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Abstract In this chapter, we discuss some of the challenges that arise for the direct
numerical computation of noise generation and transport. Noise sources are associ-
ated with the non-linearities of the underlying hydrodynamics, i.e. with the turbulent
fluctuations across the energy spectrum. Thus, the numerical resolution of these
sound sources not only inherits the numerical difficulties that arise for general DNS
and LES of turbulent flows, but the scale separation between the hydrodynamic
velocity fluctuations and the radiated pressure waves adds additional challenges,
for example in terms of boundary conditions and numerical approximation accu-
racy. Therefore, a highly efficient and accurate numerical scheme is necessary. The
framework presented herein is based on a particular version of the Discontinuous
Galerkin method, in which a nodal as well as discretely orthogonal basis is used for
computational efficiency. This discretization choice allows arbitrary order in space
while also supporting unstructured meshes. After discussing the details of the frame-
work, examples of direct noise computation are presented, with a special focus on
the numerical simulation of acoustic feedback in a complex automotive application.

1 Introduction

The field of aeroacoustics encompasses the sound waves generated by and prop-
agated through unsteady turbulent or vortical aerodynamic internal and external
flows. Computational methods that are aimed at simulating these sound waves or
their effects are often termed Computational Aeroacoustics (CAA) methods, which
are a subset of the more general Computational Fluids Dynamics (CFD) field. The
main challenge in the numerical approximation of aeroacoustics stems from its mul-
tiscale nature. The generating mechanism is inherently non-linear and unsteady,
which precludes - without strong assumptions - time-averaged simulation schemes
like the Reynolds-averaged Navier–Stokes (RANS) approach. Different theoretical

A. Beck (B) · C.-D. Munz
Numerics Research Group, Institute of Aerodynamics and Gasdynamics,
Pfaffenwaldring 21, 70569 Stuttgart, Germany
e-mail: beck@iag.uni-stuttgart.de

© CISM International Centre for Mechanical Sciences 2018
M. Kaltenbacher (ed.), Computational Acoustics, CISM International Centre
for Mechanical Sciences 579, DOI 10.1007/978-3-319-59038-7_4

159



160 A. Beck and C.-D. Munz

Fig. 1 Equations regimes and scales for aeroacoustics

interpretations regarding the source of sound generation exist, with the classical one
focusing on the role of velocity fluctuations (Lighthill 1952) and a more recent one
emphasizing vortical structures as the source mechanism for sound waves (Howe
2003). From both points of view however, it is clear that a successful simulation of
aeroacoustics must include an accurate resolution of these generating mechanisms.

Froma physical point of view, aeroacoustic problems can be categorized into those
governed by non-linear effects, i.e. mainly the generation of pressure fluctuations
from non-linear hydrodynamics, and those that are essentially linear, e.g. radiation
into the far field, refraction or scattering. In Fig. 1, the relevant sets of equations (and
thus the applicable numerical approaches discussed below) and the relevant scales
are shown for a typical CAA problem.

Along a solid body, a turbulent boundary layer develops and radiates noise into its
surroundings. It interacts with the trailing edge and thereby produces sound through
the enhanced non-linearities in that region. A typical characteristic length of this
generation mechanism is the boundary layer thickness �. The energy content of
the velocity fluctuations is characterized by Eu′ . Since the relevant processes for
the sound generation are inherently unsteady and non-linear, the full compressible
Navier–Stokes equations are necessary to describe these processes accurately. As the
time scale of the sound waves matches that of its source, the resulting wave length
of the radiated sound is directly proportional to the speed of sound c, which explains
the large discrepancy between λ and � for low Mach number flows. For increasing
Mach numbers, this clear scale separation vanishes. Further away from the solid
body, the influence of non-linearities and viscosity is reduced and thus acoustic
source terms vanish. Here, Euler equations and their linearized version (LEE) can
be used to simulate acoustic transport by a background flow field, in which source
terms generate the sound waves. Since the characteristic length � now no longer
needs to be resolved, the acoustic wave lengths λ and the associated wave speed
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c now determine the spatial and temporal resolution requirements. This so-called
hybrid approach, which is discussed in more detail below, thus explicitly exploits the
scale separation. Even further away from the sound source, when d/λ � 1 and thus
the source region becomes acoustically compact and reflections or diffraction are
negligible, integral approaches based on the wave equation can be used to propagate
the sound through the far field.

An example that clearly highlights the difficulties arising from the scale separation
between the hydrodynamic source and the acoustic waves is given in a review by
Lele: For a supersonic jet, the ratio of Ep′/Eu′ is only about 0.01, while for most other
noise generation mechanisms, this ratio is even considerably smaller (Lele 1997).

From a computational point of view, the CAA methods (based on the equations
discussed in Fig. 1) can be classified into two broad categories: The direct approach,
labeled Direct Noise Computation (DNC) and the indirect or hybrid approach.

The direct approach is based on first principles and avoids any modeling approxi-
mations. It does not introduce an a priori conceptual split into a flow or hydrodynamic
part and an acoustic part, but solves the full compressible flow equations which con-
tain the sound generation mechanisms through non-linear vortical interactions. The
solution to this single set of equations then contains all the physical effects included
in the equations together with their coupling. In particular, acoustic feedback onto
the flow field is naturally included in this approach.

For a meaningful DNC, numerical schemes must thus capture the unsteady solu-
tion over a wide range of local flow scales (to account for the non-linear source
effects) and across large spatial and temporal scales (to account for the typically
large length scales of the acoustic waves compared to the hydrodynamics). It there-
fore mandates numerical schemes that are capable of high local resolution as well as
efficient and accurate long-term wave transport. While Direct Numerical Simulation
(DNS), which resolves all flow scales including the dissipation range, is the preferred
method of choice, it is essentially restricted by the direct dependency of its cost on
the flow Reynolds number Re. Resolving only the dynamically important scales and
modeling the isotropic parts by a subgrid scale model in a Large Eddy Simulation
(LES) ameliorates this restriction and expands the range of applicability of DNC,
but introduces the additional complexity of subgrid closure.

Another important conceptual complexity inDNCwhich should not be overlooked
is the postprocessing of the solution, i.e. the a posteriori identification of acoustic
sources and acoustic transport from the compressible flow field.

In the hybrid approach, the computation of the flow is decoupled from the com-
putation of the sound. CAA then becomes a two-step, forward-coupled simulation
approach. This separation is motivated by the disparity between the large length
scales and low energy content of the acoustic field compared to the hydrodynamic
field, i.e. the fundamental assumption states that while the unsteady vortical flow
field generates sound waves and influences their propagation, these waves do not
influence the flow field and act as a passive sink for the acoustic energy. This pre-
sumption is a good approximation in low Mach number flows, with the exception of
acoustic feedback mechanisms.
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Fig. 2 Direct and hybrid acoustic simulation strategies, with permission from Frank (2016)

The decoupling of the two physical phenomena allows the development of numer-
ical schemes tailored to the specific area of application. The governing equations,
solution algorithms and discretizations can be chosen independently for each step to
optimize their respective efficiency. For the hydrodynamic simulation, time-resolving
simulation methods (DNS, LES, unsteady RANS) are used to compute a space-time
evolution of the flow field from both the compressible and incompressible Navier–
Stokes equations. From this solution, time- and space-dependent acoustic source
terms for the subsequent acoustic simulation are generated. These source terms are
then re-introduced in the second simulation step, for which different formulations
for the propagation of acoustics exist. Many of these formulations are based on the
inhomogeneous wave equation derived by Lighthill (1952) or a perturbation formu-
lation of the Euler equations, and differ in their assumed relationship between the
hydrodynamics and the source term and in the assumed state of the base flow. Beyond
the flexibility in the choice of the equations and discretizations, the hybrid approach
also allows the selection or truncation of the source term region and thus the isolation
of different acoustic effects in the (computationally much cheaper) second step.

Besides the additional complexity stemming from the handling of the source
term and the two computational schemes, the most serious drawback of the hybrid
approach are its inherent underlying assumptions,which for example rule out acoustic
feedback loop like the one discussed in Sect. 4.3. Also, if no clear scale separation
exists (e.g. in high Mach number flows), the hybrid approach loses its validity and
makes the designation of source terms ambiguous. Figure2 summarizes the concep-
tual differences between direct and hybrid acoustic simulation strategies.

2 Numerical Schemes for Direct Acoustics

In this section,wewill give a brief overviewof the requirements and challenges for the
scale resolving simulation of acoustics. Schemes used in direct methods, where the
hydrodynamic and acoustic scales are resolved (see Figs. 1 and 2), clearly need good
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scale-resolving capabilities. To a lesser extent, the requirements on the numerical
scheme also apply to hybrid methods, in which hydrodynamic source computations
and acoustic simulation are split into two subsequent simulations, which allow an
independent discretization of each problem. Still, since the basic requirement is
that of a multi-scale problem, essentially the same challenges to the discretization
schemes exist.

2.1 Physical Considerations

As discussed in Sect. 1, the aeroacoustic sources stem from the hydrodynamic fluctu-
ations, i.e. the frequency of the small scales of turbulent motion determines the band-
width of the acoustics. From Kolmogorov’s theory (1999), the relationship between
the spatial scales in fully developed turbulence is known to be

L

η
∼ Re3/4, (1)

i.e. the bandwidth between the largest or energy-carrying scales L and the smallest
or dissipative scales η is determined by the Reynolds number. To estimate the local
time scale associated with each wavenumber, an eddy-turnover-frequency (Colonius
and Lele 2004) can be constructed on dimensional grounds from

f (k) = 1

τ (k)
=

√
k3E(k), (2)

where E(k) denotes the one-dimensional spectrum of kinetic energy. Using a von
Kármán–Kraichnan model spectrum for E(k), Fig. 3 depicts the eddy-turnover-
frequency f (k) for different Reynolds numbers. As a direct consequence of the
increase in spatial bandwidth with Re, the range of f and its magnitude also increase,
which results in a broader range of acoustic emission and shorter acoustic wave-
lengths. Thus, since the turbulent scales of motion and the noise generation mecha-
nism are so closely coupled, the numerical simulation of noise generation is faced
with the same issues as the scale-resolving simulation of (compressible) turbulence:
The range of scales that can be resolved without the additional assumptions or mod-
els is limited by the wave propagation properties of the numerical scheme and its
computational efficiency. In addition, in particular for low Mach number flows, the
inefficient transfer from hydrodynamic to acoustic energy results in large discrepan-
cies between the flow and acoustic energy, which makes the latter even more suscep-
tible to approximation errors. One situation where LES can be applied successfully
to acoustic problems without an explicit closure approach is when the dominant
source mechanisms are associated with the ’large’ flow scales, i.e. when the sound
producing features of the flow are within in the range of scales that are well-resolved
in an LES and essentially decoupled from the model errors. One example of such a
situation will be given in Sect. 4.3.
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Fig. 3 Eddy turnover frequency for high Reynolds number flows

2.2 Discretization Methods for Scale Resolving Simulations

The requirements for LES and DNS discussed above and those for noise compu-
tation are of the same nature. They both imply that a numerical scheme of high or
spectral order of accuracy is favorable, since these provide favorable wave resolution
properties due to low approximation errors. A straightforward extension of Eq. (1) to
three dimensions gives the following estimate for the number of degrees of freedom
required for the spatial discretization operator of a DNS at a given Reynolds number

N3D =
(

L

η/nppw

)3

∼ n3ppw Re
9/4. (3)

Here, nppw is the number of solution or grid points required to resolve structures of
size η with a given approximation error. It thus can be interpreted as a number of
points per wavelength criterion, which directly represents the numerical accuracy per
degree of freedom. A more refined analysis leads to a more stringent requirement of
N3D ∼ n3ppw Re

37/14 (Choi and Moin 2012). Considering not only the spatial degrees
of freedom, but also the fact that the characteristic time scale of the dissipation
scales is directly proportional to η, the total computational cost in terms of spatial
and temporal degrees of freedom Ntotal becomes

Ntotal ∼ n4ppw Re
3. (4)

Clearly, not only the physical complexity of the problem can make or break a sim-
ulation through the dependence on Re, but also the numerical capabilities of the
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Fig. 4 Visualization of vortical structures of the Taylor–Green vortex at Re = 1600 via the λ2
criterion for different discretizations

discretization scheme can be decisive. Thus, a fundamental demand for efficient
numerical simulation of all or a subset of the scales of turbulent motion can be
formulated as: The number of degrees of freedom or grid points required to accu-
rately resolve the smallest occurring relevant scale, nppw, must be minimized. By
their design, schemes of a high approximation order achieve this purpose for smooth
problems. But also for under-resolved situations, these schemes can retain their low
approximation errors over a wide range of resolved scales (Beck et al. 2014).

Figure4 highlights the influence of the chosen discretization on the scale-resolving
capabilities for turbulent flows. Shown is a visualization of the vortical structures
of the Taylor–Green vortex at Re = 1600 and at non-dimensional time t = 9. The
vortices are identified by the λ2 = −0.3 criterion. Since the problem contains a num-
ber of symmetries, only one eighth of the full domain is shown. All computations
are conducted with the Discontinuous Galerkin method presented in Sect. 3, where
the polynomial degree N of the solution approximation and thus the order of accu-
racy can be chosen arbitrarily. In the upper left corner, the DNS result, computed
with 5123 DOF, is shown as a reference. In the 3 × 3 matrix to the right, each col-
umn corresponds to a fixed spatial number of DOF, and each row corresponds to a
value of nppw. In other words, each row represents an h-refinement/coarsening of a
given discretization, while each column shows different combinations of number of
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elements and degree N . For example, in the column corresponding to 1283 DOF,
the first row entry is computed on a grid with 163 elements. In each element, the
solution is approximated by a tensor product of one-dimensional polynomials of
degree N = 7, leading to a total of 1283 DOF. This high order approximation has a
low value of nppw ≈ 4 (Gassner and Kopriva 2011). In the second row, the number
of elements is doubled per dimension to 323, while N is reduced to 3 with nppw ≈ 7
leading again to 1283 DOF.

Comparing the columns in Fig. 4, it is evident that as expected the solution quality
deteriorates with respect to the DNS when the overall resolution is reduced. Grid
artifacts become visible, and the small scale turbulent structures disappear, while
the larger scale structures become smeared by the numerical diffusion. The more
interesting observation from this plot comes from comparing the rows among each
other. The nppw criterion clearly determines the scale resolving capabilities of the
scheme, and for the same number of DOF, the solution produced by the second order
scheme is completely dominated by the numerical errors.

From this discussion it follows that high order schemes are advantageous when
considering acoustic sources and wave transport. However, high order accuracy and
a low nppw is not the only determining factor for computational efficiency, but an
important one. There are various ways in which discretizations achieve high order
approximations, but they differ in other important aspects that overall determine their
suitability for large scale direct noise computation. In the following, a brief overview
of the typical discretization strategies is given.

For finite volume (FV) schemes, the integral form of the conservation equation is
solved at a discrete level, i.e. the evolution of the mean in each grid cell is computed.
Information exchange between the elements occurs via a numerical flux function.
This ensures local conversation and introduces stability for underresolved problems
and stronggradients. To achieve a higher order approximation, a reconstruction step is
added, which reconstructs higher order approximation polynomials from the integral
data across given element stencils. The specific methods then differ in the choice of
the reconstruction stencils and in the combination or selection of the polynomials.
In particular for three-dimensional simulations, this reconstruction process incurs
a high computational effort and a complex parallelization. On non-regular grids,
the formally high order accuracy is usually not obtained, which negates one main
advantage of FV schemes, namely their general suitability for unstructured meshes.
Figure5 highlights the challenges introduced by the reconstruction process.

High order finite difference (FD) schemes are based on analytical differentiation
of an interpolating polynomial. Thus, they inherit the simplicity of the interpola-
tion operation, but also its drawbacks. For advection dominated problems, stencil
upwinding or filtering is needed for stabilization. Achieving a high approximation
order is straight-forward by stencil extension, but makes parallelization particularly
demanding (alternatively, compact FD schemes solve a local linear system of equa-
tions). One subfamily of FD schemes are the dispersion relation preserving schemes,
which sacrifice the theoretical order of convergence for improved phase and ampli-
tude errors (Tam andWebb 1993; Bogey and Bailly 2004). Themain drawback of FD
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Fig. 5 Left: 1D stencil for quadratic reconstruction, Right: stencil choices for quadratic reconstruc-
tion in 2D

schemes is their reliance on structured grids and the complex integration of boundary
conditions.

Global spectral (GS) methods form another class of schemes that have by design
very favorable nppw values, down to the theoretical limit of 2 for Fourier-basis based
methods. They have in common that the solution in the domain is approximated
by a unique global solution representation, i.e. their stencil includes all available
information. The residual is either minimized in an L2-projection sense or at discrete
solution points, leading to the Spectral-Galerkin-type schemes and the Spectral-
Collocation-type schemes. These methods have been widely used in basic turbulence
research, mainly for the incompressible Navier–Stokes equations (Yokokawa et al.
2002). For compressible problems, additional stabilization mechanism are required,
e.g. Hussaini et al. (1985), Shebalin (1993). The global nature of the approximation
makes parallelization non-trivial and costly compared to other methods. The main
drawback of these methods is however their restriction to a single domain geometry.

In contrast to these global spectral methods, the class of high order finite ele-
ment (FE) spectral methods decomposes the computational domain into grid cells
or elements, which can be arranged in an unstructured, non-conforming way, akin to
FV grids. Based on the chosen ansatz, this class can be split into continuous (for a
globally continuous ansatz) and discontinuous (for an element-local ansatz) Galerkin
methods. Both groups allow an easyway to increase the approximation order and thus
reduce nppw. Continuous Galerkin methods are employed for incompressible flows
mainly, and require additional stabilization for hyperbolic problems. Discontinuous
Galerkin methods gain stability for compressible problems through the numerical
flux function that penalizes inter-element discontinuities. In addition, the coupling
through the fluxes and not the solution itself reduces the communication footprint
of the method, and makes its parallelization straightforward. These methods thus
combine high order accuracy, geometric flexibility and computational efficiency.



168 A. Beck and C.-D. Munz

Table 1 Comparison of features of discretization schemes for direct acoustic computation

nppw Costs/DOF Geometry Parallelization Stability

GS � ∼ − ∼ −
CG/DG � � � � (�)

FD � � ∼ � �
FV HO � ∼ � ∼ �

Table1 summarizes the advantages and disadvantages discussed here. For direct
noise computation in complex domains, a single domain method is not practical so
discretizations that rely on a global solution representation are ruled out. Further-
more, if geometric flexibility is required, only discretization strategies that naturally
support unstructured meshing are viable options. Among these, DG methods com-
bine high order accuracy without increasing stencil size and inherent suitability for
hyperbolic problems, which make it a very suitable candidate as a base scheme for
investigating noise generation. In the following section,wewill present the numerical
and implementation details of such a DG framework.

3 Discontinuous Galerkin Spectral Element Method

In this section, we present the details of a special variant of the DG method, namely
the Discontinuous Galerkin Spectral Element Collocation Method (DGSEM). Dis-
continuous Galerkin methods in general can be interpreted as a hybrid of high order
FE methods and FV methods, which gives them a number of favorable properties
for scale-resolving simulations:

• Spectral accuracy for smooth problems when increasing the degree of the local
ansatz (p-refinement), which results in low nppw requirements, as discussed in
Sect. 2.2

• Natural support of arbitrarily shaped grid elements, which can be connected in an
unstructured, non-conforming way

• Local grid refinement or basis enrichment in regions of interest (h/p-refinement)
• Stability for hyperbolic problemswith discontinuities through numerical flux func-
tions

• Local conservation for each element
• Weak imposition of the boundary conditions through fluxes
• Efficient parallelization due to minimal inter-element coupling
• Orthogonal hierarchical bases which resolve a large wave range within an element
and which can be exploited in multiscale modeling
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DG methods have a relatively recent research history. They were introduced by
Reed and Hill (1973) in 1973 for linear advection problems of neutron transport
on triangular meshes and analyzed by Lesaint and Raviart (1974). Research then
lay dormant for about two decades, until Cockburn and Shu provided a systematic
extension to systems of non-linear conversation equations (Cockburn and Shu 1991,
1989; Cockburn et al. 1989, 1990) such as e.g. the compressible gas dynamics. Bassi
and Rebay were the first to introduce a mixed finite element type approach for the
discontinuous Galerkin discretization of viscous flow problems and extended the DG
method to the compressible Navier–Stokes equations (Bassi and Rebay 1997). Collis
in 2002 was the first to use a high order DGmethod (p = 6) for the DNS of a weakly
compressible turbulent channel flows at a low Reynolds number, with about 13 mio
DOF for his finest mesh (Collis 2002).

Since DG methods are closely related to high order FE methods, the core of the
method can be summarized in two steps: The projection operator of the variational
formulation and the inversion of the mass matrix. The discretization and implemen-
tation choices for these two steps, together with the choice of the element topogra-
phy, lead to different DG formulations. Among these (spatial) choices are the basis
functions (e.g. Lagrange or Legendre-type polynomials), the approximation space
spanned by these functions in multi-dimensions (a tensor-product approach or a full
order basis), the choice of the quadraturemethod, theweakor strongDG-formulation,
the discretization choices for the inviscid and viscous surface fluxes and the treat-
ment of non-linearities. The temporal integration introduces another level of possible
choices.

Among these different variants, theDiscontinuousGalerkin Spectral ElementCol-
location Method (DGSEM) (Kopriva 2009; Hindenlang et al. 2012) combined with
an explicit time integration scheme has shown to be highly effective and competitive
for scale-resolving simulations.

3.1 Basic DG Discretization

In this section, we derive details and specific implementation choices of the Discon-
tinuous Galerkin Spectral Element Collocation Method for a system of hyperbolic-
parabolic conservation equations, following Kopriva (2009) and Hindenlang et al.
(2012). Since themain focus is the direct noise computation, we use the compressible
Navier–Stokes equations in physical space R3 as an example.

Compressible Navier–Stokes Equations The temporal and spatial evolution of a
viscous, compressible fluid is governed by the conservation statements for mass,
momentum and energy. In conservative form this set of partial differential equations
for a Newtonian fluid is given as
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∂ρ

∂t
+ ∂

(
ρuj

)

∂xj
= 0,

∂ (ρui)

∂t
+ ∂

(
ρuiuj + pδij

)

∂xj
= ∂σij

∂xj
,

∂ (ρe)

∂t
+ ∂

[
(ρe + p) uj

]

∂xj
= −∂qj

∂xj
+ ∂

(
σijui

)

∂xj
.

(5)

Here, the Einstein summation convention applies, δij denotes the Kronecker delta
function and i, j = 1, 2, 3. The conservative variables of mass, momentum and
energy are U = [ρ, ρu1, ρu2, ρu3, ρe], where ρ denotes the density, ui the ith com-
ponent of the velocity vector and the total energy ρe is given by

ρe = ρ

(
1

2
uiui + cvT

)
. (6)

Herein, cv and T denote the specific heat at constant volume and the temperature,
respectively. The equation of a perfect gas is used to close the system:

p = ρRT , γ = cp
cv

, (7)

with R = cp − cv as the specific gas constant, the pressure p and the adiabatic expo-
nent γ. The viscous stress tensor σij is a function of the viscosity μ (which itself is
dependent on temperature) and the velocity gradient tensor

Sij = ∂ui
∂xj

+ ∂uj
∂xi

− λδij
∂uk
∂xk

. (8)

The bulk viscosity coefficient λ is commonly chosen to be 2
3 , which removes the

trace from Sij. The remaining unknown in Eq. (5) is the definition of the heat flux
vector qj as

qj = −k
∂T

∂xj
, with k = cpμ

Pr
, (9)

where Pr denotes the Prandtl number of the fluid.
In vectorial form, Eq. (5) can be recast as

∂U

∂t
+ ∂

∂x
Fc(U) + ∂

∂y
Gc(U) + ∂

∂z
Hc(U)

− ∂

∂x
Fv(U,∇xU) − ∂

∂y
Gv(U,∇xU) − ∂

∂z
Hv(U,∇xU) = 0

(10)
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with the vector of conserved variables U and the associated inviscid and viscous
physical fluxes {Fc,Gc,Hc} and {Fv,Gv,Hv}. Collecting the directional fluxes, this
can further be simplified to the standard compact form of a conservation law

∂U

∂t
+ ∇x · �Fc(U) − ∇x · �Fv(U,∇xU) = 0,

∂U

∂t
+ ∇x · �F(U,∇xU) = 0.

(11)

Together with suitable initial and boundary conditions, Eq. (11) describes a system
of conservation equation of hyperbolic-parabolic type, that can be now be discretized
by the DGSEM method.

Spatial Discretization In order to solve this system of equations, a discretization of
the computational domain consisting of non-overlapping elements is defined. In the
DGSEMmethod, the type of elements is restricted to hexahedral cells which support
a tensor product basis. The elements can be connected in a fully unstructured way.
This restriction of the element type can be ameliorated by the use of non-conforming
grids, but in general it makes the grid generation process more costly.

Once the grid has been created, each element in the physical domain is then
mapped to a unit reference element E ∈ [−1, 1]3 with coordinates (ξ1, ξ2, ξ3)T . The
associated mapping function �x(�ξ) from reference to physical space is approximated
as a polynomial itself and is then used to calculate the Jacobian J(�ξ) = det( ∂�x

∂�ξ ).

Clearly, for the mapping to be defined and invertible, J(�ξ) has to be positive
everywhere, which can be challenging for non-linear mappings of curved elements
(Hindenlang 2014). The main reason for the mapping step is to be able to define
the operator itself in reference space, which means that a single shared set of basis
functions and quadrature coefficients for each element exists.

The resulting individual element-basedmapping is then used to transformEq. (11)
to reference space

Ut + 1

J(�ξ)∇ξ · �F(U,∇xU) = Ut + 1

J(�ξ)∇ξ · ( �G(U) − �H(U,∇xU)) = 0, (12)

where J(�ξ) := �a1 · (�a2 × �a3) is again the Jacobian of the mapping �x(�ξ), calculated
from the covariant basis vectors �al := ∂�x

∂ξl
. The covariant transformed fluxes are given

by
F l := J�al · �F, l = 1, 2, 3, (13)

with the metric terms

J�al := �ak × �am (l, k,m) cyclic. (14)

The way the metric terms are discretized and implemented is important for the free-
stream preserving property of the resulting method. We refer to Kopriva (2006) for
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a discussion. This property ensures that the divergence operator remains zero for
a spatially constant flux on a discrete level. Besides conservation, this property is
of particular importance for acoustic propagation, where the energy of the acoustic
waves is considerably smaller than that of the hydrodynamics and can easily be
overwhelmed by small scale error terms.

Since the equation for each element is nowdefined in a common reference element,
a shared polynomial basis can now be chosen. In DGSEM, the solution vector within
each element is approximated by a tensor product of 1-D Lagrange polynomials �N

of degree N

U(�ξ, t) ≈
N∑

i,j,k=0

Ûijk(t)ψ
N
ijk(

�ξ) , ψN
ijk(

�ξ) = �Ni (ξ1)�Nj (ξ2)�Nk (ξ3) , (15)

where Ûijk(t) are time dependent nodal degrees of freedom and �Ni (ξ) denotes the
standard Lagrange polynomial of degree N defined by a nodal set {ξi}Ni=0 ⊂ [−1; 1]:

�Ni (ξ) =
N∏

j=0;j 
=i

ξ − ξj

ξi − ξj
. (16)

A nodal basis offers the advantage of direct knowledge of the interpolant at its
nodes, while its counterpart, a modal basis, would require the evaluation of the full
basis. In principle, any set of pairwise unique nodes could be chosen to define the
interpolation basis in Eq. (16), as long as the resulting interpolation is stable and has a
favorable Lebesque constant. The core idea of the DGSEMmethod is to collocate the
interpolation nodes with those that support a quadrature rule of sufficient accuracy.
By this choice, the quadrature itself does not require any evaluation of the basis, and
- when extending the basis in a tensor-product - becomes a sum of one-dimensional
operations in multiple dimensions. Details on this will be demonstrated in Sect. 3.2.

Since the occurring mass matrix is of degree ∼ξ2N , the N + 1 Gauss–Legendre
quadrature points {ξi}Ni=0 are chosen as interpolation nodes, as the associated quadra-
ture is exact for this integrand. Another possible choice would be Gauss–Lobatto–
Legendre points, leading to a slightly less efficient and accurate scheme due to inexact
integration of the mass matrix (Kopriva and Gassner 2010). Now that the approxi-
mation of the solution vector U is in place, the discrete transformed flux �F can be
chosen in a similar manner

F l(�ξ) ≈
M∑

i,j,k=0

F̂ l
ijkψ

M
ijk(

�ξ), l = 1, 2, 3 (17)

F̂ l
ijk = G l(U) − Hl(U, �∇xU) |�ξijk (18)

withψM
ijk(

�ξ) = �Mi (ξ1)�Mj (ξ2)�Mk (ξ3). Note that the fluxes are again represented by an
interpolation polynomial, but defined onM + 1 Gauss–Legendre quadrature points,
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withM ≥ N . This implementation allows for a consistent integrationof the non-linear
fluxes (Kirby and Karniadakis 2003). The choice ofM depends on the non-linearity
of the flux for under-resolved calculations. For the classical DGSEM, M = N is
chosen, which leads to a collocation of solution and fluxes on the same nodes and
thus a very efficient implementation.

Now that the domain discretization and the solution and flux approximations
have been defined, we can derive the variational formulation of the problem and
from it; first the DG formulation, and then the DG discretization scheme. We start by
multiplying Eq. (12) by a test function φ(�ξ)which is taken from the same space as the
basis functions. Integrating over the reference element E to leads to the variational
formulation in reference space

∫

E

(
JUt + ∇ξ · �F(U,∇xU)

)
φ(�ξ) d �ξ = 0. (19)

This formulation can be interpreted as an L2 projection of the residual onto the space
of test functions, which enforces orthogonality. Note that so far, no connection to
the neighboring elements exist. To remedy this, the second term is rewritten using
spatial integration by parts, i.e. the flux divergence is reworked using the product
rule of differentiation. Applying the Gauss theorem, the so-called weak formulation
of the DG discretization is obtained:

∫

E

JUtφ d �ξ +
∮

∂E

(G∗
n − H∗

n

)

︸ ︷︷ ︸
F∗

n

φ ds −
∫

E

�F(U,∇xU) · ∇ξ φ d �ξ = 0, (20)

where G∗
n denotes the surface normal numerical flux function for the inviscid terms,

given by G∗
n := G∗

n (U
+,U−) and superscripts ± denote the values at the grid cell

interface from the neighbor and the local grid cell, respectively. Note that in the vol-
ume integral, the flux is no longer required to be differentiable and can be evaluated
from information within each grid element, while the new surface integral now con-
tains a numerical flux function to find a unique interface flux from two generally dis-
continuous left and right states. For the inviscid numerical flux, several well-known
flux functions derived for FV formulations are possible, which ensure consistency
and uniqueness of the numerical flux.Within theDGcommunity, themost commonly
applied flux functions are Godunov’s method, the local Lax–Friedrichs or Rusanov
flux and Roe’s approximate Riemann solver (Toro 1999). The choice of H∗

n will be
discussed in Sect. 3.3.

3.2 The DGSEM Operator

So far, in the derivation of the variational form Eq. (19) and the weak DG formula-
tion Eq. (20), the specific choices made for DGSEM did not come into play. In the
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following section, a brief discussion of the DGSEM operator will be given, which is
intended to highlight the most important aspects in terms of efficiency. A full, very
detailed derivation of the DGSEM operator is given by Hindenlang et al. (2012). As
defined in Eqs. (15) and (17), the solution and the flux are represented by tensor prod-
ucts of one-dimensional Lagrange interpolating polynomials, associated with either
one-dimensional Legendre–Gauss or Legendre–Gauss–Lobatto quadrature points.
The Lagrange property of the basis functions on these nodes makes the evaluation of
the basis at these points trivial, as the solution is represented by a nodal interpolation.
The evaluation of the inner products is then achieved by the corresponding quadrature
rule, which reverts to a sequence of three one-dimensional sums along a reference
coordinate line instead of a volume operation including all the element-local solution
points. This can be understood as a transfer of the tensor product structure of the
basis directly to the operator itself by choosing quadrature and interpolation nodes
as described above. This choice reduces the number of operations from O(N + 1)6

for a standard DG formulation to O(N + 1)4 for DGSEM.
We demonstrate this concept of operation reduction by applying the DGSEM

formulation to the first volume integral, containing the time derivative of the degrees
of freedom, from Eq. (20). First, we insert the ansatz for the solution (Eq. (15)) into
the semi-discrete form and choose the test function φ from the space of Lagrange
polynomials of degreeN asψN

ijk with associatedN + 1 Legendre–Gauss nodes {ξi}Ni=0

∫

E

J(�ξ)Utφ d �ξ =
∫

E

J(�ξ)
(

∂

∂t

N∑

r,s,t=0

Ûrst(t)ψ
N
rst(

�ξ)
)

ψN
ijkd �ξ . (21)

The integral over the reference space is now split into the coordinate directions and
then replaced by Legendre–Gauss quadrature with associated weights ω:

∫

E

J(�ξ)Utφ d �ξ =
1∫

−1

1∫

−1

1∫

−1

J(�ξ)
(

∂

∂t

N∑

r,s,t=0

Ûrst(t)ψ
N
rst(

�ξ)
)

ψN
ijk(

�ξ)d �ξ1d �ξ2d �ξ3

=
N∑

α,β,γ=0

J(�ξαβγ)

⎛

⎜
⎜
⎝

∂

∂t

N∑

r,s,t=0

Ûrst(t) �Nr (ξ1α)
︸ ︷︷ ︸

=δrα

�Ns (ξ2β)
︸ ︷︷ ︸

=δsβ

�Nt (ξ3γ)︸ ︷︷ ︸
=δtγ

⎞

⎟
⎟
⎠ ψN

ijk(
�ξαβγ)ωαωβωγ

=
N∑

α,β,γ=0

J(�ξαβγ)
∂

∂t
Ûαβγ(t) �Ni (ξ1α)

︸ ︷︷ ︸
=δiα

�Nj (ξ2β)
︸ ︷︷ ︸

=δjβ

�Nk (ξ3γ)︸ ︷︷ ︸
=δkγ

ωαωβωγ

= J(�ξijk)ωiωjωk︸ ︷︷ ︸
pre−compute

∂

∂t
Ûijk ∀ i, j, k = 0, . . . ,N .

(22)
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In Eq. (22), the Kronecker delta functions result from the Lagrange property and thus
reduce the associated summation to a single evaluation. Note that the mass matrix
is diagonal also for Legendre–Gauss–Lobatto nodes, making the chosen basis both
nodal as well as discretely orthogonal. The Jacobian of the geometry mapping is
treated in a collocation way in this approach, i.e. it is not integrated exactly if the
mapping is beyond bi-linear. In this case, an additional error akin to mass-lumping
for Gauss–Lobatto integration of the mass matrix is introduced.

Froman efficiency point of view,Eq. (22) demonstrates how the three-dimensional
integrals reduce to point-wise evaluations in DGSEM. For each of the (N + 1)3

degrees of freedom Ûijk per element, just a single multiplication with a pre-computed
term is necessary, due to the “folding” of the three-dimensional integral based on
the tensor-product structure instead of the evaluation of a three-dimensional integral
and inversion of a full mass matrix.

For the surface and flux volume integrals in Eq. (20), a similar reduction in opera-
tions can be shown, where the volume integral retains an operation count of (N + 1)
multiplications per DOF, as the the derivatives of the basis functions do not support
the Lagrange property. Further details and a full discretization of the operator can be
found in Hindenlang et al. (2012). The semi-discrete form of the DGSEM operator
in three dimensions is given as

−Jijk
(
Ûijk

)

t
=

(
N∑

α=0

D̂iαF̂1
αjk

)

+
(
[F∗ŝ]+ξ1

jk �̂i(+1) + [F∗ŝ]−ξ1

jk �̂i(−1)
)

+
⎛

⎝
N∑

β=0

D̂jβF̂2
iβk

⎞

⎠ +
(
[F∗ŝ]+ξ2

ik �̂j(+1) + [F∗ŝ]−ξ2

ik �̂j(−1)
)

+
⎛

⎝
N∑

γ=0

D̂kγF̂3
ijγ

⎞

⎠ +
(
[F∗ŝ]+ξ3

ij �̂k(+1) + [F∗ŝ]−ξ3

ij �̂k(−1)
)

,

(23)

with the precomputable one-dimensional operators defined as

Dij =d�j(ξ)

dξ

∣
∣
∣
∣
ξ=ξi

,

D̂ij = − Dji
ωj

ωi
, i, j = 0, . . . ,N .

(24)

The weighted basis functions are given accordingly by

�̂i = �i

ωi
, i = 0, . . . ,N, (25)

and ŝ is the surface element, relating the physical to the reference surface.
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Fig. 6 DGSEM operator
structure in 2 dimensions

Equation (23) highlights how the tensor-product basis and collocation of quadra-
ture and interpolation translates to a tensor-product operator and thus becomes com-
putationally highly efficient. The three-dimensional operator essentially collapses to
a sequence of three consecutive one-dimensional operators.

Figure6 visualizes the operator and the involved nodes for two dimensions. The
computation of the residual at a given node Ûij involves essentially three steps: The
contribution to the surface integral requires the prolongation of the solution to the
element-faces and the subsequent evaluation of the numerical fluxes as a function
of the state in the neighboring element. This results in four flux evaluations in 2D.
Secondly, the volume contribution is computed by numerical quadrature along two
coordinate lines. The third step, the inversion of the mass matrix, is trivially given
due to the orthogonality of the basis.

3.3 Approximation of Viscous Fluxes

Returning to Eq. (20), the last missing term to be defined is the numerical approxima-
tion for the viscous flux termH∗

n. This term introduces a dependence on the gradient
of the solution. The treatment of the gradient terms in the context of DG approxi-
mations was first tackled by Bassi and Rebay (1997), who introduced a mixed finite
element approximation, in which the gradients are approximated in the same discon-
tinuous polynomial space as the solution. They also showed that a local evaluation of
the gradient leads to instabilities, and that some form of “lifted” gradient, containing
information from both adjacent elements, is needed.

To derive the mixed formulation, the system of governing equations is rewritten
as a corresponding system of first order equations with an auxiliary variable �S as an
approximation of the lifted gradients
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�S − ∇xU = 0,

Ut + ∇x · �F(U, �S) = 0.
(26)

Applying the discretization steps outlined above to derive a weak DG discretization
of the auxiliary equation leads to

c = 1, . . . , 5 :
∫

E

J�scφ d �ξ +
∮

∂E

�u∗
c,nφ ds −

∫

E

uc · ∇ξφ d �ξ = 0,

∫

E

JUtφ d �ξ +
∮

∂E

(G∗
n − H∗

n

)
φ ds −

∫

E

�F(U, �S) · ∇ξφ d �ξ = 0,
(27)

with the component uc of the state vectorU and its lifting operator �sc. The numerical
flux of the auxiliary equation is �u∗

c,n, and H∗
n = H∗

n(U
+,U−, �S+, �S−) denotes the

numerical flux function for the viscous terms. Following Bassi and Rebay (1997),
we choose

c = 1, . . . , 5 : u∗
c,n = (

αvisc u
+
c + (1 − αvisc) u

−
c

) �n, (28)

H∗
n =

(
αvisc Hn(U

+, �S+) + (1 − αvisc)Hn(U
−, �S−)

)
, (29)

with �n denoting the outward pointing surface normal. For a parameter of αvisc = 1
2 ,

this treatment of the viscous fluxes is usually labeled BR1 (first method of Bassi and
Rebay 1997).

3.4 Boundary Conditions

Since in DG methods, the coupling between the elements is achieved weakly or
indirectly through the numerical flux as a function of the adjacent states, it is natural
to extend this approach to the boundary conditions as well. The rationale for this
approach is to ensure consistency in the approximation of the internal faces fluxes
and the boundary conditions, i.e. to use the same discretization operators for both
and thus avoid stability issues (Bazilevs and Hughes 2007). This approach is also
applicable toDirichlet type boundaries,where instead of prescribing a stateU directly
at the boundary, an appropriate right hand side state U+ (akin to a ghost cell state)
is prescribed. Together with its adjacent neighbor state from within the domain, it is
then used to compute the resulting advection boundary flux through the appropriate
Riemann solver. The gradients for the diffusive fluxes are chosen according to the
specific type of boundary condition.

Collis (2002) investigated the effect of weakly versus strongly imposed Dirichlet
conditions for the case of an under-resolved one-dimensional stationary boundary
layer problem and turbulent channel flows. He found that the L2 error norm is greatly
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Fig. 7 Boundary conditions and acoustic disturbance sources

reduced when the boundary conditions are enforced in this weak manner and oscil-
lations near the boundary are avoided. We follow this approach, and we enforce the
boundary conditions for Eq. (27) weakly through the prescription of the right hand
side state U+ of the boundary fluxes �u∗

c,n,G∗
n and H∗

n.
Challenges in Aeroacoustics Due to the scale separation between hydrodynamics
and acoustics, stable and accurate boundary conditions pose a considerable chal-
lenge. In particular, outflow and far field conditions are difficult to handle in subsonic
flows, since they are usually artificial boundaries and thus the correct outer state is
not known. Especially at the outflow boundary, where large scale non-linear hydro-
dynamic structures need to exit the domain, a slight error in the boundary condition
will act as any gradient in the Lighthill tensor and produce noise radiating from the
boundaries into the domain. Figure7 highlights some of the challenges of applying
boundary conditions and sources that may pollute the acoustic field.

Another issue that is not directly related to the boundary condition treatment is
the generation of sound waves at gradients of the local resolution, e.g. at stretched or
skewedgrid cellswherewaves becomemore poorly resolved and their non-resolvable
energy is radiated again as acoustics. This becomes particularly troublesome for high
order discretization with low numerical dissipation.

Across the inflow boundary, the incoming flow state and possible noise distur-
bances are described. Upstream propagating waves must be able to leave the domain
without reflections. Recognizing that these waves are typically of low amplitude,
boundary condition types based on linearization and characteristic decomposition
work well. This also holds for the parts of the boundary that are approximately par-
allel to the flow, as long as no large amplitude noise occurs. At the outflow boundary,
approaches based on linearization are generally not successful when high amplitude
disturbances like turbulent structures encounter the boundary. Without special treat-
ment, the outflow boundary can act as a dominating artificial source and pollute the
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Fig. 8 Reflection coefficient
of different boundary
conditions

whole acoustic field. No general theoretical method exists to construct non-reflecting
boundary conditions in this situation. Instead, an artificial absorbing layer is the most
commonly used approach. This layer is placed upstream of the boundary itself and
modifies the incomingflowand acoustic fieldwhile it is passing through it. The ampli-
tudes of the disturbances are damped towards a “quiet” base flow, which then exits
through a linearized boundary condition. While this approach can be very effective
and computationally efficient, it introduces a number of user-selectable parameters
such as layer width or ramping function and itself can also become reflective. In
addition, careful blending of the buffer region with other adjacent boundaries must
be implemented to avoid generation of disturbances through a mismatch. Colonius
(2004) gives a good overview of possible implementations for ad-hoc solutions, such
as sponge zones, perfectly matched layers, fringe and grid stretching.

Boundary Conditions for DG In the following section, we will briefly discuss how
the typical boundary conditions discussed above can be treated in the DG context.

Far Field Boundaries As discussed above, the boundary conditions in DG are pre-
scribed weakly through a numerical flux. The choice of this flux function can be
adapted to the problem at hand; for the acoustic far field, those that are based on a
wave decomposition are a natural choice. The state outside of the domain is fixed to
the free-stream state at infinity, and the resulting boundary flux is computed with the
adjacent inner state. It has been shown in Flad et al. (2014) that employing Roe‘s
Riemann solver flux function mimics classical one-dimensional linearized charac-
teristic non-reflecting boundary conditions and effectively prevents reflections of
acoustic disturbances.

Figure8 shows the reflection behavior of a planar acoustic wave transported with
background velocity u0 = 0.5 and speed of sound c = 1, crossing the boundary under
different incident angles. It is compared to a 1D linearized local boundary condi-
tion proposed by Colonius (2004). The reflection coefficient max(|ρrefl|)/max(|ρ|)
vanishes for small angles and drops below 5% for angles smaller than ≈25◦.
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Outflow Boundaries A simple and robust variant of the absorbing layer discussed
above is the sponge zone concept, inwhich a retarding volume source term is included
in the spatial operator

Ut = R(U) − dσ(�x)(U − UB), (30)

where R(U) represents the discretized Navier–Stokes operator, d controls the mag-
nitude of the source term and σ(�x) denotes a ramping function. This ramping func-
tion is intended to prevent reflections at the domain - sponge interface and smoothly
increases the source term strength towards the domain edges.UB identifies an acousti-
cally quiet base flow towards which the solution is forced; clearly, if UB = U, the
source term vanishes. Suitable choices for UB are a constant free-stream state or a
time-averaged solution from a prior simulation. A flexible and general method to
determine a suitable base flow is to generate it from a moving time-average of the
solution. This time-average is computed by an exponential temporal filter, which can
be written in a simple differential form as

Ūt(t,�) = U(t) − Ū(t,�)

�
, (31)

This expression only requires storing of one previous base flow states. It is integrated
in time alongside the spatial DG operator and thus yields the base flowUB = Ū(t,�)

in every time step. This filter idea has been adopted from the temporally filtered LES
by Pruett et al. (2003). The filter width � should be set to cover the largest time
scales of the flow.

Following Flad et al. (2014) to demonstrate the effectiveness of this sponge
method, a 2D isentropic Euler vortex with an initial maximum density perturbation
of 13.3% is transported atMa = 0.5 along the x-direction. It is computedwithout any
damping zone and with the adapting sponge approach discussed above. The sponge
layer uses a ramping function of width�xSP which starts at x0 and uses a polynomial
blending given by

σ(x∗) = 6x∗5 − 15x∗4 + 10x∗3, (32)

and with
x∗ = x − x0

�xSP
(33)

being the local sponge coordinate. The parameters for the sponge zone are x0 = 10,
�xSP = 10, d = 0.1, σ(x∗) equals 0.1 for 20 ≤ x ≤ 25 and� = 20. Figure9 gives a
qualitative impression of the reflection entering the computational domain of interest
x < 10 without and with a sponge zone, showing a significant reduction of reflected
acoustics for the latter case.

As shownbyAkervik et al. (2006), using amoving temporal average as a base state
has the additional advantage of not altering the steady state solution. This implies that
the sponge zone can be initiated very closely to the region of interest, which reduces
computational costs compared to other zonal concepts. In addition, this reduces the
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Fig. 9 Density contours at t = 74. Left without zonal BC, Right with adaptive sponge zone
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sensitivity with regards to the sponge zone parameters and thus removes a source
of computational uncertainty. To demonstrate this feature of the adjusting base flow,
Fig. 10 (left) shows the results of a 2D Euler flow simulation at Ma = 0.4 around
a NACA 0012 airfoil. Three simulation results are compared: (1) One without any
sponge zone, one with a constant sponge (2) and one with the adjusting one (3),
both applied in the entire field. The damping parameter is set to d = 0.1 and the
filter width is 0.5 convective times (c/u∞). Solution (1) and (3) show an identical
flow field, while the classical sponge (2) clearly influences the steady state solution
due to the base flow inconsistency. The right pane of Fig. 10 shows the convergence
of the drag coefficient, which differs from the unfiltered results for case (2). Thus,
the adjusting sponge zone can be implemented efficiently without a large memory
requirement, it retains the steady state solution as it filters in time and it can be used
to prevent reflections.
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The full framework described in this section is available as the open-source code
package FLEXI1 under GPL 3.0.

4 Applications

In this section, we describe some CAA simulations with the DGSEM method pre-
sented in Sect. 3.We start by a brief presentation of a LEE sound scattering simulation
to highlight the influence of the numerical scheme in terms of the nppw criterion in
Sect. 4.1. In Sect. 4.2, tonal noise generation at an airfoil is computed and compared
to well-established results to validate the established framework. In Sect. 4.3, we
present the simulation of a feedback mechanism in a complex automotive test case.

4.1 Linearized Euler Equations

While the framework presented in Sect. 3 is mainly intended for direct methods,
implementing hyperbolic/parabolic systems of equations beyond the compressible
Navier–Stokes equations is straight forward. For this investigation, the Linearized
Euler Equations (LEE) have been implemented:

∂ρ

∂t
+ (v0 · ∇x)ρ + ρ0∇x · v + (v · ∇x)ρ0 + ∇x · v0ρ = 0 (34)

∂v
∂t

+ (v0 · ∇x)v + 1

ρ0
∇xp + (v · ∇x)v0 + 1

ρ0
(v0 · ∇x)v0ρ = 0 (35)

∂p

∂t
+ (v0 · ∇x)p + γp0∇x · v + (v · ∇x)p0 + γ(∇x · v0)p = 0 (36)

For a constant base stateU0 = (ρ0, u0, v0,w0, p0), they canwritten in conservative
form as

Ut + A Ux + B Uy + C Uz = S, (37)

with the acoustic source term S and the matrices A, B, C depending on U0 only.
Following the test case description from the Second Computational Aeroacoustics
Workshop on Benchmark Problems (Tam and Hardin 1997), the scattering of a point
source on a cylindrical object of diameter D = 1 is investigated. The source term
acts through periodical pressure and density disturbances and is given by

1www.flexi-project.org.

www.flexi-project.org
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Fig. 11 Grid and coordinate system for LEE cylinder scattering test case

S =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

γ

c20
S(x, y, t)

0
0
0

S(x, y, t)

⎞

⎟
⎟
⎟
⎟
⎟
⎠
, S(x, y, t) = exp

[
−ln(2)

(x − xc)2 + (y − yc)2

b2

]
sin(ωt),

(38)
with b = 0.2, ω = 8π, γ = 1.4 and the source coordinates xc = 4 and yc = 0. Ini-
tially, U(t = 0) = 0 and the background state is given by

ρ0 = 1, v0 = 0, p0 = 0.714285714. (39)

The computational domain is a 2D half cylinder of radius r = 10, discretized by a
structured grid with refinement towards the geometry. Symmetry boundary condi-
tions are enforced on the lower boundary, while Dirichlet boundaries with vanishing
fluctuations are enforced on the outer surface. Figure11 depicts the geometry and
grid as well as the coordinate system used. A number of computations have been
conducted on different hierarchical grids and varying polynomial degree N . As a
numerical flux function, a standard characteristic flux vector splitting was used.
Figure12 shows the instantaneous pressure and velocity fluctuations at t = 100.

Fig. 12 Instantaneous pressure and velocity fluctuations at t = 100
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Fig. 13 Comparison of computed directivity with reference solution from Tam and Hardin (1997)

For a quantitative comparison, the directivity D as a function of the radius r can
be computed from

D(θ, r) = rp(θ)2, (40)

where the bar denotes the time-averaging. The averaging takes place between t = 45
and t = 100 once the initial disturbances have left the domain. Figure13 compares
the simulation results with analytical reference data. The simulations were conducted
on three hierarchically refined structured grids with 24 × 24, 48 × 48 and 96 × 96
elements in the x − y-plane. The degree of the polynomial approximationwas chosen
to be N = 3 and N = 7. From the results in Fig. 13, two trends can be observed.
Firstly, the solution improves towards the reference solution when the grid size is
halved while keeping N constant. Secondly, the importance of a low nppw criterion
is demonstrated here, as two simulations with the same overall number of DOF
(96 elements, N = 3 and 48 elements, N = 7) differ significantly in accuracy. For
this nominal resolution (taken along a 1D line at the lower boundary), the number of
DOF per acoustic wavelength is≈6. From the discussion in Sect. 2.2, this is less than
optimal for accurate wave representation for an N = 3 approximation, but sufficient
forN = 7. Accordingly, theN = 7 solution is in better agreement with the analytical
reference. Figure14 supports these observations. For the same total number of DOF,
the high order solution (left) retains the acoustic waves up to the boundary, while for
the low order solution (right), only the waves in close proximity to the source are
kept intact.
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Fig. 14 Instantaneous pressure fluctuations at t = 100 with 3842 DOF. Left: 48 × 48 elements,
N = 7; Right: 192 × 192 elements, N = 1

4.2 NACA 0012 Tonal Noise

The DGSEM framework described in Sect. 3 has been applied to a number of tur-
bulent and transitional test cases (Fechter et al. 2012; Flad et al. 2014; Beck et al.
2016, 2014) covering laminar separation, transition and turbulent reattachment in
an LES setting. In the following, we will discuss the simulation of the flow around
a NACA 0012 airfoil which has been shown to support the establishment of an
acoustic feedback loop (Paterson et al. 1973; Arbey and Bataille 1983; Nash et al.
1999; Desquesnes et al. 2007; Jones and Sandberg 2011; Plogmann et al. 2013).
We follow the 2D DNS of Jones and Sandberg (2011) and conduct a well-resolved
simulation at Ma = 0.4 and ReC = 100,000 based on the chord C at an angle of
attack of α = 0◦.

The 2Ddomain is discretized in aC-type topology. The upstream radius is r = 7C,
and extends to 9C downstream. The domain is divided into 40,934 unstructured
elements, each supporting a polynomial of degree N = 5 per direction. This results
in about 1.5 million degrees of freedom. The boundary geometry is represented by
a polynomial of degree Ngeo = 4 per direction. This ensures proper representation
of the airfoil curvature. Details on the near-wall resolution of the current and the
reference simulation from Jones and Sandberg (2011) are listed in Table2. The far-
field boundary conditions are enforced weakly, with a Roe Riemann flux function
to enable the exiting of low amplitude waves as discussed in Sect. 3.4. In addition, a
circular moving-average sponge zone is arranged around the trailing edge, with its

Table 2 Wall-tangential and wall-normal grid spacing �x and �y at the leading edge (LE) and
trailing edge (TE) for the current simulation of the NACA 0012 case and reference Jones and
Sandberg (2011). �x = �xElem/(N + 1), �y = �yElem/(N + 1)

LE current LE ref. TE current TE ref.

�x/C 4.2 · 10−4 6.1 · 10−4 5.3 · 10−4 4.0 · 10−4

�y/C 2.3 · 10−4 3.5 · 10−4 2.3 · 10−4 4.0 · 10−4
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Fig. 15 Domain and grid for the NACA 0012 simulation

source term strength dσ(�x) ramped from 0 to 0.5 in the range r/C = 2 to 6, while
the temporal filter width is set to � = 2C/u∞. Figure15 shows the domain and the
grid. The simulation was conducted on the CRAY XC40 Hornet cluster using 720
cores, which resulted in a load of≈2000 DOF/core, which is near the optimum of the
framework. The resulting computational wall time amounted to 3min per convective
time unit T∗ = C/u∞ at a time step of �t/T∗ = 3.1 · 10−5.

The general flow features are illustrated by instantaneous vorticity contours in
Fig. 16 (left). The boundary layer separates on both sides of the airfoil, which leads
to a roll-up of vortices slightly upstream of the trailing edge. Figure16 (right) shows
the associated acoustic radiation by means of volume dilatation ( �∇x · �v) contours.
The typical dipole character of trailing edge noise can be easily recognized.

The acoustic signal at an observer position of 0.5C above the airfoil can be com-
pared to the reference in Fig. 17 by means of the PSD of pressure. The PSD is
approximated by averaging over 5 blocks with 50% overlap and a Hanning window
over a total of 36T∗. The main tonal frequency and the overall shape of the decaying
broadband noise are in excellent agreement. Deviations are found in the missing side
peak at fT∗ ≈ 3.3 and additional lower side peaks at fT∗ ≈ 2 and 2.9 yielded by the
present simulation, which do not appear in the reference.

In order to determine whether the underlying feedback mechanism is present and
detected by the numerical simulation, a global stability analysis is conducted. More
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Fig. 16 Left: instantaneous vorticity contours over the range �z = ±100u∞/C, Right: volume
dilatation contours in the range �∇x · �v = ±0.1u∞/C
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Fig. 17 PSD of pressure at �x/C = (0.5, 0.5), where the origin is placed at the leading edge of the
airfoil

details on this method can be found in Frank and Munz (2016). The basic concept of
this type of analysis is to consider the temporal evolution of small disturbances on a
frozen base flow. To this end, the solutionU is rewritten as a Reynolds decomposition
of the form U = U0 + U ′, where (U0)t 
= 0 for a general base flow. Introducing this
ansatz into the evolution equation leads to an expression for the dynamics of small
perturbations to arbitrary base flows:

U ′
t = R(U0 + U ′) − R(U0). (41)

This simple perturbation formulation is suitable for any non-linear solver, as it just
requires the subtraction of the operator evaluated at the base state at every instance.
A Taylor series expansion of the full evolution equation aboutU0 shows that Eq. (41)
approximates a linearization for small U ′.
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Fig. 18 Left: RMS fluctuations of velocities
√
u′u′ + v′v′ for NACA 0012. Right: location of

perturbation

For the present analysis, we chose the time-averaged base flow as U0. It was
then initially perturbed by a cell-constant value ofU ′(t = 0)/U∞ = 10−8 and left to
evolve according to Eq. (41).

Figures19 and 20 visualizes the feedback loop as an interplay of hydrodynamic
instabilities (visualized by the vorticity in the left column) and the acoustic field
(shown is the dilatation in the right column). Starting from the top, the perturbation
was introduced at time t = 0 at the location shown in Fig. 18 (right). The perturbation
is convected along the airfoil and grows in amplitude in the separated shear layer (t1
in Fig. 19). As it passes the trailing edge, large scale acoustic radiation is generated
and propagates (also) upstream (t2). At t3, the energetic part of the wave package
has left the trailing edge, and the associated acoustic radiation subsides, leading to
a visually “quiet” state again (t4 in Fig. 20). Some time later, although no further
perturbation has been introduced externally, a new energetic wave package appears
(t5), which again generates acoustics upon shedding (t6), thereby closing the loop.

This simulation of the feedback loop and comparisonwith published results serves
as a validation case for our framework. The accurate prediction of the acoustic signal
and the establishment of the feedback loop are only possible if the precise hydrody-
namic and acoustic processes are captured by the simulation. The close agreement of
our simulation with the acoustic results of the reference demonstrate the suitability
of our high order code framework for aeroacoustic feedback effects. In the following,
it will be applied to a more complex case of acoustic feedback at an automotive side
mirror.

4.3 Acoustic Feedback Mechanism at a Side Mirror

Feedback as a source of tonal noise In this section, we will present the application
of the framework to a complex acoustic problem in an industrial setting, namely the
tonal noise generated by an acoustic feedback loop on a car side mirror alongside
experimental data. The numerical results presented in here are based on the work
by Frank (2016), while the joint experimental analysis was conducted by Werner
(2017).
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Fig. 19 Part A: temporal evolution of z-vorticity and dilatation rate for NACA 0012 case, each row
corresponds to an instance in time ti, i = 1, . . . , 3. (See also Fig. 20)

Aerodynamically, typical mirror shapes can be classified as bluff-body configura-
tions, with the associated flow phenomena. As observed experimentally, the mirror is
known to be a source of tonal noise. The associated narrowband amplitude peaks in
the acoustic spectrum are typically perceived as disturbing whistling sounds. The
main method of research into their origins for the mirror configuration remains
experimental, and is limited to simplified mirror geometries for numerical stud-
ies. The only simulation of a realistic mirror known to the authors was reported by
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Fig. 20 Part B: temporal evolution of z-vorticity and dilatation rate for NACA 0012 case, each row
corresponds to an instance in time ti, i = 4, . . . , 6. (See also Fig. 19)

Khalighi et al. (2010). For more generic geometries like airfoils however, a num-
ber of numerical simulations of self-noise exist, e.g. Jones and Sandberg (2010),
Desquesnes et al. (2007), Chong and Joseph (2012), see also the computation pre-
sented in Sect. 4.2. Lounsberry suggested that a similar feedback mechanism as the
one found on airfoils was responsible for the noise generation along car mirrors,
noting the shared occurrence of attached laminar or transitional boundary layers up
until close to the trailing edge (Lounsberry et al. 2007).
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Fig. 21 Left: model mirror on wind tunnel floor from Werner et al. (2017a), Middle acoustic
measurements on mirror, from Werner et al. (2017b), Right: acoustic measurements on NACA
0012 airfoil, from Plogmann et al. (2013)

While tonal noise at airfoils has been observed both experimentally e.g. Arbey and
Bataille (1983), Plogmann et al. (2013), Paterson et al. (1973) as well as numerically,
different theories about the exact mechanism exist. Paterson et al. (1973) attributed
the noise to the bluff-body vortex shedding with a distinct Strouhal frequency at the
trailing edge. However, this explanation did not account for the ladder-type struc-
ture observed when plotting the tonal frequency over the freestream velocity, i.e. the
distinct jumps in frequency, see Fig. 21. Several other models have been proposed,
which are based on the concept that for a self-sustaining feedback loop, the phase
difference over one cycle should vanish, a condition that only discrete frequencies
can fulfill (Tam 1974; Kingan and Pearse 2009; Arbey and Bataille 1983). Using
receptivity strips at different locations in the laminar boundary layer along a NACA
0012 airfoil, Plogmann et al. were able to trigger receptivity experimentally, which
resulted in a change of the tonal frequency according to the phase criterion, strongly
supporting the notion of acoustic feedback as an explanation for the frequency selec-
tion.

Figure21 (left) shows the mirror model on the floor of the Laminar Wind Tunnel
at the Institute of Aerodynamics and Gasdynamics (IAG). The measured frequency
spectra as a function of freestream velocity u∞ are shown alongside (middle plot).
The ladder structure is visible both for the side and upper surfaces. Through bound-
ary layer tripping, the regions of tonal noise generation could be established. For
comparison, the right plot depicts similar measurements for a NACA 0012 airfoil.

In Fig. 22, the building blocks of the feedback loop are shown:A laminar boundary
layer along a convex geometry separates close to the trailing edge due to the adverse

Fig. 22 Conceptual model
for the feedback loop



192 A. Beck and C.-D. Munz

Fig. 23 Mirror geometry. Marked areas are S Side surface, U Upper surface, DE Design edge

pressure gradient (1). In the resulting detached shear layer, convective instabilities
are amplified and start the roll-up into coherent vortices (2).When passing the trailing
edge, these structures generate sound waves through scattering (3). Pressure waves
run upstream through the boundary layer and reinforce the boundary layer instability
due to receptivity, thereby closing the loop (4). This is essentially the samemechanism
as presented in Sect. 4.2.

Numerical Model As confirmed by the experimental investigation of Werner et
al., the non-generic early-development-stage side-view mirror depicted in Fig. 21
develops a distinct whistling sound at normal cruise speeds, provided that the inflow
turbulence level is kept low (Werner 2017). Figure23 shows the computationalmodel
of this mirror geometry and the coordinate system. To enable direct comparison with
the experimental data, an isolated mirror was considered. The length scale L = 0.1m
corresponds to the lateral length of the side surface. The free-stream velocity was
set to 100km/h, and a yaw angle of θ = −20◦ was chosen. This angle resulted from
a preliminary investigation, in which it was found that this yaw angle resulted in a
comparable pressure distribution on the mirror side surface, when compared to a full
configurationwith themirrormounted on the car chassis.As themirror side and upper
surface are outside the wind tunnel boundary layer (Frank 2016), no influence of the
wind tunnel boundary layer on the tonal noise generation is expected. Therefore,
symmetry boundary condition are applied on the wind tunnel floor, while the free-
stream boundary conditions are chosen as weakly enforced Dirichlet conditions, see
Sect. 3.4. On the mirror geometry, isothermal wall boundary conditions are applied.
A temporally adapting sponge zone is added upstream of the outflow boundary. The
associated source term is ramped parallel to the free-stream velocity vector beginning
at approximately 2L downstream of the average trailing edge of the mirror. Based



Direct Aeroacoustic Simulations Based on High Order … 193

Fig. 24 Cut view of the computational mesh close to the mirror, showing the non-conforming
interfaces

on the time scale T = L/u∞, the damping parameter and the temporal filter width
are set to d = 0.8/T and � = 4T , respectively.

The computational mesh is created in two-step process. First, a coarse, block-
structured grid made of hexahedral cells is generated with a commercial grid gen-
erator. Afterwards, this mesh is refined in user-specified regions by isotropic cell
splitting, namely in the boundary layer around the mirror and in the wake region up
to the outflow boundary. This introduces non-conforming cell interfaces. A second
refinement level is introduced on the trailing edge area, in which the feedback process
outlined in Fig. 22 is known to occur from the experiments. This area is marked in red
in Fig. 24. The refinement is managed by the software library p4est (Burstedde et al.
2011), the resulting mesh consisted of 32,800 elements. The curved surface of the
mirror is realized via an agglomeration approach (Hindenlang et al. 2015). The map-
ping from reference to physical space is constructed from a super-sampled version
of the unrefined base grid. For the refined cells, the mapping can simply be evaluated
in the respective subset of the lower level parameter space. This way, we ensure free
stream preservation and conservation also at the non-conforming interfaces.

Simulation Results

Spatial resolution To assess the influence of the spatial resolution on the results, a
p-refinement is conducted by increasing the local polynomial degree. This not only
increases the number of degrees of freedom, but also shifts the nppw factor due to the
increase in the approximation order. Two resolutions are considered: Case N4M6
denotes an approximation of degree N = 4, with an evaluation of the non-linear
inner products with an approximation of degree M = 6. Analogously, case N7M10
denotes an approximation of degree N = 7. Details on the de-aliasing approach can
be found in Beck (2015). The resulting mesh parameters are listed in Table3.

Table 3 Computational mesh and resolution details

Case DOF �t [s] �y [mm] �y+ �x [mm] �x+

N4M6 4.1 · 106 3.9 · 10−8 0.026 2.5 0.6 80

N7M10 16.8 · 106 1.8 · 10−8 0.016 1.5 0.38 40
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Fig. 25 Computational andmeasured pressure coefficient distributions along surface lines z = 110,
z = 71 and y = −100mm. s denotes the wall-tangential distance to the trailing edge

The wall-normal and wall-tangential grid spacings �y and �x are given with
respect to the inner-element resolution, which takes the degrees of freedom within
each cell into account:�y = �yElement/(N + 1). They represent maximum values in
the refined region on the side surface. All simulations were conducted on the CRAY
XC40 Hornet cluster at HLRS. The wall time per convective time T∗ = L/u∞ on
3288 cores for simulations N7M10 and N4M6 amounted to about 4.6 and 0.6h,
respectively.

Figure25 compares the time-averaged surface pressure coefficient for the two res-
olutions. The pressure coefficient is extracted along lines with z = const. on the side
surface and y = const. on the upper surface. Experimental data from Werner et al.
(2017a) is given for comparison. Additionally, for the case N7M10, two averaging
periods (24 and 40 T∗) are compared. The results for the different averaging win-
dows are not discernible, suggesting that the chosen time frames are sufficient and a
statistically steady mean flow is reached. With regards to the p-refinement, it should
be noted that the resolution for case N7M10 corresponds nearly to an isotropic
doubling of the resolution, even without taking the more accurate approximation
into account. Thus, the slight difference between the two resolution indicates that a
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Fig. 26 Isocontours of the
time-averaged pressure
coefficient and surface
streamlines based on wall
friction

regime of weak grid dependence is reached. Based on these findings and taking into
account the close agreement with the experimental static pressure measurements, the
following analysis focuses on the highest resolution case.

Time-Averaged Flow Field The time-averaged flow field is characterized by the
pressure coefficient on the mirror surface. Figure26 shows the corresponding cp
distribution as well as the surface streamlines based on the skin friction on the
leeward side. About 25mm upstream of the trailing edge, shortly downstream of
the design edge (marked “DE” in Fig. 23), the coalescing skin friction lines indicate
a boundary layer separation, supported also by the increase in pressure along the
trailing edge.

From the experiments, one possible source of tonal noise has been located at the
side surface. To quantify the boundary layer in that area, a Particle Image Velocime-
try (PIV) measurement campaign was conducted at the z = 110mm position (see
Fig. 23). The PIV data is plotted alongside the results from the numerical simula-
tion. Figure27 (left and right) shows contour plots of the time-averaged velocity
magnitude and root mean square (RMS) velocity fluctuations. Overall, LES and PIV

DE

TE

Fig. 27 Comparison of the simulation results (bottom) with PIV data (top) in the z = 110mmplane.
Left time-averaged velocity magnitude 〈�v · �v〉1/2, Right RMS velocity fluctuations 〈�v′ · �v′〉1/2. The
origin of the coordinate system in this plot is arbitrarily shifted to match the PIV data
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data are in good agreement. The point of separation is predicted by the LES shortly
downstream of the design edge in both cases, while the experimental data shows
some artifacts in that region which can be attributed to seeding material deposition
between the measured slice and the camera. The spreading rate of the shear layer
and its separation angle are in very close agreement. From the RMS fluctuations, it
can be determined that the flow remains laminar and steady through the separation
up to the trailing edge, where the region of large amplitude fluctuations begins.

Acoustic Field and Source Identification Based on the comparisons of the hydro-
dynamic flow field with experimental data in the previous section, the focus is now
shifted towards the acoustic emissions and source locations, with a focus on the
occurrence and description of tonal noise. During the simulation, the local pressure
signal is recorded at a rate of 44.1kHz over 45T∗ at 4000 position along a circular
array of radius r = 500mm. From this data, the PSD is computed using blocks with
2048 samples and 50% overlap. To reduce spectral leakage for non-periodic signals,
a Hanning window is used.

A visual impression of the spatial distribution of the acoustic field is given in
Fig. 28. Contours of the sound pressure level (SPL) of selected frequencies and the

Pos.1

Pos.2

u∞ u∞

u∞

Fig. 28 SPL for selected frequencies and overall SPL (bottom right) on a spherical evaluation
surface of r = 500mm placed around the mirror
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Fig. 29 PSD of pressure at two representative positions outside of the unsteady hydrodynamic
field. PSD reference value: 4 · 10−10 Pa2/Hz. The inset in the right panel shows the probe positions
relative to the mirror geometry

overall SPL are plotted on a half-sphere above the mirror. As expected, the overall
SPL increases significantly downstream of the mirror, due to the primary location of
the noise sources at the leeward side of the mirror and the upstream shielding effects.
Also, the exiting turbulent wake represents a strong source of noise. The acoustic
footprint of the wake manifests itself as a “loud” spot across all selected frequencies.
For each chosen frequency, a complex spatial wave pattern can be observed. For
f = 2857Hz, a strong lateral radiation can be observed,which also extends upstream.
For f = 3544 and 4367Hz, more focused noise spots above and downstream of the
mirror can be observed. Based on this qualitative analysis, we can expect that the
frequency spectra vary significantly with the probe position. Therefore, the power
spectral densities (PSD) of pressure in Fig. 29 are plotted at two representative probe
positions, aiming at capturing the acoustic emission from the side surface at Pos. 1
and those from the upper surface at Pos. 2. The probes are located on a sphere with
r = 500mm around the mirror, their positions are depicted in the right panel. The
vertical positions are z = 270 and z = 500mm above the bottom wall for Pos. 1 and
Pos. 2, respectively. The left panel includes inflow microphone measurements.

Before discussing the results, some remarks on the experimental setup and the
comparability are necessary, which might help explain the results below. While in
the simulation, a perfect free stream around the mirror is chosen, the experiments
were conducted in a closed, rectangular test section. The scattering on the enclosure
walls thus can be expected to influence the acoustic measurements. In addition to
these effects, the transition locations and turbulence intensities in the parts of the flow
around the mirror emitting the relevant broadband components cannot be guaranteed
to match experimental ones, since the inflow turbulence level was not considered.
Finally, the background noise of the wind tunnel is not captured in the simulation.
Therefore, the following quantitative comparison focuses on the tonal noise frequen-
cies, while the broadband noise spectra or amplitudes cannot be expected to match.
Thus, the goal is the detection and comparison of the tonal components.
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At Pos. 1, the simulated acoustic spectrum is composed of an evenly decaying
broadband part and two recognizable, focused peaks at around 2860Hz (S3) and
4380Hz (U2). The first peak corresponds very well with the one found at 2900Hz
radiating from the mirror side during the experiments. However, an additional peak
at 3500Hz was also observed experimentally. A closer analysis revealed that the
two modes alternated intermittently in an irregular fashion. Essentially, only one of
themwas noticeable at a given instant. The experimental spectrum is thus the result of
averaging about the associated periods. Therefore, two additional experimental spec-
tra corresponding to the low and high modes gained with conditional averaging are
included in the plot. The simulation apparently predicts a situation where the lower
of the two modes is favored. A switching of the modes was not observed numer-
ically. While the precise reason for the alternation in the experiment is unknown,
the switching between the two regimes triggered by loudspeaker forcing was shown
in Werner et al. (2017b), indicating a high sensitivity to environmental disturbances
of the flow in the experimental setup. Since the simulation setup is controlled and
fixed, it is conceivable that the switching does not occur without voluntary trigger-
ing. In addition, due to the finite computational resources, the averaging time was
significantly shorter than the observed alternation periods.

At Pos. 2, the computational data exhibits two tones at 3550Hz (U1) and 4380Hz
(U2), which originate at the upper surface. The latter tone is also observed at Pos.
1, while the first is not, which can be explained by referring to Fig. 28: Pos. 1 lies
within a shadowed region regarding the acoustic propagation ofU1.The experimental
spectrum at Pos. 1 only exhibits a single peak radiated from the upper surface, which
has a significantly higher frequency of about 5000Hz (Fig. 29 (left)). An indication
for a tone of a similar frequency in the simulation is found in the weak trace of a
peak at about 5000Hz in the computational data at Pos. 2, which is generated at the
upper surface.

In order to locate the dominant noise sources, an experimental beam-forming
with a linear microphone array was conducted. Results indicate that the main source
regions are located around the airfoil trailing edge, analogously to airfoil self-noise.
Therefore, in Fig. 30, the spectra of wall pressure fluctuations along the trailing edge
are plotted. The local coordinate r traverses the trailing edge from the lower side
surface to the outer top surface. The side and upper portion are marked in Fig. 30.
The PSD spectra are calculated using using blocks of 1024 samples averaged over
28T∗. On both the side and the upper surface, two areas are marked that contain clear
narrowband frequency peaks. Specifically, the side surface features the expected
peak at approx. 2860Hz corresponding to S3, while on the upper surface multiple
additional narrowband features are visible. Among these features we recognize U1,
U2 and the weak trace at 5000Hz. Thus, each tone observed in the acoustic spectra
has a counterpart in the wall pressure spectrum. The various tonal noise components
therefore originate from the respective hydrodynamic fluctuations at the trailing edge.

Unsteady Flow Field In the previous section, the wall pressure fluctuations were
connected to the generation of tonal noise. In order to characterize the underlying
unsteady hydrodynamic field, its instantaneous vortical structures are visualized in
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Fig. 30 Power spectral density of the wall pressure along the circumferential coordinate r at the
trailing edge. PSD reference value: 4 · 10−10/Pa2 Hz

Fig. 31 Vortical structures at a flow field snapshot visualized by isosurfaces of Q = 100(u∞/L)2

colored with velocity magnitude

Fig. 31 by the means of isosurfaces of the Q-criterion (Haller 2005), colored by
velocity magnitude.

The initial laminar flow appears as a smooth surface on the front side of the
mirror. The first vortical structures appear between the design edge and the trailing
edge. On the side surface, a regular pattern of spanwise oriented rollers emerge. To
evaluate the frequency associated with these coherent structures, which are a clear
candidate for the development of tonal noise, a discrete temporal Fourier transform is
performed. Details on the specific analysis can be found in Frank and Munz (2016),
Frank (2016) and strongly support the notion that the tone associated with the side
surface S3 originates from the passing of these structures over the trailing edge. A
visual impression of the associated spatial structures is given in Fig. 32, where tonal
mode S3 is compared to two representative modes of the surrounding broadband
range. Shown are the isosurfaces of streamwise velocity fluctuations in the top row,
and the isocontours of pressure fluctuations in the z = 110mm cut in the bottom



200 A. Beck and C.-D. Munz

2520 Hz 2827 Hz (S3) 3503 Hz

Fig. 32 Top isosurfaces of (the real part of) positive and negative velocity in the streamwise
direction. The levels are chosen to ensure comparability. Bottom pressure contours at z = 110mm.
The left, middle and right columns correspond to f = 2520, 2827 and 3503Hz

row. Note that plotting the real part results in an arbitrary but spatially consistent
phase. The isosurfaces of S3 exhibit clear ordered coherent structures on the side
surface, and the associated acoustic field indicates a high amplitude tonal source
in the direct vicinity of the trailing edge. For the other two frequencies, such clear
levels of coherence cannot be identified, and no clear statement regarding the source
position can be made.

In summary, in this section we have demonstrated how the DGSEM framework
can be used successfully in the direct noise computation in challenging domains. We
have shown a near perfect comparison of the hydrodynamic field to the experimental
data, and a very close agreement between the simulated and measured emitted noise
frequencies. A global stability analysis similar to the one presented in Sect. 4.2 was
conducted which confirmed the existence of the feedback loop and showed very
good agreement of the loop frequency with the phase condition. Further details can
be found in Frank and Munz (2016). To the authors’ knowledge, this constitutes the
first numerical simulation of the tonal feedback mechanism at a three-dimensional,
complex geometry.

5 Conclusion

In this chapter, we have given an overview of the state of the art of direct acoustic
simulation with Discontinuous Galerkin methods. Many variants of DG meth-
ods exist, which mainly differ in implementation details, meshing flexibility and
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computational efficiency. However, they all share the basic advantages of the method
for DNS and DNC: They allow arbitrary order in space, which supports excellent
wave propagation properties and thus reduces the number of degrees of freedom
required to simultaneously resolve small scale fluctuations alongside large scale
structures. Due to the inter-element numerical fluxes, they are also naturally suited
for hyperbolic problems and thus are an attractive base scheme for multi-scale prob-
lems such as the acoustic noise generation and emission arising from the compress-
ible Navier–Stokes equations. Since the boundary conditions can be enforcedweakly
through characteristic-splitting based flux functions, far-field acoustic boundary con-
ditions can be applied in a straight-forward manner. For the outflow boundary, where
large amplitude nonlinear structures exit, an absorbing layer approach is feasible.We
have presented such a sponge zone approach based on an adaptive, temporally filtered
base flow, which has the advantage of preserving the time-averaged hydrodynamic
flow field.

The framework FLEXI is based on a specific, highly efficient variant of the DG
family. It has shown excellent scaling on high performance computing clusters for
large scale simulations of turbulence. With the help of recent additions in terms of
boundary conditions and analysis postprocessing tools, FLEXI has been extended
towards challenging direct noise computations in complex domains.We have demon-
strated the suitability of the framework for DNC, in particular for the exploratory
numerical investigations into complex interactions of noise and flow such as the
feedback mechanism. The numerical simulation of this mechanism, which has been
identified as a main source of tonal noise around bluff bodies, demands a highly
accurate numerical scheme for laminar, transitional and turbulent regions of the flow
as well as a faithful resolution of the geometry. With the help of the DG methods,
the numerical representation of this feedback mechanism at a complex automotive
side mirror was possible for the first time.
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