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Preface

Problems concerned with the structure and existence of various kinds of
matrices with elements from 0,1,-1, for example, Hadamard matrices and their
generalization to weighing matrices, have long been of interest to workers in
combinatorics and also applied statisticians, coding theorists, signal processors
and other applied mathematicians. A first volume, “Orthogonal Designs:
quadratic forms and Hadamard matrices” (Ed 1), was written jointly by
Anthony V. Geramita and Jennifer Seberry and published by Marcel Dekker
in 1979, but never reprinted. This 1979 volume, devoted to a ground-breaking
approach, illuminated the connections between these various kinds of matrices
and exposed new connections with several other areas of mathematics. The
current volume, “Orthogonal Designs: Hadamard matrices, quadratic forms
and algebras”, is the revision and update of the initial volume created using
research theses and papers written in the intervening years. This more recent
research has led to new ideas for many areas of mathematics, signal processing
and non-deterministic computer programming in computational mathematics.
These approaches are through the investigation of orthogonal designs: roughly
speaking, special matrices with indeterminate entries.

Originally this subject had been discussed in our research papers and those
of our colleagues and students. The discovery of the intimate relationship
between orthogonal designs and rational quadratic forms had not appeared
in print before 1973. The finding of numerous constructions and interesting
objects that appeared fundamental to the study of Hadamard matrices (and
their generalizations) finally prompted Geramita and Seberry to look afresh
at the work that had already appeared. They recast their work and their
collaborators and students in the light of their new discoveries. This present
updated and new work continues the previous book and introduces more
recent material by collaborators, colleagues and students. It leads to new
algebras, techniques and existence results.

As will be clear in the text, orthogonal designs is a heavy “borrower” of
mathematics. The reader will find us using results from, for example, algebraic
number theory, quadratic forms, difference sets, representation theory, coding
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theory, finite geometry, elementary number theory, cyclotomy, the theory of
computation and signal processing. The reader is not expected to be conversant
with all these areas; the material is presented in such a way that even the
novice to these areas will understand why and how we intend to use the
results stated, even if the proofs in some cases remain a mystery. In those
cases where detailed explanation would take too long, references are given so
the interested reader can fill out their background. Thus the original volume
and this volume can be profitably read both by experts and by people new to
this area of discrete mathematics and combinatorics.

To dispel any notion that this book closes the area for further research,
many problems are highlighted, all unsolved, and directions in which further
research is possible are suggested. These problems vary in depth: some are
seemingly very simple, others are major.

Some comments on how this volume is organized: the organization is,
in part, directed by the Janus-like features of the study. In the first three
chapters, which largely remain untouched and are heavily underpinned by the
farsighted work of Anthony V. Geramita, the nature of the problem at hand is
described, and some remarks made on the ingredients of a solution. After some
preliminaries, a rather deep foray is made into the algebra side of the question.
In broad terms, the algebra there described allows us to identify the first set
of non-trivial necessary conditions on the problem of existence of orthogonal
designs. Chapter 4 concentrates, and with the necessary conditions as a guide,
on attempts to satisfy these conditions. Many different methods of construction
are described and analysed. Chapter 5 focusses on one of these construction
methods and analyses it in detail, both algebraically and combinatorially.
Here again, the interplay between classical algebra and combinatorics is shown
to have striking consequences. Chapter 6 deeply studies two construction
methods introduced but not analysed in the original book. The result is new
algebras which have been developed to encompass these combinatorial concepts.
Chapter 7 deviates to give some of the theory and existence results for areas of
number theory and discrete applied mathematics which have proved, over the
past forty to fifty years, to have been somewhat forgotten by those not studying
orthogonal designs. In Chapter 8 a very strong non-existence theorem for
orthogonal designs is proved. The “Asymptotic Hadamard Existence Theorem”
and related wonderful asymptotic consequences and questions, which are
central to Chapter 9, are due to a number of authors. Chapter 10 reminds
us that we have not finished with number theoretic consequences and other
combinatorial features of orthogonal designs by commencing the study of
non-real fields. Finally, in the Appendices, we tabulate numerous calculations
we have made in specific orders.
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Chapter 1
Orthogonal Designs

An orthogonal design of order n, type (s1, . . . ,s�), denoted, OD(n;s1, . . . ,s�),
si positive integers, is an n×n matrix X, with entries from 0,±x1, . . . ,±x�

(the xi commuting indeterminates) satisfying:

Alternatively, each row of X has si entries of the type ±xi and the rows
are orthogonal under the Euclidean inner product.

We may view X as a matrix with entries in the field of fractions of the
integral domain Z[x�, . . . ,x�], (Z the rational integers), and then if we let f =∑�

i=1 six
2
i , X is an inversible matrix with inverse 1

f X�. Thus, X�X = fIn,
and so our alternative description of the rows of X applies equally well to the
columns of X.

The task to which this text is addressed can be simply described as follows:
Find necessary and sufficient conditions on the set of integers n;s1, . . . ,s�

such that there exists an orthogonal design in order n of type (s1, . . . ,s�),
OD(n;s1, . . . ,s�).

The generality of the question is such that it includes many other problems
which have been extensively studied and provides an umbrella under which
these problems may be considered simultaneously. Also, in this generality
the connections between these classical combinatorial problems and some of
the great mathematics of the past century are illuminated. More particularly,
the general approach shows the close connection the combinatorial problems
studied have with the classification theorems of quadratic forms over Q, the
rational numbers. These classification theorems, largely the work of Minkowski,
are among the few complete mathematical triumphs of this century. The fact
that a partial solution to our general question is embedded in this beautiful
theory gives us hope that there will now continue a deeper investigation

1© Springer International Publishing AG 2017
J. Seberry, Orthogonal Designs,
DOI 10.1007/978-3-319-59032-5_1

XX> =
(∑̀
i=1

six
2
i

)
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2 1 Orthogonal Designs

of these combinatorial problems and the still unresolved problem of the
classification of quadratic forms over Z.

1.1 Generalities on Hurwitz-Radon families
to prove that there exist orthogonal designs
of type (1,1, . . . ,1)

If X is an OD(n;s1, . . . ,s�) on the indeterminates x1, . . . ,x�, we may write:

X = A1x1 + · · ·+A�x� (1.1)

where the Ai are 0,1,−1 matrices of size n×n. If we let A ∗B denote the
Hadamard product of the matrices A and B (the (i,j) entry of this product
is the product of the (i,j) entry of A with the (i,j) entry of B), then the fact
that the entries in X were linear monomials in the xi (or zero) gives us

(i) Ai ∗Aj = 0 if i �= j.
If we write out the fact that XX� =

∑�
i=1 six

2
i In, using (1.1), and com-

pare coefficients, we find that:
(ii) AiA

�
i = siIn 1 ≤ i ≤ �,

(iii) AiA
�
j +AjA�

i = 0, 1 ≤ i �= j ≤ �.

We can obviously reverse this procedure, and we state that precisely.

Proposition 1.1. A necessary and sufficient condition that there exists an
OD(n;s1, . . . ,s�), is that there exist matrices A1, . . . ,A�, satisfying:

(0) the Ai are 0,1,−1 matrices, 1 ≤ i ≤ �:
(i) Ai ∗Aj = 0 for 1 ≤ i �= j ≤ �:

(ii) AiA
�
i = siIn, 1 ≤ i ≤ �:

(iii) AiA
�
j +AjA�

i = 0, 1 ≤ i �= j ≤ �.

The first focus of our attack on the general problem concerns the maximum
number of distinct variables that can appear in an orthogonal design of order
n.

The last proposition shows that if the orthogonal design involves �− vari-
ables, we get a collection of � matrices, A1, . . . ,A� satisfying (0)–(iii). Form
the real matrices Bi = 1√

si
Ai. Then the Bi satisfy

(a) BiB
�
i = In, 1 ≤ i ≤ �,

(b) BiB
�
j +BjB�

i = 0, 1 ≤ i �= j ≤ �.

If we normalize the collection B1,B2, . . . ,B� by multiplying each member,
on the right, by B�

1 and let C� = B�B�
1 , then C1 = I and the remaining

C2, . . . ,C� are orthogonal, anti-commuting, skew-symmetric matrices, as is
easily checked.



1.1 Hurwitz-Radon families 3

The question: How many real orthogonal anti-commuting skew-symmetric
matrices there can be in order n is a question that was completely settled
in the early twentieth century by J. Radon [162]. Radon’s work (extending
earlier work by A. Hurwitz [111]) was centred around a proposition concerning
the composition of quadratic forms. The question Radon dealt with was given
n, find the maximal m so that

(x2
1 + · · ·+x2

n)(y2
1 + · · ·+y2

m) = f2
1 + · · ·+f2

n

where the fi are real bilinear functions of the xi and yj . We shall not go into
the connections between this problem and its relation to orthogonal matrices
here, but just shall be content to quote the relevant facts. For a discussion
of this Radon-Hurwitz problem, we suggest (Herstein [99], Curtis [38] or
Lam [142]).
For ease in exposition we make the following definition.
Definition 1.1. A family A1, . . . ,As of real orthogonal matrices of order n
satisfying:
(1) Ai = −A�

i , 1 ≤ i ≤ s,
(2) AiAj = −AjAi, 1 ≤ i �= j ≤ s,
will be called a Hurwitz-Radon family (H-R family).

Now if an n is a positive integer, write n = 2ab, b odd, and then set
a = 4c + d,0 ≤ d < 4. If we denote by ρ(n) the number 8c + 2d, the main
theorem of Radon [1] states:
Theorem 1.1. (1) Any H-R family of order n has fewer than ρ(n) members.
(2) There is an H-R family of order n having exactly ρ(n)−1 members.

We thus immediately have:
Corollary 1.1. The maximum number of variables in an orthogonal design
of order n is ≤ ρ(n).

Unfortunately, Radon’s theorem is not suitable, directly, for use with
Proposition 1.1 since we need 0,1,-1 matrices.

If, however, we look for integer H-R families, this will automatically give us
0,1,−1 matrices, since an integer orthogonal matrix can only have entries from
0,1,−1. The fact that (2) of Theorem 1.1 could be improved in this direction
was noted independently by Geramita-Pullman [78] and Gabel [62].

We need to make a few remarks about the function ρ(n). First observe
that when n = 2ab, b odd, then ρ(n) = ρ(2a). Let n1 = 24s+3, n2 = 24(s+1),
n3 = 24(s+1)+1, n4 = 24(s+1)+2 and n5 = 24(s+1)+3; then

ρ(n2) = ρ(n1)+1 ,

ρ(n3) = ρ(n1)+2 ,

ρ(n4) = ρ(n1)+4 ,

ρ(n5) = ρ(n1)+8 .



4 1 Orthogonal Designs

We shall assume that the reader is familiar with the elementary properties
of tensor products for matrices (see Marcus and Minc [151] or Kronecker).

Let A =
[

0 1
−1 0

]
P =

[
0 1
1 0

]
Q =

[
1 0
0 −1

]
.

Proposition 1.2. (a) {A} is an H-R family of ρ(2)−1 integer matrices of
order 2.

(b) {A⊗ I2,P ⊗A,Q⊗A} is an H-R family of ρ(4)−1 integer matrices of
order 4.

(c) {I2 ⊗A⊗ I2, I2 ⊗P ⊗A, Q⊗Q⊗A, P ⊗Q⊗A, A⊗P ⊗Q, A⊗P ⊗P ,
A⊗Q⊗ I2} is an H-R family of ρ(8)−1 integer matrices of order 8.

Proof. A tedious check using the symmetries of A,P,Q and I2 and the be-
haviour of these symmetries with respect to ⊗. �	
Theorem 1.2. There is an H-R family of integer matrices of order n having
ρ(n)−1 members.

Proof. The proposition above handles the cases n = 3t,4t,8t, t odd (just tensor
with It). The reader may easily verify that if {M,. . . ,Ms} is an H-R family
of integer matrices of order n, then
(1) A⊗ In∪Q⊗Mi | i = 1, . . . ,s is an H-R family of s+1 integer matrices of
order 2n.
If, in addition, {L1, . . . ,Lm} is an H-R family of integer matrices of order k,
then
(2) {P ⊗Ik ⊗Mi | 1≤ i≤ s}∪{Q⊗Lj ⊗In | 1≤ j ≤m}∪{A⊗Ink} is an H-R
family of s+m+1 integer matrices of order 2nk. �	

Let n1, . . . ,n5 be as before 1.2, and we may proceed by induction: Starting
with the fact that (c) in 1.2 gives us the case n� = 23. (Note that the nature
of ρ(n) allows us to only consider n = 2�).

Now (l) gives us the transition from n1 to n2; if we now use (2), letting
k = n1,n = 2 (and hence by (a) of 1.2, s = 1), we get the transition from n1
to n3. We then use (2) (this time with (b) and (c) of the Proposition) to get
the two remaining transitions n1 to n4, n1 to n5. That completes the proof.

To apply this theorem to orthogonal designs, we need one observation. If
A, B are two members of an integral H-R family, then A and B are each
{0,1,−1} matrices and A∗B = 0. The orthogonality of A (and B) and the fact
that the entries are integers shows immediately that A and B are {0,1,−1}
matrices with precisely one non-zero entry in each row and column. From the
anticommutativity of A and B it follows that (A+B)(A+B)� = 2I, and so
A+B has exactly two non-zero entries in each row and column, and hence
A∗B = 0. With the aid of 1.1, we sum this up by stating:

Theorem 1.3. Given any natural number n, then

(i) any orthogonal design in order n can involve at most ρ(n) variables;
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(ii) there is an orthogonal design in order n involving ρ(n) variables.

Proof. Only (b) requires a small comment. If A1, . . . ,Aρ(n)−1 is an integral
H-R family of order n then {In,A1, . . . ,Aρ(n)−1} is a family of matrices
satisfying the conditions of Proposition 1.1 and gives an orthogonal design of
type 1,1, . . . ,1︸ ︷︷ ︸

ρ(n)−tuple

in order n. �	

Thus, we have found the restrictions that must be placed on the number of
variables in an orthogonal design, and we may rephrase our original question:
Given n and � ≤ ρ(n), find necessary and sufficient conditions on {s1, . . . ,s�}
such that there exists an OD(n : s1, . . . ,s�).

Remark 1.1. In cases n = 2, or n = 4, they come from the usual representations
of the complex numbers and quaternions in 2×2 and 4×4 matrices respectively.
For n = 8 the matrices are derived from the usual method of describing the
multiplication table for the Cayley numbers (see, for example, Schafer [173]).



Chapter 2
Some Algebraic and Combinatorial
Non-existence Results

In this chapter we intend to explain some easily obtained non-existence
theorems for orthogonal designs. Many of these results will be generalized in
later chapters, but we feel that these simpler special cases will give the reader
an idea as to how the subject developed and what sorts of propositions might
be expected.

2.1 Weighing Matrices

To help in the development, and because of independent interest, we make a
new definition.
Definition 2.1. A weighing matrix of weight k and order n is an n ×
n {0,1,−1} matrix A such that AA� = kIn. (Note: A�A = AA� = kIn).

Such matrices have already appeared naturally as the “coefficient” matrices
of an orthogonal design. (See Raghavarao [163] or [164] for why these are
called weighing matrices and why there is interest in them by statisticians.
See also J. Wallis [232].) We shall refer to such a matrix as a W (n,k).

Hadamard [95] showed that H(n) = W (n,n) only exist if n = 1,2, or ≡ 0
(mod 4). It is an easy exercise to show:
Proposition 2.1. In order that a W (n,n) exist, n = 1,2 or 4|n.

The proof uses, in an essential way, the fact that entries in an Hadamard
matrix are {±1}, and the statement would be false without that, since
(3I9)(3I9)� = 9I9, for example.

Now, when n is odd, ρ(n) = 1, and an orthogonal design on one variable is
nothing more than a weighing matrix.

We shall next attempt to find some necessary conditions on the type of an
orthogonal design in order n. We shall only consider a few special cases here:
namely, n odd and n = 2b, b odd. We shall come back to the general problem
later.

7© Springer International Publishing AG 2017
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2.2 Odd Order

We have already seen that ρ(n) = 1, and we need only consider orthogonal
designs on one variable, that is, weighing matrices.

Proposition 2.1 already tells us something: If n is odd and a W (n,k) exists,
then k �= n.

Proposition 2.2. If X is a W (n,k), n odd, then k = a2 for some a ∈ Z.

Proof. More generally, if X is a matrix of odd order n with rational entries
and XX� = qIn, then q = r2 with r ∈ Q; for det(X)2 = q2 and since qn is
a square and n is odd, q is already a square. The proposition follows from
the observation that if an integer is the square of a rational number, it is the
square of an integer. �	

This proposition by itself does not to begin to tell the whole story in odd
order, as the following example shows:

Example 2.1. There is no W (5,4).

The property of being a weighing matrix is unaffected by row (or column)
permutations. Multiplications of a row (or column) by −1 also does not affect
the property of being a weighing matrix. Thus, there is no loss in generality if
we assume a W (5,4) has first row [11110]. The inner product of rows 1 and
2 of our matrix is zero, and so there are an even number of non-zero entries
under the 1’s of the first row. There must, then, be a zero in the second row,
last column. This then allows only three non-zero entries in the last column;
a contradiction.

This example can be generalized.

Proposition 2.3. If n is odd, then a necessary condition that a W (n,k) exists
is that (n−k)2− (n−k) ≥ n−1.

Proof. (We are indebted to P. Eades for this proof, which is much more
illuminating than the proof we gave in Geramita-Geramita-Wallis [77].)

We start with a preliminary observation: If M is an n×n {0,1} matrix
with exactly k non-zero entries in each row and column, and if we number
the rows of M by r1, . . . , rn, then, for any 1 ≤ j ≤ n,

n∑
i=1
i �=j

ri · rj = k2−k (2.1)

To see this let J be the n×n matrix of ones. Then MJ = kJ = M�J , and
hence MM�J = k2J , and so
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n∑
i=1

ri · rj = k2

Since rj · rj = k, equation (2.1) is then clear.
To see the relevance of this observation, suppose n is odd and W is a

W (n,k), and set X = W ∗W . Then X is a {0,1}-matrix with exactly k non-
zero entries in every row and column. An additional fact about X is that the
inner product of any two of its rows is even.

Let Y = J −X, and note that Y has exactly n−k non-zero entries in every
row and column and, since n is odd, the inner product of any pair of rows of
Y is odd and so ≥ 1.

Applying our preliminary observation to Y , we obtain (n−k)2− (n−k) ≥
n−1, as was to be shown. �	
Remark 2.1. We conclude that W (5,4), W (11,9), W (19,16), W (29,25),
W (41,36), and so on, do not exist. This remark does not exclude W (7,4),
W (13,9), W (31,25), . . . ,W (111,100), among others.

This proposition is far from the last word on non-existence, as the following
example shows:

Example 2.2. There is no W (9,4). (This proof is due to J. Verner.)(Note that
here we do have (n−k)2− (n−k) = 52−5 = 20 > 8 = n−1).

We now consider W (2t+1, t) for integers t ≥ 2. We see that

(n−k)2− (n−k) = (t+1)2− (t+1) = t2 + t ≥ 2t = n−1

but using Verner’s method we have

Lemma 2.1. There does not exist a W = W (2t +1, t) for t > 2 (although a
W (2t+1, t) satisfies the known necessary conditions for t

Proof. We use ‘e’ to denote an even number of elements and ‘o’ to denote
an odd number of elements. We notice that orthogonality requires that an
even number of non-zero elements overlap in any pair of rows. We use ‘x’ to
denote a non-zero element.

We permute the rows and columns of W until the first row has its first
k elements +1. We permute the columns so the second row has non-zero
elements first. Similarly and other row can be permuted so its first elements
are non-zero.

Let k be odd. Thus diagrammatically any three rows are
o︷ ︸︸ ︷

1 . . . . . . . . . . . . . . . . . 1
x . . . . . x 0 . . . . . 0
x. . .x︸ ︷︷ ︸

e

0 . . .0︸ ︷︷ ︸
e

x. . .x︸ ︷︷ ︸
e

0 . . .0︸ ︷︷ ︸
o

e︷ ︸︸ ︷
0 . . . . . . . . . . . . . . . . . 0
x . . . . . x 0 . . . . . 0
x. . .x︸ ︷︷ ︸

e

0 . . .0︸ ︷︷ ︸
e

x. . .x︸ ︷︷ ︸
o

0 . . .0︸ ︷︷ ︸
o

, a square).



10 2 Non-existence Results

Thus it is always possible to force the last column to contain a zero. Again the
last column is all zeros which contradicts the definition of a weighing matrix.

Problem 2.1 (Research Problem). What other restrictions can be found
for the non-existence of W (n,k) k odd?

Let k be even. Thus diagrammatically any three rows are
e︷ ︸︸ ︷

1 . . . . . . . . . . . . . . . . . 1
x . . . . . x 0 . . . . . 0
x. . .x︸ ︷︷ ︸

e

0 . . .0︸ ︷︷ ︸
e

x. . .x︸ ︷︷ ︸
e

0 . . .0︸ ︷︷ ︸
e

o︷ ︸︸ ︷
0 . . . . . . . . . . . . . . . . . 0
x . . . . . x 0 . . . . . 0
x. . .x︸ ︷︷ ︸

e

0 . . .0︸ ︷︷ ︸
e

x. . .x︸ ︷︷ ︸
e

0 . . .0︸ ︷︷ ︸
o

Thus it is always possible to force the last column to contain a zero. Thus
the last column is all zeros which contradicts the definition of a weighing
matrix. �	

The “boundary” values of proposition 2.3 are of special interest, that is,
when n = (n−k)2 − (n−k) + 1. An inspection of the proof shows that if A
is a W (n,k) for such an n and k and if we set B = J −A∗A (where J is the
n×n matrix of 1’s), then BB� = (n−k−1)In +J ; that is B is the incidence
matrix of a projective plane of order n−k−1 (see Hall [97]).

Thus, for example, the existence of W (111,100) would imply the existence
of a projective plane of order 10. Lam showed the projective plane of order 10
does not exist [141]. We shall not go into projective planes here but will sum
up this discussion by stating:

Proposition 2.4. A W (m2 +m+1, m2) exists only if a projective plane of
order m exists.

It is worth mentioning now, and we shall prove in Section 4.4, that for those
m where it is currently known that a projective plane of order m exists, then
it is also known that a W (m2 + m +1, m2) also exists. It is hard to believe
that the additional structure in a weighing matrix will not make its existence
more difficult than the existence of a projective plane, yet there is no evidence
to the contrary. Clearly the existence problem for W (m2 + m + 1, m2) merits
considerable attention.

There is little more we can do to the non-existence problem for weighing
matrices of odd order, and so we shall leave that subject now. This last
tantalising connection between weighing matrices of odd order and projective
planes has made us wonder what other combinatorial structures may be
related to the non-boundary values of Proposition 2.3. This area is wide open
for further study.

We have seen that ρ(n) = 2 in this case, and so our investigation of
orthogonal designs in these orders must centre about one-variable designs
(that is, weighing matrices) and two-variable designs.
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For our first theorem in these orders, we shall need a classical theorem about
quadratic forms. The theorem can be stated for matrices without any reference
to quadratic forms, however, and since we intend to come back to quadratic
forms later, we shall for now just state the theorem in its unmotivated form.

Definition 2.2. Let R be any commutative ring with identity, and let A, B
be two n×n symmetric matrices with entries in R. We say that A and B
are congruent if there is an invertible matrix P , with entries in R, such that
PAP � = B.

Notation: If A is an n×n matrix over the ring R and B is an m×m matrix
over R, then A⊕B is the (n+m)× (n+m) matrix

[
A 0
0 B

]
where 0 stands for

the appropriate-sized matrix of zeros.

Theorem 2.1 (Witt Cancellation Theorem). Let F be a field of charac-
teristics �= 2, and let A and B be symmetric n×n matrices over F . Let X
be any symmetric matrix over F . If A⊕X is congruent to B⊕X, then A is
congruent to B.

Proof. See Lam [142]. �	
We now apply this to orthogonal designs.

Theorem 2.2 (Raghavarao-van Lint-Seidel). Let n ≡ 2 (mod 4), and
let A be a rational matrix of order n with AA� = kIn, k ∈ Q. Then k =
q2

1 + q2
2 , q1, q2 ∈Q.

Proof. (This theorem was first provided by Raghavarao in [163] and another
proof later given by van Lint-Seidel in [150]. The proof we give here is different
from both and is based on a suggestion of H. Ryser [171].)

It is a well known theorem of Lagrange that every rational number is the
sum of four squares of rational numbers, so let k = k2

1 +k2
2 +k2

3 +k2
4.

From the matrix

M =

⎡⎢⎢⎣
k1 k2 k3 k4

−k2 k1 −k4 k3
−k3 k4 k1 −k2
−k4 −k3 k2 k1

⎤⎥⎥⎦
It is easy to check that

MM� = kI4. (2.2)

The hypothesis of the theorem asserts that

AA� = kIn. (2.3)

Thus, from (2.2) we obtain that I4 is congruent to kI4 over Q and from (2.3)
that In is congruent to kIn over Q.

By Witt’s Cancellation Theorem, applied n−2
4 times, and the fact that the

n ≡ 2 (mod 4), we obtain I2 is congruent to kI2 over Q; that is, there is a
2×2 rational matrix B such that BB� = kI2. From this it is obvious that k
is a sum of two squares in Q. �	
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Corollary 2.1. Let n ≡ 2 (mod 4). If X is

(b) an orthogonal design of type (s1, s2) in order n,

then each of k, s�,s2, s1 +s2 is a sum of two squares in Z.

Proof. (a) From the theorem we obtain that k is a sum of two squares
of rational numbers. It is a famous theorem of Fermat (see, for example,

n is a sum of two squares of integers if and only if whenever p is a prime
and p|d, then p = 2 or p = 1 (mod 4). It follows easily from this that if an
integer is the sum of two squares of rational numbers, then it is the sum of
two squares of integers.

(b) If X is OD(n;s1, s2), then X = A1x1 + A2x2. Then Ai is a W (n,si),
and setting x1 = x2 = 1 we find A1 + A2 is a W (n,s1 + s2). The result now
follows from (a). �	
Proposition 2.5. Let n≡ 2 (mod 4), and let A be a rational matrix of order
n satisfying:

(i) A = −A�;
(ii) AA� = kIn.

Then k = r2, r ∈ Q.

Proof. Since AA� = kIn, we have det = (kn)1/2. For n ≡ 2 (mod 4), n
2 = s is

odd. Now, since A is skew symmetric, det = q2 where q = Pfaffian of A (see
Artin [12]). Thus, q2 = ks, and since s is odd, k = r2 for some r ≡Q. �	
Corollary 2.2. If n ≡ 2 (mod 4) and X is an OD(n;s1,s2), then s1s2 is a
square in Z.

Proof. Let
X = A1x1 +A2x2 ;

then AiA
�
i = siIn and A1A�

2 +A2A�
1 = 0.

Let
B1 = 1

s1
A�

1 A1 , B2 = 1
s1

A�
1 A2 .

Then B1 = In and B1B�
2 +B2B�

1 = 0; that is, B2 =−B�
2 . Also, B2B�

2 = s2
s1

In.
Thus, by the proposition, s2

s1
is a square in Q; but then so is s2

1( s2
s1

) = s1s2.
However, if an integer is the square of a rational number, it is the square of
an integer. �	

So far, all the conditions that we have found necessary for the existence
of an orthogonal design in order n ≡ 2 (mod 4) have not depended on the
fact that the matrices we want should have entries {0,1,−1}. In fact, we have
proven half of the following:

(a) a W (n,k) or

Samuel [172]) that if n is an integer and n= c2d d square-free (c,d ∈ Z), then
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Theorem 2.3. Let n ≡ 2 (mod 4). A necessary and sufficient condition that
there exist two rational matrices A and B of order n such that AA� = q1In,
BB� = q2In, and AB� +BA� = 0 is that q1, q2 each be a sum of two squares
in Q and that q1q2 be a square in Q.

Proof. We have already seen the necessity of three conditions, and so it
remains only to show that they are sufficient.

Write q1 = r2
1u, q2 = r2

2v where r1, r2 ∈Q u, v ∈ Z, and u and v are square-
free. Since q1q2 is a square, we obtain u = v. Since q1 and q2 are each a sum
of two squares, we find that u = v = s2 + t2. Now q1 = (r1s)2 + (r1t)2 and
q2 = (r2s)2 +(r2t)2.

Let
A1=

[
r1s r1t

−r1t r1s

]
, B1 =

[−r2t r2s
−r2s −r2t

]
;

then if n = 2m, m odd, one easily checks that A = A1⊗ Im, B = B1⊗ Im are
the required matrices. �	

We can get one additional fact from knowing that in an orthogonal design
the coefficient matrices are special.

2.3 Algebraic Problem

Proposition 2.6. If n ≡ 2 (mod 4), (n > 2) and X is an OD(n;s1, . . . ,s�)
then s1 +s2 < n.

Proof. If s1 + s2 = n, then by setting the variables in the design equal to one,
we would obtain an Hadamard matrix, that is, a W (n,n). This contradicts
Proposition 2.1. �	

This last proposition says, for example, that there is no OD(10;1,9),
although the existence of such an orthogonal design would not contradict
Corollary 2.1 or Corollary 2.2.

2.4 Orthogonal Designs’ Algebraic Problem

It has already become apparent that two separate kinds of theorem are being
proved. If we glance back at the statement of Proposition 2.1, we see that
the existence of an OD(n;s1, . . . ,s�) depended on finding a collection of �
matrices, A1, . . . ,A�, satisfying two rather different types of conditions, which
we shall label combinatorial and algebraic; namely,{

combinatorial
conditions

}
↔

{
(0) theAi are{0,1,−1}matrices, 1 ≤ i ≤ �
(i) Ai ∗Aj = 0, 1 ≤ i �= �;



14 2 Non-existence Results{
algebraic
conditions

}
↔

{
(ii) AiA

�
i = siIn, 1 ≤ i ≤ �

(iii) AiA
�
j +AjA�

i = 0, 1 ≤ i �= j ≤ �.

When we looked at an orthogonal design in odd order (that is, a weighing
matrix), the algebraic conditions yielded the simple statement that the weight
had to be a square integer, while the combinatorial condition, in this case only
(0), turned out to be the more mystifying and to have the deeper significance
(re: the connection with finite projective planes).

In orders n ≡ 2 (mod 4) the algebraic conditions are somewhat more
substantial, and the only general combinatorial fact we know to date arose
from the simple result that (apart from order 2) a Hadamard matrix can only
exist in orders divisible by 4. In Geramita-Verner [82], by a rather tedious
and un-instructive argument, it is shown that there is no OD(18;1,16). This
fact is not covered by any general theorem and appears to us to be but the
tip of an iceberg, indicating what promises to be a rich source of possible
combinatorial relations. The entire question of what combinatorial facts
prohibit the existence of orthogonal designs in these orders ≡ 2 (mod 4) is
virtually untouched.

Theorem 2.3, however, opens up the possibility that the algebraic part of
the problem may be tractable. This turns out to be the case and will occupy
much of our efforts.

We state the algebraic problem after a definition.

Definition 2.3. A rational family of order n and type [s1, . . . ,s�], where the
si are positive rational numbers, is a collection of � rational matrices of order
n,A1, . . . ,A�, satisfying:

(a) AiA
�
i = siIn, 1 ≤ i ≤ �;

(b) AiA
�
j +AjA�

i = 0, 1 ≤ i �= j ≤ �.

Algebraic Problem: Find necessary and sufficient conditions on n and
s1, . . . ,s� in order that there exists a rational family of order n and type
(s1, . . . ,s�).

Clearly, an orthogonal design gives rise to a rational family, but the con-
verse is obviously not true. Nonetheless, if one wants to know if there is an
OD(n;s1, . . . ,s�) and one has proved there can be no rational family in order
n of type [s1, . . . ,s�], then ones knows there can be no orthogonal design of
that order and type.

We may, in fact, rephrase many of the results so far proved for orthogonal
designs in terms of rational families. For example, we have proved:

Proposition 2.7. A rational family in order n cannot consist of more than
ρ(n) members; furthermore, there are rational families in order n consisting
of � members for every � ≤ ρ(n).

Proof. Examine the discussion after Proposition 1.1 and the proof of Theorem
1.1. �	



2.5 Geramita-Verner Theorem Consequences 15

We have also shown:

Proposition 2.8. A necessary and sufficient condition that there exists a
rational family of

(a) type [s] in order n, if n is odd, is that s be a square in Q.
(b) type [s] in order n, if n ≡ 2 (mod 4), is that s be a sum of two squares in

Q;
(c) type [s1,s2] in order n, if n ≡ 2 (mod 4), is that s1s2 each be a sum of

two squares in Q and s1s2 be a square in Q.

We shall pursue this algebraic problem in greater depth in the next chapter.
For now we shall concentrate on trying to find other combinatorial facts about
orthogonal designs.

2.5 Geramita-Verner Theorem Consequences

The major combinatorial result so far found is motivated by the following
theorem.

Theorem 2.4 (Delsarte-Goethals-Seidel [39]). Let A be a W (n,n− 1)
with the rows reordered so that the diagonal consists of zeros.

(a) If n ≡ 2 (mod 4), then multiplication by −1 of rows (or columns) of A as
necessary yields a matrix Ā with Ā = Ā�.

(b) If n ≡ 0 (mod 4), then multiplication by −1 of rows (or columns) of A as
necessary yields a matrix Ā with Ā = −Ā�.

Proof. See Delsarte-Goethals-Seidel [39]. �	
This result may be generalized to orthogonal designs as follows.

Theorem 2.5 (A. Geramita-J. Verner [82]). Let X be OD(n;s1, . . . ,s�)
with

∑�
i=1 si = n−1.

(a) If n ≡ 2 (mod 4), there is an OD(n;s1, . . . ,s�) where X̄ has zero-diagonal
and X̄ = X̄�.

(b) If n ≡ 0 (mod 4), there is an OD(n;s1, . . . ,s�) where X̄ has zero-diagonal
and X̄ = −X̄�.

Proof. If necessary, reorder the rows (or columns) so that the orthogonal
design X has 0-diagonal. In this form if x1 (say) occurs in position (i, j), i < j,
then position (j,i) contains ±x1.

For suppose not, and assume, without loss of generality, that position (j,i)
contains ±x2. Consider the various incidences between the i-th and j-th rows.
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Count all occurrences of
(±x1

±x1

)
, and assume there are t1 of these; similarly,

assume there are a total of t2 occurrences of
(±x1

±x2

)
and

(±x2
±x1

)
and a total of

t3 occurrences of
(±x1

±xk

)
and

(±xk±x1

)
, k �= 1, 2.

Since rows i and j are orthogonal it follows that each of t1, t2 and t3 must
be even.

Observe also that these incidences account for all but one of the x�’s in
rows i and j, namely, that occurring as

(x1
0
)
.

Thus, 2t1 + t2 + t3 = 2s�−1, and this is a contradiction. �	
Now suppose n ≡ 2 (mod 4), and multiply rows and columns of the or-

thogonal design by −1, as necessary, so that each variable in the first row
and column appears with coefficient = +1. Call the resulting matrix X̄, and
replace every variable in it by +1 to obtain the W (n,n−1),⎡⎢⎢⎢⎢⎣

0 1 . . . 1

1
. . . ∗

... ∗ . . .
1 0

⎤⎥⎥⎥⎥⎦
By Theorem 2.4 part (a), multiplication of appropriate rows and columns

of this matrix by −1 will make it symmetric. However, as the first row and
column are already symmetric, it follows that the entire matrix is symmetric.
Hence, X̄ = X̄�, as was to be shown.

For n ≡ 0 (mod 4), multiply the rows and columns of X so that each
variable in the first row appears with coefficient = +1 and each variable in
the first column appears with coefficient = −1. Call the resulting matrix X̄,
and set each variable = +1. The argument above, with Theorem 2.4 part (b)
implies X̄ = −X̄�.

Corollary 2.3. Let n ≡ 0 (mod 4). There is an OD(n;s1, . . . ,s�) with∑�
i=1 si = n−1 if and only if there is an OD(n;1,s1, . . . ,s�) with 1+

∑�
i=1 si =

n.

Proof. The sufficiency is evident.
To establish the necessity, one observes that in view of Theorem 2.5 part(b)

if there is an orthogonal design of the type described, then there is one X̄
where X̄ = −X̄� on the variables x1,x2, . . . ,x�. It is then easily verified that
Y = yI + X̄ is an OD(n;1,s1,s2, . . . ,s�). �	
Corollary 2.4. If n �= 1,2,4,8, then there is a ρ(n)-tuple, (s1, . . . ,sρ(n)) with
si > 0 and

∑ρ(n)
i=1 si ≤ n which is not the type of an orthogonal design of order

n.

Proof. If n is odd, n > 1, there is no W (n,2) since 2 is not a square.
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If n ≡ 2 (mod 4),n > 2, there is no orthogonal design of type (1,2) in order
n, by Corollary 2.2.

So let n≡ 0 (mod 4),n �= 4,8. In this case n−ρ(n) > 0. So we may consider
the ρ(n)-tuple (1,1, . . . ,n−ρ(n). The sum of the entries in this tuple is n−1,
and so by Corollary 2.3 there is an orthogonal design on ρ(n)+1 variables.
This contradicts Theorem 1.3 part (a). �	

The full strength of Corollary 2.4 will best be realised after the algebraic
question of orthogonal designs is dealt with in greater depth. We come back
to this theorem again at the end of the next chapter.



Chapter 3
Algebraic Theory of Orthogonal Designs

As we saw in the last chapter, it is possible to obtain some non-trivial necessary
conditions for the existence of orthogonal designs just by considering the
equations that the coefficient matrices of an orthogonal design must satisfy.
The ad-hoc procedures we give in the last chapter can, with difficulty, be
pursued further. However, these procedures quickly become inadequate. To
properly describe the solution to the “algebraic problem of orthogonal designs”,
it is necessary to discuss the theory of quadratic and bilinear forms. Only then
can the “algebraic problem” be put in proper perspective. It is possible to
highlight this theory fairly quickly, and we do that in this chapter. References
for all omitted proofs are included.

Following the general discussion of quadratic and bilinear spaces, we restrict

of a bilinear space in detail. It is in the study of similarities that the connections
with orthogonal designs is revealed.

The major source for this work is the Berkeley-thesis of Dan Shapiro [190]
and the papers Shapiro [192], [193], [194] and his subsequent unpublished
manuscript “Rational Spaces of Similarities”. Shapiro first pointed out the con-
nections between the problems we were studying and his work on similarities.
He subsequently solved the algebraic problem of orthogonal designs. Special
cases of the solution had first been given in Geramita-Geramita-Wallis [77],
Geramita-Wallis [81], and Wolfe [247], [248].

3.1 Generalities on Quadratic and Bilinear Forms

We recall here some elementary notion about quadratics and bilinear forms.
In addition to reminding the reader of these ideas, this introduction will serve
to establish the notation we shall use. Most proofs are omitted, and we refer
the reader to any of the following excellent sources for further information:
(Lam [142], Scharlau [174], O’Meara [159], Serre [189], Bourbaki [27]).

19© Springer International Publishing AG 2017
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ourselves to the field of rational numbers and develop the theory of similarities
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B : V ×V �→ k is called a bilinear form if, for every v ∈ V , the maps Bv : V �→ k
and vB : V �→ k, defined by Bv(x) = B(x,v) and vB(x) = B(v,x), are linear
maps. If, in addition, Bv =v B for all v ∈ V , then B is called a symmetric
bilinear form.

We shall be exclusively concerned with symmetric bilinear forms and so
shall usually drop the adjective “symmetric” when referring to them.

Definition 3.2. A function q : V �→ k is called a quadratic form on V if
(i) q(αv) = α2q(v), for all α ∈ k, vυV , and
(ii) the map from V ×V �→ k given by

(v1,v2) �→ q(v1 +v2)− q(v1)− q(v2)

is a (symmetric) bilinear form.

The pair (V,B) will be called a bilinear space, and the pair (V,q) will be
called a quadratic space. If k is a field of characteristic not equal to 2, these
two notions are intimately connected.

To see this, let (V,q) be a quadratic space, and define Bq : V ×V �→ k by
Bq(x,y) = (1

2 )(q(x + y)− q(x)− q(y)). Then Bq is a bilinear form on V by
definition of (V,q). Thus, to the quadratic space (V,q) we can make correspond
the bilinear space (V,Bq).

On the other hand, let (V,B) be a bilinear space, and define qB : V �→ k
by qB(x) = B(x,x). It is easy to see that qB is a quadratic form on V since
qB(αx) = B(αx,αx) = α2B(x,x) = α2qB(x) and the map from V ×V �→ k
given by (x,y) �→ qB(x+y)− qB(x)− qB(y) is a bilinear form.

It is not hard to show that these two processes are inverse to each other;
that is, given (V,B), form (V,qB) and then construct (V,BqB

).
Then (V,B) and (V,BqB

) are the same bilinear space; that is, B = BqB
.

To see this, observe that BqB
(x,y) = (1

2 )(qB(x+y)− qB(x)− qB(y)), where
qB(v) = B(v,v). Thus,

BqB
(x,y) =

(
1
2

)
[B(x+y,x+y)−B(x,x)−B(y,y)] = B(x,y).

On the other hand, starting with (V,q), form (V,Bq) and then (V,qBq ).
Then (V,q) and (V,qBq ) are the same quadratic space; that is, q = qBq . To
see this, note that

qBq (x) = Bq(x,x) =
(

1
2

)
(q(x+x)− q(x)− q(x)) = q(x).

We shall now assume characteristic not 2 and thus, in view of the corre-
spondence outlined above, freely interchange the notions of quadratic and
bilinear space.

Definition 3.1. Let k denote a field and V a vector space over k. A function
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3.2 The Matrix Formulation

Let V be a finite-dimensional vector space over k (say of dimension n), and
let {ei}, 1 ≤ i ≤ n, be a basis for V . If v ∈ V and

v =
n∑

i=1
αiei,

then we shall denote v by the column vector⎡⎢⎣α1
...

αn

⎤⎥⎦ = col(α1, . . . ,αn).

Definition 3.3. If B is a bilinear form on V , then we form the n × n
matrix A = (aij) as follows: aij = B(ei,ej). It is easy to check that if
x = col(α1, . . . ,αn),y = col(β1, . . . ,βn), then B(x,y) = x�Ay (“�” denotes
matrix transpose). We call A the matrix of the form B with respect to the
basis {ei}. (Note that A is a symmetric matrix.)

If (V,q) is a quadratic space, then the matrix of q with respect to the basis
{ei} is the matrix of Bq (as defined earlier) with respect to the basis {ei}.

On the other hand, if V is an n-dimensional vector space over k, with a
fixed basis {ei}, 1 ≤ i ≤ n, and A is any n×n symmetric matrix, then we
can define a bilinear form on V by means of A. Namely, if x = col(α1, . . . ,αn),
y = col(β1, . . . ,βn), x, y ∈ V , define a map from V ×V �→ k by (x,y) �→ x�Ay.
This is clearly a bilinear form on V , and its matrix with respect to the basis
{ei} is clearly A.

Thus, for a fixed basis of V the distinct bilinear forms on V are in one-to-one
correspondence with the n×n symmetric matrices.

If (V,B) is a bilinear space and {ei}, 1 ≤ i≤ n, and {e′
i}, 1 ≤ i≤ n, are two

sets of bases for V , it is natural to ask how the matrices of B with respect
to each of these bases are related. The formulation turns out to be relatively
simple.

Let P be the (invertible) n×n matrix whose i-th column expresses the
coordinates of ei with respect to the bases {ei}. Then, if v ∈ V and v =
col(α1, . . . ,αn) with respect to the basis {ei} then

P =

⎡⎢⎣α1
...

αn

⎤⎥⎦ =

⎡⎢⎣α′
1
...

α′
n

⎤⎥⎦
gives the coordinates of v with respect to the basis {ei}.

If we let A and A′ denote the matrices of B with respect to the bases {ei}
and {e′

i}, respectively, then it is easy to check that
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A = P �A′P (3.1)

Thus A and A′ are congruent (see Definition 2.2).
On the other hand, if (V,B) is a bilinear space whose matrix, with respect

to some basis, is X and if P is any invertible matrix, then Y = P �XP is also
the matrix of (V,B), but with respect to a different basis.

The notion of congruence is easily seen to be an equivalence relation on
the set of symmetric n×n matrices.

Definition 3.4. The bilinear space (V,B) is called non-degenerate if the map
from V �→ V ∗ (dual space) given by x �→ B (x,−) is an isomorphism of vector
spaces.

In matrix terms, (v,B) is non-degenerate if the matrix of B with respect
to any basis is invertible, as is easily shown. (In view of equation (3.1), if the
matrix of B with respect to the one basis is invertible, so is the matrix of B
with respect to any basis.)

3.3 Mapping Between Bilinear Spaces

Let (V1,B1) and V2,B2) be two bilinear spaces.

Definition 3.5. A linear transformation f : v1 �→ V2 is called a similarity
with similarity factor σ(f) ∈ k if for any pair of vectors u,w ∈ V1 we have

B2(f(u),f(w)) = σ(f)B1(u,w) .

In matrix terms, if we choose bases for V1 and V2, respectively, and, with
respect to these chosen bases, let A be the matrix for B1, A′ the matrix for
B2,and X the matrix for f , then

σ(f)A = X�A′X.

If σ(f) = 1, then f is usually called a linear morphism, and if in addition
V1 = V2, f is called a isometry.

If (V,B) is non-degenerate, then the isometries of (V,B) form a group under
composition which is called the orthogonal group of the bilinear space. Also,
the similarities of a non-degenerate bilinear space, with non-zero similarity
factors, form a group. We shall investigate this in more detail later.

Finally, if (V,B1) and (V,B2) are two non-degenerate bilinear spaces, then
(V,B1) is isometric to (V,B2) if and only if there is an isometry from (V,B1)
to (V,B2); equivalently, if and only if the matrices of B1 and B2, with respect
to any basis of V , are congruent.
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Thus the classification of non-degenerate bilinear spaces of dimension n
over a field k (up to isometry) is equivalent to classifying the congruence
classes of invertible n×n symmetric matrices over k.

We shall spend some time in understanding this classification over a few
fields. In general, such a classification involves a deep understanding of the
arithmetic structure of k.

3.4 New Spaces From Old

Let (V,B) be a bilinear space, and let W ⊂ V be a subspace. Then, since
B : W ×W �→ k is a bilinear map, we may consider (W,B) as a bilinear space
in this way. The inclusion map from W to V is then a linear morphism. In
the same way, if (V,q) is a quadratic space, then q |W : W �→ k is a quadratic
form on W and (W,q |W ) is a quadratic space.

Let (V1,B1) and (V2,B2) be two bilinear spaces.

Definition 3.6. Let V = V1 ⊕V2; we make V into a bilinear space as fol-
lows: Let x,y ∈ V, x = x1 ⊕x2, y = y1 ⊕y2, xi, yi ∈ Vi, and define B(x,y) =
B1(x1, y1) + B2x2, y2). It is easy to verify that (V,B) is a bilinear space,
and we call (V,B) the orthogonal sum of (V1,B1) and (V2,B2) and write
(V,B) = (V1,B1) ⊥ (V2,B2).

If (V,B) is any bilinear space, then way sat that x,y ∈ V are orthogonal if
B(x,y) = 0 and extend this definition to two subspaces V1,V2 of V if every
vector in V1 is orthogonal to every vector in V2. In the orthogonal sum the
subspaces that we can naturally identify with V1 and V2 are orthogonal.

Now suppose that (V,B) is a bilinear space and that (U,B) and (W,B) are
subspaces which are orthogonal and U +W = V . It is easy to see that:

Proposition 3.1. (V,B) and (U,B) ⊥ (W,B) are isometric bilinear spaces.

We may carry through this entire discussion for quadratic spaces by defin-
ing (V1, q1) ⊥ (V2, q2) = (V,q) by setting q(v1 + v2) = q1(v1) + q2(v2) where
vi ∈ Vi. It is routine to check that (V,q) is a quadratic space and that the
correspondence between bilinear and quadratic spaces respects orthogonal
sums.

In matrix terms: If we choose bases for V1 and V2 and let Ai be the matrix
for Bi with respect to this basis of Vi (i = 1,2), then, with respect to the basis
for V1⊕V2 obtained by taking the “union” of the two given bases, the matrix
of B (the orthogonal sum) is [

A1 0
0 A2

]
.

(Recall that this is the matrix we have denoted A1⊕A2).
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There is one further construction we need to consider. As before, let (V1,B1)
and (V2,B2) be two bilinear spaces and now set V = V1 ⊗V2. We make V
into a bilinear space by defining B : V ×V �→ k to be the unique bilinear map
satisfying: B(u1⊗u2, w1⊗w2) = B1(u1,w1)B2(u2,w2), where ui,wi ∈ Vi, and
call this space the product of (V1,B1) and (V2,B2).

In matrix terms: Let {ei}, 1 ≤ i ≤ n, be a basis for V1 and {fj}, 1 ≤ j ≤ m,
a basis for V2. Suppose A = (aij) is the matrix for B1 with respect to the
{ei} and C = (crs) is the matrix for B1 with respect to the {fj}. Then, if we
consider the ordered basis for V1⊗V2 to be

{e1⊗f1, . . . ,e1⊗fm, . . . ,en⊗f1, . . . ,en⊗fm},

the matrix for B with respect to this basis is⎡⎢⎣a11C a12C a1n
...

...
...

an1 . . . annC

⎤⎥⎦ .

In similar fashion we can define the tensor product of quadratic spaces in
such a way that the correspondence between bilinear and quadratic forms is
respected (see Lam [142] for a complete discussion).

3.5 Bilinear Spaces Classification Theorems

We have already seen that the classification (up to isometry) of non-degenerate
quadratic or bilinear spaces of dimension n over a field k is equivalent to
classifying equivalence classes (under congruence) of invertible symmetric
n×n matrices over k.

Let k∗ denote the non-zero elements of k, and (k∗)2 the subgroup of squares
of k∗. Then one invariant of a congruence class lies in the quotient group,
k∗/(k∗)2. More specifically:

Definition 3.7. If A is an invertible n×n matrix over k and detA = d, then
d̄ ∈ k∗/(k∗)2 is called the discriminant of A and denoted discA.

A major step toward the classification of bilinear spaces is the following:

Theorem 3.1. If A is an invertible symmetric n×n matrix, then A is con-
gruent to a diagonal matrix, diag(a1, . . . ,an).

Proof. See any of the references on quadratic forms mentioned at the beginning
of Definition 3.1. �	

Thus every congruence class contains at least one diagonal matrix. So the
problem of classifying quadratic spaces reduces to the question of when two
invertible diagonal matrices are congruent.
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Notation. In view of the previous theorem, we shall adopt the following
standard notation. Let (V,q) be a quadratic space, and suppose that with
respect to some basis for V the associated matrix is diag(a1, . . . ,an). We
shall refer to the quadratic space (or the isometry class of the quadratic
space) as 〈a1, . . . ,an〉 and drop the space V when no confusion (hope-
fully) can occur. If diag(a1, . . . ,an) is congruent to diag(b1, . . . , bn), then
〈a1, . . . ,an〉 = 〈b1, . . . , , bn〉 (and conversely).

Clearly 〈a1, . . . ,an〉 = 〈aσ(1), . . . ,aσ(n)〉 for any permutation σ, since, on the
matrix level, this just amounts to re-ordering the basis, which is an isometry.
Also, 〈a1s2

1, . . . ,ans2
n〉 = 〈a1, . . . ,an〉 for any si υ k∗.

This last observation has as immediate corollaries:

Theorem 3.2. If k is any algebraically closed field, then any two invertible
symmetric n×n matrices are congruent.

Proof. In an algebraically closed field everything is a square, so 〈a1, . . . ,an〉
= 〈1.b2

1, . . . ,1.b2
n〉 = 〈1, . . . ,1〉. Thus every non-degenerate bilinear space is

congruent to a fixed bilinear space of the same dimension. �	
Theorem 3.3. If k = R (the real numbers), then

〈a1, . . . ,an〉 = 〈1, . . . ,1︸ ︷︷ ︸
�

, −1, . . . ,−1︸ ︷︷ ︸
s

〉

for some 0 ≤ �, s ≤ n.

Proof. In R everything (�= 0) is either a square or the negative of a square. �	
Now if k = R and if an invertible symmetric n×n matrix A is congruent

to 〈1, . . . ,1︸ ︷︷ ︸
�

, −1, . . . ,−1︸ ︷︷ ︸
s

〉, we call the integer �−s the signature of A and write

sgn(A).

Theorem 3.4 (Sylvester’s Law of Inertia [204]). The signature of a real
symmetric invertible matrix A is well defined and is an invariant of the
congruence class containing A. Furthermore, if A and B are real symmetric
invertible n×n matrices, A is congruent to B if and only if sgn(A) = sgn(B).

3.6 Classification of Quadratic Forms Over Q

Let F be the field with p elements (p a prime). We shall describe a procedure
for deciding when an element of F is a square. We may as well assume p �= 2
since in any finite field of characteristic two, everything is a square.

Now F ∗ = F\{0} is a cyclic group of order p− 1 (which is even) and
hence has a unique subgroup of index 2 which consists of the squares of F ∗.
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Let the two-element group F ∗/(F ∗)2 be denoted by the group {1,-1} under
multiplication.

The map χ : F ∗ �→ {1,−1}, which is the natural map onto a quotient,
satisfies

χ(a) =
{

1 if a is a square in F ∗,
−1 if a is not a square in F ∗.

The map χ is usually denoted (p̄); that is, (p̄) (a) = χ(a) = (a
p ) and is called

the Legendre character.
We would like a way of calculating χ(a). The decisive procedures for such

a calculation is given by Gauss’s celebrated Law of Quadratic Reciprocity.

Theorem 3.5 (Gauss). Let p and q be distant primes, both different from
2. Then

(i)
(

p
q

)
=

(
q
p

)
.(−1)

( (p−1)
2

)
.
( (q−1)

2
)

reciprocity,

(ii)
(

−1
p

)
= (−1)(p2−1)/8 =

{
1 if p ≡±1 (mod 8),

−1 if p ≡±5 (mod 8),

(iii)
(

−1
p

)
=

{
1 if p ≡ 1 (mod 4),

−1 if p ≡ 3 (mod 4).

We illustrate how to use this theorem by an example.

Example 3.1. Is n = 23.3.7 a square in Z67? Let p = 67,n = 23.3.7. Find (n
p ).

Since the Legendre character is a group homomorphism, we have
(n/p) =

(
23/p

)
(3/p)(7/p).(

23/p
)

=
(
22/p

)
(2/p), 22 is clearly a square, mod p, so (23/p) = (2/p).

Since 67 ≡−5 (mod 8), (2/67) = −1.
Now

(3/67) = (67/3)(−1)33 = −(67/3) = −(1/3) = −1

and
(7/67) = (67/7)(−1)99 = −(67/7) = −(4/7) = −(22/7) = −1

therefore (n/67) = −1 and so n is not a square in Z67. �	
Let p be a prime integer, and let Qp denote the field of p-adic numbers. If

a, b ∈Qp, a, b �= 0, then the p-adic Hilbert symbol (a,b)p is defined by:

(a,b)p =
{

1 if there are p-adic numbers x,y, with ax2 + by2 = 1,
−1 otherwise.

The Hilbert symbols can be shown to have the following properties:

(i) (a,b)p = (b,a)p,(a,c2)p = 1;
(ii) (a,−a)p = 1 and (a,1−a)p = 1;
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(iii) (aa′, b)p = (a,b)p(a′, b)p (bilinearity);
(iv) (a,b)p = (a,−ab)p = (a,(1−a)b)p.

The importance of the Hilbert symbols is illustrated by the following theorem.

Theorem 3.6. Let 〈a1, . . . ,an〉 be a quadratic form over the field Qp, and let
sp(〈a1, . . . ,an〉) =

∏
i<j

(ai,aj)p; then

(1) sp(〈a1, . . . ,an〉) is an invariant of the quadratic form and is called the
Hasse-invariant at p;

(2) the non-degenerate quadratic forms 〈a1, . . . ,an〉 and 〈b1, . . . , bn〉 over Qp

are congruent (over Qp) if and only if they have the same discriminant
and the same Hasse-invariant.

We are now ready to state the crowning achievement of the theory.
If 〈a1, . . . ,an〉 is a quadratic form over Q, then it may be viewed as a

quadratic form over Qp for any prime p and over R, the real numbers. If
two quadratic forms over Q are congruent over Q, they are obviously also
congruent over Qp for ever p and over R. The amazing thing is that the reverse
is true.

Theorem 3.7 (Hasse-Minkowski). If 〈a1, . . . ,an〉 and 〈b1, . . . , bn〉 are non-
degenerate quadratic forms over Qp, then they are congruent over Q if and
only if they are congruent over Qp (for every p) and over R.

We have already seen how easy it is to decide congruence over R; we just
need to calculate the signature. All that is left to make this classification
theorem work is an algorithm for calculating the Hasse-invariants, that is, to
calculate the Hilbert symbols.

Suppose 〈a1, . . . ,an〉 is a quadratic form over Q; we can multiply each ai

by squares in Q and not change the congruence class of our form. Thus there
is no loss in assuming the ai are square-free integers.

Property (iii) of the Hilbert symbols implies that all we really need is a
way to calculate (r,s)p where r,s are ±1 or primes, and p is a prime. The
prime p = 2 will require special comment.

Theorem 3.8. Let p �= 2 be a prime. Then

(i) (r,s)p = 1 if r and s are relatively prime to p;
(ii) (r,p)p =

(
r
p

)
, the Legendre symbol, if r and p are relatively prime;

(iii) (p,p)p =
(

−1
p

)
.

Remarks. (iii) is easily derived from (ii) and the formal properties of the
Hilbert symbols; the major part of this theorem is (i)and (ii).

Note also that (i) has as a corollary the comforting fact in checking if
〈a1, . . . ,an〉 and 〈b1, . . . , bn〉 are congruent over Q, we need only check the
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Hasse-invariants at the finite collection of the primes that divide the a′
is and

b′
js.

We are left only with the calculation of (r,s)2. This is just a bit more
complicated to explain (see Serre [189], for example). But, for our purposes
this calculation will not be necessary. To see why, we first define (r,s)∞ by:

(r,s)∞ =
{

1 if there are real numbers x and y such that rx2 +sy2 = 1.
−1 otherwise.

Note that (r,s)∞ = 1 unless r and s are both negative.
With this definition we have:

Theorem 3.9 (Product Formula).∏
p prime

p=∞

(r,s)p = 1

for any r and s.

Corollary 3.1. ∏
p prime

p=∞

sp(〈a1, . . . ,an〉) = 1.

It follows from this that if two quadratic forms over Q have the same
discriminant and the same Hasse invariant at every prime p (including p = ∞)
except perhaps one, then they have the same Hasse invariant at the prime
also. Thus we may with impunity, ignore the prime p = 2.

We would like to show, by considering some examples, how easy it is to
use this criterion for any congruence over Q.

Example 3.2. (a) 〈1,1,5,5,〉 = 〈1,1,1,1〉 over Q

Proof. They have the same discriminant since 1.1.5.5 = 25 = 1.1.1.1
( mod (Q∗)2). Also both have the same signature and the same Hasse
invariant at ∞. The only other prime at which we need to check is p = 5.
Now s5(〈1,1,1,1〉) = 1, clearly, and

s5(1,1,5,5) = (1,1)5︸ ︷︷ ︸
=1

(1,5)5(1,5)5(1,5)5(1,5)5︸ ︷︷ ︸
[(1,5)5]4=1

(5,5)5

= (5,5)5 =
(−1

5

)
= 1 for 5 ≡ 1 (mod 4).

Therefore, the two quadratic forms are congruent over Q. �	
(b) 〈1,3,6,8〉 = 〈1,1,1,1〉 over Q.
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Proof. The only primes we need consider are 2,3,∞. The two forms have
the same discriminant and signature and the same Hasse-invariant at
p = ∞. By our remarks we can ignore p = 2 and just consider p = 3.
Now 〈1,3,6,8〉 = 〈1,3,6,2〉 by eliminating squares, and

s3(〈1,3,6,2〉) = (1,3)3(1,6)3(1,2)3(3,6)3(3,2)3(6,2)3.

Since 1 is a square,

s3(〈1,3,6,2〉) = (3,6)3(3,2)3(6,2)3.

Using bilinearity, we have

s3(〈1,3,6,2〉) = (3,2)3(3,3)3(3,2)3(3,2)3(2,2)3.

Since the Hilbert symbol only takes on the value ±1,

s3(〈1,3,6,2〉) = (3,2)3(3,3)3(2,2)3.

Now (2,2)3 = 1 since 2 and 3 are relatively prime. Also (3,3)3 = (−1
3 ) =−1

for 3 ≡ 3 (mod 4), and (3,2)3 = (2
3 ) = −1 for 3 ≡−5 (mod 8). Therefore,

s3(〈1,3,6,2〉) = 1.
Thus by the Corollary to the Product Formula, sp(〈1,3,6,2〉) = 1 for every
prime p (including p = 2), and so we are done. �	

(c) 〈1,2,7,14〉 �= 〈1,1,1,1〉.
Proof. Now sp(〈1,1,1,1〉) = 1 for every p (including p =∞), disc(〈1,1,1,1〉) = 1̄
and sgn(〈1,1,1,1〉) = 4. Now s∞(〈1,2,7,14〉) = 1, disc(〈1,2,7,14〉) = 1̄ and
sgn(〈1,2,7,14〉) = 4. The only primes we need check are p = 2,7 (and we
ignore 2).

Now s7(〈1,2,7,14〉) = (2,7)7(2,2)7(7,7)7 after some easy reductions.
But

(2,7)7 =
(2

7
)

= 1 for 7 ≡−1 (mod 8) ,

(2,2)7 = 1 since 2 and 7 are relatively prime,

and

(7,7)7 =
(−1

7
)

= −1 for 7 ≡ 3 (mod 4) .

Therefore

s7(〈1,2,7,14〉) = −1 �= (〈1,1,1,1〉.

Thus the two forms are not congruent over Q. �	
It is hoped that these few examples illustrate the power and ultimate

simplicity of the classification theory for quadratic forms over Q.
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3.7 The Similarities of a Bilinear Space

From now on our discussion will always assume that our field k is Q, the
rational numbers. This hypothesis is not necessary for most of what we say,
but it does avoid some difficulties, and it is the only field with which we are,
in this text, eventually concerned. The interested reader should consult D.
Shapiro’ s papers [192] and [193] for the general discussion.

Recall that if (V1, q1) and (V2, q2) are two non-degenerate quadratic spaces
with associated bilinear spaces (V1,B1) and (V2,B2), then the linear transfor-
mation f : V1 �→ V2 is a similarity with similarity factor σ(f) ∈Q if for any
x,y ∈ V1 we have B2(f(x),f(y)) = σ(f) . . .B1(x,y).

The set of all similarities of a fixed non-degenerate bilinear (quadratic)
space (V,B) will be abusively denoted Sim(V ) when there is no danger of
losing sight of the fact that B gives the underlying bilinear structure on V .
Clearly, Sim(V ) is closed under composition and scalar multiplication.

Define Sim∗(V ) = {f ∈ Sim(V ) |σ(f) �= 0}. Then it is easy to see that
Sim∗(V ) is a group under composition, and the map σ : Sim∗(V ) �→Q∗ by

σ : f �→ σ(f)

is a homomorphism of groups, and kerσ = O(V ), the orthogonal group of
(V,B)

Definition 3.8. The bilinear spaces (V1,B1) and (V2,B2) are similar if there
is a similarity f : V1 �→ V2 with σ(f) �= 0.

It is not, in general, true that the sum of two similarities of the bilinear
space (V,B) is again a similarity.

Example 3.3. Let V = Q2, and, with respect to the usual basis of Q2, assume
B has matrix I2. Let g : V �→ V be the identity map; then g is a similarity,
and σ(g) = 1.

Let f : V �→ V have matrix
[1 0

0 −1
]

with respect to the fixed basis. Then f
is a similarity; for if x = col(α1,α2), y = col(β1,β2), then f(x) = col(α1,−α2)
and f(y) = col(β1,−β2) and

B(x,y) = α1β1 +α2β2 = B(f(x),f(y)) = α1β1 +(−α2)(−β2).

Now f +g has matrix [2 0
0 0 ] and we leave it to the reader to check that this is

not a similarity.
The question as to when a subset of Sim(V ) is closed under addition is

of paramount importance in our investigation. We consider that question in
some detail in the next section.
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3.8 Linear Subspaces of Sim(V )

Let (V,B) be a fixed non-degenerate bilinear space, and let End(V ) be the
Q-algebra of all endomorphisms of V , that is, all Q-linear maps from V to V .

Definition 3.9. The adjoint map ∼: End(V ) �→ End(V ) is defined by: If
f ∈ End(V ), then f̃ is the unique map such that B(f(x),y) = B(x, f̃(y)), for
all x,y ∈ V .

In matrix terms, choose a basis for V , and let X be the matrix for B with
respect to this basis, A the matrix for f ; then ∼: A �→ X−1A�X = Ã. To see
this let x = col(α1, . . . ,αn), y = col(β1, . . . ,βn); then

B(f(x),y) = (Ax)�Xy

= x�A�Xy

= x� (
XX−1)A�Xy

= x�X
(

X−1A�Xy
)

= B
(
x, f̃ (y)

)
.

It is easy to check that ∼ is a Q-algebra anti-homomorphism; that is,

Proposition 3.2. In matrix terms,

(i) (Ã+C) = Ã+ C̃;
(ii) (α̃A) = αÃ and Ĩ = I;

(iii) (ÃC) = C̃Ã;
(iv) ˜̃A = A.

The adjoint map gives an easy way to identify similarities.

Proposition 3.3. Let (V,B) be a non-degenerate bilinear space and f ∈
End(V ). f is a similarity with similarity factor σ(f) = σ if and only if
f̃f = σ.1V (where 1V denotes the identity map of V ).

Proof. f is a similarity with similarity factor σ

<=> B(f(x),f(y)) = σ.B(x,y) for all x,y ∈ V ,

<=> B
(
x, f̃f(y)

)
= σ.B(x,y) for all x,y ∈ V .

Since B is non-degenerate, this last holds if and only if f̃f = σ.1V . �	

If σ �= 0, then f is invertible and f̃ =
( 1

σ f
)−1, and so ff̃ = σ1V also.

From this proposition we can see how the adjoint map also allows a method
for deciding when the sum of two elements of Sim(V ) is again in Sim(V ).
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Proposition 3.4. Let (V,B) be a non-degenerate bilinear space, and suppose
f,g ∈ Sim(V ). Then the following are equivalent:
(1) f +g ∈ Sim(V );
(2) αf +βg ∈ Sim(V ) for all α,β ∈Q;
(3) f̃g + g̃f = c1V for some c ∈Q.

Proof. (1) ⇔ (3). f +g ∈ Sim(V ) if and only if (̃f +g)(f +g) = d1V , where
d = σ(f +g) by Proposition 3.3.

Using Proposition 3.2, this in turn is equivalent to f̃f + g̃f + f̃g + g̃g = d1V

if and only if f̃g + g̃f = (d−σ(f)−σ(g))1V .
(2) ⇒ (1). Obvious
(1) and (3) ⇒ (2).

( ˜αf +βg)(αf +βg) = α2f̃f +αβf̃g +βαg̃f +β2g̃g

= α2σ(f)1V +αβc1V +β2σ(g)1V

=
(
α2σ(f)+αβc+β2σ(g)

)
1V ,

and so, by Proposition 3.3, αf +βg ∈ Sim(V ). �	
If, in addition, σ(f +g) �= 0, we could then add gf̃ +fg̃ = c1V to the list of

equivalences above.

Definition 3.10. If f,g ∈ Sim(V ) satisfy any of the equivalent conditions of
the preceding proposition, then we say that f and g are compatible similarities.

If f1, . . . .,fr ∈ Sim(V ) are mutually compatible similarities, then the entire
Q-linear span of the fi lie in Sim(V ), and we obtain a linear subspace of
Sim(V ).

Example 3.4. Let V be an n-dimensional vector space over Q with basis
{ei},1 ≤ i ≤ n, and suppose that with respect to this basis the matrix for the
bilinear form B on V is In. Then End(V ) is the set of n×n matrices over Q,
which we denote Mn(Q), and the adjoint map ∼: Mn(Q) �→Mn(Q) is nothing
more than ∼: A �→ A�; that is, Ã = A�.

Applying the last two propositions, we find that A is a similarity if and
only if A�A = dIn for some d ∈Q, and if A and B are similarities, A+B is a
similarity if and only if A�B +B�A = cI for some c ∈Q.

In this case, the only similarity with similarity factor equal to 0 is the
matrix of all zeros. So, if A and B are similarities and A+B is a similarity
and A+B �= 0, then BA� +AB� = cI also.

If we look back at the definition of a rational family (Definition 2.3), we
see that a rational family gives rise to a collection of mutually compatible
similarities of the bilinear space of this example.

Linear subspaces of Sim(V ) have a naturally defined quadratic structure
which relates to the quadratic structure on V . More precisely:
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Proposition 3.5. Let (V,B) be a non-degenerate bilinear space. The similar-
ity factor map σ : Sim(V ) �→Q is a quadratic form on any linear subspace of
Sim(V ).

Proof. Let S ⊆ Sim(V ) be a linear subspace. If f ∈ S and α∈Q then σ(αf) =
α2σ(f) is clear, and so it remains only to show that the map B : S×S �→Q
given by B(f,g) = σ(f +g)−σ(f)−σ(g), is bilinear. It obviously suffices to
show that

B(α1f1 +α2f2,g) = α1B(f1,g)+α2B(f2,g). (3.2)

We need to compute σ(α1f1 + α2f2 + g),σ(α1f1 + α2f2),σ(f1 + g) and
σ(f2 + g). We may use Propositions 3.3 and 3.4. Set f̃1g + g̃f1 = c11V , and
f̃1f2 + f̃2f1 = c31V ; then a simple computation shows:

σ(α1f1 +α2f2 +g) = α2
1σ(f1)+α2

2σ(f2)+σ(g)+α2c2 +α1c1 +α1α2c3,

σ(α1f1 +α2f2) = α2
1σ(f1)+α2

2σ(f2)+α1α2c3,

σ(f1 +g) = σ(f1)+σ(g)+ c1,

σ(f2 +g) = σ(f2)+σ(g)+ c2.

The verification of equation (3.2) is now complete after a routine further
calculation. �	

Thus (S,σ) is a quadratic space, and the associated bilinear space is (S,Bσ),
where Bσ : S×S �→Q is given by

Bσ(f,g) =
(

1
2

)
(σ(f +g)−σ(f)−σ(g)) .

Note that f̃g + g̃f = 2Bσ(f,g)1V for any f,g in a linear subspace of Sim(V ).
From now on, whenever we speak of a subspace of Sim(V ), we shall assume

it is a quadratic (or bilinear) space with the quadratic structure we have just
described.

Example 3.5. This is a continuation of Example 3.2. LetA1, . . . ,A� be a ratio-
nal family of type (s1, . . . ,s�) in order n. As we have already noted, A1, . . . ,A�

span a linear subspace of Sim(V ). We first observe that the subspace spanned
by these matrices has dimension equal to �. For suppose α1A1 + · · ·+α�A� = 0,
where ai ∈Q. Then we claim:

The ai are all equal to 0.

Proof. It will be enough to show a1 = 0. The claim then follows by induction
on �.

Since
α1A1 +α2A2 + · · ·+α�A� = 0, (3.3)

we may multiply (3.3) by A�
1 , on the left, to obtain
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α1A�
1 A1 +α2A�

1 A2 + · · ·+α�A�
1 A� = 0. (3.4)

By definition of a rational family, this is equal to

α1s1In−α2A�
2 A1−·· ·−α�A�

� A1 = 0 (3.5)

Now take the transpose of (3.2), and multiply the result on the right by A1
to get

α1s1In +α2A�
1 A1 + · · ·+α�A�

� A1 = 0 (3.6)

Adding (3.5) and (3.6) gives 2α1s1I1 = 0, and so 2α1s1 = 0. But since
s1 �= 0, we get a1 = 0, as claimed. �	

Now we have seen that this subspace of Sim(V ) has a quadratic structure.
The Ai are a basis for this subspace, and since AiA

�
j +AjA�

i = 0(i �= j) we
have that the Ai are mutually orthogonal

(f̃g + g̃f = 2Bσ)(f,g)1V , so Bσ(Ai,Aj) = 0

Furthermore, the Ai have similarity factors si, and thus we see that the
rational family gives rise to the quadratic space (S,q), where q = 〈s1, . . . ,s�〉,
and S is the subspace of Sim(V ) spanned (independently) by A1, . . . ,A�. Note
further that since the si > 0, this is a non-degenerate quadratic space and the
only 0-similarity is the zero matrix.

Since 0-similarities are troublesome in the general theory, we shall from
now on consider only linear subspaces S of Sim(V ) which are non-degenerate
quadratic spaces and whose only 0-similarity is the zero matrix. As the
example above shows, these are, in fact, the linear subspaces of Sim(V ) that
we are most interested in. (For the more general discussion, see Shapiro [192]).

So now let (V,B) be a non-degenerate bilinear space and (S,Bσ) a non-
degenerate subspace of Sim(V ) as specified above. How are these two spaces
related? The next proposition is crucial to our understanding (S,Bσ).

Proposition 3.6. Let (V,B) be a non-degenerate bilinear space of dimension
n, and (S,Bσ) a non-degenerate subspace of Sim(V ). Then (S,Bσ) is similar
to a subspace of (V,B).

Proof. Pick x∈ V with B(x,x) �= 0, and define φ : S �→ by φ(f) = f(x). Clearly
φ is a linear transformation from S to V , and since S is a non-degenerate
subspace of Sim(V ) in which the 0-map is the only 0-similarity, we have that
the only non-invertible similarity in S is the 0-map. Thus φ is one-to-one. If
we let W = {f(x) |f ∈ S} ⊆ V , then W is a subspace of V , and we want to
show that φ is a similarity between (S,Bφ) and (W,B).

Choose a basis for V , and let A denote the matrix of B with respect to this
basis. Let f,g ∈S, and suppose they have matrices X and Y , respectively, with
respect to the basis chosen for V . We have seen that f̃g + g̃f = 2Bσ(f,g)1V ,
so in matrix terms we have:
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A−1X�AY +A−1Y �AX = 2Bσ(f,g)In ;

that is,
X�AY = 2Bσ(f,g)A−Y �AX .

Now let x ∈ V be as above, and write x = col(α1, . . . ,αn) (with respect to
the chosen basis); then

x�(X�AY )x = 2Bσ(f,g)x�Ax−x�(Y �AX)x ;

that is,
B(f(x),g(x)) = 2Bσ(f,g)qB(x)−B(g(x),f(x)) .

Since B is symmetric, we have B(f(x),g(x)) = qB(x)Bσ(f,g). This proves
the proposition. �	

We obtained a bit more out of the proof than is stated in the proposition.
Not only do we have a similarity between the two spaces considered, we even
have a nice form for the similarity factor. In particular, if there were an x ∈ V
such that qB(x) = 1, we would have an isometry between (S,Bσ) and (W,B).
This fact is important enough to isolate, but first a definition.

Definition 3.11. Let (V,B) be a bilinear space and (V,qB) the associated
quadratic space. Let D equal the range of qB , qB : V �→ k. We say that qB

represents α ∈ k if α ∈ D.

This definition is a bit unorthodox since 0 always belongs to the range of qB .
It is more usual to say that qB represents 0 if there is a v �= 0 with qB(v) = 0.
This should cause no confusion, however, since if we say “qB represents 0”,
we shall mean in the non-trivial sense.

Corollary 3.2. Let (V,B) be a non-degenerate bilinear space and (S,Bσ)
a non-degenerate subspace of Sim(V ). If qB represents 1, then (S,Bσ) is
isometric to a subspace of (V,B).

Example 3.6. This is a continuation of Examples 3.4 and 3.5. In those examples,
qB = 〈1,1, . . . ,1〉, and qB , therefore, always represents 1. Thus the corollary
above applies to the examples. We state that fact separately.

Proposition 3.7. If there is a rational family of type [s1, . . . ,s�] in order
n, then there is a subspace (S,〈s1, . . . ,s�〉) of Sim(V ), and (S〈s1, . . . ,s�〉) is
isometric to a subspace of (V,〈1, 1, . . . ,1〉).
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3.9 Relations Between Rational Families in the Same
Order

In Proposition 2.8 we completely characterised rational families in odd orders
and in orders n ≡ 2 (mod 4). Thus our interest will be mainly in orders n
such that 4 | n.

In this case we can make a simplification of our problem which will be
useful later.

Proposition 3.8. Let n ≡ 0 (mod 4). There is a rational family of type
[s1, . . . ,s�] in order n if and only if there is a rational family of type[

1, s2
s1

, . . . , s�
s1

]
in order n.

Proof. Let A1, . . . ,A� be the rational family of type [s1, . . . ,s�] in order n. It
is easy to see that

1
s1

A�
1 A1,

1
s1

A�
1 A2, . . . ,

1
s1

A�
1 A�

is a rational family in order n of type[
1, s2

s1
, . . . , s�

s1

]
Conversely, let B1, . . . ,B� be the rational family in order n of type[

1, s2
s1

, . . . , s�
s1

]
It is easy to see that if X is a rational matrix of order n and XX� = s1In,
then XB1,XB2, . . . ,XB� is a rational family of type [s1, . . . ,s�] in order n. So
it suffices to construct such a matrix X.

By a theorem of Lagrange, every positive rational number is the sum of
four squares of rational numbers; so let s1 = q2

1 + q2
2 + q2

3 + q2
4 . Consider the

4×4 matrix

M =

⎡⎢⎢⎣
q1 q2 q3 q4

−q2 q1 −q4 q3
−q3 q4 q1 −q2
−q4 −q3 q2 −q1

⎤⎥⎥⎦
then MM� = s1I4. By hypothesis, 4 |n, and so n = 4u. If we let X = M ⊗ Iu,
then X is a matrix of the desired type. This completes the proof of the
proposition. �	

With this proposition proved we see that the study of rational families in
orders divisible by 4 is equivalent to the study of rational families of type
[1, . . .].
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But given a rational family in order n of type [1,s2, . . . ,s�], there is certainly
another rational family (maybe the one we already have) of the same order
and type for which the first matrix is the identity matrix.

Thus we may always assume we are dealing with a rational family in which
the first matrix is the identity.

3.10 Clifford Algebras

Let (V,q) be a quadratic space over the field k, and let A be a k−algebra
which contains V as a linear subspace. A is said to be compatible with q if
whenever x ∈ V,x2 = q(x).1.

Definition 3.12. An algebra C ⊃ (V,q) which is compatible with q is called
a Clifford Algebra for (V,q) if it has the following universal property: If
A⊃ V is compatible with q, then there is a unique k−algebra homomorphism
φ : C �→ A such that φ(x) = x for all x ∈ V .

The usual nonsense for universal objects shows that if the Clifford Algebra
exists, it is unique up to canonical isomorphism. Thus existence is the only
problem.

Clifford Algebras always exist, and their algebra structure has been exten-
sively studied. It would take us very far afield to go into these matters here.
We shall just be content to list a few properties and to refer the reader to an
excellent account of this subject in Lam [142].

Let (V,q) be a quadratic space over k where dimV < ∞, and let C(V ) be
its Clifford Algebra.

Theorem 3.10. (1) C(V ) is a finite-dimensional algebra over k and is gen-
erated by V .

(2) If dimk V = n, then dimk C(V ) = 2n.
(3) If dimk V is odd, then C(V ) is a semi-simple algebra (that is, a direct

sum of matrix rings over division rings containing k).
(4) If dimk V is even, then C(V ) is a simple algebra with centre k (that is, a

matrix ring over a division ring whose centre is k).
(5) All irreducible (left) modules (that is, no proper sub-modules) for a Clifford

Algebra have the same dimension (over k) which is a power of 2.

Example 3.7. (i) Let V be a 1-dimensional vector space, and let q = 〈a〉. Then

C(V ) � k[x]
(x2−a)

(Note that if “a” is a square in k, then C(V ) � k×k, and if “a” is not
a square, x2 −a is irreducible in k[x], and so C(V ) is a field which is a
2-dimensional vector space over k).
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(ii) Let, a,b ∈ k, and consider the 4-dimensional algebra, denoted
(a,b

k

)
, with

basis 1, i, j, ij where i2 = a,j2 = b, ij = −ji.
This algebra is called a quaternion algebra (a = b = −1,k = R (reals)
gives the usual quaternions). If V is 2-dimensional and q = 〈a,b〉, then
C(V ) �

(a,b
k

)
.

Now, by part (4) of theorem 3.10 above,
(

a,b
k

)
is either a division ring

with centre k or 2×2 matrices over k. We shall need to be able to distinguish
these two general cases, and we state the relevant fact here.

Proposition 3.9.
(

a,b
k

)
is not a division ring if and only if there are x,y ∈ k

such that ax2 + by2 = 1.

Notice that if k = Qp,
(

a,b
k

)
is not a division ring if and only if sp(a,b) = 1.

For a thorough discussion of quaternion algebras, including a proof of the
fact that they are Clifford Algebras, we refer the reader again to Lam [142].
A proof of Wedderburn’s theorem on semi-simple algebras (which we shall
use implicitly) may be found, for example, in Scharlau [174].

3.11 Similarity Representations

Definition 3.13. Let (V,B) be a non-degenerate bilinear space over Q of
dimension n, and let (V,qB) be the associated quadratic space. We say that
(V,qB) (or (V,B)) is positive definite if qB(x) > 0 for every X �= 0,x ∈ V .

Clearly, if qB = 〈a1, . . . ,an〉, then (V,qB) is positive definite if and only if
ai > 0, i = 1, . . . ,n; alternatively, the signature of qB = n.

Note also that in our investigation of rational families, the only spaces we
have seen are positive definite. Thus from now on, unless we specifically state
otherwise, all quadratic spaces we consider will be positive definite over Q.

Definition 3.14. Let (V,B) be an arbitrary bilinear space, and let W ⊂ V
be a subspace. The orthogonal complement of W , denoted W ⊥, is {x ∈
V |B(x,w) = 0 for all w ∈ W}.

Warning! In general, the orthogonal complement of a subspace is no “com-
plement” in the usual sense; it is quite possible, even in a non-degenerate
bilinear space, for W = W ⊥.

For positive definite spaces, though, this cannot occur.

Proposition 3.10. Let (V,q) be a positive definite space and W ⊂ V a sub-
space. Then

(i) W ∩W ⊥ = 0;
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(ii) W +W ⊥ = V ;
(iii) (W,q |W ) ⊥ (W ⊥, q |W ⊥) � (V,q), where all spaces are again positive defi-

nite.

Now if (V,B) is a positive definite space and f ∈ Sim(V,B) is not a 0-
similarity, then σ(f) > 0. Thus any non-degenerate subspace of Sim(V,B) is
automatically positive definite. So let S be a non-degenerate linear subspace
of Sim(V,B), where (V,B) is positive definite, and let us suppose 1V ∈ S.
(By Section 3.9, this is all we need consider for rational families.) We denote,
as usual by σ the quadratic form on S, and let S1 ⊂ S be the orthogonal
complement of 1V in S.

Proposition 3.11. The inclusion S1 �→ End(V ) is compatible with the
quadratic form −σ on S1.

Proof. Now since (S1,σ |S1) is a quadratic space, so is (S1,−σ). Let f ∈ S1
then f is orthogonal to 1V so Bσ(f,1V ) = 0; that is, f + f̃ = 0; that is, f =−f̃ .
Now ff̃ = σ(f).1V in general, and so f2 =−σ(f).1V , proving the proposition.

�	
In view of this proposition and the universal property of Clifford Alge-

bras, there is a unique Q−algebra homomorphism π : C(S1,−σ) �→ End(V ).
However, this is just another way of saying that V is a (left)-module for the
algebra C(S1,−σ); that is, the algebra C(S1,−σ) is represented on the vector
space V .

Proposition 3.12. Let (V,B) and S1 be as above, and let W ⊂ V be a sub-
space which is also a sub-module of the C(S1,−σ)-module V . Then W ⊥ is
also a sub-module of V .

Proof. Let Π : C(S1,−σ) �→ End(V ) be as above. To say that W is a sub-
module of V means that for every z ∈ C(S1,−σ), π(z) : W �→ W . In view
of the fact that S1 generates C(S1,−σ), this is equivalent to saying that
π(x) : W �→ W for all x ∈ S1. Thus to show that W ⊥ is also a sub-module, it
will be enough to show that

π(x) : W ⊥ �→ W ⊥ for all 0 �= x ∈ S1 ;

that is,
B(π(x)(v),w) = 0 for every w ∈ W,v ∈ W ⊥ .

Now x ∈ S1 implies π̃(x) = −π(x); thus π̃(x) : W �→ W , and so π̃(x)(w) =
w′ ∈ W . We thus have B

(
v, π̃(x)(w)

)
= B (v,w′) = 0. �	

The importance of this proposition to our discussion is now evident: We
started with (V,B) a positive definite space and (S,σ) a positive definite
subspace of Sim(V ). We then showed that V could be considered a module
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for the Clifford Algebra C(S1,−σ). Now if W is a sub-module of V , then the
proposition showed that W ⊥ is also a sub-module for V . Thus, by Proposition
3.9, we can write (V,B) = (W,B) ⊥ (W ⊥,B), and each summand is a module
for C(S1,−σ), and both summands are again positive definite spaces.

We may continue this process, as long as any of the summands has
a C(S1,−σ)-sub-module. We conclude, then, that (V,B) = (V1,B) ⊥ ·· · ⊥
(Vr,B), where the (Vi,B) are each C(S�,−σ)-modules which have no non-
trivial C(S1,−σ)- sub-modules; that is, the (Vi,B) are irreducible C(S1,−σ)-
modules.

It is easy to understand what we have done here: for, let 1V ,f1, . . . ,fk be
a basis for S; these are a collection of endomorphisms of V . The subspaces Vi

we have found are nothing more than subspaces of V that are invariant under
all the fi (any subspace is invariant under 1V ). We have used the fact that
V is a positive definite space to show that the complement of an invariant
subspace is again invariant. In matrix terms this amounts to being able to
choose a basis for V in such a way that the fi become block diagonal matrices.
The fact that we can recognise these invariant subspaces of V as irreducible
modules for a certain Clifford Algebra will be important because then we
shall be able to discuss the sizes of these blocks, the irreducible modules for
Clifford Algebras being so completely understood.

With this discussion and the notation above, the following proposition is
evident.

Proposition 3.13. (S,Bσ) is isometric to a linear subspace of Sim(Vi,B).

(1) Notation. If (V1B1) is isometric to a subspace of (V2,B2), we write
(V1,B1) < (V2,B2). The analogous notation will be used for quadratic
spaces.

(2) Let (V1,B1) < (V2,B2). We say that (V1,B1) divides (V2,B2) if (V2,B2) =
(V1,B1)⊗ (U,B) for some (U,B). In the quadratic case, when there can
be no misunderstanding about the spaces being considered, we abusively
write q1 |q2.

3.12 Some Facts About Positive Definite Forms Over Q

We write n〈a〉 for the quadratic form 〈a,a, . . . ,a〉︸ ︷︷ ︸
n-times

.

Proposition 3.14. Let (V,q) be a positive definite quadratic space over Q.

(1) If dimV ≥ 4, q represents every element of Q+ (Q+ equals positive ratio-
nals).

(2) If q � 〈1,a,b,ab〉, a,b ∈ Q+ then for every x ∈ Q+, xq = 〈x,xa,xb,xab〉
� 〈1,a,b,ab〉.

(3) If 4 |n and q � n〈1〉, then xq � q, for all x ∈ Q+.
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(4) For any a,b,x,y ∈Q+, 〈1,a,b,ab〉⊗〈x,y〉 � 8〈1〉
Proof. (1) This generalises the theorem of Lagrange that 〈1,1,1,1〉 represents
every element of Q+ and can be found in Serre [189].

(2), (3), and (4) all follow from the Hasse-Minkowski Theorem 3.7. �	
Corollary 3.3. Let (S,σ) < Sim(V,q), where q is positive definite and
dimS = dimV = 4. Then (S,σ) � (V,q).

Proof. By Proposition 3.13(1) above, q represents 1. Thus, by Corollary 3.2,
(S,σ) is isometric to a subspace of (V,q). But, since dimS = dimV , that
subspace must be all of (V,q). �	

The next proposition is a special case of something true over general fields
(see Shapiro [192]). However, over Q, an ad hoc proof can be given.

Proposition 3.15. Let n = 2mt, t odd, a,b ∈Q+. Then

(i) n〈1〉 � n〈a〉 ⇔ 2m〈1〉 � 2m〈a〉,
(ii) 〈1,a〉 | n〈1〉 ⇔ 〈1,a〉 |2m〈1〉,

(iii) 〈1,a,b,ab〉 | n〈1〉 ⇔ 〈1,a,b,ab〉 |2m〈1〉.
Proof. (i) If m ≥ 2, then all isometries are true by (3) of Proposition 3.13. So
we need only consider m = 0,1.

m = 0: t〈1〉 � t〈a〉 ⇔ 〈1〉 � 〈a〉 .

If: Obvious.
Only If: The isometry implies both have the same discriminant; that is, at is
a square in Q. But t odd implies a = q2 for some q ∈Q. �	

m = 1: 2t〈1〉 � 2t〈a〉 ⇔ 2〈1〉 � 〈a〉 .

Proof. If: Obvious.
Only If: In this case we must have sp(2t〈a〉) = 1 for every prime p. But
sp(2t〈a〉) = ((a,a)p)x, where

x =
2t−1∑
j=1

j = (2t−1)(2t)
2 = t(2t−1)

which is odd since t is odd. Thus ((a,a)p)x = (a,a)p = 1 for every prime p. This
is enough to prove that 〈1,1〉 � 〈a,a〉, since the signatures and discriminants
are obviously the same. �	

(ii) We first note that 〈1,a〉 | n〈1〉 always if m ≥ 3, since 8〈1〉 � 〈1,a〉⊗
〈1, b〉⊗〈x,y〉 for any a,b,x,y ∈Q+ by (4) of Proposition 3.13. Also 〈1,a〉 | n〈1〉
implies that m ≥ 1. So we need only consider m = 1, m = 2.

m = 1: 〈1,a〉 | 2t〈1〉 ⇔ 〈1,a〉 | 2〈1〉 .
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Proof. If: Obvious.
Only If: The discriminant of 〈1,a〉⊗ α is at = 1. Since t is odd, “a” is a square,
and so 〈1,a〉 � 〈1,1〉. �	

m = 2: 〈1,a〉 | 4t〈1〉 ⇔ 〈1,a〉 | 4〈1〉 .

Proof. If: Obvious.
Only If: 〈1,a〉 | 4t〈1〉 implies 〈1,a〉⊗〈α1, . . . ,α2t〉 = 4t〈1〉. If t > 1, we have, by
repeated application of Proposition 3.14 part (i), that

〈α1, . . . ,α2t〉 � 〈1,1, . . . ,1,u,v,w〉 = α.

Comparing Hasse-Invariants, we find (a,uvwa)p(−1,uvw)p = 1 for every prime
p. Let d = uvw. Then d = discα, and we have that (a,da)p(−1,d)p = 1 for
every prime p. But this is enough to guarantee that 〈1,a〉⊗〈1,d〉 � 4〈1〉. �	

(iii) Notice that by (4) of Proposition 3.13 we have 〈1,a,b,ab〉 | n〈1〉 always,
if m ≥ 3. Also 〈1,a,b,ab〉 | n〈1〉 implies m ≥ 2. So we need only consider the
case m = 2; that is, 〈1,a,b,ab〉 | 4t〈1〉 ⇔ 〈1,a,b,ab〉 | 4〈1〉.
Proof. If: Obvious.
Only If: Suppose 〈1,a,b,ab〉⊗ 〈α1 . . .αt〉 = 4t〈1〉, where t is odd, t > 1. By
(4) of Proposition 3.13 and the Witt Cancellation Theorem 2.1, we obtain
〈1,a,b,ab〉⊗〈α〉 � 4〈1〉, which completes the proof. �	
Proposition 3.16. Let (S,σ) < Sim(V,q) where dimV = n,q is positive defi-
nite and dimS ≥ 5. Then 8 | n.

Proof. We already know that if q = n〈1〉, then 8 | n by the Radon-Hurwitz
Theorem.

Since dimS ≥ 5, we know, by Proposition 3.13 part (1), that σ represents
1; that is, there is a similarity in S with similarity factor equal to 1, which
we call f . It is an easy exercise to show that (f̃ ◦S,σ) is another subspace of
Sim(V,q) which is isometric to (S,σ) and that f̃ ◦S contains 1V , So with no
loss of generality we may assume 1V ∈ S.

Let (T,τ) < (S,σ), where dimT = 5 and 1V ∈ T , and let τ1 be the form
on the orthogonal complement of 1V in T . Then, as we have seen, C(V,−τ1)
is represented on V . By Theorem 3.10 we know that C(V,−τ1) is a simple
algebra with centre equal to Q and of dimension 16 over Q. By Wedderburn’s
theorem C = C(V,−τ1) is either

(a) a 16-dimensional division ring with center equal to Q,
(b) 2×2 matrices over K, where K is a division ring, centre (K) = Q and

[K : Q] = 4,
(c) 4×4 matrices over Q.

Now, in each case we know precisely the dimensions of the irreducible
modules; in cases (a) and (b) we know that every irreducible module has
dimension divisible by 8, so if C is either (a) or (b), we shall have that 8 | n.
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It remains only to show that (c) cannot occur. In case (c) every irreducible
module has dimension 4 over Q. So if (W,q̃) is an irreducible sub-module
of (V,q), we have, by Proposition 3.12, that (T,τ) is isometric to a linear
subspace of Sim(W,q̃). But, since dimW = 4 and q̃ is positive definite, we
have, by Proposition 3.13 part (1), that q represents 1 and so, by Corollary 3.3,
that (T,τ) is isometric to a subspace of (W,q̃). But dimT = 5 > dimW = 4,
which is a contradiction. Thus we have that 8 |n. �	

3.13 Reduction of Algebraic Problem of Orthogonal
Designs to Orders a Power of 2

As already seen, the existence of a rational family of type [1,s2, . . . ,s�] in order
n is equivalent to the existence of a linear sub-space (S,σ) of Sim(Qn,n〈1〉)
where 1Qn ∈ S and σ = 〈1,s2, . . . ,s�〉.
Proposition 3.17. Let (S,σ) be a positive definite quadratic space. Then
(S,σ) < Sim(Q4,4〈1〉) ⇔ (S,σ) < (Q4,4〈1〉).
Proof. Only If: Since 4〈1〉 represents 1, obviously we are done by Corollary
3.2.

If: Since (S,σ) < (Q4,4〈1〉), we know dimS ≤ 4. So we have to consider
separately the cases dimS = 1,2,3,4. They are all proved in the same way,
so we shall just exhibit the proof for s = 2. Let σ = 〈a,b〉. Then we can
find u,v such that 〈a,b,u,v〉 � 〈1,1,1,1〉. In matrix terms, there is a 4× 4
matrix P with PP � = diag(a,b,u,v). Now, by Proposition 1.2, there is an
integer Radon-Hurwitz family of order 4. Call the matrices in that family
A1,A2,A3,A4. If P = (pij), let

X1 =
4∑

j=1
p1jAj , X2 =

4∑
j=1

p2jAj .

It is easy to check that X1, X2 form a rational family of type [a,b] in order 4
and thus span the appropriate linear subspace of Sim(Q4,4〈1〉). �	
Proposition 3.18. Let (S,σ) be a positive definite quadratic space.

(i) (S,σ) < Sim
(
Q8,8〈1〉)⇔ (S,σ) <

(
Q8,8〈1〉).

(ii) (S,σ) < Sim
(
Q2,2〈1〉)⇔ (S,σ) <

(
Q2,2〈1〉).

Proof. Exactly like Proposition 3.17, using the existence of Radon-Hurwitz
family of eight integer matrices of order 8 (or for (ii) the same fact for order
2). �	
Proposition 3.19. Let a,b > 0, and let q be positive definite.

(i) (S,〈1,a〉) < Sim(V,q) ⇒ 〈1,a〉 |q.
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(ii) (S,〈1,a,b〉) < Sim(V,q) ⇔ (S′,〈1,a,b,ab〉) < Sim(V,q).
(iii) (S,〈1,a,b〉) < Sim(V,q) ⇒ 〈1,a,b,ab〉 |q.

Proof. (i) Since (S,〈1,a〉) < Sim(V,q), we have a representation of C(S1,〈−a〉)
on V . Now, we noted that C(S1,〈−a〉) � Q[x]

x2+a
. Since x2 +a is irreducible in

Q[x], Q[x]
x2+a

= K, a field, and dimQK = 2. Now, an irreducible K-module is a
1-dimensional K vector space. So (V,q) � (V1, q1) ⊥ . . . ⊥ (V�, q�), where the
Vi are 1-dimensional over K; that is, 2-dimensional over Q. By Propositions
3.13 and 3.6 we conclude that (S,〈1,a〉) is similar to a subspace of (Vi, qi).
Since both S and Vi are 2-dimensional, we must have qi = αi〈1,a〉. Hence
q = 〈1,a〉⊗〈α1, . . . ,α�〉, as was to be shown. �	
Proof. (ii) If: Obvious.

Only If: There is no loss in assuming that 1V ∈ S, f1, f2 ∈ S, σ(f1) =
a, σ(f2) = b and Bσ(f1, f2) = 0 = Bσ(1V , f1) = Bσ(1V , f2). It is an easy
matter, then, to check that 1V , f1, f2, f1f2 span a space, S′, and that they
are orthogonal (under Bσ) and that σ(f1f2) = ab. �	
Proof. (iii) Now (S,〈1,a,b〉) < Sim(V,q) implies that V is a module for C =
C(S1,〈−a,−b〉). By Proposition 3.9 we have that C is a division ring which is
4-dimensional over Q. Now an irreducible module for a division ring is always
1-dimensional, hence 4-dimensional over Q. Thus

(V,q) = (V1, q1) ⊥ ·· · ⊥ (Vt, qt),

where each Vi is 4-dimensional over Q. Now, by Proposition 3.13 again, we
have that (S,〈1,a,b〉) < Sim(Vi, qi),1 ≤ i ≤ t. Now, by (ii) of this proposi-
tion, we obtain (S′,〈1,a,b,ab〉) < Sim(Vi, qi). Now use Proposition 3.14 part
(1) to note that qi represents 1, and so, by Corollary 3.2, we have that
(S′,〈1,a,b,ab〉) < (Vi, qi). But since dimQS′ = dimVi we have qi � 〈1,a,b,ab〉.
Thus q � 〈1, . . . ,1〉︸ ︷︷ ︸

t-times

⊗〈1,a,b,ab〉. �	

We have obtained a bit more out of the proof of (iii). Notice that if t is even,
we may invoke Proposition 3.13 to assert that q � 4t〈1〉. With this remark in
mind we may improve Proposition 3.16.

Proposition 3.20. Let (S,σ) < Sim(V,q) where dimV = n, q is positive def-
inite and dimS ≥ 5. Then 8 |n and q � n〈1〉.
Proof. The interesting fact here is that we have forced q to be n〈1〉. No other
positive definite form has a 5-dimensional space of similarities.

We have already proved 8 |n, and, in the proof of Proposition 3.16, we
have seen that (U,〈1,a,b〉) < Sim(V,q). The remark before this Proposition
finishes the proof, since if 8 |n, t must be even. �	
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Theorem 3.11 (Shapiro [191]). Let n = 2mt where t is odd, and let (S,σ)
be a positive definite quadratic space where σ represents 1. Then

(S,σ) < Sim(Qn,n〈1〉) ⇔ (S,σ) < Sim
(
Q2m

,2m〈1〉
)

.

Proof. First note that in Proposition 2.8 we proved this for m = 0,1. So we
may assume m ≥ 2. The fact that we are interested in rational families and
the discussion in Section 3.9 shows that our assumption that σ represents 1 is
no drawback. Note also that “If” is obvious, since, in matrix terms, we can
just tensor with It.

m = 2 : We need only consider dimS = 2, 3 and 4.

Case 1. σ = 〈1,a〉. By Proposition 3.19 part (i), we have that 〈1,a〉 |n〈1〉
and hence, by Proposition 3.15, 〈1,a〉 |4〈1〉; that is, (S,〈1,a〉) < (Q4,4〈1〉).
Now use Proposition 3.17 to assert (S,〈1,a〉) < Sim(Q4,4〈1〉).

Case 2. σ = 〈1,a,b〉. The route is pretty much the same as in Case 1. By
Proposition 3.19 part (iii), we have 〈1,a,b,ab〉 |n〈1〉 and hence, by Proposition
3.15, 〈1,a,b,ab〉 |4〈1〉. Hence (S,〈1,a,b〉) < (Q4,4〈1〉). Now use Proposition
3.17 to get (S,〈1,a,b〉) < Sim(Q4,4〈1〉).

Case 3. σ = 〈1,a,b,c〉. We postpone this case for a moment.
m≥ 3, dimσ = 2. Let σ = 〈1,a〉. Now 〈1,a〉 |8〈1〉 for any “a” by Proposition

3.14 part (4). Thus (S,σ) < (Q8,8〈1〉). Now use Proposition 3.18 to get
(S,σ) < (Q8,8〈1〉). But clearly, then (S,σ) < Sim(Q2m

,2m〈1〉) for any m ≥ 3.
m ≥ 3, dimσ = 3. Let σ = 〈1,a,b〉. Again using Proposition 3.14 part(4),

we have 〈1,a,b,ab〉 |8〈1〉 and so (S,〈1,a,b〉) < (Q8,8〈1〉). By Proposition 3.18
we get (S,〈1,a,b〉) < Sim(Q8,8〈1〉) and thus isometric to a linear subspace of
Sim(Q2m

,2m〈1〉) for any m ≥ 3. We are left with considering the case where
dimσ ≥ 4.

dimσ ≥ 5. Let (S,σ) < Sim(Q2mt
,2mt〈1〉) = Sim(V,q). The usual Clifford

Algebra techniques give (V,q) � (V1, q1) ⊥ ·· · ⊥ (V�, q�). By Proposition 3.20
we know 8 | dimVi and qi = ni〈1〉, ni = dimVi. Since the dimension (over Q) of
an irreducible module for a Clifford Algebra is always a power of 2 (Theorem

3.10), we know that ni = 2s, s ≥ 3. Since 2s� =
�∑

i=1
ni = 2mt, we have s ≤ m.

We now invoke Propositions 3.13 and 3.20 to finish.
We are left only with the case dimσ = 4.
We proceed as in the case for dimσ ≥ 5, and, using the notation there, we

get (S,σ) < Sim(Vi, qi) where dimVi = 2s and s ≤ m.

Case 1. s ≥ 3. Let σ = 〈1,a,b,c〉. We may proceed exactly as in the case
m ≥ 3, dimσ = 3, to conclude that qi = 2s〈1〉, in which case we are done.

Case 2. s = 2, σ = 〈1,a,b,c〉. Now we get (S′,〈1,a,b〉) < Sim(Vi, qi), but
Proposition 3.19 part (ii) implies (T,〈1,a,b,ab〉) < Sim(Vi, qi). By Proposition
3.14 part (1), qi represents 1, so (T,〈1,a,b,ab〉) < (Vi, qi). Since dimVi =
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dimT = 4, we have qi � 〈1,a,b,ab〉. But, for exactly the same reasons, we have
qi � σ; that is, σ = 〈1,a,b,ab〉.

Thus we are reduced to considering the case dimσ = 4 and σ = 〈1,a,b,ab〉.
But now, by Proposition 3.19, we have(

S′,〈1,a,b,ab〉) < Sim(Qn,n〈1〉) ⇔ (S,〈1,a,b〉) < Sim(Qn,n〈1〉) ,

reducing us to the case where dimσ = 3, which we have already handled. �	
Corollary 3.4. There is a rational family in order n = 2mt, t odd, of type
[s1, . . . ,s�] if and only if there is a rational family of the same type in order
2m.

3.14 Solution of the Algebraic Problem of Orthogonal
Designs in orders 4t, 8t (t odd)

In this section we propose to classify the rational families that exist in orders
4t and 8t (t odd). By Theorem 3.11, this amounts to a classification of the
rational families that can exist in orders 4 and 8.

3.14.1 Order 4

Since p(4) = 4, we have, by the results of Section 3.9, only to consider the
conditions which allow there to exist rational families of types [1,s1], [1,s1,s2]
and [1,s1,s2,s3] in order 4.

Case 1: [1,s1].

Proposition 3.21 (Geramita-Seberry Wallis [81]). A necessary and suf-
ficient condition that there be a rational family of type [1,s1] in order 4 is
that s1 be a sum of three squares in Q.

Proof. To show the necessity, observe that by the results of Section 3.9 we
may assume the rational family is {I4,A}, where A = −A� and AA� = s1I.
The fact that A is skew-symmetric forces its diagonal entries to all be zero,
and hence, evidently, s1 is a sum of three rational squares.

For the sufficiency, let s1 = q2
1 + q2

2 + q2
3 where qi ∈Q. If

A =

⎡⎢⎢⎣
0 q1 q2 q3

−q1 0 −q3 q2
−q2 q3 0 −q1
−q3 −q2 q1 0

⎤⎥⎥⎦ ,

then it is easily checked that {I4,A} is a rational family of type [1,s1]. �	
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Corollary 3.5. A necessary and sufficient condition that there be a rational
family of type [s1,s2] in order 4 is that s1

s2
be a sum of three squares in Q.

Proof. See Section 3.9. �	
Note that m

n = mn
n2 = ( 1

n )2(mn), and so m
n is a sum of three rational squares

if and only if mn is a sum of three rational squares. Now it is well known (see,
for example, Serre [189]) that a positive integer is the sum of three rational
squares if and only if it is the sum of three integer squares if and only if
(Gauss) it is not of the form 4a(8b+7).

Thus, for example, there is no rational family of type [k,7k] or [3s,5s] in
order 4.

Case 2: [1,s1,s2].
We will not have to treat this case separately, as the following proposition

shows.

Proposition 3.22. There is a rational family of type [1,s1,s2] in order 4 if
and only if there is a rational family of type [1,s1,s2,s1s2] in order 4.

Proof. If: Obvious.
Only If: By Section 3.9 there is no loss in assuming the rational family is

{I4,A,B}. It is a routine verification that {I4,A,B,AB} is a rational family
of type [1,s1,s2,s1s2]. �	

Case 3: [1,s1,s2,s3].
This situation is completely settled by:

Proposition 3.23. There is a rational family of type [1,s1,s2,s3] in order 4
if and only if 〈1,s1,s2,s3〉 � 〈1,1,1,1〉 over Q.

Proof. By Proposition 3.17 we see that there is a rational family of type
[1,s1,s2,s3] in order 4 if and only if 〈1,s1,s2,s3〉 < 4〈1〉. (Note the abusive
notation). Since both forms have dimension four, this is true if and only if
〈1,s1,s2,s3〉 � 4〈1〉 over Q. �	
Corollary 3.6. There is a rational family of type [1,s1,s2] in order 4 if and
only if 〈1,s1,s2,s1s2〉 � 4〈1〉.

It is now clear how the Hasse-Minkowski classification of quadratic forms
comes into play. The algorithmic nature of the criteria for congruence over
Q makes it extremely amenable to machine analysis, in specific orders. (The
print-outs in the appendices verify this.)

We now list a few corollaries which had been obtained by quite different
methods in Geramita-Seberry Wallis [81].

Corollary 3.7. Let a,b ∈Q+. There is a rational family of type [a,a,a,b] in
order 4 if and only if b

a is a square in Q.
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Proof. By Section 3.9 such a rational family exists if and only if a rational
family of type [1,1,1, b

a ] exists in order 4. By Proposition 3.22 this occurs if
and only if 〈1,1,1, b

a 〉 � 4〈1〉 over Q. By Witt Cancellation, this occurs if and
only if 〈 b

a 〉 � 〈1〉, that is, if and only if b
a is a square in Q. �	

Corollary 3.8. Let a,b ∈ Q+. There is a rational family of type [a,a,b] in
order 4 if and only if b

a is a sum of two squares in Q.

Proof. As in the previous corollary, such a rational family exists if and only
if there is a rational family of type [1,1, b

a ] in order 4. By Corollary 3.6, this
exists if and only if 〈1,1, b

a , b
a 〉 � 4〈1〉. By the Witt Cancellation Theorem this

is true if and only if 〈 b
a , b

a 〉 � 〈1,1〉.
Now two isometric forms represent the same elements of Q∗, and so b

a is
represented by 〈1,1〉; hence b

a is a sum of two squares.
On the other hand, if b

a is a sum of two squares in Q, then b
a is represented by

〈1,1〉, and so 〈1,1〉 � 〈 b
a ,x〉 for some x∈Q+. Thus if we compare discriminants,

we see that ( b
a )x = u2, u ∈Q; that is, x = ( b

a )v2, v ∈Q, and so 〈 b
a ,x〉 � 〈 b

a , b
a 〉,

as was to be shown. �	
There is another way to see that 〈 b

a , b
a 〉 � 〈1,1〉 if and only if b

a is a sum of
two squares in Q.

First note that
〈

b
a , b

a

〉� 〈(
b
a

)
a2,

(
b
a

)
a2〉� 〈ab,ab〉.

Since the signatures and discriminants of the forms 〈ab,ab〉 and 〈1,1〉 are
the same, the two forms are congruent if and only if sp(〈ab,ab〉) = 1 for all
primes p.

Now (ab,ab)p = (−1,ab)p . Write

ab = 2αpα1
1 . . .pαs

s qβ1
1 . . . qβt

t ,

pi, qj primes, and where the pi ≡ 1 (mod 4) and the qj ≡ 3 (mod 4). Now,
since -1 is a square modulo p only for p = 2 and p ≡ 1 (mod 4), we see that
the αi may be even or odd. Since -1 is not a square modulo q if q ≡ 3 (mod 4),
we shall have (−1,ab)qj = −1 for qj |ab, qj ≡ 3 (mod 4) unless βj is even. But
this, then, is precisely the condition that ensures that ab is a sum of two
squares (Fermat).

3.14.2 Order 8

We know that ρ(8) = 8, so we must consider rational families having at most
8 members. The key result we need here is Proposition 3.17, which asserts
that there is a rational family of type [1,s1, . . . ,s�] (1 ≤ � ≤ 7) in order 8 if
and only if 〈1,s1, . . . ,s�〉 = σ < 8〈1〉.

Case 1. Much of the work is covered by the following:
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Proposition 3.24. For any s1s2,s3,s4 ∈ Q+ there is a rational family of
type [1,s1s2,s3,s4] in order 8.

Proof. We need to show that:

〈1,s1s2,s3,s4〉 = σ < 8〈1〉 .

By Proposition 3.14 part (4),

〈1,s1,s2,s1s2〉⊗〈1,s3〉 � 8〈1〉 ;

that is,
τ = 〈1,s1,s2,s1s2,s3,s1s3,s2s3,s1s2s3〉 � 8〈1〉 .

But

τ = 〈1,s1,s2,s3〉 ⊥ 〈s1s2,s1s3,s2s3,s1s2s3〉 = 〈1,s1,s2,s3〉 ⊥ q .

Now q is positive definite of dimension 4, and so, by Proposition 3.14 part
(1) q represents s4. Thus q � 〈s4,u,v,w〉 for some u,v,w ∈Q+. Thus 8〈1〉 �
〈1,s1,s2,s3,s4〉 ⊥ 〈u,v,w〉. �	

Case 2. [1,s1,s2,s3,s4,s5,s6].
We need not consider this case separately from the case of 8-members, as

the following proposition shows.

Proposition 3.25. Let si ∈Q+, 1 ≤ i ≤ 6. There is a rational family of type
[1,s1,...,s6] in order 8 if and only if there is a rational family of type[

1,s1,...,s6,

6∏
i=1

si

]

in order 8.

Proof. If: Obvious.
Only If: As always, we may assume the rational family is {I8,A1, . . . ,A6}

It is routine to check that {
I8,A1, . . . ,A6,

6∏
i=1

Ai

}

is the required rational family. �	

Case 3. [1,s1,s2,s3,s4,s5,s6,s7].

Proposition 3.26. Let si ∈Q+,1 ≤ i ≤ 7. There is a rational family of type
[1,s1, . . . ,s7] in order 8 if and only if 〈1,s1, . . . ,s7〉 � 8〈1〉 over Q.
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Proof. Exactly as in Proposition 3.23. �	
Corollary 3.9. Let si ∈ Q+,1 ≤ i ≤ 6. There is a rational family of type
[1,s1, . . . ,s6] in order 8 if and only if〈

1,s1, . . . ,s6,

6∏
i=1

si

〉
� 8〈1〉

over Q.

Proof. Exactly as in Corollary 3.6. �	
We can further deduce, as in Corollaries 3.7 and 3.8,

Corollary 3.10. There is a rational family of type

(i) [a,a,a,a,a,a,a,b] in order 8, (a,b ∈Q+) if and only if b
a ∈ (Q∗)2;

(ii) [a,a,a,a,a,a,b] in order 8, (a,b ∈ Q+) if and only if b
a is a sum of two

squares in Q.

Case 4. [1,s1,s2,s3,s4,s5].
As we have noted before, this amounts to deciding when 〈1,s1, . . . ,s5〉 =

σ < 8〈1〉.
Proposition 3.27. If σ = 〈1,s1, . . . ,s5〉,si ∈ Q+ and d equals the discrim-
inant of σ, σ < 8〈1〉 if and only if there is a u ∈ Q+ such that sp(σ) =
(−1,d)p(−1,u)p(u,d)p for every prime p.

Proof. σ < 8〈1〉 if and only if there are u,v ∈ Q+ with σ ⊥ 〈u,v〉 � 8〈1〉.
Comparing discriminants, we have duv = 1 in Q∗

(Q∗)2 ; that is, v = du in Q∗
(Q∗)2 .

Thus σ ⊥ 〈u,du〉 � 8〈1〉.
By the Hasse-Minkowski Theorem, this can happen if and only if sp(8〈1〉) =

1 = sp(σ ⊥ 〈u,du〉) for all primes p. An easy calculation shows that sp(σ ⊥
〈u,du〉) = sp(σ)(d,d)p(u,u)p(u,d)p. This product is 1 at every prime p if and
only if sp(σ) = (−1,d)p(−1,u)p(u,d)p. �	

In practice, this proposition seems difficult to use. One may be lucky in
finding the appropriate u, but it seems difficult to assert when no u exists.
The next two propositions give some easy criteria when no u exists.

Proposition 3.28. There is a rational family of type [a,a,a,a,a,b] (a,b∈Q+)
in order 8 if and only if b

a is a sum of three squares in Q.

Proof. Such a family exists if and only if one of type [1,1,1,1,1, b
a ] exists in

order 8. By Proposition 3.27 this happens if and only if there is a u ∈Q+ such
that 〈1,1,1,1,1, b

a ,u,( b
a )u〉 � 8〈1〉. Applying Witt’s Cancellation Theorem,

this is equivalent to saying
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b

a
,u,

( b

a

)
u

〉
� 〈1,1,1〉 .

The congruence implies that b
a is represented by 〈1,1,1〉, so b

a is a sum of
three squares in Q. This proves “Only If”.

To show “If”, we have that b
a is represented by 〈1,1,1〉; hence 〈1,1,1〉 �

〈 b
a ,x,y〉 for some x,y ∈Q+. Comparing discriminants, we have that y = ( b

a )x
in Q∗

(Q∗)2 , which finishes the proof. �	

More generally, we have:

Proposition 3.29 (Wolfe [247]). There is a rational family of type
[a1,a2,a3,a4,a5,a6] in order 8 where a1a2a3a4 = q2 for some q ∈ Q and
sp(〈a1,a2,a3,a4〉) = 1 for all primes p if and only if a5a6 is a sum of three
squares in Q.

Proof. The hypothesis gives that 〈a1,a2,a3,a4〉 � 4〈1〉. Thus σ = 〈a1, . . . ,a6〉<
8〈1〉 if and only if 4〈1〉 ⊥ 〈a5,a6〉< 8〈1〉. By Witt’s Cancellation Theorem this
happens if and only if 〈a5,a6〉 < 4〈1〉 if and only if 〈1,a5a6〉 < 4〈1〉 if and only
if 〈a5a6〉 < 3〈1〉 (Witt again!) if and only if a5a6 is a sum of three squares in
Q. �	

This last proof applies notably to rational families of type [a,a,a,a,b,c] in
order 8.

There are other special cases one can handle easily for families of six
members in order 8. We mention, and leave the proof to the reader; one more:

Proposition 3.30. Let a,b,c ∈Q+. There is a rational family of type
[a,a,a,b,b,c] in order 8 where ab is a sum of two squares in Q if and only if
c is a sum of three squares in Q.

3.15 Solution of the Algebraic Problem of Orthogonal
Designs in Orders 16t (t Odd)

Up to this point we have asked the patient reader to accept many unproved
and deep statements from the classical theory of quadratic forms over Q. This,
we have felt, is not unreasonable, since many excellent sources for the material
exist, and a full exposition here would have taken us too far afield.

In this section, however, the discussion of full proofs is even more difficult.
Vast new amounts of background must be introduced to get each new proposi-
tion. Thus, we shall, albeit reluctantly, usually not give proofs of these deeper
statements but just refer the reader to the imaginative arguments of Shapiro.

In spite of this disclaimer, there is still much we can say for these orders
with only a small number of additional facts.
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Definition 3.15. (1) Let (V,q) be a quadratic space over the field k. If
x �= 0, x ∈ V and q(x) = 0, then x is called an isotropic vector.

(2) If there is an isotropic vector in (V,q), then (V,q) is called isotropic (not
isotropic equals anisotropic).

(3) We say that (V,q) is universal if q represents every element a ∈ k.

Proposition 3.31. Let (V,q) be a 2-dimensional non-degenerate quadratic
space. The following are equivalent:

(i) (V,q) is isotropic;
(ii) there is a basis for V such that the matrix of Bq with respect to this basis

is
[0 1

1 0
]

;
(iii) there is a basis for V such that the matrix of Bq with respect to this basis

is
[−1 0

0 1
]

;
(iv) the discriminant of q is equal to -1.

Proof. The proof is elementary; see Scharlau [174]. �	
This unique (up to isometry) 2-dimensional isotropic space is usually called

a hyperbolic plane and denoted H.

Proposition 3.32. A hyperbolic plane is universal.

Proof. Again, elementary; see Scharlau [174]. �	
Corollary 3.11. If (V,q) is a non-degenerate isotropic quadratic space, then
(V,q) is universal.

Proof. (V,q) has a hyperbolic plane as an orthogonal summand, and so the
corollary is clear from Proposition 3.32. �	
Definition 3.16. Let (V,q) be a non-degenerate quadratic space over Q. We
say that (V,q) is indefinite if there are x,y ∈ V with q(x) > 0 and q(y) < 0.

One of the nicer consequences of the Hasse-Minkowski theory is the follow-
ing.

Theorem 3.12 (Meyer’s Theorem). Any indefinite quadratic space (non-
degenerate) over Q of dimension greater than or equal to 5 is isotropic.

With these facts in hand, we can now consider rational families in order 16t
(t odd). By Theorem 3.11, we must, equivalently, consider linear subspaces
(S,σ) < Sim(Q16, 16〈1〉). We shall continue to abusively refer to this as
considering σ〈Sim(16〈1〉).

We proved, Proposition 2.7, that p(16) = 9, and so a rational family in
order 16 cannot involve more than 9 members.
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3.15.1 Case 1: 9-member rational families.

Lemma 3.1. Let V = Q2, and let q = 〈1,a〉, a ∈Q+. Then[
0 −a
1 0

]
and

[
1 0
0 −1

]
= A ∈ Sim(V,q) .

Furthermore, Ã = A.

Proof. A simple application of the definitions. �	
Proposition 3.33. Let a ∈Q+ and let σ = 8〈1〉 ⊥ 〈a〉. Then σ < Sim(16〈1〉).
Proof. Let A1, . . . ,A7 be the H-R family of order 8, constructed in Proposition
1.2. Recall that Ai ∈ Sim(Q8,8〈1〉) and that Ãi = −Ai (in this example “∼”
was “�”). It is then an easy matter to check that{

I2⊗ I8 = I16,

[
0 −a
1 0

]
⊗ I8 = f1,

[
1 0
0 −1

]
⊗Ai = fi+1, i = 1, . . . ,7

}
is in Sim(Q2⊗Q8 = V,〈1,a〉⊗8〈1〉 = q) and that fif̃j +fj f̃i = 0, i �= j, and
f̃i = −fi, i = 1, . . . ,8. Also f1f̃1 = a1V and fj f̃j = 1V for j = 2, . . . ,8. Thus we
have σ = 8〈1〉 ⊥ 〈a〉 < Sim(q). But, by Proposition 3.14 part (4), q � 16〈1〉,
and so we are done. �	

This is a generalization of part (1) in the proof of Theorem 1.2 and was
noted by Shapiro [191].

Theorem 3.13 (Shapiro [191]). Let σ < Sim(16〈1〉), dimσ = 9. Then there
is an a ∈Q+ such that σ = 8〈1〉 ⊥ 〈a〉.
Proof. We shall postpone our remarks about this proof until the end of this
section. �	
Corollary 3.12. There is a rational family of type [s1, . . . ,s9] in order 16 if
and only if sp(〈a1, . . . ,a9〉) = 1 for every prime p.

Example 3.8. There is a rational family of type [a,a,a,a,a,a,a,b,b] in order
16 if and only if ab is a sum of two squares in Q.

3.15.2 Case 2: 7-member rational families.

Proposition 3.34. Any 7-member rational family exists in order 16.

Proof. By Proposition 3.33 it would be enough to show that if σ is positive
definite and dimσ = 7, then there is an a ∈Q+ with σ < 8〈1〉 ⊥ 〈a〉.
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By repeated use of Proposition 3.14 part (1), we may assume σ = 4〈1〉 ⊥
〈u,v,w〉 for some u,v,w ∈ Q+. By Witt’s Cancellation Theorem it will be
enough to find a ∈Q+ with 〈u,v,w〉 < 4〈1〉 ⊥ 〈a〉.

Let τ = 〈u,v,w〉; then uτ � 〈1,y,z〉, and suppose uτ < 4〈1〉 ⊥ 〈d〉 for some
d∈Q+ Then τ < 4〈u〉 ⊥ 〈ud〉. But 4〈u〉 � 4〈1〉, and letting a = ud would finish
the proof.

Thus there is no loss in assuming τ = 〈1,y,z〉. Consider 〈1,1,1,−y,−z〉. By
Meyer’s Theorem this is isotropic, and so 〈1,1,1,−y,−z〉 � 〈1,−1〉 ⊥ 〈−e,s, t〉
for some e,s, t ∈ Q+. Add 〈y,z,e〉 to both sides, and observe that 〈�,−�〉 �
〈1,−1〉 (unique hyperbolic plane!) for any � ∈Q. Hence

〈1,1,1,−y,−z〉 ⊥ 〈y,z,e〉 � 〈1,−1〉 ⊥ 〈−e,s, t〉 ⊥ 〈y,z,e〉
�� ��

〈1,1,1〉 ⊥ H ⊥ H ⊥ 〈e〉 � H ⊥ H ⊥ 〈s, t,y,z〉
Using Witt’s Cancellation Theorem again, to cancel the hyperbolic planes,
gives 〈1,1,1,e〉 � 〈s, t,y,z〉. Adding 〈1〉 to both sides gives the desired result.

�	

3.15.3 Case 3: 8-member rational families.

This is the only case we have yet to consider. There is one easy part of this
discussion and one difficult part. We prove the easy part.

Proposition 3.35. Let σ be a positive definite 8-dimensional form over Q,
and suppose discσ = 1. Then σ < Sim(16〈1〉).
Proof. Let σ = 5〈1〉 ⊥ 〈u,v,w〉, without loss of generality. Since discσ = 1,
w = uv in Q∗

(Q∗)2 , and so σ = 5〈1〉 ⊥ 〈u,v,uv〉.
Let τ = 5〈1〉 ⊥ 〈u,v〉; by Proposition 3.34, τ < Sim(16〈1〉); that is, there is

a rational family of type [1,1,1,1,1,u,v] in order 16. By Section 3.9 we may
assume this rational family is {I16,A1, . . . ,A6}. It is an easy matter to check

that {I16,A1, . . . ,A6,
6∏

i=1
Ai} is a rational family of type [1,1,1,1,1,u,v,uv],

and hence σ < Sim(16〈1〉). �	
The case where the discriminant is not equal to 1 is deeper.

Theorem 3.14. Let (S,σ) be a non-degenerate linear subspace of
Sim(Q16,16〈1〉) where dimσ = 8 and discσ �= 1. Then (S,σ) ⊂ (S′,σ′) where
dimσ′ = 9 and (S′,σ′) < Sim(Q16,16〈1〉).
Proof. See Shapiro [192]. �	

Thus 8-dimensional subspaces of Sim(l6〈1〉) are not maximal if their
discriminant is not equal to 1.
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Corollary 3.13. Let σ be a positive definite quadratic form where dimσ = 8
and discσ �= 1. Then σ < Sim(16〈1〉) if and only if there is an a,b ∈Q+ with
σ ⊥ 〈a〉 � 8〈1〉 ⊥ 〈b〉.
Proof. This is immediate from Theorems 3.14 and 3.13. �	

If σ ⊥ 〈a〉 � 8〈1〉 ⊥ 〈b〉, and if d = disc σ �= 1, then da = b in Q∗
(Q∗)2 ; that is,

σ ⊥ 〈db〉 � 8〈1〉 ⊥ 〈b〉. By Hasse-Minkowski sp(σ ⊥ 〈db〉) = 1 for all primes p.
An easy calculation shows that

sp(σ ⊥ 〈db〉) = sp(σ)(d,−b)p = 1 .

Thus sp(σ) = (d,−b)p for all primes p. Thus, we may restate the last corollary.

Corollary 3.14. Let σ be a positive definite quadratic form where dimσ = 8
and disc σ = d �= 1. Then σ < Sim(16〈1〉) if and only if there is ab ∈Q+ with
sp(σ) = (d,−b)p for any prime p.

We conclude this section with a short discussion of what is involved in the
proof of Theorem 3.13.

Let dimσ = 9,(S,σ) < Sim(V,16〈1〉), and write σ = 〈1〉 ⊥ σ1, and let C =
Clifford Algebra of −σ1.

Since dim(−σ1) = 8, C is a simple algebra. Let φ : C �→ End(V ) be the
usual similarity representation. Then C simple implies φ is one-to-one, and
a dimension count (dimC = 28,dimQEnd(V ) = 16×16 = 28) shows φ is an
isomorphism.

If we call the Witt Invariant of −σ1 the class of C in the Brauer group of
Q and denote it c(−σ1), C =̃EndQV implies that this is the trivial element
of the Brauer group; that is, c(−σ1) = 1. (See Lam [142, p. 120].)

Now the Hilbert symbol (a,b) may also be interpreted as the class of the
quaternion algebra

(
a,b
Qp

)p
in the Brauer group of Qp in the following way:

Since there is only one non-trivial quaternion algebra over Qp,
(

a,b
Qp

)p
= 1

if the quaternion algebra is 2×2 matrices over Qp and -1 if it is the other
quaternion algebra over Qp . The p-adic Hasse-invariant sp of the quadratic
form is then just the appropriate product of quaternion algebras in the Brauer
group of Qp.

We can define a global Hasse-invariant of the quadratic form σ = 〈a1, . . . ,an〉,
ai ∈Q as s(σ), where s(σ) is in the Brauer group of Q by s(σ) =

∏
i<j

[(ai,aj

Q

)]
where

[(ai,aj

Q

)]
denotes the class of the quaternion algebra in the Brauer

group.
This global invariant (it is invariant of σ) is closely related to the Witt

Invariant, and, in fact, in (Lam, [142]) the exact connections are given. In the
case we’re considering, dim(−σ1) = 8, the calculation gives



56 3 Algebraic Theory of Orthogonal Designs

c(−σ1) = 1 = s(−σ1) �
(−1, δ

Q

)
where δ = disc of −σ1. In our usual terminology 1 = sp(−σ1)(−1, δ)p for all
primes p.

Now since δ = disc(−σ1) = disc(σ1) (since dim(−σ1) = 8) and since σ =
〈1〉 ⊥ σ1, we have δ = disc σ.

Furthermore, sp(−σ1) = (−1, δ)psp(σ1), as a simple calculation shows. Now
sp(σ1) = sp(σ). Thus we have

1 = sp(−σ)(−1, δ) = (−1, δ)psp(σ1) � (−1, δ)
= sp(σ1) = sp(σ)

for all primes p. Hence, if τ = 8〈1〉 ⊥ 〈δ〉, we see that sp(σ) = sp(τ) for all
primes p; they have the same discriminant and same signature, and by the
Hasse-Minkowski Theorem they are isometric.

3.16 Solution of the Algebraic Problem of Orthogonal
Designs in Orders 32t (t-odd)

As usual, we are interested in finding conditions on the positive definite form
σ in order that σ < Sim(32〈1〉). Since ρ(32) = 10, we know dimσ ≤ 10.

Proposition 3.36. For any a,b ∈Q+, σ = 8〈1〉 ⊥ 〈a,b〉 < Sim(32〈1〉).
Proof. We have already seen that for any b ∈Q+,8〈1〉 ⊥ 〈b〉< Sim(16〈1〉). By
the same proof as in Proposition 3.33 we conclude that

8〈1〉 ⊥ 〈b〉 ⊥ 〈a〉 < Sim(〈1,a〉⊗16〈1〉 � 32〈1〉) .�	

With just this proposition we may prove

Proposition 3.37. If σ is positive definite, dimσ = 9, then σ < Sim(32〈1〉).
Proof. We may write σ = 6〈1〉 ⊥ τ where dimτ = 3 and τ is positive definite.
Consider τ ⊥ 〈−1,−1〉 = μ. Since μ is indefinite and dimμ = 5, we know, by
Meyer’ s Theorem, that μ represents 0 non-trivially. But this is just another
way of saying that τ and 〈1,1〉 represent a common value c. In that case
τ = 〈a,b〉 ⊥ 〈c〉 = 〈a,b,c〉 and 〈1,1〉 � 〈c,?〉, but by checking the invariants we
see 〈1,1〉 � 〈c,c〉. Thus

τ < 〈a,b,c〉 ⊥ 〈c〉 = 〈a,b,c,c〉 � 〈a,b,1,1〉

for some a,b ∈Q+. Thus 6〈1〉 ⊥ τ < 8〈1〉 ⊥ 〈a,b〉 for some a,b ∈Q+. �	
Thus we are left only with considering the case where dimσ = 10.
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Theorem 3.15 (Shapiro [191]). If dimσ = 10 and σ is positive definite,
σ < Sim(32〈1〉) if and only if σ � 8〈1〉 ⊥ 〈a,b〉.
Proof. We have shown “If”. We again omit the proof. It is similar, in spirit,
to the (omitted) proof of Theorem 3.13. �	

3.17 The Periodicity Theorem and the General Solution
of the Algebraic Problem of Orthogonal Designs

In this section we omit all proofs and refer the reader to Shapiro [192].

Proposition 3.38. Let σ be a positive definite form and σ = 〈1〉 ⊥ σ1. Let C
be the Clifford Algebra of −σ1, and let V be any C-module. Then there is a
positive definite form q on V where σ < Sim(V,q).

If dimσ ≥ 5, then σ = 〈1〉 ⊥ σ1 automatically, and by Proposition 3.20 this
gives that q � n〈1〉 where 8 |n and n = dimV .

Theorem 3.16 (Periodicity). Let σ be positive definite and suppose σ =
8〈1〉 ⊥ τ , where τ represents 1. Then σ < Sim

(
2m+4〈1〉) if and only if τ <

Sim(q) for some 2m-dimensional positive definite quadratic form q.

Proof. We shall only remark that the proof rests on Proposition 3.38 and the
classical periodicity theorems for Clifford Algebras. �	
Corollary 3.15. Suppose σ is positive definite and σ = 8〈1〉⊥ τ where dimτ ≥
5; then

< Sim
(
2m+4〈1〉)⇔ τ < Sim(2m〈1〉).

Proof. This corollary just comes from the theorem and the remark preceding
it. �	

We are still not in a position to use the full force of this periodicity theorem.
The fact that we still have restrictions on 10-dimensional σ in order 25 gives
trouble in order 26.

The case of 26. Now p(26) = 12. Suppose dimσ = 12. Write σ = 8〈1〉 ⊥ τ ,
dimτ = 4. By periodicity, τ < Sim(q), where q is 4-dimensional. By Corollary
3.3 we have τ < Sim(q) if and only if τ � q, and an easy application of
Proposition 3.19 part (ii) shows τ � q � 〈1,a.b,ab〉 for some a,b ∈ Q+, and
so discτ = 1. In summary, τ < Sim(q) if and only if discτ = 1. For later
reference:

Proposition 3.39. Let σ be a positive definite form of dimension 12. σ <
Sim(26〈1〉) if and only if discσ = 1.
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If dimσ = 11, then, for 11≡ 3 (mod 4), we may use the proofs of Corollary
3.6 or (equivalently) Corollary 3.9 to see that if d equals the discriminant
of σ, then σ < Sim(26〈1〉) if and only if σ ⊥ 〈d〉 < Sim(26〈1〉). Since the
discriminant of σ ⊥ 〈d〉 = 1, we may apply Proposition 3.39 to obtain:

Proposition 3.40. Let σ be a positive definite form of dimension 11. Then
σ < Sim(26〈1〉).

The case of 27. Now p(27) = 16. The periodicity handles dimσ = 16, 15,
14, 13. So we need only consider dimσ = 12. If we can show that every σ of
dimension 12 is < Sim(27〈1〉), then we need never consider dimension 12 (or
less) again. Thus we may always use the periodicity.

But for dimσ = 12, write σ = 8〈1〉 ⊥ τ , the periodicity implies σ <
Sim(27〈1〉) if and only if τ < Sim(q) where dimq = 8. But τ represents
1, so 〈1,a,b〉 < τ for some a,b ∈Q+, and hence, by Proposition 3.19 part (iii),
〈1,a,b,ab〉 |q. Applying Proposition 3.14 part (4), we obtain q � 8〈1〉. We may
now invoke Proposition 3.24 to see that since dimτ = 4, τ < Sim(8〈1〉) is
always possible.

We summarize all the major results from Sections 3.15 on.

Theorem 3.17. Let σ be a positive definite form over Q, d equal the discrim-
inant of σ, and m ≥ 3.

(A) If dimσ < 2m, then σ < Sim(2m〈1〉).
(B) If 2m ≤ dimσ ≤ p(2m), then:

(i) if m ≡ 0 (mod 4), p(2m) = 2m+1 and
(a) dimσ = 2m+1; σ < Sim(2m〈1〉) if and only if sp(σ) = 1 for all

primes p;
(b) dimσ = 2m; if d = 1, σ < Sim(2m〈1〉) always; if d �= 1, σ <

Sim(2m〈1〉) if and only if there is a b ∈Q+ with sp(σ) = (d,−b)p

for all primes p;
(ii) if m ≡ 1 (mod 4), ρ(2m) = 2m; dimσ = 2m; σ < Sim(2m〈1〉) if and

only if there are a,b ∈Q+ with σ � 2(m−1)〈1〉 ⊥ 〈a,b〉 if and only if
sp(σ) = (−d,a)p for some a ∈Q+, and all primes p;

(iii) if m ≡ 2 (mod 4), ρ(2m) = 2m; dimσ = 2m; σ < Sim(2m〈1〉) if and
only if d = 1;

(iv) if m ≡ 3 (mod 4), p(2m) = 2m+2;
(a) dimσ = 2m+2, σ < Sim(2m〈1〉) if and only if d = 1 and sp(σ) = 1

for all primes p;
(b) dimσ = 2m + 1, σ < Sim(2m〈1〉) if and only if sp(σ) = (−1,d)p

for all primes p;
(c) dimσ = 2m, σ < Sim(2m〈1〉) if and only if there is an a ∈ Q+

with sp(σ) = (d,−a)p(a,−1)p for every prime p.
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3.18 Combining the Algebraic Solution with
Combinatorial Facts

One of the strongest combinatorial facts we discovered was Theorem 2.5. It,
combined just with the algebraic restriction on the number of variables in an
orthogonal design of order n, was enough to eliminate many p(n)-tuples as
the types of orthogonal designs in order n. We now combine it with the new
algebraic information to eliminate more tuples (even those of length less than
p(n)).

We illustrate, by some examples, how the two types of information may be
combined.

Example 3.9. We want to know if it is possible for an orthogonal design
OD(20;1,1,17) to exist.

Since p(20) = 4, we get no contradiction just from the number of variables
involved. Since 17 = 12 +42, we know there is a rational family of type [1,1,17]
in order 20. Now use Corollary 2.3 to note that if an orthogonal design of
type (1,1,17) exists in order 20, then there is an orthogonal design of type
(1,1,1,17) in order 20. Hence there is a rational family of type [1,1,1,17] in
order 20 and thus, by Theorem 3.11, in order 4. Thus 〈1,1,1,17〉 � 〈1,1,1,1〉,
which is a contradiction since the discriminants are not equal. So there is no
orthogonal design OD(20;1,1,17).

Exactly the same procedure may be used to show that there is no orthogonal
design OD(20;7,12).

Similarly, there are no orthogonal designs of types OD(72;1,1,1,1,1,66),
OD(72;1,1,1,1,1,1,65) or OD(72;1,1,1,1,1,1,1,64).

These examples indicate how we may modify Theorem 3.17. The examples
also show how the proof should be constructed and so shall be omitted.

Theorem 3.18. Let n ≡ 0 (mod 4), n = 2mb, b odd. Let Δ = (a1, . . . ,a�)

where � < p(n) and
�∑

i=1
ai = n−1. The following give necessary conditions for Δ

to be the type of an orthogonal design in order n. (Let σ = 〈a1, . . . ,a�〉d = discσ)

(A) m = 2.

� = 2; (−1,a1a2)p(a1a2)p = 1 for all primes p.

� = 3; a1a2a3 is a square, and 1 = (a1a2)p(−1,a1a2)p for all primes p.

(B) m ≥ 3.
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(i) m ≡ 0 (mod 4); � = 2m; sp(σ) = 1 for all primes p.

� = 2m−1; if d �= 1, then there is a b ∈Q+

with sp(σ) = (d,−b)p for all primes p.

(ii) m ≡ 1 (mod 4); � = 2m−1; there is a b ∈Q+

with sp(σ) = (−d,b) for all primes p.

(iii) m ≡ 2 (mod 4); � = 2m−1; d = 1.

(iv) m ≡ 3 (mod 4); � = 2m+1; d = 1 and sp(σ) = 1 for all primes p.

� = 2m; sp(σ) = (−1,d)p for all primes p.

� = 2m−1; there is an a ∈Q+

with sp(σ) = (d,−a)p(a,−1)p for all primes p.

Example 3.10. (A) As we have seen, (A) eliminates (7,12) and (1,1,17) in
order 20.

(B) (i) Consider if there is an orthogonal design OD(48;1,1,1,1,3,3,36) =
3.16. This is not eliminated by Theorem 3.17 part (B).(i).(b) since
if σ = 5〈1〉 ⊥ 〈3,3,36〉, discσ = 1. But s3(σ) = (3,3)3 = (−1,3)3 = −1.
So it is eliminated by Theorem 3.18 part (B).(i) above.

(ii) We have not found anything yet that this eliminates.
(iii) This one is easy to use; for example; there is no orthogonal design

OD(64;2,2,2,2,2,2,2,2,2,2,43), i.e. OD(64;210,43).
(iv) Parts of this are easy to use, especially � = 2m+1, � = 2m; the other

part is not so easy.

We have not explored yet which designs are eliminated (in general) by this
theorem. Later, when we consider the possibilities of orthogonal designs in
various orders, we shall make use of these theorems.

In this chapter, then, we have dealt at some length with finding necessary
conditions for the existence of orthogonal designs in various orders. The
conditions, of course, then amount to eliminating various tuples as the types
of orthogonal designs. In general, what we have found is (algebraically) if the
length of tuple is “small” compared to p(n), the tuple exists as the type of a
rational family. Hence, in general, we have no algebraic conditions on small
tuples. On the other hand, the combinatorial results tell us to exercise care
when the orthogonal design we are after is almost full (that is, few zeros per
row).

In the next chapter we take a more positive (depending on your point
of view) approach. We give many constructions and examples of orthogonal
designs and give some indication of the scope of possibilities that exist.
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3.18.1 Alert

Since this chapter was originally written and published in 1979 there has been
growing literature in the field of Classification of Algebras. We do not delve
into this here but recommend the deeper scholar to also study this area of
classification.



Chapter 4
Constructions for Orthogonal Designs via
Plug In and Plug Into Matrices

4.1 Introduction

In previous chapters we have studied some necessary conditions for the exis-
tence of orthogonal designs. We now turn to the task of actually constructing

been used in the construction of Hadamard matrices. There is one unifying
theme in the constructions presented in this chapter. They revolve, in the
main, around finding plug-in matrices with prescribed properties or discover-
ing the obstructions to finding such matrices. Then we study arrays which
these matrices may be plugged into. There are several methods of obtaining
the appropriate collections of plug-in matrices (circulants, negacyclics, type
1, type 2 and blocks). The ways they may be used often depend on how
we obtained them. In general, the more control we attempt to exert on the
internal structure of the plug-in matrices, the more interesting the ways we
can use them.

4.2 Some Orthogonal Designs Exist

Proposition 1.2 actually gives a construction for orthogonal designs. We review
that proposition and add a remark about uniqueness in the following.

Theorem 4.1. There are OD(1;1), OD(2;1,1), OD(4;1,1,1,1) and
OD(8;1,1,1,1,1,1,1,1). These are equivalent under the equivalence operations

(a) interchange rows or columns;
(b) multiply rows or columns by −1;
(c) replace any variable by its negative throughout the design; to one of the

arrays of appropriate order in Table 4.1.
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such designs. The ideas and methods we use are quite varied, and many have
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Table 4.1 Examples: OD(1;1), OD(2;1,1), OD(4;1,1,1,1) and
OD(8;1,1,1,1,1,1,1,1)

[x] ,
[
x y
y −x

]
,

⎡⎢⎢⎣
a b c d

−b a d −c
−c −d a b
−d c −b a

⎤⎥⎥⎦ or

⎡⎢⎢⎣
a b c d

−b a −d c
−c d a −b
−d −c b a

⎤⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b c d e f g h
−b a d −c f −e −h g
−c −d a b g h −e −f
−d c −b a h −g f −e

−e −f −g −h a b c d
−f e −h g −b a −d c
−g h e −f −c d a −b
−h −g f e −d −c b a

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Proof. By tedious systematic elimination. The uniqueness of the orthogonal
design of order 8 under Hadamard equivalence operations is shown in [239]. �	

Here we leave the question of equivalence of orthogonal designs, except to say
that Lakein and Wallis [140] have briefly considered inequivalence of Baumert-
Hall arrays of small order (see Section 4.12 for definition), and Hain [96]
conjectured and Eades [52] established that there are exactly two equivalence
classes of circulant weighing matrices of order 13. The existence of circulant
weighing matrices has attracted considerable interest. See [6, 7, 9–11, 153]
papers and Section 4.4, Ohmori [156–158] has studied the equivalence of
weighing matrices, W (n,k) and Kimura [124], the equivalence of Hadamard
matrices.

We believe equivalence of orthogonal designs is an area worthy of study. We
refer any interested reader to the work of M. Hall Jnr, W. D. Wallis and others
described in J. Cooper [31], J. Wallis [231, pp 408-425], B. Gordon [92], C.
Koukouvinos and colleagues, H. Kharaghani, W. Holzmann and W.D. Wallis
on equivalence of Hadamard matrices.

In Chapter 1 we gave a construction for H-R families (see Theorem 1.2). It
is possible to generalize that result to orthogonal designs.

Theorem 4.2. If there exists OD(n;u1,u2, . . . ,us), then there exists an or-
thogonal design of type

(i) OD(2n;u1,u2, . . . ,us−1,us,us) with s+1 variables,
(ii) OD(4n;u1,u2, . . . ,us−1,us,us,us) with s+2 variables,

(iii) OD(8n;u1,u2, . . . ,us−1,us,us,us,us,us) with s+4 variables,
(iv) OD(16n;u1,u2, . . . ,us−1,us,us,us,us,us,us,us,us,us) with s + 8 vari-

ables.
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Proof. In each case we replace each of the first s−1 variables by xiIm, where
m = 2,4,8,16, respectively. In cases (i), (ii), (iii) and (iv) the last variable is
replaced by [

x y
y −x

]
,

⎡⎢⎢⎣
x y z 0
y −x 0 −z
z 0 −x y
0 −z y x

⎤⎥⎥⎦ , X and W ,

respectively, where X and W are given in Table 4.2. �	

Table 4.2 Values for X and W

W =
[

X Y
Y � Z

]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x y z 0 a 0 0 −b c 0 0 d 0 −e f 0
y −x 0 −z 0 −a b 0 0 −c −d 0 e 0 0 −f
z 0 −x y 0 −b −a 0 0 d −c 0 −f 0 0 −e
0 −z y x b 0 0 a −d 0 0 c 0 f e 0
a 0 0 b −x y z 0 0 −e f 0 −c 0 0 −d
0 −a −b 0 y x 0 −z e 0 0 −f 0 c d 0
0 b −a 0 z 0 x y −f 0 0 −e 0 −d c 0
−b 0 0 a 0 −z y −x 0 f e 0 d 0 0 −c
c 0 0 −d 0 e −f 0 −x y z a 0 0 0 −b
0 −c d 0 −e 0 0 f y x 0 −z 0 −a b 0
0 −d −c 0 f 0 0 e z 0 x y 0 −b −a 0
d 0 0 c 0 −f −e 0 0 −z y −x b 0 0 a

0 e −f 0 −c 0 0 d a 0 0 b x y z 0
−e 0 0 f 0 c −d 0 0 −a −b 0 y −x 0 −z
f 0 0 e 0 d c 0 0 b −a 0 z 0 −x y
0 −f −e 0 −d 0 0 −c −b 0 0 a 0 −z y x

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Corollary 4.1. There exists an orthogonal design of type OD(n;1, . . . ,1) with
ρ(n) variables in order n = 2a.b (b odd).

Proof. This follows immediately from Theorem 1.2. �	
We now note that orthogonal designs of the same order but different types

can be easily made by setting variables equal to zero or to one another. For
easy reference, this is stated in the following lemma:

Lemma 4.1 (Equate and Kill Theorem). If A is OD(n;u1, . . . ,us) on
variables x1, . . . ,xs, then there is OD(n;u1, . . . ,ui +uj , . . . ,us) and
OD(n;u1, . . . ,uj−1,uj+1, . . . ,us) on s−1 variables x1 . . . , x̂j , . . . ,xs.
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Proof. Set the variables x̂j = xi = xj in the first case and x̂j = 0 in the second.
�	

Corollary 4.2. An OD(n;u1, . . . ,us) exists if
s∑

i=1
ui ≤ ρ(n) for any integer

n = 2,4,8, orthogonal designs of order n and any type exist.

Proof. The proof follows by using the designs of type (1,1, . . . ,1) in Corollary
4.1. �	
Example 4.1. ⎡⎢⎢⎣

x y z w
−y x w −z
−z −w x y
−w z −y x

⎤⎥⎥⎦
is OD(4;1,1,1,1). We can make designs OD(4;1,1,2) by (for example) setting
z = w = v and of type OD(4;1,1,1) by (for example) setting y = 0.⎡⎢⎢⎣

x y v v
−y x v −v
−v −v x y
−v v −y x

⎤⎥⎥⎦
⎡⎢⎢⎣

x 0 z w
0 x w −z

−z −w x 0
−w z 0 x

⎤⎥⎥⎦
is an OD(4;1,1,2), and is an OD(4;1,1,1).

Another method of finding orthogonal designs, already foreshadowed by
the proof of Theorem 4.2, is to replace variables by suitable matrices of
variables. Similar methods were first used extensively by J. Wallis [231] in
constructing Hadamard matrices. The results now quoted are due to Joan
Murphy Geramita, Kounias, Koukouvinos, Holzmann, Kharaghani, Ming-yuan
Xia, ourselves and many of our students.

The next lemma is given for easy reference. The remaining lemmas of
this section are of far-reaching consequences and great power in constructing
orthogonal designs.

Lemma 4.2. If A is an OD(n;u1, . . . ,us) on x1 . . . ,xs, then there exists
OD(mn;u1, . . . ,us) on x1, . . . ,xs for any integer m ≥ 1.

Proof. Replace each variable xi of A by xiIm. �	
The next result is most useful, and part of it first appeared in Geramita-

Geramita-Wallis [77]. It was the start of what is now amicable orthogonal
designs (see Chapter 5).

Lemma 4.3. If there is OD(n;a,b), there is an

OD(2n;a,a,b,b) OD(4n;a,a,2a,b,b,2b)
OD(8n;a,a,2a,2a,2a,8b) OD(8n;a,2a,2a,3a,2b,6b)
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Proof. To obtain the required designs in order 2n, 4n and 8n, respectively,
the two variables of the design OD(n;a,b) in order n should be replaced by
the matrices of commuting variables (we use x̄i for −xi and ȳj for −yj) given
in Table 4.3 respectively. This is possible because XiY

�
i = YiX

�
i , i = 1,2,3,4,

that is, Xi and Yi are amicable. �	

Table 4.3 Amicable designs in order 2n, 4n, 8n using x̄i for −xi, ȳj for −yj

X1 =
[
x1 x2
x̄2 x1

]
,

[
y1 y2
y2 ȳ1

]
= Y1

X2 =

⎡⎢⎢⎣
x1 x2 x3 x3
x̄2 x1 x3 x̄3
x̄3 x̄3 x1 x2
x̄3 x3 x̄2 x1

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
y1 y2 y3 y3
y2 ȳ1 y3 ȳ3
y3 y3 ȳ2 ȳ1
y3 ȳ3 ȳ1 y2

⎤⎥⎥⎦ = Y2

X3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0 x1 x2 x3 x2 x4 x3 x4
x̄1 x0 x3 x̄2 x4 x̄2 x4 x3
x̄2 x̄3 x0 x1 x3 x̄4 x̄2 x4
x̄3 x2 x̄1 x0 x̄4 x̄3 x4 x2
x̄2 x̄4 x̄3 x4 x0 x1 x2 x̄3
x̄4 x2 x4 x3 x̄1 x0 x̄3 x̄2
x̄3 x̄4 x2 x̄4 x̄2 x3 x0 x1
x̄4 x3 x̄4 x̄2 x3 x2 x̄1 x0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 − 1 − − 1 −
1 − 1 1 − 1 − −
− 1 − − − 1 − −
1 1 − 1 1 1 − 1
− − − 1 1 1 1 −
− 1 1 1 1 − − −
1 − − − 1 − − −
− − − 1 − − − 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= Y3

X4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0 x2 x3 x3 x3 x2 x̄1 x̄1
x̄2 x0 x3 x̄3 x2 x̄3 x̄1 x1
x̄3 x̄3 x0 x2 x̄1 x̄1 x̄2 x̄3
x3 x3 x̄2 x0 x̄1 x1 x̄3 x2
x̄3 x̄2 x1 x1 x0 x2 x3 x3
x̄2 x3 x1 x̄1 x̄2 x0 x3 x̄3
x1 x1 x2 x3 x̄3 x̄3 x0 x2
x1 x̄1 x3 x̄2 x̄3 x3 x̄2 x0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y2 y1 ȳ2 ȳ2 ȳ2 y1 ȳ2 ȳ2
y1 ȳ2 y2 ȳ2 ȳ1 ȳ2 ȳ2 y2
ȳ2 y2 ȳ1 y2 ȳ2 ȳ2 ȳ2 y1
ȳ2 ȳ2 y2 y1 ȳ2 y2 ȳ1 ȳ2
ȳ2 ȳ1 ȳ2 ȳ2 ȳ2 y1 y2 y2
y1 ȳ2 ȳ2 y2 y1 y2 ȳ2 y2
ȳ2 ȳ2 ȳ2 ȳ1 y2 ȳ2 ȳ1 ȳ2
ȳ2 y2 y1 ȳ2 y2 y2 ȳ2 y1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= Y4 .

Corollary 4.3. If there are OD(n;1,k), 1≤ k≤ j, then there are OD(2n;1,m)
for 1 ≤ m ≤ 2j + 1. In particular, if there are OD(n;1,k), 1 ≤ k ≤ n−1, then
there are OD(2tn;1,m), 1 ≤ m ≤ 2tn−1, t a positive integer.

Example 4.2. Since there is an OD(2;1,1), there exist, using Corollary 4.3,
orthogonal designs OD(2t;1,k), 1 ≤ k ≤ 2t−1, in every order 2t, t a positive
integer.

The following lemma is crucial to the powerful results on Hadamard matrices
we will obtain later.

,
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Theorem 4.3 (Doubling Theorem). If there exists an OD(n;s1,s2, . . . ,su),
then there exist orthogonal designs of type

(i) OD(2n;e1s1,e2s2, . . . ,eusu) where ei = 1 or 2,
(ii) OD(2n;s1,s1,fs2, . . . ,fsu) where f = 1 or 2.

Proof. (i) Replace each variable by
[

xi 0
0 xi

]
if ei = 1 and by

[xi xi
xi −xi

]
if ei = 2.

(ii) Replace the variable x1 by
[ x0 x1−x1 x0

]
and the variable xi, i �= 1, by

[
0 xi
xi 0

]
or

[xi xi
xi −xi

]
according as f is 1 or 2. �	

4.3 Some Basic Matrix Results

One of the most useful constructive methods for orthogonal designs has been
that using two or more circulant matrices. Later in Section 4.5 we discuss
the alternative plug-in matrices, nega-cyclic matrices, which are especially
useful for even orders. In this section we give some results about circulant
matrices starting with the more general concept of type 1; then we develop
some existence results.

First we give some definitions and elementary results. We use the following
notation:

Notation 4.1. A (1,−1) matrix is a matrix whose only entries are +1 or −1.
We use similar notation for a (0,1,−1) matrix, (a,b,c) matrix, etc. We use
Jn for the n×n matrix with every entry +1. (We shall sometimes drop the
subscript if the order is obvious.)

Definition 4.1. (a) Let G be an additive abelian group of order t, and order
the elements of G as z1, . . . ,zt. Let ψ and φ be two functions from G into a
commutative ring. We define two matrices M = (mij) and N = (nij), of order
t, as follows:

mij = ψ(zj −zi) and nij = φ(zj +zi) .

M and N are called type 1 and type 2 matrices, respectively.

Remark 4.1. The words “type 1” used to describe these matrices leaves out
information: the way the elements of G are ordered and which functions ψ and
φ are being used. One should say, e.g., in describing M , “type 1 with respect

phrase will be omitted since the ordering for G is usually understood and
fixed, while the functions ψ and φ are usually explicit.

(b) Let G be as above with its elements ordered as above. Let X be a
subset of G, and suppose 0 /∈ X. If ψ and φ are defined by:

to the following ordering of G and the function φ”; however, this cumbersome
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ψ(x) =

⎧⎪⎨⎪⎩
a, x = 0
b , x ∈ X

c, x /∈ X ∪{0}
, φ(x) =

⎧⎪⎨⎪⎩
d, x = 0
e, x ∈ X

f , x /∈ X ∪{0}
,

then M will be called the type 1 (a,b,c) incidence matrix generated by X, and
N the type 2 (d,e,f) incidence matrix generated by X.

Remark 4.2. If we drop the restriction that 0 /∈ X and let

ψ(x) = φ(x) =
{

1 if x ∈ X

−1 if x /∈ X
,

we obtain the type i (i = 1,2) (1,−1) incidence matrix generated by X, and if
we let

ψ(x) = φ(x) =
{

1 if x ∈ X

0 if x /∈ X
,

then we obtain the type i (i = 1,2) (1,0) incidence matrix generated by X.

Notice that these latter two “incidence” matrices are really special cases
of Definition 4.1 part (b) where we let a = b or a = c depending on whether
0 ∈ X or 0 /∈ X.

Example 4.3. Consider the field Z3[x]
(x2−x−1) = GF (32). We order the elements

g1 = 0, g2 = 1, g3 = 2, g4 = x, g5 = x + 1, g6 = x + 2, g7 = 2x, g8 = 2x + 1,
g9 = 2x+2. Define the set

X =
{

y : y = z2 for some z ∈ GF (32) , z �= 0
}

= {x+1,2,2x+2,1} .

Then the type 1 and type 2 (0,1,−1) incidence matrices generated by X are
given by A and B, respectively:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 −1 1 −1 −1 −1 1
1 0 1 −1 −1 1 1 −1 −1
1 1 0 1 −1 −1 −1 1 −1

−1 −1 1 0 1 1 −1 1 −1
1 −1 −1 1 0 1 −1 −1 1

−1 1 −1 1 1 0 1 −1 −1
−1 1 −1 −1 −1 1 0 1 1
−1 −1 1 1 −1 −1 1 0 1

1 −1 −1 −1 1 −1 1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 −1 1 −1 −1 −1 1
1 1 0 1 −1 −1 −1 1 −1
1 0 1 −1 −1 1 1 −1 −1

−1 1 −1 −1 −1 1 0 1 1
1 −1 −1 −1 1 −1 1 1 0

−1 −1 1 1 −1 −1 1 0 1
−1 −1 1 0 1 1 −1 1 −1
−1 1 −1 1 1 0 1 −1 −1

1 −1 −1 1 0 1 −1 −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

If the additive abelian group in Definition 4.1 is the cyclic group Zt of integers
modulo t with the usual ordering 0,1,2, . . . , t−1, then the type 1 and type 2
matrices are very familiar.

Definition 4.2. (a) A circulant matrix A = (aij) of order n is one for which
aij = a1,j−i+1 where j − i + 1 is reduced modulo n to 0,1,2, . . . ,n− 1. For
example: ⎡⎢⎢⎣

1 2 3 4
4 1 2 3
3 4 1 2
2 3 4 1

⎤⎥⎥⎦ .

(b) A set D = {x1,x2, . . . ,xk} ⊂ {0,1,2, . . . ,n−1} will be said to generate a
circulant (1,−1) matrix if the first row of the circulant matrix is defined by

a1x =
{

+1, x ∈ D

−1, x /∈ D
.

(c) A matrix A = (aij) of order n will be called back circulant if aij = a1,i+j−1
where i+ j−1 is reduced modulo n. For example:⎡⎢⎢⎣

1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

⎤⎥⎥⎦ .

Remark 4.3. (i) Any type 1 matrix defined on Zt (with its usual ordering) is
circulant since:

mij = ψ(j− i) = ψ(j− i+1−1) = m1,j−i+1 .

(ii) Any type 2 matrix defined on Zt (with its usual ordering) is back circulant
since:

nij = φ(i+ j) = φ(i+ j−1+1) = n1,i+j−1 .
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Clearly, any circulant matrix is a type 1 matrix, and any back circulant
matrix is a type 2 matrix. In any case:

• A type 1 matrix is analogous to a circulant matrix;
• A type 2 matrix is analogous to a back circulant matrix.

Thus, all propositions proved about type 1 and type 2 matrices have corollaries
about circulant and back circulant matrices.

Lemma 4.4. Suppose G is an additive abelian group of order v with elements
ordered z1,z2, . . . ,zv. Let φ, ψ, and μ be functions from G to some commutative
ring R.

Define A = (aij), B = (bij) and C = (cij) by aij = φ(zj −zi), bij = ψ(zj −zi)
and cij = μ(zj +zi). Then

(i) C� = C , (ii) AB = BA, (iii) AC� = CA� .

Proof. (i) cij = μ(zj +zi) = μ(zi +zj) = cji.

(ii) (AB)ij =
∑

g∈G φ(g−zi)ψ(zj −g).

Putting h = zi − zj −g, it is clear that as g ranges through G, so does h,
and the above expression becomes∑

h∈G

φ(zj −h)ψ(h−zi) =
∑
n∈G

ψ(h−zi)φ(zj −h)

(since R is commutative); this is (BA)ij .

(iii) (AC�)ij =
∑

g∈G φ(g−zi)ψ(zj +g)
=

∑
h∈G φ(h−zj)μ(zi +h) (h = zj +g−zi)

= (CA�)ij . �	
Corollary 4.4. If X and Y are type 1 matrices and Z is a type 2 matrix, all
defined on the same abelian group with a fixed ordering, then (i) Z� = Z, (ii)
XY = Y X, (iii) XZ� = ZX�.

Lemma 4.5. (i) If X is a type 1, i = 1,2, matrix, then so is X�.
(ii) If X and Y are type 1 matrices, i = 1,2, both defined on the same abelian
group with a fixed ordering, then so is X +Y and X −Y .

Proof. (i.a) If X = (xij) is type 2 defined using a function φ, then Xij =
φ(zi +zj) = φ(zj +zi) = Xji. So X� is also defined as type 2 using φ.

(i.b) If X = (xij) is of type 1 defined using ψ, then xij = ψ(zj − zi).
Now define a type 1 matrix M = (mij) using μ, where μ(x) = ψ(−x). Then
mij = μ(zj −zi) = ψ(zi−zj) = xji. Thus M = X�.
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(ii.a) If X and Y are type 2 defined using φ1 and φ2, then the type 2
matrices defined using φ1 + φ2 and φ1 − φ2 respectively, give X + Y and
X −Y , respectively.

(ii.b) Similarly, if X and Y are type 1 defined using ψ1 and ψ2, define
type 1 matrices using μ1 + μ2 and μ1−μ2, respectively, to obtain X + Y and
X −Y , respectively, where μi(x) = ψi(−x). �	
Corollary 4.5. (i) If X and Y are type 1 matrices, defined on the same
abelian group with a fixed ordering, then

XY = Y X XY � = Y �X
X�Y = Y X� X�Y � = Y �X� .

(ii) If P is a type 1 matrix and Q is a type 2 matrix, both defined on the same
abelian group with a fixed ordering, then

PQ� = QP � P �Q� = QP
PQ = Q�P � P �Q = Q�P

.

We now summarize the most used results for circulants.

Corollary 4.6. (i) Two circulant matrices of the same order commute.
(ii) A back circulant matrix is symmetric.
(iii) The product of a back circulant matrix with a circulant matrix of the same
order is symmetric. In particular, if B is back circulant and A is circulant,

AB� = BA�.

A and B are amicable matrices (see Chapter 5)

Remark. From now on, whenever we refer to a collection of type 1 and type
2 matrices all defined on the same abelian group G, we shall assume that the
ordering of the group elements has been fixed.

Lemma 4.6. (i) Let X and Y be type 2 (d,e,f) incidence matrices generated
by subsets A and B of an additive abelian group G. Suppose, further, that

a ∈ A ⇒−a ∈ A and b ∈ B ⇒−b ∈ B .

Then,
XY = Y X and XY � = Y X� .

(ii) The same result holds if X and Y are type 1.

Proof. (i) Since X and Y are symmetric, we only have to prove that XY � =
Y X�. Suppose X = (xij) and Y = (yij) are defined by

xij = φ(zi +zj), yij = ψ(zi +zj) ,
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where z1,z2, . . . are the elements of G. Then

(XY �)ij =
∑

k

φ(zi +zk)ψ(zk +zj)

=
∑

k

φ(−zi−zk)ψ(zk +zj) since a ∈ A ⇒−a ∈ A

=
∑

�

φ(zj +z�)ψ(−z�−zi−zj +zj) z� = −zk −zi−zj

=
∑

�

φ(zj +z�)ψ(z� +zi) since b ∈ B ⇒−b ∈ B

= (Y X�)ij .

(ii) The additional hypotheses on A and B force X and Y to be symmetric.
The proof, then, is similar to (i), and we leave it to the reader as an easy
exercise. �	
Lemma 4.7. Let R = (rij) be the permutation matrix of order n, defined on
an additive abelian group G = {gi} of order n by

rk,j =
{

1 if gk +gj = 0
0 otherwise.

(i) If M is a type 1 matrix defined on G, then MR is a type 2 matrix defined
on G.

(ii) If N is a type 2 matrix defined on G, then NR is a type 1 matrix defined
on G.

(iii) If X is a subset of G where 0 /∈ X and M is the type 1 (a,b,c) incidence
matrix generated by X, then MR is the type 2 (a,b,c) incidence matrix
generated by −X.

(iv) If X is as in (3) and N is the type 2 (a,b,c) incidence matrix generated
by X, then NR is the type 1 (a,b,c) incidence matrix generated by −X.

Proof. 1.) Let M = (mij) be defined by mij = ψ(gj − gi), and let μ(x) =
ψ(−x). We claim that MR is the type 2 matrix defined by μ, for

(MR)ij =
∑

k

mikrkj = mi�, where g� +gj = 0,

= ψ(g�−gi) = ψ(−gj −gi) = μ(gj +gi) .

2.) follows from a similar argument.
3.) and 4.) are clear from 1.) and 2.) and the relationship between ψ and
μ. �	
Corollary 4.7. Let G be an additive abelian group and X a subset of G where
0 /∈ X. Let M be the type 1 (a,b,c) incidence matrix generated by X, and N
the type 2 (a,b,c) incidence matrix generated by −X. Then
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MM� = NN� .

Proof. Lemma 4.7 gives that M = NR, where R is the permutation matrix
appropriate to G. The corollary follows since RR� = 1. �	

4.3.1 Supplementary Difference Sets, their Incidence
Matrices and their Uses as Suitable Matrices

Definition 4.3. Let S1,S2, . . . ,Sn be subsets of V , an additive abelian group
of order v. Let |S| = ki and Si = si1,si2, . . . ,siki

. If the equation

g = sij −sim

has exactly λ solutions for each non-zero element g of V , then S1,S2, . . . ,Sn

will be called n−{v;kl,k2, . . . ,kn;λ} supplementary difference sets or sds. If
k1 = k2 = · · · = kn = k, we write n−{v;k;λ} sds.

Lemma 4.8. Suppose A1, . . . ,An are the type 1 (0,1) incidence matrices
generated by S1, . . . ,Sn, where S1, . . . ,Sn are n−{v;k;λ} sds. Then

n∑
i=1

AiA
�
i =

(
n∑

i=1
ki−λ

)
I +λJ .

Proof. This follows from the definition by a simple counting argument. (See
Wallis [231, p.290] for a fuller proof.) �	
Example 4.4. S1 = {0,2,3} and S2 = {0,1,4} are 2−{5;3;3} sds in Z5. Their
type 1 (1,0) incidence matrices are the circulants

A1 =

⎡⎢⎢⎢⎢⎣
1 0 1 1 0
0 1 0 1 1
1 0 1 0 1
1 1 0 1 0
0 1 1 0 1

⎤⎥⎥⎥⎥⎦ and A2 =

⎡⎢⎢⎢⎢⎣
1 1 0 0 1
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
1 0 0 1 1

⎤⎥⎥⎥⎥⎦
which satisfy

A1A�
1 +A2A�

2 = 3I +3J .

We observe that for these subsets of Z5, x ∈ Si ⇒ −x ∈ Si. So, if R is
the back diagonal matrix of order 5 (see Lemma 4.7), we see A1R = B1
and A2R = B2 are the type 2 (1,0) incidence matrices generated by S1 and
respectively.
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B1 = A1R =

⎡⎢⎢⎢⎢⎣
1 0 1 1 0
0 1 1 0 1
1 1 0 1 0
1 0 1 0 1
0 1 0 1 1

⎤⎥⎥⎥⎥⎦ and B2 = A2R =

⎡⎢⎢⎢⎢⎣
1 1 0 0 1
1 0 0 1 1
0 0 1 1 1
0 1 1 1 0
1 1 1 0 0

⎤⎥⎥⎥⎥⎦ .

Using Lemma 4.6 (or directly), we obtain

B1B2 = B2B1 and B1B�
2 = B2B�

1 .

Also
A1A2 = A2A1 and A1A�

2 = (B1R)(B2R)� = B2B�
1 .

We also observe that

A1B�
2 = B2A�

1 and AiA
�
i = BiB

�
i .

Lemma 4.9. Let A1, . . . ,An be type 1 (1,0) incidence matrices generated by
S1, . . . ,Sn where S1, . . . ,Sn are n−{v;k1, . . . ,kn;λ} sds.

Let Bi = Ai−J . Then

n∑
i=1

BiB
�
i = 4

⎛⎝ n∑
j=1

kj −λ

⎞⎠I +

⎡⎣nv−4

⎛⎝ n∑
j=1

kj −λ

⎞⎠⎤⎦J .

We are constantly searching for (0,1,−1) matrices to substitute for the
variables in an orthogonal design. We shall be precise about what is needed.

Definition 4.4. A set of m (0,1,−1) matrices A1,A2, . . . ,Am of order n
will be called suitable plug-in matrices for the orthogonal design of type
OD(n;s1,s2, . . . ,sm) if

1) AiA
�
j = AjA�

i , 1 ≤ i, j ≤ m ;

2)
m∑

i=1
siAiA

�
i = kIn .

2) is called the additive property. So suitable matrices are pairwise amicable
and satisfy the additive property.

Theorem 4.4. Let S1,S2,S3,S4 be 4−{t;k1,k2,k3,k4;
∑4

j=1 kj − t} sds for
which x ∈ Si ⇒ −x ∈ Si, and let Al,A2,A3,A4 be the type 1 (1,−1) inci-
dence matrices of these sets. Then A1,A2,A3,A4 are suitable matrices for an
orthogonal design OD(4st;s,s,s,s).
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Proof. Since x ∈ Si ⇒−x ∈ Si we see that Ai, i = 1,2,3,4, are symmetric and
commuting. Using Lemma 4.9, we have

4∑
i=1

AiA
�
i = 4

⎛⎝ 4∑
j=1

kj −
4∑

j=1
kj + t

⎞⎠I +

⎛⎝4t−4

⎛⎝ 4∑
j=1

kj −
4∑

j=1
kj + t

⎞⎠⎞⎠J

= 4tI.

In particular,
4∑

i=1
sAiA

�
i = 4stI .

If the variables of the orthogonal design are replaced by the Ai, i = 1,2,3,4,
we have a weighing matrix of weight 4st. �	

If the orthogonal design of the theorem is of order 4s, then the weighing
matrix obtained will be of order 4st and weight 4st, in other words, an
Hadamard matrix of order 4st. In this case the symmetric matrices of Theorem
4.4 are a special kind of what will be called Williamson matrices (see also
Definition 4.16).

4.4 Existence of Weighing Matrices

In 1972 at the first Australian conference on Combinatorial Mathematics,
Seberry Wallis gave her first paper on weighing matrices [232]. Weighing
matrices also caused interest at Queen’ s University that year. It was observed
that in order to establish existence in all orders for a given weight we needed
to consider weighing matrices in odd orders.

We noticed that there was a circulant W (7,4). It has first row −110100.
Then D. Gregory found a non-circulant W (13,9). After observing that the

zeros of this matrix give the incidence matrix of a finite projective plane, we
found a circulant W (13,9) with first row 0010111−01−1.

At the Fifth South-eastern Conference on Combinatorics, Graph Theory
and Computing in Boca Raton, Florida, in 1972, Rick Wilson and R.C. Mullin
said they thought W (q2 + q +1, q2) might exist when q was a prime power.

At that time Mullin [153] was writing a book on Coding Theory with Ian
Blake [23], who quickly saw the possibilities of using weighing matrices and
especially circulant matrices W to form generator matrices [I,W ] of codes
over GF (3) which would generalise the Pless symmetry codes.

Wallis and Whiteman (Theorem 4.6) finally showed that circulant W (q2 +
q +1, q2) existed when q was a prime power.

In writing this section it seemed that the proof of Wallis and Whiteman was
too circuitous and a prettier, more direct proof was desirable. Our colleague,
L.G. Kovacs, has given three proofs; the second is illustrated by Example
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4.8 and we feel is intrinsically very beautiful. The first proof is illustrated
by Example 4.9. The proof we have given here is the shortest, but hides to
some extent the delightful intimacy between circulant weighing matrices and
cyclic projective planes. The work of David Glynn gives more insight. (See
Glynn [87].)

It was Kovacs’ work that allowed Hain and Eades [54] to establish that
there are only two equivalence classes of circulant W (13,9). Many others
[6, 7, 9–11, 153, 201, 252] have continued this study of circulant weighing
matrices, but the full story is not yet known.

If A is a W (n,k), then (detA)2 = kn. Thus if n is odd and a W (n,k) exists,
then k must be a perfect square.

In Proposition 2.3 it is shown that

(n−k)2− (n−k)+2 > n

must also hold. It is noted there that the “boundary” values of this condition
are of special interest, that is, if

(n−k)2− (n−k)+1 = n,

for in this case the zeros of A occur such that the incidence between any pair
of rows is exactly one. So if we let B = Jn−AA�, B satisfies

BB� = (n−k−1)In +Jn, BJn = (n−k)Jn ;

that is, B is the incidence matrix of the projective plane of order n−k−1.
Thus the non-existence of the projective plane of order n−k−1 implies the

non-existence of the W (n,k) when n = (n−k)2 − (n−k)+1. So we rewrite
the Bruck-Ryser-Chowla Theorem from Hall [97, p.107–112] to allow us to
consider the non-existence of projective planes.

Theorem 4.5 (Bruck-Ryser). If there exists a projective plane of order
s, then the Diophantine equation

x2 = sy2 +(−1)
(s2+2)

2 z2

has a solution in the integers not all zero. That is, the Hilbert symbol(
(−1)

(s2+2)
2 ,s

)
p

= +1

for all primes p, including p = ∞.

Example 4.5. Consider s = n−k−1 = 6 , s2 +s+1 = n = 43, s2 = k = 36. The
Bruck-Ryser Theorem says that there is a projective plane only if(−121 ,6

)
p

= (−1,6)p = +1 at all primes p.
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But at p = 3
(−1,6)3 = (−1,2)3(−1,3)3 =

(2
3
)

= −1 .

So there is no projective plane of order 6 and no W (43,36).

Similarly, if s = 2t = n−k−1, s2 +s+1 = n, s2 = k, where t ≡ 3 (mod 4)
is a prime, there is no projective plane of order 2t and no W (4t2 +2t+1,4t2).

Before we prove our result on circulant weighing matrices, we prove the
following more general result.

Lemma 4.10 (Blake [23]). Let q be the power of an odd prime and k any
integer k ≥ 3. Then there exists a

W

(
(qk −1)

q−1 , qk−1
)

.

Proof. Let G be a kX(qk −1) matrix whose columns contain all the distinct
non-zero k-tuples over the finite field GF (q). In coding terms, the row space
of G, denoted by C, is equivalent to a maximum length cyclic code. It is
known that the weight of every non-zero codeword in C is (q−1)qk−1. If G1

is the k× (qk −1) matrix whose rows are any set of k linearly independent
codewords of C, then every non-zero k-tuple over GF (q) appears as a column
of G1.

Let H be a k×n submatrix of G, n = qk−1
q−1 , with the property that any

two of its columns are linearly independent. We assume that H is normalized
in the sense that the first non-zero element in each column is unity. Let A
be an n×n matrix whose rows are chosen from the non-zero vectors of the
row space of H and have the property that any two distinct rows are linearly
independent. Assume for convenience that the first k rows of A are rows of
H. It follows readily from observations on G that every row of A has weight
qk−1. It is not difficult to show that if H is the (0,1) matrix obtained from
H by replacing each non-zero element by unity, then the rows of H1 are
the incidence vectors of the compliments of the hyperplanes of the geometry
PG(k−1, q).

Let x1 and x2 be two distinct rows of A. Since they are independent, they
can be extended to a basis xi , i = 1, . . . ,k, each vector of which is a row of A.
Let B be the k×n matrix whose i-th row is xi, i = 1, . . . ,k . Assume B has
been normalized by multiplying each column so that the first non-zero element
in each column is unity. let B1 be the k× qk−1 submatrix of B consisting of
those columns with unity in the first row. Every (k−1)-tuple over GF (q),
including the a1l-zeros (k−1)-tuple, appears in the columns of B in rows 2
through k. Each element of GF (q) appears qk−2 times in the second row of B.
In the matrix A, replace α ∈ GF (q) by χ(α), where χ is the usual quadratic
character, and call the resulting matrix S(qk1). We now show that over the
real numbers

S
(

qk−1
)

S
(

qk−1
)t

= qk−1In
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and thus that S(qk−1) is the required W
(

qk−1
q−1 , qk−1

)
.

Since every row of A is of weight qk−1 and each non-zero element of GF (q)
is either a square or a non-square, the inner product over the reals of any row
of S(qk−1) with itself is qk−1. Let x1 = (αl, . . . ,αn), x2 = (β1, . . . ,βn) be two
distinct rows of A. If y1 = (χ(β1), . . . ,χ(βn)) and y2 = (χ(α1), . . . ,χ(αn)) are
the corresponding rows of S(qk−1), then the inner product of y1 and y2 over
the reals is the number of non-zero coordinate positions for which χ(αi) = χ(βi)
less the number of non-zero coordinate positions for which χ(αi) �= χ(βi). Since
χ is multiplicative, i.e. , χ(α)χ(β) = χ(αβ), multiplication of a coordinate
position by a non-zero element of GF (q) does not change the agreement or
disagreement between coordinate positions of y1 and y2. As before, assume
that x1 and x2 are the first two rows of the matrix B, which is assumed
in normalized form. In the non-zero positions of x1, each element of GF (q)
appears in x2, qk−2 times. Thus the inner product of the corresponding vectors
y1 and y2 is zero, which completes the lemma. �	

We now show how to construct circulant weighing matrices based on the
fact that an oval in a projective plane can meet a line in only one of three
ways: 0 (it misses it entirely), 1 (it is a tangent), 2 (it intersects the oval).
This observation is true for any projective plane of prime power order (even
or odd). These will be used extensively in later theorems.

Theorem 4.6 (Wallis-Whiteman [242], proof by L. G. Kovacs). Let
q be a prime power. Then there is a circulant W (q2 + q +1, q2).

Proof. Let D be a cyclic planar difference set with parameters (q2 + q + 1, q +
1,1). (See Baumert [16] for definition.) These always exist for q a prime power,
and the incidence matrix of D is the incidence matrix of the projective plane
of order q.

Without loss of generality, we assume 0 ∈ D. We note that d and −d
cannot both be in D because d−0 = 0− (−d), contradicting the uniqueness
of differences in D.

Let
ψ(x) =

∑
d∈D

xd

be the Hall polynomial of D. (see Baumert [16, p.8]) Then

ψ2(x) =
∑
d∈D

x2d +2
∑

e,f∈D
e �=f

xe+f

We wish to show the coefficients of xi in χ2(x) are 0, 1, 2, i.e. , that 2d �= 2e
unless d = e, e + f �= e′ + f ′ unless e = e′ and f = f ′ , and 2d �= e + f unless
d = e = f .

Clearly, 2d �= 2e for d �= e. If e + f = e′ + f ′, then e− e′ = f − f ′, and by
the uniqueness of differences in D either e = f and e′ = f ′ or e = −f ′ and
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e′ = −f . In the first case 2e = 2e′ , e = e′, f = f ′, and in the second case
e+f = −(e+f), i.e. , e+f = 0 and e and −e ∈ D, which is not possible. If
2d = e+f , then d−e = f −d, and by the uniqueness of differences in D, either
d = f , e = d or d = −d, e = −f . In the first case there is nothing to prove, and
in the second case e and −e ∈ D, which is not possible.

Hence if B is the cyclic incidence matrix of D, then B2 has elements 0, 1,
2, and B2−J has elements 0, 1, -1.

Now (
B2−J

)(
B2−J

)� = BBB�B�−BBJ +J2 .

= (qI +J)2−2(q +1)2J +(q2 + q +1)J .

= q2I

So B2−J is the required W (q2 + q +1, q2). �	
Example 4.6. {0,1,3,9} is a difference set modulo 13, whose circulant incidence
matrix B has first row

1 1 0 1 0 0 0 0 0 1 0 0 0 .

B2 is a circulant matrix with first row

1 2 1 2 2 1 1 0 0 2 2 0 2 ,

and B2−J is the required circulant matrix with first row

0 1 0 1 1 0 0 − − 1 1 − 1 .

Example 4.7. David Glynn [87] has further generalized this construction by
observing that if A and B are the circulant incidence matrices of two projective
planes of the same order and C = AB−J is a (0,1,−1) matrix, then C is a
circulant weighing matrix.

In the above example, B, of order 13, has Hall polynomial

ψ(x) = x0 +x1 +x3 +x9 ,

and

ψ(x2) = x0 +x2 +x5 +x6 .

We can form the two inequivalent weighing matrices of order 13 by forming

B2−J and AB�−J ,

where A and B� have Hall polynomials ψ(x2) and ψ(x−1), respectively. Hence
we obtain circulant weighing matrices with Hall polynomials
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α(x) = x1 +x3 +x4−x7−x8 +x9 +x10−x11−x12

and

β(x) = x2 +x4 +x5 +x6−x7−x8 +x10−x11 +x12 .

The first rows of the weighing matrices for α(x) and β(x2) are

0 1 0 1 1 0 0 − − 1 1 − 1

and

0 − 0 − 1 0 0 1 1 − 1 1 1 ,

which are clearly inequivalent.

Example 4.8 (Kovacs’ second method). (We refer the reader to Hughes and
Piper [108] or Dembowski [40] for any unexplained terms in this and the next
example.) Li = {0+ i,1+ i,3+ i,9+ i} are the lines of a projective geometry.
L2 = {0,2,5,6} is an oval with the property that any two of its translates
{0+i,2+i,5+i,6+i} have precisely one point in common. We form a circulant
matrix W with first row (a1j) by choosing

a1j = |Lj ∩L2|−1 .

Hence the first row of W is

0 1 0 1 1 1 − − 0 1 − 1 0 .

Example 4.9 (Kovacs’ first method–for q odd). (0,1,3,9) is a difference set
modulo 13, so Li = {0 + i,1 + i,3 + i,9 + i} are the lines of the projective
geometry of order 3. Now L2

0 = {0,2,5,6} is an oval and, L2
j = {0+ j,2+ j,5+

j,6 + j} are also ovals, any two of which have precisely one common tangent.
The tangents of L2

0 are L0, L1, L3 and L9, so 1, 3, 4, 9, 10, 12 are exterior
points, 0, 2, 5, 6 are on the oval, while 7, 8, 11 are interior to the oval.

We form our circulant weighing matrix by choosing the first row to have
-1, 0, 1 in the (0, i) position (i = 0,1, . . . ,12) according as i is interior on or
exterior to the oval, i.e.,

0 1 2 3 4 5 6 7 8 9 10 11 12
0 1 0 1 1 0 0 − − 1 1 − 1 (4.1)

The translates of the oval L−1
0 = {0,4,10,12} also satisfy the unique common

tangent condition; from this oval, we get the first row

0 1 − 1 0 − − 1 1 1 0 1 0 . (4.2)

Map i �→ −2i; then 4.2 becomes
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0 − 0 − 1 0 0 1 1 − 1 1 1 . (4.3)

Now 4.1 and 4.3 are inequivalent.

Remark 4.4. Choosing r = 2 and −1 in the example gives inequivalent W (13,9).
It is interesting to consider what values of r will give different solutions.

4.5 Constructions for Hadamard Matrices, W (h,h), and
Weighing Matrices, W (h,h−1)

Definition 4.5. A matrix A = I +S will be called skew-type if S� = −S.

We recall the following:

Definition 4.6. A (0,1,−1) matrix W = W (p,k) of order p satisfying

WW � = kIp

is called a weighing matrix of order p and weight k or simply a weighing matrix.
A W (p,p) is called an Hadamard matrix. A W = W (p,k) for which W � =−W
is called a skew-weighing matrix, and an Hadamard matrix H = I +S for which
S� = −S is called a skew-Hadamard matrix. A W = W (p,p− 1) satisfying
W � = W , p ≡ 2 (mod 4) is called a symmetric conference matrix.

Definition 4.7 (C-Matrix). A (0,±1) matrix, M , will be called a C-matrix
if 1

2 (M ±M�) is also a (0,±1) matrix.

Remark 4.5. To help the reader compare with other literature we note con-
ference matrices (M = M�) and skew-Hadamard matrices (M = −M�) are
also called C-matrices.

Weighing matrices have long been studied in order to find optimal solutions
to the problem of weighing objects whose weights are small relative to the
weights of the moving parts of the balance being used. It was shown by
Raghavarao [163], [164] that if the variance of the errors in the weights
obtained by individual weighings is σ2 (it is assumed the balance is not biased
and the errors are mutually independent and normal), then using a W (p,k) to
design an experiment to weigh p objects will give a variance of σ2

k . Indeed, for
an Hadamard matrix the variance is σ2

p , which is optimal for p ≡ 0 (mod 4),
and for a symmetric conference matrix the variance is σ2

p−1 , which is optimal
for p ≡ 2 (mod 4).

Sloane and Harwitt [195] survey the application of weighing matrices to
improve the performance of optical instruments such as spectrometers.
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Spectrometers measure the intensity of a dispersed spectrum at a finite
number (n, say) of wavelengths. According to Ibbett, et al [112], either one
detector scans the screen, making the n measurements sequentially, or else the
n measurements are made simultaneously by a detector with spatial resolution.
The first method has the disadvantage of not being able to compensate for
variations in the intensity of the signal, while the second approach suffers the
disadvantage of a lower signal-to-noise ratio (Ibbett, et al [112]).

A modification can be made to the second system which improves the
signal-to-noise ratio. This is achieved by using a weighing matrix as square
mask, where 1 is clear, 0 is opaque and −1 is a mirror (180◦ phase shift).
Again the variance of the estimates of the wavelengths made using a mask of
weight is 1

n of the estimates when measured separately.
Sloane and Harwitt [195] also indicate that weighing designs are applicable

to other problems of measurements (such as lengths, voltages, resistances,
concentrations of chemicals, etc.) in which the measure of several objects is
the sum (or a linear combination) of the individual measurements.

The following properties of Hadamard matrices and weighing matrices are
easily proved.

Lemma 4.11. Let U = U(p1,k1) and V = V (p2,k2) be weighing matrices.
Then W = U ×V is a weighing matrix of order p1p2 and weight k1k2.

Corollary 4.8. Since
[1 1

1 −
]

is a W (2,2), there are Hadamard matrices of
order 2t, t a positive integer.

Lemma 4.12 (Paley Lemma or Paley Core). Let p be a prime power.
Then there is a W = W (p + 1,p) for which W � = (−1) 1

2 (p−1)W . If p ≡ 3
(mod 4), then W + Ip is a W (p+1,p+1).

Proof. Let a0,a1, . . . ,ap−1 be the elements of GF (p) numbered so that

a0 = 0, ap−i = −ai, i = 1, . . . ,p−1 .

Define Q = (xij) by

xij = χ(aj −ai) =

⎧⎪⎨⎪⎩
0 if i = j,

1 if aj −ai = y2 for some y ∈ GF (p),
−1 otherwise.

Now Q is a type 1 matrix with the properties that

QQ� = pI −J,

QJ = JQ = 0,

Q� = (−1)
1
2 (p−1)Q.
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This follows since exactly half of a1, . . . ,ap−1 are squares, −1 is a square for
p ≡ 1 (mod 4) but not for p ≡ 3 (mod 4), and∑

y

χ(y)χ(y + c) =
∑

y

χ
(
y2)χ

(
1+ cy−1) =

∑
z �=1

χ(x) = −1.

Let e be the 1×p vector of all ones. Then

W =
[

0 e

(−1) 1
2 (p−1)e� Q

]
is the required matrix. If p ≡ 3 (mod 4), W + Ip is a W (p+1,p+1). �	
Notation 4.2. Q is known as the Paley core.

Corollary 4.9. There are Hadamard matrices of order p + 1 where p ≡ 3
(mod 4) is a prime power, and of order 2(p + 1) where p ≡ 1 (mod 4) is a
prime power.

Proof. For p≡ 3 (mod 4) use W +I; for p≡ 1 (mod 4) use
[

W +I W −I
W −I −W −I

]
. �	

Corollary 4.10. There are Hadamard matrices of order 2t
∏

(pri
i +1) where

pri
i are prime powers and t, an integer, is > 0 if p

rj

j ≡ 1 (mod 4), for some j,
and ≥ 0 otherwise.

Proof. Use Lemma 4.11 and Corollary 4.10. �	
It is conjectured that:

Conjecture 4.1 (Hadamard Conjecture). There exists an Hadamard matrix
of order 4t for every positive integer t.

Conjecture 4.2 (Jennifer Wallis [232]). There exists a weighing matrix
W (4t,k), k = 0,1, . . . ,4t, for every positive integer t.

This conjecture, of course, includes the Hadamard Conjecture.

Remark 4.6. There is now considerable literature devoted to circulant weighing
matrices. Some of the authors are Ang, Arasu, Hain, Mac, Ma, Mullin, Seberry
and Strassler [6, 7, 9–11, 153, 201] . We do not pursue this topic, though
extremely interesting, here.

Definition 4.8. We say that the weighing matrix W = W (2n,k) is constructed
from two circulant matrices M , N of order n if

W =
[

M N
N� −M�

]
.
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Example 4.10.

M =

⎡⎣0 1 1
1 0 1
1 1 0

⎤⎦ and N =

⎡⎣− 1 1
1 − 1
1 1 −

⎤⎦
of order 3 satisfy MM� +NN� = 5I. Then

W =
[

M N
N� −M�

]
=

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 1 − 1 1
1 0 1 1 − 1
1 1 0 1 1 −
− 1 1 0 − −
1 − 1 − 0 −
1 1 − − − 0

⎤⎥⎥⎥⎥⎥⎥⎦
is a W (6,5) constructed from two circulant matrices.

Theorem 4.7 (Goethals and Seidel [88]). Let q ≡ 1 (mod 4) be a prime
power; then there is a W (q +1, q) of the form

S =
[
A B
B −A

]
with zero diagonal and square circulant sub-matrices A and B.

Proof. Let z be any primitive element of GF (q2), the quadratic extension
of GF (q). We choose any basis of V the vector space of dimension 2 over
GF (q2). With respect to this basis, v is defined by the matrix

(v)− 1
2

[
zq−1 +z1−q (zq−1−z1−q)z 1

2 (q+1)

(zq−1−z1−q)z− 1
2 (q+1) zq−1 +z1−q

]
,

which actually has its elements in GF (q). Then det(v) = 1, and the eigenvalues
of v are zq−1 and z1−q, both elements of GF (q2) whose 1

2 (q + 1)-th power,
and no smaller, belongs to GF (q). Hence v acts on the projective line PG(1, q)
as a permutation with period 1

2 (q +1) without fixed points. This divides the
points of PG(1, q) into two sets of transitivity, each containing 1

2 (q +1) points.
In addition, w defined by the matrix

(w) =
[
0 zq+1

1 0

]
has χdet(w) =−χ(−1). The eigenvalues of w are ±z

1
2 (q+1) elements of GF (q2)

whose square is in GF (q). Hence w acts on PG(1, q) as a permutation of
period 2, which maps any point of one set of transitivity, defined above by
v, into the other set. Indeed, for i = 1, . . . , 1

2 (q +1), the mapping viw has no
eigenvalue in GF (q). Note vw = wv.
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Finally, we represent the q + 1 points of PG(1, q), x0,x1, . . . ,xq, by the
following q +1 vectors in V :

x,v(x),v2(x), . . . ,v
1
2 (q−1)(x),w(x),vw(x), . . . ,v

1
2 (q−1)w(x) .

We define
S = χdet(xi,xj) .

Observing that any linear mapping u : V → V satisfies

det(u(x),u(y)) = detu ·det(x,y) ,

for all x,y ∈ V , we see that

det(viw(x),vjw(x)) = det(w) ·det(vi(x),vj(x)) = det(w) ·det(x,vj−i(x)) ,

det(vi(x),vjw(x)) = −det(viw(x),vj(x)) = det(vj(x),viw(x)) ,

det(vi(x),vj(x)) = −det(v
1
2 (q+1)+i,vj(x)),

and so S has the required form. �	
Example 4.11. Let q = 5 and z be a root of z2 +z +2 = 0 (a primitive polyno-
mial over GF (52)). Then

z4 = 3z+2, z−4 = z20 = 2z+4, z3 = 4z+2, z−3 = z21 = 2z+1, z6 = 2 .

Hence
(v) = 1

2

[
z4 +z−4 (z4−z−4)z3

(z4−z−4)z−3 z4 +z−4

]
=

[
3 4
2 3

]
and

(w) =
[
0 z6

1 0

]
=

[
0 2
1 0

]
.

We now choose some vector x, say, x = [1
0 ]. Then

x0 = x = [1
0 ] , x1 = v(x) = [3

2 ] , x3 = v2(x) = [2
2 ] ,

x4 = w(x) = [0
1 ] , x5 = vw(x) = [4

3 ] , x6 = v2w(x) = [4
2 ] .

Since χ(1) = χ(4) = 1 and χ(2) = χ(3) = −1,

det(xi,xj) =

⎡⎢⎢⎢⎢⎢⎢⎣
0 2 2 1 3 2
3 0 2 3 1 3
3 3 0 2 3 1
4 2 3 0 1 1
2 4 2 4 0 1
3 2 4 4 4 0

⎤⎥⎥⎥⎥⎥⎥⎦ and χdet(xixj) =

⎡⎢⎢⎢⎢⎣
0 − − 1 − −
− 0 − − 1 −
− − 0 − − 1
1 − − 0 1 1
− − 1 1 1 0

⎤⎥⎥⎥⎥⎦ .

The next corollary was first explicitly stated by Turyn.
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Corollary 4.11 (Turyn [218]). Let p ≡ 1 (mod 4) be a prime power. Then
there exist four circulant symmetric matrices

X1 = I +A, X2 = I −A, X3 = X4 = B

of order 1
2 (p+1) which satisfy

4∑
i=1

XiX
�
i = 2(p+1)I 1

2 (p+1) .

These four matrices will be called Williamson matrices as they are circulant
and symmetric.

Proof. Construct A and B as in the theorem. �	
Note that the next four matrices satisfy the additive property but are not

circulant but pairwise amicable, so are called Williamson type matrices (see
Definition 4.16).

Corollary 4.12 (J. Wallis [235]). Let p ≡ 1 (mod 4) be a prime power;
then there exist four symmetric (1,−1) matrices X1, X2, X3, X4 of order
1
2p(p+1) which satisfy

4∑
i=1

XiX
�
i = 2p(p+1)I 1

2 p(p+1), XiX
�
j = XjX�

i .

Equivalently, there are Williamson type matrices of order 1
2p(p+1).

Proof. Construct A and B as in the theorem, and Q of order p as in the proof
of Lemma 4.12. Then

X1 = (I ×J)+(A× (I +Q)) ,

X2 = B× (I +Q) ,

X3 = (I ×J)+(A× (I −Q)) ,

X4 = B× (I −Q)

are the required matrices. These type 1 matrices are symmetric. �	
There are two very tough problems concerning skew Hadamard matrices.

The first being the existence and construction of such matrices, the second
being the number of equivalence classes. Existence results fall into two types:
those constructed using four suitable complementary sequences and those
constructed using linear algebra and number theory. Although the existence
problem, via algebraic and number theoretic methods, has been widely studied
by many researchers including Spence, Whiteman and Yamada, there many
orders for which skew Hadamard matrices have not been constructed yet
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(indeed there is no asymptotic existence theorem known for skew Hadamard
matrices, see Chapter 9.)

Good matrices, which are four circulant ±1 matrices of order n, constructed
using four suitable complementary sequences and used in the Goethals-Seidel
array to construct skew Hadamard matrices of smaller order 4n (orders
≤ 400), first appeared in the PhD Thesis of Jennifer (Seberry) Wallis [240]:
there the matrices were given no name. Extensive computer searches have
been carried out by many authors including Blatt, Ðoković, Fletcher, Geor-
giou, Goethals, Hunt, Kotserias, Koukouvinos, Seberry, W. D. Smith, Seidel,
Stylianou, Szekeres and X-M Zhang (also K. Balasubramanian in chemistry)
see, for example, [24,41,42,61].

list for orders n = 1, · · · ,31. Ðoković [42, 45] provided orders n = 33, 35, 43,
47, 97 and 127. Then Georgiou, Koukouvinos and Stylianou [74] provided
37, 39. Ðoković [47] says that only one set of supplementary difference sets,
(41;20,20,16,16;31), for 41 remains to be searched. Fletcher, Koukouvinos and
Seberry [61] provided order 59.

We note that while there are no Williamson matrices of order 35 and 59
there are good matrices of order 35 and 59. [178,236].

These results are summarised (partly) in part SV of the table of existence
theorems. Suitable complementary sequences have not yet been found for
orders 69 and 89 (however skew Hadamard matrices are known for orders
8×69 and 16×89 by algebraic methods).

Summary 4.1. Table 4.4 summarizes the existence of skew-Hadamard ma-
trices.

The more recent status on known results and open problems on the existence
of skew-Hadamard matrices of order 2tn, n odd, n ≤ 500, are given in Table 1
of [138]. In Table 4.5, we write n(t) if the skew-Hadamard matrix of order 2tn
exists. An n(.) means that a skew-Hadamard matrix of order 2tn is not yet
known for any t. The values n < 500, missing from Table 4.5, indicate that a
skew-Hadamard matrix of order 4n exists. Seberry Wallis [230] conjectured
that skew-Hadamard matrices exist for all dimensions divisible by 4.

Table 4.5 modifies that of Koukouvinos and Stylianou [138] with more
recent results.

Table 4.6 gives the current knowledge of existence for Hadamard matrices
not in Geramita-Seberry [80, p.416], nor in Seberry-Yamada [188, p.543-544]
which are unresolved.

In [240] good matrices were given for n= 1, · · · ,15,19 and in [229] for n= 23.
Hunt [109] gave the matrices for n = 1, · · · ,25. Later Szekeres [206] gave a
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Table 4.4 Skew-Hadamard existence

SI 2t
∏

ki t, ri, all positive integers ki = pri
i + 1 ≡ 0

(mod 4), pi a prime.
SII (p−1)u +1 p the order of a skew-Hadamard matrix,

u > 0 an odd integer.
SIII 2(q +1) q ≡ 5 (mod 8) a prime power.
SIV 2s(q +1) q = pt is a prime power such that p ≡ 5

(mod 8), t ≡ 2 (mod 4), s ≥ 1 an integer.
SV 4m m ∈ {odd integers between 3 and 39 inclusive}
SV I m′(m′−1)(m−1) m and m′ the orders of amicable Hadamard

matrices, where (m−1)m′
m is the order of

a skew-Hadamard matrix.
SV II 4(q +1) q = 8f +1 f odd is a prime power.
SV III (|t|+1)(q +1) q = s2 + 4t2 ≡ 5 (mod 8) is a prime power,

and |t|+1 is the order of a skew-Hadamard
matrix (Wallis [234]).

SIX 4(1+ q + q2) where q is a prime power and⎧⎪⎨⎪⎩
1+ q + q2 is a prime ≡ 3,5, or

7 (mod 8); or
3+2q +2q2 is a prime power ( [197]).

SX hm h the order of a skew-Hadamard matrix,
m the order of amicable Hadamard matri-
ces.

4.6 The Goethals-Seidel Array and other constructions
using circulant matrices – constraints on
constructions using circulant matrices

In studying skew-Hadamard matrices (orthogonal designs OD(n;1,n−1)),
Szekeres realized that none were known for quite small orders, including 36. To
find this matrix Goethals and Seidel gave an array (described in this section)
which uses circulant matrices. This and its generalization by Wallis and
Whiteman have proved invaluable in the construction of Hadamard matrices,
and we will see that they play a major role in constructing orthogonal designs.
Here we have another example of a method devised to give a single case
having far-reaching uses.

We now consider the use of circulant matrices in constructing orthogonal
designs. All the constructions using circulants require that we find circulants
A1, . . . ,As of order n satisfying the additive property:
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Table 4.5 Existence of skew-Hadamard matrices a

69(3) 89(4)
101(10) 107(10) 119(4) 149(4)
153(3) 167(4) 177(12) 179(8) 191(.) 193(3)
201(3) 205(3) 209(4) 213(4) 223(3) 225(4) 229(3) 233(4)
235(3) 239(4) 245(4) 249(4) 251(6) 253(4) 257(4) 259(5)
261(3) 265(4) 269(8) 275(4) 277(5) 283(11) 285(3) 287(4)
289(3) 295(5) 299(4)
301(3) 303(3) 305(4) 309(3) 311(26) 317(6) 319(3) 325(5)
329(6) 331(3) 335(7) 337(18) 341(4) 343(6) 345(4) 347(18)
349(3) 353(4) 359(4) 361(3) 369(4) 373(7) 377(6) 385(3)
389(15) 391(4) 397(5)
401(10) 403(5) 409(3) 413(4) 419(4) 423(4) 429(3) 433(3)
435(4) 441(3) 443(6) 445(3) 449(.) 451(3) 455(4) 457(9)
459(3) 461(17) 465(3) 469(3) 473(5) 475(4) 479(12) 481(3)
485(4) 487(5) 489(3) 491(46) 493(3)

a Koukouvinos and Stylianou [138, p2728] c© Elsevier

Table 4.6 Hadamard matrix orders which are unresolved

107(10) 167(3) 179(3) 191(3)
213(4) 223(3) 239(4) 249(3) 251(3) 269(8) 283(3)
303(3) 311(26) 335(7) 347(3) 359(4) 373(7)
419(4) 443(6) 445(3) 479(12) 487(3) 491(46)

s∑
i=1

AiA
�
i = fI, where f =

r∑
j=1

sjx2
j .

One question we shall explore in this section is the restrictions that must be
placed on (s1, . . . ,sr) in order that such circulant matrices exist.

This problem is analogous to the problems we discussed in Chapter 3 when
we discovered algebraic limitations on orthogonal designs.

Conditions imposed on (s1, . . . ,sr) in order to construct orthogonal designs
from circulants is closer to the combinatorial spirit of the subject. Although
there is no reason to believe that all the orthogonal designs we look for in orders
4n or 8n, n odd, can be expected to come from circulants (or negacyclics),
we will find they usually do. In cases where they do not, especially in orders
divisible by 8, negacyclic matrices have proved invaluable. See [67, 68, 78, 101,
105,108,126] among others. Thus circulant matrices are important constructive
tools, and we should decide what limitations there are on their use. We also
note that circulant matrices are amenable to algebraic assault because of their
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relationship to roots of unity. This aspect to circulants will become more
apparent when we discuss Griffin’ s work on Golay sequences in Section 7.2.

We first give constructions using circulants and then consider restrictions
on their use.

Proposition 4.1. Suppose there exist two circulant matrices B of order n
satisfying

AA� +BB� = fIn .

Further suppose that R is the back diagonal matrix; then

H =
[

A B
−B� A�

]
or G =

[
A BR

−BR A

]
is a W (2n,f) ,

when A, B are (0,1,−1) matrices, and an orthogonal design OD(2n;u1,u2, . . . ,
us) on x1, . . . ,xs when f =

∑s
i=1 uix

2
i .

Further, H and G are skew or skew-type if A is skew or skew-type.

Proof. A straightforward verification. �	
Remark 4.7. We note here that these properties remain true if A and B are
type 1 matrices and R is the appropriately chosen matrix (see Lemmas 4.4 to
4.7).

Definition 4.9. We say that an orthogonal design is constructed from two
circulant matrices M , N of order n if

W =
[

M N
−N� M�

]
or W =

[
M NR

−NR M

]
.

Example 4.12.

A =

⎡⎣ xl x2 −x2
−x2 x1 x2
x2 −x2 x1

⎤⎦ and B =

⎡⎣ 0 x2 x2
x2 0 x2
x2 x2 0

⎤⎦
of order 3 satisfy

AA� +BB� = (x2
1 +4x2

2)I .

Thus

H =
[

A B
−B� A�

]
=

⎡⎢⎢⎢⎢⎢⎢⎣
x1 x2 −x2 0 x2 x2
−x2 x1 x2 x2 0 x2
x2 −x2 x1 x2 x2 0
0 −x2 −x2 x1 −x2 x2

−x2 0 −x2 x2 x1 −x2
−x2 −x2 0 −x2 x2 x1

⎤⎥⎥⎥⎥⎥⎥⎦
and
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G =
[

A BR
−BR A

]
=

⎡⎢⎢⎢⎢⎢⎢⎣
x1 x2 −x2 0 x2 x2
−x2 x1 x2 x2 x2 0
x2 −x2 x1 x2 0 x2
0 −x2 −x2 x1 x2 −x2

−x2 −x2 0 −x2 x1 x2
−x2 0 −x2 x2 −x2 x1

⎤⎥⎥⎥⎥⎥⎥⎦
are orthogonal designs OD(6;1,4) on x1,x2. H and G are constructed from
two circulants.

Theorem 4.8 (Goethals-Seidel [89]). Suppose there exist four circulant
matrices A, B, C, D of order n satisfying

AA� +BB� +CC� +DD� = fIn .

Let R be the back diagonal matrix. Then GS, henceforth called the Goethals-
Seidel array,

GS =

⎡⎢⎢⎣
A BR CR DR

−BR A D�R −C�R
−CR −D�R A B�R
−DR C�R −B�R A

⎤⎥⎥⎦
is a W (4n,f) when A, B, C, D are (0,1,−1) matrices, and an orthogonal
design OD(4n;u1,u2, . . . ,us) on the variables (x1,x2, . . . ,xs) when A, B, C,
D have entries from {0,±x1, . . . ,±xs} and

f =
s∑

j=1
ujx2

j .

Further, GS is skew or skew-type if A is skew or skew-type.

This theorem was modified by Wallis and Whiteman to allow the circulant
matrices to be generalized to types 1 and 2.

Lemma 4.13 (Wallis-Whiteman [242]). Let A, B, D be type 1 matrices
and C a type 2 matrix defined on the same abelian group of order n. Then if

AA� +BB� +CC� +DD� = fIn ,

H =

⎡⎢⎢⎣
A B C D

−B� A� −D C
−C D� A −B�
−D� −C B A�

⎤⎥⎥⎦
is a W (4n,f) when A, B, C, D are (0,1,−1) matrices, and an orthogonal
design OD(4n;u1,u2, . . . ,us) on the commuting variables (x1,x2, . . . ,xs) when
A, B, C, D have entries from 0,±x1, . . . ,±xs and
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f =
s∑

j=1
ujx2

j .

Further, H is skew or skew-type if A is skew or skew-type.

Example 4.13. We construct an orthogonal design OD(12;3,3,3,3) in order
12 by using the circulant matrices with first rows, respectively,

abc , b̄ad, c̄d̄a , d̄cb̄ ,

in the Goethals-Seidel array (Theorem 4.8). This is illustrated in Table 4.15.
See also Example 4.21. �	

To illustrate the use of Lemma 4.13 recall that in Example 4.3 we gave
a type 1 matrix A and a type 2 matrix B defined on the additive group G
of GF (32) (G = Z3×Z3). Let R be the matrix defined on G by Lemma 4.7.
Notice that by Lemma 4.7 AR = B and BR = A. Also, R is a type 2 matrix.

Let W =
[

0 I3 0
0 0 I3
I3 0 0

]
; then W is the type 1 (1,0) incidence matrix generated

by {2x} (we are using the notation of Example 4.3).

Let L =
[

J3 0 0
0 J3 0
0 0 J3

]
; then L is the type 1 (1,0) incidence matrix generated

by the subgroup {0,1,2} of G. Since the identity matrix is always a type 1
matrix for a group G (for which the identity element of the group is the first
element of G), we obtain that U = L− I + W and V = I + W � are type 1
matrices on G. (See Lemma 4.5.)

Set X1 = aI +bA, X2 = b(U +V ), X4 = b(U −V ) and X3 = bB−aR. Then
X1, X2 and X4 are type 1 matrices and X3 is a type 2 matrix. By inspection,
all entries are from 0,±a,±b. Also

4∑
i=1

XiX
�
i = (2a2 +26b2)I9 .

Thus these matrices may be used in place of A, B, C, D in Lemma 4.13 to
give an OD(36;2,26).

The most general theorem we can give on using circulant matrices in the
construction of orthogonal designs is

Theorem 4.9. Suppose there is an orthogonal design OD(m;u1,u2, . . . ,us)
on the variables x1,x2, . . . ,xs. Let X1,X2, . . . ,Xs, where s≤ ρ(n), be circulant
(type 1) matrices of order n with entries from {0,±y1, . . . ,±yr} which satisfy

u1X1X�
1 +u2X2X�

2 + · · ·+usXsX�
s = fIn

(the additive property). Further suppose

1. all Xi are symmetric, or



94 4 Orthogonal Designs Constructed via Plug-in Matrices

2. at most one is not symmetric, or
3. X1, . . . ,Xj−1 are symmetric and Xj , . . . ,Xs are skew-symmetric.

Then if f = v1y2
1 + v2y2

2 + · · ·+ vry2
r , there is an OD(mn;v1,v2, . . . ,vr) on the

commuting variables (yl,y2, . . . ,yr).

Proof. The main difficulty arises because the variables of the orthogonal
design are commutative. When we replace commuting variables by matrices
yi, i = 1, . . . ,s, we have to ensure that the matrices pairwise satisfy

YiY
�

j = YjY �
i (4.4)

We established in Section 2 that if the Yi are circulant and symmetric, equation
(4.4) is satisfied. Also if YiR is back circulant (type 2) and Y is circulant
(type 1), then equation (4.4) is satisfied. We also note that if Yi and Yj are
skew-symmetric, the back circulant matrices YiR and YjR satisfy equation
(4.4) since

(YiR)(YjR)� = YiRR�Y �
j = −YiYj = YjY �

i = (YjR)(YiR)� .

Thus the result can be obtained in the first case by replacing each variable xi,
i �= j, in the orthogonal design of order m by the circulant symmetric matrix
Xi; in the second case the variable xi is replaced by the back circulant matrix
XjR. The third result is obtained by replacing xi, i �= j, j +1, . . . ,s, by Xi,
and xj , . . . ,xs by XjR,. . . ,XsR. �	
Example 4.14. There is an orthogonal design OD(16;1,1,1,1,3,3,3,3) (we will
see this in Chapter 5, Example 6.4(c)). Consider the circulant matrices Xi,
with first rows

y1y2y2ȳ2ȳ2 y2ȳ2y2y2ȳ2 ȳ2y2y2y2y2 ȳ2y2y2y2y2

y3y4ȳ4ȳ4y4 ȳ4y3ȳ3ȳ3y3 ȳ3y3y3y3y3 ȳ4y4y4y4y4

and call them respectively X1, . . . ,X8. Then

X1X�
1 +X2X�

2 +X3X�
3 +X4X�

4 +3X5X�
5 +3X6X�

6 +3X7X�
7 +3X8X�

8

= (y2
1 +19y2

2 +30y2
3 +30y2

4)I5.

We use part 2 of Theorem 4.9 to assert the existence of an orthogonal design
OD(80;1,19,30,30); the matrix X1R is used to replace the first variable, and
the circulant symmetric matrices X2, . . . ,X8 are used to replace the other
variables.

We have noted that in Theorem 4.8 the only requirement was to have
circulant matrices, but in Theorem 4.9 the internal structure of the circulant
matrices was restricted severely. If the matrices are circulant and symmetric,
we will loosely call this Williamson criteria, and if merely circulant, we will
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call this Goethals-Seidel criteria. Thus in Theorem 4.8 we only had Goethals-
Seidel criteria operating, but in Theorem 4.9 we were almost entirely limited
to Williamson criteria.

4.7 Constraints on construction using circulant matrices

Of course we would like to use these constructions to form orthogonal designs,
but first we must consider some combinatorial limitations on these methods
(algebraic limitations on the types of orthogonal designs were discussed earlier).

Lemma 4.14. Let Ai, i = 1,2,3, . . . ,m, be circulant matrices of order n where

m∑
i=1

AiA
�
i =

⎛⎝ r∑
j=1

sjx2
j

⎞⎠In .

Suppose Ai =
∑r

j=1 xjAij and that AijJ = yijJ . Then

sj =
m∑

j=1
y2

ij .

Proof. By definition
m∑

i=1
(x1Ai1 +x2Ai2 + . . .)

(
x1A�

i1 +x2A�
i2 + . . .

)
=

(
s1x2

1 +s2x2
2 + . . .

)
I .

So
m∑

i=1
x2

1 (Ai1)A�
i1 +

m∑
i=1

x2
2

(
Ai2A�

i2

)
+ · · · =

(
s1x2

1 +s2x2
2 + . . .

)
I ,

and setting xj = 1, xi = 0, for i �= j we have

m∑
i=1

AijA�
ij = sj .

Post-multiplying by J gives
m∑

i=1
y2

ijJ = sjJ ,

and equating coefficients gives the results. �	
Remark 4.8. If m = 4 and we have four circulants A1,A2,A3,A4 such that
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4∑
i=1

AiA
�
i =

(
x2

1 +sx2
2
)

In ,

n odd, then s must be the sum of three squares. For we may assume A1 =
x1I +x2A12, A2 = x2A22, A3 = x2A32 and A4 = x2A42. Then by the lemma
we have

y2
12 +y2

22 +y2
32 +y2

42 = s.

But A12 =−A�
l2, and the order of A12 is n(odd). So y12 = 0, and consequently

s is the sum of three squares. This should be compared with Proposition 3.21.

4.8 Eades’ Technique for Constructing Orthogonal
Designs Using Circulant Matrices

The method outlined in this section has been used successfully to compute
four variable orthogonal designs of order 20 and many but not all orthogonal
designs of order 28, 36 and 44. Some success has been achieved with orthogonal
designs of orders 18, 22, 26, 30, 44 and 52. The results of this computation
are included in the the Appendices. The method can be extended to construct
orthogonal designs in orders 24, 48, 56 and 72.

The method is presented as it applies to the Goethals-Seidel construction
(Theorem 4.8), but there are no difficulties in extending the results for more
general circulant constructions, such as those mentioned in orders 48 and 56
(see appendices).

Specifically, for positive integers s1,s2, . . . ,su and odd v, the method
searches for four circulant matrices X1,X2,X3,X4 of order v with entries
from {0,±x1,±x2, . . . ,±xu} such that

4∑
i=1

XiX
�
i =

(
u∑

i=1
six

2
i

)
I . (4.5)

The existence of an orthogonal design OD(4v;s1,s2, . . . ,su) follows from the
Goethals-Seidel construction (Theorem 4.8).

Remark 4.9. The restriction that v is odd is not necessary for most of the
results which follow. However, the restriction is made because we are princi-
pally interested here in constructing orthogonal designs of order not divisible
by 8. Orthogonal designs of order divisible by a large power of 2 can often be
constructed using other methods (see Chapter 9).

Equation (4.5) has v2 components, but since XiX
�
i is circulant and sym-

metric, at most 1
2 (v + 1) of these components are independent. The next two

definitions are made to isolate the independent components.
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Definition 4.10. If A1,A2,A3,A4 are v× v circulant matrices with entries
from {0,±x1,±x2, . . . ,±xu} and the first row of Aj has mij entries of the
kind ±xi, then the u× 4 matrix M = (mij) is called the entry matrix of
(A1,A2,A3,A4).

Definition 4.11. Suppose that A is a v × v circulant matrix with rows
r1,r2, . . . rv, and denote 1

2 (v−1) by w. Then the IPV (Inner Product Vector)
of A is [r1r�

2 , r1r�
3 , . . . , r1r�

w ]. Note that if (d1,d2, . . . ,dv) is the first row of
AA�, then the IPV of A is (d2,d3, . . . ,dw).

It is clear that (X1,X2,X3,X4) = (A1,A2,A3,A4) is a solution of equation
(4.5) if and only if

4∑
j=1

mij = si for 1 ≤ i ≤ u, (4.6)

and
4∑

j=1
bj = 0, where bj is the IPV of Aj . (4.7)

In other words, to find a solution of equation (4.5) we need four circulant
matrices with entries from {0,±x1,±x2, . . . ,±xu} whose entry matrix has ith

row adding to si for 1 ≤ i ≤ u and whose IPV’s add to zero.

Remark 4.10. The IPV is not the most efficient way in time or space to
construct Hadamard matrices, but is valuable for orthogonal designs.

Definition 4.12. The content of a circulant matrix A with entries from
{0,±x1,±x2, . . . ,xu} is the set of pairs (εxi,m) where εxi(ε = ±1) occurs a
non-zero number m times in the first row of A. Our next task is to show
how the contents of solutions of equation (4.5) may be determined from the
knowledge of the parameters v,s1,s2, . . . ,su.

Definition 4.13. Suppose that the rowsum of Aj is
∑u

i=1 pijxj for 1 ≤ j ≤
4. Then the u× 4 integral matrix P = (pij) is called the sum matrix of
(A1,A2,A3,A4). The fill matrix of (A1,A2,A3,A4) is M−abs(P ). The content
of Ai is determined by the i-th columns of the sum and fill matrices.

The following theorem may be used to find the sum matrix of a solution of
equation (4.5).

Theorem 4.10 (Eades Sum Matrix Theorem [52]). The sum matrix
P of a solution of equation (4.5) satisfies

PP � = diag(s1,s2, . . . ,su). (4.8)

Proof. Suppose that A is a v×v circulant matrix with row sum a, and denote
by b the sum of the squares of the first row of A, and by c the sum of the
entries of the IPV of A. Then
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(JA)(A�J�) = a2JJ� = a2vJ .

But also

(JA)(A�J�) = J(AA�)J�

= (b+2c)JJ�

= v(b+2c)J.

Hence a2 = b+2c. Thus if (pij) and (mij) are the sum and entry matrices of
a solution of equation (4.5), then since the sum of the sums of the entries of
the IPV’s is zero, it follows that

4∑
j=1

⎡⎣( u∑
i=1

pijxi

)2

−
(

u∑
i=1

mijxi

)2⎤⎦ = 0 .

Expanding this equation and equating coefficients of xixj gives equation
(4.8). �	
Remark 4.11. (a) Note that the Sum Matrix Theorem 4.10 implies that a
necessary condition for the existence of OD(4v;sl,s2, . . . ,su) constructed by
using the Goethals-Seidel array is the existence of a u× 4 integral matrix
P satisfying equation (4.8). In fact this theorem says that the only time
we can hope to construct an orthogonal design OD(n;s1,s2,s3,s4) using
the Goethals-Seidel array in order n ≡ 0 (mod 4) is when there is a 4× 4
integer matrix p such that PP � = diag(s1,s2,s3,s4). This is analogous to
Proposition 3.23 of Chapter 3, which says that in orders n ≡ 4 (mod 8) a
rational family of type [s1,s2,s3,s4] exists in order n if and only if there is a
4×4 rational matrix Q with QQ� = diag(s1,s2,s3,s4). This also shows that,
for four variable designs, the Goethals-Seidel approach will be less useful in
orders divisible by a large power of 2.

(b) Suppose that P and Q are the sum and fill matrices of a solution
(X1,X2,X3,X4) = (A1,A2,A3,A4) of (4.5). If B and C are permutation
matrices of orders u and 4, respectively, then BPC and BQC are the sum
and fill matrices of another solution of (4.5) formed by permuting the indices
of Ai and Xj . Hence BPC and BQC are regarded as essentially the same as
P and Q. Similarly, if P ′ is formed from P by multiplying some rows and
columns by −1, then P ′ is regarded as essentially the same as P .

We state the first step of the method.
Step 1. Use the Sum Matrix Theorem to find a sum matrix of a solution of

(4.5).
If the algebraic necessary conditions (Proposition 3.23) for the existence

of OD(4v;s1,s2, . . . ,su) hold, then the existence of a solution to (4.8) is
guaranteed by a result of Pall (see Eades [53]).

In most cases, if the si are small (for instance, s1 + · · ·+su ≤ 28), then the
solution of (4.8) is essentially unique and can be found easily by hand.
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It is clear that if Q is the fill matrix of a solution of (4.5), then

the entries of Q are even non-negative integers , (4.9)

and if M = (mij) = abs(P )+Q, then M satisfies (4.6) and

the sum of a column of M is at most v . (4.10)

There may be a large number of matrices which satisfy (4.6), (4.9) and
(4.10) (see Example 4.15), but the next two lemmata may be used to reduce
the number of possibilities.

Lemma 4.15 (Eades). Suppose that A is a circulant matrix of odd order v,
with entries from {0,1,−1} and with k non-zero entries in each row.

(i) If k ≥ v−1, then each entry of the IPV of A is odd.
(ii) If each entry of the IPV of A is even, then v ≥ k +

√
k +1.

Proof. Part (a) can be proved by an elementary parity check. For part (b), a
standard counting argument may be employed as follows. Suppose that the
ij-th entry of A is aij , and denote by Bi the set

{j : 1 ≤ j ≤ v and aij = 0} ,

for 1 ≤ i ≤ v. Each Bi contains v−k elements. Also, since each column of A
contains k non-zero entries, each integer in {1,2, . . . ,v} occurs in v−k of the
Bi. It follows that each element of B1 occurs in v−k−1 of the Bi for i ≥ 2;
hence

v∑
i=2

|B1∩Bi| = (v−k)(v−k−1) .

But since the inner product of each pair of distinct rows of A is even and v is
odd, |B1∩Bi| is odd for 2 ≤ i ≤ v. In particular, |B1∩Bi| ≥ 1. Hence

v∑
i=2

|B1∩Bi| ≥ v−1 ,

and so
(v−k)2− (v−k) ≥ v−1 .

Completing the square gives

(v−k−1)2 ≥ k .

By part (a), v > k ≥ 0, and so v ≥ k +
√

k +1. �	
Lemma 4.16 (Eades). Suppose that the entry matrix of a solution
(X1,X2,X3,X4) = (A1,A2,A3,A4) of equation (4.5) is

[
V

W

]
where V is

�× r and W is (u− �)× (4− r). Then
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r∑
j=1

AjA�
j =

(
�∑

i=1
six

2
i

)
I

and

4∑
j=r+1

AjA�
j =

⎛⎝ u∑
i=�+1

six
2
i

⎞⎠I .

The proof of this lemma is straightforward and thus omitted. �	
Before the use of these lemmas is illustrated with an example, the second

step of the method is stated explicitly.
Step 2. Using (3.2), (3.7), (3.8) and Lemmas 4.15 and 4.16, find all possible

fill matrices which could accompany the sum matrix found in Step 1.
If v and the si are small, then there are usually very few possible fill

matrices, and they can be found easily without a computer.

Example 4.15. The existence of an orthogonal design OD(20;1,5,5,9) is listed
in Geramita and Wallis [81] as being undetermined. To construct such an
orthogonal design, we require four 5×5 circulant matrices B1, B2, B3, B4,
with entries from {0, ±x1, ±x2, ±x3, ±x4} such that

4∑
i=1

BiB
�
i = (x2

1 +5x2
2 +5x2

3 +9x2
4)I. (4.11)

1 = 12, 5 = 12 + 22, 9 = 32 = 22 + 22 + 12 are essentially the only ways of
writing 1, 5, 9 as sums of at most four squares, and so it is not difficult
to show that (essentially) the only 4× 4 integral matrix P which satisfies
PP � = diag(1,5,5,9) is

P =

⎡⎢⎢⎣
1

1 2
−2 1

3

⎤⎥⎥⎦ . (4.12)

(See Remark (b) after Theorem 4.10.)

Now there are eight 4×4 integral matrices which, on the basis of equations
(4.6), (4.9), and (4.10) could be fill matrices.
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(a)

⎡⎢⎢⎣2
2

2 2 2

⎤⎥⎥⎦ , (b)

⎡⎢⎢⎣2
2

2 2 2

⎤⎥⎥⎦ , (c)

⎡⎢⎢⎣2
2

2 2 2

⎤⎥⎥⎦ ,

(d)

⎡⎢⎢⎣2
2

2 2 2

⎤⎥⎥⎦ , (e)

⎡⎢⎢⎣ 2
2

4 2

⎤⎥⎥⎦ , (f)

⎡⎢⎢⎣ 2
2

4 2

⎤⎥⎥⎦ , (4.13)

(g)

⎡⎢⎢⎣ 2
2

4 2

⎤⎥⎥⎦ , (h)

⎡⎢⎢⎣ 2
2

4 2

⎤⎥⎥⎦ .

However, four of these matrices can be discounted as possible fill matrices
by using Lemmas 4.15 and 4.16.

Suppose that (B1,B2,B3,B4) has sum matrix P above (4.12) and fill
matrix (4.13) (b). Then the entry matrix is⎡⎢⎢⎣

1
2 1 2

4 1
2 2 5

⎤⎥⎥⎦ .

which satisfies equations (4.6) and (4.10). But the (3,2)-th entry of this entry
matrix indicates by Lemma 4.15 that every entry of the IPV of B2 has a
term in x2

3 with odd coefficient. But x3 occurs at most once in each row of
each of the other circulant matrices, and it follows that the IPV’s of the other
circulant matrices have no terms in x2

3. Hence it is impossible for the IPV’s
of the Bi to add to zero; so (4.13)(b) is not the fill matrix of the Bi.

Suppose that (4.13)(f) is the fill matrix of (B1,B2,B3,B4); this gives entry
matrix ⎡⎢⎢⎣

1
1 4
4 1

4 5

⎤⎥⎥⎦
If this is the entry matrix of (B1,B2,B3,B4), then⎡⎢⎢⎣

1
4 5

1 4
4 1

⎤⎥⎥⎦
is the entry matrix of another solution (C1,C2,C3,C4) of (4.12) (see Remark
(b) after Theorem 4.10). It follows by Lemma 4.15 that
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C1C�
1 +C2C�

2 = (x2
1 +9x2

2)I5 ,

and thus, using the two-circulant construction, there is an OD(10;1,9). This
is impossible, as it implies the existence of an Hadamard matrix of order 10,
and so (4.13)(f) is not the fill matrix of (B1,B2,B3,B4).

Similarly it can be shown that (4.13)(h) and (4.13)(e) are not possible.
Each of the possible fill matrices (4.13)(a), (c), (d), (g) could specify the

contents of a solution of (4.11). For each of these possibilities, we need to
search through the circulant matrices whose contents are thus specified until
we find a combination whose IPV’s add to zero. For instance, for (4.13)(a) we
need to find four 5×5 permutation matrices M1,M2,M3,M4 such that

(x1,x2,−x2,x3,−x3)M1

(x2,−x3,−x3,x4,−x4)M2

(x2,x2,x3,x4,−x4)M3

(x4,x4,x4,x4,−x4)M4

are the first rows of circulant matrices whose IPV’s add to zero. If this
search fails, then we consider circulant matrices with contents specified by
(4.13)(c), and so on. Note that there are a large number (about 2×108) of
4-tuples M1,M2,M3,M4 of 5×5 permutation matrices; however, only a small
proportion of these need be considered, as we shall presently see.

Once the sum and fill matrices have been chosen, the final steps of the
method may be executed.

Step 3. For each i ∈ {1,2,3,4} write down a circulant matrix Ai with
contents specified by the i-th columns of the sum and fill matrices.

Step 3 can be executed easily either by hand or by computer. Of course,
the circulant matrices Ai can be represented by their first rows.

Definition 4.14. Two circulant matrices with the same content are isometric
if they have the same IPV.

Step 4. For each i ∈ {1,2,3,4}, write a list Li of non-isometric circulant
matrices with the same contents as Ai. Attach to each circulant matrix its
IPV.

The problem of executing the fourth step is considered next. Given two
circulant matrices with the same content, how do we determine whether they
are isometric (without the time-consuming calculation of IPV’s)? How large
are the lists Li? Useful necessary and sufficient conditions for isometry are,
in general, unknown, but one obvious sufficient condition can be described as
follows.

Denote by Sv the group of v×v permutation matrices, and suppose that
T ∈ Sv represents the v-cycle (12 . . .v). Let R denote the v×v back diagonal
matrix (see Section 4.5). The subgroup of Sv generated by T and R is denoted
by 〈T,R〉. If A and B are v×v circulant matrices with first rows a and aK for
some K ∈ 〈T,R〉, then it can be seen immediately that A and B are isometric.
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It follows that the number of non-isometric circulant matrices with the
same content is at most the index of 〈T,R〉 in Sv, that is, (v−1)!

2 . Thus the lists
Li in Step 4 contain at most (v−1)!

2 entries. A complete set of distinct coset
representatives of 〈T,R〉 in Sv is easily seen to be E = {M ∈ Sv : M represents
a permutation θ on {1,2, . . . ,v} which satisfies vθ = v and 1θ ≤ 1

2 (v− 1)}.
Thus to compute the list Li in Step 4, we first write out the elements of
S = {B : B is a circulant matrix with first row aiM for some M ∈ E}, where
ai denotes the first row of the circulant matrix Ai chosen at Step 3. This can
be done easily either automatically or by hand.

Of course S may contain isometric elements. But it can be shown (as
follows) that if ai = (x1,x2, . . .xv), then no two distinct elements of S are
isometric.

Lemma 4.17. If ai = (x1,x2, . . . , ,xv) and B1 and B2 are elements of S with
first rows aiM1 and aiM2 where M1 and M2 are v×v permutation matrices,
then B1 and B2 are isometric if and only if they are equal.

Proof. The first entries of the IPV’s of B1 and B2 are equal; that is,

aiM1T −1M−1
1 a�

i = aM2T −1M−1
2 a�

i .

Symmetrising gives

aiM1
(
T +T −1)M−1

1 a�
i = aiM2

(
T +T −1)M−1

2 a�
i .

Since ai = (x1,x2, . . . ,xv), we obtain

T +T −1 = MTM−1 +MT −1M−1

where M denotes M−1
1 M2. A simple combinatorial argument using the fact

that v is odd shows that T + T −1 can be written uniquely as a sum of two
permutation matrices. Hence either T = MTM−1 or T −1 = MTM−1. In
either case, since the subgroup of Sv generated by T is self-centralising, we
can deduce that M in 〈T,R〉. Thus M1 and M2 are in the same coset of 〈T,R〉,
but both are elements of S, so M1 = M2.

The converse is immediate. �	
This lemma implies that sometimes the list Li achieves its maximum size

(v−1)!
2 . However this is rare. For instance, if the content of Ai is {(εxi,nεi) :

1 ≤ i ≤ u, ε = ±1} then the subgroup

L = {M ∈ Sv : aiM = ai}

of Sv has order

m =
(

u∏
i=−u

ni!
)(

v−
u∑

i=−u

ni

)
! .
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Hence there are at most v!
m entries of the list Li, and often v!

m < (v−1)!
2 .

However, the coset representatives of L in Sv are more difficult to deal with
by computer than the representatives of 〈T,R〉. Hence L is used only in hand
calculations. When a computer is used, the sort-merge package program may
be used to eliminate isometric elements of the set S.

The final step of the method is to search the lists Li for an answer.
Step 5. Search for one circulant matrix Ci with IPV ci from each list Li

(1 ≤ i ≤ 4) such that c1 + c2 + c3 + c4 = 0.
In the implementations for orthogonal designs of orders 20 and 28, there

was no difficulty in using a naive algorithm for the search at Step 5 because
the lists Li were relatively small. However, to extend the method to higher
orders, a more sophisticated search algorithm needed to be employed (see
Koukouvinos et.al. [59, 66–69,71,73,102,104,105,135]).

Two notes on the execution of Steps 4 and 5 are presented next.
Firstly, suppose that C1,C2,C3,C4 are circulant matrices whose sum and

fill matrices satisfy equations (4.6), (4.8), (4.9) and (4.10). Then the sum of
the sums of the entries of the IPV’s of the Ci is zero (see proof of Theorem
4.10). That is, if (ci1, ci2, . . . , ciw) is the IPV of Ci (1 ≤ i ≤ 4), then

4∑
i=1

w∑
j=1

cij = 0 .

Hence if
4∑

i=1
cij = 0 for 1 ≤ j ≤ w−1 ,

then
4∑

i=1
cij = 0 for 1 ≤ j ≤ w.

Hence only 1
2 (v−3) of the 1

2 (v−1) components of the IPV’s need to add to
zero for equation (4.5) to hold. This saves time and space in computer imple-
mentation and provides a simple error-checking device for hand calculations.

Secondly, we note that the IPV’s of non-isometric circulant matrices may be
dependent in the following way. Suppose that N ∈ Sv normalizes the subgroup
〈T 〉 of Sv generated by T . Note that there is an integer d prime to v such
thatNT iN−1 = T id for 0≤ i≤ v. Now if the circulant matrix A has first row a,
then the i-th entry of the IPV of A is aT −ia�. Hence the IPV of the circulant
matrix B with first row aN has i-th entry aNT −iN−1a�, that is, aT da�.
Hence the IPV of B is a permutation of the IPV of A, described as follows.
Suppose that the IPV of A is (h1,h2, . . . ,hw) and (id)∗ denotes the image
of id in {0,1, . . . ,v−1} modulo v. Then the IPV of B is (h1θ,h2θ, . . . , ,hwθ)
where θ is the permutation on {1,2, . . . ,w} defined by



4.8 Eades’ Technique for Constructing Orthogonal Designs 105

θ : i �
{

(id)∗ if 1 ≤ (id)∗ ≤ w,

v− (id)∗ otherwise.
(4.14)

Note that θ =1 if and only if N ∈ 〈T,R〉. Hence the index of the normalizer of
〈T 〉 in Sv is vφ(v), where φ is the Euler function. If v is prime, then the set E′
of v×v permutation matrices which represent a permutation on {1,2, . . . ,v}
which fixes v and v−1 is a complete set of distinct coset representatives of
the normalizer of 〈T 〉 in Sv.

For automatic computation this means that one of the lists, say L1, may
consist of elements S′ = {B : B is a circulant matrix with first row a1M for
some M ∈E′}. This produces a considerably shorter list, and the search (Step
5) may be proportionally shorter in time.

The use of the normalizer of 〈T 〉 in hand calculations is illustrated in the
completion of Example 4.16 below. First, however, we show how the facts
above may be used to construct a certain four variable orthogonal design of
order 28.

Example 4.16. An orthogonal design OD(28;1,1,1,25) can be constructed as
follows. We want four 7×7 circulant matrices V1,V2,V3,V4 with entries from
{0,±x1,±x2,±x3,±x4} such that

4∑
i=1

ViV
�

i = (x2
1 +x2

2 +x2
3 +25x2

4)I . (4.15)

The conditions (4.6), (4.8), (4.9), (4.10) imply that the sum and fill matrices
of (V1,V2,V3,V4) must be diag(1,1,1,5) and⎡⎢⎢⎣

6 6 6 2

⎤⎥⎥⎦ ,

respectively. Hence V4 must be (J −2I)x4 up to isometry (see (4.7)); thus
V4 has IPV (3x2

4,3x2
4,3x2

4). Choose a skew-symmetric 7×7 matrix C1 with
entries from {0,1,−1} and precisely one zero in each row; denote its IPV
by (d1,d2,d3). Now the normalizer of 〈T 〉 in S7 acts cyclically on (d1,d2,d3)
by (4.14), and further, it preserves skew-symmetry. Hence there are skew-
symmetric circulant matrices C2 and C3 with IPV’s (d2,d3,d1) and (d3,d1,d2),
respectively. For 1 ≤ i ≤ 3, denote xiI +x4Ci by Vi. It is clear that the IPV’s
of the Vi, 1 ≤ i ≤ 4, add to (f,f,f), where f = (d1 +d2 +d3 +3)x2

4. But since
the sum and fill matrices of (V1,V2,V3,V4) satisfy (4.6), (4.8), (4.9), (4.10), it
follows that f +f +f = 0; that is, f = 0. Hence the IPV’ s of the Vi add to
zero, and thus the Vi satisfy (4.15).

Example 4.16 completed: The index of the normalizer of 〈T 〉 in S5 is 6, and
so there are at most six circulants of order 5 with the same contents whose
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IPV’s differ by more than just a permutation. A complete set of distinct coset
representatives of this subgroup is

F = {1,(12),(23),(34),(45),(51)} .

Suppose that a solution (B1,B2,B3,B4) of equation (4.11) has sum matrix
P (4.12) and fill matrix (4.13)(a). Using the set F , a list Li of circulants with
contents thus specified and essentially different IPV’s can be made for each
i ∈ {1,2,3,4}. A short search reveals that if B1,B2,B3,B4 have first rows

(x1,x2,−x3,x3,−x2) ,

(x2,x4,−x3,−x3,−x4) ,

(x3,x2,x4,−x4,x2) ,

(−x4,x4,x4,x4,x4) ,

respectively, then the Bi satisfy equation (4.11).
Using similar methods it is possible to show that it is impossible to construct

a (1,3,6,8), (2,2,5,5), or (3,7,8) in order 20 by using four circulants. It can
also be shown that, while a (4,9) exists in order 14, it is impossible to construct
it from two circulants.

For ease of reference we summarize these results as:

Lemma 4.18 (Eades [52] ). It is not possible to find four circulant matrices
A1,A2,A3,A4 of order 5 with entries the commuting variables x1,x2,x3,x4,
and 0 which satisfy

4∑
i=1

AiA
�
i =

4∑
j=1

(
sjx2

j

)
I5 ,

where (s1,s2,s3,s4) is (1,4,4,9), (1,3,6,8), (2,2,5,5) or (3,7,8). Equivalently,
it is not possible to use four circulant matrices in the Goethals-Seidel array to
construct orthogonal designs of these types in order 20.

Lemma 4.19 (Eades). It is not possible to construct the orthogonal design
OD(14;4,9) using two circulant matrices.

Horton and Seberry [107] have undertaken a full search for OD(n;4,9) for
small n showing that, often, the necessary conditions for these orthogonal
designs are not sufficient. The theoretical reasons for this strange result is
undetermined.

Remark 4.12. It would be interesting to know if orthogonal designs of types
(1,4,4,9), (1,3,6,8), (2,2,5,5) or (3,7,8) are impossible to construct by any
method in order 20. If that were so, it would make the construction method
by circulants assume even greater importance. We shall not even hazard a
guess here, although experience should indicate that some of these designs will
be impossible to construct by any method. This question is still unresolved
after 30 years.
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Remark 4.13. Since there is a strong relationship between circulant and nega-
cyclic matrices with additive properties, it might appear fruitful to consider the
“sum” and “fill” approach to finding desirable negacyclic matrices. However
this IPV vector seems harder to constrain.

4.9 Some Arrays for Eight Circulants

Unfortunately, in trying to find designs of order n ≡ 0 (mod 8) constructed
using eight circulant matrices, we will not be as restricted as in Theorem
4.9 but have other problems. The difficulty of finding matrices to replace
the variables has led to the following lemma using part Williamson and part
Goethals-Seidel criteria. In §4.10 we will see that the Kharaghani array, which
uses amicable sets and circulant and/or negacyclic matrices to greatly increase
our ability to construct orthogonal designs in orders ≡ 0 (mod 8).

The Kharaghani array has proved the most powerful in finding orthogonal
designs of order 8. To understand why we first consider the proliferation of
arrays and conditions needed to find orthogonal designs of order divisible by
8 when the Kharaghani array is not used.

Lemma 4.20. Suppose X1,X2, . . . ,X8 are eight circulant (type 1) matrices
of order n satisfying

(1) Xi, 1 ≤ i ≤ 8, have entries from {0,±x1, . . . ,±xs}, and
(2)

∑8
i=1 XiX

�
i = fI.

Further suppose

(i) X1,X2, . . . ,X8 are all symmetric or all skew, or
(ii) X1 = X2 = · · · = Xi and Xi+1, . . . ,X8 are all symmetric or all skew,

1 ≤ i ≤ 8, or
(iii) X2 = X3 = X4 and X5, X6, X7, X8 are all symmetric (skew), or
(iv) X1X�

2 = X2X�
1 , X3 = X4 and X5, X6, X7, X8 are all symmetric, or

(v) X1, . . . ,Xi are all skew and Xi+1, . . . ,X8 all symmetric, or
(vi) X2, X3, X4 are all skew and X5, X6, X7, X8 all symmetric, or

(vii) XiX
�
i+4 = Xi+4X�

i , i = 1,2,3,4.

Then, with

f =
s∑

i=1
uix

2
i I ,

there exists an orthogonal design OD(8n;u1,u2, . . . ,us).

Proof. As in the proof of Theorem 4.9 the main difficulty is ensuring the
matrices Y1, . . . ,Y8 used to replace the commuting variables of the basic design
pairwise satisfy

YiY
�

j = YjY �
i .
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The results of the lemma may be obtained, recalling the results of Section
4.5, by using the following constructions:

(i) Use the circulant matrices to replace the variables in design 1.
(ii) Use a back circulant matrix X1R = XiR to replace the first i variables in

design 1.
(iii) Use design 2 which needs A,B,E,F,G,H all circulant, B repeated three

times, and E,F,G,H all symmetric.
(iv) Use design 4 for which X,A,B,C,D,E,F must all be circulant, B repeated

twice, C,D,E,F symmetric, and XA� = AX�.
(v) Use X1R,. . . the back circulant matrices X1R,. . . ,XiR to replace the first

i variables of design 1 and Xi+1, . . . ,X8 to replace the last 8-i variables.
(vi) Use design 5 with B = X2, C = X3, D = X4, E = X5, F = X6, G = X7,

H = X8, there is no symmetry restriction on A = X1.
(vii) Use design 6. �	

Table 4.7 Design 1⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A B C D E F G H
−B A D −C F −E −H G
−C −D A B G H −E −F
−D C −B A H −G F −E

−E −F −G −H A B C D
−F E −H G −B A −D C
−G H E −F −C D A −B
−H −G F E −D −C B A

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Table 4.8 Design 2⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AR B B B E F G H
−B AR B −B F −E −H G
−B −B AR B G H −E −F
−B B −B AR H −G F −E

−E −F −G −H AR −B� −B� −B�
−F E −H G B� AR B� −B�
−G H E −F B� −B� AR B�

H −G F E B� B� −B� AR

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Example 4.17. The following orthogonal designs in order 24 are constructed
by using this lemma. The reader may refer to the Table of the Appendix of
Orthogonal Designs in order 24 to find the first rows of the circulant matrices
which should be used as indicated:
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Table 4.9 Design 3⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AR B B B E F G H
−B AR B −B −F −E −H G
−B −B AR B G H −E −F
−B B −B AR H −G F −E

−E −F −G −H AR B� B� B�
−F E −H G −B� AR −B� B�
−G H E −F −B� B� AR −B�
−H −G F E −B� −B� B� AR

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Table 4.10 Design 4⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

XR AR B B C D E F
−AR XR B −B D −C −F E
−B −B XR AR E F −C −D
−B B −AR XR F −E D −C

−C −D −E −F XR AR B� B�
−D C −F E −AR XR −B� B�
−E F C −D −B� B� XR −AR
−F −E D C −B� −B� AR XR

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Table 4.11 Design 5⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AR B C D E F G H
−B AR D −C F −E −H G
−C −D AR B G H −E −F
−D C −B AR H −G F −E

−E −F −G −H AR B� C� D�
−F E −H G −B� AR −D� C�
−G H E −F −C� D� AR −B�
−H −G F E −D� −C� B� AR

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Table 4.12 Design 6⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A BR CR DR E FR GR HR
−BR A D�R −C�R FR −E −H�R G�R
−CR −D�R A B�R GR H�R −E −F �R
−DR C�R −B�R A HR −G�R F �R −E

−E −FR −GR −HR A BR CR DR
−FR E −H�R G�R −BR A −D�R C�R
−GR H�R E −F �R −CR D�R A −B�R
−HR −G�R F �R E −DR −C�R B�R A

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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for OD(24;1,1,1,1,6,6) use part (i);
for OD(24;1,1,1,1,2,10) use part (ii);
for OD(24;1,1,2,2,5,8) use part (iii);
for OD(24;1,1,1,3,4,9) use part (iv);
for OD(24;1,2,2,8,11) use part (v);
for OD(24;1,1,4,4,5) use part (vi);
for OD(24;1,2,5,5,8) use part (vii);
for OD(24;1,2,2,4,13) use part (viii).

Remark 4.14. The conditions of Lemma 4.20 are still quite difficult to satisfy.
We first consider some constraints on using circulant matrices.

4.10 Amicable Sets and Kharaghani Arrays

Kharaghani [120] has given a most useful array to be used to give orthogonal
designs constructed from circulant and most excitingly nega-cyclic matrices
in orders divisible by 8.

Following Kharaghani, a set {A1,A2, . . . ,A2n} of square real matrices is
said to be amicable if

n∑
i=1

(
Aσ(2i−1)A

�
σ(2i)−Aσ(2i)A

�
σ(2i−1)

)
= 0 (4.16)

for some permutation σ of the set {1,2, . . . ,2n}. For simplicity, we will always
take σ(i) = i unless otherwise specified. So

n∑
i=1

(
A2i−1A�

2i−A2iA
�
2i−1

)
= 0 . (4.17)

Clearly a set of mutually amicable matrices is amicable, but the converse is
not true in general. Throughout this section Rk denotes the back diagonal
identity matrix of order k.

A set of matrices {B1,B2, . . . ,Bn} of order m with entries in {0,±x1,±x2,
. . . ,±xu} is said to satisfy an additive property of type (s1,s2, . . . ,su) if

n∑
i=1

BiB
�
i =

u∑
i=1

(
six

2
i

)
Im. (4.18)

Let {Ai}8
i=1 be an amicable set of circulant matrices (or group devel-

oped or type 1) of type (s1,s2, . . . ,su) and order t. We denote these by 8−
AS(t;s1,s2,s3,s4,s5,s6,s7,s8;Zt) (or 8−AS(t;s1,s2,s3,s4,s5,s6,s7,s8;G) for
group developed or type 1). In all cases, the group G of the matrix is such
that the extension by Seberry and Whiteman [187] of the group from circulant
to type 1 allows the same extension to R. Then the Kharaghani array [120]
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H =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1 A2 A4Rn A3Rn A6Rn A5Rn A8Rn A7Rn

−A2 A1 A3Rn −A4Rn A5Rn −A6Rn A7Rn −A8Rn

−A4Rn −A3Rn A1 A2 −A�
8 Rn A�

7 Rn A�
6 Rn −A�

5 Rn

−A3Rn A4Rn −A2 A1 A�
7 Rn A�

8 Rn −A�
5 Rn −A�

6 Rn

−A6Rn −A5Rn A�
8 Rn −A�

7 Rn A1 A2 −A�
4 Rn A�

3 Rn

−A5Rn A6Rn −A�
7 Rn −A�

8 Rn −A2 A1 A�
3 Rn A�

4 Rn

−A8Rn −A7Rn −A�
6 Rn A�

5 Rn A�
4 Rn −A�

3 Rn A1 A2
−A7Rn A8Rn A�

5 Rn A�
6 Rn −A�

3 Rn −A�
4 Rn −A2 A1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
is an OD(8t;s1,s2, . . . ,su).

The Kharaghani array has been used in a number of papers [67, 68, 72, 100,
105,108,120,126] among others to obtain infinitely many families of orthogonal
designs. Research has yet to be initiated to explore the algebraic restrictions
imposed an amicable set by the required constraints.

Koukouvinos and Seberry [137] have extended the construction of Holzmann
and Kharaghani [101] to find infinite families of Kharaghani type orthogonal
designs, and in [136] orthogonal designs OD(8t;k,k,k,k,k,k) in 6 variables
for odd t.

4.11 Construction using 8 Disjoint Matrices

First we give the following definition.

Definition 4.15. Define L-matrices, L1,L2, . . . ,Ln to be n circulant (or type
1) (0,±1) matrices of order � satisfying

(i) Li ∗Lj = 0, i �= j,

(ii)
n∑

i=1
LiL

�
i = kI�,

where ∗ denotes the Hadamard product. We say k is the weight of these
L-matrices.

From Definition 4.15 we observe that T -matrices of order t (see Seberry
and Yamada [188] for more details) are L-matrices with � = k = t and n = 4.

Then we have.

Theorem 4.11. Suppose L1,L2, . . . ,Ln are n circulant (or type 1) L-matrices
of order s and weight k. Some of the L-matrices may be zero.

Further suppose A = (aij), B = (bij) are amicable orthogonal designs of type
AOD(n;p1,p2, . . . ,pu;q1, q2, . . . , qv) on the variables {0,±x1,±x2, . . . , ±xu},
and {0,±y1,±y2, . . . ,±yv}, respectively. Then there exists an amicable set of
matrices {A2n

i=1} which satisfy
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2n∑
i=1

AiA
�
i =

(
u∑

i=1
pix

2
i +

v∑
i=1

qiy
2
j

)
n∑

i=1
LiL

�
i =

(
u∑

i=1
pix

2
i +

v∑
i=1

qiy
2
j

)
kIs,

(4.19)
and also (4.16).

Hence these {Ai}2n
i=1 of order s are an amicable set satisfying the additive

property for (kp1,kp2, . . . ,kpu,kq1,kq2, . . . ,kqv).

Proof. Use

A1 = a11L1 +a12L2 + · · ·+a1nLn, A2 = b11L1 + b12L2 + · · ·+ b1nLn

A3 = a21L1 +a22L2 + · · ·+a2nLn, A4 = b21L1 + b22L2 + · · ·+ b2nLn

A5 = a31L1 +a32L2 + · · ·+a3nLn, A6 = b31L1 + b32L2 + · · ·+ b3nLn
...

...
A2n−1 = an1L1 +an2L2 + · · ·+annLn, A2n = bn1L1 + bn2L2 + · · ·+ bnnLn

First we note that A and B being amicable ensures that the (x,y) entry cxy

of C = AB� is

cxy =
n∑

j=1
axjbyj =

n∑
j=1

ayjbxj = cyx. (4.20)

We also note that if A and B are amicable then A� and B� are also amicable
so the (x,y) entry dxy of D = A�B is

dxy =
n∑

j=1
ajxbjy =

n∑
j=1

ajybjx = dyx. (4.21)

First let us first multiply out A1A�
2 , where we will use (· · ·L�L�

m)�m to
denote the term in L�L�

m. Then

A1A�
2 =

n∑
j=1

a1jb1jLjL�
j + · · ·+((a1�b1m)L�L�

m)�m + · · · . (4.22)

Similarly

A2A�
1 =

n∑
j=1

a1jb1jLjL�
j + · · ·+((b1�a1m)L�L�

m)�m + · · · . (4.23)

Hence A1A�
2 −A2A�

1 will have no terms in LjL�
j , j = 1,2, · · · ,2n. Thus

the typical term is given by

A1A�
2 −A2A�

1 = · · ·+((a1�b1m− b1�a1m)L�L�
m)�m + · · · . (4.24)
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We now formally multiply out the expression on the left hand side of (4.16),
which gives the following terms in L�L�

m

n∑
i=1

(
A2i−1A�

2i − A2iA
�
2i−1

)
=

= · · · +

(
(

n∑
j=1

aj�bjm −
n∑

i=1

bi�aim)L�L�
m

)
�m

+ · · ·

= · · · +

(
(

n∑
j=1

ajmbj� −
n∑

i=1

aimbi�)L�L�
m

)
�m

+ · · ·

· · · + · · · using (4.21)
= 0.

This is formally zero and we have (4.17). These matrices also satisfy (4.18)
and (4.19) by virtue of A and B being (amicable) orthogonal designs. �	
Remark 4.15. Although the theorem is true for any pair of amicable orthogonal
designs the arrays needed to exploit the full generality of the theorem are
only known, at present, to exist for n = 2 or 4.

The maximum number of variables in amicable orthogonal designs of
orders 2 and 4 are given in Tables 5.8 and 5.9. A detailed study of amicable
orthogonal designs in order 8 is given by Deborah Street in [202, p125–134]
and [203, p26–29]. Thus we have:

Corollary 4.13. Suppose there exist AOD(2�;p1,p2;q1, q2). Further suppose
there exist two circulant (or type 1) L-matrices of order � and weight k. Then
there exists an OD(4�;kp1,kp2,kq1,kq2).

Proof. We use the L-matrices in the theorem to form an amicable set satisfying
the required additive property which is then used in the Goethals-Seidel array
to obtain the result. �	
Corollary 4.14. Suppose there exist AOD(4�;p1,p2,p3;q1, q2, q3). Further
suppose there exist four circulant (or type 1) L-matrices of order � and weight
k. Then there exists an OD(8�;kp1,kp2,kp3,kq1,kq2,kq3).

Proof. We use the L-matrices in the theorem to form an amicable set satisfying
the additive property for (kp1,kp2,kp3,kq1,kq2,kq3). These are then used in
the Kharaghani array to obtain the result. �	
Example 4.18 (n = 2). Let A and B be the AOD(2;1,1;1,1) given by[

a b
−b a

] [
c d
d −c

]
.

Let L1 and L2 be two circulant (or type 1) L-matrices of order � and weight
k. Construct
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A1 = aL1 + bL2 , A2 = cL1 +dL2
A3 = −bL1 +aL2 , A4 = dL1− cL2 .

(4.25)

Then
4∑

i=1
AiA

�
i = (a2 + b2 + c2 +d2)

2∑
i=1

LiL
�
i = k(a2 + b2 + c2 +d2)I� (4.26)

and
A1A�

2 −A2A�
1 +A3A�

4 −A4A�
3 = 0 . (4.27)

Hence this set of matrices {A1,A2, . . . ,A4} of order � with entries in
{0,±a,±b,±c,±d} is an amicable set satisfying the additive property for
(1,1,1,1).

These can be used in a variant of the Goethals-Seidel array

G =

⎛⎜⎜⎝
A1 A2 A3R A4R

−A2 A1 −A4R A3R
−A3R A4R A1 −A2
−A4R −A3R A2 A1

⎞⎟⎟⎠
where R is the back-diagonal identity matrix, to obtain an OD(4�;k,k,k,k).

�	
Example 4.19 (n = 4). Let A and B be the AOD(4;1,1,1;1,1,1) given by⎡⎢⎢⎣

a b c 0
−b a 0 −c
−c 0 a b

0 c −b a

⎤⎥⎥⎦
⎡⎢⎢⎣

d e f 0
e −d 0 −f
f 0 −d e
0 −f e d

⎤⎥⎥⎦ .

Let L1, L2, · · · ,L4 be four circulant (or type 1) L-matrices of order � and
weight k. Construct

A1 = aL1 +bL2 +cL3 , A2 = dL1 +eL2 +fL3 ,
A3 = −bL1 +aL2 −cL4 , A4 = eL1 −dL2 −fL4 ,
A5 = −cL1 +aL3 +bL4 , A6 = fL1 −dL3 +eL4 ,
A7 = +cL2 −bL3 +aL4 , A8 = −fL2 +eL3 +dL4 .

(4.28)
Then

8∑
i=1

AiA
�
i =

(
a2 + b2 + c2 +d2 +e2 +f2) 4∑

i=1
LiL

�
i

= k
(
a2 + b2 + c2 +d2 +e2 +f2)I�, (4.29)

and
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A1A�
2 −A2A�

1 +A3A�
4 −A4A�

3 +A5A�
6 −A6A�

5 +A7A�
8 −A8A�

7 = 0 .
(4.30)

Hence this set of matrices {A1,A2, . . . ,A8} of order � with entries in {0,±a,±b,
± c,±d,±e,±f} is an amicable set satisfying the additive property for
(1,1,1,1,1,1).

They can be used in the Kharaghani array to obtain OD(8�;k,k,k,k,k,k).

Example 4.20 (n = 4). Let A and B be the AOD(4;1,1,2;1,1,2) given by⎡⎢⎢⎣
a b c c

−b a c −c
c c −a −b
c −c b −a

⎤⎥⎥⎦
⎡⎢⎢⎣

d e f f
e −d f −f

−f −f e d
−f f d −e

⎤⎥⎥⎦ .

Let L1, L2, · · · ,L4 four circulant (or type 1) L-matrices of order � and weight
k. Construct

A1 = aL1 +bL2 +cL3 +cL4 , A2 = dL1 +eL2 +fL3 +fL4 ,
A3 = −bL1 +aL2 +cL3 −cL4 , A4 = eL1 −dL2 +fL3 −fL4 ,
A5 = cL1 +cL2 −aL3 −bL4 , A6 = −fL1 −fL2 +eL3 +dL4 ,
A7 = cL1 −cL2 +bL3 −aL4 , A8 = −fL1 +fL2 +dL3 −eL4 .

(4.31)
Then

8∑
i=1

AiA
�
i = (a2 + b2 +2c2 +d2 +e2 +2f2)

4∑
i=1

LiL
�
i

= k(a2 + b2 +2c2 +d2 +e2 +2f2)I� , (4.32)

and

A1A�
2 −A2A�

1 +A3A�
4 −A4A�

3 +A5A�
6 −A6A�

5 +A7A�
8 −A8A�

7 = 0 .
(4.33)

Hence this set of matrices {A1,A2, . . . ,A8} of order � with entries in {0,±a,±b,
± c,±d,±e,±f} is an amicable set satisfying the additive property for
(1,1,2,1,1,2). These can be used in the Kharaghani array to obtain an
OD(8�;k,k,k,k,2k,2k).

4.11.1 Hadamard Matrices

Before going to our next result, we first note:

Lemma 4.21. If there is AOD(m : (1,m−1); (m)) and OD(h;1,h−1), then

Then Theorem 8.7 of Wallis [231, p.368] can be restated as:

by Wolfe’s theorem (7.9) there is an OD(mh;1,m−1,m(h−1)).
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Theorem 4.12 (Wallis). Suppose there exists OD(mh;1,m−1,m(h−1)).

this design. Then there exists an Hadamard matrix of order mhn.

Proof. Obvious. �	
Corollary 4.15. Let n be the order of any Hadamard matrix H. Suppose there
exists an orthogonal design D of type OD(n(m−1) : (1,m−1,nm−n−m)).
Then there exists an Hadamard matrix of order n(n−1)(m−1).

Proof. We write H as [
1 e

−e� P

]
where e is the 1× (n−1) matrix of 1’s. Then

PJ = J, PP � = nI −J.

The result is obtained by replacing the variables of D by P , J , P , respectively.
�	

Many corollaries can be made by finding “suitable” matrices, but we will
not proceed further with this here.

We will show in Chapter 9 that OD(2t : (1,m−1,nm−n−m)) exist in
every power of 2, 2t = (m−1)n. Hence we have a new result.

Corollary 4.16. With t, s any non-negative integers, there exists a Hadamard
matrix of order 2s(2s−1)(2t−1).

We note the following result:

Theorem 4.13. Let k > 1 be the order of an Hadamard matrix H, and n
be the order of a symmetric conference matrix C. Further, suppose there
exist amicable orthogonal designs M , N of types AOD(m : (1,m−1); (m

2 , m
2 )).

Then there exists an OD(nmk : k,(m−1)k,(n−1)mk
2 ,(n−1)nk

2 ).

Proof. let P =
[0 −

1 0
]× I k

2
. Then

R = C ×H ×N + I ×PH ×M

is the required orthogonal design. �	
Hence we have generalized a theorem of Wallis [231, p.375, Theorem 8.24]:

Corollary 4.17. Suppose H, C, M , N are as in the theorem, and suppose
there are “suitable” matrices of order p. Then there exists an Hadamard matrix
of order nmkp.

Now we note that if m is of the form
∏

i 2t(pri
i +1), where pri

i ≡ 3 (mod 4)
is a prime power, then AOD(m : (1,m−1);(m

2 , m
2 )) exist. Thus we have:

Suppose there exist “suitable” matrices of order n to replace the variables of
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Corollary 4.18. Suppose k > 1 is the order of an Hadamard matrix and n
the order of a symmetric conference matrix. Then there exists OD(k, (2m−
1)k, (n−1)mk, (n−1)mk) where m = 2t

i

∏
(pri

i +1),pri
i ≡ 3 (mod 4) is a prime

power, and t > 0 is an integer.

4.12 Baumert-Hall Arrays

In 1933 Paley wrote a most important paper on the construction of Hadamard
matrices which he called ‘orthogonal matrices’ [160]. At the same time J.A.
Todd [211] realised that these matrices gave symmetric balanced incomplete
block designs–of great interest in the design and analysis of experiments for
agriculture and medicine.

Thus Paley opened the way for R.C. Bose’s [26] fundamental and path-
finding use of Galois fields in the construction of balanced incomplete block
designs–a most valuable contribution to applied statistics.

Yet it was not until Williamson’s 1944 [244] and 1947 [245] papers that
more Hadamard matrices were found. Williamson used what we would now
call orthogonal designs OD(n;1,n−1) and OD(n;2,n−2).

Paley listed the orders less than 200 for which Hadamard matrices were
not known, viz., 92, 116, 148, 156, 172, 184, and 188. Williamson suggested
using what we will call the Williamson Array⎡⎢⎢⎣

A B C D
−B A D −C
−C −D A B
−D C −B A

⎤⎥⎥⎦
to find Hadamard matrices and in fact obtained the matrices of orders 148
and 172 by finding suitable matrices (using the theory we now call cyclotomy;
see Storer [200]) to replace the variables of the array. Thus we define

Definition 4.16. Eight circulant (1,−1) matrices X1, . . . ,X8 of order n which
satisfy

8∑
i=1

XiX
�
i = 8nI, XiX

�
j = XjX�

i

will be called eight Williamson matrices (cf Williamson matrices: Theorem
4.4 and proof). Williamson matrices are four circulant symmetric matrices
x1, . . . ,xu satisfying

4∑
i=1

XiX
�
i = 4nI .
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Baumert, Golomb and Hall [17] found Williamson matrices of order 23
giving the Hadamard matrices of orders 92 and 184. We can appreciate
their excitement when on the night of September 27, 1961, after an hour of
computer calculation, the output arrived. In fact, there turned out to be one
and only one example of Williamson matrices of order 23.

Later, Baumert [15, 18] was to find Williamson matrices giving the
Hadamard matrix of order 116. We shall give the Hadamard matrix of order
188 in Proposition 7.2.

The remainder of this section is devoted to the exciting results that have
come from Baumert and Hall’s search for the Hadamard matrix of order 156.
But first a definition.

Definition 4.17. An orthogonal design OD(4t; t, t, t, t) will be called a
Baumert-Hall array of order t.

Now Baumert and Hall realised that since Williamson matrices of order
13 were known, if a Baumert-Hall array of order 3 could be found, then the
Hadamard matrix of order 156 would be found. In fact, they realised:

Theorem 4.14. If a Baumert-Hall array of order t and Williamson matrices
of order n exist, then there exists an Hadamard matrix of order 4nt; equiva-
lently, if there exists an orthogonal design OD(4nt; t, t, t, t) and Williamson
matrices of order n, then there exists an Hadamard matrix of order 4nt.

Proof. Replace the variables of the Baumert-Hall array by the Williamson
matrices. �	

In 1965 Baumert and Hall [14] published the first Baumert-Hall array of
order 3 (Table 4.13):

Table 4.13 Baumert-Hall array–order 3⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A A A B −B C −C −D B C −D −D
A −A B −A −B −D D −C −B −D −C −C
A −B −A A −D D −B B −C −D C −C
B A −A −A D D D C C −B −B −C

B −D D D A A A C −C B −C B
B C −D D A −A C −A −D C B −B
D −C B −B A −C −A A B C D −D

−C −D −C −D C A −A −A −D B −B −B

D −C −B −B −B C C −D A A A D
−D −B C C C B B −D A −A D −A

C −B −C C D −B −D −B A −D −A A
−C −D −D C −C −B B B D A −A −A

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Many attempts were made to generalise this array, but none were successful
until in 1971 L.R. Welch [243] found a Baumert-Hall array of order 5 (Table
4.14):
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B
−D

−B
−C

D
B

−A
B

−D
C

−A
−B

−A
−C

D
D

−A
−C

A
−C

−C
B

−D
−B

−D
D

B
−A

B
−C

C
−A

−B
−A

A
D

D
−A

−C
−B

−C
−C

B
−D

B
−D

D
B

−A
−A

−C
C

−A
−B

B
−A

−C
C

−A
A

B
−D

D
B

−D
−B

C
C

B
−C

A
−D

−D
−A

−A
B

−A
−C

C
B

A
B

−D
D

B
−D

−B
C

C
−A

−C
A

−D
−D

C
−A

B
−A

−C
D

B
A

B
−D

C
B

−D
−B

C
−D

−A
−C

A
−D

−C
C

−A
B

−A
−D

D
B

A
B

C
C

B
−D

−B
−D

−D
−A

−C
A

−A
−C

C
−A

B
B

−D
D

B
A

−B
C

C
B

−D
A

−D
−D

−A
−C

−A
−B

−D
D

−B
B

−A
C

−C
−A

C
A

D
D

−A
−D

B
C

C
−B

−B
−A

−B
−D

D
−A

B
−A

C
−C

−A
C

A
D

D
−B

−D
B

C
C

D
−B

−A
−B

−D
−C

−A
B

−A
C

D
−A

C
A

D
C

−B
−D

B
C

−D
D

−B
−A

−B
C

−C
−A

B
−A

D
D

−A
C

A
C

C
−B

−D
B

−B
−D

D
−B

−A
−A

C
−C

−A
B

A
D

D
−A

C
B

C
C

−B
−D

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦
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For future reference we define:

Definition 4.18. A Baumert-Hall-Welch array of order t is a Baumert-Hall
array of order t constructed from sixteen circulant or type 1 matrices.

The circulant structure of Welch’s array gave the clue to generalising
Baumert-Hall arrays. First we consider:

Definition 4.19. Four circulant (type 1) (0,1,−1) matrices Xi, i = 1,2,3,4,
of order n which are non-zero for each of the n2 entries for exactly one i, i.e.,
Xi ∗Xj = 0 for i �= j, and which satisfy

4∑
i=1

XiX
�
i = nI

will be called T -matrices of order n. These were first used by Cooper-Wallis [32].

A type 1 matrix has constant row (and column) sum; so:

Lemma 4.22. Let Xi, i = 1, . . . ,4, be T -matrices with row sum (and column
sum) xi, respectively. Then

4∑
i=1

x2
i = n.

Proof. XiJ = xiJ ; so considering
∑4

i=1 XiX
�
i J = nJ gives the result. �	

The following result, in a slightly different form, was independently discov-
ered by R.J. Turyn. Turyn use what are called T -sequences later in this chapter.
T -sequences are the aperiodic counter part of T -matrices. The existence of
T -sequences implies the existence of T -matrices.

Theorem 4.15 (Cooper-Wallis [32]). Suppose there exist T -matrices Xi,
i = 1, . . . ,4, of order n. Let a, b, c, d be commuting variables. Then

A = aX1 + bX2 + cX3 +dX4

B = −bX1 +aX2 +dX3− cX4

C = −cX1−dX2 +aX3 + bX4

D = −dX1 + cX − bX3 +aX4

can be used in the Goethals-Seidel (or Wallis-Whiteman [241]) array to obtain
a Baumert-Hall array of order n; equivalently, if there exist T -matrices of
order n, there exists an orthogonal design OD(4n;n,n,n,n).

Proof. By straightforward verification. �	
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Example 4.21. Let

X1 =

⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦ , X2 =

⎡⎣0 1 0
0 0 1
1 0 0

⎤⎦ , X3 =

⎡⎣0 0 1
1 0 0
0 1 0

⎤⎦ , X4 = 0 .

Then X1,X2,X3,X4 are T -matrices of order 3, and the Baumert-Hall array
of order 3 is in Table 4.15.

Table 4.15 Baumert-Hall array–order 3

a b c −b a d −c −d a −d c −b
c a b a d −b −d a −c c −b −d
b c a d −b a a −c −d −b −d c

b −a −d a b c −d −b c c −a d
−a −d b c a b −b c −d −a d c
−d b −a b c a c −d −b d c −a

c d −a d b −c a b c −b d a
d −a c b −c d c a b d a −b

−a c d −c d b b c a a −b d

d −c b −c a −d b −d −a a b c
−c b d a −d −c −d −a b c a b

b d −c −d −c a −a b −d b c a

We will not give the proofs here which can be found in Wallis [231, p.
360] and Hunt and Wallis [110] but will just quote the results given there.
More results on Baumert-Hall arrays are given in Section 7.1 after some new
concepts have been introduced. In Section 7.1 we show how cyclotomy may
be used in constructing these arrays, including the previously unpublished
array of Hunt of order 61.

Lemma 4.23. There exist Baumert-Hall arrays of order t, t ∈ X, X = {x : x
is an odd integer, 0 ≤ x ≤ 25,31,37,41,61}.

Corollary 4.19. There exist Hadamard matrices of order 4tq where t ∈ X,
X given in the previous lemma, and q is the order of Williamson matrices.
In particular, there exist Hadamard matrices of order 4tq, q = 1

2 (p + 1) or
1
2p(p+1) where p ≡ 1 (mod 4) is a prime power.

Proof. The required matrices are given in Corollaries 4.11 and 4.12. �	
The long held conjecture that the Williamson method would give results for

all orders of Hadamard matrices was first disproved for order 35 by Ðoković
in 1993 [42]. Schmidt’s review [176] of Holzmann, Kharaghani and Tayfeh-
Rezaie [106] points out that there are no Williamson matrices of order 47, 53
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or 59. In their startling paper, Holzmann, Kharaghani and Tayfeh-Rezaie [106]
indicate there are no Williamson matrices for four small orders. Table 4.16
summarizes the number of Williamson matrices of order 1–59.

Table 4.16 Number of Williamson Matrices of Order 1–59 a

Order: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Number: 1 1 1 2 3 1 4 4 4 6 7 1 10 6 1
Order: 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59
Number: 2 5 0 4 1 1 2 1 0 1 2 0 1 1 0

a Holzmann, Kharaghani and Tayfeh-Rezaie [106, p347] c© Springer

A most important theorem which shows how Baumert-Hall-Welch arrays
can be used is now given. To date, the only such arrays known are of orders
5 and 9. We note that in these BHW theorems circulant or type 1 can be
replaced by negacyclic matrices.

Theorem 4.16 (Turyn [220]). Suppose there is a Baumert-Hall-Welch ar-
ray BHW of order s constructed of sixteen circulant (or type 1) s×s blocks.
Further suppose there are T -matrices of order t. Then there is a Baumert-Hall
array of order st.

Proof. Since BHW is constructed of sixteen circulant (or type 1) blocks, we
may write BHW = (Nij), i, j = 1,2,3,4, where each Nij is circulant (or type
1).

Since (BHW )(BHW )� = s(a2 + b2 + c2 + d2)I4s where a,b,c,d are the
commuting variables, we have

Ni1N�
j1 +Ni2N�

j2 +Ni3N�
j3 +Ni4N�

j4 =

⎧⎪⎨⎪⎩
s(a2 + b2 + c2 +d2)Is , i = j ,

i = 1,2,3,4
0 , i �= j .

Suppose the T -matrices are T1,T2,T3,T4. Then form the matrices

A = T1×N11 +T2×N21 +T3×N31 +T4×N41

B = T1×N12 +T2×N22 +T3×N32 +T4×N42

C = T1×N13 +T2×N23 +T3×N33 +T4×N43

D = T1×N14 +T2×N24 +T3×N34 +T4×N44 ,

Now
AA� +BB� +CC� +DD� = st(a2 + b2 + c2 +d2)Ist ,

and since A,B,C,D are type 1, they can be used in the Wallis-Whiteman
generalisation of the Goethals-Seidel array to obtain the desired result. (See
also Lemma 4.7) �	
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Since the Baumert-Hall array of order 5 given by Welch is constructed of
sixteen circulant blocks, as is the Ono-Sawade-Yamamoto array of order 9
given to us by K. Yamamoto [188, p. 449].
Corollary 4.20. Suppose there are T -matrices of order t. Then there is a
Baumert-Hall array of order 5t and 9t; equivalently, there is an orthogonal de-
sign OD(20t;5t,5t,5t,5t) and OD(36t;9t,9t,9t,9t). As we have seen, Baumert
and Hall’s array of order 3, discovered to obtain the Hadamard matrix of
order 156, has led to one of the most powerful constructions for Hadamard
matrices. In fact, to prove the Hadamard conjecture it would be sufficient to
prove:
Conjecture 4.3. There exists a Baumert-Hall array of order t for every positive
integer t, or equivalently, there exists an orthogonal design OD(4t; t, t, t, t) for
every positive integer t.

4.13 Plotkin Arrays

Following the exciting results on Baumert-Hall arrays, which if they all exist,
would answer the Hadamard conjecture in the affirmative, it became clear
that similar designs in order 8n would give results of great import. Alas, as
we shall now see, such designs of order 8n, n odd, are very hard to find.

These classes of orthogonal designs are of great interest and worthy of
further study.
Definition 4.20. An orthogonal design OD(8t; t, t, t, t, t, t, t, t) will be called
a Plotkin array.

Remark. Matrices with elements {1,−1} which can be used in Plotkin
arrays to give Hadamard matrices (eight Williamson matrices) have been
found by J. Wallis [236], and of course Williamson matrices (each used twice)
will also suffice. Still the problem of finding suitable matrices to replace
the variables in designs to give Hadamard matrices or weighing matrices is
largely untouched but displaced by the use of the Kharaghani array [120] and
amicable sets.

We first see that if an Hadamard matrix exists, then Plotkin arrays exist
in four times the order.
Theorem 4.17 (Plotkin [161]). Suppose there exists an Hadamard matrix
of order 2t. Then there exists an orthogonal design OD(8t; t, t, t, t, t, t, t, t).
Proof. Let H be an Hadamard matrix of order 2t. Let

S = 1
2

(
I −I
I I

)
H , T = 1

2

(
I I
−I I

)
H ,

U = 1
2

(
I −I
−I −I

)
H , V = 1

2

(
I I
I −I

)
H .



4.13 Plotkin Arrays 125

Then define

H2t(a,b) = (S×a)+(T × b) ,

H4t(a,b,c,d) =
[

H2t(a,b) H2t(c,d)
H2t(−c,d) H2t(a,−b)

]
,

and

B4t(a,b,c,d) =
[

S×a+T × b U × c+V ×d
U × (−c)+V × (−d) S×a+T × b

]
.

Then

H8t(x1,x2,x3,x4,x5,x6,x7,x8) =
[
H4t(x1,x2,x3,x4) B4t(x5,x6,x7,x8)
B4t(x5,x6,x7,x8) −H4t(−x1,x2,x3,x4)

]
is the required Plotkin array. �	

The 8×8 matrix of Theorem 4.1, which is unique under the equivalence
operations,
(i) multiply any row or column by -1,
(ii) interchange any pair of rows or columns,
(iii) replace any variable by its negative throughout,
is a design of type (1,1,1,1,1,1,1,1). Plotkin found that the following matrix is
equivalent under (i), (ii) and (iii) to the Baumert-Hall array of the previous
section.

A(x,y,z,w) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y x x x −z z w y −w w z −y
−x y x −x w −w z −y −z z −w −y
−x −x y x w −y −y w z z w −z
−x x −x y −w −w −z w −z −y −y −z

−y −y −z −w z x x x −w −w z −y
−w −w −z y −x z x −x y y −z −w

w −w w −y −x −x z x y −z −y −z
−w −z w −z −x x −x z −y y −y w

−y y −z −w −z −z w y w x x x
z −z −y −w −y −y −w −z −x w x −x

−z −z y z −y −w y −w −x −x w x
z −w −w z y −y y z −x x −x w

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.34)

Also, the next matrix is a Baumert-Hall array of order 12, but is not equivalent
to (4.34).
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B(x,y,z,w) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y x x x −w w z y −z z w −y
−x y x −x −z z −w −y w −w z −y
−x −x y x −y −w y −w −z −z w z
−x x −x y w w −z −w −y z y z

−w −w −z −y z x x x −y −y z −w
y y −z −w −x z x −x −w −w −z y

−w w −w −y −x −x z x z y y z
z −w −w z −x x −x z y −y y w

z −z y −w y y w −z w x x x
y −y −z −w −z −z −w −y −x w x −x
z z y −z w −y −y w −x −x w x

−w −z w −z −v v −v z −x x −x w

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.35)

Then we have

Lemma 4.24. There is a Plotkin array of order 24, i.e. , an orthogonal design
OD(24;3,3,3,3,3,3,3,3).

Proof. [
A(x1,x2,x3,x4) B(x5,x6,x7,x8)

B(−x5,x6,x7,x8) −A(−x1,x2,x3,x4)

]
is the required design. �	

These results lead to:

Conjecture 4.4 (Plotkin [161]). There exist Plotkin arrays in every order 8n,
n a positive integer.

4.13.1 Kharaghani’s Plotkin arrays

Until recently, only the original for n = 3 had been constructed in the ensuing
twenty eight years. Holzmann and Kharaghani [101] using a new method
constructed many new Plotkin ODs of order 24 and two new Plotkin ODs of
order 40 and 56.

4.14 More Specific Constructions using Circulant
Matrices

The constructions of this section will be used extensively later to discuss
existence of orthogonal designs.
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In any of the following constructions, similar results may be obtained
by replacing the words circulant and back circulant by type 1 and type 2,
respectively (see Section 4.2).

Construction 4.1. Suppose there is a W (n,k) constructed from two circulant
matrices M , N of order n

2 with the property that M ∗N = 0 (∗ denotes
Hadamard product). Then A = x1M +x2N , B = x1N −x2M may be used in[

A BR
−BR A

]
to obtain an OD(n;k,k) on x1, x2.

Proof. A straightforward verification. One need only observe that since M ,
N are circulant, MR, NR are back circulant, and if X is circulant and Y is
back circulant, then XY � = Y X�. �	
Example 4.22. Write T for the circulant matrix of order n whose first row is
nonzero only in the second column, the entry there being 1. Now

M = T +T 2 and N = T 3−T 4

may be used to give a W (2n,4) constructed from two circulants, (M ∗N = 0).
Then, using the construction A = x1M + x2N , B = x1N − x2M gives an
OD(2n;4,4) constructed from circulants.

Construction 4.2. Suppose there exist W (n,ki), i = 1,2, constructed from
circulant matrices Mi, Ni, i = 1,2, of order n

2 where M1 ∗M2 = N1 ∗N2 = 0
and M1M�

2 +M2M�
1 = N1N�

2 +N2N�
1 = 0; then

A = x1M1 +x2M2, B = x1N1 +x2N2

may be used as two circulants to give an OD(n;k1,k2) on the variables x1,
x2.

Example 4.23. With T as in the previous example and n = 2k +1, let

M1 = T k−1−T k+2 N1 = T k−1 +T k+2

M2 = T k +T k+1 N2 = T k −T k+1

which satisfy the conditions of the construction. Then

A = x1M1 +x2M2 B = x1N1 +x2N2

give an OD(n;4,4).

Construction 4.3. Suppose there exist orthogonal designs X1, X2 of type
OD(2n;ui1,ui2, . . . ,uimi) on the variables xi1,xi2, . . . ,xim, i = 1,2, each of
which is constructed using two circulants.

Then there exists an OD(4n;u11,u12, . . .u1m1 , u21,u22, . . . ,u2m2) on the
variables x11,x12,x1m1 ,x21,x22, . . . ,x2m2 .
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Proof. Let Ai, Bi be the matrices used to form the orthogonal design Xi.
Then use A1, B1, A2, B2 in the Goethals-Seidel array to get the result. �	
Corollary 4.21. Suppose there exist W (n,ki), i = 1,2, constructed from circu-
lant matrices Mi, Ni, i = 1,2, of order n

2 . Then there exists an OD(2n;k1,k2),
and a W (2n,k1 +k2).

Proof. Set A = x1M1, B = x1N1, C = x2M2, D = x2N2 in the Goethals-Seidel
array. �	
Example 4.24. The circulant matrices A(a), B(a) ,with first rows

a a a ā 0n−4 , a a ā a 0n−4 , respectively,

give a W (2n,8) constructed from circulants for every r ≥ 4, and the circulant
matrices C(c,d), D(d) with first rows

d c d̄ 0m−3 , d 0 d 0m−3 , respectively,

give an OD(2m;1,4) in every order, m ≥ 3, where 0t is a sequence of t zeros.
Hence

{A(a), B(a), A(b), B(b)}
{C(c,d), D(d), C(a,b), D(b)}
{A(a), B(a), C(c,d), D(d)}

can be used as four circulant matrices in the Goethals-Seidel array to give
OD(4s;8,8), OD(4s;1,1,4,4) and OD(4s;1,4,8), s ≥ 4 respectively.

The next theorem indicates that we may be able to prove theorems of
the type, “If (s1, . . . ,sr) satisfies all the existence criteria for an orthogonal
design, then (s1, . . . ,sr) is the type of an orthogonal design in some large
enough order tn and every order un, u ≥ t.” We will give, in a later chapter,
the results that Eades and others have found in this direction.

Theorem 4.18. Suppose (s1,s2,s3,s4) satisfies Wolfe’s necessary conditions
for the existence of orthogonal designs in order n = 4 (mod 8) given by Propo-
sition 3.23:

(i) If s1 +s2 +s3 +s4 ≥ 12, there is an OD(4t; s1,s2,s3,s4) for all t ≥ 3.
(ii) If s1 +s2 +s3 +s4 ≥ 16, there is an OD(4t; s1,s2,s3,s4) for all t≥ 4, with

the possible exception of (2,2,5,5) which exists in order 4t, t ≥ 4, t �= 5.
(iii) If 16 < s1 + s2 + s3 + s4 ≤ 28, the Table 4.17 gives the smallest N such

that (s1,s2,s3,s4) is the type of an orthogonal design which exists for all
4t > N .

Proof. See pages 168–170 of Orthogonal Designs (1st edition, 1979). �	
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Table 4.17 N is the order such that the indicated designs exist in every order
4t ≥ N

Group 12 ≤ 16 a Group 16 ≤ 20 b Group 20 ≤ 24 c Group 24 ≤ 28 d

N N N N
(1,1,4,9) 16 (1,1,1,16) 24 (1,1,2,18) 48 (1,1,1,25) 56
(1,2,2,9) 16 (1,1,8,8) 20 (1,1,4,16) 24 (1,1,5,20) 144
(1,2,4,8) 16 (1,1,9,9) 20 (1,1,10,10) 40 (1,1,8,18) 56
(1,4,4,4) 16 (1,2,8,9) 40 (1,2,2,16) 48 (1,1,9,16) 312
(1,4,5,5) 16 (1,3,6,8) 48 (1,2,6,12) 24 (1,1,13,13) 48
(2,2,2,8) 16 (1,4,4,9) 48 (1,4,8,8) 32 (1,2,4,18) 80
(2,2,5,5) 24 (1,5,5,9) 40 (1,4,9,9) 72 (1,3,6,18) 468
(2,3,4,6) 16 (2,2,4,9) 40 (2,2,2,18) 48 (1,4,4,16) 40
(4,4,4,4) 16 (2,2,8,8) 20 (2,2,4,16) 24 (1,4,10,10) 40

(2,3,6,9) 40 (2,2,9,9) 24 (1,8,8,9) 80
(2,4,4,8) 20 (2,2,10,10) 24 (1,9,9,9) 80
(2,5,5,8) 20 (2,4,6,12) 24 (2,4,4,18) 80
(3,3,6,6) 20 (2,4,8,9) 160 (2,8,8,8) 28
(4,4,5,5) 20 (3,3,3,12) 48 (2,8,9,9) 80
(5,5,5,5) 20 (3,4,6,8) 56 (3,6,8,9) 952

(4,4,4,9) 112 (4,4,4,16) 28
(4,4,8,8) 24 (4,4,9,9) 48
(4,5,5,9) 168 (4,4,10,10) 28
(6,6,6,6) 24 (5,5,8,8) 32

(5,5,9,9) 80
(7,7,7,7) 28

a. 12 < s1 +s2 +s3 +s4 ≤ 16 b. 16 < s1 +s2 +s3 +s4 ≤ 20 c. 20 < s1 +s2 +s3 +
s4 ≤ 24 d. 24 < s1 + s2 + s3 + s4 ≤ 28

4.15 Generalized Goethals-Seidel Arrays

Denote by Uv the multiplicative group of generalized permutation matrices
of order v; that is, the elements of U are v× v matrices with entries from
{0,1,−1} such that each row and column contains precisely one nonzero entry.
If T denotes the permutation matrix which represents (1,2, . . . ,v), then the
circulant matrices of order v over a commutative ring K with identity are the
elements of the group ring K〈T 〉.
Definition 4.21. If H is an abelian subgroup of Uv and there is an element
R of Uv such that R2 = I and R−1AR = A−1 for all A ∈ H, then we shall
call KH a GC-ring (generalized circulant ring).

The elements of a GC-ring may be used in the Goethals-Seidel array in
the same way as circulant matrices. That is, if A1, A2, A3, A4 are elements
of a GC-ring such that
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4∑
i=1

AiA
�
i = mI . (4.36)

then the rows of ⎡⎢⎢⎣
A1 A2R A3R A4R

−A2R A1 A�
4 R −A�

3 R
−A3R −A�

4 R A1 A�
2 R

−A4R A�
3 R −A�

2 R A1

⎤⎥⎥⎦
are mutually orthogonal.

Wallis and Whiteman [241] showed essentially that if H is an abelian group
of permutation matrices, then KH is a GC-ring. The elements of KH are
called type 1 matrices on H (see §4.3).

Delsarte, Goethals and Seidel [39] introduced another GC-ring. If D denotes
the v×v matrix diag(1,1, . . . ,1,−1), then DT generates a cyclic subgroup L
of Uv of order 2v. The group ring KL is a GC-ring.

Remarks

(a) Mullin and Stanton [155] use the term group matrix rather than type 1
matrix,

(b) The definition of type 1 matrix by Wallis and Whiteman in fact only
includes the case where H represents a transitive permutation group.
However, the extension to the intransitive case is not difficult,

(c) Suppose that b is odd and N denotes the b× b matrix diag(1,−1,1,−1,
. . . ,−1,1). Then a b× b matrix A is circulant if and only if N−1AN is
negacyclic (see Section 4.17). Hence an equation of the form (4.36) has a
solution consisting of negacyclic matrices of order b if and only if it has a
solution consisting of circulant matrices of order b.

The Goethals-Seidel array itself may be generalized as follows.

Definition 4.22. Let G denote the group

〈r,x1,x�
1 ,x2,x�

2 , . . . , |xixj = xjxi,xix
�
j = x�

j xi

for i, j ∈ {1,2, . . .}, r2 = 1, rxir = x�
i 〉

Denote by S the subset{
0, ±x1, ±x�

1 , ±rx�
1 , ±x2, ±x�

2 , ±rx1, ±rx�
2 , . . .

}
of the integral group ring ZG. The notion of transpose may be abstracted by
defining an operation ( )� on ZG by (xi)� = xi�, (x�

i )� = xi, r� = r, and
extending to ZG in the obvious fashion. If A = (aij) is an n×n matrix with
entries from ZG, then A∗ denotes the n×n matrix with ijth entry a�

ji. If A
has entries from S and
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AA∗ =
(

u∑
i=1

sixix
�
i

)
I ,

then A is called a GGS array (generalized Goethals-Seidel array) of type
(s1,s2, . . . ,su) and order n.

For example, the Goethals -Seidel array itself, written as⎡⎢⎢⎣
x1 rx�

2 rx�
3 rx�

4
−rx�

2 x1 rx4 −rx3
−rx�

3 −rx4 x1 rx2
−rx�

4 rx3 −rx2 x1

⎤⎥⎥⎦
is a GGS array of type (1,1,1,1) and order 4.

The essential use of GGS arrays is immediate. Suppose that there is a
GGS array A of type (s1,s2, . . . ,su) and order n, and X1,X2, . . . ,Xu are
v×v matrices from some GC-ring such that the entries of the Xi are from
{0,±y1,±y2, . . . ,±y�} and

u∑
i=1

siXiX
�
i =

⎛⎝ �∑
j=1

mjy2
j

⎞⎠I .

Then replacing the entries of A with the appropriate matrices yields an
OD(nv;m1,m2, . . . ,m�). Examples of orthogonal designs constructed in this
way are given later in this section.

More importantly, GGS arrays may be used to produce more GGS arrays.

Theorem 4.19 (Eades). Suppose that there is a GGS array of type
(s1,s2, . . . ,su) and order n, and the v× v matrices A1,A2, . . . ,Au are from
some GC-ring and have entries from {0,±x1,±x2, . . . ,±xu}. If

u∑
i=1

siAiA
�
i =

⎛⎝ �∑
j=1

mjxjx�
j

⎞⎠I .

then there is a GGS array of type (m1,m2, . . . ,m�) and order nv.

Proof. Suppose that A is a GGS array of type (s1,s2, . . . ,su) and order v,
and the following replacements are made:

0 �→ zero matrix of order v;
±xi �→ ±Ai ;
±x�

i �→ ±A�
i ;

±rxi �→ ±rRAi ;
±rx�

i �→ ±rRA�
i .
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Then the resulting matrix B has entries from S and

BB∗ =
(

u∑
i=1

siAiA
�
i

)
× In

=

⎛⎝ �∑
j=1

mjxjx�
j

⎞⎠Inv . �	

To illustrate this theorem, a GGS array of type (2,2) and order 6 is
constructed. The 2-circulant construction (see Example 4.12) gives a GGS
array of type (1,1) and order 2:[

x1 rx�
2

−rx�
2 x1

]
.

The circulant matrices

A1 =

⎡⎣x1 x2
x1 x2

x2 x1

⎤⎦ and A2 =

⎡⎣ x1 −x2
x1 −x2

−x2 x1

⎤⎦
satisfy A1A�

1 + A2A�
2 = 2(x1x�

1 + x2x�
2 )I. Following the replacements in the

proof of Theorem 4.19, a GGS array of type (2, 2) and order 6 is obtained:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 x2 −rx�
2 rx�

1
x1 x2 −rx�

2 rx�
1

x2 x1 rx�
1 −rx�

2
rx�

2 −rx�
1 x1 x2

rx�
2 −rx�

1 x1 x2

−rx�
1 rx�

2 x2 x1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Note that the theorem could be applied a times to obtain a GGS array of
type (2a,2a) and order 3a.2.

The existence of a GGS array clearly implies the existence of an orthogonal
design of the same type and order, but the converse is false (see Remark 4.16).
In many cases, however, the converse is true. An important fact is that every
orthogonal design on 2-variables can be made into a GGS array by replacing
the second variable x2 by rx�

2 . The following proposition gives some infinite
families of GGS arrays with 4-variables.

Proposition 4.2 (Eades). Suppose that a is a positive integer and I is a
product of at least a positive integers; that is, � = �1�2 . . . �j where j ≥ a.

(a) If �1 ≥> 2 for 1 ≤ i ≤ j, then there is a GGS array of type (2a,2a,2a,2a)
and order 4�.
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(b) If �i ≥ 4 for 1 ≤ i ≤ j, then there are GGS arrays of type (3a,3a,3a,3a)
and (4a,4a,4a,4a) and order 4�.

Proof. For �1 ≥ 2 consider the sequences al = (x1,x2,0�1−2), a2 = (x1,−x2,
0�1−2), a3 = (x3,−x4,0�1−2), a4 = (x3,x4,0�1−2), where 0�1−2 denotes a se-
quence of 0�1−2 zeros. These sequences are complementary, and, further, if
Ai is the circulant matrix with first row ai, then

4∑
i=1

AiA
�
i = 2

( 4∑
i=1

xix
�
i

)
I .

Using Theorem 4.19 and the Goethals-Seidel array, a GGS array of type
(2,2,2,2) and order 4�1 may be obtained. Repeating this procedure a times
gives (a), For (b) the following complementary sequences may be used in a
similar fashion:

(3,3,3,3) : (0,−x2,−x3,−x4),(x1,0,−x3,x4),(x1,x2,0,−x4),
(x1,−x2,x3,0),

(4,4,4,4) : (x1,−x2,−x3,−x4),(x1,x2,−x3,x4),(x1,x2,x3,−x4),
(x1,−x2,x3,x4) .�	

A numerical investigation of GGS arrays of order 12 has been made, and
the results are listed in Eades [52], These GGS arrays have been used to
construct orthogonal designs of orders 36 and 60.

GGS arrays with 2-variables have been used successfully for constructing
orthogonal designs of highly composite orders congruent to 2 modulo 4.
Examples are given later.

It seems that GGS arrays are the most powerful method for constructing
orthogonal designs from circulants in orders not divisible by 8.

4.15.1 Some Infinite Families of Orthogonal Designs

The Goethals-Seidel array and its generalizations have been used to construct
many infinite families of orthogonal designs. The theorems below illustrate
some of the techniques involved.

Theorem 4.20 (Eades). If there is a GGS array of type (s1,s2, . . . ,su) and
order n, then there is an OD(2n;s1,s1,s2,s2, . . . ,su,su).

Proof. The negacyclic matrix

xi =
[

xi yi

−yi xi

]
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is an OD(1,1). Hence

u∑
i=1

siXiX
�
i =

(
u∑

i=1
si(x2

i +y2
i

)
I .

The combination of Theorem 4.20 and Proposition 4.2 gives a large col-
lection of orthogonal designs. For example, for each a > 0 there is an
OD(8.5a;4a,4a,4a,4a,4a,4a,4a,4a). �	
Theorem 4.21 (Eades). Suppose that q is a prime power of the form 3m+1.
Then there is a skew symmetric weighing matrix of weight q2 and order
4(q2+q+1)

3 .

This proof and additional theorems illustrating more of the techniques
involved and their proofs appear explicitly in Orthogonal Designs (Ed. 1)
p186-190.

4.15.2 Limitations

Remark 4.16. There are two ways in which the use of GGS arrays for con-
structing orthogonal designs is limited.

First, little is known about the existence of GGS arrays. A numerical
investigation of GGS arrays of order 12 shows that existence of a GGS array
is harder to establish than existence of the corresponding orthogonal design.
Further, it can be deduced from Theorem 4.20 that the number of variables of
a GGS array of order n is at most [ 1

2ρ(2n)]. If 8 divides n, then [ 1
2ρ(2n)] < ρ(n),

and so there are many orthogonal designs for which a corresponding GGS
array does not exist. Note also that if 16 divides n, then [ 1

2ρ(2n)] > 4, but no
GGS array with more than four variables is known.

Second, it can be proved that not all orthogonal designs can be constructed
using GGS arrays. There is an orthogonal design of type (4,9) and order 14
(see Chapter 8). However, using the methods of Section 4.3, it can be shown
that there is no OD(14;4,9) constructed by using two 7×7 circulant matrices
in the two-circulant construction.

4.16 Balanced Weighing Matrices

A most important concept in the design and analysis of experiments is that of
a (v,k,λ) configuration. This is equivalent to a (0,1) matrix A (the incidence
matrix of the configuration) of order v satisfying

AA� = (k−λ)I +λJ , AJ = JA = kJ, (4.37)
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where
λ(v−1) = k(k−1) (4.38)

It is natural, then, to ask when such a matrix can be signed in order to
produce a weighing matrix M = W (v,k). The work of this section is due to
Mullin [152,153], and Mullin and Stanton [154,155].

Definition 4.23. A balanced weighing matrix M is a square (0,1,−1) matrix
such that squaring all its entries gives the incidence matrix of a (v,k,λ)
configuration. That is,

MM� = kIv

and A = M ∗M satisfies Equation (4.37) with λ(v−1) = k(k−1). We write
M is a BW (v,k).

Remark Although we will not study it here, balanced weighing matrices have
proved most useful in providing previously unknown balanced incomplete
block designs (see Mullin and Stanton [154,155].

4.16.1 Necessary Conditions for the Existence of
Balanced Weighing Matrices

Since a BW (v,k) implies the existence of a (v,k,λ) configuration, the following
conditions are known to be necessary:
(i) if v is even, then (k−λ) must be a perfect square;
(ii) if v is odd, then the equation

x2 = (k−λ)y2 +(−1)[v−1
2 ]λz2 (4.39)

must have a solution in integers other than x = y = z = 0. (See Ryser [171,
p.111])
It is also trivial that for a BW (v,k) to exist,

(iii) λ = k (k−1)
(v−1) must be even.

Further we saw in Section 4.15 that for a W (v,k) to exist,
(iv) if v is odd, then k must be a perfect square, and
(v) if v is odd, then (v−k)2− (v−k)+2 > v;

and in Chapter 2,
(vi) if v = 2 (mod 4), then k must be the sum of two squares.

In the event that v ≡ 1 (mod 4), we note that (iv) is stronger than (ii) since
if k = α2, then x = α, y = z = 1, is a solution of equation (4.39), while for the
parameters v = 27, k = 13, λ = 6 (4.39) has a solution, but k is not a perfect
square. (Just note that 〈7,6〉 = 〈1,42〉, and so (4.39) has a rational, hence
integral, solution.) For v ≡ 3 (mod 4), (iv) implies that (v) has a solution if
and only if k−λ is the sum of two squares.
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4.16.2 Construction Method for Balanced Weighing
Designs

The direct sum of two matrices W (n1,k) and W (n2,k) is a W (n1 + n2,k),
and the Kronecker product of matrices W (n1,k1) and W (n2,k2) is a
W (n1n2,k1k2), but this is not true for balanced weighing designs since in
general the property of balance is lost under these operations. This fact
alone makes the construction of balanced designs difficult. This is further
emphasized by the fact that the conditions (i), (ii), and the condition that
(v−1)|k(k−1) need not hold in general for an unbalanced design. Here we
discuss the generation of balanced weighing designs from group difference sets.

Let G be a finite Abelian group of order v. If G admits a difference set
D = {d1,d2, . . . ,dk} then choose M(χ) (or M) to be a type 1 incidence matrix
of D obtained from the map χ.

Strictly speaking, M(χ) is determined only up to a permutation of rows
and columns, but this is in no way relevant to the present discussion. Type 1
matrices have an interesting property, which we now discuss.

Definition 4.24. Let rg denote the gth row of a type 1 incidence matrix M
defined on an Abelian group G. We say M has the invariant scalar product
property (ISP property) if for all g, h, θ ∈ G,

rg � rh = rg+θ � rh+θ ,

where � denotes the usual scalar product of vectors.

Lemma 4.25. Any type 1 matrix defined by χ on G has the ISP property.

Proof. Note that

rg � rh =
∑
k∈G

χ(k−g)χ(k−h)

=
∑
k∈G

χ((k−θ)−g)χ((k−θ)−h)

=
∑
k∈G

χ(k−(g+θ))χ((k−θ)−h)

= rg+θ � rh+θ

as required. �	
A similar result holds for column scalar products.

Lemma 4.26. A type 1 (0,1,−1) incidence matrix is a W (v,k) matrix if and
only if the following equation holds for all g ∈ G:
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θ∈G

χ(θ)χ(θ+g) = kδ0,g , (4.40)

where δ0,g is the Kronecker delta.

Proof. This is clear because of the ISP property

r0 � rg =
∑
θ∈G

χ(θ)χθ−g) =
∑
θ∈G

χθ+g)χ(θ) . �	

The equality of these two summations is of practical importance since
it saves calculation in verifying equation (4.39). In particular, if v is odd,
one need only check (v−1)

2 equations since the nonzero elements of G can be
partitioned into inverse pairs.

Lemma 4.27. Let D be a difference set in G. Let M = M(χ) be a type 1
(0,1,−1) incidence matrix. Then M ∗M is the incidence matrix of a (v,k,λ)
configuration if χ(g) = 0 if and only if g ∈ G−D.

Proof. This is evident. �	
Definition 4.25. We refer to a function χ satisfying the condition of Lemma
4.27 as a D-function. If the image of χ is {0,1,−1}, we call χ a restricted
function. Putting these results together, we obtain:

Theorem 4.22 (Mullin). There is a matrix BW (v,k) if there is a D-
function χ on an Abelian group of order v such that∑

θ∈G

χ(θ)χ(θ+g) = kδ0,g .

This theorem can be used as a basis for a computer algorithm.

For notational convenience, given a restricted function χ on an Abelian
group G, we denote

∑
θ∈G χ(θ)χ(θ+g) by F (χ,g). We demonstrate a limitation

of the construction of Theorem 4.22 in the next theorem. (This can also be
obtained from Lemma 4.28.)

Theorem 4.23 (Mullin). If there is a D-function χ in an Abelian group
G of order v such that F (χ,g) = kδ0,g for all g ∈ G and v is even, then
λ = k (k−1)

(v−1) satisfies λ ≡ 0 (mod 4).

Proof. Since v is even, there exists an element ḡ �= 0 in G such that ḡ = −ḡ.
Let (a1, b1)(a2, b2), . . . ,(at, bt) be the pairs of elements of D whose difference
is g. Here t = λ

2 , since if ai− bi = ḡ, then bi−ai = ḡ. Now consider

F (χ, ḡ) =
∑
θ∈G

χ(θ)χ(θ+ḡ) .
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The only nonzero terms in this expression arise when both θ and θ + ḡ belong
to D, since χ is a D-function. Thus

F (χ, ḡ) =
t∑

i=1
[χ(ai)χ(bi)+χ(bi)χ(ai)]

= 2
t∑

i=1
χ(ai)χ(bi) = 0 .

Since each of the t terms in the latter sum is either 1 or -1, this expression
must have t

2 terms of each value, and t must be even. This shows that λ ≡ 0
mod 4 as required. �	

There is a (4,3,2) configuration C which is derivable from a difference
set in the group of integers mod 4; however, there is no D-function for
any difference set which will produce a BW (4,3). It is possible to sign the
matrix of C to produce an orthogonal matrix nonetheless. More generally,
there is a cyclic

(
(32n−1)

2 ,32n−1,2.32n−2
)

configuration (since this is the
complementary configuration of the set of hyperplanes in PG(2n−1,3)), but
there is no way of signing these matrices cyclically to make them orthogonal
in view of Theorem 4.23. The results of Mullin show that all of these can be
signed to produce orthogonal matrices. Not all incidence matrices of (v,k,λ)
configurations with v even can be signed to produce orthogonal matrices. It
can be shown that the matrix of the self-dual (16,6,2) configuration cannot
be signed (Schellenberg [175]).

We introduce new concepts which provide a labour-saving device in the
calculation associated with Theorem 4.22 in some applications.

Definition 4.26. Let R be a finite ring with unit. A restricted function χ on
the additive group of R with the property that χ(1) = 1 is called a normal
function. Let U(R) denote the group of units of R. Let N(R,χ) = N(χ) be
defined by N(χ) = {g : g ∈ U(R)|χ(g,θ) = χ(g)χ(θ), ∀θ ∈ R}.

Because of the importance of N(χ) in the next theorem, we demonstrate a
structural property of this set.

Proposition 4.3. N(χ) is a subgroup of U(R).

Proof. Let g and h be members of M(χ). Then for every θ ∈ R, χ(ghθ) =
χ(g)χ(hθ) = χ(g)χ(h)χ(θ). Since R is finite, the result follows. �	

It is clear that χ is a linear representation of N(χ) under these circum-
stances.

Theorem 4.24 (Mullin). Let R be a finite ring with unit and χ a normal
function on R. Let M(χ) be defined as above.

If g ∈ N(χ), then F (χ,g) = F (x,1).
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Proof. F (χ,g) =
∑

θ∈R χ(θ)χ(θ +g).
Let τ = g−1θ or equivalently θ = gτ . Then, since this mapping is 1−1, we

have

F (χ,g) =
∑
τ∈R

χ(gτ)χ(gτ+g)

=
∑
τ∈R

χ(gτ)χ(g(τ+1))

=
∑
τ∈R

(χ(g))2χ(τ)χ(τ+1)

Since χ(g)χ(g−1) = χ(1) = 1, χ(g) �= 0 and (χ(g))2 = 1. This yields

F (χ,g) =
∑
τ∈R

χ(τ)χ(τ+1) = F (χ,1) .�	

As an application of this result, let us consider G = GF (7). Let χ(0) = −1,
χ(1) = χ(2) = χ(4) = 1 and χ(3) = χ(5) = χ(6) = 0. Since the field marks 1, 2
and 4 are the quadratic residues and since 7 = 3 (mod 4), N(χ) = (1,2,4).
Now F (χ,2) = F (χ,4) = F (χ,1) = χ(0)χ(1) + χ(1)χ(2) = 0, and since G =
{0}∪N(χ)∪−N(χ), we have

F (χ,g) = 4δ0,g , g ∈ G.

Thus M is a W (7,4) matrix, But {0,1,2,4} is a difference set, and therefore
M is also a BW (7,4) matrix. Thus the vector

( 1̄ 1 1 0 1 0 0 )

when developed cyclically mod 7, generates a BW (7,4).

4.16.3 Regular Balanced Weighing Matrices

Definition 4.27. If a BW (v,k) matrix is such that the number of −1’s per
row is constant, we say that it is regular.

In a BW matrix we denote the number of −1’s per row by a(−1) and the
number of 1’s per row by a(1). Since if M is regular, then −M is also regular,
we may assume that we are dealing with matrices for which a(1) ≥ k

2 . Clearly,
every group-generated BW (v,k) is regular, as is its transpose. Using this fact,
Mullin [153] proved, using a somewhat different method, a generalization of a
result of Schellenberg [175] which applies these to matrices BW (v,k).

Lemma 4.28 (Mullin). If a W (v,k) matrix is a regular type 1 matrix, then
a(1) = (k±√

k)/2 and a(−1) = (k±√
k)/2.
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Proof. The proof is a slight generalization of a result in Ryser [171, p.134].
Let e = a(1)−a(−1), and J denote the v×v matrix all of whose entries are 1.
Clearly, we have

HJ = eJ = H�J ,

and hence

HH�J = e2J = kJ .

Thus

e2 = k ,

a(1)+a(−l) = k ,

a(1)−a(−1) = ±
√

k ,

and the result follows. �	
Corollary 4.22. If a W (v,k) matrix is a regular type 1 matrix, then k is a
perfect square.

Corollary 4.23. If a BW (v,k) matrix is a type 1 matrix, then a(−1) ≥ λ
4

with equality if and only if v = k = 4.

Proof. Let us first note that in any BW (v,k) matrix, if v = k, then k = λ.
Now in any BW (v,k) matrix, we observe that 4(v−k−1) + λ ≥ 0, with

equality only for v = k = λ = 4. This is immediate from the fact that in any
(v,k,λ) configuration, as defined earlier, we have v ≥ k with equality only for
v = k = λ.

The above inequality implies that the inequality

4(λv−λ+k)−4kλ+λ2 ≥ 4k

is also valid, with equality only for v = k = λ = 4. But by the definition of λ,
we have

k2 = λv−λ+k ,

and therefore

(2k−λ)2 ≥ 4k ,

with equality as above.
Now let us assume that a(−1) < λ

4 . Since

k + λk

2 >
k

2 ≥ λ

2 ,

the corollary is true unless
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a(−1) = (k−√
k)

2 .

Let us assume that (k−√
k)

2 < λ
4 . Then

(2k−λ)2 ≤ 4k ,

which is impossible unless equality holds in which case v = k = λ as required.
The design generated by

(−1,1,1,1) mod 4

satisfies the corollary with equality. �	

4.16.4 Application of the Frobenius Group
Determinant Theorem to Balanced Weighing
Matrices

For the theory of group characters, the reader is referred to Speiser [196].
For Abelian groups, the Frobenius group determinant theorem (Speiser [196,
p.178]), in the notation employed here, becomes the following:
Theorem 4.25 (Frobenius Group Determinant Theorem). Let M be
a type 1 matrix over an Abelian group G of order v. Then

detM(χ) =
v∏

j=1

∑
g∈G

α(j)(g)χ(g) ,

where α(j) denotes the jth irreducible character of G.
For the cyclic group of order v (written as the residues modulo v), this

becomes

detM(χ) =
v−1∏
j=0

v−1∑
k=0

ωjkχ(k) ,

where ω is a primitive vth root of unity.
Any group G of order v admits the main character

a(1)(g) = 1 , g ∈ G.

Every group determinant can be factored into forms in the indeterminates
χ(g), which are irreducible over the integers, since it is clear that the expansion
of the group determinant is a form with integer coefficients.

To illustrate the use of this theorem, we tackle the problem of finding a
cyclic BW (10,9) matrix M . Using the integers mod 10, we can, without loss
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of generality, assume that χ(g) = 0 if and only if g = 0. Without any further
theory, except for Lemma 4.28, there are

(9
3
)

= 84 functions χ to consider. By
the Frobenius group determinant theorem,

G(χ) =
9∑

j=1
(−1)jχ(j) ,

corresponding to the character α defined by α(j) = (−1)j , is a divisor of
detM = 310.

Now let c denote the number of even residues j such that χ(j) = −1. Then
G(χ) can be determined in terms of c as follows:

c G(χ)
0 6
1 1
2 −3
3 −7.

There are 40 functions with c = 1 and 30 with c = 2; therefore, the number
of functions to be investigated has been reduced. Moreover, we have some
structural information. As we shall see, the structural information is extremely
important. In the following, if χ(g) = x, we say that x appears in position g.

We note now that the inner product of absolute values of any pair of
distinct rows is 8, since λ = 8 in the associated symmetric design. Thus the
number of terms with value −1 in r0 � rj must be 4 for j = 1,2, . . . ,9.

In particular, this means that in r0 and rj the number of times 0 opposes
−1 must be even, that is, 0 or 2. Hence if translation (of row 0) by j units
moves 0 to a position containing −1, then there must be a −1 in position
−j which is translated to column zero. Thus −1’s occur in pairs of inverse
positions.

Now let us consider the case of c = 2. There is exactly one −1 on an odd
residue. But since the parity of inverse pairs is equal, this −1 must be in
position 5; that is, χ(5) = 1. Now it is easily verified (considering row 1) that
the three −1’s cannot be consecutive in any event, and thus the remaining
−1’s occur in inverse pairs of positions χ(4) = χ(6) = 1. Also since c = 2,
χ(1) = χ(3) = χ(7) = χ(9) = 1, and χ(2) = χ(8) = −1. We have determined
the only possible function χ with c = 2. However, for this function r0 �r1 =−4,
and the matrix is not orthogonal.

Let us now consider the case c = 1. Clearly, no solution exists in this case
since there is only one self-inverse element 5, which is odd. Hence there is no
cyclic BW (10,9) matrix.
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4.16.5 Balanced Weighing Matrices with v ≤ 25

Comment 4.1. In Table 4.18 we give a list of all triples v, k, λ with k > λ > 0
which satisfy λ(v− 1) = k(k− 1) and λ ≡ 0 mod 2. We also list a function
E(v,k) = E where E(v,k) = 1 if a matrix B(v,k) exists, and E(v,k) = 0
otherwise. In this regard it is useful to note that the matrices BW (4n,4n−1)
are coexistent with skew Hadamard matrices of order 4n and that matrices
BW (4n+2,4n+1) are coexistent with symmetric Hadamard matrices. The
list of values for which such designs are known to exist are listed in Wallis [231].

Table 4.18 triples v,k,λ with k > λ > 0 satisfying λ(v − 1) = k(k − 1) and
λ ≡ 0 mod 2.

v k λ E Reason or Reference
1) 4 3 2 yes Mullin
2) 6 5 4 yes *, Complement PG(1,5)
3) 7 4 2 yes Circulant with first row [−110100].
4) 8 7 6 yes *, Complement PG(1,7).
5) 10 9 8 yes *, Complement PG(1,9).
6) 11 5 2 no Condition (iv).
7) 12 11 10 yes *, Complement PG(1,11).
8) 13 9 4 yes Condition (v).
9) 14 13 12 no *, Complement PG(1,13).

10) 15 8 4 no Condition (iv).
11) 16 6 2 no Schellenberg
12) 16 10 6
13) 16 15 14 yes *
14) 18 17 16 yes *, Complement PG(1,17),
15) 19 9 4
16) 20 19 18 yes *, Complement PG(1,19).
17) 21 16 12 yes *, Complement PG(2,4).
18) 22 7 2 no Condition (i).
19) 22 15 10 no Condition (i).
20) 22 21 20 no Condition (vi).
21) 23 12 6 no Condition (iv).
22) 24 23 22 yes *, Complement PG(1,23).
23) 25 16 10

* see Comment 4.1
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In view of our earlier remarks about the usefulness of BW (v,k)’s it would
be of interest to establish the existence of more of these matrices. This will
now be discussed.

4.16.6 There are No Circulant Balanced Weighing
Matrices BW (v,v −1) Based on (v,v −1,v −2)
Configurations

Without loss of generality we assume that in such matrices the element 0
occurs down the main diagonal.

Lemma 4.29. In any circulant orthogonal matrix based on a (v,k,λ) config-
uration, the parameter k is a perfect square.

Proof. Suppose that the first row of the orthogonal matrix contains a entries
of 1 and b entries of −1. By the circulant property, every row and column has
sum a− b. If the matrix is denoted by N , we have

NJ = N�J = (a− b)J .

But

NN� = kI .

Hence

NN�J = kIJ = kJ .

But

NN�J = N(a− b)J = (a− b)2J .

Thus

k = (a− b)2 . �	

In the following we assume without loss of generality that a > b; otherwise
we multiply the entire matrix by −1. For convenience we set a− b = t.

Lemma 4.30. If a denotes the number of 1’s in the first row of an orthogonal
circulant matrix, and b the number of −1’s, then

a = 1
2
(
t2 + t

)
and b = 1

2
(
t2− t

)
.

Proof. This is immediate since

a+ b = k = t2

a− b = t .
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Thus in looking for circulant orthogonal matrices based on trivial designs,
we need only consider (t2 +1, t2, t2−1) configurations where t is odd. �	
Definition 4.28. An orthogonal circulant based on a (t2 +1, t2, t2−1) con-
figuration will henceforth be called a trivial circulant.

Let xαβ (α,β = 0,1,2) represent the number of times that α in row i is
in the same column as β in row j (we use 2 to represent the entry −1). We
require

Lemma 4.31. Either x01 = x10 = 1, x02 = x20 = 0, or vice versa.

Proof. We actually determine all xαβ . It is clear that

i)
∑

xαβ = t2 +1 ,

ii)
∑

x0j =
∑

xi0 = 1 ,

iii)
∑

x1j =
∑

xi1 = 1
2(t2 + t)

iv)
∑

x2j =
∑

xi2 = 1
2(t2− t)

Finally, orthogonality gives

v) x11 +x22 = x12 +x21 .

But x11 +x22 +x12 +x21 = λ, and thus each expression in v) equals 1
2 (t2−1).

From iii) and iv), addition gives

x10 +x20 = 1 = x01 +x02 ;x00 = 0 .

Also
x10−x01 = x02−x20 = x21−x12 = an even number.

This proves that x10 = x01, x02 = x20, as required. It is useful to record the
table of values following. �	

Case A Case B

x00 0 0

x01 = X10 1 0

x02 = X20 0 1

x12 = X21
1
4 t2−1 1

4 t2−1

x11
1
4 (t+3)(t−1) 1

4 (t−1)2

x22
1
4 (t+1)2 1

4 (t−3)(t+1)
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In the light of Lemma 4.31, we note that we can write v = 4m+2, k = 4m+1 = t,
λ = 4m, and the typical circulant has the following form (illustration for m = 6).

Row 1: 0a1a2 . . .a11a12θa12a11 . . .a3a2a1

(The symmetry of the sequence is guaranteed by the fact that 0x0i = xi0 for
i = 1,2.)

Row j is obtained by a cyclic shift through j−1 places to the right.
We now prove:

Lemma 4.32. θ = 1 if t ≡ 1 (mod 4); θ = −1 if t ≡ 3 (mod 4). Also

m∑
j=1

a2j = 0 ,

m−1∑
i=0

a2i+1 = t−θ

2

Proof. Take the scalar products of row 1 with rows 2,4,6, . . .2m+2; add, and
re-arrange. We have

2(a1 +a3 + · · ·+a2m−1)(a2 +a4 + · · ·+a2m)+θ (a2 +a4 + · · ·+a2m) = 0 .

Thus

(2a1 + · · ·+2a2m−1 +θ)(a2 +a4 + · · ·+a2m) = 0;

Thus since only the second integer is even, we get
∑

a2j = 0. Also, since
2
∑

a2n +2
∑

a2j +θ = t, we find that
∑

a2i = t−θ
2 .

Finally, note that the sum
∑

a2i is an even integer (m terms); thus t−θ is
divisible by 4, and θ = 1 for t ≡ 1 (mod 4), θ = −1 for t ≡ 3 (mod 4). This
completes the proof. �	

Actually, if one takes scalar products of row 1 with rows 3,5, . . . ,2m + 1,
and adds, one gets the identity(∑

a2i

)(∑
a2i +θ

)
+
(∑

a2j

)2
= m,

which also produces the desired results.

Example 4.25. At this stage, it is most instructive to look at the example
for m = 6, The scalar products for rows 2,4,6,8,10,12 are written down as
follows.

1)
12∑

i=1
aiai+1 = 0(a13 = θ) .

In the sequence al,a2,a3, . . . ,a13 there must be exactly six sign changes to
produce a zero sum in 1). Hence a1 has the same sign as a13; that is,
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2) a1a2 +
10∑
1

aiai+3 +a11a12 = 0 .

Write the sequence

a3,a6,a9,a12,a11,a8,a5,a2,a1,a4,a7,a10,a13 .

By the same argument, a3 = 0.

3) a1a4 +a2a3 +
8∑
1

aiai+5 +a9a12 +a10a11 = 0 .

Consider the sequence

a5,a10,a11,a6,a1,a4,a9,a12,a7,a2,a3,a8,θ ,

and we get a5 = 0.

4) a1a6 +a2a5 +a3a5 +
6∑
1

aiai+7 +a7a12 +a9a10 = 0 .

The relevant sequence is

a7,a12,a5,a2,a9,a10,a3,a4,a11,a8,a1,a6,θ ,

and the result is a7 = 0.

5) a1a8 +a2a7 +a3a6 +a4a5 +
4∑
1

aiai+9 +a5a12 +a6a11 +a7a10 +a8a9 = 0 .

Hence, the sequence

a9,a8,a1,a10,a7,a2,a11,a6,a3,a12,a5,a4,θ proves a9 = 0 .

Similarly, a11 = θ, and
∑

a2i+1 = 6θ = 6 (a contradiction of Lemma 4.32).
The method outlined is completely general and gives:

Lemma 4.33. In an orthogonal circulant of the type we have been considering,
with one zero per row, we have

a1 = a3 = · · · = a2m−1 = θ .

Thus ∑
a2i+1 = mθ = 1

2 (t−θ) .

It is easy to deduce, from Lemma 4.33, that
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t = θ(2m+1) .

But t2 = 4m+1, and so 4m+1 = (2m+1)2.
We conclude that m = 0 and state:

Theorem 4.26. An orthogonal circulant with one zero per row only exists
for m = 0; in this case, it is the identity matrix of order 2 or, equivalently,
the transposition matrix of order 2.

4.17 Negacyclic Matrices

A type of weighing matrix, of weight n and weight n−1, called a C-matrix
or conference matrix, was previously studied by Delsarte-Goethals-Seidel [39].
These can be based on circulant or on negacyclic matrices. We consider these
negacyclic based matrices with weight k ≤ n.

Definition 4.29. Let P , called the “negacyclic shift matrix” be the square
matrix of order n, whose elements pij are defined as follows:

pi,i+1 = 1, i = 0,1, . . . ,n−2,

pn−1,0 = −1,

pij = 0, otherwise.

Any matrix of the form
∑

aiP
i, with ai commuting coefficients, will be

called negacyclic.
We see there are similarities but not necessarily sameness between the

properties of circulant/cyclic matrices and negacyclic matrices.

Lemma 4.34. Let P = (pij) of order n be a negacyclic matrix. Then

(i) The inner product of the first row of P with the ith row of P equals the
negative of the inner product of the first row of P with the (−i+2)nd row.
That is

n∑
j=1

p1jpij = −
n∑

j=1
p1jpn−i+2,j (4.41)

(This is the negative of the result for circulant/cyclic matrices).
(ii) The inner product of the first row of P with the ith row of P equals the

inner product of the kth row of P with the (i+k−1)st row of P . That is

n∑
j=1

p1jpij =
n∑

j=1
pjkpi+k−1,j (4.42)

(This is the same result as for circulant/cyclic matrices).
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(iii) Then P of order n satisfies

P n = −1, P � = −P n−1, PP � = I .

If A =
∑

aiP
i, B =

∑
bjP j and R is the back diagonal matrix, then

AB = BA and A(BR)� = BRA� .

A and BR are amicable matrices.
We now note some other properties of negacyclic matrices which were

shown by L.G. Kovacs and Peter Eades [52]. The second result appears in
Geramita and Seberry [80, p.206–207]. We give the proof here to emphasize a
result which appears to have been forgotten.

Lemma 4.35. If A =
∑

aiP
i is a negacyclic matrix of odd order n, then

XAX, where X = diag(1,−1,1,−1, . . . ,1), is a circulant matrix.

Lemma 4.36. Suppose n ≡ 0 (mod 2). The existence of a negacyclic C =
W (n,n−1) is equivalent to the existence of a W (n,n−1) of the form[

A B
B� −A�

]
(4.43)

where A and B are negacyclic, A� = (−1)An/2A. That is the 2-block suitable
matrix gives a weighing matrix which is equivalent to a 1-block matrix.

Proof. First we suppose there is a negacyclic matrix N = W (2n,2n−1) of
order 2 which is used to form two negacyclic matrices A and B of order n
which satisfy

AA� +BB� = (2n−1)I. (4.44)

Let the first row of the negacyclic matrix N be

0x1y1x2y2 . . .yn−1xn

We choose A and B to be negacyclic matrices with first rows

0y1y2 . . .yn−1, and x1x2 . . .xn ,

respectively. If the order n = 2t+1 is odd and the first rows of A and B are

0a1 . . .at (εtat) . . .(ε1a1) and 1b1b2 . . . bt (δtbt) . . .(δ1b1) ,

with εi = ±1, δj = ±1, then taking the dot product of the first and (i+1)th

rows, i ≤ t (reducing using xy ≡ x+y−1 (mod 4)), we obtain

2t−2i+ εi (mod 4) and 2t−2i+1 (mod 4) ,

respectively. Hence using equation (4.44),
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εi +1 ≡ 0 (mod 4) ,

we have εi = −1.
If the order n is even and the first rows of A and B are

0a1 . . .at−1at(εt−1at−1) . . .(ε1a1)
and

1b1b2 . . . bt(δt−1bt−1) . . .(δ1b1),

with εi = ±1, δj = ±1, then taking the dot product of the first and (i+1)th

rows, i ≤ t−1 (reducing modulo 4), we obtain

2t−2t−1+ εi (mod 4) and 2t−2i+2bi−2 (mod 4) ,

respectively. Hence, using equation (4.44),

εi +2bi−3 ≡ 0 (mod 4) ,

and since bi �= 0, we have εi = 1.
This means the first row of the original negacyclic matrix of order 2n can

be written as

0x1a1x2a2 . . .xtat1āt(δtxt)āt−1 . . . ā2(δ2x2)ā1(δ1x1) for n odd
and

0x1a1x2a2 . . .at−1xtat(δtxt)at−1 . . .a2(δ2x2)a1(δ1x1) for n even

with δj �= ±1 and āi = −ai.
The inner product of the first and (2i−1)th rows, i≤ t and t−1 respectively,

is
−δi +1 ≡ 0 (mod 4) and δi +1 ≡ 0 (mod 4) .

So we have the first rows of A and B

0a1 . . .atāt . . . ā1 and b1b2, . . . bt1bt . . . b2b1 for n odd (4.45)
and

0a1 . . .at−1atat−1 . . .a1 and b1b2 . . . btb̄t . . . b̄2b̄1 for n even (4.46)

as required.
It is straightforward to check that negacyclic matrices A and B, which

satisfy AA� +BB� = (2n−1)In and are of the form (4.45) and (4.46), give
a negacyclic matrix W (2n,2n−1) when formed into first rows

0b1a1b2 . . . btat1ātbt . . . ālb1, for n odd,
or
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0b1a1b2 . . . btatb̄t . . .a1b̄1 for n even.�	

Example 4.26. The first rows of negacyclic matrices (n,n−1) of orders 4, 6,
8, and 10, respectively;

0 1 1 − ,

0 1 − 1 1 1
0 1 1 − 1 1 1 −
0 1 1 − 1 − − − − 1 .

are equivalent to the existence of

[
0 1
− 0

]
,

[
1 −
1 1

]
and

⎡⎣0 − 1
− 0 −
1 − 0

⎤⎦ ,

⎡⎣1 1 1
− 1 1
− − 1

⎤⎦
⎡⎢⎢⎣

0 1 1 1
− 0 1 1
− − 0 1
− − − 0

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
1 − 1 −
1 1 − 1
− 1 1 −
1 − 1 1

⎤⎥⎥⎦ and

⎡⎢⎢⎢⎢⎣
0 1 1 − −
1 0 1 1 −
1 1 0 1 1
− 1 1 0 1
− − 1 1 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

1 − − − 1
− 1 − − −
1 − 1 − −
1 1 − 1 −
1 1 1 − 1

⎤⎥⎥⎥⎥⎦
Comment. Peter Eades [52] and Delsarte-Goethals-Seidel [39] have deter-
mined that the only negacyclic W (v,v−1) of order v < 1000 have v = pr +1
where pr is an odd prime power. On the positive side we know (we omit the
proof):

Theorem 4.27 (Delsarte-Goethals-Seidel [39]). There is a negacyclic
W (pr +1,pr) whenever pr is an odd prime power.

G. Berman [21] has led us to believe that many results of a similar type to
those found for circulant matrices can be obtained using negacyclic matrices.
Negacyclic matrices are curiosities because of their properties and potential
exhibited in Lemma 4.36 and Example 4.27.

Example 4.27. The four negacyclic matrices

A1 =

⎡⎢⎢⎢⎢⎣
1 − 0 0 0
0 1 − 0 0
0 0 1 − 0
0 0 0 1 −
1 0 0 0 1

⎤⎥⎥⎥⎥⎦ A2 =

⎡⎢⎢⎢⎢⎣
1 1 − − 0
0 1 1 − −
1 0 1 1 −
1 1 0 1 1
− 1 1 0 1

⎤⎥⎥⎥⎥⎦

A3 =

⎡⎢⎢⎢⎢⎣
0 − 0 0 1
− 0 − 0 0
0 − 0 − 0
0 0 − 0 −
1 0 0 0 0

⎤⎥⎥⎥⎥⎦ A4 =

⎡⎢⎢⎢⎢⎣
0 − 0 0 0
0 0 − 0 0
0 0 0 − 0
0 0 0 0 −
1 0 0 0 0

⎤⎥⎥⎥⎥⎦
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satisfy
A1A�

1 +A2A�
2 +A3A�

3 +A4A�
4 = 9I .

They can be merged to form two negacyclic matrices

B1 =

⎡⎣ 1 0 − − 0 0 0 0 0 1
− 1 0 − − 0 0 0 0 0

etc.

⎤⎦

B2 =

⎡⎣1 0 1 − − 0 − 0 0 0
0 1 0 1 − − 0 − 0 0

etc.

⎤⎦
which satisfy

B1B�
1 +B2B�

2 = 9I .

These can be further merged to obtain the first row of a negacyclic W (20,9):

1 1 0 0 − 1 − − 0 − 0 0 0 − 0 0 0 0 1 0.

Negacyclic matrices are worthy of further existence searches. The question
of when negacyclic matrices can be decomposed as in Example 4.27 is open
for further research.

4.17.1 Constructions

We recall suitable (plug-in) matrices X1,X2,X3,X4, · · ·Xt are t matrices of
order n, with elements ±1 which satisfy the additive property,

∑t
i=1 XiX

�
i =

constant times the identity matrix. They are suitable if they satisfy other
equations which enable them to be substituted into a plug-into array to
make an orthogonal matrix (see Definition 4.4). Xia, Xia and Seberry [251]
show 4-suitable plug-in negacyclic matrices of odd order exist if and only if
4-suitable plug-in circulant matrices exist for the same odd order. 4-suitable
negacyclic matrices of order n, may be used instead of 4-suitable circulant
matrices, in the Goethals-Seidel plug-into array [88], to construct Hadamard
matrices and orthogonal designs of order 4n. Other useful plug-into arrays
are due to Kharaghani, Ito, Spence, Seberry-Balonin and Wallis-Whiteman
[114,115,120,182,198,241].

In computer searches, for some even orders, 2-suitable or 4-suitable nega-
cyclic matrices have proved easier to find. This experimental fact has been used
extensively by Holzmann, Kharaghani and Tayfeh-Rezaie [66,67,104,105,122]
to complete searches for OD’s in orders 24, 46, 48, 56, and 80. We note that
if there are 2-suitable negacyclic matrices of order n and Golay sequences of
order m, there are 2-suitable matrices of order mn.
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This means a negacyclic matrix may give 2-suitable and 4-suitable plug-in
matrices to use in plug-into arrays to make larger orthogonal matrices.

From Table 4.19 there exist W (12,k) constructed using two negacyclic
matrices of order 6 for k = 1,2, . . . ,12. From Delsarte-Goethals-Seidel [39],
there exists 0,±1 negacyclic W (12,11). Results for 7, 9, and 11 are due to
Gene Awyzio [13] and Tianbing Xia [250].

Table 4.19 First rows of W (12,k) constructed from two negacyclic matrices
of order 6 a

k First Rows
1 1 0 0 0 0 0 ; 06
2 1 05 ; 1 05
3 1 0 0 1 0 ; 1 05
4 1 1 04 ; 1 − 04
5 1 1 − 03 ; 1 0 1 03
6 0 1 1 1 − 1 ; 1 05

k First Rows
7 0 1 1 1 − 1 ; 1 0 0 1 0 0
8 1 1 − 1 02 ; 1 1 1 − 02
9 0 1 1 − 1 1 ; 1 0 1 − 0 −

10 0 1 1 1 − 1 ; 0 1 1 1 − 1
11 0 1 1 − 1 1 ; 1 − 1 1 1 1
12 1 1 1 1 − 1 ; − 1 1 1 − 1

a G. Awyzio [13] and T. Xia [250]

Remark 4.17. The question of which W (4n,k) can be constructed using two
negacyclic 0,±1 matrices of order 2n has yet to be resolved.

It is easy to see that there exist W (2n,k) constructed from 2 negacyclic
matrices of order n whenever there exist two 0, ±1 sequences of length n and
weight k with NPAF zero.

Using results obtained by Awyzio (private communication) and Tianbing
Xia (private communication) we conjecture:

Conjecture 4.5. Suppose n, n ≡ 2 (mod 4) and k, the sum of two squares, are
integers. Then there exists a W (2n,k) constructed via two negacyclic (0,1,−1)
matrices.

4.17.2 Applications

In Ang et al [8], 4-suitable negacyclic matrices are used to construct new
orthogonal bipolar spreading sequences for any length 4 (mod 8) where the
resultant sets of sequences possess very good autocorrelation properties that
make them amenable to synchronization requirements. In particular, their
aperiodic autocorrelation characteristics are very good.

It is well known, e.g. [222,249], that if the sequences have good aperiodic
cross-correlation properties, the transmission performance can be improved
for those CDMA systems where different propagation delays exist.
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Orthogonal bipolar sequences are of a great practical interest for the cur-
rent and future direct sequence (DS) code-division multiple-access (CDMA)
systems where the orthogonality principle can be used for channels sep-
aration, e.g. [8]. The most commonly used sets of bipolar sequences are
Walsh-Hadamard sequences [222], as they are easy to generate and simple to
implement. However, they exist only for sequence lengths which are an integer
power of 2, which can be a limiting factor in some applications. The overall
autocorrelation properties of the modified sequence sets are still significantly
better than those of Walsh-Hadamard sequences of comparable lengths.

4.17.3 Combinatorial Applications

For combinatorial applications see [21,22,89,117,121].
We also see from papers [100,102,104,105] that OD’s in orders 24, 40, 48,

56, 80, that had proved difficult to constructed using circulant matrices were
found using negacyclic matrices.



Chapter 5
Amicable Orthogonal Designs

In this chapter we consider the theory of amicable orthogonal designs and
some of their usage.

Interest in amicable orthogonal designs was renewed by the paper of Tarokh,
Jafarkhani and Calderbank [209] which showed how they could be used in
mobile communications. A delightful introduction to the use of orthogonal
designs for CDMA codes for communications has been given by Adams [1].
We notice that for communications the matrices need not be square and may
have combinations of complex or quaternion elements. Amicability increases
the number of messages which can be transmitted simultaneously but suitable
designs have been difficult to find.

In Chapter 6 we will consider families and systems which further generalize
the concept of amicability.

5.1 Introduction

In the paper, Geramita-Geramita-Wallis [77], the following remarkable pairs
of orthogonal designs are given:

X =
[
x1 x2
x2 −x1

]
; Y =

[
y1 y2

−y2 y1

]
. (5.1)

X =

⎡⎢⎢⎣
x1 x2 x3 x3

−x2 x1 x3 −x3
x3 x3 −x1 −x2
x3 −x3 x2 −x1

⎤⎥⎥⎦ ; Y =

⎡⎢⎢⎣
y1 y2 y3 y3
y2 −y1 y3 −y3

−y3 −y3 y2 −y1
−y3 y3 −y1 y2

⎤⎥⎥⎦ . (5.2)

They have the property that XY � = Y X�.
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The existence of just these two pairs of orthogonal designs has the following
useful consequences.

Proposition 5.1. If there is an orthogonal design OD(n;a,b), then

(i) there is an orthogonal design OD(2n;a,a,b,b);
(ii) there is an orthogonal design OD(4n;a,a,2a,b,b,2b).

Proof. (i) Let the OD(n) be on the variables z1, z2. Using X and Y as in
(5.1) above and setting z1 = X and z2 = Y gives the result.

(ii) is proved analogously using the X and Y from (5.2) above. �	
The following replication result was obtained.

Corollary 5.1. If all OD(n;1,k), 1 ≤ k ≤ n− 1, exist in order n, then all
OD(n;1, �), 1 ≤ � ≤ 2n−1, exist in order 2n.

Corollary 5.2. If all OD(n;a,b,n−a−b) exist then all OD(2n;x,y,2n−x−
y) exist.

Example 5.1. There is an OD(4;1,1;2) and so if n = 2s, there are
OD(2s;1,k), 1≤ k ≤ 2s−1. In particular, there are weighing matrices W (k,k),
for all k ≤ n, when n = 2s.

This very simple application of the existence of pairs of orthogonal designs
like (5.1) and (5.2) and other replications that come from them proved that
such pairs would be extremely important in constructing OD themselves.
Consequently, it was suggested [77] that these examples be studied in greater
detail.

This suggestion was taken up by Warren Wolfe in his Queen’s University
dissertation [247] and was a major breakthrough not only in the study of
such pairs of orthogonal designs but in the study of OD themselves. A major
portion of this chapter is devoted to an exposition of this aspect of Wolfe’s
contributions.

Subsequent to Wolfe’s work on this problem, he and D. Shapiro had an
opportunity to meet and discuss Wolfe’s work. Shapiro was greatly interested
in Wolfe’s handling of the problem and saw that what had begun as two
interesting examples could in fact be the basis for the study of an interesting
aspect of the theory of quadratic forms. Using a different approach, Shapiro
has brilliantly analysed this problem about quadratic forms in (Shapiro [194]).
His work has had deep implications back into the combinatorial problems
that originally motivated the entire discussion. This happy state of affairs will
be briefly discussed in this chapter.



5.2 Definitions and Elementary Observations 157

5.2 Definitions and Elementary Observations

Definition 5.1. Let X be an OD(n;u1, . . . ,us) on variables {x1, . . . ,xs} and
Y an OD(n;v1, . . . ,vt) on the variables {y1, . . . ,yt}. It is said that X and Y
are amicable orthogonal designs if XY � = Y X�.

It was observed that writing Z = XY �, forces ZZ� = (u1x2
1 + · · ·+

usx2
s)(v1y2

1 ,+ · · ·+ vty
2
t )In. So amicable OD are related to symmetric Z

which have inner product factorization into quadratic forms.

Notation 5.1. With X, Y as above it will be said that there are AOD(n :
(u1, . . . ,us); (v1, . . . ,vt)).

With this notation, examples (5.1) and (5.2) are amicable AOD(2 : (1,1);
(1,1)) and AOD(4 : (1,1,2); (1,1,2)), respectively.

Example 5.2. Before christening these pairs, and after finding a few it was re-
alized that such things had already been anticipated in the study of Hadamard
matrices. Namely, in [228] the study of pairs of Hadamard matrices W = I +S
and M , where W , M have order = n, S = −S�, M = M� and WM� =
MW �, was extensively pursued and many examples discovered. These amica-
ble Hadamard matrices are an important special case of amicable orthogonal
designs. They have type AOD(n : (1,n−1);(n)) in order n.

Let X and Y be amicable orthogonal designs AOD(n : (u1, . . . ,us);
(v1, . . . ,vt)). Write

X =
s∑

i=1
Aixi, Y =

t∑
j=1

Bjyj . (5.3)

The fact that x’s and y’s are assumed to commute and that Z is an infinite
integral domain easily yields:

(0) The Ai and Bj are all 0,1,−1 matrices, and Ai ∗A� = 0, 1 ≤ i �= � ≤ s,
bj ∗Bk = 0, 1 ≤ j �= k ≤ t.

(i) AiA
�
i = uiIn, 1 ≤ i ≤ s; BjB�

j = vjIn, 1 ≤ j ≤ t.
(ii) AiA

�
� +A�A�

i = 0, 1 ≤ i �= � ≤ s; BjB�
k +BkB�

j = 0, 1 ≤ j �= k ≤ t.
(iii) AiB

�
j = BjA�

i , 1 ≤ i ≤ s, l ≤ j ≤ t.

Conditions (0), (i) and (ii) are not new. They are just the assertions that X
and Y exist (ie, OD of that order and type exist). Condition (iii) is the new
one. It is seen, again, the dichotomy between algebraic and combinatorial
properties: (i), (ii) and (iii) can, and will, be treated separately from (0).
This was, in fact, Wolfe’s approach to the problem, ie, to just consider (at
first) conditions (i), (ii) and (iii). (Oddly enough, it was first in the study of
amicable OD that the algebraic and combinatorial distinctions became clear.
The treatment given in this text, especially in Chapter 3, is a classic story of
hindsight! It is to Wolfe’s credit that he forced this distinction.)
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It is clear that conditions (0) to (iii) are necessary and sufficient for the
existence of AOD(n : (u1, . . . ,us); (v1, . . . ,vt)). For reference here it is stated
precisely.

Proposition 5.2. A necessary and sufficient condition that there exist am-
icable OD, X and Y AOD(n : (u1, . . . ,us); (v1, . . . ,vt)) is that there exists a
family of matrices {A1, . . . ,As; B1, . . . ,Bt} of order n satisfying (0) to (iii)
above.

Following the route in Chapter 3, the following definition is made.

Definition 5.2. An amicable family of type [[u1, . . . ,us]; [v1, . . . ,vt]] in order n
is a collection of rational matrices of order n,{A1, . . . ,Ax; B1, . . . ,Bt} satisfying
(i), (ii), (iii) above, where the ui and vj are positive rational numbers.

Proposition 5.3. Let {A1, . . . ,As;B1, . . . ,Bt} be an amicable family of type
[u1, . . . ,us]; [v1, . . . ,vt] in order n, and let P and Q be rational matri-
ces of order n satisfying PP � = aIn, Q� = bIn. Then {PA1Q,. . . ,PAsQ;
PB1Q,. . . ,PBtQ} is an amicable family of order n and type [[u1ab, . . . ,usab];
[v1ab, . . . ,vtab]].

Proof. Direct verification. �	
The existence problem for amicable families and amicable OD in some

special cases will now be investigated. Observe that if {A1, . . . ,As; B1, . . . ,Bt}
is an amicable family in order n, then {A1, . . . ,As} and {B1, . . . ,Bt} are each
rational families in order n, and so s, t ≤ ρ(n).

5.2.1 n Odd

In this case ρ(n) = 1, and so an amicable family of type [[u]; [v]] is {A;B},
A,B rational matrices, where AA� = uIn,BB� = vIn and AB� = BA�. It
is known from proposition 2.2 that u and v are each squares in Q. With
that observation it can proved, though somewhat disappointing, the following
proposition.

Proposition 5.4. Let n be odd. A necessary and sufficient condition that
there be an amicable family of type [[u]; [v]] in order n is that there exist
rational families of type [u] and [v] in order n.

Proof. The necessity is obvious since an amicable family is made up of two
rational families (plus more). To show the sufficiency, let u = a2,v = b2,
a,b ∈Q+; then {aIn;bIn} is an amicable family of the desired order and type.

Thus, there are no new algebraic restrictions which prohibit amicable OD
from existing in order n, n odd. �	
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Problem 5.1. Let n be odd, and suppose there is a W (n,k). Is there a
symmetric W (n,k)?

A small contribution can be made to the question of existence for symmetric
W (n,k) by considering the following lemma.

Lemma 5.1. Let {M1, . . . ,Ms;N1, . . . ,Nr} be a family of weighing matrices
of order n and lengths (s, r) which satisfy

(a) M�
i = −Mi, i = 1, . . . ,s; Nj = N�

j , j = 1, . . . , r

(b) MiM
�
i = iIn, NjN�

j = jIn, 1 ≤ i ≤ s, 1 ≤ j ≤ r

(c) MiN
�
j = MjN�

i , 1 ≤ i ≤ s,1 ≤ j ≤ r.

Then

(i) if there is a family of order n and length (s,1), then there is a family of
order 2n and length (2s+1,1);

(ii) there is a family of order 2s and length (2s−1,1);
(iii) there exist skew-symmetric W (2s, i) for all i = 0, 1, . . . ,2s−1 where s is a

positive integer;
(iv) if there is a family of order n and length (s,1), there is a family of order

2n and length (0,2s+2);
(v) there is a family of order 2s and length (0,2s);

(vi) there exist symmetric W (2s, i) for all i = 0,1, . . . ,2s.

Proof. (i) Let {M1, . . . ,Ms; N1} be the family of length (s,1). Then with

A =
[

0 1
−1 0

]
; H =

[
1 1
1 −1

]
; M =

[
0 1
1 0

]
. (5.4)

{I2 ⊗M1, . . . , I2 ⊗Ms, A⊗N1, A⊗N1 + I2 ⊗M1, . . . , A⊗N1 + I2 ⊗
Ms; H ⊗Ms} is the family of length (2n+1,1).

(ii) Clearly {A;H} is a family in order 2 and with length (1;1), and so by
repeated application of (i) gives the result.

(iii) The skew-symmetric matrices of the family of (ii) give the result.
(iv) Consider

{A⊗M1, . . . ,A⊗Ms,M ⊗N1, I ⊗N1 +A⊗M1, . . . , I ⊗N1 +A⊗Ms,H ⊗
N1}.

(v) The symmetric matrices of the family of (iv) give the result. �	
The lemma shows that only symmetric weighing matrices are needed of

odd order to ensure the existence of symmetric weighing matrices for most
large orders and most weights. Clearly, by taking the back circulant matrix
one obtains from Theorem 4.6 (see Lemma 4.7 also), we obtain a symmetric
W (q2 + q + 1, q2) whenever q is a prime power. Also it was noted that the
W (p+1,p) constructed for prime powers p in Lemma 4.12 is symmetric for
p ≡ 1 (mod 4). Further observe that using circulant matrices M, N of order
2n+1 with first rows 0n110n−1 and 0n1−10n−1 in
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M N

−N� M�

]
(5.5)

where 0k is the zero vector of length k, gives a symmetric W (4n+2, 4) for
every integer n ≤ 1.

The following is a summary of this.

Proposition 5.5. (i) There is a symmetric W (n, 4) for all n ≥ 10.
(ii) There is a symmetric W (n, 9) for all n ≥ 68.

(iii) Let k be a square integer; then there exists an integer N(k) such that here
is a symmetric W (n, k) for every n ≥ N(k).

Since fewer symmetric weighing matrices than weighing matrices are known
and since they always give amicable OD, this area merits further study, as
does the entire question of amicable OD in odd orders.

5.2.2 n = 2b, b Odd

In this case ρ(n) = 2, and so the largest possible size for an amicable family
is {A1,A2; B1,B2}.

Proposition 5.6. Let n = 2b, b odd. A necessary and sufficient condition
that here be an amicable family in order n of type [[u1,v1]; [u2,v2]] is that
there be rational families of type [u1,v1] and [u2,v2] in order n.

Proof. The necessity is obvious. To prove sufficiency it should be noted that
a glance at the proof of Theorem 2.3 should convince the reader that it
is enough to consider the case where u1 = v1 = u and u2 = v2 = v, with u
and v each a sum of two squares in Q, and n = 2. In this case, suppose
u = α2 +β2, v = γ2 + δ2; then

A1 =
[

α β
−β α

]
; A2 =

[−β α
−α −β

]
; B1 =

[
γ δ
δ −γ

]
; B2 =

[
δ −γ

−γ −δ

]
. (5.6)

give the required amicable family. �	
Thus, the only algebraic restrictions on the existence of amicable families

in orders n = 2b, b odd, come from the restrictions on rational families that
are already known.

That there are new combinatorial restrictions on amicable orthogonal
designs in orders n = 2b, b odd, is evident from the following example.

Example 5.3. (W. Wolfe) There is no AOD(6 : (1);(2,2)). (Wolfe’s result is
more general; [247].)

It is known that there are OD(6;1) and OD(6;2,2) (Geramita, Geramita,
Wallis: [77]), so this example will show the inadequacy of Proposition 5.6.
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There is no loss in assuming the first orthogonal design in the (presumed)
pair of type ((1); (2,2)) is zI6 and the second is X = Ax+By. The A and B
are symmetric weighing matrices of weight 2 and order 6.

Lemma 5.2. If a symmetric W (n,2) exists with zero diagonal, then n ≡ 0
(mod 4).

Proof. It is easy to check that a symmetric W (n,2) with zero diagonal is (up
to simultaneous row and column permutation and simultaneous multiplication
of row i and column i by “-1”) the direct sum of blocks⎡⎢⎢⎣

0 1 1 0
1 0 0 1
1 0 0 −1
0 1 −1 0

⎤⎥⎥⎦ .

Now, it is possible to show that there is no symmetric OD(6;2,2).
By the lemma, each variable must appear on the diagonal. Thus, we may

assume that X looks like ⎡⎢⎢⎢⎢⎢⎢⎣
x x y y 0 0
x −x a b
y
y
0
0

⎤⎥⎥⎥⎥⎥⎥⎦ .

Case 1. a �= 0 Then it may be assumed a = y, b = −y, and so

X =

⎡⎢⎢⎢⎢⎢⎢⎣
x x y y 0 0
x −x y −y 0 0
y y u v
y −y w s
0 0
0 0

⎤⎥⎥⎥⎥⎥⎥⎦ .

Checking columns 1 and 3, it is seen that u,w are �= 0, and hence the rest
of column 3 consists of zeros, and that gives too many zeros in the last two
rows.

Case 2. a = 0. Then b = 0, also, and therefore

X =

⎡⎢⎢⎢⎢⎢⎢⎣
x x y y 0 0
x −x 0 0 y y
y 0
y 0
0 y
0 y

⎤⎥⎥⎥⎥⎥⎥⎦ .
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Now there must be exactly two y’s in the third column, but putting the
second y in either the third or fourth rows gives the wrong inner product with
columns one and three, while putting the second y in either the fifth or sixth
rows gives trouble with the inner product of columns two and three.

Thus, such an X cannot exist. �	
Remark 5.1. Wolfe’s result is that there is no symmetric OD(6;2,2) in any
order n ≡ 2 (mod 4). This example has not been able to be placed in any
general framework but is can be seen later that the symmetry conditions come
into play in many places.

5.3 More on the Number of Variables in an Amicable
Orthogonal Design

Given a positive integer n, it may be asked it may be asked the maximum
number of variables that may appear in an amicable OD(n). Clearly, the
number of variables in both designs cannot exceed 2ρ(n). Indeed, when n is
odd or if n = 2b, b odd, then the examples of Section 5.2 show that 2ρ(n) is
possible. A bit of reflection shows that there are two separate questions that
can, and should, be considered.

Problem 5.2. Given an orthogonal design X involving s variables, let

A(X) = {orthogonal designs Y |X and Y are amicable} .

(A(X) = ∅ is entirely possible!)

Define m(X) = max
Y ∈A(X)

{number of variables in Y }.

What is m(X)?

Problem 5.3. Fix an integer s ≤ ρ(n), and let

n0s = {orthogonal designs of order n involving s variables}

Define m(s) = max
X∈n0s

{s+m(X)} ;

then what is m(s)?

Problem 5.2 seems extremely difficult, in general. In fact, deciding whether
or not A(X) = ∅ seems, in general, intractable. Directly a little will be said
about this problem.

Problem 5.3, on the other hand, can be given a complete solution. The
presentation of the solution to this problem follows, for the most part, that
of W. Wolfe [247]. A different, and more general, solution is given by D.
Shapiro [194].
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Imitating some of the notions of Chapter 1, suppose X and Y form an
AOD(n : (uo,u1, . . . ,us); (v1, . . . ,vt)). [Note the numbering of the variables in
the first design.] The coefficient matrices of the two orthogonal designs will
be denoted

{Ai, 0 ≤ i ≤ s; Bj , 1 ≤ j ≤ t}
Now, consider the real matrices

αi = 1√
u0ui

AiA
�
0 , 0 ≤ i ≤ s, βj = 1√

u0vj
BjA�

0 , 1 ≤ j ≤ t

form a collection of real matrices of order n satisfying

(0) αi = −α�
i , 1 ≤ i ≤ s; βj = β�

j , 1 ≤ j ≤ t;
(i) α2

i = −In, 1 ≤ i ≤ s; β2
j = In, 1 ≤ j ≤ t;

(ii) αiαj +αjαi = 0, 1 ≤ i �= j ≤ s; βkβ� +β� +β�βk = 0, 1 ≤ k �= � ≤ t;
(iii) αiβj +βjαi = 0, for all 1 ≤ i ≤ s, 1 ≤ j ≤ t.

By analogy with Definition 1.1, the following definition can be made.

Definition 5.3. A family of real matrices {αj , 1 ≤ i ≤ s; βj , 1 ≤ j ≤ t} of
order n satisfying (0), (i), (ii), (iii) above will be called a Hurwitz-Radon
family of type (s, t) in order n (or simply an H-R(s, t) family in order n).

A H-R(s,0) family was discussed in Chapter 1. It can be shown, for a given
s and t, that there cannot be an H-R(s, t) family in order n, then there cannot
be amicable OD(n) formed by X and Y , where X involves s + 1 variables
and Y involves t variables.

If condition (0) is neglected, it can be seen that (i), (ii), (iii) amount
to saying that there is a representation of the Clifford algebra of the real
quadratic form s〈−1〉 ⊥ t〈1〉 on the vector space Rn; i.e., Rn is a module
for this Clifford algebra. Now, the irreducible modules for a Clifford algebra
always have dimension a power of 2, and if n = 2ab, b odd, the maximum
dimension of an irreducible module is ≤ 2a; i.e., we get a representation of
the Clifford algebra of s〈−1〉 ⊥ t〈1〉 on R2a .

Let Cs,t denote the Clifford algebra of s〈−1〉 ⊥ t〈1〉. If n = 2a, can Cs,t

be non-trivially represented on R2a . If it cannot, then there is no H-R(s, t)
family in any order 2ab, b odd. This will, at least, provide upper bounds for
Problem 5.3 (and, consequently Problem 5.2). Then the sharpness of these
bounds will have to be dealt with.

Fortunately, the representation theory of the algebras Cs,t is very well
known. The earliest complete discussion to be found is in the 1950 paper
of Kawada and Iwahori [119]. A more modern treatment can be found in
Lam [142, pp.126–139].

If d is given the degree of an irreducible real matrix representation of Cs,t

of minimal degree > 1, then the following are restatements of Kawada-Iwahori
theorems [119].
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Theorem 5.1. If s + t = 2k, then Cs,t is a central simple R-algebra, and d
(as defined above) is given by:

(a) if t−k ≡ 0, 1 (mod 4), then d = 2k;
(b) if t−k ≡ 2, 3 (mod 4), then d = 2k+1.

Theorem 5.2. If s + t = 2k + 1, then Cs,t is a semi-simple algebra over R,
and d is given by:

(a) if t−k ≡ 0, 2 or 3 (mod 4), then d = 2k+1;
(b) if t−k ≡ 1 (mod 4), then d = 2k.

Definition 5.4. Let n = 2a, t be integers, t > 0. Define
ρt(n) = max{s|Cs−1,t has an irreducible real matrix representation of degree
≤ n}.

The relevance of ρt to our discussion is obvious, for if m = 2ab, b odd, we
could never find an amicable orthogonal design formed by X and Y in order
m, where X involves s variables and Y involves t variables if s > ρt(2a).

The exact values of ρt(n) are given by Kawada and Iwahori [119].

Theorem 5.3. Let n = s4a+b, 0 ≤ b ≤ 4. Then ρt(n)−1 = 8a− t + δ, where
the values of δ are given in the table below:

Table 5.1 Values of δ for ρt(n) − 1 = 8a − t + δ

��������t (mod 4)
b 0 1 2 3

0 0 1 3 7
1 1 2 3 5
2 -1 3 4 5
3 -1 1 5 6

5.4 The Number of Variables

Some easy (but tedious) consequences of this theorem are:

Corollary 5.3. (i) ρ0(n) = ρ(n),
(ii) ρt(2n) = ρt−1(n)+1,

(iii) ρt(n) = ρt+8(24n).

The next example will illustrate how to use these theorems in some low
orders.
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Example 5.4. Let n = 4x, x odd; then ρ(n) = 4, and so an orthogonal design
in order n cannot involve more than 4 variables. Let X and Y be amicable
orthogonal designs in order n, and suppose Y involves t variables (t ≤ 4).
Then, the discussion before Theorem 5.3 assets that X cannot involve more
than ρt(4) variables.

We enumerate the possibilities in Table 5.2.

Table 5.2 n = 4x, x odd

t = number Number of variables
of variables in Y in X is ≤

4 ρ4(4) = 0
3 ρ3(4) = 3
2 ρ2(4) = 3
1 ρ1(4) = 3
0 ρ0(4) = 4

It can be seen already that there is a marked change from n odd and
n = 2x, x odd, which we investigated in the previous section.. There is no
orthogonal design which is “amicable” with a 4-variable design in such an
order. Furthermore, the maximum total number of variables that may ever
be hoped to involve between X and Y is 6 < 2ρ(4) = 8.

For future reference, there is included a similar table for n = 8x and
n = 16x, x odd.

Table 5.3 n = 8x, x odd

t = number Number of variables
of variables in Y in X is ≤

8 ρ8(8) = 0
7 ρ7(8) = 0
6 ρ6(8) = 0
5 ρ5(8) = 1
4 ρ4(8) = 4
3 ρ3(8) = 4
2 ρ2(8) = 4
1 ρ1(8) = 5
0 ρ0(8) = 8

It can be seen, at least for these three special cases, that these bounds
are achieved by an H-R(s, t) family (condition 0) is now considered; and
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Table 5.4 n = 16x, x odd

t = number Number of variables
of variables in Y in X is ≤

9 ρ9(16) = 1
8 ρ8(16) = 1
7 ρ7(16) = 1
6 ρ6(16) = 2
5 ρ5(16) = 5
4 ρ4(16) = 5
3 ρ3(16) = 5
2 ρ2(16) = 6
1 ρ1(16) = 9
0 ρ0(16) = 9

moreover, have the αi (respectively the βj) be disjoint (0,1,−1) matrices. As
in the discussion which preceded Theorem 1.3 of Chapter 1, that will follow
immediately if it is known that all matrices have integer entries.

Now, we saw in Proposition 1.2 that there is an H-R(3,0) family of integer
matrices in order 4 (and by tensoring with Ix, in order 4x for any odd x),
and so, in Table 5.2, we have taken care of the possibility that t = 4 = number
of variables in Y, 0 = number of variables in X. To show that all other
possibilities in Table 5.2 are actually achieved, it suffices just to construct an
H-R(2,3) integer family in order 4. The rest of the table comes from omitting
some members of this family.

Let A =
[

0 1
−1 0

]
, P =

[
0 1
1 0

]
, Q =

[
1 0
0 −1

]
.

Proposition 5.7 (Wolfe’s Slide Lemma). If {Mi, 1≤ i≤ s; Nj , 1≤ j ≤
t} is an H-R(s, t) family in order n (of integer matrices), then

{P ⊗Mi, 1 ≤ i ≤ s, A⊗ In ; P ⊗Nj , 1 ≤ j ≤ t , Q⊗ In}

is an H-R(s+1, t+1) family in order n (of integer matrices).

Proof. The verifications are routine.
It is an easy matter to check that {A;Q,P} is an integer H-R(1,2) family

in order 2, and so, by the Slide Lemma, an H-R(2,3) family of integer matrices
in order 4 can be obtained.

In considering orders 8x, x odd, first note that Table 5.5 gives an H-R(7,0)
family of integer matrices in order 8 (and hence in order 8x, x odd). Now
there is a symmetric (1,1,1,1,1) design in order 8 (proof of Theorem 4.2) and
hence an H-R(0,5) family of integer matrices in order 8. Finally to obtain an
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Table 5.5 H-R(7,0), order 8x, x odd

0 a b c d e f g
−a 0 c −b e −d −g f
−b −c 0 a f g −d −e
−c b −a 0 g −f e −d

−d −e −f −g 0 a b c
−e d −g f −a 0 −c b
−f g d −e −b c 0 −a
−g −f e d −c −b a 0

H-R(3,4) integer family in order 8, use the Slide Lemma with the H-R(2,3)
and H-R(3,0) families in order 4. These give all possibilities in Table 5.2.

To complete the special cases observe that there is an H-R(0,9) integer
family in order 16 (given by the symmetric (1,1,1,1,1,1,1,1,1) design in order
16 which appears in the proof of Theorem 4.2). Use the Slide Lemma with the
integer matrices of the H-R(0,5), H-R(3,4), H-R(4,1) and H-R(7,0) families
in order 8 to obtain the integer H-R(1,6), H-R(4,5), H-R(5,2) and H-R(8,1)
families in order 16. These give all the possibilities for Table 5.3.

Wolfe has given the general result in [247], and so the proofs shall not be
pursued here. We are content to just state Wolfe’s theorem and the three
lemmata that were used to obtain it (in addition to the Slide Lemma and the
explicit computations in orders 4, 8 and 16). The lemmata are of independent
interest and provide some construction methods. They shall be generalised
later. �	

Theorem 5.4. For any integer n and any t ≤ ρ(n), there is an H-R(ρt(n)−
1, t) family of integer matrices of order n.

Corollary 5.4. For any integer n there are amicable orthogonal designs X
and Y involving s and t variables, respectively, X of type (1, . . . ,1)︸ ︷︷ ︸

s−tuple

, Y of type

(1, . . . ,1)︸ ︷︷ ︸
t−tuple

for any s ≤ ρt(n).

Lemma 5.3. Conversely it can be noted that the existence of
AOD(n : (u0,u1, . . . ,us); (v1,v2, . . . ,vt)), X,Y on variables xi and yj , respec-
tively, implies the existence of an H-R(s, t) family.

A summary of all the relevant facts can be seen in the proof of theorem
5.4.

Proposition 5.8 (Wolfe). Let A, P, Q be as above.
(1) If {Mi, 1 ≤ i ≤ s} is an H-R(s, 0) (integer) family in order n, then {A⊗

Mi, 1 ≤ i ≤ s, P ⊗ In, Q⊗ In} is an H-R(0, s + 2) (integer) family in
order 2n.
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(2) If {Nj , 1 ≤ j ≤ t} is an H-R(0, t) (integer) family in order n, then

{A⊗Q⊗I2⊗Nj , 1≤ j ≤ t, I2⊗A⊗I2n, A⊗P ⊗Q⊗In, Q⊗Q⊗A⊗In,

P ⊗Q⊗A⊗ In, I2⊗P ⊗A⊗ In, A⊗P ⊗P ⊗ In}

is an H-R(t+6, 0) (integer) family in order 8n.
(3) (Jump) If {Mi, 1 ≤ i ≤ s; Nj , 1 ≤ j ≤ t} is an H-R(s, t) (integer) family

in order n, then

{A⊗P ⊗A⊗Q⊗Mi, 1 ≤ i ≤ s; A⊗P ⊗A⊗Q⊗Nj , 1 ≤ j ≤ t,

Q⊗Q⊗Q⊗Q⊗ In, P ⊗ I4⊗Q⊗ In, Q⊗P ⊗ I2⊗Q⊗ In,

Q⊗Q⊗P ⊗Q⊗ In, I8⊗P ⊗ In, P ⊗Q⊗A⊗A⊗ In,

I2⊗P ⊗A⊗A⊗ In}

is an H-R(s, t+8) (integer) family in order 24 �n.

Wolfe proves one more fact which will be of interest.

Theorem 5.5. If n = 2an0, n0 odd. If t ≤ ρ(n), then t + ρt(n) ≤ 2a + 2.
Furthermore, there is a t0 ≤ ρ(n) with t0 +ρt0(n) = 2a+2.

Corollary 5.5. If X and Y are amicable orthogonal designs in order n = 2an0,
n0 odd, then the total number of variables in X and Y is ≤ 2a+2, and that
bound is achieved.

5.5 The Algebraic Theory of Amicable Orthogonal
Designs

The pursuit of the analogy already seen between the study of orthogonal
designs and the study of amicable orthogonal designs is continuing. The
algebraic theory, naturally, well rest on the study of amicable families.

Proposition 5.9 (Wolfe). Let {A1, . . . ,As; B1, . . . ,Bt} be an amicable fam-
ily of type

[
[u1, . . . ,us]; [v1, . . . ,vt]

]
in order n.

Then {A1A�
2 Bi, 1 ≤ i ≤ t, A3, . . . ,As} is a rational family of type [u1u2v1,

u1u2v2, . . . ,u1u2v5, u3, . . . ,us] in order n.

Proof. A routine check. �	
Corollary 5.6. Let n ≡ 4 (mod 8). In order that there be amicable families
of type

[
[a1,a2,a3]; [b1, b2, b3]

]
in order n, one must have

(i) rational families of type [a1,a2,a3] and [b1, b2, b3] in order n, and
(ii) a1a2a3b1b2b3 a square in Z.
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Proof. Use proposition 5.9 and the results of Chapter 3. �	
In the same vein:

Corollary 5.7. Let n ≡ 4 (mod 8). Necessary conditions that there be ami-
cable families in order n of type

(1)
[
[a1,a2,a3]; [b1, b2]

]
are that

(i) there be rational families of type [a1,a2,a3] and [b1, b2] in order n,
and

(ii) at every prime p,(−1,a1,a2,a3b1b2)p = (b1, b2)p(a1a2a3, b1b2)p;

(2)
[
[a1,a2,a3]; [b1]

]
are that

(i) there be rational families of type [a1,a2,a3] and [b1] in order n, and
(ii) a1a2a3b1 be a sum of fewer than four squares in Z.

Shapiro has given a different formulation of these two corollaries and
generalised this to other n. His results shall be given later in this section.

Example 5.5. (i) There are no amicable orthogonal designs
AOD(4n0 : (1,1,1); (1,1,2)) in any order 4n0,n0 odd, although designs of
both types exist in every order 4n.

(ii) There are no amicable orthogonal designs AOD(4n0 : (1,1,1);(1,3)) in
any order 4n0 by 5.7. This also eliminates amicable orthogonal designs
AOD(12 : (1,11);(4,4,4)) and, in fact, in any order 4n0, n0 odd, n0 ≥ 3.

(iii) There is no amicable family of type [[1,1,1]; [7]] in any order 4n0,
n0 odd, n0 > 1. So, in particular, there are no amicable orthogonal designs
AOD(12 : (4,4,4);(7)) in order 12.

Daniel Shapiro has solved the entire algebraic problem of amicable orthog-
onal designs. This is in [194]. He has continued his study of the space of
similarities and extended his earlier work to handle amicable families. These
techniques are too complicated to attempt to analyze here. Suffice it to say
that his work requires a deep understanding of the modern theory of quadratic
forms and applies to a much more general setting than has been considered
here. A source of great pleasure has been the realisation that the combinatorial
problem that was considered inspired, an interesting new investigation in
quadratic forms. Not only has this problem borrowed heavily from the theory
of quadratic forms for answers, but it has suggested new problems in that
theory.

Quoted here are a few of Shapiro’s theorems (in a form suitable to this
discussion).

The first theorem, though not surprising, is surprisingly complicated to
prove and is the analogue of Theorem 3.11.
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Theorem 5.6. Let n = 2mn0, n0 odd. There is an amicable family of type[
[a1, . . . ,as]; [b1, . . . , bt]

]
in order n ⇔ there is an amicable family of the same

type in order 2m.

The next theorem also has its counterpart in 3.17, part A.

Theorem 5.7. Let n = 2m (m ≥ 3), and choose t ≤ ρ(n) and s ≤ ρt(n). If
s+ t ≤ 2m−1, then for any positive rationals a1, . . . ,as, b1, . . . , bt there is an
amicable family of type

[
[a1, . . . ,as]; [b1, . . . , bt]

]
.

Thus, for s, t as above (m≥ 3), the only time there are algebraic restrictions
are when 2m ≤ s+ t ≤ 2m + 2. In the next proposition a portion of Shapiro’s
theorem dealing with the interval [2m,2m+2] for the special cases of n = 22

and n = 23 is abstracted.

Theorem 5.8. Let n ≡ 4 (mod 8). Necessary and sufficient conditions that
there be an amicable family in order n of type

(1)
[
[a1,a2,a3]; [b1, b2, b3]

]
are that

(i) 〈a1,a2,a3〉 and 〈b1, b2, b3〉 be isometric to subforms of 4〈1〉, and
(ii) 〈a1,a2,a3〉 � 〈b1, b2, b3〉;

(2)
[
[a1,a2,a3]; [b1, b2]

]
is that 〈b1, b2〉 < 〈a1,a2,a3〉 < 4〈1〉;

(3)
[
[a1,a2,a3

]
; [b1]] is that 〈b1〉 < 〈a1,a2,a3〉 < 4〈1〉.

If n ≡ 8 (mod 16), necessary and sufficient conditions that there be an
amicable family in order n of type

(4)
[
[a1,a2,a3,a4]; [b1, b2, b3, b4]

]
is that 〈a1,a2,a3,a4〉 � 〈b1, b2, b3, b4〉;

(5)
[
[a1,a2,a3,a4]; [b1, b2, b3]

]
is that 〈b1, b2, b3〉 < 〈a1,a2,a3,a4〉;

(6)
[
[a1,a2,a3,a4,a5]; [b1]

]
is that b1

∏5
i=1 ai is a square in Q;

(7)
[
[a1,a2,a3,a4]; [b1, b2]

]
is that 〈b1, b2〉 < 〈a1,a2,a3,a4〉.

Example 5.6. We have already been seen that are eliminated by this theorem
in orders ≡ 4 (mod 8). To see some possibilities eliminated in orders n ≡ 8
(mod 16), observe:

(1) There is no amicable family of
[
[1,1,1,2]; [1,1,1,1]

]
in order 8n0, n0 odd.

Thus, since 〈1,1〉 � 〈2,2〉, we have no AOD(8 : (2,2,2,2); (1,2,2,2)).
(2) There is no amicable family of

[
[1,1,3]; [1,1,1,1]

]
in any order n ≡ 8

(mod 16) since 〈1,1,3〉 �< 〈1,1,1,1〉. This is clear, for if 〈1,1,3〉< 〈1,1,1,1〉,
we would have, by Witt Cancellation, that 〈3〉 < 〈1,1〉, but 3 is not the
sum of two squares in Q.
In particular, there are no AOD(8 : (2,2,2,2); (2,2,3)).

(3) There is no amicable family of type
[
[1,1,1,1,2]; [1]

]
in any order n ≡ 8

(mod 16), so, in particular, there are no AOD(8 : (1,1,2,2,2); (1)).
(4) There is no amicable family of type

[
[1,1,1,1]; [1,k]

]
when k is not the

sum of three squares in Q for any order n ≡ 8 (mod 16). So, in particular,
there are no AOD(8 : (2,2,2,2); (1,7)).
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5.6 The Combinatorial Theory of Amicable Orthogonal
Designs

It has already be seen that there is more at stake in deciding if there are
amicable orthogonal designs of a certain order and type than just the existence
of amicable families of the same order and type: first, because there may not
be orthogonal designs of a certain type, much less amicable ones, and second,
because even when orthogonal designs of the appropriate types exist, none
may be amicable.

Unfortunately, in this area there are only a few theorems and a few examples.
There has not yet been discovered anything analogous to Corollary 2.3 for
amicable orthogonal designs.

Warren Wolfe has given two useful combinatorial theorems which exclude
possibilities not eliminated by the algebraic theory. The second of these has
been extended by Peter J Robinson [166].

Theorem 5.9 (Wolfe). Suppose X and Y are amicable orthogonal designs
in order n ≡ 0 (mod 4), where X is of type (1,1,1,a1, . . . ,as) and Y is of
type (b1, . . . , bt). Then, there exists an orthogonal design in order n of type
(1, b1, . . . , bt).

Proof. Let X = A1x1 + A2x2 + A3x3 +
∑s

j=1 Bjxj+3. By applying row and
column operations to X and Y simultaneously, it can be assumed

A1 =⊗n
4

⎡⎢⎢⎣
0 1

−1 0
0 1

−1 0

⎤⎥⎥⎦ ,A2 =⊗n
4

⎡⎢⎢⎣
1 0
0 −1

−1 0
0 1

⎤⎥⎥⎦ ,A3 =⊗n
4

⎡⎢⎢⎣
0 1
1 0

0 −1
−1 0

⎤⎥⎥⎦ .

The patient reader will then discover that the relations AiY A�
i , i = 1,2,3,

force Y to be skew-symmetric. Then zIn +Y is the required orthogonal design.
�	

Remark 5.2. This theorem is, in some sense, only “1
2” combinatorial. An

examination of the proof shows that all we really need to get Y skew-symmetric
is that A1,A2,A3 have integer entries (and hence {0,1,−1} entries). This
indicates that there may be some merit in defining and studying integer
families and integer amicable families (by analogy with rational families and
amicable families).

Example 5.7. We may use Theorem 5.9 to observe that there are no AOD(20 :
(1,1,1);(1,1,16)) since there is no OD(20;1,1,1,16). This type is not elimi-
nated by any other theorems. This also eliminates anything of type AOD(n :
(1,1,1, . . .); (b1, . . . , bt)) where

∑t
i=1 bi = n, e.g., AOD(8 : (1,1,1,5);(8)).

Before proceeding onto the next theorem, a lemma is given:
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Lemma 5.4. Suppose X and Y are amicable orthogonal designs of order n
where X is of type (1,u1, . . . ,us) on the variables x0, . . . ,xs and Y is of order
n and type (v1, . . . ,vt) on the variables y1, . . . ,yt; then there exist monomial
matrices P and Q (ie, with elements 0,±1 and only one non-zero element per
row and column) so that

PXQ = x0I +
∑

xiMi, PY Q =
∑

yiNi ,

where

(0) Mi ∗Mj = 0 for i �= j; N� ∗Nk = 0 for � �= k;
(i) M�

i = −Mi, ∀i; N�
j = Nj , ∀j;

(ii) MiM
�
i = uiIn, ∀i; NjN�

j = vjIn, ∀j;
(iii) MiN

�
j = NjM�

i ;
(iv) MiM

�
j +MjM�

i = 0, i �= j; N�N�
k +NkN�

� = 0, k �= �.

Proof. Choose P and Q so that the variable x0 occurs on the diagonal of
PXQ, and the rest follows immediately. �	
Lemma 5.5 (Robinson). If A and C = xB + yD are amicable orthogonal
designs of order n ≡ 0 (mod 4) and types AOD(n : (1,n− 1);(1,m)), m ∈
{0,1, . . . ,n−1}, then it may be assumed

B = ⊕n
2 −1Y ⊕X,

where
X =

[− 0
0 1

]
and Y =

[
0 1
1 0

]
.

Proof. From Lemma 5.4 it may be assumed B is symmetric and A = Ix1 +
Wx2, where W is a skew weighing matrix of weight n−1. It is obvious that
there can be found a monomial matrix P such that

PBP � = ⊕1≤i≤ n
2

Xi,

where Xi = X or Y or ±I2.
If, however, Xi = ±I2, for any i, then positions (2i,2i−1) and (2i−1,2i)

of AB cannot be equal. Therefore, none of the Xi’s are ±I2. This also means
that, at most, one of the Xi’s is ±X, for if two Xi’s are ±X, there can
be found another monomial matrix which produces ±I2 somewhere on the
diagonal of B.

We now assume Xi = Y, 1 ≤ i ≤ n
2 , and



5.6 The Combinatorial Theory of Amicable Orthogonal Designs 173

A =

⎡⎢⎢⎢⎢⎢⎢⎣
01−0 A1 A2 . . .

A
�
1

A
�
2 Z
...

⎤⎥⎥⎥⎥⎥⎥⎦ ;

where Ai are (2×2) matrices with entries ±1.
Since A and B are amicable, and that W and B are amicable, and therefore

WB is symmetric. Let

A1 =
[
x1 x2
x3 x4

]
xi = ±1, A1Y =

[
x2 x1
x4 x3

]
and A

�
1 Y =

[
x3 x1
x4 x2

]
.

Because AB is symmetric, it must have x2 = −x3 and x1 = −x4 ;ie,

A1 = ±
[

1 1
− −

]
or ± =

[
1 −
1 −

]
.

This reasoning is also true for the other Ai’s.
Now

∑n
2 −1
i=1 AiA

�
i = (n−2)I2, by the orthogonality of A, and

AiA
�
i =

[
2 −2

−2 2

]
or

[
2 2
2 2

]
.

But since there is an odd number of Ai’s,∑
AiA

�
i �= (n−2)I2.

Therefore, at least one of the Xi’s is X.
It can now be assumed X1 = ±X2 = X. Then it can be seen that the

product AB is not symmetric. Therefore,

X1 = X and Xi = Y, 2 ≤ i ≤ n

2 �	

Theorem 5.10 (Wolfe-Robinson). Let X and Y be AOD(n : (1,a,n−a−
1); (u1, . . . ,us)); let n≡ 0 (mod 4), n �= 4, a = 1 or n≡ 0 (mod 8), a = 2,3,4,5.
Then ui �= 1 for any 1 ≤ i ≤ s.

Proof. The case for a = 1. Write X = A1x1 +A2x2 +A3x3, Y =
∑s

j=1 Bjyj .
With no loss of generality it may be assumed

A1 = ⊕n
2

[
1 0
0 −1

]
, A2 = ⊕n

2

[
0 1
1 0

]
.

The conditions A1A�
3 + A3A�

1 = 0 and AiB
�
j = BjA�

i , i = 1,2, 1 ≤ j ≤ s,
will show that A3 and the Bj are all block matrices with every 2×2 block

.
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of the form
[

a b
−b a

]
. Such a block may be thought as the complex number

a+ bi, where a,b ∈ {0,1,−1}. Let A3, Bj be the n
2 × n

2 complex matrices so
obtained.

If “∗” denotes conjugate transpose, then

(i) A3 = A
�
3 , Bj = B

�
j , 1 ≤ j ≤ s;

(ii) A3A
∗
3 = (n−2)I n

2
, BjB

∗
j = ujI n

2
, 1 ≤ j ≤ s;

(iii) A3B
∗
j = BjA

∗
3 , 1 ≤ j ≤ s.

The fact that A3 had weight n−2 implies that the off-diagonal elements
of A3 are neither pure real nor pure imaginary.

Now, let it be assumed that one of the u’s = 1; with no loss it can assume
u1 = 1. Then, the entries in B̄1 are from {0,±1,±i}. It can be claimed that B̄1
is a diagonal matrix, for suppose there is a non-zero entry in the (i, j)-position
of B̄1 for i �= j (there is no loss in assuming it’s in the (1,2) position); then
let z be the (1,2) entry in A3, it can be obtained from (i) and (iii)[

0 z
−z 0

] [
0 x
x 0

]
=

[
0 x
x 0

] [
0 −z
z 0

]
(“-” denotes complex conjugation); ie, zx = xz.

Since x is pure real or pure imaginary, this gives that z is pure real or pure
imaginary. This, however, contradicts the fact that all non-diagonal entries in
A3 were not pure real or pure imaginary.

Thus, the assumption is that B1 is a diagonal matrix. It may be as well
assumed the first diagonal entry in B1 is +1 (if not, multiply A3 and B1 by
one of ±iI n

2
or −I n

2
; the resulting matrices still satisfy (i), (ii), (iii). The next

diagonal entry is ±1 or ±i. Considering just the top 2×2 block of A3 and
B1, we have (by (iii))[

0 z
−z 0

] [
1 0
0 x

]
=

[
1 0
0 x

] [
0 −z
z 0

]
,

and so z = xz. If x were real, it would have z = ±z, which implies z is pure
real or pure imaginary (a contradiction). Thus x = ±i, and so the (1,2) entry
of A3 is z, where z = ±iz. Now by assumption n �= 4, so there is a third
diagonal entry in B1. Call it y. If zij is allowed to denote the (i, j)-th entry
of A3, we find (by (iii)) that

(a) z13y = −z13 and
(b) z23y = ±iz23.

Hence, if y is real, (a) implies that z13 is pure real or pure imaginary, while
if y is pure imaginary, then (b) implies that z23 is pure real or pure imaginary;
in either case, a contradiction. This completes the proof for a = 1. �	
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5.6.1 Cases a = 2,3 or 4

Assume that A and B are AOD(n : (1,a,n−a−1);(1)), respectively.
It may be assumed B is of the form given in Lemma 5.4, and this implies

that the first two rows of A have the following form:

x1a2a3a4a5a6 . . .a n
2 −3a n

2 −2a n
2 −1a n

2
,

a2x1a4a3a6a5 . . .a n
2 −2a n

2 −3a n
2 −1a n

2

for some ai’s. The inner product of these two rows gives

−2
(

a3a4 + · · ·+a n
2 −3a n

2 −2
)
−a2

n
2 −1 +a2

n
2

= 0 . (5.7)

Let x2 be the variable which appears a times per row and column, and x3
the remaining variable.

From equation (5.7) it is found

(i) a n
2 −1 = ±n

2
,

(ii) ai = ±x2 for an even number of i’s, z ≤ i ≤ n
2 −1,

(iii) a2i−1 = a2i = ±x2 for an even number of i’s, 2 ≤ i ≤ n
4 −1.

It is noted that similar properties exist for the other rows of A, except the
last two.

Now consider the matrix A1 obtained from A by putting x1 = x3 = 0 and
x2 = 1 and show that no such matrix can exist if a = 2, 3 or 4.

5.6.1.1 Case 1: a = 2 or 3

A monomial P can be found such that PBP � = B, and if n ≥ 16, PA1P � is
given in Table 5.6.

By deleting rows and columns 3, 4, 5, 6, n−2, n−3, n−4 and n−5, a
matrix similar in structure to A1 but in order n−8 is obtained. Hence the
existence of A1 in order n implies the existence of a similar matrix in order 8.
It is easy to see, however, that no such design exists in order 8.

Therefore, there is no A1 in order n. Thus there are no AOD(n : (1),(1,a,n−
a−1)), a = 2 or 3, in order n ≡ 0 (mod 8).

5.6.1.2 Case 2: a = 4

A monomial Q such that QBQ� = B and, if n ≥ 24 can be found,
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Table 5.6 ai = ±1 if a = 3, or 0 if a = 2⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 a1 0 0 0 1 1
a1 0 − 1

0 a2 1 0 1 0
0 a2 0 0 0 − 0 − 0

0 a2 1 0 − 0
a2 0 0 − 0 1

0 0 A2 0 0
− 0 − 0 0 a2

0 0 1 0 1 0 a2 0 0
− 0 1 0 0 a2
0 1 0 − a2 0

− + 0 a1
− − 0 0 0 a1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

QA1Q� =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 Z1 L

Z1 Z2

0 A2 0

Z
�
1

Z
�
1 Z

�
2 0 0

L
�

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

where

L =

⎡⎢⎢⎣
1 1
− 1
1 1
− 1

⎤⎥⎥⎦ , Z1 =

⎡⎢⎢⎣
1 0 1 0
0 − 0 −
− 0 − 0
0 1 0 1

⎤⎥⎥⎦ , Z2 =

⎡⎢⎢⎣
1 0 − 0
0 − 0 1
1 0 − 0
0 − 0 1

⎤⎥⎥⎦ .

By deleting rows and columns 1, 2, 3, 4, n, n− 1, n− 2 and n− 3 of
QA1Q� and replacing the first two columns (rows) of the Z2(Z�

2 ) in the
corners by L(L�), a matrix is obtained with similar structure to A1 but in
order n−8. Hence, the existence of A1 in order n implies the existence of a
similar matrix in order 16. It is easy to see that no such designs can exist in
order 8 or 16, and so there can be no amicable designs AOD(n : (1); (1,4,n−5))
in order n ≡ 0 (mod 8).
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5.6.1.3 Case 3 a = 5.

Proceeding in a similar fashion to that of 5.6.1.2-Case 2 but with diagonal
2×2 blocks of the form

[
0 a1

a1 0

]
inserted. Note that this makes no difference

to the proof.

Corollary 5.8. There are no amicable orthogonal designs
AOD(n : (1); (1,a,b,c)) of order n≡ 0 (mod 4) for a+b+c = n−1, a,b,c �= 0,
and abc odd.

Proof. By considering Equation (5.7) in the proof of Lemma 5.4 it can be
seen that each variable appears an even number of times off the diagonal 2×2
block, and therefore only one of a, b and c is odd. �	
Remark 5.3. This theorem uses, at every stage, the full force of the fact that
the matrices that are being considered have {0,1,−1} entries and very strongly
the fact that X had no zeros. Wolfe was led to prove the case a = 1 of this
theorem after a frustrating attempt to construct pairs of amicable orthogonal
designs in orders n = 2a of type ((1,1,2, . . . ,2a−1); (1,1,2, . . . ,2a−1)). If they
had existed, they would have involved the greatest number of variables (2a+2)
and would have no zeros. In orders n = 2 and n = 4 they exist, but those are
the only times.

This theorem eliminates many types not previously eliminated; eg, there
are no AOD(8 : (1,1,6);(1,7)).

The only other general combinatorial theorems known which shed some
light on the existence problem for amicable orthogonal designs come out of
work of Robinson [165] which now will be discussed briefly.

Theorem 5.11 (Robinson [165]). There are no amicable orthogonal designs
AOD(n : (1,1,k); (n)) of order n ≡ 0 (mod 4), n ≥ 8, for k odd.

Proof. Assume that such an amicable pair, A and B, exists.
By multiplying by suitable monomial matrices if necessary, it may be

assumed
A = x1I +x2X +x3Y ,

with
X = ⊕n

2

[
0 1
− 0

]
.

By considering XY � = −Y X�, Y � = −Y , XB� = BX�, and B� = B, it
can be seen that Y and B are made up of 2×2 blocks of the form[

a b
b a

]
; a, b ∈ 0,1,−1 .
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Now (AB)� = B�A� = BA� = AB� = AB, and therefore A and B are
amicable only if AB is symmetric and hence only if the top left hand 2×2
block of AB, and therefore Y B, is symmetric.

The top left hand 2×2 block of Y B, however, is made up of the sum of
2×2 blocks of the form[

x y
y x

] [
a b
b a

]
=

[
xa+yb xb−ya

−xb+ya xa+yb

]
,

with a,b = ±1 and x,y⊕0,1,−1.
This sum cannot produce a symmetric block unless the sum of the (ya−xb)’s

is zero, which is clearly impossible with an odd number of non-zero x and y’s.
Therefore, there can be no designs A and B of the required types.
An indication of the gap between the algebraic theory of amicable families

and the actual existence of amicable orthogonal designs has been highlighted
by work of P. J. Robinson and of Robinson in collaboration with Seberry
Wallis.

Robinson [165] has shown that the following are not the types of amicable
orthogonal designs in order 8, although these types are not eliminated by the
theorems of Wolfe and Robinson or by the algebraic theory:

AOD(8 : (1),(2,2,2,2)) , AOD(8 : (1,2,2,3) ,(4,4)) , AOD(8 : (1,7) ,(5)) .

Robinson and Seberry [170] have also shown that there is no AOD(16 :
(1,15);(1)). This is a most surprising result, since the number of variables is
so much less than the number allowed by Theorem 5.4. �	

5.7 Construction of Amicable Orthogonal Designs

In the first section of this chapter two examples were given of amicable
orthogonal designs and gave a small indication in Proposition 5.1 of the
strength of this notion. This section will turn away from the limitations on
existence to the actual construction of amicable orthogonal designs. As will
soon be apparent, the construction problem is an exceedingly difficult one
and, as with so many aspects of this area, deserves further study.

Particular attention will be paid to amicable orthogonal designs which are
full (ie, neither matrix has any zeros) because of their special relevance to the
Hadamard Matrix Problem.

One class of important full amicable orthogonal designs is the amicable
Hadamard matrices (Example 5.2). There is a substantial literature on these
objects, and in view of their importance to the Hadamard Matrix Problem,
their construction shall be dealt with in the next section.

Lemma 5.6 (Wolfe). Suppose there are amicable orthogonal designs
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X = x1X1 +x2X2 + · · ·+xrXr and Y = y1Y1 +y2Y2 + · · ·+ysYs

AOD(n : (u1,u2, . . . ,ur); (v1,v2, . . . ,vs)). Further suppose there are amicable
orthogonal designs W = w1W1 +w2W2 + · · ·+wtWt and Z in order AOD(m :
(p1,p2, . . . ,pt); (z)). Then there exist

AOD(mn : (zu1,zu2, . . . ,zui−1, p1ui,p2ui, . . . ,ptui, zui+1, . . . ,zur);
(zv1,zv2, . . . ,zvs)).

Proof. The required matrices in the variables

a1,a2, . . . ,ai−1, c1, . . . , ct, ai+1, . . . ,ar and b1, . . . , bs

are

a1X1×Z +· · ·+ai−1Xi−l×Z +
t∑

j=1
cjXi×Wj +ai+1Xi+l×Z +· · ·+arXr×Z,

and
s∑

j=1
bjYj ×Z . �	

Corollary 5.9. Suppose there is AOD(n : (u1,u2, . . . ,ut); (v1,v2, . . . ,vs)).
Further suppose there exist amicable Hadamard matrices of order m. Then
there exist AOD(mn : (u1,(m−1)u1,mu2, . . . ,mut); (mv1,mv2, . . . ,mvs)).

Corollary 5.10. There exist AOD(2t+1 : (1,1,2,4, . . . ,2t); (2t,2t)) and
AOD(2t+1 : (1,2t+1−1);(2t,2t)).

Proof. In proposition 5.1 AOD(2 : (1,1);(1,1)) were given. Setting the vari-
ables in the second design equal to each other, amicable Hadamard matrices
of order 2 are obtained. This corollary then follows by repeated application of
corollary 5.9. �	

As one special case of 5.10, the well-known fact that amicable Hadamard
matrices exist in orders which are a power of 2 were obtained. Consequently,
it has:

Corollary 5.11. Suppose there is AOD(n : (u1,u2, . . . ,ur); (v1,v2, . . . ,vs)).
Then AOD(2tn : (u1,u1,2u1, . . . ,2t−1u1,2tu2, . . . ,2tur); (2tv1,2tvs)) exist.

Now to a different construction for amicable orthogonal designs. A similar
construction based on the constructions of R.E.A.C. Paley [160] was first used
to construct amicable Hadamard matrices.

Theorem 5.12. Let p ≡ 3 (mod 4) be a prime power; then there exist
AOD(p+1 : (1,p); (1,p)).
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Proof. Let Q be the matrix constructed in Lemma 4.12. Recall that Q is a
type 1 matrix with the properties:

QQ� = pI −J ,

QJ = JQ = 0 ,

Q� = (−1)
1
2 (p−1)Q.

Now let U = cI +dQ, where c, d are commuting variables. Define R = (rij) by

rij =
{

1 ai +aj = 0 ,

0 otherwise .

Then UR is a (symmetric) type 2 matrix.
Let a, b be commuting variables. Then for p ≡ 3 (mod 4)

A =

⎡⎢⎢⎢⎣
a b. . . b

−b
... aI + bQ

−b

⎤⎥⎥⎥⎦ and B =

⎡⎢⎢⎢⎣
−c d . . . d
d
... (cI +dQ)R
d

⎤⎥⎥⎥⎦
are the required AOD(p+1 : (1,p); (1,p)).

Table 5.7 shows AOD(8 : (1,7);(1,7)). �	

Table 5.7 AOD(8 : (1,7);(1,7))

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a b b b b b b b
−b a b b −b b −b −b
−b −b a b b −b b −b
−b −b −b a b b −b b
−b b −b −b a b b −b
−b −b b −b −b a b b
−b b −b b −b −b a b
−b b b −b b −b −b a

⎤⎥⎥⎥⎥⎥⎥⎥⎦
and B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−c d d d d d d d
d −d −d d −d d d c
d −d d −d d d c −d
d d −d d d c −d −d
d −d d d c −d −d d
d d d c −d −d d −d
d d c −d −d d −d d
d c −d −d d −d d d

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Corollary 5.12. Let p ≡ 3 (mod 4) be a prime power. Then there exist
AOD(2s(p+1) : (1,1,2, . . . ,2s−1,2sp); (2s,2sp)).

Proof. Construct the amicable orthogonal designs x1I +x2S and y1R +y2P
of types ((1,p); (1,p)) in order (p+ 1). Now repeatedly replace the variable x1

by
[

x1 xs+2
−xs+2 x1

]
; and any other variables xi or yj by

[xi xi
xi −xi

]
or

[
yj yj
yj −yj

]
. �	

In a similar vein:
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Lemma 5.7. Let n+1 ≡ 2 (mod 4) be the order of a symmetric conference
matrix N (ie, N� = N , NN� = nIn+1, and N has entries 0,1,−1). Then
there exist

(i) AOD(2(n+1) : (2,2n); (2,2n)),
(ii) AOD(2(n+1) : (1,n),(1,n)).

Proof. Let a, b, c, d be commuting variables. Then for (i) the required designs
are [

aI + bN aI − bN
aI − bN −aI − bN

]
and

[
cI +dN cI −dN
−cI +dN cI +dN

]
,

while for (ii) they are [
aI bN
bN −aI

]
and

[
cI dN

−dN cI

]
.

The fact that N can be chosen to have zero diagonal is guaranteed by theorem
2.5. �	

With N =

⎡⎣0 1 ... 1
1
... Q
1

⎤⎦ where Q is formed as above, we have

Corollary 5.13. Let q ≡ 1 (mod 4) be a prime power. Then there exist (i)
AOD(2(q +1) : (2,2q); (2,2q)), (ii) AOD(2(q +1) : (1, q); (1, q)) and thus

(i) AOD(2s+1(q +1) : (2,2,4, . . . ,2s,2s+1q); (2s+1(q +1)),
(ii) AOD(2s+1(q +1) : (1,1,2, . . . ,2s−1,2sq); (2s,2sq)).

Part (i) of the next theorem is a corollary to 5.6, while part (ii) is not. The
theorem is motivated by 5.12.

Theorem 5.13. Suppose there are AOD(n : (1,s); (r,p)). Suppose further that
there are AOD(m : (1,a); (b)). Then there are

(i) AOD(mn : (1,a,sb); (rb,pb)),
(ii) AOD(mn : (1, ra,p); (b,sa)).

Proof. From 5.4 it may be chosen that OD(1,s) to be x1I + x2S, where
S� =−S, and OD(r,p) to be x3R+x4P , where R� = R and P � = P . Further,
the design of type (1,a) can be chosen as v1I + v2A, where A� = −A, and
the design of type (b) as v3B, where B� = B. Then

(i) y1I × I +y2I ×A+y3S×B and y4R×B +y5P ×B,
(ii) y1I × I +y2R×A+y3P ×A and y4I ×B +y5S×A,

may be used to give the required amicable orthogonal designs. �	
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5.8 Construction Methods

Corollary 5.14. Let q ≡ 3 (mod 4) be a prime power. Suppose there are
AOD(m : (1,a); (b)). Then there are

(i) AOD(m(q +1) : (1,a,bq); (b,bq)),
(ii) AOD(m(q +1) : (1,a,qa); (b,qa)).

Consider

X1 =

⎡⎢⎢⎣
x1 x2 x3 x3

−x2 x1 x3 −x3
x3 x3 −x1 −x2
x3 −x3 x2 −x1

⎤⎥⎥⎦ , Y1 =

⎡⎢⎢⎣
y1 y2 y3 y3
y2 −y1 y3 −y3

−y3 −y3 y2 y1
−y3 y3 y1 −y2

⎤⎥⎥⎦
= x1X1 +x2X2 +x3X3 = y1Y1 +y2Y2 +y3Y3

X2 =

⎡⎢⎢⎣
x1 x2 x3 x3

−x2 x1 x3 −x3
−x3 −x3 x1 −x2
−x3 x3 −x2 x1

⎤⎥⎥⎦ , Y2 =

⎡⎢⎢⎣
y1 y2 y3 y3
y2 −y1 y3 −y3
y3 y3 −y2 −y1
y3 −y3 −y1 y2

⎤⎥⎥⎦
= x1U1 +x2U2 +x3U3 = y1V1 +y2V2 +y3V3

(5.8)

Then there is:

Lemma 5.8. Suppose there is a set of pairwise amicable weighing matri-
ces (or orthogonal designs) {M1, . . . ,Ms,N1, . . . ,Nt} of order m and weights
(m1, . . . ,ms,n1, . . . ,ns) where M�

i = −Mi, ∀j and N�
j = Nj , ∀j. Then there

are

(i) AOD(4m : (1,ma,mb,2mc); (nd,me,2mf )),
(ii) AOD(4m : (1,ma,nb,2nc); (nd,ne,2nf )),

(iii) AOD(4m : (1,ma,nb2mc); (nd,ne,2mf )),
(iv) AOD(4m : (1,ma,nb,2mc); (nd,me,2nf )),

where mi ∈ {m1, . . . ,ms}, ∈ {1, . . . ,s} and nj ∈ {n1, . . . ,nt}, j ∈ {l, . . . , t}.

Proof. Use the matrices defined by (5.8) above. The required designs are:

(i) u1I × I +u2V1×Ma +u3V2×Mb +u4V3×Mc and
v1U1×Nd +v2U2×Me +v3U3×Mf ,

(ii) u1I × I +u2U1×Ma +u3U2×Nb +u4U3×Nc and
v1V1×Nd +v2V2×Ne +v3×Nf ,

(iii) u1I × I +u2U1×Ma +u3U2×Nb +u4U3×Mc and
v1V1×Nd +v2V2×Ne +v3V3×Mf ,

(iv) u1I × I +u2V1×Ma +u3V2×Mb +u4V3×Nc and
v1U1×Nd +v2U2×Me +v3U3×Nf .

Now look specifically at what happens for orders which are a power of 2. �	
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5.9 Specific Orders 2n

Corollary 5.10 gives a powerful result for AOD in order 2n. Now we will
consider n = 2,3, and 4.

5.9.1 Amicable OD of order 2

Table 5.8 amicable orthogonal designs X Y of order 2 exist

X Y

(1) ∗ ∗ ∗
(2) ∗ ∗

(1,1) ∗

Lemma 5.9. There are amicable orthogonal designs X,Y of order 2 for the
types indicated in Table 5.8 (by symmetry consider only the upper triangular
block):

Proof. All these can be obtained by equating and killing variables in

X =
[

x1 x2
−x2 x1

]
and

[
y1 y2
y2 −y1

]
.�	

Lemma 5.10. There are amicable orthogonal designs X, Y of order 4 for
the types indicated in Table 5.9 (those entries left blank correspond to designs
which do not exist by Theorem 5.9.

Proof. Let a, b, c, x, y, z be commuting variables. Then⎡⎢⎢⎣
a b c 0

−b a 0 −c
−c 0 a b

0 c −c a

⎤⎥⎥⎦ and

⎡⎢⎢⎣
x y z 0
y −x 0 −z
z 0 −x y
0 −z y x

⎤⎥⎥⎦ ,

or ⎡⎢⎢⎣
0 a b c

−a 0 c −b
−b −c 0 a
−c b −a 0

⎤⎥⎥⎦ and

⎡⎢⎢⎣
0 x y z

−x 0 −z y
−y z 0 −x
−z −y x 0

⎤⎥⎥⎦ ,

are AOD((1,1,1);(1,1,1)); AOD((1,1,2);(1,1,2)) are given in section 5.1;
now, equating and killing variables in these designs gives the result. �	
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Table 5.9 X, Y of order 4 exist

�
��X
Y (1) (2) (3) (4) (1,1) (1,2) (1,3) (2,2) (1,1,1) (1,1,2)

(1) ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
(2) ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
(3) ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
(4) ∗ ∗ ∗ ∗ ∗ ∗
(1,1) ∗ ∗ ∗ ∗ ∗ ∗
(1,2) ∗ ∗ ∗ ∗ ∗
(1,3) ∗ ∗ ∗
(2,2) ∗ ∗
(1,1,1) ∗
(1,1,2) ∗

5.9.2 Amicable Orthogonal Designs of Order 8

Remark 5.4. With quite some surprise, it was noticed that only “full” (ie,
no zeros) AOD(8 : (1,1,2,4); (2,2,4)), AOD(8 : (1,1,2,2,2); (8)), AOD(8 :
(1,2,2,3); (2,6)) and AOD(8 : (1,7); (1,7)) could be found. Robinson [166]
has established that there are no other “full” AOD(8 : (1,a,b,c,d); (e,f,g)).
There are other amicable orthogonal designs, eg, AOD(8 : (1,1,2);(1,1,2))
and AOD(8 : (1,1,1,1,1),(1)). These results indicate that the algebraic theory
comes nowhere near explaining the existence or non-existence of amicable
orthogonal designs.

The precise situation for amicable orthogonal designs in order 8 of type
(8 : (1,u1, . . . ,ut); (v1, . . . ,vs)) with

∑t
i=1 ui = 7 and

∑s
i=1 vi = 8 is given by:

Theorem 5.14 (Robinson-Wolfe [80, p.248]). The following amicable
orthogonal designs (and those which can be derived from them) exist in order
8:

AOD(8 : (1,1,2,2,2);(8)), AOD(8 : (1,2,2,3);(2,6)),
AOD(8 : (1,1,2,4);(2,2,4)), AOD(8 : (1,7);(1,7)).

All others, of the type AOD(8 : (1,a,b,c,d); (e,f,g)), where a + b + c + d = 7
and a+ b+ c+d = 7 and e+f +g = 8, do not exist.

Proof. Corollary 5.10 gives the (8 : (1,1,2,4);(2,2,4)); Theorem 5.12, the
AOD(8 : (1,7); (1,7)). AOD(8 : (1,1,2,2,2); (8)) and AOD(8 : (1,2,2,3); (2,6))
are given in Robinson [165].

Theorems 5.10, 5.9 and 5.7 eliminate many possibilities.
As can be shown below, there are no AOD(8 : (1,7);(5)); this eliminates

several remaining possibilities.
Example 5.6 part (4) eliminates the (8 : (1,7); (2,2,2,2)). Theorem 5.8 part

(5) eliminates (8 : (1,1,3,3);(2,2,4)).
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The remaining possibilities are not excluded by the algebraic theory, but
Robinson [166] has shown (combinatorially) that the (8 : (1,1,3,3);(8)) and
the (8 : (1,2,2,3); (4,4)) are impossible, and that takes care of all the rest. �	

To finish the proof of Theorem 5.14, we need to show non-existence of
AOD(8 : (1,7);(5)), (8 : (1,1,3,3);(8)) and (8 : (1,2,2,3);(4,4)) in order 8.
Only the argument for AOD(8 : (1,7);5) shall be shown here. The other two
require longer but similar arguments.

Note that by Lemma 5.4 it is enough to prove:

Theorem 5.15. There are no amicable orthogonal designs A, B of type
((7);(5)) in order 8 where A� = −A and B� = B. (Hence there are no
AOD(8 : (1,7);(5)).

The proof is given in full in Geramita and Seberry [80, p.249-252].
A detailed study of amicable orthogonal designs in order 8 is given by

Deborah Street in [202, p125–134] and [203, p26–29]. This was checked and
extended by Elaine Zhao, Yejing Wang and Jennifer Seberry [258].

We now include the tables from [203] which summarize the known results
about the existence and non-existence of amicable designs of order 8. In Tables
5.10 to 5.18, all references in square brackets are to Geramita and Seberry
(1979) [80] and

NoA means that such a pair cannot exist by virtue of [Theorem 5.39],
NoB means that such a pair cannot exist by virtue of [Theorem 5.41],
NoC means that such a pair cannot exist by virtue of [Theorem 5.45],
NoD means that such a pair cannot exist by virtue of [Theorem 5.47],
NoF means that such a pair cannot exist by virtue of [p.240],
NoG means that such a pair cannot exist by virtue of [Theorem 5.64],
NoH means that such a pair cannot exist from Zhao, Wang and Seberry [258],
y1 means that such a pair can be constructed using Theorem 7.1.7 [247],
y2 means that such a pair can be constructed using [Theorem 5.52],
y3 means that such a pair can be constructed using [Theorem 5.58],
y4 means that such a pair can be constructed using [Theorem 5.64],
y5 means that such a pair can be constructed using [Theorem 5.95],
y6 means that such a pair can be constructed using [Table 5.6],
y7 means that such a pair can be found in Zhao, Wang and Seberry [258],
R-S means that such a pair is given in Robinson and Seberry (1978) [170],

and
* means that such a pair can be constructed using Example 7.1.10 [202].

The number of variables in each member of a pair is shown in the caption
of the table.
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Table 5.10 Both designs with 4 variables a

1111 1114 1122 2222

1111 27 NoB

1114 * NoB

1122 y1 NoF

2222

1112 1124 1222
1112 y1 NoB y7
1124 NoC NoC
1222

1113 1223
1113 NoB
1223 NoC

1115 1123 1133
NoB NoC

a D. Street [203, p.26-29] c©Cambridge
University Press
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Table 5.17 Both designs with 2 variables a

1,1 1,2 1,3 1,4 1,5 1,6 1,7 2,2 2,3 2,4 2,5 2,6 3,3 3,4 3,5 4,4

1,1 y1 y1 y1 y1 y1 y1 y1 y1 y1 * y1 y1 y1 y1
1,2 y1 y1 y1 y1 y1 y1 y1 y1 * y1 y1 y1 y1
1,3 y1 y1 y1 y1 y1 y1 y1 y6 y1 y1 y1 y1
1,4 y6 y5 y6 NoF y1 y3 y1 * y1 y1 y6 y1
1,5 * y6 NoF y1 y5 y1 * y1 y1 y6 y1
1,6 y6 y1 y3 y1 y6 y1 y1 y3 y1
1,7 y2 y1 NoF y1 NoF y1 NoF y1
2,2 y1 y1 y1 y1 y1 y1 y1 y1 y1
2,3 y3 y1 y1 y1 y3 y1
2,4 y1 y1 y1 y1 y1 y1 y1
2,5 * y1 y1 y6 y1
2,6 y1 y1 y1 y1 y1
3,3 y1 y1 y1
3.4 y3 y1
3,5 y1
4,4

a D. Street [203, p.26-29] c©Cambridge University Press

Table 5.18 Both designs with 2 and 1 variables a

1,1 1,2 1,3 1,4 1,5 1,6 1,7 2,2 2,3 2,4 2,5 2,6 3,3 3,4 3,5 4,4

1 y1 y1 y1 y1 y1 y1 y2 y1 y1 y1 y6 y1 y1 y1 y1
2 y1 y1 y1 y1 y1 y1 y1 y1 y1 y1 y1 y1 y1 y1 y1 y1
3 y1 y1 y1 y1 y1 y1 R-S y1 y1 y1 y6 y1 y1 y1 y1
4 y1 y1 y1 y1 y1 y1 y1 y1 y1 y1 y1 y1 y1 y1 y1 y1
5 y1 y1 y1 y3 y5 y3 NoF y1 y3 y1 * y1 y1 y3 y1
6 y1 y1 y1 y1 y1 y1 y1 y1 y1 y1 y1 y1 y1 y1 y1 y1
7 y1 y1 y1 y6 y6 y3 y2 y1 y3 y1 y6 y1 y1 y3 y1
8 y1 y1 y1 y1 y1 y1 y1 y1 y1 y1 y1 y1 y1 y1 y1 y1

a D. Street [203, p.26-29] c©Cambridge University Press

A complete determination of exactly which (non-full) amicable orthogonal
designs may exist in order 16 has not yet been made. In fact, full amicable
orthogonal designs, when neither design is of type (1, . . .), have hardly been
looked at in order 16.
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5.10 Amicable Hadamard Matrices

Skew-Hadamard matrices have played a significant part in the search for
Hadamard matrices (see Williamson [245]) Spence [197] and Wallis [224–226]).
Szekeres [205] realized that skew-Hadamard matrices were of interest in
themselves and, in fact, equivalent to doubly regular tournaments.

Once attention was focused on skew-Hadamard matrices, (Seberry)Wallis
[227] realised that in order to form skew-Hadamard matrices of order mn

was the origin of the idea of amicable Hadamard matrices.
Although this section is embedded in the chapter on amicable orthogonal

designs, it will be clear that the ideas here, which historically precede the rest
of the ideas of this chapter, have exerted a strong influence on the development

We restate a theorem of J. Wallis [231, p.337, Theorem 4.20] in terms of
our new notation:

Theorem 5.16 (J. Wallis). Suppose there exist amicable orthogonal designs
AOD(m : (1,m−1);(m)) and AOD(n : (1,n−1);(n)). Further suppose there
exists OD((m−1)n : (1,(m−1)n−1)). Then there exists an OD(1,mn(mn−
1)(m−1)−1) in order mn(mn−1)(m−1).

Proof. We use Lemma 5.6 with the designs of types ((1,m− 1);(m)) and
(1,(m− l)n− 1) to see that there is OD(1,m− 1,mn(m− 1)−m) in order
mn(m−1). We use the designs of types ((1,m−1);(m)) and ((1,n−1);(n))
to see that there are AOD(mn : (1,mn−1);(mn)).

We now write AOD((1,mn − 1);(mn) (after suitable pre- and post-
multiplication by monomial matrices) as

M =
[

x ye
−ye� P

]
and N =

[
1 e

e� D

]
,

where e = (1, . . . ,1) is of order 1× (mn−1), and x, y are commuting variables.
Then

JP � = xJ , (P −xI)� = −(P −xI) , D� = D, JD� = −J ,

PP � = (x2 +(mn−1)y2)I −y2J ,

Since

MN� =
[

x ye
−ye� P

][
1 e

e� D�

]
=

[
x+(mn−1)y (x−y)e

(x−y)e� −yJ +PD�

]
=

[
x+(mn−1)y (−y +x)e

(x−y)e� −yJ +DP �

]
=

[
1 e

e� D

][
x −ye

ye� P �

]
= NM�

PD� = DP �

of “amicability” for orthogonal designs.

from ones of orders m and n, a notion of “amicability” could be decisive. This
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We now replace the variables of the (1,m−1,mn(m−1)−m) design A by
the matrices P , yJ , yD to obtain a matrix B. Now

BB� = (PP � +(m−1)y2J2 +(m2n−mn−m)y2DD�)× I

= [(x2 +(mn−1)y2)I −y2J +(m−1)(mn−1)y2J

+mn(m2n−m−mn)y2I − (m2n−mn−m)y2J ]× I

= (x2 +(mn(mn−1)(m−1)−1)y2)Imn(mn−1)(m−1) .

Hence B is the required orthogonal design. �	
Corollary 5.15. Suppose there exist AOD(n : (1,n− 1);(n)). Then, since
there exist AOD(2 : (1,1); (2)), there is OD(1,2n(2n−1)−1) in order 2n(2n−
l).

Definition 5.5. The s× s matrices W and M are amicable Hadamard ma-
trices if

(i) W = I +S,where S� =−S and M = M� are both Hadamard matrices,
ie, weighing matrices of weight s, and

(ii) WM� = MW �.

These pairs of matrices exist for many orders, some of which are discussed
below.

Conjecture 5.1. There exist amicable Hadamard matrices in all orders n ≡ 0
(mod 4).

Amicable Hadamard matrices and amicable orthogonal designs of type
AOD(n : (1,n−1);(n)) are equivalent notions (Lemma 5.4). Hence they may
be used to construct other orthogonal designs as follows (Lemma 5.6):

Lemma 5.11. Let y1A1 +y2A2 + · · ·+ypAp be OD(n;a1,a2 . . . ,ap) on the p
variables y1,y2, . . . ,yp.
Let W = Is +S and M be amicable Hadamard matrices of order s.
Then

x0A1× Is +x1A1×S +x2A2×M + · · ·+apAp×M

is OD(sn;a1,a1(s−1),sa2, . . . ,sap) on the variables x0,x1, . . . ,xp.

Corollary 5.16. Let W and M (as above) be amicable Hadamard matrices
of order s, and let n be any integer. Then there is OD(ns;1,s−1,s,s, . . . ,s)
on the variables x0,x1,x2, . . . ,xρ(n).

Proof. Use the (1,1,1, . . . ,1) design on ρ(n) variables that exist in every order
n. The first variable is replaced by x0I + x1W1; the i-th variable i > 1 is
replaced by xiM . �	
Example 5.8. The most interesting consequence of this corollary is to note that
there is an OD(2n; (1,1,2, . . . ,2)) on ρ(n)+1 variables. This follows because
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there is an OD(n; (1,1,1, . . . ,1)) on ρ(n) variables and amicable Hadamard
matrices of order 2. In particular, there is an
OD(16;(1,1,2,2,2,2,2,2,2)).

Corollary 5.17. If there is a Baumert-Hall array of order n and amicable
Hadamard matrices of order s, then there is an OD(4n;n,n(s−1),ns,ns,ns).

Example 5.9. As was seen in Chapter 4, Section 4.12 there is a Baumert-Hall
array of order 3. Hence there exists an OD(24;3,3,6,6,6) by using amicable
Hadamard matrices of order 2.

Corollary 5.18. Let W, M be amicable Hadamard matrices of order s. If
there is a Plotkin array of order 8n, then there is an OD(8ns; (n,n(s−
1),ns, . . . ,ns)) on the variables x1,x2,x3, . . . ,x9.

Example 5.10. Plotkin found an array of order 24, OD(24;(3,3,3,3,3,3,3,3)).
Hence, using the amicable Hadamard matrices of order 2, an orthogonal design
OD(48;(3,3,6,6,6,6,6,6,6)) is obtained. Similar results follow from Plotkin
arrays OD(8t; t, . . . , t), see Section 4.13.

From Seberry and Yamada [188, p535], Geramita, Pullman and Seberry
Wallis [79] and this chapter, amicable Hadamard matrices exist for the follow-
ing orders:

Key Order Method
AI 2t t a non-negative integer. See [80, p224].
AII pr +1 pr ≡ 3 (mod 4) is a prime power. See [188, p110].
AIII 2(q +1) 2q + 1 is a prime power, q ≡ 1 (mod 4) is a prime.

See [188, p114].
AIV (|t|+1)(q +1) q(prime power) ≡ 5 (mod 8) = s2 + 4t2, s ≡ 1

(mod 4), and |t|+1 is the order of amicable orthogo-
nal designs of type ((1, |t|); (1

2 (|t|+1)).
2r(q +1) q(prime power) ≡ 5 (mod 8) = s2 +4(2r −1)2, s ≡ 1

(mod 4), r some integer.
AV (4t−1)r +1 when circulant (or type 1) Hadamard cores of order

4t−1 exist.
AVI nh n,h, are orders of amicable Hadamard matrices. See

[80, p255].
AVI is proved first and then AOD(2;(1,1),1,1) give AI.

Theorem 5.17 (Wallis [227]). Suppose there are amicable Hadamard ma-
trices of orders m and n. Then there are amicable Hadamard matrices of
order mn. In particular, there exist amicable Hadamard matrices of order 2t,
t a non-negative integer.
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Proof. This is a special case of Corollary 5.9. For the last part, see Corollary
5.10. �	
Proposition 5.10. There are amicable Hadamard matrices of order pn +1,
pn ≡ 3 (mod 4), p a prime.

Proof. This is a special of Theorem 5.12 (the structure is ensured by Lemma
5.4).

This justifies Case AII. �	
To prove Case AIII a new concept is introduced due to Szekeres [205] which

arose while he was considering tournaments. Szekeres used supplementary
difference sets with one symmetry condition (a ∈ M ⇒−a /∈ M) to construct
skew-Hadamard matrices. He pointed out to Seidel that there was no skew-
Hadamard matrix of order 36 known (at that time). This, in turn, led to
Goethals and Seidel publishing their array, which was to prove so significant
and useful.

Definition 5.6. Let G be an additive abelian group of order 2m+1. Then
two subsets, M and N , of G, which satisfy

(i) M and N are m-sets,
(ii) a ∈ M ⇒−a �∈ M ,
(iii) for each d ∈ G, d �= 0, the equations d = a1−a2, d = b1− b2 have together

m−1 distinct solution vectors for a1,a2 ∈ M , b1, b2 ∈ N ,

will be called Szekeres difference sets. Alternatively, 2−{2m+1; m; m−1}
supplementary difference sets, M and N ⊂ G, are called Szekeres difference
sets, if a ∈ M ⇒−a /∈ M .

The following shows such sets exist.

Theorem 5.18 (Szekeres). If q = 4m + 3 is a prime power and G is the
cyclic group of order 2m+1, then there exist Szekeres difference sets M and
N in G with b ∈ N ⇒−b ∈ N .

Proof. Let x be a primitive root of GF (q) and Q = {x2b : b = 1, . . . ,2m +1}
the set of quadratic residues in GF (q). Define M and N by the rules

a ∈ M ⇐⇒ x2a−1 ∈ Q, (5.9)

b ∈ N ⇐⇒ x2b +1 ∈ Q. (5.10)

Since

−1 = x2m+1 /∈ Q,

x2a−1 ∈ Q ⇒ x−2a−1 = −x−2a(x2a−1) /∈ Q,

x2b +1 ∈ Q ⇒ x−2b +1 = x−2b(x2b +1) ∈ Q,
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so that a ∈ M ⇒−a /∈ M , b ∈ N ⇒> −b ∈ N , and conditions i) and ii) of
Definition 5.6 are satisfied. Also, writing N ′ for the complement of N , gives

b′ ∈ N ′ if − (x2b′
+1) ∈ Q. (5.11)

Suppose
(5.12)

where
x2a = 1+x2(i−d) , (5.13)

x2α = 1+x2j , (5.14)

by (5.9) for suitable i, j ∈ G. Then

by (5.12) and (5.13); hence by (5.14)

x2d−1 = x2j −x2i , (5.15)

where x2j +1 ∈ Q by (5.14). Similarly, if

d = b′−β′ �= 0, b′,β′ ∈ N ′ , (5.16)

where by (5.16)

−x2β′
= 1+x2(i−d) , (5.17)

−x2b′
= 1+x2j , (5.18)

for some i, j ∈ G, producing

hence again
x2d−1 = x2j −x2i ,

with −(x2j +1) ∈ Q by (5.18).
Conversely to every solution, i, j ∈ G, of equation (5.15), we can determine

uniquely α∈M ′ or b∈N ′ from (5.14) or (5.18) depending on whether 1+x2j =
x2d +x2i is in Q or not; hence a or β from (5.12) (5.16) so that also (5.13) or
(5.17) is satisfied, implying a ∈M , β ∈N ′. Thus the total number of solutions
of (5.12) and (5.16) is equal to the number of solutions of (5.15) which is
m. �	
Example 5.11. Consider q = 23 which has primitive root 5 and quadratic
residues Q = {1,2,3,4,6,8,9,12,13,16,18}. Hence

M = {1,2,5,7,8} and N = {2,4,5,6,7,9}

d= α−a 6= 0, a,α ∈M ,

x2α = x2(a+d) = x2d+x2i ,

−x2b′ =−x2(d+β′) = x2d+x2i ;
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are Szekeres difference sets.

Szekeres and Whiteman (see Wallis [236, p.32]) have independently shown
that there exist Szekeres difference sets of size (pt−1)

2 when p ≡ 5 (mod 8) is
a prime power and t≡ 2 (mod 4). But in this case both sets M , N satisfy the
condition, x ∈ M,N −→−x /∈ M,N , and as yet these sets have not been used
to construct amicable Hadamard matrices. Nevertheless, the next theorem
and corollary indicate the way these Szekeres difference sets may, in some
cases, be used:

Theorem 5.19. Suppose there exist (1,−1) matrices A, B, C, D of order n
satisfying:

C = I +U, U� = −U, A� = A, B� = B, D� = D,

AA� +BB� = CC� +DD� = 2(n+1)I −2J ,

and with e = [1, . . . ,1] a 1×n matrix

eA� = eB� = eC� = eD� = e, AB� = BA�, and CD� = DC� .

Then if

X =

⎡⎢⎢⎣
1 1 e e
1 −1 −e e

e� −e� A −B
e� e� −B −A

⎤⎥⎥⎦ , Y =

⎡⎢⎢⎣
1 1 e e

−1 1 e −e
−e� −e� C D
−e� −e� −D C

⎤⎥⎥⎦ ,

X is a symmetric Hadamard matrix and Y is a skew-Hadamard matrix both
of order 2(n+1). Further, if

AC�−BD� and BC� +AD�

are symmetric, X and Y are amicable Hadamard matrices of order 2(n+1).

The next result illustrates how the conditions of the theorem can be
satisfied;

Corollary 5.19. Let G be an additive abelian group of order 2m+1. Suppose
there exist Szekeres difference sets, M and N , in G.

Further suppose there exist 2−{2m+1; m+1; m+1} supplementary differ-
ence sets P and S in G such that x ∈ X ⇒−x ∈ X for X ∈ {N,P,S}. Then
there exist amicable Hadamard matrices of order 4(m+1).

Proof. Form the type 1 (1,−1) incidence matrix C of M . Form the type
2 (1,−1) incidence matrices, D, A, B of N , P , S, respectively. Now use the
properties of type 1 and type 2 matrices in the theorem.

In these theorems, circulant and back circulant can be used to replace type
1 and type 2 incidence matrices, respectively, when the orders are prime.
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We now wish to show that sets satisfying the conditions of Corollary 5.19
exist for some orders n ≡ 1 (mod 4).

Let n = 4t + 1 be a prime power, and choose Q = {x2b : b = 1,2, . . . ,2t}
and R = xQ, where x is a primitive element of GF (n). Then Q and R are
2−{4t+1; 2t; 2t−1} supplementary difference sets. Further, y ∈Q⇒−y ∈Q,
and y ∈ R ⇒−y ∈ R since −1 = x2t. So Q and R satisfying the conditions of
the corollary exist. �	

To find M and N , we use the result of Szekeres in Theorem 5.18. Then we
have:

Corollary 5.20. There exist amicable Hadamard matrices of order 2(t+1)
whenever t ≡ 1 (mod 4) is a prime and 2t+1 is a prime power.

Proof. With q = 4m+3 = 2t+1, we form Szekeres difference sets M and N
of order 2m+1 = t+1. Using the notation of Theorem 5.18,

b ∈ N ⇒ x2b +1 ∈ Q ⇒ x−2b +1 = x−2b(l +x2b) ∈⇒−b ∈ N ,

and so M and N are as required by Corollary 5.19.
Choose P = Q and S = xQ; then, as observed above, they too satisfy the

conditions of the theorem, and we have the result. �	
This justifies Case AIII.

Theorem 5.20. Let q ≡ 5 (mod 8) be a prime power and q = s2 + 4t2 be
its proper representation with s ≡ 1 (mod 4). Suppose there are AOD(2r :
(1,2r−1);(r,r)), 2r = |t|+1. Then there exist amicable Hadamard matrices
of order (|t|+1)(q +1).

Proof. Using the theory of cyclotomy (see Chapter 7 for more details), we
can show that for the q of the enunciation,

C0 & C1 and |t| copies of C0 & C2

are (|t|+1) − {q; (q−1)
2 ; (|t|+1) (q−3)

4 }s.d.s. , with the property that

x ∈ C0 & C1 ⇒−x /∈ C0 & C1

and
y ∈ C0 & C2 ⇒−y ∈ C0 & C2 .

Also (|t|+1)
2 copies of each of C0 & C2 and C1 & C3 are

(|t|+1) − {q; (q−1)
2 ; (|t|+1)(q−3)

4 } s.d.s.

with the property that
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y ∈ C0 & C2 ⇒−y ∈ C0 & C2 ,

z ∈ C1 & C3 ⇒−z ∈ C1 & C3 .

let A be the type 1(1,−1) incidence matrix of C0 & C1, and B and C be
the type 2(1,−1) incidence matrices of C0 & C2 and C1 & C3, respectively.

Then

AJ = BJ = CJ = −J , (A+ I)� = −(A+ I) , B� = B , C� = C ,

AA� + |t|BB� = (|t|+1)
2 (BB� +CC�)

= (|t|+1)(q +1)I − (|t|+1)J .

Let P = x0U + x1V and Q = x3X + x4Y be AOD(2r : (1,2r− 1);(r,r)).
Further, let e be the 1× q matrix of all ones. Clearly, we may assume that
U = I, V � = −V , X� = X, Y � = Y , for if not, we pre-multiply P and Q by
the same matrix W until U , V , X, Y do have the required properties. Now

E =
[

U +V (U +V )×e

(−U +V )×e� U ×−A+V ×B

]
and

F =
[

X +Y (X +Y )×e

(X +Y )×e� X ×C +Y ×D

]
are the required amicable Hadamard matrices. �	

We note that AOD(2r : (1,2r−1); (r,r)) certainly exist where 2r is a power
of two (this is proved in Corollary 5.10). Hence we have:

Corollary 5.21. Let q ≡ 5 (mod 8) be a prime power and q = s2 + 4t2 be its
proper representation with s ≡ 1 (mod 4). Further, suppose |t| = 2r −1 for
some r. Then there exist amicable Hadamard matrices of order 2r(q +1).

In particular, this leads to two results published elsewhere (Wallis [228],
[233]) which now become corollaries:

Corollary 5.22. Let q ≡ 5 (mod 8) be a prime power, and suppose q = s2 +4
or q = s2 + 36 with s ≡ 1 (mod 4). Then there exist amicable Hadamard
matrices of orders 2(s2 +5) or 4(s2 +37), respectively.

Corollaries 5.20 and 5.21 justify Case AIV.
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5.11 Amicable Hadamard Matrices and Cores

To make Case AV clear we first define what we mean by different types of
cores.

Definition 5.7 (Amicable Hadamard Cores). Let A = I +S and B be
amicable Hadamard matrices of order n, so AB� = BA�, which can be
written in the form

A =
[

1 e
−e� I +W

]
and

B =
[−1 e

e� R +V

]
where e is a 1×n−1 vector of all +1s. Let R be the back-diagonal matrix,
W and V have row sum +1 and

V � = V, V W � = WV, and RW � = WR. (5.19)

Then I + W and R + V will be said to be amicable cores of amicable
Hadamard matrices. We call W and V amicable Hadamard cores when the
properties of Equation 5.19 are satisfied. We call W the skew-symmetric core
and V the symmetric (partner) core.

Now C1 = I + W or C2 = R + V are said to be amicable cores of the
Hadamard matrix, and

CiC
�
i = nIn−1−Jn−1, CiJ = JCi = J , i = 1,2 .

Example 5.12 (Amicable Hadamard Matrices and Their Cores). The
following two Hadamard matrices are amicable Hadamard matrices.

A =

⎡⎢⎢⎣
1 1 1 1

−1 1 1 −1
−1 −1 1 1
−1 1 −1 1

⎤⎥⎥⎦ and B =

⎡⎢⎢⎣
−1 1 1 1

1 −1 1 1
1 1 1 −1
1 1 −1 1

⎤⎥⎥⎦
with the following two matrices

I +W =

⎡⎣ 1 1 −1
−1 1 1

1 −1 1

⎤⎦ and R +V =

⎡⎣−1 1 1
1 1 −1
1 −1 1

⎤⎦
as amicable cores of the amicable Hadamard matrices. Note they satisfy all
the properties of Equation 5.19.
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In early papers Belevitch [19,20] and Goldberg [91] showed that the core
of a skew-Hadamard matrix, of order n+1, could be used to generate a core
of a skew-Hadamard matrix of order n3 +1. Seberry Wallis [240] realized that
this construction could be extended to orders n5 +1 and n7 +1. These were
further generalized by Turyn [217] to orders nr + 1, where r > 0 is an odd
integer. We now give the results in considerable detail to try to make the
constructions as clear as possible.

Theorem 5.21 (Belevitch-Goldberg Theorem). Suppose W is a skew-
symmetric core of size n ≡ 3 (mod 4) then

I ×J ×W +W × I ×J +J ×W × I +W ×W ×W

is a core of order n3.

Remark 5.5. If I + W and R + V are amicable Hadamard cores then the
symmetric companion of the above skew-symmetric core is

R×J ×V +V ×R×J +J ×V ×R +V ×V ×V

We now use part of Corollary 3.12 of [231] which shows that is W is a
skew-symmetric (symmetric) core of size n ≡ 3 (mod 4) then there exists a
skew-symmetric (symmetric) of size nr for all odd r > 1.

Example 5.13. The skew-symmetric core of order n5 from a skew-symmetric
core of order n is the sum of

I ×J × I ×J ×W ; and I ×J ×W ×W ×W ;
plus

W ×W ×W ×W ×W ,

plus their circulants

W × I ×J × I ×J ; W × I ×J ×W ×W ;
J ×W × I ×J × I ; W ×W × I ×J ×W ;
I ×J ×W × I ×J ; W ×W ×W × I ×J ;
J × I ×J ×W × I ; J ×W ×W ×W × I .

The symmetric core will have the same form with I replaced by R and W
replaced by V . So it becomes the sum of

R×J ×R×J ×V ; and R×J ×V ×V ×V ; V ×V ×V ×V ×V ,

plus their circulants
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V ×R×J ×R×J ; V ×R×J ×V ×V ; J ×V ×R×J ×R ;
V ×V ×R×J ×V ; R×J ×V ×R×J ; V ×V ×V ×R×J ;
J ×R×J ×V ×R ; J ×V ×V ×V ×R.

These amicable cores, that is the skew-symmetric and the symmetric cores,
are amicable term by term. �	

We now use this to construct amicable Hadamard matrices of order nr + 1
from amicable Hadamard matrix cores of order n+1. This is illustrated by
the Belevitch-Goldberg construction Theorem 5.21 for n = 3 and by Example
5.13 for n = 5.

Theorem 5.22 (Construction). Suppose W is a skew-symmetric core of
size n ≡ 3 (mod 4) and V (V � = V ) is an amicable symmetric core. Let M
and N given by

I × I × I · · ·× I +Br

and

R×R×R · · ·×R +Dr

where each single term is comprised of the sum of the Kronecker product of n
terms as described below. Then M and N are cores of amicable Hadamard
matrices of order nr for any odd r > 0.

Proof. Let I, J , W of order n be as above. The proof consists of taking the
sum of the Kronecker product of all the possible basic terms A of the form
I×J ×W ×·· ·×W , I×J ×I×J ×W ×·· ·×W , I×J ×W ×I×J ×·· ·×W
and so on and all their circulants. That is, if a new term is introduced to
make a larger power, the newly introduced terms will have I ×J or W ×W
inserted at the beginning of each term of the smaller order Ar−2. Call this
matrix B = Br. Then B will satisfy BBT = nrInr −Jnr , BJ = JB = 0.

Because WJ = JW = 0, it becomes easy to see that the terms of BB� are
actually each individual term of A each multiplied by its transpose.

It is a little more difficult to see that B will be a skew-symmetric core,
that is that all the off diagonal elements are ±1. However this can be shown
from the careful placements of the elements and that J and W (and J and
V ) occur in the same position in each distinct pair of terms for the higher
power construction (note JW = WJ = 0) and each pair of terms is disjoint.

Carrying out the same procedure but with Ar and Br, with elements I,
J and W replaced by Cr and Dr which have elements R, J and V gives the
symmetric partner. �	
Corollary 5.23. Suppose there exist amicable Hadamard matrices of order
n with amicable cores of order n−1. Then there exist amicable Hadamard
matrices of order (n−1)r +1, for all odd r ≥ 1.
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Problem 5.4 (Research Problem). Further research is needed to extend
our knowledge of amicable Hadamard matrices.

5.12 Strong Amicable Designs

As an introduction to our search for generalizations of amicable Hadamard
matrices, we now consider the concept of strong amicable Hadamard matrices.

Definition 5.8 (Strong Amicable Hadamard Matrices). Two
Hadamard matrices, M and N , of order n which are amicable, so MN� =
NM�, and can be written as M = I +S, where I is the identity matrix and
S� =−S is a skew-symmetric weighing matrix (W (n,n−1)) and N , which can
be written in the form N = U +V , U a symmetric monomial matrix and V is
a symmetric weighing matrix (W (n,n−1)) will be said to be strongly amicable
Hadamard matrices. (In fact M and N are also AOD(n : 1,n−1;1,n−1)).

Seberry [180] showed:

Theorem 5.23 (Multiplication Theorem for Strong Amicable Or-
thogonal Designs). If there are strong amicable orthogonal designs of
orders n1 and n2 there are strong amicable orthogonal designs of order n1n2.
(The theorem also holds if “orthogonal designs” is replaced by “Hadamard
matrices”.)

A more direct proof of the following corollary appears in [179].

Corollary 5.24. Let t be a positive integer. Then there exist SAOD(2t :
1,2t−1;2t−1) and strongly amicable Hadamard matrices for every 2t.

The following theorem, due to Paley [160], is quoted from Geramita and
Seberry [80, Theorem 5.52]

Theorem 5.24. Let q ≡ 3 (mod 4) be a prime power. Then there exist strong
AOD(p+1;(1,p),(1,p)).

These are the required cores for the main result of Seberry [179].

Proposition 5.11 (Powers of Cores). If there exist a strong AOD(n : 1,n−
1;1,n−1) and a suitable amicabilizer then there exists a strong AOD((n−
1)r +1) for every odd integer r > 0.

Proposition 5.12. Using the circulant difference set SBIBD(2t−1,2t−1−
1,2t−2−1) to form the core of a strong AOD(2t : 1,2t−1;1,2t−1) allows a
more efficient construction for practical purposes.

From Seberry and Yamada [188, p535], Geramita, Pullman and Seberry
Wallis [79] and Seberry [180], strong amicable Hadamard matrices and strong
amicable orthogonal designs SAOD exist for the following orders:
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Summary 5.1. AOD(n : 1,n−1;1,n−1), SAOD, (or SAOD) exist for or-
ders:

Key Order Method
x1 2t t a non-negative integer; Corollary 5.24.
x2 pr +1 pr ≡ 3 (mod 4) is a prime power; Theorem 5.24.
x3 (n−1)r +1 n is the order of SAOD with suitable cores r > 0 is any

odd integer; Proposition 5.11.
x4 nh n,h, are the orders of SAODs; Theorem 5.23.

The constraints on finding amicable orthogonal designs, even using the most
promising candidates, that is those from skew-Hadamard matrices, makes the
further construction of strong AOD most challenging.

5.13 Structure of Amicable Weighing Matrices

Lemmas 5.4 and 5.5 have already indicated that the amicability condition
might force strong constraints on the structure of the component weighing
matrices. In this section we study this idea a bit more.

A combinatorial argument lets us obtain the following result:

Theorem 5.25. Let R be a monomial matrix of order n = 0 (mod 4). Let A
be a symmetric weighing matrix of order n. Suppose RA� = −AR�. Then
A∗R = 0 (and the Hadamard product). Further, if A has weight n−1, then
R is symmetric if A has any diagonal element zero, and R is skew-symmetric
otherwise.

Theorem 5.26. The existence of strong amicable orthogonal designs of order
n = 0 (mod 4) and types ((1,n−1);(1,n−1)) is equivalent to the existence
of a symmetric weighing matrix of order n and weight n−1 with at least one
zero on the diagonal.

Proof. Let A be the symmetric weighing matrix. We use the theorem of
Delsarte-Goethals-Seidel – Theorem 2.4 to see that we can find monomial
matrices P and Q so that B = PAQ is skew-symmetric. Let R = P −1Q−1.
Then R is a monomial matrix, and B� = (PAQ)�−Q�AP � = Q−1AP −1 =
−PAQ, so RA� = −AR�. Hence by the previous theorem, A∗R = 0, and R
is symmetric. So uR+vA and xI +yAR are the required amicable orthogonal
designs.

Now if xU +yV and uN +vM are AOD(n : (1,n−1); (1,n−1)), we pre- and
post-multiply both matrices by monomial matrices P and Q, where I = PUQ.
Then the amicable matrices can be written in the form xI +yPV Q = xI +yS
and uPNQ + vPMQ = uR + vA. Now the amicability and orthogonality
gives us R and A are symmetric and AR� = −RA�. We now assume A has
weight n−1 and no zero on the diagonal. Then considering the orthogonality
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conditions on the rows of A + R leads to a contradiction, and we have the
result. �	
Remark 5.6. We note that this proof also shows that the existence of a sym-
metric weighing matrix C of order n and weight n− 1 with a zero on the
diagonal is equivalent to the existence of a best pair of weights (n−1,1) in
order n. (See Definition 5.9)

We recall (Theorem 5.12) that AOD(p+1 : (1,p); (1,p)) do exist when p = 3
(mod 4) is a prime power. Hence we have:

Corollary 5.25. There is a symmetric weighing matrix with a zero on the
diagonal of order p+1 and weight p where p ≡ 3 (mod 4) is a prime power.

We use Lemma 5.5 to show that symmetric weighing matrices of order n
and weight n−1 with a zero on the diagonal do not always exist since:

5.14 A Generalization of Amicability – Families

In the algebraic theory for both orthogonal designs and amicable orthogonal
designs, we were concerned with families whose members satisfied given con-
ditions. In Lemma 5.1 we saw a useful family of weighing matrices. Product
designs and repeat designs are further kinds of families. Furthermore, con-
structions such as 6.1 and 6.2 only become powerful if matrices such as the
{M1,M2,N} and {P1,P2,P3,H}, respectively, mentioned there exist. We shall
show later how the results of this section can be used in these constructions.

Let

K =
[

0 1
−1 0

]
, L =

[
1 0
0 −1

]
, M =

[
0 1
1 0

]
, I =

[
1 0
0 1

]
and H =

[
1 1
1 −1

]
.

We use + for +1 and − for −1. Also we use I for the identity matrix.

Definition 5.9. Matrices A, B which satisfy AB� = BA� will be said to be
amicable. A best pair is a pair of amicable weighing matrices (A,B) of weights
i, j, respectively, satisfying

A� = −A, B� = B, AB� = BA� .

A best pair family of order n is a set of best pairs (Ai,Bj) of order n and
weights i and j where

i = 1,2,3, . . . ,n−1, j = 1,2,3, . . . ,n and

A�
i = −Ai, B�

j = Bj , AiB
�
j = BjAi .
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Theorem 5.27. There is no best pair of weights (15,1) in order 16. Equiva-
lently, there is no symmetric weighing matrix of order 16 and weight 15 with
a zero on the diagonal.

Proof. The proof is long and combinatorial. It is given in detail in Robinson
[166]. �	
Definition 5.10. For convenience we will call a repeat design (P ; (R;S);H)
of type (1;(r;s);h) in order n a triplet when P = I. Alternatively, a triplet is
three weighing matrices (R,S,H) of order n and weights (r,s,h), respectively,
which are pairwise amicable; R,S are skew-symmetric, and H is symmetric.

We note that:

Lemma 5.12. There are triplets in orders n = 2 and 4 for weights (i, j,k)
where i, j = 1,2, . . . ,n−1 and k = 1,2, . . . ,n. Hence, there is a best pair family
of orders 2 and 4.

Proof. For order 2 consider the pairs (K,M) and (K,H). The required matri-
ces for order 4 are (the weights are given in brackets):

1. (1,2,1) {K × I, K ×H; L× I} ,
2. (1,2,2) {K × I,K ×H; L×H} ,
3. (1,2,3) K × I,K ×H; L×H +M × I ,
4. (1,2,4) {K × I,K ×H; H ×H} ,
5. (1,3,1) {K ×L,K × I +H ×K; M ⊕−L} ,
6. (1,3,2) {K ×L,L× I +H ×K; H ×L} ,
7. (1,3,3) {K ×L,K × I +H ×K; M ⊕K + I ×M +K ×K} ,
8. (1,3,4) {K ×L,L× I +H ×K; L× I +M ×L+ I ×M +K ×K} ,
9. (2,3,1) {I ×L+L×M,L× I +H ×L; L⊕−M} ,

10. (2,3,2) {K ×H,L×K +M ×K +K × I; M × I −L× I} ,
11. (2,3,3) {I ×L+L×M,L× I +H ×L; M ⊕L+ I ×M +L×L} ,
12. (2,3,4) {I ×K +K ×M,K × I +H ×K;

L× I +M ×L+ I ×M +K ×K} .
�	

Because of the extremely powerful constructions that arise from repeat
designs, we wished to extend this lemma to higher powers of two. This effort
led to the results that follow:

Construction 5.1. If A,B,C is a triplet of weights (a,b,1) in order n, then
(A,B,AC) and (A,B,AC + C) are triplets of weights (a,b,a) and (a,b,a+ 1).

Since by Theorem 5.15 there is no best pair of weights (7,5) in order 8, we
have, regarding a best pair (A,B) as a triplet (X,A,B):

Corollary 5.26. There are no triplets of weight (x,7,5), (4,7,1) or (5,7,1)
in order 8.

We are grateful to Amnon Neeman for the proof of another result using
Lemma 5.5.
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Theorem 5.28. Let n ≡ 0 (mod 8). Then it is not possible to have triplets
of weights (a,n−1,1) in order n, where a = n−4, n−3, n−2, or of weights
(3,7,1) in order 8.

Proof. Lemma 5.5 allows us to consider the triplet (X,Y,Z) where
Z = ⊕

1
2 n−1 [0 1

1 0 ]⊕ [−1 0
0 1

]
. The result follows by a careful combinatorial argu-

ment. �	
In fact, in order 8 we can say:

Lemma 5.13. In order 8 all triplets (R,S,H) of weights (r,s,h), 0≤ r, s≤ 7,
0 ≤ k ≤ 8, exist except

(i) (3,7,1), (4,7,1), (5,7,1), (6,7,1) and (r,7,5), 1 ≤ r ≤ 6, which do not
exist, and possibly,

(ii) (5,7,2), (6,7,2), (6,7,4), (3,7,3), (4,7,3), (5,6,3), (5,7,3), (6,7,3), (1,5,7),
(3,5,7), (3,7,7), (4,7,7), (5,7,7), (6,7,7), which are undecided.

Proof. Part i) follows from the previous corollary and Theorem 5.28 which
shows that (3,7,1) and (6,7,1) do not exist.

Lemma 6.9 parts i), iii), iv), v) and the above construction give all those
that exist except (3,5,1), (3,5,5), (1,5,1), (1,7,1), (2,7,1) and (1,7,3). �	

Now we note that a repeat design of type (r; (p1, . . . ;q);w1, . . .) in order n
gives a repeat design of type (r; (q;p1, . . . , q);w1, . . .) in order 2n by Lemma
6.9.

Hence the repeat design of type (1;(2;3);1) in order 4 gives the (1;(3;5);1)
in order 8 and hence the triplet (3,5,1) and by Construction 5.1 the (3,5,5) in
8. We now give specific constructions for (1,5,1), (1,7,1), (2,7,1) and (1,7,3).

Let

S =

⎡⎢⎢⎣
0 1 0 0
0 0 1 0
0 0 0 1
− 0 0 0

⎤⎥⎥⎦ ,R =

⎡⎢⎢⎣
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤⎥⎥⎦ ,R2 = I

and K, L, M be as defined above. Write E =−S +S2 +S3 and G = S +S2 +S3.
Then

(L×S2, I2× (S +S3)+K ×ER, L×S2)

and

(L×S2, L×G+K × (E + I)�R(S3 +S− I)�R⊕ (−S2−S + I)�R)

are (1,5,1) and (1,7,3), respectively. Amnon Neeman found the following
(1,7,1):
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0 1
− 0

0 1
− 0

0 1
− 0

0 1
− 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 − − 1 1 1
− 0 1 1 − − − 1
− − 0 1 1 1 1 1
1 − − 0 − 1 − 1
1 1 − 1 0 − 1 1
− 1 − − 1 0 − 1
− 1 − 1 − 1 0 −
− − − − − − 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The following three matrices give a (2,7,1):⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 0
− 0 0 −
− 0 0 1
0 1 − 0

0 0 1 1
0 0 1 −
− − 0 0
− 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 − 1 − − 1
− 0 1 − − 1 1 1
− − 0 1 1 1 − 1
1 1 − 0 1 1 1 1
− 1 − − 0 1 − −
1 − − − − 0 − 1
1 − 1 − 1 1 0 −
− − − − 1 − 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,v

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

0 − 0 0
− 0 0 0
0 0 1 0
0 0 0 −

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

This gives the results of the enunciation after using Construction 5.1 to
obtain (1,5,5), (1,7,7) and (2,7,7).

Remark 5.7. This lemma indicates that the existence problem for triplets
(R,S,H) which are repeat designs (I; (R;S);H) is very difficult and far from
resolved.

But this lemma does allow us to say:
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Corollary 5.27. There are best pairs for all (a,b), 0 ≤ a ≤ 7, 0 ≤ b ≤ 8, in
order 8 except (7,5). There are amicable weighing matrices for all (a,b), 0≤ a,
b ≤ 8, in order 8.

The results on repeat designs §5.10 allow us to say:

Theorem 5.29. There are amicable weighing matrices for all (a,b), 0 ≤ a,
b ≤ 2t, in order 2t. Now Lemma 5.8, together with the results quoted above,
let us say:

Lemma 5.14. In order 16 there exist best pairs (a,b) ( = repeat designs
(1;(a);b)) for all a = 1,2, . . . ,15 and b = 1,2, . . . ,16 except possibly the pairs
(a,b): (13,1), (13,5), (13,9), (15,7), (15,9), (15,15), which are undecided, and
(15,1), which does not exist.

Now, as promised, we apply these results to Constructions 6.1 and 6.2 to
obtain:

Construction 5.2. Suppose there is a triplet of weights (a,b,c) in order n.
Then there is an orthogonal design of type

(i) OD(2n; (1,1,a,b))

and when c = 1, of types,

(ii) OD(4n; (1,1,1,a,a,a,c)), OD(4n : (1,1,1,a,a,b,c)) .

Construction 5.3. Suppose there is a best pair of weights (a,b) in order
n. Further suppose there is a product design of type (a1, . . . ,ap; b1, . . . , bq;
c1, . . . , cr) in order m. Then there is an OD(mn; (a1, . . . ,ap, ab1, . . . ,abq,
bc1, . . . , bcr)). See Chapter 6 for more details.

Example 5.14. There is a product design of type (1,1,1,1,2,4, . . . ,2t−4; 2,2t−3;
2,4, . . . ,2t−4,2t−3,2t−3) in order 2t. So using a best pair of weights (a,b) in
order n gives an OD(2tn; (1,1,1,1,2,4, . . . ,2t−4, 2a,2t−3a, 2b,4b, . . . , 2t−4b,
2t−3b,2t−3b)).

5.15 Repeat and Product Design Families

Just as the delightful discovery of amicable orthogonal designs led to both
beautiful constructions and algebraic depth associated with quadratic forms,
we will see in Chapter 6 that powerful repeat and product designs lead to
wonderful results building on the basis of amicable orthogonal designs.

We see

{OD, AOD, POD} ⊂ {Repeat Design Families}.



Chapter 6
Gastineau-Hills Schemes: Product
Designs and Repeat Designs

6.1 Generalizing Amicable Orthogonal Designs

We started our study of orthogonal designs by constructing some and then
analyzing their structure using well known theorems on Clifford algebras and
far-reaching theorems of Hurwitz and Radon.

We noted the use of amicable Hadamard matrices in the construction of
Hadamard matrices and saw that amicable orthogonal designs arose in a
natural way in the construction of orthogonal designs hinting that they are
simple cases of a far deeper concept. So in Chapter 4 we turned to study the
structure and existence theory of amicable orthogonal designs. In Chapter 5
we explored the construction of amicable orthogonal designs.

Chapter 3 showed us that a knowledge of existence of orthogonal designs in
orders which are powers of two was necessary for the solution for the algebraic
problem. Then in Chapter 5 we saw that knowledge of existence of amicable
designs in powers of two was crucial to the algebraic theory.

Some results in the original paper [83] of Geramita and Seberry then hinted
that the existence of new kinds of designs and algebras would prove invaluable
in the construction of powers of two greater than five. Powers of two up to
four were amenable to extremely clever computer searches but higher power
were computationally infeasible.

This chapter further studies higher powers re-affirming the powerful contri-
butions of Peter J. Robinson in his PhD thesis which exploited the unnamed
construction of Geramita and Seberry which came to be called product designs
and repeat designs.

This work of Robinson hinted that there might be deeper designs and
structures which used product designs and repeat designs as examples of their
algebraic fundamentals.

Thus we have the work of Humphrey Gastineau-Hills [63] whose brilliant
construction and insights have led to a new algebra, the Clifford-Gastineau-
Hills algebra completely resolving the algebraic existence for product designs,
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which are a special case of repeat designs. Sections 6.4 and later are devoted
to this beautiful theory.

6.1.1 Product Designs

Geramita and Seberry Wallis [83] gave a number of interesting matrices in
their journey to construct orthogonal designs. We repeat here some of these
constructions in order to try to elicit the underlying structure. We have
changed variable names and the wording of theorems to further the journey.

In an early construction they give:

Theorem 6.1 (Geramita-Seberry [83]). Suppose S,R,P are {0,1,−1}
matrices where

(i) R∗P = 0;
(ii) R +P is an orthogonal design OD(n;p1,p2);

(iii) S and x1R +x2P are amicable AOD(n; (s1, . . . ,st),(p1,p2)).

Then the matrix Q is an OD(4n;s1, . . . ,st,p1,p1,p1,pz,p2,p2).

Q =

⎡⎢⎢⎢⎢⎢⎣
y1R +z1P y2R +z2P xS y3R +z3P

−y2R +z2P y1R−z1P −y3R−z3P xS

−xS y3R−z3P y1R +z1P −y2R +z2P

−y3R +z3P −xS y2R +z2P y1R−z1P

⎤⎥⎥⎥⎥⎥⎦ (6.1)

We note that the above matrix can be written in the form

M1×R + M2×P + N ×S ,

where M1, M2 and N are the 4×4 matrices of the coefficients of R, P and S,
respectively. In the next subsection we use X for R, Y for P and Z for S.

[M1,M2,N ] are sometimes written , to save space, in superimposed notation⎡⎢⎢⎣
y1z1 y2z2 x y3z3
ȳ2z2 y1z̄1 ȳ3z̄3 x

x̄ y3z̄3 y1z1 ȳ2z2
ȳ3z3 x̄ y2z2 y1z̄1

⎤⎥⎥⎦
In [83] a variation of the matrix in equation 6.1 was introduced:

Theorem 6.2 (Geramita-Seberry [83]). Suppose R is the identity matrix
and P1,P2,P3 are skew-symmetric {0,1,−1} matrices of order n where
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(i) R∗Pi = 0, i = 1,2,3;

⎡⎢⎢⎣
x1R +P1 x3R +P2 x5R +P3 H
−x3R +P2 x1R−P1 H −x5R−P3
−x5R +P3 −H x1R−P1 x3R +P2

−H x5R−P3 −x3R +P2 x1R +P1

⎤⎥⎥⎦
is an OD(4n; (1,p11,p12, . . . ,1, p21,p22, . . . ,1, p31,p32, . . . ,h1,h2, . . .)).

These conditions seem to be inconceivably onerous but Geramita and
Seberry [80] and Peter Robinson [166] showed that they can be satisfied many
times. We are interested in generalizing this idea. With this in mind, we give
the following definition.

Definition 6.1. Let M1, M2 and N be OD(n;a1, . . . ,ar),
OD(n;b1, . . . , bs) and OD(n;c1, . . . , ct), respectively. Then (M1 ; M2 ; N) are
product designs of order n and types (a1, . . . ,ar; b1, . . . , bs; c1, . . . , ct) if

(i) M1 ∗N = M2 ∗N = 0 (Hadamard product),
(ii) M1 +N and M2 +N are orthogonal designs, and
(iii) M1M�

2 = M2M�
1 (i.e., M1 and M2 are amicable orthogonal designs).

Example 6.1. Theorem 6.1 produces product designs of order 4 and types
POD(4 : 1,1,1; 1,1,1; 1).

We also note:

Example 6.2. Table 6.1 gives product designs POD(8;1,1,1; 1,1,1; 5).

Example 6.3. Table 6.2 gives product designs POD(12;1,1,1; 1,1,1; 9).

6.1.2 Constructing Product Designs

The next theorem gives us a way of obtaining product designs from product
designs of smaller orders.

Theorem 6.3 (P. J. Robinson). Let (M1; y1M3 + y2M4; N) be product
designs POD(n;a1, . . . ,ar; b1, b2; c1, . . . , ct), and let S and x1R + x2P be
AOD(m; (u),(v,w)). Then

(ii) R+Pi are orthogonal designs OD(n;1,pi1,pi2, . . .), i= 1,2,3;
(iii) H is an OD(n;h1,h2, . . .);
(iv) PiP

�
j = PjP �

i , Pi,Pj are amicable OD(n; (pi1,pi2,pi3, . . .); (pj1,pj2, . . .)),
i = 1,2,3;

(v) PkH� = HP �
k are amicable AOD(n; (pk1, . . .); (h1,h2, . . .))

Then the matrix Q is an OD(4n;r1, r2, . . . ,p11,p12, . . . , r1, r2, . . . ,p21,p22, . . . ,
r1, r2, . . . ,p31,p32, . . . ,h1,h2.

Then
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Table 6.1 Product Design: P OD(8;1,1,1; 1,1,1; 5)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 x2 z x3 z z z z̄
x̄2 x1 x̄3 z z z̄ z z
z̄ x3 x1 x̄2 z z̄ z̄ z̄

x̄3 z̄ x2 x1 z z z̄ z
z̄ z̄ z̄ z̄ x1 x2 z x̄3
z̄ z z z̄ x2 x2 x3 z
z̄ z̄ z z z̄ x̄3 x1 x̄2
z z̄ z z̄ x3 z̄ x2 x1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1 y2 0 y3
y2 ȳ1 ȳ3 0 0
0 ȳ3 y1 y2

y3 0 y2 ȳ1
y2 y3 0 ȳ1
y3 ȳ2 y1 0

0 0 y1 y2 y3
ȳ1 0 y3 ȳ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(where x̄ = −x)

Table 6.2 Product Design: P OD(12;1,1,1; 1,1,1; 9)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 x2 x3 z̄ z z z z̄ z z̄ z z̄
x̄2 x1 z̄ x̄3 z z̄ z̄ z̄ z̄ z̄ z̄ z̄
x̄3 z x1 x2 z z z̄ z z z z̄ z̄
z x3 x̄2 x1 z z̄ z z z z̄ z̄ z
z̄ z̄ z̄ z̄ x1 x2 x3 z̄ z z z̄ z
z̄ z z̄ z x̄2 x1 z̄ x̄3 z z̄ z z
z̄ z z z̄ x̄3 z x1 x2 z̄ z̄ z̄ z
z z z̄ z̄ z x3 x̄2 x1 z̄ z z z
z̄ z z̄ z̄ z̄ z̄ z z x1 x2 x3 z̄
z z z̄ z z̄ z z z̄ x̄2 x1 z̄ x̄3
z̄ z z z z z̄ z z̄ x̄3 z x1 x2
z z z z̄ z̄ z̄ z̄ z̄ z x3 x̄2 x1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1 y2 y3 0
y2 ȳ1 0 ȳ3 0 0
y3 0 ȳ1 y2
0 ȳ3 y2 y1

y2 y3 y1 0
0 y3 ȳ2 0 ȳ1 0

y1 0 ȳ2 y3
0 ȳ1 y3 y2

y3 ȳ1 ȳ2 0
0 0 ȳ1 ȳ3 0 y2

ȳ2 0 ȳ3 ȳ1
0 y2 ȳ1 y3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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(x1P ×M3 +R×M1; y1S×M3 +y2R×M4; z1P ×M4 +S×N)

are product designs of order mn and types

(wb1,va1, . . . ,var; ub1,vb2; wb2,uc1, . . . ,uct) .

Proof. By straightforward verification. �	
A very useful form of this theorem is using AOD(2; (1,1),(2)) (see Section

5.1). We state this particular case in the following corollary.

Corollary 6.1. Let (M1; y1M3 + y2M4; N) be product designs POD(n : a1,
. . . ,ar; b1, b2; c1, . . . , ct). Then there are product designs POD(2n : b1,a1, . . . ,
ar;2b1, b2; b2,2c1, . . . ,2ct).

In Theorem 6.3 and Corollary 6.1 we may have M3 or M4 equal to zero.
In this case, however, the next theorem gives a better result.

Theorem 6.4 (P.J. Robinson). If (M1; M2; N) are product designs
POD(n;a1, . . . ,ar; b; c1, . . . , ct) and if S and y1R + x2P are amicable or-
thogonal designs AOD(m; (u1, . . . ,uj), (v,w1, . . . ,wk)), then there are product
designs of order mn and the following types:

(i) (va1, . . . ,var; vb; cu1, . . . , cuj , bw1, . . . , bwk) and
(ii) (va1, . . . ,var; vb; uc1, . . . ,uct, bw1, . . . , bwk),

where u and c are the sums of the ui’s and ci’s, respectively.

Proof. We consider

(R×M1; R×M2; S×N +P ×M2) ,

with the appropriate variables equated. �	
The next result gives us a way of obtaining product designs from amicable

orthogonal designs.

Theorem 6.5. If S and y1R +y2P are AOD(n; (u1, . . . ,uj),(v,w)) then([
zS x1R
x1R S

]
;

[
y1R +y3P y2R

y2R −y1R +y3P

]
;

[
0 P
−P 0

])
are product designs of order 2n and types

(v,u1, . . . ,uj ; v,v,w; w) .

Proof. By straightforward verification. �	
In the following Lemma we give examples of product designs which will be

used later to produce a very useful orthogonal design.
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Lemma 6.1 (P.J. Robinson). There are product designs of order 2t, t ≥ 4,
and types

(1,1,1,1,2,4, . . . ,2t−3; 2,2t−3; 2,4, . . . ,2t−3,2t−2,2t−2) .

Proof. The product designs POD(4 : 1,1,1; 1,2; 1) produce product designs
POD(8 : 1,1,1,1; 2,2; 2,2) (Corollary 6.1). This design in turn produces
product designs POD(16: 1,1,1,1,2; 2,4; 2,4,4).

By repeated use of Corollary 6.1 we obtain the required result. �	
Table 6.3 lists product designs of orders 4 and 8 which are obtained by

using the results given here.

Table 6.3 Product designs of order 4 and 8

Product Designs Construction

Order 4
(1,1,1; 1,1,1; 1) Example 6.1
Order 8
(1,1,1,2; 1,1,3; 3) ((1,1,2);(1,3)) ((1,1);(1,1))
(1,1,2,3; 1,3,3; 1) ((1,1,2);(3,1)) ((1,1);(1,1))
(1,1,2,2; 2,2,2; 2) ((1,1,2);(2,2)) ((1,1);(1,1))
(1,1,1,1; 2,2; 2,2) (1,1,1; 1,2; 1)
(1,1,1,2; 1,4; 1,2) (1,1,1; 2,1,1)
(1,1,1; 1,1,1; 5) Example 6.3

6.2 Constructing Orthogonal Designs from Product
Designs

We now produce a generalization of Theorem 6.1.

Theorem 6.6 (P.J. Robinson). Let S and y1R+P be AOD(m; (u1, . . . ,uj),
(v,w1, . . . ,wk)), and let (M1;M2;N) be product designs POD(n : a1, . . . ,ar;
b1 . . . , bs; c1 . . . , ct). Then there exist orthogonal designs

(i) OD(mn; (va1, . . . ,var, wb1, . . . ,wbs, uc1, . . . ,uct)),
(ii) OD(mn; (va1, . . . ,var, wb1, . . . ,wbs, u1c, . . . ,ujc)),

(iii) OD(mn; (va1, . . . ,var, w1b, . . . ,wkb, uc1, . . . ,uct)),
(iv) OD(mn; (va1, . . . ,var, w1b, . . . ,wkb, u1c, . . . ,ujc).

where b, c, u and w are the sums of the bi’s, ci’s, ui’s and wi’s, respectively.
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Proof. We consider
M1×R +M2×P +N ×S ,

with the appropriate variables equated. �	
As an example of the use of this theorem, we give the following lemma.

Lemma 6.2 (P.J. Robinson). There is an OD(2t; (1,1,1,1,2,2,4,4, . . . ,
2t−2,2t−2)), t ≥ 2.

Proof. If t ≥ 5, we apply the above theorem with the product designs of
order 2t−1 and types (1,1,1,1,2,4, . . . ,2t−4; 2,2t−3; 2,4, ...,2t−4,2t−3,2t−3)
(Lemma 6.1) and AOD(2;(1,1),(2)). �	

The OD(16;(1,1,1,1,2,2,4,4)) may be obtained in a similar manner by
using the product designs POD(8 : 1,1,1,1; 2,2; 2,2) (see proof of Lemma
6.1).

The design of order 4 and type (1,1,1,1) is given in Section 4.1, and the
design of type (1,1,1,1,2,2) is obtained from OD(8;(1,1,1,1,1,1,1,1)) (see
§4.1).

We note that the above orthogonal designs have 2t variables. If t = 4k + 1,
ρ(2t) = 8k + 2 = 2t, and if t = 4k + 2, ρ(2t) = 8k + 4 = 2t. Therefore, if
t = 4k +1 or 4k +2, the above design has the maximum number of variables
allowed. We also note that the above design is full. That is, the design contains
no zeros.

By equating variables in the above design, we obtain:

Corollary 6.2 (P.J. Robinson). All orthogonal designs of type (1,1,a,b,c),
a+ b+ c = 2t−2, exist in order 2t, t ≥ 3.

Proof. Noting that any number < 2t−1−1 can be formed from 1,2,4, . . . ,2t−2,
we have the result. �	

In Appendix F we give the types of some orthogonal designs in order 32
obtained from product designs and by doubling orthogonal designs in order
16. We further illustrate Theorem 6.6 by obtaining designs in order 16.

Corollary 6.3 (Geramita-Wallis). Suppose there exist AOD(n : (u1, . . . ,
up); (v1, . . . ,vq)). Then, since there are product designs of type (1,1,1;1,1,1;1)
in order 4, there exist orthogonal designs of type

(i) OD(4n; (u1,u1,u1,3u2, . . . ,3up,v1, . . . ,vq)) and
(ii) OD(4n; (u1,u1,u1,w,w,w,v1, . . . ,vq)).

where w = u2 +u3 + · · ·+up.

Example 6.4. There exist orthogonal designs of types

(a) OD(16;(1,1,1,1,1,1,1,1,2)),
(b) OD(16;(1,1,1,1,1,2,2,2,2)),
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(c) OD(16;(1,1,1,1,1,2,3,3,3)),
(d) OD(16;(1,1,2,2,2,2,2,2,2)),
(e) OD(16;(1,1,2,2,2,2,3,3))
Proof. Use AOD(4;(1,1),(1,1,2)), AOD(4;(1,2), (1,1,2)), AOD(4;(1,1,2),
(1,1,2)) and AOD(4;(2,2),(1,1,2)) in Corollary 6.3 part (ii) to obtain a), b),
c) and d). For e) we use AOD(4;(2,1,1),(1,1,2)) in 6.3 part (i). �	
Remark 6.1. More recent notation of Kharaghani [120] would write these
designs

OD(16;18,2) OD(16;15,24) OD(16;15,2,33)
OD(16;12,27) OD(16;12,24,32)

We now give two results to show how product designs may be used to
obtain orthogonal designs in orders other than powers of 2.
Lemma 6.3 (P.J. Robinson). There are product designs of order 12 and
types

POD(12;1,1,1;1,1,4;4) , POD(12;1,1,4;1,1,1;1) ,
POD(12;1,1,4;1,4,4;1) , POD(12;1,1,4;1,1,4;4) ,
POD(12;1,4,4;1,4,4;1) , POD(12;1,1,1;1,1,1;9) .

Proof. Wolfe [247] gives AOD(6;(1,1),(1,4)) and AOD(6;(1,4),(1,4)). By
using these designs in Theorem 6.5, we obtain the first five designs. The last
is given in Example 6.3. �	

By using Theorem 6.6 with the above designs, we obtain:
Corollary 6.4 (P.J. Robinson). There are orthogonal designs

OD(24;(1,1,1,1,1,1,9,9)) , OD(24;(1,1,1,1,4,4,4,4)) ,
OD(24;(1,1,1,1,1,4,4,4)) , OD(24;(1,1,1,1,1,1,1,4)) .

(That is OD(24;16,92), OD(24;15,43), OD(24;14,44), OD(24;17,4).)
By using Lemma 6.3 and Corollary 6.4 we obtain:

Lemma 6.4 (P.J. Robinson). There are product designs

POD(12;1,1,1;1,1,4;4) , POD(12;1,1,4;1,4,4;1) ,

POD(12;1,1,4;1,1,4;4) , POD(12;1,4,4;1,4,4;1) ,

POD(12;1,1,4;1,1,1;1) , POD(12;1,1,1;1,1,1;9) .

Lemma 6.5. There are orthogonal designs of order 24 and types:

OD(24;1,1,1,1,1,1,9,9) , OD(24;1,1,1,1,4,4,4,4) ,

OD(24;1,1,1,1,1,4,4,4) , OD(24;1,1,1,1,1,1,1,4) .

We note
Lemma 6.6 (Ghaderpour [84]). There is no POD(n;1,1,1;1,1,1;n− 3)
for n �= 4,8,12.
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6.2.1 Applications

By equating variables in the orthogonal designs given in Appendix D, we
obtain the following lemmas.

Lemma 6.7 (P.J. Robinson). All 6-tuples of the form (a,b,c,d,e,32−a−
b− c−d−e), 0 < a+ b+ c+d+e < 32, are the types of orthogonal designs
in order 32.

Corollary 6.5. All n-tuples, n = 1,2,3,4, are the types of orthogonal designs
in order 32.

6.3 Using Families of Matrices – Repeat Designs

Repeat designs introduced by Geramita and Seberry [80] were first named
repeat designs in Robinson’s PhD Thesis [166]. The motivation for the con-
structions of this chapter arises from the following observations:

Construction 6.1. Suppose (M1;M2;N) is a product design of type
(u1,u2, . . . ;v1,v2; . . . ;w) and order n. Then, with x1, x2 commuting variables.[

M1 +x1N M2 +x2N
M2−x2N −M1 +x1N

]
is OD(2n; (w,w,u1,u2, . . . ,v1,v2, . . .)).

(This construction will be discussed further in Section 6.4)

Construction 6.2 (Geramita-Wallis [83]). Let Y1, Y2, Y3 be skew-sym-
metric orthogonal designs of types (pi1,pi2, . . .), i = 1,2,3 in order n, and Z
a symmetric OD(n : h1,h2, . . .). Further, suppose YiY

�
j = YjY �

i and YkZ� =
ZY �

k . Then⎡⎢⎢⎣
x1In +Y1 x3In +Y2 x5In +Y3 Z
−x3In +Y2 x1In−Y1 Z −x5In−Y3
−x5In +Y3 −Z x1In−Y1 x3In +Y2

−Z x5In−Y3 −x3In +Y2 x1In +Y1

⎤⎥⎥⎦
is an OD(4n; (1,p11,p12, . . . ,1, p21,p22, . . . ,1, p31,p32, . . . ,h1,h2, . . .)).

Proof. By straightforward verification. �	
To generalize this design, we introduce the following definition:

Definition 6.2. Let X,Y1,Y2, . . . ,Z be orthogonal designs OD(n;
(r1, r2, . . .), (pi1,pi2, . . .)), i = 1,2, . . . ,(h1,h2, . . .), respectively.
Then (X : (Y1;Y2; . . .);Z) are repeat orthogonal designs, ROD, of order n and
types (r1, r2, . . .); (p11,p12, . . . ; p21,p22, . . . ; . . .); (h1,h2, . . .) if
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(i) X ∗Yi = 0, i = 1,2, . . . ,
(ii) X +Yi, i = 1,2, . . . , are orthogonal designs,
(iii) X +Yi and Z, i = 1,2, . . . , are amicable orthogonal designs,
(iv) YiY

�
j = YjY �

i , i �= j.

Then we have

Construction 6.3. Let (L;M1 +M2 + · · ·+Ms;N) be product designs
POD(n : a1, . . . ,ap; b11, . . . , b1q1

, b21, . . . , b2q2
, . . . , bs1, . . . , bsqs ; c1, . . . , ct),

where Mi is of type (bi1, . . . , biqi).
Further, let (X; (Y1;Y2; . . . ;Yu);Z) be repeat orthogonal designs, ROD(m :

(r1, . . . , rw); (p11, . . . ,p1v1
; p21, . . . ,p2v2

; pu1, . . . ,puvu); h1, . . . ,hx). Then

L×X +M1×Yj1 + · · ·+Mk ×Pjk +N ×Z

is an orthogonal design of order mn and type 1 of

(i) (a1r, . . . ,apr, b1p11, . . . , b1p1v1
, . . . , bsps1, . . . , bspsqs , ch1, . . . , chx),

(ii) (a1r, . . . ,apr, b1p11, . . . , b1p1v1
, . . . , bsps1, . . . , bspsqs , c1h, . . . , cth),

(iii) (ar1, . . . ,arw, b1p11, . . . , b1p1v1
, . . . , bsps1, . . . , bspsqs , ch1, . . . , chx),

(iv) (ar1, . . . ,arw, b1p11, . . . , b1p1v1
, . . . , bsps1, . . . , bspsqs , c1h, . . . , cth).

where a, c, r, h are the sum of some or all of the ai, ci, ri, hi, respectively,
and bi = bi1 + · · ·+ biqi .

This construction is at first sight quite formidable, but as we shall see, it
does lead to new orthogonal designs.

We have previously mentioned product designs, so we need to find some
repeat designs to see if any new orthogonal designs can be obtained. First we
see that they do lead to new designs:

Example 6.5. There are repeat designs ROD(4 : (1;(1;3);1,3)), ROD(4 :
(1; (2;3);1,3)), ROD(4 : (1; (1;2);1,1,2)), and ROD(4 : (1; (2;1,2);1,2)). They
are (I; (T1;T4);T0), (I; (T3;T4);T0), (I; (T1;T3);T3), and (I; (T2;T6);T7), where
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T0 =

⎡⎢⎢⎣
x y y y
y −x y y
y −y y −x
y y −x −y

⎤⎥⎥⎦ , T1 =

⎡⎢⎢⎣
0 + 0 0
− 0 0 0
0 0 0 −
0 0 + 0

⎤⎥⎥⎦ ,

T2 =

⎡⎢⎢⎣
0 0 + +
0 0 + −
− − 0 0
− + 0 0

⎤⎥⎥⎦ , T3 =

⎡⎢⎢⎣
0 0 + +
0 0 − +
− + 0 0
− − 0 0

⎤⎥⎥⎦ ,

T4 =

⎡⎢⎢⎣
0 + + +
− 0 + −
− − 0 +
− + − 0

⎤⎥⎥⎦ , T5 =

⎡⎢⎢⎣
u v w w
v −u −w w
w −w v −u
w w −u −v

⎤⎥⎥⎦ ,

T6 =

⎡⎢⎢⎣
0 a b b

−a 0 −b b
−b b 0 −a
−b −b a 0

⎤⎥⎥⎦ , T7 =

⎡⎢⎢⎣
u 0 w w
0 −u −w w
w −w 0 −u
w w −u 0

⎤⎥⎥⎦ .

Repeat designs ROD(4 :(1;(1,1;1,1);1)), ROD(4 :(1;(1,1;1,2);2)), ROD(4 :
(1;(1,1;2);1,2)), ROD(4 : (1;(1;1,2);2,2)) and ROD(4 : (1;(1,2;1,2);4)) can
be constructed using Lemma 6.9 .

Example 6.6. There are product designs POD(8 : 1,1,2,3;1,3,3;1), POD(8 :
2,2;1,1,1,1;4) and POD(8 : 1,1,1;1,1,1;5). Then using the repeat design
ROD(4 : 1;(2;3);1,3) with the matrix of weight 2 used once only, we have
OD(32;(1,1,2,3,2,9,9,1,3)), OD(32;(2,2,2,3,3,3,4,12)) and OD(32;
(1,1,1,2,3,3,5,15)).

Since all of these have weight 31, we use the Geramita-Verner theorem
to obtain the following orthogonal designs: OD(32;1,1,1,1,2,2,3,3,9,9),

OD(32;1,2,2,2,3,3,3,4,12) and OD(32;1,1,1,1,2,3,3,5,15). These last two
designs are new.

The product designs POD(4 : 1,1,1;1,1,1;1) can be used with the repeat
designs of types (1;(p;3);1,3), p = 1,2, to obtain OD(16;1,1,1,1,p,p,3,3),
p = 1,2. These were first given in Geramita and Seberry [80].

Remark 6.2. In the preceding example we have concentrated on constructing
orthogonal designs with no zero. There is considerable scope to exploit these
constructions to look, for other orthogonal designs in order 32 and higher
powers of 2.

We can collect the results from Example 6.5 in the following statement:

Statement 6.1. In order 4 there exist repeat designs of types (1;(r;s);h) for
0 ≤ r, s ≤ 3, 0 ≤ h ≤ 4.
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Noting that the repeat designs (R; (P );H) are just amicable orthogonal
designs R +P and H, we see that:

Corollary 6.6. There exist AOD(4;(1, r),(h)) for 0 ≤ r ≤ 3, 0 ≤ h ≤ 4.

Remark 6.3. The non-existence of AOD(8; (1,7),(5)) and AOD(16;(1,15),(1))
means there are no repeat designs of types (1;(r;7);5) in order 8 and
(1;(r;15);1) in order 16 (see Robinson [167]).

The construction and replication lemmas given later allow us to say:

Comment 6.1. In order 8 there, in fact, exist repeat designs (1;(r);h) for
all 0 ≤ r ≤ 7 and 0 ≤ h ≤ 8, except r = 7, h = 5 (which cannot exist).

In order 16 there exist repeat designs (1;(r);h) for all r = 1,2,3, . . . ,15,
h = 1,2, . . . ,16, except possibly the following pairs (r,h) : (13,1), (13,5), (13,9),
(15,7), (15,9), (15,15) which are undecided and (15,1) which does not exist.

6.3.1 Construction and Replication of Repeat Designs

We now show that many repeat designs can be constructed.

Lemma 6.8. Suppose ((a); (b1, b2)) and ((c); (d1,d2)) are the types of amicable
orthogonal designs in orders n1 and n2. Then there is a repeat design in order
n1n2 of type (b1d1; (ad2, b2d1;b2c,b1d2);ac).

Proof. Let A,x1B1 + x2B2 and C,y1D1 + y2D2 be the amicable orthogonal
designs. Then (B1 ×D1;(xA×D2 + yB2 ×D1;uB2 ×C + wB1 ×D2);A×C)
are the required repeat designs. �	
Example 6.7. Let A = C =

[1 1
1 −

]
, B1 = D1 =

[1 0
0 1

]
, and B2 = D2 =

[ 0 1− 0
]
.

Then the repeat design in order 4 and type (1;(1,2;1,2);4) is⎛⎜⎜⎝I4 ;

⎛⎜⎜⎝
⎡⎢⎢⎣

0 y x x
ȳ 0 x x̄

x̄ x̄ 0 y
x̄ x ȳ 0

⎤⎥⎥⎦ ;

⎡⎢⎢⎣
0 u w u
ū 0 ū w

w̄ u 0 ū
ū w̄ u 0

⎤⎥⎥⎦
⎞⎟⎟⎠ ; z

⎡⎢⎢⎣
1 1 1 1
1 − 1 −
1 1 − −
1 − − 1

⎤⎥⎥⎦
⎞⎟⎟⎠ .

Before we proceed to our uses of repeat designs, we first note some replica-
tion results.

Lemma 6.9. Suppose there are repeat designs ROD(n : (r; (p1, . . . ,pi;
q1, . . . , qj);h1, . . . ,hk)) called X,Y,Z where h1 +h2 + · · ·+hk = h and p1 + · · ·+
pi = p. Further suppose A + B and C + D are AOD(m; (a,b),(c,d)). Then
there are repeat designs of order mn and types

(i) (ar; (cp1, cp2, . . . , br;aq1,aq2, . . . , bh);ch),
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(ii) (ar; (ap1,ap2, . . . ;cq1, cq2, . . .);ah1,ah2, . . . , chi, . . .),
(iii) (ar; (ap1,ap2, . . . , bh1;cq1, cq2, . . .);ch1,ah2,ah3, . . .),
(iv) (ar; (bh1, bh2, . . . ;rb+pd,cq1, cq2, . . .);rd+ bp), where d = b,
(v) (ar; (cq1, cq2, . . . ;cp);ah1,ah2, . . . , bp),

(vi) (ar; (br,dp1,dp2, . . . ;aq1,aq2, . . . , bh);dh),
(vii) (ar; (cp1, . . . ;cq1, . . .);ch1, ch2, . . . ,dr),

(viii) (ar; (cp1, . . . ,dq1, . . .);ah1,ah2, . . . , bp1, bp2, . . .),
(ix) (ar; (ap1, . . . ;aq1, . . .);ch,dh),
(x) (cr; (br;bh1, bh2, . . .);ar),

(xi) (cr; (br;bh);ar,abrh).

Proof. Use the following constructions:

(i) (A×X; (C ×Y +xB×X;yA×Q+zB×Z);C ×Z),
(ii) (A×X; (A×Y ;C ×Q);xA×V +C ×W ),
(iii) (A×X; (A×Y +xB×V ;C ×Q);C ×V +yA×W ),
(iv) (A×X; (B×Z;xB×X +yC ×Q−xD×Y );D×Z +B×Y ),
(v) (A×X; (C ×Q;C ×Y );xA×Z +yB×Y ),
(vi) (A×X; (B×X +wD×Y ;xA×Q+yB×Z);D×Z),
(vii) (A×X; (C ×Y ;C ×Q);C ×Z +yD×X),
(viii) (A×X; (C ×Y +xD×Q);A×Z +yB×Y ),
(ix) (A×X; (A×Y ;A×Q);C ×Z +yD×Z),
(x) (C ×X; (B×X;B×Z);A×X),
(xi) use Lemma on the result (x). �	
Corollary 6.7. There are repeat designs of type ROD(2t : 1; (1,2, . . . ,2t−1;
1,2, . . . ,2t−1); 2t).

Proof. Use part (i) of Lemma 6.9 repeatedly with repeat designs ROD(4 :
1;(1,2;1,2);4) and type AOD(2;(1,1),(2)). �	

6.3.2 Construction of Orthogonal Designs

The use of repeat designs with product designs is so powerful a source of
orthogonal designs that it is quite impossible to indicate all the designs
constructed. Hence we give only those that are used to give Corollary 5.131.

designs.

Corollary 6.8. The following types of orthogonal designs exist in order 2t:

(i) (1,1,1,1,2,2,4,4, . . . ,2t−2,2t−2),
(ii) (1,1,2,1,2,4,8, . . . ,2t−3,3,6,12, . . . ,3.2t−3),

(iii) (1,1,2,4,8, . . . ,2t−3,2t−3,2t−2,3,3,6, . . . ,3.2t−4),
(iv) (1,1,2,4,8, . . . ,2t−3,3,6,9,18, . . . ,9.2t−5,3.2t−4),
(v) (1,2,3,2t−4,3.26[t−4],3.26[t−3],3,3,6,6,12,12, . . . ,3.2t−5,3.2t−5),

We use Robinson’s Ph.D. thesis and Appendix I as a source for product
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(vi) (2,1,2, . . . ,2t−s−4, (2t−s−3−1)(bin(2s+1−1))2t−s−2(bin(2s+1−1)),
2s+1, 2t−22t−s−3−1,2t−s−3−1).

where xbin(2y − 1) means x times the binary expansion of 2y − 1, i.e.,
x,x,2x,4x, . . . ,2y−1x.

Proof. (i) Proved by Robinson [166, Lemma 5.36,p.46].
(ii) Use the product design POD(2t : 1,1,2,3,6,12, . . . ,3.2t−4; 1,3.2t−3; 1,2,

. . . ,2t−4) with AOD((1,1);(1,1)). For the remainder we use product
designs with repeat designs as indicated.

(iii) Use (1,1,1,2, . . . ,2t−4; 1,2t−3; 1,2, . . . ,2t−4) with (1;(1,2;3);4).
(iv) Use (1,1,2,3,6, . . . ,3.2t−5; 1,3.2t−4; 1,2, . . . ,2t−5) with (1;(1,2;3);4).
(v) Use (1,1,2,1,2, . . . ,2t−5; 3,2t−4; 3,6, . . . ,3.2t−3) with (1;(1,2;3);4).
(vi) (1,1,1,1,2, . . . ,2s; 2,2s+1; 2, . . . ,2s+1,2s+1) with (1;(bin(2t−s−3−1);

2t−s−3−1); 2t−s−3). �	
Remark 6.4. This corollary allows us to find all four variable designs of type
(a,b,c,2t − a− b− c) for t = 5,6,7 (see Appendix F), all but the design of
type (13,13,15,215) for t = 8, and all but the designs of types (13,13,15,471),
(27,29,29,427), (29,29,29,425), (29,29,31,423), (31,45,45,391) for t = 9.

To eliminate those remaining, we observe:

Corollary 6.9. All orthogonal designs of order 2t+k exist of types
(i) a,b,ma,2t+k −a−ma− b), where a = 2t−1, m < 2k−1, 0 ≤ b ≤ 2t+k−1;

(ii) (a,b,ma,2t+k − a−ma− b), where a = 2t − 2s − 1, m < 2k−1, 0 ≤ b ≤
2t+k−1 +1;

(iii) (a,a,a,2t+k −3a), where 0 ≤ a ≤ 2t+k−2;
(iv) (a,a,b,2t+k −2a− b), where 2t−1 ≤ a ≤ 2t, 0 ≤ b ≤ 2k−1−1;
(v) (a,a,2t−a, (bin a), 2t+k −2t−2a), where 2t−1 ≤ a ≤ 2t

(note: 2t−a, (bin a) can always be used to give 2t−1 or 2t−1−1).
Proof. Call the product designs (1,binx,2j −x,2j , . . . ,2k−2; 1,2k−1; 1,2, . . . ,
2k−2) the product designs A. We now use product designs with repeat designs
as indicated:
(i) Use A with (1;(1,2, ,2t−1;2t−1);2t).
(ii) Use A with (1,2s; (1,2, . . . ,2s−1,2s+1, . . . ,2t−1;2t−2s−1);2t).
(iii) Use AOD((a,2t+k−2 − a); (2t+k)) in order 2t+k with product designs

POD(4 : 1,1,1;1,1,1;1).
(iv Use A with (2t−a; ((bin (a);a);2t) to get the orthogonal design (a,a,a

& v) bin(2k−l−b−1), b(bin (a)), 2t−a, 2k−1(2t−a), 2t,2t+1, . . . ,2t+k−2). �	
So we have:

Corollary 6.10. All orthogonal designs of type (a,b,c,2t−a− b− c) and of
type (a,b,c), 0 ≤ a+ b+ c ≤ 2t, exist for t = 2,3,4,5,6,7,8,9.

Remark 6.5. We believe these results do, in fact, allow the construction of all
full orthogonal designs (that is, with no zero) with four variables in every
power of 2, but we have not been able to prove this result.
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6.4 Gastineau-Hills on Product Designs and Repeat
Designs

We recall Theorem 6.1 and equation (6.1). Observe that this matrix may be
expressed in the form:

M1⊗R +M2⊗P +N ⊗S (6.2)

where C,Y,Z are the 4×4 matrices of the coefficients of M1,M2,N respec-
tively.

Using the notation X for xR, Y for P and Z for S in Equation (6.1), then
it may be verified that

(X,Y,Z) =

⎡⎢⎢⎣
y1z1 y2z2 x y3z3
ȳ2z2 y1z̄1 ȳ3z̄3 x

x̄ y3z̄3 y1z1 ȳ2z2
ȳ3z3 x̄ y2z2 y1z̄1

⎤⎥⎥⎦
is a triple of orthogonal designs on (x;y1,y2;z1,z2) (we have “superimposed”
X,Y,Z as in Definition (3.1) in Gastineau-Hills [63, p.11]), which satisfies the
following conditions:

(i) X ∗Y = X ∗Z = 0
(ii) X +Y,X +Z are orthogonal designs
(iii) Y Z� = ZY �

(6.3)

It may also be shown that if (X = xR,Y,Z) is any triple satisfying (6.3),
and if M1,M2,N are as in Equation (6.1), then M1⊗R +M2⊗P +N ⊗S is
an orthogonal design. (This fact will appear later to be a particular case of a
more general theorem).

This generalization of Equation (6.1) has proved very useful for constructing
new orthogonal designs, and has led Robinson [168] to the study of general
triples (X,Y,Z) which satisfy (6.3) (here we may remove the restriction that
X is on only one variable). Such triples are called product designs.

We wish to present an alternative definition of a product design. In the
following we suppose that X,Y,Z are designs of types (u1, . . . ,up),(v1, . . . ,vq),
(w1, . . . ,wr) on variables x1, . . . ,xp;y1, . . . ,yq;z1, . . . ,zr respectively.

Note first that the conditions (6.3) imply:

XY � = −Y X� , XZ� = −ZX� (6.4)

Proof. For suppose X,Y,Z satisfy (6.3). Then on the one hand since X +Y,X +
Z are orthogonal designs clearly of types (u1, . . . ,up,v1, . . . ,vq), (u1, . . . ,up,
w1, . . . ,wr) on (x1, . . . ,xp,y1, . . . ,yq),(x1, . . . ,xp,z1, . . . ,zr) respectively, we
have
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(X+Y )(X+Y )� = (u1x2
1 + · · ·+upx2

p +v1y2
1 + · · ·+vqy2

q )I

and

(X+Z)(X+Z)� = (u1x2
1 + · · ·+upx2

p +w1z2
1 + · · ·+wrz2

r )I.

On the other hand

(X+Y )(X+Y )� = XX� +Y Y � +XY � +Y X�

= (u1x2
1 +· · ·+upx2

p)I +(v1y2
1 +· · ·+vqy2

q )I+XY �+Y X�

and similarly

(X+Z)(X+Z)� = (u1x2
1 +· · ·+upx2

p)I+(w1z2
1 +· · ·+wrz2

r )I +XZ�+ZX�.

Hence

XY � +Y X� = 0 , XZ� +ZX� = 0 and (6.4) follows.�	

Note secondly that the conditions (6.4) and (6.3) (i) together imply the
condition (6.3) (ii).

Proof. For suppose X,Y,Z are orthogonal designs satisfying (6.4) and (6.3) (i).
Then X +Y,X +Z are clearly defined as {0,±xi,±yj},{0,±xi,±zk} matrices
respectively, and are orthogonal since

(X +Y )(X +Y )� = XX� +Y Y � +XY � +Y X�

= (
∑

uix
2
i )I +(

∑
viy

2
i )I

= (
∑

uix
2
i +vjy2

j )I ,

and similarly

(X +Z)(X +Z)� = (
∑

uix
2
i +wkz2

k)I .

Hence (6.3)(ii) holds. �	
It follows that the following definition of a product design is essentially

equivalent to our previous definition.

Definition 6.3. Suppose X,Y,Z are orthogonal designs of order n, types
(u1, . . . ,up),(v1, . . . ,vq),(w1, . . . ,wr) on variables (x1, . . . ,xp),(y1, . . . ,yq),
(z1, . . . ,zr) respectively, and that

(i) XY � = −Y X�, XZ� = −ZX�, Y Z� = ZY �
(ii) X ∗Y = 0, X ∗Z = 0.

Then we call the triple (X,Y,Z), a product design of order n, type
(u1, . . . ,up),(v1, . . . ,vq),(w1, . . . ,wr) on the variables (x1, . . . ,xp;y1, . . . ,yq;
z1, . . . ,zr).
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The condition Y Z� = ZY � of Definition 6.3 (i) is the condition of amica-
bility. We introduce a new expression to apply to the other two conditions of
6.3:

Definition 6.4. Orthogonal designs X,Y are called anti-amicable if they
satisfy the condition XY � = −Y X�

(equivalently: X�Y = −Y �X) .

Thus a product design is a triple of orthogonal designs, one pair of which
is amicable, and the other two pairs anti-amicable, and such that the anti-
amicable pairs have zero Hadamard products.

As with amicable k-tuples, we might expect that it would be very useful to
have information on the connections between possible orders of product designs
and numbers of variables involved. Before pursuing this matter however, let us
consider yet another method which has been used to construct new orthogonal
designs, and which leads naturally to what can be regarded as generalization
of the product designs. This is a slight variation of Theorem 6.2.

Lemma 6.10 (Geramita, Seberry-Wallis [83]). If P1,P2,P3,H are pair-
wise amicable orthogonal designs, with P1,P2,P3 skew symmetric and H
symmetric, then⎡⎢⎢⎣

z1I +P1 z2I +P2 z3I +P3 H

−z2I +P2 z1I −P1 H −z3I −P3
−z3I +P3 −H z1I −P1 z2I +P2

−H z3I −P3 −z2I +P2 z1I +P1

⎤⎥⎥⎦
is an orthogonal design. (I is the identity matrix of appropriate size).

Observe that this matrix may be expressed in the form:

I ⊗A+P1⊗B1 +P2⊗B2 +P3⊗B3 +H ⊗C

where A,B1,B2,B3,C are 4×4 matrices of the coefficients of I,P1,P2,P3,H
respectively.

A,B1,B2,B3,C are {0,±1} matrices, but if we set Yi = yiBi (i = 1,2,3),
Y = Y1 +Y2 +Y3, X = xC then it may be verified that (X,Y = Y1 +Y2 +Y3,Z)
is a product design on the variables (x;y1,y2,y3;z1,z2,z3).

Also if we set R = rI, then R,P1,P2,P3,H are orthogonal designs which
satisfy:

(i) R∗Pi = 0 for each i,
(ii) R +Pi is an orthogonal design for each i,
(iii) All pairs (R,H),(Pi,H),(Pi,Pj) are amicable.

(6.5)

Proof. (i) since R = rI and the Pi are antisymmetric; (ii) since (R +Pi)(R +
Pi)� = RR� +RP �

i +PiR
� +PiP

�
i = r2I +r(P �

i +Pi)+PiP
�
i = r2I +PiP

�
i

etc.; (iii) is trivial. �	
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It may also be shown that if Z,Y1 = y1B1, . . ., Yk = ykBk, X = xC,
(Bi,C,{0,±1} matrices) are orthogonal designs such that Yi ∗ Yj = 0 (all
i �= j) and (X,Y = Y1 + · · ·+Yk,Z) is a product design, and if R = rA (A a
{0,±1} matrix), P1, . . . ,Pk,H are orthogonal designs satisfying (6.5), then

A⊗Z +P1⊗B1 + · · ·+Pk ⊗Bk +H ⊗C (6.6)

is an orthogonal design (this fact will appear later as a particular case of a
general theorem).

This generalization of Lemma 6.10 has proved useful for constructing new
orthogonal designs. So it seems that a study of sets of designs satisfying (6.5)
could be profitable. Following Robinson and Seberry [169] we call such a set a
repeat design, but as we did with product designs we prefer to give the formal
definition in an alternative form:

Definition 6.5. Suppose X,Y1, . . . ,Yk,Z are orthogonal designs of
order n, types (u1, . . . ,up),(v11, . . . ,v1q1), . . . ,(vk1, . . . ,vkqk

),(w1, . . . ,wr) on
the variables (x1, . . . ,xp),(y11, . . . ,y1q1), . . . ,(yk1, . . . ,vkpk

),(z1, . . . ,zr) respec-
tively, and that

(i) YiX
� = −XY �

i ,

(ii) YjY �
i = YiY

�
j , ZX� = XZ�, ZY �

i = YiZ
� (all i, j)

(iii) X ∗Yi = 0 (all i)

Then we call the (k + 2)-tuple (X,Y1, . . . ,Yk,Z) a repeat design of order
n, type (u1, . . . ,up;v11, . . . ,v1q1 ; . . . ;vk1, . . . ,vkqk

;w1, . . . ,wr) on the variables
(x1, . . . ,xp;y11, . . . ,y1q1 ; . . . ;yk1, . . . ,vkpk

;z1, . . . ,zr).

Of course X,Y1, . . . ,Yk,Z in 6.5 correspond to R,P1, . . . ,H respectively in
(6.5). Otherwise, apart from the fact that we have allowed X in 6.5 to be on
more than one variable, the conditions (6.5), 6.5 are equivalent, by the same
kind of argument as given in our previous discussion of product designs.

Product designs may be regarded as particular cases of repeat designs,
given by k = 2, Z = 0 (zero matrix, which may be regarded as an orthogonal
design on no variables) .

Similarly a theory of repeat designs should yield a theory of amicable
k-tuples, if we can allow X = Z = 0. In the immediate following we assume
that X has at least one variable (while allowing Y1, . . . ,Yk,Z to have as few
as no variables each), but later it will be found that this restriction may be
removed painlessly.

Let (X,Y1, . . . ,Yk,Z) be a repeat design of order n, type (u0,u1, . . . ,up;
v11, . . . ,v1q1 ; . . . ;vk1, . . . ,vkqk

;w1, . . . ,wr) on the p + 1, q1, . . . , qk, r variables
(x0,x1, . . . ,xp;y11, . . . ,y1q1 ; . . . ;yk1, . . . ,ykqk

;z1, . . . ,zr), (p,q1, . . . , qk, r r ≥ 0)
We have
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XX� =
(

p∑
0

ujx2
j

)
I , YiY

�
i =

(
qi∑
1

vijy2
ij

)
I , ZZ� =

(
r∑
1

wjz2
j

)
I

Y1X� = −XY �
1 , (6.7)

YjY �
i = YiY

�
j (i �= j) , YiZ

� = ZY �
i , XZ� = ZX� ,

and similar equations with X�X, etc., in place of XX�, etc.
Write

X =
p∑
0

xjAj , Yi =
qi∑
1

yijBij , Z =
r∑
1

zjCj

(Aj ,Bij ,Cj {0±1} matrices)

Substituting into (6.7) and comparing like terms gives:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

AjA�
j = ujI, BijB�

ij = vijI, CjC�
j = wjI,

AiA
�
j +AjA�

i = 0 (i �= j), BijB�
ik +BikB�

ij = 0 (j �= k),
CiC

�
j +CjC�

i = 0 (i �= j),
BjkA�

i = −AiB
�
jk , CjA�

i = AiC
�
j ,

Bk�B�
ij = BijB�

k� (i �= k) , CkB�
ij = BijC�

k ,

and similar equations with products reversed.
Set

Ei = 1√
uiu0

AiA
�
0 , Fij = 1√

viju0
BijA�

0 , Gi = 1√
wiu0

CiA
�
0 . (6.8)

It is easily verified that E0 = I and E1, . . . ,Ep, F11, . . . ,F1p1 , Fk1, . . . ,Fkpk
,

G1, . . . ,Gr satisfy⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

E2
i = −I , F 2

ij = −I , G2
i = I

EjEi = −EiEj (i �= j) FikFij = −FikFij (j �= k) ,

GjGi = −GjGi (i �= j)
FjkEi = −EiFjk , GjEi = −EiGj ,

Fk�Fij = FijFk� (i �= k) , GkFij = −FijGk

Again we have arrived at an order n representation of a real algebra which
is “Clifford-like”, with the one “non-Clifford” property that some pairs of
distinct generators commute.

This algebra may be defined as the real algebra on p + q1 + · · ·qk + r
generators α1, . . . ,αp, β11, . . . ,βlq1 , . . . ,βk1, . . . ,βkqk

, γ1, . . . ,γr, with defining
equations:
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α2
i = −1 , β2

ij = −1 , γ2
i = 1

αjαi = −αiαj (i �= j) , βikβij = −βijβik (j �= k)
γjγi = −γiγj (i �= j)
βjkαi = −αiβjk , γjαi = −αiγj ,

βk�βij = βijβk� (i �= k) , γkβij = −βijγk .

(6.9)

For a repeat design of order n on p+1, q1, . . . , qk, r variables to exist it is
necessary for a real order n representation of this algebra to exist.

We shall return later to the questions of just what are the possible orders of
representations of (6.9), and whether the existence of an order n representation
of (6.9) is sufficient for the existence of repeat design (6.7).

Observe that the case of product designs is included in what we have just
done — we simply take k = 2 and r = 0.

If we also rewrite q1, q2,β1j ,β2j as q,r,βj ,γj respectively we find that the
existence of an order n product design on (p + 1, q,r) variables implies the
existence of an order n representation of the real algebra on p+q+r generators
α1, . . . ,αp, β1, . . . ,βq,γ1, . . . ,γr with defining equations.⎧⎪⎨⎪⎩

α2
i = β2

j = γ2
k = −1

αjαi = −αiαj , βjβi = −βiβj , γjγi = −γiγj (i �= j)
βjαi = −αiβj , γjαi = −αiγj , γjβi = βiγj ,

(6.10)

again a “not-quite-Clifford” algebra.
Note that (6.10) is not quite the same as equation (3.10) in [63, p.20], so

that a theory of amicable triples need not necessarily by itself yield a theory
of product designs.

In fact not even equation (3.8) in [63, p.18] (the algebra corresponding to
more general amicable k-tuples), seems to contain (6.10) as a particular case.

6.5 Gastineau-Hills Systems of Orthogonal Designs

So far we have encountered several instances of sets of orthogonal designs
(amicable sets [63, p.11], product designs (Definition 6.3), and repeat designs
(Definition 6.5)), each such set having the property that each pair of members
is either amicable or anti-amicable. Each such set happened also to have
the property that each pair of anti-amicable members has zero Hadamard
product.

We have examined some of the more fruitful techniques that have been
developed to help find new orthogonal designs, and have found that each
such technique could be described as taking certain such sets of amicable/
anti-amicable designs, and forming sums of Kronecker products (Equations [63,
(3.6),p.15], (6.2), (6.6)).
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We have found that an attempt to find a relationship between the possible
orders of the designs in such sets and the numbers of variables involved leads
in each case to the consideration of an algebra which in general generalizes
the Clifford algebras and which, apparently, has not yet been studied ( [63,
(3.8)p.18], (6.9)).

It seems reasonable to introduce the following more general concept in the
hope that the theory discussed so far may be unified in a natural way, and in
the hope that through this unification and generalization more powerful ways
of tackling “the orthogonal design problem” may emerge.
Definition 6.6. A k-Gastineau-Hills system of order n, genus (δij) 1 ≤ i ≤
j ≤ k (where each δij) = 0 or 1), type (u11, . . . ,u1p1 ; . . . ;uk1, . . . ,ukpk

), on
p1, . . . ,pk distinct commuting variables x11, . . . ,x1p1 ; . . . ;xk1, . . . ,xkpk

is an
(ordered) k-tuple of n×n matrices (X1, . . . ,Xk) where, for each i,Xi has
entries from {0,±xi1, . . . ,±xipi}, and

(i) XiX
�
i =

(
pi∑

k=1
uikx2

ik

)
I (1 ≤ i ≤ k)

(ii) XjX�
i = (−1)δij XiX

�
j (1 ≤ i < j ≤ k)

We will write k-GH-system as shorthand for k-Gastineau-Hills system. The
system is called regular if in addition the Hadamard product Xi ∗Xj is zero
whenever δij = 1.

Thus each Xi is an orthogonal design, and each pair Xi,Xj is either amicable
(δij = 0) or anti-amicable (δij = 1). Regular systems have the additional
property that anti-amicable pairs are element-wise disjoint.
Example 6.8. (i) A single orthogonal design X = x1A1 + · · ·+xpAp (the Ai

{0,±1} matrices) on p variables where XX� =
(∑p

1 uix
2
i

)
I. Its genus

is vacuous (there being no i, j satisfying 1 ≤ i < j ≤ 1!), and it is vacu-
ously regular. On the other hand note that (x1A1, . . . ,xpAp) is a regular
p-system of genus (δij), 1 ≤ i < j ≤ p, where each δij = 1, and type
(u1; . . . ;up). Naturally it could be suggested that these two systems (X)
and (x1A1, . . . ,xpAp) should be regarded as “equivalent” – we pursue this
matter shortly.

(ii) An amicable k-tuple is a regular k-GH-system with genus (δij) where each
(δij) = 0.

(iii) A product design (X,Y,Z) (as defined in Definition 6.3) is a regular
3-GH-system of genus (δij) where δ12 = δ13 = 1 δ23 = 0.

(iv) A repeat design (X,Y1, . . . ,Yk,Z) (as defined in Definition 6.5) is a regular
(k +2)-GH-system of genus (δij) where δ12 = δ13 = · · · = δ1k+1 = 1, and
all other δij = 0.

(v)
[

xy xȳ
x̄y xy

]
, as a pair of order 2 designs on the variables (x;y) (written

“superimposed” –see [63, Example (3.3),p.12]), is a 2-GH-system of type
(2;2) and genus (δ12 = 1). This system is not regular.
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From 6.8 (v) we see that in general the property of being regular is non
trivial. However:

Lemma 6.11. A system of type (1,1, . . . ,1;1,1, . . . ,1; . . .) is regular.

Proof. In systems of this type each Xi has each of its variables occurring just
once in each row. Suppose Xi,Xj (i �= j) are anti-amicable. Then XjX�

i (=
−XiX

�
j ) is skew-symmetric, with zero diagonal elements. Suppose Xi = (ak�),

Xj = (bk�) where each ak� is from {0,±xi1, . . . ,±xipi} and each bk� is from
{0,±xj1, . . . ,±xjpj}. Then for fixed k the non zero |ak�|, |bkm| are distinct
independent variables, and

∑
� ak�bk�,= 0. Clearly then each term in this sum

must be zero and the result follows. �	
The importance of being regular is that if Xi,Xj ,Xk, . . . are pairwise anti-

amicable members of a regular system, they may be added to make a design
Xi +Xj +Xk + · · · . This design is orthogonal.

Remark 6.6. Indeed (Xi +Xj + · · ·)(Xi +Xj + · · ·)� = (
∑

a uiax2
ia +∑

b ujbx2
jb + · · ·)I, where (xia),(uia) are respectively the variables, types of

Xi etc., - since sums like XiX
�
j +XjX�

i are zero.

In particular:

Corollary 6.11. If, in a regular k-GH-system (X1, . . . ,Xk) of genus (δij),
all δij = 1, then X1 + · · ·+Xk is an orthogonal design.

In Corollary 6.11 we have in a sense reduced a k-GH-system to an “equiva-
lent” �-system, by adding pairwise anti-amicable designs. More generally we
have the following:

Lemma 6.12. Suppose, possibly after reordering the Xi of a k-GH-system
(X1, . . . ,Xk) and correspondingly reordering the genus, type and variable com-
ponents (δij), (uij), (xij), that for some r (1 ≤ r ≤ k) the designs Xr, . . . ,Xk

are pairwise anti-amicable, with pairwise Hadamard products zero. Suppose
further that, for each i < r, δir = δir+1 = · · · = δik.

Then (X1, . . . ,Xr−1,Xr + · · ·+ Xk) is an r-system of genus (δ′
ij), where

δ′
ij = δij (1 ≤ i < j ≤ r), type (u11, . . . ;u21, . . . ; . . . ;ur1, . . . ,ur+1 1, . . . ,uk1, . . .)

on the variables x11 . . . ;x21, . . . ;xr1, . . . ,xr+1 1, . . . ,xk1, . . .).
The new system is regular if and only if the original system is regular.

Proof. As in Corollary 6.11 Xr + · · ·+Xk is an orthogonal design. Its type is
(ur1, . . . ,ur+1 1, . . . ,uk1) and its variables are (xr1, . . . ,xr+1 1, . . . ,xk1, . . .).

We need only check (Xr + · · ·+Xk)X�
i (i < r)

=XrX�
i + · · ·+XkX�

i

=(−1)δir XiX
�
r +(−1)δik XiX

�
k

=(−1)δij′ Xi (Xr + · · ·+Xk)�
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and the first part follows.
The statement about regularity follows easily from

Xi ∗ (Xr + · · ·+Xk) = Xi ∗Xr + · · ·+Xi ∗Xk .�	

We now formalize the concept of “equivalence” of systems. The following
definition incorporates trivial equivalences as well as those suggested by
Lemma 6.12:

Definition 6.7. A k-GH-system S and an �-GH-system T are called equiva-
lent if there is a sequence S = S0,S1, . . . ,Sm = T of systems where for each i
either:

(i) each of Si−1,Si may be obtained from the other by one of the steps:

(a) renaming variables,
(b) changing signs of a variable throughout,
(c) changing signs of all elements of the same row (or column) of all the

designs,
(d) applying the same permutation to the rows (or columns) of each

design,
(e) transposing all the designs,
(f) reordering the designs within the system, or

(ii) one of Si−1,Si may be obtained from the other using Lemma 6.12.

Clearly each step of types (a) to (e) has no effect on genus or type, while a
step of type (f) merely reorders genus, type and variable components.

Also, if a system is regular, so is any equivalent system.
Hence we may speak of an “equivalence class” of systems, and may identify

any equivalence class as being regular or not, according as all or none of its
member systems are regular.

Thus the two systems (X), (x1A1, . . . ,xpAp) mentioned in Example 6.8 (i)
are equivalent in the sense of Definition 6.7 – the first being obtainable from
the second using Lemma 6.12.

As this example suggests, there are, in a sense, within each regular “equiv-
alence class” of systems two extremes.

On the one hand we could find an �-GH-system in the equivalence class
which minimises �. This can be done by taking a system (X1, . . . ,Xp) in the
class, and defining a relation - on the set of Xi by:

Xi ∼ Xj means either:

⎧⎪⎨⎪⎩
i = j, or
δij(or δji) = 1, or
δik(or δki) = δjk(or δkj), for all k �= i, j.

It is easy to show that this is an equivalence relation. As in Lemma 6.12
we may add together equivalent designs (remember that we are assuming
regularity!) producing an equivalent �-GH-system which clearly minimises �.
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On the other hand we may write each Xi as
∑

j xijAij (each Aij a {0,±1}
matrix), and form the system (x11A11, . . . ,x21A21, . . . ,xk1Ak1, . . .). This is an
equivalent �-GH-system where � is maximal (for the purposes of this argument
we must exclude from consideration systems which contain zero — i.e. no
variable designs).

Note that the Aij are here weighing matrices which satisfy Ak�A�
ij =

±AijA�
k� (all i, j,k,�).

It turns out that as far as the algebraic theory developed later is concerned,
we could well consider only those �-GH-systems for which � is maximal in an
equivalence class of systems. In other words we shall essentially be considering
sets of weighing matrices Aij which satisfy Ak�A�

ij = ±AijA�
k� (all i, j,k,�).

But for the Gastineau-Hills [63, p.44] theory of Kronecker products it will
be more convenient to work as far as possible with systems in more or less
“reduced” form.

6.6 The Structure and Representations of
Clifford-Gastineau-Hills Algebras

Definition 6.8. Let F be a commutative field of characteristic not 2, m an
integer ≥ 0, (ki)1≤i≤m a family of non-zero elements of F , and (δij)1≤i<j≤m

a family of elements from {0,1}.
The Quasi Clifford or QC, algebra C = CF [m,(ki),(δij)] is the algebra

(associative, with a 1) over F or m generators α1, . . . ,αm say with defining
equations:

(i)
{

α2
i = ki, (1 ≤ i ≤ m)

αjαi = (−1)δij αiαj , (1 ≤ i < j ≤ m)
(6.11)

where ki ∈ F is identified with ki1 of C.

If all δij = 1 we have the Clifford algebra corresponding to some non
singular quadratic form on F m. If in addition each ki = ±1, we have those
special Clifford algebras studied by Kawada and Iwahori [119]. Later we
shall be considering QC algebras for which the (αi) of Definition 6.8 are
given, or may be chosen, such that each ki = ±1. We call such algebras
Clifford-Gastineau-Hills or CGH, algebras.

The QC algebra C of Definition 6.8 is defined to within isomorphism by
the properties:

Definition 6.9. (a) It has m elements,α1, . . . ,αm say, which generate C (that
is, each element of C is an F -linear combination of words in the αi – the “null
word” 1 being one possible word), and which satisfy Definition 6.8;

(b) If D is any F -algebra containing elements β1, . . . ,βm, which satisfy
β2

i = ki, βjβi = (−1)δij , (i < j), there is an F -algebra homomorphism C �→ D
which maps αi to βi, for each i.
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The algebra described by equation (6.11) may be constructed as the free
F -algebra or m generators α1, . . . ,αm, factored out by the ideal generated by
the elements α2

i −ki1, αjαi− (−1)δij αiαj . (i < j).
Because of Definition 6.8 (i), any product of the αi reduces to an F -multiple

of one of the 2m elements αε1
1 . . .αεm

m (each εi = 0 or 1). So as a vector space
over F , C is spanned by these 2m elements and dimC ≤ 2m.

To show that dimC actually is 2m, let us define D to be the vector space
of all formal F -linear combinations of the 2m formal expression βε1

1 . . .βεm
m

(εi = 0,1). [These expressions may be identified as the 2m subsets of an m-set
in an obvious way]. Make D into an algebra by defining products:

(βε1
1 . . .βεm

m )
(
βη1

1 . . .βηm
m

)
= hβξ1

1 . . .βξm
m

where for each i, ξi is εi +ηi reduced modulo 2, and

h = h( ε∼, η
∼

) =
m∏

i=1

⎛⎝kεi
i

m∏
j=i+1

(−1)εjδij

⎞⎠ηi

We must check that this product is associative:

(βε1
1 . . .βεm

m )
((

βη1
1 . . .βηm

m

)(
βξ1

1 . . .βξm
m

))
=(βε1

1 . . .βεm
m )h

(
η
∼

, ξ
∼

)(
βη1+̇ξ1

1 . . .βηm+̇ξm
m

)
=h

(
η
∼

, ξ
∼

)
h

(
ε∼, η

∼
+̇ξ

∼

)
β

ε1+̇(η1+̇ξ1)
1 . . .β

εm+̇(ηm+̇ξm)
m

where +̇ is addition modulo 2.
Similarly (

(βε1
1 . . .βεm

m )
(
βη1

1 . . .βηm
m

))(
βξ1

1 . . .βξm
m

)
=h

(
ε∼, η

∼

)
h

(
ε∼+̇η

∼
, ξ
∼

)
β

(ε1+̇η1)+̇ξ1
1 . . .β

(εm+̇ηm)+̇ξm
m .

Since addition mod 2 is associative it remains only to verify that

h(η
∼

, ξ
∼

)h( ε∼, η
∼

+̇ξ
∼

) = h( ε∼, η
∼

)h( ε∼+̇η
∼

, ξ
∼

) .

[The former gives each ki raised to the power ηiξi +εi(ηi+̇ξi) = k1 say, and −1
raised to the power

∑m
i=1

∑m
j=i+1 ηjδijξi +

∑m
i=1

∑m
j=i+1 εiδij(ηi+̇ξi) = λ1

say.
The latter gives each ki raised to the power εiηi +(εi+̇ηi)ξi = k2 say, and

−1 raised to the power
∑m

i=1
∑m

j=i+1 εjδijηi +
∑m

i=1
∑m

j=i+1(εj+̇ηj)δijξi = λ2
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say. Clearly k1 = k2 since each of εi,ηi, ξi is 0 or 1, and also clearly λ1 ≡ λ2
(mod 2) as required].

β0
1β0

2 . . .β0
m is clearly a 1 for D, and identifying βi with

β0
1 . . .β0

i−1β1
i β0

i+1 . . .β0
m (i = 1, . . . ,m)

it is also easy to verify that

β2
i = ki1, βjβi = (−1)δij (βiβj) (i < j)

So by Definition 6.9 (b) there is a homomorphism C �→ D which takes αi

to βi (each i). Clearly the βi generate D, so that in fact this homomorphism
is subjective and dimC ≥ dimD = 2m [indeed we can now deduce C ∼= D]

We have proved:

Theorem 6.7. The algebra C of Equation (6.11) has dimension 2m as a
vector space over F , and a basis is

{αη1
1 . . .αηm

m : εi = 0 or 1} .

We use [. . .] for algebra generators, 〈. . .〉 for vector space generators. So

C = [α1 . . .αm]
= 〈1,α1, . . . ,αm,α1α2, . . . ,α1α2 . . .αm〉

Remark 6.7. The 2m basis elements in Theorem 6.7 have the properties

(a) each squares to a non zero F -multiple of 1, that multiple being ± a
product of the members of a subset of the (k1).

(b) each pair commutes or anti-commutes

Gastineau-Hills [63, p.67] then proceeds to show QC algebras are semi-
simple and develops the theory of QC algebras and Clifford-Gastineau-Hills
(CGH) algebras. We do not consider this here but proceed to their application
to product and repeat designs.

6.7 Decomposition

We now consider the following QC algebra:

Notation 6.1. For b ∈ F , let � Cb =� Cb(F ) denote the QC algebra over F on
one generator, β say, satisfying β2 = b.

For c,d ∈ F , let Qc,d = Qc,d(F ) denote the QC algebra over F on two
generators, γ,δ say, where γ2 = c, δ2 = d, δγ = −γδ.

These algebras are in fact Clifford algebras and their structures are known.
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The importance of the algebras �Cb,Qc,d lies in the fact that any QC algebra
decomposes into tensor product of such algebras. To show this we assume all
the elementary properties of tensor products, including the following:

Lemma 6.13. Let A be a finite dimensional algebra over F , and H,K sub-
algebras each containing the 1 of A. Suppose

(i) each element of H commutes with each element of K;
(ii) HK = A (where HK is the set of all finite sums

∑
hiki : hi ∈H, ki ∈K),

and
(iii) dimA = dimH dimK.

Then there is an isomorphism A ∼= H ⊗F K (the tensor product of algebras
over F ), given by hk �→ h⊗k. (in this case we shall identify h with h⊗1, k
with 1⊗k) [4, Ch.1 §5].

Clearly there is an extension of this lemma to the case of any finite number
of sub-algebras H1, . . . ,Hr of A each containing the 1 of A and satisfying

(i) each element of Hi commutes with each element of Hj , (i �= j),
(ii) H1 . . .Hr = A,
(iii) dimA = dimH1 . . .dimHr;

in which case A ∼= H1⊗F . . .⊗F Hr.
The decomposition of C = C[m,(ki),(δij)] = [α1, . . . ,αm] (see definition

6.8) proceeds as follows:
Suppose that all δij = 0, so that C is commutative. If m > 1, [α1, . . . ,αm] =

[α1][α2, . . . ,αm] since each basis element αε1
1 αε2

2 . . .αεm
m of C is the product of

elements of [α1], [α2, . . . ,αm] respectively.
Also dimC = 2m = 2×2m−1 = dim[α1]dim[α2, . . . ,αm] So by Lemma 6.13

C ∼= [α1]⊗ [α2, . . . ,αm] =� Ck1 ⊗C[m−1,(k′
i),(δ′

ij)]

where k′
i−1 = ki (2 ≤ i ≤ m), δ′

i−1,j−1 = δij (2 ≤ i < j ≤ m).
Suppose on the other hand that some δij = 1. We may suppose (possibly

after reordering the αi and correspondingly the ki, δij) that δ12 = 1, so that
α1,α2 anti-commute.

If m > 2, [α1, . . . ,αm] = [α1,α2][αδ23
1 αδ13

2 α3, . . . ,αδ2m
1 αδ1m

2 αm] since each
basis element αε1

1 . . .αεm
m of C is the product(

αη1
1 αη2

2
)((

αδ23
1 αδ13

2 α3
)ε3

. . .
(

αδ2m
1 αδ1m

2 αm

)εm
)

(divided possibly by ± a product of some of the ki), where η1 = ε1 +
∑m

j=3 δ2jεj

reduced modulo 2, and η2 = ε2 +
∑m

j=3 δ1jεj reduced modulo 2.
Now [αδ23

1 αδ13
2 α3, . . . ,αδ2m

1 αδ1m
2 αm] = 2m−2, as products of the αδ2i

1 αδ1i
2 αi

(3 ≤ i ≤ m) yield F -multiples of precisely 2m−2 of the basis elements
αε1

1 , . . . ,αεm
m of C.
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So dimC = 22 × 2m−2 = dim[α1,α2][αδ23
1 αδ13

2 α3, . . . ,αδ2m
1 αδ1m

2 αm]. Also,
as is easily verified, α1 and α2 commute with each αδ2i

1 αδ1i
2 αi (which is why

the latter elements were chosen!). So by Lemma 6.13:

C ∼= [α1,α2]⊗
[
αδ23

1 αδ13
2 α3, . . . ,αδ2m

1 αδ1m
2 αm

]
= Qk1,k2 ⊗C

[
m−2,(k′

i),(δ′
ij)

]
for some k′

i ∈ F, δ′
ij ∈ {0,1} .

Let us find the k′
i, δ

′
ij .

k′
i−2 is found by squaring αδ2i

1 αδ1i
2 αi (3 ≤ i ≤ m), thus

k′
i−2 =

(
αδ2i

1 αδ1i
2 αi

)(
αδ2i

1 αδ1i
2 αi

)
= αδ2i

1 αδ1i
2

(
αδ2i

1 αδ1i
2 αi

)
αi

(since αδ2i
1 αδ1i

2 αi commutes with both α1 and α2)

= (−1)δ1iδ2i αδ2i
1 αδ2i

1 αδ1i
2 αδ1i

2 α2
i

= (−1)δ1iδ2i
(
α2

1
)δ2i

(
α2

2
)δ1i α2

i

= (−1)δ1iδ2i kδ2i
1 kδ1i

2 ki

which is ± a product of some of the original k1, . . . ,km.
δ′

i−2,j−2 is found by considering:(
α

δ2j

1 α
δ1j

2 αj

)(
αδ2i

1 αδ1i
2 αi

)
(3 ≤ i < j ≤ m)

= αδ2i
1 αδ1i

2

(
α

δ2j

1 α
δ1j

2 αj

)
αi

= (−1)δij (−1)δ2iδ1j (−1)δ1iδ2j αδ2i
1 αδ1i

2 αiα
δ2j

1 α
δ1j

2 αj

= (−1)δ1iδ2j+δ1jδ2i+δij

(
αδ2i

1 αδ1i
2 αi

)(
α

δ2j

1 α
δ1j

2 αj

)
So δ′

i−2,j−2 = δ1iδ2j + δ1jδ2i + δij (reduced modulo 2 )

Remark 6.8. From this last result it is clear that if C is a Clifford algebra
with all δij = 1, then all δ′

ij = 1 and so the second factor in the tensor product
is again a Clifford algebra.

In general however C decomposes into an algebra � Cb1 , or Qc1,d1 tensored
by a QC algebra C[m−1 or m−2,(k′

i),(δ′
ij)] of dimension less than 2m. Note

that the new parameters k′
i, as well as the b1 or c1,d1 are each one of the

original ki, or ± a product of some of them.
Also the factors of the tensor product are given in terms of generators, m

in all, which can be identified as being an “alternative” generating set taken
from the basis {αε1

1 . . .αεm
m }. Induction on m gives the following theorem:
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Theorem 6.8. A QC algebra CF [m,(ki),(δij)] = [α1, . . . ,αm] (see Definition
6.8) is expressible as a tensor product over F :

C ∼= � Cb1 ⊗ . . .⊗ � Cbr ⊗Qc1,d1 ⊗ . . .⊗Qcs,ds

= [β1]⊗ . . .⊗ [βr]⊗ [γ1, δ1]⊗ . . .⊗ [γs, δs] say (6.12)

where r,s ≥ 0, r +2s = m, and each bi, cj ,dk is ± a product of some of the ki.
Each βi,γj , δk (where β2

i = bi, γ2
j = cj, δ2

k = dk, and all pairs commute
except δiγi = −γiδi, 1 ≤ i ≤ s) may be taken as being, to within multiplication
by ± a product of some of the ki, one of the basis elements {αε1

1 . . .αεm
m } is

(to within division by ± a product of ki’s) one of βθ1
1 . . .βθr

r γφ1
1 δψ1

1 . . .γφs
s δψs

s

(each θi, φj, ψk = 0 or 1). Thus the latter 2r+2s = 2m elements form a new
basis of C, and (β1, . . . ,βr,γ1, δ1, . . . ,γs, δs) is a new set of generators.

The numbers r,s are invariants of C as can be deduced from the following:

Lemma 6.14. The centre of C = [β1] ⊗ . . . ⊗ [βr] ⊗ [γ1, δ1] ⊗ . . . ⊗ [γs, δs]
(βi,γj , δk as in Theorem 6.8) is the 2r dimensional sub-algebra [β1]⊗ . . .⊗ [βr].

Proof. Clearly this subalgebra is contained in the centre. Conversely, let
ξ be in the centre. Expressing ξ as a linear combination of the basis
{βθ1

1 . . .βθr
r γφ1

1 δψ1
1 . . .γφs

s δφs
s } we have

ξ =
∑

hβθ1
1 . . .βθr

r γφ1
1 δψ1

1 . . .γφs
s δφs

s

where h = h(θ1, . . . ,θr,φ1,ψ1, . . . ,φs,ψs) is in F
For each i = 1, ...,s,

ξ = γ−1
i ξγi =

∑
±hβθ1

1 . . .βθr
r γφ1

1 δψ1
1 . . .γφs

s δφs
s

where the sign is negative when ψ = 1 (since γi commutes with all βj ,γj , δj

except δi).
Comparison of the two expressions for ξ shows that h = 0 for any basis

element with ψi = 1.
A similar argument using ξ = δ−1

i ξδi shows that for each i, h = 0 for any
basis element with φi = 1.

Hence ξ is a linear combination of the βθ1
1 . . .βθr

r only, so that ξ ∈
[β1, . . . ,βr] = [β1]⊗ . . .⊗ [βr] as required. �	
Remark 6.9. The converse of Theorem 6.8 is obviously also true – that is,
any algebra of the form (6.12) is a QC algebra. Indeed, regarded as an
algebra on the generators {βi,γj , δk}, C of the form (6.12) is the QC algebra
C[r+2s,(k′

i),(δ′
ij)] where k′

i, . . . ,k
′
r+2s = b1, . . . , br, c1,d1, . . . , cs,ds respectively,

and all δ′
ij = 0 except δ′

r+2i−1,r+2i = 1 for 1 ≤ i ≤ s.

From these facts it is clear that a tensor product of a finite number of QC
algebras is itself a QC algebra.
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If C is a Clifford algebra, it follows from the remark 6.8 that the decompo-
sition process splits off only Qci,di

type algebras, except for a possible final
commutative algebra on one generator. In other words, r of theorem 6.8 must
be 0 or 1 if C is a Clifford algebra.

Conversely, any algebra of the form (6.12) with r = 0 or 1 is a Clifford
algebra. This can be proved by induction on s. For suppose C is a Clifford
algebra on 2s generators [α1, . . . ,α2s]. Then

C ⊗Qc,d = [α1, . . . ,α2s]⊗ [γ,δ]
∼= [α1, . . . ,α2s,α1, . . . ,α2sγ,α1, . . . ,α2sδ]

using Lemma 6.13
This is a Clifford algebra on 2s + 2 generators since, as is easily verified,

α1, . . . ,α2s,α1, . . . ,α2sγ,α1, . . . ,α2sδ all anti-commute.
Similarly, again supposing C is a Clifford algebra on 2s generators,

C⊗ � Cb = [α1, . . . ,α2s]⊗ [β]
∼= [α1, . . . ,α2s,α1 . . .α2sβ] (using Lemma 6.13)

is a Clifford algebra.
Collecting these facts we have the following relationship between the classes

of QC algebras and Clifford algebras over a field F of characteristic not 2.

Theorem 6.9. The class of QC algebras over F is the smallest class which is
closed under tensor products and contains the Clifford algebras corresponding
to non singular quadratic forms over F .

It is the smallest class which is closed under tensor products over F and
contains the algebras � Cb,Qc,d (b,c,d ∈ F ).

The Clifford algebras are the QC algebras with 1 or 2 dimensional centres
(general QC algebras having 2r dimensional centres, r any non negative
integer).

6.8 Clifford-Gastineau-Hills (CGH) Quasi Clifford
Algebras

The structures of Clifford-Gastineau-Hills (CGH) algebras (CF [m,(ki), (δij)]
with each ki = ±1) can be deduced fairly quickly from the results of the
previous sections. However, since we shall be particularly interested in explicit
matrix representations of certain CGH algebras, it will be more convenient
to work from the prior results – in particular Theorem 6.8.

As in [119] it is convenient to classify the possible fields F into three types:

(I) F contains p such that −1 = p2.
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(II) F is not of type I, but contains p,q such that −1 = p2 + q2.
(III) F is not of type I or II.

Summary 6.1. The following summary of structures and representations of
� Cb,Qc,d for b,c,d = ±1 is readily deduced [64, p.10]:

Table 6.4 Summary of structures and representations [64] a

Algebra FTb Sc IRd Oe

� C1 = [β] any 2F β �→ (1) or β �→ (−1) 1

� C−1 = [β] { I 2F β �→ (p) or β �→ (−p) 1

II or III � C β �→
(

0 −1
1 0

)
2

Q±1,1 = [γ,δ] any F2 γ �→
(

0 ±1
1 0

)
, δ �→

(1 0
0 −1

)
2

Q1,−1 = [γ,δ] any F2 γ �→
(

0 1
1 0

)
, δ �→

(
0 −1
1 0

)
2

Q−1,−1 = [γ,δ] {
I F2 γ �→

(
0 −1
1 0

)
, δ �→

(
p 0
0 −p

)
2

II F2 γ �→
(

0 −1
1 0

)
, δ �→

(
p −q

−q −p

)
2

III Q γ �→
[

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

]
, δ �→

[
0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

]
4

a H. Gastineau-Hills [64, p.10] c©Cambridge University Press b field type c structure
d irreducible representation e order

where � C denotes the field F [
√−1] (F type II or III), and Q denotes the

quaternion division algebra [γ,δ](γ2 = δ2 = −1, δγ = −γδ) over F (F type
III).

Remark 6.10. For fields of-type III there are irreducible representations of
� Cb,Qc,d (b,c,d = ±1) in which are each represented by {0,±1} matrices with
just one non zero entry in each row and column.

Now in the decomposition of an CGH algebra, each of the bi, cj ,dk of
equation (6.12) is ±1. From Summary 6.1 it follows that the decomposition
of an CGH algebra takes (possibly after reordering the factors) the form:

C = [α1, . . . ,αm]
∼= 2F ⊗ . . .⊗2F ⊗F2⊗ . . .⊗F2 (F type I) (6.13)

or 2F ⊗ . . .⊗2F⊗ � C ⊗ . . .⊗ � C ⊗F2⊗ . . .⊗F2 (type II)
or 2F ⊗ . . .⊗2F⊗ � C ⊗ . . .⊗ � C ⊗Q⊗ . . .⊗Q⊗F2⊗ . . .⊗F2 (type III)

∼= [β1]⊗ . . . [βr]⊗ [γ1, δ1]⊗ . . .⊗ [γs, δs] say

where each βi,γj , δk is ± a product of the αi, and conversely each αi is ± a
product of the βi,γj , δk.
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The following lemma contains particular cases of more general results: we
draw attention to an important detail common to the proof of each part.

Lemma 6.15. (i) � C⊗ � C ∼= 2F⊗ � C (F a field of type II or III),

(ii) � C ⊗ Q ∼= � C ⊗F2 (F type III),

(iii) Q⊗Q ∼= F2⊗F2 (F type III).

Proof.
(i) � C⊗ � C

= � C−1⊗ � C−1
= [β1]⊗ [β2] say (β2

i = −1)
∼= [β1,β2]
∼= [β1β2]⊗ [β1] by Lemma 6.13, since β1β2,β1 commute and

generate [β1,β2]∼= 2F⊗ � C since (β1β2)2 = 1.

(ii) � C ⊗ Q
= � C−1⊗ � C−1,−1
= [β]⊗ [γ,δ] say (β2 = −1, γ2 = δ2 = −1, δγ = −γδ)
= [β,γ,δ]
∼= [β]⊗ [βγ,δ] by Lemma 6.13
∼= � C ⊗Q1,−1 since (βγ)2 = 1
∼= � C ⊗F2 by Summary 6.1.

(iii) Q⊗Q
= Q−1,−1⊗Q−1,−1
= [γ1, δ1]⊗ [γ2, δ2] say (γ2

i = δ2
i = −1, δiγi = −γiδi)

= [γ1, δ1,γ2, δ2]
∼= [γ1δ2, δ1]⊗ [δ1γ2, δ2] by Lemma 6.13
∼= Q1,−1⊗Q1,−1 since (γ1δ2)2 = (δ1γ2)2) = 1
∼= F2⊗F2�	

Note that in the proof of each part of Lemma 6.15 tensor products of
algebras in terms of certain generators are converted to tensor products of
algebras in terms of new generators. In each case the new generators are
certain products of the old, and each old generator is ± a product of the new.
Hence

Corollary 6.12. If Lemma 6.15 is applied to pairs of factors in equation
(6.13), the new generators are still ± products of the original αi, and each αi

is ± a product of the new generators.

Application of Lemma 6.15 sufficiently often to equation (6.13) yields:
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C ∼=

⎧⎪⎨⎪⎩
(i) 2F ⊗ . . .⊗2F ⊗F2⊗ . . .⊗F2 any type of field
(ii) 2F ⊗ . . .⊗2F⊗ � C ⊗F2⊗ . . .⊗F2 type II or III
(iii) 2F ⊗ . . .⊗2F ⊗Q⊗F2⊗ . . .⊗F2 type III

(6.14)

If we use the fact that ⊗ distributes over ⊕, and Fm⊗Fn = Fmn we immedi-
ately obtain the possible Wedderburn structures of CGH algebras:

Theorem 6.10. The Wedderburn structure of an CGH algebra C = C[m,(ki),
(δij)] (ki = ±1) as a direct sum of full matrix algebras over division algebras
is (depending on m,(ki),(δij)) one of⎧⎪⎨⎪⎩

(i) 2rF2s any type of field
(ii) 2r−1 � C ⊗F2s type II or III
(iii) 2rQ⊗F2s−1 type III ,

where in each case r +2s = m, and 2r is the dimension of centre.
Conversely (as in remark 6.9) any such algebra (I), (II) or (III) is an

CGH algebra C[r +2s,(ki),(δij)] (ki = ±1) with respect to certain generators.
Also (as in theorem 6.9) the subclass of algebras with structures (i), (ii) or
(iii) for which r ≤ 1 is precisely the class of algebras isomorphic to Clifford-
Gastineau-Hills algebras on r +2s generators (the generators anticommuting
and squaring to ±1).
Corollary 6.13. In case (i) of theorem 6.10 there are 2r inequivalent irre-
ducible representations, of order 2s; in case (ii) 2r−1 of order 2s+1, and in
case (iii) 2r of order 2s+1. Any representation must be of order a multiple of
(i) 2s, (ii)2s+1, (iii) 2s+1 respectively, and any such multiple is the order of
some representation.

Explicit matrix representations may be constructed using Summary 6.1
and equation (6.14) as follows.

Consider the case when C takes the form (6.14) (i), that is.:

C ∼= 2F ⊗ . . .⊗2F ⊗F2⊗ . . .⊗F2

= [β1]⊗ . . .⊗ [βr]⊗ [γ1, δ1]⊗ . . .⊗ [γs, δs] say.

By Summary 6.1 we have irreducible matrix representations for each [βi],
[γj , δj ], of orders 1,2 respectively. Suppose βi �→ Bi, γj �→ Cj and δk �→ Dk.
Then a representation λ say of C is defined by setting

λ
(

βθ1
1 . . .βθr

r γφ1
1 δψ1

1 . . .γφs
s δψs

s

)
= Bθ1

1 ⊗ . . .⊗Bθr
r ⊗Cφ1

1 Dψ1
1 ⊗ . . .⊗Cφs

s Dψs
s (6.15)

(each θi,φj ,ψk = 0 or 1) where here ⊗ denotes the Kronecker product.
Clearly λ is of order 1×·· ·×1×2×·· ·×2 = 2s so by Corollary 6.13 (i)

it is irreducible. The two inequivalent choices for each [βi] give rise to all
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2r inequivalent irreducible representations of C. Now since C is semi-simple,
to within equivalence any representation μ of C may be formed from some
family {λ1, . . . ,λt} of irreducible representations by defining:

μ(γ) =

⎡⎢⎢⎣
λ1(γ) ©

λ2(γ)

© . . .

⎤⎥⎥⎦ for all γ in C.

Any matrix representation μ′ equivalent to μ is of course given by μ′(γ) =
T −1μ(γ)T for some non singular matrix T over F .

Representations of C in the cases (6.14)(ii), (iii) are formed similarly.
Now the class of {0,±1} matrices with just one non zero entry per row and

column is closed under the operations

(a) taking ± ordinary products,
(b) taking Kronecker products,

(c) forming

⎡⎢⎣X1 ©
X2

© . . .

⎤⎥⎦ from matrices X1,X2, . . ..

So using Remark 6.10 and Corollary 6.12 the following can be deduced:

Theorem 6.11. If F is a field of type III (−1 is not the sum of two squares)
each representation of an CGH algebra C[m,(ki),(δij)] (k =±1) on generators
(αi) is equivalent to a matrix representation in which each αi corresponds to
a {0,±1} matrix with just one non zero entry in each row and column (an
orthogonal {0,±1} matrix).

6.9 The Order Number Theorem

We now apply the theory of Clifford-Gastineau-Hills algebras to the problem
of determining the possible orders of systems of orthogonal designs of a given
genus and on given numbers of variables.

Gastineau-Hills has shown that the existence of a k-system W of order
n, genus (δ′

ij)1≤i≤j≤k say (δ′
ij ∈ {0,1}), on p1 + 1,p2, . . . ,pk variables (each

pi ≥ 0), implies the existence of an order n representation of a certain real
algebra, C say, on p1 + p2 + · · ·+ pk generators (see [63, Ch.7]). In fact C
is the algebra on generators α11, . . . ,α1p1 ,α21, . . . ,α2p2 , . . . ,αk1 , . . . ,αkpk

say
with defining equations:⎧⎪⎨⎪⎩

α2
ij = (−1)δ′

1i

αikαij = −αijαik (j �= k)
αj�αik = (−1)δ′

1i+δ′
1j+δ′

ij αikαj� (i < j) (where δ′
11 is taken as 1)

(6.16)
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We have used δ′
ij here to avoid confusion with the parameters δij of theorem

6.10 which is to be used immediately].
Thus C is an CGH algebra with respect to the generators αij and the

results of Section 6.8 apply.
From Theorem 6.10 and Corollary 6.13 we deduce that the possible orders of

the system W are restricted to multiples of a certain integer, ρ say, where ρ =
2s,2s+1,2s+1 according to whether the C of 6.16 has structure 6.10(i),(ii),(iii)
respectively. Here the F of 6.10 is the reals (a field of type III), the m of 6.10
is p1 + · · ·+ pk, and each ki of 6.10 may be expressed easily in terms of the
δ′

ij .
We have in effect described an algorithm whereby, given p1 +1,p2, . . . ,pk

and (δ′
ij), a corresponding number ρ , a power of 2, may be computed. We may

regard ρ as being determined by the family (p1 +1,p2, . . . ,pk; (δ′
ij 1≤ i≤ j ≤ k)

and we make the following definition.

Definition 6.10. The order number of the family (p1 +1,p2, . . . ,pk;
(δ′

ij)1≤i≤j≤k) (pi ≥ 0, δ′
ij ∈{0,1}) is the order of the irreducible representations

of the algebra (6.16) (all irreducible representations of (6.16) having the same
order – a power of 2).

Thus a k-system W of genus (δ′
ij)1≤i≤j≤k on p1 +1,p2, . . . ,pk variables must

have order a multiple of the order number of the family
(

p1+1,p2, . . . ,pk; (δ′
ij)

)
.

We wish to show that conversely any multiple of the order number of
(p1 + 1,p2, . . . ,pk; (δ′

ij)) is the order of some k-system W of genus (δ′
ij) on

p1 +1,p2, . . . ,pk variables. We wish to show further that the system W may
be chosen to be regular, and of type (1,1, . . . ;1,1, . . . ; . . .).

Let n be any multiple of the order number of
(

p1 +1,p2, . . . ,pk; (δ′
ij)

)
.

By Corollary 6.13 there is an order n representation of the algebra (6.16),
and by theorem 6.11 we may take the αij as each being represented by an
order n, {0,±1} matrix, Eij say, with just one non zero entry per row and
column. §6.8 contains a description of how such a matrix representation may
be constructed].

The matrices Eij satisfy:⎧⎪⎨⎪⎩
E2

ij = (−1)δ′
1i I

EikEij = −EijEik , (j �= k)
Ej�Eik = (−1)δ′

1i+δ′
1j+δ′

ij EikEj� (i < j) (where δ′
11 = 1)

Also the matrices Eij are orthogonal.
It follows that E�

ij = (−1)δ′
1iEij for all i, j. Since δ′

11 = 1, all E1j are
anti-symmetric, so I ∗E1j = 0. Also if 1 ≤ j < k ≤ pi, then:

EikE�
ij = (−1)δ′

1i EikEij = −(−1)δ′
1i EijEik = −EijE�

ik
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Since Eij ,Eik each have only one non-zero entry per row it follows that
Eij ∗Eik = 0 [This is essentially a particular case of lemma 6.11, since (X1 =
x1Eij , X2 = x2Eik) is a 2-system of type (1;1) on the variables (x1;x2), with
X2X�

1 = −X1X�
2 ].

Hence we may form designs:

X1 = x10I +x11E11 + · · ·+x1p1E1p1 ,

X2 = x21E21 + · · ·+x2p2E2p2 ,

...
Xk = xk1Ek1 + · · ·+xkpk

Ekpk
.

Now

E1jI� = −IE�
1j , EikE�

ij = −EijE�
ik ; (j �= k) , EijE�

ij = (−1)δ′
1iE2

ij = I .

It follows that:
XiX

�
i =

∑
j

x2
ijI

so that each design Xi is an orthogonal design, of type (1,1, . . .).
Since for i < j

Ej�E�
ik = (−1)δ′

1i Ej�Eik

= (−1)δ′
1i+δ′

1i+δ′
1j+δ′

ij EikEj�

= (−1)δ′
ij EikE�

j�

it follows that
XjX�

i = (−1)δ′
ij XiX

�
j .

So (X1, . . . ,Xk) is a k-system of order n, genus (δ′
ij)1≤i<j≤k. Its type is

(1,1, . . . ;1,1, . . . ; . . .) so by lemma 6.11 it is regular.
We have shown:

Theorem 6.12. Suppose p is the order number of the family (p1 +1,p2, . . . ,pk;
(δij)1≤i<j≤k) (pi integers ≥ 0, δij ∈ {0,1}). Then any k-system of any type,
genus (δij), on p1 + 1,p2, . . . ,pk variables, has order a multiple of ρ. If n is a
multiple of ρ there is a regular k-system of order n, type (1,1, . . . ;1,1, . . . ; . . .),
genus (δij) on p1 +1,p2, . . . ,pk variables.

[We have renamed δ′
ij as δij in the statement of this theorem.]

Note that this theorem does not give information on which multiples of the
order p are the possible orders of k-systems (of genus (δij on p1 +1,p2, . . . ,pk

variables) for types other than (1,1, . . . ;1,1, . . . ; . . .).
Note also that while the second part of this theorem merely asserts the

existence of systems with certain properties, we have in fact developed a
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technique whereby such systems may easily be constructed. The following
example illustrates the method:

Example 6.9. We find the possible orders of product designs (as defined in
definition 6.3) on (2,2,4) variables, and construct such a product design for
each of these orders.

The algebras corresponding to product designs (see 6.3) have been explicitly
determined earlier. In the case of (2,2,4) variables we have an algebra C on
1+2+4 = 7 generators (see equation (6.16)) α,β1,β2,γ1,γ2,γ3,γ4 say, with
defining equations⎧⎪⎨⎪⎩

α2 = β2
j = γ2

k = −1
β2β1 = −β1β2 , γjγi = −γiγj (i �= j)
βjα = −αβj , γjα = −αγj , γjβi = βiγj .

Now

C = [α,β1,β2,γ1,γ2,γ3,γ4]
∼= [β1,β2]⊗ [γ1,γ2]⊗ [γ1γ2γ3,γ1γ2γ4]⊗ [αβ1β2γ1γ2γ3γ4]

(by lemma 6.13 – an algorithm which yields this or an alternative such
decomposition is described in Section 6.7)

∼= Q−1,−1⊗Q−1,−1⊗Q−1,−1⊗ � C1
∼= Q⊗Q⊗F2⊗2F (by (16.1))
∼= [β1γ2,β2]⊗ [β2γ1,γ2]⊗ [γ1γ2γ3,γ1γ2γ4]⊗ [αβ1β2γ1γ2γ3γ4]

(using the technique in the proof of Lemma 6.15 part (iii))

∼= Q1,−1⊗Q1,−1⊗F2⊗2F
∼= F2⊗F2⊗F2⊗2F (Summary 6.1)
∼= 2F23

So by theorem 6.10(i) and corollary 6.13(i) the order number is 23 = 8, and
the possible orders of product designs on (2,2,4) variables are the multiples
of 8.

Such a product design of minimal order 8 may be constructed as follows:
We first find a suitable order 8 matrix representations for α,β1,β2,γ1, . . . ,γ4

using the technique described in §6.8. To do this we express each of the
α,β1,β2,γ1, . . . ,γ4 in the form

±(β1γ2)φ1 βψ1
2 (β2γ1)φ2 γψ2

2 (γ1γ2γ3)φ3 (γ1γ2γ4)ψ3 (αβ1β2γ1γ2γ3γ4)θ

(each θ,φj ,ψk = 0 or 1)
For example
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α = ±(β1γ2)1 β0
2 (β2γ1)1 γ0

2 (γ1γ2γ3)1 (γ1γ2γ4)1 (αβ1β2γ1γ2γ3γ4)1

is found by solving

θ ≡ 1
φ1 +θ ≡ 0

ψ1 +φ2 +θ ≡ 0
φ2 +φ3 +ψ3 +θ ≡ 0

φ1 +ψ2 +φ3 +ψ3 +θ ≡ 0
φ3 +θ ≡ 0
ψ3 +θ ≡ 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
modulo 2.

(in fact the sign is −, but this is unimportant). So

α = ±(β1γ2)× (β2γ1)× (γ1γ2γ3)(γ1γ2γ4)× (αβ1β2γ1γ2γ3γ4)

→
[
0 1
1 0

]
⊗
[
0 1
1 0

]
⊗
[
0 −1
1 0

]
⊗ (1) (using [63, 16.1–cf. 16.9])

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

©
0 0 0 −1
0 0 −1 0
0 −1 0 0

−1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

©

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= E say.

Similarly,

β1 = ±(β1γ2)×γ2×1×1

→
[
0 1
1 0

]
⊗
[
0 −1
1 0

]
⊗
[
1 0
0 1

]
⊗ (1)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

©
©

0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= F1 say.
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β2 = ±β2×1×1×1

→
[
0 −1
1 0

]
⊗
[
1 0
0 1

]
⊗
[
1 0
0 1

]
⊗ (1)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

©
©

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= F2 say.

γ1 = ±β2× (β2γ1)×1×1

→
[
0 −1
1 0

]
⊗
[
0 1
1 0

]
⊗
[
1 0
0 1

]
⊗ (1)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

©
©

0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= G1 say.

γ2 = ±1×γ2×1×1

→
[
1 0
0 1

]
⊗
[
0 −1
1 0

]
⊗
[
1 0
0 1

]
⊗ (1)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

©
©

0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= G2 say.
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γ3 = ±β2× (β2γ1)γ2× (γ1γ2γ3)×1

→
[
0 −1
1 0

]
⊗
([

0 1
1 0

][
0 −1
1 0

])
⊗
[
0 1
1 0

]
⊗1

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

©
0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

©

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= G3 say.

And γ4 = ±β2× (β2γ1)γ2× (γ1γ2γ4)×1

→
[
0 −1
1 0

]
⊗
([

0 1
1 0

][
0 −1
1 0

])
⊗
[
1 0
0 −1

]
⊗ (1)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

©
©

0 1 0 0
−1 0 0 0

0 0 0 −1
0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= G4 say.

Set X = x0I +x1E

Y = y1F1 +y2F2

Z = z1G1 +z2G2 +z3G3 +z4G4 .

Then (X,Y,Z) is the following product design POD(8 : 1,1;1,1;1,1,1,1) on
2,2,4 variables):
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x0 ȳ2z̄4 z̄2 ȳ1z̄1 0 z̄3 0 x̄1
y2z4 x0 ȳ1z1 z̄2 z3 0 x̄1 0
z2 y1z̄1 x0 ȳ2z4 0 x̄1 0 z3
y1z1 z2 y2z̄4 x0 x̄1 0 z̄3 0
0 z̄3 0 x1 x0 ȳ2z4 z̄2 ȳ1z̄1
z3 0 x1 0 y2z̄4 x0 ȳ1z1 z̄2
0 x1 0 z3 z2 y1z̄1 x0 ȳ2z̄4
x1 0 z̄3 0 y1z1 z2 y2z4 x0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[we have superimposed X,Y,Z as in §6.4].

Finally we note that

(X ⊗ It,Y ⊗ It,Z ⊗ It) =

⎡⎢⎣
⎡⎢⎣ X ©

X

© . . .

⎤⎥⎦ ,

⎡⎢⎣ Y ©
Y

© . . .

⎤⎥⎦ ,

⎡⎢⎣ Z ©
Z

© . . .

⎤⎥⎦
⎤⎥⎦

is a product design of order 8, type (1,1;1,1;1,1,1,1) on 2,2,4 variables.

6.10 Periodicity

By considering a suitable CGH algebra we are now able, given (p1 +
1,p2, . . . ,pk; (δij)), to calculate the order number ρ, and to construct regular
k-systems of order any multiple of ρ, genus (δij), type (1,1, . . . ;1,1, . . . ; . . .),
on (p1 +1,p2, . . . ,pk variables.

In practice we may wish to produce tables of order number of families
(p1 + 1,p2, . . . ,pk; (δij)) for fixed k and (δij) but varying pi. The following
result is useful in this context:

Theorem 6.13 (Periodicity 8 Lam [142, Prop.4.2 p.127]). If ρ is the
order number (see 6.10) of (p1 +1,p2, . . . ,pk; (δij)) (pi ≥ 0, δij ∈ {0,1}), then
the order number of each of (p1 +9,p2, . . . ,pk; (δij)), (p1 +1,p2 +8, . . . ,pk; (δij)),
. . . ,(p1 +1,p2, . . . ,pk−1,pk +8;(δij)) is 24ρ.

[That is, increasing any pi by 8 multiplies the order number by 16. This
means that from a table giving order numbers for the 8k cases 0 ≤ pi ≤ 7, the
order number for any other values of (pi) is readily calculated.]

Proof. Let C = [α1, . . . ,αm] be the CGH algebra (6.16) corresponding to (p1 +
1,p2, . . . ,pk; (δij)) [where m = p1,p2, . . . ,pk, and α1, . . . ,αm are α11, . . . ,α1p1 ,
α21, . . . ,α2p2 , . . . ,αk1, . . . ,αkpk

respectively]. Let C′ be the corresponding
CGH algebra when pj say is increased by 8. It is clear that C′ will have m+8
generators, m of which may be identified with the generators of C, so that
we may write

C′ = [α1, . . . ,αm,β1, . . . ,β8 .]
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It is also clear that the β1, . . . ,β8 (may be chosen to) anti-commute with
each other, and all square to 1 or all square to −1; also that each αi either
commutes with all of β1, . . . ,β8 or anti-commutes with all of them (in the
notation of (6.16), β1, . . . ,β8 would be a αjpj+1 , . . . ,αjpj+8 respectively).

Set εi =
{

0 if αi commutes with the β1, . . . ,β8,
1 otherwise, (i = 1, . . . ,m).

Then clearly αi(β1, . . . ,β8)εi commutes with each of β1, . . . ,β8. From lemma
6.13 it follows that

C′ ∼= [
α1 (β1, . . . ,β8)ε1 , . . . ,αm (β1, . . . ,β8)εm

]⊗ [β1, . . . ,β8]
= C”⊗ [β1, . . . ,β8] say.

Now it is easy to verify (αi(β1, . . . ,β8)εi)2 = α2
i , and that αi(β1, . . . ,β8)εi

commutes or anti-commutes with αj(β1, . . . ,β8)εj according as αi commutes
or anti-commutes with αj So C′′ ∼= C, and C′ ∼= C ⊗ [β1, . . . ,β8].

Let us now decompose [β1, . . . ,β8]:

[β1, . . . ,β8] ∼= [β1,β2]⊗ [β1β2β3,β1β2β4]⊗ [β1β2β3β4β5,β1β2β3β4β6]
⊗ [β1β2β3β4β5β6β7,β1β2β3β4β5β6β8]

∼=
{

F2⊗Q⊗F2⊗Q if all β2
i = 1,

Q⊗F2⊗Q⊗F2 if all β2
i = −1, using Summary 6.1

∼= F2⊗F2⊗F2⊗F2 using Lemma 6.15 part (iii)
∼= F24 .

Hence C′ ∼= C⊗F24 . So if the structure of C is 2kD⊗Fn (D a division algebra)
then the structure of C′ is 2kD⊗F24n. The result follows, using theorem 6.10
and corollary 6.13. �	

It may be remarked that the process of constructing a CGH algebra from
a k-system (X1, . . . ,Xk) on (p1 +1,p2, . . . ,pk) variables, (as described in §6.6)
seems to involve a certain lack of symmetry, in that while any of p2, . . . ,pk

could be zero, it would appear that p1 +1 cannot. For in the derivation of the
algebra (6.16), the substitutions which use u10,A10 depend on X1 having at
least the variable x10.

However this restriction (on the number of variables in X1) may be removed
- provided at least one of X1, . . . ,Xk is non zero - since in (6.16) instead of
u10,A10 we could just as well use ui0j0 ,Ai0j0 for any other i0, j0 (xi0j0 being
one of the variables). Different CGH algebras may arise in this way (according
to the choice of i0, j0), but they would have the same order irreducible
representations (since as in Definition 6.10 each such order is the minimal
order of the same class of k-systems). So the possible orders of k-systems
of genus (δij)1≤i<j≤k on 0,p2, . . . ,pk variables (p2, . . . ,pk not all zero) may
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be computed by looking at a CGH algebra constructed using a suitable
alternative to Equation 6.8. Furthermore, as in theorem 6.13, the minimal
order would be 1

16
th of the minimal order of k-systems of genus (δij) on

8,p2, . . . ,pk.
Thus we make the following extension to definition 6.10:

Definition 6.11. The order number of the family (0,p2, . . . ,pk;(δij)1≤i<j≤k

is 1
16

th of the order number (as defined in 6.10) of (8,p2, . . . ,pk; (δij)).

Now theorem 6.12 remains valid even for p1 + 1 = 0 (provided some of
p2, . . . ,pk are non zero). Actually in definition 6.11 we have not excluded the
possibility that all of p2, . . . ,pk are zero. In this case the order number is the
rather strange value 2−1, since the order number of (8,0, . . . ,0;(δij)) is 23.

[To see this, note that the algebra (6.9) corresponding to (8,0, . . . ,0;(δij)) is
on 7 generators, α1, . . . ,α7 say, with defining equations α2

i =−1, αjαi =−αiαj

(i < j), and that:

[α1, . . . ,α7] ∼= [α1,α2]⊗ [α1α2α3,α1α2α4]⊗ [α1α2α3α4α5,α1α2α3α4α6]
⊗ [α1α2α3α4α5α6α7] decomposition

∼= Q−1,−1⊗Q1,1⊗Q−1,−1⊗ � C1
∼= Q⊗F2⊗Q⊗2F (by Summary 6.1)
∼= F2⊗F2⊗F2⊗2F
∼= 2F23

giving order number 23.
We have just proved algebraically the well known fact that the minimal

order of single orthogonal designs on eight variables is 8 - see [80, Ch.4]].
Theorem 6.12 may not be enhanced by allowing all of p1 + 1,p2, . . . ,pk

to be 0, with order number 2−1, but theorem 6.13 remains valid in all
cases. For it is easy to show that not only (8,p2, . . . ,pk; (δij)), but each of
(0,p2 + 8,p3, . . . ,pk; (δij)),. . . ,(0,p2, . . . ,pk−1,pk + 8;(δij)) has order number
16 times that of (0,p2, . . . ,pk; (δij)).

For example the order number of (0,p2 + 8,p3, . . . ,pk; (δij)) = 1
16 that of

(8,p2 +8, . . . ,pk; (δij)) = 16× 1
16 that of (8,p2, . . . ,pk; (δij)) (by 6.13) = 16×

that of (8,p2, . . . ,pk; (δij)).
Incorporating the extension 6.11 of the definition 6.10 and the subsequent

observations into both 6.12 and 6.13 gives the following, which “improves”
6.12, 6.13 by restoring symmetry (we replace p1 +1 by p1):

Theorem 6.14 (Gastineau-Hills). Let pi ≥ 0 (1≤ i≤ k), δij ∈ {0,1} (1≤
i < j ≤ k). The order number ρ of the family (p1, . . . ,pk; (δij)1≤i<j≤k, as
defined in 6.10, 6.11, is the minimal order of k-systems of genus (δij) on
p1, . . . ,pk variables if some pi is non zero – and in this case each multiple of ρ
is the order of some regular k-system of genus (δij), type (1,1, . . . ;1,1, . . . ; . . .),
on p1, . . . ,pk variables – and is 2−1 if all pi = 0. The order number of each of
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(p1 +1,p2, . . . ,pk; (δij)),. . . ,(p1, . . . ,pk−1,pk +8;(δij)) is 24ρ, for all cases of
pi ≥ 0.

So given k and (δij)1≤i<j≤k we may form tables of order numbers of the
families (p1, . . . ,pk; (δij)) for the 8k cases 0 ≤ pi ≤ 7, and the order numbers
in cases where some pi ≥ 8 are immediately deducible.

As we shall soon see it is convenient to allow for k-systems (X1, . . . ,Xk) in
which some designs (in particular X1) may have no variables (such a k-system
may be identified in an obvious way with an �-system for some � < k).

Theorem 6.14 effectively gives a complete generalization of the well known
“Radon bounds” for single orthogonal designs to the case of arbitrary k-systems
of orthogonal designs.

6.11 Orders of Repeat Designs

As an illustration of the techniques that we have developed, we shall now
obtain a complete answer to the question of what are the possible orders of
repeat designs on given numbers of variables. Now those other systems which
have been explicitly used in the previous literature (single orthogonal designs,
amicable sets, and product designs) may be identified as special cases of
repeat designs (see §6.4). So we shall get as immediate corollaries complete
answers to the questions of what are the possible orders for given numbers of
variables of those other systems.

We have already found explicitly the CGH algebra corresponding to a
repeat design (X,Y1, . . . ,Yk,Z) (defined in 6.5) in p+1, q1, . . . , qk, r variables
(p,qi, r,≥ 0). It is the algebra C say on p+ q1 + · · ·+ qk + r generators αi(1 ≤
i ≤ p), βij(1 ≤ j ≤ pi,1 ≤ i ≤ k), γi(1 ≤ i ≤ r) satisfying the equations (6.7).

Let � = [p/2], mi = [qi/2] (1 ≤ i ≤ k), n = [r/2]
([ ] here meaning “the integral part of”)

so that p = 2�(+1), qi = 2mi(+1) (1 ≤ i ≤ k), r = 2n(+1) (in each case the
“+1” being present when the left hand side is odd).

Let j be how many of q1, . . . , qk are odd – so 0 ≤ j ≤ k. By reordering the
Y1, . . . ,Yk if necessary, we may assume that q1, . . . , qj are odd, and qj+1, . . . , qk

are even.
It is convenient to rename the generators of C as follows:

Write α1, ᾱ1, . . . ,α�, ᾱ�,( ¯̄α) for α1,α2, . . . ,α2�−1,α2�(,α2�+1) respectively.
βi1, β̄i1, . . . ,βimi , β̄imi ,(

¯̄
iβ) for βi1,βi2, . . . ,β2mi−1,β2mi(,β2mi+1) respectively

(1 ≤ i ≤ k), and γ1, γ̄1, . . . ,γn, γ̄n,(¯̄γ) for γ1,γ2, . . . ,γ2n−1,γ2n(,γ2n+1) respec-
tively.

So
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C = [α1, ᾱ1, . . . ,α�, ᾱ�,β11, β̄11, . . . ,β1m1 , β̄1m1 , . . . ,

βk1, β̄k1, . . . ,βkmk
, β̄kmk

,γ1, γ̄1, . . . ,

γn, γ̄n,( ¯̄α), ¯̄
1β, . . . , ¯̄

jβ,(¯̄γ)]

(Where ¯̄α, ¯̄γ respectively are present when p,r respectively are odd, and some
¯̄

iβ are present when j > 0).
From equation (6.7) all the “α” generators and all the “β” generators square

to −1, while all the “γ” generators are square to 1. Also all pairs of distinct gen-
erators anti-commute except that for i �= j each of βi1, β̄i1, . . . ,βimi , β̄imi ,(

¯̄
iβ)

commutes with each of βj1, β̄j1, . . . ,βjmj , β̄jmj ,( ¯̄
jβ).

Let α = α1ᾱ1 . . . ᾱ�α�

βi = βi1β̄i1 . . .βimi β̄imi (1 ≤ i ≤ k)
β = β1β2 . . . ,βk,

γ = γ1γ̄1 . . .γnγ̄n

Then it is easy to verify that the following is a decomposition of C into a
tensor product of elementary CGH algebras:

C ∼= [α1, ᾱ1] ⊗ [α1ᾱ1α2,α1ᾱ1ᾱ2] ⊗ . . .

⊗ [α1ᾱ1 . . .α�−1, ᾱ�−1α�,α1ᾱ1 . . .α�−1ᾱ�−1ᾱ�]

⊗ [αβ11,αβ̄11] ⊗ . . . ⊗ [αβ11β̄11 . . .β1m1−1β̄1m1−1β1m1 ,

αβ11β̄11 . . .β1m1−1β̄1m1−1β̄1m1 ] ⊗ . . . ⊗ [αβk1,αβ̄k1]

⊗ . . . ⊗ [αβk1β̄k1 . . .βkmk−1β̄kmk−1βkmk
,

αβk1β̄k1 . . .βkmk−1β̄kmk−1β̄kmk
]

⊗ [αβγ1,αβγ̄1] ⊗ . . . ⊗ [αβγ1γ̄1 . . .γn−1γ̄n−1γn,αβγ1γ̄1 . . .γn−1γ̄n−1γ̄n]

⊗

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) nothing more if p even, r even, j =0, or
(ii) [αβγ ¯̄α] p odd, r even, j = 0, or
(iii) [αβγ ¯̄γ] p even, r odd, j = 0, or
(iv) [αβγ ¯̄α,αβγ ¯̄γ] p odd, r odd, j = 0, or

(v) [αβ1γ ¯̄β1] ⊗ . . . ⊗ [αβJ γ ¯̄βJ ] p even, r even, j > 0, or

(vi) [αβγ ¯̄α,αβ1γ ¯̄β1] ⊗ [β1β2
¯̄β1

¯̄β2]⊗. . . ⊗ [β1βJ
¯̄β1

¯̄βJ ] p odd, r even, j > 0, or

(vii) [αβγ ¯̄γ,αβ1γ ¯̄β1] ⊗ [β1β2
¯̄β1

¯̄β2]⊗. . . ⊗ [β1βJ
¯̄β1

¯̄βJ ] p even, r odd, j > 0, or

(viii) [αβγ ¯̄α,αβγ ¯̄γ] ⊗ [αβ1γ ¯̄α¯̄γ ¯̄β1]⊗. . . ⊗ [αβJ γ ¯̄α¯̄γ ¯̄βJ ] p odd, r odd, j > 0.

Now let m = m1 + · · · + mk. Then from Summary 6.1 it is easy to verify that:

C ∼= Q ⊗ F2 ⊗ Q ⊗ F2 ⊗ . . . ⊗
{

F2 (� even)
Q (� odd)

}
(� factors, alternating Q,F2)

⊗
{

Q (� even)
F2 (� odd)

}
⊗ . . . ⊗

{
F2 (� + m1 even)
Q (� + m1 odd)

}
m1 factors, similarly alternating
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⊗ . . . (6.17)

⊗
{

Q (� even)
F2 (� odd)

}
⊗ . . . ⊗

{
F2 (� + mk even)
Q (� + mk odd)

}
mk factors, similarly alternating

⊗
{

F2 (� + m even)
Q (� + m odd)

}
⊗ . . . ⊗

{
Q (� + m + n even)
F2 (� + m + n odd)

}
n factors, similarly alternating

⊗

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) nothing more

(ii)
{

� C (� + m + n even)
2F (� + m + n odd)

}
(iii)

{
2F (� + m + n even)
� C (� + m + n odd)

}
(iv) F2

(v)
{

2jF (all � + m1 + n, . . . , � + mj + n odd)

2j−1 � C (some � + m1 + n, . . . , � + mj + n even)

(vi)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2j−1F2 (� + m + n,� + m1 + n not both even, but m1 +

m2, . . . ,m1 + mj all even)
2j−1Q (� + m + n,� + m1 + n both even, and m1 +

m2, . . . ,m1 + mj all even)
2j−2 � C ⊗ F2 (some m1 + m2, . . . ,m1 + mj odd)

(vii)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2j−1F2 (� + m + n even or � + m1 + n odd, and m1 +

m2, . . . ,m1 + mj all even)
2j−1Q (� + m + n odd and � + m1 + n even, and m1 +

m2, . . . ,m1 + mj all even)
2j−2 � C ⊗ F2 (some m1 + m2, . . . ,m1 + mj odd)

(viii)
{

2jF2 (all � + m1 + n, . . . , � + mj + n odd)

2j−1 � C ⊗ F2 (some � + m1 + n, . . . , � + mj + n even)

with (i),. . . ,(viii) as above.
The problem now is to simplify this tensor product.
Let

N = �+m1 + · · ·+mk +n = �+m+n .

Let us first simplify the tensor product of the first N factors – that is,
those factors not involving (i) or. . . or (viii).

Clearly by lemma 6.15(iii) this product simplifies to either F2N or Q⊗F2N−1

according to whether there is an even or odd number of Q factors.
We seek convenient conditions to distinguish these two possibilities.
One particularly simple situation occurs when � is even and �+m is odd.

In this case we get F2N if an even number of �,m1, . . . ,mk,n is congruent to
1 or to 2 modulo 4, and we get Q⊗F2N−1 otherwise, This is because if � ≡ 1
or � ≡ 2 (mod 4), we get an odd number of Q factors from the first � factors,
and similar statements hold for each of m1, . . . ,mk,n.

That is, we get F2N when an even number of p,q1, . . . , qk, r is congruent to
one of 2,3,4,5 modulo 8.
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Suppose however �+m is even. In this case we are concerned with whether
n is congruent to 2 or to 3 modulo 4 (since the last n factors would be
F2 ⊗Q⊗ . . . instead of Q⊗F2 ⊗ . . .) - that is we could be concerned with
whether r is congruent to one of 4,5,6,7 modulo 8.

Similarly if � is odd we would be concerned with how many of q1, . . . , qk

are congruent to one of 4,5,6,7 modulo 8.
These observations suggest the following device:
Define

q′
i =

{
qi (� even)

qi−2 (� odd)

}
1 ≤ i ≤ k

r′ =
{

r−2 (�+m even)
r (�+m) odd

}
Now let S = how many of p,q′

1, . . . , q′
k, r′ are congruent to one of 2,3,4,5 modulo

8.
Then in all cases the first N factors of (6.17) give F2N if S is even, and

Q⊗F2N−1 if S is odd.
It is now easy to incorporate the remaining factor(s) ((i) or . . . or (viii))

using lemma 6.15, giving the following complete description of the structure
of C:

C ∼= (i)
{

F2N (S even)
Q ⊗ F2N−1 (S odd)

(ii)

⎧⎨⎩
� C ⊗ F2N (� + m + n even)
2F2N (S even, � + m + n odd)
2Q ⊗ F2N−1 (S odd, � + m + n odd)

(iii)

⎧⎨⎩
2F2N (S even, � + m + n even)
2Q ⊗ F2N−1 (S odd, � + m + n even)
� C ⊗ F2N (� + m + n odd)

(iv)
{

F2N−1 (S even)
Q ⊗ F2N (S odd)

(v)

⎧⎪⎨⎪⎩
2J F2N (S even and all � + m1 + n, . . . , � + mJ + n odd)

2J Q ⊗ F2N−1 (S odd and all � + m1 + n, . . . , � + mJ + n odd)

2J−1 � C ⊗ F2N (some � + m1 + n, . . . , � + mJ + n even)

(vi)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2J−1F2N+1 (S even, � + m + n or � + m1 + n odd, m1, . . . ,mJ all
congruent mod 2; or S odd, �+m+n or �+m1 +n even,
m1, . . . ,mJ all congruent mod 2)

2J−1Q ⊗ F2N (S odd, � + m + n or � + m1 + n odd, m1, . . . ,mJ all
congruent mod 2; or S even, �+m+n or �+m1 +n even,
m1, . . . ,mJ all congruent mod 2)

2J−1 � C ⊗ F2N+1 (m1, . . . ,mJ not all congruent mod 2)
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(vii)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2J−1F2N+1 (S even, � + m + n even or � + m1 + n odd, m1, . . . ,mJ all
congruent mod 2; or S odd, �+m+n odd, and �+m1 +n
even, m1, . . . ,mJ all congruent mod 2)

2J−1Q ⊗ F2N (S odd, � + m + n even or � + m1 + n odd, m1, . . . ,mJ all
congruent mod 2; or S even, �+m+n odd and �+m1 +n
even, m1, . . . ,mJ all congruent mod 2)

2J−2 � C ⊗ F2N+1 (m1, . . . ,mJ not all congruent mod 2)

(viii)

⎧⎪⎨⎪⎩
2J F2N+1 (S even and all � + m1 + n, . . . , � + mJ + n odd)

2J F2N (S odd and all � + m1 + n, . . . , � + mJ + n odd)

2J−2 � C ⊗ F2N+1 (some � + m1 + n, . . . , � + mJ + n even)

with (i),. . . ,(viii) as above.
Actually (i) can be absorbed into (v), if in (v) we assume the conditions

“all �+m1 +n, . . . , �+mJ +n odd”, “some �+m1 +n, . . . , �+mJ +n even” are
respectively true, false when J = 0. Similarly (iv) may be absorbed into (viii).

If we also combine (ii) with (vi) and (iii) with (vii), and apply corollary
6.13, then from Theorem 6.14 we derive the following complete description of
the possible orders of repeat designs:

Theorem 6.15 (Gastineau-Hills). Let p + 1, q1, . . . , qk, r be non negative
integers, not all zero, with q1, . . . , qJ odd and qJ+1, . . . , qk even (some J such
that 0 ≤ J ≤ k). Suppose � = [p/2], mi = [qi/2] (1 ≤ i ≤ k), n = [r/2], m =
m1 + · · ·+mk, N = �+m+n,

q′
i =

{
qi (if � even)

qi−2 (if � odd)

}
, r′ =

{
r−2 (if �+m even)

r (if �+m odd)

}
, and

S = how many of p,q′
i, . . . , q

′
k, r′ are congruent to one of 2,3,4,5 modulo 8.

Then the possible orders of repeat designs (X,Y1, . . . ,Yk,Z) on p + 1,
q1, . . . , qk, r variables are all the multiples of ρ where ρ is given below.

(i) p even, r even

ρ =
{

2N (S even and �+m1 +n, . . . , �+mJ +n all odd)
2N+1 (otherwise)

(ii) p odd, r even

ρ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

2N (J = 0, S even, �+m+n odd)
2N+1 (J = 0, and either S odd or �+m+n even; or J > 0,

S even, � + m + n, � + m1 + n not both even, and
m1, . . . ,mJ all congruent mod 2; or J > 0, S odd,
� + m + n, � + m1 + n both even, and m1, . . . ,mJ all
congruent mod 2)

2N+2 (otherwise)

(iii) p even, r odd
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ρ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

2N (J = 0, S even, �+m+n even)
2N+1 (J = 0, and S, � + m + n not both even; or J > 0, S

even, �+m+n even or �+m1 +n odd, and m1, . . . ,mJ

all congruent mod 2; or J > 0, S odd, �+m+n odd
and � + m1 + n even, and m1, . . . ,mJ all congruent
mod 2)

2N+2 (otherwise)

(iv) p odd, r odd

ρ =
{

2N+1 (S even and �+m1 +n, . . . , �+mJ +n all odd)
2N+2 (otherwise)

Note that “periodicity-8” can be verified for repeat designs from this
theorem. For if any of p,q1, . . . , qk, r is increased by 8, clearly N is increased
by 4 and the oddness/evenness and congruency modulo 8 conditions on the
p,qi, r, �,mi,n etc. are unaltered.

In particular the theorem conforms to “periodicity-8” for the cases p+1 = 0,
so by the results of Section 6.10 we are justified in the way we stated the
Theorem 6.15, removing the original restriction that p + 1 be non zero. In
other words 6.15 remains valid for repeat designs (X,Y1, . . . ,Yk,Z) with X = 0,
provided Y1, . . . ,Yk,Z are not all zero.

Example 6.10. The possible orders of repeat designs (X,Y1,Y2,Y3,Z) on
3,5,2,12,1 variables are all the multiples of 212.

Proof. Here p = 2 (even), r = 1 (odd) so case (iii) of 6.17 applies. Now � = 1,
m1 = 2, m2 = 1, m3 = 6, n = 0, m = 9, N = 10. Also � is odd, �+m even, so
p = 2, q′

1 = 3, q′
2 = 0, q′

3 = 10 ≡ 2 (mod 8), r′ = −1 ≡ 7 (mod 8).
So S = 3 is odd. But J = 1 > 0 and �+m+n = 10 is even, so the “otherwise”

of 6.15(iii) applies: ρ = 2N+2 = 212.
By symmetry the possible orders of repeat designs on, say, 3,2,5,12,1

variables would also be all the multiples of 212. �	

6.12 Orders of Product Designs and Amicable Sets

We conclude by finding the possible orders of product designs and of amicable
sets of orthogonal designs, on given numbers of variables. We could do this
by taking the algebras of equation 6.7 (the algebras corresponding to product
designs) and the algebras corresponding to amicable k-tuples and proceeding
in each case as in Section 6.11. However, as we have remarked before, both
product designs and amicable sets can be taken as particular cases of repeat
designs (X,Y1, . . . ,Yk,Z) by setting some of X,Y1, . . . ,Yk,Z to zero.
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So since in theorem 6.15 we allowed for some of p + 1, q1, . . . , qk, r (the
numbers of variables in X,Y1, . . . ,Yk,Z respectively) to be zero – even p + 1 –
we can obtain the required results very quickly as corollaries of Theorem 6.15.

Let us first consider product designs. These are given by those repeat
designs (X,Y1, . . . ,Yk,Z) for which Z = 0 and k = 2. That is, we use Theorem
6.15 where r = 0, k = 2.

Note that in this case neither r nor r−2 is congruent to any of 2,3,4,5
modulo 8, so that the S of Theorem 6.15 is always just how many of p,q′

1, q′
2

are congruent to 2,3,4,5 modulo 8. From this we easily deduce the following
corollary to Gastineau-Hills Theorem 6.15:

Corollary 6.14. Let p + 1, q1, q2 be non-negative integers, not all zero. Let
� = [p/2], m1 = [q1/2], m2 = [q2/2], N = �+m1 +m2,

q′
1 =

{
qi (� even)

qi−2 (� odd)

}
(i = 1,2) , and

S = how many of p,q′
1, q′

2 are congruent to one of 2,3,4,5 modulo 8

Then the possibility of orders of product designs (X,Y1,Y2) (as defined in
Definition 6.3) on p+1, q1, q2 variables are all the multiples of ρ where ρ is
given by the following:

(i) p even, q1 even, q2 even

ρ =
{

2N (S even)
2N+1 (S odd)

(ii) p odd, q1 even, q2 even

ρ =
{

2N (S even, �+m1 +m2 odd)
2N+1 (otherwise)

(iii) p even, q1 odd, q2 even

ρ =
{

2N (S even, �+m1 odd)
2N+1 (otherwise)

(iv) p even, q2 even, q1 odd
as for (iii) with m1,m2 interchanged

(v) p odd, q1 even, q2 even

ρ =

⎧⎨⎩
2N+1 (S even, � + m1,m2 not both even; or S odd, � +

m1,m2 both even)
2N+2 (otherwise)
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(vi) p odd, q1 even, q2 odd
as for (v) with m1,m2 interchanged

(vii) p even, q1 odd, q2 odd

ρ =
{

2N (S even, �+m1, �+m2 both odd)
2N+1 (otherwise)

(viii) p odd, q1 odd, q2 odd

ρ =

⎧⎨⎩
2N+1 (S even, �,m1 not both even; and m1 +m2 even; or

S odd, �,m1,m2 all even)
2N+2 (otherwise)

From this corollary the arrays in Table 6.5 are easily constructed. They
give the minimal orders (expressed for convenience as indices base 2, so that
an entry n means minimal order 2n) of product designs on p+1, q,r variables
for all 83 cases 0 ≤ p+1, q,r ≤ 7. (the entry for p+1, q,r = 0,0,0 is justified
in Section 6.10)

So for example we can verify from the Table 6.5 the result of the calculation
in example 6.9 – that the minimal order of product designs on 2,2,4 variables
is 23.

By “periodicity-8” the minimal orders for larger values of p + 1, q,r are
easily deduced. Thus for example the minimal order for each of (10,2,4),
(2,10,4), (2,2,12) is 23+4 = 27.

The table for p+1 = 0 is effectively a table giving the minimal orders of
amicable pairs on (q,r) variables.

The cases p + 1 = q = 0 give the well known minimal orders of single
orthogonal designs on r variables.

Now let us consider amicable k-tuples. These are given by those repeat
designs (X,Y1, . . . ,Yk,Z) for which X = Z = 0. That is, we use theorem 6.15
where p =−1, r = 0. Note that in this case � = [p/2] =−1 is odd, so q′

i = qi−2
(1≤ i≤ k) and r′ = r = 0, so the S of 6.15 is here how many of q1−2, . . . , qk−2
is congruent to one of 2,3,4,5 modulo 8. This means that S is how many of
q1, . . . , qk is congruent to one of 4,5,6,7 modulo 8. Also, although the N of
6.15 would here be −1+m1 + · · ·+mk, let us redefine N to be simply

∑k
1 mi.

This gives:

Corollary 6.15. Let q1, . . . , qk be non negative integers, not all zero, with
q1, . . . , qJ odd, qJ+1, . . . , qk even (some J such that 0 ≤ J ≤ k).

Let mi = [qi/2] (1 ≤ i ≤ k) and N = m1 + · · ·+mk, and let S = how many
of q1, . . . , qk is congruent to one of 4,5,6,7 modulo 8.

Then the possible orders of amicable k-tuples on q1, . . . , qk variables are all
the multiples of p where:
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Table 6.5 Minimal orders of product designs on p + 1, q,r variables (indices base 2)a

p+1 = 0
�����q

r 0 1 2 3 4 5 6 7

0 -1 0 1 2 2 3 3 3
1 0 0 1 2 3 3 4 4
2 1 1 1 2 3 4 4 5
3 2 2 2 2 3 4 5 5
4 2 3 3 3 3 4 5 6
5 3 3 4 4 4 4 5 6
6 3 4 4 5 5 5 5 6
7 3 4 5 5 6 6 6 6

p+1 = 1
�����q

r 0 1 2 3 4 5 6 7

0 0 1 2 2 3 3 3 3
1 1 1 2 2 3 3 4 4
2 2 2 2 2 3 4 5 5
3 2 2 2 2 3 4 5 5
4 3 3 3 3 4 5 6 6
5 3 3 4 4 5 5 6 6
6 3 4 5 5 6 6 6 6
7 3 4 5 5 6 6 6 6

p+1 = 2
�����q

r 0 1 2 3 4 5 6 7

0 1 2 2 3 3 3 3 4
1 2 2 3 3 3 3 4 5
2 2 3 3 3 3 4 5 6
3 3 3 3 3 4 5 6 6
4 3 3 3 4 5 6 6 7
5 3 3 4 5 6 6 7 7
6 3 4 5 6 6 7 7 7
7 4 5 6 6 7 7 7 7

p+1 = 3
�����q

r 0 1 2 3 4 5 6 7

0 2 2 3 3 3 3 4 5
1 2 2 3 3 3 3 4 5
2 3 3 4 4 4 4 5 6
3 3 3 4 4 5 5 6 6
4 3 3 4 5 6 6 7 7
5 3 3 4 5 6 6 7 7
6 4 4 5 6 7 7 8 8
7 5 5 6 6 7 7 8 8

p+1 = 4
�����q

r 0 1 2 3 4 5 6 7

0 2 3 3 3 3 4 5 6
1 3 3 4 4 4 4 5 6
2 3 4 4 5 5 5 5 6
3 3 4 5 5 6 6 6 6
4 3 4 5 6 6 7 7 7
5 4 4 5 6 7 7 8 8
6 5 5 5 6 7 8 8 9
7 6 6 6 6 7 8 9 9

p+1 = 5
�����q

r 0 1 2 3 4 5 6 7

0 3 3 3 3 4 5 6 6
1 3 3 4 4 5 5 6 6
2 3 4 5 5 6 6 6 6
3 3 4 5 5 6 6 6 6
4 4 5 6 6 7 7 7 7
5 5 5 6 6 7 7 8 8
6 6 6 6 6 7 8 9 9
7 6 6 6 6 7 8 9 9

a Gastineau-Hills [63, p155–156] c© H. Gastineau-Hills
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Table 6.5 Minimal orders of product designs on p+1, q,r variables (indices base 2) [63]
a (continued)

p+1 = 6
�����q

r 0 1 2 3 4 5 6 7

0 3 3 3 4 5 6 6 7
1 3 3 4 5 6 6 7 7
2 3 4 5 6 6 7 7 7
3 4 5 6 6 7 7 7 7
4 5 6 6 7 7 7 7 8
5 6 6 7 7 7 7 8 9
6 6 7 7 7 7 8 9 10
7 7 7 7 7 8 9 10 10

p+1 = 7
�����q

r 0 1 2 3 4 5 6 7

0 3 3 4 5 6 6 7 7
1 3 3 4 5 6 6 7 7
2 4 4 5 6 7 7 8 8
3 5 5 6 6 7 7 8 8
4 6 6 7 7 7 7 8 9
5 6 6 7 7 7 7 8 9
6 7 7 8 8 8 8 9 10
7 7 7 8 8 9 9 10 10

a Gastineau-Hills [63, p155–156] c© H. Gastineau-Hills

ρ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2N−1 (J = 0, S and N both even)
2N (J = 0, S and N not both even; or J > 0, S even,

N,m1 not both odd, and m1, . . . ,mJ all congru-
ent mod 2; or J > 0, S odd, N,m1 both odd, and
m1, . . . ,mJ all congruent mod 2)

2N+1 (otherwise).

The conditions determining ρ in 6.15 may be more neatly expressed. Let
us for any integer j define nj to be how many of q1, . . . , qk are congruent to j
modulo 8.

Then in 6.15 the condition S even is equivalent to n4 + n5 + n6 + n7 ≡ 0
(mod 2). The condition N even is equivalent to n2 +n3 +n6 +n7 ≡ 0 (mod 2).
The condition J = 0 is equivalent to n1 = n3 = n5 = n7 = 0.

So if J = 0, then S,N both even is equivalent to n2 ≡ n4 ≡ n6 (mod 2).
Now suppose J > 0. The condition m1, . . . ,mJ all even is equivalent to

n3 = n7 = 0, and all odd is equivalent to n1 = n5 = 0. So S even, N,m1 not
both odd and m1, . . . ,mJ congruent mod 2 implies that either:

n3 = n7 = 0 , n4 +n5 +n6 +n7 ≡ 0 (mod 2) ; or
n1 = n5 = 0 , n4 +n5 +n6 +n7 = n2 +n3 +n6 +n7 ≡ 0 (mod 2) ;

which implies that either

n3 = n7 = 0 , n4 +n5 +n6 ≡ 0 (mod 2) , or
n1 = n5 = 0 , n2 +n3 +n4 ≡ 0 (mod 2) .

Also S odd, N,m1 both odd and m1, . . . ,mJ congruent mod 2 implies that
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n1 = n5 = 0 , n4 +n5 +n6 +n7 ≡ n2 +n3 +n6 +n7 ≡ 1 (mod 2) ;

which implies that

n1 = n5 = 0 and n2 +n3 +n4 ≡ 0 (mod 2) .

Conversely n3 = n7 = 0 and n4 + n5 + n6 ≡ 0 (mod 2), or n1 = n5 = 0,
n2 + n3 + n4 = 0 (mod 2) implies that: either S even, N,m1 not both odd,
m1, . . . ,mJ congruent mod 2, or S odd, N,m1 both odd, m1, . . . ,mJ congruent
mod 2. A11 these facts mean that we can give the following equivalent for-
mulation of 6.15 (we need no longer assume the qi are ordered with the odds
first):

Corollary 6.16. Let q1, . . . , qk be non negative integers, not all zero. Let
N = [q1/2]+ · · ·+[qk/2], and for any integer j let nj be how many of q1, . . . , qk

are congruent to j modulo 8.
Then the possible orders of amicable k-tuples on q1, . . . , qk variables are all

the multiple of ρ where:

If all qi are even ρ =
{

2N−1 if n2 ≡ n4 ≡ n6 (mod 2)
2N otherwise.

If some qi is odd ρ =

⎧⎪⎪⎨⎪⎪⎩
2N

n3 = n7 = 0, n4 +n5 +n6 ≡ 0 (mod 2),
or
n1 = n5 = 0, n2 +n3 +n4 ≡ 0 (mod 2).

2N+1 otherwise.

The case k = 2 will give the bounds for Wolfe’s amicable pairs (cf. [247]).
The case k = 1 gives the familiar “Radon bounds” for single orthogonal

designs; thus

Corollary 6.17. The single orthogonal designs on q variables have orders all
multiples of ρ, where

ρ =

⎧⎪⎨⎪⎩
2[q/2]−1 if q ≡ 0 (mod 8)
2[q/2] if q ≡ 1,2,4,6 or 7 (mod 8)
2[q/2]+1 if q ≡ 3 or 5 (mod 8)

The entries in Table 6.5 for p+1 = r = 0 agree with this result.



Chapter 7
Techniques

7.1 Using Cyclotomy

We remarked in Section 4.12 that Williamson [244] used (implicitly) the theory
of cyclotomy to construct Hadamard matrices of order 148 and 172.

Subsequently, many authors have used this theory to construct Hadamard
and skew-Hadamard matrices. Some of these are mentioned in Section 5.10.
R. M. Wilson [246] and others have used the theory to make major advances
in studying balanced incomplete block designs. In this section we will give the
constructions for Baumert-Hall arrays promised in §4.12 and indicate some
other constructions for orthogonal designs. We remark that the possibilities
for using cyclotomy in the theory of orthogonal designs has by no means been
exhausted here.

Definition 7.1. [Storer [200]] Let x be a primitive root of F = GF (q), where
q = pα = ef +1 is a prime power. Write G = 〈x〉. The cyclotomic classes Ci

in F are:
Ci = {xes+i : s = 0,1, . . . ,f −1}, i = 0,1 . . . ,e−1 .

We note that the Ci are pairwise disjoint and their union is G.
For fixed i and j, the cyclotomic number (i, j) is defined to be the number

of solutions of the equation

zi +1 = zj (zi ∈ Ci , zj ∈ Cj) ,

where 1 = x0 is the multiplicative unit of F . That is, (i, j) is the number of
ordered pairs s, t such that

xse+i +1 = xet+j (0 ≤ s, t ≤ f −1) .

Note that the number of times

xes+i−xet+k ∈ Cj

267© Springer International Publishing AG 2017
J. Seberry, Orthogonal Designs,
DOI 10.1007/978-3-319-59032-5_7
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is the cyclotomic number (k− j, i− j).

Notation 7.1. Let A = a1,a2, . . . ,ak be a k-set; then we will use ΔA for the
collection of differences between distinct elements of A, i.e.,

ΔA = [ai−aj : i �= j, 1 ≤ i, j ≤ k] .

Now
ΔCi = (0,0)Ci +(1,0)Ci+1 +(2,0,)Ci+2 + · · ·

and

Δ(Ci−Cj) =(0,0)Cj +(1,0)Cj+1 + · · ·
· · ·+(0,0)Ci +(1,0)Ci+1 + · · ·
· · ·+(0, i− j)Cj +(1, i− j)Cj+1 + · · ·
· · ·+(0, j− i)Ci +(1, j− i)Ci+1 + · · ·

Notation 7.2. We use Ca &Cb to denote the adjunction of two sets with
repetitions remaining. If A = {a,b,c,d} and B = {b,c,e}, then A&B =
[a,b,b,c,c,d,e]. Ca ∼ Cb is used to denote adjunction, but with the elements
of the second set becoming signed. So A ∼ B = [a,b,−b,c,−c,d,−e]. We note
many authors now (in 2016) use multiset instead of the adjunction of sets. �	

The transpose of a cyclotomic class C�
i will be defined as −Ci, where

−Ci = −{
xej+i : 0 ≤ j ≤ f −1

}
=

{−xej+i : 0 ≤ j ≤ f −1
}

=
{

xem+i+k : 0 ≤ j ≤ f −1
}

with k = e
2 for f odd and k = 0 for f even.

We define [Ci] the incidence matrix of the cyclotomic class Ci by

cjk =
{

1, if zj −zk ∈ Ci

0, otherwise.

As G = C0∪C1∪ . . .∪Ce−1 = GF (pα)/0, its incidence matrix is J −I (i.e.,∑e−1
s=0[Cs] = J − I), and the incidence matrix of GF (pα) is J . Therefore, the

incidence matrix of {0} will be I.
Now if [Ci] is the incidence matrix of a cyclotomic class, then [C�

i ] = [Ci]�,
and

[Ci]� = [Ci] if f is even;
[Ci]� = [Ci+ e

2
] if f is odd.
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The term [Ci][Cj ] will be taken to mean the ordinary matrix product of
the incidence matrices of the cosets Ci and Cj .

[Ci][Cj ] =
{∑e−1

s=0 as[Cs], if Cj �= C�
i∑e−1

s=0 as[Cs]+fI, if Cj = C�
i .

where the as are integers giving the coefficients of the matrices.
The incidence matrices of Ca &Cb and Ca ∼ Cb will be given by

[Ca &Cb] = [Ca]+ [Cb] and [Ca ∼ Cb] = [Ca]− [Cb] .

In order to illustrate the method and use of cyclotomy, we will now prove
the result quoted in Theorem 5.20, viz. ,

Lemma 7.1. Let q ≡ 5 (mod 8) be a prime power and q = s2 + 4t2 be its
proper representation with s ∈ 1 (mod 4). Then with Ci the cyclotomic class
defined above,

C0 &C1 and |t| copies of C0 &C2

are (|t|+1)−{q; (q−1)
2 ; (|t|+1) (q−3)

4 } supplementary difference sets with

x ∈ C0 &C1 ⇒−x /∈ C0 &C1

and

y ∈ C0 &C1 ⇒−y ∈ C0 &C2 .

Proof. We see from Storer that the cyclotomic numbers for q = ef +1 = 4f +1
(f odd) are given by

0 1 2 3
0 A B C D
1 E E D B
2 A E A E
3 E D B E

2A+2E = f −1 ,

B +D +2E = f ,

A+B +C +D = f ,

where for f odd we have

16A = q−7+2s, 16D = q +1+2s+8t ,

16B = q +1+2s−8t , 16E = q−3−2s.

16C = q +1−6s,

Now −1 ∈ C2, so
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x ∈ C0 &C1 ⇒−x ∈ C2 &C3 ⇒−x /∈ C0 &C1 ,

and

y ∈ C0 &C2 ⇒−y ∈ C0 &C2 .

Clearly, |C0 &C1| = |C0 &C2| = (q−1)
2 . So it remains to show that

Δ(C0 &C1)&|t|Δ(C0 &C2) = [(|t|+1)(q−3)
4 ]G.

Now

Δ(C0 &C1) = (A+E)G & BC0 & EC1 & EC2 & DC3 &
EC0 & DC1 & BC2 & EC3

=
[

(q−5)
8

]
C & (q−1−4t)

8 (C0 &C2) &

(q−1+4t)
8 (C1 &C2) ;

Δ(C0 &C2) = 2AC0 & 2EC1 & 2AC2 & 2EC3 &
(C +A)(C0 &C2) & (D +B)(C1 &C3)

= (q−5)
4 (C0 &C2) & (q−1)

4 (C1 &C3).

Since the sign of t is ambiguously determined, we choose a generator of F
which gives |t| = −t. Then

Δ(C0 &C1) & |t|Δ(C0 &C2) = (q−5+ q−1−4t−2qt+10t)
8 (C0 &C2) &

(q−5+ q−1+4t−2qt+2t1)
8 (C1 &C3)

=
[

(q−3− qt+3t1)
4

]
G

=
[

(q−3)(1+ t)
4

]
G

as required. �	
We can adapt the cyclotomic arrays of Storer [200] in order to consider the

matrices

P =
s∑

i=1
ai[Ci]

following results the arrays are often hard to use, and an individual calculation
of the arrays was made. The result for 61 was due to David C. Hunt.

where the ai, are commuting variables (see Hunt and Wallis [110]). For the
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Lemma 7.2. There exist T -matrices of order t ∈ 13,19,25,31,41,61.

Proof. Use the matrices X1, X2, X3, X4 given below:

t X1, X2, X3, X4

13 = 4.3+1 32 +22 +02 +02 [C0], [C1 ∼ {0}], [C2 ∼ C3], [φ]
19 = 6.3+1 32 +32 +12 +02 [CO], [C2], [{0} & C3 ∼ C4], [C1 ∼ C5]
25 = 8.3+1 52 +02 +02 +02 [C0 & C5 ∼ {0}], [C1 ∼ C7], [C2 ∼ C3],

[C4 ∼ C6]
31 = 10.3+1 32 +32 +32 +22 [C0 & C3 ∼ C2], [C4 &C5 ∼ C9],

[C7 & C8 ∼ C6], [C1 ∼ {0}]
37 = 12.3+1 62 +12 +02 +02 [C0 & C1 ∼ C2 ∼ C3 & C4 & C5], [{0}],

[C6 ∼ C7 & C8 ∼ C9 & C10 ∼ C11], [φ]
41 = 8.5+1 52 +42 +02 +02 [C0 ∼ C2 ∼ C3], [C4 & C6 ∼ C1 ∼ {0}],

[C5 ∼ C7], [φ]
61 = 20.3+1 62 +52 +02 +02 [{0} & C1 & C11 ∼ C5],

[C7 & C10 ∼ C0 ∼ C9],
[C2 & C4 & C6 ∼ C3 ∼ C8], [φ]

�	

In the remainder of this section we shall consider various matrices obtained
by taking linear combinations of the incidence matrices of cyclotomic classes.
Part of this work appeared in the Ph.D. thesis of Joan Cooper [30].

We always consider p to be a prime power.

Case 1. p = 2f +1, f odd

Consider
P = aI + b[C0]+ c[C1] (7.1)

where a, b, c are commuting variables. Now

PP � = a2I +a
(

b[C0]+ c[C1]+ b[C0]� + c[C1]�
)

+ b[C0][C0]�

+ c2[C1][C1]� + bc
(

[C0][C1]� +[C0]�[C1]
)

.

Using the adapted cyclotomic array of Hunt and Wallis [110] for e = 2
given in Table 7.1 we can calculate the coefficients of the incidence matrices
in PP �.

The coefficient of [C0] and [C1] is
(
b2 + c2 + bc

)
A + bcB + ab + ac. Hence,

in this case we have
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Table 7.1 Coefficients of the incidence matrices in P P �

C0,C1 {0}
00 A = (f−1)

2 f

11 A = (f−1)
2 f

01 A+B = f 0

where ii is short for [Ci][Ci]�
and ij is short for(
[Ci][Cj ]� +[Ci]�[Cj ]

)
.

PP � =
(

a2−ab−ac+ (b2 + c2)
2 + (b− c)2

2f

)
I

+
(

ab+ac− (b2 + c2)
2 + (b+ c)2

2f

)
J . (7.2)

Summarizing:

Theorem 7.1. Suppose p = 2f + 1 (f odd) is a prime power and G is the
associated cyclic group GF (p)/{0} of order p−1 with cyclotomic classes C0
and C1 of order f . Then

P = aI + b[C0]+ c[C1] ,

a, b, c commuting variables, is a square matrix satisfying equation (7.2).

Corollary 7.1. Suppose p = 2f + 1 (f odd) is a prime power. Then there
exists a nontrivial orthogonal integer matrix of order p.

Proof. Set a = −(f−1)c
2 , b = 0, and c any integer in Theorem 7.1.

We now use P to obtain orthogonal designs. Let X, Y , Z and W be derived
from P given in Table 7.1 by setting

i) a = c = 0, iii) a = b,c = 0,
ii) a = −b,c = 0, iv) c = −b,

respectively; then

XX� =
[1

2b2(f +1)
]
I +

[1
2b2(f −1)

]
J ,

Y Y � =
[1

2b2(5+f)
]
I +

[1
2b2(f −3)

]
J ,

ZZ� =
[1

2b2(f +1)
]
I +

[1
2b2(f +1)

]
J ,

WW � =
(
a2 + b2 +2b2f

)
I − b2J .�	

Then we have:

Theorem 7.2. Let 1+S be a skew-Hadamard matrix of order

(i) 1
2 (f +1) , (ii) 1

2 (f −1) , (iii) 1
2 (f +3) ,
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Table 7.2

C0 C1 {0}
00 B A f
11 A B f
01 A A 0

(writing ii for [Ci]2
and ij for [Ci][Cj ]).

respectively, where p = 2f +1 (f odd) is a prime power. Then with X, Y , Z,
W as above,

(i) I ×XR +S×W , (ii) I ×Y R +S×W , (iii) I ×ZR +S×X ,

respectively (R is the back circulant unit), are orthogonal designs of order

(i) OD
(1

2 (f +1)(2f +1); 1
2 (f −1) ,f2) ,

(ii) OD
(1

2 (f −1)(2f +1); 1
2 (f −3) ,(f −1)2) ,

(iii) OD
(1

2 (f +3)(2f +1); 1
2 (f +1) ,(f +1)2) ,

respectively.

Proof. Straightforward verification. �	
Example 7.1. With f = 5 we see that an OD(22;1,16) exists.

Case 2. p = 2f +1, e = 2, f even

Again we use
P = aI + b[C0]+ c[C1]

and obtain PP � as before. However, as f is even, C�
i = Ci, i = 1,2, and

PP � = a2I +2ab[C0]+2ac[C1]+ b2[C0][C0]+ c2[C1][C1]+2bc[C0][C1] .

From Storer [200] the cyclotomic matrix for e = 2, f even, is

0 1
0 B A
1 A A

B = 1
2 (f −2) ,

A = f
2 .

Using Hunt and Wallis [110] we see that the expression [Ci][Cj ] is easily
determined (see Table 7.2) and, since for f even C�

i = Ci, the cyclotomic
arrays can be used immediately to evaluate PP �.

Hence

Cyclotomic numbers
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PP � =
(
a2 +(b2 + c2)f

)
I +

(
2ab+ b2 1

2(f −2)+ c2 f

2 + bcf

)
[C0]

+
(

2ac+ c2 1
2(f −2)+ b2 f

2 + bcf

)
[C1] .

The coefficients of [C0] and [C1] are equal when

(i) b = c, or
(ii) 2a = b+ c.

The case b = c is trivial, and the other case gives

PP � =
(

1
4(b− c)+(b− c)2 f

2

)
I +

(
(b+ c)2 f

2 + bc

)
J .

Thus we have:

Theorem 7.3. Let p = 2f +1 (f even) be a prime power and G the associated
cyclic group of GF (p) of order p−1 with cyclotomic classes C0 and C1 of
order f . Then

P =
(

1
2(b+ c)

)
I + b[C0]+ c[C1] ,

where b and c are commuting variables, is a matrix satisfying

PP � =
(

1
4(b− c)+(b− c)2 f

2

)
I +

(
(b+ c)2 f

2 + bc

)
J.

To obtain orthogonal designs we will consider

P = aI + b[C0]+ c[C1]
Q = aI + c[C0]+ b[C1] (7.3)

Now

PP � +QQ� =
(
(a− b− c)2 +a2−2bc+(b− c)2f

)
I

+
(
2a(b+ c)− (b2 + c2)+(b+ c)2f

)
J .

Setting c = −b we get M , N satisfying

MM� +NN� = 2
(
a2 + b2 +2b2f

)
I −2b2J .

Choosing X = dI + b(J − I) and Y = −dI + b(J − I) we have

XX� +Y Y � = 2
(
d2 + b2)I +2b2(2f − I)J ,

and hence, since N , M , X, Y are all symmetric, we have:
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Theorem 7.4. Let p = 4f + 1 (f even or odd) be a prime power. Suppose
there exists a skew-Hadamard matrix I +S of order 4f . Then

I ×
[

X Y
−Y X

]
+S×

[
M N
N −M

]
is an OD

(
8f(4f + I); 2,2(4f −1),32f2).

Clearly, we have by no means exploited all the possibilities for constructing
orthogonal designs by these methods, in particular, they could easily be used
to obtain similar results for other e.

7.2 Sequences with Zero-autocorrelation Function

Sequences with zero or small auto-correlation function have long been of
interest to engineers working on signal processing–for example, in radar and
sonar.

R.J. Turyn [219] was the first to apply an idea common in the fields of
radar pulse compression and work in surface wave encodings in constructing
Baumert-Hall arrays.

The early work of Golay was concerned with two (1,−1) sequences, but
Welti approached the subject from the point of view of two orthonormal
vectors, each corresponding to one of two orthogonal waveforms. Later work,
including Turyn‘s [221], used four or more sequences. Kharaghani and Tayfeh-
Rezaie [123] used 6 Turyn-type sequences of lengths 36,36,36,36,35,35 to find
the most recently discovered Hadamard matrix of order 428 (See Section 7.7).

Other authors who have worked in this area are Jaurequi [118], Kruskal [139],
Squire, Whitehouse and Aleup [199], Taki, Miyakawa, Hatori and Namba, [207]
and Tseng [215].

Since we are concerned with orthogonal designs, we shall consider sequences
of commuting variables.

Let X = {{a11, . . . ,a1n},{a21 . . .} . . .{a2n, . . .} . . .{am1, . . . ,amn}} be m se-
quences of commuting variables of length n.

Definition 7.2. (1) The non-periodic auto-correlation function of the family
of sequences X (denoted NX) is a function defined by

Nx =
n−j∑
i=1

(a1,ia1,i+j +a2,ia2,i+j + · · ·+am,iam,i+j) .

Note that if the following collection of m matrices of order it is formed,
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a11a12 . . .a1n

a11 a1,n−1
. . .

© a11

⎤⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎣
a21a22 . . .a2n

a21 a2,n−1
. . .

© a11

⎤⎥⎥⎥⎥⎦ . . .

⎡⎢⎢⎢⎢⎢⎢⎣
am1am2 . . .amn

. . . am,n−1
. . .

© a11

⎤⎥⎥⎥⎥⎥⎥⎦
then Nx is simply the sum of the inner products of rows 1 and j +1 of these
matrices.

(2) The periodic auto-correlation function of the family of sequences X
(denoted PX) is a function defined by

PX(j) =
n∑

i=1
(a1,ia1,i+j +a2,ia2,i+j + · · ·+am,iam,i+j) ,

where we assume the second subscript is actually chosen from the complete
set of residues modulo n.

We can interpret the function Px, in the following way: form the m circulant
matrices which have first rows, respectively,

[a11a12 . . .a1n] , [a21a22 . . .a2n] , . . . , [am1am2 . . .amn] ;

then PX(j) is the sum of the inner products of rows 1 and j + 1 of these
matrices.

If X is as above with NX(j) = 0, j = 1,2, . . . ,n−1, then we will call X m–
complementary sequences of length n (they are also called suitable sequences
because they work).

Our most useful construction uses m-complementary sequences with zero
periodic autocorrelation function or zero non-periodic autocorrelation function,
of length n, which are used to form first rows of circulant matrices which
are plugged into some array. For us, the most useful case is to form four,
m = 4, matrices of order n which are plugged into the Goethals-Seidel array
to obtain matrices of order 4n. In the case of sequences with zero non-periodic
autocorrelation function, the sequences are first padded with sufficient zeros
added to the beginning and/or the end to make their length n. We say the
weight of a set of sequences X is the number of nonzero entries in X.

If X = {A1,A2, . . . ,Am} are m-complementary sequences of length n and
weight 2k such that

Y =
{

(A1 +A2)
2 , . . . ,

(A2i−1 +A2i)
2 ,

(A2i−1−A2i)
2 , . . .

}
are also m-complementary sequences (of weight k), then X will be said to
be m-complementary disjointable sequences of length n. X will be said to be
m-complementary disjoint sequences of length n if all (m

2 ) pairs of sequences
are disjoint, i.e. ,Ai ∗Aj = 0 for all i, j, where ∗ is the Hadamard product.
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Example 7.2. For example {1 1 0 1}, {0 0 1 0 −}, {0 0 0 0 0 1 0 0 −}, {0
0 0 0 0 0 1 −} are disjoint as they have zero non-periodic auto-correlation
function and precisely one aij �= 0 for each j. (Here − means “minus 1”.) With
padding these sequences become

[11010000000] , [0010−000000] , [00000100−00] , [0000000001−] .

Notation 7.3. We sometimes use − for −1, and x̄ for −x, and A∗ to mean
the order of the entries in the sequence A are reversed. We use the notation
A/B to denote the interleaving of two sequences A = {a1, . . . ,am} and B =
{b1, . . . , bm−1}.

A/B = {a1, b1,a2, b2, . . . , bm−1,am}
and (A,B) to denote the adjoining

(A,B) = {a1,a2, . . . ,am, b1, b2, . . . , bm−1, bm} .

One more piece of notation is in order. If gr denotes a sequence of integers
of length r, then by xgr we mean the sequence of integers of length r obtained
from gr by multiplying each member of gr by x.

Proposition 7.1. Let X be a family of sequences as above; then

PX(j) = NX(j)+NX(n− j) , j = 1, . . . ,n−1 .

Corollary 7.2. If NX(j) = 0 for all j = 1, . . . ,n−1, then PX(j) = 0 for all
j = 1, . . . ,n−1.

Note. PX(j) may equal 0 for all j = 1, . . . ,n−1, even though the NX(j) are
not.

Definition 7.3. If X = {{a1, . . . ,an} ,{b1, . . . , bn}} are two sequences where
ai, bj ∈ {1,−1} and NX(j) = 0 for j = 1, . . . ,n−1, then the sequences in X
are called Golay complementary sequences of length n or a Golay pair. E.g.,

n = 2 11 and 1−
n = 10 1−−1−1−−−1 and 1−−−−−−11−
n = 26 111−−111−1−−−−−1−11−−1−−−− and

−−−11−−−1−11−1−1−11−−1−−−−.

We note that if X is as above and A is the circulant matrix with first row
{a1, . . . ,an} and B the circulant matrix with first row {b1, . . . , bn}, then

AA� +BB� =
∑(

a2
i + b2

i

)
In .

Consequently, such matrices may be used to obtain Hadamard matrices
constructed from two circulants.
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We would like to use Golay sequences to construct other orthogonal designs,
but first we consider some of their properties.

Lemma 7.3. Let X = {{a1, . . . ,an} ,{b1, . . . , bn}} be Golay complementary
sequences of length n. Suppose k1 of the ai are positive and k2 of the bi are
positive; then

n = (k1 +k2−n)2 +(k1−k2)2 ,

and n is even.

Proof. Since PX(j) = 0 for all j, we may consider the two sequences as
2−{n;k1,k2;λ} supplementary difference sets with λ = k1 +k2− 1

2n. But the
parameters (counting differences two ways) satisfy λ(n− 1) = k1(k1 − 1) +
k2(k2 − 1). On substituting λ in this equation we obtain the result of the
enunciation. �	

The smaller values of n,k1,k2 of the lemma are considered in Table 7.3.
We note that the lemma says there is “no solution” when the length n is

Golay sequences exist (see later in this section). Malcolm Griffin has shown
(see Theorem 7.5) no Golay sequences can exist for lengths n = 2.9t. The
value n = 18 had previously been excluded by a complete search but is now
theoretically excluded by Griffin’s theorem and independently by a result of
Kruskal [139] and C. H. Yang [253]. The powerful results of Eliahou-Kervaire-
Saffari [56, 57] show that there are no Golay sequences of length n when any
factor of the prime decomposition of n is ≡ 3 (mod 4).

Lemma 7.4. For Golay sequences X = {{xi},{yi}} of length n

xn−i+1 = eixi ⇔ yn−i+1 = −eiyi, where ei = ±1 .

That is,
xn−i+1xi = −yn−i+1yi ,

Example 7.3. The sequences of length 10 are

1−−1−1−−−1
1−−−−−−11−

Clearly, el = 1, e2 = 1, e3 = 1, e4 = −1, and e5 = −1.

Proof. We use the fact that if x, y, z are ±1, (x + y)z ≡ x + y (mod 4) and
x+y ≡ xy +1 (mod 4).

Let i = 1. Clearly the result holds. We proceed by induction. Suppose the
result is true for every i ≤ k−1. Now consider N(j) = N(n−k) = 0, and we
have

not the sum of two squares. “OK” in the table indicates an order for which
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Table 7.3 Smaller values of n

n and Status

2 OK 34 do not exist 68 ?
4 OK 36 do not exist 70 no solution
6 no solution 38 no solution 72 no solution
8 OK 40 OK 74 ?

10 OK 42 no solution 76 no solution
12 no solution 44 no solution 78 no solution
14 no solution 46 no solution 80 OK
16 OK 48 no solution 82 ?
18 do not exist 50 do not exist 84 no solution
20 OK 52 OK 86 no solution
22 no solution 54 no solution 88 no solution
24 no solution 56 no solution 90 no solution
26 OK 58 do not exist 92 no solution
28 no solution 60 no solution 94 no solution
30 no solution 62 no solution 96 no solution
32 OK 64 OK 98 no solution

66 no solution 100 OK

0 = x1xn+1−k +x2xn+2−k + · · ·+xkxn +y1yn+1−k +y2yn+2−k + · · ·+ykyn

= xiekxk +x2ek−1xk−1 + · · ·+xke1x1 +y1yn+l−k

−y2ek−1yk−1−·· ·−yke1y1

≡ e1 +e2 + · · ·+ek +y1yn+1−k −ek−1−·· ·−e2−yke1y1 (mod 4)
≡ e1 +ek +y1yn+1−k −yke1y1 (mod 4)
≡ ek +ykyn+1−k (mod 4)
≡ 0 (mod 4) .

So

yn+1−k = −ekyk�	

Lemma 7.5 (Griffin [93]). Let a0,a1, . . . ,am and b0, b1, . . . , bm be Golay
sequences of length 2n = m + 1. We recall that a2n−1−i = eiai ⇔ b2n−1−i =
−eibi and write S = {0 ≤ i ≤ n : ei = 1} and D = {0 ≤ i ≤ n : ei = −1}. Let η
be a 2n-th root of unity and ζ be a 4n-th root of unity. Then∣∣∣∣∣

m∑
i=0

aiη
i

∣∣∣∣∣
2

+

∣∣∣∣∣
m∑

i=0
biη

i

∣∣∣∣∣
2

= 4n. (7.4)

and
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i∈S

aiRe
(
ζ2i+1)∣∣∣∣∣

2

+

∣∣∣∣∣∑
i∈D

aiIm
(
ζ2i+1)∣∣∣∣∣

2

+

∣∣∣∣∣∑
i∈S

biIm
(
ζ2i+1)∣∣∣∣∣

2

+

∣∣∣∣∣∑
i∈S

aiRe
(
ζ2i+1)∣∣∣∣∣

2

= n (7.5)

Remark 7.1. Equation (7.5) is not equivalent to being a Golay sequence, as
can be seen from the sequences

X = {{1,1,1,1,−1,−1,1,1}, {1,−1,−1,1,1,−1,1,−1}}

which satisfy (7.5) but for which NX �= 0.

Proof. We recall that for Golay sequences X, NX = 0 ⇒ PX = 0. Thus if
T = (tij) is defined by t12 = ti,i+1 = 1 and all other elements zero, we have,
writing

A =
m∑

i=0
aiT

i and B =
m∑

i=0
biT

i ,

AA� +BB� = 4nI .�	

Since TT � = T 2n = I and T has characteristic polynomial λ2n−1, there
exists a unitary matrix U such that USU∗ = Δ = diag(1, ξ,ξ, . . . , ξm), where
ξ is a primitive 2n-th root of unity. Consequently(

m∑
i=0

aiΔ
i

)(
m∑

i=0
aiΔ

i

)∗
+
(

m∑
i=0

biΔ
i

)(
m∑

i=0
biΔ

i

)∗
= 4nI .

Let η = ξj−1; then the j-th term on the main diagonal gives

4n =
(

m∑
i=0

aiη
i

)(
m∑

i=0
aiη

−i

)
+
(

m∑
i=0

biη
i

)(
m∑

i=0
biη

−i

)

=

∣∣∣∣∣
m∑

i=0
aiη

i

∣∣∣∣∣
2

+

∣∣∣∣∣
m∑

i=0
biη

i

∣∣∣∣∣
2

. (Condition (1))

We now substitute a2n−i−1 = eiai and b2n−i−1 = eibi, 0 ≤ i < n, in Condi-
tion (1) with η = ζ2. Thus
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4n =

∣∣∣∣∣
n−1∑
i=0

(
aiη

i +eiaiη
−(i+1)

)∣∣∣∣∣
2

+

∣∣∣∣∣
n−1∑
i=0

(
biη

i−eibiη
−(i+1)

)∣∣∣∣∣
2

=

∣∣∣∣∣∑
i∈S

ai

(
ζ2i + ζ−(2i+2)

)
+

∑
i∈D

ai

(
ζ2i− ζ−(2i+2)

)∣∣∣∣∣
2

+

∣∣∣∣∣∑
i∈S

bi

(
ζ2i− ζ−(2i+2)

)
+

∑
i∈D

bi

(
ζ2i + ζ−(2i+2)

)∣∣∣∣∣
2

=

∣∣∣∣∣∑
i∈S

ai

(
ζ2i+1 + ζ−(2i+1)

)
+

∑
i∈D

ai

(
ζ2i+1− ζ−(2i+1)

)∣∣∣∣∣
2

+

∣∣∣∣∣∑
i∈S

bi

(
ζ2i+1− ζ−(2i+1)

)
+

∑
i∈D

bi

(
ζ2i+1 + ζ−(2i+1)

)∣∣∣∣∣
= 4

∣∣∣∣∣∑
i∈S

aiRe
(
ζ2i+1)∣∣∣∣∣

2

+4

∣∣∣∣∣∑
i∈D

aiIm
(
ζ2i+1)∣∣∣∣∣

2

+4

∣∣∣∣∣∑
i∈S

biIm
(
ζ2i+1)∣∣∣∣∣

2

+4

∣∣∣∣∣∑
i∈D

biRe
(
ζ2i+1)∣∣∣∣∣

2

(Condition (2))

We now use Condition (2) to prove:

Theorem 7.5 (Griffin [93]). There are no Golay sequences of length 2.9t.

Proof. We show that Condition (2) cannot be satisfied for all 12th roots when
n is a power of 3. Setting S = −I in Condition (2), we get(∑

S

ai

)2

+
(∑

D

bi

)2

= n. (Condition (3))

If n is a product of primes, each ≡ 3 (mod 4), then by elementary number
theory, n must be a square, n = q2, and solutions to this equation must be
unique (up to order and sign), yielding∑

S

ai +
∑
D

bi = αq , α = ±1 . (Condition (4))

If 3|q, we use ξ = 1
2 + 1

2
√−3

(
ξ3 = −1, ξ5 = ξ−1) in Condition (2) to give a

Diophantine equation of the form

3
(
c2 +d2)+e2 +f2 = 4q2 , (Condition (5))

and since the summation in forming c involves only i ∈ D with i � ≡1 (mod 3)
and the summation for d involves i ∈ S with i � ≡1 (mod 3), c and d involve 2

3
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of the q2 elements, and consequently c ≡ d (mod 3). Taking residues mod 8
shows that c,d,e,f are all even, giving

3
(
c2

0 +d2
0
)

+e2
0 +f2

0 = q2 .

When q is a power of 3, this equation has a unique solution (up to order
and sign), so c = d = 0 and e+ f = 2βq, β = ±1. From now on assume that
q is a power of 3. Let S(0) = {i ∈ S|i ≡ 0, 5 (mod 6)}, S(1) = {i ∈ S ≡ 1, 4
(mod 6)} and S(2) = {i ∈ S|i ≡ 2, 3 (mod 6)} with a similar notation for D.
Then e+f = 2βq gives∑

S

ai−3
∑
S(1)

ai +
∑
D

bi−3
∑
d(1)

bi = 2βq . (Condition (6))

The same argument with ξ = 1
2
(√

3+
√−1

)
a primitive 12-th root again yields

an equation of type Condition (5), and c = d = 0 gives c+d = 0; so∑
S(0)

ai−
∑
S(2)

ai +
∑
D(0)

b1−
∑
D(2)

bi = 0 . (Condition (7))

Adding Condition (6), twice Condition (4), and thrice Condition (7), we
get

6

⎛⎝∑
S(0)

ai +
∑
D(0)

bi

⎞⎠ = 2q(α +β) ≡ 0 (mod 4) .

But this is a contradiction since S(0)∪D(0 has an odd number of elements,
q2

3 . �	

7.2.1 Other sequences with zero auto-correlation
function

We now discuss other sequences with zero auto-correlation function.

Lemma 7.6. Suppose X = {X1,X2, . . . ,Xm} is a set of (0,1,−1) sequences
of length n for which NX = 0 or PX = 0. Further suppose the weight of Xi is
xi and the sum of the elements of Xi is ai. Then

m∑
i=1

a2
i =

m∑
i=1

xi

Proof. Form circulant matrices Yi for each Xi. Then
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YiJ = aiJ and
m∑

i=1
YiY

�
i =

m∑
i=1

xi

Now considering
m∑

i=1
YiY

�
i J =

m∑
i=1

a2
i J =

m∑
i=1

xiJ ,

we have the result. �	
Now a few simple observations are in order, and for convenience we put

them together as a lemma. We use X∗ to denote the elements of a sequence
X written in the reverse order.

Lemma 7.7. Let X = {A1A2, . . . ,Am} are m-complementary sequences of
length n. Then
(i) Y = {A∗

1,A∗
2, . . . ,A∗

i ,Ai+1, . . . ,Am} are m-complementary sequences of
length n ;

(ii) W = {A1,A2, . . . ,Ai,−Ai+1, . . . ,−Am} are m-complementary sequences
of length n ;

(iii) Z = {{A1,A2},{A1,−A2}, . . . ,{A2i−1,A2i},{A2i−1,−A2i}, . . .} are m−
(or m + 1 if m was odd when we let Am+1 be n zeros) complementary
sequences of length 2n;

(iv) U = {{A1/A2},{A1/−A2}, . . . ,{A2i−1/A2i},{A2i−1/−A2i}, . . .}, where
Aj/Ak means aj1ak1aj2ak2 . . .ajnakn, are m- (or m + 1 if m was odd
when we let Am+1 be n zeros) complementary sequences of length 2n.

By a lengthy but straightforward calculation, it can be shown that:

Theorem 7.6. Suppose X = {A1, . . . ,A2m} are 2m-complementary sequences
of length n and weight � and Y = {B1,B2} are 2-complementary disjointable
sequences of length t and weight 2k. Then there are 2m-complementary se-
quences of length nt and weight k�.

The same result is true if X are 2m-complementary disjointable sequences
of length n and weight 2� and Y are 2-complementary sequences of weight k.

Proof. Using an idea of R.J. Turyn [221], we consider

A2i−1× (B1 +B2)
2 +A2i× (B∗

1 −B∗
2)

2 and

A2i−1× (B1−B2)
2 −A2i× (B∗

1 +B∗
2)

2

for i = 1, . . . ,m, which are the required sequences in the first case, and

(A2i−1 +A2i)
2 ×B1 + (A2i−1−A2i)

2 ×B∗
2 and

(A2i−1 +A2i)
2 ×B2− (A2i−1−A2i)

2 ×B∗
1 ,
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for i = 1, . . . ,m, which are the required sequences for the second case. �	
The proof now follows by an exceptionally tedious but straightforward

verification.

Corollary 7.3. Since there are Golay sequences of lengths 2, 10, and 26,
there are Golay sequences of length 2a10b26c for a, b, c non-negative integers.

Corollary 7.4. There are 2-complementary sequences of lengths
2a6b10c14d26e of weights 2a5b10c13d26e2, where a, b, c, d, e are non-negative
integers.

Proof. Use the sequences of Tables G.8 and G.9 of Appendix G. �	

7.3 Current Results for Non-Periodic Golay Pairs

Through extended calculations made by hand, Golay demonstrated the ex-
istence of two inequivalent pairs at length 10 and a pair at length 26. He
also gave rules of composition for forming pairs of lengths 2n and 2mn from
existing pairs of length m and n. His constructions for lengths 2k give all
existing pairs for 0 ≤ k ≤ 6.

The first exhaustive search for Golay pairs was conducted at length 26
(Jauregui [118]), taking 75 hours to confirm the single example of inequivalent
pairs. In his 1977 master’s thesis, Andres [5] showed that a further reduction
modulo 2 enables an initial search involving 2 n

2 cases. A further reduction
modulo 4 was applied for examples surviving this test. He used one of the
equivalences, bringing this to a 2 n

2 −1 search, reducing the time taken at n = 26
to 1 minute. His work showed nonexistence of pairs at lengths 34, 50 and 58
and produced complete lists of representatives at lengths 8, 10, 16, 20 and
32. Later work by James [116] (1987) established the nonexistence of pairs

pair from each class of equivalent pairs. He conducted exhaustive searches at
lengths 32 and 40, producing complete lists of canonical pairs.

The work of Borwein and Ferguson [25] outlines improvements which may
be made to Andres’ algorithm, enabling a 2 n

2 −5 search at length 82 with
a running time of two weeks. Exhaustive searches have been conducted at
all allowable lengths under 100, confirming earlier work and showing the
nonexistence of pairs at lengths 74 and 82.

Recent search results by Borwein and Ferguson [25] are summarized in
Table G.1. For all lengths other than 1, 2, 4, and 80, complete lists of canonical
pairs were compiled by the search program. The total numbers of pairs agree
exactly with those obtained by compositions from the primitive pairs. At
length 80, the search was restricted to canonical pairs for which no conjugate
is H-regular. The total number of pairs is that determined by composition
from the two primitive pairs at length 10 and the single primitive pair of

at length 68. Ðoković [43] (1998) demonstrated how to choose a canonical
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length 20. (The superscript σ in Table G.1 indicates work done at Simon
Frazer University.)

A Golay pair is said to be primitive if it cannot be derived through
composition from pairs of shorter lengths. A theory for producing pairs of
length 2n from a primitive pair of length n is developed in [25].

Golay complementary sequences contain no zeros but considerable effort
has also been devoted to ternary complementary sequences which still have
zero non-periodic autocorrelation function but contain elements {0,±1}.
Craigen and Koukouvinos [37] have made a theory for these ternary sequences
and given a table for their existence for some smaller lengths and weights.

7.4 Recent Results for Periodic Golay Pairs

Ðoković and Kotsireas [51] show that if v > 1 is a periodic Golay number then
v is even, it is a sum of two squares and satisfies the Arasu-Xiang condition [51,
Theorem 2, p.525]. They cite new lengths 34,50,58,74,82,122,136,202,226 as
those for which periodic sequences exist. Periodic sequences can be used in
the construction of T -matrices. The following list is all numbers in the range
1,2, . . . ,300 which satisfy the three necessary conditions and for which the
question whether they are periodic Golay numbers remains open:

90,106,130,146,170,178,180,194,212,218,234,250,274,290,292,298 .

This list may be useful to readers interested in constructing new periodic
Golay pairs or finding new periodic Golay numbers.

7.5 Using complementary sequences to form
Baumert-Hall arrays

We now discuss other sequences with zero autocorrelation function.
Lemma 7.8. Suppose that X = {X1,X2, . . . ,Xm} is a set of 0, ±1 sequences
of length n for which NX = 0 or PX = 0. Further suppose that the weight of
Xi is xi and the sum of the elements of Xi is ai. Then

n∑
i=1

a2
i =

m∑
i=1

xi.

Proof. Form the circulant matrices Yi for each Xi. Then

YiJ = aiJ and
m∑

i=1
YiY

�
i =

m∑
i=1

xiI.
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Now considering
m∑

i=1
YiY

�
i J =

m∑
i=1

a2
i J =

m∑
i=1

xiJ

we have the result. �	
We now propose to use R.J. Turyn’s [216] idea of using m-complementary

sequences to construct orthogonal designs.

Lemma 7.9. Consider four (1,−1) sequences A = {X,U,Y,W}, where

X = {x1 = 1,x2,x3, . . . ,xm,hmxm, . . . ,h3x3,h2x2,h1x1 = −1} ,

U = {u1,u2,u3, . . . ,um,fmum, . . . ,f3u3,f2u2,f1u1 = 1} ,

Y = {y1,y2, . . . ,ym−1,ym,gm−1ym−1, . . . ,g3y3,g2y2,g1y1} ,

V = {v1,v2, . . . ,vm−1,vm,em−1vm−1, . . . ,e3v3,e2v2,e1v1} .

Then NA = 0 implies that hi = fi for i ≥ 2 and gj = ej for j ≥ 2. Here

8m−2 =
(

m∑
i=1

(xi +xihi)
)2

+
(

m∑
i=1

(ui +uifi)
)2

+
(

ym +
m−1∑
i=1

(yi +yigi)
)2

+
(

vm +
m−1∑
i=1

(vi +viei)
)2

.

Proof. We note that if a, b, x, y, z are all ±1, a+ b ≡ ab + 1 (mod 4), and so
x+xyz ≡ y +z (mod 4). Clearly, NA(2m−1) = 0 gives −h1 = f1 = 1, and

NA(2m−2) = x1x2h2 +x2h1x1 +f2u1u2 +u2f1u1 +g1y2
1 +e1v2

1
≡ h1 +h2 +f1 +f2 +g1 +e1 (mod 4)
≡ h2f2 +g1e1 +2 (mod 4)
≡ 0 (mod 4) .

This gives h2f2 = g1e1. We proceed by induction to show that hifi = gi−1ei−1
for all i ≤ m.

Assume hifi = gi−1ei−1, i.e. hi + fi + gi−1 + ei−1 ≡ 0 (mod 4) for all i <
k ≤ m. Now consider
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NA(2m−k) = (x1xkhk +x2xk−1hk−1 + · · ·+xk−1x2h2 +xkx1h1)
+(u1ukfk +u2uk−1fk−1 + · · ·+uk−1u2f2 +uku1f1)
+(y1yk−1gk−1 +y2yk−2gk−2 + · · ·+yk−2y2g2 +yk−1y1g1)
+(v1vk−1ek−1 +v2vk−2ek−2 + · · ·+vk−2v2e2 +vk−1v1e1)

≡ h1 + · · ·+hk +f1 + · · ·+fk +g1 + · · ·+gk−1

+e1 + · · ·+ek−1 (mod 4)
≡ hkfk +gk−1ek−1 +2 (mod 4)
≡ 0 (mod 4) .

This gives the result for all i ≤ m.
Suppose k = m+ j > m. Then

NA(2m−k) = (x1xm−j+1 + · · ·+xjxm)+(xj+1hmxm + . . .

+xmhj+1xj+1)+(hmxmhjxj + · · ·+hm−j+1xm−j+1h1x1)
+(u1um−j+1 + · · ·+ujum)+(uj+1fmum + · · ·+umfj+1uj+1)

+(fmumfjuj + · · ·+fm−j+1um−j+1f1u1)
+(y1ym−j+1 + · · ·+yjym)

+(yj+1gm−1ym−1 + · · ·+ym−1gj+1yj+1)
+(ymgjyj + · · ·+gm−j+1ym−j+1g1y1)

+(v1vm−j+1 + · · ·+vjmj)
+(vj+1em−1vm−1 + · · ·+vm−1ej+1vj+1)

+(vmejvj + · · ·+em−j+1vm−j+1e1v1)
≡ h1f1 +hm−j+1fm−j+1 (mod 4)
≡ hm−j+1fm−j+1−1 (mod 4)

Hence hm−j+1fm−j+1 = 1. So in general hifi = 1, i ≥ 2 and eigi = 1.
The last result follows by Lemma 7.7. �	

Corollary 7.5. Consider four (1,−1) sequences A = {X,U,Y,V }, where

X = {x1 = 1,x2,x3, . . . ,xm,−xm, . . . ,−x3,−x2,−x1 = −1} ,

U = {u1 = 1,u2,u3, . . . ,um,fmum, . . . ,f3u3,f2u2,f1u1 = 1} ,

Y = {y1,y2, . . . ,ym−1,ym,ym−1, . . . ,y3,y2,y1} ,

V = {v1,v2, . . . ,vm−1,vm,em−1vm−1, . . . ,e3v3,e2v2,e1v1} .

Then NA = 0 implies that all ei are +1 and all fi are −1. Here 8m−6 is the
sum of two squares.

Similarly we can prove

Corollary 7.6. Consider four (1,−1) sequences A = {X,U,Y,V }, where
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X = {x1 = 1,x2,x3, . . . ,xm,xm+1,xm, . . . ,x3,x2,x1 = 1} ,

U = {u1 = 1,u2,u3, . . . ,um,um+1,fmum . . . ,f3u3,f2u2,−1} ,

Y = {y1,y2, . . . ,ym,−ym, . . . ,−y2,−y1} ,

V = {v1,v2, . . . ,vm,emvm, . . . ,e2v2,e1v1} .

which have NA = 0. Have ei = −1 for all i and fi = +1 for all i. Here 8m+2
is the sum of two squares.

Definition 7.4. Sequences such as those described in Lemma 7.9 will be
called Turyn sequences of length �: (the four sequences are of weights �, �,
�−1 and �−1). A sequence X = {x1, . . . ,xn} will be called skew if n is even
and xi = −xn−i+1 and symmetric if n is odd and xi = xn−i+1.

Lemma 7.10. There exist Turyn sequences of lengths 2,4,6,8,3,5,7,13 and
15.

Proof. Consider

� = 2 : X = {{1−}, {11}, {1}, {1}}
� = 4 : X = {{11−−}, {11−1}, {111}, {1−1}}
� = 6 : X = {{111−−−}, {11−1−1}, {11−11}, {11−11}}
� = 8 : X = {{11−1−1−−}, {1111−−−1}, {111−111}, {1−−1−−1}}
� = 3 : X = {{111}, {11−}, {1−}, {1−}}
� = 5 : X = {{11−11}, {1111−}, {11−−} ,{11−−}}
� = 7 : X = {{111−111}, {11−−−1−}, {11−1−−}, {11−1−−}}
� = 13 : X = {{1111−1−1−1111}, {111−−1−1−−11−},

{111−11−−1−−−}, {111−−1−11−−−}},

or

X = {{111−11−11−111}, {111−1−1−11−},

{11−1−111} ,{1111−1−1−−−−}}
� = 15 : X = {{11−111−1−111−11}, {111−11−−−11−11−},

{111−−1−11−−−−}, {1−−−−1−1−1111−}} .�	

Remark 7.2. These sequences were constructed using the Research School of
Physical Sciences, Australian National University, DEC-10 System in 1972-73.

A complete computer search in the case of 2 = 9, 10, 14 and 16 gave no
solution for any decomposition into squares. The results are listed in Table
7.4.

Edmondson, Seberry and Anderson [55] using a combination of mathematics
and computer search show there are no further Turyn sequences of length
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Table 7.4 Turyn sequences for 4� − 6 = x2 + y2

� 4�−6 = x2 +y2 Result

6 18 = 32 +32 yes
8 26 = 12 +52 yes
10 34 = 32 +52 none
12 42 �= x2 +y2 no
14 50 = 12 +72 none

= 52 +52 none
16 58 = 32 +72 none
18 66 �= x2 +y2 no

n ≤ 43. We note that at this time, year 2016, about length 43 is the upper
limit for these types of computer searches.

Conjecture 7.1. The lengths 2,4,6,8,3,5,7,13,15 are the only lengths for Tu-
ryn sequences.

In order to satisfy the conditions of Theorem 4.15, we are led to study
sequences of a more restricted type.

Definition 7.5. Four complementary disjoint (0,1,−1) sequences of length t
and total weight t will be called T -sequences.

Example 7.4. Consider

T = {{10000},{01100},{0001−},{00000}} .

The sequences are disjoint, as the i-th entry is non-zero in one and only one
of the four sequences. The total weight is 5, and NT = 0.

Another example is obtained by using the Golay sequences

X = 1−−1−1−−−1 and Y = 1−−−−−−11− .

Let 0 be the vector of 10 zeros; then

T =
{{1,0},{0, 1

2 (X +Y )},{0, 1
2 (X −Y )},{0,0}}

are T sequences of length 11.

Theorem 7.7 (Turyn). Suppose A = {X,U,Y,V } are Turyn sequences of
length �, where X is skew and Y is symmetric for � even and X is symmetric
and Y is skew for � odd. Then there are T -sequences of length 2�− 1 and
4�−1.
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Proof. We use the notation A/B as before to denote the interleaving of two
sequences A = {a1, . . . ,am} and B = {b1, . . . , bm−1}.

A/B = {a1, b1,a2, b2, . . . , bm−1,am} .

Let 0t be a sequence of zeros of length t. Then

T1 =
{{1

2 (X +Y ),0�−1},{1
2 (X −Y ),0�−1},{0�, 1

2 (Y +V )},{0�, 1
2{(Y −V )}}

and

T2 = {{1,04�−2},{0,X/Y,02�−1},{0,02�−1,U/0�−1},{0,02�−1,0�/V }}

are the T -sequences of lengths 2�−1 and 4�−1, respectively. �	
Corollary 7.7. There are T -sequences constructed from Turyn sequences of
lengths 3,5,7,9,11,13,15,19,23,25,27,29,31,51,59.

Theorem 7.8. If X and Y are Golay sequences of length r, then writing 0r

for the vector of r zeros, T = {{1,0r}, {0, 1
2 (X +Y )}, {0, 1

2 (X−Y )}, {Or +1}}
are T -sequences of length r +1.

Corollary 7.8 (Turyn [221]). There exist T -sequences of lengths
1+2a10b26c, where a,b,c are non-negative integers.

Combining these last two corollaries, we have

Corollary 7.9. There exist T -sequences of lengths 3, 5, 7, . . . ,33, 41, 51, 53,
59, 65, 81, and 101.

A desire to fill the gaps in the list in Corollary 7.9 leads to the following
idea.

Lemma 7.11. Suppose X = {A,B,C,D} are 4-complementary sequences of
length �,�,�−1, �−1, respectively, and weight k. Then

Y = {{A,C}, {A,−C}, {B,D}, {B,−D}}

are 4-complementary sequences of length 2�− 1 and weight 2k. Further, if
1
2 (A+B) and 1

2 (C +D) are also (0,1,−1) sequences, then, with 0t the sequence
of t zeros,

Z =
{{1

2 (A+B),0�−1}, {1
2 (A−B),0�−1},{0�, 1

2 (C +D)}, {0�, 1
2 (C −D)}}

are 4-complementary sequences of length 2�−1 and weight k. If A,B,C,D are
(1,−1) sequences, then Z consists of T -sequences of length 2�−1.

In fact, Turyn has found sequences satisfying these conditions.
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Corollary 7.10. The following four (1,−1) sequences are of lengths 24, 24,
23, 23:

1 −1 −1 −1 1 −1 1 −1 −1 −1 −1 1 1 1 1 1 1 −1 −1 1 −1 −1 −1 1

1 −1 −1 1 −1 −1 1 −1 1 1 1 −1 −1 −1 −1 −1 1 −1 −1 −1 1 −1 −1 −1

1 1 1 −1 −1 −1 1 1 −1 −1 1 −1 −1 −1 −1 1 −1 −1 −1 −1 1 −1 1

1 1 −1 −1 1 −1 1 1 −1 1 −1 1 1 1 −1 1 −1 −1 1 −1 −1 −1 1

Hence there are T -sequences of length 47.

These sequences may be used in the Goethals-Seidel array to construct the
Hadamard matrix of order 188 which was unknown for over 40 years. This
method is far more insightful than the construction given in Hedayat and
Wallis [98].

We may summarise these results in one theorem.

Theorem 7.9. If there exist T -sequences of length t, then

(i) there exist T -matrices of order t;
(ii) there exists a Baumert-Hall array of order t;

(iii) there exists an orthogonal design OD(4t; t, t, t, t).

Proof. (i) follows by using the T -sequences as first rows of circulant matrices.
The rest follows from Theorem 4.15. �	

Hence we have:

Proposition 7.2. Combining the results of Section 4.12 and this section, we
have Baumert-Hall arrays of order

(i) A = {1+2a10b26c, a,b,c non-negative integers} ,
(ii) B = {1,3, . . . ,33,37,41,47,51,53,59,61,65,81,101} ,

(iii) 5b and 9b where b ∈ A∪B .

We note there is a Baumert-Hall array of order 47, and hence, as noted
before, there is an Hadamard matrix of order 188.

7.6 Construction using complementary sequences

We now give some results which are useful in constructing new sequences from
old. In particular, we want to use both periodic and aperiodic complementary
sequences to construct orthogonal designs.

Remark 7.3. Since our interest is in orthogonal designs, we shall not be re-
stricted to sequences with entries only ±1, but shall allow 0’s and variables
too. One very simple remark is in order. If we have a collection of sequences
X (each having length n) such that NX(j) = 0, j = 1, . . . ,n−1, then we may
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augment each sequence at the beginning with k zeros and at the end with
� zeros so that the resulting collection (say X̄) of sequences having length
k +n+ � still has NX̄(j) = 0, j = 1, . . . ,k +n+ �−1.

Lemma 7.12. Suppose there exist complementary sequences Xi,Yi of length
ni, which give an OD(u1i,u2i) constructed from two circulants, i = 1,2.

Then there exist 4-complementary sequences of length n which can be
used in the Goethals-Seidel array to give OD(4n;u11,u12,u21,u22) where
n ≥ max(n1,n2).

If in addition X2,Y2 are disjointable, then there exists an orthogonal design
OD(4n;u11,u21, 1

2u12, 1
2u22) where n ≥ max(n1,n2).

Proof. Very straightforward. �	
Corollary 7.11. Let r be any number of the form 2a10b26c5d13e, and let n
be any integer ≥ 2a10b26c6d14e, a,b,c,d,e non-negative integers. Then there
exist orthogonal designs

(i) OD(4n;1,1, r,r) ,
(ii) OD(4n;1,4, r,r) ,

(iii) OD(2n;r,r) .

Proof. Sequences of the weights r are by Corollary 7.3 and Theorem 7.6
disjointable, and the (1,4) sequences are {abā,a0a}. �	

Another construction based on the existence of 2-complementary sequences
which is extremely useful is:

Lemma 7.13. Let X = {U,V } be 2-complementary sequences of length n
giving a design constructed of two circulants of type (a,b) such that NX(j) = 0.
Then, with U∗ and V ∗ their reverse sequences and w,x,y,z variables,

(i) Y = {x,y,zU,zV } ,
(ii) Y = {yxȳ,y0y,zU,zV } ,

(iii) Y = {{zU,0,zU∗},{zU,x,−zU∗},{zV,0,zV ∗},{zV,y,−zV ∗}}
have NY (j) = 0. Furthermore, they may be used in the Goethals-Seidel array
to give orthogonal designs

(i) OD(4m : (1,1,a,b),(1,4,a,b)), m ≥ n, and
(ii) OD(4m;1,1,4a,4b), m ≥ 2n+1 .

Proof. Use {101, 11−}, {10111−, 101−−1}, {aabb̄, aābb}, {ab, āb},
{aaabāaab̄āaāb0b, bbbāb̄bbab̄bb̄ā0ā}. �	

We give one other method for constructing orthogonal designs using com-
plementary sequences.
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Lemma 7.14. Let X = {A,B,Z,Z} be 4-complementary sequences of length
n and weight k. Then writing Z∗ for the reverse of Z and with x,y,z variables,

Y = {{yA,0,yB},{yA,0,−yB},{yZ,0,yZ∗},{yZ,x,−yZ∗}}

are 4-complementary sequences of length 2n + 1 which may be used to give
OD(4m;1,2k), m ≥ 2n+1.

Proof. Use the four sequences of Y to generate matrices which can be used
in the Goethals-Seidel array. �	
Summary 7.1. Two sequences x1, . . . ,xn and y1, . . . ,yn are called Golay com-
plementary sequences of length n if all their entries are ±1 and

n−j∑
i=1

(xixi+j +yiyi+j) = 0 for every j �= 0, j = 1, . . . ,n−1,

i.e., NX = 0.

These sequences have the following properties:

1.
∑n−j

i=1 (xixi+j +yiyi+j) = 0 for every j �= 0, j = 1, . . . ,n−1,
(where the subscripts are reduced modulo n),
i.e., PX = 0.

2. n is even and the sum of two squares.
3. xn−i+1 = eixi ⇔ yn−i+1 = −eiyi where ei = ±1.

4.
[∑

i∈S xiRe
(
ζ2i+1)]2 +

[∑
i∈D xiIm

(
ζ2i+1)]2

+
[∑

i∈S yiIm
(
ζ2i+1)]2 +

[∑
i∈D yiRe

(
ζ2i+1)]2 = 1

2n
,

where S = {i : 0 ≤ i < n,ei = 1}, D = {i : 0 ≤ i < n,ei = −1} and ζ is a
2nth root of unity.

5. Exist for orders 2a10b26c, a,b,c non-negative integers.
6. Do not exist for orders 2.n (n a positive integer), when any factor of the

prime decomposition of n is ≡ 3 (mod 4) or 34,50 or 58.

Kharaghani, et al [35,36] has made fundamental advances in studying Golay
type sequences in other contexts such as with complex entries or matrix entries.
The following theorem is needed in one proof of the asymptotic existence
results for Hadamard matrices:

Theorem 7.10 (Kharaghani). For any positive integer n, there is a pair
of Golay sequences of length 2n in type 1 matrices each appearing 2n−1 times
in each of the sequences.

Proof. Let An−1 and Bn−1 be a pair of Golay sequences of length 2n−1 in
type 1 matrices each appearing 2n−2 times in each of the sequences. Then
An = (An−1,Bn−1) and Bn = (An−1,−Bn−1) form a Golay pair of length 2n

in type 1 matrices, as desired, where (A,B) means sequence A followed by
sequences B. �	
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7.7 6-Turyn-type Sequences

Definition 7.6. 6-complementary sequences A, B, C, C, D and D of lengths
m, m, m, m, n, and n with elements 0,±1 and NPAF = 0 will be called
6-Turyn-type sequences.

Kharaghani and Tayfeh-Rezaie [122] in 2004 found six compatible ±1
complementary sequences with zero NPAF of lengths 36,36,36,36,35,35 which
can be used in the following theorem to construct Hadamard matrices of order
428 = 4×107 and BH(428;107,107,107,107). We quote from Kharaghani and
Tayfeh-Rezaie [123, p. 5]:

The following solution was implemented on a cluster of sixteen 2.6 GHz
PC’s for

214 = x2 +y2 +z2 +2w2

with x = 0, y = 6, z = 8 and w = 5 and found the following solution after
about 12 hours of computation.

A = (+ + + − − − − + + − + − + − − − − − + + + + − + + − + + + + − − − − +−) ,

B = (+ − + + + + + − − + − + − − + − − + + − − + + + + − + + + + − − − + +−) ,

C = (+ − + + + + + − + − − + + + + − + + + − + + − − + + + − + − − + − − −+) ,

D = (+ + + − + − − − − − + + − − + − + + + − − + − + − + + + − + + + + − +) .

Hence:

Theorem 7.11. Suppose these exist 6-Turyn-type sequences of lengths m,m,
m,m,m,m,n,n, that is 6 suitable compatible ±1 complementary sequences with
zero NPAF and lengths m,m,m,m,m,m,n,n called A,B,C,C,D,D. Then
there exist BH(4(2m+n);2m+n,2m+n,2m+n,2m+n) and an Hadamard
matrix of order 4(2m+n).

Proof. Let 0t be the sequences of t zeros. Write {X,Y }, where X is the
sequence {x1, . . . ,xp} and Y is the sequence {y1, . . . ,yq} for the sequence
{x1,x2, . . . ,xp,y1,y2, . . . ,yq} of length p+q. Then the required T -sequence for
the constructions are

{1
2 (A+B),0m+n}, {1

2 (A−B),0m+n}, {02m,D}, {0m,C,0n} .�	

Corollary 7.12. There are base sequences of lengths 71, 71, 36, 36 and
therefore T -sequences of length 107.

Corollary 7.13. There is a Hadamard matrix of order 428 and Baumert-Hall
array BH(428;107,107,107,107).



Chapter 8
Robinson’s Theorem

In trying to decide which orthogonal designs to look for, it would be useful to
formulate, and hopefully prove valid, some general principles of the sort, “All
orthogonal designs of a certain type exist in certain orders.” The Hadamard
conjecture, the skew-Hadamard conjecture, the weighing matrix conjecture,
and other conjectures that have been made, and extensively verified, provide
some solid information which must be dealt with in order to state such princi-
ples. We have seen singularly unsuccessful in formulating correct principles of
a general nature; some conjectures that we have made in the light of those
principles have proved to be false.

One principle we had bandied about for awhile was: “In order n, if k is
much smaller than ρ(n), then all orthogonal designs on k variables exist in
order n.” Of course, the key to focusing on this principle is to decide what
“much smaller” should mean.

In orders n where n is odd or n = 2t, t odd, algebraic conditions appear
immediately in deciding if orthogonal designs exist, and so, in terms of deciding
what “much smaller” should mean, we put those cases aside. When n = 4t,
t odd, the situation is different. The algebraic theory says nothing about
one-variable designs, i.e., weighing matrices. This fact, coupled with a fair bit
of evidence for the weighing matrix conjecture in orders 4t, t odd, led us to
formulate a “sub-principle” for the phase “much smaller”: to wit, we proposed
the following: “If, in order n, the algebraic theory imposes no restrictions on
any possible k-variable design in order n, than all k-variable designs exist in
order n.”

If this principle was a sound one, it would say, for example, that whenever
n = 16t, t ≥ 1, any orthogonal design on ≤ 7 variables exists. (See Proposition
3.34 and what follows it.) The principle, unfortunately (depending on your
point of view), is far from correct. Peter J. Robinson decisively settled that
issue and many other alternative ones with the following remarkable theorem.

Using the orthogonal designs AOD(24;1,1,1,1,1,2,17) from Lemma A.7,
OD(32;1,1,1,1,1,12,15), OD(32;1,1,1,1,1,9,9,9) and OD(40;1,1,1,1,1,35)
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found by Kharaghani and Tayfeh-Rezaie [122] given in Tables 8.1, 8.2 and 8.3
respectively we have using theorem 8.2

Theorem 8.1 (Robinson). An OD(n;1,1,1,1,1,n−5) exists if and only
if n = 8, 16, 24, 32, 40.

Theorem 8.2 (Robinson). If n > 40, there is no orthogonal design of type
(1,1,1,1,1,n−5) in order n.

We first note that:

OD(8;1,1,1,1,1,3) See: Section 4.2
OD(16;1,1,1,1,1,11) Appendix F.2
OD(24;1,1,1,1,1,19) Table 8.1
OD(32;1,1,1,1,1,27) Table 8.2
OD(40;1,1,1,1,1,35) Table 8.3

do exist.

Proof. The proof is a very careful analysis of what such a design would have
to look like, and we have expanded Robinson’s proof so as to make the
verification a bit easier for the reader. �	

With no loss of generality we may assume the first 4×4 diagonal block of
the orthogonal design is ⎡⎢⎢⎣

x1 x2 x3 a1
−x2 x1 a1 −x3
−x3 −a1 x1 x2
−a1 x3 −x2 x1

⎤⎥⎥⎦
Either a1 = ±x4, or not.
If a1 = ±x4, we proceed to obtain the following 8×8 diagonal block:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 x2 x3 a1 x5
−x2 x1 a1 −x3 −x5 ∗
−x3 −a1 x1 x2 −x5
−a1 x3 −x2 x1 ∗ x5
−x5 x1 x2 x3 b1

x5 ∗ −x2 x1 b1 −x3
∗ x5 −x3 −b1 x1 x2

−x5 −b1 x3 −x2 x1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (8.1)

and b1 = −a1.
In case a1 �= ±x4, we may proceed to make the following 8×8 diagonal

block.
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x1 x2 x3 a1 x4
−x2 x1 a1 −x4 ∗
−x3 −a1 x1 x2 ∗ −x4
−a1 x3 −x2 x1 x4
−x4 x1 x2 x3 b1

x4 ∗ −x2 x1 b1 −x3
∗ x4 −x3 −b1 x1 x2

−x4 −b1 x3 −x2 x1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (8.2)

and b1 = −a1.
We continue the process and end up with 8×8 blocks of type (8.1) or (8.2)

on the diagonal.
Claim. There is at most one diagonal block of type (8.1).
Proof of Claim. Let X denote the orthogonal design of type (1,1,1,1,1,n−5)
in order n, and write X = A1x1 + A2x2 + A3x3 + · · ·+ A6x6. As we have
already seen, we may assume

A1 = In,A2 = ⊕
n/2

[
0 1

−1 0

]
and

A3 = ⊕
n
4

⎡⎢⎢⎣
0 0 1 0
0 0 0 −1

−1 0 0 0
0 1 0 0

⎤⎥⎥⎦ .

Since X is an orthogonal design, we must have AiA
�
j +AjA�

i = 0, 1≤ i �= j ≤ 6.
The patient reader will then discover than these conditions force A4,A5,A6
to each be skew-symmetric and partitioned into 4×4 blocks, where if (pq rs)
is the first row of a block, then the block looks like:⎡⎢⎢⎣

p q r s
q −p s −r
r −s −p q

−s −r q p

⎤⎥⎥⎦ .

Now, assume that there are two 8× 8 diagonal blocks like (8.1), with
a1 = ±x4, b1 = −a1,a2 = ±x4, b2 = −a2; we shall obtain a contradiction (we
shall first consider the case a1 = a2 = x4 and leave the remaining three
possibilities for the reader to check). The contradiction shall be obtained by
looking at the 8×8 off-diagonal blocks which are at the juncture of the two
diagonal positions. See Figure 8.1.

If we number the rows of figure 8.1 from 1 to 16, then we obtain (by taking
the inner product of rows 1 and 9) a summand 2sx4 which we cannot eliminate
since x4 appears only once in each column and row.

(Note: We have used here the fact that s �= 0, but we would get the same
result if any of p,q,r, or s were �= 0 or if any of k, l,m,v were �= 0. Thus, so far,



298 8 Robinson’s Theorem

Fig. 8.1 Contradiction of off-diagonal blocks at juncture of two diagonal positions

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1 x2 x3 x4
−x2 x1 x4 −x3
−x3 −x4 x1 x2 ∗
−x4 x3 −x2 x1

x1 x2 x3 −x4
−x2 x1 −x4 −x3

∗ −x3 x4 x1 x2
x4 x3 −x3 x1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
�

⎡⎢⎢⎢⎢⎢⎢⎢⎣

p q r s b c d e
q −p s −r c −b e d
r −s −p q d −e −b c

−s −r q p −e −d c b
f g h j k � m v
g −f j −h � −k v −m
h −j −f g m −v −k �

−j −h g f −v −m � k

⎤⎥⎥⎥⎥⎥⎥⎥⎦
�⎡⎢⎢⎢⎢⎢⎢⎢⎣

−p −q −r s −f −g −h j
−q p s r −g f j h
−r −s p −q −h −j f −g
−s r −q p −j h −g −f
−b −c −d e −k −� −m v
−c b e d −� k v m
−d −e b −c −m −v k −�
−e d −c −b −v m −� −k

⎤⎥⎥⎥⎥⎥⎥⎥⎦
�

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1 x2 x3 x4
−x2 x1 x4 −x3
−x3 −x4 x1 x2 ∗
−x4 x3 −x2 x1

x1 x2 x3 −x4
−x2 x1 −x4 −x3

∗ −x3 x4 x1 x2
x4 x3 −x3 x1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

we could be discussing orthogonal designs of type (1,1,1,1,1,n−k), 5≤ k ≤ 8,
and the conclusions that are drawn would still hold; i.e., no two diagonal
blocks of type (8.1).)

We have now seen that there can only be one diagonal block of type (8.1)
and that all other diagonal blocks are of type (8.2).

We now seek to discover where in the orthogonal design the x5’s are located.
If there is a diagonal block of type (8.1), then we know where the x5’s in
the rows and columns controlled by that diagonal block are, namely, in the
diagonal block.
Claim. The x5’s are always in the diagonal blocks.

Proof. To prove this, it would be enough to show that there is no x5 in an
off-diagonal block which is above and across from a diagonal block of type
Equation (8.2). Thus, we have the following in Figure 8.2.

Now, by checking inner products (just using x4’s), we find that

bx4−fx4 = 0 , i.e., b = f ;
−cx4−gx4 = 0 , i.e., c = −g;
−dx4−hx4 = 0 , i.e., d = −h;

ex4− jx4 = 0 , i.e., e = j.

Similarly,
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Fig. 8.2 No x5 in off-diagonal block above and across from a diagonal block of type
Equation (8.2)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1 x2 x3 α x4
−x2 x1 α −x3 −x4
−x3 −α x1 x2 −x4
−α x3 −x2 x1 x4

−x4 x1 x2 x3 −α
x4 −x2 x1 −α −x3

x4 −x3 α x1 x2
x4 α x3 −x2 x1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
�

⎡⎢⎢⎢⎢⎢⎢⎢⎣

p q r s b c d e
q −p s −r c −b e −d
r −s −p q d −e −b c

−s −r q p −e −d c b
f g h j k � m v
g −f j −h � −k v −m
h −j −f g m −v −k �

−j −h g f −v −m � k

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= Y

� � �

−Y � =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−p −q −r s −f −g −h j
−q p s r −g f j h
−r −s p −q −h −j f −g
−s r −q p −j h −g −f
−b −c −d e −k −� −m v
−c b e d −� k v m
−d −e b −c −m −v k −�
−e d −c −b −v m −� −k

⎤⎥⎥⎥⎥⎥⎥⎥⎦
�

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1 x2 x3 β x4
−x2 x1 β −x3 x4
−x3 −β x1 x2 x4
−β x3 −x2 x1 x4

−x4 x1 x2 x3 −β
x4 −x2 x1 β −x3

x4 −x3 β x1 x2
−x4 β x3 −x2 x1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

k = −p,

� = q,

m = r,

v = −s;

i.e., we have

Y =

⎡⎢⎢⎣
p q r s b c d e

etc. etc.
etc. etc.

−e d −c b s −r q −p

⎤⎥⎥⎦
If we consider the inner product between the two rows and recall that none

of p, q, r, s, b, c, d, or e = 0, we find that ±x5 /∈ {p, q, r, s, b, c, d, e}.
Now, the ith diagonal block of type (8.2) has four (as yet) undetermined

entries, and we have seen that one of them must be ±x5. If there are four (or
more) blocks of type (8.2), then in two of them x5 (up to sign) must occupy
the same position. We shall assume that occurs in the ith and jth diagonal
blocks and write them (along with the (i, j)th and (j, i)th off-diagonal blocks)
in Figure 8.3.

Now, suppose β1 and β2 are each ±x5. Considering rows 1 and 9 of Figure
8.3 we find β1c+β2c = 0, i.e., β1 =−β2, but considering rows 1 and 11 we find
−β1e+β2e = 0, i.e., β1 = β2. This contradiction establishes that β1, β2 cannot
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Fig. 8.3 Four (or more) blocks of type (8.2), x5 must occupy the same position in two
of them⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1 x2 x3 α1 x4 β1 γ1 δ1
−x2 x1 α1 −x3 β1 −x4 δ1 −γ1
−x3 −α1 x1 x2 γ1 −δ1 −x4 β1
−α1 x3 −x2 x1 −δ1 −γ1 β1 x4
−x4 −β1 −γ1 δ1 x1 x2 x3 −α1
−β1 x4 δ1 γ1 −x2 x1 −α1 −x3
−γ1 −δ1 x4 −β1 −x3 α1 x1 x2
−δ1 γ1 −β1 −x4 α1 x3 −x2 x1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
�

⎡⎢⎢⎢⎢⎢⎢⎢⎣

p q r s b c d e
q −p s −r c −b e −d
r −s −p q d −e −b c

−s −r q p −e −d c b
b −c −d e −p q r −s

−c −b e d q p −s −r
−d −e −b −c r s p q
−e d −c b s −r q −p

⎤⎥⎥⎥⎥⎥⎥⎥⎦
� � �⎡⎢⎢⎢⎢⎢⎢⎢⎣

−p −q −r s −b c d e
−q p s r c b e −d
−r −s p −q d −e b c
−s r −q p −e −d c −b
−b −c −d e p −q −r −s
−c b e d −q −p −s r
−d −e b −c −r s −p −q
−e d −c −b s r −q p

⎤⎥⎥⎥⎥⎥⎥⎥⎦
�

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1 x2 x3 α2 x4 β2 γ2 δ2
−x2 x1 α2 −x3 β2 −x4 δ2 −γ2
−x3 −α2 x1 x2 γ2 −δ2 −x4 β2
−α2 x3 −x2 x1 −δ2 −γ2 β2 x4
−x4 −β2 −γ2 δ2 x1 x2 x3 −α2
−β2 x4 δ2 γ2 −x2 x1 −α2 −x3
−γ2 −δ2 x4 −β2 −x3 α2 x1 x2
−δ2 γ2 −β2 −x4 α2 x3 −x2 x1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

both have absolute value x5. A similar argument gives the same conclusion
for Y1 and Y2, Δ1 and Δ2, and α1 and α2. This then completes the proof. �	

It is possible to use Robinson’s Theorem to obtain many other non-existence
results. We give just two illustrations.

Corollary 8.1. There do not exist amicable orthogonal designs of type
AOD((1,1,m−2);(1,m−1)) in any order m > 10.

Proof. If there did, we could use Theorem 6.1 (i.e., a product design of type
PD(4 : 1,1,1, ;1,1,1;1)) to obtain an orthogonal design in order 4m > 40 of
type (1,1,m−2,1,1,1,m−1,m−1,m−1), contradicting Theorem 8.2. �	
Note. This shows how difficult it is to obtain “full” amicable orthogonal designs
which have several 1’s in their types.

Corollary 8.2. There is no product design of type PD(n;1,1,n−3;1,n−2;1)
in any order n > 20.

Proof. If there were, Construction 6.1 would contradict Robinson’s Theorem.
�	

Remark 8.1. This corollary shows how special the product designs constructed
in Examples 6.2, 6.3 and Theorem 6.1 really are.
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Table 8.1 An OD(32;1,1,1,1,1,12,15) a⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

abcsdtsē s̄st̄t̄s̄stt sssst̄tt̄t t̄s̄t̄t̄t̄stt̄

b̄as̄ctd̄es sstt̄sst̄t ss̄s̄sttt̄t̄ s̄ttt̄sttt

c̄sab̄sēd̄t̄ t̄t̄ss̄ttss̄ sss̄s̄t̄ttt̄ t̄t̄tstt̄ts̄

s̄c̄baest̄d tt̄s̄s̄t̄ts̄s̄ s̄ss̄st̄t̄t̄t̄ tt̄st̄tts̄t̄

d̄t̄s̄ēabcs̄ s̄s̄t̄tsst̄t t̄t̄tts̄sss̄ tt̄st̄t̄t̄st

t̄des̄b̄asc s̄st̄t̄ss̄t̄t̄ t̄tt̄tssss t̄t̄tst̄tt̄s

s̄ēdtc̄s̄ab̄ t̄tsst̄ts̄s̄ ttttss̄ss̄ st̄t̄tsttt

es̄td̄sc̄ba t̄t̄ss̄t̄t̄s̄s t̄ttt̄sss̄s̄ tsttt̄stt̄

ss̄tt̄sstt abcs̄ds̄et̄ t̄t̄tt̄t̄s̄st̄ t̄s̄t̄s̄stst

s̄s̄ttss̄t̄t b̄ascs̄d̄te t̄ttts̄tts s̄tst̄ts̄t̄s

tt̄s̄stts̄s̄ c̄s̄ab̄et̄d̄s tt̄ttst̄ts t̄s̄tssts̄t̄

ttsst̄ts̄s sc̄batesd tttt̄tsst̄ st̄st̄t̄st̄s

ss̄t̄ts̄s̄tt d̄sēt̄abcs t̄ss̄t̄tt̄tt st̄st̄ts̄ts̄

s̄s̄t̄t̄s̄st̄t sdtēb̄as̄c stts̄t̄t̄t̄t t̄s̄tss̄t̄st

t̄ts̄sttss ēt̄ds̄c̄sab̄ s̄t̄ts̄ttt̄t st̄s̄tts̄t̄s

t̄t̄sst̄tss̄ tēs̄d̄s̄c̄ba ts̄s̄t̄t̄ttt tstsstst

s̄s̄s̄sttt̄t ttt̄t̄ts̄st̄ abcsdest̄ tss̄ts̄t̄ts̄

s̄ss̄s̄tt̄t̄t̄ tt̄tt̄s̄t̄ts b̄as̄ced̄ts st̄t̄s̄t̄sst

s̄ssst̄tt̄t̄ t̄t̄t̄t̄st̄t̄s c̄sab̄st̄d̄ē s̄tt̄s̄ts̄st

s̄s̄ss̄t̄t̄t̄t tt̄t̄ttsst s̄c̄batsēd t̄s̄s̄tstts̄

tt̄ttss̄s̄s̄ tss̄t̄t̄tt̄t d̄ēs̄t̄abcs̄ t̄s̄s̄ts̄t̄t̄s

t̄t̄t̄ts̄s̄ss̄ st̄ts̄ttt̄t̄ ēdts̄b̄asc s̄tt̄s̄t̄ss̄t̄

ttt̄ts̄s̄s̄s s̄t̄t̄s̄t̄ttt̄ s̄t̄dec̄s̄ab̄ s̄ttst̄sst

t̄tttss̄ss ts̄s̄tt̄t̄t̄t̄ ts̄ed̄sc̄ba t̄s̄st̄s̄t̄ts̄

tstt̄t̄ts̄t̄ tsts̄s̄ts̄t̄ t̄s̄sttsst abcd̄es̄ts̄

st̄ttttts̄ st̄sttsts̄ s̄tt̄sst̄t̄s b̄adcs̄ēst

tt̄t̄s̄s̄t̄tt̄ ts̄t̄s̄s̄t̄st̄ sttsstt̄s̄ c̄d̄ab̄ts̄ēs

tts̄tts̄t̄t̄ sts̄tts̄t̄s̄ t̄sst̄t̄ss̄t dc̄bastse

ts̄t̄t̄tts̄t s̄t̄s̄tt̄st̄s̄ stt̄s̄stts ēst̄s̄abcd

s̄t̄tt̄tt̄t̄s̄ t̄st̄s̄stst̄ ts̄st̄ts̄s̄t sest̄b̄ad̄c

t̄t̄t̄ss̄tt̄t̄ s̄tstt̄s̄ts̄ t̄s̄s̄t̄tss̄t̄ t̄s̄es̄c̄dab̄

tt̄stt̄s̄t̄t t̄s̄ts̄st̄s̄t̄ st̄t̄ss̄tt̄s st̄s̄ēd̄c̄ba

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
a Kharaghani and Tayfeh-Rezaie [122, p317-324]

c©Elsevier
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Table 8.2 An OD(32;1,1,1,1,1,9,9,9) a⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

abcsdutē s̄ss̄s̄t̄ttt ututt̄ut̄u s̄ūūs̄s̄uus̄

b̄as̄cud̄et ssss̄ttt̄t tūt̄uutūt̄ ūssūussu

c̄sab̄tēd̄ū s̄s̄ss̄tttt̄ utūt̄t̄utū ūs̄suus̄sū

s̄c̄baetūd ss̄s̄s̄t̄tt̄t̄ t̄ut̄uūt̄ūt̄ sūus̄suūs̄

d̄ūt̄ēabcs̄ t̄t̄t̄tsss̄s t̄ūtuūtut̄ sūus̄s̄ūus

ūdet̄b̄asc t̄tt̄t̄ss̄s̄s̄ ūtūttutu ūs̄suūss̄u

t̄ēduc̄s̄ab̄ t̄ttts̄ss̄s̄ tutuut̄ut̄ us̄s̄uussu

et̄ud̄sc̄ba t̄t̄tt̄s̄s̄s̄s ūtut̄tut̄ū suuss̄uus̄

ss̄ss̄tttt abcs̄dt̄eū ūs̄sūs̄ūus̄ ūūt̄t̄uutt

s̄s̄sstt̄t̄t b̄asct̄d̄ue s̄uusūssu ūutt̄uūt̄t

ss̄s̄sttt̄t̄ c̄s̄ab̄eūd̄t sūusus̄su t̄t̄uuttūū

sssst̄tt̄t sc̄bauetd ussūsuus̄ tt̄uūt̄tūu

tt̄t̄ts̄s̄ss d̄tēūabcs s̄uūs̄us̄su tt̄uūtt̄uū

t̄t̄t̄t̄s̄ss̄s tduēb̄as̄c ussūs̄ūūs t̄t̄uut̄t̄uu

t̄tt̄tssss ēūdt̄c̄sab̄ ūs̄sūsuūs uūt̄tuūt̄t

t̄t̄tts̄sss̄ uēt̄d̄s̄c̄ba sūūs̄ūssu uuttuutt

ūt̄ūttut̄u uss̄ūsūus̄ abctdesū stt̄st̄s̄st̄

t̄ut̄ūut̄ūt̄ sūus̄ūs̄su b̄at̄ced̄us ts̄s̄t̄s̄tts

ūtutt̄ut̄ū s̄ūūs̄us̄s̄u c̄tab̄sūd̄ē t̄ss̄t̄st̄ts

t̄ūtūūt̄ūt us̄s̄usuus t̄c̄bausēd s̄t̄t̄stsst̄

tūtuut̄ūt̄ suūs̄ūss̄u d̄ēs̄ūabct̄ s̄t̄t̄st̄s̄s̄t

ūt̄ūtt̄ūtū us̄sūsuūs̄ ēdus̄b̄atc t̄ss̄t̄s̄tt̄s̄

tut̄uūt̄ūt ūs̄s̄ūs̄uus̄ s̄ūdec̄t̄ab̄ t̄ssts̄tts

ūtuttūtu sūūsūs̄s̄ū us̄ed̄tc̄ba s̄t̄ts̄t̄s̄st̄

suus̄s̄uūs̄ uutt̄t̄tūū s̄t̄tsstts abcd̄eūts̄

us̄suussū uūttttuū t̄ss̄tts̄s̄t b̄adcūēst

us̄s̄ūūs̄sū tt̄ūūūūtt̄ tssttss̄t̄ c̄d̄ab̄ts̄ēu

suūssūūs̄ ttūuuūt̄t̄ s̄tts̄s̄tt̄s dc̄bastue

sūūs̄suūs ūūt̄tt̄tūū tss̄t̄tsst ēut̄s̄abcd

ūs̄sūus̄s̄ū ūut̄t̄ttuū st̄ts̄st̄t̄s uest̄b̄ad̄c

ūs̄s̄uūss̄ū t̄tuuūūtt̄ s̄t̄t̄s̄stt̄s̄ t̄s̄eūc̄dab̄

sūuss̄ūūs t̄t̄uūuūt̄t̄ ts̄s̄tt̄ss̄t st̄ūēd̄c̄ba

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
a Kharaghani and Tayfeh-Rezaie [122, p317-324] c©Elsevier
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Table 8.3 An OD(40;1,1,1,1,1,35) a⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

abcsdssē s̄ssss̄ss̄s̄ ss̄ss̄ssss s̄sss̄s̄s̄s̄s̄ s̄s̄s̄s̄ss̄s̄s

b̄as̄csd̄es sss̄sssss̄ s̄s̄ssss̄s̄s sssss̄sss̄ s̄sss̄s̄s̄s̄s̄

c̄sab̄sēd̄s̄ ssss̄s̄s̄ss̄ ss̄s̄ssss̄s̄ ss̄ss̄s̄s̄ss s̄s̄sss̄ss̄s
s̄c̄baess̄d s̄ss̄s̄ss̄s̄s̄ sssss̄ss̄s sss̄s̄ss̄ss̄ ss̄ss̄s̄s̄ss

d̄s̄s̄ēabcs̄ s̄s̄ss̄ssss̄ ss̄sss̄s̄ss sss̄s̄s̄ss̄s ssssss̄s̄s

s̄des̄b̄asc s̄sssss̄ss s̄s̄s̄s̄s̄ss̄s ss̄ss̄sss̄s̄ ss̄s̄ss̄s̄s̄s̄

s̄ēdsc̄s̄ab̄ ss̄ssss̄s̄s̄ s̄ss̄sssss s̄s̄s̄s̄s̄sss̄ sss̄s̄s̄ss̄s

es̄sd̄sc̄ba ssss̄sss̄s s̄s̄sss̄sss̄ ss̄s̄ss̄s̄s̄s̄ s̄ss̄ss̄s̄ss

ss̄s̄ssss̄s̄ abcs̄ds̄es̄ s̄s̄ss̄s̄s̄ss̄ s̄s̄s̄s̄ssss s̄s̄s̄s̄s̄s̄s̄s̄

s̄s̄s̄s̄ss̄ss̄ b̄ascs̄d̄se s̄ssss̄sss s̄sss̄ss̄s̄s s̄sss̄s̄sss̄

s̄ss̄ss̄s̄s̄s̄ c̄s̄ab̄es̄d̄s ss̄ssss̄ss s̄s̄sssss̄s̄ s̄s̄sss̄s̄ss
s̄s̄ssss̄s̄s sc̄basesd ssss̄ssss̄ ss̄ss̄s̄ss̄s ss̄ss̄ss̄ss̄

ss̄ss̄s̄s̄s̄s̄ d̄sēs̄abcs s̄ss̄s̄ss̄ss ss̄ss̄ss̄ss̄ s̄sss̄ss̄s̄s

s̄s̄sss̄sss̄ sdsēb̄as̄c ssss̄s̄s̄s̄s s̄s̄sss̄s̄ss sssss̄s̄s̄s̄

ss̄s̄ss̄s̄ss ēs̄ds̄c̄sab̄ s̄s̄ss̄sss̄s ss̄s̄sss̄s̄s ss̄ss̄s̄ss̄s

ssssss̄ss̄ sēs̄d̄s̄c̄ba ss̄s̄s̄s̄sss ssssssss sss̄s̄s̄s̄ss

s̄ss̄s̄s̄sss sss̄s̄ss̄ss̄ abcsdess̄ s̄s̄ssss̄s̄s sss̄s̄ss̄s̄s

ssss̄sss̄s ss̄ss̄s̄s̄ss b̄as̄ced̄ss s̄ss̄ss̄s̄s̄s̄ ss̄ss̄s̄s̄s̄s̄

s̄s̄ss̄ssss̄ s̄s̄s̄s̄ss̄s̄s c̄sab̄ss̄d̄ē sssss̄ss̄s s̄s̄s̄s̄s̄ss̄s
ss̄s̄s̄s̄ss̄s̄ ss̄s̄sssss s̄c̄bassēd s̄sss̄s̄s̄ss ss̄s̄ss̄s̄ss

s̄s̄s̄ssss̄s sss̄s̄s̄ss̄s d̄ēs̄s̄abcs̄ s̄sss̄sss̄s̄ sssss̄ss̄s

s̄ss̄s̄ss̄s̄s̄ ss̄ss̄sss̄s̄ ēdss̄b̄asc ssssss̄ss̄ ss̄s̄ssss̄s̄

s̄ssss̄ss̄s̄ s̄s̄s̄s̄s̄sss̄ s̄s̄dec̄s̄ab̄ ss̄ss̄s̄s̄s̄s̄ sss̄s̄s̄sss̄

s̄s̄ss̄s̄s̄s̄s ss̄s̄ss̄s̄s̄s̄ ss̄ed̄sc̄ba sss̄s̄ss̄s̄s s̄ss̄ss̄s̄s̄s̄

ss̄s̄s̄s̄s̄ss̄ ssss̄s̄ss̄s̄ sss̄sss̄s̄s̄ abcd̄ess̄s̄ ss̄s̄s̄s̄s̄ss̄

s̄s̄ss̄s̄sss ss̄ssssss̄ ss̄s̄s̄s̄s̄ss̄ b̄adcsēss̄ s̄s̄ss̄s̄sss

s̄s̄s̄sss̄ss ss̄s̄s̄s̄s̄ss̄ s̄ss̄s̄s̄s̄s̄s c̄d̄ab̄s̄s̄ēs̄ s̄s̄s̄sss̄ss
ss̄ssssss̄ sss̄sss̄s̄s̄ s̄s̄s̄sss̄ss dc̄bass̄s̄e ss̄ssssss̄
ssss̄ss̄ss s̄s̄s̄ss̄ss̄s̄ s̄ssss̄s̄ss̄ ēs̄ss̄abcd ss̄ssss̄s̄s̄s

ss̄sss̄s̄s̄s s̄ss̄s̄ssss̄ sss̄ss̄sss s̄essb̄ad̄c s̄s̄s̄ss̄ss̄s̄

ss̄s̄s̄sss̄s s̄ssss̄s̄ss̄ ssss̄ss̄ss ss̄esc̄dab̄ sss̄ss̄sss

sss̄ss̄sss s̄s̄ss̄ss̄s̄s̄ s̄ss̄s̄ssss̄ sssēd̄c̄ba s̄ssss̄s̄ss̄

ssss̄s̄s̄s̄s ssss̄ss̄s̄s̄ s̄s̄ss̄s̄s̄s̄s s̄sss̄s̄ss̄s abcēdsss

ss̄sss̄ss̄s̄ ss̄sss̄s̄ss̄ s̄ssss̄ss̄s̄ sssssss̄s̄ b̄aecsd̄s̄s

ss̄s̄s̄s̄sss ss̄s̄s̄s̄s̄s̄s ss̄sss̄sss ss̄ss̄s̄sss̄ c̄ēab̄ssd̄s̄
sss̄ss̄s̄ss̄ sss̄sss̄ss ssss̄s̄s̄ss̄ sss̄s̄s̄s̄s̄s̄ ec̄bas̄ss̄d

s̄ssss̄sss ssss̄s̄sss s̄sssss̄ss sss̄s̄ssss d̄s̄s̄sabce

sss̄ssss̄s ss̄sssss̄s sss̄ss̄s̄s̄s ss̄ss̄ss̄s̄s s̄ds̄s̄b̄aēc

ssss̄ssss̄ ss̄s̄s̄ssss̄ ssss̄sss̄s s̄s̄s̄s̄sss̄s̄ s̄sdsc̄eab̄

s̄ss̄s̄s̄ss̄s̄ sss̄ss̄ss̄s̄ s̄ss̄s̄s̄sss ss̄s̄ss̄ss̄s s̄s̄sd̄ēc̄ba

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
a Kharaghani and Tayfeh-Rezaie [122, p317-324] c©Elsevier



Chapter 9
Existence of Hadamard Matrices and
Asymptotic Existence results for
Orthogonal Designs

Heretofore we have studied extensively the Hadamard conjecture,
“There exists an Hadamard matrix of order 1, 2 and 4t for every positive integer
t.”

Many infinite families and ad-hoc constructions have been given. However,
the density of known orders has continued to be zero.

The first portion of this chapter is devoted to proving the first powerful
asymptotic theorem Seberry(=Wallis) [237] on the existence of Hadamard
matrices. We then explore how the use of more “twos” leads us to considerably
improved results for Hadamard matrices by Craigen [34] (but not using
orthogonal designs), and then the wonderful results by Craigen, Holzmann
and Kharaghani [36] for asymptotic existence of complex Hadamard matrices,
orthogonal designs and amicable Hadamard matrices. Asymptotic results for
repeat designs remain a major research problem.

9.1 Existence of Hadamard Matrices

As in many other combinatorial design problems, recursive construction are
of very great use in constructing orthogonal designs and Hadamard matrices.
In fact, in Theorem 9.3 this method gives us a most powerful method for
constructing Hadamard matrices now known.

Lemma 9.1. Suppose all orthogonal designs of type (a,b,n−a−b), 0 ≤ a+b ≤
n, exist in order n. Then all orthogonal designs of type (x,y,2n − x − y),
0 ≤ x+y ≤ 2n, exist in order 2n. This also means that all OD(n;x,y) exist.

Proof. Recall that from Lemma 4.11 (ii) we have that the existence of the
design of type (a,b,n−a− b) in order n implies the existence of the design of
type (a,a,2b,2(n−a− b)) in order 2n.

305© Springer International Publishing AG 2017
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Let (u,v,w) be a full orthogonal design of order 2n (we may assume
0 ≤ u ≤ v ≤ w). It follows that v < n. We distinguish four cases, depending
on weather u or v are even or odd.

Case 1 : u even, v even.
Then u = 2a, v = 2b, and a + b ≤ n. Then (a,b,n − a − b) exists in order n, and

we may apply Lemma 4.11(ii).

Case 2 : u even, v odd.
Write u = 2a, v = 2a+�. Then a+v = 3a+� ≤ n, for in this case w = 2n−4a−�,

and v ≤ w ⇒ 3a + � ≤ n.
Thus, (v,a,n −a−v) exists in order n, and we may apply Lemma 4.11(ii) to it.

Case 3 : u odd, v even.
Write u = 2a+1, v = 2b. Then w = 2t+1 and u+v+w = 2n, and so a+b+t+1 =

n. Notice that u + b ≤ n, for if not, u + b > n, which implies a > t.
Thus, there is an orthogonal design of type (u,b,n − u − b) in order n, and we

may proceed as before.

Case 4 : u odd, v odd.
In this case, write v = u + 2b, b ≥ 0. Clearly, u + b ≤ n, and so there is an

orthogonal design of type (u,b,n − u − b) in order n, and we’re done. ��

Corollary 9.1. Since all the orthogonal designs of type (a,b,4−a−b) exist in
order 4 for 0 ≤ a+b ≤ 4, we have all orthogonal designs of type (x,y,n−x−y)
for 0 ≤ x+y ≤ n whenever n is a power of 2.

Corollary 9.2. Since all orthogonal designs of type (x,y,n−x−y), 0 ≤ x+
y ≤ n, exist in all orders for which n is a power of 2, all designs of type (z,w),
0 ≤ z +w ≤ n, exist in all orders n which are powers of 2.

It is presently known that

Corollary 9.3. There exist Hadamard matrices of orders 2, 4, 2t.2, 2t.3, 2t.5,
and 2t.7 for all positive integers t ≥ 2.

Proof. From Corollary 4.9. �	
Conjecture 9.1 (Seberry). All orthogonal designs of type (x,y,m−x−y), 0 ≤
x+y ≤ m, exist in orders m = 2tq for any natural q and sufficiently large t.

9.2 The Existence of Hadamard Matrices

The following theorem of Sylvester, which he studied because of a problem
posed by Frobenius, is well known.

Theorem 9.1. Given any two relatively prime integers x and y, every integer
N > (x−1)(y −1) can be written in the form ax+ by for some non-negative
integers a and b.
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Corollary 9.4. Given x = (v +1) and y = (v −3), where v is odd and v ≥ 9,
there exist non-negative integers a and b such that a(v +1)+ b(v −3) = n = 2t

for some t.

Proof. Let g be the greatest common divisor of v + 1 and v − 3. Then g =
1,2 or 4. If g �= 1, let m be the smallest power of 2 greater than N = [((v +
1)/g)−1][((v −3)/g)−1]. Then by the theorem, there exist integers a and b
such that a(v +1)/g + b(v −3)/g = m, and hence we have the corollary, since
g is a power of 2. �	
Lemma 9.2. Let v ≡ 3 (mod 4) be a prime ≥ 9. Then there exist a t such
that an Hadamard matrix exists in every order 2s.v for s ≥ t.

Proof. Let x = v +1 and y = v −3; then by the previous corollary there exists
an a and b such that ax+by = n = 2t for some t. Now we know the orthogonal
design D of type (a,b,n−a−b) exists with order 2t on the variables x1,x2,x3.

Then replace each variable x1 by the matrix J , each variable x2 by J − 2I
and each variable x3 by the back-circulant (1,−1) matrix B = (Q+I)R, where
Q is defined in the proof of Lemma 4.12 and R is the back-diagonal matrix,
to form a matrix E. Now

Lemma 9.3. Let v ≡ 1 (mod 4) be a prime ≥ 9. Then there exists a t such
that an Hadamard matrix exists in every order 2s.v for s ≥ t+1.

Proof. Choose x,y,n,t,a,b, and D as in the previous lemma. Now note there
exists an orthogonal design F of type (2a,2b,n − a − b,n − a − b) in order
2n = 2t+1 on the variables x1,x2,x3,x4.

Form the matrix E by replacing the variable x1 of F by J , each variable
X2 of F by J −2I, and the variables x3 and x4 by the two circulant (1,−1)
incidence matrices X = I + Q and Y = I −Q, where Q is defined in the proof
of Lemma 4.12. Now

DD =
(
ax2

1 + bx2
2 +(n−a− b)x2

3
)

In ,

and

= [avJ +4bI + b(v −4)J +(n−a− b)(v +1)I − (n−a− b)J ]× In ,

= ([n(v +1)−a(v +1)− b(v −3)]I +[a(v +1)+ b(v −3)−n]J)× In ,

= nvInv .�	

B =B, BJ = J, B(J −21) = (J −21)B, BB> = (v+ 1)I−J ,

EE =
(
aJ2 + b(J −21)2 + (n−a− b)BB>

)
× In ,

>

>

>
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XJ = Y J = J, X(J −2I) = (J −2I)X, Y (J −2I) = (J −2I)Y,

=
(
2ax2

1 +2bx2
2 +(n−a− b)x2

3 +(n−a− b)x2
4
)

I2n,

and

= [2avJ +8bI +2b(v −4)J +(n−a− b)(2(v +1)I −2J)]× I2n,

= [2n(v +1)−2a(v +1)−2b(v −3)I2nv

+[2a(v +1)+2b(v −3)−2n]Jv × I2n,

= 2nvI2nv.�	

Theorem 9.2. Given any integer q, there exists t dependent on q such that
an Hadamard matrix exists of every order 2sq for s ≥ t.

Proof. Decompose q into its prime factors, and apply the previous lemma
to each factor. The result follows because the Kronecker product of any two
Hadamard matrices is an Hadamard matrix. �	

In Corollary 9.4 we chose t so that

2t ≥
(

v +1
g

−1
)(

v −3
g

−1
)

Hence, if v ≡ 1 (mod 4), g = 2, and we need 2t ≥ 1
4 (v − 1)(v − 5). Thus, we

may choose t = [2log2(v −3)]−1 in Lemma 9.3.
For v ≡ 3 (mod 4), g = 4, and choosing t = [2log2(v − 5)] − 3 ensures the

existence of an Hadamard matrix of order 2tv in Lemma 9.2.
We observe that if v = p.q where p and q are primes ≡ 1 (mod 4), we

can ensure the existence of an Hadamard matrix of order 2r.pq where r =
[2log2(p−3)]+[2 log2(q −3)] < [2 log2(pq −3)]. Since a v comprising a product
of primes ≡ 1 (mod 4) would give the highest theoretical t for which an
Hadamard matrix of order 2tv exists, we can say:

Theorem 9.3. (i) Given any natural number q, there exists an Hadamard
matrix of order 2sq for every s ≥ [2 log2(q −3)]+1.

(ii) Given any natural number q, there exists a regular (i.e., constant row
sum) symmetric Hadamard matrix with constant diagonal of order 22sq2

for s as before.

Proof. Part (ii) of the theorem follows from a theorem of Goethals and Seidel

X> =X, Y > = Y, XY > = Y X>, XX>+Y Y > = 2(v+ 1)I−2J,

FF>

EE> = ((2aJ2 + 2b(J −2I)2 + (n−a− b)(XX>+Y Y >)× I2n

is a regular symmetric Hadamard matrix with constant diagonal of order n2.
The result that orthogonal designs (a,b,n−a−b) exist in all orders n = 2t.3,

t ≥ 3, may be used in a similar fashion to that employed in Lemma 9.2 to
construct Hadamard matrices of order 2s.3q for sufficiently large s. It may

(see Wallis [231], p. 341) that if there is an Hadamard matrix of order n, there
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happen that proceeding via this result for appropriate natural numbers 3q
gives a smaller s than if Theorem 9.3 were used.

This last remark indicates that a knowledge of orthogonal designs (a,b,n−
a − b) in orders n = 2tp, p odd, could lead to Hadamard matrices of order
2spq for smaller s than that given by Theorem 9.3.

Clearly, in general, there will be Hadamard matrices, given by the con-
struction, of order 2tq where t < [log2(q −3)]. �	

9.3 Asymptotic Existence Results for Orthogonal
Designs

Necessary conditions for the existence of orthogonal designs have been derived
from a study of rational matrices. The theorems below show that many of
these conditions are also sufficient if the order of the orthogonal design is
much larger than the number of non-zero entries in each row.

If n is odd, then ρ(n) = 1, so the only orthogonal designs of order n are
weighing matrices. We have shown that the weight k of a weighing matrix of
odd order n must be a square. If n is much larger than k, this is sufficient for
existence; in fact,

Theorem 9.4 (Geramita-Wallis). Suppose k is a square. Then there is an
integer N = N(k) such that for any n > N there is a W (n,k).

This theorem follows from Lemma 9.4 below.
Suppose n ≡ 2 (mod 4); then an orthogonal design of order n has at most

two variables. For these orders we derived the following necessary conditions:

(i) If there is an orthogonal design of type (a,b), then there is a 2×2 rational
matrix P such that PP � = diag(a,b).

(ii) If there is a weighing matrix W (n,k) then k is a sum of at most two
squares.

(iii) If there is a skew-symmetric weighing matrix W (n,k) then k is a square.

We can prove an asymptotic converse to (i), (ii) and (iii):

Theorem 9.5 (Eades).

(i) Suppose there is a 2 × 2 rational matrix P such that PP � = diag(a,b)
where a and b are positive integers. Then there is an integer N = N(a,b)
such that for all t ≥ N there is an OD(2t;a,b).

(ii) Suppose k is a sum of two integer squares. Suppose k �= 2t−1, t odd, then
there is an integer N = N(k) such that for all t ≥ N there is a W (2t,k).

(iii) Suppose k is a square. Then there is an integer N = N(k) such that for
all t ≥ N there is a skew-symmetric W (2t,k).
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The proof of Theorem 9.5 comes later. We merely note here that (ii) and
(iii) follow immediately from (i).

Suppose n ≡ 4 (mod 8); then an orthogonal design of order n has at most
four variables. The results of Chapter 3 show that for these orders the following
necessary conditions apply:

(i) If there is an orthogonal design of type (a,b,c,d) and order n ≡ 4 (mod 8),
then there is a 4×4 rational matrix P such that PP � = diag(a,b,c,d).

(ii) If there is a skew-symmetric W (n,k) where n ≡ 4 (mod 8), then k is a
sum of three integer squares.

In 1971 Seberry(Wallis) [232] conjectured:

Conjecture 9.2 (Seberry). For every positive integer k ≤ n ≡ 0 (mod 4) there
is a W (n,k).

We can prove an asymptotic result on this conjecture, an asymptotic
converse for (ii) and a partial asymptotic converse for (i).

Theorem 9.6 (Eades).
(i) Suppose m,z1,z2,z3 and z4 are positive integers. Then there is an integer

N = N(m,z1,z2,z3,z4) such that for all t ≥ N there is an OD(4t;mz2
1 ,

mz2
2 ,mz2

3 ,mz2
4).

(iii) For any integer k there is an integer N = N(k) such that for all t ≥ N
there is a W (4t,k).

(iv) If k is a sum of three integer squares, then there is an integer N = N(k)
such that for all t ≥ N a skew-symmetric W (4t,k) exists.

Again we will leave the proof of this theorem for later and merely note
that (iii) and (iv) follow from (i).

For n ≡ 0 (mod 8) it is conjectured that for every k < n there is a skew-
symmetric W (n,k). We can prove:

Theorem 9.7. (i) Suppose u1,u2, . . . ,u8 are integers. Then there is an inte-
ger N = N(u1,u2, . . . ,u8) such that for all t ≥ N an orthogonal design of
type u2

1,u2
2, . . . ,u2

8 and order 8t exists.
(ii) For any pair (a,b) of integers there is an integer N = N(a,b) such that

for all t ≥ N there is an orthogonal design of type (a,b) and order 8t.
(iii) For any integer k there is an integer N = N(k) such that for all t ≥ N

there is a skew-symmetric W (8t,k).

Since any integer is a sum of four squares of integers, (ii) and (iii) follow
from (i).

From Theorem 9.4, Theorem 9.5(ii) and (iii), Theorem 9.6 (iii) and (iv),
and Theorem 9.7 (iii), we can deduce:

(ii) Suppose m1,m2,z1,z2,z3,z4 are positive integers and m1 and m2 are
each sums of two integer squares. Then there is an integer N de-
pending on m1,m2,z1,z2,z3,z4 such that for all t ≥ N there is an
OD(4t;m1z

2
1 ,m1z

2
2 ,m2z

2
3 ,m2z

2
4).
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Corollary 9.5. (i) For any integer k there is only a finite number, M1(k),
of orders for which the existence of a weighing matrix of weight k is
undecided.

(ii) For any integer k there is only a finite number, M2(k) of orders for
which the existence of a skew-symmetric weighing matrix of weight k is
undecided.

From Theorem 9.5 (i) we can deduce:

Corollary 9.6. For any pair (a,b) of integers there are only a finite number,
M3(a,b) of orders n ≡ 2 (mod 4) for which the existence of an orthogonal
design of order n and type (a,b) is undecided.

Lemma 9.4. Suppose k �= 0 is a square, and let k =
m∏

i=1
q2

i where each qi is

either 1 or a prime power, for i = 1,2, . . . ,m. Suppose a1,a2, . . . ,am are any
positive integers, and let n =

m∏
i=1

ai(q2
i +qi +1). Then there is a type-1 W (n,k)

and type-2 W (n,k) on the group
m∏

i=1
Zvi , vi = ai(q2

i + qi +1).

Proof. If q is either 1 or a prime power, then there is a circulant W (q2 + q +
1, q2). Suppose the first row of the matrix is (wi), 1 ≤ i ≤ q2 + q +1. If a is a
positive integer and 1 ≤ i ≤ a(q2 + q +1), then define

W ′
t =

{
wi, if i ≡ 0 (mod a),
0, otherwise.

Then (W ′
i ),1 ≤ i ≤ a(q2 + q +1), is the first row of a circulant W (a(q2 + q +

1), q2).
Proceed now by induction. If there is a type-1 W (ni,ki) on Gi, for

i = 1,2, then the tensor product of W (n1,k1) with W (n2,k2) is a type-1
W (n1,n2,k1,k2) on G1 ×G2.

We recall that the existence of a type-1 W (n,k) on G implies the existence
of a type-2 W (n,k). (See Corollary 4.7.) �	

The next lemma is a consequence of Sylvester’s theorem (Theorem 9.1).

Lemma 9.5. Suppose orthogonal designs of type (u1,u2, . . . ,um) exist in or-
ders n1 and n2. Let h = g.c.d.(n1,n2). Then there is an integer N such that
for all t > N there is an orthogonal design of type OD(ht;u1,u2, . . . ,um).

Proof. Proof of Theorem 9.4. By Lemma 9.4, for every square k there is an
odd number n such that W (n,k) exists, By Corollary 9.2 there is a W (2t,k)
for some t. Now since n is odd, g.c.d.(n,2t) = 1, so Lemma 9.5 gives Theorem
9.4. �	
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Lemma 9.6. Suppose there is an orthogonal design of type OD(n;u1,u2, . . .,
uk); suppose z1,z2, . . . ,zk are integers. Then there is an odd number, y, such
that an orthogonal design of type OD(yn;z2

1u1,z2
2u2, . . . ,z2

kuk) exists.

Proof. Let z =
∏b

i=1 qi be a decomposition of z into prime powers. Let y1 =∏b
i=1(q2

i + qi +1), and let W be the type-2 W (y1z2
1) assured by Lemma 9.4.

Type-2 matrices are always symmetric, so the k-tuple (W,I,I, . . . , I) comprises
pairwise amicable matrices. Hence, using Lemma 4.20, there is an orthogonal
design of type OD(y1n;z2

1u1,u2, . . . ,uk) . Note that y1 is odd.
We can clearly continue this process to prove the lemma. �	
In fact, all the weighing matrix results in Theorems 9.6, 9.7 and Corollary

9.5 (9.5 (ii) and (iii), 9.6(iii) and (iv), 9.7(iii)) follow from Corollary 9.2,
Lemmas 9.4, 9.5 and 9.6. However, we will prove the more general results
first.

Lemma 9.7. Suppose m is a sum of two integer squares. Then there is an
odd number t such that an orthogonal design of type OD(2t;m,m) exist.

Proof. Let m = m2
1 + m2

2. If mj �= 0, let m2
j =

∏k
i=1 q2

ij where qij is either 1
or a prime power. For each i = 1,2, . . . ,k let bi = LCM{q2

ij + qij +1;mj �= 0}.
If mj �= 0, let Wj be the type-1

W

(
k−1∏
i=1

bi,

k−1∏
i=1

q2
ij

)

and on the group
∏k−1

i=1 Zbj
from Lemma 9.4. Note that Cj is circulant.

Suppose the first row of Cj is (crj , 1 ≤ r ≤ bk.
Define (drj), 1 ≤ r ≤ 3bk.

drj =
{

crj , if r ≡ j (mod 3)
0, otherwise.

Then the circulant Dj with the first row (drj) is a type-1 W (3bk, q2
kj) on

Z3bk
. Moreover, if m1 �= 0 and m2 �= 0, then D1 and D2 are mutually disjoint.

If mj �= 0, let Fj = Dj × Wj . If mj = 0, let Fj be the zero matrix of order
3

∏k
i=1 bi. Then F1 and F2 are disjoint type-1 weighing matrices of weights

m2
1 and m2

2, respectively, on the group
∏k−1

i=1 Zbi
×Z3bk

. Each bi is odd, so the
order of F1 is an odd number, t = 3

∏k
i=1 bi. Hence, we can use the matrices

x1F1 +x2F2 and x2F1 −x1F2 in the Wallis-Whiteman generalization of the
two circulant construction, obtained by using the remarks before Lemma 4.4
with Proposition 4.1 to produce an orthogonal design of type OD(2t;m,m)
on the variables x1 and x2. �	

To prove Theorem 9.5 we need a simple fact about 2×2 rational matrices.
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Lemma 9.8. Suppose a and b are integers such that there exists a rational
2×2 matrix P satisfying PP � = diag(a,b). Then there are integers x,y,z,w
such that a =

(
z2 +w2)

x2 and b =
(
z2 +w2)

y2.

Proof. Let a = x2z1 and b = y2z2, where z1 and z2 are square-free integers.
Now ab = (detP )(detP �) is a rational square. Hence z1 = z2. Now a is a
sum of two rational squares; hence z1 is a sum of two rational squares. The
Cassells-Davenport theorem the implies that z1 is a sum of two integer
squares, say, z1 = z2 +w2. So a = x2 (

z2 +w2)
, b = y2 (

z2 +w2)
. �	

Proof. Proof of Theorem 9.5. Suppose a and b are integers such that there
exists a rational 2×2 matrix P satisfying PP � = diag(a,b). Then by Lemma
9.8 there are integers x, y and m such that a = x2m, b = y2m, and m is a sum
of at most two integer squares. Lemma 9.7 gives an orthogonal design of type
OD(2t;m,m) for some odd t. Lemma 9.6 gives an orthogonal design of type
OD(2ty;x2m,y2m) = (a,b), for some odd y. Corollary 9.2 gives an orthogonal
design of type OD(2d;a,b), for some integer d. Now g.c.d.(2d,2ty) = 2, so we
can use Lemma 9.5 to obtain Theorem 9.5. �	

The proof of the next lemma is very similar to the proof of Lemma 9.7 and
so is omitted.

Lemma 9.9. For any positive integer m there exists an odd number t such
that an orthogonal design of type OD(4t;m,m,m,m) exists.

We have exhibited an orthogonal design of type (1,1, . . . ,1) and order n
on ρ(n) variables. Since ρ(2d) is a strictly increasing function of d, equating
variables in the Geramita-Pullman orthogonal design gives the following
lemma.

Lemma 9.10. Let (u1,u2, . . . ,uk) be a sequence of positive integers.
Then there is an integer d such that an orthogonal design of type OD(2d;
u1,u2, . . . ,uk) exists.

Proof. Proof of Theorem 9.6. By Lemma 9.9 there is an orthogonal design
of type OD(4t;m,m,m,m) for some odd t for any integer m. If z1, z2, z3
and z4 are integers, then Lemma 9.6 implies the existence of an orthogonal
design of type OD(4ty;z2

1m,z2
2m,z2

3m,z2
4m) for some odd y. Lemma 9.10 gives

an orthogonal design of type OD(2d;z2
1m,z2

2m,z2
3m,z2

4m) for some d. Since
g.c.d.(4ty,2d) = 4, we have Theorem 9.6 (i) and (iv) following immediately.
Theorem 9.6 (ii) follows from Theorem 9.5 (i). �	
Proof. Proof of Theorem 9.7. There is an orthogonal design of type
OD(8;1,1,1,1,1,1,1,1). Hence by Lemma 9.6 there is an orthogonal design of
type OD(8y;z2

1 ,z2
2 , . . . ,z2

8) for some odd y. Lemma 9.10 ensures the existence
of an orthogonal design OD(2d;z2

1 ,z2
2 , . . . ,z2

8), d > 3. Hence Lemma 9.5 gives
Theorem 9.7 (i); Theorem 9.7 (ii) and (iii) follow immediately. �	
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9.4 n-Tuples of the Form (2pb1,2pb2, . . . ,2pbn)

The above discussion led us to believe that while we might not yet know
all about orthogonal designs in “small” orders, we might be able to say far
more about their existence in “large” orders. The remainder of this section is
another case of hindsight: Eades, Robinson, Wallis and Williams first saw the
results in powers of 2, and then Eades showed that the same argument could
always be used.

This section also shows a distinction in approach between an algebraist
and a combinatorialist. The algebraist can ensure the existence of any n-tuple
as the type of an orthogonal design in some order 2tq by allowing most of
the entries of the design to be zero. The combinatorialist is interested in
establishing existence with as few zeros as possible, as this case is more useful
in applications.

In the remainder of this section the figures and diagrams are taken directly
from the printed form in [80].

Definition 9.1. A binary expansion of a positive integer s is a non-decreasing
sequence B = b1, b2, . . . , bk) of powers of 2 such that b1 + b2 + · · ·+ bk = s. If B
is strictly increasing, we say B is the binary decomposition of s. The binary
expansion of A = (s1, . . . ,sn), an n-tuple of positive integers, is (B1, . . . ,Bn),
where Bi is the binary expansion of si.

From a binary expansion B = (b1, b2, . . . , bk) of s, we can obtain new binary
expansions by combining:(

b1, b2, . . . ,2j ,2j , . . . , bk

) → (
b1, b2, . . . ,2j+1, . . . , bk

)
or by splitting(

b1, b2, . . . ,2j+1, . . . , bk

) → (
b1, b2, . . . ,2j ,2j , . . . , bk

)
with suitable reordering. If a binary expansion C is obtained from a binary
expansion B by repeating these operations, we say C is equivalent to B.
Clearly, this relation is transitive.

Lemma 9.11. Any two binary expansions of s are equivalent.

Proof. All binary expansions of s are equivalent to the binary decomposition
of s by combining. �	
Lemma 9.12. Suppose there is an orthogonal design of type B and order t,
where B is a binary expansion of s, Then for every binary expansion C of s,
there is an orthogonal design of type OD(2pt;2pC) for some integer p.

Proof. If there is an orthogonal design of type

OD
(
t;b1, b2, . . . ,2j ,2j , . . . , bk

)
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then there is an orthogonal design of type

OD
(
t;b1, b2, . . . ,2j+1, . . . , bk

)
If there is an orthogonal design of type

OD
(
t;b1, b2, . . . ,2j+1, . . . , bk

)
then there is an orthogonal design of type

OD
(
2t;b1, b2, . . . ,2j ,2j , . . . , bk

)
(Theorem 4.3).�	

Clearly, the integer p in the lemma above is the number of splittings to get
C from B.

We can now deduce:

Theorem 9.8. Let B be a binary expansion of s, and suppose there is an
orthogonal design OD(t;B).

Let (a1,a2, . . . ,au) be a u-tuple of positive integers such that a1 + a2 + · · ·+
au = 2ks for some k.

Then there is an integer p such that an orthogonal design of type
OD(2p+kt;2pa1,2pa2, . . . ,2pau) exist.

Proof. We can split B to obtain an orthogonal design of type C and order
2kt, for some binary expansion C of 2ks. Let D be the binary expansion of
2ks which is obtained from the binary decompositions of the ai. Then the
theorem follows by Lemma 9.12. �	

This theorem is most interesting when s = t. The case s = t = 1 can be
proved using the orthogonal design of order 1 for B.

The integer p depends on the sum of the lengths of the binary decomposi-
tions of the ai. Since there are only a finite number of u-tuples which add to
2ks, we can state:

Theorem 9.9. Suppose B is a binary expansion of s, and suppose there is an
orthogonal design OD(t;B). Let u and k be integers. Then there is an integer
q such that every orthogonal design of type OD(2q+kt;2qa1,2qa2, . . . ,2qau)
exist for all (a1,a2, . . . ,au) such that a1 +a2 + · · ·+au = 2ks.

Example 9.1. There is an orthogonal design of type OD(12;1,1,2,8). This
gives an OD(24;1,1,2,4,16). Hence, for every (a1,a2, . . . ,au) such that a1 +
a2 + · · · + au = 2k.12, there is an integer p such that there is an orthogonal
design of type OD(2p+k.12;2pa1,2pa2, . . . ,2pau).

We can use the same algorithm described in Figure 9.1 to obtain p. If
(a1,a2, . . . ,au) = (1,1,2,6,14), the algorithm is as follows;
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9.4.1 Description of the Construction Algorithm

Let A be an n-tuple of positive integers, and let B be the binary union of
A described above. We write B = (b1, b2, . . . , bj). Then algorithm proceeds as
shown in Figure 9.1:

Fig. 9.1 n-tuple construction algorithm

and so p= 3, and a design of type 8× (1,1,2,6,14) exists in order 24×12.
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Example 9.2. There is an orthogonal design of type OD(20;4,8,8). Let
(a1,a2, . . . ,au) = (1,1,5,15,18). Now from the (4,8,8) of order 20, we can
find a 4(1,1,2,4,16,16) of order 160. We can use the algorithm as in Figure
9.1:

Hence, there is an orthogonal design of type

4×16× (1,1,5,15,18)

and order 8×16×20, Thus, in this case p = 6.

Example 9.3. For a third example, consider (a1,a2, . . . ,au) = (1,1,5,5,5,5,5,5).
This 8-tuple expands to (1,1,1,1,1,1,1,1,4,4,4,4,4,4), and so the methods of
Figure 9.1 give an orthogonal design of type (1,1,5,5,5,5,5,5)×28. But if we
use the orthogonal design of type OD(8;1,1,1,1,1,1,1,1) for B in Theorem
9.8, we obtain an orthogonal design of type (1,1,5,5,5,5,5,5)×24 and order
32×24. The algorithm proceeds as follows:

and so p = 4.

Example 9.4. There is an orthogonal design of type OD(28;4,4,4,16). The
8-tuple (1,1,1,1,1,2,17,32) illustrates the use of combining as well as splitting.
From the (4,4,4,16) we obtain a design of type 4(1,1,2,4,8,8,32) and order 4×
56. We use the combining operation to form a design of type 4(1,1,2,4,16,32)
and order 4×56 and then proceed with splitting in the usual way:

So in this case p = 5.
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9.4.2 Implementing the Algorithm

We consider the n-tuple A = (s1, . . . ,sn),
∑

si = s, in order 2kq.
Suppose n ≤ 3. Then if s is a power of 2, by Corollary 9.1, A corresponds

to the type of an orthogonal design.
Suppose n > 3, and 2j is the highest power of 2 which divides each si. Then

we can use Lemma 7.30 9.12 with the n-tuple (s1/2j , . . . ,sn/2j) = (t1, . . . , tn)
in order 2k−j .

In fact, for any n and only two odd entries in A, we can usually use the
following process to obtain a starting point for the algorithm in a lower power
of 2.

Fig. 9.2 Implementing the algorithm
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Example 9.5. Consider the binary 5-tuple A = (3,3,6,20,96) in order 128. Now
the binary expansion of A is (1,2,1,2,2,4,4,16,32,64), which is a 10-tuple. So
Theorem 9.9 guarantees the existence of a 5-tuple (23.3,23.3,23.6,23.20,23.96)
in order 210. But if we use the method of Figure 9.2, we form

(3,(3−3)/2,6/2,20/2,96/2) = (3,3,10,48) in order 64,

and then
(3,(3−3)/2,10/2,48/2) = (3,5,24) in order 32.

But all 3-tuples (a,b,32−a− b) exist in order 32, so (3,3,6,20,96) is the type
of an orthogonal design in order 128.

9.4.3 n-Tuples in Powers of 2 With No Zeros

In the case where the sum of the entries of A is a power of 2 and A has no
zero entries, i.e., the sum of the entries of A is the order of A, it is possible to
determine the maximum value of p.

Definition 9.2. Let A = (s1,s2, . . . ,sn) be an n-tuple of positive integers
with s1 + s2 + · · · + sn = s = 2t. We write the binary expansion of each si,
i = 1, . . . ,n, and rearrange the order to obtain B = (b1, b2, . . . , bk), the binary
expansion of A, where each bi is a power of 2 and bj ≤ bj+1. We say the
binary length of A is k = RA(n,t), the number of entries of B, and use R(n,t)
for max

A
RA(n,t).

Theorem 9.10. Let A = {si} be an n-tuple of positive integers such that at
least two entries of A are odd and the sum of the entries of A is 2k. Then
there is an orthogonal design of type OD(2p+k;2pA), where p is the binary
length of A minus k +1.

Example 9.6. Robinson’s Theorem 8.1 shows that there is no orthogonal
design of type (1,1,1,1,1,2t −5) in any order 2t > 40. Now 2t −5 has a binary
expansion 1 + 2 + 23 + 24 + · · · + 2t−1, so B = (1,1,1,1,1,1,2,8,16, . . . ,2t−1)
and p = t + 4 − (t + 1) = 3. Hence there is an orthogonal design of type
OD(2t+3;23.1,23.1,23.1,23.1,23.1,23.(2t −5)).

Proof. Let A = (a1,a2, . . . ,an) be a sequence such that
∑n

i=1 ai = 2t. Let
ai = bi0 + bi1.2+ · · ·+ biki

2ki be the binary expansion of ai.
Now

RA(n,t) =
n∑

i−1

k∑
j=0

bij , k = max
i

ki .

and hence any sequence A such that RA(n,t) = R(n,t) has the property
that the sequences (b1j , b2j , . . . , bnj) j = 0, . . . ,k −1, contain as many one’s as
possible. That is, (bij , . . . , bnj), j = 0, . . . ,k −1, contains at most one zero.
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Now, we let the binary expansion of n − 1 be c0 + c1.2 + · · · + cm2m and
consider the following n× (m+2) matrix:

X =

⎡⎢⎢⎢⎢⎢⎣
1 1 . . . 1 1 c0
2 2 . . . 2 2 c1.2
...

...
2m 2m . . . 2m 2m cm.2m

2m+1 . . . 2m+1 0 . . . 0

⎤⎥⎥⎥⎥⎥⎦
Let the number of 2m+1’s in the last row be a. The sum S of all the entries

in this matrix is:

S = (n−1−a)
(
2m+1 −1

)
+a

(
2m+2 −1

)
+n−1

= (n−1−a)2m+1 +a.2m+2

= 2m+1 (n−1+a) .

Now m = [log2(n−1)], and so when n �= 2j +1 for some j, n−1 ≤ 2m+1 < 2(n−
1). However, since 0 ≤ a ≤ n−1, we can find an a such that n−1+a = 2m+1;
that is, a = 2m+1 −n+1, and so

S = 22m+2 .

We now consider the matrix Y , which is obtained from X by replacing all
non-zero terms by 1, and define a sequence A = {ai} by letting row j of Y be
(b1j , b2j , . . . , bnj) and choosing

ai =
m+1∑
j=0

bij2j .

It is obvious that the sequences (b1j . . . , bnj), j = 0, . . . ,m, are as full as
possible, and since

S = 22m+2

RA(n,2m+2) = R(n,2m+2) . (9.1)

But
RA(n,2m+2) = a+(n−1)(m+1)+B(n−1),

where B(n−1) is the number of non-zero terms in the binary expansion of
n−1.

Therefore,

R(n,2m+2) = 2m+1 +(n−1)m+B(n−1) .

We now consider
R(n,2m+3) .



From our choice of a, it can be seen that

(n−1−a)2m+2 +a.2m+3 = 22m+3 .

Therefore, to obtain an A such that RA(n,2m + 3) = R(n,2m + 3), we use
the A of (9.1) and put ba+1,m = ba+2,m = . . . = bn−1,m = 1, bnm = 0 and
b1,m+1 = b2,m+1 = ba,m+1 = 1. This produces sequences as full as possible,
and therefore, R(n,2m + 3) = R(n,2m + 2) + (n− 1). We continue in this way
to obtain the following:

R(n,2m+ i) = 2m+1 +B(n−1)+(n−1)(m+ i−2), where i = 2,3, . . . .

We note that if n = 2m +1, then

22m = (n−1)(2m −1)+n−1 .

So
R (2m +1,2m) = 2mm+1 .

The maximum number of steps in the algorithm of Figure 9.1 is R(n,t)−
(t+1). The actual number of steps for an n-tuple A is p = RA(n,t)− (t+1) ≤
R(n,t)− (t+1). We have shown that R(n,t) is finite and may be evaluated
easily. �	

9.5 Enough Powers of Two: Asymptotic Existence

Craigen [34], almost two decades later, using groups containing a distinguished
central involution was able to greatly improve Seberry’s results of Theorem 9.3.
He was able to show that s could be upper bounded by 4$ 1

16 log2(q −1)/2)%+2.
The present bound is also due to Craigen. We do not give Craigen’s proof as
Craigen, Ghaderpour, Holzmann and Kharaghani [34,36,85,86] have proved
results, given in the next section which include these results.

Theorem 9.11. [34,36]For any positive integer m there exists an Hadamard
matrix

(1) of order 22bq, where b is the number of nonzero digits in the binary
expansion of q, and

(2) of order 2tq for t = 6& 1
16 log2((m−1)/2)'+2.

Craigen’s theorem implies that there is an Hadamard matrix of order 2s

whenever 2s ≥ cta, where we may take a = 3
8 and c = 2 26

16 .
de Launey [143] looks at this issue from the perspective of the density of

the existence of Hadamard matrices in the set of integers 4t and amazingly
shows that this is greater than or equal to a half. This is further discussed in
Section 9.7.
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Seberry’s and Craigen’s asymptotic formulae for t in terms of q, versus the
Hadamard conjecture is given in Figure 9.3.

The present situation can be summarized as

Theorem 9.12 (Asymptotic Hadamard matrix Theorem). Let p be
any integer then there exists a t0 such that for all t > t0 an Hadamard matrix
of order 2tp exists (Craigen-Seberry [183]).

Theorem 9.13 (Craigen-Holzmann-Kharaghani [36]). Let p be any in-
teger then there exists a t0 such that for all t > t0 a complex Hadamard matrix
of order 2tp exists.

Theorem 9.14. Given any s-tuple (p1,p2, . . . ,ps) then there exists a t0 such
that for all t > t0 an orthogonal design OD(2tp1,2tp2, . . . ,2tps) exists (Ghader-
pour and Kharaghani [86], Craigen-Holzmann-Kharaghani [36], Eades [52]).

Theorem 9.15 (Ghaderpour-Kharaghani [86]). For any two sequences
(u1, . . . ,up) and (v1, . . . ,vq) of positive integers, there are integers h,h1,h2 and
t0 such that there exists an

AOD
(

2th;2t+h1u1, . . . ,2t+h1up;2t+h1v1, . . . ,2t+h1vq

)
,

for each t ≥ t0.

Conjecture 9.3. Let p be any integer then there exists a t0 such that for all
t > t0 a skew-Hadamard matrix of order 2tp exists.

Conjecture 9.4. Let p be any integer then there exists a t0 such that for all
t > t0 a symmetric Hadamard matrix of order 2tp exists.

Conjecture 9.5. Let p be any integer then there exists a t0 such that for all
t > t0 a pair of amicable Hadamard matrix of order 2tp exists.

Fig. 10.3 Asymptotic support for the Hadamard Conjecture
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9.5.1 The Asymptotic Hadamard Existence Theorem

The following presentation is due to Ghaderpour and Kharaghani [86] and
shows that with sufficient twos the asymptotic results are very accessible. The
real question is how many two’s are needed. Of course, for the Hadamard
conjecture to hold, the number of twos must be 2 so we want matrices of
order 22q to exist for odd q.

9.5.2 Ghaderpour and Kharaghani’s Uber Asymptotic
Results

We start with the following well-known result first used by Holzmann and
Kharaghani [103].

Lemma 9.13. For any positive integer n, there is a Golay pair of length 2n

in two type 1 matrices each appearing 2n−1 times in each of the sequences.

Proof. Let An−1 and Bn−1 be a Golay pair of length 2n−1 in two type 1
matrices each appearing 2n−2 times in both An−1 and Bn−1. Then An =
(An−1,Bn−1) and Bn = (An−1,−Bn−1) form a Golay pair of length 2n in
two type 1 matrices as desired, where (A,B) means sequence A followed by
sequence B. �	
Theorem 9.16. For any given sequence of positive integers (b,a1,a2, . . . ,ak),
there exists a full COD of type

(
2N(m) ·1(b),2N(m) ·2a1

(4), . . . ,2
N(m) ·2ak

(4)

)
,

where m = 4k + b+2 if b is even, m = 4k + b+1 if b is odd, and N(m) is the
smallest positive integer such that m ≤ ρ

(
2N(m)−1

)
.

Proof. Let (b,a1,a2, . . . ,ak) be a sequence of positive integers . We distinguish
two cases:
Case 1. b is even. Consider the type 1 matrices xi, 0 ≤ i ≤ b

2 ,yj and zj .
1 ≤ j ≤ k of order 2. For each j, 1 ≤ j ≤ k, let Gj1 and Gj2 be a Golay pair
of length 2aj in two type 1 matrices yj and zj . Let

s1 = 0 and sj = 2
j−1∑
r=1

2ar , 2 ≤ j ≤ k +1 . (9.2)

Let d = b
2 +sk+1 and define

M0 := circ
(
0(d),x0,0(d−1)

)
, M1 := circ

(
x1,0(2d−1)

)
,

Mh := circ
(
0(h−1),xh,0(2d−h)

)
, 2 ≤ h ≤ b

2 .
(9.3)

For each j, 1 ≤ j ≤ k, define
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N2j−1 := circ
(

0( b
2 +sj),Gj1,0(2d− b

2 −sj−2aj )

)
,

N2j := circ
(

0( b
2 +sj+2aj ),Gj2,0(2d− b

2 −sj+1)

)
.

Considering that all the variables in these matrices are assumed to be type
1 matrices of order 2, these matrices are in fact commuting block-circulant
matrices, and the 0 entries denote the zero matrix of order 2. Let m = 4k+b+2
and let N(m) be the smallest positive integer such that m ≤ ρ

(
2N(m)−1

)
. So

there is a set

A′ = {A1, . . . ,Am} (9.4)

of mutually disjoint anti-amicable signed permutation matrices of order
2N(m)−1. These matrices are known as Hurwitz-Radon matrices (see [80, chap-
ter 1]). Suppose H is a Hadamard matrix of order 2N(m)−1. Let

C = 1
2

(
M0 +M�

0

)
⊗A1H + i

2

(
M0 −M�

0

)
⊗A2H (9.5)

+ 1
2

(
M1 +M�

1

)
⊗A3H + i

2

(
M1 −M�

1

)
⊗A4H

+

b
2∑

h=2

((
Mh +M�

h

)
⊗ 1

2 (A2h+1 +A2h+2) H

+i
(

Mh −M�
h

)
⊗ 1

2 (A2h+1 −A2h+2)H
)

+
2k∑

j=1

((
Nj +N�

j

)
⊗ 1

2
(
A2j+b+1 +A2j+b+2

)
H

+i
(

Nj −N�
j

)
⊗ 1

2
(
A2j+b+1 −A2j+b+2

)
H

)
.

We show that

CC∗ = 2N(m)ωI2n(m)d, (9.6)

where ω = 1
2x0x�

0 + 1
2x1x�

1 + x2x�
2 + · · · + x b

2
x�

b
2

+ 2a1y1y�
1 + 2a1z1z�

1 + · · · +
2ak yky�

k +2ak zkz�
k . To this end, we first note that each of the sets

{
1
2

(
M0 +M�

0

)
, i

2

(
M0 −M�

0

)
, 1

2

(
M1 +M�

1

)
, i

2

(
M1 −M�

1

)}
{(

Mh +M�
h

)
,
(

Nj +N�
j

)
, 2 ≤ h ≤ b

2 , 1 ≤ j ≤ 2k
}

and
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i
(

Mh −M�
h

)
, i

(
Nj −N�

j

)
; 2 ≤ h ≤ b

2 , 1 ≤ j ≤ 2k
}

consist of mutually disjoint Hermitian circulant matrices. Moreover, for u = 0,1,
we have

1
4

(
Mu +M�

u

)(
Mu +M�

u

)�
+ 1

4

(
Mu −M�

u

)(
Mu −M�

u

)�
= xux�

u I2d

and for each h, 2 <≤ h ≤ b
2 ,(

Mh +M�
h

)(
Mh +M�

h

)�
+

(
Mh −M�

h

)(
Mh −M�

h

)�
= 4xhx�

h I2d

Also, for each j, 1 ≤ j ≤ k, we have

2j∑
r=2j−1

((
Nr +N�

r

)(
Nr +N�

r

)�
+

(
Nr −N�

r

)(
Nr −N�

r

)�)

= 2
2j∑

r=2j−1

(
NrN�

r +N�
r Nr

)
= 2aj+2

(
yjy�

j +zjz�
j

)
I2d .

Note that for each j, 3 ≤ j ≤ b
2 +2k +1, the matrices 1

2 (A2j−1 +A2j)H and
1
2 (A2j−1 −A2j)H are disjoint with 0,±1 entries. Furthermore, since the set
A′ consists of mutually anti-amicable matrices, the set{

A1H,A2H,A3H,A4H, 1
2 (A2j−1 ±A2j)H , for

(
3 ≤ j ≤ b

2 +2k +1
)}

consists of mutually anti-amicable matrices. Since for each j, 3 ≤ j ≤ b
2 +2k+1,(1

2 (A2j−1 ±A2j)H
)(1

2 (A2j−1 ±A2j)H
)�

= 1
4

(
2N(m)−1

)
(A2j−1 ±A2j)(A2j−1 ±A2j)� I2N(m)−1

= 2N(m)−2I2N(m)−1 ,

the validity of equation (9.6) follows.
In the equation (9.6), we now replace xo by [ α α−α α ], x1 by

[
β β

−β β

]
, xh by[

αh βh
−βh αh

]
, 2 ≤ h ≤ b

2 , yj by
[

α′
j β′

j

−β′
j α′

j

]
, and zj by

[
α′′

j β′′
j

−β′′
j α′′

j

]
, 1 ≤ j ≤ k.

(
2N(m) ·1(b),2N(m) ·2a1

4 , . . . ,2N(m) ·2ak
(4)

)
,

where the α, β, αh’s, βh’s, α′
j ’s, β′

j ’s, α′′
j ’s and β′′

j ’s are commuting variables.

The resultant matrix will be a full COD of type
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Case 2. b is odd. Consider the following circulant matrices of order 2d+1,
where d = b−1

2 +sk +1 with the same sj ’s as in equation (9.2),

M1 = circ(x1,02d) ,

Mh = circ(0h−1,xh,02d−h+1) , for 2 ≤ h ≤ b+1
2 .

For each j, 1 ≤ j ≤ k, assume

N2j−1 = circ
(

0(
b+1

2 +sj

),Gj1,0(
2d− b+1

2 −sj−2aj
))

,

N2j = circ
(

0(
b+1

2 +sj+2aj
) ,Gj2,0(

2d− b−1
2 −sj+1

))
The rest of proof is similar to Case 1, and so m = 4k + b+1. �	
Remark 9.1. The choice of N(m) in Theorem 9.16 and the next few asymptotic
results is crucial; the smaller N(m), the better asymptotic result. All N(m)’s
we use are either equal to or 1 less than the ceiling of (m+2)/2, depending
on the value of m.

Let (u1, . . . ,u�) be an �-tuple of positive integers and suppose 2t is the
largest power of 2 appearing in the binary expansions of ui, i = 1,2, . . . �. Using
the binary expansion of each u, we write⎡⎢⎢⎢⎣

u1
u2
...

u�

⎤⎥⎥⎥⎦ = E

⎡⎢⎢⎢⎣
1
2
...

2t

⎤⎥⎥⎥⎦ (9.7)

where E = [eij ] is the unique �× (t+1) matrix with 0 and 1 entries. We call
E the binary matrix corresponding to the �-tuple (u1, . . . ,u�).

For convenience and in order to make the first column of the binary matrix
E non-zero, in the following lemma, we assume that the �-tuples of positive
integers have at least one odd element.

Lemma 9.14. Suppose that (u1, . . . ,u�) is an �-tuple of positive integers
such that at least one of the ui’s is odd. Then there exists an integer
m = m(u1, . . . ,u�) such that there is a

COD (2m(u1, . . . ,u�);2mu1, . . . ,2mu�) .

Proof. Let (u1, . . . ,u�) be an �-tuple of positive integers such that at least one
of ui’s is odd, and let s = (u1 + · · · + u�). By applying Theorem 9.16 all we
need is to equate variables appropriately. We do this by applying the following
procedure. We form the �× (t+1) binary matrix E = [eij ] corresponding to
the �-tuple (u1, . . . ,u�), where t is the largest exponent appearing in the binary
expansions of ui, i = 1,2, . . . , �. Let
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γj−1 :=
�∑

i=1
eij , 1 ≤ j ≤ t+1 . (9.8)

k := t; γ′
t :=

⌊γt

4

⌋
; (&x' is floor of x) (9.9)

while k > 0 βk := γk (mod 4) ;
k := k −1;
γk := γk +2βk+1 ;

if k �= 0 then γ′
k :=

⌊γt

4

⌋
;

else γ′
k := γk ;

Now we apply Theorem 9.16 to the sequence
(

γ′
0,1(γ′

1),2(γ′
2), . . . , t(γ′

t)

)
. Thus,

there is an integer m such that there is a

COD
(

2ms;2m ·1(γ′
0),2m ·2(4γ′

1),2m ·22
(4γ′

2), . . . ,2
m ·2t

(4γ′
t)

)
, (9.10)

where

m = N

⎛⎝4
t∑

j=1
γ′

j +γ′
0 +2

⎞⎠ if γ′
0 is even, and

m = N

⎛⎝4
t∑

j=1
γ′

j +γ′
0 +1

⎞⎠ if γ′
0 is odd.

Equating variables in (9.10) in an appropriate way, we obtain a

COD (2md;2mu1, . . . ,2mu�) .�	

Lemma 9.15. For any �-tuple (s1, . . . ,s�) of positive integers, there is an
integer r = r(s1, . . . ,s�) such that there is a

COD (2r (s1 + · · ·+s�) ;2rs1, . . . ,2rs�) .

Proof. Suppose that (s1, . . . ,s�) is an �-tuple of positive integers and let

(s1, . . . ,s�) = 2q(u1, . . . ,u�) ,

where q is the unique integer such that one of ui’s is odd. By Lemma 9.14,
there exists an integer m = m(u1, . . . ,u�) such that there is a

COD (2m(u1 + · · ·+u�);2mu1, . . . ,2mu�) ;

Choose r = m− q, if m ≥ q, and if m < q, then A⊗H is a
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COD (2q(u1 + · · ·+u�);2qu1, . . . ,2qu�) = COD (s1 + · · ·+s�;s1 . . . ,s�) ,

where H is a Hadamard matrix of order 2q−m, and therefore we may choose
r = 0 to complete the proof. �	
Theorem 9.17. For any �-tuple (s1, . . . ,s�) of positive integers, there is an
integer N = N(s1, . . . ,s�) such that for each n ≥ N there is an

OD (2n(s1 + · · ·+s�);2ns1, . . . ,2ns�) .

Proof. Let (s1, . . . ,s�) be a �-tuple of positive integers. From Lemma 9.14,
there is an integer r = r(s1, . . . ,s�) such that there is a

COD (2r(s1 + · · ·+s�);2rs1, . . . ,2rs�) ,

call it A. We may write A = X + iY , where X and Y are disjoint and amicable
matrices such that XX� +Y Y � = AA∗. It can be seen that the matrix B,

B =
[
1 1
1 −1

]
⊗X +

[−1 1
1 1

]
⊗Y

is an
OD

(
2r+1(s1 + · · ·+s�);2r+1s1,2r+1s2, . . . ,2r+1s�

)
.

Let N = r +1, and H is a Hadamard matrix of order 2n−N . Then B ⊗H is
an

OD (2n(s1 + · · ·+s�);2ns1, . . . ,2ns�) .�	
Example 9.7. Consider the 5-tuple (8,12,20,68,136). We may write this as
22(2,3,5,17,34). We apply the equation 9.7 to (2,3,5,17,34) as follows:

⎡⎢⎢⎢⎢⎣
2
3
5

17
34

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
0 1 0 0 0 0
1 1 0 0 0 0
1 0 1 0 0 0
1 0 0 0 1 0
0 1 0 0 0 1

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
1
2

22

23

24

25

⎤⎥⎥⎥⎥⎥⎥⎦
From the equation (9.8), we have γ0 = 3, γ1 = 3, γ2 = 1, γ3 = 0, γ4 = 1,
and γ5 = 1. By applying the procedure (9.9), we find γ′

0 = 5, γ′
1 = 1, γ′

2 = 1,
γ′

3 = 1, γ′
4 = 0 and γ′

5 = 0. So, we apply Theorem 9.16 to the sequence
(b,a1,a2,a3) = (5,1,2,3). Since b is odd, we use Case 2 of the theorem, and so
m = 4×3+5+1 = 18. N(18) = 10 as 10 is the smallest positive integer such
that 18 ≤ ρ(210−1). Thus there is a

COD
(

210 ·61;210 ·1(5),210 ·2(4),210 ·22
(4),2

10 ·23
(4)

)
.

By equating variables, we obtain a



COD
(
28 ·244; 28 ·8,28 ·12,28 ·20,28 ·68,28 ·136

)
.

Example 9.8. We apply the equation (9.7) to the 4-tuple (1,5,7,17). Thus

⎡⎢⎢⎣
1
5
7

17

⎤⎥⎥⎦ =

⎡⎢⎢⎣
1 0 0 0 0
1 0 1 0 0
1 1 1 0 0
1 0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎢⎢⎣

1
2

22

23

24

⎤⎥⎥⎥⎥⎦
From (9.8) we have γ0 = 4, γ1 = 1, γ2 = 2, γ3 = 0, γ4 = 1. By applying the
procedure (9.9), we find γ′

0 = 6, γ′
1 = 1, γ′

2 = 1, γ′
3 = 0, γ′

4 = 0. Now we apply
Theorem 9.16 to the sequence (b,a1,a2) = (6,1,2). Since b is even, we use
Case 1 of Theorem 9.16, and so m = 4×2+6+2 = 16. N(16) = 8 as 8 is the
smallest positive integer such that 16 ≤ ρ(28−1). Thus there is a

COD
(

28 ·30;28 ·1(6),28 ·2(4),28 ·22
(4)

)
.

By equating variables, we obtain a

COD
(
28 ·30; 28 ·8,28 ·1,28 ·5,28 ·7,28 ·17

)
.

9.6 The Asymptotic Existence of Amicable Orthogonal
Designs

We now include an asymptotic result related to the amicable orthogonal
designs due to Ghaderpour and Kharaghani [86, p.333-346].

Lemma 9.16. If there exists an ACOD(n;u1, . . . ,us;v1, . . . ,vt), then there
exists an

AOD(2n;2u1, . . . ,2us;2v1, . . . ,2vt) .

Proof. Suppose that (X;Y ) is a complex amicable orthogonal design. We
write X = A+ iB and Y = C + iD, where A and B (C and D) are disjoint and
amicable matrices such that AA� +BB� = XX∗ and CC� +DD� = Y Y ∗.
Let R =

[ 0 1−1 0
]

and H =
[1 1

1 −1
]
. Since (X;Y ) is a complex amicable orthogonal

design,

AC� +BD� = CA� +DB�, AD� −BC� = CB� −DA� .

Let X ′ = A⊗RH +B ⊗H and Y ′ = C ⊗RH +D ⊗H. Then

X ′Y ′� = 2
(

AC� +BD�
)

⊗ I +2
(

AD� −BC�
)

⊗R

Y ′�X ′ = 2
(

CA� +DB�
)

⊗ I +2
(

CB� −DA�
)

⊗R.
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Therefore (X ′;Y ′) is an amicable orthogonal design as desired. �	
We are now ready for the main result of this section.

Theorem 9.18. For any two sequences (u1, . . . ,us) and (v1, . . . ,vt) of positive
integers, there are integers h, h1, h2 and N such that there exists an

AOD
(

2nh;2n+h1u1, . . . ,2n+h1us;2n+h2v1, . . . ,2n+h2vt

)
,

for each n ≥ N .

Proof. Suppose that (u1, . . . ,us) and (v1, . . . ,vt) are two sequences of posi-
tive integers. Let (u1, . . . ,us) = 2q1(u′

1, . . . ,u′
s) and (v1, . . . ,vt) = 2q2(v′

1, . . . ,v′
t),

where q1 and q2 are the unique integers such that at least one of ui’s and one
of vj ’s is odd.

Let u′
1 + · · · + u′

s = c1 and v′
1 + · · · + v′

t = c2. We may use the procedure
(9.9) in the proof of Lemma 9.14 for sequences (u′

1, . . . ,u′
s) and (v′

1, . . . ,v′
t)

to get sequences (b,a1,a2, . . . ,ak) and (β,αl,α2, . . . ,α�) of positive integers,
respectively.

We have c1 = b + 4
∑k

i=1 2ai and c2 = β + 4
∑�

i=1 2αi . Without loss of
generality we may assume that c1 ≥ c2, and b and β are both even. Let
m = max{4k + b+2,4�+β +2}.

Wolfe [247], continuing Shapiro’s work [190], studied amicable and anti-
amicable orthogonal designs in detail. The following construction will be
needed later.

Theorem 9.19. Given an integer n = 2sd, where d is odd and s ≥ 1, there
exists two sets A = {A1, . . . ,As+1} and B = {B1, . . . ,Bs+1} of signed permu-
tation matrices of order n such that

(i) A consists of pairwise disjoint anti-amicable matrices,
(ii) B consists of pairwise disjoint anti-amicable matrices,

(iii) for each i and j, AiB
t
j = BjA�

1 .

Proof. For each 2 ≤ k ≤ s+1 let

A1 =
(

s⊗
i=1

P

)⊗
Id , Ak =

(
k−2⊗
i=1

I

)⊗
R

⊗(
s⊗

i=1
P

)⊗
Id

and

B1 =
(

s⊗
i=1

P

)⊗
Id , Bk =

(
k−2⊗
i=1

I

)⊗
Q

⊗(
s⊗

i=1
P

)⊗
Id

where P = [0 1
1 0 ], Q =

[1 0
0 −1

]
, R =

[ 0 1−1 0
]
, and I and Id are the identity matrices

of order 2 and d, respectively. Then the matrices Ai and Bi (1 ≤ i ≤ s + 1)
satisfy the three properties (i), (ii) and (iii). �	



Suppose that A = {A1, . . . ,Am} and B = {B1, . . . ,Bm} are the same set of
matrices of order 2m−1 as in Theorem 9.19.

Apply Theorem 9.16 to the sequence (b,a1,a2, . . . ,ak) by using the set A
which contains matrices of order 2m−1 instead of the set A′ in (9.4) which
contains matrices of order 2N(m)−1. It can be seen that there is a COD, say
C, of order 2mc1 and type

(
2m ·1(b),2m ·2ak

(4), . . . ,2
m ·2α�

(4)

)
.

Again apply Theorem 9.16 to the sequence (β + c1 − c2,α ,α2, . . . ,α�) by
using the set B instead of the set A′ in (9.4). It can be seen that there is a
COD, say D, of order 2mc1 and type

(
2m ·1(β),2m ·2α1

(4), . . . ,2
m ·2α�

(4)

)
. Note

that there is no need to use circulant matrices Mi’s corresponding to the
c1 − c2 variables to construct matrix D, and we do not necessarily need to
use all matrices in sets A and B.

Since the circulant matrices used to construct C and D in (9.5) are Hermi-
tian of order c1 and AiB

�
j = BiA

�
i for 1 ≤ i, j ≤ m, (C;D) is an

ACOD
(

2mc1;2m ·1(b),2m ·2ak
(4);2

m ·1(β),2m ·2α1
(4), . . . ,2

m ·2α�
(4)

)
.

Equating variables in C and D in an appropriate way, we obtain an

ACOD
(
2mc1;2mu′

1, . . . ,2mu′
s;2mv′

1, . . . ,2mv′
t

)
,

and so by Lemma 9.16, there exists an

AOD
(

2m′
c1;2m′

u′
1, . . . ,2m′

u′
s;2m′

v′
1, . . . ,2m′

v′
t

)
, (9.11)

where m′ = m+1.
Now if q1 = q2 = 0, then we choose h = c1, h1 = h2 = 0 and N = m′. If

q1 ≤ q2 ≤ m′, then we choose h = c1, h1 = −q1, h2 = −q2 and N = m′. For
cases q1 ≤ m′ ≤ q2 and m′ ≤ q1 ≤ q2, the Kronecker product of a Hadamard
matrix of order 2q2−m′ with the amicable orthogonal design (9.11) implies
h = 2q2c1, h1 = q2 − q1 and h2 = N = 0. Therefore, there exists an

AOD
(

2nh;2n+h1u1, . . . ,2n+h1us;2n+h2v1, . . . ,2n+h2vt

)
for each n ≥ N .

If β and b are not both even, then we may use Case 2 in Theorem 9.16
with a similar argument. �	
Example 9.9. Let (u1,u2,u3,u4,u5) = (8,12,20,68,136) and (v1,v2,v3,v4) =
(1,5,7,17). We use the same notation as in the proof of Theorem 9.18. Thus,
we have

1
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u′

1,u′
2,u′

3,u′
4,u′

5
)

= (2,3,5,17,34) ,
(
v′

1,v′
2,v′

3,v′
4
)

= (1,5,7,17) ,

q1 = 2 , q2 = 0 , c1 =
5∑

i=1
u′

i = 61 , c2 =
4∑

i=1
v′

i = 30 and c1 ≥ c2 .

In Examples 9.7 and 9.8, we applied the procedure (9.9) to the sequences(
u′

1,u′
2,u′

3,u′
4,u′

5
)

= (2,3,5,17,34) and
(
v′

1,v′
2,v′

3,v′
4
)

= (1,5,7,17) ,

and we obtained the two sequences

(b,a1,a2,a3) = (5,1,2,3) and (β,α1,α2) = (6,1,2),

respectively. We may choose m = max{4 ·3+b+1,4 ·2+β +2} = max{18,16} =
18. Note that b is odd, and β is even. From the proof of Theorem 9.18, there
is an

ACOD
(
218 ·61;

218 ·1(5),218 ·2(4),218 ·22
(4),2

18 ·23
(4);2

18 ·1(6),218 ·2(4),218 ·22
(4)

)
,

and so there is an

AOD
(
219 ·61;

219 ·1(5),219 ·2(4),219 ·22
(4),2

19 ·23
(4);2

19 ·1(6),219 ·2(4),219 ·22
(4)

)
.

Equating variables, we obtain an

AOD
(
219 ·61;

219 ·2,219 ·3,219 ·5,219 ·17,219 ·34;219 ·1,219 ·5,219 ·7,219 ·17
)

.

Since q2 ≤ q1 ≤ 19, we choose N = 19, h = 61, h1 = −2, h2 = 0, and therefore
for each n ≥ 19, there exists an

AOD (2n ·61;
2n−2 ·8,2n−2 ·12,2n−2 ·20,2n−2 ·68,2n−2 ·136;2n ·1,2n ·5,2n ·7,2n ·17

)
.

9.7 de Launey’s Theorem

While it is conjectured that Hadamard matrices exist for all orders 4t t > 0,
sustained effort over five decades only yielded a theorem of the type “that for all
odd natural numbers q, there exists an Hadamard matrix of order q2(a+blog2q)

where a and b are non-negative constants. To prove the Hadamard conjecture



it is necessary to show we may take a = 2 and b = 0. Seberry [237] showed that
we may take a = 0 and b = 2. This was improved by Craigen [34], who showed
that we may take a = 0 and b = 3

8 . Then astonishingly, de Launey [143,145]
showed, using a number theoretic argument of Erdos and Odlyzko [58], that
there are enough Paley Hadamard matrices to ensure that for all ε > 0, the set
of odd numbers q for which there is an Hadamard matrix of order q22+[εlog2k]

has positive density in the natural numbers. It is beyond the scope of this
book to prove this result but it is so important we have chosen to report it.

We give three important research questions posed by Warwick de Launey
shortly before he died;

Problem 9.1 (Research Problem of de Launey). Improve the known
results on the density of Hadamard matrices in the set of natural numbers.
See Warwick de Launey and Daniel M.Gordon [144]

Problem 9.2 (Research Problem of de Launey). Improve the known
bounds on the existence of partial Hadamard matrices See Warwick de Launey
and David A. Levin [146].

Problem 9.3 (Research Problem). Improve the de Launey bound on the
order of the power of two for the existence of an Hadamard matrix of order
2tq, q an odd natural number. See Warwick de Launey [143].

Problem 9.4 (Research Problem). Find asymptotic results for the exis-
tence of repeat designs.
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Chapter 10
Complex, Quaternion and Non Square
Orthogonal Designs

10.1 Introduction

A detailed study of complex, quaternion and non-square orthogonal designs
is beyond the scope of this book. We give just a small taste to highlight the
deep and practical nature of these almost unstudied algebraic structures.

A multiple antenna system has been used to solve bandwidth limitation
and channel fading problems in a wireless communication system. Space-
time block codes from real and complex orthogonal designs, have attracted
considerable attention lately, since they can approach the potential huge
capacity of multiple antenna systems and have a simple decoupled maximum-
likelihood (ML) decoding scheme [208]. Space-time block codes have been
adopted in the newly proposed standard for wireless LANs IEEE 802.11n [147].
Multi-path fading in a wireless channel can cause severe degradation of
transmission performance. In order to overcome the fading problem, some
diversity techniques are used, e.g. space-time coding scheme combines space
diversity and time diversity. We expect that additional forms of diversity,
i.e. polarization diversity and frequency diversity, should be considered with
space and time diversity to improve capacity.

It has been shown that polarization diversity, together with other forms
of diversity, can add to the performance improvements offered by other
diversity techniques. Isaeva and Sarytchev [113] showed that the utilization of
polarization diversity with other forms of diversity can be modelled by means
of quaternions since two orthogonal complex constellations form a quaternion.
This motivated the study of orthogonal designs over the quaternion domain
for future applications in signal processing as space-time-polarization block
codes [28,60,184,257].

We give general construction techniques to build amicable orthogonal de-
signs of quaternions, which we believe can be used for constructing quaternion
orthogonal designs, just like the applications of amicable orthogonal de-
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signs(AODs) for complex space-time codes, e.g. our previous work in [186,212].

10.2 Complex orthogonal designs

Complex orthogonal design is a complex analog of orthogonal designs and
was first studied by A.V. Geramita and J.M. Geramita in [76]. The coefficient
matrices of complex orthogonal designs are over the complex domain and can
be used in the study of complex weighing matrices.

Seberry and Adams [181] noted that quaternion orthogonal designs (QODs)
were introduced as a mathematical construct with the potential for applications
in wireless communications. The potential applications require new methods
for constructing QODs, as most of the known methods of construction do
not produce QODs with the exact properties required for implementation in
wireless systems. Real amicable orthogonal designs and the Kronecker product
may be used to construct new families of QODs. Their Amicable-Kronecker
Construction can be applied to build quaternion orthogonal designs of a
variety of sizes and types. Although it has not yet been simulated whether the
resulting designs are useful for applications, their properties look promising for
the desired implementations. Furthermore, the construction itself is interesting
because it uses a simple family of real amicable orthogonal designs and the
Kronecker product as building blocks, opening the door for future construction
algorithms using other families of amicable designs and other matrix products.

The exposition of the bulk of this chapter is due to Zhao, Seberry, Xia,
Wysocki, Wysocki [257], Chun Le Tran [186,212], and Sarah Spence Adams
[2,181,184,185].

There are many possible definitions for COD. Signal processing encourages
us to consider matrices with complex entries a+ ib, rather than a and/or ib,
a,b real.

Definition 10.1. A complex orthogonal design, COD, of order n and type
(s1,s2, . . . ,su), denoted COD(n;s1, s2, . . . ,su), is an n× n matrix A with
entries in the set of complex variables yi + izi where yi, zi are in the set of
real commuting variables x1,x2, . . . ,xu satisfying

AHA = AAH =
(

u∑
h=1

shx2
h

)
In,

where (.)H denotes the Hermitian transpose. We note this is a different
definition of COD from that which we have previously used.

Example 10.1. The matrix
[

ix1 x2
x2 ix1

]
, where x1 and x2 are real commuting

variables, is a COD(2;1,1).
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In [254], Yuen, Guan and Tjhung defined an amicable complex orthogonal
design which is a complex extension of amicable orthogonal design.

Definition 10.2. Two complex orthogonal designs, A and B, with complex
coefficient matrices, are said to be amicable if ABH = BAH or AHB = BHA.
We write ACOD(n;w1,w2, . . . ,wu;z1,z2, . . . ,zv) to denote that two designs
COD(n;w1,w2, . . . ,wu) and COD(n;z1,z2, . . . ,zv) are complex amicable.

Example 10.2. Let A =
[

a b
−ib ia

]
and B =

[
c d
id −ic

]
, where a,b,c,d ∈ R. A and

B are amicable complex orthogonal designs ACOD(2;1,1;1,1).

Yuen et al [254] also concluded that the maximum total number of variables
of an ACOD is equal to the maximum total number of variables in an AOD
of same order.

10.3 Amicable orthogonal designs of quaternions

Definition 10.3. A quaternion variable a is defined in the form a = a1 +
a2i + a3j + a4k, where ap, p = 1, . . . ,4 are real numbers and the elements
i,j,k satisfy i2 = j2 = k2 = ijk = −1.

A quaternion variable is a non-commutative extension of the complex
variables since we can also write a = (a1 +a2i)+(a3 +a4i)j.

The quaternion conjugate is given by aQ = a1−a2i−a3j−a4k.
The quaternion norm is therefore defined by

√
aaQ =

√
a2

1 +a2
2 +a2

3 +a2
4 .

Given a matrix A = (a�,m), where au are quaternion variables or numbers,
we define its quaternion transform by AQ = (aQ

m,�).

The following definitions of orthogonal design of quaternions and restricted
quaternion orthogonal design were originally given in [184].

Definition 10.4. An orthogonal design of quaternions, ODQ, of order n and
type (s1,s2, . . . ,su) denoted ODQ(n;s1,s2, . . . ,su), on the commuting real
variables x1,x2, . . . ,xu is a square matrix A of order n with entries from
{0,q1x1,q2x2, . . . ,quxu}, where each qj ∈ {±1,±i,±j,±k} such that

AQA = AAQ =
(

u∑
h=1

shx2
h

)
In ,

where (.)Q denotes quaternion transform. We can extend this definition to
include rectangular designs that satisfy
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AQA =
(

u∑
h=1

shx2
h

)
In .

Example 10.3. Consider A =
[

−x1 x2i
−x2j x1k

]
, where x1,x2 are real, commuting

variables. Then,

AQA =
[ −x1 x2j
−x2i −x1k

] [ −x1 x2i
−x2j x1k

]

=
[
x2

1 +x2
2 0
0 x2

1 +x2
2

]
so A is an ODQ(2;1,1).

Definition 10.5. A restricted quaternion orthogonal design of order n and
type (s1,s2, . . . ,su), denoted RQOD(n;s1,s2, . . . ,su), on the complex vari-
ables z1, z2, . . ., zu is an n × n matrix A with entries from {0,q1z1,
q1z∗

1 ,q2z2,q2z∗
2 , . . . ,quzu,quz∗

u}, where each qp is a linear combination of
{±1, ±i, ±j, ±k} such that

AQA = AAQ =
(

u∑
h=1

sh|zh|2
)

In .

This definition can be extended to include rectangular designs that satisfy
AQA = (

∑u
h=1 sh|zh|2)In.

Example 10.4. Consider A =
[

iz1 iz2
−jz∗

2 jz∗
1

]
, where z1,z2 are complex commuting

variables. Then,

AQA =
[−z∗

1i z2j
−z∗

2i −z1j

] [
iz1 iz2

−jz∗
2 jz∗

1

]

=
[|z1|2 + |z2|2 0

0 |z1|2 + |z2|2
]

so A is an RQOD(2;1,1). To illustrate why this is called a restricted QOD,
we replace complex variables in A using zi = xi +yii, where the xi,yi are real
variables. This gives

A =
[ −y1 + ix1 −y2 + ix2
−jx2−ky2 jx1 +ky1

]
.

We now can see that the entries of A are quaternion variables such that certain
components of the variables are restricted to zero.

Definition 10.6. Two orthogonal designs of quaternions, A and B, are said
to be amicable if ABQ = BAQ or AQB = BQA. We write
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AODQ(n;w1,w2, . . . ,wu;z1,z2, . . . ,zv)

to denote that two designs ODQ(n;w1,w2, . . . ,wu) and ODQ(n;z1,z2, . . . ,zv)
are amicable.

Example 10.5. Let

A =
[ −x1 x2i
−x2j x1k

]
and B =

[
y1 y2i
y2j y1k

]
where x1,x2,x3,x4 ∈ R. A and B are amicable orthogonal designs of quater-
nions of type AODQ(2;1,1;1,1).

Proof. The proof that A and B are orthogonal designs of quaternions is
straight-forward. We show A and B are amicable.

ABQ =
[ −x1 x2i
−x2j x1k

] [
y1 −y2j

−y2i −y1k

]

=
[−x1y1 +x2y2 x1y2j +x2y1j
−x2y1j−x1y2j −x2y2 +x1y1

]

BAQ =
[

y1 y2i
y2j y1k

] [ −x1 x2j
−x2i −x1k

]

=
[−x1y1 +x2y2 x1y2j +x2y1j
−x2y1j−x1y2j −x2y2 +x1y1

]
= ABQ

Hence A and B are amicable orthogonal designs of quaternions. �	
Let X and Y be amicable orthogonal designs of quaternions of type

AODQ(n;u1, . . . ,us;v1, . . . ,vt). Write

X =
s∑

i=1
Aixi , Y =

t∑
j=1

Bjyj ,

we then have:

(i) Ai ∗A� = 0, 1 ≤ i �= � ≤ s;
Bj ∗Bk = 0, 1 ≤ j �= k ≤ t;

(ii) AiA
Q
i = uiIn, 1 ≤ i ≤ s;

BjBQ
j = vjIn, 1 ≤ j ≤ t;

(iii) AiA
Q
� +A�AQ

i = 0, 1 ≤ i �= � ≤ s;
BjBQ

k +BkBQ
j = 0, 1 ≤ j �= k ≤ t;

(iv) AiB
Q
j = BjAQ

i , 1 ≤ i ≤ s, 1 ≤ j ≤ t,
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where Ai, Bj are all {0,±1,±i,±j,±k} quaternion matrices. It is clear that
conditions (i)–(iv) are necessary and sufficient for the existence of amicable
orthogonal designs of quaternions AODQ(n;u1, . . . ,us;v1, . . . ,vt).

Problem 10.1 (Research Problem 4). Investigate the algebra which cor-
responds to the properties (i), (ii), (iii) and (iv) of the proof of Example
10.5.

Proposition 10.1. A necessary and sufficient condition that there exist ami-
cable orthogonal designs of quaternions X and Y of type AODQ(n;u1, . . . ,us;
v1, . . . ,vt) is that there exists a family of matrices of {A1, . . . ,As;B1, . . . ,Bt}
of order n satisfying (i)–(iv) above.

Proof. Let X and Y be such an amicable pair and write X = A1x1 + · · ·+Asxs

and Y = B1y1 + · · ·+Btyt as linear monomials in the xi,yi ∈R. By definition,
the proof of (i) and (ii) is straight-forward. Since we have

XXQ = (A1x1 + · · ·+Asxs)(AQ
1 x1 + · · ·+AQ

s xs)

=
s∑

j=1

(
AjAQ

j x2
j

)
+

∑
j �=k

(
AjAQ

k +AkAQ
j

)
xjxk

=

⎛⎝ s∑
j=1

ujx2
j

⎞⎠In,

hence, conditions in (iii) are satisfied. Condition (iv) can be proved by com-
paring coefficient matrices of XY Q = Y XQ on both sides. Conversely, if we
have {A1, . . . ,As;B1, . . . ,Bt} of order n satisfying (i)–(iv), then it is obvious
that X = A1x1 + · · ·+ Asxs and Y = B1y1 + · · ·+ Btyt are an AODQ with
required type. �	
Definition 10.7. An amicable family of quaternions(AFQ) of type (u1, . . . ,us;
v1, . . . ,vt) in order n is a collection of quaternion matrices {A1, . . . As;B1, . . .,
Bt} satisfying (ii), (iii), (iv) above.

The definition of amicable family of quaternions(AFQ) is analogous to the
definition of amicable family of orthogonal designs given in [80]. However, the
upper bound on the total number of variables of an AODQ, i.e. s+ t, is an
unsolved problem.

10.4 Construction techniques

In this section, we present several construction techniques for building amicable
orthogonal designs over the real and quaternion domain. There are some
existing methods for generating real amicable orthogonal designs. We can



10.4 Construction techniques 341

extend these techniques to build designs over the quaternion domain. However,
due to the non-commutativity of the quaternions, we need to modify existing
techniques to make them suitable for designs over the quaternion domain.

10.4.1 Amicable orthogonal designs

We recall from Chapter 5:

Definition 10.8. A symmetric conference matrix N of order n is a square
(0,1,−1) matrix satisfying N = NT and NNT = (n−1)In. It is shown in [39]
that if such a matrix exists, one may assume it has zero diagonal.

A symmetric conference matrix is a special type of weighing matrix which
has been long studied in order to design experiments to weight n objects
whose weights are small compared with the weights of the moving parts of
the balance being used [80]. In Chapter 5 we have studied the application of
symmetric conference matrices for constructing amicable orthogonal designs.

Lemma 10.1. Let N be a symmetric conference matrix in order n and
x, y real commuting variables. Then there is a complex orthogonal design
COD(n;1,n−1).

Proof. Let Y = xIni+yN ; then Y is easily proved to be the required COD.
�	

Lemma 10.2 below improves results of Theorem 2 given in [177].

Lemma 10.2. Let N be a symmetric conference matrix in order n. Then
there exist pairs of amicable orthogonal designs:

a) AOD(2n;n,n;n,n),
b) AOD(2n;n,n;2,2(n−1)),
c) AOD(2n;n,n;1,n−1),
d) AOD(2n;2,2(n−1);1,n−1).

Proof. Let a, b, c and d be real commuting variables. Then the required
designs are:

for a)
[
aIn + bN bIn−aN
bIn−aN −aIn− bN

]
and

[
cIn +dN dIn− cN
−dIn + cN cIn +dN

]
,

for b)
[
aIn + bN bIn−aN
bIn−aN −aIn− bN

]
and

[
cIn +dN cIn−dN
−cIn +dN cIn +dN

]
,

for c)
[
aIn + bN bIn−aN
bIn−aN −aIn− bN

]
and

[
cIn dN
−dN cIn

]
,

for d)
[
aIn + bN aIn− bN
aIn− bN −aIn− bN

]
and

[
cIn dN
−dN cIn

]
.�	
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Corollary 10.1. Let n be the order of the symmetric conference matrices, we
then have a number of amicable orthogonal designs of order 2n of different
types. For example, for n−1≡ 1 (mod 4), where n−1 is a prime power, there
exist

a) AOD(2n;n,n;n,n),
b) AOD(2n;n,n;2,2(n−1)),
c) AOD(2n;n,n;1,n−1),
d) AOD(2n;2,2(n−1);1,n−1).

Example 10.6. For n = 6 and n = 10, there exist

a) AOD(12;6,6;6,6), a’) AOD(20;10,10;10,10),
b) AOD(12;6,6;2,10), b’) AOD(20;10,10;2,18),
c) AOD(12;6,6;1,5), c’) AOD(20;10,10;1,9),
d) AOD(12;2,10;1,5), d’) AOD(20;2,18;1,9),

separately.

We recall the oft quoted:

Lemma 10.3. For p ≡ 3 (mod 4) be a prime power. Then there exists a pair
of amicable orthogonal designs AOD(p+1;1,p;1,p).

Proof. Almost straightforward verification since aI + bS is type 1 and (cI +
dS)R is type 2 matrix. �	

Example 10.7. For p = 3, we define type 1 matrix S =
[ 0 1 −

− 0 1
1 − 0

]
and the back

diagonal matrix R =
[0 0 1

0 1 0
1 0 0

]
. Then, we construct

A =

⎡⎢⎢⎣
a b b b

−b a b −b
−b −b a b
−b b −b a

⎤⎥⎥⎦ and B =

⎡⎢⎢⎣
−c d d d

d −d d c
d d c −d
d c −d d

⎤⎥⎥⎦ .

A and B is a pair of amicable orthogonal design AOD(4;1,3;1,3).

10.5 Amicable orthogonal design of quaternions

Theorem 10.1. If there exists a pair of amicable orthogonal designs of quater-
nions, AODQ(n;a1, · · · ,as;b1, · · · , bt) and a pair of amicable orthogonal de-
signs AOD(m;c1, · · · , cu;d1, · · · ,dv), then there exists a pair of amicable or-
thogonal designs of quaternions
AODQ(nm;b1c1, . . . , b1cu−1,a1cu, . . . ,ascu;b1d1, . . . , b1dv, b2cu, . . . , btcu).
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Proof. Let X =
∑s

i=1 Aixi and Y =
∑t

j=1 Bjyj be the amicable orthogonal
designs of quaternions in order n and let Z =

∑u
k=1 Ckzk and W =

∑v
l=1 Dlwl

be the amicable orthogonal designs in order m.
Construct the matrices

P =
u−1∑
i=1

(B1⊗Ci)pi +
s∑

j=1
(Aj ⊗Cu)pj+u−1

Q =
v∑

i=1
(B1⊗Di)qi +

t∑
j=2

(Bj ⊗Cu)qj+v−1

where the pi’s and qi’s are real commuting variables and ⊗ denotes Kronecker
product. �	

The above theorem is similar to Wolfe’s theorem [247] which gave a general
construction method for amicable orthogonal designs. The only change in
Theorem 10.1 is that X and Y are amicable orthogonal designs of quaternions
(AODQ). It is important to note that Z and W must be amicable orthogonal
designs over the real domain, otherwise the non-commutative property of
quaternions can not guarantee the amicability of the results.

Example 10.8. Let A =
[

−x1 x2i
−x2j x1k

]
and B =

[
y1 y2i

y2j y1k

]
, where x1,x2,y1,y2 ∈R.

A and B are amicable orthogonal designs of quaternions AODQ(2;1,1;1,1).
Another pair of amicable orthogonal designs is given as Z =

[ z1 z2−z2 z1

]
and

W =
[w1 w2

w2 −w1

]
, where z1,z2,w1,w2 ∈ R. Theorem 10.1 gives

P = (B1⊗C1)p1 +(A1⊗C2)p2 +(A2⊗C2)p3 ,

Q = (B1⊗D1)q1 +(B1⊗D2)q2 +(B2⊗C2)q3 .

The quaternion coefficient matrices for P and Q are:

P1 = B1⊗C1 =
[
1 0
0 k

]
⊗
[
1 0
0 1

]

=

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 k 0
0 0 0 k

⎤⎥⎥⎦ ,

P2 = A1⊗C2 =
[−1 0

0 k

]
⊗
[

0 1
−1 0

]

=

⎡⎢⎢⎣
0 −1 0 0
1 0 0 0
0 0 0 k
0 0 −k 0

⎤⎥⎥⎦ ,
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P3 = A2⊗C2 =
[

0 i
−j 0

]
⊗
[

0 1
−1 0

]

=

⎡⎢⎢⎣
0 0 0 i
0 0 −i 0
0 −j 0 0
j 0 0 0

⎤⎥⎥⎦ ,

Q1 = B1⊗D1 =
[
1 0
0 k

]
⊗
[
1 0
0 −1

]

=

⎡⎢⎢⎣
1 0 0 0
0 −1 0 0
0 0 k 0
0 0 0 −k

⎤⎥⎥⎦ ,

Q2 = B1⊗D2 =
[
1 0
0 k

]
⊗
[
0 1
1 0

]

=

⎡⎢⎢⎣
0 1 0 0
1 0 0 0
0 0 0 k
0 0 k 0

⎤⎥⎥⎦ ,

Q3 = B2⊗C2 =
[
0 i
j 0

]
⊗
[

0 1
−1 0

]

=

⎡⎢⎢⎣
0 0 0 i
0 0 −i 0
0 j 0 0

−j 0 0 0

⎤⎥⎥⎦ .

Then

P =

⎡⎢⎢⎣
p1 −p2 0 p3i
p2 p1 −p3i 0
0 −p3j p1k p2k

p3j 0 −p2k p1k

⎤⎥⎥⎦ and Q =

⎡⎢⎢⎣
q1 q2 0 q3i
q2 −q1 −q3i 0
0 q3j q1k q2k

−q3j 0 q2k −q1k

⎤⎥⎥⎦
are are amicable orthogonal designs of quaternions AODQ(4;1,1,1;1,1,1)
since they both are ODQs and satisfy PQQ = QP Q.

Corollary 10.2. If there exists a pair of amicable orthogonal designs of
quaternions AODQ(n;a1, ...,as;b1, ..., bt), then there exists a pair of amicable
orthogonal designs of quaternions of type

a) AODQ(2n;a1,a1,2a2...,2as;2b1, ...,2bt),
b) AODQ(2n;a1,a1,a2...,as;b1, ..., bt).
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Proof. Let X =
∑s

i=1 Aixi and Y =
∑t

j=1 Bjyj be amicable designs of quater-
nions in order n.
a) Let M =

[ 0 1−1 0
]
, N =

[1 1
1 −1

]
be real weighing matrices and construct the

matrices

P = (A1⊗ I2)p1 +(A1⊗M)p2 +
s∑

i=2
(Ai⊗N)pi+1

and

Q =
t∑

j=1
(Bj ⊗N)qj

b) Same as a), only set N =
[

1 0
0 −1

]
.

It’s obvious that all the quaternion matrices Pi’s and Qi’s satisfy the conditions
(i)-(iv) because the weighing matrices M , N have the following properties: M =
−M�, N = N�, and MN� = NM�, where (.)� denotes matrix transpose.

�	
Example 10.9. Consider a pair of AODQ(2;1,1;1,1) given in Example 10.5,
we construct a new AODQ(4;1,1,2;2,2) using Corollary 10.2(a):

P =

⎡⎢⎢⎣
−p1 −p2 p3i p3i
p2 −p1 p3i −p3i

−p3j −p3j p1k p2k
−p3j p3j −p2k p1k

⎤⎥⎥⎦ Q =

⎡⎢⎢⎣
q1 q1 q2i q2i
q1 −q1 q2i −q2i
q2j q2j q1k q1k
q2j −q2j q1k −q1k

⎤⎥⎥⎦
In Theorem 10.1, we can also replace the amicable orthogonal designs

AOD(m;c1, . . . , cu;d1, . . . ,dv) by an amicable family to get more amicable
orthogonal designs of quaternions.

Example 10.10. Consider a pair of AODQ(2;1,1;1,1) given in Example 10.5,
let

C1 =
[−1 1

1 1

]
, C2 =

[
1 1
1 −1

]
, D1 =

[
1 −1
1 1

]
, and D2 =

[
1 1

−1 1

]
be an amicable family {C1,C2;D1,D2}. We construct

P = (B1⊗C1)p1 +(A1⊗C2)p2 +(A2⊗C2)p3 ,

Q = (B1⊗D1)q1 +(B1⊗D2)q2 +(B2⊗C2)q3 .

The new amicable orthogonal designs of quaternions are:
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P =

⎡⎢⎢⎣
−p1−p2 p1−p2 p3i p3i

p1−p2 p1 +p2 p3i −p3i
−p3j −p3j −p1k +p2k p1k +p2k
−p3j p3j p1k +p2k p1k−p2k

⎤⎥⎥⎦
and

Q =

⎡⎢⎢⎣
q1 + q2 −q1 + q2 q3i q3i
q1− q2 q1 + q2 q3i −q3i

q3j q3j q1k + q2k −q1k + q2k
q3j −q3j q1k− q2k q1k + q2k

⎤⎥⎥⎦ .

In this design, some entries are linear combinations of two variables which
may make it unsuitable for real applications in communications. To normalize
the above design, we set new variables a1 = p1 +p2, a2 = p1−p2, a3 = p3, and
b1 = q1 + q2, b2 = q1− q2, b3 = q3, then we get

P =

⎡⎢⎢⎣
−a1 a2 a3i a3i

a2 a1 a3i −a3i
−a3j −a3j −a2k a1k
−a3j a3j a1k a2k

⎤⎥⎥⎦ Q =

⎡⎢⎢⎣
b1 −b2 b3i b3i
b2 b1 b3i −b3i

b3j b3j b1k −b2k
b3j −b3j b2k b1k

⎤⎥⎥⎦ .

This is an AODQ(4;1,1,2;1,1,2) design without zero entries and no linear
processing.

In [255], Yuen et al gave a construction method for amicable complex
orthogonal designs. We can also apply it in constructing amicable orthogonal
designs of quaternions.

Lemma 10.4. If there exists a pair of amicable orthogonal designs of quater-
nions AODQ(n;a1, . . . ,as;b1, . . . , bt), then there exists a pair of amicable or-
thogonal designs of quaternions of type AODQ(4n;a1,a1,a1, b2, . . . , bt;b1, b1, b1,
a2, . . . ,as).

Proof. Let X =
∑s

i=1 Aixi and Y =
∑t

j=1 Bjyj be the amicable orthogonal
designs of quaternions in order n and define following real weighing matrices:

M1 =

⎡⎢⎢⎣
0 1 0 0

−1 0 0 0
0 0 0 1
0 0 −1 0

⎤⎥⎥⎦ M2 =

⎡⎢⎢⎣
0 0 1 0
0 0 0 −1

−1 0 0 0
0 1 0 0

⎤⎥⎥⎦

M3 =

⎡⎢⎢⎣
0 0 0 1
0 0 1 0
0 −1 0 0

−1 0 0 0

⎤⎥⎥⎦ N1 =

⎡⎢⎢⎣
0 1 0 0

−1 0 0 0
0 0 0 −1
0 0 1 0

⎤⎥⎥⎦
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N2 =

⎡⎢⎢⎣
0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0

⎤⎥⎥⎦ N3 =

⎡⎢⎢⎣
0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

⎤⎥⎥⎦
Construct the matrices

P =
3∑

i=1
(A1⊗Ni)pi +

t∑
j=2

(Bj ⊗ I4)p2+j

Q =
3∑

i=1
(B1⊗Mi)qi +

s∑
j=2

(Aj ⊗ I4)q2+j .

All the quaternion matrices Pi’s and Qi’s satisfy the conditions (i)-(iv) because
the weighing matrices {Mi} and {Ni} are skew-symmetric and they also form
an amicable family. �	
Example 10.11. Consider a pair of AODQ(2;1,1;1,1) given in Example 10.5,
we apply Lemma 10.4 to construct the following AODQ(8;1,1,1,1;1,1,1,1):

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −p1 −p2 −p3 p4i 0 0 0
p1 0 p3 −p2 0 p4i 0 0
p2 −p3 0 p1 0 0 p4i 0
p3 p2 −p1 0 0 0 0 p4i

p4j 0 0 0 0 p1k p2k p3k
0 p4j 0 0 −p1k 0 −p3k p2k
0 0 p4j 0 −p2k p3k 0 −p1k
0 0 0 p4j −p3k −p2k p1k 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 q1 q2 q3 q4i 0 0 0
−q1 0 q3 −q2 0 q4i 0 0
−q2 −q3 0 q1 0 0 q4i 0
−q3 q2 −q1 0 0 0 0 q4i
−q4j 0 0 0 0 q1k q2k q3k

0 −q4j 0 0 −q1k 0 q3k −q2k
0 0 −q4j 0 −q2k −q3k 0 q1k
0 0 0 −q4j −q3k q2k −q1k 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Although we only give examples of AODQ of orders 2, 4 and 8 in this chapter,
there actually exist many designs of order other than powers of 2. We know
that symmetric conference matrices exist for orders n = q +1, q ≡ 1 (mod 4)
a prime power, e.g., n = 6. Applying Theorem 10.1 on AODQ(2;1,1;1,1) and
AODs from Corollary 10.1 gives us the following corollary.

Corollary 10.3. Let n ≡ 2 (mod 4) be the order of the symmetric conference
matrices, then there exist
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a) AODQ(4n;n,n,n;n,n,n),
b) AODQ(4n;n,n,n;2,2(n−1),n),
c) AODQ(4n;n,n,n;1,n−1,n),
d) AODQ(4n;2,2(n−1),2(n−1);1,n−1,2(n−1)),

An example is that for n = 6, we have AODQ(24;6,6,6;6,6,6),
AODQ(24;6,6,6;2,10,6), etc.

Corollary 10.4. For q ≡ 3 (mod 4) a prime power, there exist AODQ(2(q +
1);1, q,q;1, q,q).

Proof. This corollary follows by applying Theorem 10.1 on AODQ(2;1,1;1,1)
and AODs from Lemma 10.3. �	

The above corollary also gives an example of AODQ(24;1,11,11;1,11,11)
when q = 11.

10.6 Combined Quaternion Orthogonal Designs from
Amicable Designs

In [184], Seberry et al gave a technique named combined quaternion orthogonal
designs from real and complex orthogonal designs. This combined design uses
the property that if ABH is a symmetric matrix, where A and B are matrices
with complex entries, so that ABHq = qBAH for q ∈ {±j,±k}, to construct
new RQOD. There is a connection between the combined design and amicable
designs, in that the form of ABH are examined. For amicable orthogonal
designs of quaternions, the condition that ABQ is a symmetric matrix can
be relaxed since we have ABQ = BAQ for A and B. In the case of combined
design from amicable orthogonal design of quaternions, we also need to be
careful about what quaternion appears as entries of ABQ. We illustrate this
with the following example:

Example 10.12. Consider the AODQ(2;1,1;1,1) designs A and B from Ex-
ample 10.5. We have

AQB =
[ −x1 x2j
−x2i −x1k

] [
y1 y2i

y2j y1k

]

=
[ −x1y1−x2y2 (−x1y2 +x2y1)i
(x1y2−x2y1)i x1y1 +x2y2

]
= BQA.

Let D = A+Bq, q ∈ {±i,±j,±k} be a new design for which we have



10.6 Combined Quaternion Orthogonal Designs from Amicable Designs 349

DQD = (AQ−qBQ)(A+Bq)

= AQA+AQBq−qBQA−qBQBq

= (AQA+BQB)+(AQB)q−q(BQA) ,

where AQB = BQA for the amicability of A and B, we also notice that all
entries in AQB are either real or products with quaternion i. Thus AQBi =
iBQA, and we have DQD = AQA + BQB = (x2

1 + x2
2 + y2

1 + y2
2)I2. The new

design D = A+Bi is of the form:

D =
[ −x1 +y1i x2i−y2
−x2j−y2k x1k +y1j

]
.

Let complex symbols zi = xi +iyi, for 1≤ i≤ 2, then we can write above D as

D =
[ −z∗

1 iz2
−jz∗

2 kz1

]
.

The above design satisfies DQD = (|z1|2 + |z2|2)I2 and hence is an
RQOD(2;1,1) on complex variables z1 and z2. The new RQOD in Example
10.12 has no zero entries, which may have practical advantages when used
in wireless communication since there is no need to switch antennas off and
back on during transmission.

We now provide an example constructing an RQOD with order 4, which
has no zero entries but with linear processing.

Example 10.13. Consider the AODQ(4;1,1,2;1,1,2) designs A and B in Ex-
ample 10.10 with variables a1,a2,a3 and b1, b2, b3 ∈ R. We have X = AQB

=

⎡⎢⎢⎢⎢⎣
−a1 a2 a3j a3j

a2 a1 a3j −a3j

−a3i −a3i a2k −a1k

−a3i a3i −a1k −a2k

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

b1 −b2 b3i b3i

b2 b1 b3i −b3i

b3j b3j b1k −b2k

b3j −b3j b2k b1k

⎤⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎣
X11 X12 X13 X14

XQ
12 X22 X23 X24

XQ
13 XQ

23 X33 X34

XQ
14 XQ

24 XQ
34 X44

⎤⎥⎥⎥⎥⎦
= BQA,

Where
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X11 = −a1b1 +a2b2−2a3b3 , X12 = a1b2 +a2b1 ,

X13 = (−a1b3 +a2b3 +a3b1 +a3b2)i , X14 = (−a1b3−a2b3 +a3b1−a3b2)i ,

X22 = a1b1−a2b2−2a3b3 , X23 = (a1b3 +a2b3 +a3b1−a3b2)i ,

X24 = (−a1b3 +a2b3−a3b1−a3b2)i , X33 = a1b2−a2b1 +2a3b3 ,

X34 = a1b1 +a2b2 and X44 = −a1b2 +a2b1 +2a3b3 .

Since only quaternion i appears in X, we then set D = A + Bi as the new
design:

D =

⎡⎢⎢⎣
−a1 + b1i a2− b2i a3i− b3 a3i− b3

a2 + b2i a1 + b1i a3i− b3 −a3i+ b3
−a3j− b3k −a3j− b3k −a2k + b1j a1k− b2j
−a3j− b3k a3j + b3k a1k + b2j a2k + b1j

⎤⎥⎥⎦ .

Let complex symbols zi = ai + ibi, for 1≤ i≤ 3, then we can write above D as

D =

⎡⎢⎢⎣
−z∗

1 z∗
2 iz3 iz3

z2 z1 iz3 −iz3
−jz∗

3 −jz∗
3 −k(a2− b1i) k(a1− b2i)

−jz∗
3 jz∗

3 k(a1 + b2i) k(a2 + b1i)

⎤⎥⎥⎦ .

The above design satisfies DQD = (|z1|2 + |z2|2 + 2|z3|2)I4 and hence is an
RQOD(4;1,1,2) on the complex variables z1, z2 and z3. Note that if an entry
in the orthogonal design is a linear combination of variables from the given
domain, the design is said to be with linear processing. Obviously, the new
RQOD design has the property of no zero entries but with linear processing
on some entries, i.e the position (3,3) is the quaternion combination of real
part of symbol z2 and imaginary part of symbol z1.

The following Lemma shows construction of orthogonal designs of quater-
nions by using symmetric conference matrices.

Lemma 10.5. Suppose a, b, c, d are real commuting variables. Let N be a
symmetric conference matrix of order n and I identity matrix of same order.
Then, X = aIi+bN and Y = cIj +dNk are orthogonal designs of quaternions
ODQ(n;1,n−1), and XY Q +Y XQ = 0, so X and Y are AAODQ(n;1,n−
1;1,n−1) (anti-amicable orthogonal design of quaternions). Hence

[
X Y
Y X

]
is

a ODQ(2n;1,1,n−1,n−1).

The proof for Lemma 10.5 is straightforward.

Example 10.14. For a symmetric conference matrix N of order 6, we construct
the following matrices:
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X =

⎡⎢⎢⎢⎢⎢⎢⎣
ai b b b b b
b ai b −b −b b
b b ai b −b −b
b −b b ai b −b
b −b −b b ai b
b b −b −b b ai

⎤⎥⎥⎥⎥⎥⎥⎦ Y =

⎡⎢⎢⎢⎢⎢⎢⎣
cj dk dk dk dk dk
dk cj dk −dk −dk dk
dk dk cj dk −dk −dk
dk −dk dk cj dk −dk
dk −dk −dk dk cj dk
dk dk −dk −dk dk cj

⎤⎥⎥⎥⎥⎥⎥⎦ .

X and Y both are ODQ(6;1,5). They also form a pair of AAODQ(6;1,5;1,5).

Corollary 10.5. Let p ≡ 1 (mod 4) be a prime power. Then there exist or-
thogonal designs of quaternions ODQ(p + 1;1,p) and ODQ(2(p+ 1);1,p,1,p),
also a pair of anti-amicable orthogonal designs of quaternions AAODQ(p+
1;1,p;1,p).

Corollary 10.5 follows directly from Lemma 10.5.

Lemma 10.6. For a pair of AAODQ(n;1,n−1;1,n−1) X and Y given in
Lemma 10.5, then D = X +Y i is an RQOD(n;1,n−1).

Proof. We have

DQD = (XQ− iY Q)(X +Y i)
= XQX +XQY i− iY QX − iY QY i

= (XQX +Y QY )+(XQY )i− i(Y QX) .

For X = xIi + bN and Y = cIj + dNk, where N is a conference matrix of
order n and I is the identity matrix with same order, we have

XQY = (−aIi+ bNT )(cIj +dNk)
= −acIk +adNj + bcNj + bdNNT k

= −Y QX ,

since only quaternions k and j appear in XQY , we have (XQY )i = i(Y QX).
Hence,

DQD = XQX +Y QY = (a2 +(n−1)b2 + c2 +(n−1)d2)In ,

i.e. D is an RQOD(n;1,n−1). �	
Example 10.15. Consider a pair of AAODQ(6;1,5;1,5) given in Example
10.14, we have the following D = X +Y i:⎡⎢⎢⎢⎢⎢⎢⎣

i(a− cj) b+dj b+dj b+dj b+dj b+dj
b+dj i(a− cj) b+dj −(b+dj) −(b+dj) b+dj
b+dj b+dj i(a− cj) b+dj −(b+dj) −(b+ dj)
b+dj −(b+dj) b+dj i(a− cj) b+dj −(b+dj)
b+dj −(b+dj) −(b+dj) b+dj i(a− cj) b+dj
b+dj b+dj −(b+dj) −(b+dj) b+dj i(a− cj)

⎤⎥⎥⎥⎥⎥⎥⎦ .
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In above design D, if we replace quaternion element j by i, i by an undecided
quaternion element q, and let complex variables z1 = a+ ci and z2 = b+di,
then we have D: ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

qz∗
1 z2 z2 z2 z2 z2

z2 qz∗
1 z2 −z2 −z2 z2

z2 z2 qz∗
1 z2 −z2 −z2

z2 −z2 z2 qz∗
1 z2 −z2

z2 −z2 −z2 z2 qz∗
1 z2

z2 z2 −z2 −z2 z2 qz∗
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

q in above D can be chosen from the set {±k,±j} since qz∗
1z∗

2 = z2z1q for
any q ∈ {±k,±j}. It is easy to prove DQD = (|z1|2 +5|z2|2)I6. Hence, D is
a restricted quaternion orthogonal design RQOD(6;1,5) with no zero entries.

10.7 Le Tran’s Complex Orthogonal Designs of Order
Eight

Square, Complex Orthogonal Space-Time Block Codes (CO STBCs) are
known for the relatively simple receiver structure and minimum processing
delay in the case of complex signal constellations. One of the methods to
construct square CO STBCs is based on amicable orthogonal designs (AODs).
The simplest CO STBC is the Alamouti code [3] for two transmitter (Tx)
antennas, which is based on an amicable orthogonal pair of order-2 matrices.
The Alamouti code achieves the transmission rate of one for 2 TX antennas,
while the CO STBCs for more than 2 Tx antennas cannot provide the rate of
one (see [214, Section 2.3] or [148,149]). However they can still achieve the
full diversity for the given number of Tx antennas.

The construction of CO STBCs follows directly from complex orthogonal
designs (CODs).

Definition 10.9. A square COD Z = X + iY of order n is an n×n matrix on
the complex indeterminates s1, . . . ,sp, with entries chosen from 0,±s1, . . . ,±sp,
their conjugates ±s∗

1, . . . ,±s∗
p, or their products with i =

√−1 such that:

ZHZ =
(

p∑
k=1

|sk|2
)

In (10.1)

where ZH denotes the Hermitian transpose of Z and In is the identity matrix
of order n.
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For the matrix Z to satisfy (10.1), the matrices X and Y must be a pair of
AODs, which implies that both X and Y are orthogonal designs themselves
and XY � = Y X�, where (.)� denotes matrix transposition.

It has been shown in [80] that, for n = 8, the total number of different
variables in the amicable pair X and Y cannot exceed eight.

It has been shown in [203], that the construction of CODs can be faciliated
by representing Z as

Z =
p∑

j=1
AjsR

j + i

p∑
j=1

BjsI
j (10.2)

where sR
j and sI

j denote the real and imaginary parts of the complex variables
sj = sR

j + isI
j and Aj and Bj are the real coefficient matrices for sR

j and sI
j ,

respectively. To satisfy (10.1), the matrices {Aj} and {Bj} of order n must
satisfy the following conditions:

AjA�
j = I, BjB�

j = I, ∀j = 1, . . . ,p

AkA�
j = −AjA�

j , BkB�
j = −BjB�

k , k �= j (10.3)

AkB�
j = BjA�

k , ∀k, j = 1, . . . ,p

The conditions in (10.3) are necessary and sufficient for the existence of AODs
of order n. Thus, the problem of finding CODs is connected to the theory of
AODs.

From the perspective of constructing CO STBCs, the most promising case is
that in which both X and Y have four variables. This case has been considered
in the conventional, order-8 CO STBCs, corresponding to COD(8;1,1,1,1)
with all four variables appearing once in each column of Z. An example is
given in Fig. 10.1, (see [209,210], or [214, Eq.(2.34)]).

Fig. 10.1 A conventional COD of order eight a

a Tran, Wysocki, Mertins, and Seberry [213, p75] c©Springer
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These conventional codes contain numerous zero entries which are unde-
sirable. Note that we use the similar notation to that mentioned in [80], i.e.
COD(8;1,1,1,1), to denote a square, order-8 COD containing four complex
variables and each variable appearing once in each column. Readers may refer
to [80] for more details.

In [186,212,256], two new codes of order eight are introduced where some
variables appear more often than others (more than once in each column), i.e.,
codes based on COD(8;1,1,2,2) and COD(8;1,1,1,4). These codes, namely
Z2 and Z3, are given in Fig. 10.2 and 10.3, respectively. It is easy to check
that these codes satisfy the conditions (10.1).

Fig. 10.2 Code Z2
a

a Tran, Wysocki, Mertins, and Seberry [213, p76] c©Springer

Fig. 10.3 Code Z3
a

a Tran, Wysocki, Mertins, and Seberry [213, p77] c©Springer

All the CO STBCs proposed here achieve the maximum code rate for
order-8, square CO STBCs, which is equal to 1

2 . We would like to recall that,
according to Liang’s paper [148], the maximum achievable rate of CO STBCs
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for n = 2m− 1 or n = 2m Tx antennas is Rmax = (m+1)
2m . Particularly, for

n = 8, i.e., m = 4, the maximum achievable rate of CO STBCs is 5
8 .

However, this maximum rate is only achievable for non-square constructions.
For square constructions of orders n = 2a(2b+1), the maximum achievable
rate is Rmax = (a+1)

[2a(2b+1)] . For n = 8, i.e., a = 3 and b = 0, the maximum
achievable rate of square CO STBCs is only 1

2 .
The vague statement on the maximum achievable rate of CO STBCs in

Liang’s paper [148], which easily makes readers confused, has been pointed
out in [214, Remark 2.3.2.1]

A question that could be raised is why square CO STBCs are of particular
interest. It is because, square CO STBCs have a great advantage over non-
square CO STBCs that they require a much smaller length of the codes, i.e.,
much smaller processing delay, though, the maximum rate of the former may
be smaller than that of the later.

Let us consider CO STBCs for n = 8 Tx antennas as an example (also
see [214, Example 2.3.2.1]). The non-square CO STBC that achieves the
maximum rate 5/8 requires the length of 112 STSs as shown by Table 2.6
in [214, p.40]. The [112,8,70] CO STBC given in Appendix E in Liang’s paper
[55] is an example for this case. As opposed to non-square CO STBCs, square
CO STBCs only require the length of 8 STSs to achieve the maximum rate 1/2,
which is slightly smaller than the maximum rate of non-square CO STBCs.
Clearly, square CO STBCs require a much shorter length, especially for a
large number of Tx antennas, with the consequence of a slightly lower code
rate. For this reason, square CO STBCs are of our particular interest.

Apart from having the maximum rate, our proposed CO STBCs Z2 and
Z3, (see Figures 10.2 and 10.3) have fewer zero entries (compared to the
conventional codes) or even no zero entries in the code matrices. This property
results in a more uniform transmission power distribution between Tx antennas.
Intuitively, due to this property, our proposed CO STBCs require a lower
peak power per Tx antenna to achieve the same bit error performance as the
conventional CO STBCs containing numerous zeros. Equivalently, with the
same peak power at Tx antennas, our proposed codes provide a better bit
error performance than the conventional CO STBCs.

In addition, our codes are more amenable to practical implementation
than the conventional code, since, transmitter antennas are turned off less
frequently or even are not required to be turned off during transmission unlike
with the conventional codes.

10.8 Research Problem

Thus we have some methods for building amicable orthogonal designs over the
real and quaternion domain, e.g. the way to construct amicable orthogonal
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designs of quaternions (AODQ) by using Kronecker product with real ami-
cable orthogonal designs or real weighing matrices from an amicable family.

This construction ensures that, for any existing real amicable orthogo-
nal design generated by using the Kronecker product, we can easily find an
AODQ with same order and type. We also showed that if A and B forms a
pair of AODQ, then the combined design A+Bq for q ∈ {±i,±j,±k}is an
RQOD by carefully choosing q. Our newly constructed AODQs and RQODs,
especially those with no zero entries, could have applications as orthogonal
space-time-polarization block codes.

However, there are still some problems which need to be solved:

Problem 10.2 (Research Problem 5). Do there exist any new amicable
orthogonal designs of quaternions for which there are no such real or complex
designs.

Problem 10.3 (Research Problem 6). Determine the maximum number
of variables in an AODQ.

It is known that finding the maximum number of variables in an AOD
is equivalent to finding the number of members in a Hurwitz-Radon family
of corresponding type [80], which also implies that the so-called Clifford
algebras [29] have a matrix representation of the same order.

Problem 10.4 (Research Problem 7). How can we find a set of anti-
commuting real, complex and quaternion matrices representation to determine
the maximum number of variables in an AODQ.



Appendix A
Orthogonal Designs in Order 12, 24, 48
and 3.q

Description of Appendices A, B, C, D and E

In Appendices A, B, C, D, and E many times we give the first rows of circulant
matrices which can be used in the Goethals-Seidel array (Theorem 4.8) to
obtain orthogonal designs of the type described in orders 12, 20, 28, 36 and 44.
The results for smaller orders are largely complete but combinatorial explosion
makes computer searches for larger orders very time and space dependent.
We point the interested reader to the extensive website of relevant results
obtained by Koukouvinos [127].

A.1 Number of possible n-tuples

We note the following lemma from Georgiou, Koukouvinos, Mitrouli and
Seberry [70] which is useful in determining the size of programs to search for
orthogonal designs. The result is obtained by simple counting.

Lemma A.1. Let n = 4m be the order of an orthogonal design. Then the
number of cases (k-tuples, k = 2,3,4) which must be studied to determine
whether all orthogonal designs exist is

(i) 1
4n2 when 2−tuples are considered;

(ii) N , when 3-tuples are considered, where

(a) N = n
72 (2n2 +3n−6) if 1

4n ≡ 0 (mod 3);
(b) N = (n+2)

72 (2n2−n−4) if 1
4n ≡ 1 (mod 3);

(c) N = (n−2)
72 (2n2 +7n+8) if 1

4n ≡ 2 (mod 3).

(iii) N , when 4−tuples are considered, where

(a) N = 1
576 (n4 +6n3−2n2−24n) if 1

4n ≡ 0 (mod 3);

357© Springer International Publishing AG 2017
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(b) N = 1
576 (n4 +6n3−2n2−24n+64) if 1

4n ≡ 1 (mod 3);
(c) N = 1

576 (n4 +6n3−2n2−24n+64) if 1
4n ≡ 2 (mod 3).

In each of these appendices the format is the same; we first list all 4-tuples
which might be the type of an orthogonal design in that order (i. e. not
eliminated by any known theorem); this is then followed by a list of 3-tuples
which might be the type of an orthogonal design in that order and is not
already known to exist because it can be obtained from a known 4-tuple by
equating or killing variables. We continue in this fashion with 2-tuples. The
blank spaces indicate that we have not been able to construct or prove non-
existence of the orthogonal design in question.

These lists were compiled by computer programmes and the constructions
of the first rows for smaller orders of existence were done by hand.

We then proceed to give the state of the art for orders 2t.3,2t.5,2t.7,2t.9
and 2t.11 for small integers t. All care has been taken to present those known
in the literature in 2016 but some may have been overlooked and many are
not known.

This appendix is a summary for orthogonal designs in order 12,24,48,2t.3.

A.2 Some Theorems

Using Geramita and Seberry [80], Robinson [80, p.375] and Holzmann-
Kharaghani [100, p.111] we have
Lemma A.2. All full orthogonal designs OD(2t3;x,y,2t3−x−y) exist for
any positive integer t ≥ 3.

We give a brief glimpse of other great theorems which are known.
Lemma A.3 (Kharaghani [120]). OD(12(p+1);3,3,3,3,3p,3p,3p,3p) ex-
ist for all p ≡ 3 (mod 4).
Lemma A.4. The necessary conditions are sufficient for the existence of
orthogonal designs in order 12.
Lemma A.5 (Holzmann, Kharaghani and Plotkin [100, 101]).
An OD(24;3,3,3,3,3,3,3,3) exists.

A.3 Orthogonal Designs in Order 12

1. There are 12 possible 4 variable designs in order 12. Table A.1 lists first
rows to construct all possible 4-tuples for orthogonal design in order 12
using the Goethals-Seidel array.
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2. There are 31 possible 3 variable designs in order 12. Table A.2 gives those
not excluded by theory and all may be found from the 4 variable designs
by equating variables or setting variables zero.

3. All (s, t) where s+ t ≤ 12, 1 ≤ s ≤ t, (36 possible but 3 excluded leaves 33
possibilities) exist and may be found from 4 variable designs by equating
variables or setting variables zero. Those not possible are

(1,7) (4,7) (3,5) .

4. All 1 variable designs exist.

Table A.1 First rows to construct 4 variable designs in Order 12

Design A1 A2 A3 A4

(1, 1, 1, 1) a,0,0 b,0,0 c,0,0 d,0,0
(1, 1, 1, 4) a,0,0 b,0,0 c,d, d̄ 0,d,d

(1, 1, 1, 9) a,d, d̄ b,d, d̄ c,d, d̄ d,d,d

(1, 1, 2, 2) a,0,0 b,0,0 c,d,0 c, d̄,0
(1, 1, 2, 8) a,d, d̄ b,d, d̄ c,d,d c̄,d,d

(1, 1, 4, 4) a,c, c̄ 0, c,c b,d, d̄ 0,d,d

(1, 1, 5, 5) a,c, c̄ b,d, d̄ c,d,d d̄,c,c

(1, 2, 2, 4) a,d, d̄ 0,d,d b,c,0 b, c̄,0
(1, 2, 3, 6) a,d, d̄ c,d,d c, d̄, b c, b̄, d̄

(2, 2, 2, 2) a,b,0 a, b̄,0 c,d,0 c, d̄,0
(2, 2, 4, 4) a,c,d a, d̄, c̄ b,c, d̄ b, c̄,d

(3, 3, 3, 3) a,b,c b̄,a,d c̄, d̄,a d̄, c, b̄

Table A.2 Existing 3 variable designs in Order 12

(1,1,1) (1,1,10) (1,2,9) (1,5,6) (2,3,6)
(1,1,2) (1,2,2) (1,3,6) (2,2,2) (2,3,7)
(1,1,4) (1,2,3) (1,3,8) (2,2,4) (2,4,4)
(1,1,5) (1,2,4) (1,4,4) (2,2,5) (2,4,6)
(1,1,8) (1,2,6) (1,4,5) (2,2,8) (2,5,5)
(1,1,9) (1,2,8) (1,5,5) (2,3,4) (3,3,3)

(3,3,6)
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A.4 Orthogonal Designs in Order 24

This material is from Geramita and Seberry [80] and the more recent designs
from Holzmann and Kharaghani [100]. An orthogonal design in order 24 can
have at most 8 variables.

Lemma A.6. There exist orthogonal designs of types OD(24;1,1,2,4,4,8)
and OD(24;3,3,3,3,3,3,3,3).

Proof. We note that there is a (1,4) design in order 6 and so an (1,1,2,4,4,8)
design exists in order 24. The other design is in Section 4.13 and is the Plotkin
array of order 24.

Lemma A.7. There are orthogonal designs OD(24;1,1,1,1,1,5,5,9) and
OD(24;1,1,1,1,1,2,8,9).

Proof. Consider the following matrices, M1 and M2:

x5 x4x̄8x6x̄7 x7x6x8x8 x6x̄7x̄8x8 x̄7x̄6x̄8x̄8 x7x6x8x8
x̄4x8x̄6x̄7 x̄5 x6x7x8x8 x̄7x6x8x̄8 x̄7x6x8x̄8 x7x̄6x̄8x8
x̄7x̄6x̄8x8 x̄6x̄7x̄8x8 x7 x4x8x5x6 x̄8x8x7x7 x8x8x̄6x6
x̄6x7x8x8 x7x̄6x̄8x̄8 x̄4x̄8x̄5x6 x̄7 x8x̄8x6x6 x8x8x7x̄7
x7x6x8x̄8 x7x̄6x̄8x̄8 x8x̄8x̄7x7 x̄8x8x̄7x7 x6 x4x8x7x5
x̄7x̄6x̄8x8 x̄7x6x8x8 x̄8x̄8x6x6 x̄8x̄8x̄7x̄7 x̄4x̄8x̄7x5 x̄6

= M1

x5 x4x̄6x8x̄6 x8x8x7x7 x8x̄8x̄7x7 x̄8x̄7x̄8x̄7 x8x7x8x7
x̄4x6x̄8x̄6 x̄5 x8x8x7x7 x̄8x8x7x̄7 x8x̄7x̄8x7 x8x̄7x̄8x7
x̄8x̄8x̄7x7 x̄8x̄8x̄7x7 x7 x4x7x5x8 x̄7x7x8x8 x8x8x̄6x6
x̄8x8x7x7 x8x̄8x̄7x̄7 x̄4x̄7x̄5x8 x̄7 x8x̄8x6x6 x7x7x8x̄8
x8x7x8x̄7 x̄8x7x8x7 x7x̄7x̄8x8 x̄8x8x̄6x6 x7 x4x7x8x5
x̄8x̄7x̄8x7 x̄8x7x8x7 x̄8x̄8x6x6 x̄7x̄7x̄8x̄8 x̄4x7x8x5 x̄7

= M2

Let N1 and N2 be the matrices obtained from M1 and M2 by replacing the
diagonal entries, y, of M , by

x1 x2 x3 y
x2 x1 y x3
x3 y x1 x2
y x3 x2 x1

and the off diagonal block entries p q r s of Mi by

p q r s
q p̄ s r̄
r s p̄ q
s r̄ q p .

Then N1 and N2 give orthogonal designs
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OD(24;1,1,1,1,1,5,5,9) and OD(24;1,1,1,1,1,2,8,9)

respectively. Thus a OD(24 : 1,1,1,1,1,19) exists.

First rows to construct orthogonal designs of order 24 are given in Robinson
[80, p.375] , Holzmann and Kharaghani [100, p.113] and Geramita and Seberry
[80, p.376-377].

Table A.3 Existence of 8 variable orthogonal designs of order 24

(1,1,1,1,1,1,1,1) : 8 � (1,1,1,1,2,2,8,8) : 24 � (1,1,2,2,2,2,5,5) : 20
(1,1,1,1,1,1,1,4) : 11 � (1,1,1,1,2,3,4,6) : 19 (1,1,2,2,2,3,4,6) : 21
(1,1,1,1,1,1,1,9) : 16 (1,1,1,1,2,3,6,9) : 24 (1,1,2,2,2,4,4,8) : 24
(1,1,1,1,1,1,2,2) : 10 (1,1,1,1,2,4,4,8) : 22 (1,1,2,2,3,3,3,3) : 18
(1,1,1,1,1,1,2,8) : 16 (1,1,1,1,2,5,5,8) : 24 (1,1,2,2,3,3,6,6) : 24 �
(1,1,1,1,1,1,4,4) : 14 � (1,1,1,1,3,3,3,3) : 16 (1,1,2,2,4,4,4,4) : 22 �
(1,1,1,1,1,1,4,9) : 19 (1,1,1,1,3,3,6,6) : 22 (1,1,2,2,4,4,5,5) : 24
(1,1,1,1,1,1,5,5) : 16 (1,1,1,1,4,4,4,4) : 20 � (1,1,2,3,3,3,3,8) : 24
(1,1,1,1,1,1,8,8) : 22 (1,1,1,1,4,4,5,5) : 22 (1,1,3,3,3,3,4,4) : 22
(1,1,1,1,1,1,9,9) : 24 � (1,1,1,1,5,5,5,5) : 24 � (1,1,3,3,3,3,5,5) : 24
(1,1,1,1,1,2,2,4) : 13 (1,1,1,2,2,2,2,4) : 15 (1,2,2,2,2,2,2,4) : 17
(1,1,1,1,1,2,2,9) : 18 (1,1,1,2,2,2,2,9) : 20 (1,2,2,2,2,2,2,9) : 22
(1,1,1,1,1,2,3,6) : 16 (1,1,1,2,2,2,3,6) : 18 (1,2,2,2,2,2,3,6) : 20
(1,1,1,1,1,2,4,8) : 19 (1,1,1,2,2,2,4,8) : 21 (1,2,2,2,2,4,4,4) : 21
(1,1,1,1,1,2,8,9) : 24 � (1,1,1,2,2,3,6,8) : 24 (1,2,2,2,3,4,4,6) : 24
(1,1,1,1,1,3,6,8) : 22 (1,1,1,2,2,4,4,4) : 19 (1,2,2,3,3,3,3,4) : 21
(1,1,1,1,1,4,4,4) : 17 � (1,1,1,2,2,4,4,9) : 24 (1,2,3,3,3,3,3,6) : 24
(1,1,1,1,1,4,4,9) : 22 (1,1,1,2,2,4,5,5) : 21 (2,2,2,2,2,2,2,2) : 16 �
(1,1,1,1,1,4,5,5) : 19 (1,1,1,2,3,4,4,6) : 22 (2,2,2,2,2,2,2,8) : 22
(1,1,1,1,1,5,5,9) : 24 � (1,1,1,2,3,5,5,6) : 24 (2,2,2,2,2,2,4,4) : 20
(1,1,1,1,2,2,2,2) : 12 � (1,1,1,3,3,3,3,4) : 19 (2,2,2,2,2,2,5,5) : 22
(1,1,1,1,2,2,2,8) : 18 (1,1,1,3,3,3,3,9) : 24 (2,2,2,2,3,3,3,3) : 20
(1,1,1,1,2,2,4,4) : 16 (1,1,2,2,2,2,2,2) : 14 (2,2,2,2,4,4,4,4) : 24 �
(1,1,1,1,2,2,4,9) : 21 (1,1,2,2,2,2,2,8) : 20 (2,2,3,3,3,3,4,4) : 24
(1,1,1,1,2,2,5,5) : 18 (1,1,2,2,2,2,4,4) : 18 � (3,3,3,3,3,3,3,3) : 24 �

We now summarize the known results for order 24.

1. Table A.3 lists the 75 8-tuples which are not prohibited from being the
type of an orthogonal design in order 24 (the number after the type is the
sum of the type numbers). The programme which gave this was devised
by Roger Magoon while he was an undergraduate at Queen’s University.
A “�” indicates the design has been constructed.

2. Table A.4 show the OD(24 : s1 . . . ,s7) that exist (see Geramita and Seberry
[80, p.390] and use Table 3 from Holzmann and Kharaghani [100, p.109].

3. Table A.5 lists the 7-tuples cannot be the type of an orthogonal design in
order 24:
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Table A.4 Existence of 7 variable orthogonal designs of order 24

1,1,1,1,1,1,1 1,1,1,1,1,9,10 1,1,1,2,2,8,9 1,1,2,3,3,6,8
1,1,1,1,1,1,2 1,1,1,1,2,2,2 1,1,1,2,3,8,8 1,1,2,3,5,6,6
1,1,1,1,1,1,4 1,1,1,1,2,2,4 1,1,1,2,4,4,4 1,1,2,5,5,5,5
1,1,1,1,1,1,5 1,1,1,1,2,2,8 1,1,1,2,5,5,9 1,1,3,3,4,6,6
1,1,1,1,1,1,9 1,1,1,1,2,2,16 1,1,1,4,4,4,4 1,2,2,2,2,4,4
1,1,1,1,1,1,18 1,1,1,1,2,8,8 1,1,1,4,4,4,5 1,2,2,2,2,4,5
1,1,1,1,1,2,4 1,1,1,1,2,8,9 1,1,1,5,5,5,5 1,2,2,2,3,4,4
1,1,1,1,1,2,8 1,1,1,1,2,8,10 1,1,1,5,5,5,6 1,2,2,3,3,6,6
1,1,1,1,1,2,9 1,1,1,1,2,9,9 1,1,2,2,2,2,2 1,2,2,3,3,6,7
1,1,1,1,1,2,17 1,1,1,1,3,8,9 1,1,2,2,2,2,4 1,2,2,3,4,6,6
1,1,1,1,1,4,4 1,1,1,1,4,4,4 1,1,2,2,2,2,8 1,2,3,3,3,6,6
1,1,1,1,1,4,5 1,1,1,1,4,4,5 1,1,2,2,2,4,4 2,2,2,2,2,2,2
1,1,1,1,1,4,8 1,1,1,1,4,4,8 1,1,2,2,2,4,6 2,2,2,2,2,2,4
1,1,1,1,1,5,5 1,1,1,1,4,8,8 1,1,2,2,2,8,8 2,2,2,2,2,4,4
1,1,1,1,1,5,6 1,1,1,1,5,5,5 1,1,2,2,3,3,6 2,2,2,2,4,4,4
1,1,1,1,1,5,9 1,1,1,1,5,5,9 1,1,2,2,3,3,12 2,2,2,2,4,4,8
1,1,1,1,1,5,14 1,1,1,1,5,5,10 1,1,2,2,3,6,6 2,2,2,3,3,6,6
1,1,1,1,1,8,9 1,1,1,1,5,6,9 1,1,2,2,3,6,9 2,2,2,4,4,4,6
1,1,1,1,1,8,11 1,1,1,2,2,2,2 1,1,2,2,4,4,4 2,2,4,4,4,4,4
1,1,1,1,1,9,9 1,1,1,2,2,2,3 1,1,2,2,6,6,6 3,3,3,3,3,3,3

1,1,2,3,3,6,6 3,3,3,3,3,3,6

Table A.5 7 variable designs not orthogonal designs of order 24

1,1,1,1,1,a,7 a = 1,2, . . . ,12 1,1,1,1,1,3,4
1,1,1,1,1, b,15 b = 1,2,3,4 1,1,1,1,1,3,12
1,1,1,1,1,1,14 1,1,1,1,1,4,11
1,1,1,1,1,2,15 1,1,1,1,1,5,10
1,1,1,1,1,2,13 1,1,1,1,1,6,9

1,1,1,1,1,7,8

4. The following 6 tuples do not correspond to the type of an orthogonal
design.

1,1,1,1,1,7 1,1,1,1,1,15 2,2,2,2,2,14 .

5. Some 5 variable designs which have not been derived from 7,8,9 variable
designs are given in Wallis [238] and listed in Table A.6.
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Table A.6 5 variable designs in order 24 not derived from 7,8,9 variable
designs

1,2,6,6,9 1,4,5,6,6 1,3,5,6,9 1,3,4,5,9 1,2,5,5,8
1,2,4,5,10 1,2,5,5,9 1,2,3,5,13 1,2,2,3,16 1,2,2,8,8
1,2,5,6,10 2,2,5,5,8 1,2,3,4,12 1,2,2,8,11 1,2,2,4,13

1,1,4,4,5 1,2,2,5,14

6. The OD(24;1,1,2,2,3,3,6,6) of Table A.7 and the OD(24;4,4,5,11) of
Table A.8 are found using the results from Geramita and Seberry [80,
p.391], Robinson [80, p.375], Holzmann and Kharaghani [100, p.110-112].
Hence all full OD(24 : a,b,c,24−a− b− c), 0 ≤ a+ b+ c ≤ 24, exist.

7. ≤ 3 Variables: All OD(24 : a,b,c), OD(24 : a,b) and OD(24 : a) exist,
0 ≤ a ≤ b ≤ c ≤ 24.
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Table A.7 Holzmann-Kharaghani OD(24;1,1,2,2,3,3,6,6) a

a Holzmann and Kharaghani [100, p110] c©Elsevier
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Table A.8 Holzmann-Kharaghani OD(24;4,4,5,11) a

a Holzmann and Kharaghani [100, p112] c©Elsevier
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A.5 Orthogonal Designs in Order 48

There are 73056 possible 8-tuples, 58844 possible 7-tuples, 41024 possible 6-
tuples, 23532 possible 5-tuples, 10359 possible 4-tuples, 3164 possible 3-tuples,
and 575 possible 2-tuples, before theory is applied to eliminate cases, which
might give orthogonal designs in order 48.

We now summarize the known results for order 48. Using a wide variety
of construction techniques Holzmann-Kharaghani-Seberry-Tayef-Rezaie [104]
have made significant progress into surveying the existence of orthogonal
designs in order 48.

1. Theory tells us there are at most 9 variables. The 60 known 9 variable
designs listed in [104, p.13]are given in Table A.9.

2. There are 459 known 8 variable designs given in [104, p.14–17].
3. There are 20 known 7 variable designs given in [104, p.17].
4. There are 168 known 6 variable designs given in [104, p.18–19].
5. There are 24 known 5 variable designs given in [104, p.19].
6. This case does not appear to have been published.
7. All the 3-tuples, 2-tuples and 1-tuple are the type of orthogonal design.
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Table A.9 9-Variable designs in order 48 a

a Holzmann, Kharaghani, Seberry and Tayef-Rezaie [104, p321] c©Elsevier



Appendix B
Orthogonal Designs in Order 20, 40 and
80

B.1 Some Theorems

Lemma B.1. All 3-tuples (a,b,40−a− b) are the types of orthogonal designs
in order 40. Hence all 2-tuples (x,y) are the types of orthogonal designs in
order 40.

Lemma B.2. All triples (a,b,c) are types of orthogonal designs OD(40;a,b,c).

Lemma B.3. All full orthogonal designs OD(2t5;x,y,2t5−x−y) exist for
any positive integer t ≥ 3.

B.2 Orthogonal designs in Order 20

We now summarize the known results for order 20

1. Table B.1 gives all the 4 variable orthogonal designs known in order 20 and
the first rows that may be used in the Goethals-Seidel array to generate
them.

2. For the following 4-tuples it is undecided whether and orthogonal design
exists:

(1,3,6,8) (1,4,4,9) (2,2,5,5)

It is not possible to construct designs of these types using the Goethals-
Seidel array (Eades).
All other 4-tuples are not the types of orthogonal designs.

3. Of the possible 3-tuples Table B.2 lists the 97 that are the types of
orthogonal designs (all are constructed using four circulant matrices in
the Goethals-Seidel array)
It is undecided whether an orthogonal design exists for the 3-tuple (3,7,8).
It cannot be constructed using 4 circulant matrices in the Goethals-Seidel
array (Eades).

369© Springer International Publishing AG 2017
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All other 3-tuples are not the types of orthogonal designs.
4. Table B.3 lists the eighty-six (86) 2-tuples are the types of orthogonal

designs. All other 2-tuples correspond to non-existent designs. All those
that exist are constructed using four circulant matrices in the Goethals-
Seidel array.

5. All one variable designs exist in order 20.

B.3 Orthogonal designs in Order 40

We now summarize the known results for order 40.

1. It is a simple matter to find results in n-variables where 3 ≤ n ≤ 8 but
except for those listed below this has not been done.
Combining the results of Holzmann and Kharaghani [102] with those
of Geramita and Seberry [80, p.380] and Wallis [238], we have the full
orthogonal designs that exist in order 40 given in Table B.4.
The designs are constructed by using the matrices whose first rows are
given in Table B.5 in the (1,1,1,1,1,1,1,1) design in order 8; we use the
back-circulant matrix constructed from X1, and the circulant matrices
constructed from the other Xi, i = 2,3, . . . ,8. Note that (1,2,3,34) is
constructed from Lemma 4.20 (iii).

2. Holzmann, Kharaghani and Tayfeh-Rezaie [105] have used amicable sets
to show that the following 7- and 6-tuples are the types of orthogonal
designs in order 40:

1,1,2,2,17,17
1,1,1,2,9,26
2,2,2,2,2,2,8

They are not derivable from known 8- and 7-tuples which exist.
3. We shall not list the 8-tuples which are not prohibited from being the

type of orthogonal design in order 40 since Magoon’s programme yields
703 possibilities.

4. The seven variable designs remain to be studied.
5. The following 6-tuple is the type of an orthogonal design which exists in

order 40:
(1,2,2,2,16,17) .

6. The following 5-tuples correspond to orthogonal designs which exist in
order 40:

(1,1,1,4,20) (1,2,2,4,25) (1,4,8,8,16)
(1,1,8,8,9) (1,2,2,11,24) (1,8,8,8,8)
(1,2,6,9,20) (1,4,9,9,9) (1,2,2,2,33)

.
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Table B.1 Orthogonal designs of order 20

Design A1 A2 A3 A4

(1,1,1,1) a0000 b0000 c0000 d0000
(1,1,1,4) a0000 b0000 c0dd̄0 00dd0
(1,1,1,9) a0dd̄0 b0dd̄0 cd̄00d ddd00
(1,1,2,2) a0000 b0000 cd000 dc̄000
(1,1,2,8) a0dd̄0 b0dd̄0 c0dd0 c̄0dd0
(1,1,4,4) a0cc̄0 00cc0 b0dd̄0 00dd0
(1,1,4,9) a0dd̄0 b0dd̄0 0dccd̄ ddcc̄d
(1,1,5,5) a0cc̄0 b0dd̄0 c0dd0 d̄0cc0
(1,1,8,8) acdd̄c̄ bcd̄dc̄ 0cddc 0cd̄d̄c
(1,1,9,9) acdd̄c̄ bdc̄cd̄ c̄cccc d̄dddd
(1,2,2,4) a0dd̄0 00dd0 bc000 cb̄000
(1,2,2,9) ad00d̄ ddd00 bcdd̄0 cb̄0dd̄
(1,2,3,6) a0dd̄0 bc0d0 bc̄0d̄0 c0d̄d̄0
(1,2,4,8) a0dd̄0 bcddc̄ b0d̄d̄0 dd̄c0c
(1,2,8,9) adcc̄d̄ dddcc̄ cbdd̄c bc̄c̄dd̄
(1,3,6,8) if it exists it cannot be constructed from circulants
(1,4,4,4) a0bb̄0 00bb0 0cdd̄c 0cddc̄
(1,4,4,9) if it exists it cannot be constructed from circulants
(1,4,5,5) ad00d̄ d̄c00c cdbb̄d 0cbbc̄
(1,5,5,9) abcc̄b̄ c̄bdd̄b bdccd̄ d̄dddd
(2,2,2,2) ab000 bā000 cd000 dc̄000
(2,2,2,8) adbd̄0 ad̄b̄d0 c0d0d c0d̄0d̄
(2,2,4,4) ab000 bā000 0cdd̄c 0cddc̄
(2,2,4,9) abdd̄0 ab̄dd̄0 0dccd̄ ddcc̄d
(2,2,5,5) if it exists it cannot be constructed from circulants
(2,2,8,8) adcdc̄ ad̄c̄d̄c bcd̄cd bc̄dc̄d̄
(2,3,4,6) bda00 bdā00 b̄dcc̄d 0dccd̄
(2,3,6,9) bdcad̄ add̄b̄c̄ b̄dd̄cd ddc̄cd
(2,4,4,8) c0bdd c0bd̄d̄ bac̄dd̄ bāc̄d̄d
(2,5,5,8) cbdd̄b acddc̄ ābddbarb b̄cdd̄c
(3,3,3,3) abc00 ab̄0d0 a0c̄d̄0 bc̄d00
(3,3,6,6) 0dācb̄ 0dac̄b̄ bcddc̄ acdd̄c
(4,4,4,4) 0abb̄a 0abbā 0cdd̄c 0cddc̄
(4,4,5,5) dcaāc 0daad̄ 0cbbc̄ c̄dbb̄d
(5,5,5,5) abbdd̄ b̄aacc̄ dccāa c̄ddb̄b
(1,1,13) acc̄cc̄ 0cc̄c̄c̄ bc00c̄ 0ccc0
(1,2,17) acbarccc̄ bccc̄c̄ bc̄ccc cc̄c̄c̄c̄
(1,2,11) a0cc̄0 b0cc̄c̄ b0c̄cc 0c0cc
(1,3,14) acc̄cc̄ b̄ccc0 cccbc̄ ccc̄0b
(1,4,13) acc̄cc̄ 0cc̄c̄c̄ 0cbbc̄ bcccb̄
(1,6,11) acbb̄c̄ ccbbc̄ cb̄cc0 c0cc̄b
(1,8,11) acb̄bc̄ c̄cbbc̄ cb̄ccb cbcc̄b
(2,5,7) ccc̄0ā acbb̄0 bb0c0 cb̄0c0
(3,6,8) 0bcb̄c̄ 0bcac abc̄0c̄ ab̄cb̄c̄
(3,7,8) not yet decided
(7,10) 0aab̄b̄ baaāa 0aaāb b0bb̄a
(9) āaaaa 0aāāa
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Table B.2 Known 3 variable designs in order 20

(1,1,1) (1,2,6) (1,4,13) (2,2,5) (2,4,8) (2,9,9) (4,4,9)
(1,1,2) (1,2,8) (1,5,5) (2,2,8) (2,4,9) (3,3,3) (4,4,10)
(1,1,4) (1,2,9) (1,5,6) (2,2,9) (2,4,11) (3,3,6) (4,5,5)
(1,1,5) (1,2,11) (1,5,9) (2,2,10) (2,4,12) (3,3,12) (4,5,6)
(1,1,8) (1,2,12) (1,5,14) (2,2,13) (2,5,5) (3,4,6) (4,5,9)
(1,1,9) (1,2,17) (1,6,8) (2,2,16) (2,5,7) (3,4,8) (4,6,8)
(1,1,10) (1,3,6) (1,6,11) (2,3,4) (2,5,8) (3,6,6) (4,8,8)
(1,1,13) (1,3,8) (1,8,8) (2,3,6) (2,5,13) (3,6,8) (5,5,5)
(1,1,16) (1,3,14) (1,8,9) (2,3,7) (2,6,7) (3,6,9) (5,5,8)
(1,1,18) (1,4,4) (1,8,11) (2,3,9) (2,6,9) (3,6,11) (5,5,9)
(1,2,2) (1,4,5) (1,9,9) (2,3,10) (2,6,12) (3,8,9) (5,5,10)
(1,2,3) (1,4,8) (1,9,10) (2,3,15) (2,8,8) (4,4,4) (5,6,9)
(1,2,4) (1,4,9) (2,2,2) (2,4,4) (2,8,9) (4,4,5) (5,7,8)

(1,4,10) (2,2,4) (2,4,6) (2,8,10) (4,4,8) (6,6,6)

Table B.3 Known 2 variable designs in order 20

(1,1) (1,14) (2,9) (3,7) (4,8) (5,9) (7,8)
(1,2) (1,16) (2,10) (3,8) (4,9) (5,10) (7,10)
(1,3) (1,17) (2,11) (3,9) (4,10) (5,13) (7,11)
(1,4) (1,18) (2,12) (3,10) (4,11) (5,14) (7,13)
(1,5) (1,19) (2,13) (3,11) (4,12) (5,15) (8,8)
(1,6) (2,2) (2,15) (3,12) (4,13) (6,6) (8,9)
(1,8) (2,3) (2,16) (3,14) (4,14) (6,7) (8,10)
(1,9) (2,4) (2,17) (3,15) (4,16) (6,8) (8,11)
(1,10) (2,5) (2,18) (3,17) (5,5) (6,9) (8,12)
(1,11) (2,6) (3,3) (4,4) (5,6) (6,11) (9,9)
(1,12) (2,7) (3,4) (4,5) (5,7) (6,12) (9,10)
(1,13) (2,8) (3,6) (4,6) (5,8) (6,14) (9,11)

(7,7) (10,10)

7. The following 4-tuples correspond to orthogonal designs which exist in
order 40:

(1,1,15,23) (1,2,16,19) (1,10,14,15) (2,8,12,18)
(1,2,3,34) (1,8,12,19) (2,2,5,31) (2,10,10,13)
(1,2,10,27) (1,9,13,15) (2,2,14,22) (5,8,12,15)
(1,2,12,25) (1,10,10,17) (2,4,11,16) (5,9,9,15)
(1,2,14,23) (1,10,10,19) (2,4,13,21) (8,10,10,12)

.

8. Holzmann, Kharaghani, Tayfeh-Rezaie [105] give all 1841 possible 3 vari-
able designs. Hence all 2 and 1 variable designs exist.
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9. Koukouvinos and Seberry [129] give the following 3-variable designs con-
structed using NPAF sequences in the Goethals-Seidel array

(2,2,34) (2,4,32) (2,12,22) .

10. Many other orthogonal designs of orders 40 and 80 are given in [102].

Table B.4 The full orthogonal designs that exist in order 40

(1,2,2,2,16,17); (1,2,10,27); (1,1,10,10,18);
(1,10,14,15); (2,4,13,21); (1,2,14,23);
(2,2,14,22); (2,2,5,31); (1,1,1,1,9,9,9,9);
(1,2,3,34); (1,2,2,11,24); (2,2,2,2,8,8,8,8);
(1,8,12,19); (1,2,12,25); (2,2,5,5,5,5,8,8);
(5,8,12,15); (1,10,10,19) (5,5,5,5,5,5,5,5)



374 B Orthogonal Designs in Order 20, 40 and 80

Table B.5 First rows - circulant matrices OD(40;s1,s2,s3,s4,s5,s6,s7,s8),
∑8

i=1 si ≤
40

Design X1 X2 X3 X4 X5 X6 X7 X8

(1,2,2,2,16,17) faaāā aāaaā ebb̄b̄b ēbb̄b̄b dab̄b̄a d̄ab̄b̄a cbaab c̄baab

(1,10,14,15) dbbb̄b̄ b̄bb̄b̄b babba aab̄b̄a bāaaā caāāa ācc̄c̄c c̄cccc

(2,2,14,22) cbb̄b̄b c̄bb̄b̄b daāāa d̄aāāa āaaaa babba aab̄b̄a bāaaā

(1,2,3,34) cbb̄bb̄ abbb̄b̄ abbb̄b̄ abbb̄b̄ bb̄bbb̄ bb̄bbb̄ dbbbb d̄bbbb

(1,8,12,19) abbb̄b̄ bb̄bbb̄ c̄dccd dd̄ccd̄ dcc̄c̄c d̄dddd b̄bbbb b̄bbbb

(5,8,12,15) abaāb bb̄aab̄ c̄dccd dd̄ccd̄ dcc̄c̄c d̄dddd āaaaa aaāāa

(1,2,10,27) dbbb̄b̄ abb̄b̄b ābb̄b̄b bcc̄c̄c c̄bb̄b̄b c̄cccc bb̄bbb̄ bbbbb

(2,4,13,21) āabbā bābbā c̄baab cabba cbb̄b̄b cāaaā dbb̄b̄b dbb̄b̄b

(2,2,5,31) aabbā bab̄b̄a bb̄bbb̄ cbb̄b̄b c̄bb̄b̄b ebb̄b̄b ēbb̄b̄b bbbbb

(1,2,2,11,24) addd̄d̄ beēēe b̄eēēe ceēēe c̄eēēe d̄eeee dd̄eed̄ dedde

(1,2,12,25) addd̄d̄ ccc̄c̄c d̄dd̄d̄d c̄dddd cc̄ddc̄ cdccd bdd̄d̄d b̄dd̄d̄d

(1,10,10,19) addd̄d̄ d̄dddd d̄dddd dd̄ddd̄ bcc̄c̄c c̄bb̄b̄b b̄bbbb c̄cccc

(1,2,14,23) bddd̄d̄ ācc̄c̄c acc̄c̄c d̄dd̄d̄d d̄dddd ddc̄c̄d cdccd c̄dd̄d̄d

(2,10,10,13) add̄d̄d ad̄ddd̄ d0dd0 00dd0 cbb̄b̄b b̄cc̄c̄c b̄bbbb c̄cccc

(5,9,9,15) adaād dd̄aad̄ d̄dddd ddd̄d̄d 0bb̄b̄b b̄bbbb 0cc̄c̄c c̄cccc

(1,2,6,9,20) aēcc̄e 0ēccē ceēēe ceeee beēēe b̄eēēe 0dd̄d̄d d̄dddd

(1,2,16,19) addd̄d̄ d̄dddd d̄dddd dd̄ddd̄ bcc̄c̄c bc̄ccc̄ 0cc̄c̄c 0cccc

(1,2,2,4,25) a0dd̄0 00dd0 beēēe b̄eēēe ceēēe c̄eēēe 0eeee ēeeee

(1,4,9,9,9) a0bb̄0 00bb0 0cc̄c̄c c̄cccc 0dd̄d̄d d̄dddd 0eēēe ēeeee

(2,8,25) bcbbc̄ bcbbc̄ b̄cbbc b̄c̄bbc̄ bb̄00b̄ 0b00b abb̄b̄b ābb̄b̄b

(1,10,10,17) addd̄d̄ dd̄ddd̄ 0dddd 0dd̄d̄d bcc̄c̄c c̄bb̄b̄b b̄bbbb c̄cccc

(2,4,11,16) cc̄bb̄c̄ 00bb0 c0cc0 ccc̄c̄c add̄d̄d ādd̄d̄d 0dd̄d̄d 0dddd

(1,4,8,8,16) acdd̄c̄ 0cd̄dc̄ 0ceēc̄ 0cēec̄ b̄cddc b̄cd̄d̄c bceec bcēēc

(1,8,8,8,8) abcc̄b̄ 0bc̄cb̄ 0deēd̄ 0dēed̄ 0bccb 0bc̄c̄b 0deed 0dēēd

(1,1,1,4,20) ae00ē b0000 c0000 0e00e d̄dddd d̄dddd d̄dd̄d̄d ddd̄d̄d

(1,1,8,8,9) a0000 b0000 0ccc̄c 0cccc̄ ēeeee 0eēēe 0ddd̄d 0dddd̄
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B.4 Order 80

We now summarize the known results for order 80.

1. Some results given here are from from Cooper and Seberry [33]. Theory
tells us there are at most 9 variables.

2. Table B.6 lists many known orthogonal designs that exist in order 80.
3. The designs cited in Table B.7 should be used in designs in order 16 as

follows:

• for 1)–5) use the (1,1,2,2,2,2,3,3) design found in Section 6.1.1;
• for 6)–20) use the (1,1,1,1,1,2,3,3,3) design found in Example 6.4.

In all cases the first row of the circulant matrix is given, if the first row
does not give a circulant symmetric matrix the back circulant matrix
should be used.

4. The following 6-tuples are the types of orthogonal designs in order 80:

(1,1,1,1,9,10) (1,1,3,3,10,27)
(2,2,3,6,32,35) (1,1,3,3,9,30) .

.

5. The following 5-tuples are the types of orthogonal designs in order 80:

(1,1,6,16,43) (1,4,6,19,50) (1,4,6,34,35)
(2,3,4,18,53) (2,3,4,35,36) (2,3,12,28,35)
(2,3,14,26,35) (2,3,16,24,35) (2,3,20,20,35)
(1,1,10, c,d) (1,1,10,3c,3d) (3,3,30, c,d)
(c,d) ∈ N = {(8,12),(10,10),(2,13),(2,16),(2,18),(1,11),(9,9)}
(1,1,9,a,b) (1,1,9,3a,3b) (3,3,27,a,b)
(a,b) ∈ N or (a,b) ∈ M = {(4,11),(1,19),(1,17),(1,14),(5,15)}.

.

6. The following 4-tuples are the types of orthogonal designs in order 80:

(1,2,18,59) (1,6,15,58)
(1,2,28,45) (1,6,28,43) (1,6,29,44)
(a,b,c,d) (a,b,3c,3d) (3a,3b,c,d)
where (a,b) ∈ M,(c,d) ∈ N or (a,b) ∈ N,(c,d) ∈ M

⋃
N.

(4,6,11,54) (4,11,24,36) (4,11,30,30) .

.

7. All 3-tuples (a,b,80−a− b) are the types of orthogonal designs except
possibly
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(3,13,64) (7,22,51) (12,27,41)
(3,15,62) (7,25,48) (12,29,39)
(3,21,56) (7,28,45) (13,23,44)
(5,11,64) (8,29,43) (14,19,47)
(5,17,58) (9,14,57) (14,27,39)
(5,31,44) (9,15,56) (16,21,43)
(6,9,65) (9,16,55) (16,23,41)
(6,31,43) (9,28,43) (16,25,39)
(7,8,65) (10,29,41) (18,23,39)
(7,9,64) (11,14,55) (19,28,33)
(7,12,61) (11,16,53) (21,22,37)
(7,16,57) (11,25,44)

which are undecided.
8. All 2-tuples are the types of orthogonal designs except possibly

(13,64) (15,62) .

9. All one variable designs exist.

Remark B.1 (Research Problem 1). As yet no publication has appeared
matching the known OD’s in orders 40 and 80 against the existence conditions.

Table B.6 Known orthogonal designs in order 80 a

1) (1,4,6,19,50) 8) (1,6,28,43) 15) (1,1,6,16,43)
2) (1,4,6,34,35) 9) (1,2,18,59) 16) (2,3,14,26,35)
3) (2,3,16,24,35) 10) (3,10,10,57) 17) (2,2,3,6,32,35)
4) (2,3,4,35,36) 11) (1,14,65) 18) (4,6,11,54)
5) (2,3,20,20,35) 12) (1,6,15,58) 19) (4,11,24,36)
6) (2,3,4,18,53) 13) (1,2,28,45) 20) (4,11,30,30)
7) (2,3,12,28,35) 14) (1,6,29,44)

a Cooper and Wallis [33, p270-271] c© Charles Babbage Research Centre
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ēb
bb

b
cd

d̄
d̄
d

c̄d
d̄
d̄
d

d̄
d
d
d
d

d̄
d
d
d
d

a
bb

b̄b̄
bb̄

bb
b̄

(2
,3

,2
0,

20
,3

5)
eb

bb
b

ēb
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ā
bb̄

b̄b
b̄b

bb
b

d
cc̄

c̄c
d̄
cc̄

c̄c
cc

cc
c

ec
cc̄

c̄
cc̄

cc
c̄

(2
,3

,1
2,

28
,3

5)
eb

bb
b

ēb
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ā
a

d
ā
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ā
a
a
a
a

(1
,2

,2
8,

45
)

ca
a
ā
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Appendix C
Orthogonal Designs in Order 28 and 56

This appendix is a summary for orthogonal designs in order 28 and 56.

C.1 Some Theorems

We first note from Koukouvinos-Seberry [135, p.2] that

Lemma C.1. The necessary conditions are sufficient for the existence of
three variable OD(28;a,b,c)

From [66] we have

Lemma C.2. All 261 possible full orthogonal designs in order 56 in three
variables exist except for (a,b,c) = (1,5,20).

Hence we have

Corollary C.1. All full orthogonal designs OD(2t7;x,y,2t7−x−y) exist for
any t ≥ 3.

Many more results are given in Geramita-Seberry [80], Georgiou-Holzmann-
Kharaghani-Tayfeh-Rezaie [66], and Georgiou-Koukouvinos-Seberry [71].

C.2 Orthogonal designs in Order 28

We summarize the known results for order 28.

1. There are at most 4 variables in order 28.
2. Table C.1 lists the first rows of 4-tuples, 3-tuples and 2-tuples that are the

types of orthogonal designs in order 28 via the Goethals-Seidel designs.
3. The known 4 variables are given in Table C.1.

379© Springer International Publishing AG 2017
J. Seberry, Orthogonal Designs,
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4. The OD(14;9,4) from [80, p.331] is given in Figure C.1, hence we have
an OD(28;4,4,9,9).

5. There are orthogonal designs of types (1,9), (2,2), (2,8), (5,5) and (13)
each constructed from two circulant matrices in order 14. Hence there are
orthogonal designs of types:

(1,9,13) (2,2,13) (2,8,13) (5,5,13)

in order 28.
6. The 236 3-tuples given in Table C.2 are possible types of orthogonal

designs in order 28. There are no cases unresolved. We use
n if they are made from 4-sequences with zero NPAF and length n;
P if they are made from 4-sequences with zero PAF;
F if they are made from the OD(28;4,4,9,9);
X if they are not known because the integer sum-fill matrix does not
exist;
Y if it does not exist by exhaustive search for length 7.

7. The sequences in Tables C.3 and C.4, which have zero periodic and
non-periodic autocorrelation function, used as the first rows of the corre-
sponding circulant matrices in the Goethals-Seidel array give orthogonal
designs OD(4n;s1,s2,s3), where (s1,s2,s3) is one of the 3-tuples.

8. There are 196 pairs (j,k) such that j +k ≤ 28. Of these, 27 are eliminated
as types of orthogonal designs by Wolfe’s Theorem and the Geramita-
Verner Theorem. The remaining 169 pairs are the types of an orthogonal
design in order 28 and may be constructed using four circulant matrices.

9. The 27 2-tuples that cannot be the types of orthogonal designs in order
28 are:

(1,7) (3,5) (4,7) (5,12) (7,9) (8,14) (11,16)
(1,15) (3,13) (4,15) (5,19) (7,16) (9,15) (12,13)
(1,23) (3,20) (4,23) (5,22) (7,17) (10,17) (12,15) .

(2,14) (3,21) (5,11) (6,10) (7,20) (11,13)

10. A11 one variable designs exist in order 28.

Table C.1: Order 28 designs

Design A1 A2 A3 A4

(1,1,1,1) a000000 b000000 c000000 d000000
(1,1,1,4) a000000 b000000 dcd̄0000 d0d0000
(1,1,1,9) dad̄0000 dbd̄0000 d0c0d̄00 d0d0d00
(1,1,1,16) addd̄dd̄d̄ b0d00d̄0 c0d00d̄0 0ddd̄ddd

(1,1,1,25) addd̄dd̄d̄ bddd̄dd̄d̄ cddd̄dd̄d̄ d̄dddddd

(1,1,2,2) a000000 b000000 cd00000 cd̄00000
Continued on Next Page. . .
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Table C.1 – Continued

Design A1 A2 A3 A4

(1,1,2,8) dad̄0000 dbd̄0000 dcd0000 dc̄d0000
(1,1,2,18) abbb̄bb̄b̄ cbbb̄bb̄b̄ dbb0b00 d̄bb0b00
(1,1,4,4) a000000 b000000 ccdd̄000 ddc̄c000
(1,1,4,9) addd̄dd̄d̄ 0dd0d00 b00cc̄00 000cc00
(1,1,4,16) b0b0b0b b0bab̄0b̄ bcb̄0b̄cb bcb̄dbc̄b̄

(1,1,5,5) a000000 b000000 ccc̄d0d0 ddd̄c̄0c̄0
(1,1,8,8) cdad̄c̄00 c̄dbd̄c00 cd0dc00 cd̄0d̄c00
(1,1,8,18) ābbabaa abbābāā cbbb̄bb̄b̄ dbbb̄bb̄b̄

(1,1,9,9) accc̄cc̄c̄ 0cc0c00 bddd̄dd̄d̄ 0dd0d00
(1,1,10,10) daaāaāā cbbb̄bb̄b̄ ābb0b00 baa0a00
(1,1,13,13) ābbabaa b̄āābābb caaāaāā dbbb̄bb̄b̄

(1,2,2,4) bab̄0000 b0b0000 cd00000 cd̄00000
(1,2,2,9) addd̄dd̄d̄ 0dd0d00 bc00000 bc̄00000
(1,2,2,16) addd̄dd̄d̄ b0dc0d̄0 b0dc̄0d̄0 0ddd̄ddd

(1,2,3,6) abc0000 abc̄0000 bāb0000 bdb̄0000
(1,2,4,8) cac̄0000 c0c0000 dbd̄d0d0 dbd̄d̄0d̄0
(1,2,4,18)
(1,2,6,12)
(1,2,8,9) addd̄dd̄d̄ 0dd0d00 b̄bbcb00 b̄bbc̄b00
(1,3,6,8) c̄cc0cab cc̄c̄0c̄ab bāb0000 bdb̄0000
(1,3,6,18)
(1,4,4,4) bab̄0000 b0b0000 ccdd̄000 ddc̄c000
(1,4,4,9) addd̄dd̄d̄ 0dd0d00 ccbb̄000 bbc̄c000
(1,4,4,16)
(1,4,5,5) bab̄0000 b0b0000 ccc̄d0d0 ddd̄c̄0c̄0
(1,4,8,8)
(1,4,9,9)
(1,4,10,10)
(1,5,5,9) addd̄dd̄d̄ 0dd0d00 bbb̄c0c0 ccc̄b̄0b̄0
(1,8,8,9)
(1,9,9,9)
(2,2,2,2) ab00000 ab̄00000 cd00000 cd̄00000
(2,2,2,8) ab00000 ab̄00000 cdc̄c0c0 cdc̄c̄0c̄0
(2,2,2,18) add̄0bdd̄ add̄0b̄dd̄ cddddd̄0 c̄ddddd̄0
(2,2,4,9)
(2,2,4,16) abāaca0 abāac̄a0 abāādā0 abāād̄ā0
(2,2,5,5) ab00000 ab̄00000 ccc̄d0d0 ddd̄c̄0c̄0
(2,2,8,8) abāa0a0 abāā0ā0 cdc̄c0c0 cdc̄c̄0c̄0
(2,2,9,9) dbd̄cac̄0 dbd̄c̄āc0 dc0cd̄c0 c̄d0dcd0
(2,2,10,10) ccc̄dad0 ccc̄dād0 ddd̄c̄bc̄0 ddd̄c̄b̄c̄0
Continued on Next Page. . .
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Table C.1 – Continued

Design A1 A2 A3 A4

(2,3,4,6) ad0d̄a00 adcdā00 bcd̄0000 b̄cd̄0000
(2,3,6,9)
(2,4,4,8) abāa0a0 abāā0ā0 ccdd̄000 ddc̄c000
(2,4,4,18)
(2,4,6,12) abcabc̄0 abcāb̄c0 bābbdb̄0 bābb̄d̄b0
(2,4,8,9)
(2,5,5,8) adāa0a0 adāā0ā0 ccc̄b0b0 bbb̄c̄0c̄0
(2,8,8,8) aabb̄cdc̄ aabb̄c̄d̄c aābbc0c aābbc̄0c̄
(2,8,9,9)
(3,3,3,3) abc̄0000 ab̄0d000 a0cd̄000 bcd0000
(3,3,3,12) c̄cc0cab cc̄c̄dc̄a0 cc̄c̄d̄c̄0b 000d̄0ab̄

(3,3,6,6) adbd̄a00 adcdā00 cd̄a0b̄00 cd̄ā0b00
(3,4,6,8) c̄cc0cab cc̄c̄0c̄ab db0b̄d00 d̄bābd00
(3,6,8,9)
(4,4,4,4) abcd000 ab̄cd̄000 abc̄d̄000 ab̄c̄d000
(4,4,4,9)
(4,4,4,16) cdc̄cacb cdc̄cācb̄ cdc̄c̄ac̄b̄ cdc̄c̄āc̄b

(4,4,5,5) aabb̄000 bbāa000 c0cddd̄0 d0dc̄c̄c0
(4,4,8,8) aabb̄cd0 aabb̄c̄d̄0 aābbcd̄0 aābbc̄d0
(4,4,9,9) known but not constructed from circulants
(4,4,10,10) bcacddd̄ bc̄ac̄d̄d̄d bdādc̄c̄c bd̄ād̄ccc̄
(4,5,5,9)
(5,5,5,5) aaāb0b0 b̄b̄ba0a0 c̄c̄cd̄0d̄0 d̄d̄dc0c0
(5,5,8,8)
(5,5,9,9)
(6,6,6,6) aabb̄cd0 b̄b̄aādc̄0 c̄c̄d̄dab0 d̄d̄cc̄b̄a0
(7,7,7,7) aaābcbd b̄b̄badac̄ c̄c̄cd̄ad̄b d̄d̄dcb̄ca

(1,2,22) ab0bbbb̄ ab̄0b̄b̄b̄b 0b̄bb̄bbb cbbb̄bb̄b̄
(1,3,24) acc̄cc̄cc̄ bcc̄c̄c̄c̄c̄ bc̄c̄cccc bc̄ccc̄cc

(1,4,20) abbb̄bb̄b̄ cc̄bbbb0 0bbb̄b̄bb c0b̄bb̄bc

(1,6,12) bb̄b̄0b̄aa b̄bb0ba0 b̄bb0b0a c00aā00
(1,6,18) caabb̄āā b̄b̄aāāa0 aaaāab0 aaāab̄a0
(1,6,21) cbb̄bb̄bb̄ abbbbb̄b̄ aābbābb aabb̄b̄bb

(1,9,13) abbb̄bb̄b̄ 0bb0b00 0cc̄ccc̄c cccc̄c̄cc

(1,10,14) cb̄b̄bb̄bb 0b̄aaaāa 0bābaba 0bbab̄āb

(2,2,13) ab00000 ab̄00000 0cc̄ccc̄c cccc̄c̄cc

(2,7,19) caaaābā c̄abaāaā bb̄aab̄aa bbaāāaa

(2,8,13) b̄bbcb00 b̄bbc̄b00 0aāaaāa aaaāāaa

(4,4,18) ab̄c̄b̄b̄bb̄ abc̄bbb̄b ab̄b̄bbc0 abbb̄b̄c0
(5,5,13) aaāb0b0 bbb̄ā0ā0 0cc̄ccc̄c cccc̄c̄cc
Continued on Next Page. . .
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Table C.1 – Continued

Design A1 A2 A3 A4

(3,23) ā0bbbb̄b ab̄bbbb̄b abbb̄bb̄0 bbbbbb̄b̄

(4,19) bb0a0ā0 bb̄aāaāa 0aa0āaa aaaaaāā

(5,21) bāabb̄aa bbaāāaā aaāāāa0 aaaaāa0
(5,23) aaāb̄bbb ābābb̄bb̄ bbbbbb̄b̄ bbbb̄bbb̄

(6,17) bb̄aaaaā bbaaāā0 baāaaāa b0ā000ā

(6,20) babaā0a bab̄a0āā baaāāaā bāāāāaā

(7,10) a00b000 bāa00a0 a0b̄bb0b b̄bb0bāā

(7,15) babab̄0a bā0b000 bāaā0aa bāāāaaā

(8,17) aāaāāa0 aabbbb̄0 bāāāb0a baaāaab

(9,16) bbbabāb̄ baaab̄a0 bb̄0aaāā aāaāāa0
(9,17) aāaāāa0 aaāb̄āāb aab̄baa0 abābbbb̄

(11,12) aāaa000 b̄aaaāāa ababbb̄b̄ bbb̄b0b0
(11,15) bbb̄b0bā bbb̄b̄0b̄ā baaāāaa aaaaāaā

(11,17) bb̄bbbaā bb̄b̄b̄bāā baāāāāa aaaāaaā

(12,14) bābbb̄aā bababb̄a bbāāa0ā aabāb̄ā0

Fig. C.1 Orthogonal design OD(14;9,4)
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Table C.2 Known 3-variable designs in order 28a

(1,1,1) 1
(1,1,2) 1
(1,1,4) 2
(1,1,5) 3
(1,1,8) 3
(1,1,9) 7
(1,1,10) 3
(1,1,13) 5
(1,1,16) 7
(1,1,17)∗ P
(1,1,18) 6
(1,1,20) 6
(1,1,25) P
(1,1,26) P
(1,2,2) 2
(1,2,3) 2
(1,2,4) 2
(1,2,6) 3
(1,2,8) 3
(1,2,9) 3
(1,2,11) 5
(1,2,12) 5
(1,2,16) 7
(1,2,17) 5
(1,2,18) 6
(1,2,19) 6
(1,2,22) 7
(1,2,25) P
(1,3,6) 3
(1,3,8) 3
(1,3,14) 6
(1,3,18) 6
(1,3,22) X
(1,3,24) 7
(1,4,4) 5
(1,4,5) 5
(1,4,8) 5
(1,4,9) 5
(1,4,10) 5
(1,4,13) 7
(1,4,16) 7
(1,4,17) 7
(1,4,18) 7
(1,4,20) 7
(1,5,5) 3
(1,5,6) 3
(1,5,9) 5
(1,5,14) 5

(1,5,16) 7
(1,5,19) X
(1,5,20) Y
(1,6,8) 5
(1,6,11) 5
(1,6,12) 7
(1,6,14) 7
(1,6,18) 7
(1,6,21) 7
(1,8,8) 7
(1,8,9) 5
(1,8,11) 5
(1,8,12) 7
(1,8,16) 7
(1,8,17) P
(1,8,18) P
(1,8,19) P
(1,9,9) 7
(1,9,10) 5
(1,9,13)∗ P
(1,9,16) 7
(1,9,18) 7
(1,10,10) 7
(1,10,11) 7
(1,10,14) P
(1,13,13) P
(1,13,14) P
(2,2,2) 2
(2,2,4) 2
(2,2,5) 3
(2,2,8) 3
(2,2,9) 5
(2,2,10) 5
(2,2,13) 5
(2,2,16) 7
(2,2,17) 7
(2,2,18) 6
(2,2,20) 7
(2,3,4) 3
(2,3,6) 3
(2,3,7) 3
(2,3,9) 5
(2,3,10) 7
(2,3,15) 7
(2,3,16) 7
(2,4,4) 3
(2,4,6) 3

(2,4,8) 5
(2,4,9) 5
(2,4,11) 5
(2,4,12) 7
(2,4,16) 7
(2,4,17) 7
(2,4,18) 7
(2,4,19) 7
(2,4,22) P
(2,5,5) 3
(2,5,7) 5
(2,5,8) 5
(2,5,13) 6
(2,5,15) X
(2,5,18) 7
(2,6,7) 5
(2,6,9) 5
(2,6,11) X
(2,6,12) 6
(2,6,13) 7
(2,6,16) 7
(2,6,17) X
(2,7,10) 7
(2,7,12) 7
(2,7,13) 7
(2,7,19) P
(2,8,8) 5
(2,8,9) 5
(2,8,10) 5
(2,8,13) 7
(2,8,16) 7
(2,8,18) 7
(2,9,9) 5
(2,9,11) 6
(2,9,12) 7
(2,9,17) P
(2,10,10) 6
(2,10,12) 6
(2,11,11) X
(2,11,13) X
(2,11,15) X
(2,13,13) P
(3,3,3) 3
(3,3,6) 3
(3,3,12) 7
(3,3,15) 7
(3,4,6) 5

(3,4,8) 5
(3,4,14)∗ P
(3,4,18) 7
(3,6,6) 5
(3,6,8) 5
(3,6,9) 5
(3,6,11) 5
(3,6,12) 7
(3,6,16)† 7
(3,6,17) P
(3,6,18) 7
(3,6,19) 7
(3,7,8) 6
(3,7,10) X
(3,7,11) 7
(3,7,15) P
(3,7,18) 7
(3,8,9) 7
(3,8,10)∗ P
(3,8,15)† 7
(3,9,14) 7
(3,10,15) P
(3,11,14) X
(4,4,4) 3
(4,4,5) 5
(4,4,8) 7
(4,4,9) 5
(4,4,10) 5
(4,4,13) 7
(4,4,16) 7
(4,4,17) 7
(4,4,18) P
(4,4,20) 7
(4,5,5) 5
(4,5,6) 5
(4,5,9) 5
(4,5,14)∗ P
(4,5,16) 7
(4,5,19) X
(4,6,8) 5
(4,6,11)† 7
(4,6,12) 7
(4,6,14) 7
(4,6,18) 7
(4,8,8) 7
(4,8,9) 7
(4,8,11) 7

(4,8,12) 7
(4,8,16) 7
(4,9,9) 6
(4,9,10) 7
(4,9,13)† 7
(4,10,10) 7
(4,10,11) P
(4,10,14) 7
(5,5,5) 7
(5,5,8) 7
(5,5,9) 5
(5,5,10) 5
(5,5,13) P
(5,5,16) 7
(5,5,18) P
(5,6,9) 7
(5,6,14) X
(5,6,15) X
(5,7,8) 7
(5,7,10) X
(5,7,14) X
(5,8,8) 7
(5,8,13) 7
(5,9,9)∗ P
(5,9,10)∗ P
(5,9,14) P
(5,10,10) 7
(6,6,6) 7
(6,6,12) 7
(6,7,8) P
(6,8,9) 7
(6,8,11) X
(6,8,12) P
(6,9,11) P
(7,7,7) 7
(7,7,14) 7
(7,8,10) P
(7,8,13) 7
(7,10,11) X
(8,8,8) 7
(8,8,9)† 7
(8,8,10) 7
(8,9,9)† 7
(8,9,11) P
(8,10,10) 7
(9,9,9) P
(9,9,10) P

a for the 3-tuples marked by * the corresponding orthogonal design is known for n ≥ 6
and orders ≥ 24. † the corresponding orthogonal design is known for n ≥ 7 from [126].



C.4 Further Research 385

Table C.3 Order 28: sequences with zero periodic autocorrelation function a

Design

(1,8,17)
(2,4,22)
(2,9,11)
(2,9,17)
(3,6,17)
(3,7,11)
(3,7,15)
(3,10,15)
(4,9,13)
(4,10,11)
(5,5,18)
(5,9,14)
(5,10,10)
(6,7,8)
(6,9,11)
(7,8,10)
(8,9,11)
(9,9,10)

A1

a c̄ c̄ c c̄ c c

c̄ c c c̄ c̄ b̄ a

a b 0 c̄ b̄ 0 0
a b̄ c b̄ b c b

a b c̄ c c 0 c

a b 0 c c̄ c 0
a b̄ b b c c 0
a b̄ b b c b c

a a b̄ c̄ c b 0
a a b̄ b 0 c̄ c

a b c̄ b c c̄ c

a b̄ b c̄ c c c

ā a a b c b c

c̄ c c 0 c b a

a c̄ c c c 0 c

ā a a b b c̄ 0
c̄ b b̄ a c c̄ a

a a a b̄ b c̄ c

A2

b b 0 c̄ c c c

c̄ c c̄ c a b c

a b̄ c c b c̄ 0
a c c̄ c c̄ c̄ c̄

a c̄ b c c̄ 0 c̄

a b 0 c 0 c̄ 0
a b c̄ c̄ c c c̄

a b b̄ b̄ c c̄ c̄

b b c̄ c b c̄ c

ā a c̄ b c c b̄

a c̄ a c b b̄ b̄

a b c̄ a c b̄ c̄

a 0 a b̄ c̄ c̄ c

c c̄ c̄ 0 c̄ b a

a b̄ b c c̄ 0 c̄

ā b b c c̄ c 0
b a a c a ā b̄

b̄ b c b b b c̄

A3

b b c̄ c̄ c c̄ 0
c c̄ c c c b̄ c

b b c̄ c b 0 0
b b c̄ c b c̄ c

a b̄ b̄ c̄ c̄ c c

c c b ā b c̄ 0
a c b̄ c̄ b̄ c̄ 0
a c̄ b̄ c̄ c̄ c c

c c c c c̄ b b̄

b b b c c̄ 0 c̄

a c̄ ā c̄ c̄ c c̄

b b̄ b̄ b̄ c̄ b̄ c

b 0 b̄ b̄ c c c̄

b a 0 ā b 0 0
a b c̄ a b̄ b̄ b

a b̄ c̄ c̄ b b̄ b

c ā b b b c̄ a

a b ā b̄ c c̄ c̄

A4

b̄ b b̄ c b c c

c̄ c c c c b c̄

c c̄ c c c b b̄

b̄ c̄ b c c c c

b̄ b c c̄ c c c

c b b̄ b̄ c c 0
b c̄ c c̄ 0 c̄ c̄

b c̄ b c̄ c c̄ c̄

a ā b̄ c̄ c̄ b 0
b̄ b c c 0 b c

c̄ c̄ c c c c c

ā c c a c c̄ c

b̄ b b c̄ 0 c̄ b

b̄ a b̄ a b 0 0
ā b b a c b c̄

a c̄ a c c 0 c

c̄ c c c b c b̄

ā a ā c a c c
a Koukouvinos and Seberry [135, p107] c© Charles Babbage Research Centre

C.3 Order 56

We summarize the known results for order 56.

1. There are at most 8 variables.
2. Table C.5 gives the known twenty four 8-tuples of orthogonal designs in

order 56 (see [59] and [120]).
3. Table C.6 gives the known twenty six 7-tuples of orthogonal designs in

order 56 (see [59]).
4. All OD(56;1,k) are known.
5. All one variable designs exist in order 56.

C.4 Further Research

Remark C.1 (Research Problem 1). No effort has been made to investigate
whether the necessary conditions are sufficient for orthogonal designs in order
56.

Remark C.2 (Research Problem 2). It is not yet known, after almost 40 years,
whether orthogonal designs OD(28;a,b,c,d) exist for
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Table C.4 Order 28: sequences with zero non-periodic autocorrelation function

Design

(1,1,17)
(1,3,14)
(1,8,16)
(1,9,16)
(2,7,10)
(2,7,13)
(2,8,18)
(3,4,14)
(3,6,16)
(3,7,11)
(3,8,10)
(3,8,15)
(3,9,14)
(4,4,13)
(4,5,14)
(4,6,11)
(5,5,13)
(5,10,10)
(7,8,13)
(8,8,9)
(8,9,9)
(4,22)
(5,23)
(11,14)
(11,15)
(11,17)

A1

c̄ a c 0 0 0 0
c̄ 0 c̄ a c 0 c

c̄ b̄ c a c̄ b c

c̄ b̄ c a c̄ b c

c̄ 0 a 0 c b c̄

a b c̄ 0 c̄ 0 0
b c c a c̄ c̄ b

c c a c̄ c c̄ 0
c b c a c̄ 0 c̄

c 0 a b 0 c c̄

b c c 0 a c̄ b

b c c 0 a c̄ b

c b̄ 0 b c c a

a c̄ c̄ 0 c c a

a 0 b̄ 0 b 0 a

b 0 a 0 a 0 b̄

b c c a c̄ c̄ b

b c c a c c̄ b

c̄ b ā a a b c̄

b c̄ a c b 0 a

a c c 0 c c̄ a

b 0 a a b̄ b̄ b

b b̄ ā a a b b

ā a a b̄ b̄ b b

a b b̄ a b b ā

ā a a b̄ b b b

A2

c̄ b c 0 0 0 0
c 0 0 0 b c̄ c

b b 0 c c̄ c c̄

c b c̄ b c̄ b c

b a b̄ 0 b̄ c 0
a b̄ c 0 c 0 0
b̄ c̄ c a c̄ c b̄

c b 0 a 0 b̄ c

c b c̄ 0 c a c̄

c 0 c̄ 0 a b 0
b̄ c̄ c 0 a c b̄

b c c̄ 0 ā c̄ b

c̄ b c̄ a c̄ b̄ c

b c̄ c 0 c̄ c b

c 0 c̄ b c 0 c

c c c b c̄ c 0
a c̄ c b̄ c̄ c a

b̄ 0 b̄ a c̄ a b

ā c b c̄ c b c

b c̄ b c ā 0 ā

a b c̄ 0 c̄ b̄ a

b̄ 0 ā a b b b

b̄ b̄ a b̄ a b b

b b a 0 b ā a

a b b 0 ā b̄ a

b a b̄ b̄ ā a b̄

A3

c c c c̄ c̄ c c̄

c c c̄ 0 0 c b

b c̄ c̄ 0 b c c

c̄ 0 c̄ b c̄ b̄ c̄

c̄ 0 0 b c̄ 0 0
c c̄ b̄ b b c c

b c c̄ c c c b̄

c̄ c a c̄ c̄ c̄ 0
c b c̄ b c̄ ā c

c̄ c̄ b̄ a b̄ c 0
b c̄ 0 a 0 c̄ b̄

b c̄ c̄ a c c̄ b̄

c̄ b 0 b̄ c̄ c a

a c 0 0 0 c ā

a c̄ b c b c̄ ā

c c̄ c b c̄ c̄ 0
a c 0 0 0 c ā

c c̄ c̄ 0 b̄ b b

a c̄ b̄ c c b c

b c̄ ā c̄ b̄ c̄ a

a b b̄ b b b ā

b b b̄ b b̄ b b

b b b̄ b b̄ b b

a 0 a a b̄ b b̄

a b b̄ 0 a b̄ a

b̄ b a a b a b̄

A4

c c c 0 c c̄ c

c̄ c̄ 0 0 c̄ 0 b

c̄ b̄ b c̄ 0 c̄ c̄

c 0 c b c̄ b̄ c̄

c̄ b c 0 c b c

c c b c̄ b c c̄

b c c c c̄ c b̄

c b 0 0 0 b c̄

c 0 c b̄ c b c

c̄ 0 c̄ b̄ b b c̄

b c 0 0 0 c b̄

b c c c c̄ c b̄

c̄ b c b c b c̄

b c 0 c 0 c b̄

c c c c c̄ c c̄

b 0 ā c̄ a 0 b

b c 0 c 0 c b̄

b 0 c̄ ā b a c̄

c̄ b a c a b̄ c

b c̄ b̄ 0 a c ā

a c b c̄ b̄ c ā

b̄ b b b b̄ b b

b̄ b b b b̄ b b

b̄ b a b b 0 ā

a b b b b̄ b ā

a b b̄ b ā b b

Table C.5 Orthogonal designs of order 56, 8-tuples

(1,1,1,1,1,1,1,1) (1,1,1,1,1,1,2,2) (1,1,1,1,1,1,4,4)
(1,1,1,1,2,2,2,2) (1,1,1,1,2,2,4,4) (1,1,1,1,4,4,4,4)
(1,1,1,1,5,5,5,5) (1,1,2,2,2,2,2,2) (1,1,2,2,2,2,4,4)
(1,1,2,2,4,4,4,4) (1,1,2,2,5,5,5,5) (1,1,4,4,4,4,4,4)
(2,2,2,2,2,2,2,2) (2,2,2,2,2,2,4,4) (2,2,2,2,4,4,4,4)
(2,2,2,2,5,5,5,5) (2,2,4,4,5,5,5,5) (4,4,4,4,4,4,4,4)
(4,4,4,4,5,5,5,5) (5,5,5,5,5,5,5,5) (2,2,2,2,8,8,8,8)
(2,2,4,4,4,4,8,8) (5,5,5,5,8,8,8,8) (7,7,7,7,7,7,7,7)
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Table C.6 Orthogonal designs of order 56, 7-tuples

(1,1,1,1,1,1,13) (1,1,1,1,2,2,13) (1,1,1,1,3,3,12)
(1,1,1,1,4,4,13) (1,1,1,1,4,4,16) (1,1,2,2,2,2,13)
(1,1,2,2,3,3,12) (1,1,2,2,4,4,13) (1,1,2,2,4,4,16)
(1,1,3,3,4,4,12) (1,1,4,4,4,4,13) (1,1,4,4,4,4,16)
(1,1,5,5,5,5,13) (2,2,2,2,2,2,13) (2,2,2,2,3,3,12)
(2,2,2,2,4,4,13) (2,2,2,2,4,4,16) (2,2,3,3,4,4,12)
(2,2,4,4,4,4,13) (2,2,4,4,4,4,16) (2,2,5,5,5,5,13)
(3,3,4,4,4,4,12) (3,3,5,5,5,5,12) (4,4,4,4,4,4,16)
(4,4,5,5,5,5,13) (4,4,5,5,5,5,16)

1,2,4,18 1,4,4,16 1,8,8,9 2,4,4,18 4,4,4,9
1,2,6,12 1,4,8,8 1,9,9,9 2,4,8,9 4,5,5,9
1,3,6,18 1,4,9,9 2,2,4,9 2,8,9,9 5,5,8,8

1,4,10,10 2,3,6,9 3,6,8,9 5,5,9,9

Remark C.3 (Research Problem 3).
The challenge now is to find other 7 and 8 variable orthogonal designs in

order 56.



Appendix D

D.1 Some theorems

Theorem D.1. All orthogonal designs OD(2t.9;x,y,2t.9−x− y) exist for
t ≥ 3 [80].

D.2 Orthogonal designs in Order 36

We now summarize the known results for order 36.

1. There are at most 4 variables in order 36.
2. There are 1347 possible 3-tuples. Table D.1 lists the 433 3-tuples which

may correspond to designs in order 36: 914 cases correspond to 3-tuples
eliminated by number theory. The design is known to be able to be
constructed using four circulant matrices in the Goethals-Seidel array
for 429 cases. For 4 cases, if designs exist for the corresponding 3-tuple,
they cannot be constructed using circulant matrices (Y). P indicates that
4-PAF sequences with length 9 exist; n indicates 4-NPAF sequences
with length n exist.

3. Table D.2 lists the 54 cases of an OD(36;s1,s2,36−s1−s2) constructed
using four circulant matrices.

4. All (1,k) variables exist, k ∈ {x|1 ≤ x ≤ 35, x = a2 + b2 + c2} [80].
5. There are no orthogonal designs OD(4n;s1,s2) where (s1,s2) is one of

the 2-tuples

(3,29), (11,20), (11,21), (13,19), (15,17)

constructed using four circulant matrices in the Goethals-Seidel array [131].
6. From Georgiou, Koukouvinos, Mitrouli and Seberry [70] we see that there

are no unresolved cases for 2 variable designs in order 36.

389© Springer International Publishing AG 2017
J. Seberry, Orthogonal Designs,
DOI 10.1007/978-3-319-59032-5

Orthogonal Designs in Order 36 and 72



390 D Orthogonal Designs in Order 36, 72

7. All 1 variable designs exist [80].
8. From Georgiou, Koukouvinos, Mitrouli and Seberry [70] there are no

4-NPAF (x,y) sequences of length 9 for

(3,31), (5,30), (6,29), (8,27), or (13,22) .

D.3 Order 72

We now summarize the known results for order 72.

1. Let n = 4m = 72 be the order of an orthogonal design then the number of
cases which must be studied to determine whether all orthogonal designs
exist is

(i) 1
4n2 = 1296 when 2−tuples are considered;

(ii) n
72 (2n2 +3n−6) = 10578 when 3-tuples are considered;

(iii) 1
576 (n4 +6n3−2n2−24n) = 50523 when 4−tuples are considered [73].

2. There are at most 8 variables in order 72.
3. All designs (1,k) for k = 1,2, . . . ,71 are known [238].
4. All OD(72;s1,72−s1) are known [73].
5. Of 2700 possible tuples OD(72;s1,s2,72−s1−s2), 355 are known [73].
6. Of 432 possible tuples OD(72;s1,s2,s3,72−s1−s2−s3), 355 are known

[73].
7. [73] gives the orders and constructions for those known.
8. All one variable designs exist.
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Table D.1 The existence of OD(36;s1,s2,s3) a

s1,s2,s3 n s1,s2,s3 n s1,s2,s3 n s1,s2,s3 n s1,s2,s3 n

(1,1,1) 1 (1,1,2) 1 (1,1,4) 2 (1,1,5) 3 (1,1,8) 3
(1,1,9) 7 (1,1,10) 3 (1,1,13) 5 (1,1,16) 7 (1,1,17) 7

(1,1,18) 6 (1,1,20) 6 (1,1,25) 9 (1,1,26) P (1,1,29) P
(1,1,32) 9 (1,1,34) P (1,2,2) 2 (1,2,3) 2 (1,2,4) 2
(1,2,6) 3 (1,2,8) 3 (1,2,9) 3 (1,2,11) 5 (1,2,12) 5

(1,2,16) 7 (1,2,17) 5 (1,2,18) 6 (1,2,19) 6 (1,2,22) 7
(1,2,24) 9 (1,2,25) 9 (1,2,27) 9 (1,2,32) P (1,2,33) 9
(1,3,6) 3 (1,3,8) 3 (1,3,14) 6 (1,3,18) 6 (1,3,24) 7

(1,3,26) 9 (1,3,32) 9 (1,4,4) 5 (1,4,5) 5 (1,4,8) 5
(1,4,9) 5 (1,4,10) 5 (1,4,13) 7 (1,4,16) 7 (1,4,17) 7

(1,4,18) 7 (1,4,20) 7 (1,4,25) 9 (1,4,26) P (1,4,29) 9
(1,5,5) 3 (1,5,6) 3 (1,5,9) 5 (1,5,14) 5 (1,5,16) 7

(1,5,20) 9 (1,5,21) P (1,5,24) 9 (1,5,25) P (1,5,30) P
(1,6,8) 5 (1,6,11) 5 (1,6,12) 7 (1,6,14) 7 (1,6,18) 7

(1,6,20) 9 (1,6,21) 7 (1,6,27) P (1,6,29) P (1,8,8) 7
(1,8,9) 5 (1,8,11) 5 (1,8,12) 7 (1,8,16) 7 (1,8,17) 9

(1,8,18) 9 (1,8,19) P (1,8,22) P (1,8,24) P (1,8,25) P
(1,8,27) P (1,9,9) 7 (1,9,10) 5 (1,9,13) 9 (1,9,16) 7
(1,9,17) P (1,9,18) 7 (1,9,20) 9 (1,9,25) P (1,9,26) 9

(1,10,10) 7 (1,10,11) 7 (1,10,14) P (1,10,16) P (1,10,19) 9
(1,10,25) P (1,11,18) P (1,11,22) P (1,11,24) P (1,12,14) P
(1,12,18) P (1,13,13) 9 (1,13,14) P (1,13,16) P (1,13,17) P
(1,13,22) P (1,14,19) P (1,14,21) P (1,16,16) 9 (1,16,17) 9
(1,17,17) P (1,17,18) 9 (2,2,2) 2 (2,2,4) 2 (2,2,5) 3

(2,2,8) 3 (2,2,9) 5 (2,2,10) 5 (2,2,13) 5 (2,2,16) 7
(2,2,17) 7 (2,2,18) 6 (2,2,20) 7 (2,2,25) P (2,2,26) 9
(2,2,29) P (2,2,32) 9 (2,3,4) 3 (2,3,6) 3 (2,3,7) 3
(2,3,9) 5 (2,3,10) 7 (2,3,15) 7 (2,3,16) 7 (2,3,22) P

(2,3,24) 9 (2,3,25) 9 (2,3,28) 9 (2,3,31) P (2,4,4) 3
(2,4,6) 3 (2,4,8) 5 (2,4,9) 5 (2,4,11) 5 (2,4,12) 7

(2,4,16) 7 (2,4,17) 7 (2,4,18) 7 (2,4,19) 7 (2,4,22) 9
(2,4,24) 9 (2,4,25) P (2,4,27) P (2,5,5) 3 (2,5,7) 5
(2,5,8) 5 (2,5,13) 6 (2,5,18) 7 (2,5,20) P (2,5,22) P

(2,5,23) P (2,6,7) 5 (2,6,9) 5 (2,6,12) 6 (2,6,13) 7
(2,6,16) 7 (2,6,19) P (2,6,21) P (2,6,25) P (2,6,27) P
(2,6,28) P (2,7,10) 7 (2,7,12) 7 (2,7,13) 7 (2,7,19) P
(2,7,20) P (2,7,21) P (2,7,24) P (2,7,27) P (2,8,8) 5
(2,8,9) 5 (2,8,10) 5 (2,8,13) 7 (2,8,16) 7 (2,8,17) P

(2,8,18) 7 (2,8,20) 9 (2,8,25) Y (2,8,26) 9 (2,9,9) 5
(2,9,11) 6 (2,9,12) 7 (2,9,16) P (2,9,17) P (2,9,18) P
(2,9,19) P (2,9,22) P (2,9,25) P (2,10,10) 6 (2,10,12) 6

(2,10,15) 9 (2,10,18) 9 (2,11,16) P (2,11,22) P (2,11,23) P
(2,12,15) 9 (2,12,16) 9 (2,12,22) P (2,13,13) P (2,13,15) 9
(2,13,18) P (2,13,21) P (2,16,16) 9 (2,16,18) 9 (2,17,17) P

a Georgiou, Koukouvinos, Mitrouli, and Seberry [70, p338-339] c© Elsevier
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Table D.1 The existence of OD(36;s1,s2,s3) a (continued)

s1,s2,s3 n s1,s2,s3 n s1,s2,s3 n s1,s2,s3 n s1,s2,s3 n

(3,3,3) 3 (3,3,6) 3 (3,3,12) 7 (3,3,15) 7 (3,3,24) 9
(3,3,27) P (3,3,30) 9 (3,4,6) 5 (3,4,8) 5 (3,4,14) 7
(3,4,18) 7 (3,4,24) P (3,4,26) P (3,6,6) 5 (3,6,8) 5
(3,6,9) 5 (3,6,11) 5 (3,6,12) 7 (3,6,16) 7 (3,6,17) 9

(3,6,18) 7 (3,6,19) 7 (3,6,22) P (3,6,24) 9 (3,6,25) P
(3,6,27) 9 (3,7,8) 6 (3,7,11) 7 (3,7,15) P (3,7,18) 7
(3,7,23) P (3,8,9) 7 (3,8,10) 7 (3,8,15) 7 (3,8,16) P
(3,8,22) P (3,8,24) P (3,8,25) P (3,9,14) 7 (3,9,18) P
(3,9,24) 9 (3,10,15) 9 (3,10,17) 9 (3,10,18) P (3,10,23) P

(3,11,19) P (3,11,22) P (3,12,12) P (3,12,15) 9 (3,14,16) P
(3,15,15) P (3,15,18) P (4,4,4) 3 (4,4,5) 5 (4,4,8) 7

(4,4,9) 5 (4,4,10) 5 (4,4,13) 7 (4,4,16) 7 (4,4,17) 7
(4,4,18) 9 (4,4,20) 7 (4,4,25) P (4,4,26) 9 (4,5,5) 5
(4,5,6) 5 (4,5,9) 5 (4,5,14) 7 (4,5,16) 7 (4,5,20) 9

(4,5,21) 9 (4,5,24) P (4,5,25) 9 (4,6,8) 5 (4,6,11) 7
(4,6,12) 7 (4,6,14) 7 (4,6,18) 7 (4,6,20) 8 (4,6,21) P
(4,8,8) 7 (4,8,9) 7 (4,8,11) 7 (4,8,12) 7 (4,8,16) 7

(4,8,17) 9 (4,8,18) 8 (4,8,19) P (4,8,22) 9 (4,8,24) P
(4,9,9) 6 (4,9,10) 7 (4,9,13) 9 (4,9,16) P (4,9,17) P

(4,9,18) P (4,9,20) P (4,10,10) 7 (4,10,11) P (4,10,14) 7
(4,10,16) 9 (4,10,19) P (4,11,18) P (4,12,14) 8 (4,12,18) 9
(4,13,13) P (4,13,14) P (4,13,16) P (4,13,17) P (4,16,16) 9

(5,5,5) 7 (5,5,8) 7 (5,5,9) 5 (5,5,10) 5 (5,5,13) 7
(5,5,16) 7 (5,5,17) P (5,5,18) 9 (5,5,20) 9 (5,5,25) P
(5,5,26) P (5,6,9) 7 (5,6,16) P (5,6,25) P (5,7,8) 7
(5,7,18) 9 (5,7,22) P (5,8,8) 7 (5,8,13) 7 (5,8,18) P
(5,8,20) P (5,8,23) P (5,9,9) P (5,9,14) P (5,9,16) P
(5,9,20) P (5,10,10) 7 (5,10,15) 9 (5,13,13) P (5,13,18) P
(6,6,6) 7 (6,6,12) 7 (6,6,15) P (6,6,24) 9 (6,7,8) P

(6,7,18) P (6,7,21) Y (6,7,23) P (6,8,9) 7 (6,8,12) 7
(6,8,13) P (6,8,16) 8 (6,8,19) P (6,9,11) P (6,9,12) P
(6,9,14) P (6,9,18) P (6,9,21) P (6,11,12) P (6,11,16) P

(6,12,12) 8 (6,12,16) 9 (6,12,18) 9 (6,14,16) P (6,15,15) P
(7,7,7) 7 (7,7,14) 7 (7,8,10) P (7,8,12) P (7,8,13) 7

(7,8,19) P (7,8,21) P (7,11,12) P (7,12,15) P (8,8,8) 7
(8,8,9) 7 (8,8,10) 7 (8,8,13) 9 (8,8,16) 9 (8,8,17) P

(8,8,18) 9 (8,8,20) P (8,9,9) 7 (8,9,11) P (8,9,12) P
(8,9,16) P (8,9,17) Y (8,9,18) P (8,9,19) P (8,10,10) 7

(8,10,12) 8 (8,10,15) P (8,10,18) 9 (8,12,16) P (8,13,13) P
(8,13,15) P (9,9,9) 9 (9,9,10) P (9,9,13) P (9,9,16) P
(9,9,18) 9 (9,10,10) P (9,10,11) P (9,10,14) P (9,13,13) Y

(9,13,14) P (10,10,10) 9 (10,10,13) P (10,10,16) P (10,11,15) 9
(10,13,13) P (11,11,11) P (12,12,12) 9

a Georgiou, Koukouvinos, Mitrouli, and Seberry [70, p338-339] c© Elsevier
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Table D.2 The 54 cases of OD(36;s1,s2,36 − s1 − s2)

(1,1,34)
(1,2,33)
(1,3,32)
(1,5,30)
(1,6,29)
(1,8,27)
(1,9,26)

(1,10,25)
(1,11,24)

(1,13,22)
(1,14,21)
(1,17,18)
(2,2,32)
(2,3,31)
(2,6,28)
(2,7,27)
(2,8,26)
(2,9,25)

(2,11,23)
(2,12,22)
(2,13,21)
(2,16,18)
(2,17,17)
(3,3,30)
(3,6,27)
(3,8,25)
(3,9,24)

(3,10,23)
(3,11,22)
(3,15,18)
(4,8,24)

(4,16,16)
(5,5,26)
(5,6,25)
(5,8,23)

(5,13,18)

(6,6,24)
(6,7,23)
(6,9,21)

(6,12,18)
(6,14,16)
(6,15,15)
(7,8,21)
(8,8,20)
(8,9,19)

(8,10,18)
(8,12,16)
(8,13,15)
(9,9,18)

(9,13,14)
(10,10,16)
(10,11,15)
(10,13,13)
(12,12,12)



Appendix E
Orthogonal Designs in order 44

The main authors who have studied order 44 are Georgiou, Karabelas, Kouk-
ouvinos, Mitrouli and Seberry [68, 129, 130]. No systematic study of order
88 has been undertaken. Such a study is feasible given current computer
technology.

E.1 Some theorems

We know

Lemma E.1. All full orthogonal designs OD(2t11;x,y,2t11−x−y) exist for
any t ≥ 3.

Lemma E.2 (Geramita-Seberry [80]). There are OD(44;1,k), for k ∈
{0 ≤ x ≤ 43, x = a2 + b2 + c2, x �= 42}. OD(44;1,42) cannot exist.

E.2 Orthogonal designs in Order 44

We summarize the known results for order 44.

1. We note from [135] that we have to test 1
4n2 = 484 cases. Hence 404 cases

have been found, 67 2-tuples correspond to designs eliminated by number
theory (NE) and 12 cases cannot be constructed using four circulant
matrices. Table E.1 lists the 404 which correspond to designs which exist
in order 44.

2. Table E.2 lists the 2−tuple (s1,s2) designs for which an OD(44;s1,s2)
cannot exist.

3. A computer search, which we believe was exhaustive, was carried out
which leads us to believe that

395© Springer International Publishing AG 2017
J. Seberry, Orthogonal Designs,
DOI 10.1007/978-3-319-59032-5
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a. there are no 4-NPAF (2,41) sequences of length 11. This means that
there are also no 4-NPAF (1,2,41) sequences of length 11.

b. there are no 4-NPAF (6,37) sequences of length 11.

4. The following OD(44;1,a,43−a) and OD(44;a,43−a) cannot be con-
structed using four circulant matrices in the Goethals-Seidel array:
(5,38) (8,35) (12,31) (14,29) (16,27) (20,23)
(1,5,38) (1,8,35) (1,12,31) (1,14,29) (1,16,27) (1,20,23)
(6,37) (10,33) (13,30) (15,28) (19,24) (21,22)
(1,6,37) (1,10,33) (1,13,30) (1,15,28) (1,19,24) (1,21,22) .

5. The sequences given in [68] together with those in [129] can be used to
construct the appropriate designs to establish that the necessary conditions
for the existence of an OD(44;s1,s2) are sufficient, except possibly for the
following 12 cases which the Geramita-Verner Theorem and the Sum-Fill
Theorem show cannot be constructed from four circulant matrices;

(5,38) (6,37) (8,35) (10,33) (12,31) (13,30)
(14,29) (15,28) (16,27) (19,24) (20,23) (21,22) .

6. The necessary conditions for the existence of OD(44;s1,s2) constructed
from four circulant matrices in the Goethals-Seidel Theorem are sufficient.

7. There are 484 possible 2−tuples. Table E.1 lists the 404 which correspond
to designs which exist in order 44: 68 2-tuples correspond to designs
eliminated by number theory (NE).
For 12 cases, if the designs exist, they cannot be constructed using circulant
matrices (Y).
P indicates that 4-PAF sequences with length 11 exist; n indicates 4-
NPAF sequences with length n exist.

8. Georgiou, Koukouvinos, Mitrouli and Seberry [68] give the first rows for
the periodic and non-periodic sequences of lengths 10 and 11, noted in
Table E.1, to use in the Goethals-Seidel array to find the designs.

9. From [129] we have the first rows to use in the Goethals-Seidel array to
construct the 4-variable and 3-variable designs of lengths 10 and 11 given
in Tables E.3 and E.4

10. The 238 4-tuples which satisfy the necessary conditions for existence in
order 44 found by Magoon are given in Table E.5. Those marked * are
known to exist from Chapter 4.

Table E.1: The existence of OD(44;s1,s2).

s1 s2 n s1 s2 n s1 s2 n s1 s2 n s1 s2 n

1 1 1 3 15 5 5 38 Y 9 11 5 13 16 10
1 2 1 3 16 7 5 39 11 9 12 7 13 17 9
1 3 1 3 17 5 6 6 3 9 13 6 13 18 9
1 4 2 3 18 7 6 7 5 9 14 7 13 19 NE
1 5 2 3 19 7 6 8 5 9 15 NE 13 20 9
Continued on Next Page. . .
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Table E.1 – Continued

s1 s2 n s1 s2 n s1 s2 n s1 s2 n s1 s2 n

1 6 3 3 20 NE 6 9 5 9 16 7 13 21 9
1 7 NE 3 21 NE 6 10 NE 9 17 7 13 22 P
1 8 3 3 22 7 6 11 5 9 18 7 13 23 9
1 9 3 3 23 7 6 12 5 9 19 7 13 24 P
1 10 3 3 24 7 6 13 7 9 20 9 13 25 P
1 11 3 3 25 7 6 14 5 9 21 9 13 26 P
1 12 4 3 26 9 6 15 7 9 22 9 13 27 NE
1 13 5 3 27 9 6 16 7 9 23 NE 13 28 P
1 14 5 3 28 9 6 17 7 9 24 9 13 29 P
1 15 NE 3 29 NE 6 18 7 9 25 9 13 30 Y
1 16 5 3 30 9 6 19 7 9 26 9 13 31 P
1 17 5 3 31 10 6 20 7 9 27 9 14 14 7
1 18 5 3 32 9 6 21 7 9 28 NE 14 15 P
1 19 5 3 33 9 6 22 7 9 29 P 14 16 8
1 20 7 3 34 10 6 23 9 9 30 P,20 14 17 P
1 21 7 3 35 11 6 24 8 9 31 NE 14 18 NE
1 22 7 3 36 11 6 25 9 9 32 P,15 14 19 9
1 23 NE 3 37 NE 6 26 NE 9 33 P,20 14 20 9
1 24 7 3 38 11 6 27 9 9 34 P 14 21 9
1 25 7 3 39 11 6 28 9 9 35 P 14 22 9
1 26 9 3 40 NE 6 29 P 10 10 5 14 23 P
1 27 7 3 41 11 6 30 9 10 11 7 14 24 P
1 28 NE 4 4 2 6 31 10 10 12 7 14 25 P
1 29 9 4 5 3 6 32 10 10 13 7 14 26 10
1 30 11 4 6 3 6 33 P,20 10 14 7 14 27 P
1 31 NE 4 7 NE 6 34 10 10 15 7 14 28 P,12
1 32 9 4 8 3 6 35 P 10 16 7 14 29 Y
1 33 9 4 9 5 6 36 11 10 17 NE 14 30 P
1 34 11 4 10 5 6 37 Y 10 18 7 15 15 9
1 35 11 4 11 5 6 38 11 10 19 P 15 16 NE
1 36 11 4 12 5 7 7 4 10 20 8 15 17 NE
1 37 11 4 13 5 7 8 6 10 21 9 15 18 9
1 38 11 4 14 5 7 9 NE 10 22 NE 15 19 9
1 39 NE 4 15 NE 7 10 5 10 23 9 15 20 NE
1 40 11 4 16 5 7 11 7 10 24 NE 15 21 9
1 41 11 4 17 7 7 12 7 10 25 9 15 22 P
1 42 NE 4 18 7 7 13 5 10 26 9 15 23 P
1 43 11 4 19 7 7 14 7 10 27 P 15 24 P
2 2 1 4 20 7 7 15 7 10 28 10 15 25 NE
2 3 2 4 21 7 7 16 NE 10 29 P 15 26 P
2 4 2 4 22 7 7 17 NE 10 30 10 15 27 P,20
2 5 3 4 23 NE 7 18 7 10 31 P 15 28 Y
2 6 2 4 24 7 7 19 8 10 32 11 15 29 P
2 7 3 4 25 9 7 20 9 10 33 Y 16 16 8
2 8 3 4 26 8 7 21 7 10 34 11 16 17 9
2 9 5 4 27 9 7 22 9 11 11 6 16 18 9
2 10 3 4 28 NE 7 23 9 11 12 7 16 19 NE
2 11 5 4 29 9 7 24 9 11 13 NE 16 20 9
2 12 5 4 30 9 7 25 NE 11 14 7 16 21 11
2 13 5 4 31 NE 7 26 9 11 15 7 16 22 10
Continued on Next Page. . .
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Table E.1 – Continued

s1 s2 n s1 s2 n s1 s2 n s1 s2 n s1 s2 n

2 14 NE 4 32 9 7 27 9 11 16 NE 16 23 NE
2 15 5 4 33 10 7 28 NE 11 17 7 16 24 10
2 16 5 4 34 10 7 29 9 11 18 9 16 25 P
2 17 5 4 35 11 7 30 P 11 19 9 16 26 11
2 18 5 4 36 10,11 7 31 10 11 20 NE 16 27 Y
2 19 7 4 37 P 7 32 11 11 21 NE 16 28 NE
2 20 6 4 38 11 7 33 NE 11 22 9 17 17 9
2 21 7 4 39 NE 7 34 P 11 23 9 17 18 9
2 22 7 4 40 11 7 35 P 11 24 9 17 19 9
2 23 7 5 5 3 7 36 NE 11 25 9 17 20 11
2 24 7 5 6 3 7 37 11 11 26 P 17 21 P
2 25 9 5 7 3 8 8 5 11 27 P 17 22 P
2 26 7 5 8 5 8 9 5 11 28 P 17 23 NE
2 27 9 5 9 5 8 10 5 11 29 NE 17 24 P
2 28 8 5 10 5 8 11 5 11 30 P 17 25 P
2 29 9 5 11 NE 8 12 5 11 31 P 17 26 P
2 30 NE 5 12 NE 8 13 7 11 32 P 17 27 P
2 31 9 5 13 5 8 14 NE 11 33 P 18 18 9
2 32 9 5 14 5 8 15 7 12 12 7 18 19 P
2 33 9 5 15 5 8 16 7 12 13 NE 18 20 10
2 34 9 5 16 7 8 17 7 12 14 7 18 21 P
2 35 10 5 17 7 8 18 7 12 15 NE 18 22 10
2 36 10,11 5 18 7 8 19 9 12 16 7 18 23 P
2 37 11 5 19 NE 8 20 7 12 17 9 18 24 11
2 38 10,11 5 20 7 8 21 9 12 18 8 18 25 P
2 39 11 5 21 7 8 22 8 12 19 9 18 26 P
2 40 11 5 22 9 8 23 9 12 20 NE 19 19 P
2 41 P 5 23 7 8 24 9 12 21 NE 19 20 NE
2 42 11 5 24 9 8 25 9 12 22 9 19 21 NE
3 3 2 5 25 9 8 26 9 12 23 NE 19 22 P
3 4 3 5 26 9 8 27 P 12 24 9 19 23 P
3 5 NE 5 27 NE 8 28 9 12 25 P 19 24 Y
3 6 3 5 28 9 8 29 P 12 26 P 19 25 P
3 7 3 5 29 9 8 30 NE 12 27 20 20 20 10
3 8 3 5 30 10 8 31 P 12 28 10 20 21 P
3 9 3 5 31 9 8 32 10 12 29 NE 20 22 11
3 10 5 5 32 10 8 33 P 12 30 P,13 20 23 Y
3 11 5 5 33 10 8 34 11 12 31 Y 20 24 11
3 12 5 5 34 P 8 35 Y 12 32 11 21 21 11
3 13 NE 5 35 NE 8 36 11 13 13 7 21 22 Y
3 14 5 5 36 11 9 9 5 13 14 9 21 23 P

5 37 11 9 10 5 13 15 7 22 22 11
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Table E.2 OD(44;s1,s2) cannot exist for the following 2−tuples (s1,s2) a

(1,7)
(1,15)
(1,23)
(1,28)
(1,31)
(1,39)
(1,42)
(2,14)
(2,30)

(3,5)
(3,13)
(3,20)
(3,21)
(3,29)
(3,37)
(3,40)
(4,7)
(4,15)

(4,23)
(4,28)
(4,31)
(4,39)
(5,11)
(5,12)
(5,19)
(5,27)
(5,35)

(6,26)
(7,9)
(7,16)
(7,17)
(7,25)
(7,28)
(7,33)
(7,36)
(8,14)
(8,30)

(9,15)
(9,23)
(9,28)
(9,31)
(10,17)
(10,22)
(10,24)
(11,13)
(11,16)
(11,20)

(11,21)
(11,29)
(12,13)
(12,15)
(12,20)
(12,21)
(12,29)
(13,19)
(13,27)
(14,18)

(15,16)
(15,17)
(15,20)
(15,25)
(16,19)
(16,23)
(16,28)
(17,23)
(19,20)
(19,21)

a Koukouvinos, Mitrouli, and Seberry [129, p267-268] c© Charles Babbage Research
Centre

Table E.3 Some order 44 4-variable sequences with zero and non-periodic autocor-
relation function a

Design A1 A2 A3 A4

(1,4,10,10) b a b̄ 0 0 0 0 0 0 0 c c̄ c̄ c d c b b b b̄

b 0 b 0 0 0 0 0 0 0 c c̄ c̄ c̄ d c d d̄ d̄ d̄

(1,4,16,16) c d 0 d c̄ a c d̄ 0 d̄ c̄ c d̄ b d c 0 c d b̄ d̄ c

c d 0 d c̄ 0 c̄ d 0 d c c d̄ b d c 0 c̄ d̄ b d c̄
(2,2,4,36) b a a a ā a a ā d a ā b ā ā ā a ā ā ā c̄ a a

b a a a ā a ā a d̄ ā a b ā ā ā a ā a a c ā ā

(2,2,8,32) a d c d̄ d d̄ d d̄ d̄ c d b d c d̄ d d d d d c̄ d̄

a d̄ c̄ d d̄ d d̄ d d c̄ d̄ b d̄ c̄ d d̄ d̄ d̄ d̄ d̄ c d

(2,2,18,18) d c a c̄ d̄ c c̄ c c c c d̄ b d c̄ d d̄ d d d

d c a c̄ d̄ c̄ c c̄ c̄ c̄ c d̄ b d c̄ d̄ d d̄ d̄ d̄

(2,2,20,20) ā a a a b a b b̄ b̄ b c b b̄ b̄ b̄ a b̄ a ā ā a d

ā a a a b a b b̄ b̄ b c̄ b b̄ b̄ b̄ a b̄ a ā ā a d̄

(2,4,16,18) d c a c̄ d̄ b c d̄ c d d c d c̄ d b c̄ d c̄ d̄

d c a c̄ d̄ b̄ c̄ d c̄ d̄ d c d c̄ d b̄ c d̄ c d

(2,6,12,16) d 0 b 0 d c̄ d c a c̄ d̄ d 0 d̄ 0 b c̄ b c d̄ c d

d 0 b 0 d c̄ d̄ c̄ ā c d d 0 d̄ 0 b c̄ b̄ c̄ d c̄ d̄

(2,8,16,16) b d c c̄ d̄ b d c̄ 0 c̄ d b d̄ c̄ c̄ d̄ b̄ d̄ c a c̄ d

b d c c̄ d̄ b d̄ c 0 c d̄ b d̄ c̄ c̄ d̄ b̄ d c̄ ā c d̄

(2,10,10,18) d c̄ a c d̄ b d c̄ d̄ c̄ b d̄ b d c d b d b̄ d

d c̄ a c d̄ b̄ d̄ c d c b d̄ b d c d̄ b̄ d̄ b d̄

(4,4,16,16) a d c d c̄ a d̄ c̄ d̄ c b c d̄ c d b c̄ d c̄ d̄

a d c d c̄ ā d c d c̄ b c d̄ c d b̄ c d̄ c d
a Koukouvinos, Mitrouli, and Seberry [129, p278-279] c© Charles Babbage Research

Centre



Table E.3 Some order 44 4-variable sequences with zero and non-periodic autocor-
relation function a (continued)

Design A1 A2 A3 A4

(4,6,12,18) b a d̄ c d d a b̄ c̄ d̄ d c d̄ c b̄ d c̄ d c d

b a d̄ c d d̄ ā b c d d c d̄ c b̄ d̄ c d̄ c̄ d̄

(4,8,8,16) d c a c̄ d d b ā b̄ d d b 0 b d̄ d c 0 c d̄

d c a c̄ d d̄ b̄ a b d̄ d b 0 b d̄ d̄ c̄ 0 c̄ d

(4,10,10,16) b c a c̄ b b d ā d̄ b b c d c b̄ b d c̄ d b̄

b c a c̄ b b̄ d̄ a d b̄ b c d c b̄ b̄ d̄ c d̄ b

(8,8,10,10) a c 0 c̄ a a c d c ā b d 0 d̄ b b d c̄ d b̄

a c 0 c̄ a ā c̄ d̄ c̄ a b d 0 d̄ b b̄ d̄ c d̄ b

(10,10,10,10) a b b d d̄ b̄ a a c c̄ d c c ā a c̄ d d b̄ b

a b b d d̄ b ā ā c̄ c d c c ā a c d̄ d̄ b b̄
a Koukouvinos, Mitrouli, and Seberry [129, p278-279] c© Charles Babbage

Research Centre

Table E.4 Some order 44 3-variable sequences with zero and non-periodic autocor-
relation function a

Design A1 A2 A3 A4

(1,4,32) b b̄ b̄ b̄ a a b b b b̄ b b b̄ b c b̄ b b̄ b̄ 0
b b̄ b̄ b̄ a ā b̄ b̄ b̄ b b b b̄ b 0 b b̄ b b 0

(1,9,34) b b̄ b̄ b b 0 b̄ b̄ b b b̄ b b b b b b b b̄ b b̄ b̄

a ā ā ā b b b̄ b b̄ ā b̄ a ā b b̄ ā b̄ b̄ b̄ b a b̄

(1,11,32) b b̄ b b b 0 b̄ b̄ b̄ b b̄ a b b b̄ b̄ b b̄ b b b b

a a b̄ a b b̄ b b b̄ b̄ b a a ā ā b b ā a ā b b

(1,17,26) a a a ā a 0 ā a ā ā ā b b b b b b̄ b b b̄ a b̄

a a b a b b̄ b̄ a b̄ b b̄ b b b a b b̄ b̄ b b b̄ ā

(1,18,25) a a a ā a 0 ā a ā ā ā a a b b̄ b a b̄ b̄ b̄ b b

a a b̄ a b̄ b̄ b b b̄ b b a ā b̄ b̄ b̄ b b̄ b b̄ b̄ b̄
(2,2,34) c c c c̄ c̄ c c̄ c̄ a c c c c 0 c c̄ c c̄ b c

c c c c̄ c̄ c c̄ c ā c̄ c c c 0 c c̄ c c b̄ c̄

(2,4,32) b b b̄ b a a b̄ b̄ b b̄ b b̄ b b 0 c b b̄ b b

b b b b̄ a ā b̄ b̄ b̄ b b b b b̄ 0 c̄ b b b b̄

(2,12,22) b c c 0 c c̄ b a b̄ c b c c̄ 0 c̄ c̄ b c b c̄

b c c 0 c c b̄ ā b c̄ b c c̄ 0 c̄ c b̄ c̄ b̄ c
a Koukouvinos, Mitrouli, and Seberry [129, p276-280] c© Charles Babbage

Research Centre
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Table E.5 The theoretically possible 4-tuples for order 44.

1: (1,1,1,1) : 4 60: (1,4,8,8) : 21 119: (2,3,6,16) : 27 179: (4,4,4,25) : 37
2: (1,1,1,4) : 7 61: (1,4,8,18) : 31 120: (2,3,6,25) : 36 180: (4,4,5,5) : 18
3: (1,1,1,9) : 12 62: (1,4,9,9) : 23 121: (2,3,9,24) : 38 181: (4,4,5,20) : 33
4: (1,1,1,16) : 19 63: (1,4,9,16) : 30 122: (2,3,10,15) : 30 182: (4,4,8,8) : 24
5: (1,1,1,25) : 28 64: (1,4,9,25) : 39 123: (2,4,4,8) : 18 183: (4,4,8,18) : 34
6: (1,1,1,36) : 39 65: (1,4,10,10) : 25 124: (2,4,4,18) : 28 184: (4,4,9,9) : 26
7: (1,1,2,2) : 6 66: (1,4,13,13) : 31 125: (2,4,4,32) : 42 185: (4,4,9,16) : 33
8: (1,1,2,8) : 12 67: (1,4,16,16) : 37 126: (2,4,6,12) : 24 186: (4,4,9,25) : 42
9: (1,1,2,18) : 22 68: (1,4,17,17) : 39 127: (2,4,6,27) : 39 187: (4,4,10,10) : 28
10: (1,1,2,32) : 36 69: (1,4,18,18) : 41 128: (2,4,8,9) : 23 188: (4,4,13,13) : 34
11: (1,1,4,4) : 10 70: (1,5,5,9) : 20 129: (2,4,8,16) : 30 189: (4,4,16,16) : 40
12: (1,1,4,9) : 15 71: (1,5,5,16) : 27 130: (2,4,8,25) : 39 190: (4,4,17,17) : 42
13: (1,1,4,16) : 22 72: (1,5,5,25) : 36 131: (2,4,9,18) : 33 191: (4,4,18,18) : 44
14: (1,1,4,25) : 31 73: (1,5,6,30) : 42 132: (2,4,11,22) : 39 192: (4,5,5,9) : 23
15: (1,1,4,36) : 42 74: (1,5,9,20) : 35 133: (2,4,12,24) : 42 193: (4,5,5,16) : 30
16: (1,1,5,5) : 12 75: (1,5,16,20) : 42 134: (2,4,16,18) : 40 194: (4,5,5,25) : 39
17: (1,1,5,20) : 27 76: (1,6,8,12) : 27 135: (2,5,5,8) : 20 195: (4,5,9,20) : 38
18: (1,1,8,8) : 18 77: (1,6,8,27) : 42 136: (2,5,5,18) : 30 196: (4,6,8,12) : 30
19: (1,1,8,18) : 28 78: (1,6,12,18) : 37 137: (2,5,5,32) : 44 197: (4,6,12,18) : 40
20: (1,1,8,32) : 42 79: (1,6,14,21) : 42 138: (2,5,8,20) : 35 198: (4,8,8,9) : 29
21: (1,1,9,9) : 20 80: (1,8,8,9) : 26 139: (2,6,7,21) : 36 199: (4,8,8,16) : 36
22: (1,1,9,16) : 27 81: (1,8,8,16) : 33 140: (2,6,9,12) : 29 200: (4,8,9,18) : 39
23: (1,1,9,25) : 36 82: (1,8,8,25) : 42 141: (2,6,9,27) : 44 201: (4,9,9,9) : 31
24: (1,1,10,10) : 22 83: (1,8,9,18) : 36 142: (2,6,12,16) : 36 202: (4,9,9,16) : 38
25: (1,1,13,13) : 28 84: (1,8,11,22) : 42 143: (2,8,8,8) : 26 203: (4,9,10,10) : 33
26: (1,1,16,16) : 34 85: (1,9,9,9) : 28 144: (2,8,8,18) : 36 204: (4,9,13,13) : 39
27: (1,1,17,17) : 36 86: (1,9,9,16) : 35 145: (2,8,9,9) : 28 205: (4,10,10,16) : 40
28: (1,1,18,18) : 38 87: (1,9,9,25) : 44 146: (2,8,9,16) : 35 206: (5,5,5,5) : 20
29: (1,1,20,20) : 42 88: (1,9,10,10) : 30 147: (2,8,9,25) : 44 207: (5,5,5,20) : 35
30: (1,2,2,4) : 9 89: (1,9,13,13) : 36 148: (2,8,10,10) : 30 208: (5,5,8,8) : 26
31: (1,2,2,9) : 14 90: (1,9,16,16) : 42 149: (2,8,13,13) : 36 209: (5,5,8,18) : 36
32: (1,2,2,16) : 21 91: (1,9,17,17) : 44 150: (2,8,16,16) : 42 210: (5,5,9,9) : 28
33: (1,2,2,25) : 30 92: (1,10,10,16) : 37 151: (2,8,17,17) : 44 211: (5,5,9,16) : 35
34: (1,2,2,36) : 41 93: (2,2,2,2) : 8 152: (2,9,9,18) : 38 212: (5,5,9,25) : 44
35: (1,2,3,6) : 12 94: (2,2,2,8) : 14 153: (2,9,11,22) : 44 213: (5,5,10,10) : 30
36: (1,2,3,24) : 30 95: (2,2,2,18) : 24 154: (2,10,10,18) : 40 214: (5,5,13,13) : 36
37: (1,2,4,8) : 15 96: (2,2,2,32) : 38 155: (2,10,12,15) : 39 215: (5,5,16,16) : 42
38: (1,2,4,18) : 25 97: (2,2,4,4) : 12 156: (3,3,3,3) : 12 216: (5,5,17,17) : 44
39: (1,2,4,32) : 39 98: (2,2,4,9) : 17 157: (3,3,3,12) : 24 217: (5,8,8,20) : 41
40: (1,2,6,12) : 21 99: (2,2,4,26) : 24 158: (3,3,3,27) : 36 218: (6,6,6,6) : 24
41: (1,2,6,27) : 36 100: (2,2,4,25) : 33 159: (3,3,6,6) : 18 219: (6,6,6,24) : 41
42: (1,2,8,9) : 20 101: (2,2,4,36) : 44 160: (3,3,6,24) : 36 220: (6,6,12,12) : 36
43: (1,2,8,16) : 27 102: (2,2,5,5) : 14 161: (3,3,12,12) : 30 221: (6,6,15,15) : 42
44: (1,2,8,25) : 36 103: (2,2,5,20) : 29 162: (3,3,15,15) : 36 222: (6,7,8,21) : 42
45: (1,2,9,18) : 30 104: (2,2,8,8) : 20 163: (3,4,6,8) : 21 223: (6,8,9,12) : 35
46: (1,2,9,32) : 44 105: (2,2,8,18) : 30 164: (3,4,6,18) : 31 224: (6,8,12,16) : 42
47: (1,2,11,22) : 36 106: (2,2,8,32) : 44 165: (3,4,8,24) : 39 225: (7,7,7,7) : 28
48: (1,2,12,24) : 39 107: (2,2,9,9) : 22 166: (3,6,6,12) : 27 226: (7,7,14,14) : 42
49: (1,2,16,18) : 37 108: (2,2,9,16) : 29 167: (3,6,6,27) : 42 227: (8,8,8,8);32
50: (1,3,6,8) : 18 109: (2,2,9,25) : 38 168: (3,6,8,9) : 26 228: (8,8,8,′ 18);42
51: (1,3,6,18) : 28 110: (2,2,10,10) : 24 169: (3,6,8,16) : 33 229: (8,8,9,9) : 34
52: (1,3,6,32) : 42 111: (2,2,13,13) : 30 170: (3,6,8,25) : 42 230: (8,8,9,16) : 41
53: (1,3,8,24) : 36 112: (2,2,16,16) : 36 171: (3,6,9,18) : 36 231: (8,8,10,10) : 36
54: (1,4,4,4) : 13 113: (2,2,17,17) : 38 172: (3,6,11,22) : 42 232: (8,8,13,13) : 42
55: (1,4,4,9) : 18 114: (2,2,18,18) : 40 173: (3,8,9,24) : 44 233: (8,9,9,18) : 45
56: (1,4,4,16) : 25 115: (2,2,20,20) : 44 174: (3,8,10,15) : 36 234: (9,9,9,9) : 36
57: (1,4,4,25) : 34 116: (2,3,4,6) : 15 175: (3,12,12,12) : 39 235: (9,9,10,10) : 38
58: (1,4,5,5) : 15 117: (2,3,4,24) : 33 176: (4,4,4,4) : 16 236: (9,9,13,13) : 44
59: (1,4,5,20) : 30 118: (2,3,6,9) : 20 177: (4,4,4,9) : 21 237: (10,10,10,10) : 40

178: (4,4,4,16) : 28 238: (11,11,11,11) : 44



Appendix F
Orthogonal Designs in Powers of 2,
Especially Order 16, 32 and 64

F.1 Some Theorems

Theorem F.1 (P.J. Robinson). [80, p.268] There is an orthogonal design
OD(2t;1,1,1,1,2,2,4,4, . . . ,2t−2,2t−2).

Using Corollary 6.8 we have

Lemma F.1. All four variable designs OD(32;a,b,c,32−a− b− c),
OD(64;a,b,c,64−a− b− c), OD(128;a,b,c,128−a− b− c) exist.

By equating variables we obtain:

Lemma F.2 (P.J. Robinson). All orthogonal designs of type (1,1,a,b,c),
a+ b+ c = 2t−2, exist in order 2t, t > 3.

Hence we have the following results of Wallis.

Lemma F.3. All orthogonal designs of type (a,b,2t−a− b) (i.e. full orthogo-
nal designs) exist in order 2t.

Lemma F.4. All orthogonal designs on two variables exist in orders 2t.

From [122] and Tables 8.1 and 8.2 we have

Theorem F.2 (Robinson Kharaghani Tayfeh-Rezaie).
An OD(n;1,1,1,1,1,n−5) exists if and only if n = 8,16,24,32,40.

Theorem F.3 (Kharaghani Tayfeh-Rezaie). There exist
OD(32;1,1,1,1,1,12,15) and OD(32;1,1,1,1,1,9,9,9). Hence there exists an
OD(32;1,1,1,1,1,27).

We now consider specific powers of two.

403© Springer International Publishing AG 2017
J. Seberry, Orthogonal Designs,
DOI 10.1007/978-3-319-59032-5
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F.2 Orthogonal Designs in Order 16

We summarize the known results for order 16.

1. The Radon number is 9.
2. Table F.1 lists all 9-tuples for orthogonal design in order 16.
3. All designs on n variables, n ≤ 9, which exist can be obtained by equating

and killing variables in the 9 variable designs which exist and the 8 variable
designs listed in Table F.2.

4. Many 9 and 8 tuples are proved non-existent by theorems of Shapiro and
Geramita-Verner. The remainder are proved non-existent by combinatorial
arguments in the PhD thesis of Peter J. Robinson [166].

5. Table F.3 lists the 9-tuples which cannot be the type of an orthogonal
design in order 16.

6. Table F.4 gives the 16 cases of 9-tuples in order 16 which are excluded by
P. Robinson.

7. The (1,1,1,1,1,1,1,1,1) design is exhibited in section 4.2 and the
(1,1,2,2,2,2,2,2,2) design is obtained by using Theorem 4.3 on the
(1,1,1,1,1,1,1,1) design in order 8 exhibited in Section 4.2.

8. The (1,1,1,1,1,1,3,3) and (1,1,1,1,2,2,3,3) designs are given in Exam-
ple 6.6. The (1,1,1,2,2,3,3,3), (1,1,1,1,1,2,2,2,2), (1,1,1,1,1,1,1,1,2) and
(1,1,2,2,2,2,3,3) designs are given in Example 6.4.

9. There are 67 8-tuples which might be the type of an orthogonal design in
order 16. The following 4 cannot be the types of orthogonal designs by
the results of Geramita and Verner:

(1,1,1,1,1,3,3,4) (1,1,1,1,2,2,2,5) (1,1,1,2,2,2,3,3)
(1,1,2,2,2,2,2,3).

10. We exhibit the remaining designs of the enunciation but we first consider
the matrix
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P R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X1 X2 X3 M X4 N Q P A B C D E F G H

X̄2 X1 M X̄3 N X̄4 P Q̄ B Ā D C̄ F Ē H Ḡ

X̄3 M̄ X1 X2 Q P̄ X̄4 N C D̄ Ā B G H̄ Ē F

M̄ X3 X̄2 X1 P̄ Q̄ N X4 D̄ C̄ B A H̄ Ḡ F E

X̄4 N̄ Q̄ P X1 X2 X3 M̄ E F̄ Ḡ H Ā B C D̄

N̄ X4 P Q X̄2 X1 M̄ X̄3 F̄ Ē H G B A D̄ C̄

Q̄ P̄ X4 N̄ X̄3 M X1 X2 Ḡ H̄ Ē F̄ C D A B

P̄ Q N̄ X̄4 M X3 X̄2 X1 H̄ G F̄ E D C̄ B Ā

Ā B̄ C̄ D Ē F G H X1 X2 X3 R X4 S T U

B̄ A D C F E H Ḡ X̄2 X1 R X̄3 S X̄4 U T̄

C̄ D̄ A B̄ G H̄ E F X̄3 R̄ X1 X2 T Ū X̄4 S

D̄ C B̄ Ā H̄ Ḡ F Ē R̄ X3 X̄2 X1 Ū T̄ S X4

Ē F̄ Ḡ H A B̄ C̄ D̄ X̄4 S̄ T̄ U X1 X2 X3 R̄

F̄ E H G B̄ Ā D̄ C S̄ X4 U T X̄2 X1 R̄ X̄3

Ḡ H̄ E F̄ C̄ D Ā B̄ T̄ Ū X4 S̄ X̄3 R X1 X2

H̄ G F̄ Ē D C B̄ A Ū T S̄ X̄4 R X3 X̄2 X1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
This matrix is an orthogonal design if and only if the following conditions

are satisfied:

{|M |, |N |, |Q|, |P | } = {|R|, |S|, |T |, |U | }

(M +R)D +(N +S)F +(Q+T )G+(P +U)H = 0
(M +R)C +(N +S)E +(Q−T )H − (P −U)G = 0
(M +R)B +(N −S)H − (Q+T )E− (P −U)F = 0
(M +R)A+(N −S)G− (Q−T )F +(P +U)E = 0
(R−M)H +(N +S)B +(Q+T )C +(P −U)D = 0
(R−M)G+(N +S)A+(Q−T )D− (P +U)C = 0
(R−M)F +(N −S)D− (Q+T )A− (P +U)B = 0
(R−M)E +(N −S)C − (Q−T )B +(P −U)A = 0

AH −BG+CF −DE = 0

11. The following designs can be obtained by choosing the variables of PR in
the manner indicated:
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(1,1,1,1,1,1,1,1,4) M = S = x5, N = T = x6,
R = Q̄ = x7, P = U = x8,
A = D = G = F̄ = x9, a11 others zero;

(1,1,1,1,1,1,1,1,8) M = S = x5, N = T = x6,
R = P = x7, Q = U = x8,
A = B̄ = D = C = G = H̄ = Ē = F̄ = x9;

(1,1,1,1,1,1,2,2,2) A = x5, P = U = x6, R = D̄ = M̄ = x7,
N = S̄ = F = x8, Q = T̄ = G = x9, all others zero;

(1,1,1,1,1,1,4,4) M = S = x5, R = Q̄ = x6, A = G = D = F̄ = x7,
B = H = C = Ē = x8, all others zero;

(1,1,1,1,1,1,5,5) M = S = x5, N = U = x6,
A = G = P = R = C = Ē = x7,
B = H = D = F̄ = Q̄ = T̄ = x8,

(1,1,1,1,2,2,4,4) D = F = x5, G = H = x6,
M = R = E = C = N̄ = S̄ = x7,
Q = T = B = A = P̄ = Ū = x8.

12. Table F.5 gives orthogonal design of type (1,1,1,1,2,2,2,2,2) in order 16.
13. There are 45 possible 9-tuples that might be the type of orthogonal

designs.
14. Table F.6 lists the 30 8-variable designs that do not exist as an orthogonal

design in order 16.
15. There are 94 possible 7-tuples. The following 13 do not exist - all others

are known:

(1,1,1,1,1,1,7) (1,1,1,1,1,4,6) (1,1,1,1,2,4,5) (1,1,1,2,2,2,7)
(1,1,1,1,1,2,7) (1,1,1,1,1,4,7) (1,1,1,1,3,4,4) (1,1,1,2,2,3,5)
(1,1,1,1,1,3,7) (1,1,1,1,2,2,7) (1,1,1,2,2,2,6) (1,1,2,2,2,2,5)

(1,1,2,2,2,3,4)

16. Of 125 possible 6-tuples, all are the types of orthogonal designs in order
16 except (1,1,1,1,4,7) and (1,1,2,2,2,7) which do not exist.

17. All n-tuples n = 1,2,3,4,5 are the types of orthogonal designs in order 16.

Table F.1 9 variable designs in Order 16

(1,1,1,1,1,1,1,1,1) (1,1,1,1,1,1,1,1,8) (1,1,1,1,2,2,2,2,2)
(1,1,1,1,1,1,1,1,2) (1,1,1,1,1,2,2,2,2) (1,1,2,2,2,2,2,2,2)
(1,1,1,1,1,1,1,1,4) (1,1,1,1,1,2,3,3,3) (1,1,1,1,1,1,2,2,2)
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Table F.2 Known 8-variable designs in order 16

(1,1,1,1,1,1,1,1) (1,1,1,1,1,2,2,2) (1,1,1,2,2,3,3,3)
(1,1,1,1,1,1,1,2) (1,1,1,1,1,2,2,3) (1,1,1,1,2,3,3,4)
(1,1,1,1,1,1,1,3) (1,1,1,1,1,2,2,4) (1,1,1,1,3,3,3,3)
(1,1,1,1,1,1,1,4) (1,1,1,1,1,2,3,3) (1,1,1,2,2,2,2,2)
(1,1,1,1,1,1,1,5) (1,1,1,1,1,2,3,6) (1,1,1,2,2,2,2,3)
(1,1,1,1,1,1,1,8) (1,1,1,1,1,3,3,3) (1,1,1,2,2,3,3,3)
(1,1,1,1,1,1,1,9) (1,1,1,1,1,3,3,5) (1,1,2,2,2,2,2,2)
(1,1,1,1,1,1,2,2) (1,1,1,1,2,2,2,2) (1,1,2,2,2,2,2,4)
(1,1,1,1,1,1,2,4) (1,1,1,1,2,2,2,3) (1,1,2,2,2,2,3,3)
(1,1,1,1,1,1,2,8) (1,1,1,1,2,2,2,4) (1,2,2,2,2,2,2,2)
(1,1,1,1,1,1,3,3) (1,1,1,1,2,2,3,3) (1,2,2,2,2,2,2,3)
(1,1,1,1,1,1,4,4) (1,1,1,1,2,2,4,4) (2,2,2,2,2,2,2,2)
(1,1,1,1,1,1,5,5)

Table F.3 9-tuple designs which cannot be the type of an orthogonal design in
order 16

(1,1,1,1,1,1,1,1,7) (1,1,1,1,1,1,2,2,5) (1,1,1,1,1,2,2,2,5)
(1,1,1,1,1,1,1,2,3) (1,1,1,1,1,1,2,3,3) (1,1,1,1,1,2,2,3,3)
(1,1,1,1,1,1,1,2,5) (1,1,1,1,1,1,2,3,4) (1,1,1,1,2,2,2,2,3)
(1,1,1,1,1,1,1,2,6) (1,1,1,1,1,1,3,3,3) (1,1,1,1,2,2,2,3,3)
(1,1,1,1,1,1,1,3,3) (1,1,1,1,1,1,3,3,4) (1,1,1,2,2,2,2,2,2)
(1,1,1,1,1,1,1,3,5) (1,1,1,1,1,2,2,2,3) (1,1,1,2,2,2,2,2,3)
(1,1,1,1,1,1,1,4,4) (1,1,1,1,1,2,2,2,4)

Table F.4 9-tuple designs excluded by Robinson in order 16

(1,1,1,1,1,1,1,1,3) (1,1,1,1,1,1,1,3,4) (1,1,1,1,1,1,2,3,5)
(1,1,1,1,1,1,1,1,5) (1,1,1,1,1,1,1,3,6) (1,1,1,1,1,1,2,4,4)
(1,1,1,1,1,1,1,1,6) (1,1,1,1,1,1,1,4,5) (1,1,1,1,1,2,2,3,4)
(1,1,1,1,1,1,1,2,2) (1,1,1,1,1,1,2,2,3)
(1,1,1,1,1,1,1,2,4) (1,1,1,1,1,1,2,2,4) (1,1,1,1,2,2,2,2,4)
(1,1,1,1,1,1,1,2,7) (1,1,1,1,1,1,2,2,6)
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Table F.5 OD(16;1,1,1,1,2,2,2,2,2)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x5 x5 x1 x3 x2 x4 0 0
x̄5 x5 x3 x̄1 x4 x̄2 0 0
x̄1 x̄3 x5 x5 0 0 x̄2 x4
x̄3 x1 x̄5 x5 0 0 x4 x2
x̄2 x̄4 0 0 x5 x5 x1 x̄3
x̄4 x2 0 0 x̄5 x5 x̄3 x̄1
0 0 x2 x̄4 x̄1 x3 x5 x5
0 0 x̄4 x̄2 x3 x1 x̄5 x5

x6 x7 x8 x9 x7 x6 x9 x8
x7 x̄6 x̄9 x8 x̄6 x̄7 x8 x9
x9 x8 x̄6 x7 x̄8 x9 x̄7 x̄6
x̄8 x9 x7 x6 x̄9 x̄8 x̄6 x7
x7 x6 x8 x̄9 x̄6 x7 x9 x8
x6 x̄7 x9 x8 x7 x6 x̄8 x9
x̄9 x8 x̄7 x6 x8 x9 x6 x7
x̄8 x̄9 x6 x7 x̄9 x8 x7 x̄6

x̄6 x̄7 x̄8 x̄9 x̄7 x̄6 x̄8 x9
x̄6 x̄7 x̄8 x̄9 x̄7 x̄6 x̄8 x9
x̄9 x̄8 x6 x̄7 x9 x̄8 x7 x̄6
x8 x̄9 x̄7 x̄6 x8 x9 x6 x7
x̄7 x6 x̄9 x8 x6 x̄7 x̄9 x̄8
x6 x7 x̄8 x̄9 x̄7 x̄6 x8 x̄9
x8 x̄9 x7 x6 x̄8 x̄9 x̄6 x̄7
x9 x8 x6 x7 x9 x8 x7 x6

x5 x5 x1 0 x2 x̄4 x3 0
x̄5 x5 0 x̄1 x̄4 x̄2 0 x̄3
x̄1 0 x5 x5 x3 0 x̄2 x̄4
0 x1 x̄5 x5 0 x̄3 x̄4 x2
x̄2 x4 x̄3 0 x5 x5 x1 0
x4 x2 0 x3 x̄5 x5 0 x̄1
x̄3 0 x2 x̄4 x̄1 0 x5 x5
0 x3 x4 x̄2 0 x1 x̄5 x5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Table F.6 8-variable designs that do not exist as an orthogonal design
in order 16

(1,1,1,1,1,1,1,6) (1,1,1,1,1,1,4,5) (1,1,1,1,1,3,4,4)
(1,1,1,1,1,1,1,7) (1,1,1,1,1,1,4,6) (1,1,1,1,2,2,2,5)
(1,1,1,1,1,1,2,3) (1,1,1,1,1,2,2,5) (1,1,1,1,2,2,2,6)
(1,1,1,1,1,1,2,5) (1,1,1,1,1,2,2,6) (1,1,1,1,2,2,3,4)
(1,1,1,1,1,1,2,6) (1,1,1,1,1,2,2,7) (1,1,1,1,2,2,3,5)
(1,1,1,1,1,1,2,7) (1,1,1,1,1,2,3,4) (1,1,1,2,2,2,2,4)
(1,1,1,1,1,1,3,4) (1,1,1,1,1,2,3,5) (1,1,1,2,2,2,3,3)
(1,1,1,1,1,1,3,5) (1,1,1,1,1,2,4,4) (1,1,1,2,2,2,2,5)
(1,1,1,1,1,1,3,6) (1,1,1,1,1,2,4,5) (1,1,1,2,2,2,3,4)
(1,1,1,1,1,1,3,7) (1,1,1,1,1,3,3,4) (1,1,2,2,2,2,2,3)
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F.3 Orthogonal designs in Order 32

We summarize the known results for order 32.

1. There are at most 10 variables for this order.
2. In Tables F.7, F.8, F.10, F.11 and F.12 we give 10, 9, 8 and 7 tuples

for which orthogonal designs exist in order 32. The results of Table F.7
are given in Street [202]. These designs were constructed in one of the
following two ways:

(a) using product designs and amicable orthogonal designs in Theorem
6.6, or

(b) using a doubling construction (Theorem 4.3) with orthogonal designs
in order 16.

3. Table F.7 lists 10-tuples which are orthogonal designs of order 32, as are
the full 10-tuples designs listed in Table F.8.

4. The following 9-tuples are the types of orthogonal designs:

(1,1,1,2,2,4,a,a,a) a = 1,2,3,4,5,6 or 7;

as are the 9-tuples given in Table F.10. Table F.9 gives the construction
method for 9 variables.

5. Table F.11 gives the construction of 8 variable designs in order 32.
6. Kharaghani and Tayfeh-Rezaie [122] showed by complete computer

search that “there is a full OD(32;1,1,1,1,1,u1, . . . ,uk) if and only if
(u1, . . . ,uk) = (9,9,9), (9,18), (12,15) or (27).”

7. Some full 7-tuples are listed in Table F.12.
8. The 86 types of orthogonal designs given in Table F.13 have not been

resolved.
9. All full 6-tuples are the type of an orthogonal design.

10. All possible n-tuples, n = 1,2,3,4,5 are the types of orthogonal designs.
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Table F.7 10-tuple design in order 32 a

(1,1,1,1,1,1,1,3,3,3), (1,1,1,1,1,2,2,2,4,4), (1,1,2,2,2,2,2,2,2,4),
(1,1,1,1,1,1,2,2,2,4), (1,1,1,1,1,2,2,4,4,4), (1,1,2,2,2,2,2,3,3,3),
(1,1,1,1,1,1,2,2,4,8), (1,1,1,1,1,2,2,5,5,5), (1,1,2,2,2,2,2,3,3,6),
(1,1,1,1,1,1,2,3,3,6), (1,1,1,1,1,2,3,6,6,6), (1,1,2,2,2,2,2,4,4,4),
(1,1,1,1,1,1,2,4,4,4), (1,1,1,2,2,2,2,3,3,3), (1,1,2,2,2,2,4,4,4,4),
(1,1,1,1,1,1,3,3,4,12), (1,1,1,2,2,2,4,4,4,4), (1,1,2,2,3,3,3,3,3,3),
(1,1,1,1,1,1,4,4,4,4), (1,1,1,2,2,2,4,5,5,5), (1,1,2,3,3,3,3,3,3,3),
(1,1,1,1,1,1,4,5,5,5), (1,1,1,3,3,3,3,3,3,3), (1,1,2,3,3,3,3,4,4,4),
(1,1,1,1,1,1,4,6,6,6), (1,1,1,3,3,3,4,4,4,4), (2,2,2,2,2,2,2,2,2,2),

(1,1,2,2,2,2,2,2,2,2), (2,2,2,2,2,2,2,4,4,4).
a D. Street [202, p135] c© D. Street

Table F.8 Full 10 variable design in order 32

Type Construction

(1,1,1,1,2,2,3,3,9,9) (1,1,2,3;1,3,3;1) and ((1,3);(1,1,2)) in (a)
(1,1,1,1,2,2,4,4,8,8) (1,1,1,1,2;2,4;2,4,4) and ((1,1);(1,1)) in (a)
(1,1,1,2,3,3,3,3,6,9) (1,1,1,2;1,1,3;3) and ((1,3);(1,1,2)) in (a)
(1,1,2,2,2,2,2,2,2,16) (1,1,1,1,1,1,1,1,8) in (b)
(1,1,2,2,2,2,4,6,6,6) (1,1,1,1,1,2,3,3,3) in (b)
(1,1,2,4,4,4,4,4,4,4) (1,1,2,2,2,2,2,2,2) in (b)
(1,1,3,3,3,3,3,3,6,6) (1,1,1,2;1,1,3;3) and ((3,1);(1,1,2)) in (a)
(1,2,2,2,2,2,3,6,6,6) (1,2,2,2,3;2,2,6;6) and ((1,1);(1,1)) in (a)
(2,2,2,2,2,2,2,2,8,8) (8,1,1,1,1,1,1,1,1) in (b)
(2,2,2,2,2,2,2,6,6,6) (2,1,1,1,1,1,3,3,3) in (b)
(2,2,2,2,2,3,3,4,6,6) (3,1,1,1,1,1,2,3,3) in (b)
(2,2,2,2,4,4,4,4,4,4) (2,1,1,2,2,2,2,2,2) in (b)
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Table F.9 Full 9 variable design in order 32 construction

Type Construction

(1,1,1,1,2,2,3,7,14) (1,1,2,3;7;1) and ((1,1,2);(1,1,2)) in (a)
(1,1,1,1,2,2,4,10,10) (1,1,1,1,2;2,4;10) and ((1,1)); (1,1)) in (a)
(1,1,1,1,2,4,7,7,8) (1,1,1,2,4;1,8;7) and ((1,1);(1,1)) in (a)
(1,1,1,1,4,4,6,6,8) (1,1,1,1;2,2;4) and ((1,3);(1,1,2)) in (a)
(1,1,1,2,2,3,4,6,12) (1,1,1,2,2;3,4;3,6) and ((1,1);(2)) in (a)
(1,1,1,2,2,3,6,8,8) (1,1,1,2,3;2,6;8) and ((1, l); (2)) in (a)
(1,1,1,2,2,4,7,7,7) (1,1,1;1,1,1;1) and ((1,7);(2,2,4)) in (a)
(1,1,1,3,3,3,5,5,10) (1,1,1;1,1,1;5) and ((1,3);(1,1,2)) in (a)
(1,1,1,2,3,3,5,6,10) (1,1,1,2;5;3) and ((1,1,2);(1,1,2)) in (a)
(1,1,2,2,2,4,6,7,7) (1,1,2,3;7;1) and ((2,1,1);(1,1,2)) in (a)
(1,1,2,3,3,4,4,6,8) (1,1,2,3,4;3,8;2,3) and ((1,1);(2)) in (a)
(1,1,2,3,3,4,5,5,8) (1,1,2,3,4;3,8;5) and ((1,1);(1,1)) in (a)
(2,2,2,3,3,4,5,5,6) (1,1,1,2;5;3) and ((2,1,1);(1,1,2)) in (a)
(2,2,3,3,3,3,4,4,8) (1,1,1,1;2,2;2,2) and ((3,1);(1,1,2)) in (a)
(2,2,3,3,3,4,5,5,5) (1,1,1;1,1,1;1) and ((3,5);(2,2,4)) in (a)
(1,1,2,2,2,2,2,10,10) (1,1,1,1,1,1,5,5) in (b)
(2,2,2,2,2,2,5,5,10) (5,1,1,1,1,1,1,5) in (b)
(2,2,3,3,4,4,4,4,6) (3,1,1,2,2,2,2,3) in (b)
(2,2,2,2,2,2,2,9,9) (9,1,1,1,1,1,1,1) in (b)
(2,2,2,2,2,5,5,6,6) (5,1,1,1,1,1,3,3) in (b)
(2,2,2,2,4,4,4,6,6) (4,1,1,1,1,2,3,3) in (b)
(2,3,3,4,4,4,4,4,4) (3,1,2,2,2,2,2;2) in (b)
(1,1,1,1,2,3,3,5,15) (Example 5.121)
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Table F.10 Known 9 Full Variable Designs in Order 32

1 1 1 1 2 2 3 3 18
1 1 1 1 2 2 3 7 14
1 1 1 1 2 2 3 9 12
1 1 1 1 2 2 4 4 16
1 1 1 1 2 2 4 8 12
1 1 1 1 2 2 4 10 10
1 1 1 1 2 2 6 9 9
1 1 1 1 2 2 8 8 8
1 1 1 1 2 3 3 5 15
1 1 1 1 2 3 3 9 11
1 1 1 1 2 3 5 9 9
1 1 1 1 2 4 4 8 10
1 1 1 1 2 4 6 8 8
1 1 1 1 2 4 7 7 8
1 1 1 1 3 3 4 9 9
1 1 1 1 4 4 4 8 8
1 1 1 1 4 4 6 6 8
1 1 1 2 2 3 3 9 10
1 1 1 2 2 3 4 6 12
1 1 1 2 2 3 4 9 9
1 1 1 2 2 3 6 8 8
1 1 1 2 2 4 4 8 9
1 1 1 2 2 4 5 8 8
1 1 1 2 2 4 7 7 7
1 1 1 2 3 3 3 3 15
1 1 1 2 3 3 3 6 12
1 1 1 2 3 3 3 9 9
1 1 1 2 3 3 5 6 10
1 1 1 2 3 3 6 6 9
1 1 1 2 3 4 4 8 8
1 1 1 3 3 3 3 6 11
1 1 1 3 3 3 3 8 9

1 1 1 3 3 3 5 5 10
1 1 1 3 3 3 5 6 9
1 1 2 2 2 2 2 2 18
1 1 2 2 2 2 2 4 16
1 1 2 2 2 2 2 10 10
1 1 2 2 2 2 4 6 12
1 1 2 2 2 2 6 6 10
1 1 2 2 2 3 3 9 9
1 1 2 2 2 4 4 8 8
1 1 2 2 2 4 6 6 8
1 1 2 2 2 4 6 7 7
1 1 2 2 2 6 6 6 6
1 1 2 2 4 4 6 6 6
1 1 2 3 3 3 3 6 10
1 1 2 3 3 3 3 7 9
1 1 2 3 3 3 4 6 9
1 1 2 3 3 4 4 6 8
1 1 2 3 3 4 5 5 8
1 1 2 4 4 4 4 4 8
1 1 3 3 3 3 3 3 12
1 1 3 3 3 3 3 6 9
1 1 3 3 3 3 6 6 6
1 1 4 4 4 4 4 4 6
1 2 2 2 2 2 2 2 17
1 2 2 2 2 2 2 3 16
1 2 2 2 2 2 3 6 12
1 2 2 2 2 2 6 6 9
1 2 2 2 2 3 6 6 8
1 2 2 2 2 4 6 6 7
1 2 2 2 2 5 6 6 6
1 2 2 2 3 3 3 4 12
1 2 2 2 3 4 6 6 6

1 2 2 3 3 3 3 6 9
1 2 4 4 4 4 4 4 5
1 3 3 3 3 3 3 6 7
1 3 3 3 3 3 4 6 6
1 3 4 4 4 4 4 4 4
2 2 2 2 2 2 2 2 16
2 2 2 2 2 2 2 6 12
2 2 2 2 2 2 2 8 10
2 2 2 2 2 2 2 9 9
2 2 2 2 2 2 4 8 8
2 2 2 2 2 2 5 5 10
2 2 2 2 2 2 6 6 8
2 2 2 2 2 3 3 4 12
2 2 2 2 2 3 3 6 10
2 2 2 2 2 3 4 6 9
2 2 2 2 2 3 6 6 7
2 2 2 2 2 4 6 6 6
2 2 2 2 2 5 5 6 6
2 2 2 2 3 3 4 6 8
2 2 2 2 3 3 6 6 6
2 2 2 2 3 4 5 6 6
2 2 2 2 4 4 4 4 8
2 2 2 2 4 4 4 6 6
2 2 2 3 3 4 4 6 6
2 2 2 3 3 4 5 5 6
2 2 2 4 4 4 4 4 6
2 2 3 3 3 3 4 4 8
2 2 3 3 3 4 5 5 5
2 2 3 3 4 4 4 4 6
2 2 4 4 4 4 4 4 4
2 3 3 3 3 3 3 6 6
2 3 3 4 4 4 4 4 4

a D. Street [202, p138-143] c©D. Street
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Table F.11 8 variable designs in order 32

Weight Type Construction

32 (1,1,1,1,7,7,7,7) (1,1,7;1,1,7;7) and ((1,1);(1,1)) in (a)
32 (1,1,1,2,6,6,6,9) Geramita Seberry [80, p. 394]
32 (1,1,1,2,6,7,7,7) ”
32 (1,1,1,3,6,6,6,8) (1,1,1;3;1) and ((1,1,2,2,2);(8)) in (a)
32 (1,2,3,3,4,4,5,10) (1,2,3,3;4,5;2,5) and ((1,1);(2)) in (a)
32 (1,2,3,3,4,5,7,7) (1,2,3,3;4,5;7) and ((1,1);(1,1)) in (a)
32 (2,2,2,4,4,5,5,8) (5,1,1,1,2,2,4) in (b)
32 (2,2,3,3,3,3,4,12) [80, p. 394]
32 (2,2,3,4,5,5,5,6) ”
32 (2,2,4,4,4,5,5,6) (5,1,1,2,2,2,3) in (b)
32 (2,3,3,3,3,6,6,6) [80, p. 394]
32 (2,3,3,3,5,5,5,6) ”
32 (4,4,4,4,4,4,4,4) ”

Table F.12 Full 7 variable design in order 32

Type Construction

(1,2,2,2,3,11,11) (1,2,2;2,3;11) and ((1,1);(1,1)) in (a)
(1,1,1,2,5,11,11) (1,1,1,2;5;11) and ((1,1);(1,1)) in (a)
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Table F.13 Unknown Full 7 Variable Designs in Order 32

1 1 1 1 1 1 26
1 1 1 1 1 2 25
1 1 1 1 1 3 24
1 1 1 1 1 4 23
1 1 1 1 1 5 22
1 1 1 1 1 6 21
1 1 1 1 1 7 20
1 1 1 1 1 8 19
1 1 1 1 1 9 18
1 1 1 1 1 10 17
1 1 1 1 1 11 16
1 1 1 1 1 12 15
1 1 1 1 1 13 14
1 1 1 1 2 13 13
1 1 1 1 3 6 19
1 1 1 1 4 5 19
1 1 1 1 4 11 13
1 1 1 1 5 10 13
1 1 1 2 2 2 23
1 1 1 2 5 5 17
1 1 1 3 4 5 17
1 1 1 4 5 7 13
1 1 1 5 5 5 14
1 1 1 5 5 7 12
1 1 1 5 5 8 11
1 1 1 5 6 7 11
1 1 2 2 2 5 19
1 1 2 5 5 5 13

1 1 3 4 4 4 15
1 1 4 4 4 5 13
1 1 4 4 4 7 11
1 1 4 4 5 5 12
1 1 4 4 6 7 10
1 1 4 5 5 7 9
1 1 5 5 5 5 10
1 1 5 5 5 6 9
1 1 5 5 6 7 7
1 1 5 6 6 6 7
1 2 2 2 3 5 17
1 2 2 2 5 5 15
1 2 2 2 5 9 11
1 2 2 3 3 8 13
1 2 2 3 5 5 14
1 2 2 3 5 8 11
1 2 2 4 4 4 15
1 2 2 4 4 5 14
1 2 2 4 5 5 13
1 2 2 4 5 7 11
1 2 2 5 5 5 12
1 2 2 5 5 6 11
1 2 2 5 5 7 10
1 2 4 4 4 7 10
1 2 4 4 5 7 9
1 2 4 5 5 5 10
1 2 5 5 5 5 9
1 2 5 5 5 7 7
1 2 5 5 6 6 7

1 3 3 3 3 5 14
1 3 3 3 7 7 8
1 3 3 4 4 4 13
1 3 4 4 4 5 11
1 3 4 4 4 7 9
1 3 4 5 6 6 7
1 3 5 5 5 6 7
1 3 5 5 6 6 6
1 4 4 4 5 5 9
1 4 4 4 5 7 7
1 4 4 5 5 6 7
1 4 5 5 5 5 7
1 4 5 5 5 6 6
1 5 5 5 5 5 6
2 2 2 3 7 7 9
2 2 2 4 4 7 11
2 2 2 5 5 5 11
2 2 4 5 5 7 7
2 2 5 5 5 5 8
2 3 3 3 3 5 13
2 3 3 3 7 7 7
2 4 4 5 5 5 7
2 5 5 5 5 5 5
3 3 3 3 4 5 11
3 3 3 3 5 7 8
3 3 4 4 4 5 9
3 3 4 4 4 7 7
3 4 4 4 5 5 7
4 4 4 5 5 5 5
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F.4 Orthogonal designs in Order 64

We use the following corollary to Theorem 6.6.

Corollary F.1. Suppose there are amicable orthogonal designs of types
AOD(n; (u1, . . . ,up); (v1, . . . ,vq)). Then there exist orthogonal designs of type

(i) (u1,u1,u1,2u1,w,w,3w,3v1, . . . ,3vq)
(ii) (u1,u1,u1,2u1,5u2, . . . ,5up,3v1, . . . ,3vq)

(iii) (u1,u1,u1,w,w,w,5v1,5v2, . . . ,5vq)
(iv) (u1,u1,u1,3u2, . . . ,3up,5v1, . . . ,5vq)
(v) (u1,u1,2u1,3u1,7u2, . . . ,7up,v1, . . . ,vq)

in order 8n where w = u2 +u3 + · · ·+up.

Proof. For (i) and (ii) use the theorem with the product design of type
POD(8 : 1,1,1,2;1,1,3;3). For (iii) and (iv) use the product design of type
POD(8 : 1,1,1;1,1,1;5) and for (v) use the product design of type POD(8 :
1,1,2,3;7;1). �	

We now summarize the known results for order 64.

1. There are at most 12 variables in this order.
2. All full orthogonal designs on five variables that exist in order 64 con-

structed using product designs, and amicable orthogonal designs are listed
in Table F.14.

3. Every 3-tuple of the form (a,b,64−a− b) is the type of an orthogonal
design.

4. All possible n-tuples, n = 1,2, are the types of orthogonal designs.



416 F Orthogonal Designs in Powers of 2

Table F.14 Orthogonal designs of order 64

Orthogonal design Product design Amicable design

(1,1,1,1,2,2,4,4,8,8,16,16) (1,1,1,1,2,4;2,8;2,4,8,8) ((1,1);(2))
(1,1,1,2,2,3,4,6,8,12,24) (1,1,1,2,2,4;3,8;3,6,12) ((1,1);(2))
(1,1,1,2,2,9,9,9,12,18) (1,1,1,2,2;3,4;9) ((1,3);(1,1,2))
(1,1,1,2,4,7,7,9,14,18) (1,1,1,2,4;9;7) ((1,1,2);(1,1,2))
(1,1,1,2,5,6,6,10,12,20) (1,1,1,2;5;3) ((1,1,2,4);(2,2,4))
(1,1,1,2,6,6,7,7,12,21) (1,1,1,2;1,1,3;3) ((1,7);(2,2,4))
(1,1,2,2,2,3,4,7,14,28) (1,1,2,3;7;1) ((1,1,2,4);(2,2,4))
(1,1,2,3,4,5,5,10,11,22) (1,1,2,3,4;11;5) ((1,1,2);(1,1,2))
(1,1,3,6,6,7,7,7,12,14) (1,1,1,2;1,1,3;3) ((7,1);(2,2,4))
(1,2,3,3,4,5,8,8,10,20) (1,2,3,3,4;5,8;4,5,10) ((1,1);(2))
(1,3,3,3,4,6,8,8,12,16) (1,1,1,2,4;1,8;1,2,4) ((3,1);(4))
(2,2,3,3,4,5,6,9,15,15) (1,1,2,3;1,3,3;1) ((3,5);(2,2,4))
(2,3,3,3,3,4,6,8,16,16) (1,1,1,1,2;2,4;2,4,4) ((3,1);(4))
(3,3,3,5,5,6,6,6,12,15) (1,1,1,2;1,1,3;3) ((3,5);(2,2,4))
(3,3,3,5,5,6,8,9,10,12) (1,1,2,3,4;3,8;5) ((3,1);(1,1,2))
(3,3,5,5,5,6,6,9,10,12) (1,1,1,2;1,1,3;3) ((5,3);(2,2,4))
(1,1,1,2,3,7,7,21,21) (1,1,1,2;1,1,3;3) ((7); (1,7))
(1,1,1,2,5,10,10,10,24) (1,1,1,2;5;3) ((1,1,2,2,2);(8))
(1,1,1,2,6,10,10,15,18) (1,1,1,2;5;3) ((1,2,2,3);(2,6))
(1,1,1,3,6,10,10,12,20) (1,1,1;3;5) ((1,1,2,4);(2,2,4))
(1,1,1,7,7,7,10,10,20) (1,1,1;1,1,1;5) ((1,7);(2,2,4))
(1,1,2,2,3,6,14,14,21) (1,1,2,3;7;1) ((1,2,2,3);(2,6))
(1,1,2,3,7,8,14,14,14) (1,1,2,3;7;1) ((1,1,2,2,2);(8))
(1,1,2,4,8,8,8,8,8,8,8) Kotsireas and Koukouvinos a

(1,1,3,3,7,7,7,14,21) (1,1,1,2;1,1,3;3) ((7,1);(1,7))
(1,2,2,3,4,4,6,14,28) (1,1,2,3;7;1) ((2,2,4);(3,1,4))
(1,2,3,3,7,7,12,14,15) (1,2,3,3;4,5;7) ((1,3);(1,1,2))
(1,3,4,8,8,8,8,8,8,8) Kotsireas and Koukouvinos a

(2,2,3,3,4,6,7,9,28) (1,1,2,3;7;1) ((3,1,4);(2,2,4))
(2,2,4,5,5,7,10,14,15) (1,1,2,3;7;1) ((5,1,2);(2,2,4))
(3,3,6,6,7,9,14,14) (1,1,2,3;7;1) ((3,1,2,2);(2,6))
(3,3,4,4,8,13,13,13) (1,1,1;1,1,1;1) ((3,13);(4,4,8))
(3,3,3,5,5,5,10,10,20) (1,1,1;3;5) ((3,5);(2,2,4))
(3,3,3,5,6,6,6,12,20) (1,1,1,2;5;3) ((3,1,4);(2,2,4))
(3,3,3,5,6,6,10,10,18) (1,1,1,2;5;3) ((3,1,2,2);(2,6))
(3,4,4,6,8,9,9,9,12) (1,1,1;3;1) ((9,1,2,4);(4,4,8))
(4,4,5,5,5,8,11,11,11) (1,1,1;1,1,1;1) ((5,11);(4,4,8))
(5,5,5,5,6,6,10,10,12) (1,1,1,2;5;3) ((5,1,2);(2,2,4))
(1,1,1,3,6,6;6,40) (1,1,1;3;5) ((1,1,2,2,2);(8))
(1,1,1,5,7,7,7,35) (1,1,1;1,1,1;5) ((1,7);(1,7))
(1,1,1,6,6,9,10,30) (1,1,1;1,1,1;5) ((1,2,2,3);(2,6))
(2,4,7,7,7,14,21) (1,1,2,3;7;1) ((7,1);(2,2,4))
(3,3,3,6,6,10,30) (1,1,1;1,1,1;5) ((3,1,2,2);(2,6))
(3,3,3,3,10,10,12,20) (1,1,1;1,1,1;5) ((3,1,4);(2,2,4))

a See Kotsireas and Koukouvinos [125]
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Some Complementary Sequences

The sequences given in Tables G.4—G.7 can be used to form first rows
of circulant matrices which can then be used in the Goethals-Seidel Array
(Theorem 4.8) if there are four sequences, or, if there are two sequences in
the “two-circulant” construction (see Definitions 4.8 and 4.9).

For example: Suppose we wish to form an orthogonal design of type
OD(20;2,12). We use the sequences given in Table G.4 as follows:

abbb̄0 ab̄b̄b0 , bbb00 , bb̄b00

give the first rows of 5× 5 circulant matrices which may be used in the
Goethals-Seidel array to obtain the design we want. Complementary sequences
have elements, {±1}, while ternary complementary sequences have elements,
{0,±1}, both have NPAF = 0.

Craigen and Koukouvinos [37] say in Table G.3, it is not only for theoretical
reasons that weight (the number of non-zero elements) is the principal issue.
In combinatorics one uses sequences with zero autocorrelation to construct
orthogonal designs having difficult weights. Once a weight is established this
way for some length, this length can be increased arbitrarily by the operation
we have called shifting. Thus, weight is fundamental, and length is arbitrarily
large.

In signal processing, one is likely to ask first what strength of received
signal (corresponding to weight) is desired before one considers its duration
(corresponding to length); deficiency (the number of zeros) is a measure of
inefficiency resulting from one’s choice of weight. Minimum deficiency with
respect to weight appears more useful in this setting than with respect to
length.

For Table G.6 the process is similar but is designed for the “two-circulant”
construction.

In Table G.7 the positioning of the zeroes is a bit more delicate and we
use 0t to denote t consecutive zeroes.

Note that “b̄” means “−b”.

417© Springer International Publishing AG 2017
J. Seberry, Orthogonal Designs,
DOI 10.1007/978-3-319-59032-5
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Table G.1 Some small weight Golay sequences

Length # of pairs Equivalence classes Primitive pairs
1 4 1 1
2 8 1 0
4 32 1 0
8 192 5 0
10 128 2 2
16 1536 36 0
20 1088 25 1
26 64 1 1
32 15,360 336 0
34 0 0 0
40 9728 220 0
50 0 0 0
52 512a 12a 0a

58 0 0 0
64 184,320a 3840a 0a

68 0 0 0
74 0a 0a 0a

80 102,912a ? 0a

82 0a 0a 0a

a work done at Simon Frazer University

Table G.2 Some small weight PAF pairs for orders not Golay numbers

Periodic Source Periodic Source Periodic Source
Golay Golay Golay
pair pair pair

34 [44]a 90 [51]e 212 [51]e
50 [46]b, [125]h 106 ” 218 ”
58 [49]d 130 ” 234 ”
68 [48]c [75]g 146 ” 250 ”
72 [50]f 170 ” 274 ”
74 [51]e 178 ” 290 ”
82 [223]i 180 ” 292 ”

194 ” 298 ”
a Ðoković [44] b Ðoković [46] c Ðoković, et al [48] d Ðoković and Kotsireas [49]
e Ðoković and Kotsireas [51] f Ðoković and Kotsireas [50] g Georgiou, et al [75]
h Kotsireas and Koukouvinos [125] i Vollrath [223]
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Table G.3 Ternary Complementary Sequences of Length n ≤ 14 [37]

n k Primitive Pair Type (n,w) σ Source

1 1 (1);(0) T CP (1,1) 1 Trivial
2 2 (1);(1) T CP (1,2) 0 Trivial
3 5 (11−); (101) T CP (3,5) 1 [37]
4 10 (1010001);(111 − −1−) T CP (7,10) 4 [65]
5 10 (10110 − 01);(11000 − 1−) T CP (8,10) 6 [37]
6 8 (1100000 − 1);(10001010−) T CP (9,8) 10 Can derive

from [94]
7 10 (100 − −00 − 1);(10100011−) T CP (9,10) 8 [37]
8 10 (11011 − 0 − 1);(10000010−) T CP (9,10) 8 [37]
9 12 (10 − 1 − 0011);(100 − − − 1−) T CP (9,13) 5 Can derive

from [56]
10 10 (1000 − 01 − 001);(1110000001−) T CP (11,10) 12 [37]
11 13 (1110 − 110 − 1−); (1000 − 000101) T CP (11,13) 9 Can derive

from [90]
12 10 (10000 − 10 − 001);(11100000001−) T CP (12,10) 14 [37]
13 16 (100 − −0 − 11 − 01);(1101100 − 101−) T CP (12,16) 8 [37]
14 10 (1000000000011);(1001− 100010 − −) T CP (13,10) 16 [37]
15 16 (10 − −0 − 010 − 101);(1110001 − 0101−) T CP (13,16) 10 [37]
16 16 (100 − 001 − 11011);(101000 − 0 − 11 − −) T CP (13,16) 10 [37]
17 17 (1 − 10 − 00011101);(−0 − 0110 − 011 − 1) T CP (13,17) 9 [134]
18 10 (1 − 00000 − 000011);(1000100001010−) T CP (14,10) 18 [37]
19 13 (100 − 0 − 10010011);(110 − 100001000−) T CP (14,13) 15 [37]
20 16 (1 − 00001 − 001111);(1010 − 0 − 10 − 010−) T CP (14,16) 12 [37]
21 17 (−10100110010 − 1);(−100 − −0111001−) T CP (14,17) 11 [134]
22 (1 − 1 − 010 − 011011);(100100 − − − 1000−) T CP (14,17) 11 [37]
23 (1 − 101000 − 01011);(100111 − −01 − 00−) T CP (14,17) 11 [37]
24 17 (1000110 − − − 01 − 1);(1010100011 − 01−) T CP (14,17) 11 [37]
25 20 (1 − 1 − −00 − 0 − −011);(10100 − 11 − 1110−) T CP (14,20) 8 [37]
26 20 (10 − −11101 − 11 − 1);(10010 − − − 0 − 001−) T CP (14,20) 8 [37]

a Craigen and Koukouvinos [37, p.360] c© Elsevier
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Table G.4 Some small weight designs with non-periodic auto-correlation
function

(1,1,1,1) a, b, c, d

(1,1,1,4) a, b, dcd̄, d0d

(1,1,2,2) a, b, cd, cd̄

(1,1,2,8) dad̄, dbd̄, dcd, dc̄d

(1,1,4,4) bab̄, b0b, dcd̄, d0d

(1,2,2,4) bab̄, b0b, cd, cd̄

(1,2,3,6) abc, abc̄, bāb, bdb̄

(2,2,2,2) ab, ab̄, cd, cd̄

(1,1,1,9) dad̄, dbd̄, d0c0d̄, d0d0d

(1,1,8,8) cdad̄c̄, c̄dbd̄c, cd0dc, cd̄0d̄c

(1,1,9,9) bcac̄b̄, cb̄dbc̄, cccc̄c, bbbb̄b

(1,4,4,4) bab̄, b0b, ccdd̄, ddc̄c

(2,2,4,4) ab, ab̄, ccdd̄, ddc̄c

(2,3,4,6) ad0d̄a, adcdā, bcd̄, bc̄d

(3,3,3,3) abc, ab̄0d, a0cd̄, bcd

(3,3,6,6) adbd̄a, adcdā, cd̄a0b̄, cd̄ā0b

(4,4,4,4) abcd, ab̄cd̄, abc̄d̄, ab̄c̄d

(2,12) abbb̄, ab̄b̄b, bbb, bb̄b

(1,1,4,16) a0a0a0a, a0abā0ā, acā0āca, acādac̄ā

(1,1,5,5) a, b, ccc̄d0d,ddd̄c̄0c̄

(1,2,4,8) cac̄, c0c, dbd̄d0d, dbd̄d̄0d̄

(1,2,6,12) ab0ba, abdb̄ā, bābbcb̄, bābb̄c̄b

(1,4,5,5) bab̄, b0b,ccc̄d0d, ddd̄c̄0c̄

(2,2,2,8) ab, ab̄, cdc̄c0c, cdc̄c̄0c̄

(2,2,4,16) abāaca, abāac̄a, abāādā, abāād̄ā

(2,2,5,5) ab, ab̄, ccc̄d0d, ddd̄c̄0c̄

(2,2,8,8) abāa0a, abāā0ā, cdc̄c0c, cdc̄c̄0c̄

(2,2,9,9) dbd̄cac, dbd̄c̄āc, dc0cd̄c, c̄d0dcd

(2,2,10,10) ccc̄dad, ccc̄dād, ddd̄c̄bc̄, ddd̄c̄b̄c̄

(2,4,4,8) abāa0a, abāā0ā, cdd̄c, c̄ddc

(2,4,6,12) abc̄abc, abc̄āb̄c̄, bābbdb̄, bābb̄d̄b

(2,5,5,8) adāa0a, adāā0ā, ccc̄b0b, bbb̄c̄0c̄

(2,8,8,8) aabb̄cdc̄, aabb̄c̄d̄c, aābbc0c, aābbc̄0c̄

(4,4,4,16) cdc̄cacb, cdc̄cācb̄, cdc̄c̄ac̄b̄, cdc̄c̄āc̄b

(4,4,5,5) aabb̄, bbāa, c0cddd̄, d0dc̄c̄c

(4,4,8,8) aabb̄cd, aabb̄c̄d̄, aābbcd̄, aābbc̄d

(4,4,10,10) bcacddd̄, bc̄ac̄d̄d̄d, bdādc̄c̄c, bd̄ād̄ccc̄

(5,5,5,5) aaāb0b, b̄b̄ba0a, c̄c̄cd̄0d̄, d̄d̄dc0c

(6,6,6,6) aabb̄cd, b̄b̄aādc̄, c̄c̄d̄dab, d̄d̄cc̄b̄a

(7,7,7,7) aaābcbd, b̄b̄badac̄, c̄c̄cd̄ad̄b, d̄d̄dcb̄ca
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Table G.5 Some small weight designs with zero non-periodic auto-correlation function.
See [80,128,132] (more are given in [133]).

(1,1,17,17) aaaā0aāābbbb̄bb̄bb, bbbb̄0bb̄b̄āāāaāaāā, a0c0ā, b0d0b̄

(21) aaaaāā, aaāaāa, aaāaa, aa0āa

(23) aāaaaaā, aaāāāaā,aāā0āāa, a0a000a

(2,26) abbb̄bb̄b̄, ābbb̄bb̄b̄, bbbb̄bbb, bbb̄b̄b̄bb̄

(1,24) aaābaāā, aaa0āāa, aaāaāa, aaaaāa

(1,27) aaābaāā, aaāaāaā, aaāāāāa, aaāaaaa

(29) aaaāāaāā, aaaāaāāa, aaaāaāa, aaa0āaa

(30) aaaāaaāā, aaaaāaāa, aaāāaāa, aaaaāāa

(31) aaāaaaāaā, aaāa0āaāa, aaaaaāā, aaaāāaa

(1,1,32) aaāabāaāā, aaaācaāāā, aaāa0aāaa, aaaā0āaaa

(1,33) aaaābaāāā, aaaāāaāāa, aaaāaāaa, aaaāaāaa

(1,34) bb̄bbbab̄b̄b̄bb̄, bbb000b̄b00b, bb0b00bbb̄0b̄, bb̄bbbb̄b̄bbb̄b

(1,35) aaāabāaāā, aaaāāāaāā, aaāaāaāaa, aaaaaāāaa

(1,36) aaāaaaaāaā, aaāaaāāaāa, aaaābaāāā, aaaā0āaaa

(1,37) bb̄bbbab̄b̄b̄bb̄, bb0b̄bb0bbb0, bb0b̄bbb̄bb̄b̄0, bb̄bb0b̄b̄b̄bb̄b

(39) aaaāaāaaāāā, aaaāa0aaāaa, aaaāāaāāa, aaaāaāāāa

(1,2,2,36) aaaāadāaāāā, aaaāa0aāaaa, aabāāaācaā, aabāāāac̄āa

(1,1,40) a0aaaābaāāā0ā, a0aāāacāaaā0ā,

a0aaaā0āaaa0a, a0aāāa0aāāa0a

(1,42) 0a0aāāabāaaā0ā0, a00aaa0aā0aā00a,

00aa0aaaaāaāāāa, ā0āaaa0āāa0aā0a

(1,43) aaaāabāaāāā, aaaaāāaaāaā,

aaaaāāaāaāa, aaaāaaāāaa

(1,44) aaāāaāaāāāāa, aaāāaāāaaaaā,

aāaaabāāāaā, aāaaa0aaaāa

(47) aaaāaaāaaaāāā, aaaāaā0āaāāaa,

aaaāaaaaāāa, aaaāaāāaāaa

(1,48) aaaāāaābaāaaāāā, a0aāaā00a0āaaa0,

aāaa0a00aaaā0ā0, aaāāāaā0aaāaaaa

(48) aaaāaaāaaāāā, aaaaāaāāaaāā,

aaaāāaāaāāaa, aaaaāaāaāaaa

(50) aaaaāaāāaaāāā, aaaaāaāāaaāāā,

aaaāāaāaāāaa, aaaaaāaāaāaa

(1,51) aaaāaābaāaāāā, aaaāaaāāaāaāā,

aaaāaāaaaāāaa, aaaaaāāaāāaaa

(1,2,66) aaaābaāāāaaaāāaāāa, aaaābaāāāāāāaaāaaā,

aaaāaāaa0aaāaāaaa, aaaāaāaacāāaāaāāā
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Table G.6 Some small weight sequences with zero non-periodic auto-correlation
function

1 (1,1) a, b

2 (2,2) ab, ab̄

3 (1,4) bab̄, b0b

4 (4,4) aabb̄, bbāa

6 (2,8) abāa0a, abāā0ā

6 (5,5) aaāb0b, bbb̄ā0ā

8 (8,8) aaaābbb̄b, b̄b̄b̄baaāa

10 (4,16) abāaāaāāba, abāaaaaab̄ā

10 (10,10) aāāababbbb̄, bb̄b̄bābāāāa

11 (13) aaa0āaa0āaā, a0a000ā000a

14 (13,13) aaabāaab̄āaāb0b, bbbāb̄bbab̄bb̄ā0ā
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Table G.7 Some sequences with zero periodic auto-correlation function

n ≥ 5 (1,14) a0 1
2 (n−5)bbb̄b̄0 1

2 (n−5), bbb̄b0n−4, bbb0n−3, bb̄b0n−3

n ≥ 7 (1,1,1,16) a0 1
2 (n−7)bbb̄bb̄b̄0 1

2 (n−7), c0 1
2 (n−5)b00b̄0 1

2 (n−5),

d0 1
2 (n−5)b00b̄0 1

2 (n−5), bbb̄bbb0n−7

(1,1,13,13) b0 1
2 (n−7)ccc̄cc̄c̄0 1

2 (n−7), ccdc̄dcd0n−7,

ddc̄d̄c̄dc̄0n−7, a0 1
2 (n−7)ddd̄dd̄d̄0 1

2 (n−57)
(1,1,26) a0 1

2 (n−7)bbb̄bb̄b̄0 1
2 (n−7), c0 1

2 (n−7)bbb̄bb̄b̄0 1
2 (n−7),

bbbb̄bbb0n−7, bbb̄b̄b̄bb̄0n−7
(1,22) a0 1

2 (n−7)bbbb̄b̄b̄0 1
2 (n−7), bbb̄bb̄b0n−6, bbb̄bb0n−5,

bbb̄bb0n−5
n ≥ 9 (1,25) a0 1

2 (n−7)b0bb̄0b̄0 1
2 (n−7), b0bb0bbbb̄0n−9,

b0bb̄b̄bb̄b̄b0n−9, bbb̄b̄b̄b0n−6
(1,30) a0 1

2 (n−9)bbb̄bb̄bb̄b̄0 1
2 (n−9), bbbbb̄b̄b̄b0n−8,

bbbb̄bbb0n−7, bb̄b̄bb̄b̄b0n−7
n ≥ 11 (1,4,13) abā0n−3, a0a0n−3, ccc0c̄cc0c̄cc̄0n−11,

c0c000c̄000c0n−11
(1,1,40) a0 1

2 (n−11)b̄bbbb̄bb̄b̄b̄0 1
2 (n−11),

c0 1
2 (n−11)bb̄b̄bb̄bb̄bbb̄0 1

2 (n−11), bb̄b̄bbbbb̄b̄b0n−10,

b̄bbbbbbbbb̄0n−10
n ≥ 13 (1,1,25) a0 1

2 (n−13)bbbb̄0bb̄b̄b̄0 1
2 (n−13), c0 1

2 (n−5)b00b̄0 1
2 (n−5),

b00000b00b0n−10, bbb0b̄bb̄bb̄0bb0n−12
(1,1,50) a0 1

2 (n−13)bbbb̄bbb̄b̄bb̄b̄b̄0 1
2 (n−13),

c0 1
2 (n−13)bbbb̄b̄bb̄bbb̄b̄b̄0 1

2 (n−13), bbbbb̄bb̄bb̄bbbb0n−13,

n ≥ 15 (1,4,26) abā0n−3, a0an−3, cccc̄c̄cccc̄cc̄c̄0c̄0n−14,

ccccc̄ccc̄c̄cc̄c0c0n−14
(1,1,29) a0 1

2 (n−15)b000b̄0000b000b̄0 1
2 (n−15),

c0 1
2 (n−13)bbb0b̄bb̄b0b̄b̄b̄0 1

2 (n−13), bb00bbb̄0b̄bb00bon−14,

bb̄000b̄000b̄b0b̄0n−13
(1,1,58) a0 1

2 (n−15)bbbbb̄b̄bb̄bbb̄b̄b̄b̄0 1
2 (n−15),

c0 1
2 (n−15)bb̄b̄b̄b̄bb̄bb̄bbbbb̄0 1

2 (n−15),

bbb̄bbbb̄bb̄bbbb̄bb0n−15, bbbb̄bbb̄b̄b̄bbb̄bbb̄0n−15
(1,52) a0 1

2 (n−13)bbb̄bb̄b̄bbb̄bb̄b̄0 1
2 (n−13),

bbb̄bb̄b̄b̄b̄bb̄bb0n−12, bbbb̄bbbbbb̄b̄b̄bb̄on−14,

bbbb̄bbbb̄b̄bbbb̄b0n−14
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Table G.8 4-complementary sequences A,B,C,D such that 1
2 (A+B), 1

2 (A−B),
1
2 (C + D), 1

2 (C − D) are also 4-complementary sequences

La Wb A,B,C,D

3 10 11−, 11−, 101, 101
3 12 111, 1−1, 11−, 11−
4 14 111−, 1−−1, 111, 1−1
5 18 11−11, 11−1−, 111−, 111−
5 20 1−11−, 111−−, 111−1, 111−1
6 10 101−−1, 10111−
6 12 101−−1, 10111−, 1,1
6 14 101−−1, 10111−, 11,1−
6 16 11−1−−, 11−111, 100−, 100−
6 18 11−1−−, 11−111, 110−, 1−0−
6 20 111−1−, 1−1111, 1−−1, 11−−
6 22 11−−1−, 1−−−−1, 1−111, 1−111
6 24 11−1−−, 11−−11, 111−1−, 1−1111
7 26 111−111, 11−−−1−, 11−1−−, 11−1−−
7 28 1−−1111, 1−−1−1−, 11−111−, 1−−−−1
9 28 1−−−0−11−, 1−−101−−1, 10110111, 101−0−−−
9 30 11−10111−, 11−−0−−−1, 101101−−1, 101−0−11−
9 34 111−01−−−, 111−−1−−1, 111−1−11, 111−1−11
14 26 111−−111−1−−0−, 1111−11−−1−10

a Length b Weight

Table G.9 2-complementary disjointable sequences

Length Type

1 (1,1) a, b

2 (2,2) ab, ab̄

4 (4,4) aabb̄, aābb

6 (2,8) abāa0a, abāā0ā

8 (8,8) aaaābbb̄b, aāaabb̄b̄b̄

10 (4,16) abāaāaāāba, abāaaaaab̄ā

10 (10,10) aāāababbbb̄, aāāābābb̄b̄b

14 (26) aaaaāaaāāaāa0a, aaaāāaaaāaāā0a



Appendix H
Product Designs

Table H.1 Product designs of order 16

Product designs Construction

(1,1,2,3;1,1,2,3;9) ((1,1,2);(1,3)) ((1,1,2);(1,3))
(1,1;2,9;1,3,3,6;3) ((1,1,2);(3,1)) ((1,1,2);(1,3))
(1,1,7;1,1,7;7) ((1,7);(1,7)) ((1,1);(1,1))
(1,2,2,2,3;2,2,6;6) ((1,2,2,3);(2,6)) ((1,1);(1,1))
(2,2,2,4;1,1,2,6;6) ((1,1,2);(1,3)) ((1,1,2);(2,2))
(2,2,4,5;3,5,5;3) ((2,2,4);(5,3)) ((1,1);(1,1))
(2,2,4,6;2,3,3,6;2) ((1,1,2);(3,1)) ((1,1,2);(2,2))
(2,2,4,7;1,7,7;1) ((2,2,4);(7,1)) ((1,1);(1,1))
(2,6,6;1,1,2,4,6;2) ((1,1);(1,1)) ((1,1,2,4);(2,6))
(4,4,4;1,1,2,4,4;4) ((1,1);(1,1)) ((1,1,2,4);(4,4))
(1,1,1,1,2;2,4;2,4,4) (1,1,1,1;2,2;2,2)
(1,1,1,2,2;3,4;3,6) (1,1,1,2;2,3;3)
(1,1,1,2,3;2,6;2,6) (1,1,2,3;1,6;1)
(1,1,1,2,4;1,8;1,2,4) (1,1,1,2;4,1;1,2)
(1,1,1,2;5;3,3,5) (1,1,1,2;5;3)
(1,1,2,3,4;3,8;2,3) (1,1,2,3;4,3;1)
(1,1,2,3,6;1,12;1,2) (1,1,2,3;6,1;1)
(1,2,2;2,3;3,4,4) (2,2;1,3;2,2)
(1,2,3,3;4,5;2,5) (1,3,3;2,5;1)
(2,2,2,5;1,10;1,4) (2,2,2;5,1;2)
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Table H.2 Product designs of order 32

Product designs Construction

(13,3,13;4,4,8,13;3) ((1,1);(1,1)) ((4,4,8);(3,13))
(3,5,5,10;2,2,2,4,15;9) ((1,1,2);(1,3)) ((2,2,4);(5,3))
(4,4,8,12;3,3,4,6,12;4) ((1,1,2);(3,1)) ((1,1,2,4);(4,4))
(7,7,9;4,4,7,8;9) ((1,1);(1,1)) ((4,4,8);(7,9))
(1,1,1,1,2,4;2,8;2,4,8,8) (1,1,1,1,2;4,2;2,4,4)
(1,1,1,2,2,4;3,8 : 3,6,12) (1,1,1,2,2;4,3;3,6)
(1,1,1,2,4,8;1,16;1,2,4,8) (1,1,1,2,4;8,1;1,2,4)
(1,1,2,2,3;4,5;5,18) (1,1,2,3;2,5;9)
(1,1,2,3,4,11;22;4,6) (1,1,2,3,4;11;2,3)
(1,1,2,3,4,8;3,16;3,4,6) (1,1,2,3,4;8,3;2,3)
(1,1,2,3,6,12;1,24;1,2,4) (1,1,2,3,6;12,1;1,2)
(1,1,2,6,9;7,12;6,7) (1,1,2,9;6,7;3)
(1,1,2,3,9;6,10;6,10) (1,1,2,9;3,10;3)
(1,1,2,9,10;3,20;3,6) (1,1,2,9;10,3;3)
(1,2,3,3,4;5,8;4,5,10) (1,2,3,3;4,5;2,5)
(1,2,3,3,6;4,11;6,11) (1,3,3,6;2,11;3)
(1,3,3,6,10;3,20;3,6) (1,3,3,6;10,3;3)
(1,3,3,6,11;2,22;2,6) (1,3,3,6;11,2;3)
(1,3,3,6,9;4,18;4,6) (1,3,3,6;9,4;3)
(1,4,7,7;8,11;2,11) (1,7,7;4,11;1)
(1,6,7,7;9,12;2,9) (1,7,7;6,9;1)
(2,2,2,4,9;1,18;1,12) (2,2,2,4;9,1;6)
(2,2,2,5,10;1,20;1,2,8) (2,2,2,5;10,1;1,4)
(2,2,4,5,10;3,20;3,6) (2,2,4,5;10,3;3)
(2,2,4,5,8;5,16;5,6) (2,2,4,5;8,5;3)
(2,2,4,6,11;3,22;3,4) (2,2,4,6;11,3;2)
(2,2,4,6,9;5,18;4,5) (2,2,4,6;9,5;2)
(2,2,4,7,8;7,16;2,7) (2,2,4,7;8,7;1)
(2,6,6,13;1,26;1,4) (2,6,6;13,1;2)
(4,4,4,7;5,14;5,8) (4,4,4;7,5;4)
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Table H.3 Product designs of order 64

Product designs Construction

(1,1,1,1,2,2,4;4,8;4,8,8,16,16) (1,1,1,1,2,4;2,8;2,4,8,8)
(1,1,1,2,2,3,4;6,8 : 6,8,12,24) (1,1,1,2,2,4;3,8;3,6,12)
(1,1,1,2,4,8,16;1,32;1,2,4,8,16) (1,1,1,2,4,8;16,1;1,2,4,8)
(1,1,2,2,3,4;5,8;5,10,36) (1,1,2,2,3;4,5;5,18)
(1,1,2,3,4,8,16;3,32;3,6,8,12) (1,1,2,3,4,8;16,3;3,4,6)
(1,1,2,3,6,9;10,12;10,12,20) (1,1,2,3,9;6,10;6,10)
(1,1,2,6,7,9;12,14;12,12,14) (1,1,2,6,9;7,12;6,7)
(1,2,3,3,4,5;8,10;8,8,10,20) (1,2,3,3,4;5,8;4,5,10)
(1,2,3,3,6,11;4,22;4,12,22) (1,2,3,3,6;11,4;6,11)
(1,3,3,6,9,18;4,36;4,8,12) (1,3,3,6,9;18,4;4,6)
(1,4,7,7,8;11,16;4,11,22) (1,4,7,7;8,11;2,11)
(1,6,7,7,12;9,24;4,9,18) (1,6,7,7;12,9;2,9)
(2,2,2,5,10,20;1,40;1,2,4,16) (2,2,2,5,10;20,1;1,2,8)
(2,2,4,6,9,18;5,36;5,8,10) (2,2,4,6,9;18,5;4,5)
(2,2,4,7,8,16;7,32;7,18) (2,2,4,7,8;16,7;9)
(2,3,5,5,10;4,21;18,21) (3,5,5,10;2,21;9)
(2,6,6,13,26;1,52 : 1,2,8) (2,6,6,13;26,1;1,4)
(3,4,13,13;8,25;6,25) (3,13,13;4,25;3)
(4,4,4,7,14;5,28;5,10,16) (4,4,4,7;14,5;5,8)
(4,4,7,8,12;14,21;8,21) (4,4,8,12;7,21;4)
(7,7,9,12;11,24;11,18) (7,7,9;12,11;9)
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