
3D Integrated Circuits Layout
Optimization Game

Katarzyna Grzesiak-Kopeć(B), Leszek Nowak, and Maciej Ogorza�lek

Department of Information Technologies,
Jagiellonian University in Krakow, Krakow, Poland

{katarzyna.grzesiak-kopec,leszek.nowak,maciej.ogorzalek}@uj.edu.pl

Abstract. This paper is devoted to the original approach to block-level
3D IC layout design. The circuit components are modeled as autonomous
mobile agents that explore their virtual world in order to find a globally
near-optimal layout solution. The search space is defined by geometry
features, wire connections, goals and constraints of the design task. The
approach is illustrated by the example application to one of the MCNC
benchmark circuits and implemented using Godot.

Keywords: Floorplaning · Machine learning · Steering behaviors ·
Optimization · Computer game

1 Introduction

The problem of a valid 3D layout generation can be found in many different
domains, starting from practical and scientific purposes, through virtual real-
ity modeling, ending at urban planning or crisis management. Design solutions
that fulfill requirements and meet constraints promote minimizing the materials
and energy consumption while optimizing the functional properties. The spatial
arrangement of components also plays a crucial role in integrated circuit design.
The chip design involves myriad conditions related to chip area minimization,
thermal hot spots reduction or wire length optimization, which makes it espe-
cially challenging. An original approach to block-level 3D IC layout design has
been proposed in [7,8], where the intelligent framework architecture uses a sim-
ple shape grammar to generate topologically feasible solutions. These proposal
solutions are further optimized with a use of the extremal optimization. In this
paper, an alternative concept of a computer game like visual 3D optimal layout
design is proposed. It is inspired by swarm intelligence algorithms and steering
behaviors for autonomous agents in animation and computer games. The com-
ponents are treated as autonomous agents that navigate around their world in
order to find a globally near-optimal solution. Combinations of steering behaviors
are used to achieve both goals and constraints of a specific layout design task.
The approach is illustrated by the example application to one of the MCNC
benchmark circuits [12] and implemented using Godot which is an advanced,
feature-packed, multi-platform 2D and 3D open source game engine [6].
c© Springer International Publishing AG 2017
L. Rutkowski et al. (Eds.): ICAISC 2017, Part II, LNAI 10246, pp. 444–453, 2017.
DOI: 10.1007/978-3-319-59060-8 40



3D Integrated Circuits Layout Optimization Game 445

2 Related Work

The most critical phase in integrated circuits design is floorplanning. It is a kind
of a packing task where all circuit components have to be arranged according to
given design rules. The circuit components are rectangular modules that cannot
overlap. The minimum bounding box of a packing is called the chip [14]. The
problem have been effectively solved in 2D spaces, but the proposed algorithms
are not easily transformed to introduce the third dimension. The 3D chips allow
for the smaller footprint, higher packing density, lower interconnect power con-
sumption and heterogeneous technology chip support [4]. However, the today’s
3D IC technology has some important limitations. A truly 3D chip fabrication is
actually impossible. All the circuit components are distributed among restricted
number of device layers and the height of the inter-layers is fixed (see example
configurations in Fig. 1).

Fig. 1. Quasi-3D ICs configurations example.

The 3D integrated circuits placement problem is known to be NP-hard. Com-
mon techniques for global placements are: partitioning-based algorithms, ana-
lytic techniques and stochastic ones [10]. Recursive partitioning are constructive
techniques that recursively cut the layout into smaller parts. The most common
partitioning algorithms are the Kernighan-Lin [11] and the Fiduccia-Mattheyses
algorithm [5]. Analytic techniques use either quadratic objective functions or
sophisticated nonlinear calculations [16]. The most popular stochastic based
placement uses simulated annealing [2]. The generic approach to 3D layout design
proposed in [7] generates plausible solutions with a use of a simple shape gram-
mar supervised by an intelligent derivation controller. Design knowledge is fed
into system in a form of predicates. The floorplan generation procedure takes
into account the current technological limitations and divides a chip into layers.
Hence, the obtained design results are quasi-3D ones.

The seminal research into steering behavior by Craig Reynolds [17] modeled
the movement patterns of flocks, and since then has been studied from many
different perspectives, like swarm robotics [9], crowd simulation [19] or artificial
life [15]. In the 3D layout design task, the components should navigate around
their world to find a globally near-optimal solution. The use of behavioral ani-
mation in generating virtual worlds is still the subject of many different research
projects. A number of them use hierarchical schemes for organizing complex
control [3].



446 K. Grzesiak-Kopeć et al.

3 Autonomous Agent

In our approach agents corresponds to physical components of the design, which
should be optimally arranged in the search space. The term autonomous agent
may be used in many different contexts. In this paper, by an agent we understand
a computer system situated in a world shared by other entities, which is capable
of autonomous actions that lead it to satisfy its design task [20]. It is not only
reactive, perceives its environment and responds to changes that occur in it, but
exhibits goal-driven behavior as well. It also interacts with other agents. Having
all this features, an agent can be recognized as intelligent [21]. It is a real agent
in a virtual world embodied in a physical manifestation.

Also the term of behavior has many different interpretations. Being inspired
by swarm intelligence heuristics we have decided to solve a layout design task
applying various motion behaviors. Combining stochastic approach and motion
behaviors may provide an effective mechanism for screening large and discontin-
uous spaces. Thus after [17], the agent’s behavior may be divide into a hierarchy
of three layers: action selection, steering, and locomotion. The action selection
layer involves actions strategy, goals and planning. In the steering level, the goal
is decomposed into a series of simple subgoals that correspond to some steer-
ing behaviors and an agent path is determined. Finally, the locomotion layer is
responsible for an actual movement.

3.1 Steering Behaviors

Steering behaviors allow autonomous agents to navigate around their environ-
ment in a life-like or any imaginative manner. They are usually defined in such
a way to be largely independent of the agent’s means of locomotion and have
a similar structure. They take as an input the kinematic of the agent that is
moving and some target information [13]. They can be divided into simple and
combined behaviors presented in Table 1.

Table 1. Simple and combined steering behaviors.

Simple behaviors Combined behaviors

Seek & flee Pursuit & evade

Arrive Wander, obstacle avoidance, path following, ...

Align Flocking behavior: separation, cohesion and alignment

Simple behaviors are applicable to single agents. Seek steers the agent
towards a specified target. It calculates the direction to the target in the global
coordinate system and heads toward it as fast as possible (maximal speed). If no
other behavior appears, the agent eventually pass through the target and then
turn back to approach again. Flee is the opposite of seek. The agent turns away



3D Integrated Circuits Layout Optimization Game 447

from the target and tries to get as far from it as possible. Arrive is a kind of a
seek behavior that slows the agent down as it approaches the target and makes
it stop there. Align is responsible for the agent heading. It turns the agent to
reach the target orientation.

Combined behaviors are applicable not only to single agents but to groups of
agents as well. Pursuit and evade derive from seek and flee behaviors respectively
and used when a target is moving. Wander is a kind of random life-like steering
that enables to move agent around the world when no target is specified. It acts
as a delegated seek behavior. Obstacle avoidance allows an agent to maneuver in
a cluttered environment by dodging around obstacles. It casts one or more rays
out in its motion direction. If the collision with an obstacle occurs, a new target
is calculated in such a way to avoid it. Then a moving agent simply seek on
the new target. Path following enables an agent to steer along a predetermined
path within the specified radius of the spine. It applies a seek behavior to steer
toward a predicted future position. The most common group steering behavior
is flocking [17].

In many computer games, simple steering behaviors can achieve a satisfying
movement realization. Some decision making algorithms determine where the
agent should move and the seek behavior is applied to perform it. However, in
order to reach its goal safety and avoid collisions, an autonomous agent usually
needs more than one steering behavior. There are two general methods of com-
bining steering behaviors: blending and arbitration. Both of them, take a group
of steering behaviors and generate a single overall steering output.

Blending uses a set of weights or priorities to combine the results of all
the steering behaviors. There are no constraints on the blending weights. The
final steering output achieved from the weighted sum may even go far beyond
the moving capabilities of the agent, so it is simply trimmed according to the
maximum possible value. There is no simple answer how to determine the right
coefficients values. Even though there are different research projects trying to
automate the tuning of model parameters using evolutionary strategies [1], as in
most parametrized systems, they are greatly dependent on the system architect
experience and her/his inspired lucky guess or a good trial and error. To be more
efficient, weights or priorities may change over time in response to the state of
the working environment.

One of the best known combined blended behavior is flocking. Flocking is a
kind of coordinated motion inspired by animals groups such as bird flocks and
fish schools [17]. It blends three steering behaviors, namely separation, cohesion
and alignment. Separation moves an agent away from agents that are too close.
Cohesion works in a quite opposite way and moves an agent toward the center of
mass of the flock. Alignment lets all the agents to move in the same direction and
at the same velocity. In some cases, using equal blending weights for all of these
three behaviors may be sufficient. However, usually separation is more important
than cohesion, which is more important than alignment. While blending, it is also
possible to use priorities groups of behaviors. Each group contains behaviors with
regular blending weights and is considered according to a given priority order.



448 K. Grzesiak-Kopeć et al.

Arbitration uses different schemes to select a current steering behavior. There
are no restrictions imposed on the arbitration, which would enforce to return only
one simple steering behavior instead of a combined one. In fact, blending and
arbitration are often mixed together to get more realistic implementations.

Both blending and arbitration combine steering behaviors in an independent
manner. Yet, in order to obtain more realistic model, some cooperation among
different behaviors is required. Being aware of its context, a steering behav-
ior increases its complexity and is more difficult to handle. Thus, collaborative
steering behaviors implementations use more sophisticated decision making algo-
rithms like state machines, decision trees, or a steering pipeline.

4 3D ICs Layout Design Constraints and Goals

While investigating the 3D ICs layout design problem, various constraints and
goals were identified [7]. They are summarized in Tables 2 and 3 respectively.
First of all, all the circuit components should be placed in a specified chip
(AREA) without overlapping (NO INTERSECTION). To minimize the chip
bounding box, a plausible layout has to be consistent (GLUE). The total wire-
length of a chip is minimal if the connected components are as close to each other
as possible (ADJACENT). Thermal management requests separating selected
modules to minimize a hot spot problem (NEIGHBOR) and also may require to
settle the most heating components in the outermost layers (LAYER).

Table 2. 3D ICs floorplanning constraints

Constraint Description

AREA A component must be placed in a specified area

NO INTERSECTION A component does not intersect other components

GLUE A solution is consistent

NEIGHBOR A component is in the specified neighborhood range

ADJACENT Neighboring faces of adjoining components are of the
same type

LAYER A component is in a boundary (intra) layer

Constraints are either true or false, while objectives can be achieved to some
extent. Instead of rejecting imperfect solutions, the search procedure should
change its direction toward better ones. The main goal is a chip (packing) min-
imization (MINIMAL SPACE). Some components are preferred to be placed
as close to the boundary as possible (POSITION) and some require aligning
(SPATIAL RELATION).



3D Integrated Circuits Layout Optimization Game 449

Table 3. 3D ICs floorplanning goals

Goal Description

MINIMAL SPACE Evaluates the area occupied by a current design in relation
to the expected minimal area

POSITION Evaluates whether components are generated in the
expected positions (e.g. boundary)

SPATIAL RELATION Evaluates whether components are arranged in an
expected way (e.g. aligned vertically)

5 Game

In this paper, we propose an original approach to the 3D integrated circuits
layout optimization problem that goes far beyond the current technological
and manufacturing limitations. The circuit components are autonomous mobile
agents situated in a search space defined by their geometry features, wire connec-
tions, goals and constraints. To verify the proposed method, a dedicated game
has been developed using the open source Godot game engine [6]. All the exam-
ples presented in this paper are generated with a use of the original software.
The approach is illustrated by the example application to one of the MCNC
benchmark circuits [12], namely apte.yal which is composed of 9 components all
connected to one another (Fig. 2).

5.1 Circuit Components

All circuit components are cuboids with specified geometry features and wire
connections. They are modeled with a use of Godot RigidType nodes. This kind

Fig. 2. Godot: apte.yal components.



450 K. Grzesiak-Kopeć et al.

of body has mass, friction, bounce and simulates Newtonian physics. Its motion
may be affected by gravity and other entities. Its current position is generated
by the simulation of linear and angular velocity from the former one. In order
to meet the NO INTERSECTION constraint, each component has also appro-
priate CollisionShape assigned. It also knows his circuit connections (connected
components), called neighbors.

5.2 Behavioral Animation

The game make use of the flocking behavior and gravity. The optimization pro-
cedure is actually driven by the physics engine implemented in Godot. The main
challenge is the appropriate assignment of steering forces. Its general algorithmic
scheme is very simple and proceeds as follows:

while(!stop){
for each net{

calculate the center of mass
for each component in net{

seek toward the center of mass
}

}
}

Before any movement begins, all the constraints and goals must be defined
by the means of steering behaviors (see summary in Table 4). The whole process
starts with a random positioning of chip components in a 3D search space. Then
the game moving algorithm is applied where the main goal is the MINIMAL
SPACE one.

Table 4. The constraints and goals mapping to steering behaviors.

Constraint/Goal Steering behavior

AREA Cohesion

NO INTERSECTION Ceparation

GLUE Cohesion and gravity

NEIGHBOR Cohesion and separation, respectively

ADJACENT Faces cohesion and separation, respectively

LAYER Faces cohesion and separation, respectively

MINIMAL SPACE Cohesion and gravity

POSITION Cohesion and separation, respectively

SPATIAL RELATION Alignment

The whole game may be divided in two logical stages. The aim of the first
stage is to find minimal local arrangements of connected neighbors (NEIGHBOR



3D Integrated Circuits Layout Optimization Game 451

constraint). During this stage, the gravity force is completely neglected and the
main steering behavior that let this stage accomplish is cohesion. The compo-
nents are moved toward the center of mass of the neighborhood until they collide.
When no further move is possible, components try to rotate in an obtained posi-
tion to minimize the neighborhood volume. Just like in the simulated annealing
algorithm, better configurations are always accepted while worst are accepted
with a certain probability. In the same time, while moving closer toward its con-
nected neighbors, components are affected by repulsive forces from components
that are either not directly connected to them or should not be placed close to
each other (separation steering behavior). In order to incorporate the SPATIAL
ARRANGEMENT goal, the alignement steering behavior is applied. The exam-
ple configuration of components obtained in such a way is presented in Fig. 3.
At the first glance it seems to be far away from the optimal one, but only few
more actions are required to improve it.

Fig. 3. The example configuration of components obtained in the first stage of the
game.

The first stage is finished by the game player (designer). She/he turns on the
gravity and the second stage starts. Now, the aim of the game is to squeeze the
intermediate solution. To better understand the proposed approach, let’s imagine
the process of collecting spilled deck of cards from the table. First, we grab all the
cards and try to hold them. After that, we lower the cards on the table without
dropping them from the hand and they are aligned in one dimension. Then, we
make a 90-degree turn and repeat the procedure to aligned them in a second
dimension. The same process is applied to a components configuration. While
keeping the attraction forces among neighbors, the configuration is affected by
gravity. It falls down into a 90-degree V-shape (virtual table). A 90-degree V-like
shape eliminates the need of turning the configuration and repeating the falling



452 K. Grzesiak-Kopeć et al.

Fig. 4. The example configuration of components obtained in the second stage of the
game.

procedure. After reaching the virtual ground, the chip is much more compact
(see Fig. 4).

6 Conclusions and Future Prospects

The presented approach is a part of ongoing research on building a flexible
software architecture framework which will enable solving the 3D integrated
circuits layout problem. The task is not only up-to-date but very challenging
one as well. The market electronic design automation (EDA) tools are dedicated
solutions adjusted to present technology limitations. Most of them are not fully
3D aware but rather adapt 2D algorithms (2.5D IC design flow) [18]. Treating
circuit components as an autonomous agents that are governed by the laws of
Newtonian physics and navigate around their virtual reality, is a completely new
approach to solving this problem. Both goals and constraints are described by
the means of steering behaviors. Even though the final outcome of the research
is still hard to predict, taking into account the preliminary results and practical
applications of autonomous agents in complex and dynamic environments like a
crowd simulation, we strongly belief that it is worth pursuing.

References

1. Berseth, G., Kapadia, M., Haworth, B., Faloutsos, P.: SteerFit: automated
parameter fitting for steering algorithms. In: Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (SCA 2014), Euro-
graphics Association, Aire-la-Ville, Switzerland, pp. 113–122 (2015)



3D Integrated Circuits Layout Optimization Game 453

2. Chen, T.C., Chang, Y.W.: Modern floorplanning based on B*-tree and fast sim-
ulated annealing. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 25(4),
637–650 (2006)

3. Donikian, S., Rutten, E.: Reactivity, concurrency, data-flow and hierarchical pre-
emption for behavior animation. In: Veltkamp, R.C., Blake, E.H. (eds.) Program-
ming Paradigms in Graphics. Eurographics Collection. Springer, Vienna (1995)

4. Dong, X., Xie, Y.: System-level cost analysis and design exploration for three-
dimensional integrated circuits (3D ICs). In: Proceedings of the 2009 Asia and
South Pacific Design Automation Conference (ASP-DAC 2009), pp. 234–241 ,
IEEE Press, Piscataway, NJ, USA, (2009)

5. Fiduccia, C.M., Mattheyses, R.M.: A Linear-time heuristic for improving network
partitions. In: DAC, pp. 175–181 (1982)

6. Godot: An advanced, feature-packed, multi-platform 2D and 3D open source game
engine (2016). https://godotengine.org/. Accessed Dec 2016

7. Grzesiak-Kopeć, K., Ogorza�lek, M.: Computer-aided 3D ICs layout design. Com-
put. Aided Des. Appl. 11(3), 318–325 (2014)

8. Grzesiak-Kopeć, K., Oramus, P., Ogorza�lek, M.: Using shape grammars and
extremal optimization in 3D IC layout design. Microelectron. Eng. 148, 80–84
(2015)

9. Joselli, M., Passos, E.B., Zamith, M., Clua, E., Montenegro, A., Feijó, B.: A neigh-
borhood grid data structure for massive 3D crowd simulation on GPU. In: 2009
VIII Brazilian Symposium on Games and Digital Entertainment, pp. 121–131
(2009)

10. Kahng, A.B., Lienig, J., Markov, I.L., Hu, J.: VLSI Physical Design: From Graph
Partitioning to Timing Closure. Springer Publishing Company Inc., Heidelberg
(2011)

11. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs.
Bell Syst. Tech. J. 49(2), 291–307 (1970)

12. MCNC: The MCNC set of benchmark circuits (2015). http://lyle.smu.edu/
∼manikas/Benchmarks/MCNC Benchmark Netlists.html. Accessed June 2015

13. Millington, I., Funge, J.: Artificial Intelligence for Games, 2nd edn. Morgan
Kaufmann Publishers Inc., San Francisco (2009)

14. Murata, H., Fujiyoshi, K., Nakatake, S.: VLSI module placement based on
rectangle-packing by the sequence-pair. IEEE Trans. Comput. Aided Des. Integr.
Circ. Syst. 15(12), 1518–1524 (1996)

15. Nathan, A., Barbosa, V.C.: V-like formations in flocks of artificial birds. Artif. life
14(2), 179–188 (2008)

16. Obermeier, B., Johannes, F.M.: Temperature-aware global placement. In: Proceed-
ings of the 2004 Asia and South Pacific Design Automation Conference (ASP-DAC
2004), pp. 143–148, IEEE Press, Piscataway, NJ, USA, (2004)

17. Reynolds, C.: Steering behaviors for autonomous characters. In: Game Developers
Conference, pp. 763–782 (1999)

18. Rhines, W.: 3D IC design challenges. In: GSA Memory Conference, San Jose, CA
(2011)

19. Thalmann, D., Musse, S.R.: Crowd Simulation, 2nd edn. Springer, Heidelberg
(2013)

20. Wooldridge, M.J., Jennings, N.R.: Intelligent agents: theory and practice. Knowl.
Eng. Rev. 10(2), 115–152 (1995)

21. Wooldridge, M.J.: Intelligent Agents, Multiagent Systems: A Modern Approach to
Distributed Artificial Intelligence. MIT Press, Cambridge (1999)

22. Zhang, H.: The optimality of naive bayes. In: FLAIRS Conference (2004)

https://godotengine.org/
http://lyle.smu.edu/~manikas/Benchmarks/MCNC_Benchmark_Netlists.html
http://lyle.smu.edu/~manikas/Benchmarks/MCNC_Benchmark_Netlists.html

	3D Integrated Circuits Layout Optimization Game
	1 Introduction
	2 Related Work
	3 Autonomous Agent
	3.1 Steering Behaviors

	4 3D ICs Layout Design Constraints and Goals
	5 Game
	5.1 Circuit Components
	5.2 Behavioral Animation

	6 Conclusions and Future Prospects
	References


