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Abstract. Significant advances have been made towards building accu-
rate automatic segmentation systems for a variety of biomedical applica-
tions using machine learning. However, the performance of these systems
often degrades when they are applied on new data that differ from the
training data, for example, due to variations in imaging protocols. Manu-
ally annotating new data for each test domain is not a feasible solution. In
this work we investigate unsupervised domain adaptation using adver-
sarial neural networks to train a segmentation method which is more
robust to differences in the input data, and which does not require any
annotations on the test domain. Specifically, we derive domain-invariant
features by learning to counter an adversarial network, which attempts
to classify the domain of the input data by observing the activations of
the segmentation network. Furthermore, we propose a multi-connected
domain discriminator for improved adversarial training. Our system is
evaluated using two MR databases of subjects with traumatic brain
injuries, acquired using different scanners and imaging protocols. Using
our unsupervised approach, we obtain segmentation accuracies which are
close to the upper bound of supervised domain adaptation.

1 Introduction

Great advancements have been achieved in machine learning, particularly with
supervised learning algorithms, reaching human-level performance on applica-
tions that a few years ago would be considered extremely challenging. How-
ever, a common assumption in machine learning is that training and test data
are drawn from the same probability distribution [19]. Methods are trained on
data from a source domain DS = {XS , P (XS)}, where XS is a feature space,
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XS = {xS1, . . . , xSn} , xSi ∈ XS the data and P (XS) the marginal distribution
that their features follow. In an image segmentation problem, for example, XS

could be samples (voxels or patches) from multi-spectral MR scans, XS is the fea-
ture space defined by the available MR sequences and P (XS) is the distribution
of intensities in the sequences. In the developing stage of a supervised algo-
rithm, given corresponding ground truth labels YS = {yS1, . . . , ySn} , ySi ∈ YS ,
such as segmentation masks, where YS the label space, a predictive function
fS(x) = PS(y|x) is learnt via training and configuration of hyper-parameters on
the data (XS , YS). fS(·) tries to approximate the optimal function f ′

S(x), x ∈ XS

that generated YS . At the time of deployment, however, these methods often
under-perform or fail if the testing data come from a different target domain
DT = {XT , P (XT )}, with XT �= XS and/or P (XT ) �= P (XS). This is because
the optimal predictive function f ′

T (x), x ∈ XT for DT may differ from f ′
S(·), and

so the learnt fS(·) will not perform well on DT . The above scenario is common in
biomedical applications due to variations in image acquisition, in particular, in
multi-center studies. Training and testing data may differ in contrast, resolution,
noise levels (P (XT ) �= P (XS)) or even type of sequences (XT �= XS). Despite
the rapid advancements in representation learning, this issue has been shown to
affect even the latest models [18]. Generating labelled databases is time consum-
ing and often expensive, and assuming annotations for training are available for
each new domain is neither realistic nor scalable. Instead, it is desired to develop
methods that can learn from existing databases and generalize well or adapt to
the target domain without the need for additional training data.

Transfer learning (TL) [14] investigates development of predictive models by
leveraging knowledge from potentially different but related domains and tasks.
Even between tasks where label spaces YS and YT differ, TL can take advan-
tage of similarities in the underlying structure of the mappings fS : XS �→ YS

and fT : XT �→ YT . A subclass of TL is multi-task learning, where a model
is trained on multiple related tasks simultaneously. Most related to our work,
domain adaptation (DA) is the subclass of TL that assumes YS = YT and only
the domains differ. It explores learning a function fa(·) that performs well on
both domains, under the basic assumption that such a function exists [1].

In this work we investigate unsupervised domain adaptation (UDA) [7]. In
this setting we assume the availability of a labeled database S = (XS , YS) from
source domain DS , along with an unlabeled database T = (XT ) from a different
but related target domain DT . We wish to model the unknown optimal function
f ′
T (·) for labelling XT . However since no labels are available for DT , f ′

T (·) cannot
be learnt. This is in contrast to supervised DA, which requires at least some
labelled data for DT . Instead, we try to learn a representation ha(x) that maps
XS and XT to a feature space that is invariant to differences between the two
domains, as well as a function fah(·) learnt using data {XS , YS ,XT }, such that
fa(x) = fah(ha(x)) approximates f ′

S(·) and is closer to f ′
T (·) than any function

fS(·) that can be learnt using only the source data (XS , YS).

Contributions: In this work we develop a domain adaptation method based
on adversarial neural networks [4,5]. We propose the adversarial training of a
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segmenter and a domain-classifier, which aims to make the representation learnt
by the segmenter invariant to domain-specific factors. We describe and analyse
the development of domain-adversarial networks for the purpose of segmentation,
which to the best of our knowledge has not been previously performed. We inves-
tigate the adaptation of layers at various depths and propose multi-connected
adversarial networks, which we show improve domain adaptation. We employ
our system for the segmentation of traumatic brain injuries (TBI), investigating
adaptation between databases acquired using two different scanners with differ-
ence in the available MR sequences. We show that without utilizing any labels
in the target domain, our method closes the performance gap with respect to
supervised learning with target labels to a large extent.

Related Work: TL and DA have attracted significant interest over the years.
Comprehensive reviews of early works can be found in [1,7,14]. Popularity of TL
increased with the wide adoption of neural networks when their features were
found to be effective when transferred across tasks. For example, features learnt
from natural images were used off-the-shelf for detecting peri-fissural nodules
[3]. More commonly, TL is performed via pre-training on a source task, followed
by fine-tuning for the target task via supervised training [16]. A representative
example of TL via multi-task learning was presented in [12]. A network was
trained simultaneously for segmentation of brain tissue, pectoral muscle and
coronary arteries. These experiments show that much of a network’s capacity
can be shared between a variety of tasks. Note, all of the above require labels
in DT .

In contrast, DA explores the case where label spaces (YS , YT ) are the same
and little or no labelled data is available in DT . In [13] the authors explored
supervised DA with SVM-based adaptive classifiers in the scenario where source
and target data are acquired with different protocols. This method, however,
requires labelled target data. Unsupervised DA was tackled in [6] via instance
weighting, but this relies on strong assumptions about the data distributions.
[2] performed UDA with boosted decision stumps with a search for visual cor-
respondences between source and target samples. This is not as flexible as our
approach nor scales well to large databases. The authors in [2] question the fea-
sibility of DA with neural networks on 3D data due to memory requirements.
Here, we show that using adversarial 3D networks is indeed a viable approach.

2 Unsupervised Domain Adaptation with Adversarial
Nets

The accuracy of a binary classifier that distinguishes between samples from two
domains can serve as a proxy of the divergence of distributions P (XS) and
P (XT ), which otherwise is not straightforward to compute. This idea was first
introduced in [1]. Inspired by this, the authors of [4] presented a method for
simultaneously learning a domain-invariant representation and a task-related
classifier by a single neural network. This is done by minimizing the accuracy of
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Fig. 1. Proposed multi-connected adversarial networks. Segmenter: we use the 3D CNN
architecture presented in [8]. Dashed lines denote low resolution features. Input samples
are multi-modal, although not depicted. Discriminator: We use a second 3D CNN for
classifying the domain of input x, by processing activations at multiple layers of the
segmenter. Red lines show the path of the adversarial gradients, from Ladv back to the
segmenter. See text for details on architecture. (Color figure online)

an auxiliary network, a domain-discriminator, that processes a hidden represen-
tation of the main network and tries to classify the domain of the input sample.
This approach formed the basis of our work. We below describe its extension for
segmentation and our proposed multi-connected system.

2.1 Segmentation System with Domain Discriminator

Segmenter: At the core of our system is a fully convolutional neural network
(CNN) for image segmentation [10]. Given an input x of arbitrary size, which
can be a whole image or a sub-segment, this type of network predicts labels
for multiple voxels in x, one for each stride of the network’s receptive field
over the input. The parameters of the network θseg are learnt by iteratively
minimizing a segmentation loss Lseg using stochastic gradient descent (SGD).
The loss is commonly the cross-entropy of the predictions on a training batch
Bseg =

{
(x1, y1), . . . , (xNseg

, yNseg
)
}

of Nseg samples. In our settings, (xi, yi) are
sampled from the source database S = (XS , YS), for which labels YS are avail-
able. We borrowed the 3D multi-scale CNN architecture from [8], the segmenter
depicted in Fig. 1, and adopt the same configuration for all meta-parameters.

Domain Discriminator: When processing an input x, the activations of any
feature map (FM) in the segmenter encode a hidden representation h(x). If
samples come from different distributions P (XS) �= P (XT ), e.g. due to different
domains, and the filters of the segmenter are not invariant to the domain-specific
variations, the distributions of the corresponding activations will differ as well,
P (h(XS)) �= P (h(XT )). This is expected when the segmenter is trained only
on samples from S where learnt features will be specific to the source domain.
Similar to [4], we choose a certain representation ha(x) from the segmenter and
use a second network as a domain-classifier that takes ha(x) as input and tries to
classify whether it comes from P (ha(XS)) or P (ha(XT )). This is equivalent to
classifying the domain of x. Classification accuracy serves as an indication of how
source-specific the representation ha(·) is. The architecture we use for a domain
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classifier is a 3D CNN with five layers. The first four have 100 kernels of size
33. The last classification layer uses 13 kernels. This architecture has a receptive
field of 93 with respect to its input ha(·) and was chosen for compatibility with
the size of feature maps in the 3 last layers of the segmenter.

We train this domain-discriminator simultaneously with the segmenter. For
this, we form a second training batch Badv =

{
(x1, y

d
1), . . . , (xNadv

, yd
Nadv

)
}
.

Equal number of samples xi are extracted from XS and XT , so there is no
bias towards either. yd

i is a label that encodes the domain of xi, used as the
training target. Badv is processed by the segmenter, at the same time with Bseg

or interleaved to lower memory requirements, computing activations ha(x)∀x ∈
Badv. These activations are then processed by the discriminator, which classifies
the domain of each sample in Badv. The discriminator’s classification loss Ladv

is minimized through optimization of the parameters θadv.
A complication arises for the joint training. The samples from S are shared in

an SGD iteration for the two losses in the algorithm of [4]. However, many seg-
mentation methods use weighted sampling in order to mitigate class-imbalance,
for example by oversampling rare classes [8,12]. Such sampling requires segmen-
tation masks that are not available for T whose samples are extracted randomly.
In this case, the discriminator should not compare those against non-randomly
extracted samples from S, as it could easily associate activations for the over-
weighted classes with domain S and fail to learn useful domain-discriminative
features. Hence, we resort to forming entirely separate batches. Badv is formed of
20 image segments, randomly extracted from images in S and T . As done in [8],
weighted sampling is used for extracting 10 segments from S to form Bseg. This
ensures countering of class-imbalance for the segmenter, while being unbiased
on the samples used for the discriminator.

Domain Adaptation via Adversarial Training: We aim at adapting the
representation ha(·) to become invariant to variations between S and T . To
this end, we expose the accuracy of the domain-discriminator to the segmenter
and let it alter its parameters such that its FMs that comprise ha(·) do not
contain cues about the input domain. This is done by incorporating the domain-
discriminator’s loss Ladv into the training objective of the segmenter, which now
aims to simultaneously maximize the domain classification loss and minimize
the segmentation loss Lseg, or:

LsegAdv(θseg) = Lseg(θseg) − αLadv(θseg) (1)

α is a positive weight that defines the relative importance of the domain adap-
tation task for the segmenter. This optimization is possible with regular SGD,
as the adversarial networks are interconnected and gradients of Ladv can prop-
agate back through the discriminator and into the segmenter. This process was
implemented in [4] via a custom gradient-reversal layer, which is not needed if
the optimization is formulated as in Eq. (1), as also noted by the authors.
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2.2 Multi-connected Adversarial Networks

A natural question to arise concerns which layer(s) of the segmenter should be
adapted. In [17], the authors investigated which of the last three fully connected
layers of an AlexNet leads to better accuracy when adapted, concluding it is the
last hidden layer that is optimal in their settings. Earlier layers are commonly not
adapted as their features are considered rather generic and transferable across
related tasks [4,11].

We argue that adapting only the last layers might not be ideal, especially
for the case of segmentation. The accuracy of classification networks depends
mostly on high-level patterns. For precise segmentation, however, fine patterns
such as detailed texture and small contrast variations are likely to be impor-
tant. These fine patterns are extracted in early layers and are more susceptible
to image-quality variations between domains. Adapting top layers makes them
invariant to such variations, but it is still a loss of capacity if such features have
been already extracted by early layers, which may not be well adapted by the
weakened adversarial gradients that reach them. On the other hand, if only early
layers are adapted, assuming that the adaptation is not ideal and the features
not entirely free of factors of variation between the two domains, the network
could recover source-specific patterns at greater depth. For these reasons we
propose an architecture where the domain discriminator is connected at multi-
ple layers of the segmenter. First, this removes source-specific patterns early on
but also disallows their recovery at deeper layers. Furthermore, the discrimina-
tor is enabled to process a large variety of features for discriminating between
the domains, increasing its performance and thus the quality of the gradients
for the domain adaptation. Finally, by seeing the whole adversarial network as
an auxiliary cost function for the segmenter, this type of connections can be
compared with deep-supervision [9], which allows better flow of the gradients
incoming from Ladv throughout the segmenter and as such can improve learn-
ing of quality features. Our main results are based on feeding input hin(·) to
the discriminator from FMs of layers 4,6 and 8 of both high and low resolution
pathways, as well as the 10-th hidden layer of the segmenter (cf. Fig. 1). After
the FMs of the low resolution pathway are upsampled, all FMs are cropped to
match the size of the deepest layer and concatenated. A detailed analysis of the
effect of adapting different layers is presented in Sect. 3.4.

3 Experiments

3.1 Material

We make use of two databases with multi-spectral MR brain scans of patients
with moderate to severe TBI, acquired within the first week of injury. The
first database consists of 61 subjects, imaged on a 3-T Siemens Magnetom
TIM Trio. The MR sequences are isotropic MPRAGE (1 mm3), axial FLAIR,
T2 and Proton Density (PD) (0.7× 0.7 × 5 mm), and Gradient-Echo (GE)
(0.86 × 0.86 × 5 mm). The second database consists of 41 subjects, imaged on
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a 3-T Siemens Magnetom Verio. This database includes MPRAGE, FLAIR, T2
and PD sequences, acquired at the same resolution as in the first database.
The important difference is that instead of GE, a Susceptibility Weighted Image
(SWI) is available (0.7 × 0.7 × 5 mm). On both databases, all visible lesions were
manually annotated on the FLAIR and GE/SWI by clinical experts. We merge
them into a single lesion mask, as we here focus on binary segmentation of
abnormalities within the brain tissue. Extra-cerebral pathologies are treated as
background. All images are skull-stripped, resampled to isotropic 1 mm3 and
affinely registered to MNI space. Image intensities under the brain masks are
normalized to zero-mean and unit-variance, after windowing the lowest and top
2% of the intensity histograms.

Source (S) and Target (T) Databases: GE and SWI are commonly used in
TBI studies due to their great sensitivity to haemorrhages. They enable detection
of lesions invisible in other sequences, such as micro-bleeds. SWI is actually a
type of GE that offers greater sensitivity and image quality [15]. See Fig. 2 for
visual examples. For the purpose of this study, the first database, with GE
available, is considered the source database S used to train the segmenter in a
supervised manner. The second database, with SWI available, is considered the
target database T on which we aim to successfully apply the trained segmenter.
This corresponds to a typical scenario where a training database is generated on
data coming from one clinical site, and new test data coming from another site
with varying protocol. Motivated by their common property of being sensitive to
blood and thus providing similar information for TBI segmentation, we consider
GE and SWI as interchangeable for the same input channel to our system, unless
stated otherwise. However the difference in appearance of GE and SWI images
(cf. Fig. 2) contributes the largest variation between distributions P (XS) and
P (XT ). Further variations may be present due to the different scanners used for
acquiring S and T . Using our method, we aim to learn features invariant to these
domain differences without the need for any annotations on the target domain.

3.2 Configuration of the Training Schedule

A complication of adversarial training concerns the training schedule of the two
connected networks, which influences the way they interact. The strength with
which the segmenter is adapting its features in order to counter the domain-
discriminator is controlled by the parameter α (cf. Eq. (1)). We set α = 0
for the first e1 = 10 epochs and let both networks learn independently. This
allows the segmenter to initially learn features for the segmentation of S with-
out being influenced by noisy adversarial gradients from an initially poorly per-
forming domain-discriminator. After epochs e1, when the discriminator’s perfor-
mance has increased, we start countering it to learn domain invariant features
with the segmenter. For this, we increase α according to the linear schedule
α = αmax

ecurr−e1
e2−e1

, where e2 = 35 and αmax is the maximum weighting, so α
equals αmax after epoch e2. Finally, at epoch 43 we start refining the segmenter’s
features by gradually lowering its learning rate. The discriminator is optimized
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with constant learning rate 0.001. In the following, αmax = 0.05 is used. In
Sect. 3.4 we present a sensitivity analysis showing robust behaviour across a
range of values for αmax. e1, e2 and the total duration of this piecewise linear
schedule were determined empirically for satisfactory convergence without pro-
longing training time. Optimal settings are not fully explored yet and may vary
between applications and the relative difficulty of each network’s specific task.

3.3 Evaluation

We performed multiple experiments to obtain upper and lower bounds of baseline
accuracy on the challenging task of TBI segmentation. We discuss experiments
below, summarize results in Table 1 and give examples of segmentations in Fig. 2.

Table 1. Comparison of our method’s performance on T with several baselines. Our
system significantly closes the gap between the lower bound, when the segmenter is
trained on S only, and the upper bound, when the segmenter is also trained with
labelled data from T . Values are given in format mean (std).

DSC Recall Precision

Train on S 15.7(13.5) 80.4(12.3) 09.5(09.0)

Train on S (No GE/SWI) 59.7(22.1) 55.7(22.6) 69.7(21.5)

Train on S → UDA to T (ours) 62.7(19.8) 58.9(21.2) 71.6(18.4)

Train on T 63.5(20.2) 60.6(21.1) 71.5(19.8)

Train on S+T 66.5(17.7) 66.6(19.1) 69.4(19.0)

Train on S+T (GE/SWI diff chan.) 64.7(19.2) 65.7(20.2) 67.0(20.8)

Train on S , Test on T : We perform standard supervised training of the seg-
menter on S without adaptation. To segment T , motivated by the similarity
between GE and SWI sequences, at test time we use SWI in the channel used
for GE during training. Even though these sequences can serve similar purposes
in the analysis of TBI by radiologists, this approach totally fails, proving them
not directly interchangeable as input to a CNN.

Train on S (No GE/SWI), Test on T : We repeat the previous experiment
but only use the common sequences of S and T in both training and testing,
neglecting GE and SWI. The experiment was repeated twice to reduce random
variations between training sessions. This corresponds to a practical scenario,
where we need to segment T by only using annotated training data from S, and
serves as the lower bound of accuracy for our system.

Train on T , Test on T : We perform a 2-fold validation using supervised
training on half of T and testing on the other half. We use all sequences of T .
The obtained performance is similar to what was reported in [8], although on a
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different database. This experiment provides another indication for the expected
accuracy on this challenging segmentation task.

Train on S and T , Test on T : To obtain an upper bound of accuracy, we
train the segmenter on all data of S and half the data of T , using their manual
annotations. The same input channel is used for GE of S and SWI of T . We then
test on the other half of data from T . The experiment is repeated for the other
split of T . We balance the samples from the two domains in each batch Badv to
avoid biasing the segmenter towards S that has more subjects. With supervised
training on T , the system learns to interchange GE and SWI successfully. This
setting uses all available data from both domains, both images and manual
annotations, and serves as an estimate of optimal, supervised transfer learning.

Train on S and T , Test on T (GE/SWI in Different Channels): We
perform a sanity check that using GE and SWI in the same input channel is
reasonable. We repeat the previous experiment but using a CNN with six chan-
nels, with separate ones for GE and SWI. The channel is filled with −4 when
the sequence is not available, which corresponds to a very low value after our
intensity normalization. From this the CNN learns when the sequence is missing
and we found this to behave better than common zero-filling. The segmenter
performs better than supervised training on T only. This indicates that informa-
tion from both domains is used. However, knowledge transfer is not as strong as
when GE and SWI, which share much information, are used in the same channel.

Proposed Unsupervised Domain Adaptation: We train the segmenter on
all data of S and adapt the domains using half the subjects of T , but no labels.
GE and SWI share the same input channel. We test accuracy on the other half
of T . The experiment is repeated for the other fold. Our method learns filters
invariant to the two imaging protocols and transfers knowledge from S to T ,
allowing the system to segment haemorrhages only visible on SWI without ever
seeing a manual annotation from T (Fig. 2). This improves by 3% DSC over
the non-adapted segmenter that uses only information from S and the common
sequences, covering 44% of the difference between this practical lower bound and
the upper bound achieved by supervised training with labels from both domains.

3.4 Analysis of the System

Effect of Adapting Layers at Different Depths: To investigate how depth
of adapted layers affects our system, we repeat the experiment with domain
adaptation from S to T , changing the layers at which the adversarial networks
are connected. Results are shown on Fig. 3 and Table 2. Note that connections
are added to both pathways of the segmenter at the same depth (for example,
L4 means connections to the 4th layers of both pathways). Adapting shallow
layers tends towards over-segmentation (increased recall but lower precision).
It has been noticed that severe over-segmentation occurs without adaptation
(Fig. 2). These observations indicate that source-specific features are possibly
recovered between the adapted and the classification layer. Comparing L2 and
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Fig. 2. (top) Example case from S. (middle/bottom) SWI and FLAIR of two subjects
from T (T2, MPRAGE, PD also used but not shown). Notice that only GE and SWI
show certain lesions, such as micro-bleeds. However, brain tissue appears differently
in GE and SWI. Consequently, a model trained on S fails on T when SWI is naively
used in place of GE (3rd col.). A model trained using only the four common sequences
misses lesions visible only on SWI (4th col.). Our method mitigates these problems by
learning features invariant to the imaging protocol (5th col.).

Fig. 3. Behaviour when the domain-discriminator is connected at different layers of the
segmenter. Adaptation is performed after epoch 10 by linearly increasing α. Connec-
tions at earlier layers lead to higher performance of the discriminator but slower adap-
tation. Multiple connections increase performance. Note, features learnt at early layers
during the refinement in the last stages of training seem more domain-discriminative.



Unsupervised Domain Adaptation with Adversarial Networks 607

Table 2. Final accuracy on T when the discriminator is connected at different depths
of the segmenter. Shallow connections increase recall but significantly decrease preci-
sion. Multiple connections remove better the source-specific nuisances throughout the
segmenter, closing the gap to the practical upper bound of 66.5% for UDA (Sect. 3.3)
by approximately 1.5% DSC. Best configuration in bold.

L10 L8 L6 L4 L2 L(4,6,8,10) L(2,4,6,8,10)

DSC 61.3(21.0) 61.0(20.7) 61.2(19.2) 61.0(20.1) 60.4(20.2) 62.7(19.8) 62.7(19.5)

Recall 56.9(22.0) 57.3(21.6) 57.1(19.8) 59.1(20.0) 61.1(20.5) 58.9(21.2) 60.1(20.3)

Precision 71.9(20.8) 70.2(20.9) 69.9(20.8) 68.1(21.6) 64.3(21.9) 71.6(18.4) 69.8(20.0)

L(2, 4, 6, 8, 10) shows that this is alleviated by multiple connections that enforce
domain invariance throughout the segmenter. Since, however, behaviour of multi-
connected adversarials is strongly defined by the shallowest connection, we avoid
adapting the earliest layers, which offer less benefit but slow down convergence.

Effect of Adaptation’s Strength via αmax: Here we investigate how sensi-
tive is our method to αmax, which defines how strongly the segmenter counters
the discriminator. Figure 4 shows that higher values lead to quicker adapta-
tion but the accuracy is rather stable for a significant range of values αmax ∈
[0.05, 1.0]. We note this range might differ for other applications and that smooth
convergence is generally preferred for learning high quality features over steep
schedules that alter the loss surface aggressively. Finally, we observe that strongly
countering the discriminator does not guarantee better performance on T . A
theoretical reason is that a more domain-invariant representation ha(x) likely
encodes less information about x. This information loss increases the Bayes
error rate and the entropy of the predictions by the learnt fa(x) = fah(ha(x)).
After a certain level of invariance, this can outweigh the benefits of domain-
adaptation [1,7].

Fig. 4. The segmenter counters the domain-discriminator after epoch 10, when we
linearly increase α from zero to αmax until epoch 35. Final accuracy on T was found
rather stable for a wide range of values. Decrease greater than 1% DSC from the highest
was found for values 0.02 and 2.0.
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4 Conclusion

We present an unsupervised domain adaptation method for image segmenta-
tion based on adversarial training of two 3D neural networks. To the best of
our knowledge this is the first work showing the plausibility and capabilities of
such an approach on a biomedical imaging problem. Additionally, we propose
multi-connected adversarial networks, which perform better by enabling flow of
higher quality adversarial gradients throughout the adapted network. We inves-
tigate aspects of adversarial training such as the depth of the adapted layer and
the strength of adaptation, providing valuable insights for development of future
approaches. While unsupervised in the target domain, our method performs close
to the accuracy of supervised baselines. We believe our work makes an important
contribution in the context of multi-center studies where domain differences are
a major limitation in current image analysis methods. Future work will investi-
gate the capabilities of our approach to normalize different types of variations.
An implementation of the proposed system will be made publicly available on
https://biomedia.doc.ic.ac.uk/software/deepmedic/.
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