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Abstract. Existing object detection frameworks in the deep learning
field generally over-detect objects, and use non-maximum suppression
(NMS) to filter out excess detections, leaving one bounding box per
object. This works well so long as the ground-truth bounding boxes do
not overlap heavily, as would be the case with objects that partially
occlude each other, or are packed densely together. In these cases it
would be beneficial, and more elegant, to have a fully end-to-end system
that outputs the correct number of objects without requiring a separate
NMS stage. In this paper we discuss the challenges involved in solv-
ing this problem, and demonstrate preliminary results from a prototype
system.
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1 Introduction

Object detection is the task of localising and classifying all objects present in an
image [18]. While the field of deep learning has produced many object detection
networks with excellent true positive rate, they tend to suffer from low precision,
i.e. high false positive rate. Usually the network outputs many bounding boxes
per object, and these over-detections are filtered by non-max suppression (NMS)
[17], leaving one box per object. NMS is a fixed post-processing step that is not
learnt from the data, and typically relies on a user-chosen overlap threshold
(0.7 used in [16]). Furthermore, NMS is unaware of the contents of the boxes it
prunes, and so has no way to know if the ground-truth boxes really do overlap.

The question arises of how it may be possible to train a deep neural network
to output exactly one box per object, without the need for a separate non-learned
filtering step. Aside from being more elegant, this approach may have potential
for greater accuracy, particularly in the case of detecting many small, densely
clustered objects. In these cases, traditional NMS may struggle to tell if two
boxes overlap because they are localising the same object or if they are localising
different objects which are very close. This is especially true when objects of the
same class are not only close but genuinely do overlap. With very high numbers
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of densely packed objects, another problem may also emerge: because detection
networks emit a fixed number of boxes, it may become necessary to coordinate
these boxes such that they are properly distributed among the many objects
present. Over-detection in these cases may not only raise the false positive rate,
but also lower the true positive rate; if there are only enough boxes to detect
everything once then over-detecting one object may leave no boxes for another.

Close and overlapping objects occur in crowd footage, autonomous vehicle
visual feeds, and histological images from biomedical microscopy, such as those in
Fig. 1. In this paper we choose cell microscopy as a test case, and use the Simulat-
ing Microscopy Images with Cell Populations (SIMCEP) [10] system to generate
large quantities of synthetic images with perfect ground-truth annotation for
training and testing. The simplicity of this benchmark, which can be solved to
reasonable accuracy without deep learning [19], allows us to focus solely on the
over-detection problem. SIMCEP allows the user to generate artificial cell popu-
lations with varying degrees of clustering and overlap, and so makes an excellent
testing ground for a dense object detection framework. Using simulated images
allows us to generate essentially unlimited quantities of training data, bypassing
the scarcity of labelled data that is normally the biggest constraint when training
deep networks to solve bio-imaging problems. It is hoped that systems trained
on SIMCEP images may still be applicable to real-world histological images via
transfer learning. Fluorescence microscopy image analysis often requires objects
to be counted as well as localised, so a one-box-per-cell system, which can be
seen as combined localisation and counting, would be quite relevant in this field.

Fig. 1. (a) mouse embryo, an extreme case of overlapping objects consisting of a ball of
around 20 cells. (b) Human HT29 colon cancer cells, packed very closely. Both images
from the Broad Bioimage Benchmark Collection [12].
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2 Related Work

2.1 Deep Learning Methods for Object Detection

Object detection in deep learning is largely dominated by the Region Convolu-
tional Neural Network (R-CNN) family of models. The original R-CNN [5] uses
a selective search based method [22] to propose interesting-looking regions, only
using the CNN to generate feature vectors for each region and a support vector
machine (SVM) approach to then score them for each class. Fast R-CNN [4] is
an iteration on this work, speeding the process up mostly by generating all con-
volutional features for the image in a single pass and pooling sub-sets of them for
different region proposals, rather than running each proposed region through the
CNN separately. Faster R-CNN [16] improves further by using the same convo-
lutional network for both proposing regions and classifying their contents. This
saves computational time and results in slightly more accurate bounding boxes,
as well as being a more elegant system. Almost the whole pipeline is performed
by the network, only the NMS is done separately.

Faster R-CNN is a fully convolutional network (FCN), so images of arbitrary
size can be passed and the feature maps will grow or shrink accordingly. The
final convolutional layer outputs feature vectors describing overlapping square
regions in the image; these are used by the region proposal network (RPN) to
predict a fixed number of bounding boxes per region. The RPN’s output tensor
consists of multiple “detectors”: groups of neurons representing bounding box
parameters and confidence levels. Each output box is described relative to a
different fixed “anchor” box. The anchors are Faster R-CNN’s answer to the
problem of expressing an unordered set of boxes with a fixed-size tensor. The
loss function must decide at training time which boxes from the RPN are to
match with which ground-truth boxes, and which boxes should have high class
probability (i.e. the RPN’s confidence that box contains an object). In practice,
all boxes whose anchors overlap sufficiently with a ground-truth box are trained
to have high class probability and incur regression loss on their deviation from
the ground-truth box. Output boxes whose anchors do not overlap sufficiently
with any ground-truth box only incur loss for having high class probability.
This can be seen as giving each detector a different “jurisdiction”, in which it is
responsible for matching any ground-truth box with a certain position, aspect
ratio and size.

Another relevant detection framework is YOLO [15], which differs from Faster
R-CNN principally in that is not an FCN. Although this requires that images
are resized to a fixed dimension before processing, it also means that the feature
maps are of constant size. This allows the final layer to be converted to a fixed-
size vector that describes the entire image, in a similar manner to AlexNet [9].
This allows the classifier to make use of global image context, resulting in higher
accuracy compared to Faster R-CNN, whose classifier only pools convolutional
features from within the proposed bounding boxes. YOLO assigns responsibility
to its output boxes in a different way to Faster R-CNN. Unlike Faster R-CNN,
the jurisdictions of the detectors are not pre-defined, rather, responsibility for
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detecting a given ground-truth box is assigned at training time to whichever
detector outputs a box with the greatest intersection over union (IoU) with that
box. The authors claim this leads to detectors learning to specialise in different
sizes, aspect ratios and classes of object.

Although the above methods excell at detecting small numbers of large
objects in datasets such as Pascal VOC [3], they are less well tested on large
numbers of small objects. In particular, they all tend to over-detect objects,
outputting many bounding boxes which must then be pruned by NMS to leave
only one box per instance. The problem of learning to count has been explic-
itly investigated in [20], whose authors show that a network trained only on the
multiplicity of a target object type will learn features that are also useful for
classification and localisation of said objects. Although the results are encourag-
ing, they do not tackle the problem of coordinating object detectors to output
exactly one bounding box per ground-truth object.

2.2 Deep Learning Methods for Cell Detection

The greatest obstacle in applying deep learning approaches to biomedical image
processing is the scarcity of labeled training data. Deep neural networks generally
require many thousands of labeled images to train effectively, but individual
problems in biomedicine tend to avail neither thousands of images nor enough
trained experts to label them all. Many proposed methods [1,11,14] circumvent
this problem by using CNNs to perform pixel-wise binary classification. These
networks take small image patches as input and output the probability of the
central pixel in the patch being part of a target object. Although this is a harder
task than whole-image classification, it can yield thousands of training examples
per image, since each pixel and its neighbourhood becomes an example in the
training set. For example, [2] trains a CNN to identify the central voxels of
zebrafish dopaminergic neurons in 3D images. This is part of a larger pipeline,
which first uses an SVM to narrow down the set of potential voxels, so that the
CNN need not be applied to every possible location in the image. The output
probability map is then smoothed and individual cells are detected as local
probability maxima. [14] uses a CNN to detect lipid deposits in retinal images,
by classifying the central pixel of 65 × 65 image patches. Since these deposits
are diffuse, amorphous objects, pixel-wise classification is appropriate here and
there is no attempt to define the number of deposits present.

In [8], an FCN is trained to classify histological images at a whole-image
level. Although it is only trained with whole-image labels, it is still able to
localise individual cells by deriving class probability maps from the final con-
volutional layers, in a manner inspired by [21,23]. FCNs are particularly useful
when processing histological images due to their ability to naturally scale to
images of arbitrary size, without needing to downsample large images to a fixed
size. [11] train a standard CNN to classify the central pixel of image patches,
then convert it to an FCN to perform pixel-wise classification over a whole image
in one pass. This has performance benefits over processing patches one-by-one,
since computations can be shared among overlapping image patches.



Avoiding Over-Detection 79

A standard CNN based on the design of Krizhevsky [9] is used to count human
embryonic cells in [6]. Since the cells in these images show very high overlap, the
act of counting is treated as a classification task and the cells themselves are not
localised.

3 Method

When attempting to design a network that produces output of variable length,
one immediately hits two technical limitations:

– Existing deep learning frameworks process data in “tensors”, N -dimensional
arrays whose shape is always a hyperrectangle. This includes the output tensor.
Outputting a different number of boxes for each image in a batch would be
like outputting a matrix with variable length rows, which is not supported.

– In order for the network to learn the correct number of boxes, this number
needs to be somehow differentiable. That means the number of boxes produced
must vary smoothly with respect to the network parameters; a small parameter
change should result in a small improvement in the number of boxes.

These constraints can be satisfied by outputting a fixed number of boxes with
confidence scores attached - as is the case in existing detection frameworks. The
problem now is how to assign confidence scores such that each object gets exactly
one high confidence box that matches its corresponding ground truth box.

3.1 Loss Function

To train a network to behave in such a way, a loss function is required that is
minimised if and only if the network outputs exactly one matching box with high
confidence for each ground-truth box. This is difficult, because the order in which
the boxes are emitted should not matter. Loss functions in supervised learning
work by penalising deviation from some target output, but if a network emits
N output boxes per image and an image has M objects, then there are N !

(N−M)!

possible correct outputs, corresponding to different orderings of the boxes. Faster
R-CNN and YOLO solve this problem by establishing “jurisdictions” for their
output boxes, whereby the loss function demands that a box should have high
confidence if a ground-truth box falls into its jurisdiction.

Ideally, we would like the loss function to be minimised no matter which
detectors are used to label the objects, so long as there is only one each. To
this end, we define a loss function that assigns responsibility for ground-truth
boxes based on both the output box parameters (centre coordinates, width and
height) and confidence scores. We define a responsibility matrix R, where Rij is
the responsibility of detector i for object j, and

Rij =
Ci

Dij
(1)
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Dij = (xi − x∗
j )

2 + (yi − y∗
j )

2 + (wi − w∗
j )

2 + (hi − h∗
j )

2 (2)

where x, y, w, h are centre coordinates and width and height, normalised to
[0, 1] relative to the image dimensions and mean box size, respectively, ∗ denotes
ground-truth, and Ci is the confidence of detector i.

At training time, each ground-truth box j selects the detector that is most
responsible for it:

R∗
j = arg max

i
Rij (3)

This chosen detector incurs a regression loss DR∗
j ,j

, causing it to better localise
the object for which it was responsible. All detectors also incur regression loss
on their confidence, where target confidence C∗

i is 1 if detector i is responsible
for an object, and 0 otherwise. The total loss is then:

L =
1
N

∑

i

(Ci − C∗
i )2 +

1
M

∑

j

DR∗
j ,j

(4)

where M and N are the number of ground-truth objects and detectors, respec-
tively. This responsibility scheme is similar to that used by [15], but differs in
that ours takes into account box confidence, allowing it to penalise over-detection
if too many high confidence boxes are emitted.

Using detector confidence to establish responsibility allows the network to
choose for itself which detector will be responsible. If detectors 1 − 5 localise
object j, then their regression losses Dij for i = 1..5 will be similar, and so
the highest responsibility will go to detector k with highest confidence Ck. This
chosen detector will get a target confidence C∗

k of 1 while the others get 0. This
reinforces detector k as the detector responsible for that object; next time the
same object is seen, Ck will be higher, while others will be lower. This can be
seen as a kind of learnt NMS.

We found that if confidence is not used to determine responsibility (Rij =
1

Dij
), the network outputs many boxes per object which all have roughly equal

confidence well below 0.5. This is because the network cannot predict which
box will be closest to the ground-truth since they are all close, and so cannot
predict which should have confidence 1 and which should have 0. Moving all but
one box away from the object would be a solution, but this would only produce
discontinuous, non-differentiable changes in loss as the responsibility assignment
changes suddenly, so the network cannot learn to do this.

3.2 Model Architecture

A recurrent neural network (RNN) would be the obvious choice to minimise the
loss function described above. If bounding boxes are emitted sequentially rather
than simultaneously, then each one can be dependent on the ones that came
before it. In this way, a detector can avoid outputting a high confidence box on
an object that has already been detected. Despite this attractiveness though,
our best results out of the many architectures trialled came not from an RNN
but from an FCN. This architecture is specified in Table 1.
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Everything from conv1 to conv7 is a relatively standard convolu-
tion/maxpooling stack, with some slightly unusual features (stride of 2 in conv6)
which allow the stack to output feature maps whose effective receptive fields
in the image overlap by half (effective receptive field size is 64 × 64 pixels,
effective stride is 32 × 32). This overlap ensures that every object lies fully
within at least one neuron’s receptive field. boxes emits bounding box para-
meters and boxes global is a custom layer that performs a simple trans-
formation from local coordinate space global image space. concat joins the
feature maps of boxes global and conv7, allowing the remaining three lay-
ers to predict confidence scores based on both the boxes themselves and the
image features they were predicted from. We observed a modest improve-
ment in performance due to this addition. The final three layers, then, can
be seen as a learnt filtering stage that replaces the traditional NMS post-
processing. A Theano/Lasagne implementation is available at https://github.
com/philipjackson/avoiding-overdetection.

Table 1. A specification of our network architecture. Unless otherwise stated, each
layer takes the previous layer’s output as input. Nonlinearities are leaky rectified linear
[13] with α = 0.1 unless otherwise stated. B is a hyperparameter denoting the number
of detectors per “window” (i.e. position in the final feature map, conv7). B = 9 in our
experiments.

Network layers

Name Type Parameters

conv1 Convolution num filters=32, filter size=(5,5)

pool1 Maxpool pool size=(2,2)

conv2 Convolution num filters=48, filter size=(3,3)

pool2 Maxpool pool size=(2,2)

conv3 Convolution num filters=64, filter size=(3,3)

pool3 Maxpool pool size=(2,2)

conv4 Convolution num filters=86, filter size=(3,3)

pool4 Maxpool pool size=(2,2)

conv5 Convolution num filters=128, filter size=(1,1)

conv6 Convolution num filters=128, filter size=(2,2), stride=(2,2)

conv7 Convolution num filters=128, filter size=(1,1)

boxes Convolution num filters=4*B, filter size=(1,1), nonlinearity=identity

boxes global Coord Transform

concat Concatenation inputs=boxes global,conv7

filter1 Convolution num filters=16*B, filter size=(3,3)

filter2 Convolution num filters=16*B, filter size=(1,1)

confidence Convolution num filters=B, filter size=(1,1), nonlinearity=sigmoid

4 Results

We trained our model on a set of 17000 SIMCEP images using the Adam opti-
mizer [7], and validated against a set of 3000. The images were of size 224 × 224

https://github.com/philipjackson/avoiding-overdetection
https://github.com/philipjackson/avoiding-overdetection
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pixels and contained anywhere from 1 to 15 cells. The parameters of SIMCEP
were adjusted to randomise obfuscating features such as blur, Gaussian noise
and uneven lighting, and the cells show varying levels of clustering and overlap.

A selection of results is shown in Fig. 2. We interpret any detection with a
confidence above 0.5 as a positive, and so the number of such detections is the
network’s estimate of the number of cells present. Across our validation set, the
root mean square of the deviation of this estimate from the true count was 2.28.
Further quantitative results are shown in Table 2.

Fig. 2. A sample of detection results on SIMCEP images. Confidence is represented in
the transparency of the boxes; all output boxes with confidence above 0.1 are shown.
Instead of post-processing with NMS, we simply take boxes with confidence above 0.5
(shown in red) as positive detections. Boxes with confidence below 0.5 are shown in
blue. (Color figure online)

Table 2. True and false positive rates on training and validation sets. A true positive
is counted as any output box with an intersection over union (IoU) above 60% with a
ground-truth box, but each ground-truth box can only be paired with a single output
box. So if two output boxes cover the same object, then this counts as one true positive
and one false positive. Output boxes with less than 60% IoU with any ground-truth
box are always false positives.

True positive rate False positive rate F1-score

Training set 75.4% 19.2% 0.774

Validation set 75.3% 19.4% 0.773
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5 Conclusion

For images containing objects whose bounding boxes overlap heavily due to
occlusion or dense clustering, NMS cannot reliably remove excess bounding boxes
emitted by the network, since ground-truth bounding boxes with identical classes
may truly overlap significantly. An end-to-end system that outputs the correct
number of boxes without the need for post-processing NMS is therefore prefer-
able. In this paper, we discuss the problem and take some early steps towards
solving it, demonstrating a system that can localise densely clustered objects
and simultaneously approximate the correct number of boxes. Rather than per-
forming regression directly on the number of objects, we encode this number
implicitly in the number of high confidence boxes emitted by the network.

We propose that, unless an alternative output encoding can be found which
shows a one-to-one mapping between output values and unordered sets of boxes,
supervised learning itself is unsuitable for this task. There are many ways for a
network to output the same set of boxes, depending on which box it places on
which object (or for an RNN, which order it outputs them in), but supervised
learning requires us to arbitrarily choose one of them, and penalise all the others.
In this paper we partially solve this problem by choosing which box should
have high confidence based partly on the confidence values themselves, however
the results are far from perfect. We put forward three reasons for this, and
suggest how they may be countered by applying reinforcement learning instead
of supervised learning.

Firstly, because we assign responsibility for an object to the detector with
the maximum responsibility for it, our loss function is discontinuous, due to
the arg max operation. This is likely to cause problems for supervised learning,
which is based on direct optimization of the loss function by gradient descent.
Reinforcement learning trains a network to optimize a reward function which
may be related to the network’s output in a complex, non-differentiable or even
unknown way. In particular, reward functions do not prescribe a target output
for every input, and so they completely bypass the problem of choosing which
detector should label which object. This makes reward functions a much more
natural way to express the goal of one box per object.

The second reason is that in order to teach a network to output the right
number of boxes, that number must somehow be made smooth and differentiable,
despite the fact that we ultimately want an integral number. To derive this hard
number, we currently threshold the confidence levels at 0.5. Not only is this
threshold somewhat arbitrary, but worse still, it is effectively a post-processing
step that the network itself is unaware of, and indeed cannot be trained to opti-
mize because it is non-differentiable. This too can be solved with reinforcement
learning by building the thresholding step into the reward function, because
discontinuous reward functions are alllowed.

The third reason is that our FCN architecture outputs all the boxes in par-
allel. This means that each detector is unaware of what the others are doing,
so it is difficult for them to coordinate themselves so as to avoid over-detection.
Using an RNN that outputs boxes in series would solve this problem, as the



84 P.T.G. Jackson and B. Obara

output on one time step can be conditioned on that of previous ones. This also
fits well with reinfrocement learning, since a reward signal can be administered
on every time step; this would accelerate training compared to a single overall
reward signal per image.
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