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Abstract. This paper presents a new methodology based on ellipti-
cal basis function (EBF) networks and an innovative feature extraction
technique which makes use of the co-occurrence matrices and the SVD
decomposition in order to recognize organic solar cells defects. The exper-
imental results show that our algorithm achieves an high accuracy of
recognition of 96% and that the feature extraction technique proposed
is very effective in the pattern recognition problems that involving the
texture’s analysis. The proposed methodology can be used as a tool to
optimize the fabrication process of the organic solar cells. All the tests
carried out for this work were made by using the organic solar cells real-
ized in the Optoelectronic Organic Semiconductor Devices Laboratory
at Ben Gurion University of the Negev.
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1 Introduction

The study of organic solar cells (OSCs) has been rapidly developed in recent
years. Organic solar cell technology is sought after mainly due to the ease of
manufacture and their exclusive properties such as mechanical flexibility, light-
weight, and transparency [1]. These properties enable OSCs to be used in uncon-
ventional applications which are not suited for conventional solar cells. Nowadays
the power conversion efficiencies of OSCs are higher than 10% [2].
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This relatively high efficiency and rather low manufacturing costs allows
OSCs to be used as an appropriate alternative to other power sources. Nev-
ertheless, currently OSCs are yet to be applicable. In order to extract their full
potential OSCs must be optimized. By using the power of computational cal-
culation it can be a relatively simple task to examine, compare, and correlate
between both theoretical parameters and physical properties of such device to
its performance. According to how the final outcome, i.e., the output power of
the device, is affected by its characteristics, e.g., electronic properties, geometry,
one can adjust these characteristics to enhance the device performance. It is not
yet clear what is the role of defects in the performance of organic solar cells [3].
Therefore, it is critical to examine the correlation between defects in the structure
of the device and its performance. Defects can be caused by a variety of reasons,
many of them are embedded within the organic materials and physics that gov-
erns those kind of devices. However, many of the defects can arise during the
OSC fabrication stage. These defects can emerge for example by scratches that
occurs during different stages of fabrication, or by trapped microscopic bubbles
during the spin coating stage. Thus, identification and inspection of defects can
lead to the improvement and preciseness in fabrication and to a more informed
decision of the materials that should be used. By taking microscopic images of
the morphology of the OSC and by using a state of the art mathematical models
for defects detection we were able to detect, identify, and classify these defects.
In most common approaches we can discuss various types of information analy-
sis where initial data is processed by application of some fuzzy measures [5] or
image processing for extraction of most important features [4,6–8]. In this paper
we would like to discuss a novel methodology based on neural network classifier.

2 Materials

Solar cells are devices that convert sunlight into electrical power. The process
of light conversion takes place in the organic layer, which will be referred as
the active layer. This active layer is a composition of two organic materials
(blend). These two materials are similar to the semiconductors used in the inor-
ganic industry. Just like in semiconductors, organic materials possess a band-gap
between two bands, namely, the Highest Occupied Molecular Orbital (HOMO)
band and the Lowest Unoccupied Molecular Orbital (LUMO) band; the occupa-
tion refers to the organic molecule electrons. The HOMO and LUMO of organic
materials are analogous to the conduction and valence bands in the inorganic
semiconductors respectively. Typically, the gap between HOMO and LUMO is
in the range of 1 to 3eV and thus electrons can be exited, for instance, by light
in the visible spectrum. Hence, it makes organic semiconductors appropriate for
solar cells. Another similarity refer to the materials type. Organic materials are
divided into two categories, electron donors and electron acceptors, which are
analogues to the n-type (donors) and p-type (acceptors) materials that comprise
the corresponding inorganic solar cells counterparts. Donors are hole transport
materials and acceptors are electron transport materials, i.e., each exhibits higher
mobility for its respective charge carrier.
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Fig. 1. The processes leading to photocurrent in the bulk heterojunction solar cell.
(1) light absorption at the donor lead to the generation of excitons, (2) exciton diffuse
towards donor-acceptor interface, (3) an intermediate step where exciton dissociate
into P − P state, (4) dissociation of P − P into free two charged polarons, (5) charge
transport towards the electrodes, (6) charge collection by the electrodes and charge
transport within the electrodes.

The main difference between the organic and inorganic solar cells is the low
dielectric constant of the former. As a result, the energy of light (photon energy)
is not suffice to separate the electrons and holes into free charges (the charge
carriers in a semiconductor). The physical process leading to the generation of
current [9] is illustrated schematically in Fig. 1. It is a sequence of the following
steps:

1. Light absorption leads to generation of excitons.
2. Exciton diffusion towards donor-acceptor interface.
3. An intermediate step where excitons dissociate into Polaron-Pair (P − P )

state.
4. Dissociation of P − P into positive and negative polarons.
5. Charge transport towards the electrodes.
6. Charge collection by the electrodes.

As sunlight absorbs in a molecule, an electron is excited from the LUMO
to the HOMO. The absorption occurs mostly in the donor material. However,
instead of free charges, an exciton is generated, an electron and hole bounded
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Fig. 2. An illustration of the morphology. The top gray strip stands for the ITO, the
bright and dark orange signifies the acceptor and donor respectively, the purple points
are the electrons and the arrows represents the path of the electrons to the ITO. (a)
A path for the negatively charged polaron. (b) there is no direct path for the polaron.
(Color figure online)

together by coulomb force within a molecule. It is a direct outcome of the low
dielectric constant. In order to separate the exciton into free charges, the exciton
must diffuse and encounter an interface between donor and acceptor materials
(heterojunction). The excitons have a very low diffusion length, in the order of
10 nm. Above this length, the excitons will recombine and will not contribute to
the output current. With the appropriate combination of donor and acceptor, the
exciton can lower his energy by transferring one of the charges to the adjacent
material. If exciton was initially created at the donor (acceptor), then electron
(hole) will transfer to the acceptor (donor), namely, electron is situated at the
acceptor and hole at the donor. Yet, the electron and hole are still coulomb
bound. This intermediate state between excitons and free charges is the Polaron-
Pair (P −P ). Depending on the electric field, the temperature, and the materials
parameters there is a finite probability for the P − P to decay to the ground
state or to be separated into two charged polarons (electron and hole), i.e.,
P − P dissociation. This non-zero probability ensures the generation of free
polarons. After the separation, the free polarons must diffuse and be collected at
the corresponding contacts. Negatively charged polarons move in the acceptor
material and are collected at the cathode and positively charged polarons move
in the donor and are collected at the anode.

As was mentioned before, the active layer is made of a blend of both the donor
and acceptor materials composed in a single layer. In this fashion, junctions
between donors and acceptors are spatially distributed throughout the active
layer. Hence, this type of OSC often called bulk heterojunction (BHJ). The
obtained phase separation (separation between donor and acceptor materials)
within the film is less than 30 nm [10] which is in the range of the exciton
diffusion length. Thus, regardless of where an exciton generates, it will most
likely encounter a junction. This formation enhances the exciton dissociation
within the active layer. However, defects in the structure of the active layer can
drastically reduce the output power. By inspecting the microscopic images of the
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active layer, one can examine whether the morphology is satisfactory or whether
it needs further optimizations.

Yet another very important issue is the transportation of free polarons from
the position of the specific junction to the respective contact. The downside of
this blend morphology is the large extent of disorder. In the path to the desired
contact, the free polarons can stumble upon different interface and recombine
again to P − P . Although it can lead again to the dissociation of P − P to free
polarons, it interferes their movement and increases the chance to decay to the
ground state. Therefore, knowing how the different materials and fabrication
processes affects the final morphology is crucial for the process of improvement.
This can be achieved by examining microscopic images and examine them by
means of computational models. An illustration of the morphology is shown in
Fig. 2. Once again, using such images one can detect defects that can impair the
path of free carriers to the electrodes.

3 Architecture of OSC

The OSC built up as an assemblage of several layers of different materials and
different functionalities. A typical cross-section of an OSC is shown in Fig. 3. It
composed of the following layers, in the direction of the incoming light, trans-
parent substrate, transparent anode, active layer, and cathode.

Fig. 3. A typical cross section of an organic solar cell. From the direction of the incom-
ing light, transparent substrate (glass), transparent anode (ITO), Hole Transport Layer
(PEDOT:PSS) optoelectronic active layer (P3HT:PCBM) and cathode (Aluminum).

The fabrication and measurements of the OSCs took place in the “Optoelec-
tronic Organic Semiconductor Device Laboratory” (OOSDL) in the department
of Electrical and Computer Engineering at Ben-Gurion University of the Negev
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in Beer-Sheva, Israel. In order to create large database, a series of samples has
been made, where each sample comprised of four solar cells.

The substrate of the sample is a glass with a thickness of 0.7 mm coated
with a 90 ± 10 nm layer of Indium Tin Oxide (ITO), i.e., the transparent anode.
The area of the substrate is 12 × 12mm2. The ITO covers only 6 × 12mm2 of
the glass and has a resistivity of 20 Ω/m2. The active layer of the sample is
a solution blend of [6, 6]-Phenyl C61 Butyric acid Methyl ester (PCBM) and
Poly(3-Hexylthiophene-2, 5-diyl) (P3HT) with 1:1 ratio. The solution is dis-
solved in chloroform with the aid of a magnetic stirrer for one hour to make a
total of 20 mg/ml. The preparation is a sequence of few procedures. First, the
substrate was cleaned in an ultrasonic bath with acetone, then methanol and
then isopropanol for 15 min each; next, it was treated with UV-ozone for 4 min.
To facilitate the conduction of holes from the active layer to the ITO we spin
coated on top of the glass+ITO a 30 nm layer of a transparent and conducting
conjugated polymer Poly(3, 4-ethylenedioxythiophene)-poly(styrenesulfonate)
(PEDOT:PSS). The spin coating was performed at 5000 RPM, and 1700 accel-
eration for 1 min. Afterwards, the sample was dried on a hot plate at 105◦ C for
an half an hour to remove the excess water, and then for another half an hour
inside a glove-box. Inside this inert atmosphere, the solution of P3HT:PCBM was
than deposited by spin-casting (1000 RPM, and 600 acceleration for 1 min) at
room temperature. At the top of the sample, the contact pattern was thermally
evaporated to create 80 nm thickness layer of aluminum, i.e., the cathode. The
sample was then annealed at 140◦C for 20 min. To expose the ITO, we screeched
the active layer with a toothpick. Finely, to make the contacts accessible for the
external probes, we deposited on top of ITO and aluminum a conductive silver
epoxy. A typical OPV sample realized is shown in Fig. 4.

Fig. 4. A typical OPV sample realized at the “Optoelectronic Organic Semiconductor
Device Laboratory”.
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4 Experimental Image’s Dataset and Acquisition System

The images acquisition is performed with a microscope camera DeltaPix, model
DpxViewPro 1.14.8 (see Fig. 5).

Fig. 5. The microscope used to explore the fabrication defects of the organic solar cells.

Microscopy was used to observe the various defects the surface morphology on
top of organic solar cells examined. We have acquired 240 images with resolution
of 1280 × 1024. Some devices analyzed are good, others with various kind of
defects.

A large number of defects have been observed which cracks, breaks and
scratches. Scratches are caused by mechanical damage or fabrication during the
handling and preparation while the shiny spots and the bubbles are due to the
water infiltration and at the exposition to the air at high humidity. In addition
the annealing process is responsible of the evident spots and the bubbles on
surface of samples caused by different gradient temperatures.

A critical aspect is to determine properly on the ITO/aluminum interface the
number and type of faults in order to understand the degradation mechanisms
providing better encapsulation strategies.

In Fig. 6 we can identify different scratches due to fabrication process at the
interfaces of OPV devices.

5 The Feature Extraction Methodology Based on Gray
Level Co-occurrence Matrices and Singular Value
Decomposition

The degradation mechanisms of the active inter-layers are fast involving the
diffusion of molecular oxygen and water into the device inducing chemical reac-
tions in polymer materials, degradation of interfaces, electrode reaction with the
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Fig. 6. Defects at the interface PSS and ITO-Glass/PSS and Glass (left), Defects at
the interface area on interface PCBM:P3HT on top of ITO-Glass/Aluminum (right).

organic materials, morphological changes due to temperature, and macroscopic
changes such as delamination, formation of particles, bubbles, and cracks [11].

The PEDOT:PSS is vulnerable to thermal degradation and also very sensitive
to moisture and oxygen involving the irreversible structural modifications. These
modifications give rise to a number of defects in the OPVs such as breaks,
scratches, spot, bubbles on surface of the device etc. In the SEM images of the
OPVs used in this paper, these defects manifest themselves as variation of the
image texture.

One of the most popular and powerful ways to describe texture is using of
color mapping co-occurrence matrix (GLCM). Since the use of the co-occurrence
matrices leads to a course of dimensionality we used the singular value decom-
position (SVD) to reduce the redundancy arising of description of the texture
by means of the GLCM.

When a high dimensional, highly variable set of data points is taken, SVD is
employed to reduce it to a lower dimensional space that exposes the substructure
of the original data more clearly and orders it from most variation to the least.
In this way, the region of most variation can be found and its dimensions can
be reduced using the method of SVD. This implies that we can achieve a good
identification of the most significant structures present in the image texture, by
taking only a few largest singular values [12].

Color Mapping Co-occurrence Matrix. A GLCM is a square matrix where
the number of rows and columns is equal to the number of gray levels in the
image that can reveal certain properties about the spatial distribution of the
gray-levels in the image texture [13,14]. The matrix gives how the pixel value
l1 of a reference pixel occurs in a specific relationship to a neighbouring pixel
with pixel value l2. So, each element (l1, l2) of the matrix represents the number
of occurrences of the pair of pixel with pixel values l1 and l2 which are at a
relative distance d from each other. There are many ways to specify the spatial
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Fig. 7. Co-occurrence matrix directions for extracting texture features.

relationship between two neighbouring pixels with different offsets and angles
(see Fig. 7).

Mathematically, the elements of a L×L gray-level co-occurrence matrix with
displacement vector d(= di, dj), for a given image I of size n × n is defined as:

MCO(l1, l2) =
n∑

i=1

n∑

i=1

{
1, if I(i, j) = l1 and I(i + di, j + dj) = l2
0, otherwise (1)

Figure 7 describes how to compute the GLCM. It shows an image and its
corresponding co-occurrence matrix using the default pixels spatial relationship
(offset = +1 in i direction). Each element of the GLCM is the number of times
that two pixels with gray tone l1 and l2 are in neighborhood at a distance d and
direction φ.

Singular Value Decomposition. SVD is a potent mathematical exploration
tool for matrices which gives minimum least square truncation error [15,16]. This
is because the total potential degrees of freedom of the decomposed matrices is
equal to the input host image. Further, SVD is a single path decomposition
algorithm. Singular values represent inherent algebraic image properties and are
not instable. Given an image I(x, y), with dimensions m×n, it can be factorized
with SVD :

I = US V T (2)

Where both U and V are the orthonormal matrices, U ∈ Rm×m, V ∈ Rn×n,
S = [diag(σ1, σ2, . . . , σq), 0] and q = min(m,n). Besides, the singular values
appear in descending order, i.e., σ1 ≥ σ2 ≥ . . . ≥ σq ≥ 0.
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The Feature Extraction. The training set must be thoroughly representative
of the actual population for effective classification We have calculated the co-
occurrence matrices of every image. For each channel (Red, green, Blue) we
have calculated the co-occurrence matrices for d = 1, 2 and in the four main
directions: 0◦, 45◦, 90◦ and 135◦.

The use of the co-occurrence matrices leads to a course of dimensionality
because these matrices are composed of two complementary subspaces called
signal subspace (the information suitable for defects classification ) and noise
subspace. To achieve the separation between signal and noise we have been used
the SVD and for each co-occurrence matrix we took the 12 largest singular
values (the criterium of truncation is σi

σi+1
� 10), thus obtaining for each image

a feature vector of 216 elements.
The magnitude of the singular values indicate the importance of the corre-

sponding directions (vectors). The singular values reflect the amount of data
variance captured by the basis elements. The first vector of the basis (the one
with largest singular value) lies in the direction of the greatest data variance.
The second vector captures the orthogonal direction with the second greatest
variance, and so on.

This is a useful procedure because the entries of co-occurrence matrices have
a large variance in correspondence of an irregular texture while a lower variance
when the texture is regular.

The Figs. 8 and 9 show a marked difference between features belonging to
the defective devices and the good ones. Then this feature set proves extremely
suitable for the problem classification addressed in this paper.

6 The Used EBF Classifier

A PNN is predominantly a classifier: Map any input pattern to a number of
classifications (in our case the neural network has to distinguish between two
classes: the defective devices and the good ones). A PNN is an implementation of
a statistical algorithm called kernel discriminant analysis in which the operations
are organized into a multilayered feedforward network with four layers:

– Input layer
– Pattern layer
– Summation layer
– Output layer

In this paper we make use of a particular kind of PNN: the EBF network [17]
that is a type of feedforward neural networks in which the hidden units evaluate
the distance between the input vectors and a set of vectors called function centers
or kernel centers (the centers are the data points of the training set), and the
outputs are a linear combination of the hidden nodes’ outputs. More specifically,
the k-th network output has the form

yk(x(t)) =
M∑

j=1

wk,j Φj(x(t)) (3)
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Fig. 8. Features of a defective device randomly choosen (up), Features of a device with
no defect randomly choosen (down).

where

Φj(x(t)) = exp
{

− 1
2σj

(x(t) − μj)T Σ−1
j (x(t) − μj)

}
(4)

μj and Σj are the function center (mean vector) and covariance matrix of the
j-th basis function respectively and σj is a smoothing parameter controlling the
spread of the j-th basis function.

We restricts Σ to two global and scalar smoothing parameter, σ1 and σ2,
where σ1 is used in those basis functions that have centers coming from the
good devices while σ2 for the defective ones. The determination of the smoothing
parameters is done by calculating the spreads of the training data set belonging
to the reference classes for σ1 and σ2 respectively.
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Fig. 9. Features of all defective devices present in the dataset in polar representation
(left), Features of all devices with no defect present in the dataset in polar representa-
tion (right).

With these assumptions we have that the input nodes (see Fig. 10) are the
samples of the feature set. The second layer (pattern layer) consists of the
Gaussian functions (5) formed using the training set of data points as centers.

y = e
‖X−Xi,j‖2

σ2 (5)

The third layer (summation layer) performs an weighted average of the out-
puts from the second layer for each class. The fourth layer (output layer) per-
forms a vote, selecting the largest value (the target values are: 0 for the defective
devices and 1 for the good ones).

Adding and removing training samples simply involves adding or removing
neurons in the pattern layer and a minimal retraining required.

For the training of the neural network simply note that the centers and
spreads are predetermined then only the weights wij is required to find. The
calculation can be performed by using the method of least squares.

The difference between PNN and EBF is that for EBF networks, discrim-
ination among all the known classes is considered during the training phrase;
whereas for PNNs this class discrimination is introduced during the recognition
phase.

7 Results and Discussion

To evaluate the pattern recognition algorithm, dataset is randomly split into
three parts: a training set consisting of 80 data points (48 data points represen-
tative of the various kind of defects and 32 representative of the devices with no
defects) a validation set consisting of 80 data points and a testing set consisting
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of 80 data points. The training set is used to find the model parameters in the
used EBF network. These parameters are the number of neuron for each class
(the defective devices and the good ones) and the weights value.

To find the optimal number of neurons we proceed as follows:

1. We use the data points of the training set as the centres of the network’s
neurons, so obtaining a network with 80 neurons split up into two classes (48
neurons represent the defects and 32 represent the devices with no defects).

2. We calculate the network’s weights by using the validation set.
3. We eliminate the neuron with a minimum weight and recalculate the net-

work’s weights by using the validation set. The procedure ends when the per-
formance, in terms of correct classification on the validation set, falls down
of the 2% with respect to the previous step.

The resulting network after the training phase is shown in Fig. 10). It consists
of 21 neurons (13 of them represent the defects and 8 represent the devices with
no defects).

Once the optimal parameters are found the trained algorithm is applied to
classify the data points in the testing dataset into one of the two classes. A
correct classification rate of 96% average has been obtained.

Fig. 10. Architecture of the proposed PNN classifier.
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8 Conclusion

This paper presents a new methodology based on elliptical basis function (EBF)
networks and an innovative feature extraction technique which makes use of the
co-occurrence matrices and the SVD decomposition in order to recognize organic
solar cells defects.

The organic solar cells used in this paper were realized in the Optoelectronic
Organic Semiconductor Devices Laboratory at Ben Gurion University of the
Negev. Microscopy was used to observe the various defects the surface morphol-
ogy on top of organic solar cells examined. We have acquired 240 images with
resolution of 1280 × 1024.

A large number of defects have been observed which cracks, breaks and
scratches. Scratches are caused by mechanical damage or fabrication during the
handling and preparation while the shiny spots and the bubbles are due to the
water infiltration and at the exposition to the air at high humidity.

The experimental results show that our algorithm achieves an high accuracy
of recognition of 96% and that the feature extraction technique proposed is
very effective in the pattern recognition problems that involving the texture’s
analysis.

The proposed methodology can be used as a tool to optimize the fabrication
process of the organic solar cells.
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and Higher Education.
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