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Abstract. Automatic localization and labeling of vertebra in 3D med-
ical images plays an important role in many clinical tasks, including
pathological diagnosis, surgical planning and postoperative assessment.
However, the unusual conditions of pathological cases, such as the abnor-
mal spine curvature, bright visual imaging artifacts caused by metal
implants, and the limited field of view, increase the difficulties of accurate
localization. In this paper, we propose an automatic and fast algorithm
to localize and label the vertebra centroids in 3D CT volumes. First,
we deploy a deep image-to-image network (DI2IN) to initialize verte-
bra locations, employing the convolutional encoder-decoder architecture
together with multi-level feature concatenation and deep supervision.
Next, the centroid probability maps from DI2IN are iteratively evolved
with the message passing schemes based on the mutual relation of ver-
tebra centroids. Finally, the localization results are refined with sparsity
regularization. The proposed method is evaluated on a public dataset
of 302 spine CT volumes with various pathologies. Our method outper-
forms other state-of-the-art methods in terms of localization accuracy.
The run time is around 3 seconds on average per case. To further boost
the performance, we retrain the DI2IN on additional 1000+ 3D CT vol-
umes from different patients. To the best of our knowledge, this is the
first time more than 1000 3D CT volumes with expert annotation are
adopted in experiments for the anatomic landmark detection tasks. Our
experimental results show that training with such a large dataset signif-
icantly improves the performance and the overall identification rate, for
the first time by our knowledge, reaches 90%.
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Fig. 1. Demonstration of pathological cases. (a) Surgical metal implants (b) Spine
curvature (c) Limited FOV

1 Introduction

Automatic localization and labeling of vertebrae in 3D spinal imaging, e.g. com-
puted tomography (CT) or magnetic resonance imaging (MRI), has become an
essential tool for clinical tasks, including pathological diagnosis, surgical plan-
ning and post-operative assessment. Specific applications such as vertebrae seg-
mentation, fracture detection, tumor detection, registration and statistical shape
analysis can also benefit from the effective vertebrae detection and labeling algo-
rithms. However, there are many challenges associated with designing an accu-
rate and automatic algorithm, which arise from pathologies, image artifacts, and
the limited field-of-view (FOV). For example, as shown in Fig. 1, the abnormal
spine curvature and surgical metal implants significantly alter the appearance of
vertebrae and reduce the image contrast. Spine-focused scans with small field-
of-view (FOV) also add difficulty to the identification tasks due to lack of global
spatial and contextual information.

To address these challenges, many approaches have been proposed for auto-
matic localization and identification of vertebrae. Glocker et al. [1] presented
a method based on regression forests and probabilistic graphic models. How-
ever, their method is likely to suffer from the narrow field-of-view because the
broad contextual information is not always available. To overcome this limita-
tion, Glocker et al. [2] proposed a randomized classification forest based app-
roach which achieved reasonable localization and identification performances on
pathological cases and those with limited FOV. Recently, deep learning has been
employed in the applications of spine detection. Chen et al. [3] presented a joint
convolutional neural network (J-CNN). This hybrid approach used a random
forest classifier to coarsely localize the candidates before the J-CNN scanned
the input CT volume for final results. By incorporating the pairwise informa-
tion of neighboring vertebrae in J-CNN, it outperformed other methods [2].
Suzani et al. [4] proposed a deep feed-forward neural network to detect if an
input image contained a specific vertebra. Although this work achieved high
detection rates, it reported a large mean localization error compared with other
works. Besides, instead of the direct 3D volumetric input, this work extracted
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Fig. 2. Proposed method which consists of three major components: deep Image-to-
Image Network (DI2IN), message passing and sparsity regularity.

1D features based on the local voxel intensities as the input of deep feed-forward
neural network. In addition, no convolution or pooling operation was applied in
the network. Payer et al. [5] proposed a composite neural network to build up
the full connection between response maps of all landmarks with convolutional
kernels. The spatial relationship of landmarks were implicitly embedded in the
CNN model.

In order to overcome these limitations and to take advantage of deep
neural networks, we present an approach, shown in Fig. 2, with the following
contributions:

(a) Deep Image-to-Image Network (DI2IN) for Voxel-Wise Regression
Without extracting features from input images, the proposed deep image-to-
image architecture directly takes a 3D CT volume as input. The training of
the proposed network is designed as multichannel voxel-wise regression (refer
to Sect. 2.1). It generates the multichannel probability maps associated with
different vertebra centers, which intuitively illustrate the location and label
of vertebrae. Our neural network requires no coarse classifiers to remove the
outliers for preprocessing. Instead, it automatically extracts contextual and
spatial information by itself. By taking the advantage of fully convolutional
implementation, the proposed network is significantly time-efficient, which
sets it apart from the sliding window approaches.

(b) Response Enhancement with Message Passing
Although the proposed deep image-to-image network generates confident
probability maps, there is no guarantee that it will avoid false positives (out-
liers) due to the complexity of appearance (shown in Fig. 1). To resolve this
problem, we adopt a message passing scheme within the probability maps of
vertebra centers, which leverages the mutual relation of vertebrae. A chain-
structure graphical model is introduced to depict the spatial relationship.
Each node in the model represents a probability distribution of one verte-
bra center. During the passing scheme, the probability map of each vertebra
center iteratively receives messages (encoded in the convolution operation)
from all neighboring vertebrae (nodes) and absorbs them for further self-
evolvement. The collected messages can not only enhance the response of
correct location, but also suppress that of the false positives.

(c) Refinement Using Sparse Representation
To further refine the coordinates of vertebrae, we incorporate a dictionary
learning and sparse representation approach which utilizes the holistic struc-
ture of the spine and identifies the important set of coordinates. Instead of
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learning a regression model to fit the spinal shape, we simply adopt the coor-
dinates of the spine in the training samples to construct a data dictionary
and formulate this problem as an �1 norm optimization to learn the best
sparse representation. Based on the regularity of the spine shape, ambigu-
ous coordinates are removed and the sparse representation is optimized in
a subspace instead of all coordinates (refer to Sect. 2.2). Finally, the refined
coordinates in each axis are reconstructed from the same subspace jointly,
which further improves the localization and identification performance.

The rest of the paper is organized as follows: In Sect. 2, we introduce our
deep image-to-image network architecture with message passing and refinement
approach. In Sect. 3, the proposed framework is compared to previous state-
of-the-art methods based on a public spine dataset. In Sect. 4, we present the
conclusion and discussion.

2 Methodology

2.1 Deep Image-to-Image Network (DI2IN) for Multiple Landmark
Localization

In this section, we present the proposed deep image-to-image network, which
is multi-layer convolutional, to localize vertebra centroids. As shown in Fig. 3,
the proposed network is deployed in a symmetric manner which can be treated
equivalently as a convolutional encoder-decoder network. It is implemented
in the fashion of voxel-wise end-to-end learning to enable efficient inference.

Fig. 3. Proposed deep image-to-image network (DI2IN). The front part is a convolu-
tional encoder-decoder network with feature concatenation, and the backend is deep
supervision network through multi-level. Numbers next to convolutional layers are the
channel numbers.
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The multichannel ground truth data is specially designed with the coordinates
of vertebra centroid. A Gaussian distribution Igt = 1

σ
√
2π

e−‖x−μ‖2/2σ2
is defined

in each channel to represent the vertebra location. Vector x ∈ R
3 represents the

voxel coordinates in volume, vector μ is the ground truth location of vertebra
centroid. Variance σ2 is pre-defined which controls the scale of the Gaussian dis-
tribution. Each channel’s prediction Iprediction corresponds to a unique vertebra
centroid. It has the same size as the input image. Therefore, the whole learning
problem is formulated as multichannel voxel-wise regression. During the training,
we apply the square loss |Iprediction − Igt|2 for each voxel at the output layer.
We define the centroid detection as a regression task instead of classification.
Because the highly imbalanced data in classification is inevitable and it causes
the misleading classification accuracy.

Convolution, rectified linear unit (ReLU), and max-pooling layers are used in
the encoder part of the proposed network. Pooling is critical as it helps increase
the receptive field of neurons and lower the GPU memory consumption. With
the larger receptive field, more contextual information is taken into considera-
tion for each neuron in different layers. Therefore, the relative spatial position of
vertebra centroids in prediction would be better interpreted. The decoder part is
composed of the convolution, ReLU and upsampling layers. Upsampling layers
are implemented with the bilinear interpolation to enlarge and densify the acti-
vation. It further enables the end-to-end voxel-wise training. The convolutional
filter size is 1×1×1 in the final output layer and 3×3×3 for the other convolu-
tion layers. The max-pooling filter size is 2×2×2. The stride in the convolution
layers is set as 1 to maintain the same size in each channel. The pooling factor
in pooling layers is set as 2 for downsampling by half in each dimension. The
number of channels in each layers are marked next to the layers in Fig. 3. In
upsampling layers, the input features are upsampled by a factor of 2 in x, y, z
directions respectively. The network takes a 3D CT image (volume) as input
and directly outputs multiple probability maps, with each map associated with
one vertebra landmark (equivalent to vertebra centroid). The framework is more
efficient at computing the probability maps as well as the centroid locations than
the patch-wise classification or regression methods in [3,4].

Our DI2IN adopts several prevailing techniques [6–8,10,11] with necessary
modification. We utilize the feature layer concatenation in DI2IN which is anal-
ogous with the one described in [7]. The shortcut bridges are built up directly
from the encoder layers to decoder layers. It passes forward the feature maps
from the encoder and is then concatenated with the decoder feature layers. The
concatenated features are used as the input for next convolution layers. Fol-
lowing the concatenation, high and low level features are combined explicitly
so that the network benefits from both the local and global contextual informa-
tion. Deep supervision in neural network during the end-to-end training is shown
in [8,10,11] to achieve excellent boundary detection and segmentation results.
In the network, we introduce a more sophisticated deep supervision method to
improve the performance. Several branches are bifurcated out from the main net-
work from the intermediate layers of the decoder part. With proper upsampling
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factors and convolution operations, the output size of each channel of all branches
matches the size of the input image. The supervision is introduced at the end
of each branch i by computing a loss term li with the same ground truth data.
To further leverage the results from different branches, the final output is deter-
mined by the convolution operation of output concatenation of all branches with
ReLU. The total loss ltotal is a combination of loss terms from all output layers
which includes the output layers from all branches and the final output layer, as
shown here:

ltotal =
∑

i

li + lfinal

2.2 Probability Map Enhancement with Message Passing Scheme

Given the image I, the DI2IN generates one probability map P (vi|I) for the
center of each individual vertebra i with high confidence. The vertebrae will be
located at the peak positions vi of probability maps. However, we find that these
probability maps are not perfect yet: some probability maps don’t have response
or have very low response at the ground truth locations because of similar image
appearances of several vertebrae (e.g. T1–T12). In order to handle the problem
of missing response, we propose a message passing scheme to effectively enhance
the probability maps by utilizing the prior knowledge of the spine structure.

The concept of message passing was first introduced in the context of prob-
abilistic graphical models. It is used in the sum-product or max-product algo-
rithms for exact inference of the marginal probabilities of nodes or the distrib-
ution mode in a tree-structured graph. Messages are passed iteratively between
neighboring nodes to exchange information and optimize the overall probabil-
ity distribution. Similarly, we introduce an MRF-like model, a chain-structure
graph shown in Fig. 4, to express the spatial relationship among vertebrae, where
each node in the graph represents one vertebra center vi. Then we propose the
following formulation to update the P (vi|I) during the iteration t of message
passing.

Pt+1 (vi|I) =
1
Z

[
α ·

∑
j∈∂i mj→i

|∂i| + Pt (vi|I)
]

(1)

=
1
Z

[
α ·

∑
j∈∂i Pt (vj |I) ∗ k (vi|vj)

|∂i| + Pt (vi|I)
]

(2)

where ∂i is the neighbor of vertebra i in the graph, Z is a normalization con-
stant, and α ∈ (0, 1) is a discounted factor. The messages mj→i, defined as
Pt (vj |I) ∗ k (vi|vj), are passed along the chain shown in Fig. 4. ∗ is the convolu-
tion operation. k (vi|vj) is a single convolution kernel which is learned from the
ground truth distribution of vertebra i, j. Multi-dimensional convolution itself
is capable to shift the mass of the probability map Pt (vi|I) to its neighborhood
with a fixed orientation (kernel). If Pt (vi|I) is confident at its correct location,
then the message mj→i would be a strong prior for Pt+1 (vj |I) at the correct
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Fig. 4. (a) Chain-structure model for vertebra centers; (b) One iteration of message
passing (landmarks represents vertebra centers): the neighbors’ landmark probability
maps help compensate the missing response of landmark i.

location of the vertebra j. After several iterations of message passing, the ver-
tebra with missing response can be compensated with the aggregated messages
from its neighboring vertebrae. The underlying assumption is that majority of
the vertebra probability maps are confident and well distributed around the true
locations, which is guaranteed by the powerful DI2IN in our method. The advan-
tage of the proposed scheme is that it can be concatenated into the DI2IN for
further end-to-end training (fine-tuning) when the iteration number is fixed. The
location of each vertebra centroid can simply be determined by the location of
the maximum value in the corresponding probability map.

Several recent works have deployed the message-passing concept for different
landmark detection tasks. Chu et al. [12] proposed the passing scheme between
the feature maps instead of landmark probability maps. Yang et al. [9] intro-
duced a fully connected graphical model for message passing between probabil-
ity maps. The hand-crafted features were adopted in the pair-wise terms of the
messages. Payer et al. [5] also brought up the fully connected graphical model,
applying one-time passing with pixel-wise dot-product for noise cancelling. In
our proposed method, the passing is directly among the response maps along
the chain-structure model. The response maps are gradually enhanced within
several passing iterations, since one passing is not enough to make necessary
adjustment for probability maps. Compared to the hand-craft features, the single
convolutional kernel is eligible to generate messages between neighbors because
the designed neighborhood is compact. In our framework, the missing response
is the major issue instead of the noisy output, so the dot-product operation is
not applicable and may hurt the output probabilities.

2.3 Sparse Representation for Landmark Refinement

As shown in Fig. 5, the DI2IN with message passing generates a clear probabil-
ity map, where the high probability map indicates the potential location of the
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Fig. 5. Left: CT image. Middle: output of one channel from the network. Right: overlaid
display. The prediction in (a) is close to ground truth location. In (b), a false positive
response exists remotely besides the response at the correct location.

landmark (centroid of the vertebrae). However, sometimes due to image arti-
facts and low image resolution, it is still difficult to guarantee there will be no
false positive. In [3], a shape regression optimization model was used to refine
the predicted vertebral centroids in the vertical axis. By minimizing an energy
function, the optimized parameters are learned for each test sample to deter-
mine the final coordinates of vertebrae. However, their model assumes that the
coordinates distribution can be described in a quadratic form, and it was only
applied for coordinates in the vertical axis.

Inspired by the previous works in sparse representation, we propose an �1
norm approach to help refine the coordinates in all x, y and z axes. Given a
pre-generated shape-based dictionary D and the predicted coordinates vector of
all centroids v in a testing sample, we adopt the �1 norm optimization to solve
the sparse coefficient vector a. The refined coordinates v̂ is defined as v̂ = Da.
In particular, the shape-based dictionary is learned from the training samples.
For example, the dictionary Dz associated with the vertical axis is constructed
by the z coordinates of all centroids of each sample in the training database. vz

denotes the predicted z coordinates of one sample in the testing database. The
dictionaries Dx and Dy indicate the dictionaries associated with other axes and
are learned in the same way.

The details are shown in Algorithm1. First, we use dynamic programming
to find the maximum descending subsequence in the predicted coordinates vz

since the vertical axis of the spine produces the most stable results. We define
the subspace S of dictionary and the predicted coordinates vector based on
the indices in the subsequence. For example, we only choose the atoms from
dictionary Dz and vz associated with the indices to generate a sub-dictionary
Dz,S and sub-vector vz,S . Then we solve the optimization problem in Step 3
for x, y and z axes individually in the subspace S instead of the original space
S0. Finally, all coordinates are reconstructed by the original dictionary (i.e.,
Dz) and sparse vector (i.e., az). Intuitively, we remove the ambiguous outliers
in the preliminary predicted coordinates and then define a subspace without
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Algorithm 1. The �1 Norm Refinement
Require: The dictionary Dx, Dy and Dz ∈ R

M×N , the predicted coordinates vector
vx, vy and vz and the coefficient λ. M and N indicate the number of landmarks
and size of items in dictionary, respectively.

1: Find the maximum descending subsequence in the predicted coordinates vz by
dynamic programming.

2: Add the indices associated with the maximum descending subsequence into the
set S and define the subspace of the dictionary Dx,S , Dy,S , and Dz,S and the
predicted coordinates vx,S , vy,S and vz,S .

3: Solve the optimization problem below by �1 norm recovery for the vertical axis z:

min
az

1
2
||vz,S − Dz,Saz||22 + λ||az||1.

4: Solve the same optimization problem in Step 3 for vx,S and vy,S , respectively.
5: Return the refined coordinates v̂x = Dxax, v̂y = Dyay and v̂z = Dzaz .

Fig. 6. Maximum errors of vertebra localization before and after the �1 norm
refinement.

these outliers. Based on the subspace, we find the best sparse combination in
the corresponding sub-dictionary. By taking advantage of the original dictionary,
all coordinates are reconstructed and refined simultaneously as shown in Fig. 6.

3 Experiments

First, we evaluate the proposed method on the database introduced in [2] which
consists of 302 CT scans of patients with varying types of pathologies. There are
several unusual appearances in the database, such as the abnormal spine cur-
vature and the bright visual artifacts caused by metal implants from the post-
operative procedures. In addition, the field-of-view (FOV) of each CT image
varies widely in terms of vertical cropping, image noise and physical resolu-
tion [1]. Most cases contain a portion of whole vertebrae while the global spine
structure is visible only in a few cases. The large variations in pathologies and
the limited FOV increase the complexity of vertebra appearance, and thus raise
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the difficulties of accurate spine localization and identification task. The ground
truth is marked at the centroid of each vertebra, which is annotated by clini-
cal experts. In previous works [1,3,4], there are two different settings on these
302 CT images: the first one uses 112 of the images as training and another
112 images as testing; the second one takes all images (242) in setting one with
extra 18 images as training data and an additional 60 images as testing data.
For a fair comparison, we follow the same database settings in our experiments.
They are denoted as “Set 1” and “Set 2” respectively. We follow the evaluation
metrics described in [2], in terms of the Euclidean distance error (in mm) and
identification rates (Id.Rates) defined in [1]. Table 1 compares our evaluation
performance with the number reported by previous approaches [2–4]. We obtain
an overall average mean error of 9.1 mm and 8.6 mm and an identification rates
of 80% and 85% on those two sets, respectively. Overall, our method outperforms
the state-of-the-art methods on the same datasets in terms of mean error and
identification rates.

It is well known that deep neural networks have the capability to represent
the variations of a large amount of data. With large amounts of annotated data
in the training, the deep neural network can usually achieve better performance
on various tasks. In order to validate if more training data can boost the per-
formance of the proposed method, we introduce additional 1000+ CT scans of
patients into the training samples and train our proposed model again from
scratch. These data cover large variations in populations and contrast phases
which are collected for various purposes. Most cases have a large FOV and
include all the vertebrae. Some scans are extended to the knee and head. The
testing data is not changed in all experiments. This pipeline is denoted as “Our
Method+1000 training data”. As shown in Table 1, the experimental results
demonstrate that the large amount of training samples can further improve the
performance significantly. Our approach has achieved the best performance in
almost all the metrics. On “Set 1”, the Id. Rates of our method is 13% higher
than the state-of-the-art method [2]. We also achieve more than 90% Id. Rates
on “Set 2”, which is 6% higher than the state-of-the-art method [3].

All experiments are conducted on a workstation equipped with an Intel
3.50 GHz CPU and a 12 GB Nvidia Titan X GPU. During the evaluation, the
response maps of all output channels are compared with a heuristic threshold
constant in an element-wise manner in order to distinguish valid response from
random noise. Only the channels whose response maps contain elements with
value greater than the threshold are considered. The vertebra centroids asso-
ciated with these channels are then identified to be present in the image. The
landmarks corresponding to the other response maps are considered as non-
presented. The localization and identification of all vertebrae in one case is
achieved simultaneously in an efficient way. The testing time of our method is
around three seconds per case on average assisted with the GPU. The experimen-
tal results demonstrate that our proposed method for spine centroids localization
and identification is not only effective in terms of accuracy, but also significantly
time-efficient.
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Table 1. Comparison of localization errors in mm and identification rates among
different methods. “Set 1” has 112 CT images for training and 112 images for testing.
“Set 2” uses all data in “Set 1” with extra 18 images for training and 60 images
for testing. Our Method (DI2IN+MP+Sparsity) is trained and tested using default
data setting in “Set 1” and “Set 2”, while “+1000” indicates this model is trained
with additional 1000 images and evaluated on the same testing data. Evaluation of
results after each step are also listed for comparison, which shows that they improve
the performance. “MP” and “Sparsity” denote message passing scheme and sparsity
regularization respectively.

Region Method Set 1 Set 2

Mean Std Id.Rates Mean Std Id.Rates

All Glocker et al. [2] 12.4 11.2 70% 13.2 17.8 74%

Suzani et al. [4] 18.2 11.4 - - - -

Chen et al. [3] - - - 8.8 13.0 84%

DI2IN 17.0 47.3 74% 13.6 37.5 76%

DI2IN+MP 11.7 19.7 77% 10.2 13.9 78%

DI2IN+MP+Sparsity 9.1 7.2 80% 8.6 7.8 85%

DI2IN+1000 10.6 21.5 80% 7.1 11.8 87%

DI2IN+MP+1000 9.4 16.2 82% 6.9 8.3 89%

DI2IN+MP+Sparsity+1000 8.5 7.7 83% 6.4 5.9 90%

Cervical Glocker et al. [2] 7.0 4.7 80% 6.8 10.0 89%

Suzani et al. [4] 17.1 8.7 - - - -

Chen et al. [3] - - - 5.1 8.2 92%

DI2IN+MP+Sparsity 6.6 3.9 83% 5.6 4.0 92%

DI2IN+MP+Sparsity+1000 5.8 3.9 88% 5.2 4.4 93%

Thoracic Glocker et al. [2] 13.8 11.8 62% 17.4 22.3 62%

Suzani et al. [4] 17.2 11.8 - - - -

Chen et al. [3] - - - 11.4 16.5 76%

DI2IN+MP+Sparsity 9.9 7.5 74% 9.2 7.9 81%

DI2IN+MP+Sparsity+1000 9.5 8.5 78% 6.7 6.2 88%

Lumbar Glocker et al. [2] 14.3 12.3 75% 13.0 12.5 80%

Suzani et al. [4] 20.3 12.2 - - - -

Chen et al. [3] - - - 8.4 8.6 88%

DI2IN+MP+Sparsity 10.9 9.1 80% 11.0 10.8 83%

DI2IN+MP+Sparsity+1000 9.9 9.1 84% 7.1 7.3 90%

4 Conclusion

In this paper, we proposed an effective and fast automatic method to localize
and label vertebra centroids in 3D CT volumes. Our method outperforms other
state-of-the-art methods of spine labeling in terms of various evaluation metrics.
For the future study, we plan to investigate various DI2IN architectures (e.g.
ResNet) and other sophisticated refinement approaches to further improve the
localization and identification performance.
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Disclaimer: This feature is based on research, and is not commercially available.
Due to regulatory reasons its future availability cannot be guaranteed.

References

1. Glocker, B., Feulner, J., Criminisi, A., Haynor, D.R., Konukoglu, E.: Automatic
localization and identification of vertebrae in arbitrary field-of-view CT scans. In:
Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol.
7512, pp. 590–598. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33454-2 73

2. Glocker, B., Zikic, D., Konukoglu, E., Haynor, D.R., Criminisi, A.: Vertebrae
localization in pathological spine CT via dense classification from sparse anno-
tations. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI
2013. LNCS, vol. 8150, pp. 262–270. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40763-5 33

3. Chen, H., Shen, C., Qin, J., Ni, D., Shi, L., Cheng, J.C.Y., Heng, P.-A.: Auto-
matic localization and identification of vertebrae in spine CT via a joint learn-
ing model with deep neural networks. In: Navab, N., Hornegger, J., Wells, W.M.,
Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 515–522. Springer, Cham
(2015). doi:10.1007/978-3-319-24553-9 63

4. Suzani, A., Seitel, A., Liu, Y., Fels, S., Rohling, R.N., Abolmaesumi, P.: Fast
automatic vertebrae detection and localization in pathological CT scans - a deep
learning approach. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.)
MICCAI 2015. LNCS, vol. 9351, pp. 678–686. Springer, Cham (2015). doi:10.1007/
978-3-319-24574-4 81
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