
Chapter 2
Some Algebraic and Combinatorial
Non-existence Results

In this chapter we intend to explain some easily obtained non-existence
theorems for orthogonal designs. Many of these results will be generalized in
later chapters, but we feel that these simpler special cases will give the reader
an idea as to how the subject developed and what sorts of propositions might
be expected.

2.1 Weighing Matrices

To help in the development, and because of independent interest, we make a
new definition.
Definition 2.1. A weighing matrix of weight k and order n is an n ×
n {0,1,−1} matrix A such that AA� = kIn. (Note: A�A = AA� = kIn).

Such matrices have already appeared naturally as the “coefficient” matrices
of an orthogonal design. (See Raghavarao [163] or [164] for why these are
called weighing matrices and why there is interest in them by statisticians.
See also J. Wallis [232].) We shall refer to such a matrix as a W (n,k).

Hadamard [95] showed that H(n) = W (n,n) only exist if n = 1,2, or ≡ 0
(mod 4). It is an easy exercise to show:
Proposition 2.1. In order that a W (n,n) exist, n = 1,2 or 4|n.

The proof uses, in an essential way, the fact that entries in an Hadamard
matrix are {±1}, and the statement would be false without that, since
(3I9)(3I9)� = 9I9, for example.

Now, when n is odd, ρ(n) = 1, and an orthogonal design on one variable is
nothing more than a weighing matrix.

We shall next attempt to find some necessary conditions on the type of an
orthogonal design in order n. We shall only consider a few special cases here:
namely, n odd and n = 2b, b odd. We shall come back to the general problem
later.

7© Springer International Publishing AG 2017
J. Seberry, Orthogonal Designs,
DOI 10.1007/978-3-319-59032-5_2



8 2 Non-existence Results

2.2 Odd Order

We have already seen that ρ(n) = 1, and we need only consider orthogonal
designs on one variable, that is, weighing matrices.

Proposition 2.1 already tells us something: If n is odd and a W (n,k) exists,
then k �= n.

Proposition 2.2. If X is a W (n,k), n odd, then k = a2 for some a ∈ Z.

Proof. More generally, if X is a matrix of odd order n with rational entries
and XX� = qIn, then q = r2 with r ∈ Q; for det(X)2 = q2 and since qn is
a square and n is odd, q is already a square. The proposition follows from
the observation that if an integer is the square of a rational number, it is the
square of an integer. �	

This proposition by itself does not to begin to tell the whole story in odd
order, as the following example shows:

Example 2.1. There is no W (5,4).

The property of being a weighing matrix is unaffected by row (or column)
permutations. Multiplications of a row (or column) by −1 also does not affect
the property of being a weighing matrix. Thus, there is no loss in generality if
we assume a W (5,4) has first row [11110]. The inner product of rows 1 and
2 of our matrix is zero, and so there are an even number of non-zero entries
under the 1’s of the first row. There must, then, be a zero in the second row,
last column. This then allows only three non-zero entries in the last column;
a contradiction.

This example can be generalized.

Proposition 2.3. If n is odd, then a necessary condition that a W (n,k) exists
is that (n−k)2 − (n−k) ≥ n−1.

Proof. (We are indebted to P. Eades for this proof, which is much more
illuminating than the proof we gave in Geramita-Geramita-Wallis [77].)

We start with a preliminary observation: If M is an n × n {0,1} matrix
with exactly k non-zero entries in each row and column, and if we number
the rows of M by r1, . . . , rn, then, for any 1 ≤ j ≤ n,

n∑
i=1
i �=j

ri · rj = k2 −k (2.1)

To see this let J be the n × n matrix of ones. Then MJ = kJ = M�J , and
hence MM�J = k2J , and so
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n∑
i=1

ri · rj = k2

Since rj · rj = k, equation (2.1) is then clear.
To see the relevance of this observation, suppose n is odd and W is a

W (n,k), and set X = W ∗W . Then X is a {0,1}-matrix with exactly k non-
zero entries in every row and column. An additional fact about X is that the
inner product of any two of its rows is even.

Let Y = J −X, and note that Y has exactly n−k non-zero entries in every
row and column and, since n is odd, the inner product of any pair of rows of
Y is odd and so ≥ 1.

Applying our preliminary observation to Y , we obtain (n−k)2 − (n−k) ≥
n−1, as was to be shown. �	
Remark 2.1. We conclude that W (5,4), W (11,9), W (19,16), W (29,25),
W (41,36), and so on, do not exist. This remark does not exclude W (7,4),
W (13,9), W (31,25), . . . ,W (111,100), among others.

This proposition is far from the last word on non-existence, as the following
example shows:

Example 2.2. There is no W (9,4). (This proof is due to J. Verner.)(Note that
here we do have (n−k)2 − (n−k) = 52 −5 = 20 > 8 = n−1).

We now consider W (2t+1, t) for integers t ≥ 2. We see that

(n−k)2 − (n−k) = (t+1)2 − (t+1) = t2 + t ≥ 2t = n−1

but using Verner’s method we have

Lemma 2.1. There does not exist a W = W (2t +1, t) for t > 2 (although a
W (2t+1, t) satisfies the known necessary conditions for t

Proof. We use ‘e’ to denote an even number of elements and ‘o’ to denote
an odd number of elements. We notice that orthogonality requires that an
even number of non-zero elements overlap in any pair of rows. We use ‘x’ to
denote a non-zero element.

We permute the rows and columns of W until the first row has its first
k elements +1. We permute the columns so the second row has non-zero
elements first. Similarly and other row can be permuted so its first elements
are non-zero.

Let k be odd. Thus diagrammatically any three rows are
o︷ ︸︸ ︷

1 . . . . . . . . . . . . . . . . . 1
x . . . . . x 0 . . . . . 0
x. . .x︸ ︷︷ ︸

e

0 . . .0︸ ︷︷ ︸
e

x. . .x︸ ︷︷ ︸
e

0 . . .0︸ ︷︷ ︸
o

e︷ ︸︸ ︷
0 . . . . . . . . . . . . . . . . . 0
x . . . . . x 0 . . . . . 0
x. . .x︸ ︷︷ ︸

e

0 . . .0︸ ︷︷ ︸
e

x. . .x︸ ︷︷ ︸
o

0 . . .0︸ ︷︷ ︸
o

, a square).
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Thus it is always possible to force the last column to contain a zero. Again the
last column is all zeros which contradicts the definition of a weighing matrix.

Problem 2.1 (Research Problem). What other restrictions can be found
for the non-existence of W (n,k) k odd?

Let k be even. Thus diagrammatically any three rows are
e︷ ︸︸ ︷

1 . . . . . . . . . . . . . . . . . 1
x . . . . . x 0 . . . . . 0
x. . .x︸ ︷︷ ︸

e

0 . . .0︸ ︷︷ ︸
e

x. . .x︸ ︷︷ ︸
e

0 . . .0︸ ︷︷ ︸
e

o︷ ︸︸ ︷
0 . . . . . . . . . . . . . . . . . 0
x . . . . . x 0 . . . . . 0
x. . .x︸ ︷︷ ︸

e

0 . . .0︸ ︷︷ ︸
e

x. . .x︸ ︷︷ ︸
e

0 . . .0︸ ︷︷ ︸
o

Thus it is always possible to force the last column to contain a zero. Thus
the last column is all zeros which contradicts the definition of a weighing
matrix. �	

The “boundary” values of proposition 2.3 are of special interest, that is,
when n = (n − k)2 − (n − k) + 1. An inspection of the proof shows that if A
is a W (n,k) for such an n and k and if we set B = J −A∗A (where J is the
n×n matrix of 1’s), then BB� = (n−k −1)In +J ; that is B is the incidence
matrix of a projective plane of order n−k −1 (see Hall [97]).

Thus, for example, the existence of W (111,100) would imply the existence
of a projective plane of order 10. Lam showed the projective plane of order 10
does not exist [141]. We shall not go into projective planes here but will sum
up this discussion by stating:

Proposition 2.4. A W (m2 +m+1, m2) exists only if a projective plane of
order m exists.

It is worth mentioning now, and we shall prove in Section 4.4, that for those
m where it is currently known that a projective plane of order m exists, then
it is also known that a W (m2 + m +1, m2) also exists. It is hard to believe
that the additional structure in a weighing matrix will not make its existence
more difficult than the existence of a projective plane, yet there is no evidence
to the contrary. Clearly the existence problem for W (m2 + m + 1, m2) merits
considerable attention.

There is little more we can do to the non-existence problem for weighing
matrices of odd order, and so we shall leave that subject now. This last
tantalising connection between weighing matrices of odd order and projective
planes has made us wonder what other combinatorial structures may be
related to the non-boundary values of Proposition 2.3. This area is wide open
for further study.

We have seen that ρ(n) = 2 in this case, and so our investigation of
orthogonal designs in these orders must centre about one-variable designs
(that is, weighing matrices) and two-variable designs.
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For our first theorem in these orders, we shall need a classical theorem about
quadratic forms. The theorem can be stated for matrices without any reference
to quadratic forms, however, and since we intend to come back to quadratic
forms later, we shall for now just state the theorem in its unmotivated form.

Definition 2.2. Let R be any commutative ring with identity, and let A, B
be two n × n symmetric matrices with entries in R. We say that A and B
are congruent if there is an invertible matrix P , with entries in R, such that
PAP � = B.

Notation: If A is an n×n matrix over the ring R and B is an m×m matrix
over R, then A⊕B is the (n+m)× (n+m) matrix

[
A 0
0 B

]
where 0 stands for

the appropriate-sized matrix of zeros.

Theorem 2.1 (Witt Cancellation Theorem). Let F be a field of charac-
teristics �= 2, and let A and B be symmetric n × n matrices over F . Let X
be any symmetric matrix over F . If A⊕X is congruent to B ⊕X, then A is
congruent to B.

Proof. See Lam [142]. �	
We now apply this to orthogonal designs.

Theorem 2.2 (Raghavarao-van Lint-Seidel). Let n ≡ 2 (mod 4), and
let A be a rational matrix of order n with AA� = kIn, k ∈ Q. Then k =
q2

1 + q2
2 , q1, q2 ∈ Q.

Proof. (This theorem was first provided by Raghavarao in [163] and another
proof later given by van Lint-Seidel in [150]. The proof we give here is different
from both and is based on a suggestion of H. Ryser [171].)

It is a well known theorem of Lagrange that every rational number is the
sum of four squares of rational numbers, so let k = k2

1 +k2
2 +k2

3 +k2
4.

From the matrix

M =

⎡⎢⎢⎣
k1 k2 k3 k4

−k2 k1 −k4 k3
−k3 k4 k1 −k2
−k4 −k3 k2 k1

⎤⎥⎥⎦
It is easy to check that

MM� = kI4. (2.2)

The hypothesis of the theorem asserts that

AA� = kIn. (2.3)

Thus, from (2.2) we obtain that I4 is congruent to kI4 over Q and from (2.3)
that In is congruent to kIn over Q.

By Witt’s Cancellation Theorem, applied n−2
4 times, and the fact that the

n ≡ 2 (mod 4), we obtain I2 is congruent to kI2 over Q; that is, there is a
2×2 rational matrix B such that BB� = kI2. From this it is obvious that k
is a sum of two squares in Q. �	
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Corollary 2.1. Let n ≡ 2 (mod 4). If X is

(b) an orthogonal design of type (s1, s2) in order n,

then each of k, s�,s2, s1 +s2 is a sum of two squares in Z.

Proof. (a) From the theorem we obtain that k is a sum of two squares
of rational numbers. It is a famous theorem of Fermat (see, for example,

n is a sum of two squares of integers if and only if whenever p is a prime
and p|d, then p = 2 or p = 1 (mod 4). It follows easily from this that if an
integer is the sum of two squares of rational numbers, then it is the sum of
two squares of integers.

(b) If X is OD(n;s1, s2), then X = A1x1 + A2x2. Then Ai is a W (n,si),
and setting x1 = x2 = 1 we find A1 + A2 is a W (n,s1 + s2). The result now
follows from (a). �	
Proposition 2.5. Let n ≡ 2 (mod 4), and let A be a rational matrix of order
n satisfying:

(i) A = −A�;
(ii) AA� = kIn.

Then k = r2, r ∈ Q.

Proof. Since AA� = kIn, we have det = (kn)1/2. For n ≡ 2 (mod 4), n
2 = s is

odd. Now, since A is skew symmetric, det = q2 where q = Pfaffian of A (see
Artin [12]). Thus, q2 = ks, and since s is odd, k = r2 for some r ≡ Q. �	
Corollary 2.2. If n ≡ 2 (mod 4) and X is an OD(n;s1,s2), then s1s2 is a
square in Z.

Proof. Let
X = A1x1 +A2x2 ;

then AiA
�
i = siIn and A1A�

2 +A2A�
1 = 0.

Let
B1 = 1

s1
A�

1 A1 , B2 = 1
s1

A�
1 A2 .

Then B1 = In and B1B�
2 +B2B�

1 = 0; that is, B2 = −B�
2 . Also, B2B�

2 = s2
s1

In.
Thus, by the proposition, s2

s1
is a square in Q; but then so is s2

1( s2
s1

) = s1s2.
However, if an integer is the square of a rational number, it is the square of
an integer. �	

So far, all the conditions that we have found necessary for the existence
of an orthogonal design in order n ≡ 2 (mod 4) have not depended on the
fact that the matrices we want should have entries {0,1,−1}. In fact, we have
proven half of the following:

(a) a W (n,k) or

Samuel [172]) that if n is an integer and n= c2d d square-free (c,d ∈ Z), then
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Theorem 2.3. Let n ≡ 2 (mod 4). A necessary and sufficient condition that
there exist two rational matrices A and B of order n such that AA� = q1In,
BB� = q2In, and AB� +BA� = 0 is that q1, q2 each be a sum of two squares
in Q and that q1q2 be a square in Q.

Proof. We have already seen the necessity of three conditions, and so it
remains only to show that they are sufficient.

Write q1 = r2
1u, q2 = r2

2v where r1, r2 ∈ Q u, v ∈ Z, and u and v are square-
free. Since q1q2 is a square, we obtain u = v. Since q1 and q2 are each a sum
of two squares, we find that u = v = s2 + t2. Now q1 = (r1s)2 + (r1t)2 and
q2 = (r2s)2 +(r2t)2.

Let
A1=

[
r1s r1t

−r1t r1s

]
, B1 =

[−r2t r2s
−r2s −r2t

]
;

then if n = 2m, m odd, one easily checks that A = A1 ⊗ Im, B = B1 ⊗ Im are
the required matrices. �	

We can get one additional fact from knowing that in an orthogonal design
the coefficient matrices are special.

2.3 Algebraic Problem

Proposition 2.6. If n ≡ 2 (mod 4), (n > 2) and X is an OD(n;s1, . . . ,s�)
then s1 +s2 < n.

Proof. If s1 + s2 = n, then by setting the variables in the design equal to one,
we would obtain an Hadamard matrix, that is, a W (n,n). This contradicts
Proposition 2.1. �	

This last proposition says, for example, that there is no OD(10;1,9),
although the existence of such an orthogonal design would not contradict
Corollary 2.1 or Corollary 2.2.

2.4 Orthogonal Designs’ Algebraic Problem

It has already become apparent that two separate kinds of theorem are being
proved. If we glance back at the statement of Proposition 2.1, we see that
the existence of an OD(n;s1, . . . ,s�) depended on finding a collection of �
matrices, A1, . . . ,A�, satisfying two rather different types of conditions, which
we shall label combinatorial and algebraic; namely,{

combinatorial
conditions

}
↔

{
(0) theAi are{0,1,−1}matrices, 1 ≤ i ≤ �
(i) Ai ∗Aj = 0, 1 ≤ i �= �;
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algebraic
conditions

}
↔

{
(ii) AiA

�
i = siIn, 1 ≤ i ≤ �

(iii) AiA
�
j +AjA�

i = 0, 1 ≤ i �= j ≤ �.

When we looked at an orthogonal design in odd order (that is, a weighing
matrix), the algebraic conditions yielded the simple statement that the weight
had to be a square integer, while the combinatorial condition, in this case only
(0), turned out to be the more mystifying and to have the deeper significance
(re: the connection with finite projective planes).

In orders n ≡ 2 (mod 4) the algebraic conditions are somewhat more
substantial, and the only general combinatorial fact we know to date arose
from the simple result that (apart from order 2) a Hadamard matrix can only
exist in orders divisible by 4. In Geramita-Verner [82], by a rather tedious
and un-instructive argument, it is shown that there is no OD(18;1,16). This
fact is not covered by any general theorem and appears to us to be but the
tip of an iceberg, indicating what promises to be a rich source of possible
combinatorial relations. The entire question of what combinatorial facts
prohibit the existence of orthogonal designs in these orders ≡ 2 (mod 4) is
virtually untouched.

Theorem 2.3, however, opens up the possibility that the algebraic part of
the problem may be tractable. This turns out to be the case and will occupy
much of our efforts.

We state the algebraic problem after a definition.

Definition 2.3. A rational family of order n and type [s1, . . . ,s�], where the
si are positive rational numbers, is a collection of � rational matrices of order
n,A1, . . . ,A�, satisfying:

(a) AiA
�
i = siIn, 1 ≤ i ≤ �;

(b) AiA
�
j +AjA�

i = 0, 1 ≤ i �= j ≤ �.

Algebraic Problem: Find necessary and sufficient conditions on n and
s1, . . . ,s� in order that there exists a rational family of order n and type
(s1, . . . ,s�).

Clearly, an orthogonal design gives rise to a rational family, but the con-
verse is obviously not true. Nonetheless, if one wants to know if there is an
OD(n;s1, . . . ,s�) and one has proved there can be no rational family in order
n of type [s1, . . . ,s�], then ones knows there can be no orthogonal design of
that order and type.

We may, in fact, rephrase many of the results so far proved for orthogonal
designs in terms of rational families. For example, we have proved:

Proposition 2.7. A rational family in order n cannot consist of more than
ρ(n) members; furthermore, there are rational families in order n consisting
of � members for every � ≤ ρ(n).

Proof. Examine the discussion after Proposition 1.1 and the proof of Theorem
1.1. �	
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We have also shown:

Proposition 2.8. A necessary and sufficient condition that there exists a
rational family of

(a) type [s] in order n, if n is odd, is that s be a square in Q.
(b) type [s] in order n, if n ≡ 2 (mod 4), is that s be a sum of two squares in

Q;
(c) type [s1,s2] in order n, if n ≡ 2 (mod 4), is that s1s2 each be a sum of

two squares in Q and s1s2 be a square in Q.

We shall pursue this algebraic problem in greater depth in the next chapter.
For now we shall concentrate on trying to find other combinatorial facts about
orthogonal designs.

2.5 Geramita-Verner Theorem Consequences

The major combinatorial result so far found is motivated by the following
theorem.

Theorem 2.4 (Delsarte-Goethals-Seidel [39]). Let A be a W (n,n − 1)
with the rows reordered so that the diagonal consists of zeros.

(a) If n ≡ 2 (mod 4), then multiplication by −1 of rows (or columns) of A as
necessary yields a matrix Ā with Ā = Ā�.

(b) If n ≡ 0 (mod 4), then multiplication by −1 of rows (or columns) of A as
necessary yields a matrix Ā with Ā = −Ā�.

Proof. See Delsarte-Goethals-Seidel [39]. �	
This result may be generalized to orthogonal designs as follows.

Theorem 2.5 (A. Geramita-J. Verner [82]). Let X be OD(n;s1, . . . ,s�)
with

∑�
i=1 si = n−1.

(a) If n ≡ 2 (mod 4), there is an OD(n;s1, . . . ,s�) where X̄ has zero-diagonal
and X̄ = X̄�.

(b) If n ≡ 0 (mod 4), there is an OD(n;s1, . . . ,s�) where X̄ has zero-diagonal
and X̄ = −X̄�.

Proof. If necessary, reorder the rows (or columns) so that the orthogonal
design X has 0-diagonal. In this form if x1 (say) occurs in position (i, j), i < j,
then position (j,i) contains ±x1.

For suppose not, and assume, without loss of generality, that position (j,i)
contains ±x2. Consider the various incidences between the i-th and j-th rows.
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Count all occurrences of
(±x1

±x1

)
, and assume there are t1 of these; similarly,

assume there are a total of t2 occurrences of
(±x1

±x2

)
and

(±x2
±x1

)
and a total of

t3 occurrences of
(±x1

±xk

)
and

(±xk±x1

)
, k �= 1, 2.

Since rows i and j are orthogonal it follows that each of t1, t2 and t3 must
be even.

Observe also that these incidences account for all but one of the x�’s in
rows i and j, namely, that occurring as

(x1
0

)
.

Thus, 2t1 + t2 + t3 = 2s� −1, and this is a contradiction. �	
Now suppose n ≡ 2 (mod 4), and multiply rows and columns of the or-

thogonal design by −1, as necessary, so that each variable in the first row
and column appears with coefficient = +1. Call the resulting matrix X̄, and
replace every variable in it by +1 to obtain the W (n,n−1),⎡⎢⎢⎢⎢⎣

0 1 . . . 1

1
. . . ∗

... ∗ . . .
1 0

⎤⎥⎥⎥⎥⎦
By Theorem 2.4 part (a), multiplication of appropriate rows and columns

of this matrix by −1 will make it symmetric. However, as the first row and
column are already symmetric, it follows that the entire matrix is symmetric.
Hence, X̄ = X̄�, as was to be shown.

For n ≡ 0 (mod 4), multiply the rows and columns of X so that each
variable in the first row appears with coefficient = +1 and each variable in
the first column appears with coefficient = −1. Call the resulting matrix X̄,
and set each variable = +1. The argument above, with Theorem 2.4 part (b)
implies X̄ = −X̄�.

Corollary 2.3. Let n ≡ 0 (mod 4). There is an OD(n;s1, . . . ,s�) with∑�
i=1 si = n−1 if and only if there is an OD(n;1,s1, . . . ,s�) with 1+

∑�
i=1 si =

n.

Proof. The sufficiency is evident.
To establish the necessity, one observes that in view of Theorem 2.5 part(b)

if there is an orthogonal design of the type described, then there is one X̄
where X̄ = −X̄� on the variables x1,x2, . . . ,x�. It is then easily verified that
Y = yI + X̄ is an OD(n;1,s1,s2, . . . ,s�). �	
Corollary 2.4. If n �= 1,2,4,8, then there is a ρ(n)-tuple, (s1, . . . ,sρ(n)) with
si > 0 and

∑ρ(n)
i=1 si ≤ n which is not the type of an orthogonal design of order

n.

Proof. If n is odd, n > 1, there is no W (n,2) since 2 is not a square.
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If n ≡ 2 (mod 4),n > 2, there is no orthogonal design of type (1,2) in order
n, by Corollary 2.2.

So let n ≡ 0 (mod 4),n �= 4,8. In this case n−ρ(n) > 0. So we may consider
the ρ(n)-tuple (1,1, . . . ,n−ρ(n). The sum of the entries in this tuple is n−1,
and so by Corollary 2.3 there is an orthogonal design on ρ(n)+1 variables.
This contradicts Theorem 1.3 part (a). �	

The full strength of Corollary 2.4 will best be realised after the algebraic
question of orthogonal designs is dealt with in greater depth. We come back
to this theorem again at the end of the next chapter.
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