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Abstract. The most nonlinear dynamic objects have their Approxi-
mate Nonlinear Model (ANM). Their parameters are known or can be
determined by one of the typical identification procedures. The model
obtained in this way describes well the main features of the identified
dynamic object only in some Operating Point (OP). In this approach
we use hybrid model increasing accuracy of the modeling. The hybrid
model is composed of two parts: base ANM and Takagi-Sugeno (TS)
fuzzy system. A Particle Swarm Optimization with Genetic Algorithm
(PSO-GA) was used for identification of the parameters of the ANM
and TS fuzzy system. An important advantage of the proposed app-
roach is the obtained characteristics of the unknown parameters of the
ANM described by the Fuzzy Rules (FR) of the TS fuzzy system. They
provide the valuable knowledge for the experts about the nature of the
unknown phenomena.

Keywords: Nonlinear modeling · Non-invasive identification · Signifi-
cant operating point · Particle swarm optimization · Genetic algorithm ·
Permanent magnet synchronous motor · Takagi-Sugeno fuzzy system

1 Introduction

The most nonlinear dynamic objects have their ANM. Their parameters are
known or can be determined by one of the typical identification procedure. The
model obtained in this way describes well the main features of the identified
dynamic object only in some OP [14]. Between them there are many secondary
phenomena that are not described precisely enough by the mathematical model.
The observed phenomena must be reproduced in order to obtain the model
precise enough for the practical application.

A large number of mathematical models which can describe the linear or
nonlinear systems in universal way were proposed in the literature, among oth-
ers, neural networks [23,36] treated as black box models, fuzzy systems [9,20],
flexible fuzzy systems [24,27], neuro-fuzzy systems [28,29,43], flexible neuro-
fuzzy systems [6,7,10,26,39–42], interval type 2 neuro-fuzzy systems [33,34],
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Takagi-Sugeno systems [12], flexible Takagi-Sugeno systems [11]. The methods
mentioned earlier enable modeling in an universal way but do not provide enough
precision of the reproduction of the reference values.

Much better result can be obtained by using a hybrid approach [3,15]. The
approximate linear or nonlinear model can be used in the hybrid approach. It
enables reproduction of the reference values with a sufficient precision only in
the OP, whereas the universal model can determine the values of the parameters
of the approximate model in different OP and between them. This approach
ensures to obtain a sufficient precision of the identification in all states of the
nonlinear dynamic object. In this paper we propose a new representation of
the approximate state and input matrices by including the sparse corrections
Δĝ(x(t)) and Δq̂(x(t)) of the known or estimated parameters g and q. It allows
to obtain characteristics of the unknown parameters of the ANM described by
the FR of the TS fuzzy system. This approach provides the valuable knowledge
for experts in order to identify better mathematical model of the ANM.

The remainder of this paper is organized as follows. Section 2 describes
approximate modeling of nonlinear dynamic objects by the algebraic equations
and on the basis of the state variable technique using sparse corrections of the
known or estimated parameters in the operating points. Section 3 deals with
fuzzy modeling of the corrections of the parameters in the operating points
using the TS fuzzy system. Section 4 presents the algorithm for online identifica-
tion of the OP described by FR of the TS fuzzy system. Section 5 describes the
Permanent Magnet Synchronous Motor (PMSM) working in the two operating
points. Finally, Sect. 6 shows simulation results which proves the effectiveness of
the proposed method.

2 Approximate Modeling of the Nonlinear Dynamic
Object

Let us consider the nonlinear dynamic stationary object described by the alge-
braic equations and based on the state variable technique [24]

dx
dt

= A(x(t))x(t) + B(x(t))u(t), (1)

y(t) = Cx(t), (2)

where A(x(t)), B(x(t)) are the system and input matrices respectively, u(t),
y(t) are the input and output signals respectively, x(t) is the vector of the
state variables. The algebraic equations based on the state variable technique,
delivered by the experts, describe the dynamic nonlinear object with a sufficient
precision only in some characteristic work state called operating point. Beyond
the OP there are phenomena that are not included in the mathematical model.
Overall accuracy of such a model may be too low for many practical applications.

In this work we propose the hybrid method which increases effectiveness of
the modeling of the nonlinear dynamic object. It is done by the modeling of the
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system and input matrices parameters which are not described precisely enough
by the mathematical model. The entire approximate model can be described
by algebraic equations and on the basis of the state variable technique, where
unknown linear or nonlinear part can be modeled by the Â(x(t),g+Δĝ(x(t)) and
B̂(x(t),q + Δq̂(x(t))) approximate matrices. The unknown parameters change
and can be described by the correction values Δĝ(x(t)) and Δq̂(x(t)). For exam-
ple, consider the specific nonlinear dynamic deterministic system with the ele-
ment of the system matrix a23 = −id − λm/L with the unknown or estimated
value of the λm. The element a23 can be written as a23 ≈ −id − (λm +Δλ̂m)/L.
The parameter λm has constant value in the OP but changes in unknown way
between them and can be modeled by the Δλ̂m correction values. So by using
the approximate matrices, we obtain the following form of the Eq. (1)

f(x(t),u(t)) = Â (x(t),g + Δĝ(x(t)))x(t) (3)

+ B̂ (x(t),q + Δq̂(x(t)))u(t),

where Â, B̂ are approximate state and input matrices respectively, g, q are
known parameters, Δĝ(x(t)), Δq̂(x(t)) are the sparse corrections of parameters
g and q, respectively.

3 Fuzzy Modeling of the Identified Parameters

The changes of the correction of the parameter values Δĝ(x(t)) and Δq̂(x(t))
take place between OP does not occur rapidly usually, but in a smooth unknown
manner which is difficult to describe by using the mathematical model. The val-
ues of the parameters in the operating points pass fluently among themselves
and overlap. Fuzzy systems are frequently used by many researches to fuzzy
modeling and classification [9,18–20,35]. So, for modeling of the sparse correc-
tions Δĝ(x(t)), Δq̂(x(t)) of the parameters g and q, respectively, the TS fuzzy
system is perfectly suitable as the universal approximator.

The construction of the most neuro-fuzzy structures [11] is based on the
Mamdani reasoning type described by using t-norm, for example product or
minimum. They require defuzzification of the output values, thus they cannot
be applied easily for modeling of the corrections of the parameters opposed to
TS fuzzy system [17]. This system includes dependence between a premise IF
and a consequent THEN of the rule in the form

R(l) : IF x̄ is Dl THEN yl = f(l)(x), (4)

where: x̄ = [x̄1, x̄2, . . . , x̄N ] ∈ X̄, yl ∈ Yl, Dl = Dl
1 × Dl

2 × . . . × Dl
N ,

Dl
1,D

l
2, . . . , D

l
N , are the fuzzy sets described by the membership functions

μDl
i
(x̄i), i = 1, . . . , N , l = 1, . . . , n, L is the number of the rules and N is

the number of the inputs of the TS fuzzy system, f(l) are the functions describ-
ing values of the system matrix or input matrix for the l-th fuzzy rule. In case of
the a23 element of the state matrix, the f (l) function from the consequent takes
the form: f (l)(t) = −id(t) − (λ̂m + Δλ̂m(t))/L.
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Assuming the aggregation method as weighted average, using the Eq. (3) and
Euler integration method with time step Ts, we obtain the discrete approximate
hybrid model described by Eq. (5)

f(x(k), x̄(k),u(k + 1)) =⎛
⎜⎜⎜⎝I +

⎛
⎜⎜⎜⎝Â

⎛
⎜⎜⎜⎝x(k),g +

L∑
l=1

ĝl · μD
l(x̄(k))

L∑
l=1

μD
l(x̄(k))

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠ Ts

⎞
⎟⎟⎟⎠x(k)

+

⎛
⎜⎜⎜⎝B̂

⎛
⎜⎜⎜⎝x(k),q +

L+M∑
m=L+1

q̂m · μD
m(x̄(k))

L+M∑
m=L+1

μD
m(x̄(k))

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠u(k + 1), (5)

where x̄(k) is the vector of the fuzzy values obtained from the vector x(k) using
singleton fuzzification, gl, qm are the sparse vectors containing the correction
values for the changing parameters in the l and m OP, l = 1, . . . , L, m =
L + 1, . . . , L + M , L, M - number of the rules describing the OP for the state
and input matrices respectively, μD

m(x̄(k)) and μD
l(x̄(k)) are the membership

functions describing activation levels of the operating point and I is the identity
matrix.

The Eq. (5) represents the discrete hybrid model describing the dynamic
nonlinear deterministic system. The Euler integration method was selected for
simplicity but there should be chosen better one in the practical application.

So, the local linear or nonlinear model in the operating point l and m is
defined through the set of the parameters θl = {Â(x(k)),g, ĝl,Dl} and θm =
{B̂(x(k)),q, q̂m,Dm}. The parameters are determined by hybrid operating point
identification method using PSO and GA algorithms.

4 Online Identification of the Operating Point

The automatic detection of the OP in nonlinear modeling is a very hard and
time-consuming task. In the most researches, authors focus on solutions using
grouping and classification algorithms to discover potential areas that can be
good candidates for operating points. The mentioned methods require a complete
data set for estimating good candidate areas for OP.

In many researches there were used hybrid and evolutionary approach for find
solution of the very hard and time-consuming tasks. Among others, Eftekhari
[16] has used subtractive clustering algorithm [5,13] to discover potential areas of
applying local linear models which were identified subsequently by Ant Colony
Algorithm (ACO). Brasileiro [4] applied ACO to the problem of choosing the
best combination path in transparent optical networks. Aghdam [1] used PSO
for feature selection in text categorization. Szczypta [32] has used evolutionary
approach for design optimal controllers.
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(t) x(t) y(t) Tmax Ts Emin emax ΔE

u(t) (t) (t) t = 0, Ts, ..., t
(e)
max Ts tmax

Emin
emax ΔE

z
θl = {Â,g, ĝl, l} θl ∈ Θ l = 1, . . . , L L

Θ = ∅ L = 0 e = 0 e

L ← L + 1 Θ ← Θ ∪ θL

t
(e)
max ← t

(e)
max + Ts

(x(0), x(t(e)max)) < dstart

e ← e + 1
S(e) = (Θ)
E(e) = (S(e),u(t),x(t), t(e)max)
Θ(e)

best = (S(e),E(e))
E

(e−1)
best > E

(e)
best

t
(e)
max

(Θ(e)
best, t

(e)
max) min

t
(e)
max ← t

(e)
max + Ts

t
(e)
max > t

(e−1)
max

Du

u = arg max
i=1,...,L

μ i(¯(t(e)max))

(Du,x(t), t(e)max)

Θ(e)
best

E
(e)
best = (Θ(e)

best,x(t),u(t), t(e)max)

t
(e)
max > t

(e−z)
max | E

(e)
best − E

(e−z)
best < ΔE

t
(e)
max < Tmax & E

(e)
best > Emin & (e < emax)

Lapa [22] and Szczypta [31] selected structure and parameters of the con-
trol system using Multi-Population Algorithms. Stanovov and Semenkin [30]
proposed self-configuring hybrid evolutionary algorithm for fuzzy Imbalance
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classification. Bartczuk [3] proposed a new method for nonlinear fuzzy correc-
tion modeling of dynamic objects. He applied gene expression programming [2].
Przybyl [25] has used genetic algorithm for observer parameter tuning. Yang
[37] used genetic algorithm combined with local search method for identifying
susceptibility Genes.

In a new proposed hybrid evolutionary method based on [15] we identify the
unknown parameters of the dynamic nonlinear stationary system and parameters
of the FR step by step on the basis of incoming data samples. It is done by
extending the measurement area as long as identified local linear or nonlinear
model can reproduce of a reference values with sufficient precision. This a is
similar approach as in the case Evolving Fuzzy Systems (EFS).

A new algorithm contains four main stages: the initialization of the OP
(stage 1), the parameter identification by the PSO-GA (stage 2), the acqui-
sition of the new data samples (stage 3), the update of fuzzy sets (stage 4) and
key decision stage for adding the new OP (stage 5).

A new OP is added in the first initialization stage. The initial time
t
(e)
max for used data samples is determined according to distance criterion

d(x(0),x(t(e)max)) < dstart, where dstart is the maximum distance between mea-
surements determined by the expert or from the experiments. Then, the initial
parameters for the fuzzy set D1 are estimated. For the trapezoidal membership
function described by the Eq. (6), the initial parameters are determined using
Eq. (7):

μD(x; a, b, c, d) =

⎧⎪⎪⎨
⎪⎪⎩

1 if (b ≤ x ≤ c)
x−a
b−a if (a ≤ x < b)
d−x
d−c if (c < x ≤ d)
0 otherwise

, (6)

where a, b, c, d are parameters of the trapezoidal membership function,

b1i = min
t<t

(e)
max

xi(t), c1i = max
t<t

(e)
max

xi(t),

a1
i = bi − (ci − bi)ρinit, d1i = ci + (ci − bi)ρinit, (7)

where ρinit is the initial fuzzy factor for the fuzzy set.
The one epoch of the hybrid swarm algorithm (PSO-GA) is performed in

the parameters identification stage (2). The PSO-GA algorithm determines the
unknown parameters of the nonlinear deterministic system and parameters of
the fuzzy sets. If algorithm gives better results E

(e)
best > E

(e+1)
best then the algorithm

goes to the acquisition of the new data samples (stage 3) used for the parameters
identification. The new data samples are included, if they meet the error criterion
presented in Eq. (8)

ε(Θ(e)
best, t

(e)
max) = (y′(Θ(e)

best, t
(e)
max) − y(t(e)max))2, (8)

where: y′(Θ(e)
best, t

(e)
max) is the output obtained for the best created model so far

Θ(e)
best in the time t

(e)
max of the simulation, y(t(e)max) is the measured reference value.
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In the result of added the new data samples, there are small changes of the
domain for the fuzzy sets. So in the stage (4), the update of the most activated
fuzzy set u = arg max

i=1,...,L
μDi(x̄(t(e)max)) is needed and is performed by equations:

bui = xi(t
(e)
max)

au
i = bui − (cui − bui )ρup

}
if (bui > xi(t(e)max)),

cui = xi(t
(e)
max)

dui = cui + (cui − bui )ρup

}
if (cui < xu

i (t(e)max)). (9)

The reassessment of the obtained solutions is needed and is performed in the
stage (5) in the consequence of updating of the fuzzy set and using the new data
samples. In the stage (5), we check if there getting a new measurement data
t
(e)
max > t

(e−z)
max for predefined number of epochs or the obtained error E

(e)
best for

the best solution Θ(e)
best decreases (E(e)

best − E
(e−z)
best ) ≤ ΔE. If not, the algorithm

proceeds to add a new OP.
The algorithm finishes the work, when all measurement data t

(e)
max = Tmax

were used and the error criterion Ee
best ≤ Emin has been meet. As a criterion of

the error we use Root Mean Square Error measure (RMSE).

5 The Permanent Magnet Synchronous Motor

The simulations were performed for the nonlinear model of the Permanent Mag-
net Synchronous Motor (PMSM). The PMSM can be described by algebraic
equations based on the state variable technique using Eqs. (10) and (11)

⎡
⎢⎢⎣

id(k + 1)
iq(k + 1)
ωr(k + 1)
θr(k + 1)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

a11 0 a13 0
0 a22 a23 0
0 a32 a33 0
0 0 a43 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

id(k)
iq(k)
ωr(k)
θr(k)

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

b11 0 0
0 b22 0
0 0 b33
0 0 0

⎤
⎥⎥⎦

⎡
⎣

V d(k)
V q(k)
TL(k)

⎤
⎦ , (10)

[
id(k)
iq(k)

]
=

[
1 0 0 0
0 1 0 0

]
⎡
⎢⎢⎣

id(k)
iq(k)
ωr(k)
θr(k)

⎤
⎥⎥⎦ , (11)

where: id(k), iq(k) - d-axis and q-axis current component, ωr(k) - rotor speed,
Θr - rotor position, Vd(k), Vq(k) - d-axis and q-axis voltage, TL(k) - load torque,
k - integration step.

The parameters of the system matrix A and input matrix B are described
by Eqs. (12–14)

a11 = a22 = 1 − Ts
R

L
, a13 = iq(k)Ts, a23 = −Ts(id(k) +

λm

L
), (12)

where: R - stator resistance (1.456 Ω), L - stator inductance (0.008 H),

a32 = 1.5TsP
2λm

J
, a33 = 1 − Ts

F

J
, (13)
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where: λm - rotor flux linkage (0.175V s), F - friction coefficient,

a43 = Ts, b11 = b22 =
Ts

L
, b33 = −Ts

P

J
, (14)

where: P - number of pole pairs (3), J - moment of inertia (0.06 JKgm2).

6 Experimental Results

The experiments are performed for the PMSM with unknown values of the fric-
tion coefficient F and moment of inertia J . The approximate initial values of the

Fig. 1. The control input voltages and the experimental results.
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Fig. 2. The progress of the new method for non-linear modeling.

parameters obtained from the expert are: F ≈ 0.0015 and J ≈ 0.0015. Other
parameters are known and are not identified in the experiments. The learning
data set was prepared using mathematical model of the PMSM with known val-
ues of the Jref (const) and Fref . The values of the parameter Fref change in the
three operating points according to the Fig. 1d. The control voltages Vq and Vd

are presented in the Fig. 1a. The goal of the experiment is reproduction of the
reference values ωref , Irefd and Irefq with the smallest error measure (RMSE). It
is done by discovering the moment of inertia J (constant) and friction coefficient
F values in the entire work area by the identification of the nonlinear stationary
object in all operating points.

Figure 1d presents the discovered characteristic of the parameter F described
by the membership functions μD1(ω), μD2(ω), μD3(ω) of the TS fuzzy system.
Each membership function μDi

(ω) describes the identified operating point Θi.
We select the important inputs from the measured values on the basis of expert’s
knowledge. Figure 1e and f contain the obtained d-axis current Id and q-axis
current Iq. Figure 1b and g, prove the effectiveness of the proposed method. The
identified value of the moment of inertia J = 0.001 does not change in the entire
work area as we expected.

Finally Fig. 2a and b present the progress of the method in the function of the
epochs number. The observed local growth of the error in Fig. 2a is consequence
of the acquisition of the new measurements presented in the Fig. 2b.

7 Conclusions

The proposed method for non-linear modeling using PSO and GA algorithms
obtains very good results. Moreover, modeling of the OP in the form of the fuzzy
rules of TS fuzzy system, provides valuable knowledge for the experts about the
nature of the omitted phenomena. In future works the techniques developed in
this paper will be extended to cope with interpretability aspects [8,21].
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40. Zalasiński, M., Cpa�lka, K.: New algorithm for on-line signature verification using
characteristic hybrid partitions. Adv. Intell. Syst. Comput. 432, 147–157 (2016).
doi:10.1007/978-3-319-28567-2 13
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