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Abstract This chapter proposes a neural-network-based calibration of macroscopic
traffic flow models expressed in the form of nonlinear partial differential equations
(PDEs). The calibration scheme/module developed aims at improving both accuracy
and stability of the nonlinear PDE models in order to make them more realistic.
In essence, the macroscopic nonlinear PDE models of traffic flow (proposed in the
literature) are generally inaccurate, unstable, and unlikely to describe the realistic
dynamics of traffic flow. To overcome these drawbacks we exploit the artificial neural
network paradigm to build a concept calledNN-PDE (neural network+ PDE solver),
which involves the macroscopic model (in the form of a nonlinear partial differential
equation) on the one hand, and the calibration scheme/module-based artificial neural
network (ANN) on the other. The calibration scheme/module is used to dynamically
adjust/optimize all outputs of the nonlinear “PDE”model in order to obtain a realistic
set of parameters that could be used by the PDE model to describe the real/realistic
dynamics of traffic flow. Overall, specific attention is devoted to some relevant issues
related to the modeling concept such as accuracy, stability, and overfitting, just to
name a few. These issues generally occur due to the complexity of the PDE model at
stake for the sake of an accurate traffic flow model. Finally, some simulation results
are shown to demonstrate the effectiveness of the NN-PDE concept developed.
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1 Introduction

1.1 Background of Traffic Flow Modeling

Transportation has always been a vector of economic development of society and
thereby contributes to improvement in the quality of life. However, due to the
growth of population density and urbanization, traffic congestion is increasingworld-
wide. The transportation-related socioeconomic and environmental impacts such as
increasing travel time, fuel consumption, and pollution have been given a tremendous
attention by decision-makers in recent decades [1].

Developing new control and optimization strategies to better manage vehicular
traffic [2–4] can be viewed as the best realistic option to deal with issues related
to congestion, pollution, fuel consumption, etc., since building new roads is very
expensive and could be an unrealistic solution, since the availability of land is not
always ensured [5].

Different modeling concepts have been developed in order to capture traffic
dynamics: (1) mathematical models (in the form of ODEs or PDEs) [6–8], (2) graph-
ical models (graphs and Petri nets) [9–12], and (3) software tools (Synchro, Vissim,
and Visum, etc.) [13–15], for macroscopic and microscopic traffic simulation.

The mathematical modeling of traffic flow has always been a challenging issue
in science and engineering due to the striking and complex nature of the dynamical
behavior of traffic flows (e.g., nonlinearity, hysteresis, stiffness, saturation, oversatu-
ration, jam, shockwaves, rarefactionwaves, stop-and-gowaves, platoons, bottleneck,
chaos, just to name a few) [16–19].

The use of ordinary and/or partial differential equations for traffic flow model-
ing depends on the level of detail (i.e., macroscopic, microscopic, and mesoscopic
levels) [20]. For instance, microscopic traffic flow models distinguish and trace the
behavior of each individual vehicle (e.g., car following model, lane change model)
[20]. The use of ordinary differential equations for microscopic traffic flow mod-
eling requires a huge amount of data for the optimization of corresponding ODE
parameters. Further, the use of ODE models for microscopic traffic simulation is
generally time-consuming (i.e., very slow). Macroscopic models aggregate vehicles
allowing a description of traffic flow as a continuum (i.e., a global view that does
not distinguish vehicles). The related macroscopic models are expressed in the form
of partial differential equations, in which dependent variables are generally obtained
as the average of the three fundamental traffic parameters (i.e., mean flow, mean
density, mean speed). Macroscopic models are generally less costly computationally
than microscopic models. However, the accuracy of macroscopic models is an issue
when compared with the good accuracy of microscopic models. Mesoscopic models
generally encompass both microscopic and macroscopic models and usually involve
human intelligence (e.g., driver behavior) and/or artificial intelligence (e.g., sensors)
[21, 22].
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Themathematical traffic flowmodels provided in the literature (see state of the art
on traffic mathematical modeling) are all derived using a series of specific assump-
tions (e.g., see analogy with fluid dynamics [23]; see also analogy with gas kinetics
[24]). However, these assumptions often do not consider all practical constraints (i.e.,
those faced on the road networkwhen one is considering real traffic dynamics). Thus,
the available mathematical models reveal only a partial view of the reality (i.e., the
real traffic dynamics and related traffic phenomena and scenarios). This underscores
and justifies the statement that most traffic models presented in the literature are not
realistic enough. Further, the literature does not provide a mathematical model that
can be used as a general framework for traffic modeling in considering all practical
realistic constraints. Among the great number of mathematical models published so
far, none of them is likely to simultaneously describe traffic phenomena (all practical
realistic constraints) such as shock waves, rarefaction waves, stop-and-go waves,
platoons, bottlenecks, and jams, just to name a few. The cited phenomena are gen-
erally described by different types of PDEs (e.g., linear, nonlinear, convex, concave,
hyperbolic, nonhyperbolic).

A seminal mathematical model for traffic flow was proposed by Lighthill–
Whitham (1955) [6] and Richards (1956) [25], the so-called LWR model, expressed
in the form of a partial differential equation. This model, also known as a first-order
model, is based on the continuity equation fromcompressible dynamics theory,which
expresses the conservation of a flowing quantity from one point to another. Despite
the fact that the LWRmodel can reproduce some phenomena, it is based on a number
of assumptions that are not always realistic (e.g., constant speed, no overtaking, no
ramp). To solve this issue, Payne [26], Ross (1988) [27], and Del Castillo (1993) [28]
have proposed mathematical models of second order, which take into account the
speed dynamics. These latter models were later improved by Zhang [8], Jiang et al.
[29], and Gupta et al. [7]. Even though these PDE-based macroscopic traffic models
can reproduce the spatiotemporal behavior of traffic flow on a road segment relatively
well, they suffermainly froma lack of accuracy, and they are relatively slow (although
they remain significantly much faster (for traffic simulation) than their microscopic
counterparts). Compared to microscopic traffic simulators, the macroscopic ones are
less accurate. Essentially, in their raw forms, none of the existing macroscopic traffic
models and simulation concepts fulfills the necessary requirements (e.g., robustness,
accuracy, realism, ultrafast simulation) for online traffic simulation. The calibration
of the PDE models for traffic flow is of importance in addressing the requirement
of online traffic simulation (i.e., fast computational speed and a practical constraints
aware accuracy).

1.2 Background of Model Calibration

Calibration is a process aiming at fitting a given model using a set of empirical data.
This process is very important in traffic modeling, since a traffic mathematical model
generally involves a number of parameters that must be adjusted for some specific
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scenarios. Otherwise, there is often a big gap (errors) between theoretical models
and experimental data.

Several traffic flow calibration algorithms have been proposed based on the opti-
mization process [30]. Nelder and Mead (1965) [31] proposed an algorithm for mul-
tidimensional unconstrained optimization. This algorithm was proven to be suitable
for problems modeled by objective functions (or cost function) expressed in non-
linear, discontinuous, or stochastic forms. Such an optimization algorithm requires
a large number of terations to achieve convergence, however, without significant
improvement in some cases; further, several updates of the optimization algorithm
are also needed. Genetic algorithms (GA) that have been proposed byGolberg (1989)
and Holland (1992) [32, 33] are part of the largest class of evolutionary algorithms.
Genetic algorithms mimic evolution in biological processes using natural selection,
mutation, and crossover techniques [32, 33]. Genetic algorithms are appropriate for
various optimization problems such as discontinuous objective functions and non-
differentiable, stochastic, or highly nonlinear objective functions. Despite the fact
that this algorithm is flexible in searching complex solution spaces, each iteration
requires as many cost function evaluations as the population size; thus the algo-
rithm is computationally costly (i.e., slow). Another very important algorithm is the
cross entropy method proposed by Rubinstein and Kroese (2004) [34] and de Boer
et al. (2005) [35]. This algorithm is applicable to discontinuous, nondifferentiable,
or highly nonlinear objective functions. The main drawbacks of this algorithm are
the high computational cost and the slow convergence, since it requires as many cost
function evaluations as the size of the population.

The few optimization algorithms underscored so far (see [22]–[27]) have been
used intensively during the past decades, in classical calibration processes and/or
calibration modules. Generally, despite the fact that those algorithms may be applied
to complex problems (e.g., discontinuous, nondifferentiable, or highly nonlinear
cost functions), they have some inherent drawbacks, which are mostly related to the
computational cost (i.e., too time-consuming) and lack of convergence.

1.3 Key Contribution and Organization

A novel calibration concept for nonlinear partial differential equation (PDE) models
used for macroscopic traffic modeling is developed here. The concept developed
uses artificial neural networks (ANN) for the calibration of partial differential equa-
tion (PDE) models of traffic flow. The main advantage of the concept developed is
the possibility of overcoming some drawbacks of classical (or traditional) calibration
concepts (e.g., flexibility, universality, robustness, and accuracy). Another advantage
of the calibration concept developed is the straightforward and easy applicability to
traffic flow modeling and an online simulation capability. The traffic models (PDEs)
and the online simulation (using PDEs) are essential in analyzing, understanding,
depicting, and controlling the realistic and spatiotemporal evolution of traffic flow
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dynamics while considering practical operational constraints (e.g., real-time con-
straint, realistic nature of solutions regarding real traffic constraints, correctness of
solutions, stability and robustness). In essence, the PDE model helps to obtain the
spatiotemporal evolution of the behavior of the traffic flow, while the calibration
helps to improve both accuracy and correctness of the related PDE models.

The remainder of this chapter is organized as follows. Section2 is concerned
with the mathematical modeling of traffic flow. A PDE model is proposed for the
traffic flow scenarios under investigation. Section3 presents the calibration concept
developed. Full details of all analytical steps toward development of the calibration
module are provided. The calibration module is based on artificial neural networks
(ANN). Section4 develops a novel concept to which we have assigned the acronym
NN-PDE. This concept combines PDE and ANN paradigms. The PDE model con-
siders the spatiotemporal behavior of traffic flow, while the ANN paradigm is used
for calibration to improve the accuracy of the PDE model. The offline ANN training
process is performed using data from quasireal traffic provided by a relevant popular
simulator tool called VISSIM. VISSIM is an accurate microscopic traffic simulation
tool, which is able to configure several traffic scenarios while taking into account
several practical conditions. Section5 is devoted to numerical simulation. A case
study of a concrete traffic scenario modeled by PDE is considered. The calibration
of the resulting PDE model is conducted, and the results of the calibration obtained
are discussed. Finally, the advantage of the calibration is clearly demonstrated. This
chapter ends with some concluding remarks and an outlook (Sect. 6).

2 PDE Models for Macroscopic Traffic Flow

Several traffic flowmodels have been proposed in the literature to express the dynam-
ics of traffic flow on arterial roads [6, 8, 26]. These models are expressed in the form
of continuous differential equations and involve the three fundamental parameters
of traffic, namely (1) the flow (number of cars crossing a section of the road per unit
of time), (2) the density (number of cars per unit of length), and (3) the speed (rate
of variation of the position over time).

As already stated above, the past decades have witnessed the derivation of several
mathematical models for the analysis of traffic flow at the macroscopic level. Some
interesting mathematical models corresponding to specific scenarios are provided by
Eqs. (6), (8), and (9).

Traffic Scenario 1: Here no overtaking and no ramp (see Fig. 1).

This scenario shows a simple case of traffic flow in a single lane. It has been shown
(see [6]) that this scenario is modeled mathematically by Eq. (1). The assumption
made in [36] to obtain the model in Eq. (1) is the homogeneous nature of the traffic
flow (i.e., all cars are assumed to be of the same type).
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Fig. 1 General
representation of the traffic
flow on a road segment of
finite length. a Illustration of
the traffic flow without
overtaking. b Synoptic
representation of the traffic
flow for the sake of
modeling. (source: [37])

∂k

∂t
+ ∂q

∂x
= 0 (1)

In Eq. (1), the dependent variables are represented by k and q. These two variables
stand for the traffic density k and traffic flow q on a road segment. The independent
variables x and t are the spatial and temporal dimensions, respectively. For the sake
of solvability of Eq. (1), a second analytical expression is envisaged in Eq. (2) in
order to express the relationship among the three fundamental parameters

q = k · u. (2)

Equations (1) and (2) cannot be used to express the spatiotemporal evolution
of the three fundamental parameters of traffic flow (k, q, and u). This justifies the
choice of additional relationships expressing the empirical Greenshield’s model (see
Eqs. (3), (4), and (5)). Equations (3), (4), and (5) are used to obtain the fundamental
diagrams shown in Fig. 2. This diagram is a three-dimensional (3D) representation of
the interaction between the fundamental parameters of traffic flow. Figure2 clearly
emphasizes that the speed is high at low traffic density (e.g., weak interaction between
vehicles), while at high traffic density (e.g., strong interaction between vehicles), the
speed is low. This observation is important, since it could be used to express the
monotonicity of the speed of vehicles on roads. This is important in depicting some
phenomena such as shock waves, stop-and-go waves, and rarefaction waves, just to
name a few.

Many mathematical expressions have been proposed in the literature to repre-
sent the 3D relationship between the fundamental parameters of traffic flow empiri-
cally. Some classical and commonly used empirical models are Greenshield’s [38],
Greenberg [39], Underwood [40], Wang et al. [41]. These empirical models are
generally obtained through the use of data history, which corresponds to specific
measurements of the three fundamental parameters: flow, speed, and density.

The present chapter exploits Greenshield’s model expressed in a 3D system of
coordinates as follows:

u = u(k) = u f − u f

k j
k, (3)
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Fig. 2 Fundamental diagrams: a Speed versus density. b Flow versus density. c Speed versus flow

q = q(k) = ku f − u f

k j
k2, (4)

u = u(q) ⇒ u2 = uu f − u f

k j
q. (5)

The quantity u f stands for the free flow speed. The free flow here expresses the
possibility of drivingwithout any interaction between vehicles. Thus, the driver could
choose the speed (denoted here by u f ) at his convenience (it is the maximum allowed
speed according to legal speed limit on a particular road segment). Equations (3),
(4), and (5) are used to plot the fundamental diagrams of speed versus density in
Fig. 2a, flow versus density in Fig. 2b, and speed versus flow in Fig. 2c. The diagrams
in Fig. 2 reveal the three possible traffic states (i.e., undersaturation, saturation, and
oversaturation). The quantities k0 and u0 are the density (critical) and speed at the
capacity of the road. The quantity k j stands for jam density, and the quantity u f is
the free flow speed, as mentioned before.

The classical and seminal model for traffic flow, the so-called LWR model, pro-
posed by Lighthill, Whitham, and Richard [25] corresponds to Eq. (6), obtained by
combining Eqs. (1) and (4):

{
∂k
∂t + ∂q

∂x = 0
q = q(k) = ku f − u f

k j
k2. (6)

Equation (6) is a first-order quasilinear hyperbolic partial differential equation in the
dependent variable k(x, t). The nonconservative form of Eq. (6) is given as follows:
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Fig. 3 General
representation of the traffic
flow on a road segment of
finite length. a Illustration of
the traffic flow with
overtaking and without
ramps and detectors.
b Synoptic representation of
the traffic flow for the sake of
modeling. (source: [37])

∂k

∂t
+ (u f − 2

u f

k j
k)

∂k

∂x
= 0. (7)

Equation (7) is the traffic flow model that is considered in this chapter.

Traffic Scenario 2: Here there is overtaking but no ramp (see Fig.3).

This scenario shows a simple case of traffic flow inmultiple lanes with overtaking.
It has been shown (see [42]) that this scenario is modeled mathematically by Eq. (8).
Equation (8) is obtained by assuming a homogeneous traffic flow:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂k1
∂t

+ ∂q1
∂x

= k2
T 1
2

− k1
T 2
1

,

∂k j

∂t
+ ∂q j

∂x
= k j−1

T j
j−1

− k j

T j−1
j

+ k j+1

T j
j+1

− k j

T j+1
j

,

∂kN
∂t

+ ∂qN
∂x

= kN−1

T N
N−1

− kN
T N−1
N

.

(8)

In (8), the subscripts J = 2, . . . , N − 1 refer to the interior lanes, and the sub-
scripts 1 and N refer to the extreme lanes; T k

j = T k
j (k j , kk) is the vehicle transition

rate from two neighboring lanes ( j to lane k).

Traffic Scenario 3: Here there are both overtaking and ramps (see Fig.4) This
scenario shows a simple case of traffic flow on multiple lanes with overtaking. It has
been shown (see [43]) that this scenario is modeled mathematically by Eq. (9). The
assumption of homogeneous traffic flow has been made to obtain Eq. (9):

∂k

∂t
+ ∂ku

∂x
= ±ρ(x, t). (9)

The quantity ρ(x, t) ≥ 0 corresponds the rate of vehicles entering (+) the highway
or leaving (−) the highway through ramps (respectively entrance and exit ramps).
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Fig. 4 General
representation of traffic flow
on a road segment of finite
length. a Illustration of traffic
flow and the influence of
signal detectors and ramps.
b Synoptic representation of
the traffic flow for the sake of
modeling. (source: [37])

3 Calibration Concept

3.1 General Principle

The mathematical models proposed by scientists and engineers may reflect the
dynamics of systems and phenomena. However, some of these models might be
inaccurate and unlikely to reflect the real dynamics of specific scenarios, especially
when the model involves a large number of parameters. Therefore, without a careful
prior model calibration, it would not be possible to rely on the simulated results. In
order to ensure the validity of the models, they must ideally be adequately calibrated
for the full range of conditions and scenarios of relevance. Several models have been
developed for calibrating either macroscopic or microscopic models (see [45] and
references therein).

Calibration is an optimization process involving techniques such as the genetic
and memetic algorithm [44] and the cross-entropy method [45], just to name a few.
The overall optimization procedure consists in estimating some parameters for min-
imizing a cost function that can be made, for instance, by an error (or discrepancy)
between the mathematical model result and real data obtained from field measure-
ments (or obtained from a realistic simulator like the VISSIM Simulator). This is
not a trivial task, since the system of equations may be highly nonlinear in both
parameters and state variables.
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The parameter estimation problem can be formulated as a nonlinear least-squares
output error problem that aims at minimizing the discrepancy between the model
calculations and the real traffic data using the following cost function:

E(w) =
√√√√ 1

N

N∑
n=1

[k(n) − k̄(n)]2, (10)

where E(w) is the root mean squared error (RMSE). In the calibration process, this
error is minimized by finding the appropriate value of the weight w; k(n) is the set
of data resulting from the model, and k̄(n) stands for real traffic data from the field
(or VISSIM Simulator).

3.2 Calibration Involving Artificial Neural Networks

An artificial neural network (ANN) [46] is a computational model implemented as a
computer program aiming at emulating the key properties and operations of biolog-
ical neural networks. ANNs are used to model unknown or unspecified functional
relationships between the input and output of a “black box” system. In order to
apply such a procedure to decision problems, a key requirement is ANN training to
minimize the discrepancy between modeled and measured system output. Due to its
principle or properties (e.g., training capability, usage phase, redimensioning of the
network, etc.), the ANN paradigm is a good candidate for calibration tasks.

3.3 Mathematical Model of a Neural Network

Asingle neuronmodel consists of inputs,weights, an activation function, and outputs.
The mathematical model of a single neuron is expressed as follows:

Y = f (
∑
i

wi xi + b), (11)

where the set of inputs is X = [x0, x1, x2, . . . , xn], the set of weights is W =
[w0,w1,w2,w3, . . . ,wn], the output signal is Y = (y1, y2, y3, . . . , yn), the activa-
tion function is given by f = f (W, X), and b is the bias.

An artificial neural network consists of neurons connected together. Several archi-
tectures of neural networks have been proposed in the literature, such as multilayer
perceptron neural networks [47], recurrent neural networks [48], and Hopfield neural
network [49], just to name few. In this chapter we exploit the multilayer percep-
tron (MLP), which consists of several layers of interconnected perceptrons. Several
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training methods such as the back-propagation algorithm [50] and the Levenberg–
Marquardt algorithm [51, 52] are used to train this type of ANN.

Considering that we have Ȳ = (ȳ1, ȳ1, . . . , ȳn) as target data (in our case they are
real traffic flow data), the training is done using an optimization process iteratively
in order minimize the discrepancy D between the ANN outputs and the target data:

minimizewD(Y, Ȳ ,w). (12)

At the end of the optimization procedure, a neural network is obtained with
new weight values W ∗ = [w∗

0,w
∗
1,w

∗
2,w

∗
3, . . . ,w

∗
n] that minimize the discrepancy

expressed by a suitable norm function:

D(Y, Ȳ ) = ‖Y − Ȳ‖. (13)

Once the weight values are known, the ANN can be used to perform various tasks
related to the assessment of further input data (i.e., the so-called test data).

4 The NN-PDE Concept

The NN-PDE concept is a combination of a PDE-based model of traffic flow and a
calibration based on an artificial neural network. We use the PDE model, which has
the capability to represent the traffic flow in the spatiotemporal domain. However,
as already mentioned, the PDE models are generally inaccurate, and the calibration
carried out aims at proposing a new and accuratemodel towhichwe have assigned the
acronym NN-PDE. A calibration is exploited to adjust the result with reality (real
traffic data), resulting in increasing the accuracy of the model. A neural network
module for calibration is built offline by exploiting real traffic data (or quasireal
data “from a microscopic simulator”) and the data obtained from the PDE model,
which takes into account some contextual information related to a specific traffic
flow scenario. Let us note that real traffic data are obtained using VISSIM, which
is an accurate microscopic traffic simulator that can propose and configure several
scenarios. The block diagram in Fig. 5 illustrates the NN-PDE concept.

Block (a) in Fig. 5 is the PDE solver. The PDE model considered can be solved
using some numerical methods such as the method of lines (MOL), finite difference
methods (FDM), or CNN (cellular neural networks) [53]. The initial and boundary
conditions are set up as inputs according to a given scenario. Context information
(free flow speed, jam density, etc.) are also provided in order to fit with specific
scenarios for a given road segment. The result obtained expresses the spatiotemporal
evolution of the three fundamental parameters of traffic flow (i.e., density k(x, t),
speed u(x, t), and flow q(x, t)). After solving, the models are further processed
in order to fit with the input of the calibration module. Block (b) in Fig. 5 is the
calibration module based on a neural network. The multilayer perceptron (MLP)
architecture is used to build this module.
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Fig. 5 The NN-PDE concept. a The PDE solver (ICs: initial conditions and BCs: boundary
conditions). b The calibration module

Fig. 6 Offline training of the calibration module

As mentioned before, the training of the calibration module is done offline. The
block diagram in Fig. 6 shows the offline training procedure.

Block (a) in Fig. 6 is the traffic simulator tool. We use VISSIM, as mentioned
before, to obtain quasireal traffic data. These data are processed in order to fit the
calibration module and are stored in the database (see block (b)). The calibration
module in block (c) is trained offline by considering as input the data from the PDE
solver (taking into account different scenarios) and target (corresponding prestored)
data from the database (real traffic data).
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5 Simulation Results and Their Commenting

5.1 Numerical Schemes

We consider a scenario consisting of a single-lane model without ramp, as illus-
trated in Fig. 1, for numerical simulation. This scenario is modeled mathematically
by Eq. (7). Applying the finite difference method (e.g., Lax–Friedrichs scheme) to
Eq. (7), we obtain the following difference equation:

kn+1
i =

(
kni+1 + kni−1

2

)
− �t

2�x

[(
u f − 2

u f

k j

(
kni+1 + kni−1

2

)) (
kni+1 − kni−1

)]
,

(14)
where the index i represents the road section and the index n denotes the discrete
time. The stability condition of the numerical scheme is given by (see [54])

u f
�t

�x
≤ 1; k j = p[max(k0(xi ))]; p ≥ 2. (15)

The condition (15) is used during numerical simulation in order to guarantee
the stability of solutions. Thus the parameters of Eq. (7) are chosen according to
condition (15). During our various numerical simulations, several sets of parameters
are envisaged, each of which encompasses the parameters �t , �x , u f , k j , and k0
(see cases 1, 2, 3, and 4 in Sect. 5.3). In all four cases, the numerical solutions of
Eq. (7) are valid if the condition (15) is satisfied. Otherwise, the solutions are not
valid for the scenario in Fig. 1.

5.2 Neural Network Module for Calibration

The neural network module used for calibration encompasses the following input
and output variables:

• k(x, t) is the traffic flow obtained as a solution from the PDE model in Eq. (7) in
the form of an MxN matrix; M corresponds to the number of iterations in the
time domain, while the number of iterations in the space domain corresponds to
N ; k(x, t) is transformed into a row vector of size (M ∗ N ) and is further used as
the first input of the neural network (See Fig. 7). The second input corresponds to
the vector t of size M , while the size of the third input corresponding to vector
x is N . An appropriate use of the neural network in (Fig. 7) is recommended by
choosing the inputs 2 and 3 of equal size. This is the fundamental condition for
all inputs of the neural network (inputs 1, 2, and 3) to be of the same size.

• k̄(x, t) is the traffic flow data obtained from the VISSIM simulator; k̄(x, t) is
transformed into a row vector of size (M ∗ N ) and is further used as the target
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Fig. 7 The one- and two-layer neural networks used for training

solution during the training phase of the neural network. The target solution and
the three inputs are of equal size.

• K (x, t) is the result obtained after calibration. This corresponds to the result of the
new system developed in this chapter to which we have assigned the acronym of
NN-PDE. The data provided by the NN-PDE are in vector form of size (M ∗ N ).
This vector is of the same size as x , t , k, and k̄(x, t). This is an important condition
to ensure that the training procedure of the neural network is effective.

Another important condition for the training procedure of neural networks is con-
cerned with the number of layers and the number of perceptrons per layer. In Fig. 7,
the number of layers and/or the number of perceptrons is monitored to increase the
accuracy and avoid overfitting as well. During the training process conducted in this
work, the choice of both number of layers and perceptrons is based on trial-and-error.
It has been observed that increasing the number of perceptrons per layer significantly
improves the accuracy of the training process. However, the main problem encoun-
tered in increasing the number of perceptrons was the memory consumption and the
overfitting observed when the number of perceptrons per layer exceeds 100. It has
also been observed that increasing the number of hidden layers leads to an improve-
ment in the accuracy of the training process. However, it has been observed that
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the accuracy rate remains constant beyond 10 hidden layers. The next section (see
Sect. 5.3) is concerned with the presentation of the results obtained using the fol-
lowing methods: (a) numerical solution of the original PDE in Eq. (7) to express the
traffic flow dynamics corresponding to the scenario in Fig. 1; (b) solution of the same
scenario provided by VISSIM; (c) solution of the same scenario provided by the new
concept NN-PDE developed in this chapter. Overall, a comparison between solutions
(a) and (b) has led to a significant difference. This difference can be explained by the
fact that the theoretical model (Eq. (7)) does not express reality. Thus, the NN-PDE
developed is a new mathematical model that is much closer to reality. This statement
is justified in Sect. 5.3 through a benchmarking between NN-PDE and VISSIM.

5.3 Results and Comments

5.3.1 Original PDE Versus VISSIM

We apply the finite difference method to the original PDE in Eq. (7) to obtain the
discrete form in Eq. (14). This form is further solved using MATLAB to obtain the
numerical solution of the original PDE. This solution (see Fig. 8a) expresses the
traffic flow dynamics in Fig. 1. We also use VISSIM to simulate the traffic flow
dynamics in Fig. 1, and the solution obtained is depicted in Fig. 8b.

Using the set of parameters �x = 10m; �t = 1s; u f = 8.3m/s; k j = 0.160
Veh/m; and k0 = 0.08Veh/m, the solution of the original PDE is obtained in Fig. 8a.
The solution in Fig. 8b shows the simulation of the same scenario in VISSIM. It can
be observed from Fig. 8a, b that there is a significant divergence (see Fig. 8c) between
the solutions provided by the two methods (i.e., Original PDE and VISSIM). The
divergence in Fig. 8c corresponds to a normalized root mean square error (NRMSE)
of 28.02%. This value of the NRMSE justifies the need of calibration in order to
reduce the NRMSE. The calibration in this context consists in deriving a new model
(to which we have assigned the acronym NN-PDE) that must be able to provide
results similar to those obtained using VISSIM. Here VISSIM is considered the
target solution, because it expresses the traffic dynamics closer to reality.

5.3.2 NN-PDE Versus VISSIM

TheNN-PDEmodel in Fig. 5 is obtained by combining the original PDEwith a neural
network. The NN-PDEmodel is further implemented in MATLAB. Using NN-PDE,
several simulation results are obtained for different configurations of neural network.
These configurations are obtained by monitoring the number of hidden layers and
the perceptrons involved. Further simulation results are obtained for two different
values of the free flow speed (i.e., u f = 30 and u f = 50 km/h).
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Fig. 8 Simulation results. a PDE results. b Vissim results. c Error (PDE-Vissim). The NRMSE
corresponds to 20%

Case-1: We use the following parameters of the NN-PDE: value of the free flow
speed (uf = 30 km/h), neural network architecture (multilayer perceptron (MLP)),
1 hidden layer involving 50 perceptrons.

The simulation results obtained are illustrated in Fig. 9a–f. The results in Fig. 9a–c
correspond to the situation without calibration shown in Fig. 8. In contrast, the results
in Fig. 9d–f correspond to the situation with calibration. These results obtained using
NN-PDE are compared with the results obtained using VISSIM. The outcome of
comparison is depicted inFig. 9f.Using this figure,we see that theNRMSEcalculated
corresponds to 6.55%. This value of the NRMSE obtained using NN-PDE shows a
significant improvement when compared with the previous value of the NRMSE
(28.02%) obtained without calibration (see Fig. 8).

Case-2:We use the following parameters of NN-PDE: value of the free flow speed
(uf = 30 km/h), neural network architecture (MLP), 10 hidden layers involving 20
perceptrons.

The simulation results obtained are illustrated in Fig. 10a–f. The results in
Fig. 10a–c correspond to the situationwithout calibration shown in Fig. 8. In contrast,
the results in Fig. 10d–f correspond to the situation with calibration. These results
obtained using NN-PDE are compared with the results obtained using VISSIM. The
outcome of the comparison is depicted in Fig. 10f. Using this figure, we see that the
NRMSE calculated corresponds to 2.21%. This value of the NRMSE obtained using
NN-PDE shows a significant improvement when compared with the previous value
of the NRMSE (31.51%) obtained without calibration (see Fig. 8).

Case-3: We use the following parameters of the NN-PDE: value of the free flow
speed (uf = 50 km/h), neural network architecture (MLP), 1 hidden layer involving
50 perceptrons.

The simulation results obtained are illustrated in Fig. 11a–f. The results in
Fig. 11a–c correspond to the situationwithout calibration shown in Fig. 8. In contrast,
the results in Fig. 11d–f correspond to the situation with calibration. These results
obtained using NN-PDE are compared with the results obtained using VISSIM. The
outcome of the comparison is depicted in Fig. 11f. Using this figure, we see that the
NRMSE calculated corresponds to 6.39%. This value of the NRMSE obtained using
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Fig. 9 Simulation results of Configuration-1: MLP, 1 layer, 50 neurons: a PDE model (input).
b Vissim data (targets). c Initial error (PDE-Vissim). d Calibrated result. e Vissim data (targets).
f Final error (calibrated result-Vissim). The NRMSE corresponds to 6.55%

Fig. 10 Simulation results of Configuration-2: MLP, 10 layers, 20 neurons per layer: a PDEmodel
(input). b Vissim data (targets). c Initial error (PDE-Vissim). d Calibrated result. e Vissim data
(targets). f Final error (calibrated result-Vissim). The NRMSE corresponds to 2.21%
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Fig. 11 Simulation results of Configuration-1: MLP, 10 layers, 20 neurons per layer: a PDEmodel
(Input). b Vissim data (targets). c Initial error (PDE-Vissim). d Calibrated result. e Vissim data
(targets). f Final error (calibrated result-Vissim). The NRMSE corresponds to 6.39%

NN-PDE shows a significant improvement when compared with the previous value
of the NRMSE (28.02%) obtained without calibration (see Fig. 8).

Case-4:We use the following parameters of NN-PDE: value of the free flow speed
(uf = 50 km/h), neural network architecture (MLP), 10 hidden layers involving
20 perceptrons. The simulation results obtained are illustrated in Fig. 12a–f. The
results in Fig. 12a-c correspond to the situation without calibration shown in Fig. 8.
In contrast, the results in Fig. 12d–f correspond to the situation with calibration.
These results obtained using NN-PDE are compared with the results obtained using
VISSIM. The outcome of the comparison is depicted in Fig. 12f. Using this figure,
we see that the NRMSE calculated corresponds to 3.5%. This value of the NRMSE
obtained using NN-PDE shows a significant improvement when compared with the
previous value of the NRMSE (31.51%) obtained without calibration (see Fig. 8).

5.3.3 Comment on Results

The four cases envisaged (see cases 1–4) show that the accuracy of NN-PDE signif-
icantly depends on the neural network architecture. This dependence is confirmed
by the different values of the NRMSE obtained in each case. Further, it has been
observed that the variation of the free flow speed also significantly affects the results
obtained using NN-PDE. Our various numerical simulations have consisted in mon-
itoring and varying both the number of perceptrons in the hidden layer and the free
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Fig. 12 Simulation results of Configuration-1: MLP, 10 layers, 20 neurons per layer: a PDEmodel
(input). b Vissim data (targets). c Initial error (PDE-Vissim). d Calibrated result. e Vissim data
(targets). f Final error (calibrated result-Vissim). The NRMSE corresponds to 3.5%

Table 1 Summary of the results of the eight configurations of NN-PDE

Network configuration NRMSE in %

uf = 30Km/h uf = 50Km/h

No calibration 28.02 31.51

1 layer, 50 perceptrons 6.55 6.39

10 hidden layers, 20 perceptrons per layer 2.21 3.5

flow speed. The results obtained by varying the two cited parameters are summarized
in Table1. This table provide the NRMSE for different combinations (each of which
consists of a fix number of perceptrons in the hidden layer and a fixed value of the
free flow speed). The results reported in Table1 show the values of NRMSE for cases
without calibration versus the NRMSE for cases with calibration. The outcome of
this comparison clearly demonstrates that the new NN-PDE model developed pro-
vides results that are closer to those provided by VISSIM. This statement can be used
to justify the realistic nature of the NN-PDE model developed in this chapter.
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6 Concluding Remarks

In this chapter we have proposed a partial differential equation (PDE) based traffic
flow model that is calibrated using a neural network (NN). The model developed is
called NN-PDE (i.e., a combination of a PDEmodel with a calibration module based
on NN). The calibration carried out is important, because the traditional mathemati-
cal models for traffic flow (proposed by the state of the art of traffic flow modeling)
involve many parameters due to the complex dynamics undergone by traffic flow.
Further, these models are based on assumptions that are generally nonrealistic, since
they are unlikely to express the real traffic dynamics observed on arterial roads.
Among the huge number of mathematical models for traffic flow proposed in the
literature we have considered the LWRmodel, which is the seminal model proposed
in the literature for modeling and simulating the dynamics of traffic flow at a macro-
scopic level of detail. The advantage of considering the LWR model is twofold. The
LWR model is simple and can reproduce some relevant insights into the dynamics
of traffic flow. These insights express specific phenomena (shockwaves, rarefaction
waves, stop-and-go waves, etc.) that are generally observed on arterial roads. The
calibration of LWR carried out in this chapter has led to a new model, called NN-
PDE, which is very accurate and more realistic in describing the dynamics of traffic
flow when compared to the basic LWR model. This statement has been proven in
the framework of a benchmarking process conducted by considering the numerical
simulation of various scenarios of traffic flow on arterial roads. Regarding the numer-
ical simulation and benchmarking carried out in this chapter, the basic LWR model
(corresponding to traffic flow in a single lane) has been simulated using the finite
difference method (FDM) combined with the related stability conditions derived
analytically. Both FDM scheme and stability conditions have been implemented in
MATLAB to obtain numerical results. Further, in order to obtain the new NN-PDE
model as a calibrated version of the basic LWR model, the MLP architecture has
been used to design a neural network (NN) scheme that was trained offline using as
target the data provided by VISSIM. The input data used for training the NN scheme
are those provided by the LWR model. The outcome of the training has led to the
NN-PDE model, which is further used for numerical simulations. Using NN-PDE,
the various numerical simulations performed have revealed that the accuracy of NN-
PDE can be improved by varying the configuration of the neural network module and
also by monitoring the parameters (e.g., free flow speed) of the NN-PDE model. We
have noticed that increasing both the number of perceptrons per layer and the number
of layers involved in the NN architecture leads to a significant improvement in the
accuracy of the NN-PDE model. However, we have detected a maximum number of
layers and also a maximum number of perceptrons in layers above which the numer-
ical results obtained do not lead to further significant improvement of the accuracy of
NN-PDE. In contrast, a further increase of the number of perceptrons and layers may
inherently lead to a waste of resources (memory), convergence issues (e.g., failure to
converge), instability (loss of robustness), and low or worse computing performance.
A benchmarking has been consideredwith the aim of comparing results of the numer-
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ical simulation of several specific traffic flow scenarios obtained using three different
methods, namely the LWR model, the NN-PDE model, and VISSIM. The outcome
of this comparison has revealed that the NN-PDE model developed provides results
that are closer to results provided by VISSIM for all traffic flow scenarios envis-
aged in this chapter. For the same scenarios, the LWR model provides results that
significantly diverge from those obtained using VISSIM. Hence the NN-PDE model
developed shows very good accuracy and thus appears to be more appropriate (than
the classical LWR) to model and simulate traffic flow scenarios on arterial roads.
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