average MSEs
shown in Fig. 4(a) were obtained from 20 times independent simulations. The
results of the three network are non-monotonic, which reaches the minimal value
when the external stimulus current is about 5. The computational performance
becomes worse when the external stimulus current I is too strong or too weak.
Besides, it illustrates that LSMs refined from STDP+IP performs much better
than the one with random reservoir or the one with STDP alone.
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Fig. 4. (a) Computational capability of networks with different topologies. (b) Entropy
of network activity for networks with different topologies. i.e. STDP network, random
network and STDP+IP network.

In order to get an insight into the potential advantages of the turning point,
we have specially investigated the influence of stimulus external current on net-
work activity. Figure 5 has shown the network activities of different network
with different stimulus. It can be seen that the synchronization degree of net-
work activity has been increased with the increase of external stimulus. Par-
ticularly, the activity exhibit a mixture of synchronous and asynchronous firing
activity when the stimulus current is about 5, indicating the highly complexity
of network activity. To further quantify the complexity of network activity, we
have computed the information entropy of network activity, which measures the
complexity of activity patterns in a neural network and defined as

H = −
n∑

i=1

pi log2 pi (6)

where, n is the number of unique binary patterns. pi is the probability that pat-
tern i occurs [22]. For calculation convenience, neuronal activities are measured
in pattern units consisting of a certain number of neurons. In each time bin, if
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Fig. 5. Firing activity of the three network with different stimulates (I = 3, 5, 8).

any neuron of the unit is firing then the event of this unit is active; otherwise it
is inactive. Surprisingly, the results have shown that the maximal entropy has
been reached when the current is about 5 (see Fig. 4(b)) where networks have the
optimal computational performance. Therefore, these results demonstrate that
the critical state with dynamics between synchronized firings and unsynchro-
nized firings makes the system have maximal dynamical complexity and thus
achieve optimal computational performance.

4 Conclusion

In this paper, the effect of critical dynamics on computational capability of liq-
uid state machine updated by STDP+IP has been investigated. Our results have
shown that the critical dynamic can remarkable improve the computation per-
formance of liquid state machine. At the critical state, the information entropy
of network activity is maximized indicating the complexity of activity patterns
are maximized, which can encode the rich dynamics of different neurons. These
results may be very significant in finding out the relationship between network
learning and efficiency of information processing.
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