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Abstract. Functional connectivity (FC) has been widely investigated in
many imaging-based neuroscience and clinical studies. Since functional
Magnetic Resonance Image (MRI) signal is just an indirect reflection
of brain activity, it is difficult to accurately quantify the FC strength
only based on signal correlation. To address this limitation, we pro-
pose a learning-based tensor model to derive high sensitivity and speci-
ficity connectome biomarkers at the individual level from resting-state
fMRI images. First, we propose a learning-based approach to estimate
the intrinsic functional connectivity. In addition to the low level region-
to-region signal correlation, latent module-to-module connection is also
estimated and used to provide high level heuristics for measuring con-
nectivity strength. Furthermore, sparsity constraint is employed to auto-
matically remove the spurious connections, thus alleviating the issue of
searching for optimal threshold. Second, we integrate our learning-based
approach with the sliding-window technique to further reveal the dynam-
ics of functional connectivity. Specifically, we stack the functional con-
nectivity matrix within each sliding window and form a 3D tensor where
the third dimension denotes for time. Then we obtain dynamic func-
tional connectivity (dFC) for each individual subject by simultaneously
estimating the within-sliding-window functional connectivity and char-
acterizing the across-sliding-window temporal dynamics. Third, in order
to enhance the robustness of the connectome patterns extracted from
dFC, we extend the individual-based 3D tensors to a population-based
4D tensor (with the fourth dimension stands for the training subjects)
and learn the statistics of connectome patterns via 4D tensor analysis.
Since our 4D tensor model jointly (1) optimizes dFC for each training
subject and (2) captures the principle connectome patterns, our statisti-
cal model gains more statistical power of representing new subject than
current state-of-the-art methods which in contrast perform above two
steps separately. We have applied our tensor statistical model to identify
ASD (Autism Spectrum Disorder) by using the learned dFC patterns.
Promising classification results have been achieved demonstrating high
discrimination power and great potentials in computer assisted diagnosis
of neuro-disorders.
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1 Introduction

Functional Magnetic Resonance Imaging (fMRI) provides a non-invasive way to
study how human brain works. This imaging technique assumes that the change
of cerebral blood flow is closely related with brain activity. When an area of
the brain is in use, blood flow to that region correspondingly increases [1]. There
are various fMRI studies in neuroscience research to understand how the healthy
brain works [2], and how that normal function is disrupted in disease [3]. Resting-
state fMRI (rs-fMRI) is one of the functional brain imaging techniques that is
widely used to measure occurrence of regional interactions that a subject is
not performing an explicit task [4]. In resting state, fluctuations in spontaneous
neural activity are pre-assumed to underlie the Blood-Oxygen-Level Dependent
(BOLD) signal fluctuations, which form inter-regional functional connectivity in
human brain network [5]. Since the spatial patterns of resting-state functional
brain network are stable and often are overlapped with known anatomical path-
ways, rs-fMRI has been widely implemented to explore the brain’s functional
organization and examine the altered connectivity in neurological or psychiatric
diseases [6].

In current functional brain network studies, Pearson’s correlation on BOLD
signals is used to measure the strength of FC between two brain regions [5]. It
is worth noting that such correlation based connectivity measure is exclusively
calculated based on the observed BOLD signals and fixed for the subsequent
data analysis. However, the BOLD signal usually has very poor signal-to-noise
ratio and is mixed with substantial non-neural noise and artifacts. Therefore, it
is hard for current state-of-the-art methods to determine a good threshold of FC
strength which can effectively distinguish real and spurious connections [7].

For simplicity, many FC characterization methods assume that connectivity
patterns in the brain do not change over the course of a resting-state fMRI scan.
However, there is a growing consensus in the neuroimaging field, that the sponta-
neous fluctuations and correlations of signals between two distinct brain regions
change with correspondence to cognitive states, even in a task-free environment
[8]. Thus, dynamic FC patterns have been investigated recently mainly by using
sliding window techniques [8,9]. Due to the large dimension of sliding window
numbers and large number of brain regions, it is very difficult to represent the
dynamic brain network compactly directly. Therefore, many different machine
learning techniques has been proposed to reduce the dimension of dynamic brain
FC patterns. The common strategy of those works is to reduce the dimension on
sliding windows using clustering [10] or Principle Component Analysis (PCA)
[11] along time. And the clustering coefficients or PCA coefficients are used as
the compact representation for dynamic FC. However, these methods reduce
the dynamic FC dimension at the cost of losing the local temporal changes
along time. Furthermore, in all existing dynamic FC methods, the procedures of
estimating functional connectivity and extracting connectome features are com-
pletely independent. Although both steps are very challenging, we would like
to argue that these two steps can help each other in a collaborative manner.
Specifically, accurate functional connectivity of individual subjects can derive
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Fig. 1. The advantage of our 4D tensor method (b) over the conventional method (a).

more reasonable statistical model to better represent the whole population. On
the other hand, the learned statistical model can provide additional population-
based heuristics to address the uncertainty in measuring functional connectivity
for individual subject. To that end, we propose a tensor-based statistical model
which jointly optimizes the dynamic functional connectivity at the individual
basis and learns the intrinsic connectome patterns for the whole population.
Our proposed method is illustrated in Fig. 1, which consists of three parts:

First, we present a robust learning-based method to optimize FC from the
BOLD signals in a fixed sliding window. In order to avoid the unreliable cal-
culation of FC based on signal correlations, high level feature representation is
of necessity to guide the optimization of FC. Specifically, our method seeks for
module-wise network structure during the optimization of node-to-node func-
tional connectivity, where the brain region within the same module should have
similar connection patterns. Thus, we can optimize functional connections for
each brain region based on not only the observed region-to-region signal cor-
relations but also the similarity between high level module-to-module connec-
tion patterns. In turn, the refined FC can lead to more reasonable estimation
of module-wise connections. Since brain network is intrinsically economic and
sparse, sparsity constraint is used to control the number of connections during
the joint estimation of principal connection patterns and the optimization of FC.

Second, we further extend the above FC optimization framework from one
sliding window (capturing the static FC patterns) to a set of overlapped sliding
windows (capturing the dynamic FC patterns). The leverage is that we arrange
the FCs along time into a 3D tensor (cubic in Fig. 1) and we employ additional
low rank constraint to penalize the oscillatory changes of FC in the temporal
domain.
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Third, in order to learn the statistical model of intrinsic feature representa-
tions derived from the dynamic functional connectivity (dFC) in the population,
we arrange the estimated functional dynamics of all subjects into a 4D tensor
(right of Fig. 1) with the subjects denoted by fourth dimension. Then we go one
step further to alternatively (1) optimize the dFC within each subject-specific
3D tensor under the guidance of learned intrinsic feature representations, and (2)
learn the statistical model which can represent majority variations of dynamic
functional connectivity patterns in the population. In doing so, we can derive
robust statistical model of dynamic functional connectivity and encode the char-
acteristics of dFC for the new unseen subjects. It is worth noting that the output
of our statistical model can be regarded as the imaging markers in identifying
individuals having or at risk of neuro-disease.

2 Method

2.1 Optimize Functional Connectivity Within Sliding Window

To start our tensor-based statistical model of dFC, we first propose a robust FC
optimization method given a sliding window. Let xi ∈ R

W×1 denote the mean
BOLD signal calculated in brain region Oi, (i = 1, · · · , N), where W is the length
of time course within the sliding window and N is the total number of brain
regions under consideration. Conventionally, a N × N connectivity matrix S is
used to measure the FC in the whole brain, where each element sij quantitatively
measures the strength of FC between region Oi and Oj(i �= j). Particularly,
the strength of functional connectivity sij is assumed to be measurable based
on Pearson’s correlation c(xi, xj) between observed BOLD signals xi and xj ,
where big value of Pearson’s correlation indicates strong functional connectivity.
Thresholding on Pearson’s correlation values is commonly used to remove the
spurious connection. However, it is not easy to find a good threshold that works
for all subjects.

Since fMRI is just an indirect reflection of brain activity, it is difficult to accu-
rately quantify the FC strength only based on signal correlation. To alleviate this
issue, we propose to optimize the reasonable functional connectivities, which
should (1) be in consensus with the Pearson’s correlation of low level signals
between xi and xj ; (2) use the high level information such as module-to-module
connection [12] to guide the measurement of low level region-to-region connec-
tivity strength; and (3) represent sparsity since the brain network is intrinsically
efficient to have sparse connections [13]. For convenience, we use si ∈ R

N×1

denote i-th column in connectivity matrix S, which characters the connections
of region Oi with respect to other brain regions. Also, we arrange all Pearson’s
correlation values into a N × N matrix C = {cij |i, j = 1, · · · , N}. Instead
of calculating the connectivity sij just based on Pearson’s correlation c(xi,xj)
between observed BOLD signals xi and xj , we optimize the connectivity matrix
S by integrating the above three criteria:

arg min
S

‖S − C‖2F + α‖S‖∗ + γ‖S‖1, (1)
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where α and γ are the scalars which balance the strength of the low rank con-
straint [14] on S (the second term) and the l1 sparsity constraint [15] on S (the
third term).

Fig. 2. The intuition behind low rank and sparsity constraint in optimizing functional
connectivity.

Discussion. Specifically, the first term requires the optimized functional con-
nectivity matrix S should be close to the observed Pearson’s correlation matrix
C. Sparse representation technique has been used in [16] to establish the func-
tional connection of one brain region to all other regions. As the toy examples
shown in Fig. 2(a), there might be a lot of spurious connections (gray blocks) in
the FC matrix calculated based on Pearson’s correlation. After applying signal
sparse representation at each brain regions independently, only a small number
of connections remain such that the sparse constraint can make the estimation
of FC more robust, as shown in Fig. 2(b).

It is clear that the l1 norm is effective to remove redundant connections in
functional connectivity [17]. However, one limitation of l1 norm is that the mod-
ular relationship are not jointly considered [12]. Figure 2(b) shows the connection
patterns obtained using l1 norm, which shows no modular structure. Since brain
network exhibit modular organization, we further introduce low rank constraint
‖S‖∗ to achieve strong modular organization. As shown in Fig. 2(c), the con-
nection patterns are highly consistent within the same module but the intra
modular regions are over connected. To achieve a reasonable sparse and modu-
larized brain connections, we combine low rank and sparsity constraint on S to
achieve connection patterns as shown in Fig. 2.

2.2 Characterize Dynamic Functional Connectivity by 3D Tensor
Analysis

Here, we extend the learning-based FC optimization method to the temporal
domain, in order to capture dynamics of functional connectivity. First, we fol-
low the sliding window technique to obtain T overlapped multiple scale slid-
ing windows which cover the whole time course for one subject. Let St denote
for the FC matrix in sliding window t. Then we stack all St along time and
form a tensor S = {St|t = 1, · · · , T} ∈ R

N×N×T which represents the com-
plete information of dynamic connectivity for each subject. Similarly, we can
also construct another tensor C = {Ct|t = 1, · · · , T} ∈ R

N×N×T , where each
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Ct = {cti,j |i, j = 1, · · · , N} is the N × N matrices in t − th sliding window.
Next, we propose a learning-based optimization method to characterize dFC
using tensor analysis by:

arg min
S

‖S − C‖2F + α‖S‖∗ + γ‖S‖1, (2)

Compared to the objective function in Eq. 1, the objective function here also
encourages low rank on the brain connectivity patterns. Since brain in resting
state generally transverses a small number of discrete stages during a short period
of time [8], it is reasonable to apply low rank constraint on S (by minimizing
nuclear norm ‖S‖∗) to penalize too rapid FC change in the temporal domain
and also find the optimal connectivity patterns in each sliding window.

2.3 Conventional Linear PCA Statistical Model

The learned 3D tensor Sm for subject m is N ×N ×T which can not be used as
the dynamic FC feature representation due to the high dimension. Conventional
work proposed to reshape Sm to a matrix Sm ∈ R

N2×T , where each column
stands for a connection pattern, then M subjects are stacked together to formu-
late a matrix S# ∈ R

N2×MT as shown in Fig. 3(a). A low dimensional principle
connectome space U(c) ∈ R

N2×R can be learned by decomposing S# ∈ R
N2×MT

into a orthonormal space U(c) and coefficients matrix using linear Principle Com-
ponent Analysis (PCA),

S# = U(c)F#, (3)

where U(c) is the brain connectome space, F# = [F1, · · · ,FM ] ∈ R
N2×MT

is the projected coefficients for S# as shown in Fig. 3. The high dimensional
dynamic FC Sm ∈ R

N2×T for subject m can be represented as a coefficients
matrix Fm = UT

(c)Sm ∈ R
R×T . Since the sliding window number is large, this

coefficients matrix is further normalized by the sliding window number T as the
compact feature representation for dynamic FC patterns.

Conventional Method Issues. Conventional PCA based brain connectome
space based method suffers from several issues: (1) How to set up optimal con-
nection matrix threshold. (2) Temporal dynamics space is not modelled. Using

Fig. 3. The comparison of conventional linear principle component analysis brain con-
nectome model and our proposed tensor analysis connectome model.
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the matrix techniques, the conventional method can only model the connectome
space on the population, but the temporal dynamics space are not modelled
(shown in Fig. 3(a)).

2.4 Statistical Model of Dynamic Functional Connectivity
by Tensor Analysis on Population

Motivated by those above issues in conventional method, we extend the linear
PCA model to a non-linear tensor analysis model in order to learn the opti-
mal connectivity matrices for each subject at different sliding windows from
the data without setting thresholds and a better brain connectome representa-
tion space and temporal dynamic space based on population jointly. Suppose
we have M training subjects in total. As demonstrated in the right of Fig. 1,
we stack the individual-based 3D tensors to a population-based 4D tensor (with
the fourth dimension stands for M training subjects). Specifically, let the sub-
script m denote for the subject index. We construct a 4D tensor S = {Sm|m =
1, · · · ,M} ∈ R

N×N×T×M to include the dFC of all M training subjects. It is
worth noting that different subject may have different number of sliding windows,
here, T = max(Tm),m = 1, · · · ,M . We also construct another 4D tensor of Pear-
son’s correlation values C = {Cm|m = 1, · · · ,M, t = 1, · · · , T} ∈ R

N×N×T×M .
Then, we learn the dynamic FC pattern using tensor analysis:

arg min
S

‖S − C‖2F + α‖S‖∗ + γ‖S‖1, (4)

In order to learn the principle connectome space as conventional methods, we
reshape the 4D tensor S to a 3D tensor S# ∈ R

N2×T×M , where 1st dimension
stands for the vectorized connectivity matrix, 2nd dimension stands for the slid-
ing windows and 3rd model stands for M subjects as shown in Fig. 3(b). We learn
a low rank and sparse 4D tensor S and simultaneously decompose the reshaped
tensor S# into a brain connetome space U(c) ∈ R

R×N2
, a temporal dynamic

space U(t) ∈ R
R×T and a coefficients tensor F# ∈ R

R×R×M using the tensor
high-order singular value decomposition as,

arg min
U(c),U(t),F#,S

‖S − C‖2F + α‖S‖∗ + γ‖S‖1, (5)

S# = F# ×1 U(c) ×2 U(t),

where ×1,×2 represent the tensor mode multiplication. When the brain connec-
tome space U(c) and U(t) are fixed, we can use the coefficients tensor F# as the
low dimension feature representation for all training subjects. Equation 5 can be
solved using Alternative Lagrange Multipliers method iteratively [14,15].

The Novelties of Our Method. Compared with the conventional linear PCA
connectome space method, our model has several new contributions: (1) Our
method is able to learn the optimized sparse and low rank dynamic FC pat-
terns based on data without setting optimal thresholds for brain connectome
matrices. (2) Tensor analysis enables our method to learn a low dimensional
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connectome space U(c) along with a low dimensional temporal dynamic space
U(t) which models FC temporal changes. Therefore, our method is more suitable
for modeling dynamic FC patterns as shown in Fig. 3(b).

Encode Dynamic FC Feature and Apply Classifier for New Subjects.
In the testing stage, we assume that each testing subject is independent to others.
Thus, we obtain the compact connectome representations for each testing subject
separately. Specifically, We first construct the 3D tensor of Pearson’s correlation
C∗ ∈ R

N×N×T . The goal here has two folds: (i) estimate the dynamic functional
connectivity S∗ (a 3D tensor with the same dimension as C∗) for the underlying
subject; and (ii) obtain the compact connectome feature representation F∗ ∈
R

R×R by projecting to the subspace spanned by learned connectivity space U(c),
U(t) on the training dataset. S∗ can be learn using Eq. 2. After S∗ is learned,
we reshape it to a matrix S∗# ∈ R

N2×T and compute the compact feature
representations by projecting S onto the learned connectome space U(c) and
temporal dynamic space U(t) from training data,

F∗ = UT
(c)S

∗#U(t), (6)

where F∗ ∈ R
R×R is the projected low dimensional feature representation on the

trained connectome space and temporal dynamic space. We apply our trained
classifier to the learned dynamic FC feature representation to determine the class
label for each testing subject.

3 Experiment Results

In this section, we evaluate our proposed tensor connectome model of dynamic
functional connectivity by comparing the discriminative power in identifying
ASD subjects with conventional state-of-the-art methods.

Experiment Setup. We randomly partition all subjects into 10 non-
overlapping approximately equal size sets. Then, we use one fold for testing
and the remaining folds are used for training. The training subjects are further
divided into 5 subsets for another 5-fold inner cross validation, where 4 folds are
used as training subset and the last fold is used as the validation subset. We
found that our method is able to achieve stable performance when α = 1, γ = 1.
The tensor connectome space U(c) and temporal dynamic space U(t) are learned
from the subjects in the training subset. The low dimension connectome features
representations of those training subjects, derived from the learned 4D tensor
model, are further used to train the classic SVM (Support Vector Machine) for
classification. Here, in order to show the power of our learned dynamic brain
connectivity features, we only use a standard linear kernel SVM with l2 norm
penalty. The optimal parameters are determined based on validation subset. It is
worth noting that any classification model can be applied to our learned dynamic
FC feature representations. For each testing subject, we use the approach sum-
marized in Sect. 2.4 to estimate the dynamic FC feature representations, which



406 Y. Zhu et al.

is considered as the connectome signature to identify the clinical label of the
testing subject. For the competing methods, we apply our multiple scale slid-
ing window strategy to calculate the dynamic functional connectivity feature
representation (based on Pearson’s correlation and optimal thresholding on val-
idation dataset) for each subject. We first manually set up the sliding window
size which ranges from 20 to 100 of the entire time course. It is worthy noting
to mention that the brain connection patterns are unstable is the window size
is smaller than 20. In optimizing the dynamic FC pattern, we set the shift of
sliding window to 1 TR, in order to fully capture the dynamics of FC. In order
to reduce feature dimension, we follow the work in to use classic PCA (Principle
Component Analysis) model to encode the low dimensional connectome feature
representation [11] for comparison.

Data Preprocessing. The subjects in our experiments were scanned for six
and ten minutes during resting state, respectively, producing 180 time points
and 300 time points at a repetition time (TR) of 2 s. We have corrected the head
motion of the data first. It is worthy noting that this work focus on dynamic
functional connectivity study and we assume that the dynamics caused by head
motion are removed in motion correction. We further processed all these data
using Data Processing Assistant for 0 the AAL template with 116 ROIs to the
subject image domain and compute the mean BOLD signal in each ROI, where
conventional method calculate the 116×116 connectivity matrix S based on the
Pearson’s correlation of mean BOLD signals between any pair of two distinct
brain regions.

Evaluation Measurements. We use several quantitative measurements includ-
ing Accuracy (ACC), Specificity (SPEC) and Sensitivity (SEN) to evaluate the
classification performance using our learned tensor dynamic FC feature repre-
sentation. In the following experiments, PCA represents Pearson’s correlation
based dynamic FC and feature coded using PCA. OURS represents the learned
dynamic FC patterns by our 4D tensor method.

Subject Information. We conducted various experiments on resting-state
fMRI images using two Autism data sets in order to demonstrate the generality
of our method. We use the Autism Brain Imaging Data Exchange (ABIDE) data-
base including both the data from NewYork University (NYU) and University
of Minnesota (UM) site. Specifically, 45 NC and 45 ASD subjects are selected
from the NYU site. 74 NC and 57 ASD subjects are selected from UM site.

Evaluation of Learned Dynamic FC Patterns in NC/ASD Classifica-
tion Using the Same Dataset. We first evaluate the performance of our model
using the same dataset for training and testing. 10-fold cross-validation strategy
is employed here on UM and NYU dataset. The NC/ASD classification results
using different sliding window setup on UM and NYU dataset are shown in
Fig. 4(a) and (b) respectively. It is shown that, first, the optimal sliding window
size is 40 for two datasets; secondly, multiple scale sliding window setup achieves
the best performance for all methods on two datasets, which improves >1% in
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terms of Accuracy compared to best performance achieved by fixed sliding win-
dow size; our learned 4D tensor feature representation improves the performance
at least 4.5% in terms of Accuracy compared with the conventional Pearson’s
correlation & PCA method using multiple scale sliding windows.

Fig. 4. Evaluation of learned dynamic FC patterns. (a) and (b) Use the same training
and testing dataset. (c) and (d) Use different training and testing dataset.

Evaluation of Learned Dynamic FC Patterns in NC/ASD Classifica-
tion Using Different Dataset. To evaluate the generalization of the learned
dynamic FC pattern representations, we select the training data and testing
data from different sites. Two experiments are conducted here: first, we split the
NYU and UM data into ten non-overlapped folds and use 9 folds from NYU as
the training data and one fold from UM as the testing data; then, we swicth
the training and testing dataset. Figure 4(c) and (d) shows the performance
of conventional Pearson’s correlation patterns coded by PCA and our learned
dynamic FC patterns with respect to different sliding window sizes. The perfor-
mance is sensitive to different window size setting up. All competing methods
achieve the best performance when the sliding window is 40 and multiple scale
sliding window setting up improves the performance about >1% compared to
sliding window size 40 for all competing methods. Compared with the conven-
tional Pearson’s correlation patterns coded by PCA [11], our learned dynamic
FC pattern improves the ASD classification performance >4% on Accuracy using
multiple scale sliding windows.

Validation of Learned Dynamic FC Patterns. To evaluate the learned
dynamic FC patterns, we checked the learned dynamic connection patterns for
vision function regions, such as Lingual gyrus, Cuneus, Parahippocampal gyrus,
and for motion function such as Putamen, Globus Pallidus using the NYU ASD
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Fig. 5. Visualization of the top 20 connection along time of Putamen (motion function
related) and Cuneus (relation to vision function) by the Pearson’s correlation and our
method.

dataset. We found that the connection patterns of those regions are inconsistent
by the conventional Pearson’s correlation and thresholding method. However,
the connection pattern learned by our method is changing smoother along time
for those regions, which is consistent with current neuroscience findings.

Figure 5(a) shows the visualization of the positive connected ROIs to the
Putamen along time computed by conventional Pearson’s correlation method
and our method. Putamen is known to be related to motion function, since the
fMRI time series are all collected during the resting and there is no motion task
involved, the connection to putamen should be consistent and smooth along
time. We found that the connection pattern by our method is stable along time.
However, the connection pattern computed by the conventional Pearson’s cor-
relation method is changing randomly along time. We also show the connection
pattern variations along time for the Cuneus in Fig. 5(b). Cuneus is known to be
related to vision function. The connection patterns to Cuneus are supposed to
be consistent along time since no vision tasks are involved in the resting state.
Compared to the varying connection patterns along time calculated by conven-
tional Pearson’s correlation method, the connection patterns generated by our
method resemble much better at different times.
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4 Conclusion

In this work, we propose a novel learning-based method to discover both static
and population based dynamic FC patterns from resting-state fMRI data using
multiple linear tensor analysis. We evaluated the learned dynamic FC patterns by
apply it as biomarkers for Autism identification and achieved promising results.
Future work will explore the application of dynamic FC patterns on diagnosis
of more neurological disorders such as, Alzheimer’s diseases and Obesity.
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