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Abstract. The density peak based clustering algorithm has been shown
to be a potential clustering approach. The key of this approach is to iso-
late and identify cluster centers by estimating the local density of data
appropriately. However, existing density kernels are usually dependent
on user-specified parameters evidently. In order to eliminate the para-
meter dependence, in this paper we study the definition of dominant set,
which is a graph-theoretic concept of a cluster. As a result, we find that
the weights of data in a dominant set provides a non-parametric measure
of data density. Based on this observation, we then present an algorithm
to estimate data density without parameter input. Experiments on vari-
ous datasets and comparison with other density kernels demonstrate the
effectiveness of our algorithm.
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1 Introduction

Data clustering has wide application in pattern recognition, image analysis and
fault diagnosis [14,15]. In the past decades, much efforts were devoted to data
clustering and various clustering algorithms have been proposed. Unfortunately,
in applying these algorithms to real clustering tasks, there are still many prob-
lems to be solved. The k-means-like algorithm, NCuts [12] and the general spec-
tral clustering algorithms [17] uses as input the number of clusters and their
results rely on the parameters heavily. In addition, these algorithms tend to
generate clusters of spherical shapes, and the results are also influenced by clus-
ter center initialization. The DBSCAN [5], AP [1] and DSets [10] algorithms
are able to determine the number of cluster automatically. However, all these
three algorithms have their own problems. The DBSCAN algorithm depends on
two parameters Eps and MinPts for density estimation. Generally, the other
density based clustering algorithms are also dependent on user-specified density
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parameters. The AP algorithm must be fed the preference value of each data,
which impacts on clustering results significantly. The DSets algorithm are built
on the pairwise similarity matrix of the data to be clustered and is parameter
independent in itself. However, in the case that data are represented as feature
vectors, the estimation of data similarity usually introduces one or more sim-
ilarity parameters, which have been found to impact on the clustering results
[7,8]. Besides, both the AP and DSets algorithms have the tendency to gener-
ate spherical clusters only. These observations show that it is still necessary to
explore new clustering algorithms, although there are already a vast amount of
clustering algorithms in the literature.

Our work in this paper is on the basis of the density peak (DP) based clus-
tering algorithm proposed in [11]. The DP algorithm is based on the assumption
that cluster centers are density peaks and they are relatively far from each other.
With the local density ρi of each data i and the distance δi to the nearest neigh-
bor with higher density to represent the data in a decision graph, it is found
that the cluster centers are with both high ρ and high δ, whereas the non-center
data are with either small ρ or small δ. As a result, the cluster centers are iso-
lated from non-centered data and it is relatively easy to differentiate between
two kinds of data. By assuming that the label of one data is the same as that of
its nearest neighbor with higher density, all the non-center data can be grouped
into clusters sequentially.

Local density calculation is the key of the DP algorithm as it determines
ρ, δ and then the cluster centers. In [11] the authors use cut-off and Gaussian
kernels, both of which involve a cut-off distance dc. Although [11] presents an
empirical method to calculate the range of dc, we have found that the clustering
results vary significantly with different dc’s in this range. In order to solve this
problem, in this paper we present a non-parametric density kernel based on the
DSets algorithm. One important feature of the DSets algorithm is that each data
in a cluster is assigned a weight. Our study of the dominant set definition shows
that this weight reflects the relationship of the data with all the others, and can
be viewed as a measure of the local density. By calculating the pairwise data
similarity matrix properly, all the data can be included in one single cluster, and
therefore the weights of all the data can be obtained with the DSets algorithm.
We show that this process can be accomplished independent of user-specified
parameters. The effectiveness of our algorithm is demonstrated in experiments
and comparisons with other density kernels.

2 Density Peak Clustering

2.1 The DP Algorithm

The DP algorithm is proposed based on the following observations. First, cluster
centers are usually the density peaks in the neighborhood. This means that
compared with non-center data, cluster centers have relatively large local density
ρ. Second, in practice few data are with the same local density, therefore the
distance δ of one data to its nearest neighbor with higher density is usually
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Fig. 1. The Spiral dataset and two decision graphs with the Gaussian kernel.

not large. In contrast, cluster centers are surrounded by data with lower density,
therefore their δ’s are relative large. In summary, the cluster centers usually have
both large ρ’s and large δ’s, whereas non-center data have either small ρ’s or
small δ’s. This difference between cluster centers and non-center data makes it
possible to isolate and identify cluster centers from non-center data. Then based
on the assumption that the label of one data is the same as that of its nearest
neighbor with higher density, the non-center data can be grouped into clusters.
Although this assumption has no theoretic ground, it is consistent with human
intuition and works well in experiments.

From the above description we see that the key of the DP algorithm is the
calculation of local density. While the local density can be estimated in different
ways, existing approaches usually involve user-specified parameters, which may
influence the density values and then the clustering results. For example, the
cutoff kernel and Gaussian kernel is used in [11] to calculate the local density,
and both kernels involve the cutoff distance dc. The cutoff kernel measures the
density by the number of data in the neighborhood of radius dc, and the Gaussian
kernel uses dc as the decay parameter. After the local density ρ’s are calculated,
the distance δi is obtained by

δi = min
j∈S,ρj>ρi

dij . (1)

With the ρ’s and δ’s of all the data, we use a ρ−δ decision graph to illustrate
the relationship of the cluster centers and non-center data in the ρ − δ space.
Taking the Spiral dataset [3] for example, we show the ρ − δ decision graph
in Fig. 1(b). For space reason, here we use only the Gaussian kernel and dc is
calculated by including 1.6% of all the data in the neighborhood.

It is evident in Fig. 1(b) there are three data with both large ρ’s and large δ’s,
and they are presented as the outliers of the set of data. Obviously these three
data are the centers of the three clusters. Considering that identifying cluster
centers with the ρ− δ decision graph involves two thresholds, [11] then proposes
to use γ = ρδ as the single criterion of cluster center selection. We sort the data
in the decreasing order according to their γ’s and obtain the γ decision graph
in Fig. 1(c), where the three cluster centers with large γ’s can be recognized
relatively easily.
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Fig. 2. The influence of the percentage in calculating dc on the clustering results.

In general, while the ρ−δ decision graph and γ’s decision graph are helpful in
identifying cluster centers, it is still quite difficult to find out the correct cluster
centers automatically. In this paper we assume the number of clusters, N , is
determined beforehand, and use the N largest γ’s to identify the cluster centers.

2.2 The Problems

In both the cutoff and Gaussian kernels the parameter dc needs to be specified,
and it is suggested in [11] to determine dc such that 1% to 2% of all data are
included in the neighborhood on average. However, we have found that with
both kernels, different values of dc in this range causes significant variance in
the clustering results. In addition, the best results may not be obtained with dc in
this range. In fact, we show how the clustering results vary with the percentages
used to calculate dc in Fig. 2, where we use F-measure to evaluate the clustering
results. Eight datasets, namely Aggregation [6], Compound [16], Spiral, R15 [13],
Jain [9] and three UCI datasets Thyroid, Iris and Breast, are used in experiments.

Figure 2 indicates that the percentage and the parameter dc has a significant
influence on the clustering results. Unfortunately, we cannot arrive at any useful
conclusion as to the appropriate range of dc from Fig. 2. In addition, it is not
clear how the clustering results are correlated with dc. Consequently, it is very
difficult to determine the appropriate dc.

3 Our Algorithm

In order to solve the parameter dependence problem of existing density kernels,
in this paper we present a non-parametric density by making use of the nice
properties of the DSets algorithm. In this section we firstly introduce the domi-
nant set definition, and then present in details how the DSets algorithm can be
used to calculate the local density.
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3.1 Dominant Set

In order to derive the non-parametric density kernel based on the dominant
set, we firstly present the definition of dominant set briefly. The details of the
definition can be found in [10].

We use S to denote the set of data for clustering, and A = (aij) to represent
the pairwise similarity matrix. With D as a non-empty subset of S and i ∈ D,
j /∈ D, we measure the relationship of j and i by

φD(i, j) = aij − 1
|D|

∑

k∈D

aik, (2)

with |D| denoting the number of data in D. The we define

wD(i) =

⎧
⎨

⎩
1, if |D| = 1,∑
l∈D\{i}

φD\{i}(l, i)wD\{i}(l), otherwise. (3)

With this key variable and W (D) =
∑

i∈D wD(i), the formal definition of dom-
inant set can be presented as follows. A subset D such that W (T ) > 0, for all
non-empty T ⊆ D is called a dominant set if

1. wD(i) > 0, for all i ∈ D.
2. wD

⋃{i}(i) < 0, for all i /∈ D.

In [10] the authors show that a dominant set can be extracted with game
dynamics, e.g., replicator dynamics, developed in evolutionary game theory.
Specifically, we use x ∈ Rn to denote the weights of the data, which can be
obtained by replicator dynamics. In this paper we adopt the more efficient
dynamics proposed in [2]. It is shown that this weight vector corresponds to
the weighted characteristic vector xD of a dominant set D, which is defined as

xD
i =

{
wD(i)
W (D) , if i ∈ D,

0, otherwise
(4)

In other words, after we obtain the weight vector, the data with positive weights
form a dominant set. In extracting a dominant set, the weights of all the data for
clustering can be initialized to 1

n . The dominant sets can be obtained sequentially
in a peeling-off manner [10].

3.2 Non-parametric Density Kernel

From the last subsection we observe that in a dominant set, each data i is
assigned a weight equaling to wD(i)

W (D) . On the other hand, Eq. (3) indicates that
wD(i) measures the similarity between i and the other data, and a large wD(i)
means that i has a high overall similarity with other data. It is evident that if i
is in the central area of a dominant set, then it is likely that wD(i) is large and
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i has a large weight. In contrast, one data i in the border area of a dominant set
tends to have a small weight. Since the weights of data in a dominant set can
be used to differentiate between the data in central and border areas, they can
be treated as the data density in the DP algorithm. In this sense, we can make
use of the dominant sets algorithm to calculate the density, and therefore treat
dominant set as a density kernel.

However, in applying this density kernel to the DP algorithm, there are
still two problems to be solved. First, while the dominant set extraction uses
as input only the pariwise similarity matrix and no parameters are involved,
the calculation of data similarity usually introduces parameters. For example,
the commonly used similarity measure s(i, j) = exp(−d(i, j)/σ) introduces the
parameter σ. Second, in the case that there are more than one clusters in the
dataset and the dynamics proposed in [2] are used, there will be some data with
zero weights. These data with identical density will influence the clustering of
non-center data negatively. By studying the definition of dominant set, in the
following we show how to solve these two problems.

The definition of wD(i) in Eq. (3) indicates that a large wD(i) corresponds
to large similarities between i and other data. Then the dominant set definition
states that each data in a dominant set has a positive wD(i). This is equivalent
to saying that each data in a dominant set are similar to all the others. As a
result, the dominant set definition imposes a high requirement on the internal
similarity in a dominant set. With a fixed dataset, the variance of σ results
in the change of similarity value. A small σ leads to small similarity values,
which further result in a large amount of small dominant sets. In contrast, a
large σ corresponds to large similarity values and then a small number of large
dominant sets. By adopting a sufficiently large σ, we can group all the data into
a dominant set, and therefore assign non-zero weights to all the data. Although
σ influences the similarity values, it does not change the magnitude ordering of
these similarity values, and therefore has no influence on the ordering of data
weights. Consequently, the value of σ does not impact on the DP clustering
results, only if all data are assigned positive weights.

In practice, if σ is too large, many large similarity values may become iden-
tical due to limited digits after decimal. Therefore we use the following algo-
rithm to determine the σ and generate the density used in the DP algorithm.
With d denoting the average of pairwise distances, we build a list composed of
d, 10d, 50d, 100d, 200d, · · ·. Given a dataset, we assign σ with the values in the
list from small ones to large ones, until all the resulted data weights are greater
than zero.

4 Experiments

We test the proposed density kernel in experiments on the eight datasets, and
compare the results with those from the cutoff kernel and Gaussian kernel.
In addition, we also compare with some other algorithms, including k-means,
DBSCAN, NCuts, AP and SPRG [17]. With k-means, NCuts and SPRG, we set
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Table 1. Clustering results (F-measure) comparison on eight datasets.

k-means NCuts DBSCAN AP SPRG DP-cutoff DP-Gaussian Ours

Aggregation 0.83 0.99 0.80 0.82 0.73 0.99 0.99 0.94

Compound 0.68 0.70 0.88 0.77 0.64 0.82 0.69 0.81

Spiral 0.35 0.58 1.00 0.35 0.37 0.64 1.00 1.00

R15 0.82 0.99 0.77 0.54 0.93 0.99 0.99 0.95

Jain 0.79 0.63 0.87 0.57 0.86 0.90 0.87 1.00

Thyroid 0.83 0.64 0.68 0.52 0.97 0.55 0.51 0.72

Iris 0.89 0.93 0.77 0.93 0.87 0.70 0.90 0.78

Breast 0.96 0.64 0.87 0.82 0.97 0.67 0.66 0.69

Average 0.77 0.76 0.83 0.66 0.79 0.78 0.83 0.86

Table 2. Clustering results (Jaccard index) comparison on eight datasets.

k-means NCuts DBSCAN AP SPRG DP-cutoff DP-Gaussian Ours

Aggregation 0.64 0.98 0.67 0.71 0.49 0.98 0.99 0.87

Compound 0.46 0.46 0.84 0.69 0.42 0.71 0.47 0.74

Spiral 0.20 0.30 1.00 0.20 0.20 0.39 1.00 1.00

R15 0.65 0.99 0.42 0.25 0.83 0.96 0.99 0.86

Jain 0.53 0.42 0.91 0.29 0.63 0.71 0.65 1.00

Thyroid 0.64 0.40 0.57 0.29 0.90 0.29 0.29 0.58

Iris 0.69 0.79 0.59 0.77 0.66 0.51 0.73 0.60

Breast 0.87 0.39 0.78 0.56 0.89 0.48 0.40 0.54

Average 0.59 0.59 0.72 0.47 0.63 0.63 0.69 0.77

the required number of clusters as ground truth and report average results of 10
runs. With DBSCAN, the MinPts is set as 2, manually selected from 1 to 10,
and Eps is determined based on MinPts [4]. For AP, the required preference
value is manually selected to be pmin + 9.2step, where step = (pmax − pmin)/10
and [pmin, pmax] is the preference value range calculated with the method pro-
posed by the authors of [1]. In DP algorithm with the cutoff and Gaussian kernel,
the percentage of data used to calculate dc is set as 1.1% and 2.0%, respectively,
both of which are manually selected from 1, 1.1, 1.2, · · · , 2.0. The comparison of
these algorithms are presented in Tables 1 and 2, where F-measure and Jaccard
index are used to evaluate the clustering results. The comparison indicates that
in terms of average clustering quality, our non-parameter kernel performs better
than the cutoff and Gaussian kernels, and our algorithm also outperforms some
other algorithms with carefully selected parameters.

5 Conclusions

In this paper we present a non-parametric density kernel to be used in the den-
sity peak based clustering algorithm. We study the dominant set definition and
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propose to treat the extraction of dominant set as a density kernel which is inde-
pendent of parameters. We compare with the cutoff and Gaussian kernels in the
DP algorithm and also some other clustering algorithms to illustrate the effec-
tiveness of the proposed density kernel. One problem with the proposed density
kernel is the relatively high computation load involved in similarity calculation
and density calculation, which will be studied in our future work.
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