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Abstract. The introduction of graph theory in neuroimaging has pro-
vided invaluable tools for the study of brain connectivity. These methods
require the definition of a graph, which is typically derived by estimating
the effective connectivity between brain regions through the optimization
of an ill-posed inverse problem. Considerable efforts have been devoted
to the development of methods extracting sparse connectivity graphs.

The present paper aims at highlighting the benefits of an alternative
approach. We investigate low-rank L2 regularized matrices recently intro-
duced under the denomination of Riccati regularized precision matri-
ces. We demonstrate their benefits for the analysis of cortical thickness
map and the extraction of functional biomarkers from resting state fMRI
scans. In addition, we explain how speed and result quality can be fur-
ther improved with random projections. The promising results obtained
using the Human Connectome Project dataset, as well as, the numer-
ous possible extensions and applications suggest that Riccati precision
matrices might usefully complement current sparse approaches.

Keywords: rs-fMRI · Precision · Sparse inverse covariance

1 Introduction

Resting-state functional MRI (rs-fMRI) studies of brain connectivity have
received a considerable amount of interest. Thanks to the continuous improve-
ment of imaging techniques and the development of big data infrastructures,
large datasets are now available for conducting these investigations [17]. An
increasing effort has been devoted to the development of mathematical frame-
works able to summarize these humongous datasets into robust and concise
causal models and biomarkers, with the hope of better describing cognition,
teasing out the mechanisms underlying brain diseases and defining novel clinical
dimensions [12]. Different measures of connectivity were proposed [18] and graph
theoretical approaches have been widely spread. [2]. The most straightforward
approaches assume that the time series observed during a rs-fMRI scan are gen-
erated by a multivariate Gaussian process and attempt to analyze its structure.
These studies typically start with the definition of locations in the gray matter
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once rs-fMRI have been registered, motion corrected, denoised and normalized.
The connectivity between these nodes is measured by computing the covariance
of their time series and a sparse graph built from the inverse of the covariance
matrix, also known as precision matrix. These last two steps can be performed
jointly, by directly estimating sparse precision matrices [6,18,19]. However, and
despite very impressive recent development, the estimation of sparse precision
matrices is still time-consuming for large matrices [6,11].

In this paper, we propose an alternative approach based on low-rank Riccati
regularized precision matrices, introduced first by Witten and Tibshirani [20]
and formalized by Honorio and Jaakkola [10]. As for sparse matrices, we mea-
sure network characteristics directly from these matrices [16,19]. Our approach
offers several benefits such as a very competitive computational efficiency, which
deteriorates only linearly with data dimension, straightforward practical and the-
oretical extensions. We demonstrate that reducing the dimension of the input
neuroimaging signals via random projections [9] can simultaneously improve
test-retest performances and reduce computational burden, and we present two
extensions: the estimation of precision matrices at a population level, and the
adaptation of Riccati penalties to regions of interests. These results were estab-
lished using the data available for the hundred unrelated subjects of the HCP
dataset [17]. An in-depth test-retest validation was carried out by reducing the
spatial dimension of the resting state fMRI (rs-fMRI) scans with Glasser et al.
parcellation [8]. In addition, we demonstrate that our approach can handle full
resolution data and other modalities by analyzing cortical thickness maps.

The remainder of the paper is organized as follows. The methods combined
in this work are presented in Sect. 2. Section 3 presents several variants of our
approach addressing related neuroscience applications. The experimental results
are presented in Sect. 4 and discussion concludes the paper.

2 Methods

The random projection method, described in Sect. 2.1, was used as a preprocess-
ing step for reducing the dimensionality of our imaging data and filtering noise.
We present, in Sect. 2.2, a generalization of Honorio and Jaakkola Riccati reg-
ularized precision matrices [10]. The Gaussian entropy introduced by Tononi,
Sporns and Edelman [16] for measuring functional network integration is pre-
sented in Sect. 2.3. We used this measure for extracting biomarkers from Riccati
regularized precision matrices.

2.1 Random Projection

Random projections were proposed for compressing high-dimensional measure-
ment while preserving their Euclidean distance. The random projections pro-
posed by Halko, Martinsson and Tropp in [9] achieve performances close to a
truncated singular value decomposition (TSVD): when a data matrix X of size
N × T , T < N is projected for creating a thinner matrix Y of size N × t, t < T ,
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the t non-zero singular values of Y are close to the t largest singular values of
X. These random projections were proposed to accelerate the computation of
singular value decompositions (SVD) [9].

[9] is straightforward to implement. Figure 1 provides the pseudo code of
the random projection algorithm used for this work. This algorithm generates
an orthogonal projection matrix by randomly combining matrix rows and ortho-
normalizing the basis obtained through the Gram-Schmidt process. As explained
in [9] and reported in Sect. 4.1 for the HCP data, the quality of the projection
basis can be significantly improved by running a few power iterations, but the
cost of computation grows rapidly with the number of matrix rows.

input: data X of size N × T , parameter t and number of power iteration q
1. form the N × t matrix Ω by sampling from Gaussian distribution N (0, 1)
2. U XT X

)q
XT Ω

3. get W by orthonormalizing the columns of U with Gram-Schmidt process
4. Y XW
output: projected data Y , of size N × t

Fig. 1. Random projection for dimensionality reduction [9].

2.2 Riccati Regularized Precision Matrices

Let X denote a matrix of size N × T containing N time series of T time points,
normalized to zero mean and unit variance. The associated covariance matrix will
be referred as C = 1

T XXT . Sparse, Tikhonov and Riccati regularized precision
matrices are obtained by solving the following optimization problem:

argmaxQ�0 [log detQ − 〈C,Q〉 − ρR(Q)] (1)

where an L1 norm is chosen for R for generating sparse precision matrices [19],
the trace of Q in the case of Tikhonov regularization [10], and R is the square of
the Frobenius norm for Riccati regularized precision matrices [10]. As explained
in [10,20], Riccati regularization is a ridge penalty on the components of the
precision matrix whereas, when precision matrices are computed for solving a
linear regression, Tikhonov regularization corresponds to a ridge penalty on the
coefficients of a linear regression. In this work, we generalize the Riccati regu-
larization described in [20] and [10] by introducing an invertible matrix V and
working with the penalty:

R(Q) =
1
2
||V QV T ||22 (2)

When V is a diagonal matrix, V = diag(v), the penalty R becomes a squared
weighted Frobenius norm, which can be expressed as follows:

R(Q) =
1
2
||B � Q||22 (3)

B = vvT (4)
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where � denotes the Hadamard product. This specific case, which is easy to
interpret and interesting for applications, will be referred as Hadamard-Riccati
regularization.

An analytical solution of (1) is obtained by following the Honorio and
Jaakkola derivation [10], which bears similarities with the derivation of the
Scout(2, .) method of Witten and Tibshirani [20]. More precisely, the extrema
of the objective (1) are found by solving:

Q−1 − C − ρV T V QV T V = 0 (5)

Following [10], Q is obtained as a matrix geometric mean:

V QV T = P =
(

1
ρ
D

)
#

(
D−1 +

1
4ρ

D

)
− 1

2ρ
D (6)

where D = V −T CV −1 = (
1√
T

V −T X)(
1√
T

V −T X)T (7)

According to the properties of geometric means of matrices #, recalled in [13],
the eigenvectors of D are also eigenvectors of P , and an eigenvalue p of P depends
only on the eigenvalue d of D associated with the same eigenvector:

p(d) =

√
d

ρ

(
1
d

+
d

4ρ

)
− d

2ρ
. (8)

This property leads to the efficient computation of Q presented in Fig. 2.
The computation of Hadamard-Riccati regularized precision matrices, for which
matrices V are diagonal, is almost as fast as the original [10]. We found
that random projections [9] are of prominent interest for the computation of
Riccati regularized inverses. First, because they accelerate all the computations
by reducing matrices dimensions. Second, because they provide a direct control
of the rank of the rank-deficient part of the precision matrix Q. Lastly, because
they reduce precision matrices noise by truncating the small singular values of
the covariance matrices C. This protective effect is illustrated in Sect. 4.1.

input: time series X of size N × T , parameter ρ and N × N invertible matrix V

1. [U, S, Z] SV D
(

1√
T

V −T X
)
; U left singular vectors, S contains singular values

2. form diagonal matrix Ω = diag(ω1, .., ωn) from singular values s1, .., sm:

ωi =
√

1
ρ

+
s4i
4ρ2 − s2i

2ρ
− 1√

ρ

3. W V −1U
4. Q WΩW T + 1√

ρ
V −1V −T

output: Riccati-penalized precision matrix Q

Fig. 2. Computation of Riccati-penalized precision matrix Q, for input time series X,
the penalization ρ and a N × N invertible matrix V .
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2.3 Tononi-Sporns-Edelman Entropy

Tononi, Sporns and Edelman introduced a measure of functional integration
derived from precision matrices [16]. This measure will be referred as Tononi-
Sporns-Edelman entropy (TSEe) in the sequel. Under the standard assumption
that functional time series are Gaussian, TSEe measures the Gaussian entropy
of a functional networks N as follows:

TSEe(Q,N ) =
1
2
logdet ([Q]N ) (9)

where [Q]N denotes the restriction of the precision matrix Q to the nodes in
the network N . TSEe is a standard measure of functional integration and has
already been used for measuring the integration of the networks derived from
sparse precision matrices [19]. In this work, TSEe was measured for Riccati
regularized precision matrices as well. When the penalty R is constant over
the network N , the structure of the Riccati precision matrix can be exploited
for accelerating TSEe computation. A constant penalty R over N corresponds
indeed to a matrix V proportional to the identity for the nodes in N :

[V ]N = αI (10)

Under this assumption and following the notations of Fig. 2:

[Q]N = [W ]N ,: Ω [W ]TN ,: +
1

α2√ρ
I (11)

where [W ]N ,: denotes the restriction of the rows of W to the nodes in the network
N . Because Ω is a diagonal matrix with strictly positive diagonal components
the following matrix can be computed in a single pass over [W ]N ,::

W = [W ]N ,: Ω
1/2 (12)

Let si denote one of the m singular values of W and n the number of nodes of
the network N . The left singular vector of W associated to si is an eigenvector
of [Q]N and the associated eigenvalue λi is equal to s2i + 1

α2√
ρ . The remaining

eigenvectors of [Q]N are associated with the same eigenvalue: 1
α2√

ρ . As a result,
TSEe can be computed at the cost of a single SVD, as shown in Fig. 3.

input: network N containing n nodes, Riccati precision matrix
Q = WΩW T + 1√

ρ
V −1V −T with [V ]N = αI, Riccati penalty ρ

1. W [W ]N ,: Ω
1/2

2. [U, S, V ] SV D(W ) where S = diag(s1, .., sm) and m ≤ n necessarily

3. TSEe(Q, N ) (m−n)log(α4ρ)
4 + 1

2

∑m
i=1 log

(
s2i + 1

α2√
ρ

)

output: TSEe for the network N

Fig. 3. Efficient computation of the TSEe for constant Riccati penalties.
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3 Applications

3.1 Robust Structural Distances

Cortical thickness (CT) is a scalar measured from structural MRI describing
local cortical gray matter geometry [1,4]. The structural covariance matrix is
obtained by computing CT covariance across a population, for all pairs of brain
locations. Large structural covariances indicate that brain regions develop, age
or suffer from a disease in similar ways across a population [1]. The inverse of
a structural covariance CS , obtained for a healthy population, can be used for
defining a Mahalanobis distance dS teasing out abnormal CT maps:

dS(a, b) =
√

(a − b)T C−1
S (a − b) (13)

This distance is small when the difference between CT maps a and b is likely
to be observed in the healthy population, whereas large distances correspond to
unusual CT variations. In this work, we introduce Riccati regularized structural
precision matrices. We show experimentally that regularization and random pro-
jections improve structural distance robustness, in Sect. 5.

3.2 Shared Functional Networks

An increasing effort has been dedicated to the extraction of biomarkers cap-
turing the specificities of individual rs-fMRI scans, with the aim of developing
rs-fMRI based diagnostic tools. Because these scans are strongly affected by
noise and subject motion, several regularization strategies were proposed such
as the introduction of population averages [19].

In this work, rather than introducing a group average precision matrix and
penalizing the differences between individual scans and the group average [19],
we propose to perform a joint SVD (JSVD) when computing Riccati regularized
precision matrices. This JSVD forces Riccati regularized precision matrices to
share their eigenvectors. As a result, scan specificities are encoded in a reduced
set of values, the eigenvalues of the Riccati regularized precision matrices, which
can be interpreted as scan-specific loadings. This modeling offers many advan-
tages for investigating neurodevelopment, aging and brain diseases [5,19]. The
shared eigenvectors will be referred as shared functional networks in the sequel.

3.3 Functional Network Biomarkers

TSEe is an interesting functional biomarker. However, when small brain net-
works are investigated TSEe might be corrupted by a noise induced by the ran-
dom variation of the other components in the precision matrix. To address this
issue, we suggest to penalize more the components of the precision matrix cor-
responding to nodes outside the network of interest. We design a simple penalty
to achieve this goal by choosing for V a diagonal matrix equal to the identity
when restricted to the nodes of the network and to α times the identity, α > 1,
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when restricted to the other nodes. As explained in Sect. 2.2 such a penalty is an
Hadamard-Riccati penalty. When α is increased, this penalty gradually isolates
the network of interest from the rest of the brain. As illustrated in Sect. 4.4, this
effect can improve test-retest performances for some functional networks.

4 Experimental Validation

4.1 HCP Dataset

All the experiments presented in this work were carried out with the hundred
unrelated subjects of the HCP dataset [17]. For each subject, four 15 min long
rs-fMRI scans of 1200 time points are available, and several maps describing the
local geometry of the cortex such as cortical thickness [7]. We used the rs-fMRI
scans processed with the ICA+FIX pipeline with MSMAll registration and the
cortical thickness map registered in the 32k Conte69 atlas, also registered with
MSMAll [7]. Rs-fMRI scans were bandpass-filtered between 0.05 and 0.1 Hz by
an equiripple finite impulse response filter and the first two hundred timepoints
impacted by the temporal filtering were discarded. Cortical thickness maps out-
liers were discarded by thresholding each map independently at ±4.4478 median
absolute deviation from the median. This thresholding can be interpreted as a
counterpart of the standard thresholding of Gaussian variable to three standard
deviations from the mean robust to the presence of outliers [15]. All the time
series and concatenated cortical thickness maps were normalized to zero mean
and unit variance. The spatial dimension of the data was reduced by averag-
ing the neuroimaging signals over Glasser et al. multi-modal parcellation [8].
The hundred eighty time series obtained for each hemisphere were normalized
again to zero mean and unit variance.

The quality of the random projections (RP) was estimated by (1) concate-
nating the four rs-fMRI scans of each subject, (2) measuring for each subject the
proportion of the squared Frobenius norm of the signal kept by the random pro-
jections, and (3) comparing the singular values of the time series before and after
random projections. The results presented in Fig. 4 demonstrate that RP behaves
almost like a perfect truncated SVD (TSVD) after only three power iterations.

Fig. 4. RP for the functional data. Remaining spectrum for increasing number of
random projections (a) without power iterations (b) three power iterations (q = 3) (c)
For the first subject: singular values before and after random projections (q = 3).
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The results also suggest that the 4000 timepoints time series can be randomly
projected into a dimension 200 with negligible information loss, even without
power iterations.

4.2 Robust Structural Distances

Riccati regularized structural precision matrices reliability was measured by the
split sample negative log likelihood, a measure decreasing with reproducibility.
More precisely, the dataset was randomly split a hundred times into two groups
of fifty subjects. For each split, the CT maps of the two groups were concatenated
and normalized to zero mean and unit variance separately. A precision matrix Q
was computed for the first group and its negative log likelihood was measured by:

NLL(Q) = 〈C,Q〉 − log detQ (14)

where C is the structural covariance obtained from the second group. This test-
retest procedure estimates the ability of the precision matrices learned for the
first group to fit/generalize to the remaining HCP subjects. The results reported
in Fig. 5(a) demonstrate that the reliability of structural precision matrices is
improved by TSVD and RP and reaches an optimum at small dimension and
for a moderate penalty ρ = 0.5. RP and TSVD results are very close, for large
dimensions and large penalties. For the sake of simplicity, V was set to the
identity for these experiments.

We measured the ability of our method to handle large data by comput-
ing structural precision matrices at full Conte69 32 k atlas resolution and both
hemisphere simultaneously (59412 nodes total). On a standard office computer
running an Intel Core i5-200 CPU 3.3 GHz and 8 Gb RAM, without random
projections, the Riccati precisions were obtained in 12.47 s on average (over 100
runs). A random projection to dimension seven followed by the computation of

Fig. 5. Structural precision (a) Average split sample negative log-likelihood (100
repetitions) of Riccati regularized precision matrices built for the cortical thickness
(CT) averaged over the 180 parcellation, with respect to the “dimension”: the number
of singular values kept by the truncated SVD or by the random projection (RP).
Dimension 50 corresponds to the original data, without RP or TSVD. Four different
Riccati penalties ρ were tested. (b) one of the seven modes of CT variation obtained at
full brain resolution for the left hemisphere, ρ = 100.0 and RP into seven dimensions.
This map corresponds to a column of the matrix W defined in Fig. 2.
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the Riccati precision required 0.28 s on average (over 100 runs) and captured CT
variation modes similar to the one presented in Fig. 5(b). By comparison, sparse
precision matrices are typically obtained in two hours for 20000 nodes without
GPU acceleration [11].

4.3 Shared Functional Networks

The joint SVD (JSVD) method [3] was used in this work for defining shared
functional networks. We compared the ability of JSVD, TSVD, and RP to
robustly capture individual function by computing first Riccati regularized pre-
cision matrices for all the rs-fMRI scans of the hundred unrelated HCP subjects,
for different dimensions and penalties ρ. Because functional networks are usually
described for correlations or partial correlations, we derived partial correlations
from all these precision matrices. We compared the methods by measuring the
average intraclass correlation coefficient (ICC) of the partial correlations. We
measured if the repeated scans of a single subject were producing partial corre-
lations more similar to each other than scans of different subjects. We measured
an ICC(C, 1) [14]. For the sake of simplicity, V was set to the identity for these
experiments. The results of Fig. 6(a) clearly demonstrate that JSVD better cap-
tures the specificities of subjects brain function.

We checked the reliability/reproducibility of JSVD results by concatenat-
ing the first two and last two scans of each subject, computing JSVD, TSVD
and RP Riccati regularized matrices for the first scans and measuring the nega-
tive log likelihood obtained with the last scans. As indicated in Fig. 6(b), we
observed that JSVD matrices generalize slightly less than their TSVD and
RP counterparts. These results suggest that a given population is much bet-
ter described using JSVD, at the cost of a small decrease of generalizability to
other populations.

Fig. 6. Shared functional networks better capture subject specificities but
generalize slightly less. (a) average ICC observed for the partial correlations derived
from the Riccati precision matrices of the entire dataset, for different dimensions and
penalties ρ. TSVD and RP results differ only at small dimension. (b) for each subject:
negative log likelihood of the precision matrices obtained for the first two scans of the
subject, evaluated with the last two scans. RP and TSVD results are close. JointSVD
precisions, obtained for all the subjects simultaneously, generalize slightly less. The
dimension was set to 25 and ρ to 0.25.
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Fig. 7. Biomarkers extracted from Hadamard-Riccati precision matrices. (a)
Riccati regularized precision matrix (b) Hadamard Riccati regularized precision matrix
(c) Visual cortex TSEe ICC w.r.t Riccati penalties ρ and non ROI suppression α

4.4 Functional Network Biomarkers

TSEe measures the integration of a functional subnetwork, and can, therefore, be
considered as a biomarker. We observed that when TSEe is computed for Riccati
regularized precision matrices, the test-retest reproducibility of this biomarker
can sometimes be improved by penalizing the precisions involving nodes not part
of the subnetwork of interest. During our experiments, the visual cortex was
considered as the network of interest and we compared the ICC measured for
different Riccati Hadamard penalizations. As explained in Sect. 3.3, the vector v
defining the Hadamard Riccati penalty was set to 1 for the nodes inside the visual
cortex and α for the other nodes. The original Riccati penalty [10] corresponds
to α = 1. Figure 7(a) and (b) illustrates the effects of parameter α. For large
α values, the precisions outside the visual cortex are almost discarded and the
Hadamard-Riccati penalization has the same effect as a restriction of the entire
analysis to the visual cortex. This effect was beneficial in terms of biomarker
ICC for small penalties, and detrimental for large penalties.

5 Discussion

In this work, we present several neuroimaging applications of Riccati regular-
ized precisions matrices. Because these precision matrices are low rank, stored
efficiently, and the SVD required for their computation is fast, they can be
computed at full brain resolution very efficiently, contrary to sparse preci-
sion matrices [10,19]. However, we do not believe that confronting these two
approaches would be fully relevant. Sparse precision matrices elegantly capture
the connectivity between brain regions, which is sparse by nature. By contrast,
Riccati regularized matrices are designed for extracting the connectivity of large
graphs where some homogeneity/redundancy is present, and hence suitable for
a low-rank description. We could claim that the first approach captures the inte-
gration of brain regions, whereas the second exploits the segregation of brain
function. For this reason, we think that a combined framework, generating pre-
cisions matrices sparse for long range connections and low-rank for small range
connections, should ideally leverage the benefits of both approaches.
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Because Riccati regularized and Tikhonov regularized precision matrices are
computed in a similar fashion [10], their main differences reside in the larger
flexibility offered by the Riccati regularized matrices. Contrary to the Tikhonov
penalization which acts only on the diagonal of the precision, the Riccati regu-
larization penalizes all the components of the matrix, which offers more freedom
for designing penalties. A comparison of the eigenvalue transformation induced
by the two penalties also suggest that the information corresponding to the large
covariance eigenvalues is slightly better preserved into Riccati regularized pre-
cision matrices. The possibility of merging both penalties into a larger analytic
framework is an interesting open question.

The experiments presented in this paper have the potential to stimulate novel
applications. For instance, similarly to Sect. 3.1, robust structural distances could
be derived from the other cortical measures provided by Freesurfer [4] such as
areal distortion and cortical curvature, and for HCP myelin maps obtained by
combining T1 and T2 weighted MRI scans [7,17]. In addition, we emphasize
that, by considering symmetric Riccati penalties only, we have restricted our
investigations to optimization problems that can be solved efficiently but we
have missed large families of applications. Asymmetric penalties would involve
more elaborate algebraic Riccati equations and hopefully stimulate novel neu-
roimaging applications of control theory.

6 Conclusion

In this paper, we propose an integrated approach for the extraction of neu-
roimaging biomarkers. We measure the entropy of brain networks defined by
computing Riccati penalized precision matrices. We demonstrate how these bio-
markers can be improved by reducing data dimension via random projection.
We highlight several neuroscience applications for which Riccati regularized pre-
cision matrices offer novel perspectives. These applications were all validated by
processing the hundred unrelated subjects of the HCP dataset. We hope that the
promising results obtained, both in terms of speed and test-retest performances
and the broad range of possible theoretical refinements, will encourage further
developments and additional neuroimaging applications.
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