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Abstract. Diffusion-weighted magnetic resonance imaging (MRI) pro-
vides a unique approach to understand the geometric structure of brain
fiber bundles and to delineate the diffusion properties across subjects
and time. It can be used to identify structural connectivity abnormali-
ties and helps to diagnose brain-related disorders. The aim of this paper
is to develop a novel, robust, and efficient dimensional reduction and
regression framework, called hierarchical functional principal regression
model (HFPRM), to effectively correlate high-dimensional fiber bundle
statistics with a set of predictors of interest, such as age, diagnosis sta-
tus, and genetic markers. The three key novelties of HFPRM include
the simultaneous analysis of a large number of fiber bundles, the dis-
entanglement of global and individual latent factors that characterizes
between-tract correlation patterns, and a bi-level analysis on the pre-
dictor effects. Simulations are conducted to evaluate the finite sample
performance of HFPRM. We have also applied HFPRM to a genome-
wide association study to explore important genetic variants in neonatal
white matter development.
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1 Introduction

Scientifically, investigation in the connectional organization of human brain and
its variation across subjects is a critical step to understand the pathology of many
neuro-related disorders. Diffusion-weighted MRI offers a non-invasive approach
to study the tissue structure of white matter fiber bundles in vivo, including both
the geometric shape and the diffusion properties [2,6,9,12,17,24,27]. Delineating
diffusion statistics along fiber bundles may help identify structural connectivity
abnormalities across different spatial-temporal scales. It could eventually inspire
new approaches for disease preventions, diagnoses and clinical treatments.

Group analysis of fiber bundle statistics poses remarkable computational and
mathematical challenges to existing statistical methods. The first challenge is to
efficiently and simultaneously study multiple fiber bundles with heterogeneous
geometric structures and variation patterns. The second challenge is to correlate
fiber bundle statistics with a large number of covariates, such as millions of
genetic markers. This challenge is motivated by the demand to carry out a
genome-wide association study on fiber bundle statistics. Voxel-wise methods
[21] and single tract analysis [8,26,28] suffer from performing massive multiple
comparison adjustments, which would severely reduce detection power. The third
challenge is to properly handle the potential correlation among multiple tracts
and to disentangle tract-specific information from global information shared by
a large portion of fiber bundles.

The aim of this paper is to develop a hierarchical functional principal regres-
sion model (HFPRM) framework to address the three challenges discussed above.
HFPRM consists of three statistical models, including a varying coefficient model
(VCM), a latent factor analysis (LFA) procedure, and a multivariate regression
model (MRM). The path diagram of HFPRM is presented in Fig. 1. The VCM
not only captures the functional structure of fiber bundle statistics for each sin-
gle tract, but also maps the heterogeneous geometric structure of multiple fiber
bundles onto a common coordinate system. The LFA is applied to characterize
potential inter-tract correlation across multiple bundles. It allows us to explic-
itly identify both tract-specific and global latent signals. The integration of VCM
and LFA dramatically reduces the dimension of fiber bundle statistics. Finally,
using MRM, we are able to examine the effect of selected predictors on both
global level and individual level.

In Sect. 2, we introduce the general framework of HFPRM and propose a
two stage estimation procedure to study both global effect and individual tract
effect. In Sects. 3 and 4, we use numerical simulations and a real data example
to examine the finite sample performance of HFPRM. Section 5 concludes with
some remarks.
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Fig. 1. A schematic overview of HFPRM

2 Methods

2.1 Data Structure

Suppose that we obtain a data set with clinical, genetic variables as well as
DTI statistics along M fiber bundles from n subjects. For the m-th fiber bundle,
m = 1, · · · ,M , we use sm ∈ [0, Sm] to denote the arc length of any point relative
to a fixed end point, where Sm is the longest arc length on the tract. For the
i-th subject where i = 1, · · · , n, yi,m(sm) denotes a specific diffusion statistics
observed at arc-length sm along the m-th tract, and xi is a q × 1 vector of
covariates.

2.2 HFPRM

HFRPM is proposed to study the association between diffusion properties (e.g.,
FA, MD or RD) along M fiber bundles with a set of covariates, such as age,
gender, and genetic markers. It consists of three key components, a varying
coefficient model (VCM), a latent factor analysis (LFA) procedure, and a mul-
tivariate regression model (MRM).

The VCM describes the functional association between {yi,m(sm) : sm ∈
[0, Sm]} and xi for a single tract. It admits the following form,

yi,m(sm) = μm(sm) + ηi,m(sm) + ei,m(sm), (1)

where μm(sm) is the function of population mean, ηi,m(sm) is an individual
function characterizing subject-specific spatial variations along the m-th tract,
and ei,m(sm) is the measurement error. Let SP (0, Σ) represent a stochastic
process with mean zero and covariance operator Σ(sm, s′

m). It is assumed that
ηi,m(sm) and ei,m(sm) are mutually independent and identical copies of stochas-
tic processes SP (0, Σηm

) and SP (0, Σem
) respectively, in which Σem

(sm, s′
m) =

σ2
em

(sm)1(sm = s′
m) and 1(·) is an indicator function.
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The major challenge to simultaneously study M fiber bundles is the heteroge-
nuity in their geometric structures. It is necessary to find a common coordinate
system for {ηi,m(sm)}M

m=1. Specifically, we use functional principal component
analysis (fPCA) to extract the key features in ηi,m(sm). Based on Mercer’s the-
orem, Σηm

(sm, s′
m) admits a spectral decomposition as follows:

Σηm
(sm, s′

m) =
+∞∑

d=1

λmdφmd(sm)φmd(s′
m), (2)

where {λmd ≥ 0} are eigenvalues in descending order with
∑∞

d=1 λmd < ∞ and
{φmd(sm)} are the corresponding orthonormal eigenfunctions. Using Karhunen-
Loeve expansion [13,16], ηim(sm) can be expressed as

ηi,m(sm) =
+∞∑

d=1

zi,mdφmd(sm) with zi,md =
∫ Sm

0

ηi,m(sm)φmd(sm)dsm. (3)

Individual function ηi,m(sm) can then be equivalently represented by a set of
functional principal component (fPC) scores {zi,md : d = 1, . . . ,∞}. In prac-
tice, a relatively small number of fPC scores would account for the majority of
variation in ηi,m(s). Therefore, we can approximate ηi,m(sm) by a finite vec-
tor zi,m = (zi,m1, . . . , zi,mD)T of dimension D. For notational simplicity, it is
assumed that D is the same across all M bundles. Now we use zi,m to inte-
grate information across M bundles and denote zi as a p × 1 long vector that
concatenates all zi,ms together, where p = DM .

A LFA is then proposed to account for potential inter-tract correlation across
multiple bundles. Specifically, zi is assumed to have the following latent factor
structure,

zi = Λf i + ui, (4)

where Λ is a p × L loading matrix and f i and ui, respectively, represent global
and individual latent factors. When there exist homogeneous signal patterns
across multiple fiber bundles, L is expected to be much smaller than p. Global
factor f i thus allows us to study the shared pattern in a low dimensional space.
And tract-specific pattern can also be captured by each component in ui =
(ui,1, · · · ,ui,M )T .

Finally, a MLM is introduced to correlate the global and individual latent
factors with covariate xi,

f i = BT
f xi + εf,i and ui,m = BT

um
xi + εum,i, for m = 1, · · · ,M, (5)

where Bf and Bum
are, respectively, q × L and q × D coefficient matrices and

εf,i and εum,i are residual terms. Using (5), we are able to perform a hierarchical
analysis on both global level and individual level.
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2.3 Estimation and Inference Procedure

In practice, diffusion statistics are observed on discrete grid points along each
tract. For the m-th tract, assume yi,m(sm) is observed on sample point set
Sm = {sm,1, . . . , sm,k, . . . , sm,Km

} ⊂ [0, Sm], we use the following two-stage
procedure to estimate fPC scores Z = {zi}1≤i≤n, global factors F = {f i}1≤i≤n

and individual factors U = {ui}1≤i≤n.

– Stage I: For each tract, μm(sm) and ηi,m(sm) are estimated from (1) and func-
tional principal component analysis is applied to calculate φ̂md(sm) and ẑi,

– Stage II: Perform factor analysis on ẑi to extract global factor f̂ i and indi-
vidual factor ûi. Regression and hypothesis testing can then be applied on
f̂ i and ûi respectively.

Details of the two stages are given below.
In Stage I, to estimate the mean curve from model (1), we apply the local

linear kernel smoothing technique. μm(sm) is first approximated by the following
taylor expansion,

μm(sm,k) ≈ μm(sm) + dμm(sm)(sm,k − sm). (6)

Let K(s) be a predetermined smoothing kernel and denote Kh(s) = 1
hK( s

h ) as
the rescaled function with bandwidth h, μ̂m(sm) and dμ̂m(sm) can be estimated
as the minimizers of the following weighted least square function,

n∑

i=1

Km∑

k=1

[yi,m(sm,k) − μm(sm) − dμm(sm)(sm,k − sm)]2Kh(sm,k − sm), (7)

and solution μ̂m(sm) is smooth curve with local linearity. More complicated
polynomial structure can be applied using higher order expansion if necessary.

Similarly, we expand individual function ηi,m(sm) for subject i as follows,

ηi,m(sm,k) ≈ ηi,m(sm) + dηi,m(sm)(sm,k − sm). (8)

The corresponding weighted least square function is given by,

Km∑

k=1

[yi,m(sm,k) − μ̂m(sm,k) − ηi,m(sm) − dηi,m(sm)(sm,k − sm)]2Kh(sm,k − sm).

(9)
When smoothed individual functions are obtained as {η̂i,m(sm)}n

i=1, we can cal-
culate the empirical covariance function Σ̂ηm

(sm, s′
m) = 1

n

∑n
i=1 η̂i,m(sm)η̂i,m

(s′
m). And eigenbases {φ̂md(sm)} can be estimated from spectral decomposition,

Σ̂ηm
(sm, s′

m) =
∑

d

λ̂mdφ̂md(sm)φ̂md(s′
m). (10)
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Then individual random effect η̂i,m(sm) is projected onto basis functions
{φ̂md(sm)} to get functional PC scores,

ẑi,md =
Km∑

k=1

η̂i,m(sk,m)φ̂md(sk,m). (11)

There are several strategies to determine the number of fPCs to be extracted. For
example, the analog of some model selection techniques have been generalized for
this purpose, such as Akaike information criterion (AIC), Bayesian information
criterion (BIC) [25] and cross-validation (CV) [20]. Alternatively, the percentage
of explained variation has been widely used to give an appropriate cut-off in
practice. Here, we choose D as the minimum number of fPCs that incorporates
at least V % of total variation in each tract. When the optimal D = Dm is
different across tracts, the largest Dm will be used for all tracts.

In Stage II, a PCA-based factor analysis is performed. Let ξ̂1, . . . , ξ̂L be
the first L eigenvectors of sample covariance matrix Σ̂z = 1

n ẐT Ẑ. The loading
matrix, the global factors and the individual factors are estimated as,

Λ̂ =
√

p(ξ̂1, . . . , ξ̂L), F̂ =
1
p
ẐΛ̂, and Û = Ẑ − F̂Λ̂T (12)

Finally, the MLM (5) is used to estimate regression coefficients. Standard
test statistics, such as wald and score statistics, can be applied subsequently for
inference purpose.

3 Simulations

In this section, numerical simulations are conducted to evaluate the proposed
method. Particularly, we examine the performance of HFPRM to detect covariate
effect in hypothesis testing.

3.1 Setup

11 fiber tracts with FA measure shown in Table 1 were selected from diffusion
tensor tractography in UNC Early Human Brain Development Studies [7]. Func-
tional responses were simulated from a vary coefficient model with fixed covariate
effects,

yi,m(sm) = μm(sm) + βm(sm)T xi + ηi,m(sm) + ei,m(sm), (13)

where i = 1, · · · , n and m = 1, · · · , 11, β(sm) was a q × 1 vector of coefficient
functions along the m−th tract, covariates xi = (xi1, · · · , xiq)T were gener-
ated from N(0, 1) for continuous variables or from multinomial distribution with
equal probabilities for categorical variables, ηi,m(sm) followed gaussian process
GP{0, Σηm

} and ei,m(sm) followed GP{0, Σem
}. Compared to model (1), the

above equation directly specified the covariates as fixed effect. Sample size n
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was set to be 100 and true parameters (β(sm), Σηm
, Σem

) were estimated from
real data using FADTTS [28].

To examine our method, the following two scenarios on β(sm)T xi were sim-
ulated. In case I, the aim is to study shared effect of multiple tracts. Gender
(G) and gestational age at birth (Gage) were included as covariates for all the
11 tracts,

yi,m(sm) = μm(sm)+ cβm,1(sm)Gagei +βm,2(sm)Gi +ηi,m(sm)+ei,m(sm), ∀m,

in which we assumed c = 0, 0.2, 0.4, 0.6 and Gage effect was tested.
In case II, we want to examine a tract-specific effect. Birth weight (BW) was

added as covariate to one particular tract, right uncinate fasciculus (m = 11),
in addition to case I,

yi,m(sm) = μm(sm) + βm,1(sm)Gagei + βm,2(sm)Gi + ηi,m(sm) + ei,m(sm), m ≤ 10,

yi,11(sm) = μm(sm) + β11,1(sm)Gagei + β11,2(sm)Gi + cβ11,3(sm)BWi

+ ηi,11(sm) + ei,11(sm),

where effect size c was set to take values 0, 0.5, 1, 1.5 and the effect of BW was
tested.

We applied HFPRM to the simulated dataset. The varying coefficient model
(1) was first fitted to estimate individual functions. Functional principal compo-
nents were then extracted such that at least 85% of total variation is included
for each tract. In factor analysis, the first elbow point in the scree plot was taken
as a cut-off to determine the number of global factors. In testing step, type I
error and statistical power were calculated at significance level α = 0.05 based
on 1000 simulation replications. FADTTS was also applied on each single tract
and the results were compared.

3.2 Results

In case I, the first five functional principal components were extracted for each
tract and the first factor was identified as global factor. The rejection rates
for global factor analysis and FADTTS on testing Gage effect are presented
by Fig. 2(a). The global factor analysis is substantially more powerful than the
single tract analysis when detecting commonly shared effect. Such results are
expected since common effect tends to be accumulated in the global factor.

In case II, the first five functional principal components were extracted for
each tract and the first two factors were identified as global factors. Figure 2(b)
shows the rejection rates for global factor analysis, individual factor analysis
and FADTTS on testing BW effect. As can be seen, individual factor analysis in
HFPRM achieves comparable power to single tract analysis for detecting tract-
specific effect.

4 Early Human Brain Development Study

To investigate how genetic factors influence brain structure in prenatal and early
postnatal stage, we conducted a genome-wide association study on the fiber
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Fig. 2. Simulation result

bundle statistics in a unique cohort of infants. A total number of 662 neonatal
twin subjects were taken from the UNC Early Brain Development Studies [7].

4.1 Data Acquisition and Preprocessing

MRI scans were acquired either on a 3T Siemens Allegra head-only scanner
(N = 566) or on a 3T Siemens TIM Trio 3 T scanner (N = 96). For the Allegra
model, 339 diffusion weighted images were acquired by a single shot EPI DTI
sequence with the following parameters: TR/TE = 5200/73 ms, voxel resolu-
tion = 2 × 2 × 2mm3, 6 non-collinear directions with b = 1000 s/mm2 and 1
baseline image with b = 0. To improve the signal-to-noise ratio, five scans were
repeated and averaged. For the remaining subjects scanned on Allegra, DWI
was acquired with the following parameters: TR/TE = 7680/82 ms, voxel res-
olution = 2 × 2 × 2mm3, 42 non-collinear directions with diffusion gradients of
b = 1000 s/mm2 in addition to 7 baseline images. For the Trio model, DWIs were
acquired using a similar protocol to that of the 42 direction Allegra model with
TR/TE = 7200/83 ms. Quality control was applied on raw DWIs using DTIPrep
[18], and FSL [11,22] was performed for skull stripping and brain masking. We
used a weighted least squares method [8] to estimate diffusion tensors and fol-
lowed the UNC-Utah NA-MIC framework [23] to create a study-specific atlas.
Subsequently, a total number of 44 fiber tracts listed in Table 1 were recon-
structed in the atlas space using a streamline algorithm [5]. For each subject,
four scalar diffusion properties, FA, MD, AD and RD, were then calculated at
each location along each tract using neighboring diffusion tensors.

Genotyping of single nucleotide polymorphisms (SNPs) was conducted on
Affymetrix Axiom genome-wide LAT Array. Samples with call rates less than
95%, outliers for homozygosity, ancestry outliers and unexpected relatedness
were excluded from the study. We also removed genetic markers with Hardy-
Weinberg equilibrium p-value less than 10−8, call rate less than 95% and
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Table 1. List of fiber tracts in simulation and real data experiment

Bundle group Tract segments

Arcuate fasciculus Left fronto-parietal, right fronto-parietal, left fronto-temporal*,
right fronto-temporal*, right temporo-parietal

Corpus callosum Motor body*, occipital splenium, parietal body*, premotor
body, rostrum*, genu*, temporal tapetum*

Cingulum Left premotor, left cingulate gyrus, right cingulate gyrus, right
hippocampal, right prefrontal cortex

Corticothalamic left motor, right motor, left premotor, right premotor, left pari-
etal, right parietal, left prefrontal, right prefrontal

CorticoFugal Left motor, right motor, left parietal, right parietal, left pre-
frontal cortex,

Others Left fornix, right fornix, left inferior fronto-occipital fasciculi,
right inferior fronto-occipital fasciculi, left inferior longitudi-
nal fasciculi*, right inferior longitudinal fasciculi*, left medial
lemniscus, right medial lemniscus, left optic, right optic, left
superior longitudinal fasciculus, right superior longitudinal fas-
ciculus, left uncinate fasciculus*, right uncinate fasciculus*

*Selected tracts for simulation study

Mendelian error rate larger than 10%. Population stratification was assessed
using PCA [19]. Imputation was performed with MaCH-Admix [15] using 1000G
reference panel [3]. To evaluate the quality of imputed SNPs, we computed the
mean R2 under varying minor allele frequency (MAF) categories and selected R2

cutoffs as described in [14]. SNPs with MAF less than 0.01 were excluded from
imputed dataset. Eventually, 472 twin subjects (32 MZ pairs, 75 DZ pairs and
259 singletons or unpaired twin subjects) and 8,538,562 genetic markers were
retained for further analysis.

4.2 Data Analysis

In this experiment, we chose to focus on the fractional anisotropy (FA) measure.
FA quantifies the extent of local directional water diffusion and partially reflects
the degree of bundle maturation in premature brains [4]. To eliminate the het-
erogeneity in variance among different tracts, yi,m(sm) was rescaled by the total
standard deviation along the tract. For the twin study, ACE model was fitted
in (5) to account for correlation within twin pairs. Seven variables were added
as covariates, including gestational age at birth, gender, DTI direction, scanner
type and the first three genetic principal component to adjust for population
stratification.

4.3 Results

In functional PCA, the first 5 functional principal components were extracted
for each tract to include at least 70% of variation. Figure 3(a) shows the scree
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plot in factor analysis and the elbow point is located at factor 2. Therefore,
the first factor is identified as the global factor. We then performed GWAS on
the global factor. The result is visualized by Fig. 3(b). In the Manhattan plot,
we observed a significant region in anaplastic lymphoma kinase (ALK) gene on
chromosome 2. The ALK gene is a neuronal orphan receptor tyrosine kinase
that plays an important role in the nervous system development [1], and is
highly expressed in the neonatal brain [10]. As a comparison, we also performed
association analysis for top hit rs66556850 on each single tract. The result is
presented by Fig. 3(c). A number of tracts have relatively small pvalue yet not
small enough to be detected by a single tract GWAS. It indicates that the global
factor analysis is more powerful to detect commonly shared genetic effect than
single tract analysis.

Fig. 3. Real data analysis result: (a) Functional PCA and factor analysis. (b) Visual-
ization of GWAS result of the global factor. (c) A comparison between global factor
analysis and single tract analysis on marker rs66556850, the −log10p value in the asso-
ciation test is plotted. The majority of pvalues in single tract analysis are around
10−2∼10−6.

5 Conclusion

We have developed a hierarchical functional principal regression model
(HFPRM) to efficiently conduct joint analysis on diffusion statistics from multi-
ple neurofiber bundles. A varying coefficient model is introduced and functional
PCA is applied to capture major tract variation. Factor analysis is then adopted
to extract key features at both global level and individual level. Finally, stan-
dard estimation and testing procedures can be applied to study global effect and
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tract-specific effect. Simulation results demonstrated that HFPRM is powerful
to detect common effect shared by multiple tracts. HFPRM has also been suc-
cessfully applied to a genome-wide association study on neonatal twins. We are
able to identify some important genetic variants related to early childhood brain
development that were ignored by single tract analysis.
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