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Abstract. In this paper a detail analysis of an improvement of the
Silhouette validity index is presented. This proposed approach is based on
using an additional component which improves clusters validity assess-
ment and provides better results during a clustering process, especially
when the naturally existing groups in a data set are located in very differ-
ent distances. The performance of the modified index is demonstrated for
several data sets, where the Complete–linkage method has been applied
as the underlying clustering technique. The results prove superiority of
the new approach as compared to other methods.
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1 Introduction

Clustering aims at grouping data into homogeneous subsets (called clusters),
inside which elements are similar to each other and dissimilar to elements of
other clusters. The purpose of clustering is to discover natural existing struc-
tures in a data set. These techniques are widely used in various fields such as
pattern recognition, image processing, data exploration, etc. It should be noted
that due to a large variety of data sets different clustering algorithms and their
configurations are formed. Generally, among clustering methods two major cat-
egories are distinguished: partitioning and hierarchical clustering. Partitioning
clustering relocates elements of a data set between clusters iteratively until a
given clustering criterium is obtained. For example, the well-known algorithms of
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this type include K-means and its variations [5,24] or Expectation Maximization
(EM) [19]. On the other hand, hierarchical clustering is based on the agglomer-
ative or divisive approach. The method known as the agglomerative hierarchical
clustering starts from many clusters, which are then merged into larger ones until
only one cluster has been formed. However, the divisive clustering methods start
from a single cluster, which includes all elements of a data set, and then it is split
into smaller clusters. For instance, well-known agglomerative hierarchical clus-
tering methods include the Single-linkage, Complete-linkage or Average-linkage
[16,20,25]. Nowadays, a large number of new clustering algorithms appears, e.g.,
[13,14]. But, for a wide variety of data sets a single clustering algorithm pro-
ducing optimal data partitions does not exist. Moreover, the same clustering
algorithm can also create different partition schemes of data depending on the
choice of input parameters. Thus, the question asking how to find the best fit of
a partition scheme to a data set is still very relevant.

The process of evaluation of partitioned data is a very difficult task and it
is known as cluster validation. In this evaluation process, an estimation of the
occurrence of the right clusters is very frequently realized by validity indices. In
the literature on the subject, cluster validation techniques are often classified
into three groups–external, internal and relative validation [16,31]. The external
validation techniques are based on previous knowledge about data. On the other
hand, the internal methods use only the intrinsic properties of the data set. The
relative techniques compare partition schemes of a data set, which are created by
changing values of input parameters of a clustering algorithm. The key parameter
for many clustering methods is the number of clusters and this is most frequently
changed. Next, the partitions are compared, i.e. depending on the approach used,
the maximum or the minimum value of a validity index is used to determine
the best fit of a partition scheme to the data set. So far, a number of authors
have proposed different validity indices or modifications of existing indices, e.g.,
[1,11,12,15,17,18,32,36]. In the literature new interesting solutions for cluster
evaluation are constantly suggested. For example, a stability index based on
variation on some information measures over partitions generated by a clustering
model is in [23], a new measure of distances between clusters is proposed in [30].
Papers [33,37] present indices which use the knee-point detection. It should be
noted that cluster validity indices such as, e.g., the Dunn [10], Davies-Bouldin
(DB) [8], PBM [21] or Silhouette (SIL) [26] indices are very frequently used
to evaluate the efficacy of the new proposed validity approaches in detecting
the right data partitioning. It is important to note that clustering algorithms in
conjunction with cluster validity indices can be used during a process of designing
various neural networks [2–4] and neuro-fuzzy structures [6,7,9,27–29].

In this paper, an improvement of the Silhouette index is described. For
this purpose the new versions of this cluster validity index called the SILA
and SILAv1 have been presented. The first version of the index, i.e. SILA is
described in paper [34]. The next version is called SILAv1 and it uses an expo-
nent defined by (9). A detailed explanation of the modifications involving the
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use of the component is presented in Sect. 2. In order to present effectiveness of
the validity indices several experiments were performed for various data sets.

This paper is organized as follows: Sect. 2 presents a detailed description
of the Silhouette index and an explanation of the proposed modifications of
this index. Section 3 illustrates experimental results on data sets. Finally, Sect. 4
presents conclusions.

2 Improvement of the Silhouette Index

First, in this section the Silhouette index is described in more detail. Next, a
modification of the index and an explanation of this change are presented.

2.1 The Detail Description of the Silhouette Index

Let us denote K-partition scheme of a data set X by C = {C1, C, ..., CK}, where
Ck indicates kth cluster, k = 1, ..,K. Cluster compactness is measured based on
a mean of within-cluster distances. The average distance a(x) between element
x and the other elements xk belonging to the same cluster is defined as:

a(x) =
1

nk − 1

∑

xk∈Ck

d (x,xk) (1)

where nk is the number of elements in Ck and d (x,xk) is a function of the
distance between x and xk.

Furthermore, the mean of distances of x to the other elements xl belonging
to cluster Cl, where l = 1, ...,K and l �= k, can be written as:

δ(x,xl) =
1
nl

∑

xl∈Cl

d (x,xl) (2)

where nl is the number of elements in Cl. Thus, the smallest distance δ(x,xl)
can be defined as:

b(x) =
K

min
l,k=1
l �=k

δ(x,xl) (3)

The so-called silhouette width of element x can be expressed as follows:

S(x) =
b(x) − a(x)

max (a(x), b(x))
(4)

Finally, the Silhouette (SIL) index is defined as:

SIL =
1
n

∑

x∈X

b(x) − a(x)
max(a(x), b(x))

(5)

where n is the number of elements in the data set X.
The value of the index is from the range −1 to 1 and a maximum value (close

to 1) indicates the right partition scheme. Unfortunately, the index can detect
incorrect data partition if differences between cluster distances are large [34].
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2.2 Modification of the Silhouette Index

As mentioned above the modification of the Silhouette index was proposed in
paper [34] and it involves using an additional component A(x), which corrects
values of the index. Thus, the new index, called the SILA index, in that paper
was defined as follows:

SILA =
1
n

(
∑

x∈X

(S(x) · A(x))

)
(6)

where the S(x) is the silhouette width (Eq. (4)), whereas the additional com-
ponent A(x) was expressed as:

A(x) =
1

(1 + a(x))
(7)

or it can be written as follows:

A(x) =
1

(1 + a(x))q
(8)

where the exponent q = 1.
Note that the value of exponent q = 1 can be insufficient for large difference

of distances between clusters. Hence, the new modification of the index includes
the component A(x) in which the q exponent is defined as below:

q = 2 +
K2

n
(9)

where n is the number of elements in a data set. Thus, the new version of the
index so-called SILAv1 can be presented in the following way:

SILAv1 =
1
n

(
∑

x∈X

(
b(x) − a(x)

max (a(x), b(x))
· 1
(1 + a(x))q

))
(10)

where the q is expressed by (9).
This approach can ensure a better performance of this index than that pre-

vious version called the SILA and its efficiency was proved based on the experi-
ments carried out on different data sets. In the next section a detailed explanation
of the modifications involving the use of the additional component is presented.

2.3 Remarks

As mentioned above, the Silhouette index takes values between −1 and 1. Appro-
priate data partitioning is identified by a maximum value of the index, which
can be close to 1. Notice that the definition of the silhouette width can be also
expressed as follows [26]:

S(x) =

⎧
⎪⎨

⎪⎩

1 − a(x)
b(x) if b(x) > a(x)

0 if b(x) == a(x)
b(x)
a(x) − 1 if b(x) < a(x)

(11)
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Here, it is clear that when b(x) is much greater than a(x), the ratio of a(x) to b(x)
is very small, and S(x) is close to 1. But in the modified version of the index, the
SILAv1 (or SILA), the additional component A(x) makes it possible to correct
the value of the silhouette width. In A(x) a measure of cluster compactness
a(x) is used and plays a very important role. For instance, when a clustering
algorithm greatly increases sizes of clusters, the factor a(x) also increases and
the ratio of 1/(1 + a(x))q decreases significantly. It decreases the value of the
index and thus, the large differences of distances between clusters do not affect
the final result so much. This modified silhouette width can be expressed as
follows:

Sm(x) =

⎧
⎪⎪⎨

⎪⎪⎩

(
1 − a(x)

b(x)

)
· 1
(1+a(x))q if b(x) > a(x)

0 if b(x) == a(x)(
b(x)
a(x) − 1

)
· 1
(1+a(x))q if b(x) < a(x)

(12)

Let us look at the first situation. When b(x) is greater than a(x), the ratio of
a(x) to b(x) is less than 1 and the value of Sm(x) is positive (see Eq. (12)).
Notice that when the number of clusters K decreases from Kmax to a correct
number of clusters c∗, then the clusters newly created by a clustering algorithm
become larger and the value of a(x) increases. However, the value of a(x) is not
very great and the factor A(x) does not decrease so much. Thus, the value of
Sm(x) increases and it is only slightly reduced by A(x). Generally, for compact
clusters subdivided into smaller ones, when they are merged in larger clusters,
the changes of their compactness and separability are not very significant. On
the other hand, when the number of clusters K is equal to the right number c∗,
the separability of clusters increases abruptly due to relatively large distances
between clusters and now b(x) is much larger than a(x). Hence, when K = c∗,
the component Sm(x) increases considerably. Notice that A(x) does not change
significantly, since the changes of clusters compactness are still small and so a(x)
does not increase so much. Thus, the value of Sm(x) is not considerably reduced
by A(x). In turn, when the number of clusters K < c∗, then cluster sizes can
be really large and now the factor a(x) strongly increases. Consequently, A(x)
decreases significantly and reduces the value of the index. It overcomes problems
with too great differences of distances between clusters, and allows for indication
of the appropriate data partitioning by the validity index.

The other situation takes place when a(x) and b(x) are equal. This means
that it is not clear to which clusters the element should belong. In this case,
the SILAv1 index (or SILA and Silhouette indices) equals 0 (see Eqs. (11)
and (12)). The last situation occurs when the factor a(x) is larger than b(x).
In this case, the values of Sm(x) (or S(x)) are negative. Thus, x should be
assigned to another cluster. Notice that when b(x) is equal to 0, then Sm(x) =
−1/(1 + a(x))q.

As mentioned above, the SILA index uses q = 1. However, such value q can
cause that the A(x) is too small to appropriately correct the silhouette width.
However, when q is too large, the influence of A(x) can be very strong and then
the value of the index greatly decreases. Hence, the issue of the choice of the
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exponent q for A(x) is a very significant problem. The new version of the index
called SILAv1 contains a formula of the change of the exponent q depending on
the number of clusters and it is expressed by (9). It should be noted that in this
definition the important role is played by the ratio K2/n, which makes that for
large K the value of q is greater than 2 (close to 3) and for small K it is close to
2. This approach causes that the index does not obtain too large values for high
K (q is close 3). It is very important because this index is strongly decreased
by the component A(x) with q close to 2 for small K, when values of a(x) are
large. Thus, component A(x) has now a suitable influence on the index and it
makes it possible to overcome the drawback of the Silhouette index, where large
differences of distances between clusters can provide incorrect results. It should
be observed that the new index can take values between 1 and −1/(1 + a(x))q.

In the next section the results of the experimental studies are presented to
confirm effectiveness of this approach.

3 Experimental Results

In this section several experiments were carried out to verify effectiveness of the
new index in detecting correct clusters. The experiments have been conducted on
different data sets using hierarchical clustering. It should be noted that proper
clustering of data is not possible without the knowledge of the right number of
clusters occurring in the given data set. Thus, this parameter is a very important
for most of the clustering algorithms but it is not usually known in advance.
Cluster validity indices are often used to determine this parameter.

The experiments relate to determining the number of clusters in data sets
when the Complete-linkage hierarchical clustering is applied as the underlying
clustering method. In each step this algorithm combines the two clusters with
the smallest maximum pairwise distance. Furthermore, three validity indices, i.e.
the Silhouette (SIL), SILA and SILAv1 are used to indicate the right number of
clusters. Note that the best range of the number of clusters for data clustering
analysis should be varied from Kmax =

√
n to Kmin = 2 [22]. However, for

the hierarchical clustering the number varies from Kmax = n to Kmin = 2. To
show the efficacy of the proposed approaches the values of validity indices are
also presented on the plots, where the number of clusters was from the range
Kmax =

√
n to Kmin = 2. Moreover, it is assumed that the values of the validity

indices are equal to 0 for K = 1.
In all the experiments the Weka machine learning toolkit [35] has been used,

where the Euclidean distance and the min-max data normalization have been
also applied.

3.1 Data Sets

Eight generated artificial data sets are used in the experiments. These data con-
sist of various cluster structure, densities and dimensions. For instance, the first
four of them called Data 1, Data 2, Data 3 and Data 4 are 2- dimensional with
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3, 5, 8 and 15 clusters, respectively. The scatter plot of these data is presented in
Figs. 1 and 2. Additionally, Table 1 shows a detailed description of all these arti-
ficial data. As it can be observed on the plots the distances between clusters are
very different and some clusters are quite close. Generally, clusters are located
in groups and some of clusters are very close and others quite far. Moreover, the
sizes of the clusters are different and they contain various number of elements.
Hence, many clusters validity indices can provide incorrect partitioning schemes.

Table 1. Detailed description of the artificial data sets

Data sets No. of elements Features Classes No. of elements per class

Data 1 300 2 3 50,100,150

Data 2 170 2 5 10,20,30,50,60

Data 3 495 2 8 25,30,50,50,60,80,100,100

Data 4 429 2 15 31,39,38,18,29,30,32,27,10,39,22,27,39,20,28

Data 5 550 3 4 100,100,150,200

Data 6 820 3 6 100,100,100,150, 170,200

Data 7 800 3 7 70,80,100,100,100, 150,200

Data 8 460 3 9 30,30,40,40,50,50, 50,70,100

Experiments. The hierarchical Complete-linkage method as the underlying
clustering method was used for partitioning of these data. In Figs. 3 and 4 a
comparison of the variations of the Silhouette, SILA and SILAv1 indices with
respect to the number of clusters are presented. As mentioned above, on the plots
the maximal value of the number of clusters Kmax is equal to

√
n and values

of the validity indices are equal 0 for K = 1. It can be seen that the SILAv1
index provides the correct number of clusters for all the data sets. However,
the previous index SILA indicates incorrect partition schemes for two sets, i.e.,
Data 3 and Data 6. On the contrary, the Silhouette index incorrectly selects all
partitioning schemes and this index mainly provides high distinct peaks when
the number of clusters K = 2. This means that when the clustering method
combines clusters into larger ones and differences of distances between them are
large, influence of the separability measure is significant and consequently, this
index provides incorrect results. On the other hand, despite the fact that the
differences of distances between clusters are large, the SILAv1 index provides
the correct partitioning for all these data. Notice that the component A(x) (in the
SILAv1 or SILA indices) poorly reduces values of this index when the number
of clusters K > c∗, because then they are not so large and have a compact
structure.

4 Conclusions

As mentioned above, the Silhouette index can indicate an incorrect partition-
ing scheme when there are large differences of distances between clusters in a
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Fig. 1. 2-dimensional artificial data sets: (a) Data 1, (b) Data 2, (c) Data 3, and (d)
Data 4
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Fig. 2. 3-dimensional artificial data sets: (a) Data 5, (b) Data 6, (c) Data 7, and (d)
Data 8
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Fig. 3. Variations of the Silhouette, SILA and SILAv1 indices with respect to the
number of clusters for 2-dimensional data sets: (a) Data 1, (b) Data 2, (c) Data 3, and
(d) Data 4 partitioned by the Complete-linkage method.
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Fig. 4. Variations of the Silhouette, SILA and SILAv1 indices with respect to the
number of clusters for 3-dimensional data sets: (a) Data 5, (b) Data 6, (c) Data 7, and
(d) Data 8 partitioned by the Complete-linkage method.
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data set. Consequently, to improve the index performance and to overcome the
drawback, a change of the index has been proposed. It is based on the use of
the additional component, which contains a measure of cluster compactness.
The value of this measure increases when a cluster size increases considerably.
Hence, the additional component decreases and it reduces the high values of the
index caused by large differences between clusters. As the underlying clustering
algorithms the Complete-linkage was selected to investigate the behaviour of the
proposed validity indices. The conducted tests have proven the advantages of
the proposed SILA and SILAv1 indices compared to the Silhouette index. In
these experiments, several data sets were used and the number of clusters var-
ied within a wide range. All the presented results confirm high efficiency of the
SILAv1 index.
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