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Abstract. Encouraged by the success of CNNs in classification prob-
lems, CNNs are being actively applied to image-wide prediction prob-
lems such as segmentation, optic flow, reconstruction, restoration etc.
These approaches fall under the category of fully convolutional networks
[FCN] and have been very successful in bringing contexts into learning
for image analysis. In this work, we address the problem of segmen-
tation from medical images. Segmentation or object delineation from
medical images/volumes is a fundamental step for subsequent quantifi-
cation tasks key to diagnosis. Semantic segmentation has been popularly
addressed using FCN (e.g. U-NET) with impressive results and has been
the fore runner in recent segmentation challenges. However, there are
a few drawbacks of FCN approaches which recent works have tried to
address. Firstly, local geometry such as smoothness and shape are not
reliably captured. Secondly, spatial context captured by FCNs while giv-
ing the advantage of a richer representation carries the intrinsic drawback
of overfitting, and is quite sensitive to appearance and shape changes.
To handle above issues, in this work, we propose a hybrid of generative
modeling of image formation to jointly learn the triad of foreground (F),
background (B) and shape (S). Such generative modeling of F, B, S would
carry the advantages of FCN in capturing contexts. Further we expect
the approach to be useful under limited training data, results easy to
interpret, and enable easy transfer of learning across segmentation prob-
lems. We present ∼8% improvement over state of art FCN approaches
for US kidney segmentation and while achieving comparable results on
CT lung nodule segmentation.

1 Introduction

Convolutional neural networks (CNNs) [7,10,14,18] have proven to be very
successful in a wide range of visual tasks such as classification, recognition,
characterization, tracking and segmentation. CNNs provide effective models for
above vision learning tasks by incorporating spatial context and weight shar-
ing between pixels across several hierarchical layers. Currently, CNNs are being
actively applied to image-wide prediction problems such as segmentation [16],
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optic flow [8], reconstruction [12], restoration [5] etc. These approaches fall under
the category of fully convolutional networks [FCN] and have been very success-
ful in bringing contexts into learning for image analysis. Models based on FCN
have now been applied successfully to various 2D/3D medical image segmen-
tation problems (e.g. U-NET, [17]). FCNs have a few drawbacks which recent
works have tried to address. Firstly, local geometry such as smoothness and
topology are not reliably captured. Secondly, there is noticeable need for enough
of representative training data to learn the multiple entities: foreground, back-
ground, shape, and the contextual interactions of above entities. With limited
or not enough training data, failures are hard to interpret and it is not easy
to handpick training data that can improve performance. Finally, it is hard to
transfer weights learnt from FCN to new problems since the above entities are
abstractly tied to each other for the current problem. The problem of local geom-
etry was addressed recently in [2] imposing smoothness and topology priors for
a multi-labeling problem of histology segmentation. Next, the problem of over-
fitting is tackled in [6], using parameter reduction due to very Deep networks
with skip level connections, motivated by ResNets [9].

In this work, we propose an alternative refinement to the FCN framework
compared to the above enhancements [2,9]. Segmentation and motion track-
ing using foreground/background modeling has a rich history e.g. [4,13] using
DCNN, see survey [3] for traditional approaches. For example, in [13], a multi-
stage FCN is proposed to integrate appearance and motion cues for crowd seg-
mentation. Both appearance filters and motion filters are pre-trained stage-by-
stage and then jointly optimized to give improved accuracy. Inspired by the
above class of methods, we propose a novel approach to enhance FCN segmen-
tation using a generative modeling of the triad of F, B and S. There are three
distinct advantages from the proposed FCN framework: Firstly, by modeling
the appearance F, B, challenging scenarios such as non-linear shading effects,
artifacts, and loss of contrast are factored out leaving the learning and predic-
tion of S more robust. Secondly, domain specific tuning of networks (e.g. data
augmentation, complexity of the network) corresponding to F, B and S makes
it easier to control the number of parameters and hence over fitting. Finally,
weights corresponding to either of F, B and S models can be easily transferred
across applications. We look at a few innovative FCN network architectures and
loss functions to achieve the above. Broadly speaking, we consider three parallel
FCN networks, each modeling one of F, B and S. Analogous to multi-task learn-
ing (e.g. [11,15]), the models are jointly learnt using weight sharing and through
a novel loss function that ties the outputs together. Figure 1 shows the input
image and also the predicted foreground, background texture and segmented
shape from a longitudinal ultrasound B-mode scan of adult kidney.

For our experiments, we consider the applications of kidney segmentation
from 2-D ultrasound images and 3-D CT lung nodule segmentation. Both the
applications are clinically relevant and have varying challenges as explained in
the Results section. We also present quantitative comparisons of our results with
U-NET [17] on the above data. We show that we outperform U-NET by almost
8% on the kidney segmentation problem while achieving marginally higher and
comparable results on lung nodule segmentation.



624 H. Ravishankar et al.

Fig. 1. (a) Input ultrasound B-mode kidney image (b) Synthesized foreground texture
map (c) Synthesized background texture map (d) Predicted segmentation mask

2 Methods

CNNs provide effective models for several vision learning tasks by incorporating
weight sharing between pixels across several hierarchical layers. The last layer
is a fully connected layer whose outputs are used for regression/classification
tasks. For image analysis tasks such as segmentation, one could use CNN in a
sliding window fashion to predict the current pixel to be in the object or not.
But such an approach has the disadvantage of being too slow and not being able
to capture spatial context during pixel predictions.

Extending CNNs for pixel wise predictions are FCNs (e.g. [16,17] that essen-
tially have hierarchical deconvolution layers that work on CNN feature maps
to give an ‘image’ output. Each of these deconvolution layers have connec-
tions with the respective convolution layers to be able to preserve fine detail
while upsampling. FCNs have the advantage of being really fast for pixel predic-
tions being just feed forward operations along with the added utility of bringing
spatial context into the predictions. In standard FCN formulations such as U-
Net [17], given training examples of pairs of images and segmentations masks
Ik, Sk, k = 1, 2, . . . , N , the framework learns a predictor Ŝw[.] defined by para-
meters w that minimizes the training loss e.g. RMSE, 1

N

∑N
k=1 |Sk − Ŝw[Ik]|2.

In our segmentation work, we extend FCNs to jointly model appearance (F
and B) and shape (S). We learn the triad of predictors F̂w1 [.], B̂w2 [.], Ŝw3 [.], Ŝw3 ∈
[0, 1] that minimize the following possibilities for the training loss, FBS1 and
FBS2. Analogous to multi-task learning (e.g. [11,15]), FBS1 can be seen to tie
F, B, S together with shared weights while FBS2 ties the models together using
a loss function that mimics image formation.

In FBS1, we seek shared parameters w1, w2, w3 and Ŝw3 ∈ [0, 1] to minimize:

EFBS1 [w1, w2, w3] =
1
N

N∑

k=1

|F̂w1 [Ik] − Sk.Ik|2 + |B̂w2 [Ik] − (1 − Sk).Ik|2

+ |Ŝw3 [Ik] − Sk|2 + Esmth[Ŝw3 [Ik]] (1)

The first two terms learn the foreground and background predictors respec-
tively. Note that without sharing of weights between w1, w2, w3, the first 3 terms
are independent of each other and the shape predictor is no longer benefited by
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the appearance predictors and the appearance predictors in turn could just learn
the identity mapping. Thus weight sharing is critical for the above formulation.
Esmth is a smoothness prior (e.g. TV norm) on the shape predictor.

For ease of notation, we write e.g. Ŝw3 [Ik] = Ŝk. We look at a second formula-
tion FBS2 mimicing the image formation model. We seek parameters w1, w2, w3

and Ŝw3 ∈ [0, 1] to minimize:

EFBS2 [w1, w2, w3] =
1
N

N∑

k=1

|I − (ŜkF̂k + (1 − Ŝk)B̂k)|2

+ |I − (SkF̂k + (1 − Sk)B̂k)|2 + |Ŝk − Sk|2 + Esmth[Ŝk]
(2)

The first term is the image formation model that ties the predictors F̂ , B̂, Ŝ.
By itself, this term would not make sense since we have 3 unknowns. The 3rd
term seeks a shape predictor Ŝ given the ground truth masks Sk, k = 1, 2, . . . , N .
With just the first and third terms, in the absence of a good initial guess for the
weights w1 and w2, or w3, it would be difficult to converge to good predictors
F̂ , B̂, Ŝ. Thus, we add the second term; since we know the ground-truth mask
Sk, we can use this to derive the foreground/background predictors as shown.

In both FBS1 and FBS2, the predictor Ŝ is influenced by the predictions of
F̂ , B̂ because of shared weights (FBS1) and the choice of loss function (FBS2).
Consequently, the proposed approach is more robust to choice of training data
due to complementarity of the foreground/background/shape predictors. In com-
peting FCN methods such as U-Net, enough of training data is needed to abstract
the foreground/background texture, the shape, and relations of texture with the
shape. As seen in the above illustrative example on simulated data we created
to study FCNs (Fig. 2), U-net has not been able to complete the shape (Green:
Ground truth, Red: Result) in regions of poor contrast or complex background.
FBS1 has been able to complete the shape since the foreground and background
texture models have been jointly learnt with shape.

Fig. 2. Synthetic study example with contrast variation, weak edges and noise. (a)
Input image (b) output of U-net (c) output of FBS1. We see that results are better
with joint appearance/shape modeling (FBS1) (Color figure online)
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3 Architectures

In this section, we explain how we realize the formulations described in previous
sections using interesting FCN architectures. The vanilla U-NET architecture
is shown in Fig. 3, which has become one of the most successful and popular
approaches for medical image segmentation. U-NET is essentially a FCN with
encoder-decoder blocks, with skip-level connections between responses from lay-
ers of the analysis arm to the synthesis arms as shown in Fig. 3.

Fig. 3. U-NET architecture

3.1 Shared Weights Architecture

This architecture is an extension of U-NET with multiple outputs (Fig. 4). We
proceed in the spirit of multi-task CNN learning [11,15], where FCNs are trained
to simultaneously predict F, B and S based on our formulations from Eqs. (1) and
(2). The intuition is that sharing weights for joint texture and shape prediction
can lead to better generalization and robustness.

Fig. 4. Shared weights architecture
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Fig. 5. Parallel architecture

3.2 Parallel Architecture

As discussed in Sect. 2, the weights corresponding to the three terms can be dif-
ferent and the parallel architecture in Fig. 5 attempts to model this scenario. The
motivation for such an architecture can be attributed to the following reasons
- (a) Even though U-NET attempts to get hierarchical, non-linear abstractions
for texture and shape in an implicit fashion, the properties of these terms are
very different and hence intuitively makes sense to model them using parallel
networks. (b) This model also allows us to distribute the number of weights
depending upon complexity of the term, for instance, background being a high
entropy entity can be modeled using more weights than foreground. (c) Trans-
ferability across problems - depending upon tissue characteristics or background
properties for similar, related problems, weights from the arms of relevance can
be selectively transferred. We note that such an architecture may not be suit-
able for FBS1 formulation as there is no single binding term that can jointly
influence learning for F,B, S terms, with the independent parallel network imple-
mentation. However, this architecture is a natural fit for FBS2 formulation, as
it explicitly encodes the image synthesis model while allowing the flexibility to
model the terms separately.

3.3 Implementation Details

We would like to point out that foreground and background texture modeling is
a pixel-wise regression problem, while shape masks prediction is a binary classi-
fication problem. Hence, the output activation units of Figs. 4 and 5 have to be
one of tanh, RelU or linear units for the two texture outputs and a sigmoid func-
tion for the shape term respectively. Note that terms on the FBS1 formulation
from Eq. (1) can have independent optimization metrics - the texture regression
terms can be optimized for variants of L2 norm and the binary shape term can
be optimized using binary cross entropy as done in the baseline U-NET model.
In our implementation, we used tanh units and mean-squared error for output
activation and optimization metric for texture regression, respectively.

We experimented with different variants of dropout including (a) vanilla
dropout - randomly drop inputs and (b) spatial dropout - the new variant of
dropout tailored specifically for convolutional neural networks for zeroing entire
feature maps. Our best results were obtained using spatial dropout, the results
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of which we have reported. All the implementations in this paper also used Batch
Normalization -which can be seen as a regularization technique applied on dif-
ferent layers to maintain their mean activation close to 0 and standard deviation
close to 1. Finally, for a fair comparison, we have ensured that the total num-
ber of weights is roughly same across different implementations (Sect. 4 contains
the details). In the remainder of the paper, we would refer to implementation
and performances of FBS1,2 using shared weight architecture as FBSa

1,2 and
implementation of FBS2 using parallel weight architecture as FBSb

2.

4 Experiments and Results

In this section, we establish the efficacy of our approach on two challenging
medical imaging segmentation problems. One is anatomy segmentation − kidney
segmentation from 2-D ultrasound B-mode images and another problem is 3-D
Lung Nodule segmentation from CT images.

4.1 Lung Nodule Segmentation from 3-D CT

Lung cancer contributes to a large proportion of cancer related fatalities. Like
other cancer types, early detection of nodules through screening procedures is
critical for treatment planning and recovery. Recently, low dose CT (LDCT) scan
has emerged as the standard procedure for lung cancer screening. In addition to
the clinical relevance, technical challenges like wide contrast variation and lack
of clear shape or appearance features make this a challenging problem, which
were amongst the reasons to choose lung nodule segmentation from 3-D LDCT
images as one application for the proposed method.

Data. Lung Image Database Consortium (LIDC-IDRI) [1] contains a collec-
tion 1010 3-D LDCT volumes of patients with lung cancer. We work with a
pre-selected subset of 93 volumes containing 267 lesions on which manual seg-
mentations have been performed, of which 179 lesions were used for training,
and remaining 88 was used for validation.

Table 1. Performance comparison for lung nodule in 3-D CT images

Architecture Dice overlap on validation set in %

U-Net 65.54

FBS1a 66.68

Performance. The main goal of this experiment was to demonstrate the
applicability of our approach to 3-D problems and also to different modalities.
We use Sect. 4.2 to illustrate nuances of our approach, exhaustive comparisons
and intuitions towards generalization, transferability and other properties. For
this problem, we implemented a baseline 6-layer deep U-Net architecture with
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3-D convolution units. We also implemented Architectures FBSa
1 as explained

in Sect. 3 for comparison. We use Dice overlap with ground truth as the per-
formance comparison metric. Table 1 contains the performance comparison. It
should be noted that performance is similar, while shared architecture imple-
mentation of formulation FBS1 has slightly better performance achieving 1%
more than U-NET. All the results are averaged over 5 runs. The comparative
performance should not be surprising given that validation set also comes from
the same population and the problems of overfitting are less critical. Even in
such scenarios, explicit modeling of foreground and background texture adds
value as shown by the marginal increase over vanilla U-NET.

4.2 Kidney Segmentation from U/S B-Mode Images

Automated methods for determining the morphology and size of kidney from
2-D or 3-D ultrasound images have many benefits - accelerated work flow, oper-
ator independence on measurements and improved clinical outcomes. However,
automated kidney segmentation is extremely challenging due to large variability
in kidney shape, weak boundaries and large variation in appearance of internal
regions based on acquisition scan plane. Additionally, shape, size and texture of
the kidney region could vary drastically depending on the age of the subject -
adult or pediatric and healthy or diseased. Another important challenge for the
segmentation algorithm is to work across different scan protocols – every site
can have different probes, acquisition settings including depth, TGC, etc.

Data. The goal of this experiment is to demonstrate the robustness and gener-
alization properties of the proposed approach over the state-of-the-art U-NETs.
We consider two datasets of B-mode kidney images acquired from two differ-
ent scanning sites, which we would refer to as Population 1 and Population 2,
with 108 and 123 images respectively. Population 2 is significantly more diffi-
cult than Population 1 due to the presence of challenging subjects (healthy and
non-healthy), larger age differences and varied probe and acquisition settings.
We train on a subset of Population 1 (60 images) and validate it on the remain-
der of Population 1 (48 images) and the entire Population 2 (123 images). We
compare performances for both the formulations FBS1,2 and for all the different
architecture implementations explained in previous sections.

Performance. We use Dice coefficient as the metric to compare our results
with expert annotated ground truth. Figure 6 shows an illustrative example of
a difficult ultrasound image for kidney segmentation. Multiple lines of shadow,
deep fat layer, weak bottom edge and inconsistent kidney contrast are some
factors that make this case challenging. Figure 6(c) shows the result our app-
roach which achieves a dice overlap of 91% while U-NET result in Fig. 6(b) fails
completely with dice overlap of 61%. Table 2 contains the aggregate results. All
the results reported are averaged over five independent runs for every experi-
ment. It should be noted that architecture FBSa

1 - shared weight architecture
of FBS1 outperforms U-NET by 8% difference. We would also like to highlight
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Fig. 6. Illustrative example on B-mode ultrasound kidney image. (a) Input image (b)
U-NET segmentation result in red (ground truth - green) (c) FBSa

1 segmentation result
in red (ground truth - green) (Color figure online)

Table 2. Performance comparison for kidney segmentation from U/S images

Architecture Dice overlap with ground truth annotations in %

Validation set -
population 1

Population 2 Mean over
population 1 and 2

U-NET 75.90 62.18 66.03

FBSa
1 77.24 72.83 74.06

FBSa
2 75.02 66.28 68.74

FBSb
2 68.98 59.89 62.44

that the difference in performance between U-NET and FBSa
1 on Population

1 is only 1.34%, however on more challenging, completely unseen Population
2, the improvement is 10%. This result clearly establishes the power of fore-
ground, background modeling along with shape leading to better generalization
and lesser over-fitting. Table 2 also shows that shared weight architecture for
our second formulation - FBSa

2 also outperforms U-NET on Population 2 estab-
lishing the power of image synthesis formulations for segmentation. We mention
that for FBS2 in Eq. (2), we have not tuned the weights of relative contributions
of different terms, which means that the cumulative cost could be dominated by
the image synthesis terms than by shape error minimization term, explaining the
lesser performance than FBSa

1 . Further, for the parallel architecture approach
FBSb

2, by enforcing the total number of parameters to be similar to U-Net and
shared architectures (FBSa

1 , FBSb
2), we have reduced the modeling capability of

the S-arm by a factor of 3. This possibly explains the lesser performance of FBSb
2.

Improving the performance through better distribution of weights between the F,
B, S arms along with better relative weighting of the terms, and demonstrating
the value of transferability to related problems will be subject of our future work.

Finally, we show a palette of a few visual examples Fig. 7 for the kidney
data. The second and third columns shown segmentation results from U-Net
and FBSa

1 respectively for the input images (first column). The last two columns
show the predicted foreground and background textures from FBSa

1 . The first
two rows show examples where the proposed approach has done better than
U-net while the third row shows over-segmentation in our approach.
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Fig. 7. A few examples on B-mode ultrasound kidney images. Columns: (a) Input
image (b) U-NET segmentation result in green (ground truth - red) (c) FBSa

1 segmen-
tation result in green (ground truth - red) (d) Synthesized foreground (e) Synthesized
background (Color figure online)

5 Discussion

While U-NET has delivered impressive results on many challenging medical
imaging segmentation tasks, it is still limited in its applicability in clinical appli-
cations because of lack of predictability in its output and correspondingly in its
failure cases. We extend the FCN approaches by constructing a novel objective
function which models texture and shape separately. The disentanglement of dif-
ferent properties allows us deeper insight into the model which in turn enables us
to tune hyper-parameters and regularization approaches in a more meaningful
manner. For instance, we could use shape regularizers only for the shape arm of
the FBSb

2 architecture.
While a range of effective approaches for adding shape priors to traditional

methods exist we find that integrating these methods into deep architectures
poses new challenges. We are currently investigating adding shape priors to
U-NET like architectures through dictionary learning approaches. Initial exper-
iments have shown promise in enforcing smoothness of output and robustness
of results. These characteristics are crucial in clinical applications where inter-
pretability and failure modeling is crucial to technology acceptance.
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