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Abstract The non-conforming Finite Element (FE) method allows the coupling of
two or more sub-domains with quite different mesh sizes. Therewith, we gain the
flexibility to choose for each sub-domain an optimal grid. The two proposedmethods
- Mortar and Nitsche-type mortaring - fulfill the physical conditions along the non-
conforming interfaces. We exploit this capability and apply it to real engineering
applications in aeroacoustics. The results clearly demonstrate the superiority of the
non-conforming FEmethod over the standard FEmethod concerning pre-processing,
mesh generation flexibility, accuracy and computational time.

1 Overview

For low Mach number flows, the speed of sound is much greater than the mean flow
velocity and therefore the acoustic wavelength is much greater than the diameters of
the eddies in the flow. Therefore, the only practicable approach for such cases to com-
pute flow induced sound, known as computational aeroacoustics, is based on hybrid
methods (Kaltenbacher et al. 2010). These methods compute the flow on a restricted
sub-domain in a first step applying, e.g., Large Eddy Simulation (LES) to accurately
resolve the main turbulent flow structures. In a subsequent step, the acoustic wave
propagationwithin this sub-domain as well as in an ambient surrounding sub-domain
is computed. The main approaches for this step are solving the linearized Euler
equations, the acoustic perturbation equations, the linearized perturbed compress-
ible equations or Lighthill’s inhomogeneous wave equation (Kaltenbacher 2015). All
these methods have in common, that they compute within the flow domain acoustic
source terms based on the flow computation (Computational Fluid Dynamics, CFD).
In order to accurately resolve these source terms, amuch finer discretization is needed
in the flow domain as in the ambient domain of free wave radiation.
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Fig. 1 Uniform mesh

The simplest approach to resolve the different grid sizes is to keep the fine dis-
cretization necessary for one sub-domain also for the other sub-domain (cf. Fig. 1).
However, in many cases, a tremendous number of unknowns is obtained, so that a
solution even on high performance computers is not feasible. In a second approach,
the mesh could be gradually coarsened as in Fig. 2. Quite often this is the only pos-
sible choice, if the standard conforming FE method is used, since it can only handle
a geometrically conforming triangulation. Unfortunately, the numerical accuracy of
wave propagation applications depend very sensitively on the shape regularity of
the underlying mesh. Thus, a small transition zone from fine to coarse grids results
in a poor numerical approximation. Therefore, in order to meet the requirements of
different mesh sizes and to gain full flexibility for the discretization, we propose to
use the non-conforming FE method. More precisely the mesh-size ratio does not
enter into the a priori error estimates. Using this approach, one gains much more
flexibility in the modeling, since specially tuned meshes for the subproblems can be
used. Most important is that the proposed formulations fulfill the physical interface
conditions. Therefore, the advantages can be summarized as follows (Fig. 3):

• Pre-processing is much more flexible, since grids in the different sub-domains
do not influence each other. Depending on the implementation, the global mesh
may be read in parts from multiple mesh input files. This makes parameter studies
handy to conduct.

• The approximation order can be chosen independently for each sub-domain. This
permits to use higher order elements in regions, where the solution is known to be
smooth and fine discretizations using low order elements may be used in regions,
where singularities in the solution occur.
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Fig. 2 Coarsening mesh

Fig. 3 Non-conforming
mesh

• The method can be used for parallelization. If only a single physical field is
involved, our method can be classified as a Finite Element Tearing and Inter-
connection dual-primal (FETI-DP) method in domain decomposition terms, see,
e.g., Langer and Steinbach (2003), Dokeva (2006).
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Here, we focus on computational aeroacoustics and discuss formulations and
applications in case of acoustic-acoustic coupling. However, we want to note that
non-conforming grid techniques are applicable to domain coupling field problems,
e.g. vibro-acoustics (Flemisch et al. 2012), fluid-structure-interaction (Klöppel et al.
2011), electro-thermal coupling (Köck et al. 2015).

The non-conforming grid techniques have been implemented in our multiphysics
research softwareCFS++ (see cfs-doc.mdmt.tuwien.ac.at), and used for the com-
putations of the applications described in Sect. 5.

2 Non-conforming FE Formulations

We will investigate two approaches to handle non-conforming grids: (1) Mortar
coupling, see, e.g., Bernardi et al. (1994), Wohlmuth (2000) and (2) Nitsche-type
coupling, see, e.g., Hansbo et al. (2003), Fritz et al. (2004). In the first approach, we
guarantee the strong coupling of the numerical flux (normal derivative of the acoustic
pressure) by introducing a Lagrange multiplier and coupling of the acoustic pres-
sure in a weak sense. Nitsche-type coupling does not need the additional Lagrange
multiplier and handles the coupling by symmetrizing the bilinear form and adding a
special jump term.

We assume a global domain � and its decomposition into two sub-domains �1,
�2 as displayed in Fig. 4. Thus, in each sub-domain we solve the wave equation for
the acoustic pressure pai : �i × (0, T ) → IR,

1

c2
p̈ai − � pai = gi , in �i × (0, T ), i = 1, 2 (1)

completed by appropriate initial conditions at time t = 0 and boundary conditions
on the global boundary �a. In (1) a dot over a variable denotes the derivative with
respect to time, i.e. p̈a = ∂2 pa/∂t2. According to the physical interface conditions,
we have to impose continuity for trace and flux of the acoustic pressure along the
common interface �I, i.e.,

Ω1
Ω2 ΓI

Γa n

Ω1

Ω2

ΓI

Fig. 4 Acoustic domain with two sub-domains �1 and �2 with different discretizations
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pa1 = pa2 and
∂ pa1

∂n
= ∂ pa2

∂n
on �I . (2)

Without any limitation and to keep the focus on the main steps achieving non-
conforming FE formulations, we set homogeneous Dirichlet boundary condition for
the acoustic pressure pa at �a.

2.1 Mortar Formulation

The flux coupling condition is enforced in a strong sense by introducing a Lagrange
multiplier

λ = −∂ pa1

∂n
= −∂ pa2

∂n
. (3)

However, the continuity of the trace will be understood in a weak sense∫
�I

(pa1 − pa2)μ ds = 0 (4)

for all test functions μ out of a suitable Lagrange multiplier space. We proceed with
the weak formulation and obtain from (1)

∫

�i

1

c2
wi p̈ai dx +

∫

�i

∇wi · ∇ pai dx −
∫

�I

wi ni ·∇ pai ds =
∫

�i

wi gi dx ,

for all test functions wi , i = 1, 2. Please note that the surface term

∫

�a

w2 na·∇ pa2 ds

vanishes, since the test function is zero at Dirichlet boundaries of pa. Inserting the
definition of the Lagrange multiplier (3) and summing up, we obtain the symmetric
evolutionary saddle point problem of finding pa1, pa2 and λ such that

2∑
i=1

⎛
⎝

∫

�i

1

c2
wi p̈ai dx +

∫

�i

∇wi · ∇ pai dx

⎞
⎠

+
∫

�I

(w1 − w2)λ ds =
2∑

i=1

∫

�i

wigi dx (5)

∫

�I

(pa1 − pa2)μ ds = 0 (6)
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for all μ and wi , i = 1, 2. We now face a primal-dual problem, where the coupling
is realized in terms of Lagrange multipliers. In a next step, we perform a spatial
discretization, assume the Lagrange multiplier to be chosen with respect to �1 and
choose the following ansatz

w1 ≈ wh
1 =

∑
i

N1i w1i ; pa,1 ≈ ph
a,1 =

∑
j

N1 j pa,1, j (7)

w2 ≈ wh
2 =

∑
i

N2i w2i ; pa,2 ≈ ph
a,2 =

∑
j

N2 j pa,2, j (8)

λ ≈ λh =
∑

k

φk λk . (9)

Substituting this ansatz into (5), (6), results in the semi-discreteGalerkin formulation,
which reads as

⎛
⎝ M1 0 0

0 M2 0
0 0 0

⎞
⎠

⎛
⎜⎝

p̈
a1

p̈
a2

λ̈

⎞
⎟⎠ +

⎛
⎝ K 1 0 D

0 K 2 M
DT MT 0

⎞
⎠

⎛
⎝

p
a1

p
a2
λ

⎞
⎠ =

(
f
1

f
2

)
. (10)

In (10)M i and K i are the standardmass and stiffnessmatrices, see e.g. (Kaltenbacher
2015), f

i
the algebraic vectors of the right hand side in �i , and p

a1
, p

a2
, λ the alge-

braic vectors of the unknown acoustic pressures in �1, �2 and Lagrange multiplier
along �I, respectively. The coupling matrices D, M are given by

De = [D pq ]; D pq =
∫

�I

N1pφqds, (11)

M = [M pq ]; M pq =
∫

�I

N2pφqds, (12)

where N1p and N2p denote the finite element basis functions on T1 and T2, respec-
tively, and φq denotes the Lagrange multiplier basis function associated with node q.
We note that the assembly of D poses no difficulty since all basis functions involved
are defined with respect to the same grid T1. However, the assembly of M is more
involved, since N2p and φq are defined with respect to different grids (see Sect. 4).

2.2 Nitsche-Type Mortaring Formulation

To handle the non-conforming discretization within Nitsche’s method, we start at the
weak formulation for both sub-domains �1 and �2
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∫

�1

1

c2
w1 p̈a1dx +

∫

�1

∇w1 · ∇ pa1dx −
∫

�I

w1
∂ pa1

∂n1
ds =

∫

�1

w1g1 dx (13)

∫

�2

1

c2
w2 p̈a2dx +

∫

�2

∇w2 · ∇ pa2dx −
∫

�I

w2
∂ pa2

∂n2
ds =

∫

�2

w2g2 dx . (14)

In a next step, we add the two Eqs. (13) and (14), and explore the relation

n = n1 = −n2 ; ∂ pa1

∂n1
= ∂ pa1

∂n
= ∂ pa2

∂n2
= −∂ pa2

∂n

to arrive at
∫

�1

1

c2
w1 p̈a1dx +

∫

�1

∇w1 · ∇ pa1dx +
∫

�2

1

c2
w2 p̈a2dx +

∫

�2

∇w2 · ∇ pa2dx

−
∫

�I

[w]∂ pa1

∂n
ds =

∫

�1

w1g1 dx +
∫

�2

w2g2 dx . (15)

In (15) the operator [ ] defines the jump operator, e.g., [w] = w1 − w2. In order to
retain symmetry, we add to (15) the following term

−
∫

�I

[pa]∂w1

∂n
ds with [pa] = pa1 − pa2 .

This operation is allowed, since [pa] is forced to be zero at the interface. In a final
step, we add along the interface �I the term

β
∑

E

1

hE

∫

�E

[pa] [w] ds (16)

with β the penalty factor. In (16) hE is a characteristic length scale of each inter-
face element E (space discrete level). Therewith, we arrive at the following final
formulation for Nitsche-type mortaring

∫

�1

1

c2
w1 p̈a1dx +

∫

�1

∇w1 · ∇ pa1dx +
∫

�2

1

c2
w2 p̈a2dx

+
∫

�2

∇w2 · ∇ pa2dx −
∫

�I

[w]∂ pa1

∂n
ds

︸ ︷︷ ︸
Consistency

−
∫

�I

[pa]∂w1

∂n
ds

︸ ︷︷ ︸
Symmetri zation
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+β
∑

E

1

hE

∫

�E

[pa] [w] ds
︸ ︷︷ ︸

Penalty/Stabili zation

=
∫

�1

w1g1 dx +
∫

�2

w2g2 dx . (17)

If the penalty parameter β is chosen large enough, the bilinear form is coercive on
the discrete space and one derives optimal a priori error estimates in both the energy
norm and the L2 norm for polynomials of arbitrary degree (Hansbo et al. 2003). In
a next step, we perform a spatial discretization according to (7), (8) and arrive at

∫

�1

1

c2
wh

1 p̈h
a1 dx +

∫

�1

∇wh
1 · ∇ ph

a1 dx −
∫

�I

wh
1
∂ ph

a1

∂n
ds

−
∫

�I

∂wh
1

∂n
ph
a1 ds +

∫

�I

∂wh
1

∂n
ph
a2 ds + β

∑
E(�I)

1

hE

∫

�I

wh
1 ph

a1 ds

−β
∑
E(�I)

1

hE

∫

�I

wh
1 ph

a2 ds =
∫

�1

wh
1g1 dx (18)

∫

�2

1

c2
wh

2 p̈h
a2 dx +

∫

�2

∇wh
2 · ∇ ph

a2 dx +
∫

�I

wh
2
∂ ph

a1

∂n
ds

+β
∑
E(�I)

1

hE

∫

�I

wh
2 ph

a2 ds − β
∑
E(�I)

1

hE

∫

�I

wh
2 ph

a1 ds

=
∫

�2

wh
2g2 dx . (19)

In matrix notation, the discrete system of equations reads as

(
M1 0
0 M2

)(
p̈
a1

p̈
a2

)
+

(
K 1 0
0 K 2

) (
p
a1

p
a2

)

+
(

K�I1 K�I1�I2

K�I2�I1 K�I2

)(
p
a1

p
a2

)
=

(
f
1

f
2

)
. (20)

Thereby, Mk and K k are the standard mass and stiffness matrices, respectively. The
additional matrices according to the interface compute as follows

K i j
�I1

= −
∫

�I1

N1i
∂N1 j

∂n
ds −

∫

�I1

∂N1i

∂n
N1 j ds

+β
∑

E(�I1)

1

hE

∫

�E

N1i N1 j ds (21)
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K i j
�I1�I2

=
∫

�I1

∂N1i

∂n
N2 j ds − β

∑
E(�I1)

1

hE

∫

�E

N1i N2 j ds

=
(
K i j

�I2�I1

)t
(22)

K i j
�I2

= β
∑

E(�I2)

1

hE

∫

�E

N2i N2 j ds (23)

f i
1

=
∫

�1

N1i g1 dx ; f i
2

=
∫

�2

N2i g2 dx . (24)

Here, we have already substituted �I by �I1 as well as �I2, which are the discretized
interfaces of�1 and�2. Furthermore, the computation of thematrices in (21) and (22)
involves basis functions N1 and N2, which are defined on different grids. Therefore,
grid intersection operations as for the classical Mortar formulation are necessary,
see Sect. 4. In addition, we note that Nitsche-type mortaring is equivalent to an IP-
DG (Internal Penalty - Discontinuous Galerkin) ansatz along the non-conforming
interface �I. Finally, we want to emphasis that both approaches, classical Mortar and
Nitsche-type mortaring, are powerful methods to correctly handle non-conforming
grids both from a physical and mathematical point of view.

3 Time Discretization

In a final step to arrive at the full discrete system of equations, we have to perform
a time discretization. Spurious waves, which are not resolved by the discretization
(both in space and time), deteriorate the numerical solution and should be numerically
damped. Since numerical damping cannot be introduced in the classical Newmark
method without degrading the order of accuracy, we advise to apply a time-stepping
scheme with controlled numerical dispersion such as the HHT (Hilber–Hughes–
Taylor) method. Thereby, three parameters define the behavior of the time-stepping
scheme:αHHT,βHHT and γHHT. Figure5 demonstrates the damping behavior of differ-
ent schemes.As canbe seen, the standard trapezoidal scheme introduces nonumerical
damping. The Newmark scheme, which is just second order accurate for the parame-
ters βNM = 0.25 and γ NM = 0.5, is able to achieve appropriate numerical damping
by degrading to first order accuracy. TheHHTmethod is unconditional stable and 2nd
order accurate for αHHT ∈ [−0.3, 0] and according to the choice of this parameter
introduces numerical damping. The two other parameters compute as

βHHT = (1 − αHHT)
2

4
; γHHT = (1 − 2αHHT)

2
.

For a detailed analysis, we refer to Hughes (2000).
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Fig. 5 Spectral radius (defined by the largest eigenvalue of the amplification matrix) over the ratio
of time step size �t to time period T

4 Mesh Intersection Operations

The feature which makes the Mortar and Nitsche-type mortaring so flexible, namely
the usage of non-conforming meshes in different sub-domains, comes at the cost of a
more elaborate implementation. Since the grids are allowed to be non-conforming on
the interfaces of two sub-domains, the integrals defined on these interfaces involving
basis functions from both sides have to be evaluated with respect to two different
meshes. The decomposition of the global domain is done in a geometrically con-
forming way however. This guarantees that any interface inherits the discretizations
of its neighboring sub-domains. It is necessary to compute the domains, where pairs
of elements on the interface intersect. The corresponding integrals are then evaluated
over these domains of intersection and it is up to the assembly operator to assemble
the corresponding results into the correct positions of the coupling matrices.

In the following we denote the interface between two sub-domains � j and �k by
� jk . The triangulations corresponding to� j and�k are labeled T j and Tk . The nodal
basis functions on T j shall be denoted by N ja and the ones defined on Tk are Nkb.
An integral over the interface may then be written in terms of the basis function as

∫
� jk

N ja Nkb ds. (25)

For numerically evaluating this integral, we first have to determine the subsets of
the interface, where pairs of elements intersect. In 2D the interfaces between sub-
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domains are curves. Therefore, we have to consider the intersection of line elements
in this case. If the interface is planar these are simple interval checks. If the interface
is curved, we first have to project the elements onto a common line segment and
do the interval checks there. These considerations also apply in a modified way for
domains in 3D, where interfaces are surfaces. We have to note however that the
seemingly simple operation of finding the intersection domain of arbitrary surface
elements is a highly non-trivial task even for first order elements with straight edges.
The last named case is however closely related to a problem in computer graphics.
There 2D polygons generated during the rendering of 3D scenes have to be clipped
against a view-port (cf. Greiner and Hormann 1998). Strategies and algorithms for
dealing with the mesh intersection problem have been sought after for a long time
in the area of domain decomposition. A small selection of available methods can be
found in Puso and Laursen (2002), Park and Felippa (2002), Heinstein and Laursen
(2003), Puso (2004).

If no neighborhood information between the elements on the interfaces is available
and if a naive approach is taken, the operation of finding the intersection domains of
all pairs of elements is of complexity O(m · n). Here m is the number of elements on
the master side and n is the number of elements on the slave side. The operation is so
expensive, since every element on the slave side has to be checked for intersection
with every element on the master side and no assumptions about neighborhood are
being made.

By applying space partitioning algorithms the required effort for this operation
may however be drastically reduced. If neighborhood information is present in addi-
tion, an advancing front algorithm may be applied which is described in Gander and
Japhet (2009). It starts at a known pair of intersecting elements and then proceeds
with the intersection checks at the neighboring elements. The algorithm therewith
achieves linear complexity. This improvement is of crucial importance when deal-
ing with applications, like rotating domains (Kaltenbacher et al. 2016a), where the
intersection domains have to be recomputed after each time step.

The final step is to compute the value of the integrals on the intersection domains.
The method we describe here has shown to be robust and can be implemented also in
FE codes, which do not provide analytical parameterizations of the domain geometry.

4.1 Intersection of Two Line Elements

If an intersection of two co-linear line elements exists, it is again a line element
sharing two of the four endpoints of both parent elements in the co-linear case. To
check for an intersection one has to project the endpoints [m1,m2] in twodimensional
coordinates of the element on the master side of the interface to the one dimensional
local coordinate system defined by the endpoints of the slave element [s1, s2].

The local coordinates of the slave nodes [s1, s2] are trivially given by 0 and 1.
The four local coordinates of the pair of lines are then brought into ascending order
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Fig. 6 Four possible cases
of two lines intersecting each
other

and therefore four possible cases for the intersection of two line elements may be
identified as depicted in Fig. 6:

1. λ1 ≤ 1 ∧ 0 < λ2 < 1: the intersection is the line [s1,m2]
2. 0 < λ1 < 1 ∧ λ2 ≥ 1: the intersection is the line [m1, s2]
3. λ1 ≤ 0 ∧ λ2 ≥ 1: the intersection is the line [s1, s2]
4. λ1 > 0 ∧ λ2 < 1: the intersection is the line [m1,m2]
We note that new points have to be generated at the projection positions on the slave
element for curved interfaces in the cases 1, 2 and 4.

4.2 Intersection of Two Axis-Parallel Quadrilateral Elements

The algorithm for finding intersections of lines can be extended in a straight forward
manner to a 3D setting if only axis-parallel quadrilateral elements are present on
the interface. The term axis-parallel does not refer to the global coordinate axes in
this context, but to the fact that the quadrilateral edges on both sides of the interface
have to be parallel. This includes the case of parallelogram-shaped quadrilaterals
as depicted in Fig. 7. We again compute the local coordinates (λ1,μ1) and (λ2,μ2)

of the first and third corner of the master element in respect to the slave element.
After bringing the local coordinates for both directions into ascending order there
are sixteen possible cases for the intersection of two quadrilaterals. The ordering is
necessary due to the fact that the order of nodes for elements is just guaranteed to
be counter-clockwise, but the master element might have been rotated in respect to
the slave element as a whole. In addition, we have to mention however that there
exist many more possibilities of intersection for pairs of triangles, pairs of triangles
and quadrilaterals or pairs of arbitrary shaped quadrilaterals than for the simple
configuration given here. These situations require a more sophisticated treatment. A
description of the algorithm used to treat arbitrary element types on curved interfaces
can be found in Grabinger (2007).
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Fig. 7 Intersection of two
axis-parallel
parallelogram-shaped
elements

Fig. 8 Projection of
quadrature points from the
intersection element into the
master element which is of
first order and into the slave
element which is of second
order in this example

4.3 Evaluation of the Coupling Integrals

Once the intersection elements have been found, the coupling integral (25) can be
evaluated on these elements by means of standard Gauss quadrature

∫
� jk

N ja Nkb ds =
nisec∑
e=1

∫
�e

Na Nb ds ≈

≈
nisec∑
e=1

nint∑
l=1

Wl Na(ξ
m
l )Nb(ξ

s
l )J e(ξe

l ) . (26)

Here nisec is the number of intersection elements, nint is the number of quadrature
points,Wl are the quadratureweights and the determinant of the JacobianJ e accounts
for the element mapping. The difficulty which arises when this quadrature formula is
applied, is that only the quadrature point ξe

l in respect to the local coordinates of the
intersection element is known in advance and that the points ξm

l in themaster element
and ξs

l in the slave element have to be projected into those elements, before the basis
functions can be evaluated there (see Fig. 8). It is very important to notice that nodes
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of the intersection element do not carry any degrees of freedom by themselves.
The intersection element is just an auxiliary geometrical entity, which only serves
as integration domain. The projection operation for general elements involves the
following steps:

1. Map local coordinates ξe
l of quadrature point in intersection element to global

coordinates
2. Map global coordinates of quadrature point to local coordinates ξm

l of master
element

3. Map global coordinates of quadrature point to local coordinates ξs
l of slave ele-

ment

Points 2 and 3 in general involve the application of a Newton–Raphson algorithm.
A linearmapping algorithmmay only be used for 2-node isoparametric line elements,
3-node isoparametric triangle elements or higher order elements which just use a
linear local-to-global mapping. Once the values of the basis functions Na and Nb

have been obtained and (26) has been evaluated, the assembly operator has to make
sure, that the contribution gets added to the corresponding entry in the coupling
matrix.

5 Application to Aeroacoustics

5.1 Cylinder in Cross Flow

As a first practical application, the generation of sound due to a cylinder mounted on
a plate in cross-flow is investigated. This simple geometry is nonetheless interesting
to analyze since variations of it are very common sources for flow induced noise (e.g.
antennas on cars, flagpoles, etc.). Understanding themechanisms of sound generation
for this geometry may therefore give important hints to engineers on how to reduce
noise levels for similar settings. The described setting has already been subject to
closer empirical and numerical investigations (c.f. Escobar 2007; Hahn 2008).

For the cylinder with rectangular cross-section having a side-length D of 20mm
(see Fig. 9), the first occurring main frequency is in the range from 50 to 60Hz at a
mean flow velocity of 10m/s. Given the speed of sound in air at standard conditions
(c = 343m/s) results in a wavelength λ of about 5.72m. Resolving the wavelength
by 20 finite elements with basis functions of 1st order results in an edge length of
the finite elements, which corresponds to the dimensions of the domain, on which
the flow is computed. This fact alone motivates the usage of non-conforming grids
at the interface towards the acoustic propagation domain.

CFD The domain, on which the flow is computed and which corresponds to
the acoustic source domain, is displayed in Fig. 9. Thereby, the research program
FASTEST-3D (Durst and Schäfer 1996) and the commercial software ANSYS-CFX
are applied for the flow computation. The boundary conditions used in the fluid
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Fig. 9 Numerical domain used for fluid computations depicting dimensions. D = 20mm

Table 1 Boundary
conditions used for fluid
computations

Position Boundary condition

X = 0 Inlet profile based on
experiments

X = 40D Convective exit boundary

Z = 11D Symmetry boundary
condition

Y = 0, Y = 11D Symmetry boundary
condition

Cylinder surface and bottom No slip boundary condition

computation with respect to the configuration from Fig.9 are described in Table1.
Therewith, we have used a measured inflow profile with a mean velocity of 10m/s
resulting in a Reynolds number of about 13.000. FASTEST-3D uses a LES (Large
Eddy Simulation) turbulence model to accurately resolve the flow structure. After a
grid study, the computations have been performed on a grid with 3.1 million cells
having strong refinements at the critical regions close to the cylinder and the wall.
The nearest grid point in dimensionless wall coordinates is at y+ = 2. The time step
size was set to �tLE S

f = 10µs, which guaranteed a resolution of up to 10kHz, and
which resulted in a CFL-number of 2.1.

For the simulation of the flow using the code ANSYS-CFX, a turbulence mod-
eling approach based on SAS (Scale Adaptive Simulation) was employed (Menter
and Egorov 2005). The SAS approach allowed us to coarsen the grid of the LES
computations to about 1.1million, which resulted in a shorter computational time
and less memory usage. Regarding the time discretization, a time step size of
�tSAS

f = 2�tLE S
f = 20µs was used.

To get an impression about the flow field, we show in Fig. 10 the flow structure
as obtained by ANSYS-CFX for a characteristic time step. The displayed results
are iso-surfaces of ω2 − ε2 = 100,000 s−2 colored with the eddy viscosity (here ω
representing the vorticity and ε the strain rate). One can clearly see the horseshoe,
the roof and span-wise vortex structure. In studying animations of the flow structure,
one can observe a strong interaction between the roof and span-wise vortex, which
results in a reduced vortex street behind the cylinder. For a quantitative comparison
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Fig. 10 Instantaneous visualization of transient flow field using SAS turbulence modeling

Fig. 11 Frequency spectra
of the wall pressure
fluctuation at different
monitor points obtained by
LES
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between LES and SAS computations we show in Figs. 11 and 12 the spectra of the
wall pressure fluctuations at different monitor points as listed in Table2. In both
simulations, pressure fluctuations on the side walls (monitoring points P1 and P2)
of the cylinder show the characteristic vortex shedding frequency of about 55Hz,
which are in good agreement with experiments (Becker et al. 2008). In addition,
the pressure fluctuations at monitoring point P3, which is located on the bottom
behind the cylinder, exhibit in both simulations a dominant frequency at twice the
vortex shedding frequency. At this point it should be noted that for both LES- and
SAS-based data no significant differences were found in the acoustic field.

Acoustics The computational domain for acoustics, as it is depicted in Fig. 13, con-
sists of the source domain, a propagation domain and a Perfectly Matched Layer
(PML) to account for free field radiation (Kaltenbacher 2015). On the bottom plane
as well as on the faces of the cylinder sound-hard walls are modeled by applying
homogeneous Neumann boundary conditions. Here, we solve the inhomogeneous
wave equation of Lighthill in the frequency domain
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Fig. 12 Frequency spectra
of the wall pressure
fluctuation at different
monitor points obtained by
SAS
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Table 2 Points at which we
have evaluated the wall
pressure spectra (see Fig. 9)

Position P01 P02 P03

X 10.5D 10.5D 15.0D

Y 5.0D 6.0D 5.5D

Z 3.0D 3.0D 0.0D

Fig. 13 Geometry of
acoustic domain for
harmonic simulation
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Flow grid 

Acous c grid 

Conserva ve  
interpola on 

Nodal acoustic loads on the 
flow grid 
Nodal acoustic loads on the 
acoustic grid 

Fig. 14 Conservative interpolation from a fine CFD grid to a coarser acoustic grid

∂2 p̂′

∂x2
i

+ k2 p̂′ = − ∂2T̂i j

∂xi∂x j
(27)

with the harmonic pressure fluctuation p̂′, the wavenumber k and the Fourier trans-
formed entries T̂i j of Lighthill’s tensor. Due to the lowMach number, we approximate
the entries Ti j (t) by

Ti j (t) ≈ ρ0vi (t)v j (t) (28)

with the mean density ρ0 and flow velocity v. Here, we apply the proposed Mortar
formulation, which allows to combine different meshes for the source and propa-
gation domains and flexibly build up a global mesh specially suited for the aeolian
tones which are expected in the analysis.

A crucial point for each hybrid aeroacoustic approach is the transformation of
the acoustic sources from the flow grid to the acoustic grid. In order to preserve the
acoustic energy, we perform an integration over the source volume (corresponding to
the computational flow region) within the FE formulation and project the results to
the nodes of the fine flowgrid,which has to be interpolated to the coarser acoustic grid
(see Fig. 14). Thereby, our interpolation has to be conservative in order to preserve
the total acoustic energy. As illustrated in Fig. 14, we have to find for each nodal
source F f

k of the flow grid in which finite element of the acoustic grid it is located.
Then, we compute from the global position xk its local position ξk in the reference
element. This is in the general case a nonlinear mapping and is solved by a Newton
scheme. Now, with these data we can perform a bilinear interpolation and add the
contribution of F f

k to the nodes of the acoustic grid by using the standard finite
element basis functions Ni (Kaltenbacher et al. 2010)

Fa
i = Fa

i + Ni (ξk)F f
k . (29)
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Fig. 15 Details of the conforming mesh. A 2D cut in the xy-plane is depicted

Fig. 16 Details of the non-conforming mesh. A 2D cut in the xy-plane is depicted

In order to demonstrate the capability of the non-conforming grid technique, a
few test cases are defined. Cuts of the reference mesh and our non-conforming mesh
are depicted in the vicinity of the source domain �a1 in Figs. 15 and 16. Thereby, the
following different grids and order of FE basis functions have been investigated:

• SQCONF: A conforming mesh consisting of 20-node hexahedra is used, see
Fig. 15. The results in Kaltenbacher et al. (2010) have been obtained with this
mesh.

• SQQUQU: The samemesh as in the SQCONF case is used in�a1 (source domain)
but a Cartesian 20-node hexahedra mesh is used in the propagation domain �a2

(cf. Fig. 16). The mesh in �a2 has a very fine discretization, namely, about 120
degrees of freedom per wavelength at 55Hz.

• SQLIQU: For this case linear elements (8-node) of the mesh in �a1 are used,
which contain the same corner nodal sources as the one in SQCONF. This reduces
the number of unknowns in the source region by a factor of four compared to the
quadratic mesh. The same 20-node hexahedra mesh as in SQQUQU is used in the
propagation domain.

• SQLILI: In order to substantially decrease the number of unknowns also in the
propagation region �a2 trilinear hexahedron elements are used in that domain. In
comparison to the SQLIQU case, the topology of the mesh in �a2 stays the same.
This cuts down the number of unknowns to one fourth also in the propagation
domain. One can expect little or no impact on the accuracy of the solution, since
the mesh still has a resolution of about 60 degrees of freedom per wavelength at
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Table 3 Number of unknowns and wall clock times for the square cylinder cases

Test case �a1 �a2 Total Wall clock time
(s)

SQCONF 93,781 444,652 538,433 1404.0

SQQUQU 93,781 142,163 236,437 202.0

SQLIQU 24,177 142,163 166,833 131.0

SQLILI 24,177 36,386 60,738 26.0

Fig. 17 Square cylinder with isosurfaces of acoustic pressure (pa = 6mPa)

55Hz. Compared to the reference setup, the number of unknowns is reduced by a
factor of nine.

Table3 gives an overview of the number of unknowns for the acoustic computa-
tions. The solver and the number of threads on the used computer hardware are kept
the same. The times clearly correspond to the total number of unknowns for each
case. The results show that the computation in the SQLILI case is 54 times faster than
in the reference case while still yielding comparable results. In all non-conforming
cases, the Lagrange multiplier is defined on the coarse discretization of the surface
�I. In all simulations �a2 is used as the slave side and �a1 is used as the master.

The results of the computations for the vortex shedding frequency at 55Hz are
shown in Fig. 17 as isosurfaces of the acoustic pressure field and in Figs. 18, 19 and 20
as directivity plots in the xy-plane. It is obvious that all four configurations produce
almost the same results.

5.2 Axial Fan

The cabin noise of modern ground vehicles is highly affected by flow related noise
sources. This is especially the case, when the vehicle is not moving. Thereby, fan
and outlet of air-conditioning systems are main acoustic sources and may reduce the



Non-conforming Finite Elements for Flexible Discretization … 55

Fig. 18 Directivity plots of
sound pressure levels at z =
0 in 1m distance of the
square cylinder for
SQQUQU

Fig. 19 Directivity plots of
sound pressure levels at z =
0 in 1m distance of the
square cylinder for SQLIQU

comfort significantly. Rotating fans generate a highly turbulent flow field and can
be identified as the main noise source in air conditioning units. Therefore, we focus
on flow simulations of rotating fans in air conditioning units using the Arbitrary
Mesh Interface (AMI) as implemented in OpenFOAM. For the computation of the
acoustic sources, highly accurate unsteadyCFDsimulation data is needed. Therefore,
the transient simulations are carried out by using a DES (Detached Eddy Simulation)
turbulence model to accurately resolve the complex flow field. In addition, acoustic
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Fig. 20 Directivity plots of
sound pressure levels at z =
0 in 1m distance of the
square cylinder for SQLILI

simulations applying the proposed Nitsche-type mortaring to couple the acoustic
field between rotating and stationary sub-domains are performed.

Aeroacoustic Formulation The acoustic/viscous splitting technique for the predic-
tion of flow induced sound was first introduced by Hardin and Pope (1994), and
afterwards many groups presented alternative and improved formulations for linear
and non linear wave propagation (Shen and Sørensen 1999; Ewert and Schröder
2003; Seo and Moon 2005; Munz et al. 2007). These formulations are all based on
the idea, that the flow field quantities are split into compressible and incompress-
ible parts. We apply a generic splitting of physical quantities to the Navier–Stokes
equations. For this purpose we choose the following ansatz (Hüppe 2013)

p = p̄ + pic + pc = p̄ + pic + pa (30)

v = v̄ + vic + vc = v̄ + vic + va (31)

ρ = ρ̄ + ρ1 + ρa . (32)

Thereby the field variables are split into mean ( p̄, v̄, ρ̄) and fluctuating parts just like
in the Linearized Euler Equations (LEE). In addition the fluctuating field variables
are split into acoustic (pa, va, ρa) and flow components (pic, vic). Finally, a density
correction ρ1 is build in according to (32). This choice is motivated by the following
assumptions:

• The acoustic field is a fluctuating field.
• The acoustic field is irrotational, i.e. ∇ × va = 0, and therefore may be expressed
by the acoustic scalar potential ψa via
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va = −∇ψa . (33)

• The acoustic field requires compressible media and an incompressible pressure
fluctuation is not equivalent to an acoustic pressure fluctuation.

By doing so, we arrive for an incompressible flow at the following perturbed con-
vective wave equation (PCWE) (Kaltenbacher et al. 2016b)

1

c2
D2ψa

Dt2
− �ψa = − 1

c2ρ̄

Dpic

Dt
; D

Dt
= ∂

∂t
+ v · ∇ . (34)

Now, as shown in Donea et al. (2004), we may apply an ALE (Arbitrary Lagrangian
Eulerian) formulation to couple rotating and stationary domains. Thereby, our oper-
ator D/Dt changes to

D

Dt
→ D̃

D̃t
= ∂

∂t
+ (v − vr) · ∇ (35)

with vr the mechanical velocity of rotating parts. Finally, the acoustic pressure pa

computes by

pa = ρ̄
D̃ψa

Dt
. (36)

Thereby, PCWE is an exact reformulation of the acoustic perturbation equations
(APE) (Ewert and Schröder 2003). This convective wave equation fully describes
acoustic sources generated by incompressible flow structures and its wave propaga-
tion through flowing media. In addition, instead of the original unknowns acoustic
pressure pa and acoustic particle velocity va, this formulation has just the scalar
unknown ψa, which strongly reduces computational time.

5.3 Numerical Computations

We investigate the aeroacoustic field of an axial fan in a duct as displayed in Fig. 21.
The fan is embedded in a sound hard tube. The inlet and outlet openings on each side
lead into a non reverberant chamber to emulate free field sound propagation. The
rotational speed of the fan is about 1500 rpm, which results in a tip speed of the blades
of 38.89m/s.We use theOpenFOAM(Open FieldOperation andManipulation) CFD
Toolbox version 2.3.0 for performing the flow computations. Since version 2.1.0 the
arbitrary mesh interface (AMI) was implemented based on the algorithm described
in Farrell and Maddison (2011). The AMI allows simulation across disconnected,
but adjacent mesh domains, which are especially required for rotating geometries.

The flow solution is computed using an adapted version of the pimpleDyMFoam
solver implemented in OpenFOAM, which can handle dynamic meshes with a time
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Fig. 21 Axial fan

step size of �t = 10µs. For the CFD computation a hex-dominant finite volume
mesh consisting of 29.8million cellswas created by using the automaticmesh genera-
torHEXPRESSTM /Hybrid fromNumeca. The transient simulationwas carried out by
using a detached-eddy simulation based on the Spalart–Allmaras turbulencemodel to
accurately resolve the complex flow field (Spalart and Allmaras 1994). The calcula-
tion was performed on the Vienna Scientific Cluster VSC2 with 256 cores. Figure22
displays the velocity field for a characteristic time step. Based on the computed
instationary flow pressure, we display the surface contours of the acoustic sources
(substantial derivative of the incompressible flow pressure, see (34)) in Fig. 23 for a
characteristic time step. In accordance to the flow computation, the rotating domain
is embedded into a quiescent propagation region (see Fig. 24). Furthermore, we add
at the inflow and outflow boundaries of the CFD domain two additional regions,
on which we apply an advanced Perfectly-Matched-Layer technique to effectively
approximate acoustic free field conditions (Kaltenbacher et al. 2013). Figure25 dis-
plays the computed power spectral density of the acoustic pressure and compares it
to the measured one. Thereby, we display the smoothed measured spectra obtained
from the 30s recorded pressure signals as well as the individual spectra by just using
measured data of 0.1 s (in gray). The spectra based on our numerical simulation is
computed out of a real time simulation of 0.06 s.
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Fig. 22 Flow structure of a
characteristic time step

Fig. 23 Visualization of the
acoustic source terms at a
characteristic time step

5.4 Human Phonation

The voice productionmechanisms have been investigated both bymeans of measure-
ments (on physical replicas, excised animal or human larynges or in living subjects)
and numerical simulations. The experimental investigation, especially in vivo, brings
numerous complications. Since the advent of affordable high-performance comput-
ing, the computer simulation methods based on modeling the fundamental physical
phenomena using partial differential equations and solving them numerically have
been steadily gaining importance.

An extensive review of numerical models of human phonation can be found in
Alipour et al. (2011). The vibration of the real human vocal folds is flow-induced.
However, the fully coupled fluid-structure simulations, e.g., Link et al. (2009), Seo
and Mittal (2011) always suffer from a lack of accurate geometrical and material
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Fig. 24 Detail of the computational CFD grid

Fig. 25 Power spectral density of the acoustic pressure at measurement position

properties of the living tissues. This is due to the fact that the parameters are highly
subject-specific, and also because most of the vocal fold tissue measurements, e.g.,
Zörner et al. (2010), Kelleher et al. (2013), are still hardly applicable in vivo to
precisely determine the vocal fold material parameters. As shown by Zörner et al.
(2013), the full fluid-structure interaction solution can be approximated by prescribed
vocal foldmotion, provided that the boundary conditions are set properly. In this case,
it is crucial that the vocal fold vibration patterns mimic the motion of the real human
vocal folds sufficiently well. The kinematic parameters have been intensively studied
by videokymographic (Svec and Schutte 2012) and high-speed imaging methods
(Döllinger et al. 2011), and the results of the experimental studies will be used in our
model.
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Fig. 26 Geometric model of
the human larynx in coronal
section. The length of the
supra-glottal channel is not
to scale

Table 4 Parameters of the kinematic model: Superscripts L and U refer to the lower and upper
vocal fold, respectively, D = 12mm is the anterior-posterior length of the vocal folds

Geometry and vocal fold kinematics The flow field is solved on a simplified model
of larynx, consisting of a short straight sub-glottal region, the vocal folds, ventri-
cles and false vocal folds (FVFs), and a supra-glottal region (see Fig. 26). In the
straight sub-glottal and supra-glottal segments, the model has a square cross-section
of 12 × 12mm, with vocal and ventricular folds having a length of 7.2 and 6.3mm,
respectively. The detailed dimensions of the flow domain can be found in Šidlof
et al. (2014). During the CFD simulation the vocal folds, forming part of the channel
boundary, oscillate. The kinematics of the vocal folds were programmed to allow for
two-degree-of-freedom, convergent-divergent motion of each of the vocal folds, with
prescribed sinusoidal displacement of the inferior and superior vocal fold margins
in the medial-lateral direction

w1(z, t) = w10 + A1 (1 − m(z)) + m(z)A1 sin(2π f t + ξ)

w2(z, t) = w20 + A2 (1 − m(z)) + m(z)A2 sin(2π f t) . (37)

In (37) f is the frequency of vibration, ξ the phase difference between the inferior
and superior margin, A1/2 the amplitudes and m(z) the anterior-posterior modulation
function determining the glottal opening shape (see also Fig. 26 and Table4). The
coordinates in (37) determine uniquely the glottal half-gap g and the medial surface
convergence angle ψ.

Flow model and boundary conditions In regular human phonation the air flows
at low Mach numbers (Ma < 0.2) and can thereby be regarded as incompressible.
This sets the fluid density ρ to a constant value and results in the 3D time dependent
incompressible Navier–Stokes equations. The frequency of vocal fold vibration is
set to f = 100Hz, corresponding to Strouhal number in the order of St = 0.001.
The airflow is driven by a pressure gradient, which mimics physiological conditions
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Table 5 Boundary conditions for the velocity v and kinematic pressure P = p/ρ. Vector n denotes
the unit outer normal, u is the prescribed boundary displacement

v [m/s] P [m2/s2]

G in evaluated (v · n < 0) P + 1
2 |v|2 = 300

v = 0 (v · n > 0)

Gout ∂v/∂n = 0 (v · n > 0) P = 0

v = 0 (v · n < 0)

GL
VF v = ∂u

∂t
∂P
∂n = 0

GU
VF v = ∂u

∂t
∂P
∂n = 0

Gwall v = 0 ∂P
∂n = 0

with a constant lung pressure at the inlet and a zero relative pressure at the outlet.
The boundary conditions for the velocity v and kinematic pressure P = p/ρ are
summarized in Table5. The Navier–Stokes equations were discretized using a collo-
cated cell-centered variant of the finite volume method for unstructured meshes. The
numerical solutionwas implementedwith the help ofOpenFOAM.The discretization
scheme for the time derivative is first-order Euler implicit, a total variation dimin-
ishing (TVD) scheme for the convection term and central differencing with explicit
non-orthogonal correction for the diffusion term. The time step �t is adjusted auto-
matically during the transient solution so that the maximum local Courant number is
kept belowapredefined limit. In the current simulations, theCourant numberwaskept
below 1, resulting in a time step size �t of 5 · 10−7 s–1.5 · 10−6 s. The discretized
Navier–Stokes equations were solved by a segregated solver based on a modified
pressure implicit with splitting of operators (PISO) algorithm (Issa 1986), with the
preconditioned biconjugate gradient linear solver for the momentum equations and
algebraic multigrid for the pressure equation.

CFD results The results of the CFD simulations are displayed in Fig. 27 in mid-
coronal z-normal sections at four time instants corresponding to the closing phase,
maximum closure, opening phase and maximum opening. The velocity fields are
taken from the 19th period of vibration, when the flow is already fully developed.
Figure28 shows the velocity magnitude in the transverse planes and the jet contours
(velocity isosurfaces), giving insight in the three-dimensionality of the supra-glottal
flow fields. The CFD results confirm the experimental findings in Triep and Brücker
(2010) and numerical simulations in Schwarze et al. (2011), who showed that this
geometry promotes the phenomenon of jet axis switching. The jet, mostly planar and
aligned along the anterior-posterior axis within glottis, changes its orientation further
downstream of the glottis and aligns in the medial-lateral direction in the second half
of the opening phase and first half of the closing phase. The axis switching also
induces complex 3D vortex structures within the ventricles.

Acoustic model The acoustic domain consists of three parts: The first part is the
larynx, which contains the aeroacoustic sources and corresponds to the flow domain.
Attached to it is the second part, the vocal tract, which is a 18.25cm long tube with
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t = 180.0ms t = 182.5ms

t = 185.0ms t = 187.5ms

Fig. 27 Velocity magnitude in z-normal (coronal) mid-plane at four time instants during the 19th
period of oscillation. From left to right closing phase, maximum closure, opening phase, maximum
opening

Fig. 28 Velocity magnitude and jet contours (isosurface at u = 15m/s), maximum opening

varying diameter along the center axis. The vocal tract acts as an acoustic filter and
modulates the generated sound, by amplifying or reducing the amplitudes at certain
frequencies. For this purpose the vocal tract geometry representing the vowel /u/
(“who”) was chosen. Exact dimensions were taken from Story et al. (1996), where 18
three-dimensional vocal tract shapes were acquired by means of magnetic resonance
imaging (MRI).

The last part of the acoustic domain is the propagation region, a 2.5 × 2.5 ×
2.5cm3 big box, which is added at the end of the vocal tract. Its purpose is to capture
the sound wave in 1cm distance from the mouth at the monitoring position “MIC”.
In Fig. 29 the geometric model used for the acoustic simulation together with the
monitoring point is plotted.

The grid size of the acoustic simulation can be chosen considerably coarser than
the characteristic length of the CFD grid (0.15mm). Therefore the acoustic mesh is
composed of hexahedron elements with a characteristic length of 0.2mm inside the
glottis region (corresponds to the CFD domain). The non-conforming grid technique
allows us to directly connect the source (flow domain) and propagation domain
(corresponds to the vocal tract). The overall grid for the acoustic simulation is fine
enough for computations up to 3.5kHz. All channel walls are considered to be fully
reflecting, and perfectlymatched layers (PML) are located at the inflow (1cm in front
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of the glottis) and surrounding the propagation region (see Fig. 29). The PML at the
inlet is 5mm long in x-direction and 6mm in normal direction to the propagation
region.

Acoustics results The acoustic field is computed by the FE method solving the per-
turbed convective wave equation (PCWE) as described in Sect. 5.2. For the acoustic
source analysis, the substantial derivative of the incompressible pressure pic is Fourier
transformed over the whole domain. The fundamental frequency is found at 100Hz,
as this is the frequency the vocal folds are being driven. Investigating the acoustic
sources show that the main contributions are inside the glottis, as the contour plots
in Fig. 30 reveal. Studying the source distribution for a non-harmonic frequency
of 2665Hz, which is a random representative of the broadband spectrum, reveals
that the sources are distributed downstream which correlates to the vortex shedding
region (see Fig. 28). For other frequencies of the broadband spectrum, the results are
comparable, concerning distribution and amplitude of the source region.

The monitoring point “MIC” is situated 1cm downstream of the mouth, as
sketched in Fig. 29. The computed acoustic spectrum is plotted in Fig. 31 and shows

vocal tract

larynx

propagation region

PML region

MIC

mouth

PML region

MIC

non-conforming interface

Fig. 29 Geometry and mesh for the acoustic simulation. Larynx, vocal tract, propagation region,
perfectly matched layer (PML) regions and comparison of the fine CFD grid and coarse acoustic
grid

100Hz 2665Hz

Fig. 30 Acoustic sources at main frequency (100Hz) and at 2665Hz
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Fig. 31 Acoustic sound spectra at amonitoringpoint “MIC” for the vocal tractmodel /u/.Harmonics
are emphasized with the symbols 


that the first harmonic has the largest amplitude, and all other harmonics are up to
15dB lower. Furthermore, the amplitudes at non-harmonics are consistently smaller
by about 5dB.
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