
Chapter 4
Constructions for Orthogonal Designs via
Plug In and Plug Into Matrices

4.1 Introduction

In previous chapters we have studied some necessary conditions for the exis-
tence of orthogonal designs. We now turn to the task of actually constructing

been used in the construction of Hadamard matrices. There is one unifying
theme in the constructions presented in this chapter. They revolve, in the
main, around finding plug-in matrices with prescribed properties or discover-
ing the obstructions to finding such matrices. Then we study arrays which
these matrices may be plugged into. There are several methods of obtaining
the appropriate collections of plug-in matrices (circulants, negacyclics, type
1, type 2 and blocks). The ways they may be used often depend on how
we obtained them. In general, the more control we attempt to exert on the
internal structure of the plug-in matrices, the more interesting the ways we
can use them.

4.2 Some Orthogonal Designs Exist

Proposition 1.2 actually gives a construction for orthogonal designs. We review
that proposition and add a remark about uniqueness in the following.

Theorem 4.1. There are OD(1;1), OD(2;1,1), OD(4;1,1,1,1) and
OD(8;1,1,1,1,1,1,1,1). These are equivalent under the equivalence operations

(a) interchange rows or columns;
(b) multiply rows or columns by −1;
(c) replace any variable by its negative throughout the design; to one of the

arrays of appropriate order in Table 4.1.
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such designs. The ideas and methods we use are quite varied, and many have
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Table 4.1 Examples: OD(1;1), OD(2;1,1), OD(4;1,1,1,1) and
OD(8;1,1,1,1,1,1,1,1)

[x] ,
[
x y
y −x

]
,

⎡⎢⎢⎣
a b c d

−b a d −c
−c −d a b
−d c −b a

⎤⎥⎥⎦ or

⎡⎢⎢⎣
a b c d

−b a −d c
−c d a −b
−d −c b a

⎤⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b c d e f g h
−b a d −c f −e −h g
−c −d a b g h −e −f
−d c −b a h −g f −e

−e −f −g −h a b c d
−f e −h g −b a −d c
−g h e −f −c d a −b
−h −g f e −d −c b a

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Proof. By tedious systematic elimination. The uniqueness of the orthogonal
design of order 8 under Hadamard equivalence operations is shown in [239]. �	

Here we leave the question of equivalence of orthogonal designs, except to say
that Lakein and Wallis [140] have briefly considered inequivalence of Baumert-
Hall arrays of small order (see Section 4.12 for definition), and Hain [96]
conjectured and Eades [52] established that there are exactly two equivalence
classes of circulant weighing matrices of order 13. The existence of circulant
weighing matrices has attracted considerable interest. See [6, 7, 9–11, 153]
papers and Section 4.4, Ohmori [156–158] has studied the equivalence of
weighing matrices, W (n,k) and Kimura [124], the equivalence of Hadamard
matrices.

We believe equivalence of orthogonal designs is an area worthy of study. We
refer any interested reader to the work of M. Hall Jnr, W. D. Wallis and others
described in J. Cooper [31], J. Wallis [231, pp 408-425], B. Gordon [92], C.
Koukouvinos and colleagues, H. Kharaghani, W. Holzmann and W.D. Wallis
on equivalence of Hadamard matrices.

In Chapter 1 we gave a construction for H-R families (see Theorem 1.2). It
is possible to generalize that result to orthogonal designs.

Theorem 4.2. If there exists OD(n;u1,u2, . . . ,us), then there exists an or-
thogonal design of type

(i) OD(2n;u1,u2, . . . ,us−1,us,us) with s+1 variables,
(ii) OD(4n;u1,u2, . . . ,us−1,us,us,us) with s+2 variables,

(iii) OD(8n;u1,u2, . . . ,us−1,us,us,us,us,us) with s+4 variables,
(iv) OD(16n;u1,u2, . . . ,us−1,us,us,us,us,us,us,us,us,us) with s + 8 vari-

ables.
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Proof. In each case we replace each of the first s−1 variables by xiIm, where
m = 2,4,8,16, respectively. In cases (i), (ii), (iii) and (iv) the last variable is
replaced by [

x y
y −x

]
,

⎡⎢⎢⎣
x y z 0
y −x 0 −z
z 0 −x y
0 −z y x

⎤⎥⎥⎦ , X and W ,

respectively, where X and W are given in Table 4.2. �	

Table 4.2 Values for X and W

W =
[

X Y
Y � Z

]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x y z 0 a 0 0 −b c 0 0 d 0 −e f 0
y −x 0 −z 0 −a b 0 0 −c −d 0 e 0 0 −f
z 0 −x y 0 −b −a 0 0 d −c 0 −f 0 0 −e
0 −z y x b 0 0 a −d 0 0 c 0 f e 0
a 0 0 b −x y z 0 0 −e f 0 −c 0 0 −d
0 −a −b 0 y x 0 −z e 0 0 −f 0 c d 0
0 b −a 0 z 0 x y −f 0 0 −e 0 −d c 0
−b 0 0 a 0 −z y −x 0 f e 0 d 0 0 −c
c 0 0 −d 0 e −f 0 −x y z a 0 0 0 −b
0 −c d 0 −e 0 0 f y x 0 −z 0 −a b 0
0 −d −c 0 f 0 0 e z 0 x y 0 −b −a 0
d 0 0 c 0 −f −e 0 0 −z y −x b 0 0 a

0 e −f 0 −c 0 0 d a 0 0 b x y z 0
−e 0 0 f 0 c −d 0 0 −a −b 0 y −x 0 −z
f 0 0 e 0 d c 0 0 b −a 0 z 0 −x y
0 −f −e 0 −d 0 0 −c −b 0 0 a 0 −z y x

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Corollary 4.1. There exists an orthogonal design of type OD(n;1, . . . ,1) with
ρ(n) variables in order n = 2a.b (b odd).

Proof. This follows immediately from Theorem 1.2. �	
We now note that orthogonal designs of the same order but different types

can be easily made by setting variables equal to zero or to one another. For
easy reference, this is stated in the following lemma:

Lemma 4.1 (Equate and Kill Theorem). If A is OD(n;u1, . . . ,us) on
variables x1, . . . ,xs, then there is OD(n;u1, . . . ,ui +uj , . . . ,us) and
OD(n;u1, . . . ,uj−1,uj+1, . . . ,us) on s−1 variables x1 . . . , x̂j , . . . ,xs.
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Proof. Set the variables x̂j = xi = xj in the first case and x̂j = 0 in the second.
�	

Corollary 4.2. An OD(n;u1, . . . ,us) exists if
s∑

i=1
ui ≤ ρ(n) for any integer

n = 2,4,8, orthogonal designs of order n and any type exist.

Proof. The proof follows by using the designs of type (1,1, . . . ,1) in Corollary
4.1. �	
Example 4.1. ⎡⎢⎢⎣

x y z w
−y x w −z
−z −w x y
−w z −y x

⎤⎥⎥⎦
is OD(4;1,1,1,1). We can make designs OD(4;1,1,2) by (for example) setting
z = w = v and of type OD(4;1,1,1) by (for example) setting y = 0.⎡⎢⎢⎣

x y v v
−y x v −v
−v −v x y
−v v −y x

⎤⎥⎥⎦
⎡⎢⎢⎣

x 0 z w
0 x w −z

−z −w x 0
−w z 0 x

⎤⎥⎥⎦
is an OD(4;1,1,2), and is an OD(4;1,1,1).

Another method of finding orthogonal designs, already foreshadowed by
the proof of Theorem 4.2, is to replace variables by suitable matrices of
variables. Similar methods were first used extensively by J. Wallis [231] in
constructing Hadamard matrices. The results now quoted are due to Joan
Murphy Geramita, Kounias, Koukouvinos, Holzmann, Kharaghani, Ming-yuan
Xia, ourselves and many of our students.

The next lemma is given for easy reference. The remaining lemmas of
this section are of far-reaching consequences and great power in constructing
orthogonal designs.

Lemma 4.2. If A is an OD(n;u1, . . . ,us) on x1 . . . ,xs, then there exists
OD(mn;u1, . . . ,us) on x1, . . . ,xs for any integer m ≥ 1.

Proof. Replace each variable xi of A by xiIm. �	
The next result is most useful, and part of it first appeared in Geramita-

Geramita-Wallis [77]. It was the start of what is now amicable orthogonal
designs (see Chapter 5).

Lemma 4.3. If there is OD(n;a,b), there is an

OD(2n;a,a,b,b) OD(4n;a,a,2a,b,b,2b)
OD(8n;a,a,2a,2a,2a,8b) OD(8n;a,2a,2a,3a,2b,6b)
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Proof. To obtain the required designs in order 2n, 4n and 8n, respectively,
the two variables of the design OD(n;a,b) in order n should be replaced by
the matrices of commuting variables (we use x̄i for −xi and ȳj for −yj) given
in Table 4.3 respectively. This is possible because XiY

�
i = YiX

�
i , i = 1,2,3,4,

that is, Xi and Yi are amicable. �	

Table 4.3 Amicable designs in order 2n, 4n, 8n using x̄i for −xi, ȳj for −yj

X1 =
[
x1 x2
x̄2 x1

]
,

[
y1 y2
y2 ȳ1

]
= Y1

X2 =

⎡⎢⎢⎣
x1 x2 x3 x3
x̄2 x1 x3 x̄3
x̄3 x̄3 x1 x2
x̄3 x3 x̄2 x1

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
y1 y2 y3 y3
y2 ȳ1 y3 ȳ3
y3 y3 ȳ2 ȳ1
y3 ȳ3 ȳ1 y2

⎤⎥⎥⎦ = Y2

X3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0 x1 x2 x3 x2 x4 x3 x4
x̄1 x0 x3 x̄2 x4 x̄2 x4 x3
x̄2 x̄3 x0 x1 x3 x̄4 x̄2 x4
x̄3 x2 x̄1 x0 x̄4 x̄3 x4 x2
x̄2 x̄4 x̄3 x4 x0 x1 x2 x̄3
x̄4 x2 x4 x3 x̄1 x0 x̄3 x̄2
x̄3 x̄4 x2 x̄4 x̄2 x3 x0 x1
x̄4 x3 x̄4 x̄2 x3 x2 x̄1 x0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 − 1 − − 1 −
1 − 1 1 − 1 − −
− 1 − − − 1 − −
1 1 − 1 1 1 − 1
− − − 1 1 1 1 −
− 1 1 1 1 − − −
1 − − − 1 − − −
− − − 1 − − − 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= Y3

X4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0 x2 x3 x3 x3 x2 x̄1 x̄1
x̄2 x0 x3 x̄3 x2 x̄3 x̄1 x1
x̄3 x̄3 x0 x2 x̄1 x̄1 x̄2 x̄3
x3 x3 x̄2 x0 x̄1 x1 x̄3 x2
x̄3 x̄2 x1 x1 x0 x2 x3 x3
x̄2 x3 x1 x̄1 x̄2 x0 x3 x̄3
x1 x1 x2 x3 x̄3 x̄3 x0 x2
x1 x̄1 x3 x̄2 x̄3 x3 x̄2 x0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y2 y1 ȳ2 ȳ2 ȳ2 y1 ȳ2 ȳ2
y1 ȳ2 y2 ȳ2 ȳ1 ȳ2 ȳ2 y2
ȳ2 y2 ȳ1 y2 ȳ2 ȳ2 ȳ2 y1
ȳ2 ȳ2 y2 y1 ȳ2 y2 ȳ1 ȳ2
ȳ2 ȳ1 ȳ2 ȳ2 ȳ2 y1 y2 y2
y1 ȳ2 ȳ2 y2 y1 y2 ȳ2 y2
ȳ2 ȳ2 ȳ2 ȳ1 y2 ȳ2 ȳ1 ȳ2
ȳ2 y2 y1 ȳ2 y2 y2 ȳ2 y1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= Y4 .

Corollary 4.3. If there are OD(n;1,k), 1≤ k≤ j, then there are OD(2n;1,m)
for 1 ≤ m ≤ 2j + 1. In particular, if there are OD(n;1,k), 1 ≤ k ≤ n−1, then
there are OD(2tn;1,m), 1 ≤ m ≤ 2tn−1, t a positive integer.

Example 4.2. Since there is an OD(2;1,1), there exist, using Corollary 4.3,
orthogonal designs OD(2t;1,k), 1 ≤ k ≤ 2t−1, in every order 2t, t a positive
integer.

The following lemma is crucial to the powerful results on Hadamard matrices
we will obtain later.

,
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Theorem 4.3 (Doubling Theorem). If there exists an OD(n;s1,s2, . . . ,su),
then there exist orthogonal designs of type

(i) OD(2n;e1s1,e2s2, . . . ,eusu) where ei = 1 or 2,
(ii) OD(2n;s1,s1,fs2, . . . ,fsu) where f = 1 or 2.

Proof. (i) Replace each variable by
[

xi 0
0 xi

]
if ei = 1 and by

[xi xi
xi −xi

]
if ei = 2.

(ii) Replace the variable x1 by
[ x0 x1−x1 x0

]
and the variable xi, i �= 1, by

[
0 xi
xi 0

]
or

[xi xi
xi −xi

]
according as f is 1 or 2. �	

4.3 Some Basic Matrix Results

One of the most useful constructive methods for orthogonal designs has been
that using two or more circulant matrices. Later in Section 4.5 we discuss
the alternative plug-in matrices, nega-cyclic matrices, which are especially
useful for even orders. In this section we give some results about circulant
matrices starting with the more general concept of type 1; then we develop
some existence results.

First we give some definitions and elementary results. We use the following
notation:

Notation 4.1. A (1,−1) matrix is a matrix whose only entries are +1 or −1.
We use similar notation for a (0,1,−1) matrix, (a,b,c) matrix, etc. We use
Jn for the n×n matrix with every entry +1. (We shall sometimes drop the
subscript if the order is obvious.)

Definition 4.1. (a) Let G be an additive abelian group of order t, and order
the elements of G as z1, . . . ,zt. Let ψ and φ be two functions from G into a
commutative ring. We define two matrices M = (mij) and N = (nij), of order
t, as follows:

mij = ψ(zj −zi) and nij = φ(zj +zi) .

M and N are called type 1 and type 2 matrices, respectively.

Remark 4.1. The words “type 1” used to describe these matrices leaves out
information: the way the elements of G are ordered and which functions ψ and
φ are being used. One should say, e.g., in describing M , “type 1 with respect

phrase will be omitted since the ordering for G is usually understood and
fixed, while the functions ψ and φ are usually explicit.

(b) Let G be as above with its elements ordered as above. Let X be a
subset of G, and suppose 0 /∈ X. If ψ and φ are defined by:

to the following ordering of G and the function φ”; however, this cumbersome
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ψ(x) =

⎧⎪⎨⎪⎩
a, x = 0
b , x ∈ X

c, x /∈ X ∪{0}
, φ(x) =

⎧⎪⎨⎪⎩
d, x = 0
e, x ∈ X

f , x /∈ X ∪{0}
,

then M will be called the type 1 (a,b,c) incidence matrix generated by X, and
N the type 2 (d,e,f) incidence matrix generated by X.

Remark 4.2. If we drop the restriction that 0 /∈ X and let

ψ(x) = φ(x) =
{

1 if x ∈ X

−1 if x /∈ X
,

we obtain the type i (i = 1,2) (1,−1) incidence matrix generated by X, and if
we let

ψ(x) = φ(x) =
{

1 if x ∈ X

0 if x /∈ X
,

then we obtain the type i (i = 1,2) (1,0) incidence matrix generated by X.

Notice that these latter two “incidence” matrices are really special cases
of Definition 4.1 part (b) where we let a = b or a = c depending on whether
0 ∈ X or 0 /∈ X.

Example 4.3. Consider the field Z3[x]
(x2−x−1) = GF (32). We order the elements

g1 = 0, g2 = 1, g3 = 2, g4 = x, g5 = x + 1, g6 = x + 2, g7 = 2x, g8 = 2x + 1,
g9 = 2x+2. Define the set

X =
{

y : y = z2 for some z ∈ GF (32) , z �= 0
}

= {x+1,2,2x+2,1} .

Then the type 1 and type 2 (0,1,−1) incidence matrices generated by X are
given by A and B, respectively:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 −1 1 −1 −1 −1 1
1 0 1 −1 −1 1 1 −1 −1
1 1 0 1 −1 −1 −1 1 −1

−1 −1 1 0 1 1 −1 1 −1
1 −1 −1 1 0 1 −1 −1 1

−1 1 −1 1 1 0 1 −1 −1
−1 1 −1 −1 −1 1 0 1 1
−1 −1 1 1 −1 −1 1 0 1

1 −1 −1 −1 1 −1 1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 −1 1 −1 −1 −1 1
1 1 0 1 −1 −1 −1 1 −1
1 0 1 −1 −1 1 1 −1 −1

−1 1 −1 −1 −1 1 0 1 1
1 −1 −1 −1 1 −1 1 1 0

−1 −1 1 1 −1 −1 1 0 1
−1 −1 1 0 1 1 −1 1 −1
−1 1 −1 1 1 0 1 −1 −1

1 −1 −1 1 0 1 −1 −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

If the additive abelian group in Definition 4.1 is the cyclic group Zt of integers
modulo t with the usual ordering 0,1,2, . . . , t−1, then the type 1 and type 2
matrices are very familiar.

Definition 4.2. (a) A circulant matrix A = (aij) of order n is one for which
aij = a1,j−i+1 where j − i + 1 is reduced modulo n to 0,1,2, . . . ,n− 1. For
example: ⎡⎢⎢⎣

1 2 3 4
4 1 2 3
3 4 1 2
2 3 4 1

⎤⎥⎥⎦ .

(b) A set D = {x1,x2, . . . ,xk} ⊂ {0,1,2, . . . ,n−1} will be said to generate a
circulant (1,−1) matrix if the first row of the circulant matrix is defined by

a1x =
{

+1, x ∈ D

−1, x /∈ D
.

(c) A matrix A = (aij) of order n will be called back circulant if aij = a1,i+j−1
where i+ j−1 is reduced modulo n. For example:⎡⎢⎢⎣

1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

⎤⎥⎥⎦ .

Remark 4.3. (i) Any type 1 matrix defined on Zt (with its usual ordering) is
circulant since:

mij = ψ(j− i) = ψ(j− i+1−1) = m1,j−i+1 .

(ii) Any type 2 matrix defined on Zt (with its usual ordering) is back circulant
since:

nij = φ(i+ j) = φ(i+ j−1+1) = n1,i+j−1 .
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Clearly, any circulant matrix is a type 1 matrix, and any back circulant
matrix is a type 2 matrix. In any case:

• A type 1 matrix is analogous to a circulant matrix;
• A type 2 matrix is analogous to a back circulant matrix.

Thus, all propositions proved about type 1 and type 2 matrices have corollaries
about circulant and back circulant matrices.

Lemma 4.4. Suppose G is an additive abelian group of order v with elements
ordered z1,z2, . . . ,zv. Let φ, ψ, and μ be functions from G to some commutative
ring R.

Define A = (aij), B = (bij) and C = (cij) by aij = φ(zj −zi), bij = ψ(zj −zi)
and cij = μ(zj +zi). Then

(i) C� = C , (ii) AB = BA, (iii) AC� = CA� .

Proof. (i) cij = μ(zj +zi) = μ(zi +zj) = cji.

(ii) (AB)ij =
∑

g∈G φ(g−zi)ψ(zj −g).

Putting h = zi − zj −g, it is clear that as g ranges through G, so does h,
and the above expression becomes∑

h∈G

φ(zj −h)ψ(h−zi) =
∑
n∈G

ψ(h−zi)φ(zj −h)

(since R is commutative); this is (BA)ij .

(iii) (AC�)ij =
∑

g∈G φ(g−zi)ψ(zj +g)
=

∑
h∈G φ(h−zj)μ(zi +h) (h = zj +g−zi)

= (CA�)ij . �	
Corollary 4.4. If X and Y are type 1 matrices and Z is a type 2 matrix, all
defined on the same abelian group with a fixed ordering, then (i) Z� = Z, (ii)
XY = Y X, (iii) XZ� = ZX�.

Lemma 4.5. (i) If X is a type 1, i = 1,2, matrix, then so is X�.
(ii) If X and Y are type 1 matrices, i = 1,2, both defined on the same abelian
group with a fixed ordering, then so is X +Y and X −Y .

Proof. (i.a) If X = (xij) is type 2 defined using a function φ, then Xij =
φ(zi +zj) = φ(zj +zi) = Xji. So X� is also defined as type 2 using φ.

(i.b) If X = (xij) is of type 1 defined using ψ, then xij = ψ(zj − zi).
Now define a type 1 matrix M = (mij) using μ, where μ(x) = ψ(−x). Then
mij = μ(zj −zi) = ψ(zi−zj) = xji. Thus M = X�.
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(ii.a) If X and Y are type 2 defined using φ1 and φ2, then the type 2
matrices defined using φ1 + φ2 and φ1 − φ2 respectively, give X + Y and
X −Y , respectively.

(ii.b) Similarly, if X and Y are type 1 defined using ψ1 and ψ2, define
type 1 matrices using μ1 + μ2 and μ1−μ2, respectively, to obtain X + Y and
X −Y , respectively, where μi(x) = ψi(−x). �	
Corollary 4.5. (i) If X and Y are type 1 matrices, defined on the same
abelian group with a fixed ordering, then

XY = Y X XY � = Y �X
X�Y = Y X� X�Y � = Y �X� .

(ii) If P is a type 1 matrix and Q is a type 2 matrix, both defined on the same
abelian group with a fixed ordering, then

PQ� = QP � P �Q� = QP
PQ = Q�P � P �Q = Q�P

.

We now summarize the most used results for circulants.

Corollary 4.6. (i) Two circulant matrices of the same order commute.
(ii) A back circulant matrix is symmetric.
(iii) The product of a back circulant matrix with a circulant matrix of the same
order is symmetric. In particular, if B is back circulant and A is circulant,

AB� = BA�.

A and B are amicable matrices (see Chapter 5)

Remark. From now on, whenever we refer to a collection of type 1 and type
2 matrices all defined on the same abelian group G, we shall assume that the
ordering of the group elements has been fixed.

Lemma 4.6. (i) Let X and Y be type 2 (d,e,f) incidence matrices generated
by subsets A and B of an additive abelian group G. Suppose, further, that

a ∈ A ⇒−a ∈ A and b ∈ B ⇒−b ∈ B .

Then,
XY = Y X and XY � = Y X� .

(ii) The same result holds if X and Y are type 1.

Proof. (i) Since X and Y are symmetric, we only have to prove that XY � =
Y X�. Suppose X = (xij) and Y = (yij) are defined by

xij = φ(zi +zj), yij = ψ(zi +zj) ,
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where z1,z2, . . . are the elements of G. Then

(XY �)ij =
∑

k

φ(zi +zk)ψ(zk +zj)

=
∑

k

φ(−zi−zk)ψ(zk +zj) since a ∈ A ⇒−a ∈ A

=
∑

�

φ(zj +z�)ψ(−z�−zi−zj +zj) z� = −zk −zi−zj

=
∑

�

φ(zj +z�)ψ(z� +zi) since b ∈ B ⇒−b ∈ B

= (Y X�)ij .

(ii) The additional hypotheses on A and B force X and Y to be symmetric.
The proof, then, is similar to (i), and we leave it to the reader as an easy
exercise. �	
Lemma 4.7. Let R = (rij) be the permutation matrix of order n, defined on
an additive abelian group G = {gi} of order n by

rk,j =
{

1 if gk +gj = 0
0 otherwise.

(i) If M is a type 1 matrix defined on G, then MR is a type 2 matrix defined
on G.

(ii) If N is a type 2 matrix defined on G, then NR is a type 1 matrix defined
on G.

(iii) If X is a subset of G where 0 /∈ X and M is the type 1 (a,b,c) incidence
matrix generated by X, then MR is the type 2 (a,b,c) incidence matrix
generated by −X.

(iv) If X is as in (3) and N is the type 2 (a,b,c) incidence matrix generated
by X, then NR is the type 1 (a,b,c) incidence matrix generated by −X.

Proof. 1.) Let M = (mij) be defined by mij = ψ(gj − gi), and let μ(x) =
ψ(−x). We claim that MR is the type 2 matrix defined by μ, for

(MR)ij =
∑

k

mikrkj = mi�, where g� +gj = 0,

= ψ(g�−gi) = ψ(−gj −gi) = μ(gj +gi) .

2.) follows from a similar argument.
3.) and 4.) are clear from 1.) and 2.) and the relationship between ψ and
μ. �	
Corollary 4.7. Let G be an additive abelian group and X a subset of G where
0 /∈ X. Let M be the type 1 (a,b,c) incidence matrix generated by X, and N
the type 2 (a,b,c) incidence matrix generated by −X. Then
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MM� = NN� .

Proof. Lemma 4.7 gives that M = NR, where R is the permutation matrix
appropriate to G. The corollary follows since RR� = 1. �	

4.3.1 Supplementary Difference Sets, their Incidence
Matrices and their Uses as Suitable Matrices

Definition 4.3. Let S1,S2, . . . ,Sn be subsets of V , an additive abelian group
of order v. Let |S| = ki and Si = si1,si2, . . . ,siki

. If the equation

g = sij −sim

has exactly λ solutions for each non-zero element g of V , then S1,S2, . . . ,Sn

will be called n−{v;kl,k2, . . . ,kn;λ} supplementary difference sets or sds. If
k1 = k2 = · · · = kn = k, we write n−{v;k;λ} sds.

Lemma 4.8. Suppose A1, . . . ,An are the type 1 (0,1) incidence matrices
generated by S1, . . . ,Sn, where S1, . . . ,Sn are n−{v;k;λ} sds. Then

n∑
i=1

AiA
�
i =

(
n∑

i=1
ki−λ

)
I +λJ .

Proof. This follows from the definition by a simple counting argument. (See
Wallis [231, p.290] for a fuller proof.) �	
Example 4.4. S1 = {0,2,3} and S2 = {0,1,4} are 2−{5;3;3} sds in Z5. Their
type 1 (1,0) incidence matrices are the circulants

A1 =

⎡⎢⎢⎢⎢⎣
1 0 1 1 0
0 1 0 1 1
1 0 1 0 1
1 1 0 1 0
0 1 1 0 1

⎤⎥⎥⎥⎥⎦ and A2 =

⎡⎢⎢⎢⎢⎣
1 1 0 0 1
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
1 0 0 1 1

⎤⎥⎥⎥⎥⎦
which satisfy

A1A�
1 +A2A�

2 = 3I +3J .

We observe that for these subsets of Z5, x ∈ Si ⇒ −x ∈ Si. So, if R is
the back diagonal matrix of order 5 (see Lemma 4.7), we see A1R = B1
and A2R = B2 are the type 2 (1,0) incidence matrices generated by S1 and
respectively.
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B1 = A1R =

⎡⎢⎢⎢⎢⎣
1 0 1 1 0
0 1 1 0 1
1 1 0 1 0
1 0 1 0 1
0 1 0 1 1

⎤⎥⎥⎥⎥⎦ and B2 = A2R =

⎡⎢⎢⎢⎢⎣
1 1 0 0 1
1 0 0 1 1
0 0 1 1 1
0 1 1 1 0
1 1 1 0 0

⎤⎥⎥⎥⎥⎦ .

Using Lemma 4.6 (or directly), we obtain

B1B2 = B2B1 and B1B�
2 = B2B�

1 .

Also
A1A2 = A2A1 and A1A�

2 = (B1R)(B2R)� = B2B�
1 .

We also observe that

A1B�
2 = B2A�

1 and AiA
�
i = BiB

�
i .

Lemma 4.9. Let A1, . . . ,An be type 1 (1,0) incidence matrices generated by
S1, . . . ,Sn where S1, . . . ,Sn are n−{v;k1, . . . ,kn;λ} sds.

Let Bi = Ai−J . Then

n∑
i=1

BiB
�
i = 4

⎛⎝ n∑
j=1

kj −λ

⎞⎠I +

⎡⎣nv−4

⎛⎝ n∑
j=1

kj −λ

⎞⎠⎤⎦J .

We are constantly searching for (0,1,−1) matrices to substitute for the
variables in an orthogonal design. We shall be precise about what is needed.

Definition 4.4. A set of m (0,1,−1) matrices A1,A2, . . . ,Am of order n
will be called suitable plug-in matrices for the orthogonal design of type
OD(n;s1,s2, . . . ,sm) if

1) AiA
�
j = AjA�

i , 1 ≤ i, j ≤ m ;

2)
m∑

i=1
siAiA

�
i = kIn .

2) is called the additive property. So suitable matrices are pairwise amicable
and satisfy the additive property.

Theorem 4.4. Let S1,S2,S3,S4 be 4−{t;k1,k2,k3,k4;
∑4

j=1 kj − t} sds for
which x ∈ Si ⇒ −x ∈ Si, and let Al,A2,A3,A4 be the type 1 (1,−1) inci-
dence matrices of these sets. Then A1,A2,A3,A4 are suitable matrices for an
orthogonal design OD(4st;s,s,s,s).
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Proof. Since x ∈ Si ⇒−x ∈ Si we see that Ai, i = 1,2,3,4, are symmetric and
commuting. Using Lemma 4.9, we have

4∑
i=1

AiA
�
i = 4

⎛⎝ 4∑
j=1

kj −
4∑

j=1
kj + t

⎞⎠I +

⎛⎝4t−4

⎛⎝ 4∑
j=1

kj −
4∑

j=1
kj + t

⎞⎠⎞⎠J

= 4tI.

In particular,
4∑

i=1
sAiA

�
i = 4stI .

If the variables of the orthogonal design are replaced by the Ai, i = 1,2,3,4,
we have a weighing matrix of weight 4st. �	

If the orthogonal design of the theorem is of order 4s, then the weighing
matrix obtained will be of order 4st and weight 4st, in other words, an
Hadamard matrix of order 4st. In this case the symmetric matrices of Theorem
4.4 are a special kind of what will be called Williamson matrices (see also
Definition 4.16).

4.4 Existence of Weighing Matrices

In 1972 at the first Australian conference on Combinatorial Mathematics,
Seberry Wallis gave her first paper on weighing matrices [232]. Weighing
matrices also caused interest at Queen’ s University that year. It was observed
that in order to establish existence in all orders for a given weight we needed
to consider weighing matrices in odd orders.

We noticed that there was a circulant W (7,4). It has first row −110100.
Then D. Gregory found a non-circulant W (13,9). After observing that the

zeros of this matrix give the incidence matrix of a finite projective plane, we
found a circulant W (13,9) with first row 0010111−01−1.

At the Fifth South-eastern Conference on Combinatorics, Graph Theory
and Computing in Boca Raton, Florida, in 1972, Rick Wilson and R.C. Mullin
said they thought W (q2 + q +1, q2) might exist when q was a prime power.

At that time Mullin [153] was writing a book on Coding Theory with Ian
Blake [23], who quickly saw the possibilities of using weighing matrices and
especially circulant matrices W to form generator matrices [I,W ] of codes
over GF (3) which would generalise the Pless symmetry codes.

Wallis and Whiteman (Theorem 4.6) finally showed that circulant W (q2 +
q +1, q2) existed when q was a prime power.

In writing this section it seemed that the proof of Wallis and Whiteman was
too circuitous and a prettier, more direct proof was desirable. Our colleague,
L.G. Kovacs, has given three proofs; the second is illustrated by Example
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4.8 and we feel is intrinsically very beautiful. The first proof is illustrated
by Example 4.9. The proof we have given here is the shortest, but hides to
some extent the delightful intimacy between circulant weighing matrices and
cyclic projective planes. The work of David Glynn gives more insight. (See
Glynn [87].)

It was Kovacs’ work that allowed Hain and Eades [54] to establish that
there are only two equivalence classes of circulant W (13,9). Many others
[6, 7, 9–11, 153, 201, 252] have continued this study of circulant weighing
matrices, but the full story is not yet known.

If A is a W (n,k), then (detA)2 = kn. Thus if n is odd and a W (n,k) exists,
then k must be a perfect square.

In Proposition 2.3 it is shown that

(n−k)2− (n−k)+2 > n

must also hold. It is noted there that the “boundary” values of this condition
are of special interest, that is, if

(n−k)2− (n−k)+1 = n,

for in this case the zeros of A occur such that the incidence between any pair
of rows is exactly one. So if we let B = Jn−AA�, B satisfies

BB� = (n−k−1)In +Jn, BJn = (n−k)Jn ;

that is, B is the incidence matrix of the projective plane of order n−k−1.
Thus the non-existence of the projective plane of order n−k−1 implies the

non-existence of the W (n,k) when n = (n−k)2 − (n−k)+1. So we rewrite
the Bruck-Ryser-Chowla Theorem from Hall [97, p.107–112] to allow us to
consider the non-existence of projective planes.

Theorem 4.5 (Bruck-Ryser). If there exists a projective plane of order
s, then the Diophantine equation

x2 = sy2 +(−1)
(s2+2)

2 z2

has a solution in the integers not all zero. That is, the Hilbert symbol(
(−1)

(s2+2)
2 ,s

)
p

= +1

for all primes p, including p = ∞.

Example 4.5. Consider s = n−k−1 = 6 , s2 +s+1 = n = 43, s2 = k = 36. The
Bruck-Ryser Theorem says that there is a projective plane only if(−121 ,6

)
p

= (−1,6)p = +1 at all primes p.
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But at p = 3
(−1,6)3 = (−1,2)3(−1,3)3 =

(2
3
)

= −1 .

So there is no projective plane of order 6 and no W (43,36).

Similarly, if s = 2t = n−k−1, s2 +s+1 = n, s2 = k, where t ≡ 3 (mod 4)
is a prime, there is no projective plane of order 2t and no W (4t2 +2t+1,4t2).

Before we prove our result on circulant weighing matrices, we prove the
following more general result.

Lemma 4.10 (Blake [23]). Let q be the power of an odd prime and k any
integer k ≥ 3. Then there exists a

W

(
(qk −1)

q−1 , qk−1
)

.

Proof. Let G be a kX(qk −1) matrix whose columns contain all the distinct
non-zero k-tuples over the finite field GF (q). In coding terms, the row space
of G, denoted by C, is equivalent to a maximum length cyclic code. It is
known that the weight of every non-zero codeword in C is (q−1)qk−1. If G1

is the k× (qk −1) matrix whose rows are any set of k linearly independent
codewords of C, then every non-zero k-tuple over GF (q) appears as a column
of G1.

Let H be a k×n submatrix of G, n = qk−1
q−1 , with the property that any

two of its columns are linearly independent. We assume that H is normalized
in the sense that the first non-zero element in each column is unity. Let A
be an n×n matrix whose rows are chosen from the non-zero vectors of the
row space of H and have the property that any two distinct rows are linearly
independent. Assume for convenience that the first k rows of A are rows of
H. It follows readily from observations on G that every row of A has weight
qk−1. It is not difficult to show that if H is the (0,1) matrix obtained from
H by replacing each non-zero element by unity, then the rows of H1 are
the incidence vectors of the compliments of the hyperplanes of the geometry
PG(k−1, q).

Let x1 and x2 be two distinct rows of A. Since they are independent, they
can be extended to a basis xi , i = 1, . . . ,k, each vector of which is a row of A.
Let B be the k×n matrix whose i-th row is xi, i = 1, . . . ,k . Assume B has
been normalized by multiplying each column so that the first non-zero element
in each column is unity. let B1 be the k× qk−1 submatrix of B consisting of
those columns with unity in the first row. Every (k−1)-tuple over GF (q),
including the a1l-zeros (k−1)-tuple, appears in the columns of B in rows 2
through k. Each element of GF (q) appears qk−2 times in the second row of B.
In the matrix A, replace α ∈ GF (q) by χ(α), where χ is the usual quadratic
character, and call the resulting matrix S(qk1). We now show that over the
real numbers

S
(

qk−1
)

S
(

qk−1
)t

= qk−1In
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and thus that S(qk−1) is the required W
(

qk−1
q−1 , qk−1

)
.

Since every row of A is of weight qk−1 and each non-zero element of GF (q)
is either a square or a non-square, the inner product over the reals of any row
of S(qk−1) with itself is qk−1. Let x1 = (αl, . . . ,αn), x2 = (β1, . . . ,βn) be two
distinct rows of A. If y1 = (χ(β1), . . . ,χ(βn)) and y2 = (χ(α1), . . . ,χ(αn)) are
the corresponding rows of S(qk−1), then the inner product of y1 and y2 over
the reals is the number of non-zero coordinate positions for which χ(αi) = χ(βi)
less the number of non-zero coordinate positions for which χ(αi) �= χ(βi). Since
χ is multiplicative, i.e. , χ(α)χ(β) = χ(αβ), multiplication of a coordinate
position by a non-zero element of GF (q) does not change the agreement or
disagreement between coordinate positions of y1 and y2. As before, assume
that x1 and x2 are the first two rows of the matrix B, which is assumed
in normalized form. In the non-zero positions of x1, each element of GF (q)
appears in x2, qk−2 times. Thus the inner product of the corresponding vectors
y1 and y2 is zero, which completes the lemma. �	

We now show how to construct circulant weighing matrices based on the
fact that an oval in a projective plane can meet a line in only one of three
ways: 0 (it misses it entirely), 1 (it is a tangent), 2 (it intersects the oval).
This observation is true for any projective plane of prime power order (even
or odd). These will be used extensively in later theorems.

Theorem 4.6 (Wallis-Whiteman [242], proof by L. G. Kovacs). Let
q be a prime power. Then there is a circulant W (q2 + q +1, q2).

Proof. Let D be a cyclic planar difference set with parameters (q2 + q + 1, q +
1,1). (See Baumert [16] for definition.) These always exist for q a prime power,
and the incidence matrix of D is the incidence matrix of the projective plane
of order q.

Without loss of generality, we assume 0 ∈ D. We note that d and −d
cannot both be in D because d−0 = 0− (−d), contradicting the uniqueness
of differences in D.

Let
ψ(x) =

∑
d∈D

xd

be the Hall polynomial of D. (see Baumert [16, p.8]) Then

ψ2(x) =
∑
d∈D

x2d +2
∑

e,f∈D
e �=f

xe+f

We wish to show the coefficients of xi in χ2(x) are 0, 1, 2, i.e. , that 2d �= 2e
unless d = e, e + f �= e′ + f ′ unless e = e′ and f = f ′ , and 2d �= e + f unless
d = e = f .

Clearly, 2d �= 2e for d �= e. If e + f = e′ + f ′, then e− e′ = f − f ′, and by
the uniqueness of differences in D either e = f and e′ = f ′ or e = −f ′ and
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e′ = −f . In the first case 2e = 2e′ , e = e′, f = f ′, and in the second case
e+f = −(e+f), i.e. , e+f = 0 and e and −e ∈ D, which is not possible. If
2d = e+f , then d−e = f −d, and by the uniqueness of differences in D, either
d = f , e = d or d = −d, e = −f . In the first case there is nothing to prove, and
in the second case e and −e ∈ D, which is not possible.

Hence if B is the cyclic incidence matrix of D, then B2 has elements 0, 1,
2, and B2−J has elements 0, 1, -1.

Now (
B2−J

)(
B2−J

)� = BBB�B�−BBJ +J2 .

= (qI +J)2−2(q +1)2J +(q2 + q +1)J .

= q2I

So B2−J is the required W (q2 + q +1, q2). �	
Example 4.6. {0,1,3,9} is a difference set modulo 13, whose circulant incidence
matrix B has first row

1 1 0 1 0 0 0 0 0 1 0 0 0 .

B2 is a circulant matrix with first row

1 2 1 2 2 1 1 0 0 2 2 0 2 ,

and B2−J is the required circulant matrix with first row

0 1 0 1 1 0 0 − − 1 1 − 1 .

Example 4.7. David Glynn [87] has further generalized this construction by
observing that if A and B are the circulant incidence matrices of two projective
planes of the same order and C = AB−J is a (0,1,−1) matrix, then C is a
circulant weighing matrix.

In the above example, B, of order 13, has Hall polynomial

ψ(x) = x0 +x1 +x3 +x9 ,

and

ψ(x2) = x0 +x2 +x5 +x6 .

We can form the two inequivalent weighing matrices of order 13 by forming

B2−J and AB�−J ,

where A and B� have Hall polynomials ψ(x2) and ψ(x−1), respectively. Hence
we obtain circulant weighing matrices with Hall polynomials
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α(x) = x1 +x3 +x4−x7−x8 +x9 +x10−x11−x12

and

β(x) = x2 +x4 +x5 +x6−x7−x8 +x10−x11 +x12 .

The first rows of the weighing matrices for α(x) and β(x2) are

0 1 0 1 1 0 0 − − 1 1 − 1

and

0 − 0 − 1 0 0 1 1 − 1 1 1 ,

which are clearly inequivalent.

Example 4.8 (Kovacs’ second method). (We refer the reader to Hughes and
Piper [108] or Dembowski [40] for any unexplained terms in this and the next
example.) Li = {0+ i,1+ i,3+ i,9+ i} are the lines of a projective geometry.
L2 = {0,2,5,6} is an oval with the property that any two of its translates
{0+i,2+i,5+i,6+i} have precisely one point in common. We form a circulant
matrix W with first row (a1j) by choosing

a1j = |Lj ∩L2|−1 .

Hence the first row of W is

0 1 0 1 1 1 − − 0 1 − 1 0 .

Example 4.9 (Kovacs’ first method–for q odd). (0,1,3,9) is a difference set
modulo 13, so Li = {0 + i,1 + i,3 + i,9 + i} are the lines of the projective
geometry of order 3. Now L2

0 = {0,2,5,6} is an oval and, L2
j = {0+ j,2+ j,5+

j,6 + j} are also ovals, any two of which have precisely one common tangent.
The tangents of L2

0 are L0, L1, L3 and L9, so 1, 3, 4, 9, 10, 12 are exterior
points, 0, 2, 5, 6 are on the oval, while 7, 8, 11 are interior to the oval.

We form our circulant weighing matrix by choosing the first row to have
-1, 0, 1 in the (0, i) position (i = 0,1, . . . ,12) according as i is interior on or
exterior to the oval, i.e.,

0 1 2 3 4 5 6 7 8 9 10 11 12
0 1 0 1 1 0 0 − − 1 1 − 1 (4.1)

The translates of the oval L−1
0 = {0,4,10,12} also satisfy the unique common

tangent condition; from this oval, we get the first row

0 1 − 1 0 − − 1 1 1 0 1 0 . (4.2)

Map i �→ −2i; then 4.2 becomes



82 4 Orthogonal Designs Constructed via Plug-in Matrices

0 − 0 − 1 0 0 1 1 − 1 1 1 . (4.3)

Now 4.1 and 4.3 are inequivalent.

Remark 4.4. Choosing r = 2 and −1 in the example gives inequivalent W (13,9).
It is interesting to consider what values of r will give different solutions.

4.5 Constructions for Hadamard Matrices, W (h,h), and
Weighing Matrices, W (h,h−1)

Definition 4.5. A matrix A = I +S will be called skew-type if S� = −S.

We recall the following:

Definition 4.6. A (0,1,−1) matrix W = W (p,k) of order p satisfying

WW � = kIp

is called a weighing matrix of order p and weight k or simply a weighing matrix.
A W (p,p) is called an Hadamard matrix. A W = W (p,k) for which W � =−W
is called a skew-weighing matrix, and an Hadamard matrix H = I +S for which
S� = −S is called a skew-Hadamard matrix. A W = W (p,p− 1) satisfying
W � = W , p ≡ 2 (mod 4) is called a symmetric conference matrix.

Definition 4.7 (C-Matrix). A (0,±1) matrix, M , will be called a C-matrix
if 1

2 (M ±M�) is also a (0,±1) matrix.

Remark 4.5. To help the reader compare with other literature we note con-
ference matrices (M = M�) and skew-Hadamard matrices (M = −M�) are
also called C-matrices.

Weighing matrices have long been studied in order to find optimal solutions
to the problem of weighing objects whose weights are small relative to the
weights of the moving parts of the balance being used. It was shown by
Raghavarao [163], [164] that if the variance of the errors in the weights
obtained by individual weighings is σ2 (it is assumed the balance is not biased
and the errors are mutually independent and normal), then using a W (p,k) to
design an experiment to weigh p objects will give a variance of σ2

k . Indeed, for
an Hadamard matrix the variance is σ2

p , which is optimal for p ≡ 0 (mod 4),
and for a symmetric conference matrix the variance is σ2

p−1 , which is optimal
for p ≡ 2 (mod 4).

Sloane and Harwitt [195] survey the application of weighing matrices to
improve the performance of optical instruments such as spectrometers.
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Spectrometers measure the intensity of a dispersed spectrum at a finite
number (n, say) of wavelengths. According to Ibbett, et al [112], either one
detector scans the screen, making the n measurements sequentially, or else the
n measurements are made simultaneously by a detector with spatial resolution.
The first method has the disadvantage of not being able to compensate for
variations in the intensity of the signal, while the second approach suffers the
disadvantage of a lower signal-to-noise ratio (Ibbett, et al [112]).

A modification can be made to the second system which improves the
signal-to-noise ratio. This is achieved by using a weighing matrix as square
mask, where 1 is clear, 0 is opaque and −1 is a mirror (180◦ phase shift).
Again the variance of the estimates of the wavelengths made using a mask of
weight is 1

n of the estimates when measured separately.
Sloane and Harwitt [195] also indicate that weighing designs are applicable

to other problems of measurements (such as lengths, voltages, resistances,
concentrations of chemicals, etc.) in which the measure of several objects is
the sum (or a linear combination) of the individual measurements.

The following properties of Hadamard matrices and weighing matrices are
easily proved.

Lemma 4.11. Let U = U(p1,k1) and V = V (p2,k2) be weighing matrices.
Then W = U ×V is a weighing matrix of order p1p2 and weight k1k2.

Corollary 4.8. Since
[1 1

1 −
]

is a W (2,2), there are Hadamard matrices of
order 2t, t a positive integer.

Lemma 4.12 (Paley Lemma or Paley Core). Let p be a prime power.
Then there is a W = W (p + 1,p) for which W � = (−1) 1

2 (p−1)W . If p ≡ 3
(mod 4), then W + Ip is a W (p+1,p+1).

Proof. Let a0,a1, . . . ,ap−1 be the elements of GF (p) numbered so that

a0 = 0, ap−i = −ai, i = 1, . . . ,p−1 .

Define Q = (xij) by

xij = χ(aj −ai) =

⎧⎪⎨⎪⎩
0 if i = j,

1 if aj −ai = y2 for some y ∈ GF (p),
−1 otherwise.

Now Q is a type 1 matrix with the properties that

QQ� = pI −J,

QJ = JQ = 0,

Q� = (−1)
1
2 (p−1)Q.
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This follows since exactly half of a1, . . . ,ap−1 are squares, −1 is a square for
p ≡ 1 (mod 4) but not for p ≡ 3 (mod 4), and∑

y

χ(y)χ(y + c) =
∑

y

χ
(
y2)

χ
(
1+ cy−1)

=
∑
z �=1

χ(x) = −1.

Let e be the 1×p vector of all ones. Then

W =
[

0 e

(−1) 1
2 (p−1)e� Q

]
is the required matrix. If p ≡ 3 (mod 4), W + Ip is a W (p+1,p+1). �	
Notation 4.2. Q is known as the Paley core.

Corollary 4.9. There are Hadamard matrices of order p + 1 where p ≡ 3
(mod 4) is a prime power, and of order 2(p + 1) where p ≡ 1 (mod 4) is a
prime power.

Proof. For p≡ 3 (mod 4) use W +I; for p≡ 1 (mod 4) use
[

W +I W −I
W −I −W −I

]
. �	

Corollary 4.10. There are Hadamard matrices of order 2t
∏

(pri
i +1) where

pri
i are prime powers and t, an integer, is > 0 if p

rj

j ≡ 1 (mod 4), for some j,
and ≥ 0 otherwise.

Proof. Use Lemma 4.11 and Corollary 4.10. �	
It is conjectured that:

Conjecture 4.1 (Hadamard Conjecture). There exists an Hadamard matrix
of order 4t for every positive integer t.

Conjecture 4.2 (Jennifer Wallis [232]). There exists a weighing matrix
W (4t,k), k = 0,1, . . . ,4t, for every positive integer t.

This conjecture, of course, includes the Hadamard Conjecture.

Remark 4.6. There is now considerable literature devoted to circulant weighing
matrices. Some of the authors are Ang, Arasu, Hain, Mac, Ma, Mullin, Seberry
and Strassler [6, 7, 9–11, 153, 201] . We do not pursue this topic, though
extremely interesting, here.

Definition 4.8. We say that the weighing matrix W = W (2n,k) is constructed
from two circulant matrices M , N of order n if

W =
[

M N
N� −M�

]
.
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Example 4.10.

M =

⎡⎣0 1 1
1 0 1
1 1 0

⎤⎦ and N =

⎡⎣− 1 1
1 − 1
1 1 −

⎤⎦
of order 3 satisfy MM� +NN� = 5I. Then

W =
[

M N
N� −M�

]
=

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 1 − 1 1
1 0 1 1 − 1
1 1 0 1 1 −
− 1 1 0 − −
1 − 1 − 0 −
1 1 − − − 0

⎤⎥⎥⎥⎥⎥⎥⎦
is a W (6,5) constructed from two circulant matrices.

Theorem 4.7 (Goethals and Seidel [88]). Let q ≡ 1 (mod 4) be a prime
power; then there is a W (q +1, q) of the form

S =
[
A B
B −A

]
with zero diagonal and square circulant sub-matrices A and B.

Proof. Let z be any primitive element of GF (q2), the quadratic extension
of GF (q). We choose any basis of V the vector space of dimension 2 over
GF (q2). With respect to this basis, v is defined by the matrix

(v)− 1
2

[
zq−1 +z1−q (zq−1−z1−q)z 1

2 (q+1)

(zq−1−z1−q)z− 1
2 (q+1) zq−1 +z1−q

]
,

which actually has its elements in GF (q). Then det(v) = 1, and the eigenvalues
of v are zq−1 and z1−q, both elements of GF (q2) whose 1

2 (q + 1)-th power,
and no smaller, belongs to GF (q). Hence v acts on the projective line PG(1, q)
as a permutation with period 1

2 (q +1) without fixed points. This divides the
points of PG(1, q) into two sets of transitivity, each containing 1

2 (q +1) points.
In addition, w defined by the matrix

(w) =
[
0 zq+1

1 0

]
has χdet(w) =−χ(−1). The eigenvalues of w are ±z

1
2 (q+1) elements of GF (q2)

whose square is in GF (q). Hence w acts on PG(1, q) as a permutation of
period 2, which maps any point of one set of transitivity, defined above by
v, into the other set. Indeed, for i = 1, . . . , 1

2 (q +1), the mapping viw has no
eigenvalue in GF (q). Note vw = wv.
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Finally, we represent the q + 1 points of PG(1, q), x0,x1, . . . ,xq, by the
following q +1 vectors in V :

x,v(x),v2(x), . . . ,v
1
2 (q−1)(x),w(x),vw(x), . . . ,v

1
2 (q−1)w(x) .

We define
S = χdet(xi,xj) .

Observing that any linear mapping u : V → V satisfies

det(u(x),u(y)) = detu ·det(x,y) ,

for all x,y ∈ V , we see that

det(viw(x),vjw(x)) = det(w) ·det(vi(x),vj(x)) = det(w) ·det(x,vj−i(x)) ,

det(vi(x),vjw(x)) = −det(viw(x),vj(x)) = det(vj(x),viw(x)) ,

det(vi(x),vj(x)) = −det(v
1
2 (q+1)+i,vj(x)),

and so S has the required form. �	
Example 4.11. Let q = 5 and z be a root of z2 +z +2 = 0 (a primitive polyno-
mial over GF (52)). Then

z4 = 3z+2, z−4 = z20 = 2z+4, z3 = 4z+2, z−3 = z21 = 2z+1, z6 = 2 .

Hence
(v) = 1

2

[
z4 +z−4 (z4−z−4)z3

(z4−z−4)z−3 z4 +z−4

]
=

[
3 4
2 3

]
and

(w) =
[
0 z6

1 0

]
=

[
0 2
1 0

]
.

We now choose some vector x, say, x = [1
0 ]. Then

x0 = x = [1
0 ] , x1 = v(x) = [3

2 ] , x3 = v2(x) = [2
2 ] ,

x4 = w(x) = [0
1 ] , x5 = vw(x) = [4

3 ] , x6 = v2w(x) = [4
2 ] .

Since χ(1) = χ(4) = 1 and χ(2) = χ(3) = −1,

det(xi,xj) =

⎡⎢⎢⎢⎢⎢⎢⎣
0 2 2 1 3 2
3 0 2 3 1 3
3 3 0 2 3 1
4 2 3 0 1 1
2 4 2 4 0 1
3 2 4 4 4 0

⎤⎥⎥⎥⎥⎥⎥⎦ and χdet(xixj) =

⎡⎢⎢⎢⎢⎣
0 − − 1 − −
− 0 − − 1 −
− − 0 − − 1
1 − − 0 1 1
− − 1 1 1 0

⎤⎥⎥⎥⎥⎦ .

The next corollary was first explicitly stated by Turyn.
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Corollary 4.11 (Turyn [218]). Let p ≡ 1 (mod 4) be a prime power. Then
there exist four circulant symmetric matrices

X1 = I +A, X2 = I −A, X3 = X4 = B

of order 1
2 (p+1) which satisfy

4∑
i=1

XiX
�
i = 2(p+1)I 1

2 (p+1) .

These four matrices will be called Williamson matrices as they are circulant
and symmetric.

Proof. Construct A and B as in the theorem. �	
Note that the next four matrices satisfy the additive property but are not

circulant but pairwise amicable, so are called Williamson type matrices (see
Definition 4.16).

Corollary 4.12 (J. Wallis [235]). Let p ≡ 1 (mod 4) be a prime power;
then there exist four symmetric (1,−1) matrices X1, X2, X3, X4 of order
1
2p(p+1) which satisfy

4∑
i=1

XiX
�
i = 2p(p+1)I 1

2 p(p+1), XiX
�
j = XjX�

i .

Equivalently, there are Williamson type matrices of order 1
2p(p+1).

Proof. Construct A and B as in the theorem, and Q of order p as in the proof
of Lemma 4.12. Then

X1 = (I ×J)+(A× (I +Q)) ,

X2 = B× (I +Q) ,

X3 = (I ×J)+(A× (I −Q)) ,

X4 = B× (I −Q)

are the required matrices. These type 1 matrices are symmetric. �	
There are two very tough problems concerning skew Hadamard matrices.

The first being the existence and construction of such matrices, the second
being the number of equivalence classes. Existence results fall into two types:
those constructed using four suitable complementary sequences and those
constructed using linear algebra and number theory. Although the existence
problem, via algebraic and number theoretic methods, has been widely studied
by many researchers including Spence, Whiteman and Yamada, there many
orders for which skew Hadamard matrices have not been constructed yet
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(indeed there is no asymptotic existence theorem known for skew Hadamard
matrices, see Chapter 9.)

Good matrices, which are four circulant ±1 matrices of order n, constructed
using four suitable complementary sequences and used in the Goethals-Seidel
array to construct skew Hadamard matrices of smaller order 4n (orders
≤ 400), first appeared in the PhD Thesis of Jennifer (Seberry) Wallis [240]:
there the matrices were given no name. Extensive computer searches have
been carried out by many authors including Blatt, Ðoković, Fletcher, Geor-
giou, Goethals, Hunt, Kotserias, Koukouvinos, Seberry, W. D. Smith, Seidel,
Stylianou, Szekeres and X-M Zhang (also K. Balasubramanian in chemistry)
see, for example, [24,41,42,61].

list for orders n = 1, · · · ,31. Ðoković [42, 45] provided orders n = 33, 35, 43,
47, 97 and 127. Then Georgiou, Koukouvinos and Stylianou [74] provided
37, 39. Ðoković [47] says that only one set of supplementary difference sets,
(41;20,20,16,16;31), for 41 remains to be searched. Fletcher, Koukouvinos and
Seberry [61] provided order 59.

We note that while there are no Williamson matrices of order 35 and 59
there are good matrices of order 35 and 59. [178,236].

These results are summarised (partly) in part SV of the table of existence
theorems. Suitable complementary sequences have not yet been found for
orders 69 and 89 (however skew Hadamard matrices are known for orders
8×69 and 16×89 by algebraic methods).

Summary 4.1. Table 4.4 summarizes the existence of skew-Hadamard ma-
trices.

The more recent status on known results and open problems on the existence
of skew-Hadamard matrices of order 2tn, n odd, n ≤ 500, are given in Table 1
of [138]. In Table 4.5, we write n(t) if the skew-Hadamard matrix of order 2tn
exists. An n(.) means that a skew-Hadamard matrix of order 2tn is not yet
known for any t. The values n < 500, missing from Table 4.5, indicate that a
skew-Hadamard matrix of order 4n exists. Seberry Wallis [230] conjectured
that skew-Hadamard matrices exist for all dimensions divisible by 4.

Table 4.5 modifies that of Koukouvinos and Stylianou [138] with more
recent results.

Table 4.6 gives the current knowledge of existence for Hadamard matrices
not in Geramita-Seberry [80, p.416], nor in Seberry-Yamada [188, p.543-544]
which are unresolved.

In [240] good matrices were given for n= 1, · · · ,15,19 and in [229] for n= 23.
Hunt [109] gave the matrices for n = 1, · · · ,25. Later Szekeres [206] gave a
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Table 4.4 Skew-Hadamard existence

SI 2t
∏

ki t, ri, all positive integers ki = pri
i + 1 ≡ 0

(mod 4), pi a prime.
SII (p−1)u +1 p the order of a skew-Hadamard matrix,

u > 0 an odd integer.
SIII 2(q +1) q ≡ 5 (mod 8) a prime power.
SIV 2s(q +1) q = pt is a prime power such that p ≡ 5

(mod 8), t ≡ 2 (mod 4), s ≥ 1 an integer.
SV 4m m ∈ {odd integers between 3 and 39 inclusive}
SV I m′(m′−1)(m−1) m and m′ the orders of amicable Hadamard

matrices, where (m−1)m′
m is the order of

a skew-Hadamard matrix.
SV II 4(q +1) q = 8f +1 f odd is a prime power.
SV III (|t|+1)(q +1) q = s2 + 4t2 ≡ 5 (mod 8) is a prime power,

and |t|+1 is the order of a skew-Hadamard
matrix (Wallis [234]).

SIX 4(1+ q + q2) where q is a prime power and⎧⎪⎨⎪⎩
1+ q + q2 is a prime ≡ 3,5, or

7 (mod 8); or
3+2q +2q2 is a prime power ( [197]).

SX hm h the order of a skew-Hadamard matrix,
m the order of amicable Hadamard matri-
ces.

4.6 The Goethals-Seidel Array and other constructions
using circulant matrices – constraints on
constructions using circulant matrices

In studying skew-Hadamard matrices (orthogonal designs OD(n;1,n−1)),
Szekeres realized that none were known for quite small orders, including 36. To
find this matrix Goethals and Seidel gave an array (described in this section)
which uses circulant matrices. This and its generalization by Wallis and
Whiteman have proved invaluable in the construction of Hadamard matrices,
and we will see that they play a major role in constructing orthogonal designs.
Here we have another example of a method devised to give a single case
having far-reaching uses.

We now consider the use of circulant matrices in constructing orthogonal
designs. All the constructions using circulants require that we find circulants
A1, . . . ,As of order n satisfying the additive property:
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Table 4.5 Existence of skew-Hadamard matrices a

69(3) 89(4)
101(10) 107(10) 119(4) 149(4)
153(3) 167(4) 177(12) 179(8) 191(.) 193(3)
201(3) 205(3) 209(4) 213(4) 223(3) 225(4) 229(3) 233(4)
235(3) 239(4) 245(4) 249(4) 251(6) 253(4) 257(4) 259(5)
261(3) 265(4) 269(8) 275(4) 277(5) 283(11) 285(3) 287(4)
289(3) 295(5) 299(4)
301(3) 303(3) 305(4) 309(3) 311(26) 317(6) 319(3) 325(5)
329(6) 331(3) 335(7) 337(18) 341(4) 343(6) 345(4) 347(18)
349(3) 353(4) 359(4) 361(3) 369(4) 373(7) 377(6) 385(3)
389(15) 391(4) 397(5)
401(10) 403(5) 409(3) 413(4) 419(4) 423(4) 429(3) 433(3)
435(4) 441(3) 443(6) 445(3) 449(.) 451(3) 455(4) 457(9)
459(3) 461(17) 465(3) 469(3) 473(5) 475(4) 479(12) 481(3)
485(4) 487(5) 489(3) 491(46) 493(3)

a Koukouvinos and Stylianou [138, p2728] c© Elsevier

Table 4.6 Hadamard matrix orders which are unresolved

107(10) 167(3) 179(3) 191(3)
213(4) 223(3) 239(4) 249(3) 251(3) 269(8) 283(3)
303(3) 311(26) 335(7) 347(3) 359(4) 373(7)
419(4) 443(6) 445(3) 479(12) 487(3) 491(46)

s∑
i=1

AiA
�
i = fI, where f =

r∑
j=1

sjx2
j .

One question we shall explore in this section is the restrictions that must be
placed on (s1, . . . ,sr) in order that such circulant matrices exist.

This problem is analogous to the problems we discussed in Chapter 3 when
we discovered algebraic limitations on orthogonal designs.

Conditions imposed on (s1, . . . ,sr) in order to construct orthogonal designs
from circulants is closer to the combinatorial spirit of the subject. Although
there is no reason to believe that all the orthogonal designs we look for in orders
4n or 8n, n odd, can be expected to come from circulants (or negacyclics),
we will find they usually do. In cases where they do not, especially in orders
divisible by 8, negacyclic matrices have proved invaluable. See [67, 68, 78, 101,
105,108,126] among others. Thus circulant matrices are important constructive
tools, and we should decide what limitations there are on their use. We also
note that circulant matrices are amenable to algebraic assault because of their
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relationship to roots of unity. This aspect to circulants will become more
apparent when we discuss Griffin’ s work on Golay sequences in Section 7.2.

We first give constructions using circulants and then consider restrictions
on their use.

Proposition 4.1. Suppose there exist two circulant matrices B of order n
satisfying

AA� +BB� = fIn .

Further suppose that R is the back diagonal matrix; then

H =
[

A B
−B� A�

]
or G =

[
A BR

−BR A

]
is a W (2n,f) ,

when A, B are (0,1,−1) matrices, and an orthogonal design OD(2n;u1,u2, . . . ,
us) on x1, . . . ,xs when f =

∑s
i=1 uix

2
i .

Further, H and G are skew or skew-type if A is skew or skew-type.

Proof. A straightforward verification. �	
Remark 4.7. We note here that these properties remain true if A and B are
type 1 matrices and R is the appropriately chosen matrix (see Lemmas 4.4 to
4.7).

Definition 4.9. We say that an orthogonal design is constructed from two
circulant matrices M , N of order n if

W =
[

M N
−N� M�

]
or W =

[
M NR

−NR M

]
.

Example 4.12.

A =

⎡⎣ xl x2 −x2
−x2 x1 x2
x2 −x2 x1

⎤⎦ and B =

⎡⎣ 0 x2 x2
x2 0 x2
x2 x2 0

⎤⎦
of order 3 satisfy

AA� +BB� = (x2
1 +4x2

2)I .

Thus

H =
[

A B
−B� A�

]
=

⎡⎢⎢⎢⎢⎢⎢⎣
x1 x2 −x2 0 x2 x2
−x2 x1 x2 x2 0 x2
x2 −x2 x1 x2 x2 0
0 −x2 −x2 x1 −x2 x2

−x2 0 −x2 x2 x1 −x2
−x2 −x2 0 −x2 x2 x1

⎤⎥⎥⎥⎥⎥⎥⎦
and
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G =
[

A BR
−BR A

]
=

⎡⎢⎢⎢⎢⎢⎢⎣
x1 x2 −x2 0 x2 x2
−x2 x1 x2 x2 x2 0
x2 −x2 x1 x2 0 x2
0 −x2 −x2 x1 x2 −x2

−x2 −x2 0 −x2 x1 x2
−x2 0 −x2 x2 −x2 x1

⎤⎥⎥⎥⎥⎥⎥⎦
are orthogonal designs OD(6;1,4) on x1,x2. H and G are constructed from
two circulants.

Theorem 4.8 (Goethals-Seidel [89]). Suppose there exist four circulant
matrices A, B, C, D of order n satisfying

AA� +BB� +CC� +DD� = fIn .

Let R be the back diagonal matrix. Then GS, henceforth called the Goethals-
Seidel array,

GS =

⎡⎢⎢⎣
A BR CR DR

−BR A D�R −C�R
−CR −D�R A B�R
−DR C�R −B�R A

⎤⎥⎥⎦
is a W (4n,f) when A, B, C, D are (0,1,−1) matrices, and an orthogonal
design OD(4n;u1,u2, . . . ,us) on the variables (x1,x2, . . . ,xs) when A, B, C,
D have entries from {0,±x1, . . . ,±xs} and

f =
s∑

j=1
ujx2

j .

Further, GS is skew or skew-type if A is skew or skew-type.

This theorem was modified by Wallis and Whiteman to allow the circulant
matrices to be generalized to types 1 and 2.

Lemma 4.13 (Wallis-Whiteman [242]). Let A, B, D be type 1 matrices
and C a type 2 matrix defined on the same abelian group of order n. Then if

AA� +BB� +CC� +DD� = fIn ,

H =

⎡⎢⎢⎣
A B C D

−B� A� −D C
−C D� A −B�
−D� −C B A�

⎤⎥⎥⎦
is a W (4n,f) when A, B, C, D are (0,1,−1) matrices, and an orthogonal
design OD(4n;u1,u2, . . . ,us) on the commuting variables (x1,x2, . . . ,xs) when
A, B, C, D have entries from 0,±x1, . . . ,±xs and
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f =
s∑

j=1
ujx2

j .

Further, H is skew or skew-type if A is skew or skew-type.

Example 4.13. We construct an orthogonal design OD(12;3,3,3,3) in order
12 by using the circulant matrices with first rows, respectively,

abc , b̄ad, c̄d̄a , d̄cb̄ ,

in the Goethals-Seidel array (Theorem 4.8). This is illustrated in Table 4.15.
See also Example 4.21. �	

To illustrate the use of Lemma 4.13 recall that in Example 4.3 we gave
a type 1 matrix A and a type 2 matrix B defined on the additive group G
of GF (32) (G = Z3×Z3). Let R be the matrix defined on G by Lemma 4.7.
Notice that by Lemma 4.7 AR = B and BR = A. Also, R is a type 2 matrix.

Let W =
[

0 I3 0
0 0 I3
I3 0 0

]
; then W is the type 1 (1,0) incidence matrix generated

by {2x} (we are using the notation of Example 4.3).

Let L =
[

J3 0 0
0 J3 0
0 0 J3

]
; then L is the type 1 (1,0) incidence matrix generated

by the subgroup {0,1,2} of G. Since the identity matrix is always a type 1
matrix for a group G (for which the identity element of the group is the first
element of G), we obtain that U = L− I + W and V = I + W � are type 1
matrices on G. (See Lemma 4.5.)

Set X1 = aI +bA, X2 = b(U +V ), X4 = b(U −V ) and X3 = bB−aR. Then
X1, X2 and X4 are type 1 matrices and X3 is a type 2 matrix. By inspection,
all entries are from 0,±a,±b. Also

4∑
i=1

XiX
�
i = (2a2 +26b2)I9 .

Thus these matrices may be used in place of A, B, C, D in Lemma 4.13 to
give an OD(36;2,26).

The most general theorem we can give on using circulant matrices in the
construction of orthogonal designs is

Theorem 4.9. Suppose there is an orthogonal design OD(m;u1,u2, . . . ,us)
on the variables x1,x2, . . . ,xs. Let X1,X2, . . . ,Xs, where s≤ ρ(n), be circulant
(type 1) matrices of order n with entries from {0,±y1, . . . ,±yr} which satisfy

u1X1X�
1 +u2X2X�

2 + · · ·+usXsX�
s = fIn

(the additive property). Further suppose

1. all Xi are symmetric, or
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2. at most one is not symmetric, or
3. X1, . . . ,Xj−1 are symmetric and Xj , . . . ,Xs are skew-symmetric.

Then if f = v1y2
1 + v2y2

2 + · · ·+ vry2
r , there is an OD(mn;v1,v2, . . . ,vr) on the

commuting variables (yl,y2, . . . ,yr).

Proof. The main difficulty arises because the variables of the orthogonal
design are commutative. When we replace commuting variables by matrices
yi, i = 1, . . . ,s, we have to ensure that the matrices pairwise satisfy

YiY
�

j = YjY �
i (4.4)

We established in Section 2 that if the Yi are circulant and symmetric, equation
(4.4) is satisfied. Also if YiR is back circulant (type 2) and Y is circulant
(type 1), then equation (4.4) is satisfied. We also note that if Yi and Yj are
skew-symmetric, the back circulant matrices YiR and YjR satisfy equation
(4.4) since

(YiR)(YjR)� = YiRR�Y �
j = −YiYj = YjY �

i = (YjR)(YiR)� .

Thus the result can be obtained in the first case by replacing each variable xi,
i �= j, in the orthogonal design of order m by the circulant symmetric matrix
Xi; in the second case the variable xi is replaced by the back circulant matrix
XjR. The third result is obtained by replacing xi, i �= j, j +1, . . . ,s, by Xi,
and xj , . . . ,xs by XjR,. . . ,XsR. �	
Example 4.14. There is an orthogonal design OD(16;1,1,1,1,3,3,3,3) (we will
see this in Chapter 5, Example 6.4(c)). Consider the circulant matrices Xi,
with first rows

y1y2y2ȳ2ȳ2 y2ȳ2y2y2ȳ2 ȳ2y2y2y2y2 ȳ2y2y2y2y2

y3y4ȳ4ȳ4y4 ȳ4y3ȳ3ȳ3y3 ȳ3y3y3y3y3 ȳ4y4y4y4y4

and call them respectively X1, . . . ,X8. Then

X1X�
1 +X2X�

2 +X3X�
3 +X4X�

4 +3X5X�
5 +3X6X�

6 +3X7X�
7 +3X8X�

8

= (y2
1 +19y2

2 +30y2
3 +30y2

4)I5.

We use part 2 of Theorem 4.9 to assert the existence of an orthogonal design
OD(80;1,19,30,30); the matrix X1R is used to replace the first variable, and
the circulant symmetric matrices X2, . . . ,X8 are used to replace the other
variables.

We have noted that in Theorem 4.8 the only requirement was to have
circulant matrices, but in Theorem 4.9 the internal structure of the circulant
matrices was restricted severely. If the matrices are circulant and symmetric,
we will loosely call this Williamson criteria, and if merely circulant, we will
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call this Goethals-Seidel criteria. Thus in Theorem 4.8 we only had Goethals-
Seidel criteria operating, but in Theorem 4.9 we were almost entirely limited
to Williamson criteria.

4.7 Constraints on construction using circulant matrices

Of course we would like to use these constructions to form orthogonal designs,
but first we must consider some combinatorial limitations on these methods
(algebraic limitations on the types of orthogonal designs were discussed earlier).

Lemma 4.14. Let Ai, i = 1,2,3, . . . ,m, be circulant matrices of order n where

m∑
i=1

AiA
�
i =

⎛⎝ r∑
j=1

sjx2
j

⎞⎠In .

Suppose Ai =
∑r

j=1 xjAij and that AijJ = yijJ . Then

sj =
m∑

j=1
y2

ij .

Proof. By definition
m∑

i=1
(x1Ai1 +x2Ai2 + . . .)

(
x1A�

i1 +x2A�
i2 + . . .

)
=

(
s1x2

1 +s2x2
2 + . . .

)
I .

So
m∑

i=1
x2

1 (Ai1)A�
i1 +

m∑
i=1

x2
2

(
Ai2A�

i2

)
+ · · · =

(
s1x2

1 +s2x2
2 + . . .

)
I ,

and setting xj = 1, xi = 0, for i �= j we have

m∑
i=1

AijA�
ij = sj .

Post-multiplying by J gives
m∑

i=1
y2

ijJ = sjJ ,

and equating coefficients gives the results. �	
Remark 4.8. If m = 4 and we have four circulants A1,A2,A3,A4 such that
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4∑
i=1

AiA
�
i =

(
x2

1 +sx2
2
)

In ,

n odd, then s must be the sum of three squares. For we may assume A1 =
x1I +x2A12, A2 = x2A22, A3 = x2A32 and A4 = x2A42. Then by the lemma
we have

y2
12 +y2

22 +y2
32 +y2

42 = s.

But A12 =−A�
l2, and the order of A12 is n(odd). So y12 = 0, and consequently

s is the sum of three squares. This should be compared with Proposition 3.21.

4.8 Eades’ Technique for Constructing Orthogonal
Designs Using Circulant Matrices

The method outlined in this section has been used successfully to compute
four variable orthogonal designs of order 20 and many but not all orthogonal
designs of order 28, 36 and 44. Some success has been achieved with orthogonal
designs of orders 18, 22, 26, 30, 44 and 52. The results of this computation
are included in the the Appendices. The method can be extended to construct
orthogonal designs in orders 24, 48, 56 and 72.

The method is presented as it applies to the Goethals-Seidel construction
(Theorem 4.8), but there are no difficulties in extending the results for more
general circulant constructions, such as those mentioned in orders 48 and 56
(see appendices).

Specifically, for positive integers s1,s2, . . . ,su and odd v, the method
searches for four circulant matrices X1,X2,X3,X4 of order v with entries
from {0,±x1,±x2, . . . ,±xu} such that

4∑
i=1

XiX
�
i =

(
u∑

i=1
six

2
i

)
I . (4.5)

The existence of an orthogonal design OD(4v;s1,s2, . . . ,su) follows from the
Goethals-Seidel construction (Theorem 4.8).

Remark 4.9. The restriction that v is odd is not necessary for most of the
results which follow. However, the restriction is made because we are princi-
pally interested here in constructing orthogonal designs of order not divisible
by 8. Orthogonal designs of order divisible by a large power of 2 can often be
constructed using other methods (see Chapter 9).

Equation (4.5) has v2 components, but since XiX
�
i is circulant and sym-

metric, at most 1
2 (v + 1) of these components are independent. The next two

definitions are made to isolate the independent components.
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Definition 4.10. If A1,A2,A3,A4 are v× v circulant matrices with entries
from {0,±x1,±x2, . . . ,±xu} and the first row of Aj has mij entries of the
kind ±xi, then the u× 4 matrix M = (mij) is called the entry matrix of
(A1,A2,A3,A4).

Definition 4.11. Suppose that A is a v × v circulant matrix with rows
r1,r2, . . . rv, and denote 1

2 (v−1) by w. Then the IPV (Inner Product Vector)
of A is [r1r�

2 , r1r�
3 , . . . , r1r�

w ]. Note that if (d1,d2, . . . ,dv) is the first row of
AA�, then the IPV of A is (d2,d3, . . . ,dw).

It is clear that (X1,X2,X3,X4) = (A1,A2,A3,A4) is a solution of equation
(4.5) if and only if

4∑
j=1

mij = si for 1 ≤ i ≤ u, (4.6)

and
4∑

j=1
bj = 0, where bj is the IPV of Aj . (4.7)

In other words, to find a solution of equation (4.5) we need four circulant
matrices with entries from {0,±x1,±x2, . . . ,±xu} whose entry matrix has ith

row adding to si for 1 ≤ i ≤ u and whose IPV’s add to zero.

Remark 4.10. The IPV is not the most efficient way in time or space to
construct Hadamard matrices, but is valuable for orthogonal designs.

Definition 4.12. The content of a circulant matrix A with entries from
{0,±x1,±x2, . . . ,xu} is the set of pairs (εxi,m) where εxi(ε = ±1) occurs a
non-zero number m times in the first row of A. Our next task is to show
how the contents of solutions of equation (4.5) may be determined from the
knowledge of the parameters v,s1,s2, . . . ,su.

Definition 4.13. Suppose that the rowsum of Aj is
∑u

i=1 pijxj for 1 ≤ j ≤
4. Then the u× 4 integral matrix P = (pij) is called the sum matrix of
(A1,A2,A3,A4). The fill matrix of (A1,A2,A3,A4) is M−abs(P ). The content
of Ai is determined by the i-th columns of the sum and fill matrices.

The following theorem may be used to find the sum matrix of a solution of
equation (4.5).

Theorem 4.10 (Eades Sum Matrix Theorem [52]). The sum matrix
P of a solution of equation (4.5) satisfies

PP � = diag(s1,s2, . . . ,su). (4.8)

Proof. Suppose that A is a v×v circulant matrix with row sum a, and denote
by b the sum of the squares of the first row of A, and by c the sum of the
entries of the IPV of A. Then
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(JA)(A�J�) = a2JJ� = a2vJ .

But also

(JA)(A�J�) = J(AA�)J�

= (b+2c)JJ�

= v(b+2c)J.

Hence a2 = b+2c. Thus if (pij) and (mij) are the sum and entry matrices of
a solution of equation (4.5), then since the sum of the sums of the entries of
the IPV’s is zero, it follows that

4∑
j=1

⎡⎣(
u∑

i=1
pijxi

)2

−
(

u∑
i=1

mijxi

)2⎤⎦ = 0 .

Expanding this equation and equating coefficients of xixj gives equation
(4.8). �	
Remark 4.11. (a) Note that the Sum Matrix Theorem 4.10 implies that a
necessary condition for the existence of OD(4v;sl,s2, . . . ,su) constructed by
using the Goethals-Seidel array is the existence of a u× 4 integral matrix
P satisfying equation (4.8). In fact this theorem says that the only time
we can hope to construct an orthogonal design OD(n;s1,s2,s3,s4) using
the Goethals-Seidel array in order n ≡ 0 (mod 4) is when there is a 4× 4
integer matrix p such that PP � = diag(s1,s2,s3,s4). This is analogous to
Proposition 3.23 of Chapter 3, which says that in orders n ≡ 4 (mod 8) a
rational family of type [s1,s2,s3,s4] exists in order n if and only if there is a
4×4 rational matrix Q with QQ� = diag(s1,s2,s3,s4). This also shows that,
for four variable designs, the Goethals-Seidel approach will be less useful in
orders divisible by a large power of 2.

(b) Suppose that P and Q are the sum and fill matrices of a solution
(X1,X2,X3,X4) = (A1,A2,A3,A4) of (4.5). If B and C are permutation
matrices of orders u and 4, respectively, then BPC and BQC are the sum
and fill matrices of another solution of (4.5) formed by permuting the indices
of Ai and Xj . Hence BPC and BQC are regarded as essentially the same as
P and Q. Similarly, if P ′ is formed from P by multiplying some rows and
columns by −1, then P ′ is regarded as essentially the same as P .

We state the first step of the method.
Step 1. Use the Sum Matrix Theorem to find a sum matrix of a solution of

(4.5).
If the algebraic necessary conditions (Proposition 3.23) for the existence

of OD(4v;s1,s2, . . . ,su) hold, then the existence of a solution to (4.8) is
guaranteed by a result of Pall (see Eades [53]).

In most cases, if the si are small (for instance, s1 + · · ·+su ≤ 28), then the
solution of (4.8) is essentially unique and can be found easily by hand.
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It is clear that if Q is the fill matrix of a solution of (4.5), then

the entries of Q are even non-negative integers , (4.9)

and if M = (mij) = abs(P )+Q, then M satisfies (4.6) and

the sum of a column of M is at most v . (4.10)

There may be a large number of matrices which satisfy (4.6), (4.9) and
(4.10) (see Example 4.15), but the next two lemmata may be used to reduce
the number of possibilities.

Lemma 4.15 (Eades). Suppose that A is a circulant matrix of odd order v,
with entries from {0,1,−1} and with k non-zero entries in each row.

(i) If k ≥ v−1, then each entry of the IPV of A is odd.
(ii) If each entry of the IPV of A is even, then v ≥ k +

√
k +1.

Proof. Part (a) can be proved by an elementary parity check. For part (b), a
standard counting argument may be employed as follows. Suppose that the
ij-th entry of A is aij , and denote by Bi the set

{j : 1 ≤ j ≤ v and aij = 0} ,

for 1 ≤ i ≤ v. Each Bi contains v−k elements. Also, since each column of A
contains k non-zero entries, each integer in {1,2, . . . ,v} occurs in v−k of the
Bi. It follows that each element of B1 occurs in v−k−1 of the Bi for i ≥ 2;
hence

v∑
i=2

|B1∩Bi| = (v−k)(v−k−1) .

But since the inner product of each pair of distinct rows of A is even and v is
odd, |B1∩Bi| is odd for 2 ≤ i ≤ v. In particular, |B1∩Bi| ≥ 1. Hence

v∑
i=2

|B1∩Bi| ≥ v−1 ,

and so
(v−k)2− (v−k) ≥ v−1 .

Completing the square gives

(v−k−1)2 ≥ k .

By part (a), v > k ≥ 0, and so v ≥ k +
√

k +1. �	
Lemma 4.16 (Eades). Suppose that the entry matrix of a solution
(X1,X2,X3,X4) = (A1,A2,A3,A4) of equation (4.5) is

[
V

W

]
where V is

�× r and W is (u− �)× (4− r). Then
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r∑
j=1

AjA�
j =

(
�∑

i=1
six

2
i

)
I

and

4∑
j=r+1

AjA�
j =

⎛⎝ u∑
i=�+1

six
2
i

⎞⎠I .

The proof of this lemma is straightforward and thus omitted. �	
Before the use of these lemmas is illustrated with an example, the second

step of the method is stated explicitly.
Step 2. Using (3.2), (3.7), (3.8) and Lemmas 4.15 and 4.16, find all possible

fill matrices which could accompany the sum matrix found in Step 1.
If v and the si are small, then there are usually very few possible fill

matrices, and they can be found easily without a computer.

Example 4.15. The existence of an orthogonal design OD(20;1,5,5,9) is listed
in Geramita and Wallis [81] as being undetermined. To construct such an
orthogonal design, we require four 5×5 circulant matrices B1, B2, B3, B4,
with entries from {0, ±x1, ±x2, ±x3, ±x4} such that

4∑
i=1

BiB
�
i = (x2

1 +5x2
2 +5x2

3 +9x2
4)I. (4.11)

1 = 12, 5 = 12 + 22, 9 = 32 = 22 + 22 + 12 are essentially the only ways of
writing 1, 5, 9 as sums of at most four squares, and so it is not difficult
to show that (essentially) the only 4× 4 integral matrix P which satisfies
PP � = diag(1,5,5,9) is

P =

⎡⎢⎢⎣
1

1 2
−2 1

3

⎤⎥⎥⎦ . (4.12)

(See Remark (b) after Theorem 4.10.)

Now there are eight 4×4 integral matrices which, on the basis of equations
(4.6), (4.9), and (4.10) could be fill matrices.
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(a)

⎡⎢⎢⎣2
2

2 2 2

⎤⎥⎥⎦ , (b)

⎡⎢⎢⎣2
2

2 2 2

⎤⎥⎥⎦ , (c)

⎡⎢⎢⎣2
2

2 2 2

⎤⎥⎥⎦ ,

(d)

⎡⎢⎢⎣2
2

2 2 2

⎤⎥⎥⎦ , (e)

⎡⎢⎢⎣ 2
2

4 2

⎤⎥⎥⎦ , (f)

⎡⎢⎢⎣ 2
2

4 2

⎤⎥⎥⎦ , (4.13)

(g)

⎡⎢⎢⎣ 2
2

4 2

⎤⎥⎥⎦ , (h)

⎡⎢⎢⎣ 2
2

4 2

⎤⎥⎥⎦ .

However, four of these matrices can be discounted as possible fill matrices
by using Lemmas 4.15 and 4.16.

Suppose that (B1,B2,B3,B4) has sum matrix P above (4.12) and fill
matrix (4.13) (b). Then the entry matrix is⎡⎢⎢⎣

1
2 1 2

4 1
2 2 5

⎤⎥⎥⎦ .

which satisfies equations (4.6) and (4.10). But the (3,2)-th entry of this entry
matrix indicates by Lemma 4.15 that every entry of the IPV of B2 has a
term in x2

3 with odd coefficient. But x3 occurs at most once in each row of
each of the other circulant matrices, and it follows that the IPV’s of the other
circulant matrices have no terms in x2

3. Hence it is impossible for the IPV’s
of the Bi to add to zero; so (4.13)(b) is not the fill matrix of the Bi.

Suppose that (4.13)(f) is the fill matrix of (B1,B2,B3,B4); this gives entry
matrix ⎡⎢⎢⎣

1
1 4
4 1

4 5

⎤⎥⎥⎦
If this is the entry matrix of (B1,B2,B3,B4), then⎡⎢⎢⎣

1
4 5

1 4
4 1

⎤⎥⎥⎦
is the entry matrix of another solution (C1,C2,C3,C4) of (4.12) (see Remark
(b) after Theorem 4.10). It follows by Lemma 4.15 that
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C1C�
1 +C2C�

2 = (x2
1 +9x2

2)I5 ,

and thus, using the two-circulant construction, there is an OD(10;1,9). This
is impossible, as it implies the existence of an Hadamard matrix of order 10,
and so (4.13)(f) is not the fill matrix of (B1,B2,B3,B4).

Similarly it can be shown that (4.13)(h) and (4.13)(e) are not possible.
Each of the possible fill matrices (4.13)(a), (c), (d), (g) could specify the

contents of a solution of (4.11). For each of these possibilities, we need to
search through the circulant matrices whose contents are thus specified until
we find a combination whose IPV’s add to zero. For instance, for (4.13)(a) we
need to find four 5×5 permutation matrices M1,M2,M3,M4 such that

(x1,x2,−x2,x3,−x3)M1

(x2,−x3,−x3,x4,−x4)M2

(x2,x2,x3,x4,−x4)M3

(x4,x4,x4,x4,−x4)M4

are the first rows of circulant matrices whose IPV’s add to zero. If this
search fails, then we consider circulant matrices with contents specified by
(4.13)(c), and so on. Note that there are a large number (about 2×108) of
4-tuples M1,M2,M3,M4 of 5×5 permutation matrices; however, only a small
proportion of these need be considered, as we shall presently see.

Once the sum and fill matrices have been chosen, the final steps of the
method may be executed.

Step 3. For each i ∈ {1,2,3,4} write down a circulant matrix Ai with
contents specified by the i-th columns of the sum and fill matrices.

Step 3 can be executed easily either by hand or by computer. Of course,
the circulant matrices Ai can be represented by their first rows.

Definition 4.14. Two circulant matrices with the same content are isometric
if they have the same IPV.

Step 4. For each i ∈ {1,2,3,4}, write a list Li of non-isometric circulant
matrices with the same contents as Ai. Attach to each circulant matrix its
IPV.

The problem of executing the fourth step is considered next. Given two
circulant matrices with the same content, how do we determine whether they
are isometric (without the time-consuming calculation of IPV’s)? How large
are the lists Li? Useful necessary and sufficient conditions for isometry are,
in general, unknown, but one obvious sufficient condition can be described as
follows.

Denote by Sv the group of v×v permutation matrices, and suppose that
T ∈ Sv represents the v-cycle (12 . . .v). Let R denote the v×v back diagonal
matrix (see Section 4.5). The subgroup of Sv generated by T and R is denoted
by 〈T,R〉. If A and B are v×v circulant matrices with first rows a and aK for
some K ∈ 〈T,R〉, then it can be seen immediately that A and B are isometric.
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It follows that the number of non-isometric circulant matrices with the
same content is at most the index of 〈T,R〉 in Sv, that is, (v−1)!

2 . Thus the lists
Li in Step 4 contain at most (v−1)!

2 entries. A complete set of distinct coset
representatives of 〈T,R〉 in Sv is easily seen to be E = {M ∈ Sv : M represents
a permutation θ on {1,2, . . . ,v} which satisfies vθ = v and 1θ ≤ 1

2 (v− 1)}.
Thus to compute the list Li in Step 4, we first write out the elements of
S = {B : B is a circulant matrix with first row aiM for some M ∈ E}, where
ai denotes the first row of the circulant matrix Ai chosen at Step 3. This can
be done easily either automatically or by hand.

Of course S may contain isometric elements. But it can be shown (as
follows) that if ai = (x1,x2, . . .xv), then no two distinct elements of S are
isometric.

Lemma 4.17. If ai = (x1,x2, . . . , ,xv) and B1 and B2 are elements of S with
first rows aiM1 and aiM2 where M1 and M2 are v×v permutation matrices,
then B1 and B2 are isometric if and only if they are equal.

Proof. The first entries of the IPV’s of B1 and B2 are equal; that is,

aiM1T −1M−1
1 a�

i = aM2T −1M−1
2 a�

i .

Symmetrising gives

aiM1
(
T +T −1)

M−1
1 a�

i = aiM2
(
T +T −1)

M−1
2 a�

i .

Since ai = (x1,x2, . . . ,xv), we obtain

T +T −1 = MTM−1 +MT −1M−1

where M denotes M−1
1 M2. A simple combinatorial argument using the fact

that v is odd shows that T + T −1 can be written uniquely as a sum of two
permutation matrices. Hence either T = MTM−1 or T −1 = MTM−1. In
either case, since the subgroup of Sv generated by T is self-centralising, we
can deduce that M in 〈T,R〉. Thus M1 and M2 are in the same coset of 〈T,R〉,
but both are elements of S, so M1 = M2.

The converse is immediate. �	
This lemma implies that sometimes the list Li achieves its maximum size

(v−1)!
2 . However this is rare. For instance, if the content of Ai is {(εxi,nεi) :

1 ≤ i ≤ u, ε = ±1} then the subgroup

L = {M ∈ Sv : aiM = ai}

of Sv has order

m =
(

u∏
i=−u

ni!
)(

v−
u∑

i=−u

ni

)
! .
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Hence there are at most v!
m entries of the list Li, and often v!

m < (v−1)!
2 .

However, the coset representatives of L in Sv are more difficult to deal with
by computer than the representatives of 〈T,R〉. Hence L is used only in hand
calculations. When a computer is used, the sort-merge package program may
be used to eliminate isometric elements of the set S.

The final step of the method is to search the lists Li for an answer.
Step 5. Search for one circulant matrix Ci with IPV ci from each list Li

(1 ≤ i ≤ 4) such that c1 + c2 + c3 + c4 = 0.
In the implementations for orthogonal designs of orders 20 and 28, there

was no difficulty in using a naive algorithm for the search at Step 5 because
the lists Li were relatively small. However, to extend the method to higher
orders, a more sophisticated search algorithm needed to be employed (see
Koukouvinos et.al. [59, 66–69,71,73,102,104,105,135]).

Two notes on the execution of Steps 4 and 5 are presented next.
Firstly, suppose that C1,C2,C3,C4 are circulant matrices whose sum and

fill matrices satisfy equations (4.6), (4.8), (4.9) and (4.10). Then the sum of
the sums of the entries of the IPV’s of the Ci is zero (see proof of Theorem
4.10). That is, if (ci1, ci2, . . . , ciw) is the IPV of Ci (1 ≤ i ≤ 4), then

4∑
i=1

w∑
j=1

cij = 0 .

Hence if
4∑

i=1
cij = 0 for 1 ≤ j ≤ w−1 ,

then
4∑

i=1
cij = 0 for 1 ≤ j ≤ w.

Hence only 1
2 (v−3) of the 1

2 (v−1) components of the IPV’s need to add to
zero for equation (4.5) to hold. This saves time and space in computer imple-
mentation and provides a simple error-checking device for hand calculations.

Secondly, we note that the IPV’s of non-isometric circulant matrices may be
dependent in the following way. Suppose that N ∈ Sv normalizes the subgroup
〈T 〉 of Sv generated by T . Note that there is an integer d prime to v such
thatNT iN−1 = T id for 0≤ i≤ v. Now if the circulant matrix A has first row a,
then the i-th entry of the IPV of A is aT −ia�. Hence the IPV of the circulant
matrix B with first row aN has i-th entry aNT −iN−1a�, that is, aT da�.
Hence the IPV of B is a permutation of the IPV of A, described as follows.
Suppose that the IPV of A is (h1,h2, . . . ,hw) and (id)∗ denotes the image
of id in {0,1, . . . ,v−1} modulo v. Then the IPV of B is (h1θ,h2θ, . . . , ,hwθ)
where θ is the permutation on {1,2, . . . ,w} defined by
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θ : i �
{

(id)∗ if 1 ≤ (id)∗ ≤ w,

v− (id)∗ otherwise.
(4.14)

Note that θ =1 if and only if N ∈ 〈T,R〉. Hence the index of the normalizer of
〈T 〉 in Sv is vφ(v), where φ is the Euler function. If v is prime, then the set E′
of v×v permutation matrices which represent a permutation on {1,2, . . . ,v}
which fixes v and v−1 is a complete set of distinct coset representatives of
the normalizer of 〈T 〉 in Sv.

For automatic computation this means that one of the lists, say L1, may
consist of elements S′ = {B : B is a circulant matrix with first row a1M for
some M ∈E′}. This produces a considerably shorter list, and the search (Step
5) may be proportionally shorter in time.

The use of the normalizer of 〈T 〉 in hand calculations is illustrated in the
completion of Example 4.16 below. First, however, we show how the facts
above may be used to construct a certain four variable orthogonal design of
order 28.

Example 4.16. An orthogonal design OD(28;1,1,1,25) can be constructed as
follows. We want four 7×7 circulant matrices V1,V2,V3,V4 with entries from
{0,±x1,±x2,±x3,±x4} such that

4∑
i=1

ViV
�

i = (x2
1 +x2

2 +x2
3 +25x2

4)I . (4.15)

The conditions (4.6), (4.8), (4.9), (4.10) imply that the sum and fill matrices
of (V1,V2,V3,V4) must be diag(1,1,1,5) and⎡⎢⎢⎣

6 6 6 2

⎤⎥⎥⎦ ,

respectively. Hence V4 must be (J −2I)x4 up to isometry (see (4.7)); thus
V4 has IPV (3x2

4,3x2
4,3x2

4). Choose a skew-symmetric 7×7 matrix C1 with
entries from {0,1,−1} and precisely one zero in each row; denote its IPV
by (d1,d2,d3). Now the normalizer of 〈T 〉 in S7 acts cyclically on (d1,d2,d3)
by (4.14), and further, it preserves skew-symmetry. Hence there are skew-
symmetric circulant matrices C2 and C3 with IPV’s (d2,d3,d1) and (d3,d1,d2),
respectively. For 1 ≤ i ≤ 3, denote xiI +x4Ci by Vi. It is clear that the IPV’s
of the Vi, 1 ≤ i ≤ 4, add to (f,f,f), where f = (d1 +d2 +d3 +3)x2

4. But since
the sum and fill matrices of (V1,V2,V3,V4) satisfy (4.6), (4.8), (4.9), (4.10), it
follows that f +f +f = 0; that is, f = 0. Hence the IPV’ s of the Vi add to
zero, and thus the Vi satisfy (4.15).

Example 4.16 completed: The index of the normalizer of 〈T 〉 in S5 is 6, and
so there are at most six circulants of order 5 with the same contents whose
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IPV’s differ by more than just a permutation. A complete set of distinct coset
representatives of this subgroup is

F = {1,(12),(23),(34),(45),(51)} .

Suppose that a solution (B1,B2,B3,B4) of equation (4.11) has sum matrix
P (4.12) and fill matrix (4.13)(a). Using the set F , a list Li of circulants with
contents thus specified and essentially different IPV’s can be made for each
i ∈ {1,2,3,4}. A short search reveals that if B1,B2,B3,B4 have first rows

(x1,x2,−x3,x3,−x2) ,

(x2,x4,−x3,−x3,−x4) ,

(x3,x2,x4,−x4,x2) ,

(−x4,x4,x4,x4,x4) ,

respectively, then the Bi satisfy equation (4.11).
Using similar methods it is possible to show that it is impossible to construct

a (1,3,6,8), (2,2,5,5), or (3,7,8) in order 20 by using four circulants. It can
also be shown that, while a (4,9) exists in order 14, it is impossible to construct
it from two circulants.

For ease of reference we summarize these results as:

Lemma 4.18 (Eades [52] ). It is not possible to find four circulant matrices
A1,A2,A3,A4 of order 5 with entries the commuting variables x1,x2,x3,x4,
and 0 which satisfy

4∑
i=1

AiA
�
i =

4∑
j=1

(
sjx2

j

)
I5 ,

where (s1,s2,s3,s4) is (1,4,4,9), (1,3,6,8), (2,2,5,5) or (3,7,8). Equivalently,
it is not possible to use four circulant matrices in the Goethals-Seidel array to
construct orthogonal designs of these types in order 20.

Lemma 4.19 (Eades). It is not possible to construct the orthogonal design
OD(14;4,9) using two circulant matrices.

Horton and Seberry [107] have undertaken a full search for OD(n;4,9) for
small n showing that, often, the necessary conditions for these orthogonal
designs are not sufficient. The theoretical reasons for this strange result is
undetermined.

Remark 4.12. It would be interesting to know if orthogonal designs of types
(1,4,4,9), (1,3,6,8), (2,2,5,5) or (3,7,8) are impossible to construct by any
method in order 20. If that were so, it would make the construction method
by circulants assume even greater importance. We shall not even hazard a
guess here, although experience should indicate that some of these designs will
be impossible to construct by any method. This question is still unresolved
after 30 years.
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Remark 4.13. Since there is a strong relationship between circulant and nega-
cyclic matrices with additive properties, it might appear fruitful to consider the
“sum” and “fill” approach to finding desirable negacyclic matrices. However
this IPV vector seems harder to constrain.

4.9 Some Arrays for Eight Circulants

Unfortunately, in trying to find designs of order n ≡ 0 (mod 8) constructed
using eight circulant matrices, we will not be as restricted as in Theorem
4.9 but have other problems. The difficulty of finding matrices to replace
the variables has led to the following lemma using part Williamson and part
Goethals-Seidel criteria. In §4.10 we will see that the Kharaghani array, which
uses amicable sets and circulant and/or negacyclic matrices to greatly increase
our ability to construct orthogonal designs in orders ≡ 0 (mod 8).

The Kharaghani array has proved the most powerful in finding orthogonal
designs of order 8. To understand why we first consider the proliferation of
arrays and conditions needed to find orthogonal designs of order divisible by
8 when the Kharaghani array is not used.

Lemma 4.20. Suppose X1,X2, . . . ,X8 are eight circulant (type 1) matrices
of order n satisfying

(1) Xi, 1 ≤ i ≤ 8, have entries from {0,±x1, . . . ,±xs}, and
(2)

∑8
i=1 XiX

�
i = fI.

Further suppose

(i) X1,X2, . . . ,X8 are all symmetric or all skew, or
(ii) X1 = X2 = · · · = Xi and Xi+1, . . . ,X8 are all symmetric or all skew,

1 ≤ i ≤ 8, or
(iii) X2 = X3 = X4 and X5, X6, X7, X8 are all symmetric (skew), or
(iv) X1X�

2 = X2X�
1 , X3 = X4 and X5, X6, X7, X8 are all symmetric, or

(v) X1, . . . ,Xi are all skew and Xi+1, . . . ,X8 all symmetric, or
(vi) X2, X3, X4 are all skew and X5, X6, X7, X8 all symmetric, or

(vii) XiX
�
i+4 = Xi+4X�

i , i = 1,2,3,4.

Then, with

f =
s∑

i=1
uix

2
i I ,

there exists an orthogonal design OD(8n;u1,u2, . . . ,us).

Proof. As in the proof of Theorem 4.9 the main difficulty is ensuring the
matrices Y1, . . . ,Y8 used to replace the commuting variables of the basic design
pairwise satisfy

YiY
�

j = YjY �
i .
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The results of the lemma may be obtained, recalling the results of Section
4.5, by using the following constructions:

(i) Use the circulant matrices to replace the variables in design 1.
(ii) Use a back circulant matrix X1R = XiR to replace the first i variables in

design 1.
(iii) Use design 2 which needs A,B,E,F,G,H all circulant, B repeated three

times, and E,F,G,H all symmetric.
(iv) Use design 4 for which X,A,B,C,D,E,F must all be circulant, B repeated

twice, C,D,E,F symmetric, and XA� = AX�.
(v) Use X1R,. . . the back circulant matrices X1R,. . . ,XiR to replace the first

i variables of design 1 and Xi+1, . . . ,X8 to replace the last 8-i variables.
(vi) Use design 5 with B = X2, C = X3, D = X4, E = X5, F = X6, G = X7,

H = X8, there is no symmetry restriction on A = X1.
(vii) Use design 6. �	

Table 4.7 Design 1⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A B C D E F G H
−B A D −C F −E −H G
−C −D A B G H −E −F
−D C −B A H −G F −E

−E −F −G −H A B C D
−F E −H G −B A −D C
−G H E −F −C D A −B
−H −G F E −D −C B A

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Table 4.8 Design 2⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AR B B B E F G H
−B AR B −B F −E −H G
−B −B AR B G H −E −F
−B B −B AR H −G F −E

−E −F −G −H AR −B� −B� −B�
−F E −H G B� AR B� −B�
−G H E −F B� −B� AR B�

H −G F E B� B� −B� AR

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Example 4.17. The following orthogonal designs in order 24 are constructed
by using this lemma. The reader may refer to the Table of the Appendix of
Orthogonal Designs in order 24 to find the first rows of the circulant matrices
which should be used as indicated:



4.9 Some Arrays for Eight Circulants 109

Table 4.9 Design 3⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AR B B B E F G H
−B AR B −B −F −E −H G
−B −B AR B G H −E −F
−B B −B AR H −G F −E

−E −F −G −H AR B� B� B�
−F E −H G −B� AR −B� B�
−G H E −F −B� B� AR −B�
−H −G F E −B� −B� B� AR

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Table 4.10 Design 4⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

XR AR B B C D E F
−AR XR B −B D −C −F E
−B −B XR AR E F −C −D
−B B −AR XR F −E D −C

−C −D −E −F XR AR B� B�
−D C −F E −AR XR −B� B�
−E F C −D −B� B� XR −AR
−F −E D C −B� −B� AR XR

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Table 4.11 Design 5⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AR B C D E F G H
−B AR D −C F −E −H G
−C −D AR B G H −E −F
−D C −B AR H −G F −E

−E −F −G −H AR B� C� D�
−F E −H G −B� AR −D� C�
−G H E −F −C� D� AR −B�
−H −G F E −D� −C� B� AR

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Table 4.12 Design 6⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A BR CR DR E FR GR HR
−BR A D�R −C�R FR −E −H�R G�R
−CR −D�R A B�R GR H�R −E −F �R
−DR C�R −B�R A HR −G�R F �R −E

−E −FR −GR −HR A BR CR DR
−FR E −H�R G�R −BR A −D�R C�R
−GR H�R E −F �R −CR D�R A −B�R
−HR −G�R F �R E −DR −C�R B�R A

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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for OD(24;1,1,1,1,6,6) use part (i);
for OD(24;1,1,1,1,2,10) use part (ii);
for OD(24;1,1,2,2,5,8) use part (iii);
for OD(24;1,1,1,3,4,9) use part (iv);
for OD(24;1,2,2,8,11) use part (v);
for OD(24;1,1,4,4,5) use part (vi);
for OD(24;1,2,5,5,8) use part (vii);
for OD(24;1,2,2,4,13) use part (viii).

Remark 4.14. The conditions of Lemma 4.20 are still quite difficult to satisfy.
We first consider some constraints on using circulant matrices.

4.10 Amicable Sets and Kharaghani Arrays

Kharaghani [120] has given a most useful array to be used to give orthogonal
designs constructed from circulant and most excitingly nega-cyclic matrices
in orders divisible by 8.

Following Kharaghani, a set {A1,A2, . . . ,A2n} of square real matrices is
said to be amicable if

n∑
i=1

(
Aσ(2i−1)A

�
σ(2i)−Aσ(2i)A

�
σ(2i−1)

)
= 0 (4.16)

for some permutation σ of the set {1,2, . . . ,2n}. For simplicity, we will always
take σ(i) = i unless otherwise specified. So

n∑
i=1

(
A2i−1A�

2i−A2iA
�
2i−1

)
= 0 . (4.17)

Clearly a set of mutually amicable matrices is amicable, but the converse is
not true in general. Throughout this section Rk denotes the back diagonal
identity matrix of order k.

A set of matrices {B1,B2, . . . ,Bn} of order m with entries in {0,±x1,±x2,
. . . ,±xu} is said to satisfy an additive property of type (s1,s2, . . . ,su) if

n∑
i=1

BiB
�
i =

u∑
i=1

(
six

2
i

)
Im. (4.18)

Let {Ai}8
i=1 be an amicable set of circulant matrices (or group devel-

oped or type 1) of type (s1,s2, . . . ,su) and order t. We denote these by 8−
AS(t;s1,s2,s3,s4,s5,s6,s7,s8;Zt) (or 8−AS(t;s1,s2,s3,s4,s5,s6,s7,s8;G) for
group developed or type 1). In all cases, the group G of the matrix is such
that the extension by Seberry and Whiteman [187] of the group from circulant
to type 1 allows the same extension to R. Then the Kharaghani array [120]
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H =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1 A2 A4Rn A3Rn A6Rn A5Rn A8Rn A7Rn

−A2 A1 A3Rn −A4Rn A5Rn −A6Rn A7Rn −A8Rn

−A4Rn −A3Rn A1 A2 −A�
8 Rn A�

7 Rn A�
6 Rn −A�

5 Rn

−A3Rn A4Rn −A2 A1 A�
7 Rn A�

8 Rn −A�
5 Rn −A�

6 Rn

−A6Rn −A5Rn A�
8 Rn −A�

7 Rn A1 A2 −A�
4 Rn A�

3 Rn

−A5Rn A6Rn −A�
7 Rn −A�

8 Rn −A2 A1 A�
3 Rn A�

4 Rn

−A8Rn −A7Rn −A�
6 Rn A�

5 Rn A�
4 Rn −A�

3 Rn A1 A2
−A7Rn A8Rn A�

5 Rn A�
6 Rn −A�

3 Rn −A�
4 Rn −A2 A1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
is an OD(8t;s1,s2, . . . ,su).

The Kharaghani array has been used in a number of papers [67, 68, 72, 100,
105,108,120,126] among others to obtain infinitely many families of orthogonal
designs. Research has yet to be initiated to explore the algebraic restrictions
imposed an amicable set by the required constraints.

Koukouvinos and Seberry [137] have extended the construction of Holzmann
and Kharaghani [101] to find infinite families of Kharaghani type orthogonal
designs, and in [136] orthogonal designs OD(8t;k,k,k,k,k,k) in 6 variables
for odd t.

4.11 Construction using 8 Disjoint Matrices

First we give the following definition.

Definition 4.15. Define L-matrices, L1,L2, . . . ,Ln to be n circulant (or type
1) (0,±1) matrices of order � satisfying

(i) Li ∗Lj = 0, i �= j,

(ii)
n∑

i=1
LiL

�
i = kI�,

where ∗ denotes the Hadamard product. We say k is the weight of these
L-matrices.

From Definition 4.15 we observe that T -matrices of order t (see Seberry
and Yamada [188] for more details) are L-matrices with � = k = t and n = 4.

Then we have.

Theorem 4.11. Suppose L1,L2, . . . ,Ln are n circulant (or type 1) L-matrices
of order s and weight k. Some of the L-matrices may be zero.

Further suppose A = (aij), B = (bij) are amicable orthogonal designs of type
AOD(n;p1,p2, . . . ,pu;q1, q2, . . . , qv) on the variables {0,±x1,±x2, . . . , ±xu},
and {0,±y1,±y2, . . . ,±yv}, respectively. Then there exists an amicable set of
matrices {A2n

i=1} which satisfy
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2n∑
i=1

AiA
�
i =

(
u∑

i=1
pix

2
i +

v∑
i=1

qiy
2
j

)
n∑

i=1
LiL

�
i =

(
u∑

i=1
pix

2
i +

v∑
i=1

qiy
2
j

)
kIs,

(4.19)
and also (4.16).

Hence these {Ai}2n
i=1 of order s are an amicable set satisfying the additive

property for (kp1,kp2, . . . ,kpu,kq1,kq2, . . . ,kqv).

Proof. Use

A1 = a11L1 +a12L2 + · · ·+a1nLn, A2 = b11L1 + b12L2 + · · ·+ b1nLn

A3 = a21L1 +a22L2 + · · ·+a2nLn, A4 = b21L1 + b22L2 + · · ·+ b2nLn

A5 = a31L1 +a32L2 + · · ·+a3nLn, A6 = b31L1 + b32L2 + · · ·+ b3nLn
...

...
A2n−1 = an1L1 +an2L2 + · · ·+annLn, A2n = bn1L1 + bn2L2 + · · ·+ bnnLn

First we note that A and B being amicable ensures that the (x,y) entry cxy

of C = AB� is

cxy =
n∑

j=1
axjbyj =

n∑
j=1

ayjbxj = cyx. (4.20)

We also note that if A and B are amicable then A� and B� are also amicable
so the (x,y) entry dxy of D = A�B is

dxy =
n∑

j=1
ajxbjy =

n∑
j=1

ajybjx = dyx. (4.21)

First let us first multiply out A1A�
2 , where we will use (· · ·L�L�

m)�m to
denote the term in L�L�

m. Then

A1A�
2 =

n∑
j=1

a1jb1jLjL�
j + · · ·+((a1�b1m)L�L�

m)�m + · · · . (4.22)

Similarly

A2A�
1 =

n∑
j=1

a1jb1jLjL�
j + · · ·+((b1�a1m)L�L�

m)�m + · · · . (4.23)

Hence A1A�
2 −A2A�

1 will have no terms in LjL�
j , j = 1,2, · · · ,2n. Thus

the typical term is given by

A1A�
2 −A2A�

1 = · · ·+((a1�b1m− b1�a1m)L�L�
m)�m + · · · . (4.24)
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We now formally multiply out the expression on the left hand side of (4.16),
which gives the following terms in L�L�

m

n∑
i=1

(
A2i−1A�

2i − A2iA
�
2i−1

)
=

= · · · +

(
(

n∑
j=1

aj�bjm −
n∑

i=1

bi�aim)L�L�
m

)
�m

+ · · ·

= · · · +

(
(

n∑
j=1

ajmbj� −
n∑

i=1

aimbi�)L�L�
m

)
�m

+ · · ·

· · · + · · · using (4.21)
= 0.

This is formally zero and we have (4.17). These matrices also satisfy (4.18)
and (4.19) by virtue of A and B being (amicable) orthogonal designs. �	
Remark 4.15. Although the theorem is true for any pair of amicable orthogonal
designs the arrays needed to exploit the full generality of the theorem are
only known, at present, to exist for n = 2 or 4.

The maximum number of variables in amicable orthogonal designs of
orders 2 and 4 are given in Tables 5.8 and 5.9. A detailed study of amicable
orthogonal designs in order 8 is given by Deborah Street in [202, p125–134]
and [203, p26–29]. Thus we have:

Corollary 4.13. Suppose there exist AOD(2�;p1,p2;q1, q2). Further suppose
there exist two circulant (or type 1) L-matrices of order � and weight k. Then
there exists an OD(4�;kp1,kp2,kq1,kq2).

Proof. We use the L-matrices in the theorem to form an amicable set satisfying
the required additive property which is then used in the Goethals-Seidel array
to obtain the result. �	
Corollary 4.14. Suppose there exist AOD(4�;p1,p2,p3;q1, q2, q3). Further
suppose there exist four circulant (or type 1) L-matrices of order � and weight
k. Then there exists an OD(8�;kp1,kp2,kp3,kq1,kq2,kq3).

Proof. We use the L-matrices in the theorem to form an amicable set satisfying
the additive property for (kp1,kp2,kp3,kq1,kq2,kq3). These are then used in
the Kharaghani array to obtain the result. �	
Example 4.18 (n = 2). Let A and B be the AOD(2;1,1;1,1) given by[

a b
−b a

] [
c d
d −c

]
.

Let L1 and L2 be two circulant (or type 1) L-matrices of order � and weight
k. Construct
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A1 = aL1 + bL2 , A2 = cL1 +dL2
A3 = −bL1 +aL2 , A4 = dL1− cL2 .

(4.25)

Then
4∑

i=1
AiA

�
i = (a2 + b2 + c2 +d2)

2∑
i=1

LiL
�
i = k(a2 + b2 + c2 +d2)I� (4.26)

and
A1A�

2 −A2A�
1 +A3A�

4 −A4A�
3 = 0 . (4.27)

Hence this set of matrices {A1,A2, . . . ,A4} of order � with entries in
{0,±a,±b,±c,±d} is an amicable set satisfying the additive property for
(1,1,1,1).

These can be used in a variant of the Goethals-Seidel array

G =

⎛⎜⎜⎝
A1 A2 A3R A4R

−A2 A1 −A4R A3R
−A3R A4R A1 −A2
−A4R −A3R A2 A1

⎞⎟⎟⎠
where R is the back-diagonal identity matrix, to obtain an OD(4�;k,k,k,k).

�	
Example 4.19 (n = 4). Let A and B be the AOD(4;1,1,1;1,1,1) given by⎡⎢⎢⎣

a b c 0
−b a 0 −c
−c 0 a b

0 c −b a

⎤⎥⎥⎦
⎡⎢⎢⎣

d e f 0
e −d 0 −f
f 0 −d e
0 −f e d

⎤⎥⎥⎦ .

Let L1, L2, · · · ,L4 be four circulant (or type 1) L-matrices of order � and
weight k. Construct

A1 = aL1 +bL2 +cL3 , A2 = dL1 +eL2 +fL3 ,
A3 = −bL1 +aL2 −cL4 , A4 = eL1 −dL2 −fL4 ,
A5 = −cL1 +aL3 +bL4 , A6 = fL1 −dL3 +eL4 ,
A7 = +cL2 −bL3 +aL4 , A8 = −fL2 +eL3 +dL4 .

(4.28)
Then

8∑
i=1

AiA
�
i =

(
a2 + b2 + c2 +d2 +e2 +f2) 4∑

i=1
LiL

�
i

= k
(
a2 + b2 + c2 +d2 +e2 +f2)

I�, (4.29)

and
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A1A�
2 −A2A�

1 +A3A�
4 −A4A�

3 +A5A�
6 −A6A�

5 +A7A�
8 −A8A�

7 = 0 .
(4.30)

Hence this set of matrices {A1,A2, . . . ,A8} of order � with entries in {0,±a,±b,
± c,±d,±e,±f} is an amicable set satisfying the additive property for
(1,1,1,1,1,1).

They can be used in the Kharaghani array to obtain OD(8�;k,k,k,k,k,k).

Example 4.20 (n = 4). Let A and B be the AOD(4;1,1,2;1,1,2) given by⎡⎢⎢⎣
a b c c

−b a c −c
c c −a −b
c −c b −a

⎤⎥⎥⎦
⎡⎢⎢⎣

d e f f
e −d f −f

−f −f e d
−f f d −e

⎤⎥⎥⎦ .

Let L1, L2, · · · ,L4 four circulant (or type 1) L-matrices of order � and weight
k. Construct

A1 = aL1 +bL2 +cL3 +cL4 , A2 = dL1 +eL2 +fL3 +fL4 ,
A3 = −bL1 +aL2 +cL3 −cL4 , A4 = eL1 −dL2 +fL3 −fL4 ,
A5 = cL1 +cL2 −aL3 −bL4 , A6 = −fL1 −fL2 +eL3 +dL4 ,
A7 = cL1 −cL2 +bL3 −aL4 , A8 = −fL1 +fL2 +dL3 −eL4 .

(4.31)
Then

8∑
i=1

AiA
�
i = (a2 + b2 +2c2 +d2 +e2 +2f2)

4∑
i=1

LiL
�
i

= k(a2 + b2 +2c2 +d2 +e2 +2f2)I� , (4.32)

and

A1A�
2 −A2A�

1 +A3A�
4 −A4A�

3 +A5A�
6 −A6A�

5 +A7A�
8 −A8A�

7 = 0 .
(4.33)

Hence this set of matrices {A1,A2, . . . ,A8} of order � with entries in {0,±a,±b,
± c,±d,±e,±f} is an amicable set satisfying the additive property for
(1,1,2,1,1,2). These can be used in the Kharaghani array to obtain an
OD(8�;k,k,k,k,2k,2k).

4.11.1 Hadamard Matrices

Before going to our next result, we first note:

Lemma 4.21. If there is AOD(m : (1,m−1); (m)) and OD(h;1,h−1), then

Then Theorem 8.7 of Wallis [231, p.368] can be restated as:

by Wolfe’s theorem (7.9) there is an OD(mh;1,m−1,m(h−1)).
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Theorem 4.12 (Wallis). Suppose there exists OD(mh;1,m−1,m(h−1)).

this design. Then there exists an Hadamard matrix of order mhn.

Proof. Obvious. �	
Corollary 4.15. Let n be the order of any Hadamard matrix H. Suppose there
exists an orthogonal design D of type OD(n(m−1) : (1,m−1,nm−n−m)).
Then there exists an Hadamard matrix of order n(n−1)(m−1).

Proof. We write H as [
1 e

−e� P

]
where e is the 1× (n−1) matrix of 1’s. Then

PJ = J, PP � = nI −J.

The result is obtained by replacing the variables of D by P , J , P , respectively.
�	

Many corollaries can be made by finding “suitable” matrices, but we will
not proceed further with this here.

We will show in Chapter 9 that OD(2t : (1,m−1,nm−n−m)) exist in
every power of 2, 2t = (m−1)n. Hence we have a new result.

Corollary 4.16. With t, s any non-negative integers, there exists a Hadamard
matrix of order 2s(2s−1)(2t−1).

We note the following result:

Theorem 4.13. Let k > 1 be the order of an Hadamard matrix H, and n
be the order of a symmetric conference matrix C. Further, suppose there
exist amicable orthogonal designs M , N of types AOD(m : (1,m−1); (m

2 , m
2 )).

Then there exists an OD(nmk : k,(m−1)k,(n−1)mk
2 ,(n−1)nk

2 ).

Proof. let P =
[0 −

1 0
]× I k

2
. Then

R = C ×H ×N + I ×PH ×M

is the required orthogonal design. �	
Hence we have generalized a theorem of Wallis [231, p.375, Theorem 8.24]:

Corollary 4.17. Suppose H, C, M , N are as in the theorem, and suppose
there are “suitable” matrices of order p. Then there exists an Hadamard matrix
of order nmkp.

Now we note that if m is of the form
∏

i 2t(pri
i +1), where pri

i ≡ 3 (mod 4)
is a prime power, then AOD(m : (1,m−1);(m

2 , m
2 )) exist. Thus we have:

Suppose there exist “suitable” matrices of order n to replace the variables of
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Corollary 4.18. Suppose k > 1 is the order of an Hadamard matrix and n
the order of a symmetric conference matrix. Then there exists OD(k, (2m−
1)k, (n−1)mk, (n−1)mk) where m = 2t

i

∏
(pri

i +1),pri
i ≡ 3 (mod 4) is a prime

power, and t > 0 is an integer.

4.12 Baumert-Hall Arrays

In 1933 Paley wrote a most important paper on the construction of Hadamard
matrices which he called ‘orthogonal matrices’ [160]. At the same time J.A.
Todd [211] realised that these matrices gave symmetric balanced incomplete
block designs–of great interest in the design and analysis of experiments for
agriculture and medicine.

Thus Paley opened the way for R.C. Bose’s [26] fundamental and path-
finding use of Galois fields in the construction of balanced incomplete block
designs–a most valuable contribution to applied statistics.

Yet it was not until Williamson’s 1944 [244] and 1947 [245] papers that
more Hadamard matrices were found. Williamson used what we would now
call orthogonal designs OD(n;1,n−1) and OD(n;2,n−2).

Paley listed the orders less than 200 for which Hadamard matrices were
not known, viz., 92, 116, 148, 156, 172, 184, and 188. Williamson suggested
using what we will call the Williamson Array⎡⎢⎢⎣

A B C D
−B A D −C
−C −D A B
−D C −B A

⎤⎥⎥⎦
to find Hadamard matrices and in fact obtained the matrices of orders 148
and 172 by finding suitable matrices (using the theory we now call cyclotomy;
see Storer [200]) to replace the variables of the array. Thus we define

Definition 4.16. Eight circulant (1,−1) matrices X1, . . . ,X8 of order n which
satisfy

8∑
i=1

XiX
�
i = 8nI, XiX

�
j = XjX�

i

will be called eight Williamson matrices (cf Williamson matrices: Theorem
4.4 and proof). Williamson matrices are four circulant symmetric matrices
x1, . . . ,xu satisfying

4∑
i=1

XiX
�
i = 4nI .
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Baumert, Golomb and Hall [17] found Williamson matrices of order 23
giving the Hadamard matrices of orders 92 and 184. We can appreciate
their excitement when on the night of September 27, 1961, after an hour of
computer calculation, the output arrived. In fact, there turned out to be one
and only one example of Williamson matrices of order 23.

Later, Baumert [15, 18] was to find Williamson matrices giving the
Hadamard matrix of order 116. We shall give the Hadamard matrix of order
188 in Proposition 7.2.

The remainder of this section is devoted to the exciting results that have
come from Baumert and Hall’s search for the Hadamard matrix of order 156.
But first a definition.

Definition 4.17. An orthogonal design OD(4t; t, t, t, t) will be called a
Baumert-Hall array of order t.

Now Baumert and Hall realised that since Williamson matrices of order
13 were known, if a Baumert-Hall array of order 3 could be found, then the
Hadamard matrix of order 156 would be found. In fact, they realised:

Theorem 4.14. If a Baumert-Hall array of order t and Williamson matrices
of order n exist, then there exists an Hadamard matrix of order 4nt; equiva-
lently, if there exists an orthogonal design OD(4nt; t, t, t, t) and Williamson
matrices of order n, then there exists an Hadamard matrix of order 4nt.

Proof. Replace the variables of the Baumert-Hall array by the Williamson
matrices. �	

In 1965 Baumert and Hall [14] published the first Baumert-Hall array of
order 3 (Table 4.13):

Table 4.13 Baumert-Hall array–order 3⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A A A B −B C −C −D B C −D −D
A −A B −A −B −D D −C −B −D −C −C
A −B −A A −D D −B B −C −D C −C
B A −A −A D D D C C −B −B −C

B −D D D A A A C −C B −C B
B C −D D A −A C −A −D C B −B
D −C B −B A −C −A A B C D −D

−C −D −C −D C A −A −A −D B −B −B

D −C −B −B −B C C −D A A A D
−D −B C C C B B −D A −A D −A

C −B −C C D −B −D −B A −D −A A
−C −D −D C −C −B B B D A −A −A

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Many attempts were made to generalise this array, but none were successful
until in 1971 L.R. Welch [243] found a Baumert-Hall array of order 5 (Table
4.14):
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⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣−D
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⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦
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For future reference we define:

Definition 4.18. A Baumert-Hall-Welch array of order t is a Baumert-Hall
array of order t constructed from sixteen circulant or type 1 matrices.

The circulant structure of Welch’s array gave the clue to generalising
Baumert-Hall arrays. First we consider:

Definition 4.19. Four circulant (type 1) (0,1,−1) matrices Xi, i = 1,2,3,4,
of order n which are non-zero for each of the n2 entries for exactly one i, i.e.,
Xi ∗Xj = 0 for i �= j, and which satisfy

4∑
i=1

XiX
�
i = nI

will be called T -matrices of order n. These were first used by Cooper-Wallis [32].

A type 1 matrix has constant row (and column) sum; so:

Lemma 4.22. Let Xi, i = 1, . . . ,4, be T -matrices with row sum (and column
sum) xi, respectively. Then

4∑
i=1

x2
i = n.

Proof. XiJ = xiJ ; so considering
∑4

i=1 XiX
�
i J = nJ gives the result. �	

The following result, in a slightly different form, was independently discov-
ered by R.J. Turyn. Turyn use what are called T -sequences later in this chapter.
T -sequences are the aperiodic counter part of T -matrices. The existence of
T -sequences implies the existence of T -matrices.

Theorem 4.15 (Cooper-Wallis [32]). Suppose there exist T -matrices Xi,
i = 1, . . . ,4, of order n. Let a, b, c, d be commuting variables. Then

A = aX1 + bX2 + cX3 +dX4

B = −bX1 +aX2 +dX3− cX4

C = −cX1−dX2 +aX3 + bX4

D = −dX1 + cX − bX3 +aX4

can be used in the Goethals-Seidel (or Wallis-Whiteman [241]) array to obtain
a Baumert-Hall array of order n; equivalently, if there exist T -matrices of
order n, there exists an orthogonal design OD(4n;n,n,n,n).

Proof. By straightforward verification. �	
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Example 4.21. Let

X1 =

⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦ , X2 =

⎡⎣0 1 0
0 0 1
1 0 0

⎤⎦ , X3 =

⎡⎣0 0 1
1 0 0
0 1 0

⎤⎦ , X4 = 0 .

Then X1,X2,X3,X4 are T -matrices of order 3, and the Baumert-Hall array
of order 3 is in Table 4.15.

Table 4.15 Baumert-Hall array–order 3

a b c −b a d −c −d a −d c −b
c a b a d −b −d a −c c −b −d
b c a d −b a a −c −d −b −d c

b −a −d a b c −d −b c c −a d
−a −d b c a b −b c −d −a d c
−d b −a b c a c −d −b d c −a

c d −a d b −c a b c −b d a
d −a c b −c d c a b d a −b

−a c d −c d b b c a a −b d

d −c b −c a −d b −d −a a b c
−c b d a −d −c −d −a b c a b

b d −c −d −c a −a b −d b c a

We will not give the proofs here which can be found in Wallis [231, p.
360] and Hunt and Wallis [110] but will just quote the results given there.
More results on Baumert-Hall arrays are given in Section 7.1 after some new
concepts have been introduced. In Section 7.1 we show how cyclotomy may
be used in constructing these arrays, including the previously unpublished
array of Hunt of order 61.

Lemma 4.23. There exist Baumert-Hall arrays of order t, t ∈ X, X = {x : x
is an odd integer, 0 ≤ x ≤ 25,31,37,41,61}.

Corollary 4.19. There exist Hadamard matrices of order 4tq where t ∈ X,
X given in the previous lemma, and q is the order of Williamson matrices.
In particular, there exist Hadamard matrices of order 4tq, q = 1

2 (p + 1) or
1
2p(p+1) where p ≡ 1 (mod 4) is a prime power.

Proof. The required matrices are given in Corollaries 4.11 and 4.12. �	
The long held conjecture that the Williamson method would give results for

all orders of Hadamard matrices was first disproved for order 35 by Ðoković
in 1993 [42]. Schmidt’s review [176] of Holzmann, Kharaghani and Tayfeh-
Rezaie [106] points out that there are no Williamson matrices of order 47, 53
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or 59. In their startling paper, Holzmann, Kharaghani and Tayfeh-Rezaie [106]
indicate there are no Williamson matrices for four small orders. Table 4.16
summarizes the number of Williamson matrices of order 1–59.

Table 4.16 Number of Williamson Matrices of Order 1–59 a

Order: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Number: 1 1 1 2 3 1 4 4 4 6 7 1 10 6 1
Order: 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59
Number: 2 5 0 4 1 1 2 1 0 1 2 0 1 1 0

a Holzmann, Kharaghani and Tayfeh-Rezaie [106, p347] c© Springer

A most important theorem which shows how Baumert-Hall-Welch arrays
can be used is now given. To date, the only such arrays known are of orders
5 and 9. We note that in these BHW theorems circulant or type 1 can be
replaced by negacyclic matrices.

Theorem 4.16 (Turyn [220]). Suppose there is a Baumert-Hall-Welch ar-
ray BHW of order s constructed of sixteen circulant (or type 1) s×s blocks.
Further suppose there are T -matrices of order t. Then there is a Baumert-Hall
array of order st.

Proof. Since BHW is constructed of sixteen circulant (or type 1) blocks, we
may write BHW = (Nij), i, j = 1,2,3,4, where each Nij is circulant (or type
1).

Since (BHW )(BHW )� = s(a2 + b2 + c2 + d2)I4s where a,b,c,d are the
commuting variables, we have

Ni1N�
j1 +Ni2N�

j2 +Ni3N�
j3 +Ni4N�

j4 =

⎧⎪⎨⎪⎩
s(a2 + b2 + c2 +d2)Is , i = j ,

i = 1,2,3,4
0 , i �= j .

Suppose the T -matrices are T1,T2,T3,T4. Then form the matrices

A = T1×N11 +T2×N21 +T3×N31 +T4×N41

B = T1×N12 +T2×N22 +T3×N32 +T4×N42

C = T1×N13 +T2×N23 +T3×N33 +T4×N43

D = T1×N14 +T2×N24 +T3×N34 +T4×N44 ,

Now
AA� +BB� +CC� +DD� = st(a2 + b2 + c2 +d2)Ist ,

and since A,B,C,D are type 1, they can be used in the Wallis-Whiteman
generalisation of the Goethals-Seidel array to obtain the desired result. (See
also Lemma 4.7) �	
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Since the Baumert-Hall array of order 5 given by Welch is constructed of
sixteen circulant blocks, as is the Ono-Sawade-Yamamoto array of order 9
given to us by K. Yamamoto [188, p. 449].
Corollary 4.20. Suppose there are T -matrices of order t. Then there is a
Baumert-Hall array of order 5t and 9t; equivalently, there is an orthogonal de-
sign OD(20t;5t,5t,5t,5t) and OD(36t;9t,9t,9t,9t). As we have seen, Baumert
and Hall’s array of order 3, discovered to obtain the Hadamard matrix of
order 156, has led to one of the most powerful constructions for Hadamard
matrices. In fact, to prove the Hadamard conjecture it would be sufficient to
prove:
Conjecture 4.3. There exists a Baumert-Hall array of order t for every positive
integer t, or equivalently, there exists an orthogonal design OD(4t; t, t, t, t) for
every positive integer t.

4.13 Plotkin Arrays

Following the exciting results on Baumert-Hall arrays, which if they all exist,
would answer the Hadamard conjecture in the affirmative, it became clear
that similar designs in order 8n would give results of great import. Alas, as
we shall now see, such designs of order 8n, n odd, are very hard to find.

These classes of orthogonal designs are of great interest and worthy of
further study.
Definition 4.20. An orthogonal design OD(8t; t, t, t, t, t, t, t, t) will be called
a Plotkin array.

Remark. Matrices with elements {1,−1} which can be used in Plotkin
arrays to give Hadamard matrices (eight Williamson matrices) have been
found by J. Wallis [236], and of course Williamson matrices (each used twice)
will also suffice. Still the problem of finding suitable matrices to replace
the variables in designs to give Hadamard matrices or weighing matrices is
largely untouched but displaced by the use of the Kharaghani array [120] and
amicable sets.

We first see that if an Hadamard matrix exists, then Plotkin arrays exist
in four times the order.
Theorem 4.17 (Plotkin [161]). Suppose there exists an Hadamard matrix
of order 2t. Then there exists an orthogonal design OD(8t; t, t, t, t, t, t, t, t).
Proof. Let H be an Hadamard matrix of order 2t. Let

S = 1
2

(
I −I
I I

)
H , T = 1

2

(
I I
−I I

)
H ,

U = 1
2

(
I −I
−I −I

)
H , V = 1

2

(
I I
I −I

)
H .
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Then define

H2t(a,b) = (S×a)+(T × b) ,

H4t(a,b,c,d) =
[

H2t(a,b) H2t(c,d)
H2t(−c,d) H2t(a,−b)

]
,

and

B4t(a,b,c,d) =
[

S×a+T × b U × c+V ×d
U × (−c)+V × (−d) S×a+T × b

]
.

Then

H8t(x1,x2,x3,x4,x5,x6,x7,x8) =
[
H4t(x1,x2,x3,x4) B4t(x5,x6,x7,x8)
B4t(x5,x6,x7,x8) −H4t(−x1,x2,x3,x4)

]
is the required Plotkin array. �	

The 8×8 matrix of Theorem 4.1, which is unique under the equivalence
operations,
(i) multiply any row or column by -1,
(ii) interchange any pair of rows or columns,
(iii) replace any variable by its negative throughout,
is a design of type (1,1,1,1,1,1,1,1). Plotkin found that the following matrix is
equivalent under (i), (ii) and (iii) to the Baumert-Hall array of the previous
section.

A(x,y,z,w) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y x x x −z z w y −w w z −y
−x y x −x w −w z −y −z z −w −y
−x −x y x w −y −y w z z w −z
−x x −x y −w −w −z w −z −y −y −z

−y −y −z −w z x x x −w −w z −y
−w −w −z y −x z x −x y y −z −w

w −w w −y −x −x z x y −z −y −z
−w −z w −z −x x −x z −y y −y w

−y y −z −w −z −z w y w x x x
z −z −y −w −y −y −w −z −x w x −x

−z −z y z −y −w y −w −x −x w x
z −w −w z y −y y z −x x −x w

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.34)

Also, the next matrix is a Baumert-Hall array of order 12, but is not equivalent
to (4.34).



126 4 Orthogonal Designs Constructed via Plug-in Matrices

B(x,y,z,w) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y x x x −w w z y −z z w −y
−x y x −x −z z −w −y w −w z −y
−x −x y x −y −w y −w −z −z w z
−x x −x y w w −z −w −y z y z

−w −w −z −y z x x x −y −y z −w
y y −z −w −x z x −x −w −w −z y

−w w −w −y −x −x z x z y y z
z −w −w z −x x −x z y −y y w

z −z y −w y y w −z w x x x
y −y −z −w −z −z −w −y −x w x −x
z z y −z w −y −y w −x −x w x

−w −z w −z −v v −v z −x x −x w

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.35)

Then we have

Lemma 4.24. There is a Plotkin array of order 24, i.e. , an orthogonal design
OD(24;3,3,3,3,3,3,3,3).

Proof. [
A(x1,x2,x3,x4) B(x5,x6,x7,x8)

B(−x5,x6,x7,x8) −A(−x1,x2,x3,x4)

]
is the required design. �	

These results lead to:

Conjecture 4.4 (Plotkin [161]). There exist Plotkin arrays in every order 8n,
n a positive integer.

4.13.1 Kharaghani’s Plotkin arrays

Until recently, only the original for n = 3 had been constructed in the ensuing
twenty eight years. Holzmann and Kharaghani [101] using a new method
constructed many new Plotkin ODs of order 24 and two new Plotkin ODs of
order 40 and 56.

4.14 More Specific Constructions using Circulant
Matrices

The constructions of this section will be used extensively later to discuss
existence of orthogonal designs.
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In any of the following constructions, similar results may be obtained
by replacing the words circulant and back circulant by type 1 and type 2,
respectively (see Section 4.2).

Construction 4.1. Suppose there is a W (n,k) constructed from two circulant
matrices M , N of order n

2 with the property that M ∗N = 0 (∗ denotes
Hadamard product). Then A = x1M +x2N , B = x1N −x2M may be used in[

A BR
−BR A

]
to obtain an OD(n;k,k) on x1, x2.

Proof. A straightforward verification. One need only observe that since M ,
N are circulant, MR, NR are back circulant, and if X is circulant and Y is
back circulant, then XY � = Y X�. �	
Example 4.22. Write T for the circulant matrix of order n whose first row is
nonzero only in the second column, the entry there being 1. Now

M = T +T 2 and N = T 3−T 4

may be used to give a W (2n,4) constructed from two circulants, (M ∗N = 0).
Then, using the construction A = x1M + x2N , B = x1N − x2M gives an
OD(2n;4,4) constructed from circulants.

Construction 4.2. Suppose there exist W (n,ki), i = 1,2, constructed from
circulant matrices Mi, Ni, i = 1,2, of order n

2 where M1 ∗M2 = N1 ∗N2 = 0
and M1M�

2 +M2M�
1 = N1N�

2 +N2N�
1 = 0; then

A = x1M1 +x2M2, B = x1N1 +x2N2

may be used as two circulants to give an OD(n;k1,k2) on the variables x1,
x2.

Example 4.23. With T as in the previous example and n = 2k +1, let

M1 = T k−1−T k+2 N1 = T k−1 +T k+2

M2 = T k +T k+1 N2 = T k −T k+1

which satisfy the conditions of the construction. Then

A = x1M1 +x2M2 B = x1N1 +x2N2

give an OD(n;4,4).

Construction 4.3. Suppose there exist orthogonal designs X1, X2 of type
OD(2n;ui1,ui2, . . . ,uimi) on the variables xi1,xi2, . . . ,xim, i = 1,2, each of
which is constructed using two circulants.

Then there exists an OD(4n;u11,u12, . . .u1m1 , u21,u22, . . . ,u2m2) on the
variables x11,x12,x1m1 ,x21,x22, . . . ,x2m2 .
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Proof. Let Ai, Bi be the matrices used to form the orthogonal design Xi.
Then use A1, B1, A2, B2 in the Goethals-Seidel array to get the result. �	
Corollary 4.21. Suppose there exist W (n,ki), i = 1,2, constructed from circu-
lant matrices Mi, Ni, i = 1,2, of order n

2 . Then there exists an OD(2n;k1,k2),
and a W (2n,k1 +k2).

Proof. Set A = x1M1, B = x1N1, C = x2M2, D = x2N2 in the Goethals-Seidel
array. �	
Example 4.24. The circulant matrices A(a), B(a) ,with first rows

a a a ā 0n−4 , a a ā a 0n−4 , respectively,

give a W (2n,8) constructed from circulants for every r ≥ 4, and the circulant
matrices C(c,d), D(d) with first rows

d c d̄ 0m−3 , d 0 d 0m−3 , respectively,

give an OD(2m;1,4) in every order, m ≥ 3, where 0t is a sequence of t zeros.
Hence

{A(a), B(a), A(b), B(b)}
{C(c,d), D(d), C(a,b), D(b)}
{A(a), B(a), C(c,d), D(d)}

can be used as four circulant matrices in the Goethals-Seidel array to give
OD(4s;8,8), OD(4s;1,1,4,4) and OD(4s;1,4,8), s ≥ 4 respectively.

The next theorem indicates that we may be able to prove theorems of
the type, “If (s1, . . . ,sr) satisfies all the existence criteria for an orthogonal
design, then (s1, . . . ,sr) is the type of an orthogonal design in some large
enough order tn and every order un, u ≥ t.” We will give, in a later chapter,
the results that Eades and others have found in this direction.

Theorem 4.18. Suppose (s1,s2,s3,s4) satisfies Wolfe’s necessary conditions
for the existence of orthogonal designs in order n = 4 (mod 8) given by Propo-
sition 3.23:

(i) If s1 +s2 +s3 +s4 ≥ 12, there is an OD(4t; s1,s2,s3,s4) for all t ≥ 3.
(ii) If s1 +s2 +s3 +s4 ≥ 16, there is an OD(4t; s1,s2,s3,s4) for all t≥ 4, with

the possible exception of (2,2,5,5) which exists in order 4t, t ≥ 4, t �= 5.
(iii) If 16 < s1 + s2 + s3 + s4 ≤ 28, the Table 4.17 gives the smallest N such

that (s1,s2,s3,s4) is the type of an orthogonal design which exists for all
4t > N .

Proof. See pages 168–170 of Orthogonal Designs (1st edition, 1979). �	
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Table 4.17 N is the order such that the indicated designs exist in every order
4t ≥ N

Group 12 ≤ 16 a Group 16 ≤ 20 b Group 20 ≤ 24 c Group 24 ≤ 28 d

N N N N
(1,1,4,9) 16 (1,1,1,16) 24 (1,1,2,18) 48 (1,1,1,25) 56
(1,2,2,9) 16 (1,1,8,8) 20 (1,1,4,16) 24 (1,1,5,20) 144
(1,2,4,8) 16 (1,1,9,9) 20 (1,1,10,10) 40 (1,1,8,18) 56
(1,4,4,4) 16 (1,2,8,9) 40 (1,2,2,16) 48 (1,1,9,16) 312
(1,4,5,5) 16 (1,3,6,8) 48 (1,2,6,12) 24 (1,1,13,13) 48
(2,2,2,8) 16 (1,4,4,9) 48 (1,4,8,8) 32 (1,2,4,18) 80
(2,2,5,5) 24 (1,5,5,9) 40 (1,4,9,9) 72 (1,3,6,18) 468
(2,3,4,6) 16 (2,2,4,9) 40 (2,2,2,18) 48 (1,4,4,16) 40
(4,4,4,4) 16 (2,2,8,8) 20 (2,2,4,16) 24 (1,4,10,10) 40

(2,3,6,9) 40 (2,2,9,9) 24 (1,8,8,9) 80
(2,4,4,8) 20 (2,2,10,10) 24 (1,9,9,9) 80
(2,5,5,8) 20 (2,4,6,12) 24 (2,4,4,18) 80
(3,3,6,6) 20 (2,4,8,9) 160 (2,8,8,8) 28
(4,4,5,5) 20 (3,3,3,12) 48 (2,8,9,9) 80
(5,5,5,5) 20 (3,4,6,8) 56 (3,6,8,9) 952

(4,4,4,9) 112 (4,4,4,16) 28
(4,4,8,8) 24 (4,4,9,9) 48
(4,5,5,9) 168 (4,4,10,10) 28
(6,6,6,6) 24 (5,5,8,8) 32

(5,5,9,9) 80
(7,7,7,7) 28

a. 12 < s1 +s2 +s3 +s4 ≤ 16 b. 16 < s1 +s2 +s3 +s4 ≤ 20 c. 20 < s1 +s2 +s3 +
s4 ≤ 24 d. 24 < s1 + s2 + s3 + s4 ≤ 28

4.15 Generalized Goethals-Seidel Arrays

Denote by Uv the multiplicative group of generalized permutation matrices
of order v; that is, the elements of U are v× v matrices with entries from
{0,1,−1} such that each row and column contains precisely one nonzero entry.
If T denotes the permutation matrix which represents (1,2, . . . ,v), then the
circulant matrices of order v over a commutative ring K with identity are the
elements of the group ring K〈T 〉.
Definition 4.21. If H is an abelian subgroup of Uv and there is an element
R of Uv such that R2 = I and R−1AR = A−1 for all A ∈ H, then we shall
call KH a GC-ring (generalized circulant ring).

The elements of a GC-ring may be used in the Goethals-Seidel array in
the same way as circulant matrices. That is, if A1, A2, A3, A4 are elements
of a GC-ring such that
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4∑
i=1

AiA
�
i = mI . (4.36)

then the rows of ⎡⎢⎢⎣
A1 A2R A3R A4R

−A2R A1 A�
4 R −A�

3 R
−A3R −A�

4 R A1 A�
2 R

−A4R A�
3 R −A�

2 R A1

⎤⎥⎥⎦
are mutually orthogonal.

Wallis and Whiteman [241] showed essentially that if H is an abelian group
of permutation matrices, then KH is a GC-ring. The elements of KH are
called type 1 matrices on H (see §4.3).

Delsarte, Goethals and Seidel [39] introduced another GC-ring. If D denotes
the v×v matrix diag(1,1, . . . ,1,−1), then DT generates a cyclic subgroup L
of Uv of order 2v. The group ring KL is a GC-ring.

Remarks

(a) Mullin and Stanton [155] use the term group matrix rather than type 1
matrix,

(b) The definition of type 1 matrix by Wallis and Whiteman in fact only
includes the case where H represents a transitive permutation group.
However, the extension to the intransitive case is not difficult,

(c) Suppose that b is odd and N denotes the b× b matrix diag(1,−1,1,−1,
. . . ,−1,1). Then a b× b matrix A is circulant if and only if N−1AN is
negacyclic (see Section 4.17). Hence an equation of the form (4.36) has a
solution consisting of negacyclic matrices of order b if and only if it has a
solution consisting of circulant matrices of order b.

The Goethals-Seidel array itself may be generalized as follows.

Definition 4.22. Let G denote the group

〈r,x1,x�
1 ,x2,x�

2 , . . . , |xixj = xjxi,xix
�
j = x�

j xi

for i, j ∈ {1,2, . . .}, r2 = 1, rxir = x�
i 〉

Denote by S the subset{
0, ±x1, ±x�

1 , ±rx�
1 , ±x2, ±x�

2 , ±rx1, ±rx�
2 , . . .

}
of the integral group ring ZG. The notion of transpose may be abstracted by
defining an operation ( )� on ZG by (xi)� = xi�, (x�

i )� = xi, r� = r, and
extending to ZG in the obvious fashion. If A = (aij) is an n×n matrix with
entries from ZG, then A∗ denotes the n×n matrix with ijth entry a�

ji. If A
has entries from S and
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AA∗ =
(

u∑
i=1

sixix
�
i

)
I ,

then A is called a GGS array (generalized Goethals-Seidel array) of type
(s1,s2, . . . ,su) and order n.

For example, the Goethals -Seidel array itself, written as⎡⎢⎢⎣
x1 rx�

2 rx�
3 rx�

4
−rx�

2 x1 rx4 −rx3
−rx�

3 −rx4 x1 rx2
−rx�

4 rx3 −rx2 x1

⎤⎥⎥⎦
is a GGS array of type (1,1,1,1) and order 4.

The essential use of GGS arrays is immediate. Suppose that there is a
GGS array A of type (s1,s2, . . . ,su) and order n, and X1,X2, . . . ,Xu are
v×v matrices from some GC-ring such that the entries of the Xi are from
{0,±y1,±y2, . . . ,±y�} and

u∑
i=1

siXiX
�
i =

⎛⎝ �∑
j=1

mjy2
j

⎞⎠I .

Then replacing the entries of A with the appropriate matrices yields an
OD(nv;m1,m2, . . . ,m�). Examples of orthogonal designs constructed in this
way are given later in this section.

More importantly, GGS arrays may be used to produce more GGS arrays.

Theorem 4.19 (Eades). Suppose that there is a GGS array of type
(s1,s2, . . . ,su) and order n, and the v× v matrices A1,A2, . . . ,Au are from
some GC-ring and have entries from {0,±x1,±x2, . . . ,±xu}. If

u∑
i=1

siAiA
�
i =

⎛⎝ �∑
j=1

mjxjx�
j

⎞⎠I .

then there is a GGS array of type (m1,m2, . . . ,m�) and order nv.

Proof. Suppose that A is a GGS array of type (s1,s2, . . . ,su) and order v,
and the following replacements are made:

0 �→ zero matrix of order v;
±xi �→ ±Ai ;
±x�

i �→ ±A�
i ;

±rxi �→ ±rRAi ;
±rx�

i �→ ±rRA�
i .
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Then the resulting matrix B has entries from S and

BB∗ =
(

u∑
i=1

siAiA
�
i

)
× In

=

⎛⎝ �∑
j=1

mjxjx�
j

⎞⎠Inv . �	

To illustrate this theorem, a GGS array of type (2,2) and order 6 is
constructed. The 2-circulant construction (see Example 4.12) gives a GGS
array of type (1,1) and order 2:[

x1 rx�
2

−rx�
2 x1

]
.

The circulant matrices

A1 =

⎡⎣x1 x2
x1 x2

x2 x1

⎤⎦ and A2 =

⎡⎣ x1 −x2
x1 −x2

−x2 x1

⎤⎦
satisfy A1A�

1 + A2A�
2 = 2(x1x�

1 + x2x�
2 )I. Following the replacements in the

proof of Theorem 4.19, a GGS array of type (2, 2) and order 6 is obtained:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 x2 −rx�
2 rx�

1
x1 x2 −rx�

2 rx�
1

x2 x1 rx�
1 −rx�

2
rx�

2 −rx�
1 x1 x2

rx�
2 −rx�

1 x1 x2

−rx�
1 rx�

2 x2 x1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Note that the theorem could be applied a times to obtain a GGS array of
type (2a,2a) and order 3a.2.

The existence of a GGS array clearly implies the existence of an orthogonal
design of the same type and order, but the converse is false (see Remark 4.16).
In many cases, however, the converse is true. An important fact is that every
orthogonal design on 2-variables can be made into a GGS array by replacing
the second variable x2 by rx�

2 . The following proposition gives some infinite
families of GGS arrays with 4-variables.

Proposition 4.2 (Eades). Suppose that a is a positive integer and I is a
product of at least a positive integers; that is, � = �1�2 . . . �j where j ≥ a.

(a) If �1 ≥> 2 for 1 ≤ i ≤ j, then there is a GGS array of type (2a,2a,2a,2a)
and order 4�.
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(b) If �i ≥ 4 for 1 ≤ i ≤ j, then there are GGS arrays of type (3a,3a,3a,3a)
and (4a,4a,4a,4a) and order 4�.

Proof. For �1 ≥ 2 consider the sequences al = (x1,x2,0�1−2), a2 = (x1,−x2,
0�1−2), a3 = (x3,−x4,0�1−2), a4 = (x3,x4,0�1−2), where 0�1−2 denotes a se-
quence of 0�1−2 zeros. These sequences are complementary, and, further, if
Ai is the circulant matrix with first row ai, then

4∑
i=1

AiA
�
i = 2

( 4∑
i=1

xix
�
i

)
I .

Using Theorem 4.19 and the Goethals-Seidel array, a GGS array of type
(2,2,2,2) and order 4�1 may be obtained. Repeating this procedure a times
gives (a), For (b) the following complementary sequences may be used in a
similar fashion:

(3,3,3,3) : (0,−x2,−x3,−x4),(x1,0,−x3,x4),(x1,x2,0,−x4),
(x1,−x2,x3,0),

(4,4,4,4) : (x1,−x2,−x3,−x4),(x1,x2,−x3,x4),(x1,x2,x3,−x4),
(x1,−x2,x3,x4) .�	

A numerical investigation of GGS arrays of order 12 has been made, and
the results are listed in Eades [52], These GGS arrays have been used to
construct orthogonal designs of orders 36 and 60.

GGS arrays with 2-variables have been used successfully for constructing
orthogonal designs of highly composite orders congruent to 2 modulo 4.
Examples are given later.

It seems that GGS arrays are the most powerful method for constructing
orthogonal designs from circulants in orders not divisible by 8.

4.15.1 Some Infinite Families of Orthogonal Designs

The Goethals-Seidel array and its generalizations have been used to construct
many infinite families of orthogonal designs. The theorems below illustrate
some of the techniques involved.

Theorem 4.20 (Eades). If there is a GGS array of type (s1,s2, . . . ,su) and
order n, then there is an OD(2n;s1,s1,s2,s2, . . . ,su,su).

Proof. The negacyclic matrix

xi =
[

xi yi

−yi xi

]
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is an OD(1,1). Hence

u∑
i=1

siXiX
�
i =

(
u∑

i=1
si(x2

i +y2
i

)
I .

The combination of Theorem 4.20 and Proposition 4.2 gives a large col-
lection of orthogonal designs. For example, for each a > 0 there is an
OD(8.5a;4a,4a,4a,4a,4a,4a,4a,4a). �	
Theorem 4.21 (Eades). Suppose that q is a prime power of the form 3m+1.
Then there is a skew symmetric weighing matrix of weight q2 and order
4(q2+q+1)

3 .

This proof and additional theorems illustrating more of the techniques
involved and their proofs appear explicitly in Orthogonal Designs (Ed. 1)
p186-190.

4.15.2 Limitations

Remark 4.16. There are two ways in which the use of GGS arrays for con-
structing orthogonal designs is limited.

First, little is known about the existence of GGS arrays. A numerical
investigation of GGS arrays of order 12 shows that existence of a GGS array
is harder to establish than existence of the corresponding orthogonal design.
Further, it can be deduced from Theorem 4.20 that the number of variables of
a GGS array of order n is at most [ 1

2ρ(2n)]. If 8 divides n, then [ 1
2ρ(2n)] < ρ(n),

and so there are many orthogonal designs for which a corresponding GGS
array does not exist. Note also that if 16 divides n, then [ 1

2ρ(2n)] > 4, but no
GGS array with more than four variables is known.

Second, it can be proved that not all orthogonal designs can be constructed
using GGS arrays. There is an orthogonal design of type (4,9) and order 14
(see Chapter 8). However, using the methods of Section 4.3, it can be shown
that there is no OD(14;4,9) constructed by using two 7×7 circulant matrices
in the two-circulant construction.

4.16 Balanced Weighing Matrices

A most important concept in the design and analysis of experiments is that of
a (v,k,λ) configuration. This is equivalent to a (0,1) matrix A (the incidence
matrix of the configuration) of order v satisfying

AA� = (k−λ)I +λJ , AJ = JA = kJ, (4.37)
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where
λ(v−1) = k(k−1) (4.38)

It is natural, then, to ask when such a matrix can be signed in order to
produce a weighing matrix M = W (v,k). The work of this section is due to
Mullin [152,153], and Mullin and Stanton [154,155].

Definition 4.23. A balanced weighing matrix M is a square (0,1,−1) matrix
such that squaring all its entries gives the incidence matrix of a (v,k,λ)
configuration. That is,

MM� = kIv

and A = M ∗M satisfies Equation (4.37) with λ(v−1) = k(k−1). We write
M is a BW (v,k).

Remark Although we will not study it here, balanced weighing matrices have
proved most useful in providing previously unknown balanced incomplete
block designs (see Mullin and Stanton [154,155].

4.16.1 Necessary Conditions for the Existence of
Balanced Weighing Matrices

Since a BW (v,k) implies the existence of a (v,k,λ) configuration, the following
conditions are known to be necessary:
(i) if v is even, then (k−λ) must be a perfect square;
(ii) if v is odd, then the equation

x2 = (k−λ)y2 +(−1)[v−1
2 ]λz2 (4.39)

must have a solution in integers other than x = y = z = 0. (See Ryser [171,
p.111])
It is also trivial that for a BW (v,k) to exist,

(iii) λ = k (k−1)
(v−1) must be even.

Further we saw in Section 4.15 that for a W (v,k) to exist,
(iv) if v is odd, then k must be a perfect square, and
(v) if v is odd, then (v−k)2− (v−k)+2 > v;

and in Chapter 2,
(vi) if v = 2 (mod 4), then k must be the sum of two squares.

In the event that v ≡ 1 (mod 4), we note that (iv) is stronger than (ii) since
if k = α2, then x = α, y = z = 1, is a solution of equation (4.39), while for the
parameters v = 27, k = 13, λ = 6 (4.39) has a solution, but k is not a perfect
square. (Just note that 〈7,6〉 = 〈1,42〉, and so (4.39) has a rational, hence
integral, solution.) For v ≡ 3 (mod 4), (iv) implies that (v) has a solution if
and only if k−λ is the sum of two squares.
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4.16.2 Construction Method for Balanced Weighing
Designs

The direct sum of two matrices W (n1,k) and W (n2,k) is a W (n1 + n2,k),
and the Kronecker product of matrices W (n1,k1) and W (n2,k2) is a
W (n1n2,k1k2), but this is not true for balanced weighing designs since in
general the property of balance is lost under these operations. This fact
alone makes the construction of balanced designs difficult. This is further
emphasized by the fact that the conditions (i), (ii), and the condition that
(v−1)|k(k−1) need not hold in general for an unbalanced design. Here we
discuss the generation of balanced weighing designs from group difference sets.

Let G be a finite Abelian group of order v. If G admits a difference set
D = {d1,d2, . . . ,dk} then choose M(χ) (or M) to be a type 1 incidence matrix
of D obtained from the map χ.

Strictly speaking, M(χ) is determined only up to a permutation of rows
and columns, but this is in no way relevant to the present discussion. Type 1
matrices have an interesting property, which we now discuss.

Definition 4.24. Let rg denote the gth row of a type 1 incidence matrix M
defined on an Abelian group G. We say M has the invariant scalar product
property (ISP property) if for all g, h, θ ∈ G,

rg � rh = rg+θ � rh+θ ,

where � denotes the usual scalar product of vectors.

Lemma 4.25. Any type 1 matrix defined by χ on G has the ISP property.

Proof. Note that

rg � rh =
∑
k∈G

χ(k−g)χ(k−h)

=
∑
k∈G

χ((k−θ)−g)χ((k−θ)−h)

=
∑
k∈G

χ(k−(g+θ))χ((k−θ)−h)

= rg+θ � rh+θ

as required. �	
A similar result holds for column scalar products.

Lemma 4.26. A type 1 (0,1,−1) incidence matrix is a W (v,k) matrix if and
only if the following equation holds for all g ∈ G:
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θ∈G

χ(θ)χ(θ+g) = kδ0,g , (4.40)

where δ0,g is the Kronecker delta.

Proof. This is clear because of the ISP property

r0 � rg =
∑
θ∈G

χ(θ)χθ−g) =
∑
θ∈G

χθ+g)χ(θ) . �	

The equality of these two summations is of practical importance since
it saves calculation in verifying equation (4.39). In particular, if v is odd,
one need only check (v−1)

2 equations since the nonzero elements of G can be
partitioned into inverse pairs.

Lemma 4.27. Let D be a difference set in G. Let M = M(χ) be a type 1
(0,1,−1) incidence matrix. Then M ∗M is the incidence matrix of a (v,k,λ)
configuration if χ(g) = 0 if and only if g ∈ G−D.

Proof. This is evident. �	
Definition 4.25. We refer to a function χ satisfying the condition of Lemma
4.27 as a D-function. If the image of χ is {0,1,−1}, we call χ a restricted
function. Putting these results together, we obtain:

Theorem 4.22 (Mullin). There is a matrix BW (v,k) if there is a D-
function χ on an Abelian group of order v such that∑

θ∈G

χ(θ)χ(θ+g) = kδ0,g .

This theorem can be used as a basis for a computer algorithm.

For notational convenience, given a restricted function χ on an Abelian
group G, we denote

∑
θ∈G χ(θ)χ(θ+g) by F (χ,g). We demonstrate a limitation

of the construction of Theorem 4.22 in the next theorem. (This can also be
obtained from Lemma 4.28.)

Theorem 4.23 (Mullin). If there is a D-function χ in an Abelian group
G of order v such that F (χ,g) = kδ0,g for all g ∈ G and v is even, then
λ = k (k−1)

(v−1) satisfies λ ≡ 0 (mod 4).

Proof. Since v is even, there exists an element ḡ �= 0 in G such that ḡ = −ḡ.
Let (a1, b1)(a2, b2), . . . ,(at, bt) be the pairs of elements of D whose difference
is g. Here t = λ

2 , since if ai− bi = ḡ, then bi−ai = ḡ. Now consider

F (χ, ḡ) =
∑
θ∈G

χ(θ)χ(θ+ḡ) .
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The only nonzero terms in this expression arise when both θ and θ + ḡ belong
to D, since χ is a D-function. Thus

F (χ, ḡ) =
t∑

i=1
[χ(ai)χ(bi)+χ(bi)χ(ai)]

= 2
t∑

i=1
χ(ai)χ(bi) = 0 .

Since each of the t terms in the latter sum is either 1 or -1, this expression
must have t

2 terms of each value, and t must be even. This shows that λ ≡ 0
mod 4 as required. �	

There is a (4,3,2) configuration C which is derivable from a difference
set in the group of integers mod 4; however, there is no D-function for
any difference set which will produce a BW (4,3). It is possible to sign the
matrix of C to produce an orthogonal matrix nonetheless. More generally,
there is a cyclic

(
(32n−1)

2 ,32n−1,2.32n−2
)

configuration (since this is the
complementary configuration of the set of hyperplanes in PG(2n−1,3)), but
there is no way of signing these matrices cyclically to make them orthogonal
in view of Theorem 4.23. The results of Mullin show that all of these can be
signed to produce orthogonal matrices. Not all incidence matrices of (v,k,λ)
configurations with v even can be signed to produce orthogonal matrices. It
can be shown that the matrix of the self-dual (16,6,2) configuration cannot
be signed (Schellenberg [175]).

We introduce new concepts which provide a labour-saving device in the
calculation associated with Theorem 4.22 in some applications.

Definition 4.26. Let R be a finite ring with unit. A restricted function χ on
the additive group of R with the property that χ(1) = 1 is called a normal
function. Let U(R) denote the group of units of R. Let N(R,χ) = N(χ) be
defined by N(χ) = {g : g ∈ U(R)|χ(g,θ) = χ(g)χ(θ), ∀θ ∈ R}.

Because of the importance of N(χ) in the next theorem, we demonstrate a
structural property of this set.

Proposition 4.3. N(χ) is a subgroup of U(R).

Proof. Let g and h be members of M(χ). Then for every θ ∈ R, χ(ghθ) =
χ(g)χ(hθ) = χ(g)χ(h)χ(θ). Since R is finite, the result follows. �	

It is clear that χ is a linear representation of N(χ) under these circum-
stances.

Theorem 4.24 (Mullin). Let R be a finite ring with unit and χ a normal
function on R. Let M(χ) be defined as above.

If g ∈ N(χ), then F (χ,g) = F (x,1).
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Proof. F (χ,g) =
∑

θ∈R χ(θ)χ(θ +g).
Let τ = g−1θ or equivalently θ = gτ . Then, since this mapping is 1−1, we

have

F (χ,g) =
∑
τ∈R

χ(gτ)χ(gτ+g)

=
∑
τ∈R

χ(gτ)χ(g(τ+1))

=
∑
τ∈R

(χ(g))2χ(τ)χ(τ+1)

Since χ(g)χ(g−1) = χ(1) = 1, χ(g) �= 0 and (χ(g))2 = 1. This yields

F (χ,g) =
∑
τ∈R

χ(τ)χ(τ+1) = F (χ,1) .�	

As an application of this result, let us consider G = GF (7). Let χ(0) = −1,
χ(1) = χ(2) = χ(4) = 1 and χ(3) = χ(5) = χ(6) = 0. Since the field marks 1, 2
and 4 are the quadratic residues and since 7 = 3 (mod 4), N(χ) = (1,2,4).
Now F (χ,2) = F (χ,4) = F (χ,1) = χ(0)χ(1) + χ(1)χ(2) = 0, and since G =
{0}∪N(χ)∪−N(χ), we have

F (χ,g) = 4δ0,g , g ∈ G.

Thus M is a W (7,4) matrix, But {0,1,2,4} is a difference set, and therefore
M is also a BW (7,4) matrix. Thus the vector

( 1̄ 1 1 0 1 0 0 )

when developed cyclically mod 7, generates a BW (7,4).

4.16.3 Regular Balanced Weighing Matrices

Definition 4.27. If a BW (v,k) matrix is such that the number of −1’s per
row is constant, we say that it is regular.

In a BW matrix we denote the number of −1’s per row by a(−1) and the
number of 1’s per row by a(1). Since if M is regular, then −M is also regular,
we may assume that we are dealing with matrices for which a(1) ≥ k

2 . Clearly,
every group-generated BW (v,k) is regular, as is its transpose. Using this fact,
Mullin [153] proved, using a somewhat different method, a generalization of a
result of Schellenberg [175] which applies these to matrices BW (v,k).

Lemma 4.28 (Mullin). If a W (v,k) matrix is a regular type 1 matrix, then
a(1) = (k±√

k)/2 and a(−1) = (k±√
k)/2.
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Proof. The proof is a slight generalization of a result in Ryser [171, p.134].
Let e = a(1)−a(−1), and J denote the v×v matrix all of whose entries are 1.
Clearly, we have

HJ = eJ = H�J ,

and hence

HH�J = e2J = kJ .

Thus

e2 = k ,

a(1)+a(−l) = k ,

a(1)−a(−1) = ±
√

k ,

and the result follows. �	
Corollary 4.22. If a W (v,k) matrix is a regular type 1 matrix, then k is a
perfect square.

Corollary 4.23. If a BW (v,k) matrix is a type 1 matrix, then a(−1) ≥ λ
4

with equality if and only if v = k = 4.

Proof. Let us first note that in any BW (v,k) matrix, if v = k, then k = λ.
Now in any BW (v,k) matrix, we observe that 4(v−k−1) + λ ≥ 0, with

equality only for v = k = λ = 4. This is immediate from the fact that in any
(v,k,λ) configuration, as defined earlier, we have v ≥ k with equality only for
v = k = λ.

The above inequality implies that the inequality

4(λv−λ+k)−4kλ+λ2 ≥ 4k

is also valid, with equality only for v = k = λ = 4. But by the definition of λ,
we have

k2 = λv−λ+k ,

and therefore

(2k−λ)2 ≥ 4k ,

with equality as above.
Now let us assume that a(−1) < λ

4 . Since

k + λk

2 >
k

2 ≥ λ

2 ,

the corollary is true unless
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a(−1) = (k−√
k)

2 .

Let us assume that (k−√
k)

2 < λ
4 . Then

(2k−λ)2 ≤ 4k ,

which is impossible unless equality holds in which case v = k = λ as required.
The design generated by

(−1,1,1,1) mod 4

satisfies the corollary with equality. �	

4.16.4 Application of the Frobenius Group
Determinant Theorem to Balanced Weighing
Matrices

For the theory of group characters, the reader is referred to Speiser [196].
For Abelian groups, the Frobenius group determinant theorem (Speiser [196,
p.178]), in the notation employed here, becomes the following:
Theorem 4.25 (Frobenius Group Determinant Theorem). Let M be
a type 1 matrix over an Abelian group G of order v. Then

detM(χ) =
v∏

j=1

∑
g∈G

α(j)(g)χ(g) ,

where α(j) denotes the jth irreducible character of G.
For the cyclic group of order v (written as the residues modulo v), this

becomes

detM(χ) =
v−1∏
j=0

v−1∑
k=0

ωjkχ(k) ,

where ω is a primitive vth root of unity.
Any group G of order v admits the main character

a(1)(g) = 1 , g ∈ G.

Every group determinant can be factored into forms in the indeterminates
χ(g), which are irreducible over the integers, since it is clear that the expansion
of the group determinant is a form with integer coefficients.

To illustrate the use of this theorem, we tackle the problem of finding a
cyclic BW (10,9) matrix M . Using the integers mod 10, we can, without loss
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of generality, assume that χ(g) = 0 if and only if g = 0. Without any further
theory, except for Lemma 4.28, there are

(9
3
)

= 84 functions χ to consider. By
the Frobenius group determinant theorem,

G(χ) =
9∑

j=1
(−1)jχ(j) ,

corresponding to the character α defined by α(j) = (−1)j , is a divisor of
detM = 310.

Now let c denote the number of even residues j such that χ(j) = −1. Then
G(χ) can be determined in terms of c as follows:

c G(χ)
0 6
1 1
2 −3
3 −7.

There are 40 functions with c = 1 and 30 with c = 2; therefore, the number
of functions to be investigated has been reduced. Moreover, we have some
structural information. As we shall see, the structural information is extremely
important. In the following, if χ(g) = x, we say that x appears in position g.

We note now that the inner product of absolute values of any pair of
distinct rows is 8, since λ = 8 in the associated symmetric design. Thus the
number of terms with value −1 in r0 � rj must be 4 for j = 1,2, . . . ,9.

In particular, this means that in r0 and rj the number of times 0 opposes
−1 must be even, that is, 0 or 2. Hence if translation (of row 0) by j units
moves 0 to a position containing −1, then there must be a −1 in position
−j which is translated to column zero. Thus −1’s occur in pairs of inverse
positions.

Now let us consider the case of c = 2. There is exactly one −1 on an odd
residue. But since the parity of inverse pairs is equal, this −1 must be in
position 5; that is, χ(5) = 1. Now it is easily verified (considering row 1) that
the three −1’s cannot be consecutive in any event, and thus the remaining
−1’s occur in inverse pairs of positions χ(4) = χ(6) = 1. Also since c = 2,
χ(1) = χ(3) = χ(7) = χ(9) = 1, and χ(2) = χ(8) = −1. We have determined
the only possible function χ with c = 2. However, for this function r0 �r1 =−4,
and the matrix is not orthogonal.

Let us now consider the case c = 1. Clearly, no solution exists in this case
since there is only one self-inverse element 5, which is odd. Hence there is no
cyclic BW (10,9) matrix.
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4.16.5 Balanced Weighing Matrices with v ≤ 25

Comment 4.1. In Table 4.18 we give a list of all triples v, k, λ with k > λ > 0
which satisfy λ(v− 1) = k(k− 1) and λ ≡ 0 mod 2. We also list a function
E(v,k) = E where E(v,k) = 1 if a matrix B(v,k) exists, and E(v,k) = 0
otherwise. In this regard it is useful to note that the matrices BW (4n,4n−1)
are coexistent with skew Hadamard matrices of order 4n and that matrices
BW (4n+2,4n+1) are coexistent with symmetric Hadamard matrices. The
list of values for which such designs are known to exist are listed in Wallis [231].

Table 4.18 triples v,k,λ with k > λ > 0 satisfying λ(v − 1) = k(k − 1) and
λ ≡ 0 mod 2.

v k λ E Reason or Reference
1) 4 3 2 yes Mullin
2) 6 5 4 yes *, Complement PG(1,5)
3) 7 4 2 yes Circulant with first row [−110100].
4) 8 7 6 yes *, Complement PG(1,7).
5) 10 9 8 yes *, Complement PG(1,9).
6) 11 5 2 no Condition (iv).
7) 12 11 10 yes *, Complement PG(1,11).
8) 13 9 4 yes Condition (v).
9) 14 13 12 no *, Complement PG(1,13).

10) 15 8 4 no Condition (iv).
11) 16 6 2 no Schellenberg
12) 16 10 6
13) 16 15 14 yes *
14) 18 17 16 yes *, Complement PG(1,17),
15) 19 9 4
16) 20 19 18 yes *, Complement PG(1,19).
17) 21 16 12 yes *, Complement PG(2,4).
18) 22 7 2 no Condition (i).
19) 22 15 10 no Condition (i).
20) 22 21 20 no Condition (vi).
21) 23 12 6 no Condition (iv).
22) 24 23 22 yes *, Complement PG(1,23).
23) 25 16 10

* see Comment 4.1
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In view of our earlier remarks about the usefulness of BW (v,k)’s it would
be of interest to establish the existence of more of these matrices. This will
now be discussed.

4.16.6 There are No Circulant Balanced Weighing
Matrices BW (v,v −1) Based on (v,v −1,v −2)
Configurations

Without loss of generality we assume that in such matrices the element 0
occurs down the main diagonal.

Lemma 4.29. In any circulant orthogonal matrix based on a (v,k,λ) config-
uration, the parameter k is a perfect square.

Proof. Suppose that the first row of the orthogonal matrix contains a entries
of 1 and b entries of −1. By the circulant property, every row and column has
sum a− b. If the matrix is denoted by N , we have

NJ = N�J = (a− b)J .

But

NN� = kI .

Hence

NN�J = kIJ = kJ .

But

NN�J = N(a− b)J = (a− b)2J .

Thus

k = (a− b)2 . �	

In the following we assume without loss of generality that a > b; otherwise
we multiply the entire matrix by −1. For convenience we set a− b = t.

Lemma 4.30. If a denotes the number of 1’s in the first row of an orthogonal
circulant matrix, and b the number of −1’s, then

a = 1
2

(
t2 + t

)
and b = 1

2
(
t2− t

)
.

Proof. This is immediate since

a+ b = k = t2

a− b = t .
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Thus in looking for circulant orthogonal matrices based on trivial designs,
we need only consider (t2 +1, t2, t2−1) configurations where t is odd. �	
Definition 4.28. An orthogonal circulant based on a (t2 +1, t2, t2−1) con-
figuration will henceforth be called a trivial circulant.

Let xαβ (α,β = 0,1,2) represent the number of times that α in row i is
in the same column as β in row j (we use 2 to represent the entry −1). We
require

Lemma 4.31. Either x01 = x10 = 1, x02 = x20 = 0, or vice versa.

Proof. We actually determine all xαβ . It is clear that

i)
∑

xαβ = t2 +1 ,

ii)
∑

x0j =
∑

xi0 = 1 ,

iii)
∑

x1j =
∑

xi1 = 1
2(t2 + t)

iv)
∑

x2j =
∑

xi2 = 1
2(t2− t)

Finally, orthogonality gives

v) x11 +x22 = x12 +x21 .

But x11 +x22 +x12 +x21 = λ, and thus each expression in v) equals 1
2 (t2−1).

From iii) and iv), addition gives

x10 +x20 = 1 = x01 +x02 ;x00 = 0 .

Also
x10−x01 = x02−x20 = x21−x12 = an even number.

This proves that x10 = x01, x02 = x20, as required. It is useful to record the
table of values following. �	

Case A Case B

x00 0 0

x01 = X10 1 0

x02 = X20 0 1

x12 = X21
1
4 t2−1 1

4 t2−1

x11
1
4 (t+3)(t−1) 1

4 (t−1)2

x22
1
4 (t+1)2 1

4 (t−3)(t+1)
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In the light of Lemma 4.31, we note that we can write v = 4m+2, k = 4m+1 = t,
λ = 4m, and the typical circulant has the following form (illustration for m = 6).

Row 1: 0a1a2 . . .a11a12θa12a11 . . .a3a2a1

(The symmetry of the sequence is guaranteed by the fact that 0x0i = xi0 for
i = 1,2.)

Row j is obtained by a cyclic shift through j−1 places to the right.
We now prove:

Lemma 4.32. θ = 1 if t ≡ 1 (mod 4); θ = −1 if t ≡ 3 (mod 4). Also

m∑
j=1

a2j = 0 ,

m−1∑
i=0

a2i+1 = t−θ

2

Proof. Take the scalar products of row 1 with rows 2,4,6, . . .2m+2; add, and
re-arrange. We have

2(a1 +a3 + · · ·+a2m−1)(a2 +a4 + · · ·+a2m)+θ (a2 +a4 + · · ·+a2m) = 0 .

Thus

(2a1 + · · ·+2a2m−1 +θ)(a2 +a4 + · · ·+a2m) = 0;

Thus since only the second integer is even, we get
∑

a2j = 0. Also, since
2

∑
a2n +2

∑
a2j +θ = t, we find that

∑
a2i = t−θ

2 .
Finally, note that the sum

∑
a2i is an even integer (m terms); thus t−θ is

divisible by 4, and θ = 1 for t ≡ 1 (mod 4), θ = −1 for t ≡ 3 (mod 4). This
completes the proof. �	

Actually, if one takes scalar products of row 1 with rows 3,5, . . . ,2m + 1,
and adds, one gets the identity(∑

a2i

)(∑
a2i +θ

)
+

(∑
a2j

)2
= m,

which also produces the desired results.

Example 4.25. At this stage, it is most instructive to look at the example
for m = 6, The scalar products for rows 2,4,6,8,10,12 are written down as
follows.

1)
12∑

i=1
aiai+1 = 0(a13 = θ) .

In the sequence al,a2,a3, . . . ,a13 there must be exactly six sign changes to
produce a zero sum in 1). Hence a1 has the same sign as a13; that is,



4.16 Balanced Weighing Matrices 147

2) a1a2 +
10∑
1

aiai+3 +a11a12 = 0 .

Write the sequence

a3,a6,a9,a12,a11,a8,a5,a2,a1,a4,a7,a10,a13 .

By the same argument, a3 = 0.

3) a1a4 +a2a3 +
8∑
1

aiai+5 +a9a12 +a10a11 = 0 .

Consider the sequence

a5,a10,a11,a6,a1,a4,a9,a12,a7,a2,a3,a8,θ ,

and we get a5 = 0.

4) a1a6 +a2a5 +a3a5 +
6∑
1

aiai+7 +a7a12 +a9a10 = 0 .

The relevant sequence is

a7,a12,a5,a2,a9,a10,a3,a4,a11,a8,a1,a6,θ ,

and the result is a7 = 0.

5) a1a8 +a2a7 +a3a6 +a4a5 +
4∑
1

aiai+9 +a5a12 +a6a11 +a7a10 +a8a9 = 0 .

Hence, the sequence

a9,a8,a1,a10,a7,a2,a11,a6,a3,a12,a5,a4,θ proves a9 = 0 .

Similarly, a11 = θ, and
∑

a2i+1 = 6θ = 6 (a contradiction of Lemma 4.32).
The method outlined is completely general and gives:

Lemma 4.33. In an orthogonal circulant of the type we have been considering,
with one zero per row, we have

a1 = a3 = · · · = a2m−1 = θ .

Thus ∑
a2i+1 = mθ = 1

2 (t−θ) .

It is easy to deduce, from Lemma 4.33, that
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t = θ(2m+1) .

But t2 = 4m+1, and so 4m+1 = (2m+1)2.
We conclude that m = 0 and state:

Theorem 4.26. An orthogonal circulant with one zero per row only exists
for m = 0; in this case, it is the identity matrix of order 2 or, equivalently,
the transposition matrix of order 2.

4.17 Negacyclic Matrices

A type of weighing matrix, of weight n and weight n−1, called a C-matrix
or conference matrix, was previously studied by Delsarte-Goethals-Seidel [39].
These can be based on circulant or on negacyclic matrices. We consider these
negacyclic based matrices with weight k ≤ n.

Definition 4.29. Let P , called the “negacyclic shift matrix” be the square
matrix of order n, whose elements pij are defined as follows:

pi,i+1 = 1, i = 0,1, . . . ,n−2,

pn−1,0 = −1,

pij = 0, otherwise.

Any matrix of the form
∑

aiP
i, with ai commuting coefficients, will be

called negacyclic.
We see there are similarities but not necessarily sameness between the

properties of circulant/cyclic matrices and negacyclic matrices.

Lemma 4.34. Let P = (pij) of order n be a negacyclic matrix. Then

(i) The inner product of the first row of P with the ith row of P equals the
negative of the inner product of the first row of P with the (−i+2)nd row.
That is

n∑
j=1

p1jpij = −
n∑

j=1
p1jpn−i+2,j (4.41)

(This is the negative of the result for circulant/cyclic matrices).
(ii) The inner product of the first row of P with the ith row of P equals the

inner product of the kth row of P with the (i+k−1)st row of P . That is

n∑
j=1

p1jpij =
n∑

j=1
pjkpi+k−1,j (4.42)

(This is the same result as for circulant/cyclic matrices).
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(iii) Then P of order n satisfies

P n = −1, P � = −P n−1, PP � = I .

If A =
∑

aiP
i, B =

∑
bjP j and R is the back diagonal matrix, then

AB = BA and A(BR)� = BRA� .

A and BR are amicable matrices.
We now note some other properties of negacyclic matrices which were

shown by L.G. Kovacs and Peter Eades [52]. The second result appears in
Geramita and Seberry [80, p.206–207]. We give the proof here to emphasize a
result which appears to have been forgotten.

Lemma 4.35. If A =
∑

aiP
i is a negacyclic matrix of odd order n, then

XAX, where X = diag(1,−1,1,−1, . . . ,1), is a circulant matrix.

Lemma 4.36. Suppose n ≡ 0 (mod 2). The existence of a negacyclic C =
W (n,n−1) is equivalent to the existence of a W (n,n−1) of the form[

A B
B� −A�

]
(4.43)

where A and B are negacyclic, A� = (−1)An/2A. That is the 2-block suitable
matrix gives a weighing matrix which is equivalent to a 1-block matrix.

Proof. First we suppose there is a negacyclic matrix N = W (2n,2n−1) of
order 2 which is used to form two negacyclic matrices A and B of order n
which satisfy

AA� +BB� = (2n−1)I. (4.44)

Let the first row of the negacyclic matrix N be

0x1y1x2y2 . . .yn−1xn

We choose A and B to be negacyclic matrices with first rows

0y1y2 . . .yn−1, and x1x2 . . .xn ,

respectively. If the order n = 2t+1 is odd and the first rows of A and B are

0a1 . . .at (εtat) . . .(ε1a1) and 1b1b2 . . . bt (δtbt) . . .(δ1b1) ,

with εi = ±1, δj = ±1, then taking the dot product of the first and (i+1)th

rows, i ≤ t (reducing using xy ≡ x+y−1 (mod 4)), we obtain

2t−2i+ εi (mod 4) and 2t−2i+1 (mod 4) ,

respectively. Hence using equation (4.44),
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εi +1 ≡ 0 (mod 4) ,

we have εi = −1.
If the order n is even and the first rows of A and B are

0a1 . . .at−1at(εt−1at−1) . . .(ε1a1)
and

1b1b2 . . . bt(δt−1bt−1) . . .(δ1b1),

with εi = ±1, δj = ±1, then taking the dot product of the first and (i+1)th

rows, i ≤ t−1 (reducing modulo 4), we obtain

2t−2t−1+ εi (mod 4) and 2t−2i+2bi−2 (mod 4) ,

respectively. Hence, using equation (4.44),

εi +2bi−3 ≡ 0 (mod 4) ,

and since bi �= 0, we have εi = 1.
This means the first row of the original negacyclic matrix of order 2n can

be written as

0x1a1x2a2 . . .xtat1āt(δtxt)āt−1 . . . ā2(δ2x2)ā1(δ1x1) for n odd
and

0x1a1x2a2 . . .at−1xtat(δtxt)at−1 . . .a2(δ2x2)a1(δ1x1) for n even

with δj �= ±1 and āi = −ai.
The inner product of the first and (2i−1)th rows, i≤ t and t−1 respectively,

is
−δi +1 ≡ 0 (mod 4) and δi +1 ≡ 0 (mod 4) .

So we have the first rows of A and B

0a1 . . .atāt . . . ā1 and b1b2, . . . bt1bt . . . b2b1 for n odd (4.45)
and

0a1 . . .at−1atat−1 . . .a1 and b1b2 . . . btb̄t . . . b̄2b̄1 for n even (4.46)

as required.
It is straightforward to check that negacyclic matrices A and B, which

satisfy AA� +BB� = (2n−1)In and are of the form (4.45) and (4.46), give
a negacyclic matrix W (2n,2n−1) when formed into first rows

0b1a1b2 . . . btat1ātbt . . . ālb1, for n odd,
or
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0b1a1b2 . . . btatb̄t . . .a1b̄1 for n even.�	

Example 4.26. The first rows of negacyclic matrices (n,n−1) of orders 4, 6,
8, and 10, respectively;

0 1 1 − ,

0 1 − 1 1 1
0 1 1 − 1 1 1 −
0 1 1 − 1 − − − − 1 .

are equivalent to the existence of

[
0 1
− 0

]
,

[
1 −
1 1

]
and

⎡⎣0 − 1
− 0 −
1 − 0

⎤⎦ ,

⎡⎣1 1 1
− 1 1
− − 1

⎤⎦
⎡⎢⎢⎣

0 1 1 1
− 0 1 1
− − 0 1
− − − 0

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
1 − 1 −
1 1 − 1
− 1 1 −
1 − 1 1

⎤⎥⎥⎦ and

⎡⎢⎢⎢⎢⎣
0 1 1 − −
1 0 1 1 −
1 1 0 1 1
− 1 1 0 1
− − 1 1 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

1 − − − 1
− 1 − − −
1 − 1 − −
1 1 − 1 −
1 1 1 − 1

⎤⎥⎥⎥⎥⎦
Comment. Peter Eades [52] and Delsarte-Goethals-Seidel [39] have deter-
mined that the only negacyclic W (v,v−1) of order v < 1000 have v = pr +1
where pr is an odd prime power. On the positive side we know (we omit the
proof):

Theorem 4.27 (Delsarte-Goethals-Seidel [39]). There is a negacyclic
W (pr +1,pr) whenever pr is an odd prime power.

G. Berman [21] has led us to believe that many results of a similar type to
those found for circulant matrices can be obtained using negacyclic matrices.
Negacyclic matrices are curiosities because of their properties and potential
exhibited in Lemma 4.36 and Example 4.27.

Example 4.27. The four negacyclic matrices

A1 =

⎡⎢⎢⎢⎢⎣
1 − 0 0 0
0 1 − 0 0
0 0 1 − 0
0 0 0 1 −
1 0 0 0 1

⎤⎥⎥⎥⎥⎦ A2 =

⎡⎢⎢⎢⎢⎣
1 1 − − 0
0 1 1 − −
1 0 1 1 −
1 1 0 1 1
− 1 1 0 1

⎤⎥⎥⎥⎥⎦

A3 =

⎡⎢⎢⎢⎢⎣
0 − 0 0 1
− 0 − 0 0
0 − 0 − 0
0 0 − 0 −
1 0 0 0 0

⎤⎥⎥⎥⎥⎦ A4 =

⎡⎢⎢⎢⎢⎣
0 − 0 0 0
0 0 − 0 0
0 0 0 − 0
0 0 0 0 −
1 0 0 0 0

⎤⎥⎥⎥⎥⎦
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satisfy
A1A�

1 +A2A�
2 +A3A�

3 +A4A�
4 = 9I .

They can be merged to form two negacyclic matrices

B1 =

⎡⎣ 1 0 − − 0 0 0 0 0 1
− 1 0 − − 0 0 0 0 0

etc.

⎤⎦

B2 =

⎡⎣ 1 0 1 − − 0 − 0 0 0
0 1 0 1 − − 0 − 0 0

etc.

⎤⎦
which satisfy

B1B�
1 +B2B�

2 = 9I .

These can be further merged to obtain the first row of a negacyclic W (20,9):

1 1 0 0 − 1 − − 0 − 0 0 0 − 0 0 0 0 1 0.

Negacyclic matrices are worthy of further existence searches. The question
of when negacyclic matrices can be decomposed as in Example 4.27 is open
for further research.

4.17.1 Constructions

We recall suitable (plug-in) matrices X1,X2,X3,X4, · · ·Xt are t matrices of
order n, with elements ±1 which satisfy the additive property,

∑t
i=1 XiX

�
i =

constant times the identity matrix. They are suitable if they satisfy other
equations which enable them to be substituted into a plug-into array to
make an orthogonal matrix (see Definition 4.4). Xia, Xia and Seberry [251]
show 4-suitable plug-in negacyclic matrices of odd order exist if and only if
4-suitable plug-in circulant matrices exist for the same odd order. 4-suitable
negacyclic matrices of order n, may be used instead of 4-suitable circulant
matrices, in the Goethals-Seidel plug-into array [88], to construct Hadamard
matrices and orthogonal designs of order 4n. Other useful plug-into arrays
are due to Kharaghani, Ito, Spence, Seberry-Balonin and Wallis-Whiteman
[114,115,120,182,198,241].

In computer searches, for some even orders, 2-suitable or 4-suitable nega-
cyclic matrices have proved easier to find. This experimental fact has been used
extensively by Holzmann, Kharaghani and Tayfeh-Rezaie [66,67,104,105,122]
to complete searches for OD’s in orders 24, 46, 48, 56, and 80. We note that
if there are 2-suitable negacyclic matrices of order n and Golay sequences of
order m, there are 2-suitable matrices of order mn.
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This means a negacyclic matrix may give 2-suitable and 4-suitable plug-in
matrices to use in plug-into arrays to make larger orthogonal matrices.

From Table 4.19 there exist W (12,k) constructed using two negacyclic
matrices of order 6 for k = 1,2, . . . ,12. From Delsarte-Goethals-Seidel [39],
there exists 0,±1 negacyclic W (12,11). Results for 7, 9, and 11 are due to
Gene Awyzio [13] and Tianbing Xia [250].

Table 4.19 First rows of W (12,k) constructed from two negacyclic matrices
of order 6 a

k First Rows
1 1 0 0 0 0 0 ; 06
2 1 05 ; 1 05
3 1 0 0 1 0 ; 1 05
4 1 1 04 ; 1 − 04
5 1 1 − 03 ; 1 0 1 03
6 0 1 1 1 − 1 ; 1 05

k First Rows
7 0 1 1 1 − 1 ; 1 0 0 1 0 0
8 1 1 − 1 02 ; 1 1 1 − 02
9 0 1 1 − 1 1 ; 1 0 1 − 0 −

10 0 1 1 1 − 1 ; 0 1 1 1 − 1
11 0 1 1 − 1 1 ; 1 − 1 1 1 1
12 1 1 1 1 − 1 ; − 1 1 1 − 1

a G. Awyzio [13] and T. Xia [250]

Remark 4.17. The question of which W (4n,k) can be constructed using two
negacyclic 0,±1 matrices of order 2n has yet to be resolved.

It is easy to see that there exist W (2n,k) constructed from 2 negacyclic
matrices of order n whenever there exist two 0, ±1 sequences of length n and
weight k with NPAF zero.

Using results obtained by Awyzio (private communication) and Tianbing
Xia (private communication) we conjecture:

Conjecture 4.5. Suppose n, n ≡ 2 (mod 4) and k, the sum of two squares, are
integers. Then there exists a W (2n,k) constructed via two negacyclic (0,1,−1)
matrices.

4.17.2 Applications

In Ang et al [8], 4-suitable negacyclic matrices are used to construct new
orthogonal bipolar spreading sequences for any length 4 (mod 8) where the
resultant sets of sequences possess very good autocorrelation properties that
make them amenable to synchronization requirements. In particular, their
aperiodic autocorrelation characteristics are very good.

It is well known, e.g. [222,249], that if the sequences have good aperiodic
cross-correlation properties, the transmission performance can be improved
for those CDMA systems where different propagation delays exist.
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Orthogonal bipolar sequences are of a great practical interest for the cur-
rent and future direct sequence (DS) code-division multiple-access (CDMA)
systems where the orthogonality principle can be used for channels sep-
aration, e.g. [8]. The most commonly used sets of bipolar sequences are
Walsh-Hadamard sequences [222], as they are easy to generate and simple to
implement. However, they exist only for sequence lengths which are an integer
power of 2, which can be a limiting factor in some applications. The overall
autocorrelation properties of the modified sequence sets are still significantly
better than those of Walsh-Hadamard sequences of comparable lengths.

4.17.3 Combinatorial Applications

For combinatorial applications see [21,22,89,117,121].
We also see from papers [100,102,104,105] that OD’s in orders 24, 40, 48,

56, 80, that had proved difficult to constructed using circulant matrices were
found using negacyclic matrices.
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