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Life is good for only two things, discovering
mathematics and teaching mathematics.

Siméon Poisson



Preface to the Second Edition

The first edition of the book has generated great interest and a large amount of input from the
readers, who have expressed their views and have suggested corrections and improvements.
We are deeply grateful to all, as their contributions have significantly impacted the book.

At the same time, the authors have remained involved in mathematics competitions, being
exposed to the constant flow of problems and to the evolution of ideas. The first author has
continued training the United States International Mathematical Olympiad team. The second
author has started and perfected the Awesome Math Summer program, and as editor-in-chief
of Mathematical Reflections, has established it as one of the important journals promoting
problem solving at high-school and college levels. Both authors have continued writing prob-
lems for mathematics contests at high school and collegiate levels. Some new perspectives in
problem solving that appeared since the publication of the first edition have thus found their
way into the book.

Also, by using Putnam and Beyond in teaching and coaching, the authors have realized
that some material had to be improved and expanded to make it more accessible and com-
plete.

The new edition adds 180 new problems and examples, eight new sections, some new
solutions to previously existing problems, and corrects all the errors and typos that have been
found in the first edition. It gives more substance to some topics that had a rather shallow
treatment before. The experience of ten years of use gave rise to a more polished product.

April 2017 Răzvan Gelca
Texas Tech University

Titu Andreescu
University of Texas at Dallas



Preface to the First Edition

A problem book at the college level. A study guide for the Putnam competition. A bridge
between high school problem solving and mathematical research. A friendly introduction to
fundamental concepts and results. All these desires gave life to the pages that follow.

The William Lowell Putnam Mathematical Competition is the most prestigious mathe-
matics competition at the undergraduate level in the world. Historically, this annual event
began in 1938, following a suggestion of William Lowell Putnam, who realized the merits
of an intellectual intercollegiate competition. Nowadays, over 2500 students from more than
300 colleges and universities in the USA and Canada take part in it. The name Putnam has
become synonymous with excellence in undergraduate mathematics.

Using the Putnam competition as a symbol, we lay the foundations of higher mathematics
from a unitary, problem-based perspective. As such, Putnam and Beyond is a journey through
the world of college mathematics, providing a link between the stimulating problems of the
high school years and the demanding problems of scientific investigation. It gives motivated
students a chance to learn concepts and acquire strategies, hone their skills and test their
knowledge, seek connections, and discover real world applications. Its ultimate goal is to
build the appropriate background for graduate studies, whether in mathematics or applied
sciences.

Our point of view is that in mathematics it is more important to understand why than to
know how. Because of this we insist on proofs and reasoning. After all, mathematics means,
as the Romanian mathematician Grigore Moisil once said, “correct reasoning”. The ways of
mathematical thinking are universal in today’s science.

Putnam and Beyond targets primarily Putnam training sessions, problem-solving semi-
nars, and math clubs at the college level, filling a gap in the undergraduate curriculum. But it
does more than that. Written in the structured manner of a textbook, but with strong emphasis
on problems and individual work, it covers what we think are the most important topics and
techniques in undergraduate mathematics, brought together within the confines of a single
book in order to strengthen one’s belief in the unitary nature of mathematics. It is assumed
that the reader possesses a moderate background, familiarity with the subject, and a certain
level of sophistication, for what we cover reaches beyond the usual textbook, both in diffi-
culty and in depth. When organizing the material, we were inspired by Georgia O’Keeffe’s
words: “Details are confusing. It is only by selection, by elimination, by emphasis that we
get at the real meaning of things.”



x Preface to the First Edition

The book can be used to enhance the teaching of any undergraduate mathematics course,
since it broadens the database of problems for courses in real analysis, linear algebra,
trigonometry, analytical geometry, differential equations, number theory, combinatorics, and
probability. Moreover, it can be used by graduate students and educators alike to expand
their mathematical horizons, for many concepts of more advanced mathematics can be found
here disguised in elementary language, such as the Gauss-Bonnet theorem, the linear propa-
gation of errors in quantum mechanics, knot invariants, or the Heisenberg group. The way of
thinking nurtured in this book opens the door for true scientific investigation.

As for the problems, they are in the spirit of mathematics competitions. Recall that the
Putnam competition has two parts, each consisting of six problems, numbered A1 through
A6, and B1 through B6. It is customary to list the problems in increasing order of difficulty,
with A1 and B1 the easiest, and A6 and B6 the hardest. We keep the same ascending pattern
but span a range from A0 to B7. This means that we start with some inviting problems below
the difficulty of the test, then move forward into the depths of mathematics.

As sources of problems and ideas we used the Putnam exam itself, the International Com-
petition in Mathematics for University Students, the International Mathematical Olympiad,
national contests from the USA, Romania, Russia, China, India, Bulgaria, mathematics jour-
nals such as the American Mathematical Monthly, Mathematics Magazine, Revista Matem-
atică din Timişsoara (Timişsoara Mathematics Gazette), Gazeta Matematică (Mathemat-
ics Gazette, Bucharest), Kvant (Quantum), Középiskolai Matematikai Lapok (Mathematical
Magazine for High Schools (Budapest)), and a very rich collection of Romanian publications.
Many problems are original contributions of the authors. Whenever possible, we give the his-
torical background and indicate the source and author of the problem. Some of our sources
are hard to find; this is why we offer you their most beautiful problems. Other sources are
widely circulated, and by selecting some of their most representative problems we bring them
to your attention.

Here is a brief description of the contents of the book. The first chapter is introductory,
giving an overview of methods widely used in proofs. The other five chapters reflect areas
of mathematics: algebra, real analysis, geometry and trigonometry, number theory, combina-
torics and probability. The emphasis is placed on the first two of these chapters, since they
occupy the largest part of the undergraduate curriculum.

Within each chapter, problems are clustered by topic. We always offer a brief theoretical
background illustrated by one or more detailed examples. Several problems are left for the
reader to solve. And since our problems are true brainteasers, complete solutions are given
in the second part of the book. Considerable care has been taken in selecting the most ele-
gant solutions and writing them so as to stir imagination and stimulate research. We always
“judged mathematical proofs”, as Andrew Wiles once said, “by their beauty”.

Putnam and Beyond is the fruit of work of the first author as coach of the University of
Michigan and Texas Tech University Putnam teams and of the International Mathematical
Olympiad teams of the USA and India, as well as the product of the vast experience of the
second author as head coach of the United States International Mathematical Olympiad team,
coach of the Romanian International Mathematical Olympiad team, director of the American
Mathematics Competitions, and member of the Question Writing Committee of the William
Lowell Putnam Mathematical Competition.



Preface to the First Edition xi

In conclusion, we would like to thank Elgin Johnston, Dorin Andrica, Chris Jeuell,
Ioan Cucurezeanu, Marian Deaconescu, Gabriel Dospinescu, Ravi Vakil, Vinod Grover, V.V.
Acharya, B.J. Venkatachala, C.R. Pranesachar, Bryant Heath, and the students of the Interna-
tional Mathematical Olympiad training programs of the USA and India for their suggestions
and contributions. Most of all, we are deeply grateful to Richard Stong, David Kramer, and
Paul Stanford for carefully reading the manuscript and considerably improving its quality.
We would be delighted to receive further suggestions and corrections; these can be sent to
rgelca@gmail.com.

May 2007 Răzvan Gelca
Texas Tech University

Titu Andreescu
University of Texas at Dallas
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A Study Guide

The book has six chapters: Methods of Proof, Algebra, Real Analysis, Geometry and
Trigonometry, Number Theory, Combinatorics and Probability, divided into subchapters such
as Linear Algebra, Sequences and Series, Geometry, and Arithmetic. All subchapters are
self-contained and independent of each other and can be studied in any order. In most cases
they reflect standard undergraduate courses or fields of mathematics. The sections within
each subchapter are best followed in the prescribed order.

If you are an undergraduate student trying to acquire skills or test your knowledge in a
certain field, study first a regular textbook and make sure that you understand it very well.
Then choose the appropriate chapter or subchapter of this book and proceed section by sec-
tion. Read first the theoretical background and the examples from the introductory part; then
do the problems. These are listed in increasing order of difficulty, but even the very first can
be tricky. Don’t get discouraged; put effort and imagination into each problem; and only if
all else fails, look at the solution from the back of the book. But even if you are successful,
you should read the solution, since many times it gives a new insight and, more important,
opens the door toward more advanced mathematics.

Beware! The last few problems of each section can be very hard. It might be a good idea
to skip them at the first encounter and return to them as you become more experienced.

If you are a Putnam competitor, then as you go on with the study of the book try your
hand at the true Putnam problems (which have been published in three excellent volumes).
Identify your weaknesses and insist on the related chapters of Putnam and Beyond. Every
once in a while, for a problem that you have solved, write down the solution in detail, then
compare it to the one given at the end of the book. It is very important that your solutions be
correct, structured, convincing, and easy to follow.

Mathematical Olympiad competitors can also use this book. Appropriate chapters are
Methods of Proof, Number Theory, and Combinatorics, as well as the subchapters 2.1
and 4.2.

An instructor can add some of the problems from the book to a regular course in order
to stimulate and challenge the better students. Some of the theoretical subjects can also
be incorporated in the course to give better insight and a new perspective. Putnam and
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Beyond can be used as a textbook for problem-solving courses, in which case we recommend
beginning with the first chapter. Students should be encouraged to come up with their own
original solutions.

If you are a graduate student in mathematics, it is important that you know and under-
stand the contents of this book. First, mastering problems and learning how to write down
arguments are essential matters for good performance in doctoral examinations. Second,
most of the presented facts are building blocks of graduate courses; knowing them will make
these courses natural and easy.

It is important to keep in mind that detailed solutions to all problems are given in the
second part of the book. After the solution we list the author of the problem and/or the place
where it was published. In some cases we also describe how the problem fits in the big picture
of mathematics.

“Don’t bother to just be better than your contemporaries or predecessors. Try to be better
than yourself” (W. Faulkner).



1

Methods of Proof

In this introductory chapter we explain some methods of mathematical proof. They are argu-
ment by contradiction, the principle of mathematical induction, the pigeonhole principle, the
use of an ordering on a set, and the principle of invariance.

The basic nature of these methods and their universal use throughout mathematics makes
this separate treatment necessary. In each case we have selected what we think are the most
appropriate examples, solving some of them in detail and asking you to train your skills
on the others. And since these are fundamental methods in mathematics, you should try to
understand them in depth, for “it is better to understand many things than to know many
things” (Gustave Le Bon).

1.1 Argument by Contradiction

The method of argument by contradiction proves a statement in the following way:
First, the statement is assumed to be false. Then, a sequence of logical deductions yields

a conclusion that contradicts either the hypothesis (indirect method), or a fact known to be
true (reductio ad absurdum). This contradiction implies that the original statement must be
true.

This is a method that Euclid loved, and you can find it applied in some of the most
beautiful proofs from his Elements. Euclid’s most famous proof is that of the infinitude of
prime numbers.

Euclid’s theorem. There are infinitely many prime numbers.

Proof. Assume, to the contrary, that only finitely many prime numbers exist. List them as
p1 = 2, p2 = 3, p3 = 5, . . ., pn . The number N = p1 p2 . . . pn + 1 is divisible by a prime p,
yet is coprime to p1, p2, . . . , pn . Therefore, p does not belong to our list of all prime numbers,
a contradiction. Hence the initial assumption was false, proving that there are infinitely many
primes.
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2 1 Methods of Proof

Here is a variation of this proof using repunits. If there are only finitely many primes,
then the terms of the sequence

x1 = 1, x2 = 11, x3 = 111, x4 = 1111, ...

have only finitely many prime divisors, so there are finitely many terms of the sequence that
exhaust them. Assume that the first n terms exhaust all prime divisors. Then xn! is divisible
by x1, x2, . . . , xn , since for each k ≤ n, we can group the digits of xn! in strings of k. Then
xn!+1 = 10xn! + 1 is coprime with all of x1, x2, . . . , xn . This is a contradiction because
all prime divisors of terms of the sequence were exhausted by x1, x2, . . . , xn . So there are
infinitely many primes. �

We continue our illustration of the method of argument by contradiction with an example
of Euler.

Example. Prove that there is no polynomial

P(x) = anxn + an−1xn−1 + . . . + a0

with integer coefficients and of degree at least 1 with the property that P(0), P(1), P(2), . . .
are all prime numbers.

Solution. Assume the contrary and let P(0) = p, p prime. Then a0 = p and P(kp) is
divisible by p for all k ≥ 1. Because we assumed that all these numbers are prime, it follows
that P(kp) = p for k ≥ 1. Therefore, P(x) takes the same value infinitely many times, a
contradiction. Hence the conclusion. �

The last example comes from I. Tomescu’s bookProblems inCombinatorics (Wiley, 1985).

Example. Let F = {E1, E2, . . . , Es} be a family of subsets with r elements of some set X .
Show that if the intersection of any r +1 (not necessarily distinct) sets in F is nonempty, then
the intersection of all sets in F in nonempty.

Solution. Again we assume the contrary, namely that the intersection of all sets in F is empty.
Consider the set E1 = {x1, x2, . . . , xr } Because none of the xi , i = 1, 2, . . . , r , lies in the
intersection of all the e j ’s (this intersection being empty), it follows that for each i we can
find some E ji such that xi /∈ E ji . Then

E1 ∩ E j1 ∩ E j2 ∩ . . . ∩ E jr = ∅,

since, at the same time, this intersection is included in E1 and does not contain any element
of E1. But this contradicts the hypothesis. It follows that our initial assumption was false,
and hence the sets from the family F have a nonempty intersection. �

The following problems help you practice this method, which will be used often in the
book.
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1. Prove that
√
2 + √

3 + √
5 is an irrational number.

2. Show that no set of nine consecutive integers can be partitioned into two sets with
the product of the elements of the first set equal to the product of the elements of the
second set.

3. Find the least positive integer n such that any set of n pairwise relatively prime integers
greater than 1 and less than 2005 contains at least one prime number.

4. Let F = {E1, E2, . . . , Em} be a family of subsets with n − 2 elements of a set S with
n elements, n ≥ 3. Show that if the union of any three subsets from F is not equal to
S, then the union of all subsets from F is different from S.

5. Every point of three-dimensional space is colored red, green, or blue. Prove that one
of the colors attains all distances, meaning that any positive real number represents the
distance between two points of this color.

6. The union of nine planar surfaces, each of area equal to 1, has a total area equal to 5.
Prove that the overlap of some two of these surfaces has an area greater than or equal
to 1

9 .

7. Show that there does not exist a function f : Z → {1, 2, 3} satisfying f (x) 	= f (y)

for all x, y ∈ Z such that |x − y| ∈ {2, 3, 5}.
8. Show that there does not exist a strictly increasing function f : N → N satisfying

f (2) = 3 and f (mn) = f (m) f (n) for all m, n ∈ N.

9. Determine all functions f : N → N satisfying

x f (y) + y f (x) = (x + y) f (x2 + y2)

for all positive integers x and y.

10. Show that the interval [0, 1] cannot be partitioned into two disjoint sets A and B such
that B = A + a for some real number a.

11. Let n > 1 be an arbitrary real number and let k be the number of positive prime numbers
less than or equal to n. Select k + 1 positive integers such that none of them divides
the product of all the others. Prove that there exists a number among the chosen k + 1
that is bigger than n.

1.2 Mathematical Induction

The principle of mathematical induction, which lies at the very heart of Peano’s axiomatic
construction of the set of positive integers, is stated as follows.

Induction principle. Given P(n), a property depending on a positive integer n,

(i) if P(n0) is true for some positive integer n0, and
(ii) if for every k ≥ n0, P(k) true implies P(k + 1) true,

then P(n) is true for all n ≥ n0.
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This means that when proving a statement bymathematical induction you should (i) check
the base case and (ii) verify the inductive step by showing how to pass from an arbitrary integer
to the next. Here is a simple example from combinatorial geometry.

Example. Finitely many lines divide the plane into regions. Show that these regions can be
colored by two colors in such a way that neighboring regions have different colors.

Solution. We prove this by induction on the number n of lines. The base case n = 1 is
straightforward, color one half-plane black, the other white.

For the inductive step, assume that we know how to color any map defined by k lines.
Add the (k + 1)st line to the picture; then keep the color of the regions on one side of this
line the same while changing the color of the regions on the other side. The inductive step is
illustrated in Figure 1.

Figure 1

Regions that were adjacent previously still have different colors. Regions that share a
segment of the (k + 1)st line, which were part of the same region previously, now lie on
opposite sides of the line. So they have different colors, too. This shows that the new map
satisfies the required property and the induction is complete. �

A classical proof by induction is that of Fermat’s so-called little theorem.

Fermat’s little theorem. Let p be a prime number, and n a positive integer. Then n p − n is
divisible by p.

Proof. We prove the theorem by induction on n. The base case n = 1 is obvious. Let us
assume that the property is true for n = k and prove it for n = k + 1. Using the induction
hypothesis, we obtain

(k + 1)p − (k + 1) ≡ k p +
p−1∑

j=1

(
p

j

)
k j + 1 − k − 1 ≡

p−1∑

j=1

(
p

j

)
k j (mod p).

The key observation is that for 1 ≤ j ≤ p − 1,
(p

j

)
is divisible by p. Indeed, examining

(
p

j

)
= p(p − 1) · · · (p − j + 1)

1 · 2 · · · j
,

it is easy to see that when 1 ≤ j ≤ p−1, the numerator is divisible by p while the denominator
is not. Therefore, (k + 1)p − (k + 1) ≡ 0 (mod p), which completes the induction. �
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The third example is a problem from the 5th W.L. Putnam Mathematical Competition,
and it was selected because its solution combines several proofs by induction. If you find it
too demanding, think of Vincent van Gogh’s words: “The way to succeed is to keep your
courage and patience, and to work energetically”.

Example. For m a positive integer and n an integer greater than 2, define f1(n) = n, f2(n) =
n f1(n), . . ., fi+1(n) = n fi (n), . . .. Prove that

fm(n) < n!! · · ·! < fm+1(n),

where the term in the middle has m factorials.

Solution. For convenience, let us introduce g0(n) = n, and recursively gi+1(n) = (gi (n))!.
The double inequality now reads

fm(n) < gm(n) < fm+1(n).

For m = 1 this is obviously true, and it is only natural to think of this as the base case. We
start by proving the inequality on the left by induction on m. First, note that if t > 2n2 is a
positive integer, then

t ! > (n2)t−n2 = nt nt−2n2 > nt .

Now, it is not hard to check that gm(n) > 2n2 for m ≥ 2 and n ≥ 3. With this in mind, let us
assume the inequality to be true for m = k. Then

gk+1(n) = (gk(n))! > ngk (n) > n fk (n) = fk+1(n),

which proves the inequality for m = k + 1. This verifies the inductive step and solves half of
the problem.

Here we pause for a short observation. Sometimes the proof of a mathematical statement
becomes simpler if the statement is strengthened. This is the case with the second inequality,
which we replace by the much stronger

g0(n)g1(n) · · · gm(n) < fm+1(n),

holding true for m and n as above.
As an intermediate step, we establish, by induction on m, that

g0(n)g1(n) . . . gm(n) < ng0(n)g1(n)···gm−1(n),

for all m and all n ≥ 3. The base case m = 1 is the obvious n · n! < nn . Now assume that the
inequality is true for m = k, and prove it for m = k + 1. We have

g0(n)g1(n) · · · gk+1(n) = g0(n)g0(n!) · · · gk(n!) < g0(n)(n!)g0(n!)g1(n!)···gk−1(n!)

< n(n!)g1(n)···gk (n) < (n · n!)g1(n)···gk (n)

< (nn)g1(n)···gk (n) = ng0(n)g1(n)···gk (n),

completing this induction, and proving the claim.
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Next, we show, also by induction on m, that g0(n)g1(n) · · · gm(n) < fm+1(n) for all n.
The base case m = 1 is n · n! < nn; it follows by multiplying 1 · 2 < n and 3 · 4 · · · n < nn−2.
Let’s see the inductive step. Using the inequality for the gm’s proved above and the assumption
that the inequality holds for m = k, we obtain

g0(n) · · · gm(n)gm+1(n) < ng0(n)···gm (n) < n fm+1(n) = fm+2(n),

which is the inequality for m = k + 1. This completes the last induction, and with it
the solution to the problem. No fewer than three inductions were combined to solve the
problem! �

Listen and you will forget, learn and you will remember, do it yourself and you will
understand. Practice induction with the following examples.

12. Prove for all positive integers n the identity

1

n + 1
+ 1

n + 2
+ · · · + 1

2n
= 1 − 1

2
+ 1

3
− · · · + 1

2n − 1
− 1

2n
.

13. Prove that | sin nx | ≤ n| sin x | for any real number x and positive integer n.

14. Prove that for any real numbers x1, x2, . . . , xn , n ≥ 1,

| sin x1| + | sin x2| + · · · + | sin xn| + | cos(x1 + x2 + · · · + xn)| ≥ 1.

15. Prove that 3n ≥ n3 for all positive integers n.

16. Let n ≥ 6 be an integer. Show that

(n

3

)n
< n! <

(n

2

)n
.

17. Let n be a positive integer. Prove that

1 + 1

23
+ 1

33
+ · · · + 1

n3
<

3

2
.

18. Prove that for any positive integer n there exists an n-digit number

(a) divisible by 2n and containing only the digits 2 and 3;

(b) divisible by 5n and containing only the digits 5, 6, 7, 8, 9.

19. Prove that for any n ≥ 1, a 2n × 2n checkerboard with a 1 × 1 corner square removed
can be tiled by pieces of the form described in Figure 2.

1

1

Figure 2
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20. Given a sequence of integers x1, x2, . . . , xn whose sum is 1, prove that exactly one of
the cyclic shifts

x1, x2, . . . , xn; x2, . . . , xn, x1; . . . ; xn, x1, . . . , xn−1

has all of its partial sums positive. (By a partial sum we mean the sum of the first k
terms, k ≤ n.)

21. Let x1, x2, . . ., xn , y1, y2, . . ., ym be positive integers, n, m > 1. Assume that

x1 + x2 + · · · + xn = y1 + y2 + · · · + ym < mn.

Prove that in the equality

x1 + x2 + · · · + xn = y1 + y2 + · · · + ym

one can suppress some (but not all) terms in such away that the equality is still satisfied.

22. Prove that any function defined on the entire real axis can be written as the sum of two
functions whose graphs admit centers of symmetry.

23. Prove that for any positive integer n ≥ 2 there is a positive integer m that can be written
simultaneously as a sum of 2, 3, . . . , n squares of nonzero integers.

24. Let n be a positive integer, n ≥ 2, and let a1, a2, . . . , a2n+1 be positive real numbers
such that a1 < a2 < · · · < a2n+1. Prove that

n
√

a1 − n
√

a2 + n
√

a3 − · · · − n
√

a2n + n
√

a2n+1 < n
√

a1 − a2 + a3 − · · · − a2n + a2n+1.

25. It is given a finite set A of lines in a plane. It is known that, for some positive integer
k ≥ 3, for every subset B of A consisting of k2 + 1 lines there are k points in the plane
such that each line in B passes through at least one of them. Prove that there are k
points in the plane such that every line in A passes through at least one of them.

Even more powerful is strong induction.

Induction principle (strong form). Given P(n) a property that depends on an integer n,

(i) if P(n0), P(n0 +1), . . . , P(n0 + m) are true for some positive integer n0 and nonneg-
ative integer m, and

(ii) if for every k > n0 + m, P( j) true for all n0 ≤ j < k implies P(k) true,
then P(n) is true for all n ≥ n0.

We use strong induction to solve a problem from the 24th W.L. Putnam Mathematical
Competition.

Example. Let f : N → N be a strictly increasing function such that f (2) = 2 and f (mn) =
f (m) f (n) for every relatively prime pair of positive integers m and n. Prove that f (n) = n
for every positive integer n.
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Solution. The proof is of course by induction on n. Monotonicity implies right away that
f (1) = 1. However, the base case is not the given f (2) = 2, but f (2) = 2 and f (3) = 3.

So let us find f (3). Because f is strictly increasing, f (3) f (5) = f (15) < f (18) =
f (2) f (9). Hence f (3) f (5) < 2 f (9) and f (9) < f (10) = f (2) f (5) = 2 f (5). Combining
these inequalities, we obtain f (3) f (5) < 4 f (5), so f (3) < 4. But we know that f (3) >

f (2) = 2, which means that f (3) can only be equal to 3.
The base case was the difficult part of the problem; the induction step is rather straight-

forward. Let k > 3 and assume that f ( j) = j for j < k. Consider 2r (2m + 1) to be the
smallest even integer greater than or equal to k that is not a power of 2. This number is equal
to either k, k + 1, k + 2, or k + 3, and since k > 3, both 2r and 2m + 1 are strictly less than k.
From the induction hypothesis, we obtain f (2r (2m + 1)) = f (2r ) f (2m + 1) = 2r (2m + 1).
Monotonicity, combinedwith the fact that there are at most 2r (2m+1) values that the function
can take in the interval [1, 2r (2m +1)], implies that f (l) = l for l ≤ 2r (2m +1). In particular,
f (k) = k. We conclude that f (n) = n for all positive integers n. �

A function f : N → C with the property that f (1) = 1 and f (mn) = f (m) f (n)

whenever m and n are coprime is called a multiplicative function. Examples include the
Euler totient function and the Möbius function. In the case of our problem, the multiplicative
function is also strictly increasing. Amore general result of P. Erdös shows that any increasing
multiplicative function that is not constant is of the form f (n) = nα for some α > 0.

The second example is from the 1999 Balkan Mathematical Olympiad, being proposed
by B. Enescu.

Example. Let 0 ≤ x0 ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ · · · be a sequence of non-negative integers
such that for every index k, the number of the terms of the sequence that are less than or equal
to k is finite. We denote this number by yk . Prove that for any two positive integer numbers
m and n, the following inequality holds

n∑

i=0

xi +
m∑

j=0

y j ≥ (n + 1)(m + 1).

Solution. We will prove this by strong induction on s = m + n.
The base case s = 0 is obvious, since either x0 > 0, in which case the first sum is at least

1, or x0 = 0, in which case y0 ≥ 1 and the second sum is at least 1. Let us now assume that
the inequality holds for all s ≤ N − 1 and let us prove it for s = N .

If xn ≥ m + 1, then

n∑

i=0

xi +
m∑

j=0

y j =
n−1∑

i=0

xi +
m∑

j=0

y j + xn,

where
∑n−1

i=0 xi is taken to be zero if n = 0. The induction hypothesis implies that this is
greater than or equal to n(m + 1) + (m + 1) = (n + 1)(m + 1), and we are done.

If xn < m + 1, then ym ≥ n + 1 and so

n∑

i=0

xi +
m∑

j=0

y j =
n∑

i=0

xi +
m−1∑

j=0

y j + ym ≥ (n + 1)m + (n + 1) = (n + 1)(m + 1),
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where for the inequality we used again the induction hypothesis. This completes the induction
and we are done. �

26. Show that every positive integer can be written as a sum of distinct terms of the
Fibonacci sequence. (The Fibonacci sequence (Fn)n is defined by F0 = 0, F1 = 1,
and Fn+1 = Fn + Fn−1, n ≥ 1.)

27. Prove that the Fibonacci sequence satisfies the identity

F2n+1 = F2
n+1 + F2

n , for n ≥ 0.

28. Prove that the Fibonacci sequence satisfies the identity

F3n = F3
n+1 + F3

n − F3
n−1, for n ≥ 0.

29. Show that an isosceles triangle with one angle of 120◦ can be dissected into n ≥ 4
triangles similar to it.

30. Show that for all n > 3 there exists an n-gon whose sides are not all equal and such
that the sum of the distances from any interior point to each of the sides is constant.
(An n-gon is a polygon with n sides.)

31. The vertices of a convex polygon are colored by at least three colors such that no two
consecutive vertices have the same color. Prove that one can dissect the polygon into
triangles by diagonals that do not cross and whose endpoints have different colors.

32. Prove that any polygon (convex or not) can be dissected into triangles by interior
diagonals.

33. Prove that any positive integer can be represented as ±12 ± 22 ± . . . ± n2 for some
positive integer n and some choice of the signs.

Now we demonstrate a less frequently encountered form of induction that can be traced
back to Cauchy’s work, where it was used to prove the arithmetic mean-geometric mean
inequality. We apply this method to solve a problem from D. Buşneag, I. Maftei, Themes for
Mathematics Circles and Contests (Scrisul Românesc, Craiova, 1983).

Example. Let a1, a2, . . . , an be real numbers greater than 1. Prove the inequality

n∑

i=1

1

1 + ai
≥ n

1 + n
√

a1a2 · · · an
.

Solution. As always, we start with the base case:

1

1 + a1
+ 1

1 + a2
≥ 2

1 + √
a1a2

.

Multiplying out the denominators yields the equivalent inequality

(2 + a1 + a2)(1 + √
a1a2) ≥ 2(1 + a1 + a2 + a1a2).
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After multiplications and cancellations, we obtain

2
√

a1a2 + (a1 + a2)
√

a1a2 ≥ a1 + a2 + 2a1a2.

This can be rewritten as

2
√

a1a2(1 − √
a1a2) + (a1 + a2)(

√
a1a2 − 1) ≥ 0,

or
(
√

a1a2 − 1)(a1 + a2 − 2
√

a1a2) ≥ 0.

The inequality is now obvious since a1a2 ≥ 1 and a1 + a2 ≥ 2
√

a1a2.
Now instead of exhausting all positive integers n, we downgrade our goal and check just

the powers of 2. Sowe prove that the inequality holds for n = 2k by induction on k. Assuming
it true for k, we can write

2k+1∑

i=1

1

1 + ai
=

2k∑

i=1

1

1 + ai
+

2k+1∑

i=2k+1

1

1 + ai

≥ 2k

(
1

1 + 2k√a1a2 . . . a2k
+ 1

1 + 2k√a2k+1a2k+2 · · · a2k+1

)

≥ 2k 2

1 + 2k+1√a1a2 · · · a2k+1
,

where the first inequality follows from the induction hypothesis, and the second is just the
base case. This completes the induction.

Now we have to cover the cases in which n is not a power of 2. We do the induction
backward, namely, we assume that the inequality holds for n + 1 numbers and prove it
for n. Let a1, a2, . . . , an be some real numbers greater than 1. Attach to them the number

n
√

a1a2 · · · an . When writing the inequality for these n + 1 numbers, we obtain

1

1 + a1
+ · · · + 1

1 + n
√

a1a2 · · · an
≥ n + 1

1 + n+1
√

a1 · · · an
n
√

a1a2 · · · an

.

Recognize the complicated radical on the right to be n
√

a1a2 . . . an . After cancelling the last
term on the left, we obtain

1

1 + a1
+ 1

1 + a2
+ · · · + 1

1 + an
≥ n

1 + n
√

a1a2 · · · an
,

as desired. The inequality is now proved, since we can reach any positive integer n by starting
with a sufficiently large power of 2 and working backward. �

Try to apply the same technique to the following problems.

34. Let f : R → R be a function satisfying

f

(
x1 + x2

2

)
= f (x1) + f (x2)

2
for any x1, x2.
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Prove that

f

(
x1 + x2 + · · · + xn

n

)
= f (x1) + f (x2) + · · · + f (xn)

n

for any x1, x2, . . . , xn .

35. Show that if a1, a2, . . . , an are nonnegative numbers, then

(1 + a1)(1 + a2) · · · (1 + an) ≥ (1 + n
√

a1a2 · · · an)
n.

1.3 The Pigeonhole Principle

The pigeonhole principle (or Dirichlet’s box principle) is usually applied to problems in
combinatorial set theory, combinatorial geometry, and number theory. In its intuitive form, it
can be stated as follows.

Pigeonhole principle. If kn + 1 objects (k ≥ 1 not necessarily finite) are distributed among
n boxes, one of the boxes will contain at least k + 1 objects.

This is merely an observation, and it was Dirichlet who first used it to prove nontrivial
mathematical results. The name comes from the intuitive image of several pigeons entering
randomly in some holes. If there are more pigeons than holes, then we know for sure that
one hole has more than one pigeon. We begin with an easy problem, which was given at the
International Mathematical Olympiad in 1972, proposed by Russia.

Example. Prove that every set of 10 two-digit integer numbers has two disjoint subsets with
the same sum of elements.

Solution. Let S be the set of 10 numbers. It has 210−2 = 1022 subsets that differ from both S
and the empty set. They are the “pigeons”. If A ⊂ S, the sum of elements of A cannot exceed
91+ 92+ · · · + 99 = 855. The numbers between 1 and 855, which are all possible sums, are
the “holes”. Because the number of “pigeons” exceeds the number of “holes”, there will be
two “pigeons” in the same “hole”. Specifically, there will be two subsets with the same sum
of elements. Deleting the common elements, we obtain two disjoint sets with the same sum
of elements. �

Here is a more difficult problem from the 26th International Mathematical Olympiad,
proposed by Mongolia.

Example. Given a set M of 1985 distinct positive integers, none of which has a prime divisor
greater than 26, prove that M contains at least one subset of four distinct elements whose
product is the fourth power of an integer.

Solution. We show more generally that if the prime divisors of elements in M are among the
prime numbers p1, p2, . . . , pn and M has at least 3 ·2n +1 elements, then it contains a subset
of four distinct elements whose product is a fourth power.
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To each element m in M we associate an n-tuple (x1, x2, . . . , xn), where xi is 0 if the
exponent of pi in the prime factorization of m is even, and 1 otherwise. These n-tuples are the
“objects”. The “boxes” are the 2n possible choices of 0’s and 1’s. Hence, by the pigeonhole
principle, every subset of 2n + 1 elements of M contains two distinct elements with the same
associated n-tuple, and the product of these two elements is then a square.

We can repeatedly take aside such pairs and replace them with two of the remaining
numbers. From the set M , which has at least 3 · 2n + 1 elements, we can select 2n + 1 such
pairs or more. Consider the 2n + 1 numbers that are products of the two elements of each
pair. The argument can be repeated for their square roots, giving four elements a, b, c, d in
M such that

√
ab

√
cd is a perfect square. Then abcd is a fourth power and we are done. For

our problem n = 9, while 1985 > 3 · 29 + 1 = 1537. �

The third example comes from the 67th W.L. Putnam Mathematical Competition, 2006.

Example. Prove that for every set X = {x1, x2, . . . , xn} of n real numbers, there exists a
nonempty subset S of X and an integer m such that

∣∣∣∣∣m +
∑

s∈S

s

∣∣∣∣∣ ≤ 1

n + 1
.

Solution. Recall that the fractional part of a real number x is x − x�. Let us look at the
fractional parts of the numbers x1, x1 + x2, . . ., x1 + x2 + . . . + xn . If any of them is either in
the interval

[
0, 1

n+1

]
or

[
n

n+1 , 1
]
, then we are done. If not, we consider these n numbers as the

“pigeons” and the n − 1 intervals
[

1
n+1 ,

2
n+1

]
,
[

2
n+1 ,

3
n+1

]
, . . .,

[
n−1
n+1 ,

n
n+1

]
as the “holes”. By

the pigeonhole principle, two of these sums, say x1 + x2 + · · · + xk and x1 + x2 + · · · + xk+m ,
belong to the same interval. But then their difference xk+1 + · · ·+ xk+m lies within a distance
of 1

n+1 of an integer, and we are done. �

More problems are listed below.

36. Given 50 distinct positive integers strictly less than 99, prove that some two of them
sum to 99.

37. A sequence of m positive integers contains exactly n distinct terms. Prove that if
2n ≤ m then there exists a block of consecutive terms whose product is a perfect
square.

38. Let x1, x2, . . . , x3, . . . be a sequence of integers such that

1 = x1 < x2 < x3 < · · · and xn+1 ≤ 2n for n = 1, 2, 3, . . . .

Show that every positive integer k is equal to xi − x j for some i and j .

39. Let p be a prime number and a, b, c integers such that a and b are not divisible by p.
Prove that the equation ax2 + by2 ≡ c (mod p) has integer solutions.

40. In each of the unit squares of a 10× 10 checkerboard, a positive integer not exceeding
10 is written. Any two numbers that appear in adjacent or diagonally adjacent squares
of the board are relatively prime. Prove that some number appears at least 17 times.
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41. Show that there is a positive term of the Fibonacci sequence that is divisible by 1000.

42. Let x1 = x2 = x3 = 1 and xn+3 = xn + xn+1xn+2 for all positive integers n. Prove that
for any positive integer m there is an index k such that m divides xk .

43. A chess player trains by playing at least one game per day, but, to avoid exhaustion, no
more than 12 games a week. Prove that there is a group of consecutive days in which
he plays exactly 20 games.

44. Let m be a positive integer. Prove that among any 2m + 1 distinct integers of absolute
value less than or equal to 2m − 1 there exist three whose sum is equal to zero.

45. There are n people at a party. Prove that there are two of them such that among the
remaining n − 2 people there are at least

⌊
n
2

⌋ − 1, each of whom knows both or else
knows neither of the two.

46. Let x1, x2, . . . , xk be real numbers such that the set

A = {cos(nπx1) + cos(nπx2) + · · · + cos(nπxk) | n ≥ 1}

is finite. Prove that all the xi are rational numbers.

Particularly attractive are the problems in which the pigeons and holes are geometric
objects. Here is a problem from a Chinese mathematical competition.

Example. Given nine points inside the unit square, prove that some three of them form a
triangle whose area does not exceed 1

8 .

Solution. Divide the square into four equal squares, which are the “boxes”. From the 9 =
2× 4+ 1 points, at least 3 = 2+ 1 will lie in the same box. We are left to show that the area
of a triangle placed inside a square does not exceed half the area of the square.

Cut the square by the line passing through a vertex of the triangle, as in Figure 3. Since
the area of a triangle is base×height

2 and the area of a rectangle is base × height, the inequality
holds for the two smaller triangles and their corresponding rectangles. Adding up the two
inequalities, we obtain the inequality for the square. This completes the solution. �

Figure 3



14 1 Methods of Proof

47. Inside a circle of radius 4 are chosen 61 points. Show that among them there are two
at distance at most

√
2 from each other.

48. Each of nine straight lines divides a square into two quadrilaterals with the ratio of
their areas equal to r > 0. Prove that at least three of these lines are concurrent.

49. Show that any convex polyhedron has two faces with the same number of edges.

50. Draw the diagonals of a 21-gon. Prove that at least one angle of less than 1◦ is formed.
(Angles of 0◦ are allowed in the case that two diagonals are parallel.)

51. Let P1, P2, . . . , P2n be a permutation of the vertices of a regular polygon. Prove that
the closed polygonal line P1P2 . . . P2n contains a pair of parallel segments.

52. Let S be a convex set in the plane that contains three noncollinear points. Each point of
S is colored by one of p colors, p > 1. Prove that for any n ≥ 3 there exist infinitely
many congruent n-gons whose vertices are all of the same color.

53. The points of the plane are colored by finitely many colors. Prove that one can find a
rectangle with vertices of the same color.

54. Inside the unit square lie several circles the sum of whose circumferences is equal to
10. Prove that there exist infinitely many lines each of which intersects at least four of
the circles.

1.4 Ordered Sets and Extremal Elements

An order on a set is a relation ≤ with three properties: (i) a ≤ a; (ii) if a ≤ b and b ≤ a,
then a = b; (iii) a ≤ b and b ≤ c implies a ≤ c. The order is called total if any two elements
are comparable, that is, if for every a and b, either a ≤ b or b ≤ a. The simplest example of
a total order is ≤ on the set of real numbers. The existing order on a set can be useful when
solving problems. This is the case with the following two examples, the second of which is a
problem of G. Galperin published in the Russian journal Quantum.

Example. Prove that among any 50 distinct positive integers strictly less than 100 there are
two that are coprime.

Solution. Order the numbers: x1 < x2 < . . . < x50. If in this sequence there are two
consecutive integers, they are coprime and we are done. Otherwise, x50 ≥ x1 + 2 · 49 = 99.
Equality must hold, since x50 < 100, and in this case the numbers are precisely the 50 odd
integers less than 100. Among them 3 is coprime to 7. The problem is solved.

Example. Given finitelymany squareswhose areas add up to 1, show that they can be arranged
without overlaps inside a square of area 2.

Solution. The guess is that a tight way of arranging the small squares inside the big square is
by placing the squares in decreasing order of side-lengths.

To prove that this works, denote by x the side length of the first (that is, the largest) square.
Arrange the squares inside a square of side

√
2 in the following way. Place the first in the
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lower-left corner, the next to its right, and so on, until obstructed by the right side of the big
square. Then jump to height x , and start building the second horizontal layer of squares by
the same rule. Keep going until the squares have been exhausted (see Figure 4).

2−x

h−x

Figure 4

Let h be the total height of the layers. We are to show that h ≤ √
2, which in turn will

imply that all the squares lie inside the square of side
√
2. To this end, we will find a lower

bound for the total area of the squares in terms of x and h. Let us mentally transfer the first
square of each layer to the right side of the previous layer. Now each layer exits the square,
as shown in Figure 4.

It follows that the sum of the areas of all squares but the first is greater than or equal to
(
√
2 − x)(h − x). This is because each newly obtained layer includes rectangles of base√
2 − x and with the sum of heights equal to h − x . From the fact that the total area of the

squares is 1, it follows that

x2 + (
√
2 − x)(h − x) ≤ 1.

This implies that

h ≤ 2x2 − √
2x − 1

x − √
2

.

That h ≤ √
2 will follow from

2x2 − √
2x − 1

x − √
2

≤ √
2.

This is equivalent to

2x2 − 2
√
2x + 1 ≥ 0,

or (x
√
2 − 1)2 ≥ 0, which is obvious and we are done. �

What we particularly like about the shaded square from Figure 4 is that it plays the role
of the “largest square” when placed on the left, and of the “smallest square” when placed on
the right. Here are more problems.
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55. Given n ≥ 3 points in the plane, prove that some three of them form an angle less than
or equal to π

n .

56. Consider a planar region of area 1, obtained as the union of finitely many disks. Prove
that from these disks we can select some that are mutually disjoint and have total area
at least 1

9 .

57. Suppose that n(r) denotes the number of points with integer coordinates on a circle of
radius r > 1. Prove that

n(r) < 2π
3
√

r2.

58. Prove that among any eight positive integers less than 2004 there are four, say a, b, c,
and d, such that

4 + d ≤ a + b + c ≤ 4d.

59. Let a1, a2, . . . , an, . . . be a sequence of distinct positive integers. Prove that for any
positive integer n,

a2
1 + a2

2 + · · · + a2
n ≥ 2n + 1

3
(a1 + a2 + · · · + an).

60. Let X be a subset of the positive integers with the property that the sum of any two not
necessarily distinct elements in X is again in X . Suppose that {a1, a2, . . . , an} is the
set of all positive integers not in X . Prove that a1 + a2 + · · · + an ≤ n2.

61. Let P(x) be a polynomial with integer coefficients, of degree n ≥ 2. Prove that the set
A = {x ∈ Z | P(P(x)) = x} has at most n elements.

An order on a finite set has maximal and minimal elements. If the order is total, the
maximal (respectively, minimal) element is unique. Quite often it is useful to look at such
extremal elements, like in the solution to the following problem.

Example. Prove that it is impossible to dissect a cube into finitely many cubes, no two of
which are the same size.

Solution. For the solution, assume that such a dissection exists, and look at the bottom face.
It is cut into squares. Take the smallest of these squares. It is not hard to see that this square
lies in the interior of the face, meaning that it does not touch any side of the bottom face. Look
at the cube that lies right above this square! This cube is surrounded by bigger cubes, so its
upper face must again be dissected into squares by the cubes that lie on top of it. Take the
smallest of the cubes and repeat the argument. This process never stops, since the cubes that
lie on top of one of these little cubes cannot end up all touching the upper face of the original
cube. This contradicts the finiteness of the decomposition. Hence the conclusion. �

By contrast, a square can be dissected into finitely many squares of distinct size. Why
does the above argument not apply in this case?

And now an example of a more exotic kind.
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Example. Given is a finite set of spherical planets, all of the same radius and no two inter-
secting. On the surface of each planet consider the set of points not visible from any other
planet. Prove that the total area of these sets is equal to the surface area of one planet.

Solution. The problemwas on the short list of the 22nd InternationalMathematical Olympiad,
proposed by the Soviet Union. The solution below we found in I. Cuculescu’s book on the
International Mathematical Olympiads (Editura Tehnică, Bucharest, 1984).

Choose a preferential direction in space, which defines the north pole of each planet. Next,
define an order on the set of planets by saying that planet A is greater than planet B if on
removing all other planets from space, the north pole of B is visible from A. Figure 5 shows
that for two planets A and B, either A < B or B < A, and also that for three planets A, B, C ,
if A < B and B < C then A < C . The only case in which something can go wrong is that
in which the preferential direction is perpendicular to the segment joining the centers of two
planets. If this is not the case, then < defines a total order on the planets. This order has
a unique maximal element M . The north pole of M is the only north pole not visible from
another planet.

Now consider a sphere of the same radius as the planets. Remove from it all north poles
defined by directions that are perpendicular to the axes of two of the planets. This is a set of
area zero. For every other point on this sphere, there exists a direction in space that makes it
the north pole, and for that direction, there exists a unique north pole on one of the planets that
is not visible from the others. As such, the surface of the newly introduced sphere is covered
by patches translated from the other planets. Hence the total area of invisible points is equal
to the area of this sphere, which in turn is the area of one of the planets. �

62. Complete the square in Figure 6 with integers between 1 and 9 such that the sum of
the numbers in each row, column, and diagonal is as indicated.

C

N

B

A

A

B

Figure 5

63. Given n points in the plane, no three of which are collinear, show that there exists a
closed polygonal line with no self-intersections having these points as vertices.

64. Show that any polygon in the plane has a vertex, and a side not containing that vertex,
such that the projection of the vertex onto the side lies in the interior of the side or at
one of its endpoints.

65. In some country all roads between cities are one-way and such that once you leave a
city you cannot return to it again. Prove that there exists a city into which all roads
enter and a city from which all roads exit.
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66. At a party assume that no boy dances with all the girls, but each girl dances with at least
one boy. Prove that there are two girl-boy couples gb and g′b′ who dance, whereas b
does not dance with g′, and g does not dance with b′.

67. In the plane we have marked a set S of points with integer coordinates. We are also
given a finite set V of vectors with integer coordinates. Assume that S has the property
that for every marked point P , if we place all vectors from V with origin are P , then
more of their ends are marked than unmarked. Show that the set of marked points is
infinite.

68. The entries of a matrix are real numbers of absolute value less than or equal to 1, and
the sum of the elements in each column is 0. Prove that we can permute the elements of
each column in such a way that the sum of the elements in each row will have absolute
value less than or equal to 2.

69. Find all odd positive integers n greater than 1 such that for any coprime divisors a and
b of n, the number a + b − 1 is also a divisor of n.

70. The positive integers are colored by two colors. Prove that there exists an infinite
sequence of positive integers k1 < k2 < · · · < kn < · · · with the property that the
terms of the sequence 2k1 < k1 + k2 < 2k2 < k2 + k3 < 2k3 < · · · are all of the same
color.

71. Let P1P2 . . . Pn be a convex polygon in the plane. Assume that for any pair of vertices
Pi and Pj , there exists a vertex Pk of the polygon such that ∠Pi Pk Pj = π/3. Show
that n = 3.

2

5

8
3 30

14

16

26

16 21 25 13 27 20

Figure 6

1.5 Invariants and Semi-Invariants

In general, a mathematical object can be studied from many points of view, and it is always
desirable to decide whether various constructions produce the same object. One usually
distinguishes mathematical objects by some of their properties. An elegant method is to
associate to a family ofmathematical objects an invariant, which can be a number, an algebraic
structure, or some property, and then distinguish objects by the different values of the invariant.

The general framework is that of a set of objects or configurations acted on by transfor-
mations that identify them (usually called isomorphisms). Invariants then give obstructions
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to transforming one object into another. Sometimes, although not very often, an invariant is
able to tell precisely which objects can be transformed into one another, in which case the
invariant is called complete.

An example of an invariant (which arises from more advanced mathematics yet is easy to
explain) is the property of a knot to be 3-colorable. Formally, a knot is a simple closed curve
in R

3. Intuitively it is a knot on a rope with connected endpoints, such as the right-handed
trefoil knot from Figure 7.

Figure 7

How can one prove mathematically that this knot is indeed “knotted”? The answer is,
using an invariant. To define this invariant, we need the notion of a knot diagram. Such a
diagram is the image of a regular projection (all self-intersections are nontangential and are
double points) of the knot onto a plane with crossing information recorded at each double
point, just like the one in Figure 7. But a knot can have many diagrams (pull the strands
around, letting them pass over each other).

A deep theorem of K. Reidemeister states that two diagrams represent the same knot if
they can be transformed into one another by the three types of moves described in Figure 8.

(I) (II)

(III)

Figure 8

The simplest knot invariant was introduced by the same Reidemeister, and is the property
of a knot diagram to be 3-colorable. This means that you can color each strand in the knot
diagram by a residue class modulo 3 such that

(i) at least two distinct residue classes modulo 3 are used, and
(ii) at each crossing, a + c ≡ 2b (mod 3), where b is the color of the arc that crosses

over, and a and c are the colors of the other two arcs (corresponding to the strand that
crosses under).

It is rather easy to prove, by examining the local picture, that this property is invariant
under Reidemeister moves. Hence this is an invariant of knots, not just of knot diagrams.

The trefoil knot is 3-colorable, as demonstrated in Figure 9. On the other hand, the
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unknotted circle is not 3-colorable, because its simplest diagram, the one with no crossings,
cannot be 3-colored. Hence the trefoil knot is knotted.

0

2

1

Figure 9

This 3-colorability is, however, not a complete invariant. We now give an example of
a complete invariant from geometry. In the early nineteenth century, F. Bolyai and a less
well-knownmathematician Gerwin proved that given two polygons of equal area, the first can
be dissected by finitely many straight cuts and then assembled to produce the second polygon.
In his list of 23 problems presented to the InternationalCongress ofMathematicians, D.Hilbert
listed as number 3 the question whether the same property remains true for solid polyhedra
of the same volume, and if not, what would the obstruction be.

The problem was solved by M. Dehn, a student of Hilbert. Dehn defined an invariant that
associates to a finite disjoint union of polyhedra P the sum I (P) of all their dihedral angles
reduced modulo rational multiples of π (viewed as an element in R/πQ). He showed that
two polyhedra P1 and P2 having the same volume can be transformed into one another if and
only if I (P1) = I (P2), i.e., if and only if the sums of their dihedral angles differ by a rational
multiple of π .

It is good to know that the quest for invariants dominated twentieth-century geometry.
That being said, let us return to the realm of elementary mathematics with a short list problem
from the 46th International Mathematical Olympiad.

Example. There are n markers, each with one side white and the other side black, aligned in
a row with their white sides up. At each step, if possible, we choose a marker with the white
side up (but not one of the outermost markers), remove it, and reverse the two neighboring
markers. Prove that one can reach a configuration with only two markers left if and only if
n − 1 is not divisible by 3.

Solution. We refer to a marker by the color of its visible face. Note that the parity of the
number of black markers remains unchanged during the game. Hence if only two markers
are left, they must have the same color.

We define an invariant as follows. To a white marker with t black markers to its left we
assign the number (−1)t . Only white markers have numbers assigned to them. The invariant
S is the residue class modulo 3 of the sum of all numbers assigned to the white markers.

It is easy to check that S is invariant under the operation defined in the statement. For
instance, if a white marker with t black markers on the left and whose neighbors are both
black is removed, then S increases by −(−1)t + (−1)t−1 + (−1)t−1 = 3(−1)t−1, which is
zero modulo 3. The other three cases are analogous.

If the game ends with two black markers then S is zero; if it ends with two white markers,
then S is 2. This proves that n − 1 is not divisible by 3.
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Conversely, if we start with n ≥ 5 white markers, n ≡ 0 or 2 modulo 3, then by removing
in three consecutive moves the leftmost allowed white markers, we obtain a row of n − 3
white markers. Working backward, we can reach either 2 white markers or 3 white markers.
In the latter case, with one more move we reach 2 black markers as desired. �

Now try to find the invariants that lead to the solutions of the following problems.

72. Anordered triple of numbers is given. It is permitted to perform the following operation
on the triple: to change two of them, say a and b, to (a + b)/

√
2 and (a − b)/

√
2. Is it

possible to obtain the triple (1,
√
2, 1 + √

2) from the triple (2,
√
2, 1/

√
2) using this

operation?

73. There are 2000 white balls in a box. There are also unlimited supplies of white, green,
and red balls, initially outside the box. During each turn, we can replace two balls in
the box with one or two balls as follows: two whites with a green, two reds with a
green, two greens with a white and red, a white and a green with a red, or a green and
red with a white.

(a) After finitely many of the above operations there are three balls left in the box.
Prove that at least one of them is green.

(b) Is it possible that after finitely many operations only one ball is left in the box?

74. There is a heap of 1001 stones on a table. You are allowed to perform the following
operation: you choose one of the heaps containing more than one stone, throw away a
stone from the heap, then divide it into two smaller (not necessarily equal) heaps. Is it
possible to reach a situation in which all the heaps on the table contain exactly 3 stones
by performing the operation finitely many times?

75. Starting with an ordered quadruple of positive integers, a generalized Euclidean algo-
rithm is applied successively as follows: if the numbers are x, y, u, v and x > y, then
the quadruple is replaced by x − y, y, u + v, v. Otherwise, it is replaced by x , y − x ,
u, v + u. The algorithm stops when the numbers in the first pair become equal (in
which case they are equal to the greatest common divisor of x and y). Assume that we
start with m, n, m, n. Prove that when the algorithm ends, the arithmetic mean of the
numbers in the second pair equals the least common multiple of m and n.

76. Onan arbitrarily large chessboard consider a generalized knight that can jump p squares
in one direction and q in the other, p, q > 0. Show that such a knight can return to its
initial position only after an even number of jumps.

77. Prove that the figure eight knot described in Figure 10 is knotted.

78. In the squares of a 3 × 3 chessboard are written the signs + and − as described in
Figure 11(a). Consider the operations in which one is allowed to simultaneously
change all signs in some row or column. Can one change the given configuration to
the one in Figure 11(b) by applying such operations finitely many times?

79. The number 99 . . . 99 (having 1997 nines) is written on a blackboard. Each minute,
one number written on the blackboard is factored into two factors and erased, each
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factor is (independently) increased or decreased by 2, and the resulting two numbers
are written. Is it possible that at some point all of the numbers on the blackboard are
equal to 9?

80. Four congruent right triangles are given. One can cut one of them along the altitude
and repeat the operation several times with the newly obtained triangles. Prove that no
matter how we perform the cuts, we can always find among the triangles two that are
congruent.

81. For an integer n ≥ 4, consider an n-gon inscribed in a circle. Dissect the n-gon into
n − 2 triangles by nonintersecting diagonals. Prove that the sum of the radii of the
incircles of these n − 2 triangles does not depend on the dissection.

Figure 10

(a) (b)+ +
+ +

+
+

+

+

−
−

− −

− −
− −

− −

Figure 11

In some cases a semi-invariant will do. A semi-invariant (also known as monovariant)
is a quantity that, although not constant under a specific transformation, keeps increasing (or
decreasing). As such it provides a unidirectional obstruction.

For his solution to the following problem from the 27th International Mathematical
Olympiad, J. Keane, then a member of the US team, was awarded a special prize.

Example. To each vertex of a regular pentagon an integer is assigned in such away that the sum
of all of the five numbers is positive. If three consecutive vertices are assigned the numbers
x, y, z, respectively, and y < 0, then the following operation is allowed: the numbers x, y, z
are replaced by x + y, −y, z + y, respectively. Such an operation is performed repeatedly
as long as at least one of the five numbers is negative. Determine whether this procedure
necessarily comes to an end after a finite number of steps.

Solution. The answer is yes. The key idea of the proof is to construct an integer-valued semi-
invariant whose value decreases when the operation is performed. The existence of such a
semi-invariant will guarantee that the operation can be performed only finitely many times.

Notice that the sum of the five numbers on the pentagon is preserved by the operation, so
it is natural to look at the sum of the absolute values of the five numbers. When the operation
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is performed this quantity decreases by |x |+ |z|− |x + y|− |y + z|. Although this expression
is not always positive, it suggests a new choice. The desired semi-invariant should include the
absolute values of pairwise sums as well. Upon testing the new expression and continuing this
idea, we discover in turn that the desired semi-invariant should also include absolute values
of sums of triples and foursomes. At last, with a pentagon numbered v, w, x, y, z and the
semi-invariant defined by

S(v, w, x, y, z) = |v| + |w| + |x | + |y| + |z| + |v + w| + |w + x | + |x + y|
+ |y + z| + |z + v| + |v + w + x | + |w + x + y| + |x + y + z|
+ |y + z + v| + |z + v + w| + |v + w + x + y| + |w + x + y + z|
+ |x + y + z + v| + |y + z + v + w| + |z + v + w + x |,

we find that the operation reduces the value of S by the simple expression

|z + v + w + x | − |z + v + w + x + 2y| = |s − y| − |s + y|,
where s = v + w + x + y + z. Since s > 0 and y < 0, we see that |s − y| − |s + y| > 0, so S
has the required property. It follows that the operation can be performed only finitely many
times. �

Using the semi-invariant we produced a proof based on Fermat’s infinite descent method.
This method will be explained in the Number Theory chapter of this book. Here the emphasis
was on the guess of the semi-invariant. And now some problems.

82. A real number is written in each square of an n × n chessboard. We can perform the
operation of changing all signs of the numbers in a row or a column. Prove that by
performing this operation a finite number of times we can produce a new table for
which the sum of each row or column is positive.

83. Starting with an ordered quadruple of integers, perform repeatedly the operation

(a, b, c, d)
T−→ (|a − b|, |b − c|, |c − d|, |d − a|).

Prove that after finitely many steps, the quadruple becomes (0, 0, 0, 0).

84. Several positive integers are written on a blackboard. One can erase any two distinct
integers and write their greatest common divisor and least common multiple instead.
Prove that eventually the numbers will stop changing.

85. Consider the integer lattice in the plane, with one pebble placed at the origin. We play
a game in which at each step one pebble is removed from a node of the lattice and
two new pebbles are placed at two neighboring nodes, provided that those nodes are
unoccupied. Prove that at any time there will be a pebble at distance at most 5 from
the origin.
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Algebra

It is now time to split mathematics into branches. First, algebra. A section on algebraic
identities hones computational skills. It is followed naturally by inequalities. In general, any
inequality can be reduced to the question of finding the minimum of a function. But this is a
highly nontrivial matter, and that makes the subject exciting. We discuss the fact that squares
are nonnegative, the Cauchy-Schwarz inequality, the triangle inequality, the arithmetic mean-
geometric mean inequality, and also Sturm’s method for proving inequalities.

Our treatment of algebra continues with polynomials. We focus on quadratic polynomials,
the relations between zeros and coefficients, the properties of the derivative of a polynomial,
problems about the location of the zeros in the complex plane or on the real axis, and methods
for proving irreducibility of polynomials (such as the Eisenstein criterion). From all special
polynomials we present the most important, the Chebyshev polynomials.

Linear algebra comes next. The first three sections, about operations with matrices,
determinants, and the inverse of a matrix, insist on both the array structure of a matrix and
the ring structure of the set of matrices. They are more elementary, as is the section on
linear systems. The last three sections, about vector spaces and linear transformations, are
more advanced, covering among other things the Cayley-Hamilton Theorem and the Perron-
Frobenius Theorem.

The chapter concludes with a brief incursion into abstract algebra: binary operations,
groups, and rings, really no further than the definition of a group or a ring.

2.1 Identities and Inequalities

2.1.1 Algebraic Identities

The scope of this section is to train algebraic skills. Our idea is to hide behind each problem an
important algebraic identity. We commence with three examples, the first and the last written
by the second author of the book, and the second given at a Soviet Union college entrance
exam and suggested to us by A. Soifer.

© Springer International Publishing AG 2017
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Example. Solve in real numbers the system of equations

(3x + y)(x + 3y)
√
xy = 14,

(x + y)(x2 + 14xy + y2) = 36.

Solution. By substituting
√
x = u,

√
y = v, we obtain the equivalent form

uv(3u4 + 10u2v2 + 3v4) = 14,

u6 + 15u4v2 + 14u2v4 + v6 = 36.

Herewe should recognize elements of the binomial expansionwith exponent equal to 6. Based
on this observation we find that

36 + 2 · 14 = u6 + 6u5v + 15y4v2 + 20u3v3 + 15u2v4 + 6uv5 + v6

and

36 − 2 · 14 = u6 − 6u5v + 15y4v2 − 20u3v3 + 15u2v4 − 6uv5 + v6.

Therefore, (u + v)6 = 64 and (u − v)6 = 8, which implies u + v = 2 and u − v = ±√
2

(recall that u and v have to be positive). So u = 1 +
√
2
2 and v = 1 −

√
2
2 or u = 1 −

√
2
2 and

v = 1 +
√
2
2 . The solutions to the system are

(x, y) =
(
3

2
+ √

2,
3

2
− √

2

)
and (x, y) =

(
3

2
− √

2,
3

2
+ √

2

)
. �

Example. Given two segments of lengths a and b, construct with a straightedge and a compass
a segment of length 4

√
a4 + b4.

Solution. The solution is based on the following version of the Sophie Germain identity:

a4 + b4 = (a2 + √
2ab + b2)(a2 − √

2ab + b2).

Write

4
√
a4 + b4 =

√√
a2 + √

2ab + b2 ·
√
a2 − √

2ab + b2.

Applying the law of cosines, we can construct segments of lengths
√
a2 ± √

2ab + b2 using
triangles of sides a and b with the angle between them 135◦, respectively, 45◦.

On the other hand, given two segments of lengths x , respectively y, we can construct a
segment of length

√
xy (their geometric mean) as the altitude AD in a right triangle ABC

(∠A = 90◦) with BD = x and CD = y. These two steps combined give the method for
constructing 4

√
a4 + b4. �
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Example. Let x, y, z be distinct real numbers. Prove that

3
√
x − y + 3

√
y − z + 3

√
z − x �= 0.

Solution. The solution is based on the identity

a3 + b3 + c3 − 3abc = (a + b + c)(a2 + b2 + c2 − ab − bc − ca).

This identity arises from computing the circulant determinant

D =
∣∣∣∣∣∣
a b c
c a b
b c a

∣∣∣∣∣∣
in two ways: first by expanding with Sarrus’ rule, and second by adding up all columns to
the first, factoring (a + b+ c), and then expanding the remaining determinant. Note that this
identity can also be written as

a3 + b3 + c3 − 3abc = 1

2
(a + b + c)[(a − b)2 + (b − c)2 + (c − a)2].

Returning to the problem, let us assume the contrary, and set 3
√
x − y = a, 3

√
y − z = b,

3
√
z − x = c. By assumption, a + b + c = 0, and so a3 + b3 + c3 = 3abc. But this implies

0 = (x − y) + (y − z) + (z − x) = 3 3
√
x − y 3

√
y − z 3

√
z − x �= 0,

since the numbers are distinct. The contradiction we have reached proves that our assumption
is false, and so the sum is nonzero. �

And now the problems.

86. Show that for no positive integer n can both n + 3 and n2 + 3n + 3 be perfect cubes.

87. Let A and B be two n × n matrices that commute and such that for some positive
integers p and q, Ap = In and Bq = On . Prove that A + B is invertible, and find its
inverse.

88. Prove that any polynomial with real coefficients that takes only nonnegative values can
be written as the sum of the squares of two polynomials.

89. Prove that for any nonnegative integer n, the number 55
n+1 + 55

n + 1 is not prime.

90. Show that for an odd integer n ≥ 5,
(
n

0

)
5n−1 −

(
n

1

)
5n−2 +

(
n

2

)
5n−3 − · · · +

(
n

n − 1

)

is not a prime number.

91. Factor 51985 − 1 into a product of three integers, each of which is greater than 5100.
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92. Prove that the number
5125 − 1

525 − 1
is not prime.

93. Let a and b be coprime integers greater than 1. Prove that for n ≥ 0 is a2n + b2n

divisible by a + b.

94. Prove that any integer can be written as the sum of five perfect cubes.

95. Prove that

31∑
k=1

1

(k − 1)4/5 − k4/5 + (k − 1)4/5
<

3

2
+

31∑
k=1

(k − 1)1/5.

96. Solve in real numbers the equation

3
√
x − 1 + 3

√
x + 3

√
x + 1 = 0.

97. Find all triples (x, y, z) of positive integers such that

x3 + y3 + z3 − 3xyz = p,

where p is a prime number greater than 3.

98. Let a, b, c be distinct positive integers such that ab+ bc + ca ≥ 3k2 − 1, where k is a
positive integer. Prove that

a3 + b3 + c3 ≥ 3(abc + 3k).

99. Show that the expression

(x2 − yz)3 + (y2 − zx)3 + (x2 − yz)3 − 3(x2 − yz)(y2 − zx)(z2 − xy)

is a perfect square.

100. Find all triples (m, n, p) of positive integers such that m + n + p = 2002 and the
system of equations

x

y
+ y

x
= m,

y

z
+ z

y
= n,

z

x
+ x

z
= p

has at least one solution in nonzero real numbers.

2.1.2 x2 ≥ 0

We now turn to inequalities. The simplest inequality in algebra says that the square of any real
number is nonnegative, and it is equal to zero if and only if the number is zero. We illustrate
how this inequality can be used with an example by the second author of the book.

Example. Find the minimum of the function f : (0,∞)3 → R,

f (x, y, z) = xz + yz − (xy)z/4.
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Solution. Rewrite the function as

f (x, y, z) = (xz/2 − yz/2)2 + 2

[
(xy)z/4 − 1

4

]2
− 1

8
.

We now see that the minimum is − 1
8 , achieved if and only if

(x, y, z) =
(
a, a, loga

1

16

)
,

where a ∈ (0, 1) ∪ (1,∞). �

We continue with a problem from the 2001 USA team selection test proposed also by the
second author of the book.

Example. Let (an)n≥0 be a sequence of real numbers such that

an+1 ≥ a2n + 1

5
, for all n ≥ 0.

Prove that
√
an+5 ≥ a2n−5, for all n ≥ 5.

Solution. It suffices to prove that an+5 ≥ a2n , for all n ≥ 0. Let us write the inequality for five
consecutive indices:

an+1 ≥ a2n + 1

5
,

an+2 ≥ a2n+1 + 1

5
,

an+3 ≥ a2n+2 + 1

5
,

an+4 ≥ a2n+3 + 1

5
,

an+5 ≥ a2n+4 + 1

5
.

If we add these up, we obtain

an+5 − a2n ≥ (a2n+1 + a2n+2 + a2n+3 + a2n+4) − (an+1 + an+2 + an+3 + an+4) + 5 · 1
5

=
(
an+1 − 1

2

)2

+
(
an+2 − 1

2

)2

+
(
an+3 − 1

2

)2

+
(
an+4 − 1

2

)2

≥ 0.

The conclusion follows. �

And finally a more challenging problem from the 64th W.L. Putnam Mathematics Com-
petition.
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Example. Let f be a continuous function on the unit square. Prove that

∫ 1

0

(∫ 1

0
f (x, y)dx

)2

dx +
∫ 1

0

(∫ 1

0
f (x, y)dy

)2

dx

≤
(∫ 1

0

∫ 1

0
f (x, y)dxdy

)2

+
∫ 1

0

∫ 1

0
f (x, y)2dxdy.

Solution. To make this problem as simple as possible, we prove the inequality for a Riemann
sum, and then pass to the limit. Divide the unit square into n2 equal squares, then pick a point
(xi , y j ) in each such square and define ai j = f (xi , y j ), i, j = 1, 2, . . . , n. Written for the
Riemann sum, the inequality becomes

1

n3
∑
i

⎛
⎝
⎛
⎝∑

j

ai j

⎞
⎠

2

+
⎛
⎝∑

j

a ji

⎞
⎠

2⎞
⎠ ≤ 1

n4

⎛
⎝∑

i j

ai j

⎞
⎠

2

+ 1

n2

⎛
⎝∑

i j

a2i j

⎞
⎠ .

Multiply this by n4, then move everything to one side. After cancellations, the inequality
becomes

(n − 1)2
∑
i j

a2i j +
∑

i �=k, j �=l

ai j akl − (n − 1)
∑

i jk, j �=k

(ai jaik + a jiaki ) ≥ 0.

Here we have a quadratic function in the ai j ’s that should always be nonnegative. In general,
such a quadratic function can be expressed as an algebraic sumof squares, and it is nonnegative
precisely when all squares appear with a positive sign. We are left with the problem of
representing our expression as a sum of squares. To boost your intuition, look at the following
tableau:

a11 . . . . . . . . . . . . . . . a1n
...

. . .
...

. . .
...

. . .
...

. . . . . . ai j . . . ail . . . . . .
...

. . .
...

. . .
...

. . .
...

. . . . . . akj . . . akl . . . . . .
...

. . .
...

. . .
...

. . .
...

an1 . . . . . . . . . . . . . . . ann

The expression
(ai j + akl − ail − akj )

2

when expanded gives rise to the following terms:

a2i j + a2kl + a2il + a2k j + 2ai jakl + 2ailak j − 2ailai j − 2ai jak j − 2aklail − 2aklak j .

For a fixed pair (i, j), the term ai j appears in (n− 1)2 such expressions. The products 2ai jakl
and 2ailak j appear just once, while the products 2ailai j , 2ai jak j , 2aklail , 2aklak j appear (n−1)



2.1 Identities and Inequalities 31

times (once for each square of the form (i, j), (i, l), (k, j), (k, l)). It follows that the expression
that we are trying to prove is nonnegative is nothing but∑

i jkl

(ai j + akl − ail − akj )
2,

which is of course nonnegative. This proves the inequality for all Riemann sums of the
function f , and hence for f itself. �

101. Find min
a,b∈R

max(a2 + b, b2 + a).

102. Prove that for all real numbers x ,

2x + 3x − 4x + 6x − 9x ≤ 1.

103. Find all positive integers n for which the equation

nx4 + 4x + 3 = 0

has a real root.

104. Find all triples (x, y, z) of real numbers that are solutions to the system of equations

4x2

4x2 + 1
= y,

4y2

4y2 + 1
= z,

4z2

4z2 + 1
= x .

105. Find the minimum of

logx1

(
x2 − 1

4

)
+ logx2

(
x3 − 1

4

)
+ · · · + logxn

(
x1 − 1

4

)
,

over all x1, x2, . . . , xn ∈ ( 14 , 1).
106. Let a and b be real numbers such that

9a2 + 8ab + 7b2 ≤ 6.

Prove that 7a + 5b + 12ab ≤ 9.

107. Let a1, a2, . . . , an an be real numbers such that a1 + a2 + · · · + an ≥ n2 and a21 + a22 +
· · · + a2n ≤ n3 + 1. Prove that n − 1 ≤ ak ≤ n + 1 for all k.

108. Find all pairs (x, y) of real numbers that are solutions to the system

x4 + 2x3 − y = −1

4
+ √

3,

y4 + 2y3 − x = −1

4
− √

3.
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109. Let n be an even positive integer. Prove that for any real number x there are at least
2n/2 choices of the signs + and − such that

±xn ± xn−1 ± · · · ± x <
1

2
.

2.1.3 The Cauchy-Schwarz Inequality

A direct application of the discussion in the previous section is the proof of the Cauchy-
Schwarz (or Cauchy-Bunyakovski-Schwarz) inequality

n∑
k=1

a2k

n∑
k=1

b2k ≥
(

n∑
k=1

akbk

)2

,

where the equality holds if and only if the ai ’s and the bi ’s are proportional. The expression

n∑
k=1

a2k

n∑
k=1

b2k −
(

n∑
k=1

akbk

)2

is a quadratic function in the ai ’s and bi ’s. For it to have only nonnegative values, it should
be a sum of squares. And this is true by the Lagrange identity

n∑
k=1

a2k

n∑
k=1

b2k −
(

n∑
k=1

akbk

)2

=
∑
i<k

(aibk − akbi )
2.

Sadly, this proof works only in the finite-dimensional case, while the Cauchy-Schwarz
inequality is true in far more generality, such as for square integrable functions. Its cor-
rect framework is that of a real or complex vector space, which could be finite or infinite
dimensional, endowed with an inner product 〈·, ·〉.

By definition, an inner product is subject to the following conditions:
(i) 〈x, x〉 ≥ 0, with equality if and only if x = 0,
(ii) 〈x, y〉 = 〈y, x〉, for any vectors x, y (here the bar stands for complex conjugation if

the vector space is complex),
(iii) 〈λ1x1 + λ2x2, y〉 = λ1〈x1, y〉 + λ2〈x2, y〉, for any vectors x1, x2, y and scalars λ1

and λ2.
The quantity ‖x‖ = √〈x, x〉 is called the norm of x . Examples of inner product spaces

are Rn with the usual dot product, Cn with the inner product

〈(z1, z2, . . . , zn), (w1,w2, . . . ,wn)〉 = z1w1 + z2w2 + . . . + znwn,

but also the space of square integrable functions on an interval [a, b] with the inner product

〈 f, g〉 =
∫ b

a
f (t)g(t)dt.

The Cauchy-Schwarz inequality. Let x, y be two vectors. Then

‖x‖ · ‖y‖ ≥ |〈x, y〉|,
with equality if and only if the vectors x and y are parallel and point in the same direction.
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Proof. We have

0 ≤ 〈‖y‖x − ‖x‖y, ‖y‖x − ‖x‖y〉 = 2‖x‖2‖y‖2 − ‖x‖ · ‖y‖(〈x, y〉 + 〈y, x〉),
hence 2‖x‖ · ‖y‖ ≥ (〈x, y〉 + 〈y, x〉). Yet another trick: rotate y by 〈x, y〉/|〈x, y〉|. The
left-hand side does not change, but because of property (ii) the right-hand side becomes

1
|〈x,y〉|(〈x, y〉〈x, y〉 + 〈x, y〉〈x, y〉), which is the same as 2|〈x, y〉|. It follows that

‖x‖ · ‖y‖ ≥ |〈x, y〉|,
which is the Cauchy-Schwarz inequality in its full generality. In our sequence of deductions,
the only inequality that showed up holds with equality precisely when the vectors are parallel
and point in the same direction. �

As an example, if f and g are two complex-valued continuous functions on the interval
[a, b], or more generally two square integrable functions, then

∫ b

a
| f (t)|2dt

∫ b

a
|g(t)|2dt ≥

∣∣∣∣
∫ b

a
f (t)g(t)dt

∣∣∣∣
2

.

Let us turn to more elementary problems.

Example. Find the maximum of the function f (x, y, z) = 5x − 6y + 7z on the ellipsoid

2x2 + 3y2 + 4z2 = 1.

Solution. For a point (x, y, z) on the ellipsoid,

( f (x, y, z))2 = (5x − 6y + 7z)2 =
(

5√
2

· √
2x − 6√

3
· √

3y + 7

2
· 2z
)2

≤
((

5√
2

)2

+
(

− 6√
3

)2

+
(
7

2

)2
)(

(
√
2x)2 + (

√
3y)2 + (2z)2

)

= 147

4
(2x2 + 3y2 + 4z2) = 147

4
.

Hence the maximum of f is
√
147/2, reached at the point (x, y, z) on the ellipsoid for which

x, z > 0, y < 0, and x : y : z = 5√
2

: − 6√
3

: 7
2 . �

The next problem was on the short list of the 1993 International Mathematical Olympiad,
being proposed by the second author of the book.

Example. Prove that

a

b + 2c + 3d
+ b

c + 2d + 3a
+ c

b + 2a + 3b
+ d

a + 2b + 3c
≥ 2

3
,

for all a, b, c, d > 0.



34 2 Algebra

Solution. Denote by E the expression on the left. Then

4(ab + ac + ad + bc + bd + cd)E

= (a(b + 2c + 3d) + b(c + 2d + 3a) + c(d + 2a + 3b) + d(a + 2b + 3c))

×
(

a

b + 2c + 3s
+ b

c + 2d + 3a
+ c

b + 2a + 3b
+ d

a + 2b + 3c

)

≥ (a + b + c + d)2,

where the last inequality is a well-disguised Cauchy-Schwarz. Finally,

3(a + b + c + d)2 ≥ 8(ab + ac + ad + bc + bd + cd),

because it reduces to

(a − b)2 + (a − c)2 + (a − d)2 + (b − c)2 + (b − d)2 + (c − d)2 ≥ 0.

Combining these two and cancelling the factor ab + ac + ad + bc + bd + cd , we obtain the
inequality from the statement. �

And now a list of problems, all of which are to be solved using the Cauchy-Schwarz
inequality.

110. If a, b, c are positive numbers, prove that

9a2b2c2 ≤ (a2b + b2c + c2a)(ab2 + bc2 + ca2).

111. If a1 + a2 + · · · + an = n prove that a41 + a42 + · · · + a4n ≥ n.

112. Let a1, a2, . . . , an be distinct real numbers. Find the maximum of

a1aσ(a) + a2aσ(2) + · · · + anaσ(n)

over all permutations of the set {1, 2, . . . , n}.
113. Let f1, f2, . . . , fn be positive real numbers. Prove that for any real numbers

x1, x2, . . . , xn , the quantity

f1x
2
1 + f2x

2
2 + · · · + fnx

2
n − ( f1x1 + f2x2 + · · · + fnxn)2

f1 + f2 + · · · + fn

is nonnegative.

114. Find all positive integers n, k1, . . . , kn such that k1 + · · · + kn = 5n − 4 and

1

k1
+ · · · + 1

kn
= 1.
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115. Prove that the finite sequence a0, a1, . . . , an of positive real numbers is a geometric
progression if and only if

(a0a1 + a1a2 + · · · + an−1an)
2 = (a20 + a21 + · · · + a2n−1)(a

2
1 + a22 + · · · + a2n).

116. Let P(x) be a polynomial with positive real coefficients. Prove that
√
P(a)P(b) ≥ P(

√
ab),

for all positive real numbers a and b.

117. Consider the real numbers x0 > x1 > x2 > · · · > xn . Prove that

x0 + 1

x0 − x1
= 1

x1 − x2
+ · · · + 1

xn−1 − xn
≥ xn + 2n.

When does equality hold?

118. Prove that
sin3 a

sin b
+ cos3 a

cos b
≥ sec(a − b),

for all a, b ∈ (0, π
2

)
.

119. Prove that

1

a + b
+ 1

b + c
+ 1

c + a
+ 1

2 3
√
abc

≥ (a + b + c + 3
√
abc)2

(a + b)(b + c)(c + a)
,

for all a, b, c > 0.

2.1.4 The Triangle Inequality

In its most general form, the triangle inequality states that in a metric space X the distance
function δ satisfies

δ(x, y) ≤ δ(x, z) + δ(z, y), for any x, y, z ∈ X.

An equivalent form is
|δ(x, y) − δ(y, z)| ≤ δ(x, z).

Here are some familiar examples of distance functions: the distance between two real or
complex numbers as the absolute value of their difference, the distance between two vectors
in n-dimensional Euclidean space as the length of their difference ‖v − w‖, the distance
between two matrices as the norm of their difference, the distance between two continuous
functions on the same interval as the supremum of the absolute value of their difference. In
all these cases the triangle inequality holds.

Let us see how the triangle inequality can be used to solve a problem from T.B. Soulami’s
book Les olympiades de mathématiques: Réflexes et stratégies (Ellipses, 1999).
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Example. For positive numbers a, b, c prove the inequality

√
a2 − ab + b2 +

√
b2 − bc + c2 ≥

√
a2 + ac + c2.

Solution. The inequality suggests the following geometric construction. With the same
origin O , draw segments OA, OB, and OC of lengths a, b, respectively c, such that OB
makes 60◦ angles with OA and OC (see Figure 12).

The law of cosines in the triangles OAB, OBC , and OAC gives AB2 = a2 − ab + b2,
BC2 = b2 − bc + c2, and AC2 = a2 + ac + c2. Plugging these formulas into the triangle
inequality AB + BC ≥ AC produces the inequality from the statement. �

60
60

C

A

B

o
o

O
a

b
c

Figure 12

Example. Let P(x) be a polynomial whose coefficients lie in the interval [1, 2], and let Q(x)
and R(x) be two nonconstant polynomials such that P(x) = Q(x)R(x), with Q(x) having
the dominant coefficient equal to 1. Prove that |Q(3)| > 1.

Solution. Let P(x) = anxn + an−1xn−1 + · · ·+ a0. We claim that the zeros of P(x) lie in the
union of the half-plane Re z = 0 and the disk |z| < 2.

Indeed, suppose that P(x) has a zero z such that Re, z > 0 and |z| = 2. From P(z) = 0,
we deduce that

anz
n + an−1z

n−1 = −an−2z
n−2 − an−3z

n−3 − · · · − a0.

Dividing through by zn , which is not equal to 0, we obtain

an + an−1

z
= −an−2

z2
− an−3

z3
− · · · − a0

zn
.

Note that Re z > 0 implies that Re 1
z > 0. Hence

1 ≤ an ≤ Re

(
an + an−1

z

)
= Re

(
−an−2

z2
− an−3

z3
− · · · − a0

zn

)

≤
∣∣∣∣−an−2

z2
− an−3

z3
− · · · − a0

zn

∣∣∣∣ ≤ an−2

|z|2 + an−3

|z|3 + · · · + a0
|z|n ,
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where for the last inequality we used the triangle inequality. Because the ai ’s are in the interval
[1, 2], this is strictly less than

2|z|−2(1 + |z|−1 + |z|−2 + · · · ) = 2|z|−2

1 − |z|−1
.

The last quantity must therefore be greater than 1. But this cannot happen if |z| ≥ 2, because

the inequality reduces to
(

2
|z| − 1

) (
1
|z| + 1

)
> 0, impossible. This proves the claim.

Returning to the problem, Q(x) = (x − z1)(x − z2) · · · (x − zk), where z1, z2, . . . , zk are
some of the zeros of P(x). Then

|Q(3)| = |3 − z1| · |3 − z2| · · · |3 − zk |.
If Re zi ≤ 0, then |3 − zi | ≥ 0. On the other hand, if |zi | < 2, then by the triangle

inequality |3− zi | ≥ 3− |zi | > 1. Hence |Q(3)| is a product of terms greater than 1, and the
conclusion follows. �

More applications follow.

120. Let a, b, c be the side lengths of a triangle with the property that for any positive
integer n, the numbers an, bn, cn can also be the side lengths of a triangle. Prove that
the triangle is necessarily isosceles.

121. Given the vectors −→a ,
−→
b ,

−→c in the plane, show that

‖−→a ‖ + ‖−→b ‖ + ‖−→c ‖ + ‖−→a + −→
b + −→c ‖ ≥ ‖−→a + −→

b ‖ + ‖−→a + −→c ‖ + ‖−→b + −→c ‖.

122. Let P(z) be a polynomial with real coefficients whose roots can be covered by a disk of
radius R. Prove that for any real number k, the roots of the polynomial nP(z)−kP ′(z)
can be covered by a disk of radius R + |k|, where n is the degree of P(z), and P ′(z) is
the derivative.

123. Prove that the positive real numbers a, b, c are the side lengths of a triangle if and only
if

a2 + b2 + c2 < 2
√
a2b2 + b2c2 + c2a2.

124. Let ABCD be a convex cyclic quadrilateral. Prove that

|AB − CD| + |AD − BC | ≥ 2|AC − BD|.

125. Let V1, V2, . . . , Vm and W1,W2, . . . ,Wm be isometries of Rn (m, n positive integers).
Assume that for all x with ‖x‖ ≤ 1, ‖Vi x − Wix‖ ≤ 1, i = 1, 2, . . . ,m. Prove that

∥∥∥∥∥
(

m∏
i=1

Vi

)
x −
(

m∏
i=1

Wi

)
x

∥∥∥∥∥ ≤ m,

for all x with ‖x‖ ≤ 1.
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126. Given an equilateral triangle ABC and a point P that does not lie on the circumcircle
of ABC , show that one can construct a triangle with sides the segments PA, PB, and
PC . If P lies on the circumcircle, show that one of these segments is equal to the sum
of the other two.

127. Let M be a point in the plane of the triangle ABC whose centroid is G. Prove that

MA3 · BC + MB3 · AC + MC3 · AB ≥ 3MG · AB · BC · CA.

2.1.5 The Arithmetic Mean-Geometric Mean Inequality

Jensen’s inequality, which will be discussed in the section about convex functions, states that
if f is a real-valued concave function, then

f (λ1x1 + λ2x2 + · · · + λnxn) ≥ λ1 f (x1) + λ2 f (x2) + · · · + λn f (xn),

for any x1, x2, . . . , xn in the domain of f and for any positive weights λ1, λ2, . . . , λn with
λ1 + λ2 + · · · + λn = 1. Moreover, if the function is nowhere linear (that is, if it is strictly
concave) and the numbers λ1, λ2, . . . , λn are nonzero, then equality holds if and only if
x1 = x2 = · · · = xn .

Applying this to the concave function f (x) = ln x , the positive numbers x1, x2, . . . , xn ,
and the weights λ1 = λ2 = · · · = λn = 1

n , we obtain

ln
x1 + x2 + · · · + xn

n
≥ ln x1 + ln x2 + · · · + ln xn

n
.

Exponentiation yields the following inequality.

The arithmetic mean-geometric mean inequality. Let x1, x2, . . . , xn be nonnegative real
numbers. Then

x1 + x2 + · · · + xn
n

≥ n
√
x1x2 · · · xn,

with equality if and only if all numbers are equal.

Proof. We will call this inequality AM-GM for short. We give it an alternative proof using
derivatives, a proof by induction on n. For n = 2 the inequality is equivalent to the obvious
(
√
a1 − √

a2)2 ≥ 0. Next, assume that the inequality holds for any n − 1 positive numbers,
meaning that

x1 + x2 + · · · + xn−1

n − 1
≥ n−1

√
x1x2 · · · xn−1,

with equality only when x1 = x2 = · · · = xn−1. To show that the same is true for n numbers,
consider the function f : (0,∞) → R,

f (x) = x1 + x2 + · · · + xn−1 + x

n
− n

√
x1x2 · · · xn−1x .

To find the minimum of this function we need the critical points. The derivative of f is

f ′(x) = 1

n
−

n
√
x1x2 · · · xn−1

n
x

1
n −1 = x

1
n −1

n

(
x1−

1
n − n

√
x1x2 · · · xn−1

)
.
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Setting this equal to zero, we find the unique critical point x = n−1
√
x1x2 · · · xn , since in this

case x1−
1
n = n

√
x1x2 · · · xn−1. Moreover, the function x1−

1
n is increasing on (0,∞); hence

f ′(x) < 0 for x < n−1
√
x1x2 · · · xn−1, and f ′(x) > 0 for x > n−1

√
x1x2 · · · xn−1. We find that

f has a global minimum at x = n−1
√
x1x2 · · · xn−1, where it takes the value

f
(

n−1
√
x1x2 · · · xn−1

) = x1 + x2 + · · · + xn−1 + n−1
√
x1x2 · · · xn−1

n
− n

√
x1x2 · · · xn−1 · n(n−1)

√
x1x2 · · · xn−1

= x1 + x2 + · · · + xn−1 + n−1
√
x1x2 · · · xn−1

n
− n−1

√
x1x2 · · · xn−1

= x1 + x2 + · · · + xn−1 − (n − 1) n−1
√
x1x2 · · · xn−1

n
.

By the induction hypothesis, this minimum is nonnegative, and is equal to 0 if and only if
x1 = x2 = · · · = xn−1. We conclude that f (xn) ≥ 0 with equality if and only if x1 = x2 =
· · · = xn−1 and xn = n−1

√
x1x2 · · · xn−1 = x1. This completes the induction. �

We apply the AM-GM inequality to solve two problems composed by the second author
of the book.

Example. Find the global minimum of the function f : R2 → R,

f (x, y) = 3x+y(3x−1 + 3y−1 − 1).

Solution. The expression

3 f (x, y) + 1 = 32x+y + 3x+2y + 1 − 3 · 3x+y

is of the form a3 + b3 + c3 − 3abc, where a = 3
√
32x+y , b = 3

√
3x+2y , and c = 1, all of which

are positive. By the AM-GM inequality, this expression is nonnegative. It is equal to zero
only when a = b = c, that is, when 2x + y = x + 2y = 0. We conclude that the minimum
of f is f (0, 0) = − 1

3 . �

Example. Let a, b, c, d be positive real numbers with abcd = 1. Prove that

a

b + c + d + 1
+ b

c + d + a + 1
+ c

d + a + b + 1
+ d

a + b + c + 1
≥ 1.

Solution. A first idea is to homogenize this inequality, and for that we replace the 1 in each
denominator by 4

√
abcd , transforming the inequality into

a

b + c + d + 4
√
abcd

+ b

c + d + a + 4
√
abcd

+ c

d + a + b + 4
√
abcd

+ d

a + b + c + 4
√
abcd

≥ 1.
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Then we apply the AM-GM inequality to the last term in each denominator to obtain the
stronger inequality

4a

a + 5(b + c + d)
+ 4b

b + 5(c + d + a)
+ 4c

c + 5(d + a + b)
+ 4d

d + 5(a + b + c)
≥ 1,

which we proceed to prove.
In order to simplify computations, it is better to denote the four denominators by 16x ,

16y, 16z, 16w, respectively. Then a + b + c + d = x + y + z + w, and so 4a + 16x =
4b + 16y = 4c + 16z = 4d + 16w = 5(x + y + z + w). The inequality becomes

−11x + 5(y + z + w)

16x
+ −11y + 5(z + w + x)

16y
+ −11z + 5(w + x + y)

16z

+ −11w + 5(x + y + z)

16w
≥ 1,

or

−4 · 11 + 5

(
y

x
+ z

x
+ w

x
+ z

y
+ w

y
+ x

y
+ w

z
+ x

z
+ y

z
+ x

w
+ y

w
+ z

w

)
≥ 16.

And this follows by applying the AM-GM inequality to the twelve summands in the paren-
theses. �

We continue with a third example, which is an problem of A. Basyoni that was given
in 2015 at a preliminary selection test for the team that represented the United States at the
International Mathematical Olympiad in 2016.

Example. Let x, y, z be real numbers satisfying x4 + y4 + z4 + xyz = 4. Show that
√
2 − x ≥ y + z

2
.

Solution. We have selected the problem for the book because of this elegant solution based
on the AM-GM inequality found by the member of the Canadian team Zh.Q. (Alex) Song. It
suffices to show that √

2 − x ≥
∣∣∣∣ y + z

2

∣∣∣∣ .
This inequality and the fact that the square root is well defined follow simultaneously if we
prove that

x +
(
y + z

2

)2

≤ 2.

Apply the AM-GM inequality three times:

x4

8
+ y4

8
+ y4

8
+1

8
≥ xy2

2
x4

8
+ z4

8
+ z4

8
+1

8
≥ xz2

2
3x4

4
+3

4
≥ 3x2

2
.
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Then apply the power-mean inequality:

y4 + z4

2
≥
(
y + z

2

)4

,

to write

3y4

4
+ 3z4

4
≥ 3

2

(
y + z

2

)4

.

Now add the four inequalities and use the relation from the statement to obtain

5 ≥ 3

2
x2 + 3

2

[(
y + z

2

)2
]2

+ 2

[
x

(
y + z

2

)]2
.

Finally, noticing that the AM-GM inequality implies

1

4

⎛
⎝x2 +

[(
y + z

2

)2
]2⎞
⎠ ≥ 1

2

[
x

(
y + z

2

)2
]

,

we obtain

5 ≥ 5

4

[
x +
(
y + z

2

)2
]2

,

and the conclusion follows. �

For completeness let us prove this particular case of the power mean inequality:

y4 + z4

2
≥
(
y2 + z2

2

)2

≥
[(

y + z

2

)2
]2

=
(
y + z

2

)4

.

It becomes clear after expanding the square that the first inequality is a consequence of the
AM-GM inequality. Taking the square root of the second inequality, we recognize that it is
of the same type. So we are done.
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Try your hand at the following problems.

128. Show that all real roots of the polynomial P(x) = x5 − 10x + 35 are negative.

129. Find all real numbers that satisfy

x · 2 1
x + 1

x
· 2x = 4.

130. Let a1, a2, . . . , an and b1, b2, . . . , bn be nonnegative numbers. Show that

(a1a2 · · · an)1/n + (b1b2 · · · bn)1/n ≤ ((a1 + b1)(a2 + b2) · · · (an + bn))
1/n.

131. Let a, b, c be the side lengths of a triangle with semiperimeter 1. Prove that

1 < ab + bc + ca − abc ≤ 28

27
.

132. Which number is larger,
25∏
n=1

(
1 − n

365

)
or

1

2
?

133. On a sphere of radius 1 are given four points A, B,C, D such that

AB · AC · AD · BC · BD · CD = 29

33
.

Prove that the tetrahedron ABCD is regular.

134. Prove that
y2 − x2

2x2 + 1
+ z2 − y2

2y2 + 1
+ x2 − z2

2z2 + 1
≥ 0,

for all real numbers x, y, z.

135. Let a1, a2, . . . , an be positive real numbers such that a1 + a2 + · · · + an < 1. Prove
that

a1a2 · · · an(1 − (a1 + a2 + · · · + an))

(a1 + a2 + · · · + an)(1 − a1)(1 − a2) · · · (1 − an)
≤ 1

nn+1
.

136. Consider the positive real numbers x1, x2, . . . , xn with x1x2 · · · xn = 1. Prove that

1

n − 1 + x1
+ 1

n − 1 + x2
+ · · · + 1

n − 1 + xn
≤ 1.
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2.1.6 Sturm’s Principle

In this section we present a method for proving inequalities that is based on real analysis. It
is based on a principle attributed to R. Sturm, phrased as follows.

Sturm’s principle. Given a function f defined on a set M and a point x0 ∈ M, if

(i) f has a maximum (minimum) on M, and

(ii) if no other point x in M is a maximum (minimum) of f ,

then x0 is the maximum (minimum) of f .

But how to decide whether the function f has a maximum or a minimum? Two results
from real analysis come in handy.

Theorem. A continuous function on a compact set always attains its extrema.

Theorem. A closed and bounded subset of Rn is compact.

Let us see how Sturm’s principle can be applied to a problem from the first Balkan
Mathematical Olympiad in 1984.

Example. Letα1, α2, . . . , αn be positive real numbers, n ≥ 2, such thatα1+α2+· · ·+αn = 1.
Prove that

α1

1 + α2 + · · · + αn
+ α2

1 + α1 + · · · + αn
+ · · · + αn

1 + α1 + · · · + αn−1
≥ n

2n − 1
.

Solution. Rewrite the inequality as

α1

2 − α1
+ α2

2 − α2
+ · · · + αn

2 − αn
≥ n

2n − 1
,

and then define the function

f (α1, α2, . . . , αn) = α1

2 − α1
+ α2

2 − α2
+ · · · + αn

2 − αn
.

As said in the statement, this function is defined on the subset ofRn consisting of points whose
coordinates are positive and add up to 1. We would like to show that on this set f is greater
than or equal to n

2n−1 .
Does f have a minimum? The domain of f is bounded but is not closed, being the interior

of a tetrahedron. We can enlarge it, though, by adding the boundary, to the set

M = {(α1, α2, . . . , αn) | α1 + α2 + · · · + αn = 1, αi ≥ 0, i = 1, 2, . . . , n}.
We now know that f has a minimum on M .

A look at the original inequality suggests that the minimum is attained when all the αi ’s
are equal. So let us choose a point (α1, α2, . . . , αn) for which αi �= α j for some indices i, j .
Assume that αi < α j and let us see what happens if we substitute αi + x for αi and α j − x
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for α j , with 0 < x < α j − αi . In the defining expression of f , only the i th and j th terms
change. Moreover,

αi

2 − αi
+ α j

2 − α j
− αi + x

2 − αi − x
− α j − x

2 − α j + x

= 2x(α j − αi − x)(4 − αi − α j )

(2 − αi )(2 − α j )(2 − αi − x)(2 − α j − x)
> 0,

so on moving the numbers closer, the value of f decreases. It follows that the point that we
picked was not a minimum. Hence the only possible minimum is

(
1
n ,

1
n , . . . ,

1
n

)
, in which

case the value of f is n
2n−1 . This proves the inequality. �

However, in most situations, as is the case with this problem, we can bypass the use of
real analysis and argue as follows. If the ai ’s were not all equal, then one of them must be
less than 1

n and one of them must be greater. Take these two numbers and move them closer
until one of them reaches 1

n . Then stop and choose another pair. Continue the algorithm until
all numbers become 1

n . At this very moment, the value of the expression is

1

n

(
2 − 1

n

)−1

· n = n

2n − 1
.

Since during the process the value of the expression kept decreasing, initially it must have
been greater than or equal to n

2n−1 . This proves the inequality.
Let us summarize the last idea. Wewant tomaximize (orminimize) an n-variable function,

and we have a candidate for the extremum. If we can move the variables one by one toward
the maximum without decreasing (respectively, increasing) the value of the function, than the
candidate is indeed the desired extremum. This approach is more elementary but can be more
time consuming than the application of the principle itself.

Let us revisit the AM-GM inequality with a proof using Sturm’s principle.

The arithmetic mean-geometric mean inequality. Let x1, x2, . . . , xn be nonnegative real
numbers. Then

x1 + x2 + · · · + xn
n

≥ n
√
x1x2 · · · xn.

with equality if and only if x1 = x2 = · · · = xn .

Proof. The inequality is homogeneous in the variables, so the general case follows if we check
the inequality for a fixed value of the sum of the numbers, say x1 + x2 + · · · + xn = 1. This
amounts to checking that n

√
x1x2 · · · xn ≤ 1

n if x1 + x2 + · · · + xn = 1 with equality only
when x1 = x2 = · · · = xn , and this is equivalent to checking x1x2 · · · xn ≤ 1

nn with equality
as specified.

The set

K = {(x1, x2, . . . , xn) ⊂ R
n | x j ≥ 0, x1 + x2 + · · · + xn = 1}

contains all its limit points, so it is closed. It also lies in the hypercube [0, 1]n so it is bounded,
thus it is compact. The function

f : K → R, f (x1, x2, . . . , xn) = x1x2 · · · xn
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is continuous, being a polynomial, so it attains its maximum. This maximum is not attained
at a point where not all x j are equal, because if x j < xk and we replace x j by x j + ε and xk
by xk − ε, where ε = xk−x j

2 , then the value of f increases to

∏
i �= j,k

xi (x j + ε)(xk − ε) =
∏
i �= j,k

xi (x j xk + ε(xk − x j ) + ε2)

=
∏
i �= j,k

xi (x j xk + ε2) = f (x1, x2, · · · , xn) + ε2
∏
i �= j,k

xi .

Thus the only candidate for the maximum is ( 1n ,
1
n , · · · , 1

n ) and in this case the inequality
holds with equality. �

You can find more applications of Sturm’s principle below.

137. Let a, b, c be nonnegative real numbers such that a + b + c = 1. Prove that

4(ab + bc + ac) − 9abc ≤ 1.

138. Let x1, x2, . . . , xn , n ≥ 2, be positive numbers such that

x1 + x2 + · · · + xn = 1.

Prove that (
1 + 1

x1

)(
1 + 1

x2

)
· · ·
(
1 + 1

xn

)
≥ (n + 1)n.

139. Prove that a necessary and sufficient condition that a triangle inscribed in an ellipse
have maximum area is that its centroid coincide with the center of the ellipse.

140. Let n > 2 be an integer. A convex n-gon of area 1 is inscribed in a circle. What is the
minimum that the radius of the circle can be?

141. Let a, b, c > 0, a + b + c = 1. Prove that

0 ≤ ab + bc + ac − 2abc ≤ 7

27
.

142. Let x1, x2, . . . , xn be n real numbers such that 0 < x j ≤ 1
2 , for 1 ≤ j ≤ n. Prove the

inequality
n∏
j=1

x j

⎛
⎝ n∑

j=1

x j

⎞
⎠

n ≤

n∏
j=1

(1 − x j )

⎛
⎝ n∑

j=1

(1 − x j )

⎞
⎠

n .
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143. Let a, b, c, and d be nonnegative numbers such that a ≤ 1, a+ b ≤ 5, a+ b+ c ≤ 14,
a + b + c + d ≤ 30. Prove that

√
a + √

b + √
c + √

d ≤ 10.

144. What is the maximal value of the expression
∑
i< j

xi x j if x1, x2, . . . , xn are nonnegative

integers whose sum is equal to m?

145. Given the n × n array (ai j )i j with ai j = i + j − 1, what is the smallest product of n
elements of the array provided that no two lie on the same row or column?

146. Given a positive integer n, find the minimum value of

x31 + x32 + · · · + x3n
x1 + x2 + · · · + xn

subject to the condition that x1, x2, . . . , xn be distinct positive integers.

2.1.7 Other Inequalities

We conclude with a section for the inequalities aficionado. Behind each problem hides a
famous inequality.

147. If x and y are positive real numbers, show that x y + yx > 1.

148. Prove that for all a, b, c ≥ 0,

(a5 − a2 + 3)(b5 − b2 + 3)(c5 − c2 + 3) ≥ (a + b + c)3.

149. Assume that all the zeros of the polynomial P(x) = xn + a1xn−1 + · · · + an are real
and positive. Show that if there exist 1 ≤ m < p ≤ n such that am = (−1)m

(n
m

)
and

ap = (−1)p
(n
p

)
, then P(x) = (x − 1)n .

150. Let n > 2 be an integer, and let x1, x2, . . . , xn be positive numbers with the sum equal
to 1. Prove that

n∏
i=1

(
1 + 1

xi

)
≥

n∏
i=1

(
n − xi
1 − xi

)
.

151. Let a1, a2, . . . , an , b1, b2, . . . , bn be real numbers such that

(a21 + a22 + · · · + a2n − 1)(b21 + b22 + · · · + b2n − 1) > (a1b1 + a2b2 + · · · + anbn − 1)2.

Prove that a21 + a22 + · · · + a2n > 1 and b21 + b22 + · · · + b2n > 1.

152. Let a, b, c, d be positive numbers such that abc = 1. Prove that

1

a3(b + c)
+ 1

b3(c + a)
+ 1

c3(a + b)
≥ 3

2
.
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2.2 Polynomials

2.2.1 A Warmup in One-Variable Polynomials

A polynomial is a sum of the form

P(x) = anx
n + an−1x

n−1 + · · · + a0,

where x is the variable, and an, an−1, . . . , a0 are constant coefficients. If an �= 0, the num-
ber n is called the degree, denoted by deg(P(x)). If an = 1, the polynomial is called
monic. The sets, which, in fact, are rings, of polynomials with integer, rational, real, or
complex coefficients are denoted, respectively, by Z[x], Q[x], R[x], and C[x]. A number r
such that P(r) = 0 is called a zero of P(x), or a root of the equation P(x) = 0. By the
Gauss-d’Alembert theorem, also called the fundamental theorem of algebra, every noncon-
stant polynomial with complex coefficients has at least one complex zero. Consequently, the
number of zeros of a polynomial equals the degree, multiplicities counted. For a number α,
P(α) = anαn + an−1α

n−1 + · · · + a0 is called the value of the polynomial at α.
We begin the section on polynomials with an old problem from the 1943 competition of

the Mathematics Gazette, Bucharest, proposed by Gh. Buicliu.

Example. Verify the equality

3
√
20 + 14

√
2 + 3
√
20 − 14

√
2 = 4.

Solution. Apparently, this problem has nothing to do with polynomials. But let us denote the
complicated irrational expression by x and analyze its properties. Because of the cube roots,
it becomes natural to raise x to the third power:

x3 = 20 + 14
√
2 + 20 − 14

√
2

+ 3
3
√

(20 + 14
√
2)(20 − 14

√
2)

(
3
√
20 + 14

√
2 + 3
√
20 − 14

√
2

)

= 40 + 3x 3
√
400 − 392 = 40 + 6x .

And now we see that x satisfies the polynomial equation

x3 − 6x − 40 = 0.

We have already been told that 4 is a root of this equation. The other two roots are complex,
and hence x can only equal 4, the desired answer. �

Of course, one can also recognize the quantities under the cube roots to be the cubes of
2 + √

2 and 2 − √
2, but that is just a lucky strike.

The second example is a problem from the Russian Journal Kvant (Quantum), proposed
by A. Alexeev.
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Example. Prove that for every odd positive integer n, there is a constant cn such that

tan x + tan
(
x + π

n

)+ · · · + tan
(
x + (n−1)π

n

)

tan x tan
(
x + π

n

) · · · tan (x + (n−1)π
n

) = cn,

for all x for which the denominator is nonzero. Find the value of cn .

Solution. Since the tangent function is periodic with period π , it suffices to look at x ∈ [0, π].
Consider the function f : [0, π] → R,

f (x) =
tan x + tan

(
x + π

n

)+ · · · + tan
(
x + (n−1)π

n

)

tan x tan
(
x + π

n

) · · · tan (x + (n−1)π
n

) .

Denote tan x = ξ and tan kπ
n = tk , k = 0, 1, . . . n − 1. Then the numerator and the

denominator are of the form

P1(ξ)

Q(ξ)
= ξ + ξ + t1

1 − ξ t1
+ · · · + ξ + tn−1

1 − ξ tn−1

P2(ξ)

Q(ξ)
= ξ · ξ + t1

1 − ξ t1
· · · ξ + tn−1

1 − ξ tn−1

where P1(ξ), P2(ξ), Q(ξ) are polynomials, and Q(ξ) = (1 − ξ t1)(1 − ξ t2) · · · (1 − ξ tn−1).
The polynomials P1(ξ), P2(ξ) have nth degree. Because of the fact that n is odd, and of

the trigonometric identity tan(π − x) = − tan x , the roots of P1(ξ) must be 0, t1, t2, . . . , tn−1.
Of course these are also the roots of P2(ξ). It follows that one of the polynomials is a constant
multiple of the other. This proves the existence of the constant cn .

To find cn , note that it is equal to the ratio of the dominant coefficient of the polynomials
P1(ξ) and P2(ξ). In the case of the first polynomial, this coefficient is

tan
π

n
tan

2π

n
· · · tan (n − 1)π

n
= (−1)

n−1
2 n (See Problem 207).

For the second polynomial this number is equal to 1. Hence cn = (−1)
n−1
2 n. �

And now the problems.

153. Find all solutions to the equation

(x + 1)(x + 2)(x + 3)2(x + 4)(x + 5) = 360.

154. Solve the polynomial equation

x3 − (7 + 2
√
5)x + √

5 + 1 = 0.
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155. Let a, b, c be real numbers. Prove that three roots of the equation

b + c

x − a
+ c + a

x − b
+ a + b

x − c
= 3

are real.

156. Find all polynomials satisfying the functional equation

(x + 1)P(x) = (x − 10)P(x + 1).

157. Let n > 1 be an integer and x, a1, a2, . . . , an be distinct real numbers. Show that

(x − a2)(x − a3) · · · (x − an)

(a1 − a2)(a1 − a3) · · · (a1 − an)
+ (x − a1)(x − a3) · · · (x − an)

(a2 − a1)(a2 − a3) · · · (a2 − an)

+ · · · + (x − a1)(x − a2) · · · (x − an−1)

(an − a1)(an − a2) · · · (an − an−1)
= 1.

158. Let P(x) be a polynomial of odd degree with real coefficients. Show that the equation
P(P(x)) = 0 has at least as many real roots as the equation P(x) = 0, counted without
multiplicities.

159. Let P(x) = x2 + 2007x + 1. Prove that for every positive integer n, P (n)(x) = 0 has
at least one real root, where P (n) denotes P composed with itself n times.

160. Determine all polynomials P(x) with real coefficients for which there exists a positive
integer n such that for all x ,

P

(
x + 1

n

)
+ P

(
x − 1

n

)
= 2P(x).

161. Find a polynomial with integer coefficients that has the zero
√
2 + 3

√
3.

162. Let P(x) be a polynomial with real coefficients that satisfies the functional equation

(x − 1)P(x + 2) = (x + 1)P(x − 1) + 2, for all x ∈ R.

Compute P(−1989).

163. Consider the polynomial with real coefficients P(x) = x6 + ax5 + bx4 + cx3 + bx2 +
ax + 1, and let x1, x2, . . . , x6 be its zeros. Prove that

6∏
k=1

(x2k + 1) = (2a − c)2.

164. Let P(z) = (z − z1)(z − z2) · · · (z − zn) with |zi | ≥ 1, i = 1, 2, . . . , n. Prove that if
0 < r < 1, then for any z, with |z| = 1,

∣∣∣∣ P(z)

P(r z)

∣∣∣∣ ≤
(

2

1 + r

)n

.
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165. Let P(x) = x4 + ax3 + bx2 + cx + d and Q(x) = x2 + px + q be two polynomials
with real coefficients. Suppose that there exists an interval (r, s) of length greater than
2 such that both P(x) and Q(x) are negative for x ∈ (r, s) and both are positive for
x < r or x > s. Show that there is a real number x0 such that P(x0) < Q(x0).

166. Let P(x) be a polynomial of degree n. Knowing that

P(k) = k

k + 1
, k = 0, 1, . . . , n,

find P(m) for m > n.

167. Consider the polynomials with complex coefficients

P(x) = xn + a1x
n−1 + · · · + an

with zeros x1, x2, . . . , xn and

Q(x) = xn + b1x
n−1 + · · · + bn

with zeros x21 , x
2
2 , . . . , x

2
n . Prove that if a1 + a3 + a5 + · · · and a2 + a4 + a6 + · · · are

both real numbers, then so is b1 + b2 + · · · + bn .

168. Let P(x) be a polynomial with complex coefficients. Prove that P(x) is an even func-
tion if and only if there exists a polynomial Q(x) with complex coefficients satisfying

P(x) = Q(x)Q(−x).

2.2.2 Polynomials in Several Variables

Let us switched to polynomials in several variables. The first example was published by the
first author in Mathematical Reflections.

Example. Given that the real numbers x, y, z satisfy x + y + z = 0 and

x4

2x2 + yz
+ y4

2y2 + xz
+ z4

2z2 + xy
= 1,

determine, with proof, all possible values of x4 + y4 + z4.

Solution. First note that x, y, z have to be distinct, or else one of the denominators will be
zero. We have

2x2 + yz = x2 + x2 + yz = x2 − (y + z)x + yz = (x − y)(x − z).

Similarly 2y2 + xz = (y − z)(y − x) and 2z2 + xy = (z − x)(z − y). Hence the second
equation from the statement can be written as

x4

(x − y)(z − x)
+ y4

(x − y)(y − z)
+ z4

(z − x)(y − z)
= −1,
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which gives the following equality

x4(y − z) + y4(z − x) + z4(x − y) = −(x − y)(y − z)(z − x).

Viewing the left-hand side as a polynomial in x , the zeros of the polynomial are y and z, and
its coefficients are divisible by y − z. Hence there is a quadratic homogeneous symmetric
polynomial Q(x, y, z) such that

x4(y − z) + y4(z − x) + z4(x − y) = (x − y)(y − z)(z − x)Q(x, y, z).

Write Q(x, y, z) = α(x2 + y2 + z2) + β(xy + xz + yz). Equating the coefficients of x4 on
both sides gives α = −1. Equating the coefficients of x3y2 on both sides gives 0 = −1 − β,
hence β = −1. We conclude that Q(x, y, z) = −(x2 + y2 + z2 + xy + xz + yz). Hence

(x − y)(y − z)(z − x)(x2 + y2 + x2 + xy + xz + yz) = −(x − y)(y − z)(z − x).

Given that (x + y + z)2 = 0, we have x2 + y2 + z2 = −2xy − 2xz − 2yz, and we obtain

xy + xz + yz = −1,

or

x2 + y2 + z2 = 2.

Then

1 = (xy + xz + yz)2 = x2y2 + x2z2 + y2z2 + 2xyz(x + y + z) = x2y2 + x2z2 + y2z2,

and hence

x4 + y4 + z4 = (x2 + y2 + z2)2 − 2(x2y2 + x2z2 + y2z2) = 4 − 2 = 2.

We conclude that the answer to the question is 2. �

We continue with problems left to the reader.

169. Given the polynomial P(x, y, z) prove that the polynomial

Q(x, y, z) = P(x, y, z) + P(y, z, x) + P(z, x, y)

− P(x, z, y) − P(y, x, z) − P(z, y, x)

is divisible by (x − y)(y − z)(z − x).

170. Let x, y, z be positive integers greater than 1. Prove that the expression

(x + y + z)3 − (−x + y + z)3 − (x − y + z)3 − (x + y − z)3

is the product of seven (not necessarily distinct) integers each of which is greater than
one.
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171. Factor completely the expression

(x + y + z)5 − (−x + y + z)5 − (x − y + z)5 − (x + y − z)5.

172. Factor the expression

E = a3(b − c) + b3(c − a) + c3(a − b).

173. What conditions should the real numbers a, b, c, d satisfy in order for the equation

(x − b)(x − c)(x − d)

(a − b)(a − c)(a − d)
+ (x − a)(x − c)(x − d)

(b − a)(b − c)(b − d)
+ (x − a)(x − b)(x − d)

(c − a)(c − b)(c − d)

+ (x − a)(x − b)(x − c)

(d − a)(d − b)(d − c)
= abcd

to admit real solutions.

174. Is there a polynomial P(x, y, z) with integer coefficients such that P(x, y, z) and
x + 3

√
2y + 3

√
3z have the same sign for all integers x, y, z?

175. Let f (x, y, z) = x2 + y2 + z2 + xyz. Let p(x, y, z), q(x, y, z), r(x, y, z) be polyno-
mials with real coefficients satisfying

f (p(x, y, z), q(x, y, z), r(x, y, z)) = f (x, y, z).

Prove or disprove the assertion that the sequence p, q, r consists of some permutation
of ±x , ±y, ±z where the number of minus signs is 0 or 2.

176. Find all positive integers p, q, with p > 2q, and real numbers a such that the two-
variable polynomial

x p + ax p−q yq + ax p−2q y2q + y p

is divisible by (x + y)2.

177. Find all polynomials of two variables satisfying

P(a, b)P(c, d) = P(ac + bd, ad + bc)

for all real numbers a, b, c, d.

2.2.3 Quadratic Polynomials

We continue our discussion of polynomials with the case of polynomials of second degree.
We start with the following problem due to I. Cucurezeanu, whose solution is based just on
the formula for the roots of a quadratic equation.

Example. Let a, b, c be integer numbers that are the sides of a triangle. Show that if the
equation

x2 + (a + 1)x + b − c = 0

has integer roots, then the triangle is isosceles.
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Solution. The quadratic equation has solutions

−(a + 1) ±√(a + 1)2 − 4(b − c)

2
.

For it to admit integer roots, it is necessary that the discriminant is a rational number. But
then the discriminant has to be an integer number. If b > c then (a + 1)2 − 4(b − c) is a
perfect square < (a + 1)2 and of the same parity with this number. Hence

(a + 1)2 − 4(b − c) ≤ (a − 1)2

We conclude that a + c ≤ b, which contradicts the triangle inequality. The case b < c is
similar. So the only possibility is b = c; the triangle is isosceles. �

Here is a problem that uses the sign of a quadratic function. Recall that a quadratic
function changes sign only if it has two distinct real zeros, and in that case it has the sign of
the dominant coefficient outside of the interval formed by the zeros and opposite sign between
the zero. If it has a double zero, or complex zeros, than it always has the sign of the dominant
coefficient.

Example. Let a, b, c be distinct real numbers. Show that there is a real number x such that

x2 + 2(a + b + c)x + 3(ab + bc + ac)

is negative.

Solution. We compute the discriminant


 = 4(a2 + b2 + c2 − ab − bc − ac) = 2[(a − b)2 + (b − c)2 + (c − a)2] > 0.

Hence the quadratic function has two distinct real zeros. Between the zeros this function is
negative. �

From the equality

(x − x1)(x − x2) = x2 + ax + b,

we see that the for the quadratic equation x2 + ax + b the sum of the roots is −a and the
product of the roots is b. This is a particular case of Viète’s relations, which will be studied
in general in the next section. Here is a problem.

Example. Find all positive integers a, b, c such that the equations

x2 − ax + b = 0, x2 − bx + c = 0, x2 − cx + a = 0

have integer roots.
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Solution. The roots must also be positive. Write x1 + x2 = a = x5x6, x3 + x4 = b = x1x2,
x5 + x6 = c = x3x4. Adding we obtain

x1 + x2 + x3 + x4 + x5 + x6 = x1x2 + x3x4 + x5x6.

This is equivalent to

(x1 − 1)(x2 − 1) + (x3 − 1)(x4 − 1) + (x5 − 1)(x6 − 1) = 3.

On the left there are only non-negative integers, so they can only be (0, 0, 3), (0, 1, 2), or
(1, 1, 1). In the first case, if say the third term is 3 then {x5, x6} = {4, 2}, so a = 8, c = 6.
Also one of x1, x2 is 1, so the other is a−1 = 7, and thus b = 7. We obtain (a, b, c) = (8, 7, 6)
and its circular permutations.

If, say, the second term is 1 and the third term is 2, then on the one hand x3 = x4 = 2,
so b = c = 4, and on the other hand {x5, x6} = {2, 3} and so c = 5, impossible. A similar
argument rules out the case where the second term is 1 and the first term is 2.

Finally, if each term is 1, then xi = 2, i = 1, 2, 3, and so we obtain the triple (a, b, c) =
(4, 4, 4). �

178. Let a > 2 be a real number. Solve the equation

x3 − 2ax2 + (a2 + 1)x + 2 − 2a = 0.

179. Does there exist a positive integer n such that the quadratic equation

(n3 − n + 1)x2 − (n5 − n + 1)x − (n7 − n + 1) = 0

has rational solutions?

180. Assume that the quadratic function f (x) = x2 + ax + b has integer zeros, and has
the property that there is an integer number n such that f (n) = 13. Prove that either
f (n + 1) or f (n − 1) is equal to 28.

181. Let a, b, c be integer numbers that are the sides of a triangle.
(a) Show that if the equation

x2 + (2ab + 1)x + a2 + b2 = c2

has integer roots, the the triangle is right.
(b) Show that if the equation

x2 + (a2 + b2 + c2 + 1)x + ab + bc + ac = 0

has integer roots, then the triangle is equilateral.

182. Let a < b < c < d be nonzero real numbers. Show that the equations

ax2 + (b + d)x + c = 0

bx2 + (c + d)x + a = 0

cx2 + (a + d)x + b = 0

have a common root if and only if a + b + c + d = 0.
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183. Find all real numbers a such that for all x, y ∈ R one has

2a(x2 + y2) + 4axy − y2 − 2xy − 2x + 1 ≥ 0.

184. Show that if the equation x2 + ax + b = 0 has real roots, then so does the equation
x2 − (a2 − 2b + 2)x + a2 + b2 + 1 = 0.

185. Prove that

log2 3 + log3 4 + log4 5 + log5 6 > 5.

186. Let a, b be integer numbers. Decide when the equation

(ax − b)2 + (bx − a)2 = x

has an integer solution.

187. Prove that if the real numbers p1, p2, q1, q2 satisfy

(q1 − q2)
2 + (p1 − p2)(p1q2 − p2q1) < 0,

then the quadratic equations

x2 + p1x + q1 = 0 and x2 + p2x + q2 = 0

have real roots and between the roots of one there is a root of the other.

188. Prove that if the inequality a2 + ab + ac < 0 holds, then so does b2 − 4ac > 0.

189. Let a and b be positive integers such that a2 + b2 is a prime number. Prove that the
equation x2 + ax + b + 1 = 0 does not have integer roots.

190. Find all positive integers a, b, c such that the equations

x2 − ax + b = 0, x2 − bx + c = 0, x2 − cx + a = 0

have integer roots.

191. Let ABC be a triangle. Show that there exists a point D inside the segment BC such
that AD2 = BD · DC if and only if b + c ≤ √

2a.

192. Let a1 ≤ a2 ≤ · · · ≤ an and b1 ≥ b2 ≥ · · · ≥ bn be real numbers such that

n∑
i=1

(n − i)aibi and
n∑
j=1

( j − 1)a jb j

are both positive. Prove the inequality

[(
n∑

i=1

ai

)(
n∑

i=1

bi

)
−
(

n∑
i=1

aibi

)]2
≥ 4

(
n∑

i=1

(n − i)aibi

)⎛
⎝ n∑

j=1

( j − 1)a jb j

⎞
⎠ .
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193. Let a, a1, a2, . . . , a2n, b, b1, . . . , b2n be real numbers such that

a2 > 2max
(
a21 + a23 + · · · + a22n−1, a

2
2 + a24 + · · · + a22n

)
.

Show that (ab − a1b1 − a2b2 − · · · a2nb2n)2 is greater than or equal to the smaller of
the quantities (a2 − 2a21 − 2a23 − · · · − 2a22n−1)(b

2 − 2b21 − 2b23 − · · · − 2b22n−1) and
(a2 − 2a22 − 2a24 − · · · − 2a22n)(b

2 − 2b22 − 2b24 − · · · − 2b22n).

194. A sphere is inscribed in a regular cone. Around the sphere a cylinder is circumscribed
so that its base is in the same plane as the base of the cone. Let V1 be the volume of
the cone, and V2 the volume of the cylinder.

(a) Prove that V1 cannot equal V2.
(b) Find the smallest positive number k such that V1 = kV2.

2.2.4 Viète’s Relations

From the Gauss-d’Alembert fundamental theorem of algebra it follows that a polynomial

P(x) = anx
n + an−1x

n−1 + · · · + a0

can be factored over the complex numbers as

P(x) = an(x − x1)(x − x2) · · · (x − xn).

Equating the coefficients of x in the two expressions, we obtain

x1 + x2 + · · · + xn = −an−1

an
,

x1x2 + x1x3 + · · · + xn−1xn = an−2

an
,

. . .

x1x2 · · · xn = (−1)n
a0
an

.

These relations carry the name of the French mathematician F. Viète. They combine two ways
of looking at a polynomial: as a sum of monomials and as a product of linear factors. As a first
application of these relations, we have selected a problem from a 1957 Chinese mathematical
competition.

Example. If x + y + z = 0, prove that

x2 + y2 + z2

2
· x

5 + y5 + z5

5
= x7 + y7 + z7

7
.

Solution. Consider the polynomial P(X) = X3 + pX + q, whose zeros are x, y, z. Then

x2 + y2 + z2 = (x + y + z)2 − 2(xy + xz + yz) = −2p.
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Adding the relations x3 = −px − q, y3 = −py − q, and z3 = −pz − q, which hold because
x, y, z are zeros of P(X), we obtain

x3 + y3 + z3 = −3q.

Similarly,
x4 + y4 + z4 = −p(x2 + y2 + z2) − q(x + y + z) = 2p2,

and therefore

x5 + y5 + z5 = −p(x3 + y3 + z3) − q(x2 + y2 + z2) = 5pq,

x7 + y7 + z7 = −p(x5 + y5 + z5) − q(x4 + y4 + z4) = −5p2q − 2p2q = −7p2q.

The relation from the statement reduces to the obvious

−2p

2
· 5pq

5
= −7p2q

7
. �

Viète’s relations can be used to solve, or analyze, the roots of a polynomial equation when
additional information about the roots is given, as the following problem of B. Enescu shows.

Example. Let P(x) = x3+ax2+bx+c be a polynomial with rational coefficients, having the
roots x1, x2, x3. Show that if x1

x2
is a rational number different from 0 and −1, then x1, x2, x3

are all rational.

Solution. Set x1
x2

= t . Let us observe that if either x1 or x2 is rational, so is the other, and by
Viète’s relations x3 is rational as well. Also, if x3 is rational, then x1 + x2 = x2(1 + x1

2 ) is
rational, so x2 is rational, and x1 is rational as well. Hence it suffices to show that P(x) has a
rational root.

Substituting x1 = t x2 in Viète’s relations we obtain

(t + 1)x2 + x3 = −a

x2[t x2 + (t + 1)x3] = b.

Substituting x3 from the first equation we obtain the quadratic equation in x2,

(t2 + t + 1)x22 + (t + 1)ax2 + b = 0.

Thus x2 is a zero of the quadratic polynomial with rational coefficients Q(x) = (t2 + t +
1)x2 + (t + 1)ax + b. We deduce that the greatest common divisor of P(x) and Q(x) is a
non-constant polynomial. Moreover, because both P(x) and Q(x) have rational coefficients
their greatest common divisor must have rational coefficients as well. So P(x) can be written
as a product of two polynomials with rational coefficients. One of the factors must be a linear
polynomial, showing that P(x) has a rational zero. Hence the conclusion. �

Next, a problem from the short list of the 2005 Ibero-American Mathematical Olympiad.
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Example. Find the largest real number k with the property that for all fourth-degree polyno-
mials P(x) = x4 + ax3 + bx2 + cx + d whose zeros are all real and positive, one has

(b − a − c)2 ≥ kd,

and determine when equality holds.

Solution. Let r1, r2, r3, r4 be the zeros of P(x). Viète’s relations read

a = −(r1 + r2 + r3 + r4),

b = r1r2 + r1r3 + r1r4 + r2r3 + r2r4 + r3r4,

c = −(r1r2r3 + r1r2r4 + r1r3r4 + r2r3r4),

d = r1r2r3r4.

From here we obtain

b − a − c = (r1r2 + r1r3 + r1r4 + r2r3 + r2r4 + r3r4) + (r1 + r2 + r3 + r4)

+ (r1r2r3 + r1r2r4 + r1r3r4 + r2r3r4).

By the AM-GM inequality this is greater than or equal to

14 14
√

(r1r2r3r4)7 = 14
√
d.

Since equality can hold in the AM-GM inequality, we conclude that k = 196 is the answer
to the problem. Moreover, equality holds exactly when r1 = r2 = r3 = r4 = 1, that is, when
P(x) = x4 − 4x3 + 6x2 − 4x + 1. �

And now a challenging problem from A. Krechmar’s Problem Book in Algebra (Mir
Publishers, 1974).

Example. Prove that

3

√
cos

2π

7
+ 3

√
cos

4π

7
+ 3

√
cos

8π

7
= 3

√
1

2
(5 − 3 3

√
7).

Solution. We would like to find a polynomial whose zeros are the three terms on the left.
Let us simplify the problem and forget the cube roots for a moment. In this case we have
to find a polynomial whose zeros are cos 2π

7 , cos
4π
7 , cos

8π
7 . The seventh roots of unity

come in handy. Except for x = 1, which we ignore, these are also roots of the equation
x6 + x5 + x4 + x3 + x2 + x + 1 = 0, and are cos 2kπ

7 + i sin 2kπ
7 , k = 1, 2, . . . , 6. We see that

the numbers 2 cos 2π
7 , 2 cos

4π
7 , and 2 cos

8π
7 are of the form x + 1

x , with x one of these roots.
If we define y = x + 1

x , then x2 + 1
x2

= y2 − 2 and x3 + 1
x3

= y3 − 3y. Dividing the
equation x6 + x5 + x4 + x3 + x2 + x +1 = 0 through by x3 and substituting y in it, we obtain
the cubic equation

y3 + y2 − 2y − 1 = 0.
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The numbers 2 cos 2π
7 , 2 cos

4π
7 , and 2 cos 8π

7 are the three roots of this equation. The
simpler task is fulfilled.

But the problem asks us to find the sum of the cube roots of these numbers. Looking at
symmetric polynomials, we have

X3 + Y 3 + Z3 − 3XY Z = (X + Y + Z)3 − 3(X + Y + Z)(XY + Y Z + Z X)

and

X3Y 3 + Y 3Z3 + Z3X3 − 3(XY Z)2 = (XY + Y Z + X Z)3

− 3XY Z(X + Y + Z)(XY + Y Z + Z X).

Because X3, Y 3, Z3 are the roots of the equation y3 + y2 − 2y − 1 = 0, by Viète’s relations,
X3Y 3Z3 = 1, so XY Z = 3

√
1 = 1, and also X3+Y 3+Z3 = −1 and X3Y 3+X3Z3+Y 3Z3 =

−2. In the above two equalities we now know the left-hand sides. The equalities become a
system of two equations in the unknowns u = X + Y + Z and v = XY + Y Z + Z X , namely

u3 − 3uv = −4,

v3 − 3uv = −5.

Writing the two equations as u3 = 3uv − 4 and v3 = 3uv − 5 and multiplying them, we
obtain (uv)3 = 9(uv)2 − 27uv + 20. With the substitution m = uv this becomes m3 =
9m2 + 27m − 20 or (m − 3)3 + 7 = 0. This equation has the unique solution m = 3 − 3

√
7.

Hence u = 3
√
3m − 4 = 3

√
5 − 3 3

√
7. We conclude that

3

√
cos

2π

7
+ 3

√
cos

4π

7
+ 3

√
cos

8π

7
= X + Y + Z = 1

3
√
2
u = 3

√
1

2
(5 − 3 3

√
7),

as desired. �

All problems below can be solved using Viète’s relations.

195. Find the zeros of the polynomial

P(x) = x4 − 6x3 + 18x2 − 30x + 25

knowing that the sum of two of them is 4.

196. Let a, b, c be real numbers. Show that a ≥ 0, b ≥ 0, and c ≥ 0 if and only if
a + b + c ≥ 0, ab + bc + ca ≥ 0, and abc ≥ 0.

197. Solve the system

x + y + z = 1,

xyz = 1,

knowing that x, y, z are complex numbers of absolute value equal to 1.
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198. Let x1, x2, x3 be the roots of the equation

x3 − x2 − 2x + 4 = 0,

with |x1| ≥ |x2| ≥ |x3|. Find a polynomial with integer coefficients of minimal degree
that has the root x51 + x32 + x23 .

199. Find all real numbers r for which there is at least one triple (x, y, z) of nonzero real
numbers such that

x2y + y2z + z2x = xy2 + yz2 + zx2 = r xyz.

200. Let a, b, c, d be real numbers with a + b + c + d = 0. Prove that

a3 + b3 + c3 + d3 = 3(abc + bcd + cda + dab)

201. Given the real numbers x, y, z, t such that

x + y + z + t = x7 + y7 + z7 + t7 = 0,

prove that

x(x + y)(x + z)(x + t) = 0.

202. For five integers a, b, c, d, e we know that the sums a + b + c + d + e and a2 + b2 +
c2 + d2 + e2 are divisible by an odd number n. Prove that the number a5 + b5 + c5 +
d5 + e5 − 5abcde is also divisible by n.

203. Find all polynomials whose coefficients are equal either to 1 or −1 and whose zeros
are all real.

204. Let P(z) = az4 + bz3 + cz2 + dz + e = a(z − r1)(z − r2)(z − r3)(z − r4), where
a, b, c, d, e are integers, a �= 0. Show that if r1 + r2 is a rational number, and if
r1 + r2 �= r3 + r4, then r1r2 is a rational number.

205. Let P(x) = x3 + ax2 + bx + c be a polynomial with rational coefficients, having the
roots x1, x2, x3. Show that if x1

x2
is a rational number different from 0 and −1, then

x1, x2, x3 are all rational.

206. The zeros of the polynomial P(x) = x3 − 10x + 11 are u, v, and w. Determine the
value of arctan u + arctan v + arctanw.

207. Prove that for every positive integer n,

tan
π

2n + 1
tan

2π

2n + 1
· · · tan nπ

2n + 1
= √

2n + 1.

208. Let P(x) = xn + an−1xn−1 + · · · + a0 be a polynomial of degree n ≥ 3. Knowing that
an−1 = −(n1), an−2 = (n2), and that all roots are real, find the remaining coefficients.
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209. Determine the maximum value of λ such that whenever P(x) = x3 + ax2 + bx + c is
a cubic polynomial with all zeros real and nonnegative, then

P(x) ≥ λ(x − a)3

for all x ≥ 0. Find the equality condition.

210. Prove that there are unique positive integers a, n such that

an+1 − (a + 1)n = 2001.

2.2.5 The Derivative of a Polynomial

This section adds some elements of real analysis. We remind the reader that the derivative of
a polynomial

P(x) = anx
n + an−1x

n−1 + · · · + a1x + a0

is the polynomial
P ′(x) = nanx

n−1 + (n − 1)an−1x
n−2 + · · · + a1.

We also recall the product rule: (P(x)Q(x))′ = P ′(x)Q(x) + P(x)Q′(x). If x1, x2, . . . , xn
are the zeros of P(x), then by using the product rule we obtain

P ′(x)
P(x)

= 1

x − x1
+ 1

x − x2
+ · · · + 1

x − xn
.

If a zero of P(x) hasmultiplicity greater than 1, then it is also a zero of P ′(x), and the converse
is also true. By Rolle’s theorem, if all zeros of P(x) are real, then so are those of P ′(x). Let
us discuss in detail two problems, the first of which belonging to the second author of the
book, and the second to R. Gologan.

Example. Let P(x) be a polynomial with real zeros and let a < b be two real numbers that
are smaller than any of the zeros of P(x). Prove that

exp

(∫ b

a

P ′′′(x)P(x)

P ′(x)2
dx

)
<

∣∣∣∣ P(a)2P ′(b)3

P ′(a)3P(b)2

∣∣∣∣ .
Solution. Differentiate the identity

P ′(x)
P(x)

=
n∑

k=1

1

x − xk

to obtain

P ′′(x)P(x) − P ′(x)2

P(x)2
= −

n∑
k=1

1

(x − xk)2
.
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Differentiate one more time and obtain

(P ′′′(x)P(x) − P ′′(x)P ′(x))P(x)2 − (P ′′(x)P(x) − P ′(x)2)2P(x)P ′(x)
(P(x))4

=
n∑

k=1

2

(x − xk)3
.

Notice that the right-hand side is negative for a ≤ x ≤ b < min(x1, . . . , xn). Hence

P ′′′(x)P(x)3 − P ′′(x)P ′(x)P(x)2 − 2P ′′(x)P ′(x)P(x)2 + 2P ′(x)3P(x) < 0,

that is

P ′′′(x)P(x)3 − 3P ′′(x)P ′(x)P(x)2 + 2P ′(x)3P(x) < 0.

Dividing by P(x)2P ′(x)2, we obtain

P ′′′(x)P(x)

P ′(x)2
<

3P ′′(x)
P ′(x)

− 2P ′(x)
P(x)

.

Integrating we obtain
∫ b

a

P ′′′(x)P(x)

P ′(x)2
dx < 3 ln |P ′(b)| − ln |P ′(a)| − 2 ln |P(b)| − ln |P(a)|

= ln

∣∣∣∣ P(a)2P ′(b)3

P ′(a)3P(b)2

∣∣∣∣ .
After exponentiation we obtain the inequality from the statement. �

Example. Let P(x) ∈ Z[x] be a polynomial with n distinct integer zeros. Prove that the
polynomial (P(x))2 + 1 has a factor of degree at least 2

⌊
n+1
2

⌋
that is irreducible over Z[x].

Solution. The statement apparently offers no clue about derivatives. The standard approach
is to assume that

(P(x))2 + 1 = P1(x)P2(x) · · · Pk(x)
is a decomposition into factors that are irreducible over Z[x]. Letting x1, x2, . . . , xn be the
integer zeros of P(x), we find that

P1(x j )P2(x j ) · · · Pk(x j ) = 1, for j = 1, 2, . . . , n.

Hence Pi (x j ) = ±1, which then implies 1
Pi (x j )

= Pi (x j ), i = 1, 2, . . . , k, j = 1, 2, . . . , n.
Now let us see how derivatives come into play. The key observation is that the zeros x j

of (P(x))2 appear with multiplicity greater than 1, and so they are zeros of the derivative.
Differentiating with the product rule, we obtain

k∑
i=1

P1(x j ) · · · P ′
i (x j ) · · · Pk(x j ) = 0, for j = 1, 2, . . . , n.
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This sum can be simplified by taking into account that P1(x j )P2(x j ) · · · Pk(x j ) = 1 and
1

Pi (x j )
= Pi (x j ) as

k∑
i=1

P ′
i (x j )Pi (x j ) = 0, for j = 1, 2, . . . , n.

It follows that x j is a zero of the polynomial

k∑
i=1

2P ′
i (x)Pi (x) =

(
k∑

i=1

P2
i (x)

)′
.

Let us remember that Pi (x j ) = ±1, which then implies
k∑

i=1

P2
i (x j ) − n = 0 for j =

1, 2, . . . , n. The numbers x j , j = 1, 2, . . . , n, are zeros of both
k∑

i=1

P2
i (x) − n and its

derivative, so they are zeros of order at least 2 of this polynomial. Therefore,

k∑
i=1

P2
i (x) = (x − x1)

2(x − x2)
2 · · · (x − xn)

2Q(x) + n,

for some polynomial Q(x) with integer coefficients. We deduce that there exists an index i0
such that the degree of Pi0(x) is greater than or equal to n. For n even, n = 2

⌊
n+1
2

⌋
, and

we are done. For n odd, since (P(x))2 + 1 does not have real zeros, neither does Pi0(x), so
this polynomial has even degree. Thus the degree of Pi0(x) is at least n + 1 = 2

⌊
n+1
2

⌋
. This

completes the solution. �

211. Find all polynomials P(x) with integer coefficients satisfying P(P ′(x)) = P ′(P(x))
for all x ∈ R.

212. Determine all polynomials P(x) with real coefficients satisfying (P(x))n = P(xn) for
all x ∈ R, where n > 1 is a fixed integer.

213. Let P(x) and Q(x) be polynomials with complex coefficients and let a be a nonzero
complex number. Prove that if

P(x)3 = Q(x)2 + a,

for all x ∈ C, then P(x) and Q(x) are constant polynomials.

214. Let P(z) and Q(z) be polynomials with complex coefficients of degree greater than or
equal to 1 with the property that P(z) = 0 if and only if Q(z) = 0 and P(z) = 1 if
and only if Q(z) = 1. Prove that the polynomials are equal.

215. Let P(x) be a polynomial with all zeros real and distinct and such that none of its zeros
is equal to 0. Prove that the polynomial x2P ′′(x) + 3x P ′(x) + P(x) also has all roots
real and distinct.
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216. Let P(x) be a polynomial of degree 5, with real coefficients, all of whose zeros are
real. Prove that for each real number a that is not a zero of P(x) or P ′(x), there is a
real number b such that

b2P(a) + 4bP ′(a) + 5P ′′(a) = 0.

217. Let Pn(x) = (xn − 1)(xn−1 − 1) · · · (x − 1), n ≥ 1. Prove that for n ≥ 2, P ′
n(x) is

divisible by P�n/2� in the ring of polynomials with integer coefficients.

218. The zeros of the nth-degree polynomial P(x) are all real and distinct. Prove that the
zeros of the polynomial G(x) = nP(x)P ′′(x) − (n − 1)(P ′(x))2 are all complex.

219. Let P(x) be a polynomial of degree n > 3 whose zeros x1 < x2 < x3 < · · · < xn−1 <

xn are real. Prove that

P ′
(
x1 + x2

2

)
· P ′
(
xn−1 + xn

2

)
�= 0.

220. A polynomial P(x) with real coefficients is called a mirror polynomial if |P(a)| =
|P(−a)| for all real numbers a. Let F(x) be a polynomial with real coefficients, and
consider polynomials with real coefficients P(x) and Q(x) such that P(x) − P ′(x) =
F(x) and Q(x) + Q′(x) = F(x). Prove that P(x) + Q(x) is a mirror polynomial if
and only if F(x) is a mirror polynomial.

2.2.6 The Location of the Zeros of a Polynomial

Since not all polynomial equations can be solved by radicals, methods of approximation are
necessary. Results that allow you to localize the roots in certain regions of the real axis or
complex plane are therefore useful.

The qualitative study of the position of the zeros of a polynomial has far-reaching applica-
tions. For example, the solutions of a homogeneous ordinary linear differential equation with
constant coefficients are stable (under errors of measuring the coefficients) if and only if the
roots of the characteristic equation lie in the open left half-plane (i.e., have negative real part).
Stability is, in fact, an essential question in control theory, where one is usually interested in
whether the zeros of a particular polynomial lie in the open left half-plane (Hurwitz stability)
or in the open unit disk (Schur stability). Here is a famous result.

Lucas’ theorem. The zeros of the derivative P ′(z) of a polynomial P(z) lie in the convex
hull of the zeros of P(z).

Proof. Because any convex domain can be obtained as the intersection of half-planes, it
suffices to show that if the zeros of P(z) lie in an open half-plane, then the zeros of P ′(z) lie
in that half-plane as well. Moreover, by rotating and translating the variable z we can further
reduce the problem to the case in which the zeros of P(z) lie in the upper half-plane Im z > 0.
Here Im z denotes the imaginary part.
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So let z1, z2, . . . , zn be the (not necessarily distinct) zeros of P(z), which by hypothesis
have positive imaginary part. If Imw ≤ 0, then Im 1

w−zk
> 0, for k = 1, . . . , n, and therefore

Im
P ′(w)

P(w)
=

n∑
k=1

Im
1

w − zk
> 0.

This shows thatw is not a zero of P ′(z) and so all zeros of P ′(z) lie in the upper half-plane.
The theorem is proved. �

221. Let a1, a2, . . . , an be positive real numbers. Prove that the polynomial

P(x) = xn − a1x
n−1 − a2x

n−2 − · · · − an

has a unique positive zero.

222. Prove that the zeros of the polynomial

P(z) = z7 + 7z4 + 4z + 1

lie inside the disk of radius 2 centered at the origin.

223. Prove that if the complex coefficients p, q of the quadratic equation x2 + px + q = 0
satisfy |p| + |q| < 1, then the roots of this equation lie in the interior of the unit disk.

224. Let P(x) be a polynomial with integer coefficients all of whose roots are real and lie
in the interval (0, 3). Prove that the roots of this polynomial lie in the set

{
1, 2,

3 − √
5

2
,
3 + √

5

2

}
.

225. For a �= 0 a real number and n > 2 an integer, prove that every nonreal root z of the

polynomial equation xn + ax + 1 = 0 satisfies the inequality |z| ≥ n

√
1

n−1 .

226. Let a ∈ C and n ≥ 2. Prove that the polynomial equation axn + x + 1 = 0 has a root
of absolute value less than or equal to 2.

227. Let P(z) be a polynomial of degree n, all of whose zeros have absolute value 1 in the
complex plane. Set g(z) = P(z)

zn/2 . Show that all roots of the equation g′(z) = 0 have
absolute value 1.

228. The polynomial x4 − 2x2 + ax + b has four distinct real zeros. Show that the absolute
value of each zero is smaller than

√
3.

229. Let Pn(z), n ≥ 1, be a sequence of monic kth-degree polynomials whose coefficients
converge to the coefficients of a monic kth-degree polynomial P(z). Prove that for any
ε > 0 there is n0 such that if n ≥ n0 then |zi (n)− zi | < ε, i = 1, 2, . . . , k, where zi (n)

are the zeros of Pn(z) and zi are the zeros of P(z), taken in the appropriate order.
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230. Let P(x) = anxn + an−1xn−1 + · · · + a0 be a polynomial with complex coefficients,
with a0 �= 0, and with the property that there exists an m such that

∣∣∣∣ama0
∣∣∣∣ >
(
n

m

)
.

Prove that P(x) has a zero of absolute value less than 1.

231. For a polynomial P(x) = (x − x1)(x − x2) · · · (x − xn), with distinct real zeros
x1 < x2 < · · · < xn , we set δ(P(x)) = mini (xi+1 − xi ). Prove that for any real
number k,

δ(P ′(x) − kP(x)) > δ(P(x)),

where P ′(x) is the derivative of P(x). In particular, δ(P ′(x)) > δ(P(x)).

2.2.7 Irreducible Polynomials

A polynomial is irreducible if it cannot be written as a product of two polynomials in a
nontrivialmanner. The question of irreducibility depends on the ring of coefficients. When the
coefficients are complex numbers, only linear polynomials are irreducible. For real numbers
some quadratic polynomials are irreducible as well. Both these cases are rather dull. The
interesting situations occur when the coefficients are rational or integer, in which case there is
an interplay between polynomials and arithmetic. The cases of rational and integer coefficients
are more or less equivalent, with minor differences such as the fact that 2x + 2 is irreducible
over Q[x] but reducible over Z[x]. For matters of elegance we focus on polynomials with
integer coefficients. We will assume implicitly from now on that for any polynomial with
integer coefficients, the greatest common divisor of its coefficients is 1.

Definition. A polynomial P(x) ∈ Z[x] is called irreducible over Z[x] if there do not exist
polynomials Q(x), R(x) ∈ Z[x] different from ±1 such that P(x) = Q(x)R(x). Otherwise,
P(x) is called reducible.

We commence with an easy problem.

Example. Let P(x) be an nth-degree polynomial with integer coefficients with the property
that |P(x)| is a prime number for 2n + 1 distinct integer values of the variable x . Prove that
P(x) is irreducible over Z[x].

Solution. Assume the contrary and let P(x) = Q(x)R(x) with Q(x), R(x) ∈ Z[x], Q(x),
R(x) �= ±1. Let k = deg(Q(x)). Then Q(x) = 1 at most k times and Q(x) = −1 at most
n−k times. Also, R(x) = 1 atmost n−k times and R(x) = −1 atmost k times. Consequently,
the product |Q(x)R(x)| is composite except for at most k + (n − k) + (n − k) + k = 2n
values of x . This contradicts the hypothesis. Hence P(x) is irreducible. �

The bound is sharp. For example, P(x) = (x + 1)(x + 5) has |P(−2)| = |P(−4)| = 3,
P(0) = 5, and |P(−6)| = 7.

Probably the most beautiful criterion of irreducibility of polynomials is that discovered
independently by F.G.M. Eisenstein in 1850 and T. Schönemann in 1846. We present it below.
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Eisenstein-Schönemann theorem. Given a polynomial P(x) = anxn +an−1xn−1 +· · ·+a0
with integer coefficients, suppose that there exists a prime number p such that an is not divisible
by p, ak is divisible by p for k = 0, 1, . . . , n − 1, and a0 is not divisible by p2. Then P(x) is
irreducible over Z[x].

Proof. We argue by contradiction. Suppose that P(x) = Q(x)R(x), with Q(x) and R(x) not
identically equal to ±1. Let

Q(x) = bkx
k + bk−1x

k−1 + · · · + b0,

R(x) = cn−k x
n−k + cn−k−1x

n−k−1 + · · · + c0.

Let us look closely at the equalities

i∑
j=0

b jci− j = ai , i = 0, 1, . . . , n,

obtained by identifying the coefficients in the equality P(x) = Q(x)R(x). From the first of
them, b0c0 = a0, and because a0 is divisible by p but not by p2 it follows that exactly one
of b0 and c0 is divisible by p. Assume that b0 is divisible by p and take the next equality
b0c1 + b1c0 = a1. The right-hand side is divisible by p, and the first term on the left is also
divisible by p. Hence b1c0 is divisible by p, and since c0 is not, b1 must be divisible by p.

This reasoning can be repeated to prove that all the bi ’s are divisible by p. It is important
that both Q(x) and R(x) have degrees greater than or equal to 1, for the fact that bk is divisible
by p follows from

bkc0 + bk−1c1 + · · · = ak,

where ak is divisible by p for k < n. The contradiction arises in the equality an = bkcn−k ,
since the right-hand side is divisible by p, while the left-hand side is not. This proves the
theorem.

The first three problems listed below use this result, while the others apply similar ideas.

232. Prove that the polynomial

P(x) = x101 + 101x100 + 102

is irreducible over Z[x].
233. Prove that for every prime number p, the polynomial

P(x) = x p−1 + x p−2 + · · · + x + 1

is irreducible over Z[x].
234. Prove that for every positive integer n, the polynomial P(x) = x2

n + 1 is irreducible
over Z[x].
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235. Prove that for any distinct integers a1, a2, . . . , an the polynomial

P(x) = (x − a1)(x − a2) · · · (x − an) − 1

cannot bewritten as a product of two nonconstant polynomialswith integer coefficients.

236. Prove that for any distinct integers a1, a2, . . . , an the polynomial

P(x) = (x − a1)
2(x − a2)

2 · · · (x − an)
2 + 1

cannot bewritten as a product of two nonconstant polynomialswith integer coefficients.

237. Associate to a prime the polynomial whose coefficients are the decimal digits of the
prime (for example, for the prime 7043 the polynomial is P(z) = 7x3+4x+3). Prove
that this polynomial is always irreducible over Z[x].

238. Let p be a prime number of the form 4k + 3, k an integer. Prove that for any positive
integer n, the polynomial (x2 + 1)n + p is irreducible in the ring Z[x].

239. Let p be a prime number. Prove that the polynomial

P(x) = x p−1 + 2x p−2 + 3x p−3 + · · · + (p − 1)x + p

is irreducible in Z[x].
240. Let P(x) be a monic polynomial in Z[x], irreducible over this ring, and such that

|P(0)| is not the square of an integer. Prove that the polynomial Q(x) defined by
Q(x) = P(x2) is also irreducible over Z[x].

2.2.8 Chebyshev Polynomials

The nth Chebyshev polynomial Tn(x) expresses cos nθ as a polynomial in cos θ . This means
that Tn(x) = cos(n arccos x), for n ≥ 0. These polynomials satisfy the recurrence

T0(x) = 1, T1(x) = x, Tn+1(x) = 2xTn(x) − Tn−1(x), for n ≥ 1.

For example, T2(x) = 2x2 − 1, T3(x) = 4x36 − 3x , T4(x) = 8x4 − 8x2 + 1.
One usually calls these the Chebyshev polynomials of the first kind, to distinguish them

from the Chebyshev polynomials of the second kind Un(x) defined by

U0(x) = 1, U1(x) = 2x, Un+1(x) = 2xUn(x) −Un−1(x), for n ≥ 1

(same recurrence relation but different initial condition). Alternatively, Un(x) can be defined
by the equality

Un(cos θ) = sin(n + 1)θ

sin θ
.

Chebyshev’s theorem. Forfixed n ≥ 1, the polynomial 2−n+1Tn(x) s the unique monic nth-
degree polynomial satisfying

max−1≤x≤1
|2−n+1T (x)| ≤ max−1≤x≤1

|P(x)|,

for any other monic nth-degree polynomial P(x).
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One says that among all monic nth-degree polynomials, 2−n+1Tn(x) has the smallest
variation away from zero on [−1, 1]. This variation is 1

2n−1 . Let us see how Chebyshev’s
theorem applies to a problem from Challenging Mathematical Problems with Elementary
Solutions by A.M. Yaglom and I.M. Yaglom.

Example. Let A1, A2, . . . , An be points in the plane. Prove that on any segment of length l
there is a point M such that

MA1 · MA2 · · · MAn ≥ 2

(
l

4

)n

.

Solution. Rescaling, we can assume that l = 2. Associate complex coordinates to points in
such a way that the segment coincides with the interval [−1, 1]. Then

MA1 · MA2 · · · MAn = |z − z1| · |z − z2| · · · |z − zn| = |P(z)|,

where P(z) is a monic polynomial with complex coefficients, and z ∈ [−1, 1]. Write P(z) =
R(z) + i Q(z), where R(z) is the real part and Q(z) is the imaginary part of the polynomial.
Since z is real, we have |P(z)| ≥ |R(z)|. The polynomial R(z) is monic, so on the interval
[−1, 1] it varies away from zero at least as much as the Chebyshev polynomial. Thus we can
find z in this interval such that |R(z)| ≥ 1

2n−1 . This implies |P(z)| ≥ 2 · 1
2n , and rescaling back

we deduce the existence in the general case of a point M satisfying the inequality from the
statement. �

Stepping aside from the classical picture, let us also consider the families of polynomials
Tn(x) and Un(x) defined by T0(x) = 2, T1(x) = x , Tn+1(x) = xTn(x) − Tn−1(x), and
U0(x) = 1, U1(x) = x , Un+1(x) = xUn(x) − Un−1(x). These polynomials are determined by
the equalities

Tn
(
z + 1

z

)
= zn + 1

zn
and Un

(
z + 1

z

)
=
(
zn+1 − 1

zn+1

)
/

(
z − 1

z

)
.

Also, Tn(x) = 1
2Tn(2x) and Un(x) = Un(2x). Here is a quickie that uses Tn(x).

Example. Let a be a real number such that a + a−1 is an integer. Prove that for any n ≥ 1,
the number an + a−n is an integer.

Solution. An inductive argument based on the recurrence relation shows that Tn(x) is a poly-
nomial with integer coefficients. And since an + a−n = Tn(a + a−1), it follows that this
number is an integer. �

241. Prove that for n ≥ 1,

Tn+1(x) = xTn(x) − (1 − x2)Un−1(x),

Un(x) = xUn−1(x) + Tn(x).
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242. Compute the n × n determinants∣∣∣∣∣∣∣∣∣∣∣∣∣

x 1 0 0 . . . 0
1 2x 1 0 . . . 0
0 1 2x 1 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . 1
0 0 0 0 . . . 2x

∣∣∣∣∣∣∣∣∣∣∣∣∣

and

∣∣∣∣∣∣∣∣∣∣∣∣∣

2x 1 0 0 . . . 0
1 2x 1 0 . . . 0
0 1 2x 1 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . 1
0 0 0 0 . . . 2x

∣∣∣∣∣∣∣∣∣∣∣∣∣

.

243. Prove Chebyshev’s theorem for n = 4: namely, show that for any monic fourth-degree
polynomial P(x),

max−1≤x≤1
|P(x)| ≥ max−1≤x≤1

|2−3T4(x)|,
with equality if and only if P(x) = 2−3T4(x).

244. Let r be a positive real number such that 6
√
r + 1

6√r
= 6. Find the maximum value of

4
√
r − 1

4√r
.

245. Let α = 2π
n . Prove that the matrix

⎛
⎜⎜⎜⎜⎜⎝

1 1 . . . 1
cosα cos 2α . . . cos nα

cos 2α cos 4α . . . cos 2nα
...

...
. . .

...

cos(n − 1)α cos 2(n − 1)α . . . cos(n − 1)nα

⎞
⎟⎟⎟⎟⎟⎠

is invertible.

246. Find all quintuples (x, y, z, v,w) with x, y, z, v,w ∈ [−2, 2] satisfying the system of
equations

x + y + z + v + w = 0,

x3 + y3 + z3 + v3 + w3 = 0,

x5 + y5 + z5 + v5 + w5 = −10.

247. Let x1, x2, . . . , xn , n ≥ 2, be distinct real numbers in the interval [−1, 1]. Prove that
1

t1
+ 1

t2
+ · · · + 1

tn
≥ 2n−2,

where tk =
∏
j �=k

|x j − xk |, k = 1, 2, . . . , n.

248. Let n ≥ 3 be an odd integer. Evaluate

n−1
2∑

k=1

sec
2kπ

n
.



2.2 Polynomials 71

249. For n ≥ 1, prove the following identities:

Tn(x)√
1 − x2

= (−1)n

1 · 3 · 5 · · · (2n − 1)

dn

dxn
(1 − x2)n− 1

2 ,

Un(x)
√
1 − x2 = (−1)n(n + 1)

1 · 3 · 5 · · · (2n + 1)

dn

dxn
(1 − x2)n+ 1

2 .

2.3 Linear Algebra

2.3.1 Operations with Matrices

Anm×nmatrix is an array withm rows and n columns. The standard notation is A = (ai j )i, j ,
where ai j is the entry (element) in the i th row and j th column. We denote by In the n × n
identity matrix (for which ai j = 1 if i = j , and 0 otherwise) and byOn the n × n zero matrix
(for which ai j = 0 for all i, j).

Given the matrix A = (ai j )i, j , At denotes the transpose of A, in which the i, j entry is
a ji , and A denotes the complex conjugate, whose entries are the complex conjugates of the
entries of A. Also, tr A is the trace of A, namely the sum of the elements on the main diagonal:
a11 + a22 + · · · + ann .

We illustrate how matrix multiplication can be used to prove an identity satisfied by the
Fibonacci sequence (F0 = 0, F1 = 1, Fn+1 = Fn + Fn−1, n ≥ 1). The identity we have in
mind has already been discussed in the introductory chapter in the solution to Problem 27;
we put it here in a new perspective.

Example. Prove that

Fm+n+1 = Fm+1Fn+1 + FmFn, for m, n ≥ 0.

Solution. Consider the matrix

M =
(
1 1
1 0

)
.

An easy induction shows that for n ≥ 1,

Mn =
(
Fn+1 Fn

Fn Fn−1

)
.

The equality Mm+n = MmMn written in explicit form is

(
Fm+n+1 Fm+n

Fm+n Fm+n−1

)
=
(
Fm+1 Fm

Fm Fm−1

)(
Fn+1 Fn

Fn Fn−1

)
.

We obtain the identity by setting the upper left corners of both sides equal. �
Here are some problems for the reader.

250. Let M be an n × n complex matrix. Prove that there exist Hermitian matrices A and
B such that M = A + i B. (A matrix X is called Hermitian if Xt = X ).
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251. Do there exist n × n matrices A and B such that AB − BA = In?
252. Let A and B be 2× 2 matrices with real entries satisfying (AB − BA)n = I2 for some

positive integer n. Prove that n is even and (AB − BA)4 = I2.
253. Let A and B be two n × n matrices that do not commute and for which there exist

nonzero real numbers p, q, r such that pAB + qBA = In and A2 = r B2. Prove that
p = q.

254. Let a, b, c, d be real numbers such that c �= 0 and ad − bc = 1. Prove that there exist
u and v such that (

a b
c d

)
=
(
1 −u
0 1

)(
1 0
c 1

)(
1 −v
0 1

)
.

255. Compute the nth power of the m × m matrix

Jm(λ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

λ 1 0 . . . 0
0 λ 1 . . . 0
0 0 λ . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, λ ∈ C.

256. Let A and B be n × n matrices with real entries satisfying

tr(AAt + BBt) = tr(AB + At Bt).

Prove that A = Bt .

2.3.2 Determinants

The determinant of an n×n matrix A = (ai j )i, j , denoted by det A or |ai j |, is the volume taken
with sign of the n-dimensional parallelepiped determined by the row (or column) vectors
of A. Formally, the determinant can be introduced as follows. Let e1 = (1, 0, . . . , 0),
e2 = (0, 1, . . . , 0), . . ., en = (0, 0, . . . , 1) be the canonical basis of Rn . The exterior algebra
of Rn is the vector space spanned by products of the form ei1 ∧ ei2 ∧ . . . ∧ eik , where the
multiplication ∧ is distributive with respect to sums and is subject to the noncommutativity
rule ei ∧e j = −e j ∧ei for all i, j (which then implies ei ∧ei = 0, for all i). If the row vectors
of the matrix A are r1, r2, . . . , rn , then the determinant is defined by the equality

r1 ∧ r2 ∧ · · · ∧ rn = (det A)e1 ∧ e2 ∧ · · · ∧ en.

The explicit formula is

det A =
∑

σ

sign(σ )a1σ(1)a2σ(2) · · · anσ(n),

with the sum taken over all permutations σ of {1, 2, . . . , n}.
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To compute the determinant of a matrix, one applies repeatedly the row operation that
adds to one row a multiple of another until the matrix either becomes diagonal or has a row
of zeros. In the first case this transforms the parallelepiped determined by the row vectors
into a right parallelepiped in standard position without changing its volume, as suggested in
Figure 13.

Figure 13

But it is not our purpose to teach the basics. We insist only on nonstandard tricks and
methods. A famous example is the computation of the Vandermonde determinant.

Example. Let x1, x2, . . . , xn be arbitrary numbers (n ≥ 1). Compute the determinant

∣∣∣∣∣∣∣∣∣

1 1 . . . 1
x1 x2 . . . xn
...

...
. . .

...

xn−1
1 xn−1

2 . . . xn−1
n

∣∣∣∣∣∣∣∣∣
.

Solution. The key idea is to view xn as a variable and think of the determinant as an (n−1)st-
degree polynomial in xn . The leading coefficient is itself a Vandermonde determinant of order
n−1, while the n−1 roots are obviously x2, x3, . . . , xn−1. The determinant is therefore equal
to ∣∣∣∣∣∣∣∣∣

1 1 . . . 1
x1 x2 . . . xn
...

...
. . .

...

xn−2
1 xn−2

2 . . . xn−2
n

∣∣∣∣∣∣∣∣∣
(xn − x1)(xn − x2) · · · (xn − xn−1).

Now we can induct on n to prove that the Vandermonde determinant is equal to

∏
i> j

(xi − x j ).

This determinant is equal to zero if and only if two of the xi ’s are equal. �

We continue with a problem of D. Andrica.

Example. (a) Consider the real numbers ai j , i = 1, 2, . . . , n− 2, j = 1, 2, . . . , n, n ≥ 3, and
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the determinants

Ak =

∣∣∣∣∣∣∣∣∣

1 . . . 1 1 . . . 1
a11 . . . a1,k−1 a1,k+1 . . . a1n
...

. . .
...

...
. . .

...

an−2,1 . . . an−2,k−1 an−2,k+1 . . . an−2,n

∣∣∣∣∣∣∣∣∣
, k ≥ 1.

Prove that
A1 + A3 + A5 + · · · = A2 + A4 + A6 + · · ·

(b) Define

pk =
n−(k+1)∏

i=0

(xn−i − xk), qk =
k−1∏
i=1

(xk − xi ),

where xi , i = 1, 2, . . . , n, are some distinct real numbers. Prove that

n∑
k=1

(−1)k

pkqk
= 0.

(c) Prove that for any positive integer n ≥ 3 the following identity holds:

n∑
k=1

(−1)kk2

(n − k)!(n + k)! = 0.

Solution. We have ∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1 1
1 1 . . . 1 1
a11 a12 . . . a1,n−1 a1n
a21 a22 . . . a2,n−1 a2n
...

...
. . .

...
...

an−2,1 an−2,2 . . . an−2,n−1 an−2,n

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0.

Expanding by the first row, we obtain

A1 − A2 + A3 − A4 + · · · = 0.

This implies
A1 + A3 + A5 + · · · = A2 + A4 + A6 + · · · ,

and (a) is proved.
For (b), we substitute ai j = x j

i , i = 1, 2, . . . , n − 2, j = 1, 2, . . . , n. Then

Ak =

∣∣∣∣∣∣∣∣∣

1 . . . 1 1 . . . 1
x1 . . . xk−1 xk+1 . . . xn
...

. . .
...

...
. . .

...

xn−2
1 . . . xn−2

k−1 xn−2
k+1 . . . xn−2

n

∣∣∣∣∣∣∣∣∣
,
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which is a Vandermonde determinant. Its value is equal to

∏
i> j
i, j �=k

(x j − xi ) =
∏

i> j (x j − xi )

pkqk
.

The equality proved in (a) becomes, in this particular case,

n∑
k=1

(−1)k

pkqk
= 0,

as desired.
Finally, if in this we let xk = k2, then we obtain the identity from part (c), and the problem

is solved. �

And here comes a set of problems for the reader.

257. Prove that∣∣∣∣∣∣
(x2 + 1)2 (xy + 1)2 (xz + 1)2

(xy + 1)2 (y2 + 1)2 (yz + 1)2

(xz + 1)2 (yz + 1)2 (z2 + 1)2

∣∣∣∣∣∣ = 2(y − z)2(z − x)2(x − y)2.

258. Let (Fn)n be the Fibonacci sequence. Using determinants, prove the identity

Fn+1Fn−1 − F2
n = (−1)n, for all n ≥ 1.

259. Let p < m be two positive integers. Prove that∣∣∣∣∣∣∣∣∣∣

(m
0

) (m
1

)
. . .

(m
p

)
(m+1

0

) (m+1
1

)
. . .
(m+1

p

)
...

...
. . .

...(m+p
0

) (m+p
1

)
. . .
(m+p

p

)

∣∣∣∣∣∣∣∣∣∣
= 1.

260. Given distinct integers x1, x2, . . ., xn , prove that
∏
i> j

(xi − x j ) is divisible by

1!2! · · · (n − 1)!.
261. Find all numbers in the interval [−2015, 2015] that can be equal to the determinant of

an 11 × 11 matrix with entries equal to 1 or −1.

262. Prove the formula for the determinant of a circulant matrix∣∣∣∣∣∣∣∣∣∣∣

x1 x2 x3 . . . xn
xn x1 x2 . . . xn−1
...

...
...

. . .
...

x3 x4 x5 . . . x2
x2 x3 x4 . . . x1

∣∣∣∣∣∣∣∣∣∣∣
= (−1)n−1

n−1∏
j=0

(
n∑

k=1

ζ jk xk

)
,

where ζ = e2π i/n .
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263. Let a and b be integers such that a + b = 2014. Prove that the determinant
∣∣∣∣∣∣∣∣

a3 b3 3ab −1
−1 a2 b2 2ab
2b −1 a2 −b2

0 b −1 a

∣∣∣∣∣∣∣∣
is a multiple of 61.

264. Compute the determinant of the n × n matrix A = (ai j )i j , where

ai j =
{

(−1)|i− j | if i �= j,
2 if i = j.

265. Prove that for any integers x1, x2, . . . , xn and positive integers k1, k2, . . . , kn , the deter-
minant ∣∣∣∣∣∣∣∣∣

xk11 xk12 . . . xk1n
xk21 xk22 . . . xk2n
...

...
. . .

...

xkn1 xkn2 . . . xknn

∣∣∣∣∣∣∣∣∣
is divisible by n!.

266. Let A and B be 3 × 3 matrices with real elements such that

det A = det B = det(A + B) = det(A − B) = 0.

Prove that det(x A + yB) = 0 for any real numbers x and y.

Sometimes it is more convenient to work with blocks instead of entries. For that we recall
the rule of Laplace, which is the direct generalization of the row or column expansion. The
determinant is computed by expanding over all k × k minors of some k rows or columns.
Explicitly, given A = (ai j )ni, j=1, when expanding by the rows i1, i2, . . . , ik , the determinant
is given by

det A =
∑

j1< j2<···< jk

(−1)i1+···+ik+ j1+···+ jk MkNk,

where Mk is the determinant of the k× k matrix whose entries are ai j , with i ∈ {i1, i2, . . . , ik}
and j ∈ { j1, j2, . . . , jk}, while Nk is the determinant of the (n − k) × (n − k) matrix whose
entries are ai j with i /∈ {i1, i2, . . . , ik} and j /∈ { j1, j2, . . . , jk}. We exemplify this rule with
a problem from the 4th International Competition in Mathematics for University Students
(1997).

Example. Let M be an invertible 2n × 2n matrix, represented in block form as

M =
(
A B
C D

)
and M−1 =

(
E F
G H

)
.

Show that det M · det H = det A.
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Solution. The idea of the solution is that the relation between determinants should come from
a relation between matrices. To this end, we would like to find three matrices X, Y, Z such
that XY = Z , while det X = det M , det Y = det H , and det Z = det A. Since among M , H ,
and A, the matrix M has the largest dimension, we might try to set X = M and find 2n × 2n
matrices Y and Z . The equality M · M−1 = I2n yields two relations involving H , namely
AF + BH = 0 and CF + DH = In . This suggests that we should use both F and H in the
definition of Y . So we need an equality of the form

(
A B
C D

)( ∗ F
∗ H

)
=
( ∗ 0

∗ In

)
.

We can try

Y =
(
In F
0 H

)
.

The latter has determinant equal to det H , as desired. Also,

Z =
(
A 0
C In

)
.

According to the rule of Laplace, the determinant of Z can be computed by expanding along
the n × n minors from the top n rows, and all of them are zero except for the first. Hence
det Z = det A · det In = det A, and so the matrices X, Y, Z solve the problem. �

267. Show that if

x =
∣∣∣∣ a b
c d

∣∣∣∣ and x ′ =
∣∣∣∣ a

′ b′
c′ d ′

∣∣∣∣ ,
then

(xx ′)2 =

∣∣∣∣∣∣∣∣

ab′ cb′ ba′ da′
ad ′ cd ′ bc′ dc′
bb′ db′ aa′ ca′
bd ′ dd ′ ac′ cc′

∣∣∣∣∣∣∣∣
.

268. Let A, B,C, D be n × n matrices such that AC = CA. Prove that

det

(
A B
C D

)
= det(AD − CB).

269. Let X and Y be n × n matrices. Prove that

det(In − XY ) = det(In − Y X).

Aproperty exploited often in Romanianmathematics competitions states that for any n×n
matrix A with real entries,

det(In + A2) ≥ 0.

The proof is straightforward:
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det(In + A2) = det((In + i A)(In − i A)) = det(In + i A) det(In − i A)

= det(In + i A) det(In + i A) = det(In + i A)det(In + i A).

In this computation the bar denotes the complex conjugate, and the last equality follows from
the fact that the determinant is a polynomial in the entries. The final expression is nonnegative,
being equal to | det(In + i A)|2.

Use this property to solve the following problems, while assuming that all matrices have
real entries.

270. Let A and B be n × n matrices that commute. Prove that if det(A + B) = 0, then
det(Ak + Bk) ≥ 0 for all k ≥ 1.

271. Let A be an n × n matrix such that A + At = On . Prove that

det(In + λA2) ≥ 0,

for all λ ∈ R.

272. Let P(t) be a polynomial of even degree with real coefficients. Prove that the function
f (X) = P(X) defined on the set of n × n matrices is not onto.

273. Let n be an odd positive integer and A an n × n matrix with the property that A2 = On

or A2 = In . Prove that det(A + In) ≥ det(A − In).

2.3.3 The Inverse of a Matrix

An n × n matrix A is called invertible if there exists an n × n matrix A−1 such that AA−1 =
A−1A = In . The inverse of a matrix can be found either by using the adjoint matrix, which
amounts to computing several determinants, or by performing row and column operations.
We illustrate how the latter method can be applied to a problem from the first International
Competition in Mathematics for University Students (1994).

Example. (a) Let A be an n× n symmetric invertible matrix with positive real entries, n ≥ 2.
Show that A−1 has at most n2 − 2n entries equal to zero.
(b) How many entries are equal to zero in the inverse of the n × n matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 . . . 1
1 2 2 2 . . . 2
1 2 1 1 . . . 1
1 2 1 2 . . . 2
...

...
...

...
. . .

...

1 2 1 2 . . . 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
?
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Solution. Denote by ai j and bi j the entries of A, respectively, A−1. Then we have
∑n

i=0 ami

bim = 1, so for fixedm not all the bim’s are equal to zero. For k �= m we have
∑n

i=0 akibim = 0,
and from the positivity of the aki ’s we conclude that at least one bim is negative, and at least
one is positive. Hence every column of A−1 contains at least two nonzero elements. This
proves part (a).

To compute the inverse of the matrix in part (b), we consider the extended matrix (AIn),
and using row operations we transform it into the matrix (In A−1). We start with⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 . . . 1 1 0 0 0 . . . 0
1 2 2 2 . . . 2 0 1 0 0 . . . 0
1 2 1 1 . . . 1 0 0 1 0 . . . 0
1 2 1 2 . . . 2 0 0 0 1 . . . 0
...

...
...

...
. . .

...
...

...
...

...
. . .

...

1 2 1 2 . . . . . . 0 0 0 0 . . . 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Subtracting the first row from each of the others, then the second row from the first, we obtain⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 . . . 0 2 −1 0 0 . . . 0
0 1 1 1 . . . 1 −1 1 0 0 . . . 0
0 1 0 0 . . . 0 −1 0 1 0 . . . 0
0 1 0 1 . . . 1 −1 0 0 1 . . . 0
...

...
...

...
. . .

...
...

...
...

...
. . .

...

0 1 0 1 . . . . . . −1 0 0 0 . . . 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

We continue as follows. First, we subtract the second row from the third, fourth, and so on.
Then we add the third row to the second. Finally, we multiply all rows, beginning with the
third, by −1. This way we obtain⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 . . . 0 2 −1 0 0 . . . 0
0 1 0 0 . . . 0 −1 0 1 0 . . . 0
0 0 1 1 . . . 1 0 1 −1 0 . . . 0
0 0 1 0 . . . 0 0 1 0 −1 . . . 0
...

...
...

...
. . .

...
...

...
...

...
. . .

...

0 0 1 0 . . . . . . 1 0 0 0 . . . −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Now the inductive pattern is clear. At each step we subtract the kth row from the rows
below, then subtract the (k + 1)st from the kth, and finally multiply all rows starting with
the (k + 1)st by −1. In the end we find that the entries of A−1 are b1,1 = 2, bn,n = (−1)n ,
bi,i+1 = bi+1,i = (−1)i , and bi j = 0, for |i − j | ≥ 2. This example shows that equality can
hold in part (a). �

274. For distinct numbers x1, x2, . . . , xn , consider the matrix

A =

⎛
⎜⎜⎜⎝

1 1 . . . 1
x1 x2 . . . xn
...

...
. . .

...

xn−1
1 xn−1

2 . . . xn−1
n

⎞
⎟⎟⎟⎠ .
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It is known that det A is the Vandermonde determinant


(x1, x2, . . . , xn) =
∏
i> j

(xi − x j ).

Prove that the inverse of A is B = (bkm)1≤k,m≤n , where

bkm = (−1)k+m
(x1, x2, . . . , xn)
−1
(x1, . . . , xk−1, xk+1, . . . , xn)

× Sn−1(x1, . . . , xk−1, xk+1, . . . , xn).

Here Sn−1 denotes the (n − 1)st symmetric polynomial in n − 1 variables.

275. Let A and B be 2×2 matrices with integer entries such that A, A+B, A+2B, A+3B,
and A + 4B are all invertible matrices whose inverses have integer entries. Prove that
A + 5B is invertible and that its inverse has integer entries.

276. Determine thematrix A knowing that its adjointmatrix (the one used in the computation
of the inverse) is

A∗ =
⎛
⎝m2 − 1 1 − m 1 − m

1 − m m2 − 1 1 − m
1 − m 1 − m m2 − 1

⎞
⎠ , m �= 1,−2.

277. Let A = (ai j )i j be an n×n matrix such that
n∑
j=1

|ai j | < 1 for each i . Prove that In − A

is invertible.

278. Let α = π
n+1 , n > 2. Prove that the n × n matrix

⎛
⎜⎜⎜⎝

sin α sin 2α . . . sin nα

sin 2α sin 4α . . . sin 2nα
...

...
. . .

...

sin nα sin 2nα . . . sin n2α

⎞
⎟⎟⎟⎠

is invertible.

279. Assume that A and B are invertible complex n × n matrices such that i(A†B − B†A)

is positive semidefinite, where X† = X
t
, the transpose conjugate of X . Prove that

A+ i B is invertible. (A matrix T is positive semidefinite if 〈T v, v〉 ≥ 0 for all vectors
v, where 〈v,w〉 = vtw the complex inner product.)

We continue with problems that exploit the ring structure of the set of n × n matrices.
There are some special properties of matrices that do not hold in arbitrary rings. For example,
an n × n matrix A is either a zero divisor (there exist nonzero matrices B and C such that
AB = CA = On), or it is invertible. Also, if a matrix has a left (or right) inverse, then the
matrix is invertible, which means that if AB = In then also BA = In .

A good example is a problem of I.V. Maftei that appeared in the 1982 Romanian Mathe-
matical Olympiad.
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Example. Let A, B,C be n × n matrices, n ≥ 1, satisfying

ABC + AB + BC + AC + A + B + C = On.

Prove that A and B + C commute if and only if A and BC commute.

Solution. If we add In to the left-hand side of the identity from the statement, we recognize
this expression to be the polynomial P(X) = (X + A)(X + B)(X + C) evaluated at the
identity matrix. This means that

(In + A)(In + B)(In + C) = In.

This shows that In + A is invertible, and its inverse is (In + B)(In + C). It follows that

(In + B)(In + C)(In + A) = In,

or

BCA + BC + BA + CA + A + B + C = On.

Subtracting this relation from the one in the statement and grouping the terms appropriately,
we obtain

ABC − BCA = (B + C)A − A(B + C).

The conclusion follows. �

Here are other examples.

280. Let A be an n × n matrix such that there exists a positive integer k for which

kAk+1 = (k + 1)Ak .

Prove that the matrix A − In is invertible and find its inverse.

281. Let A be an invertible n × n matrix, and let B = XY , where X and Y are 1 × n,
respectively, n × 1 matrices. Prove that the matrix A + B is invertible if and only if
α = Y A−1X �= −1, and in this case its inverse is given by

(A + B)−1 = A−1 − 1

α + 1
A−1BA−1.

282. Given two n × n matrices A and B for which there exist nonzero real numbers a and
b such that AB = aA + bB, prove that A and B commute.

283. Let A and B be n×n matrices, n ≥ 1, satisfying AB− B2A2 = In and A3+ B3 = On .
Prove that BA − A2B2 = In .
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2.3.4 Systems of Linear Equations

A system of m linear equations with n unknowns can be written as

Ax = b,

where A is an m × n matrix called the coefficient matrix, and b is an m-dimensional vector.
Ifm = n, the system has a unique solution if and only if the coefficient matrix A is invertible.
If A is not invertible, the system can have either infinitely many solutions or none at all. If
additionally b = 0, then the system does have infinitely many solutions and the codimension
of the space of solutions is equal to the rank of A.

We illustrate this section with two problems that apparently have nothing to do with the
topic. The first was published in Mathematics Gazette, Bucharest, by L. Pîrşan.

Example. Consider the matrices

A =
(
a b
c d

)
, B =

(
α β

γ δ

)
, C =

⎛
⎜⎜⎝
aα bα aγ bγ
aβ bβ aδ bδ
cα dα cγ dγ

cβ dβ cδ dδ

⎞
⎟⎟⎠ ,

where a, b, c, d, α, β, γ, δ are real numbers. Prove that if A and B are invertible, then C is
invertible as well.

Solution. Let us consider the matrix equation AXB = D, where

X =
(
x z
y t

)
and D =

(
m n
p q

)
.

Solving it for X gives X = A−1DB−1, and so X is uniquely determined by A, B, and D.
Multiplying out the matrices in this equation,

(
a b
c d

)(
x z
y t

)(
α β

γ δ

)
=
(
m n
p q

)
,

we obtain (
aαx + bαy + aγ z + bγ t aβx + bβy + aδz + bδt
cαx + dαy + cγ z + dγ t cβx + dβy + cδz + dδt

)
=
(
m n
p q

)
.

This is a system in the unknowns x, y, z, t :

aαx + bαy + aγ z + bγ t = m,

aβx + bβy + aδz + bδt = n,

cαx + dαy + cγ z + dγ t = p,

cβx + dβy + cδz + dδt = q.

We saw above that this system has a unique solution, which implies that its coefficient matrix
is invertible. This coefficient matrix is C . �
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The second problem we found in an old textbook on differential and integral calculus.

Example. Given the distinct real numbers a1, a2, a3, let x1, x2, x3 be the three roots of the
equation

u1
a1 + t

+ u2
a2 + t

+ u3
a3 + t

= 1,

where u1, u2, u3 are real parameters. Prove that u1, u2, u3 are smooth functions of x1, x2, x3
and that

det

(
∂ui
∂x j

)
= −(x1 − x2)(x2 − x3)(x3 − x1)

(a1 − a2)(a2 − a3)(a3 − a1)
.

Solution. After eliminating the denominators, the equation from the statement becomes a
cubic equation in t , so x1, x2, x3 are well defined. The parameters u1, u2, u3 satisfy the
system of equations

1

a1 + x1
u1 + 1

a2 + x1
u2 + 1

a3 + x1
u3 = 1,

1

a1 + x2
u1 + 1

a2 + x2
u2 + 1

a3 + x2
u3 = 1,

1

a1 + x3
u1 + 1

a2 + x3
u2 + 1

a3 + x3
u3 = 1.

When solving this system, we might end up entangled in algebraic computations. Thus it is
better instead to take a look at the two-variable situation. Solving the system

1

a1 + x1
u1 + 1

a2 + x1
u2 = 1,

1

a1 + x2
u1 + 1

a2 + x2
u2 = 1,

with Cramer’s rule we obtain

u1 = (a1 + x1)(a1 + x2)

(a1 − a2)
and u2 = (a2 + x1)(a2 + x2)

(a2 − a1)
.

Now we can extrapolate to the three-dimensional situation and guess that

ui =

3∏
k=1

(ai + xk)

∏
k �=i

(ai − ak)
, i = 1, 2, 3.

It is not hard to check that these satisfy the system of equations. Observe that

∂ui
∂x j

=

∏
k �= j

(ai + xk)

∏
j �=i

(ai − a j )
, and so

∂ui
∂x j

= 1

ai + x j
ui , i, j = 1, 2, 3.
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The determinant in question looks again difficult to compute. Some tricks simplify the task.
An observation is that the sum of the columns is 1. Indeed, these sums are

∂u1
∂xi

+ ∂u2
∂xi

+ ∂u3
∂xi

, i = 1, 2, 3,

which we should recognize as the left-hand sides of the linear system. So the determinant
becomes much simpler if we add the first and second rows to the last. Another observation
is that the determinant is a 3-variable polynomial in x1, x2, x3. Its total degree is 3, and it
becomes zero if xi = x j for some i �= j . Consequently, the determinant is a number not
depending on x1, x2, x3 times (x1 − x2)(x2 − x3)(x3 − x1). This number can be determined
by looking just at the coefficient of x22 x3. And an easy computation shows that this coefficient
is equal to 1

(a1−a2)(a2−a3)(a3−a1)
. �

From the very many practical applications of the theory of systems of linear equations,
let us mention the Global Positioning System (GPS). The principle behind the GPS is the
measurement of the distances between the receiver and 24 satellites (in practice some of these
satellites might have to be ignored in order to avoid errors due to atmospheric phenomena).
This yields 24 quadratic equations d(P, Si )2 = r2i , i = 1, 2, . . . , 24, in the three spatial
coordinates of the receiver. Subtracting the first of the equations from the others cancels the
quadratic terms and gives rise to an overdetermined system of 23 linear equations in three
unknowns. Determining the location of the receiver is therefore a linear algebra problem.

284. Solve the system of linear equations

x1 + x2 + x3 = 0,

x2 + x3 + x4 = 0,

. . .

x99 + x100 + x1 = 0,

x100 + x1 + x2 = 0.

285. Find the solutions x1, x2, x3, x4, x5 to the system of equations

x5 + x2 = yx1, x1 + x3 = yx2, x2 + x4 = yx3,

x3 + x5 = yx1, x4 + x1 = yx5,

where y is a parameter.

286. Let a, b, c, d be positive numbers different from1, and x, y, z, t real numbers satisfying
ax = bcd, by = cda, cz = dab, dt = abc. Prove that

∣∣∣∣∣∣∣∣

−x 1 1 1
1 −y 1 1
1 1 −z 1
1 1 1 −t

∣∣∣∣∣∣∣∣
= 0.
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287. Given the system of linear equations

a11x1 + a12x2 + a13x3 = 0,

a21x1 + a22x2 + a23x3 = 0,

a31x1 + a32x2 + a33x3 = 0,

whose coefficients satisfy the conditions

(i) a11, a22, a33 are positive,
(ii) all other coefficients are negative,
(iii) in each equation, the sum of the coefficients is positive,

prove that the system has the unique solution x1 = x2 = x3 = 0.

288. Let P(x) = xn + xn−1 + · · · + x + 1. Find the remainder obtained when P(xn+1) is
divided by P(x).

289. Find all functions f : R \ {−1, 1} → R satisfying

f

(
x − 3

x + 1

)
+ f

(
3 + x

1 − x

)
= x for all x �= ±1.

290. Find all positive integer solutions (x, y, z, t) to the Diophantine equation

(x + y)(y + z)(z + x) = t xyz

such that gcd(x, y) = gcd(y, z) = gcd(z, x) = 1.

291. Wehave n coins of unknownmasses and a balance. We are allowed to place some of the
coins on one side of the balance and an equal number of coins on the other side. After
thus distributing the coins, the balance gives a comparison of the total mass of each
side, either by indicating that the two masses are equal or by indicating that a particular
side is the more massive of the two. Show that at least n − 1 such comparisons are
required to determine whether all of the coins are of equal mass.

292. Let a0 = 0, a1, . . . , an, an+1 = 0 be a sequence of real numbers that satisfy

|ak−1 − 2ak + ak+1| ≤ 1 for k = 1, 2, . . . , n − 1.

Prove that

|ak | ≤ k(n − k + 1)

2
for k = 1, 2, . . . , n − 1.

293. Prove that the Hilbert matrix ⎛
⎜⎜⎜⎝

1 1
2

1
3 . . . 1

n
1
2

1
3

1
4 . . . 1

n+1
...

...
...

. . .
...

1
n

1
n+1

1
n+2 . . . 1

2n−1

⎞
⎟⎟⎟⎠

is invertible. Prove also that the sum of the entries of the inverse matrix is n2.
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2.3.5 Vector Spaces, Linear Combinations of Vectors, Bases

In general, a vector space V over a field of scalars (which in our book will be onlyC,R, orQ)
is a set endowed with a commutative addition and a scalar multiplication that have the same
properties as those for vectors in Euclidean space.

A linear combination of the vectors v1, v2, . . . , vm is a sum c1v1 + c2v2 + · · · + cmvm
with scalar coefficients. The vectors are called linearly independent if a combination of these
vectors is equal to zero only when all coefficients are zero. Otherwise, the vectors are called
linearly dependent. If v1, v2, . . . , vn are linearly independent and if every vector in V is a
linear combination of these vectors, then v1, v2, . . . , vn is called a basis of V . The number
of elements of a basis of a vector space depends only on the vector space, and is called the
dimension of the vector space. We will be concerned only with finite-dimensional vector
spaces. We also point out that if in a vector space there are given more vectors than the
dimension, then these vectors must be linearly dependent.

The rank of amatrix is the dimension of its row vectors, which is the same as the dimension
of the column vectors. A square matrix is invertible if and only if its rank equals its size.

Let us see some examples. The first appeared in the Soviet University Student Mathemat-
ical Competition in 1977.

Example. Let X and B0 be n × n matrices, n ≥ 1. Define Bi = Bi−1X − XBi−1, for i ≥ 1.
Prove that if X = Bn2 , then X = On .

Solution. Because the space of n × n matrices is n2-dimensional, B0, B1, . . . , Bn2 must be
linearly dependent, so there exist scalars c0, c1, . . . , cn2 such that

c0B0 + c1B1 + · · · + cn2B
n2 = On.

Let k be the smallest index for which ck �= 0. Then

Bk = a1Bk+1 + a2Bk+2 + · · · + an2−k Bn2,

where a j = − ck+ j

ck
. Computing Bk+1 = Bk X − XBk , we obtain

Bk+1 = a1Bk+2 + a2Bk+3 + · · · + an2−k Bn2+1,

and inductively

Bk+ j = a1Bk+ j+1 + a2Bk+ j+2 + · · · + an2−k Bn2+ j , for j ≥ 1.

In particular,
Bn2 = a1Bn2+1 + a2Bn2+2 + · · · + an2−k Bn2+k .

But Bn2+1 = Bn2X − XBn2 = X2 − X2 = On , and hence Bn2+ j = On , for j ≥ 1. It follows
that X , which is a linear combination of Bn2+1, Bn2+2, . . ., Bn2+k is the zero matrix. And we
are done. �

The second example was given at the 67th W.L. Putnam Mathematical Competition in
2006, and the solution that we present was posted by C. Zara on the Internet.
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Example. Let Z denote the set of points in R
n whose coordinates are 0 or 1. (Thus Z has 2n

elements, which are the vertices of a unit hypercube in Rn .) Let k be given, 0 ≤ k ≤ n. Find
the maximum, over all vector subspaces V ⊆ R

n of dimension k, of the number of points in
Z ∩ V .

Solution. Let us consider the matrix whose rows are the elements of V ∩ Z . By construction
it has row rank at most k. It thus also has column rank at most k; in particular, there are
k columns such that any other column is a linear combination of these k. It means that the
coordinates of each point of V ∩ Z are determined by the k coordinates that lie in these k
columns. Since each such coordinate can have only two values, V ∩ Z can have at most 2k

elements.
This upper bound is reached for the vectors that have all possible choices of 0 and 1 for

the first k entries, and 0 for the remaining entries. �

294. Prove that every odd polynomial function of degree equal to 2m − 1 can be written as

P(x) = c1

(
x

1

)
+ c2

(
x + 1

3

)
+ c3

(
x + 2

5

)
+ . . . + cm

(
x + m − 1

2m − 1

)
,

where

(
x

m

)
= x(x − 1) · · · (x − m + 1)

n! .

295. Letn be a positive integer and P(x) annth-degree polynomialwith complex coefficients
such that P(0), P(1), . . . , P(n) are all integers. Prove that the polynomial n!P(x) has
integer coefficients.

296. Let A be the n × n matrix whose i, j entry is i + j for all i, j = 1, 2, . . . , n. What is
the rank of A?

297. For integers n ≥ 2 and 0 ≤ k ≤ n − 2, compute the determinant∣∣∣∣∣∣∣∣∣∣∣

1k 2k 3k . . . nk

2k 3k 4k . . . (n + 1)k

3k 4k 5k . . . (n + 2)k
...

...
...

. . .
...

nk (n + 1)k (n + 2)k . . . (2n − 1)k

∣∣∣∣∣∣∣∣∣∣∣
.

298. Let V be a vector space and let f, f1, f2, . . . , fn be linear maps from V to R. Suppose
that f (x) = 0 whenever f1(x) = f2(x) = · · · = fn(x) = 0. Prove that f is a linear
combination of f1, f2, . . . , fn .

299. Given a set S of 2n − 1 different irrational numbers, n ≥ 1, prove that there exist
n distinct elements x1, x2, . . . , xn ∈ S such that for all nonnegative rational numbers
a1, a2, . . . , an with a1 + a2 + · · · + an > 0, the number a1x1 + a2x2 + · · · + anxn is
irrational.

300. There are given 2n + 1 real numbers, n ≥ 1, with the property that whenever one of
them is removed, the remaining 2n can be split into two sets of n elements that have
the same sum of elements. Prove that all the numbers are equal.



88 2 Algebra

301. Let V be an infinite set of vectors in R
n containing n linearly independent vectors. A

finite subset S ⊂ V is called crucial if the set V \S contains no n linearly independent
vectors, but every set V \T , with T a subset of S does. Prove there are only finitely
many crucial subsets of V .

2.3.6 Linear Transformations, Eigenvalues, Eigenvectors

A linear transformation between vector spaces is a map T : V → W that satisfies T (α1v1 +
α2v2) = α1T (v1) + α2T (v2) for any scalars α1, α2 and vectors v1, v2. A matrix A defines a
linear transformation by v → Av, and any linear transformation between finite-dimensional
vector spaces with specified bases is of this form. An eigenvalue of a matrix A is a zero of
the characteristic polynomial PA(λ) = det(λIn − A). Alternatively, it is a scalar λ for which
the equation Av = λv has a nontrivial solution v. In this case v is called an eigenvector of the
eigenvalue λ. If λ1, λ2, . . . , λm are distinct eigenvalues and v1, v2, . . . , vm are corresponding
eigenvectors, then v1, v2, . . . , vm are linearly independent. Moreover, if the matrix A is
Hermitian, meaning that A is equal to its transpose conjugate, then v1, v2, . . . , vm may be
chosen to be pairwise orthogonal.

The set of eigenvalues of a matrix is called its spectrum. The reason for this name is
that in quantum mechanics observable quantities are modelled by matrices. Physical spectra,
such as the emission spectrum of the hydrogen atom, become spectra of matrices. Among
all results in spectral theory we stopped at the spectral mapping theorem, mainly because we
want to bring to your attention the method used in the proof.

The spectral mapping theorem. Let A be an n × n matrix with not necessarily distinct
eigenvalues λ1, λ2, . . . , λn, and let P(x) be a polynomial. Then the eigenvalues of the matrix
P(A) are P(λ1), P(λ2), . . . , P(λn).

Proof. To prove this result we will apply a widely used idea (see for example the splitting
principle in algebraic topology). We will first assume that the eigenvalues of A are all distinct.
Then A can be diagonalized by eigenvectors as

⎛
⎜⎜⎜⎝

λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λn

⎞
⎟⎟⎟⎠ ,

and in the basis formed by the eigenvectors of A, the matrix P(A) assumes the form

⎛
⎜⎜⎜⎝

P(λ1) 0 . . . 0
0 P(λ2) . . . 0
...

...
. . .

...

0 0 . . . P(λn)

⎞
⎟⎟⎟⎠ .

The conclusion is now straightforward. In general, the characteristic polynomial of a matrix
depends continuously on the entries. Problem 229 in Section 2.2.6 proved that the roots of
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a polynomial depend continuously on the coefficients. Hence the eigenvalues of a matrix
depend continuously on the entries.

The set of matrices with distinct eigenvalues is dense in the set of all matrices. To prove
this claim we need the notion of the discriminant of a polynomial. By definition, if the zeros
of a polynomial are x1, x2, . . . , xn , the discriminant is

∏
i< j

(xi − x j )
2. It is equal to zero if

and only if the polynomial has multiple zeros. Being a symmetric polynomial in the xi ’s, the
discriminant is a polynomial in the coefficients. Therefore, the condition that the eigenvalues
of a matrix be not all distinct can be expressed as a polynomial equation in the entries. By
slightly varying the entries, we can violate this condition. Therefore, arbitrarily close to any
matrix there are matrices with distinct eigenvalues.

The conclusion of the spectral mapping theorem for an arbitrary matrix now follows by a
limiting argument. �

We continue with two more elementary examples.

Example. Let A : V → W and B : W → V be linearmaps between finite-dimensional vector
spaces. Prove that the linear maps AB and BA have the same set of nonzero eigenvalues,
counted with multiplicities.

Solution. Choose a basis that identifies V with R
m and W with R

n . Associate to A and B
their matrices, denoted by the same letters. The problem is solved if we prove the equality

det(λIn − AB) = λk det(λIm − BA),

where k is of course n − m. The relation being symmetric, we may assume that n ≥ m.
In this case, complete the two matrices with zeros to obtain two n × n matrices A′ and B ′.
Because det(λIn − A′B ′) = det(λIn − AB) and det(λIn − B ′A′) = λn−m det(λIn − BA),
the problem reduces to proving that det(λIn − A′B ′) = det(λIn − B ′A′). And this is true for
arbitrary n× n matrices A′ and B ′. For a proof of this fact we refer the reader to problem 269
in Section 2.3.2. �

If B = A†, the transpose conjugate of A, then this example shows that AA† and A†A have
the same nonzero eigenvalues. The square roots of these eigenvalues are called the singular
values of A. The second example comes from the first InternationalMathematics Competition
(for university students), 1994.

Example. Let α be a nonzero real number and n a positive integer. Suppose that F and G are
linear maps from R

n into Rn satisfying F ◦ G − G ◦ F = αF .

(a) Show that for all k ≥ 1 one has Fk ◦ G − G ◦ Fk = αkFk .
(b) Show that there exists k ≥ 1 such that Fk = On .

Here F ◦ G denotes F composed with G, and Fk denotes F composed with itself k times.
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Solution. Expand Fk ◦ G − G ◦ Fk using a telescopic sum as follows:

Fk ◦ G − G ◦ Fk =
k∑

i=1

(Fk−i+1 ◦ G ◦ Fi−1 − Fk−i ◦ G ◦ Fi )

=
k∑

i=1

Fk−i ◦ (F ◦ G − G ◦ F) ◦ Fi−1

=
k∑

i=1

Fk−i ◦ αF ◦ Fi−1 = αkFk .

This proves (a). For (b), consider the linear map L(F) = F ◦ G − G ◦ F acting on all n × n
matrices F . Assuming Fk �= On for all k, we deduce from (a) that αk is an eigenvalue of L
for all k. This is impossible since the linear map L acts on an n2-dimensional space, so it can
have at most n2 eigenvalues. This contradiction proves (b). �

302. Let A be a 2 × 2 matrix with complex entries and let C(A) denote the set of 2 × 2
matrices that commute with A. Prove that | det(A + B)| ≥ | det B| for all B ∈ C(A)

if and only if A2 = O2.

303. Let A, B be 2 × 2 matrices with integer entries, such that AB = BA and det B = 1.
Prove that if det(A3 + B3) = 1, then A2 = O2.

304. Consider the n × n matrix A = (ai j ) with ai j = 1 if j − i ≡ 1 (mod n) and ai j = 0
otherwise. For real numbers a and b find the eigenvalues of aA + bAt .

305. Let A be an n × n matrix such that det A = 1 and At A = In . Show that 1 is an
eigenvalue of A.

306. Let A be an n× n matrix that has zeros on the main diagonal and all other entries from
the set {−1, 1}. Is it possible that det A = 0 for n = 2007? What about for n = 2008?

307. Let A be an n × n skew-symmetric matrix (meaning that for all i, j , ai j = −a ji ) with
real entries. Prove that

det(A + xIn) · det(A + yIn) ≥ det(A + √
xyIn)2,

for all x, y ∈ [0,∞).

308. Let A be an n×nmatrix. Prove that there exists an n×nmatrix B such that ABA = A.

309. Consider the angle formed by two half-lines in three-dimensional space. Prove that
the average of the measure of the projection of the angle onto all possible planes in the
space is equal to the angle.

310. A linear map A on the n-dimensional vector space V is called an involution if A2 = I.

(a) Prove that for every involution A on V there exists a basis of V consisting of
eigenvectors of A.

(b) Find the maximal number of distinct pairwise commuting involutions.
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311. Let A be a 3 × 3 real matrix such that the vectors Au and u are orthogonal for each
column vector u ∈ R

3. Prove that

(a) At = −A, where At denotes the transpose of the matrix A;

(b) there exists a vector v ∈ R
3 such that Au = v × u for every u ∈ R

3.

312. Denote by Mn(R) the set of n × n matrices with real entries and let f : Mn(R) → R

be a linear function. Prove that there exists a unique matrix C ∈ Mn(R) such that
f (A) = tr(AC) for all A ∈ Mn(R). In addition, if f (AB) = f (BA) for all matrices
A and B, prove that there exists λ ∈ R such that f (A) = λtrA for any matrix A.

313. Let U and V be isometric linear transformations of Rn , n ≥ 1, with the property that
‖Ux − x‖ ≤ 1

2 and ‖V x − x‖ ≤ 1
2 for all x ∈ R

n with ‖x‖ = 1. Prove that

‖UVU−1V−1x − x‖ ≤ 1

2
,

for all x ∈ R
n with ‖x‖ = 1.

314. For an n × n matrix A denote by φk(A) the symmetric polynomial in the eigenvalues
λ1, λ2, . . . , λn of A,

φk(A) =
∑

i1i2...ik

λi1λi2 · · · λik , k = 1, 2, . . . , n.

For example, φ1(A) is the trace and φn(A) is the determinant. Prove that for two n× n
matrices A and B, φk(AB) = φk(BA) for all k = 1, 2, . . . , n.

2.3.7 The Cayley-Hamilton and Perron-Frobenius Theorems

Wedevote this section to twomore advanced results, which seem to be relevant tomathematics
competitions. All matrices below are assumed to have complex entries.

The Cayley-Hamilton Theorem. Any n × n matrix A satisfies its characteristic equation,
which means that if PA(λ) = det(λIn − A), then PA(A) = On.

Proof. Let PA(λ) = λn +an−1λ
n−1+· · ·+a0. Denote by (λIn − A)∗ the adjoint of (λIn − A)

(the one used in the computation of the inverse). Then

(λIn − A)(λIn − A)∗ = det(λIn − A)In.

The entries of the adjoint matrix (λIn − A)∗ are polynomials in λ of degree at most n − 1.
Splitting the matrix by the powers of λ, we can write

(λIn − A)∗ = Bn−1λ
n−1 + Bn−2λ

n−2 + · · · + B0.

Equating the coefficients of λ on both sides of

(λIn − A)(Bn−1λ
n−1 + Bn−2λ

n−2 + · · · + B0) = det(λIn − A)In,
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we obtain the equations

Bn−1 = In,
−ABn−1 + Bn−2 = an−1In,
−ABn−2 + Bn−3 = an−2In,

. . .

−AB0 = a0In.

Multiply the first equation by An , the second by An−1, the third by An−2, and so on, then add
the n + 1 equations to obtain

On = An + an−1A
n−1 + an−2A

n−2 + · · · + a0In.

This equality is just the desired PA(A) = On . �

As a corollary we prove the trace identity for SL(2,C)matrices. This identity is important
in the study of characters of group representations.

Example. Let A and B be 2 × 2 matrices with determinant equal to 1. Prove that

tr(AB) − (trA)(trB) + tr(AB−1) = 0.

Solution. By the Cayley-Hamilton Theorem,

B2 − (trB)B + I2 = O2.

Multiply on the left by AB−1 to obtain

AB − (trB)A + AB−1 = O2,

and then take the trace to obtain the identity from the statement. �

Five more examples are left to the reader.

315. Let A be a 2 × 2 matrix. Show that if for some complex numbers u and v the matrix
uI2 + vA is invertible, then its inverse is of the form u′I2 + v′A for some complex
numbers u′ and v′.

316. Find the 2 × 2 matrices X with real entries that satisfy the equation

X3 − 3X2 =
(−2 −2

−2 −2

)
.

317. Let A, B,C, D be 2×2matrices. Prove that thematrix [A, B]·[C, D]+[C, D]·[A, B]
is a multiple of the identity matrix (here [A, B] = AB − BA, the commutator of
A and B).
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318. Let A and B be two 2 × 2 matrices that do not commute. Assume that there is
a nonconstant polynomial P(x) with real coefficients such that P(AB) = P(BA).
Prove that there exists a real number a such that P(AB) = aI2.

319. Let A and B be 3 × 3 matrices. Prove that

det(AB − BA) = tr((AB − BA)3)

3
.

320. Show that there do not exist real 2× 2 matrices A and B such that their commutator is
nonzero and commutes with both A and B.

Here is the simplest version of the other result that we had in mind.

The Perron-Frobenius theorem. Any squarematrixwith positive entries has a unique eigen-
vector with positive entries (up to amultiplication by a positive scalar), and the corresponding
eigenvalue has multiplicity one and is strictly greater than the absolute value of any other
eigenvalue.

Proof. The proof uses real analysis. Let A = (ai j )ni, j=1, n ≥ 1. We want to show that there
is a unique v ∈ [0,∞)n , v �= 0, such that Av = λv for some λ. Of course, since A has
positive entries and v has positive coordinates, λ has to be a positive number. Denote by K the
intersection of [0,∞)n with the n − 1-dimensional unit sphere. Reformulating the problem,
we want to show that the function f : K → K , f (v) = Av

‖Av‖ has a fixed point.
Now, there is a rather general result that states that a contractive function on a compact

metric space has a unique fixed point (see Section 3.2.3). Recall that a metric space is a set
X endowed with a function δ : X × X → [0,∞) satisfying

(i) δ(x, y) = 0 if and only if x = y,

(ii) δ(x, y) = δ(y, x) for all x, y ∈ X ,

(iii) δ(x, y) + δ(y, z) ≥ δ(x, z) for all x, y, z ∈ X .

We use the property in the case of a compact set in Rn , where compact sets are characterized
by being closed and bounded. A function f : X → X is contractive if

δ( f (x), f (y)) < δ(x, y), for every x �= y.

With this in mind, we want to find a distance on the set K that makes the function f
defined above contractive. This is the Hilbert metric defined by the formula

δ(v,w) = ln

(
max

i

{
vi
wi

}
/min

i

{
vi
wi

})
,

for v = (v1, v2, . . . , vn) and w = (w1,w2, . . . ,wn) ∈ K . That this satisfies the triangle
inequality δ(u,w) + δ(w, u) ≥ δ(v,w) is a consequence of the inequalities

max
i

{
vi
wi

}
· max

i

{
wi

ui

}
≥ max

i

{
vi
wi

}
,

http://dx.doi.org/10.1007/978-3-319-58988-6_3


94 2 Algebra

min
i

{
vi
wi

}
· min

i

{
wi

ui

}
≥ min

i

{
vi
wi

}
.

Let us show that f is contractive. If v = (v1, v2, . . . , vn) and w = (w1,w2, . . . ,wn) are in K ,
v �= w, and if αi > 0, i = 1, 2, . . . , n, then

min
i

{
vi
wi

}
<

α1v1 + α2v2 + · · · + αnvn
α1w1 + α2w2 + · · · + αnwn

< max
i

{
vi
wi

}
.

Indeed, to prove the first inequality, add the obvious inequalities

α jw j min
i

{
vi
wi

}
≤ α j v j , j = 1, 2, . . . , n.

Because v �= w and both vectors are on the unit sphere, at least one inequality is strict. The
second inequality follows from

α jw j max
i

{
vi
wi

}
≥ α j v j , j = 1, 2, . . . , n,

where again at least one inequality is strict.
Using this fact, we obtain for all j , 1 ≤ j ≤ n,

a j1v1 + · · · + a jnvn
a j1w1 + · · · + a jnwn

max
i

{
vi
wi

} < 1 <

a j1v1 + · · · + a jnvn
a j1w1 + · · · + a jnwn

min
i

{
vi
wi

} .

Therefore,

max
j

{
a j1v1 + · · · + a jnvn
a j1w1 + · · · + a jnwn

}

max
i

{
vi
wi

} <

min
j

{
a j1v1 + · · · + a jnvn
a j1w1 + · · · + a jnwn

}

min
i

{
vi
wi

} .

It follows that for v,w ∈ K , v �= w, δ( f (v), f (w)) < δ(v,w).
Now, K is closed and but is not bounded in the Hilbert metric; some points are infinitely

far apart. But even if K is not bounded in the Hilbert metric, f (K ) is (prove it!). If we denote
by K0 the closure of f (K ) in the Hilbert metric, then this space is closed and bounded. On
K0, f is contractive, and so it has a unique fixed point. Note that all fixed points of f are
necessarily in K0 (because if f (v) = v, then v = f (v) ∈ f (K )).

We are done with the first half of the proof. Now let us show that the eigenvalue of this
positive vector is larger than the absolute value of any other eigenvalue. Let r(A) be the largest
of the absolute values of the eigenvalues of A and let λ be an eigenvalue with |λ| = r(A). In
general, for a vector v we denote by |v| the vector whose coordinates are the absolute values
of the coordinates of v. Also, for two vectors v,w we write v ≥ w if each coordinate of v is
greater than the corresponding coordinate of w. If v is an eigenvector of A corresponding to
the eigenvalue λ, then |Av| = |λ| · |v|. The triangle inequality implies A|v| ≥ |Av| = r(A)|v|.
It follows that the set

K1 = {v | ‖v‖ = 1, v ≥ 0, Av ≥ r(A)v},



2.3 Linear Algebra 95

is nonempty. Because A has positive entries, A(Av − r(A)v) ≥ 0 for v ∈ K1. So A(Av) ≥
r(A)(Av), for v ∈ K1, proving that f (K1) ⊂ K1. Again K1 is closed and f (K1) is bounded,
so we can reason as above to prove that f restricted to K1 has a fixed point, and because
K1 ⊂ K , this is the fixed point that we detected before. Thus r(A) is the unique positive
eigenvalue.

There cannot exist another eigenvalue λ with |λ| = r(A), for otherwise, for a small ε > 0
the matrix A−εIn would still have positive entries, but its positive eigenvalue r(A)−ε would
be smaller than the absolute value of the other eigenvalue contradicting what we just proved.
This concludes the proof of the theorem. �

Nowhere in the book are more appropriate the words of Sir Arthur Eddington: “Proof is
an idol before which the mathematician tortures himself.”

The conclusion of the theorem still holds in the more general setting of irreducible matri-
ces with nonnegative entries (irreducible means that there is no reordering of the rows and
columns thatmakes it block upper triangular). Thismore general formof the Perron-Frobenius
Theorem is currently used by the Internet browser Google to sort the entries of a search. The
idea is the following: Write the adjacency matrix of the Internet with a link highlighted if it
is related to the subject. Then multiply each nonzero entry by a larger or smaller number that
takes into account how important the subject is in that page. The Perron-Frobenius vector of
this new matrix assigns a positive weight to each site on the Internet. The Internet browser
then lists the sites in decreasing order of their weights.

We now challenge you with some problems.

321. Let A be a square matrix whose off-diagonal entries are positive. Prove that the right-
most eigenvalue of A in the complex plane is real and all other eigenvalues are strictly
to its left in the complex plane.

322. Let ai j , i, j = 1, 2, 3, be real numbers such that ai j is positive for i = j and negative
for i �= j . Prove that there exist positive real numbers c1, c2, c3 such that the numbers

a11c1 + a12c2 + a13c3, a21c1 + a22c2 + a23c3, a31c1 + a32c2 + a33c3

are all negative, all positive, or all zero.

323. Let x1, x2, . . . , xn be differentiable (real-valued) functions of a single variable t that
satisfy

dx1
dt

= a11x1 + a12x2 + · · · + a1nxn,

dx2
dt

= a21x1 + a22x2 + · · · + a2nxn,

. . .

dxn
dt

= an1x1 + an2x2 + · · · + annxn,

for some constants ai j > 0. Suppose that for all i , xi (t) → 0 as t → ∞. Are the
functions x1, x2, . . . , xn necessarily linearly independent?
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324. For a positive integer n and any real number c, define (xk)k≥0 recursively by x0 = 0,
x1 = 1, and for k ≥ 0,

xk+2 = cxk+1 − (n − k)xk
k + 1

.

Fix n and then take c to be the largest value for which xn+1 = 0. Find xk in terms of n
and k, 1 ≤ k ≤ n.

2.4 Abstract Algebra

2.4.1 Binary Operations

Abinary operation ∗ on a set S associates to each pair (a, b) ∈ S×S an element a∗b ∈ S. The
operation is called associative if a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b, c ∈ S, and commutative
if a ∗ b = b ∗ a for all a, b ∈ S. If there exists an element e such that a ∗ e = e ∗ a = a for
all a ∈ S, then e is called an identity element. If an identity exists, it is unique. In this case,
if for an element a ∈ S there exists b ∈ S such that a ∗ b = b ∗ a = e, then b is called the
inverse of a and is denoted by a−1. If an element has an inverse, the inverse is unique.

Just as a warmup, we present a problem from the 62nd W.L. Putnam Competition, 2001.

Example. Consider a set S and a binary operation ∗ on S. Assume that (a ∗ b) ∗ a = b for all
a, b ∈ S. Prove that a ∗ (b ∗ a) = b for all a, b ∈ S.

Solution. Substituting b ∗ a for a, we obtain

((b ∗ a) ∗ b) ∗ (b ∗ a) = b.

The expression in the first set of parentheses is a. Therefore,

a ∗ (b ∗ a) = b,

as desired. �

Often, problems about binary operations look like innocent puzzles, yet they can have
profound implications. This is the case with the following example.

Example. For three-dimensional vectors X = (p, q, t) and Y = (p′, q ′, t ′) define the oper-
ations (p, q, t) ∗ (p′, q ′, t ′) = (0, 0, pq ′ − qp′), and X ◦ Y = X + Y + 1

2 X ∗ Y , where +
denotes the addition in R

3.

(a) Prove that (R3, ◦) is a group.

(b) Let α : (R3, ◦) → (R3, ◦) be a continuous map satisfying α(X ◦ Y ) = α(X) ◦ α(Y ) for
all X, Y (which means that α is a homomorphism). Prove that

α(X + Y ) = α(X) + α(Y ) and α(X ∗ Y ) = α(X) ∗ α(Y ).
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Solution. (a) Associativity can be verified easily, the identity element is (0, 0, 0), and the
inverse of (p, q, t) is (−p,−q,−t).
(b) First, note that X ∗ Y = −Y ∗ X . Therefore, if X is a scalar multiple of Y , then
X ∗ Y = Y ∗ X = 0. In general, if X ∗ Y = 0, then X ◦ Y = X + Y = Y ◦ X . Hence in this
case,

α(X + Y ) = α(X ◦ Y ) = α(X) ◦ α(Y ) = α(X) + α(Y ) + 1

2
α(X) ∗ α(Y )

on the one hand, and

α(X + Y ) = α(Y ◦ X) = α(Y ) ◦ α(X) = α(Y ) + α(X) + 1

2
α(Y ) ∗ α(X).

Because α(X)∗α(Y ) = −α(Y )∗α(X), this implies that α(X)∗α(Y ) = 0. and consequently
α(X+Y ) = α(X)+α(Y ). In particular, α is additive on every one-dimensional space, whence
α(r X) = rα(X), for every rational number r . But α is continuous, so α(sX) = sα(X) for
every real number s. Applying this property we find that for any X, Y ∈ R

3 and s ∈ R,

sα

(
X + Y + 1

2
sX ∗ Y

)
= α

(
sX + sY + 1

2
s2X ∗ Y

)
= α((sX) ◦ (sY ))

= α(sX) ◦ α(sY ) = (sα(X)) ◦ (sα(Y ))

= sα(X) + sα(Y ) + 1

2
s2α(X) ∗ α(Y ).

Dividing both sides by s, we obtain

α

(
X + Y + 1

2
sX ∗ Y

)
= α(X) + α(Y ) + 1

2
sα(X) ∗ α(Y ).

In this equality if we let s → 0, we obtain α(X + Y ) = α(X) + α(Y ). Also, if we let s = 1
and use the additivity we just proved, we obtain α(X ∗ Y ) = α(X) ∗ α(Y ). The problem is
solved. �

Traditionally, X ∗ Y is denoted by [X, Y ] and R
3 endowed with this operation is called

the Heisenberg Lie algebra. Also, R3 endowed with ◦ is called the Heisenberg group. And
we just proved a famous theorem showing that a continuous automorphism of the Heisenberg
group is also an automorphism of the Heisenberg Lie algebra. The Heisenberg group and
algebra are fundamental concepts of quantum mechanics.

325. With the aid of a calculator that can add, subtract, and determine the inverse of a nonzero
number, find the product of two nonzero numbers using at most 20 operations.

326. Invent a binary operation from which +, −, ×, and / can be derived.

327. Afinite set Swith at least four elements is endowedwith an associative binary operation
∗ that satisfies

(a ∗ a) ∗ b = b ∗ (a ∗ a) = b for all a, b ∈ S.

Prove that the set of all elements of the form a ∗ (b ∗ c) with a, b, c distinct elements
of S coincides with S.
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328. Let S be the smallest set of rational functions containing f (x, y) = x and g(x, y) = y
and closed under subtraction and taking reciprocals. Show that S does not contain the
nonzero constant functions.

329. Let ∗ and ◦ be two binary operations on the setM , with identity elements e, respectively,
e′, and with the property that for every x, y, u, v ∈ M ,

(x ∗ y) ◦ (u ∗ v) = (x ◦ u) ∗ (y ◦ v).

Prove that

(a) e = e′;
(b) x ∗ y = x ◦ y, for every x, y ∈ M ;
(c) x ∗ y = y ∗ x , for every x, y ∈ M .

330. Consider a set S and a binary operation ∗ on S such that x ∗ (y ∗ x) = y for all x, y in
S. Prove that each of the equations a ∗ x = b and x ∗ a = b has a unique solution in S.

331. On a set M an operation ∗ is given satisfying the properties

(i) there exists an element e ∈ M such that x ∗ e = x for all x ∈ M ;
(ii) (x ∗ y) ∗ z = (z ∗ x) ∗ y for all x, y, z ∈ M .

Prove that the operation ∗ is both associative and commutative.

332. Prove or disprove the following statement: If F is a finite set with two ormore elements,
then there exists a binary operation ∗ on F such that for all x, y, z ∈ F ,

(i) x ∗ z = y ∗ z implies x = y (right cancellation holds), and
(ii) x ∗ (y ∗ z) �= (x ∗ y) ∗ z (no case of associativity holds).

333. Let ∗ be an associative binary operation on a set S satisfying a ∗ b = b ∗ a only if
a = b. Prove that a ∗ (b ∗ c) = a ∗ c for all a, b, c ∈ S. Give an example of such an
operation.

334. Let S be a set and ∗ a binary operation on S satisfying the laws

(i) x ∗ (x ∗ y) = y for all x, y ∈ S,
(ii) (y ∗ x) ∗ x = y for all x, y ∈ S.

Show that ∗ is commutative but not necessarily associative.

335. Let ∗ be a binary operation on the set Q of rational numbers that is associative and
commutative and satisfies 0∗0 = 0 and (a+c)∗ (b+c) = a ∗b+c for all a, b, c ∈ Q.
Prove that either a ∗ b = max(a, b) for all a, b ∈ Q, or a ∗ b = min(a, b) for all
a, b ∈ Q.

2.4.2 Groups

Definition. A group is a set of transformations (of some space) that contains the identity
transformation and is closed under composition and under the operation of taking the inverse.
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The isometries of the plane, the permutations of a set, the continuous bijections on a closed
bounded interval all form groups.

There is a more abstract, and apparently more general definition, which calls a group a set
G endowed with a binary operation · that satisfies
(i) (associativity) x(yz) = (xy)z for all x, y, z ∈ S;

(ii) (identity element) there is e ∈ G such that for any x ∈ G, ex = xe = x ;

(iii) (existence of the inverse) for every x ∈ G there is x−1 ∈ G such that

xx−1 = x−1x = e.

But Cayley observed the following fact.

Theorem. Any group is a group of transformations.

Proof. Indeed, any group G acts on itself on the left. Specifically, x ∈ G acts as a transfor-
mation of G by y → xy, y ∈ G. �

A group G is called Abelian (after N. Abel) if the operation is commutative, that is, if
xy = yx for all x, y ∈ G. An example of anAbelian group is theKlein four-group, introduced
abstractly as K = {a, b, c, e | a2 = b2 = c2 = e, ab = ac, ac = b, bc = a}, or concretely
as the group of the symmetries of a rectangle (depicted in Figure 14).

b

a

c

Figure 14

A group is called cyclic if it is generated by a single element, that is, if it consists of the
identity element and the powers of some element.

Let us turn to problems and start with one published byL.Daia in theMathematicsGazette,
Bucharest.

Example. A certain multiplicative operation on a nonempty set G is associative and allows
cancellations on the left, and there exists a ∈ G such that x3 = axa for all x ∈ G. Prove that
G endowed with this operation is an Abelian group.

Solution. Replacing x by ax in the given relation, we obtain axaxax = a2xa. Cancelling
a on the left, we obtain x(axa)x = axa. Because axa = x3, it follows that x5 = x3, and
cancelling an x2, we obtain

x3 = x for all x ∈ G.
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In particular, a3 = a, and hence a3x = ax for all x ∈ G. Cancel a on the left to find that

a2x = x for all x ∈ G.

Substituting x by xa, we obtain a2xa = xa, or ax3 = xa, and since x3 = x , it follows that a
commutes with all elements in G. We can therefore write

a2x = a(ax) = a(xa) = (xa)a = xa2,

whence xa2 = a2x = x . This shows that a2 is the identity element of the multiplicative
operation; we denote it by e. The relation from the statement implies x3 = axa = xa2 = xe;
cancelling x , we obtain x2 = e; hence for all x ∈ G, x−1 = x . It follows that G is a group.
It is Abelian by the well-known computation

xy = (xy)−1 = y−1x−1 = yx . �

Here are more examples of the kind.

336. Prove that in order for a set G endowed with an associative operation to be a group, it
suffices for it to have a left identity, and for each element to have a left inverse. This
means that there should exist e ∈ G such that ex = x for all x ∈ G, and for each
x ∈ G, there should exist x ′ ∈ G such that x ′x = e. The same conclusion holds if
“left” is replaced by “right”.

337. Let (G,⊥) and (G, ∗) be two group structures defined on the same set G. Assume that
the two groups have the same identity element and that their binary operations satisfy

a ∗ b = (a ⊥ a) ⊥ (a ⊥ b),

for all a, b ∈ G. Prove that the binary operations coincide and the group they define is
Abelian.

338. Let r, s, t be positive integers that are pairwise relatively prime. If the elements a and
b of an Abelian group with identity element e satisfy ar = bs = (ab)t = e, prove that
a = b = e. Does the same conclusion hold if a and b are elements of an arbitrary
nonAbelian group?

339. A is a subset of a finite group G which contains more than one half of the elements of
G. Prove that every element of G is the product of two elements of A.

340. On the set M = R\{3} the following binary operation is defined:

x ∗ y = 3(xy − 3x − 3y) + m,

where m ∈ R. Find all possible values of m for which (M, ∗) is a group.

341. Assume that a and b are elements of a group with identity element e satisfying
(aba−1)n = e for some positive integer n. Prove that bn = e.
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342. Let G be a group with the following properties:

(i) G has no element of order 2,

(ii) (xy)2 = (yx)2, for all x, y ∈ G.

Prove that G is Abelian.

343. A multiplicative operation on a set M satisfies

(i) a2 = b2, (ii) ab2 = a, (iii) a2(bc) = cb, (iv) (ac)(bc) = ab, for all a, b, c ∈ M .

Define on M the operation
a ∗ b = a(b2b).

Prove that (M, ∗) is a group.

We would like to point out the following property of the set of real numbers.

Kronecker’s theorem. A nontrivial subgroup of the additive group of real numbers is either
cyclic or it is dense in the set of real numbers.

Proof. Denote the group by G. It is either discrete, or it has an accumulation point on the
real axis. If it is discrete, let a be its smallest positive element. Then any other element is of
the form b = ka + α with 0 ≤ α < a. But b and ka are both in G; hence α is in G as well.
By the minimality of a, α can only be equal to 0, and hence the group is cyclic.

If there is a nonconstant sequence (xn)n in G converging to some real number, then
±(xn − xm) approaches zero as n,m → ∞. Choosing the indices m and n appropriately,
we can find a sequence of positive elements in G that converges to 0. Thus for any ε > 0
there is an element c ∈ G with 0 < c < ε. For some integer k, the distance between kc and
(k + 1)c is less than ε; hence any interval of length ε contains some multiple of c. Varying ε,
we conclude that G is dense in the real axis. �

Try to use this result to solve the following problems.

344. Let f : R → R be a continuous function satisfying

f (x) + f (x + √
2) = f (x + √

3) for all x .

Prove that f is constant.

345. Prove that the sequence (sin n)n≥1 is dense in the interval [−1, 1].
346. Show that infinitely many powers of 2 start with the digit 7.

347. Given a rectangle, we are allowed to fold it in two or in three, parallel to one side or the
other, in order to form a smaller rectangle. Prove that for any ε > 0 there are finitely
many such operations that produce a rectangle with the ratio of the sides lying in the
interval (1 − ε, 1 + ε) (which means that we can get arbitrarily close to a square).

348. A set of points in the plane is invariant under the reflections across the sides of some
given regular pentagon. Prove that the set is dense in the plane.

We continue with problems about groups of matrices.
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349. Prove that the group of invertible 4 × 4 matrices with rational entries has no elements
of order 7.

350. Given� a finitemultiplicative group of invertiblematriceswith complex entries, denote
by M the sum of the matrices in �. Prove that det M and trM are integers.

351. Let n be a positive integer. What is the size of the largest multiplicative group of
invertible n × n matrices with integer entries such that for every matrix A in the group
all the entries of A − In are even?

352. For an n × n matrix with complex entries, A, we define its norm to be

‖A‖ = sup
‖x‖≤1

‖Ax‖,

where ‖x‖ denotes the usual norm on Cn (the square root of the sum of the squares of
the absolute values of the coordinates). Let a < 2, and let G be a multiplicative group
of invertible n × n matrices such that

‖A − In‖ ≤ a for all A ∈ G.

Prove that G is finite.

“There is no certainty in sciences where one of the mathematical sciences cannot be
applied, or which are not in relation with this mathematics.” This thought of Leonardo da
Vinci motivated us to include an example of how groups show up in natural sciences.

The groups of symmetries of three-dimensional space play an important role in chemistry
and crystallography. In chemistry, the symmetries ofmolecules give rise to physical properties
such as optical activity. The point groups of symmetries of molecules were classified by A.
Schönflies as follows:

• Cs : a reflection with respect to a plane, isomorphic to Z2,

• Ci : a reflection with respect to a point, isomorphic to Z2,

• Cn: the rotations by multiples of 2π
n about an axis, isomorphic to Zn ,

• Cnv: generated by aCn and aCs with the reflection plane containing the axis of rotation;
in mathematics this is called the dihedral group,

• Cnh: generated by a Cn and a Cs with the reflection plane perpendicular to the axis of
rotation, isomorphic to Cn × C2,

• Dn: generated by a Cn and a C2, with the rotation axes perpendicular to each other,
isomorphic to the dihedral group,

• Dnd : generated by a Cn and a C2, together with a reflection across a plane that divides
the angle between the two rotation axes,

• Dnh: generated by a Cn and a C2 with perpendicular rotation axes, together with a
reflection with respect to a plane perpendicular to the first rotation axis,
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• Sn: improper rotations by multiples of 2π
n , i.e., the group generated by the element

that is the composition of the rotation by 2π
n and the reflection with respect to a plane

perpendicular to the rotation axis,

• Special point groups: C∞v’s and D∞h’s (same as Cnv and Dnh but with all rotations
about the axis allowed), together with the symmetry groups of the five Platonic solids.

When drawing a molecule, we use the convention that all segments represent bonds in
the plane of the paper, all bold arrows represent bonds with the tip of the arrow below the
tail of the arrow. The molecules from Figure 15 have respective symmetry point groups the
octahedral group and C3h .

S
F

F

F
F

F

F
B
O

O O
H

H

H

Figure 15

353. Find the symmetry groups of the molecules depicted in Figure 16.
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H
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H

Figure 16

2.4.3 Rings

Rings mimic in the abstract setting the properties of the sets of integers, polynomials, or
matrices.

Definition. Aring is a set R endowedwith two operations + and · (addition andmultiplication)
such that (R,+) is an Abelian group with identity element 0 and the multiplication satisfies

(i) (associativity) x(yz) = (xy)z for all x, y, z ∈ R, and

(ii) (distributivity) x(y + z) = xy + xz and (x + y)z = xz + yz for all x, y, z ∈ R.

A ring is called commutative if the multiplication is commutative. It is said to have identity
if there exists 1 ∈ R such that 1 · x = x · 1 = x for all x ∈ R. An element x ∈ R is called
invertible if there exists x−1 ∈ R such that xx−1 = x−1x = 1.

We consider two examples, the second of which appeared many years ago in the Balkan
Mathematics Competition for university students.
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Example. Let x and y be elements in a ring with identity. Prove that if 1 − xy is invertible,
then so is 1 − yx .

Solution. If we naively use the expansion (1 − x)−1 = 1 + x + x2 + x3 + · · · to write
(1 − xy)−1 = 1 + xy + xyxy + xyxyxy + · · ·
(1 − yx)−1 = 1 + yx + yxyx + yxyxyx + · · · ,

we can rearrange the second as

(1 − yx)−1 = 1 + y(1 + xy + xyxy + xyxyxy + · · · )x
So we can gess that if v be the inverse of 1 − xy then 1 + yvx is the inverse of 1 − yx . We
have v(1 − xy) = (1 − xy)v = 1; hence vxy = xyv = v − 1. We compute

(1 + yvx)(1 − yx) = 1 − yx + yvx − yvxyx = 1 − yx + yvx − y(v − 1)x = 1.

A similar verification shows that (1 − yx)(1 + yvx) = 1. It follows that 1 − yx is invertible
and its inverse is 1 + yvx . �

Example. Prove that if in a ring R (not necessarily with identity element) x3 = x for all
x ∈ R, then the ring is commutative.

Solution. For x, y ∈ R, we have

xy2 − y2xy2 = (xy2 − y2xy2)3 = xy2xy2xy2 − xy2xy2y2xy2 − xy2y2xy2xy2

− y2xy2xy2xy2 + y2xy2xy2y2xy2 + y2xy2y2xy2xy2

− y2xy2y2xy2y2xy2 + xy2y2xy2y2xy2.

Using the fact that y4 = y2, we see that this is equal to zero, and hence xy2 − y2xy2 = 0,
that is, xy2 = y2xy2. A similar argument shows that y2x = y2xy2, and so xy2 = y2x for all
x, y ∈ R.

Using this we obtain

xy = xyxyxy = xy(xy)2 = x(xy)2y = x2yxy2 = y3x3 = yx .

This proves that the ring is commutative, as desired. �

We remark that both this and the third problem below are particular cases of the following
result by N. Jacobson:

Jacobson theorem. If a ring (with orwithout identity) has the property that for every element
x there exists an integer n(x) > 1 such that xn(x) = x , then the ring is commutative.

Try your hand at the following problems.

354. Let a, b, c be elements of a ring with identity.
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(a) Show that if In − abc is invertible, then In − cab is invertible.
(b) Can it happen that In − abc is invertible but In − cba is not?

355. Let R be a nontrivial ring with identity, and M = {x ∈ R | x = x2} the set of its
idempotents. Prove that if M is finite, then it has an even number of elements.

356. Let R be a ring with identity such that x6 = x for all x ∈ R. Prove that x2 = x for all
x ∈ R. Prove that any such ring is commutative.

357. Let R be a ring with identity with the property that (xy)2 = x2y2 for all x, y ∈ R.
Show that R is commutative.

358. Let R be a finite ring with unit, having n elements and such that the equation xn = 1
has the unique solution x = 1 in R. Prove that

(a) 0 is the unique nilpotent element of R;
(b) there is a positive integer k ≥ 2 such that the equation xk has n solutions in R.

(x ∈ R is called nilpotent if there is a positive integer m such that xm = 0.)

359. Let R be a finite ring such that 1 + 1 = 0. Prove that the number of solutions to the
equation x2 = 0 is equal to the number of solutions to the equation x2 = 1.

360. Let x and y be elements in a ring with identity and n a positive integer. Prove that if
1 − (xy)n is invertible, then so is 1 − (yx)n .

361. Let R be a ring with the property that if x ∈ R and x2 = 0, then x = 0.

(a) Prove that if x, z ∈ R and z2 = z, then zxz − xz = 0.
(b) Prove that any idempotent of R belongs to the center of R (the center of a ring

consists of those elements that commute with all elements of the ring).

362. Show that if a ring R with identity has three elements a, b, c such that

(i) ab = ba, bc = cb;
(ii) for any x, y ∈ R, bx = by implies x = y;
(iii) ca = b but ac �= b,

then the ring cannot be finite.



3

Real Analysis

The chapter on real analysis groups material covering differential and integral calculus,
ordinary differential equations, and also a rigorous introduction to real analysis with ε − δ

proofs.
We found it natural, and also friendly, to begin with sequences. As you will discover,

the theory of linear recurrences parallels that of linear ordinary differential equations. The
theory of limits is well expanded, covering for example Cauchy’s criterion for convergence, the
convergence of bounded monotone sequences, the Cesàro-Stolz theorem, and Cantor’s nested
intervals theorem. It is followed by some problems about series, with particular attention
given to the telescopic method for computing sums and products.

A long discussion is devoted to one-variable functions. You might find the sections on
limits, continuity, and the intermediate value property rather theoretical. Next, you will be
required to apply derivatives and their properties to a wide range of examples. Then come
integrals, with emphasis placed on computations and inequalities. One-variable real analysis
ends with Taylor and Fourier series.

From multivariable differential and integral calculus we cover partial derivatives and
their applications, computations of integrals, focusing on change of variables and on Fubini’s
theorem, all followed by a section of geometric flavor devoted to Green’s theorem, the Kelvin-
Stokes theorem, and the Gauss-Ostrogradsky (divergence) theorem.

The chapter concludes with functional equations, among which will be found Cauchy’s
equation, and with ordinary differential and integral equations.

This is a long chapter, with many challenging problems. Now, as you start it, think of
T. Edison’s words: “Opportunity is missed by many people because it is dressed in overalls
and looks like work.”

© Springer International Publishing AG 2017
R. Gelca and T. Andreescu, Putnam and Beyond, DOI 10.1007/978-3-319-58988-6_3
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3.1 Sequences and Series

3.1.1 Search for a Pattern

In this section we train guessing. In each problem you should try particular cases until you
guess either the general term of a sequence, a relation that the terms satisfy, or an appropriate
construction. The idea to write such a section came to us when we saw the following Putnam
problem.

Example. Consider the sequence (un)n defined by u0 = u1 = u2 = 1, and

det

(
un+3 un+2

un+1 un

)
= n!, n ≥ 0.

Prove that un is an integer for all n.

Solution. The recurrence relation of the sequence is

un+3 = un+2un+1

un
+ n!

un
.

Examining some terms:

u3 = 1 · 1
1

+ 1

1
= 2,

u4 = 2 · 1
1

+ 1

1
= 3,

u5 = 3 · 2
1

+ 2

1
= 4 · 2,

u6 = 4 · 2 · 3
2

+ 3 · 2
2

= 4 · 3 + 1 · 3 = 5 · 3,

u7 = 5 · 3 · 4 · 2
3

+ 4 · 3 · 2
3

= 5 · 4 · 2 + 4 · 2 = 6 · 4 · 2,

u8 = 6 · 4 · 2 · 5 · 3
4 · 2 + 5 · 4 · 3 · 2

4 · 2 = 6 · 5 · 3 + 5 · 3 = 7 · 5 · 3,

we conjecture that
un = (n − 1)(n − 3)(n − 5) · · · .

This formula can be proved by induction. Assuming the formula true for un, un+1, and un+2,
we obtain

un+3 = un+2un+1 + n!
un

= (n + 1)(n − 1)(n − 3) · · · n(n − 2)(n − 4) · · · + n!
(n − 1)(n − 3)(n − 5) · · ·

= (n + 1) · n! + n!
(n − 1)(n − 3)(n − 5) · · · = (n + 2)n!

(n − 1)(n − 3)(n − 5) · · ·
= (n + 2)n(n − 2)(n − 4) · · ·

This completes the induction, and the problem is solved. �
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363. Find a formula for the general term of the sequence

1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, . . .

364. Find a formula in compact form for the general term of the sequence defined recursively
by x1 = 1, xn = xn−1 + n if n is odd, and xn = xn−1 + n − 1 if n is even.

365. Define the sequence (an)n≥0 by a0 = 0, a1 = 1, a2 = 2, a3 = 6, and

an+4 = 2an+3 + an+2 − 2an+1 − an, forn ≥ 0.

Prove that n divides an for all n ≥ 1.

366. Let n > 1 be an integer. Find, with proof, all sequences x1 < x2 < · · · < xn−1 of
positive integers with the following two properties:

(i) xi + xn−i = 2n for all i = 1, 2, . . . , n − 1;
(ii) for every not necessarily distinct indices i and j for which xi + xj < 2n, there is an

index k such that xi + xj = xk .

367. The sequence a0, a1, . . . , a2, . . . satisfies

am+n + am−n = 1

2
(a2m + a2n),

for all nonnegative integers m and n with m ≥ n. If a1 = 1, determine an.

368. Consider the sequences (an)n, (bn)n, defined by

a0 = 0, a1 = 2, an+1 = 4an + an−1, n ≥ 0,
b0 = 0, b1 = 1, bn+1 = an − bn + bn−1, n ≥ 0.

Prove that (an)
3 = b3n for all n.

369. A sequence un is defined by

u0 = 2, u1 = 5

2
, un+1 = un(u

2
n−1 − 2) − u1, for n ≥ 1.

Prove that for all positive integers n,

�un� = 2(2n−(−1)n)/3,

where �·� denotes the greatest integer function.
370. Consider the sequences (an)n and (bn)n defined by a1 = 3, b1 = 100, an+1 = 3an ,

bn+1 = 100bn . Find the smallest number m for which bm > a100.
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3.1.2 Linear Recursive Sequences

In this section we give an overview of the theory of linear recurrence relations with constant
coefficients. You should notice the analogy with the theory of ordinary differential equa-
tions. This is not an accident, since linear recurrence relations are discrete approximations of
differential equations.

A kth-order linear recurrence relation with constant coefficients is a relation of the form

xn = a1xn−1 + a2xn−2 + · · · + akxn−k, n ≥ k,

satisfied by a sequence (xn)n≥0.
The sequence (xn)n is completely determined by x0, x1, . . . , xk−1 (the initial condition).

To find the formula for the general term, we introduce the vector-valued first-order linear
recursive sequence vn = (v1n, v2n, . . . , vk

n) defined by v1n = xn+k−1, v2n = xn+k−2, . . . , vk
n = xn.

This new sequence satisfies the recurrence relation vn+1 = Avn, n ≥ 0, where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a1 a2 a3 . . . ak−1 ak

1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

It follows that vn = Anv0, and the problem reduces to the computation of the nth power of A.
A standard method employs the Jordan canonical form.

First, we determine the eigenvalues of A. The characteristic polynomial is

PA(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ − a1 −a2 −a3 . . . −ak−1 −ak

−1 λ 0 . . . 0 0
0 −1 λ . . . 0 0
0 0 −1 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . −1 λ

∣∣∣∣∣∣∣∣∣∣∣∣∣

.

When expanding by the first row it is easy to remark that all minors are triangular, so the
determinant is equal to λk − a1λ

k−1 − a2λ
k−2 − · · · − ak . The equation

PA(λ) = λk − a1λ
k−1 − a2λ

k−2 − · · · − ak = 0

is called the characteristic equation of the recursive sequence.
Let λ1, λ2, . . . , λk be the roots of the characteristic equation, which are, in fact, the eigen-

values of A. If these roots are all distinct, the situation encountered most often, then A is
diagonalizable. There exists an invertible matrix S such that A = SDS−1, where D is diagonal
with diagonal entries equal to the eigenvalues of A. From the equality

vn = SDnS−1v0,
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we conclude that the entries of vn are linear combinations of λn
1, λ

n
2, . . . , λ

n
k . In particular, for

xn, which is the first coordinate of vn, there exist constants α1, α2, . . . , αk such that

xn = α1λ
n
1 + α2λ

n
2 + · · · + αkλ

n
k, for n ≥ 0.

The numbers α1, α2, . . . , αk are found from the initial condition, by solving the linear system

α1 + α2 + · · · + αk = x0,

λ1α1 + λ2α2 + · · · + λkαk = x1,

λ2
1α1 + λ2

2α2 + · · · + λ2
kαk = x2,

. . .

λk−1
1 α1 + λk−1

2 α2 + · · · + λk−1
k αk = xk−1.

Note that the determinant of the coefficient matrix is Vandermonde, so the system has a unique
solution!

If the roots of the characteristic equation havemultiplicities greater than 1, it might happen
that A is not diagonalizable. The Jordan canonical form of A has blocks of the form

Jm(λi) =

⎛
⎜⎜⎜⎜⎜⎝

λi 1 0 . . . 0
0 λi 1 . . . 0
0 0 λi . . . 0
...

...
...

. . .
...

0 0 0 . . . λi

⎞
⎟⎟⎟⎟⎟⎠

.

An exercise in Section 2.3.1 shows that for j ≥ i, the entry of Jm(λi)
n is
( n

j−i

)
λ

n+i−j
i . We

conclude that if the roots of the characteristic equations are λ1, λ2, . . . , λt and m1, m2, . . . , mt

their respectivemultiplicities, then there exist constants αij, i = 1, 2, . . . , t, j = 0, 1, . . . , mi −
1, such that

xn =
t∑

i=1

mi−1∑
j=0

αij

(
n

j

)
λ

n−j
i , for n ≥ 0.

It might be more useful to write this as

xn =
t∑

i=1

mi∑
j=0

βijn
hλ

n−j
i , for n ≥ 0.

As is the case with differential equations, to find the general term of an inhomogeneous linear
recurrence relation

xn = a1xn−1 + a2xn−2 + · · · + akxn−k + f (n), n ≥ 1,

one has to find a particular solution to the recurrence, then add to it the general term of the
associated homogeneous recurrence relation.

http://dx.doi.org/10.1007/978-3-319-58988-6_2
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Putting these ideas together, let us compute the general-term formula of the Fibonacci
sequence. The recurrence relationFn+1 = Fn+Fn−1 has characteristic equationλ2−λ−1 = 0,
with roots λ1 = 1−√

5
2 and λ2 = 1+√

5
2 . Writing Fn = α1λ

n
1 + α2λ

n
2 and solving the system

α1 + α2 = F0 = 0,

α1λ1 + α2λ2 = F1 = 1,

we obtain α1 = −α2 = − 1√
5
. We rediscover the well-known Binet formula

Fn = 1√
5

((
1 + √

5

2

)n

−
(
1 − √

5

2

)n)
.

In the same vein, let us solve a problem published in the American Mathematical Monthly by
I. Tomescu.

Example. In how many ways can one tile a 2n × 3 rectangle with 2 × 1 tiles?

Solution. Denote by un the number of such tilings. Start tiling the rectangle from the short
side of length 3, as shown in Figure 17.

Figure 17

In the last two cases from the figure, an uncovered 1× 1 square can be covered in a single
way: by the shaded rectangle. We thus obtain

un+1 = 3un + 2vn,

where vn is the number of tilings of a (2n − 1) × 3 rectangle with a 1 × 1 square missing in
one corner, like the one in Figure 18. That figure shows how to continue tiling this kind of
rectangle, giving rise to the recurrence

vn+1 = un + vn.

Combining the two, we obtain the (vector-valued) recurrence relation
(

un+1

vn+1

)
=
(
3 2
1 1

)(
un

vn

)
.

The characteristic equation, of the coefficient matrix but also of the sequences un and vn, is∣∣∣∣ λ − 3 −2
−1 λ − 1

∣∣∣∣ = λ2 − 4λ + 1 = 0.
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Its roots are λ1,2 = 2±√
3. We compute easily u1 = 3 and v1 = 1, so u2 = 3 · 3+ 2 · 1 = 11.

The desired general-term formula is then

un = 1

2
√
3

((√
3 + 1

) (
2 + √

3
)n +

(√
3 − 1

) (
2 − √

3
)n)

. �

Figure 18

Below are listed more problems of this kind.

371. Let p(x) = x2−3x+2. Show that for any positive integer n there exist unique numbers
an and bn such that the polynomial qn(x) = xn − anx − bn is divisible by p(x).

372. Find the general term of the sequence given by x0 = 3, x1 = 4, and

(n + 1)(n + 2)xn = 4(n + 1)(n + 3)xn−1 − 4(n + 2)(n + 3)xn−2, n ≥ 2.

373. Let (xn)n≥0 be defined by the recurrence relation xn+1 = axn + bxn−1, with x0 = 0.
Show that the expression x2n − xn−1xn+1 depends only on b and x1, but not on a.

374. Define the sequence (an)n recursively by a1 = 1 and

an+1 = 1 + 4an + √
1 + 24an

16
, for n ≥ 1.

Find an explicit formula for an in terms of n.

375. Let a = 4k − 1, where k is an integer. Prove that for any positive integer n the number

1 −
(

n

2

)
a +
(

n

4

)
a2 −

(
n

6

)
a3 + · · ·

is divisible by 2n−1.

376. Let A and E be opposite vertices of a regular octagon. A frog starts jumping at vertex
A. From any vertex of the octagon except E, it may jump to either of the two adjacent
vertices. When it reaches vertex E, the frog stops and stays there. Let an be the number
of distinct paths of exactly n jumps ending at E. Prove that a2n−1 = 0 and

a2n = 1√
2
(xn−1 − yn−1), n = 1, 2, 3, . . .

where x = 2 + √
2 and y = 2 − √

2.
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377. Find all functions f : N → N satisfying

f (f (f (n))) + 6f (n) = 3f (f (n)) + 4n + 2001, for all n ∈ N.

378. The sequence (xn)n is defined by x1 = 4, x2 = 19, and for n ≥ 2,

xn+1 =
⌈

x2n
xn−1

⌉
,

the smallest integer greater than or equal to x2n
xn−1

. Prove that xn − 1 is always a multiple
of 3.

379. Consider the sequences given by

a0 = 1, an+1 = 3an +√5a2
n − 4

2
, n ≥ 1,

b0 = 0, bn+1 = an − bn, n ≥ 1.

Prove that (an)
2 = b2n+1 for all n.

3.1.3 Limits of Sequences

There are three methods for determining the limit of a sequence. The first of them is based
on the following definition.

Cauchy’s definition. (a) A sequence (xn)n converges to a finite limit L if and only if for every
ε > 0 there exists n(ε) such that for every n > n(ε), |xn − L| < ε.

(b) A sequence (xn)n tends to infinity if for every ε > 0 there exists n(ε) such that for
n > n(ε), xn > ε.

The definition of convergence is extended to R
n, and in general to any metric space, by

replacing the absolute value with the distance. The second method for finding the limit is
called the squeezing principle.

The squeezing principle. (a) If an ≤ bn ≤ cn for all n, and if (an)n and (cn)n converge to the
finite limit L, then (bn)n also converges to L.

(b) If an ≤ bn for all n and if (an)n tends to infinity, then (bn)n also tends to infinity.

Finally, the third method reduces the problem via algebraic operations to sequences whose
limits are known. We illustrate each method with an example. The first is from P.N. de Souza,
J.N. Silva, Berkeley Problems in Mathematics (Springer, 2004).

Example. Let (xn)n be a sequence of real numbers such that

lim
n→∞(2xn+1 − xn) = L.

Prove that the sequence (xn)n converges and its limit is L.
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Solution. By hypothesis, for every ε there is n(ε) such that if n ≥ n(ε), then

L − ε < 2xn+1 − xn < L + ε.

For such n and some k > 0 let us add the inequalities

L − ε < 2xn+1 − xn < L + ε,

2(L − ε) < 4xn+2 − 2xn+1 < 2(L + ε),

. . .

2k−1(L − ε) < 2kxn+k − 2k−1xn+k−1 < 2k−1(L + ε).

We obtain

(1 + 2 + · · · + 2k−1)(L − ε) < 2kxn+k − xn < (1 + 2 + · · · + 2k−1)(L + ε),

which after division by 2k becomes
(
1 − 1

2k

)
(L − ε) < xn+k − 1

2k
xn <

(
1 − 1

2k

)
(L + ε).

Now choose k such that
∣∣ 1
2k xn

∣∣ < ε and
∣∣ 1
2k (L ± ε)

∣∣ < ε. Then for m ≥ n + k,

L − 3ε < xm < L + 3ε,

and since ε was arbitrary, this implies that (xn)n converges to L. �

Example. Prove that lim
n→∞

n
√

n = 1.

Solution. The sequence xn = n
√

n − 1 is clearly positive, so we only need to bound it from
above by a sequence converging to 0. For that we employ the binomial expansion

n = (1 + xn)
n = 1 +

(
n

1

)
xn +

(
n

2

)
x2n + · · · +

(
n

n − 1

)
xn−1

n + xn
n .

Forgetting all terms but the third in this expansion, we can write

n >

(
n

2

)
x2n,

which translates to xn <

√
2

n−1 , for n ≥ 2. The sequence
√

2
n−1 , n ≥ 2, converges to 0, and

hence by the squeezing principle, (xn)n itself converges to 0, as desired. �

The third example was published by the Romanian mathematician T. Lalescu in 1901 in
the Mathematics Gazette, Bucharest.

Example. Prove that the sequence an = n+1
√

(n + 1)! − n
√

n!, n ≥ 1, is convergent and find its
limit.
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Solution. The solution we present belongs to M. Ţena. It uses Stirling’s formula

n! = √
2πn
(n

e

)n · e
θn
12n , with 0 < θn < 1,

which will be proved in Section 3.2.12. Taking the nth root and passing to the limit, we obtain

lim
n→∞

n
n
√

n! = e.

We also deduce that

lim
n→∞

n + 1
n
√

n! = lim
n→∞

n + 1

n
· n

n
√

n! = e.

Therefore,

lim
n→∞

( n+1
√

(n + 1)!
n
√

n!
)n

= lim
n→∞

(
n(n+1)

√
((n + 1)!)n

(n!)n+1

)n

= lim
n→∞

(
n(n+1)

√
(n + 1)n

n!

)n

= lim
n→∞

(
n+1

√
n + 1

n
√

n!

)n

= lim
n→∞

(
n + 1

n
√

n!
) n

n+1

=
(
lim

n→∞
n + 1

n
√

n!
)limn→∞ n

n+1

= e.

Taking the nth root and passing to the limit, we obtain

lim
n→∞

n+1
√

(n + 1)!
n
√

n! = 1,

and hence

lim
n→∞

an
n
√

n! = lim
n→∞

n+1
√

(n + 1)!
n
√

n! − 1 = 0.

Thus, if we set

bn =
(
1 + an

n
√

n!
) n√n!

an

,

then lim
n→∞ bn = e. From the equality

( n+1
√

(n + 1)!
n
√

n!
)

= b
an

n
n√n!

n ,

we obtain

an = ln

( n+1
√

(n + 1)!
n
√

n!
)n

(ln bn)
−1

(
n

n
√

n!
)−1

.

The right-hand side is a product of three sequences that converge, respectively, to 1 = ln e,
1 = ln e, and 1

e . Therefore, the sequence (an)n converges to the limit 1
e . �

Apply these methods to the problems below.
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380. Find the limit of the sequence x0 = 0, x1 = 1, xn+1 = 1
2 (xn + xn−1).

381. Compute

lim
n→∞

∣∣∣sin (π√n2 + n + 1
)∣∣∣ .

382. Compute limn→∞{(√2 + 1)2n} where {a} denotes the fractional part of a, i.e. {a} =
a − �a� (for example the fractional part of 1.32 is 0.32).

383. Let k be a positive integer and μ a positive real number. Prove that

lim
n→∞

(
n

k

)(μ
n

)k (
1 − μ

n

)n−k = μk

eμ · k! .

384. Let (xn)n be a sequence of positive integers such that xxn = n4 for all n ≥ 1. It is true
that lim

n→∞ xn = ∞?

385. Let a and b be integers such that a · 2n + b is a perfect square for all positive integers
n. Prove that a = 0.

386. Let a, b, c be integers with a 
= 0 such that

an2 + bn + c

is a perfect square for any positive integer n. Prove that there exist integers x and y
such that a = x2, b = 2xy, c = y2.

387. Let (an)n be a sequence of real numbers with the property that for any n ≥ 2 there
exists an integer k, n

2 ≤ k < n, such that an = ak
2 . Prove that lim

n→∞ an = 0.

388. Given two natural numbers k and m let a1, a2, . . . , ak , b1, b2, . . . , bm be positive num-
bers such that

n
√

a1 + n
√

a2 + · · · + n
√

ak = n
√

b1 + n
√

b2 + · · · + n
√

bm,

for all positive integers n. Prove that k = m and a1a2 · · · ak = b1b2 · · · bm.

389. Prove that

lim
n→∞ n2

∫ 1
n

0
xx+1dx = 1

2
.

390. Let a be a positive real number and (xn)n≥1 a sequence of real numbers such that x1 = a
and

xn+1 ≥ (n + 2)xn −
n−1∑
k=1

kxk, for all n ≥ 1.

Find the limit of the sequence.
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391. Let (xn)n≥1 be a sequence of real numbers satisfying

xn+m ≤ xn + xm, n, m ≥ 1.

Show that lim
n→∞

xn
n exists and is equal to inf

n≥1

xn
n .

392. Compute

lim
n→∞

n∑
k=1

(
k

n2

) k
n2

+1

.

393. Let b be an integer greater than 5. For each positive integer n, consider the number

xn = 11 . . . 1︸ ︷︷ ︸
n−1

22 . . . 2︸ ︷︷ ︸
n

5,

written in base b. Prove that the following condition holds if and only if b = 10:

There exists a positive integer M such that for any integer n greater than M, the number
xn is a perfect square.

We exhibit two criteria for proving that a sequence is convergent without actually com-
puting the limit. The first is due to K. Weierstrass.

Weierstrass’ theorem. A monotonic bounded sequence of real numbers is convergent.

Below are some instances in which this theorem is used.

394. Prove that the sequence (an)n≥1 defined by

an = 1 + 1

2
+ 1

3
+ · · · + 1

n
− ln(n + 1), n ≥ 1,

is convergent.

395. Prove that the sequence

an =
√
1 +
√
2 +
√
3 + · · · + √

n, n ≥ 1,

is convergent.

396. Let (an)n be a sequence of real numbers that satisfies the recurrence relation

an+1 =
√

a2
n + an − 1, for n ≥ 1.

Prove that a1 /∈ (−2, 1).

397. Using the Weierstrass theorem, prove that any bounded sequence of real numbers has
a convergent subsequence.

Widely used in higher mathematics is the following convergence test.
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Cauchy’s criterion for convergence. A sequence (xn)n of points in R
n (or, in general, in a

complete metric space) is convergent if and only if for any ε > 0 there is a positive integer nε

such that whenever n, m ≥ nε, ‖xn − xm‖ < ε.

A sequence satisfying this property is called Cauchy, and it is the completeness of the
space (the fact that it has no gaps) that forces a Cauchy sequence to be convergent. This
property is what essentially distinguishes the set of real numbers from the rationals. In fact,
the set of real numbers can be defined as the set of Cauchy sequences of rational numbers,
with two such sequences identified if the sequence formed from alternating terms of the two
sequences is also Cauchy.

398. Let (an)n≥1 be a decreasing sequence of positive numbers converging to 0. Prove that
the series S = a1 − a2 + a3 − a4 + · · · is convergent.

399. Let a0, b0, c0 be real numbers. Define the sequences (an)n, (bn)n, (cn)n recursively by

an+1 = an + bn

2
, bn+1 = bn + cn

2
, cn+1 = cn + an

2
, n ≥ 0.

Prove that the sequences are convergent and find their limits.

400. Show that if the series
∑

an converges, where (an)n is a decreasing sequence, then
lim

n→∞ nan = 0.

The following fixed point theorem is a direct application of Cauchy’s criterion for con-
vergence.

Theorem. Let X be a closed subset of Rn (or in general of a complete metric space) and
f : X → X a function with the property that ‖f (x) − f (y)‖ ≤ c‖x − y‖ for any x, y ∈ X,
where 0 < c < 1 is a constant. Then f has a unique fixed point in X.

Such a function is called contractive. Recall that a set is closed if it contains all its limit
points.

Proof. Let x0 ∈ X . Recursively define the sequence xn = f (xn−1), n ≥ 1. Then

‖xn+1 − xn‖ ≤ c‖xn − xn−1‖ ≤ · · · ≤ cn‖x1 − x0‖.
Applying the triangle inequality, we obtain

‖xn+p − xn‖ ≤ ‖xn+p − xn+p−1‖ + ‖xn+p−1 − xn+p−2‖ + · · · + ‖xn+1 − xn‖
≤ (cn+p−1 + cn+p−2 + · · · + cn)‖x1 − x0‖
= cn(1 + c + · · · + cp−1)‖x1 − x0‖ ≤ cn

1 − c
‖x1 − x0‖.

This shows that the sequence (xn)n is Cauchy. Its limit x∗ satisfies f (x∗) = lim
n→∞ f (xn) =

lim
n→∞ xn = x∗; it is a fixed point of f . A secondfixed point y∗ would give rise to the contradiction
‖x∗ − y∗‖ = ‖f (x∗) − f (y∗)‖ ≤ c‖x∗ − y∗‖. Therefore, the fixed point is unique. �
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Use this theorem to solve the next three problems.

401. Two maps of the same region drawn to different scales are superimposed so that the
smaller map lies entirely inside the larger. Prove that there is precisely one point on
the small map that lies directly over a point on the large map that represents the same
place of the region.

402. Let t and ε be real numbers with |ε| < 1. Prove that the equation x − ε sin x = t has a
unique real solution.

403. Let c and x0 be fixed positive numbers. Define the sequence

xn = 1

2

(
xn−1 + c

xn−1

)
, for n ≥ 1.

Prove that the sequence converges and that its limit is
√

c.

3.1.4 More About Limits of Sequences

We continue our discussion about limits of sequences with three more topics: the method of
passing to the limit in a recurrence relation, the Cesàro-Stolz theorem, and Cantor’s nested
intervals theorem. We illustrate the first with the continued fraction expansion of the golden
ratio.

Example. Prove that
1 + √

5

2
= 1 + 1

1 + 1

1 + 1

1 + 1

1 + · · ·

.

Solution. A close look at the right-hand side shows that it is the limit of a sequence (xn)n

subject to the recurrence relation x1 = 1, xn+1 = 1 + 1
xn
. If this sequence has a finite limit L,

then passing to the limit on both sides of the recurrence relation yields L = 1 + 1
L . Because

L can only be positive, it must be equal to the golden ratio.
But does the limit exist? Investigating the first terms of the sequence we see that

x1 < x3 <
1 + √

5

2
< x4 < x2,

and we expect the general situation to be

x1 < x3 < · · · < x2n+1 < · · · <
1 + √

5

2
< · · · < x2n < x2n−2 < · · · < x2.

This can be proved by induction. Firstly, if x2n+1 < 1+√
5

2 , then

x2n+2 = 1 + 1

x2n+1
> 1 + 2

1 + √
5

= 1 +
√
5 − 1

2
= 1 + √

5

2
,
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and by a similar computation, if x2n+2 > 1+√
5

2 , then 2n+3 < 1+√
5

2 . Secondly,

xn+2 = 2 − 1

xn + 1
,

and the inequality xn+2 > xm is equivalent to x2n − xn − 1 < 0, which holds if and only

if xn < 1+√
5

2 . Now an inductive argument shows that (x2n+1)n is increasing and (x2n+2)n is
decreasing. Being bounded, both sequences are convergent by theWeierstrass theorem. Their
limits are positive, and both should satisfy the equation L = 2 − 1

L+1 . The unique positive
solution to this equation is the golden ratio, which is therefore the limit of both sequences,
and consequently the limit of the sequence (xn)n. �

Next, we present a famous identity of S.A. Ramanujan.

Example. Prove that √
1 + 2

√
1 + 3

√
1 + 4

√
1 + · · · = 3.

Solution. We approach the problem in more generality by introducing the function f :
[1,∞) → R,

f (x) =
√
1 + x

√
1 + (x + 1)

√
1 + (x + 2)

√
1 + · · ·.

Is this function well defined? Truncating to n square roots, we obtain an increasing sequence.
All we need to show is that this sequence is bounded from above. And it is, because

f (x) ≤
√

(x + 1)
√

(x + 2)
√

(x + 3) · · ·

≤
√
2x

√
3x

√
4x · · · ≤

√
2x

√
4x

√
8x · · ·

= 2
∑ k

2k x
∑ 1

2k ≤ 2
1
2+ 1

2+ 1
4+ 1

4+ 1
8+ 1

8+···x = 2x.

This shows, moreover, that f (x) ≤ 2x, for x ≥ 1. Note also that

f (x) ≥
√

x
√

x
√

x · · · = x.

For reasons that will become apparent, we weaken this inequality to f (x) ≥ 1
2 (x + 1). We

then square the defining relation and obtain the functional equation

(f (x))2 = xf (x + 1) + 1.

Combining this with
1

2
(x + 2) ≤ f (x + 1) ≤ 2(x + 2),

we obtain

x · x + 2

2
+ 1 ≤ (f (x))2 ≤ 2x(x + 2) + 1,
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which yields the sharper double inequality

1√
2
(x + 1) ≤ f (x) ≤ √

2(x + 1).

Repeating successively the argument, we find that

2− 1
2n (x + 1) ≤ f (x) ≤ 2

1
2n (x + 1), for n ≥ 1.

If in this double inequality we let n → ∞, we obtain x + 1 ≤ f (x) ≤ x + 1, and hence
f (x) = x + 1. The particular case x = 2 yields Ramanujan’s formula

√
1 + 2

√
1 + 3

√
1 + 4

√
1 + · · · = 3,

and we are done. �

Here are some problems of this kind.

404. Compute √
1 +
√
1 +
√
1 + √

1 + · · ·
405. Let a and b be real numbers. Prove that the recurrence sequence (xn)n defined by x1 > 0

and xn+1 = √
a + bxn, n ≥ 1, is convergent, and find its limit.

406. Let 0 < a < b be two real numbers. Define the sequences (an)n and (bn)n by a0 = a,
b0 = b, and

an+1 = √anbn, bn+1 = an + bn

2
, n ≥ 0.

Prove that the two sequences are convergent and have the same limit.

407. Prove that for n ≥ 2, the equation xn + x − 1 = 0 has a unique root in the interval
[0, 1]. If xn denotes this root, prove that the sequence (xn)n is convergent and find its
limit.

408. Compute up to two decimal places the number

√√√√
1 + 2

√
1 + 2

√
1 + · · · + 2

√
1 + 2

√
1969,

where the expression contains 1969 square roots.

409. Find the positive real solutions to the equation

√
x + 2

√
x + · · · + 2

√
x + 2

√
3x = x.
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410. Show that the sequence

√
7,

√
7 − √

7,

√
7 −
√
7 + √

7,

√
7 −
√
7 +
√
7 − √

7, . . .

converges, and evaluate its limit.

411. (a) What is

√
4

√
4
√
4
√
4···

?

(b) What is

√
2

√
2
√
2
√
2···

?

(c) For what numbers a > 1 is

aaaa···

a finite number? (In this problemwe are evaluating the limit of (xn)n defined recursively
by x1 = a, xn+1 = axn , n ≥ 1.)

There is a vocabulary for translating the language of derivatives to the discrete framework
of sequences. The first derivative of a sequence (xn)n, usually called the first difference, is the
sequence (	xn)n defined by 	xn = xn+1 − xn. The second derivative, or second difference,
is 	2xn = 	(	xn) = xn+2 − 2xn+1 + xn. A sequence is increasing if the first derivative is
positive; it is convex if the second derivative is positive. The Cesàro-Stolz theorem, which
we discuss below, is the discrete version of L’Hôpital’s theorem.

The Cesàro-Stolz theorem. Let (xn)n and (yn)n be two sequences of real numbers with (yn)n

strictly positive, increasing, and unbounded. If

lim
n→∞

xn+1 − xn

yn+1 − yn
= L,

then the limit
lim

n→∞
xn

yn

exists and is equal to L.

Proof. We apply the same ε − δ argument as for L’Hôpital’s theorem. We do the proof only
for L finite, the cases L = ±∞ being left to the reader.

Fix ε > 0. There exists n0 such that for n ≥ n0,

L − ε

2
<

xn+1 − xn

yn+1 − yn
< L + ε

2
.
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Because yn+1 − yn ≥ 0, this is equivalent to

(
L − ε

2

)
(yn+1 − yn) < xn+1 − xn <

(
L + ε

2

)
(yn+1 − yn).

We sum all these inequalities for n ranging between n0 andm−1, for somem. After cancelling
terms in the telescopic sums that arise, we obtain

(
L − ε

2

)
(ym − yn0) < xm − xn0 <

(
L + ε

2

)
(ym − yn0).

We divide by ym and write the answer as

L − ε

2
+
(

−L
yn0

ym
+ ε

2
· yn0

ym
+ xn0

ym

)
<

xm

ym
< L + ε

2
+
(

−L
yn0

ym
− ε

2
· yn0

ym
+ xn0

ym

)
.

Because yn → ∞. there exists n1 > n0 such that for m ≥ n1, the absolute values of the terms
in the parentheses are less than ε

2 . Hence for m ≥ n1,

L − ε <
xm

ym
< L + ε.

Since ε was arbitrary, this proves that the sequence

(
xn

yn

)
n

converges to L. �

Wecontinue this discussionwith an application toCesàromeans. By definition, theCesàro
means of a sequence (an)n≥1 are

sn = a1 + a2 + · · · + an

n
, n ≥ 1.

Theorem. If (an)n≥1 converges to L, then (sn)n≥1 also converges to L.

Proof. Apply the Cesàro-Stolz theorem to the sequences xn = a1 + a2 + · · ·+ an and yn = n,
n ≥ 1. �

The Cesàro-Stolz theorem can be used to solve the following problems.

412. If (un)n is a sequence of positive real numbers and if lim
n→∞

un+1

un
= u > 0, then

lim
n→∞

n
√

un = u.

413. Let p be a real number, p 
= −1. Compute

lim
n→∞

1p + 2p + · · · + np

np+1
.

414. Let 0 < x0 < 1 and xn+1 = xn − x2n for n ≥ 0. Compute lim
n→∞ nxn.

415. Let x0 ∈ [−1, 1] and xn+1 = xn − arcsin(sin2 xn) for n ≥ 0. Compute lim
n→∞

√
nxn.
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416. For an arbitrary number x0 ∈ (0, π) define recursively the sequence (xn)n by

xn+1 = sin xn, n ≥ 0.

Compute lim
n→∞

√
nxn.

417. Let f : R → R be a continuous function such that the sequence (an)n≥0 defined by

an =
∫ 1

0
f (n + x)dx

is convergent. Prove that the sequence (bn)n≥0, with

bn =
∫ 1

0
f (nx)dx

is also convergent.

418. Consider the polynomial

P(x) = amxm + am−1x
m−1 + · · · + a0, ai > 0, i = 0, 1, . . . , m.

Denote by An and Gn the arithmetic and, respectively, geometric means of the numbers
P(1), P(2), . . . , P(n). Prove that

lim
n→∞

An

Gn
= em

m + 1
.

419. Let k be an integer greater than 1. Suppose a0 > 0, and define

an+1 = an + 1
k
√

an
for n > 0.

Evaluate

lim
n→∞

ak+1
n

nk
.

We conclude the discussion about limits of sequences with a theorem of G. Cantor.

Cantor’s nested intervals theorem. Given a decreasing sequence of closed intervals I1 ⊃
I2 ⊃ · · · ⊃ In ⊃ · · · with lengths converging to zero, the intersection

∞⋂
n=1

In consists of exactly

one point.

This theorem is true in general if the intervals are replaced by closed and bounded subsets
of Rn with diameters converging to zero. As an application of this theorem we prove the
compactness of a closed bounded interval. A set of real numbers is called compact if from
every family of open intervals that cover the set one can choose finitely many that still cover
it.
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The Heine-Borel theorem. A closed and bounded interval of real numbers is compact.

Proof. Let the interval be [a, b] and assume that for some family of open intervals (Iα)α that
covers [a, b] one cannot choose finitely many that still cover it. We apply the dichotomic
(division into two parts) method. Cut the interval [a, b] in half. One of the two intervals thus
obtained cannot be covered by finitely many Iα’s. Call this interval J1. Cut J1 in half. One
of the newly obtained intervals will again not be covered by finitely many Iα’a. Call it J2.
Repeat the construction to obtain a decreasing sequence of intervals J1 ⊃ J2 ⊃ J3 ⊃ · · · , with
the length of Jk equal to b−a

2k and such that none of these intervals can be covered by finitely
many Iα’s. By Cantor’s nested intervals theorem, the intersection of the intervals Jk , k ≥ 1,
is some point x. This point belongs to an open interval Iα0 , and so an entire ε-neighborhood
of x is in Iα0 . But then Jk ⊂ Iα0 for k large enough, a contradiction. Hence our assumption
was false, and a finite subcover always exists. �

Recall that the same dichotomic method can be applied to show that any sequence in a
closed and bounded interval (and more generally in a compact metric space) has a convergent
subsequence. And if youfind the following problems demanding, rememberCharlieChaplin’s
words: “Failure is unimportant. It takes courage to make a fool of yourself.”

420. Let f : [a, b] → [a, b] be an increasing function. Show that there exists ξ ∈ [a, b]
such that f (ξ) = ξ .

421. For every real number x1 construct the sequence x1, x2, x3, . . . by setting

xn+1 = xn

(
xn + 1

n

)
for each n ≥ 1.

Prove that there exists exactly one value of x1 for which 0 < xn < xn+1 < 1 for every n.

422. Given a sequence (an)n such that for any γ > 1 the subsequence (a�γ n�)n converges
to zero, does it follow that the sequence (an)n itself converges to zero?

423. Let f : (0,∞) → R be a continuous function with the property that for any x > 0,

lim
n→∞ f (nx) = 0.

Prove that lim
x→∞ f (x) = 0.

3.1.5 Series

A series is a sum ∞∑
n=1

an = a1 + a2 + · · · + an + · · ·

The first question asked about a series is whether it converges. Convergence can be decided
using Cauchy’s ε − δ criterion, or by comparing it with another series. For comparison, two
families of series are most useful:
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(i) geometric series
1 + x + x2 + · · · + xn + · · · ,

which converge if |x| < 1 and diverge otherwise, and

(ii) p-series

1 + 1

2p
+ 1

3p
+ · · · + 1

np
+ · · · ,

which converge if p > 1 and diverge otherwise.

The p-series corresponding to p = 1 is the harmonic series. Its truncation to the nth term
approximates ln n. Let us use the harmonic series to answer the following question.

Example. Does the series
∞∑

n=1

| sin n|
n

converge?

Solution. The inequality | sin x| >

√
2 − √

2

2
holds if and only if

1

8
<
{ x

π

}
<

7

8
, where {x}

denotes the fractional part of x (that is x − �x�). Because 1

4
<

1

π
, it follows that for any n,

either | sin n| or | sin(n + 1)| is greater than
√
2 − √

2

2
. Therefore

| sin n|
n

+ | sin(n + 1)|
n + 1

≥
√
2 − √

2

2
· 1

n + 1
.

Adding up these inequalities for all odd numbers n, we obtain

∞∑
n=1

| sin n|
n

≥
√
2 − √

2

2

∞∑
n=1

1

2n
=
√
2 − √

2

4

∞∑
n=1

1

n
= ∞.

Hence the series diverges. �

In fact, the so-called equidistribution criterion implies that if f : R → R is a continuous

periodic function with irrational period and if
∑

n

|f (n)|
n

< ∞, then f is identically zero.

The comparison with a geometric series gives rise to d’Alembert’s ratio test:
∞∑

n=0

an

converges if lim sup
∣∣∣ an+1

an

∣∣∣ < 1 and diverges if lim inf
n

∣∣∣ an+1
an

∣∣∣ > 1. Here is a problem of P.

Erdös from the American Mathematical Monthly that applies this test among other things.

Example. Let (nk)k≥1 be a strictly increasing sequence of positive integers with the property
that

lim
k→∞

nk

n1n2 · · · nk−1
= ∞.

Prove that the series
∑
k≥1

1

nk
is convergent and that its sum is an irrational number.
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Solution. The relation from the statement implies in particular that nk+1 ≥ 3nk for k ≥ 3. By

the ratio test the series
∑

k

1

nk
is convergent, since the ratio of two consecutive terms is less

than or equal to 1
3 .

By way of contradiction, suppose that the sum of the series is a rational number
p

q
. Using

the hypothesis we can find k ≥ 3 such that

nj+1

n1n2 · · · nj
≥ 3q, if j ≥ k.

Let us start with the obvious equality

p(n1n2 · · · nk) = q(n1n2 · · · nk)

∞∑
j=1

1

nj
.

From it we derive

p(n1n2 · · · nk) −
k∑

j=1

qn1n2 · · · nk

nj
=
∑
j>k

qn1n2 · · · nk

nj
.

Clearly, the left-hand side of this equality is an integer. For the right-hand side, we have

0 <
∑
j>k

qn1n2 · · · nk

nj
≤ qn1n2 · · · nk

nk+1
+ qn1n2 · · · nk

3nk+1
+ · · · ≤ 1

3
+ 1

9
+ 1

27
+ · · · = 1

2
.

Here we used the fact that
n1n2 · · · nk

nk+1
≤ 1

3q
and that nj+1 ≥ 3nj, for j ≥ k and k sufficiently

large. This shows that the right-hand side cannot be an integer, a contradiction. It follows
that the sum of the series is irrational. �

We conclude our list of examples with a combinatorial proof of the fact that the harmonic
series diverges. The lemma below, and the observation that it can be used to check the
divergence of the harmonic series, have appeared in the Russian journal Kvant (Quantum).

Example. If a1, a2, a3, . . . , is a sequence of positive numbers such that for every n, an <

an+1 + an2 , then
∑

an diverges. Consequently, the harmonic series

1 + 1

2
+ 1

3
+ 1

4
+ · · ·

diverges.

Solution. We rely on the following result.

Lemma. A triangular tableau is constructed as follows: the top row contains a natural
number n. We pass from one row to the next by writing below a number k the numbers k2 to
the left and k + 1 to the right. Then the numbers on every row are distinct.
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Proof. Assume that the mth row is the first for which two numbers are equal. Let p and q be
the two numbers that are equal. Because the previous row contains no equal numbers, p and
q were obtained from the previous row by different procedures, say p = r2 and q = s + 1.
Then s = r2 − 1, with r, s in the m − 1st row. Let us examine how s was obtained from n.
Assume somewhere we performed a squaring of a number, and let k be the last number for
which this happened. Because s < r2 − 1, k ≤ r − 1. But s − k2 ≥ s − (r − 1)2 ≥ 2r − 2.
Hence after k we had to add 2r − 2 units or more, so s was obtained from n in 2r − 1 steps.
Consequently, m − 2 ≥ 2r − 1. But the numbers in the mth row are greater than or equal to
n + m − 1, hence r ≥ n + 2r, which is a contradiction. It follows that to get s no squarings
were performed. The same is true for q = s + 1, so q is the left-most number of its row. But
this is makes the equality p = q impossible. �

With the lemma at hand, let a1, a2, a3, . . . , be a sequence of positive numbers such that
for every n, an < an+1 + an2 . In the sum

∑N
n=1 an we can replace each an by a larger number

of the form
∑

ap over the elements p in the mth row of the above tableau. By spreading m’s
apart, we can make sure that there are no overlaps between the terms used for an and those
for an′ . We can also choose m’s to exceed N . Consequently

N∑
n=1

an ≤
∞∑

n=N+1

an,

which implies that the series diverges. And because

1

n
<

1

n + 1
+ 1

n2
,

the harmonic series diverges. �

424. Show that the series

1

1 + x
+ 2

1 + x2
+ 4

1 + x4
+ · · · + 2n

1 + x2n + · · ·

converges when |x| > 1, and in this case find its sum.

425. For what positive x does the series

(x − 1) + (
√

x − 1) + ( 3
√

x − 1) + · · · + ( n
√

x − 1) + · · ·

converge?

426. Let a1, a2, . . . , an, . . . be nonnegative numbers. Prove that
∞∑

n=1

an < ∞ implies

∞∑
n=1

√
an+1an < ∞.
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427. Let S = {x1, x2, . . . , xn, . . .} be the set of all positive integers that do not contain the
digit 9 in their decimal representation. Prove that

∞∑
n=1

1

xn
< 80.

428. Suppose that (xn)n is a sequence of real numbers satisfying

xn+1 ≤ xn + 1

n2
, for all n ≥ 1.

Prove that lim
n→∞ xn exists.

429. Does the series
∞∑

n=1

sin π
√

n2 + 1 converge?

430. (a) Does there exist a pair of divergent series
∞∑

n=1

an,
∞∑

n=1

bn, with a1 ≥ a2 ≥ a3 ≥ · · · ≥

0 and b1 ≥ b2 ≥ b3 ≥ · · · ≥ 0, such that the series
∑

n

min(an, bn) is convergent?

(b) Does the answer to this question change if we assume additionally that

bn = 1

n
, n = 1, 2, . . .?

431. Given a sequence (xn)n with x1 ∈ (0, 1) and xn+1 = xn − nx2n for n ≥ 1, prove that the

series
∞∑

n=1

xn is convergent.

432. Is the number ∞∑
n=1

1

2n2

rational?

433. Let (an)n≥0 be a strictly decreasing sequence of positive numbers, and let z be a complex
number of absolute value less than 1. Prove that the sum

a0 + a1z + a2z
2 + · · · + anzn + · · ·

is not equal to zero.

434. Let w be an irrational number with 0 < w < 1. Prove that w has a unique convergent
expansion of the form

w = 1

p0
− 1

p0p1
+ 1

p0p1p2
− 1

p0p1p2p3
+ · · · ,

where p0, p1, p2, . . . are integers, 1 ≤ p0 < p1 < p2 < · · · .
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435. The number q ranges over all possible powers with both the base and the exponent
positive integers greater than 1, assuming each such value only once. Prove that

∑
q

1

q − 1
= 1.

436. Prove that for any n ≥ 2, ∑
p≤n, p prime

1

p
> ln ln n − 1.

Conclude that the sum of the reciprocals of all prime numbers is infinite.

3.1.6 Telescopic Series and Products

We mentioned earlier the idea of translating notions from differential and integral calculus to
sequences. For example, the derivative of (xn)n is the sequence whose terms are xn+1 − xn,
n ≥ 1, while the definite integral is the sum x1+x2+x3+· · · TheLeibniz-Newton fundamental
theorem of calculus

∫ b

a
f (t)dt = F(b) − F(a), where F ′(t) = f (t),

becomes the telescopic method for summing a series

n∑
k=1

ak = bn+1 − b1, where ak = bk+1 − bk, k ≥ 1.

As in the case of integrals, when applying the telescopic method to a series, the struggle is
to find the “antiderivative” of the general term. But compared to the case of integrals, here
we lack an algorithmic way. This is what makes such problems attractive for mathematics
competitions. A simple example that comes to mind is the following.

Example. Find the sum

1√
1 + √

2
+ 1√

2 + √
3

+ · · · + 1√
n + √

n + 1
.

Solution. The “antiderivative” of the general term of the sum is found by rationalizing the
denominator:

1√
k + √

k + 1
=

√
k + 1 − √

k

k + 1 − k
= √

k + 1 − √
k.

The sum is therefore equal to

(
√
2 − √

1) + (
√
3 − √

2) + · · · + (
√

n + 1 − √
n) = √

n + 1 − 1. �

Not all problems are so simple, as the next two examples show.
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Example. Let a0 = 1, a1 = 3, an+1 = a2
n + 1

2
, n ≥ 1. Prove that

1

a0 + 1
+ 1

a1 + 1
+ · · · + 1

an + 1
+ 1

an+1 − 1
= 1, for all n ≥ 1.

Solution. We have

ak+1 − 1 = a2
k − 1

2
,

so
1

ak+1 − 1
= 1

ak − 1
− 1

ak + 1
, for k ≥ 1.

This allows us to express the terms of the sum from the statement as “derivatives”:

1

ak + 1
= 1

ak − 1
− 1

ak+1 − 1
, for k ≥ 1.

Summing up these equalities for k = 1, 2, . . . , n yields

1

a1 + 1
+ · · · + 1

an + 1
= 1

a1 − 1
− 1

a2 − 1
+ 1

a2 − 1
− 1

a3 − 1
+ · · ·

+ 1

an − 1
− 1

an+1 − 1
= 1

2
− 1

an+1 − 1
.

Finally, add
1

a0 + 1
+ 1

an+1 − 1
to both sides to obtain the identity from the statement. �

Example. Express
49∑

n=1

1√
n + √

n2 − 1

as a + b
√
2 for some integers a and b.

Solution. We have

1√
n + √

n2 − 1
= 1√√√√

(√
n + 1

2
+
√

n − 1

2

)2
= 1√

n + 1

2
+
√

n − 1

2

=

√
n + 1

2
−
√

n − 1

2
n + 1

2
− n − 1

2

=
√

n + 1

2
−
√

n − 1

2
.

Hence the sum from the statement telescopes to
√
49 + 1

2
+
√
48 + 1

2
−
√
1

2
− 0 = 5 + 7√

2
− 1√

2
= 5 + 3

√
2. �
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Apply the telescopic method to the following problems.

437. Prove the identity
n∑

k=1

(k2 + 1)k! = n(n + 1)!

438. Let ζ be a root of unity. Prove that

ζ−1 =
∞∑

n=0

ζ n(1 − ζ )(1 − ζ 2) · · · (1 − ζ n),

with the convention that the 0th term of the series is 1.

439. For a nonnegative integer k, define Sk(n) = 1k + 2k + · · · + nk . Prove that

1 +
r−1∑
k=0

(
r

k

)
Sk(n) = (n + 1)r .

440. Let

an = 4n + √
4n2 − 1√

2n + 1 + √
2n − 1

, for n ≥ 1.

Prove that a1 + a2 + · · · + a40 is a positive integer.

441. Prove that
n∑

k=1

(−1)k+1

12 − 22 + 32 − · · · + (−1)k+1k2
= 2n

n + 1
.

442. Prove that
9999∑
n=1

1

(
√

n + √
n + 1)( 4

√
n + 4

√
n + 1)

= 9.

443. Let an =
√
1 +
(
1 + 1

n

)2
+
√
1 +
(
1 − 1

n

)2
, n ≥ 1. Prove that

1

a1
+ 1

a2
+ · · · + 1

a20

is a positive integer.

444. Evaluate in closed form
∞∑

m=0

∞∑
n=0

m!n!
(m + n + 2)! .
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445. Let an = 3n + √
n2 − 1 and bn = 2(

√
n2 − n + √

n2 + n), n ≥ 1. Show that
√

a1 − b1 +
√

a2 − b2 + · · · +
√

a49 − b49 = A + B
√
2,

for some integers A and B.

446. Evaluate in closed form
n∑

k=0

(−1)k(n − k)!(n + k)!

447. Let a0 = 1994 and an+1 = a2
n

an + 1
for each nonnegative integer n. Prove that for

0 ≤ n ≤ 998, the number 1994 − n is the greatest integer less than or equal to an.

448. Fix k a positive integer and define the sequence

an =
⌊
(k +

√
k2 + 1)n +

(
1

2

)n⌋
, n ≥ 0.

Prove that ∞∑
n=1

1

an−1an+1
= 1

8k2
.

The telescopic method can be applied to products as well. Within the first, relatively easy,
problem, the reader will recognize in disguise the Fermat numbers 22

n + 1, n ≥ 1.

Example. Define the sequence (an)n by a0 = 3, and an+1 = a0a1 · · · an + 2, n ≥ 0. Prove
that

an+1 = 2(a0 − 1)(a1 − 1) · · · (an − 1) + 1, for all n ≥ 0.

Solution. The recurrence relation gives a0a1 . . . ak−1 = ak − 2, k ≥ 1. Substitute this in the
formula for ak+1 to obtain ak+1 = (ak −2)ak +2, which can be written as ak+1−1 = (ak −1)2.
And so

ak+1 − 1

ak − 1
= ak − 1.

Multiplying these relations for k = 0, 1, . . . , n, we obtain

an+1 − 1

an − 1
· an − 1

an−1 − 1
· · · a1 − 1

a0 − 1
= (an − 1)(an−1 − 1) · · · (a0 − 1).

Since the left-hand side telescopes, we obtain

an+1 − 1

a0 − 1
= (a0 − 1)(a1 − 1) · · · (an − 1),

and the identity follows. �

A more difficult problem is the following.
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Example. Compute the product
∞∏

n=1

(
1 + (−1)n

F2
n

)
,

where Fn is the nth Fibonacci number.

Solution. Recall that the Fibonacci numbers satisfy the Cassini identity

Fn+1Fn−1 − F2
n = (−1)n.

Hence

∞∏
n=1

(
1 + (−1)n

F2
n

)
= lim

N→∞

N∏
n=1

F2
n + (−1)n

F2
n

= lim
N→∞

N∏
n=1

Fn−1

Fn
· Fn+1

Fn

= lim
N→∞

F0FN+1

F1FN
= lim

N→∞
FN+1

FN
.

Because of the Binet formula

Fn = 1√
5

⎡
⎣
(
1 + √

5

2

)n+1

−
(
1 − √

5

2

)n+1
⎤
⎦ , for n ≥ 0,

the above limit is equal to
1 + √

5

2
. �

449. Compute the product (
1 − 4

1

)(
1 − 4

9

)(
1 − 4

25

)
· · ·

450. Let x be a positive number less than 1. Compute the product

∞∏
n=0

(1 + x2
n
).

451. Let x be a real number. Define the sequence (xn)n≥1 recursively by x1 = 1 and xn+1 =
xn + nan for n ≥ 1. Prove that

∞∏
n=1

(
1 − xn

xn+1

)
= e−x.
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3.2 Continuity, Derivatives, and Integrals

3.2.1 Functions

Before starting our discussion on differentiation and integration, let us warm ourselves up
with some general problems about functions. We begin with an example given at a Romanian
Team Selection Test for the International Mathematical Olympiad in 1982, proposed by S.
Rădulescu and I. Tomescu.

Example. Let f : R → R, a function with the property that

f (f (x)) = x9

(x2 + 1)(x6 + x4 + 2x2 + 1)
,

for all x ∈ R. Show that there is a unique point a such that f (a) = a.

Solution. If a ∈ R is such that f (a) = a, then f (f (a)) = f (a) = a, so

a9

(a2 + 1)(a6 + a4 + 2a2 + 1)
= a.

This can be rewritten as a9 = a9 + 2a7 + 3a5 + 3a3 + a, which is equivalent to

a(2a6 + 3a4 + 3a2 + 1) = 0.

The second factor is strictly positive, so this implies a = 0. Let us show that 0 is indeed a
fixed point of f . Let f (0) = b. Then f (b) = f (f (0)) = 0. It follows that f (f (b)) = f (0) = b.
But the above argument showed that f (f (x)) has a unique fixed point, namely x = 0. Hence
b = 0, and we are done. �

Here is a second example.

Example. Solve in real numbers the system

3a = (b + c + d)3

3b = (c + d + a)3

3c = (d + a + b)3

3d = (a + b + c)3.

Solution. Taking the cube root of each equation, we deduce that

a + 3
√
3a = b + 3

√
3b = c + 3

√
3c = d + 3

√
3d = a + b + c + d.

Define the function f (x) = x + 3
√
3x. This function is increasing, in particular injective.

Hence a = b = c = d. From 3a = (3a)3 we obtain a = 0 or a = ± 1
3 . �

452. Let a, b, c be positive real numbers. Solve the equation
√

a + bx + √
b + cx + √

c + ax = √
b − ax + √

c − bx + √
a − cx
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453. Prove that for all positive integers n,

n
√
3 + n

√
7 >

n
√
4 + n

√
5.

454. Does there exist a function f : R → R such that the equation f (f (x)) = x has exactly
5102 solutions and the equation f (x) = x has exactly 2015 solutions?

455. Give an example of a function f : R → Rwhose graph is invariant under a 90◦ rotation
about the origin.

456. Does there exist a function f : R → R such that

(f ◦ f ◦ f )(x) = x3 and (f ◦ f ◦ f ◦ f ◦ f )(x) = x5,

for every x ∈ R?

457. Find all real numbers x and y that are solutions to the system of equations

3x − 3y = 2y

9x − 6y = 19y.

458. Given a real number a ∈ (0, 1) find all positive real solutions to the equation

xax = axa
.

459. Find all positive real solutions to the system of equations

xy = 8, yz = 81, zx = 16.

460. Let n be an odd integer greater than 1. Find the real solutions to the equation

n
√

xn + 1 + n
√
1 − (x + 1)n = 1.

461. Let a, b, c be real numbers that satisfy 4ac ≤ (b−1)2, and let f : R → R be a function
that satisfies

f (ax2 + bx + c) = a(f (x))2 + bf (x) + c, for all x ∈ R.

Prove that the equation f (f (x)) = x has at least one solution.

462. Let ABC be a triangle with side-lengths a, b, c. Show that if a4 = b4 + c4 then the
measure of the angle ∠A is greater than 72◦.
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3.2.2 Limits of Functions

Among the various ways to find the limit of a function, the most basic is the definition itself.

Definition. For x0 an accumulation point of the domain of a function f , we say that lim
x→x0

f (x) = L if for every neighborhood V of L, there is a neighborhood U of x0 such that
f (U\{x0}) ⊂ V .

This definition is, however, seldom used in applications. Instead, it is more customary
to use operations with limits, the squeezing principle (if f (x) ≤ g(x) ≤ h(x) for all x and
lim

x→x0
f (x) = lim

x→x0
h(x) = L, then lim

x→x0
g(x) = L), continuity, or L’Hôpital’s theorem, to be

discussed later.

Example. Compute

lim
x→∞

(√
x +
√

x + √
x − √

x

)
.

Solution. The usual algorithm is to multiply and divide by the conjugate to obtain

lim
x→∞

(√
x +
√

x + √
x − √

x

)
= lim

x→∞
x +√x + √

x − x√
x +√x + √

x + √
x

= lim
x→∞

√
x + √

x√
x +√x + √

x + √
x

= lim
x→∞

√
1 +
√
1

x√√√√
1 +
√
1

x
+
√

1

x3
+ 1

= 1

2
. �

And now an example of type 1∞.

Example. Let a1, a2, . . . , an be positive real numbers. Prove that

lim
x→0

(
ax
1 + ax

2 + · · · + ax
n

n

) 1
x

= n
√

a1a2 · · · an.

Solution. First, note that

lim
x→0

ax − 1

x
= ln a.

Indeed, the left-hand side can be recognized as the derivative of the exponential at 0. Or to
avoid a logical vicious circle, we can argue as follows: let ax = 1 + t, with t → 0. Then

x = ln(1 + t)

ln a
, and the limit becomes

lim
t→0

t ln a

ln(1 + t)
= lim

t→0

ln a

ln(1 + t)1/t
= ln a

ln e
= ln a.
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Let us return to the problem. Because the limit is of the form 1∞, it is standard to write it
as

lim
x→0

(
1 + ax

1 + ax
2 + · · · + ax

n − n

n

) n
ax
1+ax

2+···+ax
n−n

· ax
1+ax

2+···+ax
n−n

nx

.

Using the fact that lim
t→0

(1 + t)1/t = e, we find this to be equal to

exp

[
lim
x→0

(
ax
1 + ax

2 + · · · + ax
n − n

nx

)]
= exp

[
1

n
lim
x→0

(
ax
1 − 1

x
+ ax

2 − 1

x
+ · · · + ax

n − 1

x

)]

= exp

[
1

n
(ln a1 + ln a2 + · · · + ln an)

]
= n

√
a1a2 . . . an,

the desired answer. �

We continue with a problem of theoretical flavor that requires ε − δ argument. Written
by M. Becheanu it was given at a Romanian competition in 2004.

Example. Let a ∈ (0, 1) be a real number and f : R → R a function that satisfies the following
conditions:

(i) lim
x→∞ f (x) = 0;

(ii) lim
x→∞

f (x) − f (ax)

x
= 0.

Show that lim
x→∞

f (x)

x
= 0.

Solution. The second condition reads: for any ε > 0, there exists δ > 0 such that if x ∈
(−δ, δ) then |f (x) − f (ax)| ≤ ε|x|. Applying the triangle inequality, we find that for all
positive integers n and all x ∈ (−δ, δ),

|f (x) − f (anx)| ≤ |f (x) − f (ax)| + |f (ax) − f (a2x)| + · · · + |f (an−1x) − f (anx)|
< ε|x|(1 + a + a2 + · · · + an−1) = ε

1 − an

1 − a
|x| ≤ ε

1 − a
|x|.

Taking the limit as n → ∞, we obtain

|f (x)| ≤ ε

1 − a
|x|.

Since ε > 0 was arbitrary, this proves that lim
x→∞

f (x)

x
= 0. �

463. Find the real parameters m and n such that the graph of the function f : R → R,

f (x) = 3
√
8x3 + mx2 − nx

has the horizontal asymptote y = 1.
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464. Does lim
x→π/2

(sin x)
1

cos x exist?

465. For two positive integers m and n, compute

lim
x→0

m
√
cos x − n

√
cos x

x2
.

466. Does there exist a nonconstant function f : (1,∞) → R satisfying the relation

f (x) = f

(
x2 + 1

2

)
for all x > 1

and such that lim
x→∞ f (x) exists?

467. Let f : (0,∞) → (0,∞) be an increasing function with lim
t→∞

f (2t)
f (t) = 1. Prove that

lim
t→∞

f (mt)

f (t)
= 1 for any m > 0.

468. Let f (x) =
n∑

k=1

ak sin kx, with a1, a2, . . . , an ∈ R, n ≥ 1. Prove that if f (x) ≤ | sin x|
for all x ∈ R, then ∣∣∣∣∣

n∑
k=1

kak

∣∣∣∣∣ ≤ 1.

3.2.3 Continuous Functions

A function f is continuous at x0 if it has limit at x0 and this limit is equal to f (x0). A function
that is continuous at every point of its domain is simply called continuous.

Example. Find all continuous functions f : R → R satisfying f (0) = 1 and

f (2x) − f (x) = x, for all x ∈ R.

Solution. Write the functional equation as

f (x) − f
(x

2

)
= x

2
,

then iterate

f
(x

2

)
− f
(x

4

)
= x

4
,

f
(x

4

)
− f
(x

8

)
= x

8
,

. . .

f
( x

2n−1

)
− f
( x

2n

)
= x

2n
.
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Summing up, we obtain

f (x) − f
( x

2n

)
= x

(
1

2
+ 1

4
+ · · · + 1

2n

)
,

which, when n tends to infinity, becomes f (x) − 1 = x. Hence f (x) = x + 1 is the (unique)
solution. �

We will now present the spectacular example of a continuous curve that covers a square
completely. A planar curve φ(t) = (x(t), y(t)) is called continuous if both coordinate func-
tions x(t) and y(t) depend continuously on the parameter t.

Peano’s theorem. There exists a continuous surjection φ : [0, 1] → [0, 1] × [0, 1].

Proof. G. Peano found an example of such a function in the early twentieth century. The
curve presented below was constructed later by H. Lebesgue.

The construction of this “Peano curve” uses the Cantor set. This is the setC of all numbers
in the interval [0, 1] that can be written in base 3 with only the digits 0 and 2. For example,
0.1 is in C because it can also be written as 0.0222…, but 0.101 is not. The Cantor set is
obtained by removing from [0, 1] the interval ( 13 , 2

3

)
, then

(
1
9 ,

2
9

)
and
(
7
9 ,

8
9

)
, then successively

from each newly formed closed interval an open interval centered at its midpoint and 1
3 of its

size (Figure 19). The Cantor set is a fractal: each time we cut a piece of it and magnify it, the
piece resembles the original set.

Figure 19

Next, we define a function φ : C → [0, 1]× [0, 1] in the following manner. For a number
written in base 3 as 0.a1a2 . . . an . . .with only the digits 0 and 2 (hence in theCantor set), divide
the digits by 2, then separate the ones in even positions from those in odd positions. Explicitly,
if bn = an

2 , n ≥ 1, construct the pair (0.b1b3b5 . . . , 0.b2b4b6 . . .). This should be interpreted
as a point in [0, 1] × [0, 1] with coordinates written in base 2. Then φ(0.a1a2a3a4 . . .) =
(0.b1b3 . . . , 0.b2b4 . . .). The function φ is clearly onto. Is it continuous?

First, what does continuity mean in this case? It means that whenever a sequence (xn)n in
C converges to a point x ∈ C, the sequence (φ(xn))n should converge to φ(x). Note that since
the complement of C is a union of open intervals, C contains all its limit points. Moreover,
the Cantor set has the very important property that a sequence (xn)n of points in it converges
to x ∈ C if and only if the base-3 digits of xn successively become equal to the digits of x. It is
essential that the base-3 digits of a number in C can equal only 0 or 2, so that the ambiguity of
the ternary expansion is eliminated. This fundamental property of the Cantor set guarantees
the continuity of φ.

The function φ is extended linearly over each open interval that was removed in the
process of constructing C, to obtain a continuous surjection φ : [0, 1] → [0, 1]× [0, 1]. This
concludes the proof of the theorem. �
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To visualize this Peano curve, consider the “truncations” of the Cantor set

C1 =
{
0,

1

3
,
2

3
, 1

}
, C2 =

{
0,

1

9
,
2

9
,
1

3
,
2

3
,
7

9
,
8

9
, 1

}
,

C3 =
{
0,

1

27
,
2

27
,
1

9
,
2

9
,
7

27
,
8

27
,
1

3
,
2

3
,
19

27
,
7

9
,
8

9
,
25

27
,
26

27
, 1

}
,

C4 =
{
0,

1

81
,
2

81
,
1

27
,
2

27
,
7

81
,
8

81
,
1

9
,
2

9
,
19

81
,
20

81
,
7

27
,
25

81
,
26

81
,
1

3
,
2

3
,

55

81
,
56

81
,
19

27
,
20

27
,
61

81
,
62

81
,
7

9
,
8

9
,
73

81
,
74

81
,
25

27
,
26

27
,
79

81
,
80

81
, 1

}
, . . .

and define φn : Cn → [0, 1] × [0, 1], n ≥ 1, as above, and then extend linearly. This gives
rise to the curves from Figure 20. The curve φ is their limit. It is a fractal: if we cut the
unit square into four equal squares, the curve restricted to each of these squares resembles the
original curve.

n=1 n=2 n=3 n=4

Figure 20

Here is an easy application of continuity.

Example. Let K be a closed, bounded set in R (or more generally, a compact set in some
metric space). If f : K → K has the property that |f (x) − f (y)| < |x − y| for all x 
= y, then
f has a unique fixed point.

Solution. It is not hard to see that f is continuous. Let g(x) = |f (x)−x|. Then g is continuous,
so g has a minimum a on K . Assume that a 
= 0. Then, if x0 ∈ K is such that g(x0) = a, we
have

g(f (x0)) = |f (f (x0)) − f (x0)| < |f (x0) − x0| = g(x0),

which contradicts minimality. Thus the minimum of g is 0, showing that f has a fixed point.
The fixed point is unique since f (x) = x and f (y) = y yields |x − y| = |f (x)− f (y)| < |x − y|,
impossible. �

469. Let f : R → R be a continuous function satisfying f (x) = f (x2) for all x ∈ R. Prove
that f is constant.

470. Does there exist a continuous function f : [0, 1] → R that assumes every element of
its range an even (finite) number of times?

471. Let f (x) be a continuous function defined on [0, 1] such that
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(i) f (0) = f (1) = 0;

(ii) 2f (x) + f (y) = 3f

(
2x + y

3

)
for all x, y ∈ [0, 1].

Prove that f (x) = 0 for all x ∈ [0, 1].
472. Let f : R → R be a continuous function with the property that

lim
h→0+

f (x + 2h) − f (x + h)

h
= 0, for all x ∈ R.

Prove that f is constant.

473. Let a and b be real numbers in the interval
(
0, 1

2

)
and let f be a continuous real-valued

function such that
f (f (x)) = af (x) + bx, for all x ∈ R.

Prove that f (0) = 0.

474. Let f : [0, 1] → R be a continuous function. Prove that the series
∞∑

n=1

f (xn)

2n
is

convergent for every x ∈ [0, 1]. Find a function f satisfying

f (x) =
∞∑

n=1

f (xn)

2n
, for all x ∈ [0, 1].

475. Prove that there exists a continuous surjective function ψ : [0, 1] → [0, 1] × [0, 1]
that takes each value infinitely many times.

476. Give an example of a continuous function on an interval that is nowhere differentiable.

3.2.4 The Intermediate Value Property

A real-valued function f defined on an interval is said to have the intermediate value property
(also known as the Darboux property) if for every a < b in the interval and for every λ between
f (a) and f (b), there exists c between a and b such that f (c) = λ. Equivalently, a real-valued
function has the intermediate property if it maps intervals to intervals. The higher-dimensional
analogue requires the function to map connected sets to connected sets. Continuous functions
and derivatives of functions are known to have this property, although the class of functions
with the intermediate value property is considerably larger.

Here is a problem from the 1982 Romanian Mathematical Olympiad, proposed by M.
Chiriţă.

Example. Let f : [0, 1] → R be a continuous function with the property that∫ 1

0
f (x)dx = π

4
.

Prove that there exists x0 ∈ (0, 1) such that

1

1 + x0
< f (x0) <

1

2x0
.
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Solution. Note that ∫ 1

0

1

1 + x2
dx = π

4
.

Consequently, the integral of the function g(x) = f (x) − 1

1 + x2
on the interval [0, 1] is

equal to 0. If g(x) is identically 0, choose x0 to be any number between 0 and 1. Otherwise,
g(x) assumes both positive and negative values on this interval. Being continuous, g has the
intermediate value property, so there is some x0 ∈ (0, 1) for which g(x0) = 0. We have thus
found x0 ∈ (0, 1) such that f (x0) = 1

1+x20
. The double inequality from the statement follows

from 2x0 < 1 + x20 < 1 + x0, which clearly holds since on the one hand, x20 − 2x0 + 1 =
(x0 − 1) > 0, and on the other, x20 < x0. �

Example. Prove that every continuous mapping of a circle into a line carries some pair of
diametrically opposite points to the same point.

Solution. Yes, this problem uses the intermediate value property, or rather the more general
property that the image through a continuous map of a connected set is connected. The circle
is connected, so its imagemust be an interval. This follows from amore elementary argument,
if we think of the circle as the gluing of two intervals along their endpoints. The image of
each interval is another interval, and the two images overlap, forming an interval.

Identify the circle with the set S1 = {z ∈ C | |z| = 1}. If f : S1 → R is the continuous
mapping from the statement, then ψ : S1 → R, ψ(z) = f (z) − f (−z) is also continuous (−z
is diametrically opposite to z).

Pick z0 ∈ S1. If ψ(x0) = 0, then z0 and −z0 map to the same point on the line. Otherwise,

ψ(−z0) = f (−z0) − f (z) = −ψ(z0).

Hence ψ takes a positive and a negative value, and by the intermediate value property it must
have a zero. The property is proved. A more difficult theorem of Borsuk and Ulam states that
any continuous map of the sphere into the plane sends two antipodal points on the sphere to
the same point in the plane. A nice interpretation of this fact is that at any time there are two
antipodal points on earth with the same temperature and barometric pressure.

We conclude our list of examples with a surprising fact discovered by Lebesgue.

Theorem. There exists a function f : [0, 1] → [0, 1] that has the intermediate value property
and is discontinuous at every point.

Proof. Lebesgue’s function acts like an automaton. The value at a certain point is produced
from information read from the digital expansion of the variable.

The automaton starts acting once it detects that all even-order digits have become 0. More
precisely, if x = 0.a0a1a2 . . ., the automaton starts acting once a2k = 0 for all k ≥ n. It
then reads the odd-order digits and produces the value f (x) = 0.a2n+1a2n+3a2n+5 . . . If the
even-order digits do not eventually become zero, the automaton remains inactive, producing
the value 0. Because only the rightmost digits of the numbers count, for any value of y and
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any interval I ⊂ [0, 1], one can find a number x ∈ I such that f (x) = y. Hence the function f
maps any subinterval of [0, 1] onto [0, 1]. It satisfies the intermediate value property trivially.
And because any neighborhood of a point is mapped to the entire interval [0, 1], the function
is discontinuous everywhere. �

As the poet Paul Valéry said: “a dangerous state is to think that you understand.” To make
sure that you do understand the intermediate value property, solve the following problems.

477. Let f : [a, b] → [a, b] be a continuous function. Prove that f has a fixed point.

478. One day, a Buddhist monk climbed from the valley to the temple up on the mountain.
The next day, the monk came down, on the same trail and during the same time interval.
Prove that there is a point on the trail that themonk reached at precisely the samemoment
of time on the two days.

479. Let f : R → R be a continuous decreasing function. Prove that the system

x = f (y),
y = f (z),
z = f (x)

has a unique solution.

480. Let f : R → R be a continuous function such that |f (x) − f (y)| ≥ |x − y| for all
x, y ∈ R. Prove that the range of f is all of R.

481. A cross-country runner runs a six-mile course in 30 minutes. Prove that somewhere
along the course the runner ran a mile in exactly 5 minutes.

482. Let A and B be two cities connected by two different roads. Suppose that two cars can
travel from A to B on different roads keeping a distance that does not exceed one mile
between them. Is it possible for the cars to travel the first one from A to B and the
second one from B to A in such a way that the distance between them is always greater
than one mile?

483. Let

P(x) =
n∑

k=1

akxk and Q(x) =
n∑

k=1

ak

2k − 1
xk,

where a1, a2, . . . , an are real numbers, n ≥ 1. Show that if 1 and 2n+1 are zeros of the
polynomial Q(x), then P(x) has a positive zero less than 2n.

484. Prove that any convex polygonal surface can be divided by two perpendicular lines into
four regions of equal area.

485. Let f : I → R be a function defined on an interval. Show that if f has the intermediate
value property and for any y ∈ R the set f −1(y) is closed, then f is continuous.

486. Show that the function

fa(x) =
{
cos

1

x
for x 
= 0

a for x = 0,
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has the intermediate value property if a ∈ [−1, 1] but is the derivative of a function
only if a = 0.

3.2.5 Derivatives and Their Applications

A function f defined in an open interval containing the point x0 is called differentiable at x0 if

lim
h→0

f (x0 + h) − f (x0)

h

exists. In this case, the limit is called the derivative of f at x0 and is denoted by f ′(x0) or
df
dx (x0). If the derivative is defined at every point of the domain of f , then f is simply called
differentiable.

The derivative is the instantaneous rate of change. Geometrically, it is the slope of the
tangent to the graph of the function. Because of this, where the derivative is positive the
function is increasing, where the derivative is negative the function is decreasing, and on
intervals where the derivative is zero the function is constant. Moreover, the maxima and
minima of a differentiable function show up at points where the derivative is zero, the so-
called critical points.

Let us present some applications of derivatives. We begin with an observation made by
F. Pop during the grading of USA Mathematical Olympiad 1997 about a student’s solution.
The student reduced one of the problems to a certain inequality, and the question was whether
this inequality is easy or difficult to prove. Here is the inequality and Pop’s argument.

Example. Let a, b, c be positive real numbers such that abc = 1. Prove that

a2 + b2 + c2 ≤ a3 + b3 + c3,

where equality holds if and only if a = b = c = 1.

Solution. If a = b = c = 1 there is nothing to check. So let us assume that at least one of
a, b, c is not 1. We prove that the function

f (t) = at + bt + ct

is strictly increasing for t ≥ 0. Its first derivative is

f ′(t) = at ln a + bt ln b + ct ln c,

for which we can tell only that f ′(0) = ln abc = ln 1 = 0. However, the second derivative is
f ′′(t) = at(ln a)2 + bt(ln b)2 + ct(ln c)2, which is clearly positive. We thus deduce that f ′ is
strictly increasing, and so f ′(t) > f ′(0) = 0 for t > 0. Therefore f itself is strictly increasing
for t ≥ 0, and the conclusion follows. �

And now an exciting example found in D. Buşneag, I. Maftei, Themes for Mathematics
Circles and Contests (Scrisul Românesc, Craiova).
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Example. Prove that
∣∣∣∣∣∣∣∣∣

1 + a1 1 . . . 1
1 1 + a2 . . . 1
...

...
. . .

...

1 1 . . . 1 + an

∣∣∣∣∣∣∣∣∣
= a1a2 · · · an

(
1 + 1

a1
+ 1

a2
+ · · · + 1

an

)
.

Solution. In general, if the entries of amatrix depend in a differentiablemanner on a parameter
x, ⎛

⎜⎜⎜⎝
a11(a) a12(x) . . . a1n(x)
a21(a) a22(x) . . . a2n(x)

...
...

. . .
...

an1(a) an2(x) . . . ann(x)

⎞
⎟⎟⎟⎠ ,

then the determinant is a differentiable function of x, and its derivative is equal to
∣∣∣∣∣∣∣∣∣

a′
11(a) a′

12(x) . . . a′
1n(x)

a21(a) a22(x) . . . a2n(x)
...

...
. . .

...

an1(a) an2(x) . . . ann(x)

∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣

a11(a) a12(x) . . . a1n(x)
a′
21(a) a′

22(x) . . . a′
2n(x)

...
...

. . .
...

an1(a) an2(x) . . . ann(x)

∣∣∣∣∣∣∣∣∣
+ · · ·

+

∣∣∣∣∣∣∣∣∣

a11(a) a12(x) . . . a1n(x)
a21(a) a22(x) . . . a2n(x)

...
...

. . .
...

a′
n1(a) a′

n2(x) . . . a′
nn(x)

∣∣∣∣∣∣∣∣∣
.

This follows by applying the product rule to the formula of the determinant. For our problem,
consider the function

f (x) =

∣∣∣∣∣∣∣∣∣

x + a1 x . . . x
x x + a2 . . . x
...

...
. . .

...

x x . . . x + an

∣∣∣∣∣∣∣∣∣
.

Its first derivative is

f ′(x) =

∣∣∣∣∣∣∣∣∣

1 1 . . . 1
x x + a2 . . . x
...

...
. . .

...

x x . . . x + an

∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣

x + a1 x . . . x
1 1 . . . 1
...

...
. . .

...

x x . . . x + an

∣∣∣∣∣∣∣∣∣
+ · · ·

+

∣∣∣∣∣∣∣∣∣

x + a1 x . . . x
x x + a2 . . . x
...

...
. . .

...

1 1 . . . 1

∣∣∣∣∣∣∣∣∣
.



148 3 Real Analysis

Proceeding one step further, we see that the second derivative of f consists of two types
of determinants: some that have a row of 0’s, and others that have two rows of 1’s. In both
cases the determinants are equal to zero, showing that f ′′(x) = 0. It follows that f itself must
be a linear function,

f (x) = f (0) + f ′(0)x.

One finds immediately that f (0) = a1a2 · · · an. To compute

f ′(0) =

∣∣∣∣∣∣∣∣∣

1 1 . . . 1
0 a2 . . . 0
...

...
. . .

...

0 0 . . . an

∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣

a1 0 . . . 0
1 1 . . . 1
...

...
. . .

...

0 0 . . . an

∣∣∣∣∣∣∣∣∣
+ · · · +

∣∣∣∣∣∣∣∣∣

a1 0 . . . 0
0 a2 . . . 0
...

...
. . .

...

1 1 . . . 1

∣∣∣∣∣∣∣∣∣
expand each determinant along the row of 1’s. The answer is

f ′(0) = a2a3 · · · an + a1a3 · · · an + · · · + a1a2 · · · an−1,

whence

f (x) = a1a2 · · · an

[
1 +
(
1

a1
+ 1

a2
+ · · · + 1

an

)
x

]
.

Substituting x = 1, we obtain the formula from the statement. �

487. Find all positive real solutions to the equation 2x = x2.

488. Let f : R → R be given by

f (x) = (x − a1)(x − a2) + (x − a2)(x − a3) + (x − a3)(x − a1)

with a1, a2, a3 real numbers. Prove that f (x) ≥ 0 for all real numbers x if and only if
a1 = a2 = a3.

489. Let a and b be positive real numbers. Show that for all positive integers n,

(n − 1)an + bn ≥ nan−1b,

with equality if and only if a = b.

490. Determine max
z∈C, |z|=1

|z3 − z + 2|.
491. Find the minimum of the function f : R → R,

f (x) = (x2 − x + 1)3

x6 − x3 + 1
.

492. How many real solutions does the equation

sin(sin(sin(sin(sin x)))) = x

3

have?
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493. Let (an)n be a sequence of real numbers satisfying ean +nan = 2, for all n ≥ 1. Evaluate

lim
n→∞ n(1 − nan).

494. Let n be an even integer greater than 2 and x, y real numbers such that

xn + yn+1 > nn and yn + xn+1 > nn.

Show that x + y > 1.

495. Find all functions f : R → R, satisfying

|f (x) − f (y)| ≤ |x − y|2

for all x, y ∈ R.

496. Let f : R → R be a differentiable function. Show that if limx→∞(f (x) + f ′(x)) = 0,
then limx→∞ f (x) = limx→∞ f ′(x) = 0.

497. Let f : R → R be a continuous function. For x ∈ R we define

g(x) = f (x)
∫ x

0
f (t)dt.

Show that if g is a nonincreasing function, then f is identically equal to zero.

498. Let f be a function having a continuous derivative on [0, 1] and with the property that
0 < f ′(x) ≤ 1. Also, suppose that f (0) = 0. Prove that

[∫ 1

0
f (x)dx

]2
≥
∫ 1

0
[f (x)]3dx.

Give an example in which equality occurs.

499. Find all functions f : [0,∞) → [0,∞) differentiable at x = 1 and satisfying

f (x3) + f (x2) + f (x) = x3 + x2 + x for all x ≥ 0.

500. Let x, y, z be nonnegative real numbers. Prove that

(a) (x + y + z)x+y+zxxyyzz ≤ (x + y)x+y(y + z)y+z(z + x)z+x.

(b) (x + y + z)(x+y+z)2xx2yy2zz2 ≥ (x + y)(x+y)2(y + z)(y+z)2(z + x)(z+x)2 .

Derivatives have an important application to the computation of limits.

L’Hôpital’s rule. For an open interval I, if the functions f and g are differentiable on I \{x0},
g′(x) 
= 0 for x ∈ I, x 
= x0, and either lim

x→x0
f (x) = lim

x→x0
g(x) = 0 or lim

x→x0
|f (x)| =

lim
x→x0

|g(x)| = ∞, and if additionally lim
x→x0

f ′(x)
g′(x) exists, then lim

x→x0

f (x)
g(x) exists and

lim
x→x0

f (x)

g(x)
= lim

x→x0

f ′(x)
g′(x)

.
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Let us see how L’Hôpital’s rule is applied.

Example. Prove that if f : R → R is a differentiable function with the property that lim
x→x0

f (x)

exists and is finite, and if lim
x→x0

xf ′(x) exists, then this limit is equal to zero.

Solution. If the limit lim
x→x0

xf ′(x) exists, then so does lim
x→x0

(xf (x))′, and the latter is equal to

lim
x→x0

f (x) + lim
x→x0

xf ′(x). Applying L’Hôpital’s rule yields

lim
x→x0

(xf (x))′ == lim
x→x0

(xf (x))′

x′ = lim
x→x0

xf (x)

x
= lim

x→x0
f (x).

Therefore,

lim
x→x0

f (x) = lim
x→x0

f (x) + lim
x→x0

xf ′(x),

and it follows that lim
x→x0

xf ′(x) = 0, as desired. �

More problems follow.

501. Let f and g be n-times continuously differentiable functions in a neighborhood of a
point a, such that f (a) = g(a) = α, f ′(a) = g′(a), . . ., f (n−1)(a) = g(n−1)(a), and
f (n)(a) 
= g(n)(a). Find, in terms of α,

lim
x→a

ef (x) − eg(x)

f (x) − g(x)
.

502. For any real number λ ≥ 1, denote by f (λ) the real solution to the equation

x(1 + ln x) = λ.

Prove that

lim
λ→∞

f (λ)

λ

ln λ

= 1.

503. Let f0(x) = x, g0(x) = x and for n ≥ 0,

fn+1(x) = ln[1 + 3(fn(x))
2], gn+1(x) = ln[1 + 5(gn(x))

2].

Prove that the limit

lim
x→0

f2014(x)

g2014(x)

exists and compute it.
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3.2.6 The Mean Value Theorem

In the old days, when mathematicians were searching for methods to solve polynomial equa-
tions, an essential tool was Rolle’s theorem.

Rolle’s theorem. If f : [a, b] → R is continuous on [a, b], differentiable on (a, b), and
satisfies f (a) = f (b), then there exists c ∈ (a, b) such that f ′(c) = 0.

Its standard use was on problems like the following.

Example. Prove that the Legendre polynomial

Pn(x) = dn

dxn
(x2 − 1)n

has n distinct zeros in the interval (−1, 1).

Solution. Consider the polynomial function Qn(x) = (x2 − 1)n. Its zeros x = 1 and x = −1
have multiplicity n. Therefore, for every k < n, the kth derivative Q(k)

n (x) has 1 and −1 as
zeros. We prove by induction on k that for 1 < k ≤ n, Q(k)

n (x) has k distinct zeros in (−1, 1).
By Rolle’s theorem this is true for k = 1. Assume that the property is true for k < n, and

let us prove it for k + 1. The polynomial Q(k)
n (x) has k + 2 zeros x0 = −1 < x1 < · · · < xk <

xk+1 = 1. By Rolle’s theorem, between any two consecutive zeros of the function there is a
zero of the derivative Q(k+1)

n (x). Hence Q(k+1)
n (x) has k + 1 distinct zeros between −1 and 1.

This completes the induction.
In particular, Q(n)

n (x) = Pn(x) has n distinct zeros between −1 and 1, as desired. �

Rolle’s theorem applied to the function φ : [a, b] → R,

φ(x) =
∣∣∣∣∣∣

f (x) g(x) 1
f (a) g(a) 1
f (b) g(b) 1

∣∣∣∣∣∣ ,

yields the following theorem.

Cauchy’s theorem. If f , g : [a, b] → R are two functions, continuous on [a, b] and differ-
entiable on (a, b), then there exists a point c ∈ (a, b) such that

(f (b) − f (a))g′(c) = (g(b) − g(a))f ′(c).

In the particular case g(x) = x, we have the following.

The mean value theorem (Lagrange). If f : [a, b] → R is a function that is continuous on
[a, b] and differentiable on (a, b), then there exists c ∈ (a, b) such that

f ′(c) = f (b) − f (a)

b − a
.
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It should be noted that themean value theoremwas already used, implicitly, in the previous
section; the monotonicity test and l’Hospital’s theorem both rely on it, but in this section we
make explicit use of it, such as in solving the following problem of D. Andrica.

Example. Let f : R → R be a twice-differentiable function, with positive second derivative.
Prove that

f (x + f ′(x)) ≥ f (x),

for any real number x.

Solution. If x is such that f ′(x) = 0, then the relation holds with equality. If for a certain x,
f ′(x) < 0, then the mean value theorem applied on the interval [x + f ′(x), x] yields

f (x) − f (x + f ′(x)) = f ′(c)(−f ′(x)),

for some c with x + f ′(x) < c < x. Because the second derivative is positive, f ′ is increasing;
hence f ′(c) < f ′(x) < 0. Therefore, f (x) − f (x + f ′(x)) < 0, which yields the required
inequality.

In the case f ′(x) > 0, by the same argument f (x + f ′(x))− f (x) = f ′(x)f ′(c) for c between
x and x + f ′(x), and f ′(c) > f ′(x) > 0. We obtain again f (x) − f (x + f ′(x)) < 0, as desired.
�

Example. Find all real solutions to the equation

4x + 6x2 = 5x + 5x2 .

Solution. This problem was given at the 1984 Romanian Mathematical Olympiad, being
proposed by M. Chiriţă. The solution runs as follows.

Note that x = 0 and x = 1 satisfy the equation from the statement. Are there other
solutions? The answer is no, but to prove it we use the amazing idea of treating the numbers
4, 5, 6 as variables and the presumably new solution x as a constant.

Thus let us consider the function f (t) = tx2+(10−t)x. The fact that x satisfies the equation
from the statement translates to f (5) = f (6). By Rolle’s theorem there exists c ∈ (5, 6), such
that f ′(c) = 0. This means that

x2cx2−1 − x(10 − c)x−1 = 0, or xcx2−1 = (10 − c)x−1.

Because exponentials are positive, this implies that x is positive.
If x > 1, then xcx2−1 > cx2−1 > cx−1 > (10 − c)x−1, which is impossible since the first

and the last terms in this chain of inequalities are equal. Here we used the fact that c > 5.
If 0 < x < 1, then xcx2−1 < xcx−1. Let us prove that xcx−1 < (10 − c)x−1. With the

substitution y = x − 1, y ∈ (−1, 0), the inequality can be rewritten as y + 1 <
(
10−c

c

)y
. The

exponential has base less than 1, so it is decreasing, while the linear function on the left is
increasing. The two meet at y = 0. The inequality follows. Using it we conclude again
that xcx2−1 cannot be equal to (10 − c)x−1. This shows that a third solution to the equation
from the statement does not exist. So the only solutions to the given equation are x = 0 and
x = 1. �
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Below you will find a variety of problems based on the above-mentioned theorems (Rolle,
Lagrange, Cauchy). Try to solve them, remembering that “good judgment comes from expe-
rience, and experience comes from bad judgment” (Barry LePatner).

504. Prove that not all zeros of the polynomial P(x) = x4 − √
7x3 + 4x2 − √

22x + 15 are
real.

505. Let f : [a, b] → R be a function, continuous on [a, b] and differentiable on (a, b).
Prove that if there exists c ∈ (a, b) such that

f (b) − f (c)

f (c) − f (a)
< 0,

then there exists ξ ∈ (a, b) such that f ′(ξ) = 0.

506. For x ≥ 2 prove the inequality

(x + 1) cos
π

x + 1
− x cos

π

x
> 1.

507. Let n > 1 be an integer, and let f : [a, b] → R be a continuous function, n-times
differentiable on (a, b), with the property that the graph of f has n + 1 collinear points.
Prove that there exists a point c ∈ (a, b) with the property that f (n)(c) = 0.

508. Let f : [a, b] → R be a function, continuous on [a, b] and differentiable on (a, b). Let
M(α, β) be a point on the line passing through the points (a, f (a)) and (b, f (b)) with
α /∈ [a, b]. Prove that there exists a line passing through M that is tangent to the graph
of f .

509. Let f : [a, b] → R be a function, continuous on [a, b] and twice differentiable on (a, b).
If f (a) = f (b) and f ′(a) = f ′(b), prove that for every real number λ the equation

f ′′(x) − λ(f ′(x))2 = 0

has at least one solution in the interval (a, b).

510. Prove that there are no positive numbers x and y such that

x2y + y2−x = x + y.

511. Let α be a real number such that nα is an integer for every positive integer n. Prove
that α is a nonnegative integer.

512. Find all real solutions to the equation

6x + 1 = 8x − 27x−1.

513. Let P(x) be a polynomial with real coefficients such that for every positive integer n,
the equation P(x) = n has at least one rational root. Prove that P(x) = ax + b with a
and b rational numbers.
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3.2.7 Convex Functions

A function is called convex if any segment with endpoints on its graph lies above the graph
itself. The picture you should have in mind is Figure 21. Formally, if D is an interval of the
real axis, or more generally a convex subset of a vector space, then a function f : D → R is
called convex if

f (λx + (1 − λ)y) ≤ λf (x) + (1 − λ)f (y), for all x, y ∈ D, λ ∈ (0, 1).

Here we should remember that a set D is called convex if for any x, y ∈ D and λ ∈ (0, 1)
the point λx + (1 − λ)y is also in D, which geometrically means that D is an intersection of
half-spaces.

A function f is called concave if −f is convex. If f is both convex and concave, then f is
linear, i.e., f (x) = ax + b for some constants a and b.

Proposition. A twice-differentiable function on an interval is convex if and only if its second
derivative is nonnegative.

In general, a twice-differentiable function defined on a convex domain in R
n is convex if

at any point its Hessian matrix is semipositive definite. This is a way of saying that modulo
a local change of coordinates, around each point the function f is of the form

f (x1, x2, . . . , xn) = φ(x1, x2, . . . , xn) + x21 + x22 + · · · + x2k ,

x y

f(λx+(1−λ)y)

λx+(1−λ)y

λf(x)+(1−λ)f(y)

Figure 21

where k ≤ n and φ(x1, x2, . . . , xn) is linear.
As an application, we use convexity to prove Hölder’s inequality.

Hölder’s inequality. If x1, x2, . . . , xn, y1, y2, . . . , yn, p and q are positive numbers with 1
p +

1
q = 1, then

n∑
i=1

xiyi ≤
(

n∑
i=1

xp
i

)1/p ( n∑
i=1

yq
i

)1/q

,
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with equality if and only if the two vectors (x1, x2, . . . , xn) and (y1, y2, . . . , yn) are parallel.

Proof. The second derivative of f : (0,∞) → R, f (x) = ln x, is f ′′(x) = − 1
x2
, which is

negative. So this function is concave. Setting λ = 1

p
, we obtain

lnX1/pY 1/q = 1

p
lnX + 1

q
ln Y ≤ ln

(
1

p
X + 1

q
Y

)
, for all X, Y > 0;

hence

X1/pY 1/q ≤ 1

p
X + 1

q
Y .

Using this fact, if we let X =
∑

i

xp
i and Y =

∑
i

yq
i , then

1

X1/pY 1/q

n∑
i=1

xiyi =
n∑

i=1

(
xp

i

X

)1/p (
yq

i

Y

)1/q

≤
n∑

i=1

(
1

p
· xp

i

X
+ 1

q
· yq

i

Y

)

=
(
1

p
+ 1

q

)
= 1.

Hence
n∑

i=1

xiyi ≤ X1/pY 1/q =
(

n∑
i=1

xp
i

)1/p ( n∑
i=1

yq
i

)1/q

,

and the inequality is proved. �

By analogy, a sequence (an)n≥0 is called convex if

an ≤ an+1 + an−1

2
, for all n ≥ 1,

and concave if (−an)n is convex. Equivalently, a sequence is convex if its second difference
(derivative) is nonnegative, and concave if its second difference is nonpositive. The following
example motivates why convex sequences and functions should be studied together.

Example. Let (an)n be a bounded convex sequence. Prove that

lim
n→∞(an+1 − an) = 0.

Solution. A bounded convex function on (0,∞) has a horizontal asymptote, so its derivative
tends to zero at infinity. Our problem is the discrete version of this result. The first derivative
of the sequence is bn = an+1 − an, n ≥ 1. The convexity condition can be written as
an+1 − an ≥ an − an−1, which shows that (bn)n is increasing. Since (an)n is bounded, (bn)n is
bounded too, and being monotonic, by the Weierstrass theorem it converges at a finite limit
L. If L > 0, then bn eventually becomes positive, so an becomes increasing because it has a
positive derivative. Again by the Weierstrass theorem, an converges to some limit l, and then
L = l − l = 0, a contradiction. A similar argument rules out the case L < 0. We are left with
the only possibility L = 0. �
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And now some problems.

514. Prove that

3
√
3 + 3

√
3 + 3
√
3 − 3

√
3 < 2 3

√
3.

515. Let x1, x2, . . . , xn be real numbers. Find the real numbers a thatminimize the expression

|a − x1| + |a − x2| + · · · + |a − xn|.

516. Let a, b > 0 and x, c > 1. Prove that

xac + xbc ≥ 2x(ab)c/2
.

517. Prove that

(sin x)sin x < (cos x)cos x

for all x ∈ (0, π
4 ).

518. A triangle has side lengths a ≥ b ≥ c and vertices ofmeasuresA,B, andC, respectively.
Prove that

Ab + Bc + Ca ≥ Ac + Ba + Cb.

519. Prove that for a, b ≥ 1
2 ,

(
a2 − b2

2

)2
≥
√

a2 + b2

2
− a + b

2
.

520. Show that if a function f : [a, b] → R is convex, then it is continuous on (a, b).

521. Prove that a continuous function defined on a convex domain (for example, on an
interval of the real axis) is convex if and only if

f

(
x + y

2

)
≤ f (x) + f (y)

2
, for all x, y ∈ D.

522. Call a real-valued function very convex if

f (x) + f (y)

2
≥ f

(
x + y

2

)
+ |x − y|

holds for all real numbers x and y. Prove that no very convex function exists.

523. Let f : [a, b] → R be a convex function. Prove that

f (x) + f (y) + f (z) + 3f

(
x + y + z

3

)
≥ 2

[
f

(
x + y

2

)
+ f

(
y + z

2

)
+ f

(
z + x

2

)]
,

for all x, y, z ∈ [a, b].
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524. Prove that if a sequence of positive real numbers (bn)n has the property that (anbn)n is
a convex sequence for all real numbers a, then the sequence (ln bn)n is also convex.

525. Find the largest constant C such that for every n ≥ 3 and every positive concave
sequence (ak)

n
k=1, (

n∑
k=1

ak

)2

≥ C(n − 1)
n∑

k=1

a2
k .

A convex function on a closed interval attains its maximum at an endpoint of the interval.
We illustrate how this fact can be useful with a problem from Timişoara Mathematics Gazette,
proposed by V. Cârtoaje and M. Lascu.

Example. Let a, b, c, d ∈ [1, 3]. Prove that
(a + b + c + d)2 ≥ 3(a2 + b2 + c2 + d2).

Solution. Divide by 2 and move everything to one side to obtain the equivalent inequality

a2 + b2 + c2 + d2 − 2ab − 2ac − 2ad − 2bc − 2bd − 2cd ≤ 0.

Now we recognize the expression on the left to be a convex function in each variable. So the
maximum is attained for some choice of a, b, c, d = 1 or 3. If k of these numbers are equal to
3, and 4− k are equal to 1, where k could be 1, 2, 3, or 4, then the original inequality becomes

(3k + 4 − k)2 = 3(9k + 4 − k).

Dividing by 3, we obtain k2 + 4k + 3 ≥ 6k + 3, or (k − 1)2 ≥ 0, which is clearly true. The
inequality is proved. Equality occurs when one of the numbers a, b, c, d is equal to 3 and the
other three are equal to 1. �

Here are additional problems of this kind.

526. Let α, β and γ be three fixed positive numbers and [a, b] a given interval. Find x, y, z
in [a, b] for which the expression

E(x, y, z) = α(x − y)2 + β(y − z)2 + γ (z − x)2

has maximal value.

527. Let 0 < a < b and ti ≥ 0, i = 1, 2, . . . , n. Prove that for any x1, x2, . . . , xn ∈ [a, b],
(

n∑
i=1

tixi

)(
n∑

i=1

ti
xi

)
≤ (a + b)2

4ab

(
n∑

i=1

ti

)2

.

528. Prove that for any natural number n ≥ 2 and any |x| ≤ 1,

(1 + x)n + (1 − x)n ≤ 2n.
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529. Prove that for any positive real numbers a, b, c the following inequality holds

a + b + c

3
− 3

√
abc ≤ max{(√a − √

b)2, (
√

b − √
c)2, (

√
c − √

a)2}.

530. Let f be a real-valued continuous function on R satisfying

f (x) ≤ 1

2h

∫ x+h

x−h
f (y)dy, for all x ∈ R and h > 0.

Prove that (a) the maximum of f on any closed interval is assumed at one of the
endpoints, and (b) the function f is convex.

An important property of convex (respectively, concave) functions is known as Jensen’s
inequality.

Jensen’s inequality. For a convex function f let x1, x2, . . . , xn be points in its domain and let
λ1, λ2, . . . , λn be positive numbers with λ1 + λ2 + · · · + λn = 1. Then

f (λ1x1 + λ2x2 + · · · + λnxn) ≤ λ1f (x1) + λ2f (x2) + · · · + λnf (xn).

If f is nowhere linear and the xi’s are not all equal, then the inequality is strict. The inequality
is reversed for a concave function.

Proof. The proof is by induction on n. The base case is the definition of convexity. Let us
assume that the inequality is true for any n − 1 points xi and any n − 1 weights λi. Consider
n points and weights, and let λ = λ1 + . . . + λn−1. Note that λ + λn = 1 and

λ1

λ
+ λ2

λ
+ · · · + λn−1

λ
= 1.

Using the base case and the inductive hypothesis we can write

f (λ1x1 + · · · + λn−1xn−1 + λnxn) = f

(
λ

(
λ1

λ
x1 + · · · + λn−1

λ
xn−1

)
+ λnxn

)

≤ λf

(
λ1

λ
x1 + · · · + λn−1

λ
xn−1

)
+ λnf (xn)

≤ λ

(
λ1

λ
f (x1) + · · · + λn−1

λ
f (xn−1)

)
+ λnf (xn)

= λ1f (x1) + · · · + λn−1f (xn−1) + λnf (xn),

as desired. For the case of concave functions, reverse the inequalities. �

As an application, we prove the following.

The generalized mean inequality. Given the positive numbers x1, x2, . . . , xn and the posi-
tive weights λ1, λ2, . . . , λn with λ1 + λ2 + · · · + λn = 1, the following inequality holds:

λ1x1 + λ2x2 + · · · + λnxn ≥ xλ1
1 xλ2

2 · · · xλn
n .
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Solution. Simply write Jensen’s inequality for the concave function f (x) = ln x, then expo-
nentiate. �

For λ1 = λ2 = · · · = λn = 1

n
one obtains the AM-GM inequality. The Cauchy-Schwarz

inequality is also a direct consequence of Jensen’s inequality.

Cauchy-Schwarz inequality. If a1, a2, . . . , an and b1, b2, . . . , bn are real numbers, then

(a2
1 + a2

2 + · · · + a2
n)(b

2
1 + b2

2 + · · · + b2
n) ≥ (a1b1 + a2b2 + · · · + anbn)

2.

Proof. We will apply Jensen’s inequality to the convex function f (x) = x2. In this case,
Jensen’s inequality reads

λ1x
2
1 + λ2x

2
2 + · · · + λnx2n ≥ (λ1x1 + λ2x2 + · · · + λnxn)

2,

for all nonnegative λi with the property that λ1 + λ2 + · · · + λn = 1.
Rewrite the Cauchy-Schwarz inequality as

a2
1(b

2
1 + b2

2 + · · · + b2
n) + a2

2(b
2
1 + b2

2 + · · · + b2
n)

2 + · · · + a2
n(b

2
1 + b2

2 + · · · + b2
n)

2

≥ (a1b1 + a2b2 + · · · + anbn)
2,

or

n∑
k=1

b2
k

b2
1 + b2

2 + · · · + b2
n

· a2
k

b2
k

(b2
1 + b2

2 + · · · + b2
n)

≥
(

n∑
k=1

b2
k

b2
1 + b2

2 + · · · + b2
n

· ak

bk
(b2

1 + b2
2 · · · + b2

n

)2

.

This is Jensen’s inequality with

xi = ai

bi
(b2

1 + b2
2 + · · · + b2

n)

λi = b2
i

b2
1 + b2

2 + · · · + b2
n

,

for i = 1, 2, . . . , n. �

All inequalities below are supposed to be proved using Jensen’s inequality. One of these
problems has appeared also in Section 2.1.6 where you were supposed to solve it using a
different method.

531. Show that if A, B, C are the angles of a triangle, then

sinA + sinB + sinC ≥ 3
√
3

2
.

http://dx.doi.org/10.1007/978-3-319-58988-6_2
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532. Let ai, i = 1, 2, . . . , n be nonnegative numbers with
n∑

i=1

ai = 1, and let 0 < xi ≤ 1,

i = 1, 2, . . . , n. Prove that

n∑
i=1

ai

1 + xi
≤ 1

1 + xa1
1 xa2

2 · · · xan
n

.

533. Prove that for any three positive real numbers a1, a2, a3,

a2
1 + a2

2 + a2
3

a3
1 + a3

2 + a3
3

≥ a3
1 + a3

2 + a3
3

a4
1 + a4

2 + a4
3

.

534. Let 0 < xi < π , i = 1, 2, . . . , n, and set x = x1 + x2 + · · · + xn

n
. Prove that

n∏
i=1

(
sin xi

xi

)
≤
(
sin x

x

)n

.

535. Let n > 1 and x1, x2, . . . , xn > 0 be such that x1 + x2 + · · · + xn = 1. Prove that

x1√
1 − x1

+ x2√
1 − x2

+ · · · + xn√
1 − xn

≥
√

x1 + √
x2 + · · · + √

xn√
n − 1

.

536. Prove that if a, b, c, d > 0 and a ≤ 1, a + b ≤ 5, a + b + c ≤ 14, a + b + c + d ≤ 30,
then

√
a + √

b + √
c + √

d ≤ 10.

3.2.8 Indefinite Integrals

“Anyone who stops learning is old, whether at twenty or eighty. Anyone who keeps learning
stays young. The greatest thing in life is to keep your mind young.” Following this advice of
Henry Ford, let us teach you some clever tricks for computing indefinite integrals.

We begin by recalling the basic facts about indefinite integrals. Integration is the inverse
operation to differentiation. The fundamental methods for computing integrals are the back-
ward application of the chain rule, which takes the form∫

f (u(x))u′(x)dx =
∫

f (u)du

and shows up in the guise of the first and second substitutions, and integration by parts∫
udv = uv −

∫
vdu,

which comes from the product rule for derivatives. Otherwise, there is Jacobi’s partial fraction
decomposition method for computing integrals of rational functions, as well as standard
substitutions such as the trigonometric and Euler’s substitutions.

Now let us turn to our nonstandard examples.
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Example. Compute

I1 =
∫

sin x

sin x + cos x
dx and I2 =

∫
cos x

sin x + cos x
dx.

Solution. Thewell-known approach is to use the substitution tan x
2 = t. But it is much simpler

to write the system

I1 + I2 =
∫

sin x + cos x

sin x + cos x
dx =

∫
1dx = x + C1,

−I1 + I2 =
∫

cos x − sin x

sin x + cos x
dx = ln | sin x + cos x| + C2,

and then solve to obtain

I1 = 1

2
x − 1

2
ln | sin x + cos x| + C′

1 and I2 = 1

2
x + 1

2
ln | sin x + cos x| + C′

2.
�

We continue with a more difficult computation based on a substitution.

Example. For a > 0 compute the integral

∫
1

x
√

x2a + xa + 1
dx, x > 0.

Solution. Factor an x2a under the square root to transform the integral into

∫
1

xa+1

√
1 + 1

xa
+ 1

x2a

dx =
∫

1√(
1

xa
+ 1

2

)2
+ 3

4

· 1

xa+1
dx.

With the substitution u = 1

xa
+ 1

2
the integral becomes

−1

a

∫
1√

u2 + 3

4

du = −1

a
ln

(
u +
√

u2 + 3

4

)
+ C

= −1

a
ln

(
1

xa
+ 1

2
+
√

1

x2a
+ 1

xa
+ 1

)
+ C.

�

537. Compute the integral ∫
(1 + 2x2)ex2dx.
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538. Compute ∫
x + sin x − cos x − 1

x + ex + sin x
dx.

539. Find ∫
(x6 + x3) 3

√
x3 + 2dx.

540. Compute the integral ∫
x2 + 1

x4 − x2 + 1
dx.

541. Compute ∫ √
ex − 1

ex + 1
dx, x > 0.

542. Evaluate

∫
1 + x2 ln x

x + x2 ln x
dx

543. Find the antiderivatives of the function f : [0, 2] → R,

f (x) =
√

x3 + 2 − 2
√

x3 + 1 +
√

x3 + 10 − 6
√

x3 + 1.

544. For a positive integer n, compute the integral

∫
xn

1 + x + x2

2! + · · · + xn

n!
dx.

545. Compute the integral ∫
dx

(1 − x2) 4
√
2x2 − 1

.

546. Compute ∫
x4 + 1

x6 + 1
dx.

Give the answer in the form α arctan
P(x)

Q(x)
+ C, α ∈ Q, and P(x), Q(x) ∈ Z[x].



3.2 Continuity, Derivatives, and Integrals 163

3.2.9 Definite Integrals

Next, definite integrals. Here the limits of integration also play a role.

Example. Let f : [0, 1] → R be a continuous function. Prove that

∫ π

0
xf (sin x)dx = π

∫ π
2

0
f (sin x)dx.

Solution. We have

∫ π

0
xf (sin x)dx =

∫ π
2

0
xf (sin x)dx +

∫ π

π
2

xf (sin x)dx.

We would like to transform both integrals on the right into the same integral, and for that
we need a substitution in the second integral that changes the limits of integration. This
substitution should leave f (sin x) invariant, so it is natural to try t = π − x. The integral
becomes ∫ π

2

0
(π − t)f (sin t)dt.

Adding the two, we obtain π

∫ π
2

0
f (sin x)dx, as desired. �

547. Compute the integral ∫ 1

−1

3
√

x
3
√
1 − x + 3

√
1 + x

dx.

548. Compute ∫ π

0

x sin x

1 + sin2 x
dx.

549. Compute

∫ √
π
3

0
sin x2dx +

∫ √
π
3

−√
π
3

x2 cos x2dx.

550. Let a and b be positive real numbers. Compute

∫ b

a

e
x
a − e

b
x

x
dx.

551. Compute the integral

I =
∫ 1

0

3
√
2x3 − 3x2 − x + 1dx.
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552. Compute the integral ∫ a

0

dx

x + √
a2 − x2

(a > 0).

553. Compute the integral ∫ π
4

0
ln(1 + tan x)dx.

554. Find ∫ 1

0

ln(1 + x)

1 + x2
dx.

555. Compute ∫ ∞

0

ln x

x2 + a2
dx,

where a is a positive constant.

556. Compute the integral ∫ π
2

0

x cos x − sin x

x2 + sin2 x
dx.

557. Let α be a real number. Compute the integral

I(α) =
∫ 1

−1

sin αdx

1 − 2x cosα + x2
.

558. Give an example of a function f : (2,∞) → (0,∞) with the property that

∫ ∞

2
f p(x)dx

is finite if and only if p ∈ [2,∞).

559. Let f : [−π
2 , π

2

]→ (−1, 1) be a differentiable function whose derivative is continuous
and nonnegative. Prove that there is x0 ∈ [−π

2 , π
2

]
such that

(f (x0))
2 + (f ′(x0))2 ≤ 1.

There are special types of integrals that are computed recursively. We illustrate this with
a proof of the Leibniz formula.

The Leibniz formula.
π

4
= 1 − 1

3
+ 1

5
− 1

7
+ · · ·
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Proof. To prove the formula we start by computing recursively the integral

In =
∫ π

4

0
tan2n xdx, n ≥ 1.

We have

In =
∫ π

4

0
tan2n xdx =

∫ π
4

0
tan2n−2 x tan2 xdx

=
∫ π

4

0
tan2n−2 x(1 + tan2 x)dx −

∫ π
4

0
tan2n−2 xdx

=
∫ π

4

0
tan2n−2 x sec2 xdx − In−1.

The remaining integral can be computed using the substitution tan x = t. In the end, we
obtain the recurrence

In = 1

2n − 1
− In−1, n ≥ 1.

So for n ≥ 1,

In = 1

2n − 1
− 1

2n − 3
+ · · · + (−1)n−2

3
+ (−1)n−1I1,

with

I1 =
∫ π

4

0
tan2 xdx =

∫ π
4

0
sec2 xdx −

∫ π
4

0
1dx = tan x

∣∣∣
π
4

0
− π

4
= 1 − π

4
.

We find that

In = 1

2n − 1
− 1

2n − 3
+ · · · + (−1)n−2

3
+ (−1)n−1 + (−1)n π

4
.

Because tan2n x → 0 as n → ∞ uniformly on any interval of the form [0, a), a < π
4 , it

follows that lim
n→∞ In = 0. The Leibniz formula follows. �

Below are more examples of this kind.

560. Let P(x) be a polynomial with real coefficients. Prove that

∫ ∞

0
e−xP(x)dx = P(0) + P′(0) + P′′(0) + · · ·

561. Let n ≥ 0 be an integer. Compute the integral

∫ π

0

1 − cos nx

1 − cos x
dx.
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562. Compute the integral

In =
∫ π

2

0
sinn xdx.

Use the answer to prove the Wallis formula

lim
n→∞

[
2 · 4 · 6 · · · 2n

1 · 3 · 5 · · · (2n − 1)

]2
· 1

n
= π.

563. Compute ∫ π

−π

sin nx

(1 + 2x) sin x
dx, n ≥ 0.

3.2.10 Riemann Sums

The definite integral of a function is the area under the graph of the function. In approximating
the area under the graph by a family of rectangles, the sum of the areas of the rectangles,
called a Riemann sum, approximates the integral. When these rectangles have equal width,
the approximation of the integral by Riemann sums reads

lim
n→∞

1

n

n∑
i=1

f (ξi) =
∫ b

a
f (x)dx,

where each ξi is a number in the interval
[
a + i−1

n (b − a), a + i
n (b − a)

]
.

Since the Riemann sum depends on the positive integer n, it can be thought of as the term
of a sequence. Sometimes the terms of a sequence can be recognized as the Riemann sums of
a function, and this can prove helpful for finding the limit of the sequence. Let us show how
this works, following Hilbert’s advice: “always start with an easy example.”

Example. Compute the limit

lim
n→∞

(
1

n + 1
+ 1

n + 2
+ · · · + 1

2n

)
.

Solution. If we rewrite as

1

n

[
1

1 + 1
n

+ 1

1 + 2
n

+ · · · + 1

1 + n
n

]
,

we recognize the Riemann sum of the function f : [0, 1] → R, f (x) = 1
1+x associated to the

subdivision x0 = 0 < x1 = 1
n < x2 = 2

n < · · · < xn = n
n = 1, with the intermediate points

ξi = i
n ∈ [xi, xi+1]. It follows that

lim
n→∞

(
1

n + 1
+ 1

n + 2
+ · · · + 1

2n

)
=
∫ 1

0

1

1 + x
= ln(1 + x)

∣∣∣1
0

= ln 2,

and the problem is solved. �



3.2 Continuity, Derivatives, and Integrals 167

We continue with a beautiful example from the book of G. Pólya, G. Szegö, Aufgaben und
Lehrsatze aus der Analysis (Springer-Verlag, 1964).

Example. Denote by Gn the geometric mean of the binomial coefficients(
n

0

)
,

(
n

1

)
, . . . ,

(
n

n

)
.

Prove that
lim

n→∞
n
√

Gn = √
e.

Solution. We have
(

n

0

)(
n

1

)
· · ·
(

n

n

)
=

n∏
k=0

n!
k!(n − k)! = (n!)n+1

(1!2! · · · n!)2

=
n∏

k=1

(n + 1 − k)n+1−2k =
n∏

k=1

(
n + 1 − k

n + 1

)n+1−2k

.

The last equality is explained by
n∑

k=1

(n + 1 − 2k) = 0, which shows that the denominator is

just (n + 1)0 = 1. Therefore,

Gn = n+1

√(
n

0

)(
n

1

)
· · ·
(

n

n

)
=

n∏
k=1

(
1 − k

n + 1

)1− 2k
n+1

.

Taking the natural logarithm, we obtain

1

n
ln Gn = 1

n

n∑
k=1

(
1 − 2k

n + 1

)
ln

(
1 − k

n + 1

)
.

This is just a Riemann sum of the function (1− 2x) ln(1− x) over the interval [0, 1]. Passing
to the limit, we obtain

lim
n→∞

1

n
ln Gn =

∫ 1

0
(1 − 2x) ln(1 − x)dx.

The integral is computed by parts as follows:
∫ 1

0
(1 − 2x) ln(1 − x)dx = 2

∫ 1

0
(1 − x) ln(1 − x)dx −

∫ 1

0
ln(1 − x)dx

= −(1 − x)2 ln(1 − x)
∣∣∣1
0
− 2
∫ 1

0

(1 − x)2

2
· 1

1 − x
dx + (1 − x) ln(1 − x)

∣∣∣1
0
+ x
∣∣∣1
0

= −
∫ 1

0
(1 − x)dx + 1 = 1

2
.

Exponentiating back, we obtain lim
n→∞

n
√

Gn = √
e. �



168 3 Real Analysis

564. Compute

lim
n→∞

[
1√

4n2 − 12
+ 1√

4n2 − 22
+ · · · + 1√

4n2 − n2

]
.

565. Prove that for every positive integer n,

0.785n2 − n <
√

n2 − 12 +
√

n2 − 22 + · · · +
√

n2 − (n − 1)2 < 0.79n2.

566. Define the sequence

xn =
n∑

k=1

k

n2 + 2k2
, n ≥ 1.

Prove that the sequence xn converges and find its limit.

567. Prove that for n ≥ 1,

1√
2 + 5n

+ 1√
4 + 5n

+ 1√
6 + 5n

+ · · · + 1√
2n + 5n

<
√
7n − √

5n.

568. Compute

lim
n→∞

(
21/n

n + 1
+ 22/n

n + 1
2

+ · · · + 2n/n

n + 1
n

)
.

569. Compute the integral ∫ π

0
ln(1 − 2a cos x + a2)dx.

570. Find all continuous functions f : R → [1,∞) for which there exist a ∈ R and k a
positive integer such that

f (x)f (2x) · · · f (nx) ≤ ank,

for every real number x and positive integer n.

3.2.11 Inequalities for Integrals

A very simple inequality states that if f : [a, b] → R is a nonnegative continuous function,
then ∫ b

a
f (x)dx ≥ 0,

with equality if and only if f is identically equal to zero. Easy as this inequality looks,
its applications are often tricky. This is the case with a problem from the 1982 Romanian
Mathematical Olympiad, proposed by the second author of the book.

Example. Find all continuous functions f : [0, 1] → R satisfying

∫ 1

0
f (x)dx = 1

3
+
∫ 1

0
f (x2)2dx.
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Solution. First, we would like the functions in both integrals to have the same variable. A

substitution in the first integral changes it to
∫ 1

0
f (x2)2xdx. Next, we would like to express

the number
1

3
as an integral, and it is natural to choose

∫ 1

0
x2dx. The condition from the

statement becomes ∫ 1

0
2xf (x2)dx =

∫ 1

0
x2 +

∫ 1

0
f (x2)2dx.

This is the same as ∫ 1

0
[f (x2)2 − 2xf (x2) + x2]dx = 0.

Note that the function under the integral, f (x2)2 − 2xf (x2) + x2 = (f (x2) − x)2, is a perfect
square, so it is nonnegative. Therefore, its integral on [0, 1] is nonnegative, and it can equal
zero only if the function itself is identically zero. We find that f (x2) = x. So f (x) = √

x is
the unique function satisfying the condition from the statement. �

571. Determine the continuous functions f : [0, 1] → R that satisfy

∫ 1

0
f (x)(x − f (x))dx = 1

12
.

572. Let n be an odd integer greater than 1. Determine all continuous functions f : [0, 1] →
R such that ∫ 1

0
(f (x

1
k ))n−kdx = k

n
, k = 1, 2, . . . , n − 1.

573. Let f : [0, 1] → R be a continuous function such that

∫ 1

0
f (x)dx =

∫ 1

0
xf (x)dx = 1.

Prove that ∫ 1

0
f (x)2dx ≥ 4.

574. For each continuous function f : [0, 1] → R, we define

I(f ) =
∫ 1

0
x2f (x)dx and J(f ) =

∫ 1

0
x(f (x))2dx.

Find the maximum value of I(f ) − J(f ) over all such functions f .

575. Let a1, a2, . . . , an be positive real numbers and let x1, x2, . . . , xn be real numbers such
that a1x1 + a2x2 + · · · + anxn = 0. Prove that

∑
i,j

xixj|ai − aj| ≤ 0.

Moreover, prove that equality holds if and only if there exists a partition of the set
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{1, 2, . . . , n} into the disjoint sets A1, A2, . . . , Ak such that if i and j are in the same set,
then ai = aj and also

∑
j∈Ai

xj = 0 for i = 1, 2, . . . , k.

We now list some fundamental inequalities. We will be imprecise as to the classes of
functions to which they apply, because we want to avoid the subtleties of Lebesgue’s theory
of integration. The novice mathematician should think of piecewise continuous, real-valued
functions on some domain D that is an interval of the real axis or some region in Rn.

The Cauchy-Schwarz inequality. Let f and g be square integrable functions. Then

(∫
D

f (x)g(x)dx

)2
≤
(∫

D
f (x)2dx

)(∫
D

g(x)2dx

)
.

Minkowski’s inequality. If p > 1, then

(∫
D

|f (x) + g(x)|pdx

) 1
p

≤
(∫

D
|f (x)|pdx

) 1
p

+
(∫

D
|g(x)|pdx

) 1
p

.

Hölder’s inequality. If p, q > 1 such that
1

p
+ 1

q
= 1, then

∫
D

|f (x)g(x)|dx ≤
(∫

D
|f (x)|pdx

) 1
p
(∫

D
|g(x)|qdx

) 1
q

.

As an instructive example we present in detail the proof of another famous inequality.

Chebyshev’s inequality. Let f and g be two increasing functions on R. Then for any real
numbers a < b,

(b − a)

∫ b

a
f (x)g(x)dx ≥

(∫ b

a
f (x)dx

)(∫ b

a
g(x)dx

)
.

Proof. Because f and g are both increasing,

(f (x) − f (y))(g(x) − g(y)) ≥ 0.

Integrating this inequality over [a, b] × [a, b], we obtain
∫ b

a

∫ b

a
(f (x) − f (y))(g(x) − g(y))dxdy ≥ 0.
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Expanding, we obtain
∫ b

a

∫ b

a
f (x)g(x)dxdy +

∫ b

a

∫ b

a
f (y)g(y)dxdy −

∫ b

a

∫ b

a
f (x)g(y)dxdy

−
∫ b

a

∫ b

a
f (y)g(x)dxdy ≥ 0.

By eventually renaming the integration variables, we see that this is equivalent to

(b − a)

∫ b

a
f (x)g(x)dx −

(∫ b

a
f (x)dx

)(∫ b

a
g(x)dx

)
≥ 0,

and the inequality is proved. �

576. Let f : [0, 1] → R be a continuous function. Prove that

(∫ 1

0
f (t)dt

)2
≤
∫ 1

0
f (t)2dt.

577. Find the maximal value of the ratio
(∫ 3

0
f (x)dx

)3
/

∫ 3

0
f (x)3dx,

as f ranges over all positive continuous functions on [0, 1].
578. Let f : [0,∞) → [0,∞) be a continuous, strictly increasing function with f (0) = 0.

Prove that ∫ a

0
f (x)dx +

∫ b

0
f −1(x)dx ≥ ab

for all positive numbers a and b, with equality if and only if b = f (a). Here f −1 denotes
the inverse of the function f .

579. Prove that for any positive real numbers x, y and any positive integers m, n,

(n − 1)(m − 1)(xm+n + ym+n) + (m + n − 1)(xmyn + xnym)

≥ mn(xm+n−1y + ym+n−1x).

580. Let f be a nonincreasing function on the interval [0, 1]. Prove that for any α ∈ (0, 1),

α

∫ 1

0
f (x)dx ≤

∫ α

0
f (x)dx.

581. Let f : [0, 1] → [0,∞) be a differentiable function with decreasing first derivative,
and such that f (0) = 0 and f ′(1) > 0. Prove that

∫ 1

0

dx

f (x)2 + 1
≤ f (1)

f ′(1)
.

Can equality hold?
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582. Prove that any continuously differentiable function f : [a, b] → R for which f (a) = 0
satisfies the inequality

∫ b

a
f (x)2dx ≤ (b − a)2

∫ b

a
f ′(x)2dx.

583. Let f (x) be a continuous real-valued function defined on the interval [0, 1]. Show that

∫ 1

0

∫ 1

0
|f (x) + f (y)|dxdy ≥

∫ 1

0
|f (x)|dx.

584. Let f : [a, b] → R be a continuous convex function. Prove that

∫ b

a
f (x)dx ≥ 2

∫ 3b+a
4

3a+b
4

f (x)dx ≥ (b − a)f

(
a + b

2

)
.

3.2.12 Taylor and Fourier Series

Some functions, called analytic, can be expanded around each point of their domain in a
Taylor series

f (x) = f (a) + f ′(a)

1! (x − a) + f ′′(a)

2! (x − a)2 + · · · + f (n)(a)

n! (x − a)n + · · ·

If a = 0, the expansion is also known as theMaclaurin series. Rational functions, trigonomet-
ric functions, the exponential and the natural logarithm are examples of analytic functions. A
particular example of a Taylor series expansion is

Newton’s binomial formula. For all real numbers a and |x| < 1, one has

(x + 1)a =
∞∑

n=0

(
a

n

)
xn =

∞∑
n=0

a(a − 1) · · · (a − n + 1)

n! xn,

Here we make the usual convention that
(a
0

) = 1.

We begin our series of examples with a widely circulated problem.

Example. Compute the integral ∫ 1

0
ln x ln(1 − x)dx.

Solution. Because

lim
x→0

ln x ln(1 − x) = lim
x→1

ln x ln(1 − x) = 0,

this is, in fact, a definite integral.



3.2 Continuity, Derivatives, and Integrals 173

We will expand one of the logarithms in Taylor series. Recall the Taylor series expansion

ln(1 − x) = −
∞∑

n=1

xn

n
, for x ∈ (−1, 1).

It follows that on the interval (0, 1), the antiderivative of the function f (x) = ln x ln(1− x) is

∫
ln(1 − x) ln xdx = −

∫ ∞∑
n=1

xn

n
ln xdx = −

∞∑
n=1

1

n

∫
xn ln xdx.

Integrating by parts, we find this is to be equal to

−
∞∑

n=1

1

n

(
xn+1

n + 1
ln x − xn+1

(n + 1)2

)
+ C.

Taking the definite integral over an interval [ε, 1 − ε], then letting ε → 0, we obtain

∫ 1

0
ln x ln(1 − x)dx =

∞∑
n=1

1

n(n + 1)2
.

Using a telescopic sum and the well-known formula for the sum of the inverses of squares of
positive integers, we compute this as follows:

∞∑
n=1

1

n(n + 1)2
=

∞∑
n=1

(
1

n(n + 1)
− 1

(n + 1)2

)
=

∞∑
n=1

(
1

n
− 1

n + 1

)
−

∞∑
n=2

1

n2

= 1 −
(

π2

6
− 1

)
= 2 − π2

6
,

which is the answer to the problem. Note that in the above computation all series are absolutely
convergent, so they can be reordered. �

Next, a problem that we found in S. Rădulescu, M. Rădulescu, Theorems and Problems
in Mathematical Analysis (Editura Didactică şi Pedagogică, Bucharest, 1982).

Example. Prove that for |x| < 1,

(arcsin x)2 =
∞∑

k=1

1

k2
(2k

k

)22k−1x2k.

Solution. The function g : (−1, 1) → R, g(x) = (arcsin x)2 satisfies the initial value problem

(1 − x2)y′′ − xy′ − 2 = 0, y(0) = y′(0) = 0.

Looking for a solution of the form y(x) =
∞∑

k=0

akxk , we obtain the recurrence relation

(k + 1)(k + 2)ak+2 − k2ak = 0, k ≥ 1.
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It is not hard to see that a1 = 0; hence a2k+1 = 0 for all k. Also, a0 = 0, a2 = 1, and
inductively we obtain

a2k = 1

k2
(2k

k

)22k−1, k ≥ 1.

The series ∞∑
k=1

1

k2
(2k

k

)22k−1x2k

is dominated by the geometric series
∞∑

k=1

x2k , so it converges absolutely for |x| < 1. Its term-

by-term derivatives of first and second order also converge absolutely. We deduce that the
series defines a solution to the differential equation. The uniqueness of the solution for the
initial value problem implies that this function must equal g. �

We conclude the list of examples with the proof of Stirling’s formula.

Stirling’s formula.

n! = √
2πn
(n

e

)n · e
θn
12n , for some 0 < xn < 1.

Proof. We begin with the Taylor series expansions

ln(1 ± x) = ±x − x2

2
± x3

3
− x4

4
± x5

5
+ · · · , for x ∈ (−1, 1).

Combining these two, we obtain the Taylor series expansion

ln
1 + x

1 − x
= 2x + 2

3
x3 + 2

5
x5 + · · · + 2

2m + 1
x2m+1 + · · · ,

again for x ∈ (−1, 1). In particular, for x = 1

2n + 1
, where n is a positive integer, we have

ln
n + 1

n
= 2

2n + 1
+ 2

3(2n + 1)3
+ 2

5(2n + 1)5
+ · · ·

which can be written as(
n + 1

2

)
ln

n + 1

n
= 1 + 1

3(2n + 1)2
+ 1

5(2n + 1)4
+ · · ·

The right-hand side is greater than 1. It can be bounded from above by a geometric series as
follows:

1 + 1

3(2n + 1)2
+ 1

5(2n + 1)4
+ · · · < 1 + 1

3

∞∑
k=1

1

(2n + 1)2k

= 1 + 1

3(2n + 1)2
· 1

1 − 1
(2n+1)2

= 1 + 1

12n(n + 1)
.
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So using Taylor series we have obtained the double inequality

1 ≤
(

n + 1

2

)
ln

n + 1

n
< 1 + 1

12n(n + 1)
.

This transforms by exponentiating and dividing through by e into

1 <
1

e

(
n + 1

n

)n+ 1
2

< e
1

12n(n+1) .

To bring this closer to Stirling’s formula, note that the term in the middle is equal to

e−n−1(n + 1)n+1((n + 1)!)−1
√

n + 1

e−nnn(n!)−1
√

n
= xn+1

xn
,

where xn = e−nnn(n!)−1√n, a number that we want to prove is equal to
√
2πe− θn

12n with
0 < θn < 1. In order to prove this, we write the above double inequality as

1 ≤ xn

xn+1
≤ e

1
12n

e
1

12(n+1)

.

We deduce that the sequence xn is positive and decreasing, while the sequence e− 1
12n xn is

increasing. Because e− 1
12n converges to 1, and because (xn)n converges by the Weierstrass

criterion, both xn and e− 1
12n xn must converge to the same limit L. We claim that L = √

2π .
Before proving this, note that

e− 1
12n xn < L < xn,

so by the intermediate value property there exists θn ∈ (0, 1) such that L = e− θn
12n xn, i.e.

xn = e
θn
12n L.

The only thing left is the computation of the limit L. For this we employ theWallis formula

lim
n→∞

[
2 · 4 · 6 . . . 2n

1 · 3 · 5 . . . (2n − 1)

]2 1
n

= π,

proved in problem 562 from Section 3.2.9 (the one on definite integrals). We rewrite this limit
as

lim
n→∞

22n(n!)2
(2n)! · 1√

n
= √

π.

Substituting n! and (2n)! by the formula found above gives

lim
n→∞

nL2
(n

e

)2n
e

2θn
12n 22n

√
2nL

(
2n

e

)2n

e
θ2n
24n

· 1√
n

= lim
n→∞

1√
2

Le
4θn−θ2n

24n = √
π.

Hence L = √
2π , and Stirling’s formula is proved. �
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Try your hand at the following problems.

585. Prove that for any real number x, the series

1 + x4

4! + x8

8! + x12

12! + · · ·

is convergent and find its limit.

586. Compute the ratio

1 + π4

5! + π8

9! + π12

13! + · · ·
1

3! + π4

7! + π8

11! + π12

15! + · · ·
587. Compute

1√
3

− 1

3

1√
3
3 + 1

5

1√
3
5 − 1

7

1√
3
7 + · · ·

588. For a > 0, prove that ∫ ∞

−∞
e−x2 cos axdx = √

πe−a2/4.

589. Find a quadratic polynomial P(x) with real coefficients such that
∣∣∣∣P(x) + 1

x − 4

∣∣∣∣ ≤ 0.01, for all x ∈ [−1, 1].

590. Without using a calculator, find the solution to the equation

x2 sin
1

x
= 2x − 1997

with an error less than 0.01.

591. Compute to three decimal places

∫ 1

0
cos

√
xdx.

592. Prove that for |x| < 1,

arcsin x =
∞∑

k=0

1

22k(2k + 1)

(
2k

k

)
x2k+1.

593. (a) Prove that for |x| < 2,

∞∑
k=1

1(2k
k

)x2k =
x
(
4 arcsin

(x

2

)
+ x

√
4 − x2

)

(4 − x2)
√
4 − x2

.
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(b) Prove the identity
∞∑

k=1

1(2k
k

) = 2π
√
3 + 36

27
.

In a different perspective, we have the Fourier series expansions. The Fourier series allows
us to write an arbitrary oscillation as a superposition of sinusoidal oscillations. Mathemat-
ically, a function f : R → R that is continuous and periodic of period T admits a Fourier
series expansion

f (x) = a0 +
∞∑

n=1

an cos
2nπ

T
x +

∞∑
n=1

bn sin
2nπ

T
x.

This expansion is unique, and

a0 = 1

2π

∫ T

0
f (x)dx,

an = 1

π

∫ T

0
f (x) cos

2nπ

T
xdx,

bn = 1

π

∫ T

0
f (x) sin

2nπ

T
xdx.

Of course, we can require f to be defined only on an interval of length T , and then extend
it periodically, but if the values of f at the endpoints of the interval differ, then the convergence
of the series is guaranteed only in the interior of the interval.

Let us discuss a problem from the Soviet Union University Student Contest.

Example. Compute the sum
∞∑

n=1

cos n

1 + n2
.

Solution. The sum looks like a Fourier series evaluated at 1. For this reason we concentrate
on the general series

∞∑
n=0

1

n2 + 1
cos nx.

The coefficients 1
n2+1 should remind us of the integration formulas

∫
ex cos nxdx = 1

n2 + 1
ex(cos nx + n sin nx),

∫
ex sin nxdx = n

n2 + 1
ex(sin nx + n cos nx).

These give rise to the Fourier series expansion

ex = 1

2π
(e2π − 1) + 1

π
(e2π − 1)

∞∑
n=1

1

n2 + 1
cos nx + 1

π
(e2π − 1)

∞∑
n=1

n

n2 + 1
sin nx,
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which holds true for x ∈ (0, 2π). Similarly, for e−x and x ∈ (0, 2π), we have

e−x = 1

2π
(1 − e2−π) + 1

π
(1 − e−2π)

∞∑
n=1

1

n2 + 1
cos nx − 1

π
(1 − e−2π)

∞∑
n=1

n

n2 + 1
sin nx.

Let

Cn(x) =
∞∑

n=−1

1

n2 + 1
cos nx and Sn(x) =

∞∑
n=1

n

n2 + 1
sin nx.

They satisfy

1

2
+ Cn(x) + Sn(x) = πex

e2π − 1
,

1

2
+ Cn(x) − Sn(x) = πe−x

1 − e−2π
.

Solving this linear system, we obtain

Cn(x) = 1

2

[
πex

e2π − 1
+ πe−x

1 − e−2π
− 1

]
.

The sum from the statement is C(1). The answer to the problem is therefore

C(1) = 1

2

[
πe

e2π − 1
+ πe−1

1 − e−2π
− 1

]
.

�

We find even more exciting a fundamental result of ergodic theory that proves that for an
irrational number α, the fractional parts of nα, n ≥ 1, are uniformly distributed in [0, 1]. For
example, when α = log10 2, we obtain as a corollary that on average, the first digit of a power
of 2 happens to be 7 as often as it happens to be 1. Do you know a power of 2 whose first
digit is 7?

Theorem. Let f : R → R be a continuous function of period 1 and let α be an irrational
number. Then

lim
n→∞

1

n
(f (α) + f (2α) + · · · + f (nα)) =

∫ 1

0
f (x)dx.



3.2 Continuity, Derivatives, and Integrals 179

Proof. If we approximate f by a trigonometric polynomial with error less than ε, then both

1
n (f (α) + f (2α) + . . . + f (nα)) and

∫ 1

0
f (x)dx are evaluated with error less than ε. Hence it

suffices to check the equality term by term for the Fourier series of f . For the constant term
the equality is obvious. To check that it holds for f (x) = cos 2πmx or f (x) = sin 2πmx, with
m ≥ 1, combine these two using Euler’s formula into

e2π imx = cos 2πmx + i sin 2πmx.

We then have

1

n
(e2πmα + e2π i2mα + · · · + e2π inmα) = e2π iα(e2π inmα − 1)

n(e2π imα − 1)
,

which converges to 0 as n → ∞. And for the right-hand side,

∫ 1

0
e2π imxdx = 1

2π im
e2π imx

∣∣∣1
0

= 0.

Therefore, equality holds term by term for the Fourier series. The theorem is proved. �

If after this example you don’t love Fourier series, you never will. Below are listed more
applications of the Fourier series expansion.

594. Prove that for every 0 < x < 2π the following formula is valid:

π − x

2
= sin x

1
+ sin 2x

2
+ sin 3x

3
+ · · ·

Derive the formula
π

4
=

∞∑
k=1

sin(2k − 1)x

2k − 1
, x ∈ (0, π).

595. Use the Fourier series of the function of period 1 defined by f (x) = 1
2 −x for 0 ≤ x < 1

to prove Euler’s formula

π2

6
= 1 + 1

22
+ 1

32
+ 1

42
+ · · ·

596. Prove that
π2

8
= 1 + 1

32
+ 1

52
+ 1

72
+ · · ·

597. For a positive integer n find the Fourier series of the function

f (x) = sin2 nx

sin2 x
.

598. Let f : [0, π] → R be a C∞ functions such that (−1)nf (2n)(x) ≥ 0 for any x ∈ [0, π]
and f (2n)(0) = f (2n)(π) = 0 for any n ≥ 0. Show that f (x) = a sin x for some a > 0.
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3.3 Multivariable Differential and Integral Calculus

3.3.1 Partial Derivatives and Their Applications

This section and the two that follow it cover differential and integral calculus in two and three
dimensions. Most of the ideas generalize easily to n-dimensions. All functions below are
assumed to be differentiable. For a two-variable function this means that its graph (which is
a surface in R3) admits a tangent plane at each point. For a three-variable function, the graph
is a three-dimensional manifold in a four-dimensional space, and differentiability means that
at each point the graph admits a three-dimensional tangent hyperplane.

The tilting of the tangent (hyper)plane is determined by the slopes in the directions of the
coordinate axes, and these slopes are the partial derivatives of the function. We denote the
partial derivatives of f by ∂f

∂x ,
∂f
∂y ,

∂f
∂z . They are computed by differentiating with respect to the

one variable while keeping the others fixed. This being said, let us start with an example.

Euler’s theorem. A function z(x, y) is called n-homogeneous if z(tx, ty) = tnz(x, y) for all
x, y ∈ R and t > 0. Assume that z(x, y) is n-homogeneous with n an integer. Then for all
k ≤ n + 1,

k∑
j=1

(
k

j

)
xjyk−j ∂kz

∂xj∂yk−j
= n(n − 1) · · · (n − k + 1)z.

Proof. We first prove the case k = 1. Differentiating the relation z(tx, ty) = tnz(x, y) with
respect to y, we obtain

t
∂z

∂y
(tx, ty) = tn ∂z

∂y
(x, y),

which shows that
∂z

∂y
is (n − 1)-homogeneous.

Replace x by 1, y by y
x , and t by x in the homogeneity condition, to obtain z(x, y) =

xnz
(
1, y

x

)
. Differentiating this with respect to x yields

∂z

∂x
(x, y) = nxn−1z

(
1,

y

x

)
+ xn ∂z

∂y

(
1,

y

x

) (
− y

x2

)
.

Because ∂z
∂y is (n − 1)-homogeneous, the last term is just − y

x
∂z
∂y (x, y). Moving it to the right

and multiplying through by x gives the desired

x
∂z

∂x
+ y

∂z

∂y
= nz.

Now we prove the general case by induction on k, with k = 1 the base case. To simplify the
notation, set

(k
j

) = 0 if j < 0 or j > k. The induction hypothesis is

∑
j

(
k

j

)
xjyk−j ∂kz

∂xj∂yk−j
= n(n − 1) · · · (n − k + 1)z,
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for some k ≤ n. Apply the operator x ∂
∂x + y ∂

∂y to both sides. The left-hand side becomes

∑
j

(
k

j

)(
x

∂

∂x
+ y

∂

∂y

)
xjyk−j ∂kz

∂xj∂yk−j

=
∑

j

j

(
k

j

)
xjyk−j ∂kz

∂xj∂yk−j
+
∑

j

(
k

j

)
xj+1yk−j ∂k+1z

∂xj+1∂yk−j

+
∑

j

(k − j)

(
k

j

)
xjyk−j ∂kz

∂xj∂yk−j
+
∑

j

(
k

j

)
xjyk−j+1 ∂k+1z

∂xj∂yk−j+1

= k
∑

j

(
k

j

)
xjyk−j ∂kz

∂xj∂yk−j
+
∑

j

((
k

j − 1

)
+
(

k

j

))
xjyk+1−j ∂k+1z

∂xj∂yk+1−j

= k · n(n − 1) · · · (n − k + 1)z +
∑

j

(
k + 1

j

)
xjyk+1−j ∂k+1z

∂xjyk+1−j
,

where for the last step we used the induction hypothesis. The base case k = 1 implies that
the right side equals n · n(n − 1) · · · (n − k + 1)z. Equating the two, we obtain

∑
j

(
k + 1

j

)
xjyk+1−j ∂k+1z

∂xjyk+1−j
= n(n − 1) · · · (n − k + 1)(n − k)z,

completing the induction. This proves the formula. �

599. Prove that if the function u(x, t) satisfies the equation

∂u

∂t
= ∂2u

∂x2
, (x, t) ∈ R

2,

then so does the function

v(x, t) = 1√
t
e− x2

4t u(xt−1,−t−1), x ∈ R, t > 0.

600. Assume that a nonidentically zero harmonic function u(x, y) is n-homogeneous for
some real number n. Prove that n is necessarily an integer. (The function u is called
harmonic if ∂2u

∂x2
+ ∂2u

∂y2
= 0).

601. Let P(x, y) be a harmonic polynomial divisible by x2 + y2. Prove that P(x, y) is
identically equal to zero.

602. Let f : R2 → R
2 be a differentiable function with continuous partial derivatives and

with f (0, 0) = 0. Prove that there exist continuous functions g1, g2 : R2 → R such
that

f (x, y) = xg1(x, y) + yg2(x, y).
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If a differentiable multivariable function has a global extremum, then this extremum is
found either among the critical points or on the boundary of the domain. We recall that a point
is critical if the (hyper)plane tangent to the graph is horizontal, which is equivalent to the fact
that all partial derivatives are equal to zero. Because any continuous function on a compact
domain attains its extrema, the global maximum and minimum exist whenever the domain is
closed and bounded. Let us apply these considerations to the following problems.

Example. Find the triangles inscribed in the unit circle that have maximal perimeter.

Solution. Without loss of generality, we may assume that the vertices of the triangle have the
coordinates (1, 0), (cos s, sin s), (cos t, sin t), 0 ≤ s ≤ t ≤ 2π . We are supposed to maximize
the function

f (s, t) =
√

(cos s − 1)2 + (sin s)2 +
√

(1 − cos t)2 + (sin t)2

+
√

(cos t − cos s)2 + (sin t − sin s)2

= √
2(

√
1 − cos s + √

1 − cos t +√1 − cos(t − s))

= 2

(
sin

s

2
+ sin

t

2
+ sin

t − s

2

)
.

over the domain 0 ≤ s ≤ t ≤ 2π . To this end, we first find the critical points of f in the
interior of the domain. The equation

∂f

∂s
(s, t) = cos

s

2
− cos

t − s

2
= 0

gives cos s
2 = cos t−s

2 , and since both s
2 and

t−s
2 are between 0 and π , it follows that s

2 = t−s
2 .

The equation

∂f

∂t
(s, t) = cos

t

2
+ cos

t − s

2
= 0

implies additionally that cos s = − cos s
2 , and hence s = 2π

3 . Consequently, t = 4π
3 , showing

that the unique critical point is the equilateral triangle, with the corresponding value of the
perimeter 3

√
3.

On the boundary of the domain of f two of the three points coincide, and in that case the
maximum is achieved when two sides of the triangle become diameters. The value of this
maximum is 4, which is smaller than 3

√
3. We conclude that equilateral triangles maximize

the perimeter. �

603. Find the global minimum of the function f : R2 → R,

f (x, y) = x4 + 6x2y2 + y4 − 9

4
x − 7

4
y.
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604. Find the range of the function

f : [−1, 1] × [−1, 1] → R, f (x, y) = x4 + 6x2y2 + y4 + 8xy.

605. Find the equation of the smallest sphere that is tangent to both of the lines

(i) x = t + 1, y = 2t + 4, z = −3t + 5, and
(ii) x = 4t − 12, y = −t + 8, z = t + 17.

606. Determine the maximum and the minimum of cosA + cosB + cosC when A, B and C
are the angles of a triangle.

607. Prove that for α, β, γ ∈ [0, π
2

)
,

tan α + tan β + tan γ ≤ 2√
3
secα secβ sec γ.

608. Given n points in the plane, suppose there is a unique line that minimizes the sum of
the distances from the points to the line. Prove that the line passes through two of the
points.

To find the maximum of a function subject to a constraint one can employ the following
tool.

The Lagrange multipliers theorem. If a function f (x, y, z) subject to the constraint
g(x, y, z) = C has a maximum or a minimum, then this maximum or minimum occurs at
a point (x, y, z) of the set g(x, y, z) = C for which the gradients of f and g are parallel.

So in order to find the maximum of f we have to solve the system of equations ∇f = λ∇g
and g(x, y, z) = C. The number λ is called the Lagrange multiplier; to understand its
significance, imagine that f is the profit and g is the constraint on resources. Then λ is the
rate of change of the profit as the constraint is relaxed (economists call this the shadow price).

As an applicationof themethodofLagrangemultipliers, wewill prove the lawof reflection.

Example. For a light ray reflected off a mirror, the angle of incidence equals the angle of
reflection.

Solution. Our argument relies on the fundamental principle of optics, which states that light
travels always on the fastest path. This is known in physics as Fermat’s principle of least
time. We consider a light ray that travels from point A to point B reflecting off a horizontal
mirror represented schematically in Figure 22. Denote by C and D the projections of A and B
onto the mirror, and by P the point where the ray hits the mirror. The angles of incidence and
reflection are, respectively, the angles formed by AP and BP with the normal to the mirror. To
prove that they are equal it suffices to show that ∠APC = ∠BPD. Let x = CP and y = DP.
We have to minimize f (x, y) = AP + BP with the constraint g(x, y) = x + y = CD.
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P

A

C x y D

B

Figure 22

Using the Pythagorean theorem we find that

f (x, y) =
√

x2 + AC2 +
√

y2 + BD2.

The method of Lagrange multipliers yields the system of equations

x√
x2 + AC2

= λ,

y√
y2 + BD2

= λ,

x + y = CD.

From the first two equations, we obtain

x√
x2 + AC2

= y√
y2 + BD2

,

i.e., CP
AP = DP

BP . This shows that the right triangles CAP and DBP are similar, so ∠APC =
∠BPD as desired. �

The following example was proposed by C. Niculescu for Mathematics Magazine.

Example. Find the smallest constant k > 0 such that

ab

a + b + 2c
= bc

b + c + 2a
+ ca

c + a + 2b
≤ k(a + b + c)

for every a, b, c > 0.

Solution. We will show that the best choice for k is 1
4 . To prove this fact, note that the

inequality remains unchanged on replacing a, b, c by ta, tb, tc with t > 0. Consequently, the
smallest value of k is the supremum of

f (a, b, c) = ab

a + b + 2c
+ bc

b + c + 2a
+ ca

c + a + 2b

over the domain 	 = {(a, b, c) | a, b, c > 0, a + b + c = 1}. Note that on 	,

f (a, b, c) = ab

1 + c
+ bc

1 + a
+ ca

1 + b
.
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To find the maximum of this function on	, we will apply the method of Lagrange multipliers
with the constraint g(a, b, c) = a + b + c = 1. This yields the system of equations

b

1 + c
+ c

1 + b
− bc

(1 + a)2
= λ,

c

1 + a
+ a

1 + c
− ca

(1 + b)2
= λ,

a

1 + b
+ b

1 + a
− ab

(1 + c)2
= λ,

a + b + c = 1.

Subtracting the first two equations, we obtain

b − a

1 + c
+ c

1 + b

[
1 + a

1 + b

]
− c

1 + a

[
1 + b

1 + a

]
= 0,

which after some algebraic manipulations transforms into

(b − a)

[
1

1 + c
+ c(a + b + 1)(a + b + 2)

(1 + a)2(1 + b)2

]
= 0.

The second factor is positive, so this equality can hold only if a = b. Similarly, we prove that
b = c. So the only extremum of f when restricted to the plane a + b + c = 1 is

f

(
1

3
,
1

3
,
1

3

)
= 1

4
.

But is this a maximum? Let us examine the behavior of f on the boundary of 	 (to which it
can be extended). If say c = 0, then f (a, b, 0) = ab. When a + b = 1, the maximum of this
expression is again 1

4 . We conclude that the maximum on 	 is indeed 1
4 , which is the desired

constant. �

609. Using the method of Lagrange multipliers prove Snell’s law of optics: If a light ray
passes between two media separated by a planar surface, then

sin θ1

sin θ2
= v1

v2
,

where θ1 and θ2 are, respectively, the angle of incidence and the angle of refraction,
and v1 and v2 are the speeds of light in the first and second media, respectively.

610. Let ABC be a triangle such that

(
cot

A

2

)2
+
(
2 cot

B

2

)2
+
(
3 cot

C

2

)2
=
(
6s

7r

)2
,

where s and r denote its semiperimeter and its inradius, respectively. Prove that triangle
ABC is similar to a triangle T whose side lengths are all positive integers with no
common divisors and determine these integers.
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611. The angles of a certain triangle are measured in radians and the product of these
measures is equal to π3/30. Prove that the triangle is acute.

612. Prove that of all quadrilaterals that can be formed from four given sides, the one that
is cyclic has the greatest area.

613. Of all triangles circumscribed about a given circle, find the one with the smallest area.

614. Prove that for non-negative x, y, z such that x + y + z = 1, the following inequality
holds

0 ≤ xy + yz + xz − 2xyz ≤ 7

27
.

615. Let a, b, c, d be four nonnegative numbers satisfying a + b + c + d = 1. Prove the
inequality

abc + bcd + cda + dab ≤ 1

27
+ 176

27
abcd.

616. Given two triangles with angles α, β, γ , respectively, α1, β1, γ1, prove that

cosα1

sin α
+ cosβ1

sin β
+ cos γ1

sin γ
≤ cot α + cot β + cot γ,

with equality if and only if α = α1, β = β1, γ = γ1.

3.3.2 Multivariable Integrals

For multivariable integrals, the true story starts with a change of coordinates.

Theorem. Let f : D ⊂ R
n → R be an integrable function. Let also x(u) = (xi(uj))

n
i,j=1

be a change of coordinates, viewed as a map from some domain D∗ to D, with Jacobian
∂x
∂u = det

(
∂xi
∂uj

)
. Then ∫

D
f (x)dx =

∫
D∗

f (x(u))

∣∣∣∣∂x

∂u

∣∣∣∣ du.

There are three special situations worth mentioning:

• The change in two dimensions from Cartesian to polar coordinates x = r cos θ , y =
r sin θ , with the Jacobian ∂(x,y)

∂(r,θ)
= r.

• The change in three dimensions from Cartesian to cylindrical coordinates x = t cos θ ,
y = r sin θ , z = z, with the Jacobian ∂(x,y,z)

∂(r,θ,z) = r.

• The change in three dimensions from Cartesian to spherical coordinates x = ρ sin φ

cos θ , y = ρ sin φ sin θ , z = ρ cosφ, with the Jacobian ∂(x,y,z)
∂(ρ,θ,φ)

= ρ2 sin φ.

As an illustration, we show how multivariable integrals can be used for calculating the
Fresnel integrals. These integrals arise in the theory of diffraction of light.
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Example. Compute the Fresnel integrals

I =
∫ ∞

0
cos x2dx and J =

∫ ∞

0
sin x2dx.

Solution. For the computation of the first integral, we consider the surface z = e−y2 cos x2 and
determine the volume of the solid that lies below this surface in the octant x, y, z ≥ 0. This
will be done in both Cartesian and polar coordinates. We will also make use of the Gaussian
integral ∫ ∞

0
e−t2dt =

√
π

2
,

which is the subject of one of the exercises that follow.
In Cartesian coordinates,

V =
∫ ∞

0

∫ ∞

0
e−y2 cos x2dydx =

∫ ∞

0

(∫ ∞

0
e−y2dy

)
cos x2dx

=
∫ ∞

0

√
π

2
cos x2dx =

√
π

2
I.

In polar coordinates,

V =
∫ π

2

0

∫ ∞

0
e−ρ2 sin2 θ cos(ρ2 cos2 θ)ρdρdθ

=
∫ π

2

0

1

cos2 θ

∫ ∞

0
e−u tan2 θ cos ududθ =

∫ π
2

0

1

cos2 θ
· tan2 θ

1 + tan4 θ
dθ,

where we made the substitution u = u(ρ) = ρ2 cos2 θ . If in this last integral we substitute
tan θ = t, we obtain

V = 1

2

∫ ∞

0

t2

t4 + 1
dt.

A routine but lengthy computation using Jacobi’s method of partial fraction decomposition
shows that the antiderivative of t2

t4+1 is

1

2
√
2
arctan

x2 − 1

x
√
2

+ 1

4
√
2
ln

x2 − x
√
2 + 1

x2 + x
√
2 + 1

+ C,

whence V = π
√
2

8 . Equating the two values for V , we obtain I =
√
2π
4 . A similar argument

yields J =
√
2π
4 . �

The solutions to all but last problems below are based on appropriate changes of coordi-
nates.

617. Compute the integral
∫∫

D
xdxdy, where

D =
{
(x, y) ∈ R

2 | x ≥ 0, 1 ≤ xy ≤ 2, 1 ≤ y

x
≤ 2
}

.
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618. Find the integral of the function

f (x, y, z) = x4 + 2y4

x4 + 4y2 + z4

over the unit ball B = {(x, y, z) | x2 + y2 + z2 ≤ 1}.
619. Compute the integral ∫∫

D

dxdy

(x2 + y2)2
,

where D is the domain bounded by the circles

x2 + y2 − 2x = 0, x2 + y2 − 4x = 0,
x2 + y2 − 2y = 0, x2 + y2 − 6y = 0.

620. Compute the integral

I =
∫∫

D
|xy|dxdy,

where

D =
{

(x, y) ∈ R
2 | x ≥ 0,

(
x2

a2
+ y2

b2

)2
≤ x2

a2
− y2

b2

}
, a, b > 0.

621. Prove the Gaussian integral formula
∫ ∞

−∞
e−x2dx = √

π.

622. Evaluate ∫ 1

0

∫ 1

0

∫ 1

0
(1 + u2 + v2 + w2)−2dudvdw.

623. Let D = {(x, y) ∈ R
2 | 0 ≤ x ≤ y ≤ π}. Prove that
∫∫

D
ln | sin(x − y)|dxdy = −π2

2
ln 2.

Our next topic is the continuous analogue of the change of the order of summation in a
double sum.

Fubini’s theorem. Let f : R2 → R be a piecewise continuous function such that

∫ d

c

∫ b

a
|f (x, y)|dxdy < ∞.

Then ∫ d

c

∫ b

a
f (x, y)dxdy =

∫ b

a

∫ d

c
f (x, y)dydx.
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The matter of convergence can be bypassed for positive functions, in which case we have
the following result.

Tonelli’s theorem. Let f : R2 → R be a positive piecewise continuous function. Then

∫ b

a

∫ d

c
f (x, y)dxdy =

∫ d

c

∫ b

a
f (x, y)dydx.

The limits of integration can be finite or infinite. In the particular case that f (x, y) is
constant on the squares of an integer lattice, we recover the discrete version of Fubini’s
theorem, the change of order of summation in a double sum

∞∑
m=0

∞∑
n=0

f (m, n) =
∞∑

n=0

∞∑
m=0

f (m, n).

A slightly more general situation occurs when f is a step function in one of the variables. In
this case we recover the formula for commuting the sum with the integral:

∫ b

a

∞∑
n=0

f (n, x) =
∞∑

n=0

∫ b

a
f (n, x).

Here we are allowed to commute the sum and the integral if either f is a positive function, or if∫ b

a

∞∑
n=0

|f (n, x)| (or equivalently
∞∑

n=0

∫ b

a
|f (n, x)|) is finite. It is now time for an application.

Example. Compute the integral

I =
∫ ∞

0

1√
x

e−xdx.

Solution. We will replace 1√
x
by a Gaussian integral. Note that for x > 0,

∫ ∞

−∞
e−xt2dt =

∫ ∞

−∞
e−(

√
xt)2dt = 1√

x

∫ ∞

−∞
e−u2du =

√
π

x
.

Returning to the problem, we are integrating the positive function 1√
x
e−x, which is integrable

over the positive semiaxis because in a neighborhood of zero it is bounded from above by 1√
x

and in a neighborhood of infinity it is bounded from above by e−x/2.
Let us consider the two-variable function f (x, y) = e−xt2e−x, which is positive and inte-

grable over R× (0,∞). Using the above considerations and Tonelli’s theorem, we can write

I =
∫ ∞

0

1√
x

e−xdx = 1√
π

∫ ∞

0

∫ ∞

−∞
e−xt2e−xdtdx = 1√

π

∫ ∞

−∞

∫ ∞

0
e−(t2+1)xdxdt

= 1√
π

∫ ∞

−∞
1

t2 + 1
dt = π√

π
= √

π.

Hence the value of the integral in question is I = √
π . �
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More applications are given below.

624. Let a1 ≤ a2 ≤ · · · ≤ an = m be positive integers. Denote by bk the number of those
ai for which ai ≥ k. Prove that

a1 + a2 + · · · + an = b1 + b2 + · · · + bm.

625. Show that for s > 0, ∫ ∞

0
e−sxx−1 sin xdx = arctan(s−1).

626. Show that for a, b > 0, ∫ ∞

0

e−ax − e−bx

x
dx = ln

b

a
.

627. Let |x| < 1. Prove that
∞∑

n=1

xn

n2
= −

∫ x

0

1

t
ln(1 − t)dt.

628. Let F(x) =
∞∑

n=1

1

x2 + n4
, x ∈ R. Compute

∫ ∞

0
F(t)dt.

3.3.3 The Many Versions of Stokes’ Theorem

We advise you that this is probably the most difficult section of the book. Yet Stokes’ theorem
plays such an important role in mathematics that it deserves an extensive treatment. As an
encouragement, we offer you a quote by Marie Curie: “Nothing in life is to be feared. It is
only to be understood.”

In its general form, Stokes’ theorem because is known as

∫
M

dω =
∫

∂M
ω,

where ω is a “form”, dω its differential, and M a domain with boundary ∂M. The one-
dimensional case is the most familiar; it is the Leibniz-Newton formula

∫ b

a
f ′(t)dt = f (b) − f (a).

Three versions of this result are of interest to us.

Green’s theorem. Let D be a domain in the plane with boundary C oriented such that D is
to the left. If the vector field

−→
F (x, y) = P(x, y)

−→
i + Q(x, y)

−→
j is continuously differentiable

on D, then ∮
C

Pdx + Qdy =
∫∫

D

(
∂Q

∂x
− ∂P

∂y

)
dxdy.
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The Kelvin-Stokes (curl) theorem. Let S be an oriented surface with normal vector −→n ,
bounded by a closed, piecewise smooth curve C that is oriented such that if one travels on
C with the upward direction −→n , the surface is on the left. If

−→
F is a vector field that is

continuously differentiable on S, then
∮

C

−→
F · d

−→
R =

∫∫
S
(curl

−→
F · −→n )dS,

where dS is the area element on the surface.

The Gauss-Ostrogradsky (divergence) theorem. Let S be a smooth, orientable surface that
encloses a solid region V in space. If

−→
F is a continuously differentiable vector field on V ,

then ∫∫
S

−→
F · −→n dS =

∫∫
V
div

−→
F dV,

where −→n is the outward unit normal vector to the surface S, dS is the area element on the
surface, and dV is the volume element inside of V .

We recall that for a vector field
−→
F = (F1, F2, F3), the divergence is

div
−→
F = ∇ · −→

F = ∂F1

∂x
+ ∂F2

∂y
+ pF3

∂z
,

while the curl is

curl
−→
F = ∇ × −→

F =

∣∣∣∣∣∣∣∣

−→
i

−→
j

−→
k

∂

∂x

∂

∂y

∂

∂z
F1 F2 F3

∣∣∣∣∣∣∣∣
=
(

∂F3

∂y
− ∂F2

∂z

)−→
i +
(

∂F1

∂z
− ∂F3

∂x

)−→
j +
(

∂F2

∂x
− ∂F1

∂y

)−→
k .

The quantity
∫∫

S

−→
F · −→n dS is called the flux of

−→
F across the surface S.

Let us illustrate the use of these theorems with some examples. We start with an encour-
aging problem whose solution is based on the Kelvin-Stokes theorem.

Example. Compute ∮
C

ydx + zdy + xdz,

where C is the circle x2 + y2 + z2 = 1, x + y + z = 1, oriented counterclockwise when seen
from the positive side of the x-axis.

Solution. By the Kelvin-Stokes theorem,
∮

C
ydx + zdy + xdz =

∫∫
S
curl

−→
F · −→n dS,
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where S is the disk that the circle bounds. It is straightforward that curl
−→
F = (−1,−1,−1),

while −→n , the normal vector to the plane x + y + z = 1, is equal to
(

1√
3
, 1√

3
, 1√

3

)
. Therefore,

∮
C

ydx + zdy + xdz = −A
√
3,

where A is the area of the disk bounded by C. Observe that C is the circumcircle of the
triangle with vertices (1, 0, 0), (0, 1, 0), and (0, 0, 1). The circumradius of this triangle is

√
6
3 ,

so A = 2
3π . The answer to the problem is therefore − 2π

√
3

3 . �

Example. Orthogonal to each face of a polyhedron construct an outward vector with length
numerically equal to the area of the face. Prove that the sum of all these vectors is equal to
zero.

Solution. We exhibit first an elementary solution based on vector operations. Consider the
particular case of a tetrahedronABCD. The four vectors are 1

2

−→
BC×−→

BA, 12
−→
BA×−→

BD, 12
−→
BD×−→

BC,

and 1
2

−→
DA × −→

DC. Indeed, the lengths of these vectors are numerically equal to the areas of
the corresponding faces, and the cross-product of two vectors is perpendicular to the plane
determined by the vectors, and it points outward because of the right-hand rule. We have

−→
BC × −→

BA + −→
BA × −→

BD + −→
BD × −→

BC + −→
DA × −→

DC

= −→
BC × −→

BA + −→
BA × −→

BD + −→
BD × −→

BC + (
−→
BA − −→

BD) × (
−→
BC − −→

BD)

= −→
BC × −→

BA + −→
BA × −→

BD + −→
BD × −→

BC + −→
BC × −→

BA − −→
BA × −→

BD = −→
BD × −→

BC + −→
0 = −→

0 .

This proves that the four vectors add up to zero.
In the general case, dissect the polyhedron into tetrahedra cutting the faces into triangles

by diagonals and then joining the centroid of the polyhedron with the vertices. Sum up all
vectors perpendicular to the faces of these tetrahedra, and note that the vectors corresponding
to internal walls cancel out.

The elegant solution uses integrals. Let S be the polyhedron and assume that its interior
V is filled with gas at a (not necessarily constant) pressure p. The force that the gas exerts on

S is
∫∫

S
p−→n A, where −→n is the outward normal vector to the surface of the polyhedron and

dA is the area element. The divergence theorem implies that∫∫
S

p−→n dA =
∫∫∫

V
∇pdV .

Here ∇p denotes the gradient of p. If the pressure p is constant, then the right-hand side is
equal to zero. This is the case with our polyhedron, where p = 1. The double integral is
exactly the sum of the vectors under discussion, these vectors being the forces exerted by
pressure on the faces. �

As a corollary, we obtain thewell-known fact that a container filledwith gas under pressure
is at equilibrium; a balloon will never move as a result of internal pressure.

We conclude our series of examples with an application of Green’s theorem: the proof
given by D. Pompeiu to Cauchy’s formula for holomorphic functions. First, let us introduce
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some notation for functions of a complex variable f (z) = f (x + iy) = u(x, y) + iv(x, y). If u
and v are continuously differentiable, define

∂f

∂z
= 1

2

[
∂f

∂x
+ i

∂f

∂y

]
= 1

2

[(
∂u

∂x
− ∂v

∂y

)
+ i

(
∂u

∂y
+ ∂v

∂x

)]
.

The function f is called holomorphic if
∂f

∂z
= 0. Examples are polynomials in z and any

absolutely convergent power series in z. Also, let dz = dx + idy.

Cauchy’s theorem. Let � be an oriented curve that bounds a region 	 on its left, and let
a ∈ 	. If f (z) = f (x + iy) = u(x, y) + iv(x, y) is a holomorphic function on 	 such that u
and v are continuous on 	 ∪ � and continuously differentiable on 	, then

f (a) = 1

2π i

∮
�

f (z)

z − a
dz.

Proof. Pompeiu’s proof is based onGreen’s formula, applied on the domain	ε obtained from
	 by removing a disk of radius ε around a as described in Figure 23 to P = F and Q = iF,
where F is a holomorphic function to be specified later. Note that the boundary of the domain
consists of two curves, � and �ε.

ε ΓΔ

a
Γε

Figure 23

Green’s formula reads∮
�

Fdz −
∮

�ε

Fdz =
∮

�

Fdx + iFdy −
∮

�ε

Fdx + iFdy

=
∫∫

	ε

i

(
∂F

∂x
+ i

∂F

∂y

)
dxdy = 2i

∫∫
	ε

∂F

∂z
dxdy = 0.

Therefore, ∮
�

F(z)dz =
∮

�ε

F(z)dz.

We apply this to

F(z) = f (z)

z − a
= (u(x, y) + iv(x, y))(x − iy + α − iβ)

(x + α)2 + (y + β)2
,

where a = α + iβ. It is routine to check that F is holomorphic. We thus have∮
�

f (z)

z − a
dz =

∮
�ε

f (z)

z − a
dz.
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The change of variable z = a + εait on the right-hand side yields∮
�ε

f (z)

z − a
dz =

∫ π

−π

f (a + εait)

εait
iεeitdt = i

∫ π

−π

f (a + εeit)dt.

When ε → 0 this tends to 2π if (a), and we obtain∮
�ε

f (z)

z − a
dz = 2π if (a).

Hence the desired formula. �

629. Assume that a curve (x(t), y(t)) runs counterclockwise around a region D. Prove that
the area of D is given by the formula

A = 1

2

∮
∂D

(xy′ − yx′)dt.

630. There is given an n-gon in the plane, whose vertices have integer coordinates andwhose
sides, all of odd lengths, are parallel to the coordinate axes.

(a) Show that n is a multiple of 4.
(b) Show that if n = 100, then the area of this polygon is odd.

631. Compute the flux of the vector field

−→
F (x, y, z) = x(exy − ezx)

−→
i + y(eyz − exy)

−→
j + z(ezx − eyz)

−→
k

across the upper hemisphere of the unit sphere.

632. Compute ∮
C

y2dx + z2dy + x2dz,

where C is the Viviani curve, defined as the intersection of the sphere x2 +y2 + z2 = a2

with the cylinder x2 + y2 = ax.

633. Letφ(x, y, z) andψ(x, y, z) be twice continuously differentiable functions in the region
{(x, y, z) | 1

2 <
√

x2 + y2 + z2 < 2}. Prove that∫∫
S
(∇φ × ∇ψ) · −→n dS = 0,

where S is the unit sphere centered at the origin, −→n is the normal unit vector to this

sphere, and ∇φ denotes the gradient ∂φ

∂x

−→
i + ∂φ

∂y

−→
j + ∂φ

∂z

−→
k .

634. Let f , g : R3 → R be twice continuously differentiable functions that are constant
along the lines that pass through the origin. Prove that on the unit ball B = {(x, y, z) |
x2 + y2 + z2 ≤ 1}, ∫∫∫

B
f ∇2gdV =

∫∫∫
B

g∇2fdV .

Here ∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
is the Laplacian.
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635. Prove Gauss’ law, which states that the total flux of the gravitational field through a
closed surface equals −4πG times the mass enclosed by the surface, where G is the
constant of gravitation. The mathematical formulation of the law is

∫∫
S

−→
F · −→n dS = −4πMG.

636. Let −→
G (x, y) =

( −y

x2 + 4y2
,

x

x2 + 4y2
, 0

)
.

Prove or disprove that there is a vector field
−→
F : R3 → R

3,

−→
F (x, y, z) = (M(x, y, z), N(x, y, z), P(x, y, z)),

with the following properties:

(i) M, N, P have continuous partial derivatives for all (x, y, z) 
= (0, 0, 0);
(ii) curl

−→
F = −→

0 , for all (x, y, z) 
= (0, 0, 0);
(iii)

−→
F (x, y, 0) = −→

G (x, y).

637. Let
−→
F : R2 → R

2,
−→
F (x, y) = (F1(x, y), F2(x, y)) be a vector field, and let G : R3 →

R be a smooth function whose first two variables are x and y, and the third is t, the
time. Assume that for any rectangular surface D bounded by the curve C,

d

dt

∫∫
D

G(x, y, t)dxdy = −
∮

C

−→
F · d

−→
R .

Prove that
∂G

∂t
+ ∂F2

∂x
+ ∂F1

∂y
= 0.

638. For two disjoint oriented curves C1 and C2 in three-dimensional space, parametrized
by −→v 1(s) and

−→v 2(t), define the linking number

lk(C1, C2) = 1

4π

∮
C1

∮
C2

−→v 1 − −→v 2

‖−→v 1 − −→v 2‖3 ·
(

d−→v 1

ds
× d−→v 2

dt

)
dtds.

Prove that if the oriented curves C1 and −C′
1 bound an oriented surface S such that S

is to the left of each curve, and if the curve C2 is disjoint from S, then lk(C1, C2) =
lk(C′

1, C2).

3.4 Equations with Functions as Unknowns

3.4.1 Functional Equations

Wewill now look at equations whose unknowns are functions. Here is a standard example that
we found in B.J. Venkatachala, Functional Equations: A Problem Solving Approach (Prism
Books PVT Ltd., 2002).
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Example. Find all functions f : R → R satisfying the functional equation

f ((x − y)2) = f (x)2 − 2xf (y) + y2.

Solution. For y = 0, we obtain

f (x2) = f (x)2 − 2xf (0),

and for x = 0, we obtain
f (y2) = f (0)2 + y2.

Setting y = 0 in the second equation, we find that f (0) = 0 or f (0) = 1. On the other hand,
combining the two equalities, we obtain

f (x)2 − 2xf (0) = f (0)2 + x2,

that is,
f (x)2 = (x + f (0))2.

Substituting this in the original equation yields

f (y) = f (x)2 − f ((x − y)2) + y2

2x
= (x + f (0))2 − (x − y)2 − f (0)2 + y2

2x
= y + f (0).

Thus the functional equation has two solutions: f (x) = x and f (x) = x + 1. �

But we like more the nonstandard functional equations. Here is one, which is a simplified
version of a short-listed problem from the 42nd International Mathematical Olympiad. We
liked about it the fact that the auxiliary function h from the solution mimics, in a discrete
situation, harmonicity – a fundamental concept in mathematics. The solution applies the
maximummodulus principle, which states that if h is a harmonic function then themaximumof
|h| is attained on the boundary of the domain of definition. Harmonic functions, characterized
by the fact that the value at one point is the average of the values in a neighborhood of the
point, play a fundamental role in geometry. For example, they encode geometric properties
of their domain, a fact made explicit in Hodge theory.

Example. Find all functions f : {0, 1, 2, . . . , } × {0, 1, 2, . . .} → R satisfying

f (p, q) =
{ 1

2 (f (p + 1, q − 1) + f (p − 1, q + 1)) + 1 if pq 
= 0,
0 if pq = 0.

Solution. We see that f (1, 1) = 1. The defining relation gives f (1, 2) = 1 + f (2, 1)/2 and
f (2, 1) = 1 + f (1, 2)/2, and hence f (2, 1) = f (1, 2) = 2. Then f (3, 1) = 1 + f (2, 2)/2,
f (2, 2) = 1 + f (3, 1)/2 + f (1, 3)/2, f (1, 3) = 1 + f (2, 2)/2. So f (2, 2) = 4, f (3, 1) = 3,
f (1, 3) = 3. Repeating such computations, we eventually guess the explicit formula f (p, q) =
pq, p, q ≥ 0. And indeed, this function satisfies the condition from the statement. Are there
other solutions to the problem? The answer is no, but we need to prove it.
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Assume that f1 and f2 are both solutions to the functional equation. Let h = f1 − f2. Then
h satisfies

h(p, q) =
{ 1

2 (h(p + 1, q − 1) + h(p − 1, q + 1)) if pq 
= 0,
0 if pq = 0.

Fix a line p + q = n, and on this line pick (p0, q0) the point that maximizes the value of h.
Because

h(p0, q0) = 1

2
(h(p0 + 1, q0 − 1) + h(p0 − 1, q0 + 1)),

it follows that h(p0 + 1, q0 − 1) = h(p0 − 1, q0 + 1) = h(p0, q0). Shifting the point, we
eventually conclude that h is constant on the line p+q = n, and its value is equal to h(n, 0) = 0.
Since n was arbitrary, we see that h is identically equal to 0. Therefore, f1 = f2, the problem
has a unique solution, and this solution is f (p, q) = pq, p, q ≥ 0. �

And now an example of a problem about a multivariable function, from the same short
list, submitted by B. Enescu (Romania).

Example. Let x1, x2, . . . , xn be arbitrary real numbers. Prove the inequality

x1
1 + x21

+ x2
1 + x21 + x22

+ · · · + xn

1 + x21 + · · · + x2n
<

√
n.

Solution. We introduce the function

fn(x1, x2, . . . , xn) = x1
1 + x21

+ x2
1 + x21 + x22

+ · · · + xn

1 + x21 + · · · + x2n
.

If we set r =
√
1 + x21, then

fn(x1, x2, . . . , xn) = x1
r2

+ x2
r2 + x22

+ · · · + xn

r2 + x22 + . . . + x2n

= x1
r2

+ 1

r

(
x2
r

1 + ( x2
r

)2 + · · · +
xn
r

1 + ( x2
r

)2 + · · · + ( xn
r

)2
)

.

We obtain the functional equation

fn(x1, x2, . . . , xn) = x1
1 + x21

+ 1√
1 + x21

fn−1

(x2
r

,
x3
r

, . . . ,
xn

r

)
.

Writing Mn = sup fn(x1, x2, . . . , xn), we observe that the functional equation gives rise to the
recurrence relation

Mn = sup
x1

⎛
⎝ x1
1 + x21

+ Mn−1√
1 + x21

⎞
⎠ .

We will now prove by induction that Mn <
√

n. For n = 1, this follows from x1
1+x21

≤ 1
2 < 1.

Assume that the property is true for k and let us prove it for k + 1. From the induction
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hypothesis, we obtain

Mk < sup
x1

⎛
⎝ x1
1 + x21

+
√

k√
1 + x21

⎞
⎠ .

We need to show that the right-hand side of the inequality is less than or equal to
√

k + 1.
Rewrite the desired inequality as

x√
1 + x2

+ √
k ≤
√

k + kx2 + 1 + x2.

Increase the left-hand side to x + √
k; then square both sides. We obtain

x2 + k + 2x
√

k ≤ k + kx2 + 1 + x2,

which reduces to 0 ≤ (x
√

k − 1)2, and this is obvious. The induction is now complete. �

639. Find all functions f : R → R satisfying

f (x2 − y2) = (x − y)(f (x) + f (y)).

640. Find all complex-valued functions of a complex variable satisfying

f (z) + zf (1 − z) = 1 + z, for all z.

641. Find all functions f : R \ {1} → R, continuous at 0, that satisfy

f (x) = f

(
x

1 − x

)
, for x ∈ R \ {1}.

642. Find all increasing bijections f : (0,∞) → (0,∞) satisfying the functional equation

f (f (x)) − 3f (x) + 2x = 0

for which there exists x0 > 0 such that f (x0) = 2x0.

643. Find all functions f : R → R that satisfy the inequality

f (x + y) + f (y + z) + f (z + x) ≥ 3f (x + 2y + 3z)

for all x, y, z ∈ R.

644. Does there exist a function f : R → R such that f (f (x)) = x2−2 for all real numbers x?

645. Find all functions f : R → R satisfying

f (x + y) = f (x)f (y) − c sin x sin y,

for all real numbers x and y, where c is a constant greater than 1.
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646. Let f and g be real-valued functions defined for all real numbers and satisfying the
functional equation

f (x + y) + f (x − y) = 2f (x)g(y)

for all x and y. Prove that if f (x) is not identically zero, and if |f (x)| ≤ 1 for all x, then
|g(y)| ≤ 1 for all y.

647. Find all continuous functions f : R → R that satisfy the relation

3f (2x + 1) = f (x) + 5x, for all x.

648. Find all functions f : (0,∞) → (0,∞) subject to the conditions

(i) f (f (f (x))) + 2x = f (3x), for all x > 0;

(ii) lim
x→∞(f (x) − x) = 0.

649. Suppose that f , g : R → R satisfy the functional equation

g(x − y) = g(x)g(y) + f (x)f (y)

for x and y in R, and that f (t) = 1 and g(t) = 0 for some t = 0. Prove that f and g
satisfy

g(x + y) = g(x)g(y) − f (x)f (y)

and
f (x ± y) = f (x)g(y) ± g(x)f (y)

for all real x and y.

A famous functional equation, which carries the name of Cauchy, is

f (x + y) = f (x) + f (y).

We are looking for solutions f : R → R.
It is straightforward that f (2x) = 2f (x), and inductively f (nx) = nf (x). Setting y = nx,

we obtain f
(
1
n y
) = 1

n f (y). In general, if m, n are positive integers, then

f
(m

n

)
= mf

(
1

n

)
= m

n
f (1).

On the other hand, f (0) = f (0) + f (0) implies f (0) = 0, and 0 = f (0) = f (x) + f (−x)
implies f (−x) = −f (x). We conclude that for any rational number x, f (x) = f (1)x.

If f is continuous, then the linear functions of the form

f (x) = cx,

where c ∈ R, are the only solutions. That is because a solution is linear when restricted to
rational numbers and therefore must be linear on the whole real axis. Even if we assume the
solution f to be continuous at just one point, it still is linear. Indeed, because f (x + y) is the
translate of f (x) by f (y), f must be continuous everywhere.
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But if we do not assume continuity, the situation is more complicated. In set theory there
is an independent statement called the Axiom of choice, which postulates that given a family
of nonempty sets (Ai)i∈I , there is a function f : I → ∪iAi with f (i) ∈ Ai. In other words, it is
possible to select one element from each set.

Real numbers form an infinite-dimensional vector space over the rational numbers (vectors
are real numbers, scalars are rational numbers). A corollary of the axiom of choice, Zorn’s
lemma, implies the existence of a basis for this vector space. If (ei)i∈I this basis, then any real
number x can be expressed uniquely as

x = r1ei1 + r2ei2 + · · · + rnein,

where r1, r2, . . . , rn are nonzero rational numbers. To obtain a solution to Cauchy’s equation,
make any choice for f (ei), i ∈ I , and then extend f to all reals in such a way that it is linear
over the rationals. Most of these functions are discontinuous. As an example, for a basis that
contains the real number 1, set f (1) = 1 and f (ei) = 0 for all other basis elements. Then this
function is not continuous.

The problems below are all about Cauchy’s equation for continuous functions.

650. Let f : R → R be a continuous nonzero function, satisfying the equation

f (x + y) = f (x)f (y), for all x, y ∈ R.

Prove that there exists c > 0 such that f (x) = cx for all x ∈ R.

651. Find all continuous functions f : R → R satisfying

f (x + y) = f (x) + f (y) + f (x)f (y), for all x, y ∈ R.

652. Determine all continuous functions f : R → R satisfying

f (x + y) = f (x) + f (y)

1 + f (x)f (y)
, for all x, y ∈ R.

653. Find all continuous functions f : R → R satisfying the condition

f (xy) = xf (y) + yf (x), for all x, y ∈ R.

654. Find the continuous functions φ, f , g, h : R → R satisfying

φ(x + y + z) = f (x) + g(y) + h(z),

for all real numbers x, y, z.

655. Given a positive integer n ≥ 2, find the continuous functions f : R → R, property that
for any real numbers x1, x2, . . . , xn,∑

i

f (xi) −
∑
i<j

f (xi + xj) +
∑

i<j<k

f (xi + xj + xk) + · · ·

+(−1)n−1f (x1 + x2 + · · · + xn) = 0.
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We conclude our discussion about functional equations with another instance in which
continuity is important. The intermediate value property implies that a one-to-one continuous
function is automatically monotonic. So if we can read from a functional equation that
a function, which is assumed to be continuous, is also one-to-one, then we know that the
function is monotonic, a much more powerful property to be used in the solution.

Example. Find all continuous functions f : R → R satisfying (f ◦ f ◦ f )(x) = x for all x ∈ R.

Solution. For any x ∈ R, the image of f (f (x)) through f is x. This shows that f is onto. Also,
if f (x1) = f (x2) then x1 = f (f (f (x1))) = f (f (f (x2))) = x2, which shows that f is one-to-one.
Therefore, f is a continuous bijection, so it must be strictly monotonic. If f is decreasing,
then f ◦ f is increasing and f ◦ f ◦ f is decreasing, contradicting the hypothesis. Therefore, f
is strictly increasing.

Fix x and let us compare f (x) and x. There are three possibilities. First, we could
have f (x) > x. Monotonicity implies f (f (x)) > f (x) > x, and applying f again, we have
x = f (f (f (x))) > f (f (x)) > f (x) > x, impossible. Or we could have f (x) < x, which then
implies f (f (x)) < f (x) < x, and x = f (f (f (x))) < f (f (x)) < f (x) < x, which again is
impossible. Therefore, f (x) = x. Since x was arbitrary, this shows that the unique solution
to the functional equation is the identity function f (x) = x. �

656. Do there exist continuous functions f , g : R → R such that f (g(x)) = x2 and g(f (x)) =
x3 for all x ∈ R?

657. Find all continuous functions f : R → R with the property that

f (f (x)) − 2f (x) + x = 0, for all x, y ∈ R.

3.4.2 Ordinary Differential Equations of the First Order

Of far greater importance than functional equations are the differential equations, because
practically every evolutionary phenomenon of the real world can be modeled by a differential
equation. This section is about first-order ordinary differential equations, namely equations
expressed in terms of an unknown one-variable function, its derivative, and the variable. In
their most general form, they are written as F(x, y, y′) = 0, but we will be concerned with
only two classes of such equations: separable and exact.

An equation is called separable if it is of the form dy
dx + f (x)g(y). In this case we formally

separate the variables and write ∫
dy

g(y)
=
∫

f (x)dx.

After integration, we obtain the solution in implicit form, as an algebraic relation between x
and y. Here is a problem of I.V. Maftei from the 1971 Romanian Mathematical Olympiad
that applies this method.

Example. Find all continuous functions f : R → R satisfying the equation

f (x) = λ(1 + x2)

[
1 +
∫ x

0

f (t)

1 + t2
dt

]
,
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for all x ∈ R. Here λ is a fixed real number.

Solution. Because f is continuous, the right-hand side of the functional equation is a differ-
entiable function; hence f itself is differentiable. Rewrite the equation as

f (x)

1 + x2
= λ

[
1 +
∫ x

0

f (t)

1 + t2
dt

]
,

and then differentiate with respect to x to obtain

f ′(x)(1 + x2) − f (x)2x

(1 + x2)2
= λ

f (x)

1 + x2
.

We can separate the variables to obtain

f ′(x)
f (x)

= λ + 2x

1 + x2
,

which, by integration, yields

ln f (x) = λx + ln(1 + x2) + c.

Hence f (x) = a(1 + x2)eλx for some constant a. Substituting in the original relation, we
obtain a = λ. Therefore, the equation from the statement has the unique solution

f (x) = λ(1 + x2)eλx.
�

A first-order differential equation can be written formally as

p(x, y)dx + q(x, y)dy = 0.

Physicists think of the expression on the left as the potential of a two-dimensional force field,
with p and q the x and y components of the potential. Mathematicians call this expression a
1-form. The force field is called conservative if no energy is wasted in moving an object along
any closed path. In this case the differential equation is called exact. For functions defined
on the entire 2-dimensional plane, as a consequence of Green’s theorem one can deduce that
the field is conservative precisely when the exterior derivative

(
∂q

∂x
− ∂p

∂y

)
dxdy

is equal to zero. This means that there exists a scalar function u(x, y) whose differential is the
field, i.e.,

∂u

∂x
= p(x, y) and

∂u

∂y
= q(x, y).

If the domain has “holes”, then there is an obstruction in de Rham cohomology for some equa-
tions to admit a potential. For a conservative field, the scalar potential solves the differential
equation, giving the solution in implicit form as u(x, y) = C, with C a constant. Let us apply
this method to a problem by the first author of the book.
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Example. Does there exist a differentiable function y defined on the entire real axis that
satisfies the differential equation

(2x + y − e−x2)dx + (x + 2y − e−y2)dy = 0?

Solution. Let us assume that such a y does exist. Because

∂

∂x
(x + 2y − e−y2) = ∂

∂y
(2x + y − e−x2),

and because 2x + y − e−x2 and x + 2y − e−y2 are defined everywhere, the equation can be
integrated. The potential function is

u(x, y) = x2 + xy + y2 −
∫ x

0
e−s2ds −

∫ y

0
e−t2dt.

The differential equation translates into the algebraic equation

(
x + 1

2
y

)2
+ 3

4
y2 =

∫ x

0
e−s2ds +

∫ y

0
e−t2dt + C

for some real constant C. The right-hand side is bounded from above by
√
8π + C (note the

Gaussian integrals). This means that both squares on the left must be bounded. In particular,
y is bounded, but then x + 1

2y is unbounded, a contradiction. Hence the answer to the question
is no; a solution can exist only on a bounded interval. �

Sometimes the field is not conservative but becomes conservative after the differential
equation is multiplied by a function. This function is called an integrating factor. There is
a standard method for finding integrating factors, which can be found in any textbook. In
particular, any first-order linear equation

y′ + p(x)y = q(x)

can be integrated after it is multiplied by the integrating factor exp

(∫
p(x)dx

)
.

It is now time for problems. In the problems below, we denote by f 2 the product f · f (not
the composition of f with itself).

658. A not uncommon mistake is to believe that the product rule for derivatives says that
(f g) = f ′g′. If f (x) = ex2 , determine whether there exists an open interval (a, b) and
a nonzero function g defined on (a, b) such that this wrong product rule is true for f
and g on (a, b).

659. Find the functions f , g : R → R with continuous derivatives satisfying

f 2 + g2 = f ′2 + g′2, f + g = g′ − f ′,

and such that the equation f = g has two real solutions, the smaller of them being zero.
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660. Let f and g be differentiable functions on the real line satisfying the equation

(f 2 + g2)f ′ + (f g)g′ = 0.

Prove that f is bounded.

661. LetA, B, C, D, m, n be real numberswithAD−BC 
= 0. Solve the differential equation

y(B + Cxmyn)dx + x(A + Dxmyn)dy = 0.

662. Find all continuously differentiable functions y : (0,∞) → (0,∞) that are solutions
to the initial value problem

yy′ = x, y(1) = 1.

663. Find all differentiable functions f : (0,∞) → (0,∞) for which there is a positive real
number a such that

f ′
(a

x

)
= x

f (x)
,

for all x > 0.

664. Prove that if the function f (x, y) is continuously differentiable on the whole xy-plane
and satisfies the equation

∂f

∂x
+ f

∂f

∂y
= 0,

then f (x, y) is constant.

3.4.3 Ordinary Differential Equations of Higher Order

The field of higher-order ordinary differential equations is vast, and we assume that you are
familiar at least with some of its techniques. In particular, we assume you are familiar with
the theory of linear equations with fixed coefficients, from which we recall some basic facts.
A linear equation with fixed coefficients has the general form

an
dny

dxn
+ · · · + a2

d2y

dx2
+ a1

dy

dx
+ a0 = f (x).

If f is zero, the equation is called homogeneous. Otherwise, the equation is called inhomo-
geneous. In this case the general solution is found using the characteristic equation

alλ
n + an−1λ

n−1 + · · · + a0 = 0.

If λ1, λ2, . . . , λr are the distinct roots, real or complex, of this equation, then the general
solution to the homogeneous differential equation is of the form

y(x) = P1(x)e
λ1x + P2(x)e

λ2x + · · · + Pr(x)e
λrx,

where Pi(x) is a polynomial of degree one less than the multiplicity of λi, i = 1, 2, . . . , r.
If the exponents are complex, the exponentials are changed into (damped) oscillations using
Euler’s formula (eix = cos x + i sin x).
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The general solution depends on n parameters (the coefficients of the polynomials), so the
space of solutions is an n-dimensional vector space V . For an inhomogeneous equation, the
space of solutions is the affine space y0 + V obtained by adding a particular solution. This
particular solution is found usually by the method of the variation of the coefficients.

We start with an example that exploits an idea that appeared once on a Putnam exam.

Example. Solve the system of differential equations

x′′ − y′ + x = 0,

y′′ + x′ + y = 0

in real-valued functions x(t) and y(t).

Solution. Multiply the second equation by i then add it to the first to obtain

(x + iy′′) + i(x + iy)′ + (x + iy) = 0.

With the substitution z = x+iy this becomes the second-order homogeneous linear differential
equation z′′ + iz′ + z = 0. The characteristic equation is λ2 + iλ + 1 = 0, with solutions

λ1,2 = −1 ± √
5

2
i. We find the general solution to the equation

z(t) = (a + ib) exp

(
−1 + √

5

2
it

)
+ (c + id) exp

(
−1 − √

5

2
it

)
,

for arbitrary real numbers a, b, c, d. Since x and y are, respectively, the real and complex
parts of the solution, they have the general form

x(t) = a cos
−1 + √

5

2
t − b sin

−1 + √
5

2
t + c cos

−1 − √
5

2
t − d sin

−1 − √
5

2
t,

y(t) = a sin
−1 + √

5

2
t + b cos

−1 + √
5

2
t + c sin

−1 − √
5

2
t + d cos

−1 − √
5

2
t.

The problem is solved. �

Our second example is an equation published by M. Ghermănescu in the Mathematics
Gazette, Bucharest. Its solution combines several useful techniques.

Example. Solve the differential equation

2(y′)3 − yy′y′′ − y2y′′′ = 0.

Solution. In a situation like this, where the variable x does not appear explicitly, one can
reduce the order of the equation by taking y as the variable and p = y′ as the function. The
higher-order derivatives of y′′ are
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y′′ = d

dx
y′ = d

dy
p

dy

dx
= p′p,

y′′′ = d

dx
y′′ =

(
d

dy
pp′
)

dy

dx
= ((p′)2 + pp′′)p.

We end up with a second-order differential equation

2p3 − yp2p′ − y2pp′′ − y2p(p′)2 = 0.

A family of solutions is p = 0, that is, y′ = 0. This family consists of the constant functions
y = C. Dividing the equation by −p, we obtain

y2p′′ + y2(p′)2 + ypp′ − 2p2 = 0.

The distribution of the powers of y reminds us of the Euler-Cauchy equation, while the last
terms suggests the substitution u = p2. And indeed, we obtain the Euler-Cauchy equation

y2u′′ + yu′ − 4u = 0,

with general solution u = C1y2 + C2y−2. Remember that u = p2 = (y′)2, from which we
obtain the first-order differential equation

y′ = ±√C1y2 + C2y−2 =
√

C1y4 + C2

y
.

This we solve by separation of variables

dx = ± ydy√
C1y4 + C2

,

which after integration gives

x = ±
∫

ydy√
C1y4 + C2

= ±1

2

∫
dz√

C1z2 + C2

.

This last integral is standard; it is equal to 1
2
√

C1
ln
∣∣∣y +√y2 + C2/C1

∣∣∣ if C1 > 0 and to

1
2
√|C1| arcsin

( |C1|y
C2

)
if C1 < 0 and C2 > 0. We obtain two other families of solutions given

in implicit form by

x = ± 1

2
√

C1
ln

∣∣∣∣∣y +
√

y2 + C2

C1

∣∣∣∣∣+ C3 and x = ± 1

2
√−C1

arcsin
|C1|y

C2
+ C3,

that is,
x = A ln |y +√y2 + B| + C and x = E arcsinFy + G. �

Here are more problems.
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665. Solve the differential equation

xy′′ + 2y′ + xy = 0.

666. Find all twice-differentiable functions defined on the entire real axis that satisfy
f ′(x)f ′′(x) = 0 for all x.

667. Find all continuous functions f : R → R that satisfy

f (x) +
∫ x

0
(x − t)f (t)dt = 1, for all x ∈ R.

668. Solve the differential equation

(x − 1)y′′ + (4x − 5)y′ + (4x − 6)y = xe−2x.

669. Let n be a positive integer. Show that the equation

(1 − x2)y′′ − xy′ + n2y = 0

admits as a particular solution an nth-degree polynomial.

670. Find the one-to-one, twice-differentiable solutions y to the equation

d2y

dx2
+ d2x

dy2
= 0.

671. Show that all solutions to the differential equation y′′ + exy = 0 remain bounded as
x → ∞.

3.4.4 Problems Solved with Techniques of Differential Equations

In this section we illustrate how tricks of differential equations can offer inspiration when one
is tackling problems from outside this field.

Example. Let f : [0,∞) → R be a twice-differentiable function satisfying f (0) ≥ 0 and
f ′(x) > f (x) for all x > 0. Prove that f (x) > 0 for all x > 0.

Solution. To solve this problem we use an integrating factor. The inequality

f ′(x) − f (x) > 0

can be “integrated” after multiplying it by e−x. It simply says that the derivative of the function
e−xf (x) is strictly positive on (0,∞). This function is therefore strictly increasing on [0,∞).
So for x > 0 we have e−xf (x) > e−0f (0) = f (0) ≥ 0, which then implies f (x) > 0, as
desired. �
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Example. Compute the integral

y(x) =
∫ ∞

0
e−t2/2 cos

x2

2t2
dt.

Solution. We will show that the function y(x) satisfies the ordinary differential equation
iiv + y = 0. To this end, we compute

y′(x) =
∫ ∞

0
e−t2/2 sin

x2

2t2
· −x

t2
dt = −

∫ ∞

0
e−x2/2u2 sin

u2

2
du

and

y′′(x) = −
∫ ∞

0
e−x2/2u2 sin

u2

2
· −x

u2
du =

∫ ∞

0
e−t2/2 sin

x2

2t2
dt.

Iterating, we eventually obtain

yiv(x) = −
∫ ∞

0
e−t2/2 cos

x2

2t2
dt = −y(x),

which proves that indeed y satisfies the differential equation yiv +y = 0. The general solution
to this differential equation is

y(x) = e
x√
2

(
C1 cos

x√
2

+ C2 sin
x√
2

)
+ e

− x√
2

(
C3 cos

x√
2

+ C4 sin
x√
2

)
.

To find which particular solution is the integral in question, we look at boundary values. To
compute these boundary values we refer to Section 3.3.2, the one on multivariable integral

calculus. We recognize that y(0) =
∫ ∞

0
e−t2/2dt is a Gaussian integral equal to

√
π
2 , y′(0) =

−
∫ ∞

0
sin

u2

2
du is a Fresnel integral equal to −

√
π

2 , y′′(0) = 0, while y′′′(0) =
∫ ∞

0
cos

u2

2
du

is yet another Fresnel integral equal to
√

π

2 . We find that C1 = C2 = C4 = 0 and C3 = √π
2 .

The value of the integral from the statement is therefore

y(x) =
√

π

2
e
− x√

2 cos
x√
2
. �

We leave the following examples to the reader.

672. Show that both functions

y1(x) =
∫ ∞

0

e−tx

1 + t2
dt and y2(x) =

∫ ∞

0

sin t

t + x
dt

satisfy the differential equation y′′ + y = 1

x
. Prove that these two functions are equal.
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673. Let f be a real-valued continuous nonnegative function on [0, 1] such that

f (t)2 ≤ 1 + 2
∫ t

0
f (s)ds, for all t ∈ [0, 1].

Show that f (t) ≤ 1 + t for every t ∈ [0, 1].
674. Let f : [0, 1] → R be a continuous function with f (0) = f (1) = 0. Assume that f ′′

exists on (0, 1) and f ′′(x) + 2f ′(x) + f (x) ≥ 0 for all x ∈ (0, 1). Prove that f (x) ≤ 0
for all x ∈ [0, 1].

675. Does there exist a continuously differentiable function f : R → R satisfying f (x) > 0
and f ′(x) = f (f (x)) for every x ∈ R?

676. Determine all nth-degree polynomials P(x), with real zeros, for which the equality

n∑
i=1

1

P(x) − xi
= n2

xP′(x)

holds for all nonzero real numbers x for which P′(x) 
= 0, where xi, i = 1, 2, . . . , n,
are the zeros of P(x).

677. Let C be the class of all real-valued continuously differentiable functions f on the
interval [0, 1] with f (0) = 0 and f (1) = 1. Determine

u = inf
f ∈C

∫ 1

0
|f ′(x) − f (x)|dx.

678. Let f : R → R be an infinitely differentiable function with the property that there are
distinct positive real numbers a, b, c such that the function

g(x) = f (ax) + f (bx) + f (cx)

is a polynomial. Show that f is a polynomial function as well.
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Geometry and Trigonometry

Geometry is the oldest of the mathematical sciences. Its age-old theorems and the sharp logic
of its proofs make you think of the words of Andrew Wiles, “Mathematics seems to have a
permanence that nothing else has”.

This chapter is bound to take you away from the geometry of the ancients, with figures
and pictorial intuition, and bring you to the science of numbers and equations that geometry
has become today. In a dense exposition we have packed vectors and their applications,
analytical geometry in the plane and in space, some applications of integral calculus to
geometry, followed by a list of problems with Euclidean flavor but based on algebraic and
combinatorial ideas. Special attention is given to conics, cubics, and quadrics, for their study
already contains the germs of differential and algebraic geometry.

Four subsections are devoted to geometry’s little sister, trigonometry. We insist on trigono-
metric identities, repeated in subsequent sections from different perspectives: Euler’s formula,
trigonometric substitutions, and telescopic summation and multiplication.

Since geometry lies at the foundation of mathematics, its presence could already be felt
in the sections on linear algebra and multivariable calculus. It will resurface again in the
chapter on combinatorics.

4.1 Geometry

4.1.1 Vectors

This section is about vectors in two and three dimensions. Vectors are oriented segments
identified under translation.

There are four operations defined for vectors: scalar multiplication α−→v , addition−→v +−→w ,
dot product−→v ·−→w , and cross-product−→v ×−→w , the last being defined only in three dimensions.
Scalar multiplication dilates or contracts a vector by a scalar. The sum of two vectors is
computed with the parallelogram rule; it is the resultant of the vectors acting as forces on an
object. The dot product of two vectors is a number equal to the product of the magnitudes
of the vectors and the cosine of the angle between them. A dot product equal to zero tells us
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R. Gelca and T. Andreescu, Putnam and Beyond, DOI 10.1007/978-3-319-58988-6_4

211



212 4 Geometry and Trigonometry

that the vectors are orthogonal. The cross-product of two vectors is a vector orthogonal to
the two vectors and of magnitude equal to the area of the parallelogram they generate. The
orientation of the cross-product is determined by the right-hand rule: place your hand so that
you can bend your palm from the first vector to the second, and your thumb will point in
the direction of the cross-product. A cross-product equal to zero tells us that the vectors are
parallel (although they might point in opposite directions).

The dot and cross-products are distributive with respect to sum; the dot product is com-
mutative, while the cross-product is not. For the three-dimensional vectors −→u , −→v , −→w , the
number −→u · (−→v × −→w ) is the volume taken with sign of the parallelepiped constructed with
the vectors as edges. The sign is positive if the three vectors determine a frame that is oriented
the same way as the orthogonal frame of the three coordinate axes, and negative otherwise.
Equivalently, −→u · (−→v × −→w ) is the determinant with the coordinates of the three vectors as
rows.

A useful computational tool is the formula for the triple cross product:

−→a × (
−→
b × −→c ) = (−→a · −→c )

−→
b − (−→a · −→

b )−→c ,

also known as the BAC-CAB formula (because it is also written as −→a × (
−→
b × −→c ) =−→

b (−→a · −→c ) − −→c (−→a · −→
b )).

The quickest way to prove it is to check it for −→a ,
−→
b , −→c chosen among the three unit

vectors parallel to the coordinate axes
−→
i ,

−→
j , and

−→
k , and then use the distributivity of the

cross-product with respect to addition. Here is an easy application of this identity.

Example. Prove that for any vectors −→a ,
−→
b ,−→c ,

−→
d ,

(−→a × −→
b ) × (−→c × −→

d ) = (−→a · (
−→
b × −→

d ))−→c − (−→a · (
−→
b × −→c ))

−→
d .

Solution. We have

(−→a × −→
b ) × (−→c × −→

d ) = (
−→
d · (−→a × −→

b ))−→c − (−→c · (−→a × −→
b ))

−→
d

= (−→a · (
−→
b × −→

d ))−→c − (−→a · (
−→
b × −→c ))

−→
d

In the computation we used the equality −→u · (−→v × −→w ) = −→w · (−→u × −→v ), which is straight-
forward if we write these as determinants. �

Let us briefly point out a fundamental algebraic property of the cross-product. Denote
by so(3) the set of 3 × 3 matrices A satisfying A + At = O3 endowed with the operation
[A, B] = AB − BA.

Theorem. The map

(a1, a2, a3) →
⎛
⎝

0 −a1 −a2

a1 0 −a3

a2 a3 0

⎞
⎠

establishes an isomorphism between (R3,×) and (so(3), [·, ·]).
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Proof. The proof is straightforward if we write the cross-product in coordinates. The result
shows that the cross-product defines a Lie algebra structure on the set of three-dimensional
vectors. Note that the isomorphism maps the sum of vectors to the sum of matrices, and the
dot product of two vectors to the negative of half the trace of the product of the corresponding
matrices. �

It is worth mentioning that so(3) is the Lie algebra of the Lie group SO(3) of rotations of
R

3 about the origin. And now the problems.

679. For any three-dimensional vectors −→u ,−→v ,−→w , prove the identity

−→u × (−→v × −→w ) + −→v × (−→w × −→u ) + −→w × (−→u × −→v ) = −→
0 .

680. Given three vectors −→a ,
−→
b ,−→c , define

−→u = (
−→
b · −→c )−→a − (−→c · −→a )

−→
b ,

−→v = (−→a · −→c )
−→
b − (−→a · −→

b )−→c ,

−→w = (
−→
b · −→a )−→c − (

−→
b · −→c )−→a .

Prove that if −→a ,
−→
b ,−→c form a triangle, then −→u ,−→v ,−→w also form a triangle, and this

triangle is similar to the first.

681. Let −→a ,
−→
b ,−→c be vectors such that

−→
b and −→c are perpendicular, but −→a and

−→
b are

not. Let m be a real number. Solve the system

−→x · −→a = m,

−→x × −→
b = −→c .

682. Consider three linearly independent vectors−→a ,
−→
b ,−→c in space, having the sameorigin.

Prove that the plane determined by the endpoints of the vectors is perpendicular to the

vector −→a × −→
b + −→

b × −→c + −→c × −→a .

683. The vectors −→a ,
−→
b , and −→c satisfy

−→a × −→
b = −→

b × −→c = −→c × −→a �= −→
0 .

Prove that −→a + −→
b + −→c = −→

0 .

684. Find the vector-valued functions −→u (t) satisfying the differential equation

−→u × −→u ′ = −→v ,

where −→v = −→v (t) is a twice-differentiable vector-valued function such that both −→v
and −→v ′ are never zero or parallel.

685. Does there exist a bijection f of (a) a planewith itself or (b) three-dimensional spacewith
itself such that for any distinct points A, B the lines AB and f (A)f (B) are perpendicular?
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686. On so(3) we define the operation ∗ such that if A and B are matrices corresponding to

the vectors −→a = (a1, a2, a3) and
−→
b = (b1, b2, b3), then the ij entry of A ∗ B is equal

to (−1)i+ja4−jb4−i. Prove the identity

CBA − BCA = (A ∗ C)B − (A ∗ B)C.

687. Prove that there is a bijection f fromR
3 to the set su(2) of 2×2 matrices with complex

entries that are skew symmetric and have trace equal to zero such that

f (−→v × −→w ) = [f (−→v ), f (−→w )].

(Here [A, B] = AB − BA; the commutant.)

688. We are given 2015 unit vectors starting at the origin, with the property that every line
passing through the origin has at least 515 vectors on each side. Show that the length
of the sum of the vectors does not exceed 1015.

We present two applications of vector calculus to geometry, one with the dot product, one
with the cross-product.

Example. Given two triangles ABC and A′B′C′ such that the perpendiculars from A, B, C onto
B′C′, C′A′, A′B′ intersect, show that the perpendiculars from A′, B′, C′ onto BC, CA, AB also
intersect.

Solution. This is the property of orthological triangles. Denote by O the intersection of the
first set of three perpendiculars, and by O′ the intersection of perpendiculars from A′ and B′.
Note that if the vector

−→
XY is orthogonal to a vector

−→
ZW , then for any point P in the plane,

(
−→
PX − −→

PY) · −→
ZW = −→

XY · −→
ZW = 0;

hence
−→
PX · −→

ZW = −→
PY · −→

ZW . Using this fact we can write

−−→
O′C′ · −→

OB = −−→
O′A′ · −→

OB = −−→
O′A′ · −→

OC = −−→
O′B′ · −→

OC = −−→
O′B′ · −→

OA = −−→
O′C′ · −→

OA.

Therefore,
−−→
O′C′ · (

−→
OB − −→

OA) = −−→
O′C′ · −→

AB = 0, which shows that O′C′ is perpendicular to
AB. This proves that the second family of perpendiculars are concurrent. �

Example. Let ABCD be a convex quadrilateral, M, N on side AB and P, Q on side CD. Show
that if AM = NB and CP = QD, and if the quadrilaterals AMQD and BNPC have the same
area, then AB is parallel to CD.

Solution. Throughout the solution we refer to Figure24. We decompose the quadrilaterals
into triangles, and then use the formula for the area in terms of the cross-product.
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A M N B

C P
Q

D

Figure 24

In general, the triangle determined by −→v 1 and
−→v 2 has area equal to half the magnitude

of −→v 1 × −→v 2. Note also that −→v 1 × −→v 2 is perpendicular to the plane of the triangle, so for a
problem in plane geometry there is no danger in identifying the areas with the cross-products,
provided that we keep track of the orientation. The hypothesis of the problem implies that

1

2
(
−→
DA × −→

DQ + −→
AM × −→

AQ) = 1

2
(
−→
CP × −→

CB + −→
BP × −→

BN).

Hence −→
DA × −→

DQ + −→
AM × (

−→
AD + −→

DQ) = −→
CP × −→

CB + (
−→
BC + −→

CP) × −→
BN .

Because
−→
BN = −−→

AM and
−→
CP = −−→

DQ, this equality can be rewritten as

(
−→
AM + −→

DQ) × (
−→
AD + −→

CB) = 2
−→
DQ × −→

AM.

Using the fact that
−→
AD + −→

CB = −→
AB + −→

CD (which follows from
−→
AB + −→

BC + −→
CD + −→

DA = −→
0 ),

we obtain −→
AM × −→

CD + −→
DQ × −→

AB = 2
−→
DQ × −→

AM.

From here we deduce that
−→
AM ×−→

QC = −→
DQ×−→

MB. These two cross-products point in opposite
directions, so equality can hold only if both are equal to zero, i.e., if AB is parallel to CD.

More applications of the dot and cross-products to geometry can be found below.

689. Given two trianglesABC andA′B′C′ with the samecentroid, prove that one can construct
a triangle with sides equal to the segments AA′, BB′, and CC′.

690. Given a quadrilateral ABCD, consider the points A′, B′, C′, D′ on the half-lines (i.e.,
rays) |AB, |BC, |CD, and |DA, respectively, such thatAB = BA′,BC = CB′,CD = DC′,
DA = AD′. Suppose now that we start with the quadrilateral A′B′C′D′. Using a
straightedge and a compass only, reconstruct the quadrilateral ABCD.

691. On the sides of the triangle ABC construct in the exterior the rectangles ABB1A2,
BCC1B2, CAA1C2. Prove that the perpendicular bisectors of A1A2, B1B2, and C1C2

intersect at one point.

692. Let ABCD be a convex quadrilateral. The lines parallel to AD and CD through the
orthocenter H of triangle ABC intersect AB and BC, respectively, at P and Q. Prove
that the perpendicular through H to the line PQ passes through the orthocenter of
triangle ACD.
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693. Prove that if the four lines through the centroids of the four faces of a tetrahedron
perpendicular to those faces are concurrent, then the four altitudes of the tetrahedron
are also concurrent. Prove that the converse is also true.

694. Let ABCD be a convex quadrilateral, M, N ∈ AB such that AM = MN = NB, and
P, Q ∈ CD such that CP = PQ = QD. Let O be the intersection of AC and BD. Prove
that the triangles MOP and NOQ have the same area.

695. Let ABC be a triangle, with D and E on the respective sides AC and AB. If M and N
are the midpoints of BD and CE, prove that the area of the quadrilateral BCDE is four
times the area of the triangle AMN .

4.1.2 The Coordinate Geometry of Lines and Circles

Coordinate geometry was constructed by Descartes to translate Euclid’s geometry into the
language of algebra. In two dimensions one starts by fixing two intersecting coordinate axes
and a unit on each of them. If the axes are perpendicular and the units are equal, the coordinates
are called Cartesian (in the honor of Descartes); otherwise, they are called affine. A general
affine change of coordinates has the form

(
x′
y′

)
=

(
a b
c d

)(
x
y

)
+

(
e
f

)
, with

(
a b
c d

)
invertible.

If the change is between Cartesian systems of coordinates, a so-called Euclidean change of
coordinates, it is required additionally that the matrix

(
a b
c d

)

be orthogonal, meaning that its inverse is equal to the transpose.
Properties that can be formulated in the language of lines and ratios are invariant under

affine changes of coordinates. Such are the properties of two lines being parallel or of a point
to divide a segment in half. All geometric properties are invariant under Euclidean changes
of coordinates. Therefore, problems about distances, circles, and angles should be modeled
with Cartesian coordinates.

In this section we grouped problems that require only the knowledge of the theory of
lines and circles. Recall that the general equation of a line (whether in a Cartesian or affine
coordinate system) is ax + by + c = 0. That of a circle (in a Cartesian coordinate system)
is (x − h)2 + (y − k)2 = r2, where (h, k) is the center and r is the radius. Let us see two
examples, one in affine and one in Cartesian coordinates. But before we do that let us recall
that a complete quadrilateral is a quadrilateral in which the pairs of opposite sides have been
extended until they meet. For that reason, a complete quadrilateral has six vertices and three
diagonals.

Example. Prove that the midpoints of the three diagonals of a complete quadrilateral are
collinear.
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Solution. As said, we will work in affine coordinates. Choose the coordinate axes to be sides
of the quadrilateral, as shown in Figure25.

O

(0,c)

(0,d)

(a,0) (b,0)

Figure 25

Five of the vertices have coordinates (0, 0), (a, 0), (b, 0), (0, c), and (0, d), while the
sixth is found as the intersection of the lines through (a, 0) and (0, d), respectively, (0, c) and
(b, 0). For these two lines we know the x− and y− intercepts, so their equations are

1

a
x + 1

d
y = 1 and

1

b
x + 1

c
y = 1.

The sixth vertex of the complete quadrilateral has therefore the coordinates
(

ab(c − d)

ac − bd
,

cd(a − b)

ac − bd

)
.

We find that the midpoints of the diagonals are

(a

2
,

c

2

)
,

(
b

2
,

d

2

)
,

(
ab(c − d)

2(ac − bd)
,

cd(a − b)

2(ac − bd)

)
.

The condition that these three points be collinear translates to
∣∣∣∣∣∣∣∣∣∣∣

a

2

c

2
1

b

2

d

2
1

ab(c − d)

2(ac − bd)

cd(a − b)

2(ac − bd)
1

∣∣∣∣∣∣∣∣∣∣∣

= 0,

which is equivalent to ∣∣∣∣∣∣
a c 1
b d 1

ab(c − d) cd(a − b) ac − bd

∣∣∣∣∣∣
= 0.

This is verified by direct computation. �
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Example. In a circle are inscribed a trapezoid with one side as diameter and a triangle with
sides parallel to the sides of the trapezoid. Prove that the two have the same area.

Solution. We refer everything to Figure26. Assume that the circle has radius 1, and the
trapezoid has vertices (1, 0), (a, b), (−a, b) and (−1, 0).

(1,0)

(0,1)
(a,b)

(a,−b)

Figure 26

The triangle is isosceles and has one vertex at (0, 1). We need to determine the coordinates
of the other two vertices. One of them lies where the parallel through (0, 1) to the line
determined by (1, 0) and (a, b) intersects the circle. The equation of the line is

y = b

a − 1
x + 1.

The relation a2 + b2 = 1 yields b2 = (1 − a)(1 + a), or b
1−a = 1+a

b . So the equation of the
line can be rewritten as

y = −1 + a

b
x + 1.

Now it is easy to guess that the intersection of this line with the circle is (b,−a) (note that
this point satisfies the equation of the circle). The other vertex of the triangle is (−b,−a) so
the area is 1

2 (2b)(1+ a) = b + ab. And the area of the trapezoid is 1
2 (2a + 2)b = b + ab, the

same number. �

696. Prove that the midpoints of the sides of a quadrilateral form a parallelogram.

697. Let M be a point in the plane of triangle ABC. Prove that the centroids of the triangles
MAB, MAC, and MCB form a triangle similar to triangle ABC.

698. Find the locus of points P in the interior of a triangle ABC such that the distances from
P to the lines AB, BC, and CA are the side lengths of some triangle.

699. Let A1, A2, . . . , An be distinct points in the plane, and let m be the number of midpoints
of all the segments they determine. What is the smallest value that m can have?

700. Given an acute-angled triangle ABC with altitude AD, choose any point M on AD, and
then draw BM and extend until it intersects AC in E, and draw CM and extend until it
intersects AB in F. Prove that ∠ADE = ∠ADF.
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701. In a planar Cartesian system of coordinates consider a fixed point P(a, b) and a variable
line through P. Let A be the intersection of the line with the x-axis. Connect A with
the midpoint B of the segment OP (O being the origin), and through C, which is the
point of intersection of this line with the y-axis, take the parallel to OP. This parallel
intersects PA at M. Find the locus of M as the line varies.

702. LetABCD be a parallelogramwith unequal sides. LetE be the foot of the perpendicular
from B to AC. The perpendicular through E to BD intersects BC in F and AB in G.
Show that EF = EG if and only if ABCD is a rectangle.

703. Let ABC be a triangle with incircle �, and let D, E, F be the tangency points of � with
sides BC, CA, AB, respectively. Furthermore, let K be the orthocenter of triangle DEF.
Prove that KB2 − KC2 = BE2 − CF2.

704. Find all pairs of real numbers (p, q) such that the inequality

|
√
1 − x2 − px − q| ≤

√
2 − 1

2

holds for every x ∈ [0, 1].
705. On the hyperbola xy = 1 consider four points whose x-coordinates are x1, x2, x3 and

x4. Show that if these points lie on a circle, then x1x2x3x4 = 1.

706. Let ABC and DAB be right isosceles triangles such that ∠A = ∠D = 90◦, AB = 1,
and C and D are separated by the line AB. Let M be a point on the segment AC, N the
intersection of DM with BC and P the intersection of BM with AN . Show that when
M varies on the side AC then P describes a smooth curve, and find the length of this
curve.

The points of the plane can be represented as complex numbers. There are two instances
in which complex coordinates come in handy: in problems involving “nice” angles (such as
π
4 ,

π
3 ,

π
2 ), and in problems about regular polygons.

In complex coordinates the line passing through the points z1 and z2 has the parametric
equation z = tz1 + (1− t)z2, t ∈ R. Also, the angle between the line passing through z1 and z2
and the line passing through z3 and z4 is the argument of the complex number z1−z2

z3−z4
. The length

of the segment determined by the points z1 and z2 is |z1−z2|. The vertices of a regular n-gon can
be chosen, up to a scaling factor, as 1, ε, ε2, . . . , εn−1, where ε = e2π i/n = cos 2π

n + i sin 2π
n .

Example. Let ABC and BCD be two equilateral triangles sharing one side. A line passing
through D intersects AC at M and AB at N . Prove that the angle between the lines BM and
CN is π

3 .

Solution. In the complex plane, let B have the coordinate 0, and C the coordinate 1. Then A
and D have the coordinates eiπ/3 and e−iπ/3, respectively, and N has the coordinate teiπ/3 for
some real number t.

The parametric equations of ND and AC are, respectively,

z = αteiπ/3 + (1 − α)e−iπ/3 and z = βeiπ/3 + (1 − β), α, β ∈ R.
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To find their intersection we need to determine the real numbers α and β such that

αteiπ/3 + (1 − α)e−iπ/3 = βeiπ/3 + (1 − β).

Explicitly, this equation is

αt
1 + i

√
3

2
+ (1 − α)

1 − i
√
3

2
= β

1 + i
√
3

2
+ (1 − β).

Setting the real and imaginary parts equal, we obtain the system

αt + (1 − α) = β + 2(1 − β),

αt − (1 − α) = β.

By adding the two equations, we obtain α = 1
t . So the complex coordinate of M is eiπ/3 +(

1 − 1
t

)
e−iπ/3.

The angle between the lines BM and CN is the argument of the complex number

eiπ/3 + (
1 − 1

t

)
e−iπ/3

teiπ/3 − 1
=

(
eiπ/3 + e−iπ/3

) − 1
t e−iπ/3

teiπ/3 − 1
= 1 − 1

t e−iπ/3

teiπ/3 − 1
= 1

t
e−iπ/3.

The angle is therefore π
3 , as claimed.

During the Mathematical Olympiad Summer Program of 2006, J. Bland discovered the
following simpler solution:

Place the figure in the complex plane so that the coordinates ofA, B, C, D are, respectively,
i
√
3, −1, 1, and −i

√
3. Let MC have length 2t, where t is a real parameter (positive if C is

between A and M and negative otherwise). The triangles MCD and NBD have parallel sides,
so they are similar. It follows that BN = 2

t (positive if B is between A and N and negative
otherwise). The coordinates of M and N are

m = −
(
1 + 1

t

)
− 1

t
i
√
3 and n = (t + 1) − ti

√
3.

We compute
c − n

b − m
= t

2t + 1 + i
√
3

−t − 2 + ti
√
3

= −tei π
3 .

It follows that the two lines form an angle of π
3 , as desired. �

The second example comes from the 15thW.L. PutnamMathematical Competition, 1955.

Example. Let A1A2A3 . . . An be a regular polygon inscribed in the circle of center O and
radius r. On the half-line |OA1 choose the point P such that A1 is between O and P. Prove
that

n∏
i=1

PAi = POn − rn.
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Solution. Place the vertices in the complex plane such that Ai = rεi, 1 ≤ i ≤ n, where ε is a
primitive nth root of unity. The coordinate of P is a real number rx, with x > 1. We have

n∏
i=1

PAi =
n∏

i=1

|rx − rεi| = rn
n∏

i=1

|x − εi| = rn

∣∣∣∣∣
n∏

i=1

(x − εi)

∣∣∣∣∣
= rn(xn − 1) = (rx)n − rn = POn − rn.

The identity is proved. �

707. Let ABCDEF be a hexagon inscribed in a circle of radius r. Show that if AB = CD =
EF = r, then themidpoints ofBC,DE, andFA are the vertices of an equilateral triangle.

708. Prove that in a triangle the orthocenter H, centroid G, and circumcenter O are collinear.
Moreover, G lies between H and O, and OG

GH = 1
2 .

709. On the sides of a convex quadrilateral ABCD one draws outside the equilateral triangles
ABM and CDP and inside the equilateral triangles BCN and ADQ. Describe the shape
of the quadrilateral MNPQ.

710. Let ABC be a triangle. The triangles PAB and QAC are constructed outside of the
triangle ABC such that AP = AB, AQ = AC, and ∠BAP = ∠CAQ = α. The segments
BQ and CP meet at R. Let O be the circumcenter of the triangle BCR. Prove that AO
and PQ are orthogonal.

711. Let A1A2 . . . An be a regular polygon with circumradius equal to 1. Find the maximum

value of
n∏

k=1

PAk as P ranges over the circumcircle.

712. Let A0, A1, . . . , An be the vertices of a regular n-gon inscribed in the unit circle. Prove
that

A0A1 · A0A2 · · · A0An−1 = n.

713. Show that a positive integer p is prime if and only if every equiangular p-gon with
rational side-lengths is regular.

4.1.3 Quadratic and Cubic Curves in the Plane

In what follows we introduce the reader to curves of degree two (other than the circle)
and three, with some incursions into algebraic geometry.

The general equation of a quadratic curve is

ax2 + by2 + cxy + dx + ey + f = 0.

Such a curve is called a conic because (except for the degenerate case of two parallel lines) it
can be obtained by sectioning a circular cone by a plane.
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The degenerate conics are pairs of (not necessarily distinct) lines, single points, the entire
plane, and the empty set. We ignore them. There are three types of nondegenerate conics,
which up to a change of Cartesian coordinates are described in Figure27.
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The parabola is the locus of the points at equal distance from the point (p, 0) (focus) and
the line x = −p (directrix). The ellipse is the locus of the points with the sum of distances
to the foci (c, 0) and (−c, 0) constant, where c = √|a2 − b2|. The hyperbola is the locus of
the points with the difference of the distances to the foci (c, 0) and (−c, 0) constant, where
c = √

a2 + b2.
Up to an affine change of coordinates, the equations of the parabola, ellipse, and hyperbola

are, respectively, y2 = x, x2 + y2 = 1, and x2 − y2 = 1. Sometimes it is more convenient to
bring the hyperbola into the form xy = 1 by choosing its asymptotes as the coordinate axes.

As conic sections, these curves are obtained by sectioning the circular cone z2 = x2 + y2

by the planes z − x = 1 (parabola), z = 1 (ellipse), and y = 1 (hyperbola). The vertex of the
cone can be thought of as the viewpoint of a person. The projections through this viewpoint of
one plane to another are called projective transformations. Up to a projective transformation
there is only one nondegenerate conic – the circle. Any projectively invariant property that can
be proved for the circle is true for any conic (and by passing to the limit, even for degenerate
conics). Such is the case with Pascal’s theorem: The opposite sides of a hexagon inscribed in
a conic meet at three collinear points. Note that when the conic degenerates into two parallel
lines, this becomes Pappus’ theorem.

To conclude our discussion, let us recall that the equation of the tangent line to a conic at
a point (x0, y0) is obtained by replacing in the general equation of the conic x2 and y2 by xx0,
respectively yy0, xy by xy0+yx0

2 , and x and y in the linear terms by x+x0
2 , respectively, y+y0

2 .
We now proceed with an example from A. Myller’s Analytical Geometry (3rd ed., Editura

Didactică şi Pedagogică, Bucharest, 1972).

Example. Find the locus of the centers of the equilateral triangles inscribed in the parabola
y2 = 4px.

Solution. Let us determine first some algebraic conditions that the coordinates (xi, yi), i =
1, 2, 3, of the vertices of a triangle should satisfy in order for the triangle to be equilateral.
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The equation of the median from (x3, y3) is

x − y3
x − x3

= y1 + y2 − 2y3
x1 + x2 − 2x3

.

Requiring the median to be orthogonal to the side yields

y1 + y2 − 2y3
x1 + x2 − 2x3

· y2 − y1
x2 − x1

= −1,

or
(x1 − x2)(x1 + x2 − 2x3) + (y1 − y2)(y1 + y2 − 2y3) = 0.

So this relation along with the two obtained by circular permutations of the indices are neces-
sary and sufficient conditions for the triangle to be equilateral. Of course, the third condition

is redundant. In the case of three points on the parabola, namely
(

y2i
4p , yi

)
, i = 1, 2, 3, after

dividing by y1 − y2, respectively, by y2 − y3 (which are both nonzero), we obtain

(y1 + y2)(y
2
1 + y22 − 2y23) + 16p2(y1 + y2 − 2y3) = 0,

(y2 + y3)(y
2
2 + y23 − 2y21) + 16p2(y2 + y3 − 2y1) = 0.

Subtracting the two gives

y31 − y33 + (y1 − y3)(y
2
2 − 2y1y3) + 48p2(y1 − y3) = 0.

Divide this by y1 − y3 �= 0 to transform it into

y21 + y22 + y23 + 3(y1y2 + y2y3 + y3y1) + 48p2 = 0.

This is the condition satisfied by the y-coordinates of the vertices of the triangle. Keeping in
mind that the coordinates of the center of the triangle are

x = y21 + y22 + y23
12p

, y = y1 + y2 + y3
3

,

we rewrite the relation as

−1

2
(y21 + y22 + y23) + 3

2
(y1 + y2 + y3)

2 + 48p2 = 0,

then substitute 12px = y21 + y22 + y23 and 3y = y1 + y2 + y3 to obtain the equation of the locus

−6px + 27

2
y2 + 48p2 = 0,

or

y2 = 4p

9
(x − 8p).

This is a parabola with vertex at (8p, 0) and focus at
((

1
9 + 8

)
, p, 0

)
. �
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The second problemwas given at the 1977 Soviet Union University StudentMathematical
Olympiad.

Example. Let P be a point on the hyperbola xy = 4, and Q a point on the ellipse x2 +4y2 = 4.
Prove that the distance from P to Q is greater than 1.

Solution. We will separate the conics by two parallel lines at a distance greater than 1. For
symmetry reasons, it is natural to try the tangent to the hyperbola at the point (2, 2). This line
has the equation y = 4 − x.

Let us determine the point in the first quadrant where the tangent to the ellipse has slope
−1. If (x0, y0) is a point on the ellipse, then the equation of the tangent at x is xx0 + 4yy0 = 4.
Its slope is −x0/4y0. Setting −x0/4y0 = −1 and x20 + 4y20 = 4, we obtain x0 = 4/

√
5 and

y0 = 1/
√
5. Consequently, the tangent to the ellipse is y = √

5 − x.
The distance between the lines y = 4−x and y = √

5−x is equal to (4−√
5)/

√
2, which

is greater than 1. Hence the distance between the arbitrary points P and Q is also greater than
1, and we are done. �

714. Consider a circle of diameter AB and center O, and the tangent t at B. A variable tang-
ent to the circle with contact point M intersects t at P. Find the locus of the point Q
where the line OM intersects the parallel through P to the line AB.

715. On the axis of a parabola consider two fixed points at equal distance from the focus.
Prove that the difference of the squares of the distances from these points to an arbitrary
tangent to the parabola is constant.

716. With the chord PQ of a hyperbola as diagonal, construct a parallelogram whose sides
are parallel to the asymptotes. Prove that the other diagonal of the parallelogram passes
through the center of the hyperbola.

717. A straight line cuts the asymptotes of a hyperbola in points A and B and the hyperbola
itself in P and Q. Prove that AP = BQ.

718. Consider the parabola y2 = 4px. Find the locus of the points such that the tangents to
the parabola from those points make a constant angle φ.

719. Let T1, T2, T3 be points on a parabola, and t1, t2, t3 the tangents to the parabola at these
points. Compute the ratio of the area of triangle T1T2T3 to the area of the triangle
determined by the tangents.

720. Three points A, B, C are considered on a parabola. The tangents to the parabola at
these points form a triangle MNP (NP being tangent at A, PM at B, and MN at C). The
parallel through B to the symmetry axis of the parabola intersects AC at L.

(a) Show that LMNP is a parallelogram.
(b) Show that the circumcircle of triangle MNP passes through the focus F of the

parabola.
(c) Assuming that L is also on this circle, prove that N is on the directrix of the

parabola.
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(d) Find the locus of the points L if AC varies in such a way that it passes through F
and is perpendicular to BF.

721. Find all regular polygons that can be inscribed in an ellipse with unequal semiaxes.

722. We are given the parabola y2 = 2px with focus F. For an integer n ≥ 3 consider a
regular polygon A1A2 . . . An whose center is F and such that none of its vertices is on
the x-axis. The half-lines |FA1, |FA2, . . ., |FAn intersect the parabola at B1, B2, . . . , Bn.
Prove that

FB1 + FB2 + · · · + FBn ≥ np.

723. A cevian of a triangle is a line segment that joins a vertex to the line containing the
opposite side. An equicevian point of a triangleABC is a pointP (not necessarily inside
the triangle) such that the cevians on the lines AP, BP, and CP have equal lengths. Let
SBC be an equilateral triangle, and letA be chosen in the interior of SBC, on the altitude
dropped from S.

(a) Show that ABC has two equicevian points.
(b) Show that the common length of the cevians through either of the equicevian points

is constant, independent of the choice of A.
(c) Show that the equicevian points divide the cevian through A in a constant ratio,

which is independent of the choice of A.
(d) Find the locus of the equicevian points as A varies.
(e) Let S′ be the reflection of S in the line BC. Show that (a), (b), and (c) hold if A

varies on any ellipse with S and S′ as its foci. Find the locus of the equicevian
points as A varies on the ellipse.

A planar curve is called rational if it can be parametrized as (x(t), y(t)) with x(t) and y(t)
rational functions of the real variable t. Here we have to pass to the closed real line, so t is
allowed to be infinite, while the plane is understood as the projective plane, zero denominators
giving rise to points on the line at infinity.

Theorem. All conics are rational curves.

Proof. The case of degenerate conics (i.e., pairs of lines) is trivial. The parabola y2 = 4px is

parametrized by

(
t2

4p
, t

)
, the ellipse

x2

a2
+ y2

b2
= 1 by

(
a
1 − t2

1 + t2
, b

2t

1 + t2

)
, and the hyperbola

x2

a2
− y2

b2
= 1 by

(
a

t + t−1

2
, b

t − t−1

2

)
. The general case follows from the fact that coordinate

changes are rational (in fact, linear) transformations. �

Compare the standard parametrization of the circle (cos x, sin x) to the rational parame-

trization ds
(
1−t2

1+t2
, 2t
1+t2

)
. This gives rise to the trigonometric substitution tan x

2 = t and

explains why integrals of the form

∫
R(cos x, sin x)dx,
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with R a two-variable rational function, can be reduced to integrals of rational functions.
Let us change slightly our point of view and take a look at the conic

y2 = ax2 + bx + c.

If we fix a point (x0, y0) on this conic, the line y−y0 = t(x −x0) intersects the conic in exactly
one more point (x, y). Writing the conditions that this point is both on the line and on the
conic and eliminating y, we obtain the equation

[y0 + t(x − x0)]2 = ax2 + bx + c.

A few algebraic computations yield

2y0t + t2(x − x0) = a(x + x0) + b.

This shows that x is a rational function of the slope t. The same is true for y. As t varies,
(x, y) describes the whole conic. This is a rational parametrization of the conic, giving rise to
Euler’s substitutions. In their most general form, Euler’s substitutions are

√
ax2 + bx + c − y0 = t(x − x0).

They are used for rationalizing integrals of the form
∫

R(x,
√

ax2 + bx + c)dx,

where R is a two-variable rational function.

724. Compute the integral ∫
dx

a + b cos x + c sin x
,

where a, b, c are real numbers, not all equal to zero.

725. Consider the system
x + y = z + u,

2xy = zu.

Find the greatest value of the real constant m such that m ≤ x
y for any positive integer

solution (x, y, z, u) of the system, with x ≥ y.

We conclude this unit with problems about cubic curves, some of which, surprisingly,
made the object of high school mathematical Olympiads despite their far reaching scope.

The first example is a problem from the 2014 USA Mathematical Olympiad, being pro-
posed by S. Vandervelde.

Example. Prove that there is an infinite number of points

...P−3, P−2, P−1, P0, P1, P2, P3, ...

in the plane with the following property: for every three distinct integer numbers a, b, c, the
points Pa, Pb, Pc are collinear if and only if

a + b + c = 2014.
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Solution. Translating the indices as

a �→ a − 2014

3
, b �→ b − 2014

3
, c �→ c − 2014

3
,

the condition for the collinearity of the points Pa, Pb, Pc transforms into

a + b + c = 0.

This condition can be related to a fundamental property of one family of cubic curves, the
elliptic curves.

An elliptic curve is defined by an equation of the form

f (x, y) = 0

where f (x, y) is a polynomial of degree 3 in the variables x, y with the property that for no
point (x0, y0) on the curve one has

∂f

∂x
(x0, y0) = ∂f

∂y
(x0, y0) = 0.

Such a curve is nonsingular in the sense that its graph has no cusps and no intersections. By
a change of coordinates, the curve can be changed into

y2 = x3 + ax + b, a, b ∈ R.

It is elliptic precisely when its discriminant 	 = −16(4a2 + 27b2) is nonzero. Depending on
whether the equation x3 + ax + b = 0 has one or three real roots, the elliptic curve has one or
two components. The two cases are described in Figure28. This curve admits the structure
of an Abelian group, as we will now explain.

Figure 28
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To define the sum of the points P and Q on this curve, consider the line that passes through
P and Q, and let αx +βy+γ = 0 be its equation. The intersections of this line with the curve
can be obtained by solving the system

y3 = x3 + ax + b

αx + βy + γ = 0.

Substituting y = −(αx + γ )/β in the first equation we obtain a cubic equation in x. This
equation has two real solutions (the coordinates ofP andQ), and hence has a third real solution,
which gives us the third intersection point of the line with the curve. Call this point R.

Note that this construction works well for β �= 0, but if β = 0 we obtain the equation of
the vertical line x = −γ /α. This only crosses the elliptic curve in two points, with coordinates

(
−γ

α
,±

√(
−γ

α

)3 + a
(
−γ

α

)
+ b

)
,

and these are points P and Q.
This situation can be resolved by adding to the elliptic curve the point at infinity. We do this

by passing to the projective plane, which is the extension (correctly called compactification)
of the Euclidean plane in which any two lines intersect at one point. In the projective plane,
every line has one point at infinity, and all the points at infinity are on the line at infinity. Two
lines intersect at finite points when they are not parallel, when they are parallel they intersect
at a point at infinity. The point at infinity of the elliptic curve (in the standard coordinates
described above) is specified by the vertical direction. So in the case where PQ is vertical,
we can define R to be the point at infinity of this line.

For reasons of algebra this definition also works when P = Q, that is when the line is
tangent to the curve. Also if P or Q is at infinity, then PQ is vertical, so it intersect the elliptic
curve one more time. Finally, if both P and Q are at infinity, we let R be the point at infinity.

Now we can define the group structure. Choose a point O on the elliptic curve (O is
usually chosen as the point at infinity). This is the identity of the group. To define P + Q,
choose R as the third intersection of the line PQ with the curve as explained above. Repeat
the procedure with the pair (O, R). The result is P + Q (when O is the point at infinity and
the curve is in its standard form, then P + Q is the reflection of R over the x-axis). In short,
you obtain P +Q by intersection PQ with the elliptic curve, taking R as the intersection point,
and intersecting the elliptic curve again with OR (Figure29).

One can check geometrically the following properties:

• (P + Q) + S = P + (Q + S),

• P + O = O + P = P,
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P

Q

R

O

P+Q

Figure 29

• P + (−P) = O, where −P is the intersection of OP with the elliptic curve,
• P + Q = Q + P.

Note that three points P, Q, R are collinear if and only if

P + Q + R = 0.

To solve the Olympiad problem we have to show that the elliptic curve has a subgroup that is
isomorphic to Z. Here is one possible argument. After adding the point at infinity, the curve
has either one or two closed components, which modulo a deformation are circles. Actually
the point at infinity closes the unbounded component: one arrives at this point by following
either the lower branch or the upper branch.

The operation of addition is a continuous two variable map with values in the curve, as
it is not hard to verify geometrically that if P′ → P and Q′ → Q, then P′ + Q′ → P + Q.
Also, the function that associates to a point its inverse, P → −P is continuous. We are in the
presence of an Abelian Lie group of dimension 1, that is to say a curve with an Abelian group
structure in which addition and taking the negative are continuous. Such groups are classified.
If the group has one component, then it is the group of complex numbers of absolute value 1:

U (1) = {z ∈ C | |z| = 1}
and if it has two components, then it is

U (1) × Z2,

(where Z2 is the group whose elements are the two residue classes modulo 2). Here the
addition is defined separately in each coordinate. In both cases the group contains a copy of
U (1), whose subgroup
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Gθ = {cos nθ + i sin nθ | n ∈ Z}

with θ/π irrational is isomorphic to Z. In this case if Pn is associated to cos nθ + i sin nθ ,
then Pk + Pm + Pn = 0 if and only if k + m + n = 0.

To avoid using the classification of compact 1-dimensional Lie groups, we can argue as
follows. Choose a curve defined by an equation with integer coefficients. Then nP = 0
translates into an algebraic equation in the coordinates of P. If we begin with a point P whose
x-coordinate is transcendental (and then so is its y-coordinate), then nP = 0 can only happen
if the coordinates of P cancel out. But then the same equation holds for all points. Now notice
that P′ �→ 2P′ maps a small arc around P to an arc around 2P, and repeating, we see that
P′ �→ nP′ maps a small arc around P to a nondegenerate small arc around nP. So we cannot
have nP′ = 0 for all P′. Hence the existence of a point P that generates an infinite group. The
problem is solved. �

We leave the following problems about cubic curves to the reader.

726. A cubic sequence is a sequence of integers given by an = n3 + bn2 + cn + d, where
b, c, d are integer constants and n ranges over all integers, including negative integers.
(a) Show that there exists a cubic sequence such that the only terms of the sequence
which are squares of integers are a2015 and a2016.

(b) Determine the possible values of a2015 · a2016 for a cubic sequence satisfying the
condition in part (a).

727. Solve in integers the equation

x2 + xy + y2 =
(

x + y

3
+ 1

)3

.

728. Prove that the locus described by the equation x3+3xy+y3 = 1 contains precisely three
noncollinear points A, B, C, equidistant to one another, and find the area of triangle
ABC.

729. Prove that, for any integers a, b, c, there exists a positive integer n such that√
n3 + an2 + bn + c is not an integer.

4.1.4 Some Famous Curves in the Plane

We conclude our incursion into two-dimensional geometry with an overview of various planar
curves that captured the imagination of mathematicians. The first answers a question of G.W.
Leibniz.

Example. What is the path of an object dragged by a string of constant length when the end
of the string not joined to the object moves along a straight line?
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Solution. Assume that the object is dragged by a string of length 1, that its initial coordinates
are (0, 1), and that it is dragged by a vehicle moving along the x-axis in the positive direction.
Observe that the slope of the tangent to the curve at a point (x, y) points toward the vehicle,
while the distance to the vehicle is always equal to 1. These two facts can be combined in the
differential equation

dy

dx
= − y√

1 − y2
.

Separate the variables

dx = −
√
1 − y2

y
dy,

and then integrate to obtain

x = −
√
1 − y2 − ln y − ln(1 +

√
1 − y2) + C.

The initial condition gives C = 0. The answer to the problem is therefore the curve

x = −
√
1 − y2 − ln y − ln(1 +

√
1 − y2),

depicted in Figure30. �
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Figure 30

This curve is called a tractrix, a name given by Ch. Huygens. Clearly, it has the x-axis
as an asymptote. E. Beltrami has shown that the surface of revolution of the tractrix around
its asymptote provides a partial model for the hyperbolic plane of Lobachevskian geometry.
This surface has been used in recent years for the shape of loudspeakers.

A variety of other curves show up in the problems below. In some of the solutions, polar
coordinates might be useful. Recall the formulas for changing between Cartesian and polar
coordinates: x = r cos θ , y = r sin θ .

730. Find the points where the tangent to the cardioid r = 1 + cos θ is vertical.
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731. Given a circle of diameter AB, a variable secant through A intersects the circle at C
and the tangent through B at D. On the half-line AC a point M is chosen such that
AM = CD. Find the locus of M.

732. Find the locus of the projection of a fixed point on a circle onto the tangents to the
circle.

733. On a circle of center O consider a fixed point A and a variable point M. The circle of
center A and radius AM intersects the line OM at L. Find the locus of L as M varies on
the circle.

734. The endpoints of a variable segment AB lie on two perpendicular lines that intersect
at O. Find the locus of the projection of O onto AB, provided that the segment AB
maintains a constant length.

735. From the center of a rectangular hyperbola a perpendicular is dropped to a variable
tangent. Find the locus in polar coordinates of the foot of the perpendicular. (A
hyperbola is called rectangular if its asymptotes are perpendicular.)

736. Find a transformation of the plane that maps the unit circle x2 + y2 = 1 into a cardioid.
(Recall that the general equation of a cardioid is r = 2a(1 + cos θ).)

737. For n and p two positive integers consider the curve described by the parametric equa-
tions

x = a1t
n + b1t

p + c1,

y = a2t
n + b2t

p + c2,

z = a3t
n + b3t

p + c3,

where t is a parameter. Prove that the curve is planar.

738. What is the equation that describes the shape of a hanging flexible chain with ends
supported at the same height and acted on by its own weight?

4.1.5 Coordinate Geometry in Three and More Dimensions

In this section we emphasize quadrics. A quadric is a surface in space determined by a
quadratic equation. The degenerate quadrics – linear varieties, cones, or cylinders over conics
– add little to the picture from their two-dimensional counterparts, so we skip them. The
nondegenerate quadrics are classified, up to an affine change of coordinates, as

• x2 + y2 + z2 = 1, ellipsoid;
• x2 + y2 − z2 = 1, hyperboloid of one sheet;
• x2 − y2 − z2 = 1, hyperboloid of two sheets;
• x2 + y2 = z, elliptic paraboloid;
• x2 − y2 = z, hyperbolic paraboloid.

In Cartesian coordinates, in these formulas there is a scaling factor in front of each term.
For example, the standard form of an ellipsoid in Cartesian coordinates is

x2

a2
+ y2

b2
+ z2

c2
= 1.
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As in the case of conics, the equation of the tangent plane to a quadric at a point (x0, y0, z0)
is obtained by replacing in the equation of the quadric x2, y2, and z2, respectively, by xx0, yy0,
and zz0; xy, xz, and yz, respectively, by xy0+yx0

2 , xz0+zx0
2 , and yz0+zy0

2 ; and x, y, and z in the linear
terms, respectively, by x+x0

2 , y+y0
2 , and z+z0

2 .
Our first example comes from the 6th W.L. Putnam Mathematical Competition.

Example. Find the smallest volume bounded by the coordinate planes and by a tangent plane
to the ellipsoid

x2

a2
+ y2

b2
+ z2

c2
= 1.

Solution. The tangent plane to the ellipsoid at (x0, y0, z0) has the equation

xx0
a2

+ yy0
b2

+ zz0
c2

= 1.

Its x, y, and z intercepts are, respectively, a2

x0
, b2

y0
, and c2

z0
. The volume of the solid cut off by

the tangent plane and the coordinate planes is therefore

V = 1

6

∣∣∣∣
a2b2c2

x0y0z0

∣∣∣∣ .

Wewant to minimize this with the constraint that (x0, y0, z0) lie on the ellipsoid. This amounts
to maximizing the function f (x, y, z) = xyz with the constraint

g(x, y, z) = x2

a2
+ y2

b2
+ z2

c2
= 1.

Because the ellipsoid is a closed bounded set, f has a maximum and a minimum on it. The
maximum is positive, and the minimum is negative. The method of Lagrange multipliers
yields the following system of equations in the unknowns x, y, z, and λ:

yz = 2λ
x

a2
,

xz = 2λ
y

b2
,

yz = 2λ
z

c2
,

x2

a2
+ y2

b2
+ z2

c2
= 1.

Multiplying the first equation by x, the second by y, and the third by z, then summing up the
three equations gives

3xyz = 2λ

(
x2

a2
+ y2

b2
+ z2

c2

)
= 2λ.

Hence λ = 3
2xyz. Then multiplying the first three equations of the system together, we obtain

(xyz)2 = 8λ3 xyz

a2b2c2
= 27(xyz)4

a2b2c2
.
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The solution xyz = 0we exclude, since it does not yield amaximumor aminimum. Otherwise,
xyz = ± abc√

27
. The equality with the plus sign is the maximum of f ; the other is the minimum.

Substituting in the formula for the volume, we find that the smallest volume is
√
3
2 abc. �

Example. Find the nature of the surface defined as the locus of the lines parallel to a given
plane and intersecting two given skew lines, neither of which is parallel to the plane.

Solution. We will work in affine coordinates. Call the plane π and the two skew lines l1 and
l2. The x- and y-axes lie in π and the z-axis is l1. The x-axis passes through l2 ∩ π . The
y-axis is chosen to make l2 parallel to the yz-plane. Finally, the orientation and the units are
such that l2 is given by x = 1, y = z (see Figure31).

O
y

x

z

Figure 31

A line parallel to π and intersecting l1 and l2 passes through (1, s, s) and (0, 0, s), where
s is some real parameter playing the role of the “height”. Thus the locus consists of all points
of the form t(1, s, s) + (1 − t)(0, 0, s), where s and t are real parameters. The coordinates
(X, Y , Z) of such a point satisfy X = t, Y = ts, Z = s. By elimination we obtain the equation
XZ = Y , which is a hyperbolic paraboloid like the one from Figure32. We stress once more
that the type of a quadric is invariant under affine transformations. �

A surface generated by a moving line is called a ruled surface. Ruled surfaces are easy to
build in real life. This together with its structural resistance makes the hyperbolic paraboloid
popular as a roof in modern architecture (see for example Felix Candela’s roof of the 1968
Olympic stadium in Mexico City). There is one more nondegenerate ruled quadric, which
makes the object of one of the problems below. And if you find some of the problems below
too difficult, remember Winston Churchill’s words: “Success consists of going from failure
to failure without loss of enthusiasm”.

739. Acube is rotated about themain diagonal. What kind of surfaces do the edges describe?
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Figure 32

740. Prove that the plane
x

a
+ y

b
− z

c
= 1

is tangent to the hyperboloid of one sheet

x2

a2
+ y2

b2
− z2

c2
= 1.

741. Through a point M on the ellipsoid

x2

a2
+ y2

b2
+ z2

c2
= 1

take planes perpendicular to the axes Ox, Oy, Oz. Let the areas of the planar sections
thus obtained be Sx, Sy, respectively, Sz. Prove that the sum

aSx + bSy + cSz

is independent of M.

742. Determine the radius of the largest circle that can lie on the ellipsoid

x2

a2
+ y2

b2
+ z2

c2
= 1 (a > b > c).

743. Let a, b, c be distinct positive numbers. Prove that through each point of the three-
dimensional space pass three surfaces described by equations of the form

x2

a2 − λ
+ y2

b2 − λ
+ z2

c2 − λ
= 1.

Determine the nature of these surfaces and prove that they are pairwise orthogonal
along their curves of intersection.
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744. Show that the equations

x = u + v + w,

y = u2 + v2 + w2,

z = u3 + v3 + w3,

where the parameters u, v, w are subject to the constraint uvw = 1, define a cubic
surface.

We conclude our discussion of coordinate geometry with some problems in n dimensions.

Example. Through a fixed point inside an n-dimensional sphere, n mutually perpendicular
chords are drawn. Prove that the sum of the squares of the lengths of the chords does not
depend on their directions.

Solution. We want to prove that the sum in question depends only on the radius of the sphere
and the distance from the fixed point to the center of the sphere. Choose a coordinate system
in which the chords are the n orthogonal axes and the radius of the sphere is R > 0. The
fixed point, which we call P, becomes the origin. The endpoints of each chord have only one
nonzero coordinate, and in the appropriate ordering, the kth coordinates of the endpoints Xk

and Yk of the kth chord are the nonzero numbers xk and yk , k = 1, 2, . . . , n. The center of the
sphere is then

O =
(

x1 + y1
2

,
x2 + y2

2
, . . . ,

xn + yn

2

)
.

The conditions that the points Xk and Yk lie on the sphere can be written as

(
xk − xk + yk

2

)2

+
∑
j �=k

(
xj + yj

2

)2

= R2,

(
yk − xk + yk

2

)2

+
∑
j �=k

(
xj + yj

2

)2

= R2,

with k = 1, 2, . . . , n. This implies

(
xk − yk

2

)2

= R2 −
∑
j �=k

(
xj + yj

2

)2

, k = 1, 2, . . . , n.

The term on the left is one-fourth of the square of the length of XkYk . Multiplying by 4 and
summing up all these relations, we obtain

n∑
k=1

‖XkYk‖2 = 4nR2 − 4
n∑

k=1

∑
j �=k

(
xj + yj

2

)2

= 4nR2 − 4(n − 1)
n∑

k=1

(
xk + yk

2

)2

= 4nR2 − 4(n − 1)‖PO‖2.
Hence the conclusion. �
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745. Let n be a positive integer. Prove that if the vertices of a (2n + 1)-dimensional cube
have integer coordinates, then the length of the edge of the cube is an integer.

746. For a positive integer n denote by τ the permutation cycle (n, . . . , 2, 1). Consider the
locus of points in R

n defined by the equation
∑

σ

sign(σ )xσ(1)xτ(σ (2)) · · · xτ n−1(σ (n)) = 0,

where the sum is over all possible permutations of {1, 2, . . . , n}. Prove that this locus
contains a hperplane.

747. Prove that the intersection of an n-dimensional cube centered at the origin and with
edges parallel to the coordinate axes with the plane determined by the vectors

−→a =
(
cos

2π

n
, cos

4π

n
, . . . , cos

2nπ

n

)
and

−→
b =

(
sin

2π

n
, sin

4π

n
, . . . , sin

2nπ

n

)

is a regular 2n-gon.

748. Find the maximal number of edges of an n-dimensional cube that are cut by a hyper-
plane. (By cut we mean intersected in exactly one point).

749. Find the maximum number of points on a sphere of radius 1 inRn such that the distance
between any two is strictly greater than

√
2.

4.1.6 Integrals in Geometry

We now present various applications of integral calculus to geometry problems. Here is a
classic.

Example. A disk of radius R is covered by m rectangular strips of width 2. Prove that m ≥ R.

Solution. Since the strips have different areas, depending on the distance to the center of the
disk, a proof using areas will not work. However, if we move to three dimensions the problem
becomes easy. The argument is based on the following property of the sphere.

Lemma. The area of the surface cut from a sphere of radius R by two parallel planes at
distance d from each other is equal to 2πRd.

Proof. To prove this result, let us assume that the sphere is centered at the origin and the
planes are perpendicular to the x-axis. The surface is obtained by rotating the graph of the
function f : [a, b] → R, f (x) = √

R2 − x2 about the x-axis, where [a, b] is an interval of
length d. The area of the surface is given by

2π
∫ b

a
f (x)

√
(f ′(x))2 + 1dx = 2π

∫ b

a

√
R2 − x2

R√
R2 − x2

dx

= 2π
∫ b

a
Rdx = 2πRd,

and the lemma is proved. �
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Returning to the problem, the sphere has area 4πR2 and is covered by m surfaces, each
having area 4πR. The inequality 4πmR ≥ 4πR2 implies that m ≥ R, as desired. �

The second example, suggested to us by Zh. Wang, is even more famous. We present the
proof from H. Solomon, Geometric Probability (SIAM 1978).

Crofton’s theorem. Let D be a bounded convex domain in the plane. Through each point
P(x, y) outside D there pass two tangents to D. Let t1 and t2 be the lengths of the segments
determined by P and the tangency points, and let α be the angle between the tangents, all
viewed as functions of (x, y).1 Then

∫∫
P/∈D

sin α

t1t2
dxdy = 2π2.

Proof. The proof becomes transparent once we examine the particular case in which D is the
unit disk x2 + y2 < 1. Each point outside the unit disk can be parametrized by the pair of
angles (φ1, φ2) where the tangents meet the unit circle S1. Since there is an ambiguity in
which tangent is considered first, the outside of the disk is in 1-to-2 correspondence with the
set S1 × S1. It so happens, and we will prove it in general, that on changing coordinates from

(x, y) to (φ1, φ2) the integral from the statement becomes
∫∫

dφ1dφ2 (divided by 2 to take

the ambiguity into account). The result follows.
In the general case we mimic the same argument, boosting your intuition with Figure33.

Fix a Cartesian coordinate system with the origin O inside D. For a point (x, y) denote by
(φ1, φ2) the angles formed by the perpendiculars from O onto the tangents with the positive
semiaxis. This is another parametrization of the exterior of D, again with the ambiguity of
which tangent is considered first. Let Ai(εi, ηi), i = 1, 2, tangency points.

O

A

P

O
A

θ
θ

1
1

1 1θ +π/2

2

2

Figure 33

11 If the boundary of D has some edges, then there are points P for which t1 and t2 are not well defined, but
the area of the set of these points is zero, so they can be neglected in the integral below.
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The main goal is to understand the change of coordinates (x, y) → (φ1, φ2) and in partic-
ular to write the Jacobian of this transformation. Writing the condition that the slope of the
line A1P is tan

(
φ1 + π

2

)
, we obtain

(x − ε1) cosφ1 + (y − η1) sin φ1 = 0.

Taking the differential yields

cosφ1dx − cosφ1dε1 − (x − ε1) sin φ1dφ1 + sin φ1dy − sin φ1dη1

+ (y − η1) cosφ1dφ1 = 0.

This expression can be simplified if we note that dη1
dε1

is the slope of the tangent, namely

tan
(
φ1 + π

2

)
. Then cosφ1dε1 + sin φ1dη1 = 0, so

cosφ1dx + sin φ1dy = [(x − ε1) sin φ1 − (y − η1) cosφ1]dφ1.

And now a little Euclidean geometry. Consider the right triangle O1A1P with legs parallel to
the axes. The altitude from O1 determines on A1P two segments of lengths (x − ε1) sin φ1 and
−(y − η1) cosφ1 (you can see by examining the picture that the signs are right). This allows
us to further transform the identity obtained above into

cosφ1dx + sin φ1dy = t1dφ1.

The same argument shows that

cosφ2dx + sin φ2dy = t2dφ2.

The Jacobian of the transformation is therefore the absolute value of

1

t1t2
(cosφ1 sin φ2 − sin φ1 cosφ2) = 1

t1t2
sin(φ1 − φ2).

And φ1 − φ2 is, up to a sign, the supplement of α. We obtain

2π2 = 1

2

∫ 2π

0

∫ 2π

0
dφ1dφ2 =

∫∫
P/∈D

sin α

t1t2
dxdy.

The theorem is proved. �

750. A ring of height h is obtained by digging a cylindrical hole through the center of a
sphere. Prove that the volume of the ring depends only on h and not on the radius of
the sphere.

751. A polyhedron is circumscribed about a sphere. We call a face big if the projection of
the sphere onto the plane of the face lies entirely within the face. Show that there are
at most six big faces.

752. Let A and B be two finite sets of segments in three-dimensional space such that the sum
of the lengths of the segments in A is larger than the sum of the lengths of the segments
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in B. Prove that there is a line in space with the property that the sum of the lengths of
the projections of the segments in A onto that line is greater than the sum of the lengths
of the projections of the segments in B.

753. Two convex polygons are placed one inside the other. Prove that the perimeter of the
polygon that lies inside is smaller.

754. There are n line segments in the plane with the sum of the lengths equal to 1. Prove
that there exists a straight line such that the sum of the lengths of the projections of the
segments onto the line is equal to 2

π
.

755. In a triangle ABC for a variable point P on BC with PB = x let t(x) be the measure of
∠PAB. Compute ∫ a

0
cos t(x)dx

in terms of the sides and angles of triangle ABC.

756. Let f : [0, a] → R be a continuous and increasing function such that f (0) = 0. Define
by R the region bounded by f (x) and the lines x = a and y = 0. Now consider the solid
of revolution obtained when R is rotated around the y-axis as a sort of dish. Determine
f such that the volume of water the dish can hold is equal to the volume of the dish
itself, this happening for all a.

757. Consider a unit vector starting at the origin and pointing in the direction of the tangent
vector to a continuously differentiable curve in three-dimensional space. The endpoint
of the vector describes the spherical image of the curve (on the unit sphere). Show that
if the curve is closed, then its spherical image intersects every great circle of the unit
sphere.

758. With the hypothesis of the previous problem, if the curve is twice differentiable, then
the length of the spherical image of the curve is called the total curvature. Prove that
the total curvature of a closed curve is at least 2π .

759. A rectangle R is tiled by finitely many rectangles each of which has at least one side
of integral length. Prove that R has at least one side of integral length.

760. Show that if the distance between any two vertices of a polygon is less than or equal
to 1, then the area of the polygon is less than π/4.

4.1.7 Other Geometry Problems

We conclude with problems from elementary geometry. They are less in the spirit of Euclid,
being based on algebraic or combinatorial considerations. Here “imagination is more impor-
tant than knowledge” (A. Einstein).
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Example. Find the maximal number of triangles of area 1 with disjoint interiors that can be
included in a disk of radius 1. Describe all such configurations.

Solution. Let us first solve the following easier problem:

Alternative problem. Find all triangles of area 1 that can be placed inside a half-disk of
radius 1.

We will show that the only possible configuration is that in Figure34. Consider a triangle
that maximizes the area (such a triangle exists since the vertices vary on compact sets and the
area depends continuously on the vertices). The vertices of this triangle must lie on the half-
circle. If B lies between A and C, then A and C must be the endpoints of the diameter. Indeed,
if say C is not an endpoint, then by moving it toward the closer endpoint of the diameter
we increase both AC and the angle ∠BAC; hence we increase the area. Finally, among all

triangles inscribed in a semicircle
�

AC, the isosceles right triangle has maximal altitude, hence
also maximal area. This triangle has area 1, and the claim is proved.

A

B

C

Figure 34

Returning to the problem, let us note that since the two triangles in question are convex
sets, they can be separated by a line. That line cuts the disk into two regions, and one of them,
containing one of the triangles, is included in a half-disk. By what we just proved, this region
must itself be a half-disk. The only possible configuration consists of two isosceles triangles
sharing the hypotenuse. �

The next problem was published by the first author in the Mathematics Magazine.

Example. Let ABC be a right triangle (∠A = 90◦). On the hypotenuse BC construct in the
exterior the equilateral triangle BCD. Prove that the lengths of the segments AB, AC, and AD
cannot all be rational.

Solution. We will find a relation between AB, AC, and AD by placing them in a triangle and
using the law of cosines.s For this, construct the equilateral triangle ACE in the exterior of
ABC (Figure35). We claim that BE = AD. This is a corollary of Napoleon’s theorem, and
can be proved in the following way. Let M be the intersection of the circumcircles of BCD
and ACE. Then ∠AMC = 120◦ and ∠DMC = 60◦; hence M ∈ AD. Similarly, M ∈ BE.
Ptolemy’s theorem applied to quadrilaterals AMCE and BMCD shows that ME = AM + CM
and MD = BM + CM; hence AD = AM + BM + CM = BE.
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A

E

CB

D

Figure 35

Applying the law of cosines in triangle ABE, we obtain BE2 = AB2 + AE2 + AB · AE
√
3,

and since BE = AD and AE = AC, it follows that

AD2 = AB2 + AC2 + AB · AC
√
3.

If all three segments AB, AC, and AD had rational lengths, this relation would imply that√
3 is rational, which is not true. Hence at least one of these lengths is irrational. �

761. Three lines passing through an interior point of a triangle and parallel to its sides
determine three parallelograms and three triangles. If S is the area of the initial triangle
andS1, S2 andS3 are the areas of the newly formed triangles, prove thatS1+S2+S3 ≥ 1

3S.

762. Someone has drawn two squares of side 0.9 inside a disk of radius 1. Prove that the
squares overlap.

763. A surface is generated by a segment whose midpoint rotates along the unit circle in the
xy-plane such that for each 0 ≤ α < 2π , at the point of coordinates (cosα, sin α) on
the circle the segment is in the same plane with the z-axis and makes with it an angle of
α
2 . This surface, called a Möbius band, is depicted in Figure36. What is the maximal
length the segment can have so that the surface does not cross itself?

Figure 36

764. Let ABCD be a convex quadrilateral and let O be the intersection of its diagonals.
Given that the triangles OAB, OBC, OCD, and ODA have the same perimeter, prove
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that the quadrilateral is a rhombus. Does the property hold if O is some other point in
the interior of the quadrilateral?

765. Prove that the plane cannot be covered by the interiors of finitely many parabolas.

766. Let ABC be a triangle with the largest angle at A. On line AB consider the point D such
that A lies between B and D, and AD = AB3/AC2. Prove that CD ≤ √

3BC3/AC2.

767. Show that if all angles of an octagon are equal and all its sides have rational length,
then the octagon has a center of symmetry.

768. Show that if each of the three main diagonals of a hexagon divides the hexagon into
two parts with equal areas, then the three diagonals are concurrent.

769. Centered at every point with integer coordinates in the plane there is a disk with radius
1

1000 .

(a) Prove that there exists an equilateral triangle whose vertices lie in different disks.

(b) Prove that every equilateral triangle with vertices in different disks has side length
greater than 96.

770. On a cylindrical surface of radius r, unbounded in both directions, consider n points
and a surface S of area strictly less than 1. Prove that by rotating around the axis of the
cylinder and then translating in the direction of the axis by at most n

4πr units one can
transform S into a surface that does not contain any of the n points.

4.2 Trigonometry

4.2.1 Trigonometric Identities

The beauty of trigonometry lies in its identities. There are two fundamental identities,

sin2 x + cos2 x = 1 and cos(x − y) = cos x cos y − sin x sin y,

both with geometric origins, from which all the others can be derived. Our problems will
make use of addition and subtraction formulas for two, three, even four angles, double-
and triple-angle formulas, and product-to-sum formulas. While these identities are seen as
very elementary today, we should remember that the quest to find their analogues led to the
development of the theory of elliptic functions.

Example. Find all acute angles x satisfying the equation

2 sin x cos 40◦ = sin(x + 20◦).

Solution. Trying particular values we see that x = 30◦ is a solution. Are there other solutions?
Use the addition formula for sine to rewrite the equation as

tan x = sin 20◦

2 cos 40◦ − cos 20◦ .

The tangent function is one-to-one on the interval (0, 90◦), which implies that the solution to
the original equation is unique. �
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Example. (a) Prove that if cosπa = 1
3 then a is an irrational number.

(b) Prove that a regular tetrahedron cannot be dissected into finitely many regular
tetrahedra.

Solution. (a) Assume that a is rational, a = m
n . Then cos naπ = ±1. We will prove by

induction that for all k > 0, cos kaπ = mk
3k , with mk an integer that is not divisible by 3. This

will then contradict the initial assumption.
The property is true for k = 0 and 1. The product-to-sum formula for cosines gives rise

to the recurrence

cos(k + 1)aπ = 2 cos aπ cos kaπ − cos(k − 1)aπ, k ≥ 1.

Using the induction hypothesis, we obtain cos(k + 1)aπ = mk+1
3k+1 , with mk+1 = 2mk − 3mk−1.

Since mk is not divisible by 3, neither is mk+1, and the claim is proved.
Part (b) is just a consequence of (a). To see this, let us compute the cosine of the dihedral

angle of two faces of a regular tetrahedron ABCD. If AH is an altitude of the tetrahedron and
AE is an altitude of the face ABC, then∠AEH is the dihedral angle of the faces ABC and BCD
(see Figure37). In the right triangle HAE, cosAEH = EH

AD = 1
3 .

E

C

B

H
D

A

Figure 37

Now assume that there exists a dissection of a regular tetrahedron into regular tetrahedra.
Several of these tetrahedra meet along a segment included in one of the faces of the initial
tetrahedron. Their dihedral angles must add up to π , which implies that the dihedral angle of
a regular tetrahedron is of the form π

n , for some integer n. This was shown above to be false.
Hence no dissection of a regular tetrahedron into regular tetrahedra exists. �

Remark. It is interesting to know that Leonardo da Vinci’s manuscripts contain drawings
of such decompositions. Later, however, Leonardo himself realized that the decompositions
were impossible, and the drawingsweremere optical illusions. Note also that Dehn’s invariant
mentioned in the first chapter provides an obstruction to the decomposition.

We conclude the introduction with a problem by the second author of the book.

Example. Let a0 = √
2 + √

3 + √
6 and let an+1 = a2n−5

2(an+2) for n ≥ 0. Prove that

an = cot

(
2n−3π

3

)
− 2 for all n.
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Solution. We have

cot
π

24
=

cos
π

24

sin
π

24

=
2 cos2

π

24

2 sin
π

24
cos

π

24

=
1 + cos

π

12

sin
π

12

=
1 + cos

(π

3
− π

4

)

sin
(π

3
− π

4

) .

Using the subtraction formulas for sine and cosine we find that this is equal to

1 +
√
2

4
+

√
6

4√
6

4
−

√
2

4

= 4 + √
6 + √

2√
6 − √

2
= 4(

√
6 + √

2) + (
√
6 + √

2)2

6 − 2

= 4(
√
6 + √

2) + 8 + 4
√
3

4
= 2 + √

2 + √
3 + √

6 = a0 + 2.

Hence the equality an = cot
(
2n−3π

3

)
− 2 is true at least for n = 0.

To verify it in general, it suffices to prove that bn = cot
(
2n−3π

3

)
, where bn = an + 2,

n ≥ 1. The recurrence relation becomes

bn+1 − 2 = (bn − 2)2 − 5

2bn
,

or bn+1 = b2n−1
2bn

. Assuming inductively that bk = cot ck , where ck = 2k−3π
3 , and using the

double-angle formula, we obtain

bk+1 = cot2 ck − 1

2 cot ck
= cot(2ck) = cot ck+1.

This completes the proof. �

771. Prove that

sin 70◦ cos 50◦ + sin 260◦ cos 280◦ =
√
3

4
.

772. Show that the trigonometric equation

sin(cos x) = cos(sin x)

has no solutions.

773. Show that if the angles a and b satisfy

tan2 a tan2 b = 1 + tan2 a + tan2 b,

then
sin a sin b = ± sin 45◦.
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774. Find the range of the function f : R → R, f (x) = (sin x + 1)(cos x + 1).

775. Prove that
sec2n x + csc2n x ≥ 2n+1,

for all integers n ≥ 0, and for all x ∈ (
0, π

2

)
.

776. Compute the integral ∫ √
1 − x

1 + x
dx, x ∈ (−1, 1).

777. Find all integers k for which the two-variable function f (x, y) = cos(19x + 99y) can
be written as a polynomial in cos x, cos y, cos(x + ky).

778. Let a, b, c, d ∈ [0, π] be such that
2 cos a + 6 cos b + 7 cos c + 9 cos d = 0

and
2 sin a − 6 sin b + 7 sin c − 9 sin d = 0.

Prove that 3 cos(a + d) = 7 cos(b + c).

779. Let a be a real number. Prove that

5(sin3 a + cos3 a) + 3 sin a cos a = 0.04

if and only if
5(sin a + cos a) + 2 sin a cos a = 0.04.

780. Let a0, a1, . . . , an be numbers from the interval
(
0, π

2

)
such that

tan
(

a0 − π

4

)
+ tan

(
a1

π

4

)
+ · · · + tan

(
an − π

4

)
≥ n − 1.

Prove that
tan a0 tan a1 · · · tan an ≥ nn+1.

4.2.2 Euler’s Formula

For a complex number z,

ez = 1 + z

1! + z2

2! + · · · + zn

n! + · · ·

In particular, for an angle x,

eix = 1 + i
x

1! − x2

2! − i
x3

3! + x4

4! + i
x5

5! − x6

6! − i
x7

7! + · · ·
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The real part of eix is

1 − x2

2! + x4

4! − x6

6! + · · · ,

while the imaginary part is
x

1! − x3

3! + x5

5! − x7

7! + · · ·
These are the Taylor series of cos x and sin x. We obtain Euler’s formula

eix = cos x + i sin x.

Euler’s formula gives rise to one of the most beautiful identities in mathematics:

eiπ = −1,

which relates the number e from real analysis, the imaginary unit i from algebra, and π from
geometry.

The equality enz = (ez)n holds at least for z a real number. Two power series are equal for
all real numbers if and only if they are equal coefficient by coefficient (since coefficients are
computed using the derivatives at 0). So equality for real numbers means equality for complex
numbers. In particular, einx = (eix)n, from which we deduce the de Moivre’s formula

cos nx + i sin nx = (cos x + i sin x)n.

We present an application of the de Moivre formula that we found in Exercises and
Problems in Algebra byC.Năstăsescu, C.Niţă, M.Brandiburu, andD. Joiţa (EdituraDidactică
şi Pedagogică, Bucharest, 1983).

Example. Prove the identity

(
n

0

)
+

(
n

k

)
+

(
n

2k

)
+ · · · = 2n

k

k∑
j=1

cosn jπ

k
cos

njπ

k
.

Solution. Let ε1, ε2, . . . , εk be the kth roots of unity, that is, εj = cos 2jπ
k + i sin 2jπ

k , j =
1, 2, . . . , k. The sum

εs
1 + εs

2 + · · · + εs
k

is equal to k if k divides s, and to 0 if k does not divide s. We have

k∑
j=1

(1 + εj)
n =

n∑
s=0

(
n

s

)⎛
⎝

k∑
j=1

εs
j

⎞
⎠ = k

� n
k �∑

j=0

(
n

jk

)
.

Since

1 + εj = 2 cos
jπ

k

(
cos

jπ

k
+ i sin

jπ

k

)
,
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it follows from the de Moivre formula that

k∑
j=1

(1 + εj)
n =

k∑
j=1

2n cosn jπ

k

(
cos

njπ

k
+ i sin

njπ

k

)
.

Therefore,

(
n

0

)
+

(
n

k

)
+

(
n

2k

)
+ · · · = 2n

k

k∑
j=1

cosn jπ

k

(
cos

nkπ

k
+ i sin

njπ

k

)
.

The left-hand side is real, so we can ignore the imaginary part and obtain the identity from
the statement. �

And now a problem given at an Indian Team Selection Test for the International Mathe-
matical Olympiad in 2005, proposed by the first author of the book.

Example. For real numbers a, b, c, d not all equal to zero, let f : R → R,

f (x) = a + b cos 2x + c sin 5x + d cos 8x.

Suppose that f (t) = 4a for some real number t. Prove that there exists a real number s such
that f (s) < 0.

Solution. Let g(x) = be2ix − ice5ix + de8ix. Then f (x) = a + Re g(x). Note that

g(x) + g

(
x + 2π

3

)
+ g

(
x + 4π

3

)
= g(x)(1 + e2π i/3 + e4π i/3) = 0.

Therefore,

f (x) + f

(
x + 2π

3

)
+ f

(
x + 4π

3

)
= 3a.

If a < 0, then s = t would work. If a = 0, then for some x one of the terms of the above sum
is negative. This is because f (x) is not identically zero, since its Fourier series is not trivial.
If a > 0, substituting x = t in the identity deduced above and using the fact that f (t) = 4a,
we obtain

f

(
t + 2π

3

)
+ f

(
t + 4π

3

)
= −a < 0.

Hence either f
(
t + 2π

3

)
or f

(
t + 4π

3

)
is negative. The problem is solved. �

781. Prove the identity (
1 + i tan t

1 − i tan t

)n

= 1 + i tan nt

1 − i tan nt
, n ≥ 1.

782. Prove the identity

1 −
(

n

2

)
+

(
n

4

)
−

(
n

6

)
+ · · · = 2n/2 cos

nπ

4
, n ≥ 1.
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783. Compute the sum

(
n

1

)
cos x +

(
n

2

)
cos 2x + · · · +

(
n

n

)
cos nx.

784. Find the Taylor series expansion at 0 of the function

f (x) = ex cos θ cos(x sin θ),

where θ is a parameter.

785. Let z1, z2, z3 be complex numbers of the same absolute value, none of which is real and
all distinct. Prove that if z1 + z2z3, z2 + z3z1 and z3 + z1z2 are all real, then z1z2z3 = 1.

786. Let n be an odd positive integer and let θ be a real number such that θ
π
is irrational. Set

ak = tan
(
θ + kπ

n

)
, k = 1, 2, . . . , n. Prove that

a1 + a2 + · · · + an

a1a2 · · · an

is an integer and determine its value.

787. Find (cosα)(cos 2α)(cos 3α) · · · (cos 999α) with α = 2π
1999 .

788. For positive integers n define F(n) = xn sin(nA) + yn sin(nB) + zn sin(nC), where x,
y, z, A, B, C are real numbers and A + B + C = kπ for some integer k. Prove that if
F(1) = F(2) = 0, then F(n) = 0 for all positive integers n.

789. The continuous real-valued function φ(t) is defined for t ≥ 0 and is absolutely inte-
grable on every bounded interval. Define

P =
∫ ∞

0
e−(t+iφ(t))dt and Q =

∫ ∞

0
e−2(t+iφ(t))dt.

Prove that
|4P2 − 2Q| ≤ 3,

with equality if and only if φ(t) is constant.

4.2.3 Trigonometric Substitutions

The fact that the circle x2+y2 = 1 can be parametrized by trigonometric functions as x = cos t
and y = sin t gives rise to the standard substitution x = a cos t (or x = a sin t) in expressions of
the form

√
a2 − x2. Our purpose is to emphasize less standard substitutions, usually suggested

by the similarity between an algebraic expression and a trigonometric formula. Such is the
case with the following problem from the 61stW.L. PutnamMathematical Competition, 2000.

Example. Let f : [−1, 1] → R be a continuous function such that f (2x2 − 1) = 2xf (x) for
all x ∈ [−1, 1]. Show that f is identically equal to zero.
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Solution. Here the expression 2x2−1 should remind us of the trigonometric formula 2 cos2 t−
1 = cos 2t, suggesting the substitution x = cos t, t ∈ [0, π]. The functional equation from
the statement becomes f (cos 2t) = 2 cos tf (cos t).

First, note that setting x = 0 and x = 1, we obtain f (1) = f (−1) = 0. Now let us define
g : R → R, g(t) = f (cos t)

sin t . Then for any t not a multiple of π ,

g(2t) = f (2 cos2 t − 1)

sin(2t)
= 2 cos tf (cos t)

2 sin t cos t
= f (cos t)

sin t
= g(t).

Also, g(t + 2π) = g(t). In particular, for any integers n and k,

g
(
1 + nπ

2k

)
= g(2k+1 + 2nπ) = g(2k+1) = g(1).

Because f is continuous, g is continuous everywhere except at multiples of π . The set{
1 + nπ

2k | n, k ∈ Z
}
is dense on the real axis, and so g must be constant on its domain.

Then f (cos t) = c sin t for some constant c and t in (0, π), i.e., f (x) = c
√
1 − x2 for all

x ∈ (−1, 1). It follows that f is an even function. But then in the equation from the statement
f (2x2 − 1) = 2xf (x) the left-hand side is an even function while the right-hand side is an odd
function. This can happen only if both sides are identically zero. Therefore, f (x) = 0 for
x ∈ [−1, 1] is the only solution to the functional equation. �

We continue with a problem that was proposed by Belgium for the 26th International
Mathematical Olympiad in 1985.

Example. Let x, y, z be real numbers such that x + y + z = xyz. Prove that

x(1 − y2)(1 − z2) + y(1 − z2)(1 − x2) + z(1 − x2)(1 − y2) = 4xyz.

Solution. The conclusion is immediate if xyz = 0, so we may assume that x, y, z �= 0.
Dividing through by 4xyz we transform the desired equality into

1 − y2

2y
· 1 − z2

2z
+ 1 − z2

2z
· 1 − x2

2x
+ 1 − x2

2x
· 1 − y2

2y
= 1.

This, along with the condition from the statement, makes us think about the substitutions
x = tanA, y = tanB, z = tanC, where A, B, C are the angles of a triangle. Using the
double-angle formula

1 − tan2 u

2 tan u
= 1

tan 2u
= cot 2u

we further transform the equality into

cot 2B cot 2C + cot 2C cot 2A + cot 2A cot 2B = 1.

But this is equivalent to

tan 2A + tan 2B + tan 2C = tan 2A tan 2B tan 2C,

which follows from tan(2A + 2B + 2C) = tan 2π = 0. �
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And now the problems.

790. Let a, b, c ∈ [0, 1]. Prove that
√

abc + √
(1 − a)(1 − b)(1 − c) ≤ 1.

791. Solve the equation x3 − 3x = √
x + 2 in real numbers.

792. Find the maximum value of

S = (1 − x1)(1 − y1) + (1 − x2)(1 − y2)

if x21 + x22 = y21 + y22 = c2, where c is some positive number.

793. Prove for all real numbers a, b, c the inequality

|a − b|√
1 + a2

√
1 + b2

≤ |a − c|√
1 + a2

√
1 + c2

+ |b − c|√
1 + b2

√
1 + c2

.

794. Let a, b, c be real numbers. Prove that

(ab + bc + ca − 1)2 ≤ (a2 + 1)(b2 + 1)(c2 + 1).

795. Prove that
x√

1 + x2
+ y√

1 + y2
+ z√

1 + z2
≤ 3

√
3

2

if the positive real numbers x, y, z satisfy x + y + z = xyz.

796. Prove that
x

1 − x2
+ y

1 − y2
= z

1 − z2
≥ 3

√
3

2

if 0 < x, y, z < 1 and xy + yz + xz = 1.

797. Solve the system of equations

3

(
x + 1

x

)
= 4

(
y + 1

y

)
= 5

(
z + 1

z

)

xy + yz + zx = 1.

798. Solve the following system of equations in real numbers:

3x − y

x − 3y
= x2,

3y − z

y − 3z
= y2,

3z − x

z − 3x
= z2.
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799. Let a0 = √
2, b0 = 2, and

an+1 =
√
2 −

√
4 − a2

n, bn+1 = 2bn

2 + √
4 + b2

n

, n ≥ 0.

(a) Prove that the sequences (an)n and (bn)n are decreasing and converge to zero.
(b) Prove that the sequence (2nan)n is increasing, the sequence (2nbn)n is decreasing,

and these two sequences converge to the same limit.
(c) Prove there is a positive constant C such that one has 0 < bn − an < C

8n for all n.

800. Let α be the greatest positive root of the equation

x3 − 3x2 + 1 = 0.

Show that both �a1788� and �a1988� are divisible by 17.
801. Two real sequences x1, x2, . . ., and y1, y2, . . . are defined in the following way:

x1 = y1 = √
3, xn+1 = xn +

√
1 + x2n, yn+1 = yn

1 + √
1 + y2n

, for n ≥ 1.

Prove that 2 < xnyn < 3 for all n > 1.

802. Let a, b, c be real numbers different from± 1√
3
. Prove that the equality abc = a+b+c

holds only if

3a − a3

3a2 − 1
· 3b − b3

3b2 − 1
· 3c − c3

3c2 − 1
= 3a − a3

3a2 − 1
+ 3b − b3

3b2 − 1
+ 3c − c3

3c2 − 1
.

803. Let a, b, c > 0. Find all triples (x, y, z) of positive real numbers such that

x + y + z = a + b + c

a2x + b2y + c2z + 4abc = 4xyz.

The parametrization of the hyperbola x2 − y2 = 1 by x = cosh t, y = sinh t gives rise to
the hyperbolic substitution x = a cosh t in expressions containing

√
a2 − 1. We illustrate this

with an example by the second author.

Example. Let a1 = a2 = 97 and

an+1 = anan−1 +
√

(a2
n − 1)(a2

n−1 − 1), for n > 1.

Prove that

(a) 2 + 2an is a perfect square;

(b) 2 + √
2 + 2an is a perfect square.
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Solution. We are led to the substitution an = cosh tn for some number tn (which for the
moment might be complex). The recurrence relation becomes

cosh tn+1 = an+1 = cosh tn cosh tn−1 + sinh tn sinh tn−1 = cosh(tn + tn−1).

We deduce that the numbers tn satisfy t0 = t1, and tn+1 = tn + tn−1 (in particular they
are all real). And so tn = Fnt0, where (Fn)n is the Fibonacci sequence. Consequently,
an = cosh(Fnt0), n ≥ 1.

Using the identity 2(cosh t)2 − 1 = cosh 2t, we obtain

2 + 2an =
(
2 coshFn

t0
2

)2

.

The recurrence relation

2 cosh(k + 1)t = (2 cosh t)(2 cosh kt) − 2 cosh(k − 1)t

allows us to prove inductively that 2 cosh k t0
2 is an integer once we show that 2 cosh t0

2 is an
integer. It would then follow that 2 cosh Fn

t0
2 is an integer as well. And indeed 2 cosh t0

2 =√
2 + 2a1 = 14. This completes the proof of part (a).
To prove (b), we obtain in the same manner

2 + √
2 + 2an =

(
2 cosh Fn

t0
4

)2

,

and again we have to prove that 2 cosh t0
4 is an integer. We compute 2 cosh t0

4 =√
1 + √

2 + 2an = √
2 + 14 = 4. The conclusion follows. �

804. Compute the integral ∫
dx

x + √
x2 − 1

.

805. Let n > 1 be an integer. Prove that there is no irrational number a such that the number

n
√

a +
√

a2 − 1 + n
√

a −
√

a2 − 1

is rational.

4.2.4 Telescopic Sums and Products in Trigonometry

The philosophy of telescopic sums and products in trigonometry is the same as in the general
case, just that here we have more identities at hand. Let us take a look at a slightly modified
version of an identity of C.A. Laisant.

Example. Prove that

n∑
k=0

(
−1

3

)k

cos3(3k−nπ) = 3

4

[(
−1

3

)n+1

+ cos
π

3n

]
.



254 4 Geometry and Trigonometry

Solution. From the identity cos 3x = 4 cos3 x − 3 cos x, we obtain

cos3 x = 1

4
(cos 3x + 3 cos x).

Then

n∑
k=0

(
−1

3

)k

cos3(3ka) = 1

4

n∑
k=0

[(
−1

3

)k

cos(3k+1a) −
(

−1

3

)k−1

cos(3ka)

]
.

This telescopes to
1

4

[(
−1

3

)n

cos(3n+1a) −
(

−1

3

)−1

cos a

]
.

For a = 3−nπ , we obtain the identity from the statement. �

Test your skills against the following problems.

806. Prove that

27 sin3 9◦ + 9 sin3 27◦ + 3 sin3 81◦ + sin3 243◦ = 20 sin 9◦.

807. Prove that

1

cot 9◦ − 2 tan 9◦ + 3

cot 27◦ − 3 tan 27◦ + 9

cot 81◦ − 3 tan 81◦

+ 27

cot 243◦ − 3 tan 243◦ = 10 tan 9◦.

808. Prove that

1

sin 45◦ sin 46◦ + 1

sin 47◦ sin 48◦ + · · · + 1

sin 133◦ sin 134◦ = 1

sin 1◦ .

809. Obtain explicit values for the following series:

(a)
∞∑

n=1

arctan
2

n2
,

(b)
∞∑

n=1

arctan
8n

n4 − 2n2 + 5
.

810. For n ≥ 0 let

un = arcsin

√
n + 1 − √

n√
n + 2

√
n + 1

.

Prove that the series
S = u0 + u1 + u2 + · · · + un + . . .

is convergent and find its limit.



4.2 Trigonometry 255

Now we turn to telescopic products.

Example. Prove that
∞∏

n=1

1

1 − tan2 2−n
= tan 1.

Solution. The solution is based on the identity

tan 2x = 2 tan x

1 − tan2 x
.

Using it we can write

N∏
n=1

1

1 − tan2 2−n
=

n∏
n=1

tan 2−n+1

2 tan 2−n
= 2−N

tan 2−N
tan 1.

Since lim
x→0

tan x
x = 1, when letting N → ∞ this become tan 1, as desired. �

811. In a circle of radius 1 a square is inscribed. A circle is inscribed in the square and
then a regular octagon in the circle. The procedure continues, doubling each time the
number of sides of the polygon. Find the limit of the lengths of the radii of the circles.

812. Prove that
(
1 − cos 61◦

cos 1◦

)(
1 − cos 62◦

cos 2◦

)
· · ·

(
1 − cos 119◦

cos 59◦

)
= 1.

813. Evaluate the product

(1 − cot 1◦)(1 − cot 2◦) · · · (1 − cot 44◦).

814. Compute the product

(
√
3 + tan 1◦)(

√
3 + tan 2◦) · · · (√3 + tan 29◦).

815. Prove the identities

(a)

(
1

2
− cos

π

7

)(
1

2
− cos

3π

7

)(
1

2
− cos

9π

7

)
= −1

8
,

(b)

(
1

2
+ cos

π

20

) (
1

2
+ cos

3π

20

)(
1

2
+ cos

9π

20

)(
1

2
+ cos

27π

20

)
= 1

16
.

816. Prove the identities

(a)
24∏

n=1

sec(2n)◦ = −224 tan 2◦,

(b)
25∏

n=2

(2 cos(2n)◦ − sec(2n)◦) = −1.
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Number Theory

This chapter on number theory is truly elementary, although its problems are far from easy.
(In fact, here, as elsewhere in the book, we tried to follow Felix Klein’s advice: “Don’t ever
be absolutely boring”.1 We restricted ourselves to some basic facts about residue classes and
divisibility: Fermat’s little theorem and its generalization due to Euler, Wilson’s theorem, the
Chinese remainder theorem, and Polignac’s formula, with just a short incursion into algebraic
number theory. From all Diophantine equations we discuss linear equations in two variables
and two types of quadratic equations: the Pythagorean equation and Pell’s equation.

But first, three sections for which not much background is necessary.

5.1 Integer-Valued Sequences and Functions

5.1.1 Some General Problems

Here are some problems, not necessarily straightforward, that use only the basic properties of
integers.
Example. Find all functions f : {0, 1, 2, . . .} → {0, 1, 2, . . .} with the property that for every
m, n ≥ 0,

2 f (m2 + n2) = ( f (m))2 + ( f (n))2.

Solution. The substitution m = n = 0 yields

2 f (02 + 02) = ( f (0))2 + ( f (0))2,

and this gives f (0)2 = f (0), hence f (0) = 0 or f (0) = 1.
We pursue the track of f (0) = 0 first. We have

2 f (12 + 02) = ( f (1))2 + ( f (0))2,

so 2 f (1) = f (1)2, and hence f (1) = 0 or f (1) = 2. Let us see what happens if f (1) = 2,
since this is the most interesting situation. We find immediately

2 f (2) = 2 f (12 + 12) = ( f (1))2 + ( f (1))2 = 8,

1Seien Sie niemals absolut langweilig.
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so f (2) = 4, and then

2 f (4) = 2 f (22 + 02) = ( f (2))2 + ( f (0))2 = 16,

2 f (5) = 2 f (22 + 12) = ( f (2))2 + ( f (1))2 = 20,

2 f (8) = 2 f (22 + 22) = ( f (2))2 + ( f (2))2 = 32.

So f (4) = 8, f (5) = 10, f (8) = 16. In fact, f (n) = 2n for n ≤ 10, but as we will see
below, the proof is more involved. Indeed,

100 = ( f (5))2 + ( f (0))2 = 2 f (52) = 2 f (32 + 42) = ( f (3))2 + ( f (4))2

= ( f (3))2 + 64,

hence f (3) = 6. Then immediately

2 f (9) = 2 f (32 + 02) = ( f (3))2 + ( f (0))2 = 36,

2 f (10) = 2 f (32 + 12) = ( f (3))2 + ( f (1))2 = 40,

so f (9) = 18, f (10) = 20.
Applying an idea used before, we have

400 = ( f (10))2 + ( f (0))2 = 2 f (102) = 2 f (62 + 82) = ( f (6))2 + ( f (8))2

= ( f (6))2 + 256,

from which we obtain f (6) = 12. For f (7) we use the fact that 72 + 12 = 52 + 52 and the
equality

( f (7))2 + ( f (1))2 = ( f (5))2 + ( f (6))2

to obtain f (7) = 14.
We want to prove that f (n) = 2n for n > 10 using strong induction. The argument is

based on the identities

(5k + 1)2 + 22 = (4k + 2)2 + (3k − 1)2,

(5k + 2)2 + 12 = (4k + 1)2 + (3k + 2)2,

(5k + 3)2 + 12 = (4k + 3)2 + (3k + 1)2,

(5k + 4)2 + 22 = (4k + 2)2 + (3k + 4)2,

(5k + 5)2 + 02 = (4k + 4)2 + (3k + 3)2.

Note that if k ≥ 2, then the first term on the left is strictly greater then any of the two terms
on the right, and this makes the induction possible. Assume that f (m) = 2m for m < n and
let us prove f (n) = 2n. Let n = 5k + j , 1 ≤ j ≤ 5, and use the corresponding identity to
write n2 + m2

1 = m2
2 + m2

3, where m1, m2, m3 are positive integers less than n. We then have

( f (n))2 + ( f (m1))
2 = 2 f (n2 + m2

1) = 2 f (m2
2 + m2

3) = ( f (m2))
2 + ( f (m3))

2.
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This then gives

( f (n))2 = (2m2)
2 + (2m3)

2 − (2m1)
2 = 4(m2

2 + m2
3 − m2

1) = 4n2.

Hence f (n) = 2n, completing the inductive argument. And indeed, this function satisfies the
equation from the statement.

If we start with the assumption f (1) = 0, the exact same reasoning applied mutatis
mutandis shows that f (n) = 0, n ≥ 0. And the story repeats if f (0) = 1, giving f (n) = 1,
n ≥ 0. Thus the functional equation has three solutions: f (n) = 2n, n ≥ 0, and the constant
solutions f (n) = 0, n ≥ 0, and f (n) = 1, n ≥ 0. �

With the additional hypothesis f (m2) ≥ f (n2) if m ≥ n, this problem appeared at the
1998 Korean Mathematical Olympiad. The solution presented above was communicated to
us by B.J. Venkatachala.

817. Let k be a positive integer. The sequence (an)n is defined by a1 = 1, and for n ≥ 2, an

is the nth positive integer greater than an−1 that is congruent to n modulo k. Find an in
closed form.

818. Three infinite arithmetic progressions are given, whose terms are positive integers.
Assuming that each of the numbers 1, 2, 3, 4, 5, 6, 7, 8 occurs in at least one of these
progressions, show that 1980 necessarily occurs in one of them.

819. Find all functions f : N → N satisfying

f (n) + 2 f ( f (n)) = 3n + 5, for all n ∈ N.

820. Find all functions f : Z → Z with the property that

2 f ( f (x)) − 3 f (x) + x = 0, for all x ∈ Z.

821. Prove that there exists no bijection f : N → N such that

f (mn) = f (m) + f (n) + 3 f (m) f (n),

for all m, n ≥ 1.

822. Show that there does not exist a sequence (an)n≥1 of positive integers such that

an−1 ≤ (an+1 − an)
2 ≤ an, for all n ≥ 2.

823. Determine all functions f : Z → Z satisfying

f (x3 + y3 + z3) = ( f (x))3 + ( f (y))3 + ( f (z))3, for all x, y, z ∈ Z.
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5.1.2 Fermat’s Infinite Descent Principle

Fermat’s infinite descent principle states that there are no strictly decreasing infinite sequences
of positive integers. Alternatively, any decreasing sequence of positive integers becomes
stationary. This is a corollary of the fundamental property of the set of positive integers that
every subset has a smallest element. To better understand this principle, let us apply it to an
easy example.

Example. At each point of integer coordinates in the plane is written a positive integer number
such that each of these numbers is the arithmetic mean of its four neighbors. Prove that all
the numbers are equal.

Solution. The solution is an application of the maximum modulus principle. For n ≥ 1,
consider the square of side 2n centered at the origin. Among the numbers covered by it, the
smallest must lie on its perimeter. Let this minimum be m(n). If it is also attained in the
interior of the square, then the four neighbors of that interior point must be equal, and step by
step we show that all numbers inside that square are equal. Hence there are two possibilities.
Either m(1) > m(2) > m(3) > · · · or m(n) = m(n + 1) for infinitely many n. The former
case is impossible, since the m(n)’s are positive integers; the latter case implies that all the
numbers are equal. �

We find even more spectacular this problem from the 2004 USAMathematical Olympiad.

Example. Suppose that a1, . . . , an are integers whose greatest common divisor is 1. Let S be
a set of integers with the following properties:

(i) For i = 1, . . . , n, ai ∈ S.

(ii) For i, j = 1, . . . , n (not necessarily distinct), ai − a j ∈ S.

(iii) For any integers x, y ∈ S, if x + y ∈ S, then x − y ∈ S.

Prove that S must equal the set of all integers.

Solution. This problem was submitted by K. Kedlaya and L. Ng. The solution below was
discovered by M. Ince and earned him the Clay prize.

First thing, note that if b1, b2, . . . , bm are some integers that generate S and satisfy the
three conditions from the statement, then bi − 2b j and 2bi − b j are also in S for any indices i
and j . Indeed, since bi , b j , and bi −b j are in S, by (iii) we have that bi −2b j ∈ S. Moreover,
for i = j in (ii) we find that 0 = bi − bi ∈ S. Hence applying (iii) to x ∈ S and 0 we have
that −x ∈ S as well, and in particular 2bi − b j ∈ S.

An n-tuple (b1, b2, . . . , bn) as above can be substituted by (b1, b2 − b1, . . . , bn − b1),
which again generates S and, by what we just proved, satisfies (i), (ii), and (iii). Applying
this step to (|a1|, |a2|, . . . , |an|) and assuming that |a1| is the smallest of these numbers, we
obtain another n-tuple the sum of whose entries is smaller. Because we cannot have an infinite
descent, we eventually reach an n-tuple with the first entry equal to 0. In the process we did
not change the greatest common divisor of the entries. Ignoring the zero entries, we can repeat
the procedure until there is only one nonzero number left. This number must be 1.

From the fact that 0, 1 ∈ S and then also −1 ∈ S, by applying (iii) to x = 1, y = −1 we
find that 2 ∈ S, and inductively we find that all positive, and also all negative, integers are
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in S. We conclude that S = Z. As I. Kaplansky said, “An elegant proof hits you between
your eyes with joy”. �

824. Show that no positive integers x, y, z can satisfy the equation

x2 + 10y2 = 3z2.

825. Prove that the system of equations

x2 + 5y2 = z2,

5x2 + y2 = t2

does not admit nontrivial integer solutions.

826. Show that the equation
x2 − y2 = 2xyz

has no solutions x, y, z in the set of positive integers.

827. Prove that there is no infinite arithmetic progressionwhose terms are all perfect squares.

828. Let f be a bijection of the set of positive integers. Prove that there exist positive
integers a < a + d < a + 2d such that f (a) < f (a + d) < f (a + 2d).

829. Prove that for no integer n > 1 does n divide 2n − 1.

830. Find all pairs of positive integers (a, b) with the property that ab + a + b divides
a2 + b2 + 1.

831. Let x, y, z be positive integers such that xy−z2 = 1. Prove that there exist nonnegative
integers a, b, c, d such that

x = a2 + b2, y = c2 + d2, z = ac + bd.

5.1.3 The Greatest Integer Function

The greatest integer function associates to a number x the greatest integer less than or equal
to x . The standard notation is �x�. Thus �2� = 2, �3.2� = 3, �−2.1� = −3. This being said,
let us start with the examples.

Beatty’s theorem. Let α and β be two positive irrational numbers satisfying 1
α

+ 1
β

= 1.
Then the sequences �αn� and �βn� are strictly increasing and determine a partition of the
set of positive integers into two disjoint sets.

Proof. In other words, each positive integer shows up in exactly one of the two sequences.
Let us first prove the following result.

Lemma. If xn , n ≥ 1, is an increasing sequence of positive integers with the property that for
every n, the number of indices m such that xm < n is equal to n − 1, then xn = n for all n.
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Proof. We do the proof by induction. The base case is obvious: because the sequence is
increasing, the only n for which xn < 2 is n = 1. Now let us assume that x1 = 1, x2 = 2, . . .,
xn−1 = n − 1. From the hypothesis it also follows that there are no other indices m for which
xm < n. And because there is exactly one more term of the sequence that is less than n + 1,
this term must be xn and it is equal to n. �

Returning to the problem, let us write all numbers of the form �αn� and �βn� in an
increasing sequence yn . For every n there are exactly

⌊
n
α

⌋
numbers of the form �kα�, and⌊

n
β

⌋
numbers of the form �kβ� that are strictly less than n (here we used the fact that α and

β are irrational). We have

n − 1 =
⌊

n

α
+ n

β

⌋
− 1 ≤

⌊n

α

⌋
+

⌊
n

β

⌋
<

n

α
+ n

β
= n.

Hence
⌊

n
α

⌋ +
⌊

n
β

⌋
= n − 1, which shows that the sequence yn satisfies the condition of

the lemma. It follows that this sequence consists of all positive integers written in strictly
increasing order. Hence the conclusion. �

Our second example is a general identity discovered by the second author and D. Andrica.
Note the similarity with Young’s inequality for integrals (problem 578).

Theorem. Let a < b and c < d be positive real numbers and let f : [a, b] → [c, d] be a
continuous, bijective, and increasing function. Then

∑

a≤k≤b

� f (k)� +
∑

c≤k≤d

� f −1(k)� − n(G f ) = �b��d� − α(a)α(c),

where k is an integer, n(G f ) is the number of points with integer coordinates on the graph of
f , and α : R → R is defined by

α(x) =

⎧
⎪⎪⎨

⎪⎪⎩

�x� if x ∈ R \ Z,

0 if x = 0,

x − 1 if x ∈ Z \ {0}.

Proof. The proof is by counting. For a region M of the plane, we denote by n(M) the number
of points with nonnegative integer coordinates in M . For our theorem, consider the sets

M1 = {(x, y) ∈ R
2 | a ≤ x ≤ b, 0 ≤ y ≤ f (x)},

M2 = {(x, y) ∈ R
2 | c ≤ y ≤ d, 0 ≤ x ≤ f −1(y)},

M3 = {(x, y) ∈ R
2 | 0 < x ≤ b, 0 < y ≤ d},

M4 = {(x, y) ∈ R
2 | 0 < x < a, 0 < y < c}.

Then
n(M1) =

∑

a≤k≤b

� f (k)�, n(M2) =
∑

c≤k≤d

� f −1(k)�,

n(M3) = �b��d�, n(M4) = α(a)α(c).
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By the inclusion-exclusion principle,

n(M1 ∪ M2) = n(M1) + n(M2) − n(M1 ∩ M2).

Note that n(M1 ∩ M2) = n(G f ) and N (M1 ∪ M2) = n(M3) − n(M4). The identity follows.

832. For a positive integer n and a real number x , prove the identity

�x� +
⌊

x + 1

n

⌋
+ · · · +

⌊
x + 1

n − 1

⌋
= �nx�.

833. For a positive integer n and a real number x , compute the sum

∑

0≤i< j≤n

⌊
x + i

j

⌋
.

834. Find all pairs of real numbers x, y that satisfy

�x�(�x� + 1)(�x�x + 3)(�x� + 4) = �y�2.

835. Prove that for every positive integer n,

⌊√
n
⌋ =

⌊√
n + 1√

n + √
n + 2

⌋
.

836. For what real numbers x ≥ 1 is it true that
⌊√

�√x�
⌋

=
⌊√√

x

⌋
?

837. Express
n∑

k=1

⌊√
k
⌋
in terms of n and a = ⌊√

n
⌋
.

838. Prove the identity

n(n+1)
2∑

k=1

⌊
−1 + √

1 + 8k

2

⌋

= n(n2 + 2)

3
, n ≥ 1.

839. Find all pairs of real numbers (a, b) such that a�bn� = b�an� for all positive
integers n.

840. Show that if x ≥ 1 and x /∈ Z, then

1

�x� + 1

{x} >
7

2x
,

where {x} is the fractional part of x ({x} = x − �x�).
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841. For p and q coprime positive integers prove the reciprocity law

⌊
p

q

⌋
+

⌊
2p

q

⌋
+ · · · +

⌊
(q − 1)p

q

⌋
=

⌊
q

p

⌋
+

⌊
2q

p

⌋
+ · · · +

⌊
(p − 1)q

p

⌋
.

842. Prove that for any real number x and for any positive integer n,

�nx� ≥ �x�
1

+ �2x�
2

+ �3x�
3

+ · · · + �nx�
n

.

843. Does there exist a strictly increasing function f : N → N such that f (1) = 2 and
f ( f (n)) = f (n) + n for all n?

844. Suppose that the strictly increasing functions f, g : N → ∞ partition N into two
disjoint sets and satisfy

g(n) = f ( f (kn)) + 1, for all n ≥ 1,

for some fixed positive integer k. Prove that f and g are unique with this property and
find explicit formulas for them.

5.2 Arithmetic

5.2.1 Factorization and Divisibility

There isn’t much to say here. An integer d divides another integer n if there is an integer
d ′ such that n = dd ′. In this case d is called a divisor of n. We denote by gcd(a, b) the
greatest common divisor of a and b. For any positive integers a and b, Euclid’s algorithm
yields integers x and y such that ax − by = gcd(a, b). Two numbers are called coprime, or
relatively prime, if their greatest common divisor is 1. For coprime numbers a and b there
exist integers x and y such that ax − by = 1.

We begin with a problem from the Soviet Union Mathematical Olympiad for University
Students in 1976.

Example. Prove that there is no polynomial with integer coefficients P(x) with the property
that P(7) = 5 and P(15) = 9.

Solution. Assume that such a polynomial P(x) = anxn + an−1xn−1 + · · · + a0 does exist.
Then P(7) = an7n + an−17n−1 + · · · + a0 and P(15) = an15n + an−115n−1 + · · · + a0.
Subtracting, we obtain

4 = P(15) − P(7) = an(15
n − 7n) + an−1(15

n−1 − 7n−1) + · · · + a1(15 − 7).

Since for any k, 15k − 7k is divisible by 15 − 7 = 8, it follows that P(15) − P(7) = 4 itself
is divisible by 8, a contradiction. Hence such a polynomial does not exist. �

The second problem was given at the Asia-Pacific Mathematical Olympiad in 1998.
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Example. Show that for any positive integers a and b, the product (36a + b)(a + 36b) cannot
be a power of 2.

Solution. Assume that (36a + b)(a +36b) is a power of 2 for some integers a and b. Without
loss of generality, we may assume that a and b are coprime and a < b. Let 36a + b = 2m and
a + 36b = 2n . Adding and subtracting, we obtain 37(a + b) = 2m(2n−m + 1), respectively
35(a − b) = 2m(2n−m −1). It follows that both a + b and a − b are divisible by 2m. This can
happen only if both a and b are divisible by 2m−1. Our assumption that a and b are coprime
implies that m = 1. But then 36a + b = 2, which is impossible. Hence the conclusion. �

845. Find the integers n for which (n3 − 3n2 + 4)/(2n − 1) is an integer.

846. Prove that in the product P = 1! · 2! · 3! · · · 100! one of the factors can be erased so
that the remaining product is a perfect square.

847. The sequence a1, a2, a3, . . . of positive integers satisfies gcd(ai , a j ) = gcd(i, j) for
i = j . Prove that ai = i for all i .

848. Let n, a, b be positive integers. Prove that

gcd(na − 1, nb − 1) = ngcd(a,b) − 1.

849. Let a and b be positive integers. Prove that the greatest common divisor of 2a + 1 and
2b + 1 divides 2gcd(a,b) + 1.

850. Fix a positive integer k and define the sequence (an)n by a1 = k + 1 and an+1 =
a2

n − kan + k for n ≥ 1. Prove that for any distinct positive integers m and n the
numbers am and an are coprime.

851. Let a, b, c, d, e, and f be positive integers. Suppose that S = a + b + c + d + e + f
divides both abc + de f and ab + bc + ca − de − e f − f d . Prove that S is composite.

852. Let n be an integer greater than 2. Prove that n(n − 1)4 + 1 is the product of two
integers greater than 1.

853. Determine the functions f : {0, 1, 2, . . .} → {0, 1, 2, . . .} satisfying
(i) ( f (2n + 1))2 − ( f (2n))2 = 6 f (n) + 1 and

(ii) f (2n) ≥ f (n) for all n ≥ 0.

5.2.2 Prime Numbers

An integer greater than 1 is called prime if it has no other divisors than 1 and the number
itself. Equivalently, a number is prime if whenever it divides a product it divides one of the
factors. Any integer greater than 1 can be written as a product of primes in a unique way up
to a permutation of the factors. This is known as the Fundamental theorem of arithmetic.

Euclid’s theorem. There are infinitely many prime numbers.

Proof. From the more than one hundred proofs of this theorem we selected the fascinating
topological proof given in 1955 by H. Furstenberg. It uses the concept of topology, which is
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an abstraction, in the spirit of Bourbaki, of the properties of open sets (i.e. unions of open
intervals) on the real axis. By definition, a topology on a set X is a collection T of sets
satisfying

(i) ∅, X ∈ T ;

(ii) for any family (Ui )i∈I of sets from T , the union ∪i∈I Ui is also in T ;

(iii) for any U1, U2, . . . , Un in T , the intersection U1 ∩ U2 ∩ . . . ∩ Un is in T .

The elements of T are called open sets; their complements are called closed sets.
Furstenberg’s idea was to introduce a topology on Z, namely the smallest topology in

which any set consisting of all terms of a nonconstant arithmetic progression is open. As an
example, in this topology both the set of odd integers and the set of even integers are open.
Because the intersection of two arithmetic progressions is an arithmetic progression, the open
sets of T are precisely the unions of arithmetic progressions. In particular, any open set is
either infinite or empty.

If we define

Aa,d = {. . . , a − 2d, a − d, a, a + d, a + 2d, . . .}, a ∈ Z, d > 0,

then Aa,d is open by hypothesis, but it is also closed because it is the complement of the open
set Aa+1,d ∪ Aa+2,d ∪ · · · ∪ Aa+d−1,d . Hence Z \ Aa,d is open.

Now let us assume that only finitely many primes exist, say p1, p2, . . . , pn . Then

A0,p1 ∪ A0,p2 ∪ · · · ∪ A0,pn = Z \ {−1, 1}.
This union of open sets is the complement of the open set

(Z \ A0,p1) ∩ (Z \ A0,p2) ∩ · · · ∩ (Z \ A0,pn );
hence it is closed. The complement of this closed set, namely {−1, 1}, must therefore be
open. We have reached a contradiction because this set is neither empty nor infinite. Hence
our assumption was false, and so there are infinitely many primes. �

Let us continue with the examples.

Example. Prove that for all positive integers n, the number

33
n + 1

is the product of at least 2n + 1 not necessarily distinct primes.

Solution. We induct on n. The statement is clearly true if n = 1. Because

33
n+1 + 1 = (33

n + 1)(32·3
n − 33

n + 1),

it suffices to prove that 32·3n − 33
n + 1 is composite for all n ≥ 1. But this follows from the

fact that

32·3
n − 33

n + 1 = (33
n + 1)2 − 3 · 33n = (33

n + 1)2 −
(
3

3n+1
2

)2
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is the product of two integers greater than 1, namely,

33
n + 1 − 3

3n+1
2 and 33

n + 1 − 3
3n+1
2 .

This completes the induction. �
We proceed with a problem from the 35th International Mathematical Olympiad, 1994,

followed by several others that are left to the reader.

Example. Prove that there exists a set A of positive integers with the property that for any
infinite set S of primes, there exist two positive integers m ∈ A and n /∈ A each of which is a
product of k distinct elements of S for some k ≥ 2.

Solution. The proof is constructive. Let p1 < p2 < · · · < pn < · · · be the increasing
sequence of all prime numbers. Define A to be the set of numbers of the form pi1 pi2 · · · pik ,
where i1 < i2 < · · · < ik and k = pi1 . For example, 3 · 5 · 7 ∈ A and 5 · 7 · 11 · 13 · 17 ∈ A,
but 5 · 7 /∈ A.

Let us show that A satisfies the desired condition. Consider an infinite set of prime
numbers, say q1 < q2 < · · · < qn < · · · Take m = q2q3 · · · qq2 and n = q3q4 · · · qq2+1. Then
m ∈ A, while n /∈ A because q2 ≥ 3 and so q2 + 1 = q3. �

854. Prove that there are infinitely many prime numbers of the form 4m + 3, where m ≥ 0
is an integer.

855. Let k be a positive integer such that the number p = 3k + 1 is prime and let

1

1 · 2 + 1

3 · 4 + · · · + 1

(2k − 1)2k
= m

n

for some coprime positive integers m and n. Prove that p divides m.

856. Solve in positive integers the equation

x x+y = yy−x .

857. Show that each positive integer can be written as the difference of two positive integers
having the same number of prime factors.

858. Find all composite positive integers n for which it is possible to arrange all divisors
of n that are greater than 1 in a circle such that no two adjacent divisors are relatively
prime.

859. Is it possible to place 1995 different positive integers around a circle so that for any
two adjacent numbers, the ratio of the greater to the smaller is a prime?

860. Let p be a prime number. Prove that there are infinitely many multiples of p whose
last ten digits are all distinct.

861. Let A be the set of positive integers representable in the form a2 +2b2 for integers a, b
with b = 0. Show that if p2 ∈ A for a prime p, then p ∈ A.
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862. The positive divisors of an integer n > 1 are 1 = d1 < d2 < · · · < dk = n. Let
s = d1d2 + d2d3 + · · · + dk−1dk . Prove that s < n2 and find all n for which s divides
n2.

863. Prove that there exist functions f, g : {0, 1, 2, . . .} × {0, 1, 2, . . .} → {0, 1, 2, . . .}
with the property that an odd number n > 1 is prime if and only if there do not exist
nonnegative integers a and b such that n = f (a, b) − g(a, b).

864. Let n ≥ 2 be an integer. Prove that if k2 + k +n is a prime number for all 0 ≤ k ≤ √
n
3 ,

then k2 + k + n is a prime number for all 0 ≤ k ≤ n − 2.

The following formula is sometimes attributed to Legendre.

Polignac’s formula. If p is a prime number and n a positive integer, then the exponent of p
in n! is given by ⌊

n

p

⌋
+

⌊
n

p2

⌋
+

⌊
n

p3

⌋
+ · · ·

Proof. Each multiple of p between 1 and n contributes a factor of p to n!. There are �n/p�
such factors. But the multiples of p2 contribute yet another factor of p, so one should add
�n/p2�. And then come the multiples of p3 and so on. �
Example. Let m be an integer greater than 1. Prove that the product of m consecutive terms
in an arithmetic progression is divisible by m! if the ratio of the progression is coprime to m.

Solution. Let p be a prime that divides n!. The exponent of p in n! is given by Polignac’s
formula. On the other hand, in the product a(a+r)(a+2r) · · · (a+(m−1)r) ofm consecutive
terms in a progression of ratio r , with gcd(r, m) = 1, at least terms are divisible by pi . It
follows that the power of p in this product is greater than or equal to the power of p in m!.
Because this holds true for any prime factor in m!, the conclusion follows. �

All problems below are based on Polignac’s formula.

865. Find all positive integers n such that n! ends in exactly 1000 zeros.

866. Prove that n! is not divisible by 2n for any positive integer n.

867. Show that for each positive integer n,

n! =
n∏

i=1

lcm(1, 2, . . . , �n/ i�),

where lcm denotes the least common multiple.

868. Prove that the expression
gcd(m, n)

n

(
n

m

)

is an integer for all pairs of integers n ≥ m ≥ 1.

869. Let k and n be integers with 0 ≤ k ≤ n2/4. Assume that k has no prime divisor greater
than n. Prove that n! is divisible by k.
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5.2.3 Modular Arithmetic

Apositive integer n partitions the set of integersZ into n equivalence classes by the remainders
obtained on dividing by n. The remainders are called residues modulo n.We denote by Zn =
{0, 1, . . . , n − 1} the set of equivalence classes, indexed by their residues. Two numbers a
and b are said to be congruent modulo n, which is written a ≡ b (mod n), if they give the
same remainder when divided by n, that is, if a − b is divisible by n.

The ring structure of Z induces a ring structure on Zn . The latter ring is more interesting,
since it has zero divisors whenever n is composite, and it has other invertible elements besides
±1. To make this precise, for any divisor d of n the product of d and n/d is zero. On the
other hand, the fundamental theorem of arithmetic, which states that whenever m and n are
coprime there exist integers a and b such that am − bn = 1, implies that any number coprime
to n has a multiplicative inverse modulo n. For a prime p, every nonzero element in Zp has
an inverse modulo p. This means that Zp is a field. We also point out that the set of invertible
elements in Zn is closed under multiplication; it is an Abelian group.

A well-known property that will be used in some of the problems below is that modulo 9,
a number is congruent to the sum of its digits. This is because the difference of the number
and the sum of its digits is equal to 9 times the tens digit plus 99 times the hundreds digit plus
999 times the thousands digit, and so on. Here is an elementary application of this fact.

Example. The number 229 has 9 distinct digits. Without using a calculator, tell which digit is
missing.

Solution. As we have just observed, a number is congruent to the sum of its digits modulo 9.
Note that 0 + 1 + 2 + · · · + 9 = 45, which is divisible by 9. On the other hand,

229 ≡ 22(−1)p ≡ −4 (mod 9).

So 229 is off by 4 from a multiple of 9. The missing digit is 4. �
We continue with a property of the harmonic series discovered by C. Pinzka.

Example. Let p > 3 be a prime number, and let

r

ps
= 1 + 1

2
+ 1

3
+ · · · + 1

p
,

the sum of the first p terms of the harmonic series. Prove that p3 divides r − s.

Solution. The sum of the first p terms of the harmonic series can be written as

p!
1

+ p!
2

+ · · · + p!
p

p! .

Because the denominator is p! and the numerator is not divisible by p, any common prime
divisor of the numerator and the denominator is less than p. Thus it suffices to prove the

property for r = p!
1

+ p!
2

+ · · · + p!
p

and s = (p − 1)!. Note that

r − s = p

(
(p − 1)!

1
+ (p − 1)!

2
+ · · · + (p − 1)!

p − 1

)
.
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We are left with showing that

(p − 1)!
1

+ (p − 1)!
2

+ · · · + (p − 1)!
p − 1

is divisible by p2. This sum is equal to

p−1
2∑

k−1

(k + p − k)
(p − 1)!
k(p − k)

= p

p−1
2∑

k=1

(p − 1)!
k(p − k)

.

So let us show that
p−1
2∑

k−1

(p − 1)!
k(p − k)

is an integer divisible by p. Note that if k−1 denotes the inverse of k modulo p, then p − k−1

is the inverse of p − k modulo p. Hence the residue classes of [k(p − k)]−1 represent just a
permutation of the residue classes of k(p − k), k = 1, 2, . . . , p−1

2 . Using this fact, we have

p−1
2∑

k−1

(p − 1)!
k(p − k)

≡ (p − 1)!
p−1
2∑

k−1

[k(p − k)]−1 ≡ (p − 1)!
p−1
2∑

k−1

k(p − k)

≡ −(p − 1)!
p−1
2∑

k−1

k2 = −(p − 1)!
p − 1

2
· p + 1

2
· p

6
≡ 0 (mod p).

This completes the proof. �
We left the better problems as exercises.

870. Prove that among any three distinct integers we can find two, say a and b, such that the
number a3b − ab3 is a multiple of 10.

871. Show that the number 20022002 can be written as the sum of four perfect cubes, but not
as the sum of three perfect cubes.

872. The last four digits of a perfect square are equal. Prove that they are all equal to zero.

873. Solve in positive integers the equation

2x · 3y = 1 + 5z.

874. Define the sequence (an)n recursively by a1 = 2, a2 = 5, and

an+1 = (2 − n2)an + (2 + n2)an−1 for n ≥ 2.

Do there exist indices p, q, r such that ap · aq = ar?
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875. For some integer k > 0, assume that an arithmetic progression an + b, n ≥ 1, with a
and b positive integers, contains the kth power of an integer. Prove that for any integer
m > 0 there exist an infinite number of values of n for which an + b is the sum of m
kth powers of nonzero integers.

876. Given a positive integer n > 1000, add the residues of 2n modulo each of the numbers
1, 2, 3, . . . , n. Prove that this sum is greater than 2n.

877. Prove that if n ≥ 3 prime numbers form an arithmetic progression, then the common
difference of the progression is divisible by any prime number p < n.

878. Let P(x) = am xm + am−1xm−1 + · · · + a0 and Q(x) = bnxn + bn−1xn−1 + · · · + b0 be
two polynomials with each coefficient ai and bi equal to either 1 or 2002. Assuming
that P(x) divides Q(x), show that m + 1 is a divisor of n + 1.

879. Prove that if n is a positive integer that is divisible by at least two primes, then there
exists an n-gon with all angles equal and with side lengths the numbers 1, 2, . . . , n in
some order.

880. Find all prime numbers p having the property that when divided by every prime number
q < p yield a remainder that is a square-free integer.

5.2.4 Fermat’s Little Theorem

A useful tool for solving problems about prime numbers is a theorem due to P. Fermat.

Fermat’s little theorem. Let p be a prime number, and n a positive integer. Then

n p − n ≡ 0 (mod p).

Proof. We give a geometric proof discovered by J. Pedersen. Consider the set M of all
possible colorings of the vertices of a regular p-gon by n colors (see Figure 38). This set has
np elements. The group Zp acts on this set by rotations of angles 2kπ

p , k = 0, 1, . . . , p − 1.

a

b b

c

b a

c

Figure 38

Consider the quotient space M/Zp obtained by identifying colorings that become the same
through a rotation. We want to count the number of elements of M/Zp. For that we need to
understand the orbits of the action of the group, i.e., the equivalence classes of rotations under
this identification.
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The orbit of a monochromatic coloring has just one element: the coloring itself. There
are n such orbits.

What if the coloring is not monochromatic? We claim that in this case its orbit has exactly
p elements. Here is the place where the fact that p is prime comes into play. The additive
group Zp of residues modulo p is generated by any of its nonzero elements. Hence if the
coloring coincided with itself under a rotation of angle 2kπ/p for some 0 < k < p, then it
would coincide with itself under multiples of this rotation, hence under all rotations in Zp.
But this is not possible, unless the coloring is monochromatic. This proves that rotations
produce distinct colorings, so the orbit has p elements. We deduce that the remaining n p − n
elements of M are grouped in (disjoint) equivalence classes each containing p elements. The
counting of orbits gives

|M/Zp| = n + n p − n

p
,

which shows that (n p − n)/p must be an integer. The theorem is proved. �
In particular, if n and p are coprime, then n p−1 − 1 is divisible by p. However, this result

alone cannot be used as a primality test for p. For example, L. Euler found that 341 divides
2340 − 1, while 341 = 31 × 11. So the converse of Fermat’s little theorem fails.

We illustrate the use of Fermat’s little theorem with a problem from the 46th International
Mathematical Olympiad, 2005.

Example. Show that for every prime p there is an integer n such that 2n + 3n + 6n − 1 is
divisible by p.

Solution. The property is true for p = 2 and p = 3, since 22 + 32 + 62 − 1 = 48. Let p be a
prime greater than 3. By Fermat’s little theorem, 2p−1, 3p−1, and 6p−1 are all congruent to 1
modulo p. Hence

3 · 2p−1 + 2 · 3p−1 + 6p−1 ≡ 3 + 2 + 1 = 6 (mod p).

It follows that
6 · 2p−2 + 6 · 3p−2 + 6 · 6p−2 ≡ 6 (mod p).

Dividing by 6, we find that 2p−2 + 3p−2 + 6p−2 − 1 is divisible by p, and we are done. �
And here is a problem from the 2005 USAMathematical Olympiad, proposed by the first

author of the book.2

Example. Prove that the system

x6 + x3 + x3y + y = 147157,

x3 + x3y + y2 + y + z9 = 157147

has no solutions in integers x , y, and z.

Solution. Add the two equations, then add 1 to each side to obtain the Diophantine equation

(x3 + y + 1)2 + z9 = 146157 + 157147 + 1.

2The statement was improved by R. Stong and E. Johnston to prevent a simpler solution.
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The right-hand side is rather large, and it is natural to reduce modulo some number. And since
the left-hand side is a sum of a square and a ninth power, it is natural to reduce modulo 19
because 2 × 9 + 1 = 19. By Fermat’s little theorem, a18 ≡ 1 (mod 19) whenever a is not a
multiple of 19, and so the order of a square is either 1, 3, or 9, while the order of a ninth-power
is either 1 or 2.

Computed by hand, the quadratic residues mod 19 are −8, −3, −2, 0, 1, 4, 5, 6, 7, 9,
while the residues of ninth powers are −1, 0, 1. Also, applying Fermat’s little theorem we
see that

147157 + 157147 + 1 ≡ 1413 + 53 + 1 ≡ 14 (mod 19).

An easy verification shows that 14 cannot be obtained as a sum of a quadratic residue and a
ninth-power residue. Thus the original system has no solution in integers x , y, and z.

A different solution is possible using reductionmodulo 13. Fermat’s little theorem implies
a12 ≡ 1 (mod 13) when a is not a multiple of 13.

We start by producing the same Diophantine equation. Applying Fermat’s little theorem,
we can reduce the right-hand side modulo 13. We find that

147157 + 157147 + 1 ≡ 41 + 12 + 1 = 6 (mod 13).

The cubes modulo 13 are 0, ±1, and ±5. Writing the first equation of the original system as

(x3 + 1)(x3 + y) ≡ 4 (mod 13),

it follows that x3 + y must be congruent to 4, 2, 5, or −1. Hence

(x3 + y + 1)2 ≡ 12, 9, 10 or 0 (mod 13).

Note also that z9 is a cube; hence z9 must be 0, 1, 5, 8, or 12 modulo 13. It is easy to check
that 6 (mod 13) cannot be obtained by adding one of 0, 9, 10, 12 to one of 0, 1, 5, 8, 12. As
a remark, the second solution also works if z9 is replaced by z3. �

When solving the following problems, think that “work done with passion brings results”
(Virgil).

881. Show that if n has p − 1 digits all equal to 1, where p is a prime not equal to 2, 3, or
5, then n is divisible by p.

882. Prove that for any prime p > 17, the number p32 − 1 is divisible by 16320.

883. Let p be an odd prime number. Show that if the equation x2 ≡ a (mod p) has a
solution, then a

p−1
2 ≡ 1 (mod p). Conclude that there are infinitely many primes of

the form 4m + 1.

884. Prove that the equation x2 = y3 + 7 has no integer solutions.

885. Let n > 1 be a positive integer. Prove that the equation (x + 1)n − xn = ny has no
positive integer solutions.

886. Prove that the sequence 2n − 3, n ≥ 1, contains an infinite subsequence whose terms
are pairwise relatively prime.
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887. Let (xn)n be a sequence of positive integers satisfying the recurrence relation xn+1 =
5xn − 6xn−1. Prove that infinitely many terms of the sequence are composite.

888. Let f (x1, x2, . . . , xn) be a polynomial with integer coefficients of total degree less than
n. Show that the number of ordered n-tuples (x1, x2, . . . , xn) with 0 ≤ xi ≤ 12 such
that f (x1, x2, . . . , xn) ≡ 0 (mod 13) is divisible by 13.

889. Determine all integers a such that ak + 1 is divisible by 12321 for some appropriately
chosen positive integer k > 1.

890. Find the greatest common divisor of the numbers

2561 − 2, 3561 − 3, . . . , 561561 − 561.

5.2.5 Wilson’s Theorem

Another result about prime numbers is known as Wilson’s theorem.

Wilson’s theorem. For every prime p, the number (p − 1)! + 1 is divisible by p.

Proof. We group the residue classes 1, 2, . . . , p−1 in pairs (a, b) such that ab ≡ 1 (mod p).
Let us see when a = b in such a pair. The congruence a2 ≡ 1 (mod p) is equivalent to the
fact that a2 − 1 = (a − 1)(a + 1) is divisible by p. This happens only when a = 1 or
a = p − 1. For all other residue classes the pairs contain distinct elements. So in the product
2 · 3 · · · (p − 2) the factors can be paired such that the product of the numbers in each pair is
congruent to 1. Therefore,

1 · 2 · · · (p − 2)(p − 1) ≡ 1 · (p − 1) ≡ −1 (mod p).

The theorem is proved. �
The converse is also true, since n must divide (n − 1)! for composite n. And now an

application.

Example. Let p be an odd prime. Prove that

12 · 32 · · · (p − 2)2 ≡ (−1)
p+1
2 (mod p)

and
22 · 42 · · · (p − 1)2 ≡ (−1)

p+1
2 (mod p).

Solution. By Wilson’s theorem,

(1 · 3 · · · (p − 2))(2 · 4 · · · (p − 1)) ≡ −1 (mod p).

On the other hand,

1 ≡ −(p − 1) (mod p), 3 ≡ −(p − 3) (mod p), . . . , p − 2 ≡ −(p − (p − 2)) (mod p).

Therefore,
1 · 3 · · · (p − 2) ≡ (−1)

p−1
2 (2 · 4 · · · (p − 1)) (mod p).

Multiplying the two congruences and canceling out the product 2 · 4 · · · (p − 1), we obtain
the first congruence from the statement. Switching the sides in the second and multiplying
the congruences again, we obtain the second congruence from the statement. �
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Here are more examples.

891. For each positive integer n, find the greatest common divisor of n! + 1 and (n + 1)!.
892. Prove that there are no positive integers n such that the set {n, n + 1, n + 2, n + 3, n +

4, n + 5} can be partitioned into two sets with the product of the elements of one set
equal to the product of the elements of the other set.

893. Let p be an odd prime. Show that if the equation x2 ≡ a (mod p) has no solution
then a

p−1
2 ≡ −1 (mod p).

894. Let p be an odd prime number. Show that the equation x2 ≡ −1 (mod p) has a
solution if and only if p ≡ 1 (mod 4).

895. Let p be a prime number and n an integer with 1 ≤ n ≤ p. Prove that

(p − n)!(n − 1)! ≡ (−1)n (mod p).

896. Let p be an odd prime and a1, a2, . . . , ap an arithmetic progression whose common
difference is not divisible by p. Prove that there exists an index i such that the number
a1a2 · · · ap + ai is divisible by p2.

5.2.6 Euler’s Totient Function

Euler’s totient function associates to a positive integer n the number φ(n) of positive integers
less than or equal to n that are coprime to n. It has a simple formula in terms of the prime
factorization of n.

Proposition. If the distinct prime factors of n are p1, p2, . . . , pk , then

φ(n) = n

(
1 − 1

p1

)(
1 − 1

p2

)
· · ·

(
1 − 1

pk

)
.

Proof. This is just an easy application of the inclusion-exclusion principle (see Section 6.4.4).
From the n numbers between 1 and n, we eliminate the n/pi numbers that are divisible by pi ,
for each 1 ≤ i ≤ n. We are left with

n − n

(
1

p1
+ 1

p2
+ · · · + 1

pk

)

numbers. But those divisible by both pi and p j have been subtracted twice, so we have to
add them back, obtaining

n − n

(
1

p1
+ 1

p2
+ · · · + 1

pk

)
+ n

(
1

p1 p2
+ 1

p1 p3
+ · · · + 1

pk−1 pk

)
.

Again, we see that the numbers divisible by pi , p j , and pl have been subtracted and then
added back, so we need to subtract these once more. Repeating the argument, we obtain in
the end

n − n

(
1

p1
+ 1

p2
+ · · · + 1

pk

)
+ n

(
1

p1 p2
+ 1

p1 p3
+ · · · + 1

pk−1 pk

)
− · · · ± n

p1 p2 · · · pk
.

http://dx.doi.org/10.1007/978-3-319-58988-6_6
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Factoring this, we obtain the formula from the statement. �
In particular, n is prime if and only if φ(n) = n − 1, and if n = p1 p2 · · · pk , where pi are

distinct primes, 1 ≤ i ≤ k, then φ(n) = (p1 − 1)(p2 − 1) · · · (pn − 1). Also, if m and n are
coprime, then φ(mn) = φ(m)φ(n).

Fermat’s little theorem admits the following generalization.

Euler’s theorem. Let n > 1 be an integer and a an integer coprime to n. Then

aφ(n) ≡ 1 (mod n).

Proof. The group of units Z∗
n in the ring Zn consists of the residue classes coprime to n. Its

order is φ(n). By the Lagrange theorem, the order of an element divides the order of the
group. Hence the conclusion.

Here is a more elementary argument. Consider the set S = {a1, a2, . . . , aφ(n)} of all
residue classes modulo n that are coprime to n. Because gcd(a, n) = 1, it follows that,
modulo n, aa1, aa2, . . ., aaφ(n) is a permutation of a1, a2, . . . , aφ(n). Then

(aa1)(aa2) · · · (aaφ(n)) ≡ a1a2 · · · aφ(n) (mod n).

Since gcd(ak, n) = 1, for k = 1, 2, . . . , φ(n), we can divide both sides by a1a2 . . . aφ(n) to
obtain aφ(n) ≡ 1 (mod n), as desired. �

We apply Euler’s theorem to a problem by I. Cucurezeanu.

Example. Let n be an even positive integer. Prove that n2 − 1 divides 2n! − 1.

Solution. Let n = m − 1, so that m is odd. We must show that m(m − 2) divides 2(m−1)! − 1.
Because φ(m) < m, φ(m) divides (m − 1)!, so 2φ(m) − 1 divides 2(m−1)! − 1. On the other
hand Euler’s theorem implies that m divides 2φ(m) − 1. Therefore, m divides 2(m−1)! − 1.
Arguing similarly for m − 2, we see that m − 2 divides 2(m−1)! − 1 as well. The numbers m
and m − 2 are relatively prime, so m(m − 2) divides 2(m−1)! − 1, as desired. �

A second example comes from the 1997 Romanian Mathematical Olympiad.

Example. Let a > 1 be an integer. Show that the set

S = {a2 + a − 1, a3 + a2 − 1, a4 + a3 − 1, . . .}
contains an infinite subset whose elements are pairwise coprime.

Solution. We show that any subset of S having n elements that are pairwise coprime can be
extended to a set with n + 1 elements. Indeed, if N is the product of the elements of the
subset, then since the elements of S are coprime to a, so must be N . By Euler’s theorem,

aφ(N )+1 + aφ(N ) − 1 ≡ a + 1 − 1 ≡ a (mod N ).

It follows that aφ(N )+1 + aφ(N ) − 1 is coprime to N and can be added to S. We are done. �
We now challenge you with the following problems.

897. Prove that for any positive integer n,
∑

k|n
φ(k) = n.

Here k|n means k divides n.
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898. Prove that for any positive integer n other than 2 or 6,

φ(n) ≥ √
n.

899. Prove that there are infinitely many positive integers n such that (φ(n))2 + n2 is a
perfect square.

900. Prove that there are infinitely many even positive integers m for which the equation
φ(n) = m has no solutions.

901. Prove that for every positive integer s there exists a positive integer n divisible by s
and with the sum of the digits equal to s.

902. Prove that the equation
2x + 3 = z3

does not admit positive integer solutions.

903. Prove for every positive integer n the identity

φ(1)
⌊n

1

⌋
+ φ(2)

⌊n

2

⌋
+ φ(3)

⌊n

3

⌋
+ · · · + φ(n)

⌊n

n

⌋
= n(n + 1)

2
.

904. Given the nonzero integers a and d, show that the sequence

a, a + d, a + 2d, . . . , a + nd, . . .

contains infinitely many terms that have the same prime factors.

Euler’s theorem is widely used in cryptography. The encryption scheme used nowadays,
called the RSA algorithm, works as follows:

A merchant wants to obtain the credit card number of a customer over the Internet. The
information traveling between the two can be viewed by anyone. Themerchant is in possession
of two large prime numbers p and q. It transmits to the customer the product n = pq and
a positive integer k coprime to φ(n) = (p − 1)(q − 1). The customer raises the credit
card number α to the kth power, then reduces it modulo n and transmits the answer β to
the merchant. Using the Euclidean algorithm for the greatest common divisor, the merchant
determines positive integers m and a satisfying

mk − a(p − 1)(q − 1) = 1.

Then he computes the residue of βm modulo n. By Euler’s theorem,

βm ≡ αmk = αa(p−1)(q−1)+1 = (α(p−1)(q−1))a · α = (αφ(n))a · α ≡ α (mod n).

For n sufficiently large, the residue class of α modulo n is α itself. The merchant was able to
retrieve the credit card number.

As of this date there is no known algorithm for factoring numbers in polynomial time,
while large primes can be found relatively quickly, and for this reason an eavesdropper cannot
determine p and q from n in a reasonable amount of time, and hence cannot break the
encryption.
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905. Devise a scheme by which a bank can transmit to its customers secure information over
the Internet. Only the bank (and not the customers) is in the possession of the secret
prime numbers p and q.

906. A group of United Nations experts is investigating the nuclear program of a country.
While they operate in that country, their findings should be handed over to the Ministry
of Internal Affairs of the country, which verifies the document for leaks of classified
information, then submits it to the United Nations. Devise a scheme by which the
country can read the document but cannot modify its contents without destroying the
information.

5.2.7 The Chinese Remainder Theorem

Mentioned for the first time in a fourth-century book of Sun Tsu Suan-Ching, this result can
be stated as follows.

The Chinese remainder theorem. Let m1, m2, . . . , mk be pairwise coprime positive integers
greater than 1. Then for any integers a1, a2, . . . , ak , the system of congruences

x ≡ a1 (mod m1), x ≡ a2 (mod m2), . . . , x ≡ ak (mod mk)

has solutions, and any two such solutions are congruent modulo m = m1m2 · · · mk .

Proof. For any 1 ≤ j ≤ k, the number m/m j is coprime to m j and hence invertible with
respect to m j . Let b j be the inverse. Then

x0 = m

m1
b1a1 + m

m2
b2a2 + · · · + m

mk
bkak

is a solution to the system. For any other solution x , the difference x − x0 is divisible by m.
It follows that the general solution is of the form x0 + mt , with t an integer. �

We illustrate the use of the Chinese remainder theorem with an example from the classic
book of W. Sierpiński, 250 Problems in Elementary Number Theory (Państwowe
Wydawnictwo Naukowe, Warszawa, 1970).

Example. Prove that the system of Diophantine equations

x2
1 + x2

2 + x2
3 + x2

4 = y5,

x3
1 + x3

2 + x3
3 + x3

4 = y2,

x5
1 + x5

2 + x5
3 + x5

4 = y3

has infinitely many solutions.

Solution. Let a = 12 + 22 + 32 + 42, b = 13 + 23 + 33 + 43, c = 15 + 25 + 35 + 45. We
look for solutions of the form x1 = ambncp, x2 = 2ambncp, x3 = 3ambncp, x3 = 4ambncp.
These satisfy

x2
1 + x2

2 + x2
3 + x2

4 = a2m+1b2nc2p,

x3
1 + x3

2 + x3
3 + x3

4 = a3mb3n+1c3p,

x5
1 + x5

2 + x5
3 + x5

4 = a5mb5nc5p+1.



5.2 Arithmetic 279

We would like the right-hand sides to be a fifth, second, and third power, respectively. Refor-
mulating, we want to show that there exist infinitely many m, n, p such that

2m + 1 ≡ 2n ≡ 2p ≡ 0 (mod 5),

3m ≡ 3n + 1 ≡ 3p ≡ 0 (mod 2),

5m ≡ 5n ≡ 5p + 1 ≡ 0 (mod 3).

But this follows from the Chinese remainder theorem, and we are done. �

907. An old woman went to the market and a horse stepped on her basket and smashed her
eggs. The rider offered to pay for the eggs and asked her how many there were. She
did not remember the exact number, but when she had taken them two at a time there
was one egg left, and the same happened when she took three, four, five, and six at a
time. But when she took them seven at a time, they came out even. What is the smallest
number of eggs she could have had?

908. Prove that for every n, there exist n consecutive integers each of which is divisible by
at least two different primes.

909. Let P(x) be a polynomial with integer coefficients. For any positive integer m, let
N (m) denote the number of solutions to the equation P(x) ≡ 0 (mod m). Show that
if m1 and m2 are coprime integers, then N (m1m2) = N (m1)N (m2).

910. Alice and Bob play a game in which they take turns removing stones from a heap that
initially has n stones. The number of stones removed at each turn must be one less
than a prime number. The winner is the player who takes the last stone. Alice plays
first. Prove that there are infinitely many n such that Bob has a winning strategy. (For
example, if n = 17, then Alice might take 6 leaving 11; then Bob might take 1 leaving
10; then Alice can take the remaining stones to win.)

911. Show that there exists an increasing sequence (an)n≥1 of positive integers such that for
any k ≥ 0, the sequence k + an , n ≥ 1, contains only finitely many primes.

912. Is there a sequence of positive integers in which every positive integer occurs exactly
once and for every k = 1, 2, 3, . . . the sum of the first k terms is divisible by k?

913. Prove that there exists a positive integer k such that k · 2n + 1 is composite for every
positive integer n.

914. Let a and b be two positive integers such that for any positive integer n, an + n divides
bn + n. Prove that a = b.

915. A lattice point (x, y) ∈ Z
2 is visible from the origin if x and y are coprime. Prove that

for any positive integer n there exists a lattice point (a, b) whose distance from every
visible point is greater than n.

916. A set of positive integers is called fragrant if it contains at least two elements and each
of its elements has a prime factor in common with at least one of the other elements.
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Let P(n) = n2 + n + 1. What is the least possible value of the positive integer b such
that there exists a nonnegative integer a for which the set

{P(a + 1), P(a + 2), · · · , P(a + b)}
is fragrant?

5.2.8 Quadratic Integer Rings

An algebraic integer is the root of a monic polynomial with integer coefficients. A quadratic
integer ring is the ring of algebraic integers contained inQ[√d], for some square free integer d.
Those algebraic integers are necessarily roots of quadratic equations of the form x2+ax +b =
0, a, b ∈ Z. One has the following result:

Theorem. If d ≡ 2, 3(mod 4), then the ring of algebraic integers of Q[√d] is Z[√d]. If
d ≡ 1(mod 4), then the ring of algebraic integers of Q[√d] is Z[(−1 + √

d)/2].
Thus, every algebraic integer is of the form a + b

√
d, where a, b are both integers, or,

only if d ≡ 1(mod 4), both halves of odd integers. An algebraic integer x = a + b
√

d has a
conjugate x̄ = a − b

√
d. One defines the norm of an algebraic integer to be N (x) = x x̄ .

Proposition. The norm is integer valued and multiplicative.

Before proceeding with examples, we recall some terminology from ring theory. An
integral domain is a commutative ring with an identity and without zero divisors.

An element u of an integral domain is called a unit if there is an element u′ such that
uu′ = 1. An element u of a quadratic integer ring is a unit if and only if N (u) = ±1. An
element p is called irreducible if a|p implies a is a unit or p is the product of a and a unit.
An nonzero element p that is not a unit is called prime if p|ab implies p|a or p|b.

A unique factorization domain is an integral domain in which every nonzero, nonunit
element can be written as a product of primes, uniquely up to order and multiplication by
units.

A fundamental question is the theory of quadratic integer rings is whether they are unique
factorization domains. The answer is knows for d < 0:

Baker-Heegner-Stark theorem. The ring of integers of Q[√d] with d < 0 is a unique
factorization domain if and only if

d ∈ {−1,−2,−3,−7,−11,−19,−43,−67,−163}.
Little is known for d > 0; finitelymany integers forwhich the ring is a unique factorization

domain are known, but it is not even known if the list is finite or infinite. A tool for proving
unique factorization is by checking that the ring is Euclidean with the Euclidean function
being the norm.

In what follows we will only be concerned with particular cases of the Baker-Heegner-
Stark theorem, because when we have unique factorization, then quadratic integers behave
exactly like the more familiar integers. On the list of rings from the Baker-Heegner-Stark
theorem, the first is the ring of Gaussian integers

Z[i] = {a + bi | a, b ∈ Z}.
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We illustrate how to use Gaussian integers to prove a well known result, stated by Fermat,
and first proved by Euler.

Theorem. Every prime number congruent to 1 modulo 4 can be written as the sum of two
perfect squares.

Proof. Let p = 4k + 1 be prime. Then by Wilson’s theorem

−1 ≡ (p − 1)! = 1 · 2 · 3 · · · 4k ≡ (2k)!(2k + 1) · · · 4k

≡ (2k)!(−1)2k(p − (2k + 1))(p − (2k + 2)) · · · (p − 4k) ≡ (2k)!(2k)(2k − 1) · · · 1
= ((2k)!)2 (mod p).

This means that p has a multiple of the form m2 + 1, where m is an integer (here m = p−1
2 !).

So p divides (m + i)(m − i). But p does not divide m + i because p(a + bi) = m + i
implies pb = 1, impossible. Similarly p does not divide m − i . Hence p is not prime in Z[i].
Because the norm of p is N (p) = p2, p is the product of exactly 2 factors. These factors
must be one the complex conjugate of the other (otherwise the product is not real). Hence
p = (a + ib)(a − ib) with a and b integers. Multiplying we obtain

p = a2 + b2

as desired. �
In fact as the first problem below shows, the fact that p dividesm2+1 immediately implies

that it is the sum of two perfect squares regardless of whether it is prime or not. Each of the
following problems uses one of the quadratic integer rings from the Baker-Heegner-Stark
theorem.

917. Let m, n be integers such that m divides n2 + 1. Show that m is the sum of two perfect
squares.

918. Let n > 1 be an integer. Find all pairs of integers (x, y) such that

x2 + 4 = y3.

919. Let m be a positive integer such that p = 4m −1 is prime. Let also x, y, z be relatively
prime integers such that

x2 + y2 = z2m .

Prove that p divides xy.

920. Find all integer solutions to the equation

x3 − 2 = y2.

921. Find all positive integer numbers x, y that satisfy the equation x2 + 11 = 3y .
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5.3 Diophantine Equations

5.3.1 Linear Diophantine Equations

A linear Diophantine equation (named in the honor of Diophantus, who studied equations
over the integers) is an equation of the form

a1x1 + · · · + anxn = b,

where a1, . . . , an , and b are integers. We will discuss only the Diophantine equation

ax − by = c.

Theorem. The equation
ax − by = c

has solutions if and only if gcd(a, b) divides c. If (x0, y0) is a solution, then all other solutions
are of the form

x = x0 + b

gcd(a, b)
t, and y = y0 + a

gcd(a, b)
t, t ∈ Z.

Proof. For the equation to have solutions it is clearly necessary that c be divisible by gcd(a, b).
Dividing through by gcd(a, b) we can assume that a and b are coprime.

To show that the equation has solutions, we first examine the case c = 1. The method of
solving this equation is a consequence of Euclid’s algorithm for finding the greatest common
divisor. This algorithm consists of a successive series of divisions

a = q1b + r1,

b = q2r1 + r2,

r1 = q3r2 + r3,

. . .

rn−2 = qnrn−1 + rn,

where rn is the greatest common divisor of a and b, which in our case is 1. If we work
backward, we obtain

1 = rn−1(−qn) − (−rn−2) = rn−2(1 − qn−1) − rn−3qn = · · · = ax0 − by0

for whatever numbers x0 and y0 arise at the last stage. This yields a particular solution (x0, y0).
For a general c, just multiply this solution by c. If (x1, y1) is another solution, then by

subtracting ax0 −by0 = c from ax1 −by1 = c, we obtain a(x1 − x0)−b(y1 − y0) = 0, hence

x1 − x0 = b

gcd(a, b)
t , and y1 − y0 = a

gcd(a, b)
t for some integer number t . This shows that

the general solution is of the form
(

x0 + b
gcd(a,b)

t, y0 + a
gcd(a,b)

t
)
, t an integer. The theorem

is proved. �
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The algorithm for finding a particular solution can be better visualized if we use the
continued fraction expansion

a

b
= −a1 + 1

−a2 + 1

−a3 + · · · + 1

−an−1 + 1

−an

.

In this, if we delete 1
−an

, we obtain a simpler fraction, and this fraction is nothing but y0
x0
.

The equality ax − by = 1 shows that the matrix with integer entries
(

a y
b x

)

has determinant 1. The matrices with this property form the special linear group SL(2,Z).
This group is generated by the matrices

S =
(
0 −1
1 0

)
and T =

(
1 1
0 1

)
.

Explicitly, (
a y
b x

)
= ST a1 ST a2 S · · · ST an S,

since matrix multiplication mimics the (backward) calculation of the continued fraction. We
thus have a method of expressing the elements of SL(2,Z) in terms of generators.

The special linear group SL(2,Z) arises in non-Euclidean geometry. It acts on the upper
half-plane, on which Poincaré modeled the “plane” of Lobachevskian geometry. The “lines”
of this “plane” are the semicircles and half-lines orthogonal to the real axis. A matrix

A

(
a b
c d

)

acts on the Lobachevski plane by

z → az + b

cz + d
, ad − bc = 1.

All these transformations form a group of isometries of the Lobachevski plane. Note that A
and −A induce the same transformations; thus this group of isometries of the Lobachevski
plane, also called the modular group, is isomorphic to P SL(2,Z) = SL(2,Z)/{−I2, I2}.
The matrices S and T become the inversion with respect to the unit circle z → − 1

z and the
translation z → z + 1.

We stop here with the discussion and list some problems.

922. Write the matrix (
12 5
7 3

)
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as the product of several copies of the matrices
(
0 1
1 0

)
and

(
1 1
0 1

)
.

(No, there is no typo in the matrix on the left.)

923. Let a, b, c, d be integers with the property that for any two integers m and n there exist
integers x and y satisfying the system

ax + by = m,

cx + dy = n.

Prove that ad − bc = ±1.

924. Leta, b, c, d be positive integerswith gcd(a, b) = 1. Prove that the systemof equations
{

ax − yz − c = 0,
bx − yt + d = 0

has infinitely many solutions in positive integers (x, y, z, t).

We now ask for the nonnegative solutions to the equation ax + by = c, where a, b, c are
positive numbers. This is a particular case, solved by Sylvester, of the Frobenius coin problem:
what is the largest amount ofmoney that cannot be paid using coinsworth a1, a2, . . . , an cents?
Here is the answer.

Sylvester’s theorem. Let a and b be coprime positive integers. Then ab −a −b is the largest
positive integer c for which the equation

ax + by = c

is not solvable in nonnegative integers.

Proof. Let N > ab − a − b. The integer solutions to the equation ax + by = N are of the
form (x, y) = (x0 + bt, y0 − at), with t an integer. Choose t such that 0 ≤ y0 − at ≤ a − 1.
Then

(x0 + bt)a = N − (y0 − at)b > ab − a − b − (a − 1)b = −a,

which implies that x0 + bt > −1, and so x0 + bt ≥ 0. Hence in this case the equation
ax + by = N admits nonnegative integer solutions.

On the other hand, if there existed x, y ≥ 0 such that

ax + by = ab − a − b,

then we would have ab = a(x + 1) + b(y + 1). Since a and b are coprime, this would imply
that a divides y + 1 and b divides x + 1. But then y + 1 ≥ a and x + 1 ≥ b, which would
then lead to the contradiction

ab = a(x + 1) + b(y + 1) ≥ 2ab.

This proves the theorem. �
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And now the problems.

925. Given a piece of paper, we can cut it into 8 or 12 pieces. Any of these pieces can be
cut into 8 or 12, and so on. Show that we can obtain any number of pieces greater than
60. Can we obtain exactly 60 pieces?

926. Let a and b be positive integers. For a nonnegative integer n let s(n) be the number of
nonnegative integer solutions to the equation ax + by = n. Prove that the generating
function of the sequence (s(n))n is

f (x) = 1

(1 − xa)(1 − xb)
.

927. Let n > 6 be a positive integer. Prove that the equation

x + y = n

admits a solution with x and y coprime positive integers both greater than 1.

928. Prove that the d-dimensional cube can be dissected into n d-dimensional cubes for all
sufficiently large values of n.

5.3.2 The Equation of Pythagoras

The Diophantine equation
x2 + y2 = z2,

has as solutions triples of positive integers that are the side lengths of a right triangle, whence
the name. Let us solve it.

If x and z have a common factor, this factor divides y as well. Let us assume first that
x and z are coprime. We can also assume that x and z have the same parity (both are odd);
otherwise, exchange x and y.

In this situation, write the equation as

y2 = (z + x)(z − x).

The factors z + x and z − x are both divisible by 2. Moreover, 2 is their greatest common
divisor, since it is the greatest common divisor of their sum 2z and their difference 2x . We
deduce that y is even, and there exist coprime integers u and v such that y = 2uv, z + x = 2u2

and z − x = 2v2. We obtain x = u2 − v2 and z = u2 + v2. Incorporating the common factor
of x , y, and z, we find that the solutions to the equation are parametrized by triples of integers
(u, v, k) as x = k(u2 − v2), y = 2kuv, and z = k(u2 + v2). The positive solutions are called
Pythagorean triples.

There is a more profound way to look at this equation. Dividing through by z2, we obtain
the equivalent form

(
x

z

)2

+
(

y

z

)2

= 1.
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This means that we are supposed to find the points of rational coordinates on the unit circle.
Like any conic, the circle can be parametrized by rational functions. A parametrization is(
1−t2

1+t2
, 2t
1+t2

)
, t ∈ R ∪ {∞}. The fractions 1−t2

1+t2
and 2t

1+t2
are simultaneously rational if and

only if t itself is rational. In that case t = u
v for some coprime integers u and v. Thus we

should have

x

z
=

1 −
(u

v

)2

1 +
(u

v

)2 and
y

z
=

2
u

v

1 +
(u

v

)2 ,

where again we look at the case in which x , y, and z have no common factor, and x and z are
both odd. Then y is necessarily even and

y

z
= 2uv

u2 + v2
.

Because u and v are coprime, and because y is even, the fraction on the right-hand side is
irreducible. Hence y = 2uv, z = u2 + v2, and consequently x = u2 − v2. Exchanging x and
y, we obtain the other parametrization. In conclusion, we have the following theorem.

Theorem. Any solution x, y, z to the equation x2 + y2 = z2 in positive integers is of the form
x = k(u2 − v2), y = 2kuv, z = k(u2 + v2), or x = 2kuv, y = k(u2 − v2), z = k(u2 + v2),
where k is an integer and u, v are coprime integers with u > v not both odd.

We now describe an occurrence of Pythagorean triples within the Fibonacci sequence

1, 1, 2, 3, 5︸︷︷︸, 8
︸ ︷︷ ︸

, 13, 21, 34, 55, 89, 144, 233, . . .

Take the terms F4 = 3 and F5 = 5, multiply them, and double the product. Then take the
product of F3 = 2 and F6 = 8. You obtain the numbers 30 and 16, and 302 + 162 = 1156,
which is the square of F9 = 34.

Similarly, the double product of F5 = 5 and F6 = 8 is 80, and the product of F4 = 3
and F7 = 13 is 39. And 802 + 392 = 7921 = F2

11. One more check: the double product of
F6 = 8 and F7 = 13 is 208, the product of F5 = 5 and F8 = 21 is 105, and 1052 + 2082 =
54289 = F2

13. In general, we may state the following.

Example. The numbers 2Fn Fn+1, Fn−1Fn+2 and F2n+1 form a Pythagorean triple.

Solution. In our parametrization, it is natural to try u = Fn+1 and v = Fn . And indeed,

u2 − v2 = (u − v)(u + v) = (Fn+1 − Fn)(Fn+1 + Fn) = Fn−1Fn+2,

while the identity
F2n+1 = u2 + v2 = F2

n+1 + F2
n

was established in Section 2.3.1. This proves our claim. �

929. Given that the sides of a right triangle are coprime integers and the sum of the legs is
a perfect square, show that the sum of the cubes of the legs can be written as the sum
of two perfect squares.

http://dx.doi.org/10.1007/978-3-319-58988-6_2
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930. Find all right triangles whose sides are positive integers and whose perimeter is numer-
ically equal to their area.

931. Find all positive integers x, y, z satisfying the equation 3x + y2 = 5z .

932. Show that for no positive integers x and y can 2x + 25y be a perfect square.

933. Solve the following equation in positive integers:

x2 + y2 = 1997(x − y).

5.3.3 Pell’s Equation

Euler, after reading Wallis’ Opera Mathematica, mistakenly attributed the first serious study
of nontrivial solutions to the equation

x2 − Dy2 = 1

to John Pell. However, there is no evidence that Pell, who taught at the University of Amster-
dam, had ever considered solving such an equation. It should more aptly be called Fermat’s
equation, since it was Fermat who first investigated it. Nevertheless, equations of Pell type
can be traced back to the Greeks. Theon of Smyrna used the ratio x

y to approximate
√
2, where

x and y are solutions to x2 − 2y2 = 1. A more famous equation is Archimedes’ problema
bovinum (cattle problem) posed as a challenge to Apollonius, which received a complete
solution only in the twentieth century.

Indian mathematicians of the sixth century devised a method for finding solutions to
Pell’s equation. But the general solution was first explained by Lagrange in a series of papers
presented to the Berlin Academy between 1768 and 1770.

Lagrange’s theorem. If D is a positive integer that is not a perfect square, then the equation

x2 − Dy2 = 1

has infinitely many solutions in positive integers and the general solution (xn, yn)n≥1 is com-
puted from the relation

(xn, yn) = (x1 + y1
√

D)n,

where (x1, y1) is the fundamental solution (the minimal solution different from the trivial
solution (1, 0)).

The fundamental solution can be obtained by trial and error. But there is an algorithm to
find it. The continued fraction expansion or

√
D is periodic, so that if n is the minimal period

we write: √
D = a0 + 1

a1 + 1

a2 + · · · + 1

an + 1

a1 + 1

a2 + · · ·

.
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When n is even, the fundamental solution is given by the numerator and the denominator of
the fraction

a0 + 1

a1 + 1

a2 + · · · + 1

an−1

while when n is odd, the fundamental solution is given by the numerator and the denominator
of the fraction

a0 + 1

a1 + 1

a2 + · · · + 1

an + 1

a1 + 1

a2 + · · · + 1

an−1

This algorithm is not as simple as it seems. The smallest solution (x1, y1) can depend expo-
nentially on D. From the computational point of view, the challenge is to determine the
number R = ln(x1 + y1

√
D), called the regulator, with a certain accuracy. At the time of the

writing this book no algorithm has been found to solve the problem in polynomial time on a
classical computer. If a computer governed by the laws of quantum physics could be built,
then such an algorithm exists and was discovered by S. Hallgren.

We found the following application of Pell’s equation published by M.N. Deshpande in
the American Mathematical Monthly.

Example. Find infinitely many triples (a, b, c) of positive integers such that a, b, c are in
arithmetic progression and such that ab + 1, bc + 1, and ca + 1 are perfect squares.

Solution. A slick solution is based on Pell’s equation

x2 − 3y2 = 1.

Pell’s equation, of course, has infinitely many solutions. If (r, s) is a solution, then the triple
(a, b, c) = (2s − r, 2s, 2s + r) is in arithmetic progression and satisfies (2s − r)2s + 1 =
(r − s)2, (2s − r)(2s + r) + 1 = s2, and 2s(2s + r) + 1 = (r + s)2. �

More examples follow.

934. Find a solution to the Diophantine equation

x2 − (m2 + 1)y2 = 1,

where m is a positive integer.

935. Prove that there exist infinitely many squares of the form

1 + 2x2 + 2y2,

where x and y are positive integers.
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936. Prove that there exist infinitely many integers n such that n, n + 1, n + 2 are each the
sum of two perfect squares. (Example: o = 02 + 02, 1 = 02 + 12, 2 = 12 + 12.)

937. Prove that for no integer n can n2 − 2 be a power of 7 with exponent greater than 1.

938. Find the positive solutions to the Diophantine equation

(x + 1)3 − x3 = y2.

939. Find the positive integer solutions to the equation

(x − y)5 = x3 − y3.

940. Prove that the equation
x3 + y3 + z3 + t3 = 1999

has infinitely many integer solutions.

941. Prove that for every pair of positive integers m and n, there exists a positive integer p
satisfying

(
√

m + √
m − 1)n = √

p + √
p − 1.

5.3.4 Other Diophantine Equations

In conclusion, try your hand at the following Diophantine equations. Any method is allowed!

942. Find all integer solutions (x, y) to the equation

x2 + 3xy + 4006(x + y) + 20032 = 0.

943. Prove that there do not exist positive integers x and y such that

x2 + xy + y2 = x2y2.

944. Prove that there are infinitely many quadruples x, y, z, w of positive integers such that

x4 + y4 + z4 = 2002w.

945. Find all nonnegative integers x, y, z, w satisfying

4x + 4y + 4z = w2.

946. Prove that the equation

x2 + y2 + z2 + 3(x + y + z) + 5 = 0

has no solutions in rational numbers.
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947. Find all positive integers x satisfying

32
x ! = 23

x ! + 1.

948. Find all quadruples (u, v, x, y) of positive integers, where u and v are consecutive in
some order, satisfying

ux − vy = 1.
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Combinatorics and Probability

We conclude the book with combinatorics. First, we train combinatorial skills in set theory,
number theory, and geometry, with a glimpse at permutations. Then we turn to some spe-
cific techniques: graphs, generating functions, counting arguments, the inclusion-exclusion
principle. A strong accent is placed on binomial coefficients.

This is followed by probability, which, in fact, should be treated separately. But the
level of this book restricts us to problems that use counting, classical schemes such as the
Bernoulli and Poisson schemes and Bayes’ theorem, recurrences, and some minor geometric
considerations. It is only later in the development of mathematics that probability loses its
combinatorial flavor and borrows the analytical tools of Lebesgue integration.

6.1 Combinatorial Arguments in Set Theory

6.1.1 Combinatorics of Sets

A first example comes from the 1971 German Mathematical Olympiad.

Example. Given 2n−1 subsets of a set with n elements with the property that any three have
nonempty intersection, prove that the intersection of all the sets is nonempty.

Solution. Let S = {A1, A2, . . . , A2n−1} be the family of subsets of the set A with n elements.
Because S has 2n−1 elements, for any subset B of A, either B or its complement Bc is in S.
(They cannot both be in S by the other hypothesis.)

So if Ai and A j are in S, then either Ai ∩ A j is in S, or its complement is in S. If
the complement is in S then Ai ∩ A j ∩ (Ai ∩ A j )

c is empty, contradicting the fact that the
intersection of any three elements of S is nonempty. Hence Ai ∩ A j ∈ S.

Wewill now show by induction on k that the intersection of any k sets in S is nontrivial. We
just proved the base case k = 2. Assume that the property is true for any k − 1 elements of S,
and let us prove it for Ai1, Ai2, . . . , Aik ∈ S. By the induction hypothesis, Ai1∩. . .∩Aik−1 ∈ S,
and also Aik ∈ S, so (Ai1 ∩ . . . ∩ Aik−1) ∩ Aik is in S. This completes the induction. For
k = 2n−1, we obtain that the intersection of all sets in S is nontrivial. �
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We found the following problem in the Mathematics Magazine for High Schools
(Budapest).

Example. Let A be a nonempty set and let f : P(A) → P(A) be an increasing function on
the set of subsets of A, meaning that

f (X) ⊂ f (Y ) if X ⊂ Y.

Prove that there exists T , a subset of A, such that f (T ) = T .

Solution. Consider the family of sets

F = {K ∈ P(A) | f (K ) ⊂ K }.
Because A ∈ F , the family F is not empty. Let T be the intersection of all sets in F . We will
show that f (T ) = T .

If K ∈ F , then f (T ) ⊂ f (K ) ⊂ K , and by taking the intersection over all K ∈ F , we
obtain that f (T ) ⊂ T . Hence T ∈ F .

Because f is increasing it follows that f ( f (T )) ⊂ f (T ), and hence f (T ) ∈ F . Since
T is included in every element of F , we have T ⊂ f (T ). The double inclusion proves that
f (T ) = T , as desired. �

949. Let A and B be two sets. Find all sets X with the property that

A ∩ X = B ∩ X = A ∩ B,

A ∪ B ∪ X = A ∪ B.

950. Prove that a list can be made of all the subsets of a finite set such that

(i) the empty set is the first set;
(ii) each subset occurs once;
(iii) each subset is obtained from the preceding by adding or deleting an element.

951. Let S be a nonempty set and F a family of m ≥ 2 subsets of S. Show that among
the sets of the form A�B with A, B ∈ F there are at least m that are distinct. (Here
A�B = (A \ B) ∪ (B \ A).)

952. Consider the sequence of functions and sets

· · · → An
fn−1→ An−1

fn−2→ An−2
fn−3→ · · · f3→ A3

f2→ A2
f1→ A1.

Prove that if the sets An are nonempty and finite for all n, then there exists a sequence
of elements xn ∈ An , n = 1, 2, 3, . . ., with the property that fn(xn+1) = xn for all
n ≥ 1.

953. In a society of n people, any two persons who do not know each other have exactly two
common acquaintances, and any two persons who know each other don’t have other
common acquaintances. Prove that in this society every person has the same number
of acquaintances.
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954. In the countryAnchuria, led by presidentMiraflores, it is time for presidential elections.
The country has 20 million voters, of which 1% support the president. The election is
organized as follows: all voters are divided into equal groups, each group is divided
itself in equal groups, and so on. At each level the groups have the same number of
people. In the smallest group one elects one representative—the elector, these electors
choose the representatives of the larger groups they are members of and so on. In
the end, the representatives of the largest groups elect the president. If Miraflores is
allowed to divide the voters in groups at his own discretion, can he win the elections?
(Note: If in a group there is a tie, the opposition wins.)

6.1.2 Combinatorics of Numbers

We continue with problems about numbers, which are based on combinatorial thinking but
also use algebraic operations and properties of numbers. The following example clarifies
what we have in mind. It is a problem of B. Enescu and D. Ismailescu that was given at a
Romanian Team Selection Test for the International Mathematical Olympiad in 1999.

Example. Find the number of sets of positive integers A = {a1, a2, . . . , a9} with the property
that for every positive integer n, 1 ≤ n ≤ 500 there is B ⊂ A such that the sum of the elements
of B is n.

Solution. Note that A = {1, 2, 22, . . . , 28} has the required property, since 29 = 512, and so
every number less than 512 has a binary expansion involving only 1, 2, 22, . . . , 28.

On the other hand, a set with 9 elements has 29−1 = 511 non-empty subsets. Because the
sums of elements in these subsets must cover all numbers from 1 through 500, it means that the
sums in the subsets of A must be “very different”. For example if A contains three elements
x, y, z with x = y + z, then for every B ⊂ A\{x, y, z}, the subsets B ∪ {x} and B ∪ {y, z}
have the same sum of elements, and there are 26 = 64 subsets of this form. However, at most
12 subsets can have the same sum, or else the remaining 499 sums cannot be achieved. A
similar argument shows that the sum of three or four elements of A cannot equal an element
of A. However, there is no contradiction if the sum of five elements from A equals a number
in A.

Let us try to construct A. Note that 1 and 2 are in A, or else these numbers cannot be
obtained as sums of elements in A. Since 3 = 1 + 2, 3 /∈ A, and therefore 4 ∈ A. With 1, 2,
and 4 we can produce the numbers 5, 6, 7, so neither of these is in A, and hence 8 ∈ A. Same
reasoning with 1, 2, 4, and 8 shows that 16 ∈ A. We are left with finding four more elements
of A. All numbers from 1 through 30 can be written as sums of four elements in A, but 31
is the sum of five elements. Hence 31 can be an element of A; if it is not, then 32 is. So the
sixth element of A is either 31 or 32. For simplicity, let this element be 32 − a, a ∈ {0, 1}.

The numbers 1, 2, 4, 8, 16, 32 − a generate the sums between 1 and 63 − a. So the next
element of A must be of the form 64 − a − b, where b is a non-negative integer. The new
numbers 1, 2, 4, 8, 16, 32 − a, 64 − a − b generate sums up to 127 − 2a − b, so there is an
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element of the form 128−2a−b−c, with c a nonnegative integer that is an element of A. At
the next step we conclude that the ninth element of A is of the form 256 − 4a − 2b − c − d,
with d a non-negative integer. Therefore

A = {1, 2, 4, 8, 16, 32 − a, 64 − a − b, 128 − 2a − b − c, 256 − 4a − 2b − c − d}.
The sum of the nine elements must exceed 500, from where we deduce the inequality

511 − 8a − 4b − 2c − d ≥ 500,

that is

8a + 4b + 2c + d ≤ 11.

For any such a, b, c, d, the elements of A generate all sums from 1 through 511− 8a − 4b−
2c − d, so the set A has the required property. So we are left with counting the number of
quadruples (a, b, c, d) satisfying 8a + 4b + 2c + d ≤ 11. Clearly a can only equal 0 or 1.
If a = 1, then b = 0 and 2c + d ≤ 3, in which case we obtain 6 solutions. If a = 0, then
b ≤ 2. For b = 2 we should have 2c + d ≤ 3 and again we have 6 solutions. If b = 1,
then 2c + d ≤ 7, i.e. d ≤ 7 − 2c. For the values 0, 1, 2, 3 of c we obtain 8, 6, 4, 2 possible
values for d, so the number of solutions in this case is 2 + 4 + 6 + 8 = 20. Finally, if
b = 0, then c = 0, 1, 2, 3, 4, 5, and we obtain 12, 10, 8, 6, 4, 2 possible values of d, so the
number of solutions is 42. The total number of sets A with the required property is therefore
6 + 6 + 20 + 42 = 74. �

Below are listed more problems of this kind.

955. At the beginning of a game, a positive integer n is chosen. At each turn one of the
players writes a positive integer that does not exceed n on the blackboard, the rule being
that the player cannot write a divisor of a number already existing on the blackboard.
The player who cannot continue loses.

(a) Find a winning strategy for the first player when n = 10.
(b) Does any of the players have a winning strategy if n = 1000?

956. LetM be a subset of {1, 2, 3, . . . , 15} such that the product of any three distinct elements
of M is not a square. Determine the maximum number of elements in M .

957. Is it true that from any six positive integers one can either select three that are pairwise
coprime, or three whose greatest common divisor is greater than 1?

958. Let n ≥ 2 be an integer. Let S be a subset of {1, 2, . . . , n} such that S neither contains
two elements one of which divides the other, nor contains two elements which are
coprime. What is the maximum possible number of elements of such a set S?

959. A number with an even number of digits is called “acceptable” if on its odd positions
there are as many even digits as there are on its even positions. Show that from any
number with an odd number of digits one can erase one digit so that the new number
is acceptable. For example, from 12345 we can eliminate the digit 3 obtaining 1245,
which is acceptable.
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960. An even number of people sit at a round table. After a break, the people return to
the table and seat themselves randomly. Show that there are two people such that the
number of people who sit between them remained unchanged. Does this property still
hold if the number of people is odd?

961. For what n and k can the set {1, 2, 3, . . . , nk} be partitioned into n subsets of k elements
each such that the sum of the elements in each set is the same?

962. For a positive integer n, n ≥ 3, consider the points A1, A2, . . . , An in this order, and
place the numbers 1, 2, . . . , n randomly at these points.

(a) Show that the sum of the absolute values of the differences of neighboring numbers
is greater or equal to 2n − 2.

(b) For how many arrangements of these numbers is the sum exactly 2n − 2?

963. For every positive integer m, denote by f (m) the largest positive integer k with the
property that there is a set A = {a1, a2, . . . , ak} ⊂ {1, 2, . . . ,m}, such that for every
1 ≤ i < j ≤ k, ai + a j is not a divisor of aia j . Prove that f (2n) ≥ 2n−1 + n.

964. An equilateral triangle is divided into 16 equal equilateral triangles, and in each of these
triangles one of the numbers from 1 to 16 is written. Show that there are two triangles
sharing a side with the difference of the numbers written in them being at least 4.

965. The plane is partitioned into regions by a finite number of lines, no three of which
are concurrent. Two regions are called neighbors if they share a common border. An
integer is assigned to each region such that

(i) the product of the integers assigned to any two neighbors is less than their sum;
(ii) for each of the given lines, and each of the two half-planes determined by it, the

sum of the integers assigned to all of the regions lying in this half-plane is zero.

Prove that this is possible if and only if not all of the lines are parallel.

6.1.3 Permutations

A permutation of a set S is a bijection σ : S → S. Composition induces a group structure
on the set of all permutations. We are concerned only with the finite case S = {1, 2, . . . , n}.
The standard notation for a permutation is

σ =
(

1 2 3 . . . n
a1 a2 a3 . . . an

)
,

with ai = σ(i), i = 1, 2, . . . , n.
A permutation is a cycle (i1i2 . . . in) if σ(i1) = i2, σ(i2) = i3, . . ., σ(in) = i1, and

σ( j) = j for i 	= i1, i2, . . . , in . Any permutation is a product of disjoint cycles. A cycle
of length two (i1i2) is called a transposition. Any permutation is a product of transpositions.
For a given permutation σ , the parity of the number of transpositions in this product is always
the same; the signature of σ , denoted by sign(σ ), is 1 if this number is even and −1 if this
number is odd. An inversion is a pair (i, j) with i < j and σ(i) > σ( j).
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Let us look at a problem from the 1979 Romanian Mathematical Olympiad, proposed by
I. Raşa.

Example. Consider the permutations

σ1 =
(

1 2 3 4 . . . 19 20
a1 a2 a3 a4 . . . a19 a20

)
,

σ2 =
(

1 2 3 4 . . . 19 20
a19 a20 a17 a18 . . . a1 a2

)
.

Prove that if σ1 has 100 inversions, then σ2 has at most 100 inversions.

Solution. Let us see what an inversion (ai , a j ) of σ1 becomes in σ2. If i and j have the same
parity, then i and a j are switched in σ2, and so (a j , ai ) is no longer an inversion. If i is even
and j is odd, then ai and a j are also switched in σ2, so the inversion again disappears.

We investigate the case i odd and j even more closely. If j > i + 1, then in σ2 the two
elements appear in the order (a j , ai ), which is again not an inversion. However, if i and j are
consecutive, then the pair is not permuted in σ2; the inversion is preserved. There are at most
10 such pairs, because i can take only the values 1, 3, 5, . . . , 19. So at most 10 inversions are
“transmitted” from σ1 to σ2. From the 100 inversions of σ1, at most 10 become inversions of
σ2, while 90 are “lost”: they are no longer inversions in σ2.

It follows that from the
(20
2

) = 190 pairs (ai , a j ) in σ2 with i < j , at least 90 are not
inversions, which means that at most 190 − 90 = 100 are inversions. This completes the
proof.

Here is a different way of saying this. Define

σ3 =
(

1 2 3 4 . . . 19 20
a20 a19 a18 a17 . . . a2 a1

)
.

Then between them σ1 and σ3 have exactly
(20
2

)
inversions, since each pair is an inversion in

exactly one. Hence σ3 has at most 90 inversions. Because σ2 differs from σ3 by swapping 10
pairs of adjacent outputs, these are the only pairs in which it can differ from σ3 in whether it
has has an inversion. Hence σ2 has at most 100 inversions. �

And now an example with a geometric flavor.

Example. Let σ be a permutation of the set {1, 2, . . . , n}. Prove that there exist permutations
σ1 and σ2 of the same set such that σ = σ1σ2 and σ 2

1 and σ 2
2 are both equal to the identity

permutation.

Solution. Decompose the permutation σ into a product of disjoint cycles. It suffices to prove
the property for each of these cycles; therefore, we can assume from the beginning that σ itself
is a cycle of length n. If n = 1 or 2, then we choose σ1 = σ and σ2 the identity permutation.
Otherwise, we think of σ as the rotation of a regular n-gon A1A2 . . . An by an angle of 2π

n
around its center. Such a rotation can be written as the composition of two reflections that
map the n-gon to itself, namely the reflection with respect to the perpendicular bisector of
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A1A3 and the reflection with respect to the perpendicular bisector of A2A3 (see Figure 39).
These reflections define the permutations σ1 and σ2. �

Figure 39

The following problems are left to the reader.

966. For each permutation a1, a2, . . . , a10 of the integers 1, 2, 3, . . . 10, form the sum

|a1 − a2| + |a3 − a4| + |a5 − a6| + |a7 − a8| + |a9 − a10|.

Find the average value of all such sums.

967. Find the number of permutations a1, a2, a3, a4, a5, a6 of the numbers 1, 2, 3, 4, 5, 6
that can be transformed into 1, 2, 3, 4, 5, 6 through exactly four transpositions (and not
fewer).

968. Let f (n) be the number of permutations a1, a2, . . . , an of the integers 1, 2, . . . , n such
that

(i) a1 = 1 and
(ii) |ai − ai+1| ≤ 2, i = 1, 2, . . . , n − 1.

Determine whether f (1996) is divisible by 3.

969. Consider the sequences of real numbers x1 > x2 > · · · > xn and y1 > y2 > · · · > yn ,
and let σ be a nontrivial permutation of the set {1, 2, . . . , n}. Prove that

n∑
i=1

(xi − yi )
2 <

n∑
i=1

(xi − yσ(i))
2.

970. Let a1, a2, . . . , an be a permutation of the numbers 1, 2, . . . , n. We call ai a large
integer if ai > a j for all i < j < n. Find the average number of large integers over all
permutations of the first n positive integers.

971. Given some positive real numbers a1 < a2 < · · · < an find all permutations σ with
the property that

a1aσ(1) < a2aσ(2) < · · · < anaσ(n).
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972. Determine the number of permutations a1, a2, . . . , a2004 of the numbers 1, 2, . . . , 2004
for which

|a1 − 1| = |a2 − 2| = · · · = |a2004 − 2004| > 0.

973. Let n be an odd integer greater than 1. Find the number of permutations σ of the set
{1, 2, . . . , n} for which

|σ(1) − 1| + |σ(2) − 2| + · · · + |σ(n) − n| = n2 − 1

2
.

6.2 Combinatorial Geometry

6.2.1 Tessellations

We begin our incursion in combinatorial geometry with problems about tilings of the plane (or
of part the plane) by equal polygons. Tiling have aesthetic qualities that make them appealing
to architects, and they also hide challenging mathematical problems. Our first example was
published in the Russian journal Kvant (Quantum) by A.N. Kolmogorov.

Example. Consider the tessellation of the plane by unit squares. For what n ≥ 2 is it possible
to color the plane by n colors such that the centers of the squares colored by the same color
form a square lattice of the plane? What if we require additionally that all these lattices have
equal squares and parallel sides?

Solution. The answer to the first question is all n, since one can obtain inductively, from a
coloring by n colors, a coloring by n + 1 colors if we “dilate” the coloring by n colors to
occupy the black squares of a chess board, and use the n + 1st color for the white squares.

The second question is more interesting. Let us show that if such a coloring of the plane
exists, then n can be represented asm2+k2 wherem and k are non-negative integers. Consider
the lattice determined by the squares colored by one color. Take a square of this lattice and
glue its opposite sides to obtain a torus (the torus is the surface of a “donut”). Then this torus
contains precisely one unit square for each color, so its area is n. Thus the side-length of
the square is

√
n. Examining the original lattice (of all squares), we see that the side of the

square in question can be placed in a right triangle with integer sides, with, say, m units on
the vertical and k units on the horizontal. By the Pythagorean theorem, n = m2 + k2.

Conversely, let us show that every positive integer n of the formm2 + k2 has an associated
coloring. Color one unit square red, then move m units to the right and k units up. Color
this square red as well. Then complete a square lattice containing the two red squares and
color all its vertices red. Then choose an uncolored unit square, color it by a remaining color,
and repeat the above construction. Repeating with each of the colors we obtain the desired
coloring. �

The second example is a problem given at the Romanian Master of Mathematics in 2016,
which we selected for our exposition because of the elegant solution given by the US student
J. Peng.
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Example. Given positive integers m and n ≥ m, determine the largest number of dominoes
(1 × 2 or 2 × 1 rectangles) that can be placed on a rectangular board with m rows and 2n
columns so that:

(i) each domino covers exactly two adjacent cells of the board;
(ii) no two dominoes overlap;
(iii) no two dominoes form a 2 × 2 square;
(iv) the bottom row of the board is completely covered by n dominoes.

Solution. The required maximum is mn − �m/2� and is achieved by the brick-like vertically
symmetric arrangement of blocks of n and n − 1 horizontal dominoes placed on alternate
rows, so that the bottom row of the board is completely covered by dominoes.

We are going to prove that one cannot exceed mn − �m/2�. The possible locations of the
centers of the dominoes are the midpoints of the edges that are not on the boundary of the
board. These locations form a lattice (rotated by 45◦ compared to the original board), which,
when viewed in the horizontal-vertical orientation, has 2n − 1 points on the horizontal rows
1, 3, . . . , 2m − 1, and 2n points on the horizontal rows 2, 4, . . . , 2m − 2. Call this lattice
� and let S be the set of its nodes that are centers of domino pieces. We will always use
the vertical-horizontal reference to associate coordinates to the nodes. As such, the j th point
from the left on the i th horizontal row from the top is (i, j).

A first observation is that if P ∈ S than its 4 neighbors from the lattice � are not in S,
because they lie on the sides of the domino centered at P . Since the bottom row is already
covered, this observation shows that, since the following nodes are in S

(2m − 1, 1), (2m − 1, 3), . . . , (2m − 1, 2n − 1),

the following nodes are not in S:

(2m − 1, 2), (2m − 1, 4), . . . , (2m − 1, 2n − 2);
(2m − 2, 1), (2m − 2, 2), . . . , (2m − 2, 2n);

(2m − 3, 1), (2m − 3, 3), . . . , (2m − 3, 2n − 1).

We call these the forbidden nodes.

Lemma. All nodes of � that are not forbidden can be partitioned into mn − �m/n� groups
of the types described in Figure 40.

(1) (2)

(3) (4)

Figure 40
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Proof. We first ignore the last row. We will argue on Figure 41, which depicts the case
m = n = 5.

For every i, j with i = 2, 3, . . . ,m − 1, j = 0, 2, 4, . . . , 2n − 2i we let

(2m − 2i, i + j), (2m − 2i, i + j + 1), (2m − 2i + 1, i + j), (2m − 2i − 1, i + j)

be in a group. There are 1
2 (2n − m + 1)(m − 2) such groups.

There are 3 families of nodes that are not yet split into groups:

I. (2m − 2i, i − j), (2m − 2i − 1, i − j), with 2 ≤ i ≤ m − 1, 1 ≤ j ≤ i − 1;

II. (2m−2i, 2n−i+ j+1), (2m−2i−1, 2n−i+ j), where 2 ≤ i ≤ m−1, 1 ≤ j ≤ i−1.

III. (1,m + 2i), where 0 ≤ i ≤ n − m.

We partition the family I into �(m − 1)2/4� groups as shown in Figure 42. The nodes in
this family form an isosceles triangle with the top vertex missing. Divide this triangle, starting
from the base, into isosceles trapezoids by lines that are parallel to the base of the isosceles
triangle, so that between the parallel sides of the trapezoid lie 2 rows of nodes (except maybe
at the top where we might have just one row). Then divide each trapezoid but the one on top
by lines perpendicular to the base into groups that consist of several rhombi and two right
triangles so that in each rhombus exactly 4 nodes of � lie, and each of the two right triangles
contains 2 nodes. If m is odd, then the trapezoid on top has only 2 nodes, they form a group.
If m is even, cut the trapezoid on top into 2 groups which are right triangles.

x x
x

x x
x

xx
x

x
x x x

x
x

x
x

x
x

I II

III

Figure 41

So if m is odd we have partitioned family I into

(m − 2) + (m − 4) + · · · + 3 + 1 = (m − 1)2

4

groups, and if m is even we have partitioned I into

(m − 2) + (m − 4) + · · · + 4 + 2 = m(m − 2)

4
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I

Figure 42

groups. Both these numbers are equal to �(m − 1)2/4�. By symmetry we can partition
the nodes in II into �(m − 1)2/4� groups as well. Trivially we can partition family III into
(n − m + 1) groups of type (4).

The total number of groups is

1

2
(2n − m + 1)(m − 2) + 2 ×

⌊
(m − 1)2

4

⌋
+ (n − m + 1) = mn − n −

⌊m
2

⌋
.

Add the n nodes from the bottom row, each in a separate group to obtain a total ofmn−�m/2�
groups. The lemma is proved. �

Returning to the problem, note that in each group there is at most one node in S, so the
total number of nodes in S is at most mn − �m/2�. We conclude that we can have at most
mn − �m/2� dominoes, and the problem is solved. �

The following problems are left to the reader.

974. An equilateral triangle is divided into n2 equal equilateral triangles by lines parallel to
the sides. We call chain a sequence of triangles in which no triangle appears twice and
every two consecutive triangles share a side. What is the largest possible number of
triangles in a chain.

975. An equilateral triangle of side length n is drawn with sides along a triangular grid of
side length 1. What is the maximum number of grid segments on or inside the triangle
that can be marked so that no three marked segments form a triangle?

976. An equilateral triangle is divided into n2 equal equilateral triangles by lines parallel to
the sides. From the vertices of the triangle obtained this way one chooses m such that
for any two chosen vertices A and B, the segment AB is not parallel to any of the sides
of the original triangle. What is the largest possible value that m can have?

977. Some of the squares of an infinite lattice are colored red, the others blue, such that
inside every 2 × 3 rectangle there are exactly two red squares. How many red squares
can a 9 × 11 rectangle contain?

978. Can one tile a 6 × 6 square by 1 × 2 tiles so that no segment that joins opposite sides
of the square shows up in the tiling?
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979. (a) A rectangle is tiled by 2 × 2 and 1 × 4 tiles. Now assume that we substitute one
2 × 2 tile by a 1 × 4 tile. Can we still tile the rectangle?
(b) In the tiling of a rectangle are being used simultaneously 1 × 3 tiles and L-shaped
tiles with 3 unit squares. Assume that a 1 × 3 tile is substituted by an L-shaped tile.
Can we still tile the rectangle?

980. Let n be a positive integer satisfying the following property: If n dominoes are placed
on a 6 × 6 chessboard with each domino covering exactly two unit squares, then one
can always place one more domino on the board without moving any other dominoes.
Determine the maximum value of n.

6.2.2 Miscellaneous Combinatorial Geometry Problems

We grouped under this title various problems that are solved by analyzing configurations of
geometric objects. We start with an easy problem that was proposed in 1999 for the Junior
Balkan Mathematical Olympiad.

Example. In a regular 2n-gon, n diagonals intersect at a point S, which is not a vertex. Prove
that S is the center of the 2n-gon.

Solution. Fix one of the n diagonals. The other n − 1 diagonals that run through S cross it,
so there are n − 1 vertices on one side and n − 1 vertices on the other side of this diagonal.
Hence this was a main diagonal. Repeating the argument we conclude that all n diagonals are
main diagonals, so they meet at the center. �

We continue with an example suggested to us by G. Galperin.

Example. Show that from any finitely many (closed) hemispheres that cover a sphere one can
choose four that cover the sphere.

Solution. In what follows, by a half-line, half-plane, and half-space we will understand a
closed half-line (ray), half-plane, respectively, half-space. The hemispheres are obtained by
intersecting the sphere with half-spaces passing through the origin. This observation allows
us to modify the statement so as to make an inductive argument on the dimension possible.

Alternative problem. Show that from any finitely many half-spaces that cover the three-
dimensional space one can choose four that cover the space.

Let us analyze first the one- and two-dimensional cases. Among any finite set of half-lines
(rays) covering a certain line one can choose two that cover it. Indeed, identifying the line
with the real axis, the first of them can be chosen to be of the form [a,∞), with a smallest
among the half-lines of this type in our set, and the other to be of the form (−∞, b], with b
largest among the half-lines of this type in our set.

The two-dimensional analogue of this property states that from finitely many half-planes
covering the two-dimensional plane one can choose three that cover the plane.
We prove this by induction on the number n of half-planes. For n = 3 there is nothing to



6.2 Combinatorial Geometry 303

prove. Assume that the property is true for n half-planes and let us prove it for n+ 1. Choose
h1 to be one of these half-planes.

If the boundary ∂h1 of h1 is contained in some other half-plane h2, then either h1 and h2
cover the plane, or h2 contains h1. In the latter case we dispose of h1 and use the induction
hypothesis.

If the boundary ∂h1 is not contained in any half-plane, then any other half-plane intersects
it along a half-line. From the one-dimensional situation we know that two of these half-lines
cover it completely. Let h2 and h3 be the half-planes corresponding to these two half-lines.
There are two possibilities, described in Figure 43. In the first case h1 is contained in the
union of h2 and h3, so it can be removed, and then we can use the induction hypothesis. In
the second case, h1, h2, and h3 cover the plane. This completes the two-dimensional case.

h
h

h

h
h

h
1

1

2 2
3

3

Figure 43
The proof can be extended to three dimensions. As before, we use induction on the number

n ≥ 4 of half-spaces. For the base case n = 4 there is nothing to prove. Now let us assume
that the property is true for n half-spaces, and let us prove it for n + 1. Let H1 be one of the
half-spaces. If the boundary of H1, ∂H1, is included in another half-space H2, then either
H1 and H2 cover three-dimensional space, or H1 is included in H2 and then we can use the
induction hypothesis.

In the other case we use the two-dimensional version of the result to find three half-spaces
H2, H3, and H4 that determine half-planes on ∂H1 that cover ∂H1. To simplify the discussion
let us assume that the four boundary planes ∂Hi , i = 1, 2, 3, 4, are in general position. Then
they determine a tetrahedron. If H1 contains this tetrahedron, then H1, H2, H3, H4 cover
three-dimensional space. If H1 does not contain this tetrahedron, then it is contained in the
union of H2, H3, and H4, so it can be removed and we can apply the induction hypothesis to
complete the argument. �

Our third example was published by V.I. Arnol’d in the Russian journal Quantum.

Example. Prove that any n points in the plane can be covered by finitely many disks with the
sum of the diameters less than n and the distance between any two disks greater than 1.

Solution. First, note that if two disks of diameters d1 and d2 intersect, then they can be included
in a disk of diameter d1 + d2.

Let us place n disks centered at our points, of some radius a > 1 the size of which will be
specified later. Whenever two disks intersect, we replace them with a disk that covers them,
of diameter equal to the sum of their diameters. We continue this procedure until we have
only disjoint disks.
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We thus obtained a family of k ≤ n disks with the sum of diameters equal to na and such
that they cover the disks of diameter a centered at the points. Now let us shrink the diameters
of the disks by b, with 1 < b < a. Then the new disks cover our points, the sum of their
diameters is na − kb ≤ na − b, and the distances between disks are at least b. Choosing a
and b such that 1 < b < a and na − b ≤ n would then lead to a family of circles with the
sum of diameters less than n and at distance greater than 1 from each other. For example, we
can let a = 1 + 1

n and b = 1 + 1
2n . �

981. In how many regions do n great circles, any three nonintersecting, divide the surface
of a sphere?

982. In how many regions do n spheres divide the three-dimensional space if any two
intersect along a circle, no three intersect along a circle, and no four intersect at one
point?

983. Given n > 4 points in the plane such that no three are collinear, prove that there are at
least

(n−3
2

)
convex quadrilaterals whose vertices are four of the given points.

984. 1981 points lie inside a cube of side length 9. Prove that there are two points within a
distance less than 1.

985. What is the largest number of internal right angles that an n-gon (convex or not, with
non-self-intersecting boundary) can have?

986. A circle of radius 1 rolls without slipping on the outside of a circle of radius
√
2. The

contact point of the circles in the initial position is colored. Any time a point of one
circle touches a colored point of the other, it becomes itself colored. Howmany colored
points will the moving circle have after 100 revolutions?

987. Several chords are constructed in a circle of radius 1. Prove that if every diameter
intersects at most k chords, then the sum of the lengths of the chords is less than kπ .

988. We will call the deformation coefficient of a rectangle the ratio between the smallest
and the largest side. Prove that for every decomposition of a square into rectangles,
the sum of the deformation coefficients is at least 1. When does equality hold?

989. Inside a square of side 38 lie 100 convex polygons, each with an area at most π and
the perimeter at most 2π . Prove that there exists a circle of radius 1 inside the square
that does not intersect any of the polygons.

990. Several segments are drawn inside the unit square, parallel to the sides. The sum of the
lengths of the segments is 18. These segments divide the square into several regions.
Show that there is a region of area at least 0.01.

991. Given a set M of n ≥ 3 points in the plane such that any three points in M can be
covered by a disk of radius 1, prove that the entire set M can be covered by a disk of
radius 1.

992. Several disks of the same radius are drawn in the plane so that no two overlap, although
they might touch. Show that one can color the circles by four colors such that any two
tangent circles have different colors. Do three colors suffice?
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6.3 Graphs

6.3.1 Some Basic Graph Theory

A graph G consists of a set V of vertices and a set E of edges, where each edge is a pair
of (not necessarily distinct) vertices. Vertices are usually drawn as points and edges as arcs
joining those points. A graph is called complete if every two vertices are joined by an edge.
A path is a sequence of edges which connect a sequence of vertices. A closed path is also
called a circuit or a cycle. The length of a path is the number of edges of the path.

A Hamiltonian path is a path that visits each vertex exactly once. A graph that has a
Hamiltonian path is called a traceable graph, while a graph that has a Hamiltonian circuit
is called Hamiltonian. The problems of deciding if a graph is traceable or Hamiltonian are
NP-complete.

A graph is called Eulerian if there is a circuit that visits each edge exactly once. We have
the following result.

Euler’s theorem. A graph is Eulerian if each vertex belongs to an even number of edges.

Proof. The property is clearly true if the graph consists of just one point with an even number
of edges starting and ending at that point. We can then proceed by induction on the number
of vertices, by deleting one vertex and joining in pairs the edges that enter that vertex.

Let us prove a classical fact: the graph the n-dimensional cube is Hamiltonian.

Example. Consider the graph whose vertices and edges the vertices and edges of the n-
dimensional cube, n ≥ 2. Then there is Hamiltonian circuit on this graph.

Solution. We consider the n-dimensional cube whose vertices are the points in R
n with coor-

dinates 0 or 1. Two vertices are connected by an edge if all but one of the their coordinates
coincide.

We prove the property by induction on n. For n = 2, the Hamiltonian circuit is

(0, 0) → (0, 1) → (1, 1) → (1, 0) → (0, 0).

Now assume that we have found a Hamiltonian path

a1 → a2 → a3 → · · · → a2n → a1

on the n-dimensional cube. Then

(0, a1) → (0, a2) → · · · → (0, a2n ) → (1, a2n ) → (1, a2n−1) → · · · → (1, a1) → (0, a1).

is a Hamiltonian circuit on the n + 1-dimensional cube. The induction is complete. The case
n = 3 is shown in Figure 44.
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Figure 44

Do you see any similarity with a problem that appeared before in this chapter? �

Next, a problem about Eulerian graphs, published in the journalMathematical Reflections
by O. Dobosevych.

Example. An equilateral triangle is divided into n2 congruent equilateral triangles. Find for
what n we can color all sides of these triangles black or white such that at every vertex an
equal number of black and white edges meet.

Solution. Consider the graph whose vertices are the vertices of the triangles and whose edges
are their sides. The total number of edges is 3n(n+ 1)/2 (a fact that can be checked easily by
induction on n). To have an equal number of black and white edges meet at each vertex, there
should be an equal number of black and white altogether. Indeed, if we count edges by the
vertices, we obtain twice the number of edges (every edge has two endpoints). And counting
black and white edges by vertices gives equal numbers. We conclude that 3n(n+1)/2 should
be an even number. Thus a necessary condition is that either n or n + 1 is a multiple of 4.

Let us show that this is also a sufficient condition. At every vertex meet an even number of
edges, so the graph is Eulerian. Consider an Eulerian cycle. Because the number of edges is
even, we can color the edges of the cycle alternatively black and white. This coloring satisfies
the condition from the statement. �

We continue with an application of graphs to a problem from the 29th International Math-
ematical Olympiad, communicated to us by I. Tomescu.

Example. Let n be a positive integer and A1, A2, . . . , A2n+1 be a family of subsets of a certain
set, each containing 2n elements. Let B = ∪2n+1

i=1 Ai . Assume that

(i) For every i 	= j , the sets Ai and A j have exactly one element in common.

(ii) Every element in B belongs to at least two of the sets Ai .

For what numbers n can one color every element in B by +1 and −1 such that each of the
sets Ai contains exactly n elements colored by +1?

Solution. In this solution we denote, as it is customary, by |X | the number of elements of the
set X .

Let B = {x1, x2, . . . , xm}. Consider a graph G with vertices x1, x2, . . . , xm , A1, A2, . . . ,

A2n+1. The edges are defined by joining xi to A j whenever xi ∈ A j .
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For a vertex v, we let d(v) be the degree of v, namely the number of edges that contain v.
By hypothesis, d(xi ) ≥ 2 and d(A j ) = 2n for all i, j . Condition (ii) also implies that
(2n + 1)2n ≥ 2m, hence 2n2 + n ≥ m. On the other hand, the inclusion-exclusion principle
(see Section 6.4.4) implies that

∣∣∣∣∣∣
2n+1⋃
j=1

A j

∣∣∣∣∣∣ ≥
2n+1∑
j=1

|A j | −
∑

1≤ j<k≤2n+1

|A j ∩ Ak |,

which translates to

m ≥ (2n + 1)2n −
(
2n + 1

2

)
= 2n2 + n,

where we used the fact that |A j ∩ Ak | = 1 for all j 	= k. We conclude that m = 2n2 + n, that
is B has precisely 2n2 + n elements.

Next we will show that a necessary condition for the coloring to exist is that n is even.
Let f : B → {−1,+1} be the coloring. Indeed,

2n2+n∑
i=1

f (xi ) = 1

2

2n+1∑
j=1

∑
xi∈A j

f (xi ) =
2n+1∑
j=1

0 = 0.

Since f (xi ) = ±1, this can only happen if 2n2 + n is even, that is if n is even.
Now we will show that the fact that n is even is also a sufficient condition. First note

that the graph G is connected. Indeed, by (i), any two sets A j and Ak are connected by a
path (of length 2), and also every vertex xi is connected to some vertex A j . Every vertex has
an even degree, since d(xi ) = 2 and d(A j ) = 2n. Therefore G contains an Eulerian cycle
(i.e. a path that travels over each edge exactly once returning where it started). Let us start at
x1 and color the first edge, connecting x1 to some A j by+1, the second edge, from A j to some
xi by −1, the third edge by −1 again, then by +1, the convention being that at the vertices A j

we change the sign, while at the vertices xi we keep the sign. Then both edges entering one
vertex xi are colored by the same number; we associate this number to the vertex. Because
half of the edges entering a vertex A j are+1 and half are −1, it follows that for this particular
coloring, half of the elements of A j are colored by +1 and half by −1. The problem is
solved. �

The following problems are left to the reader.

993. Prove that every graph has two vertices that are endpoints of the same number of edges.

994. Let A be a finite set and let f : A → A be a function. Prove that there exist the
pairwise disjoint sets A0, A1, A2, A3 such that A = A0 ∪ A1 ∪ A2 ∪ A3, f (x) = x for
any x ∈ A0 and f (Ai ) ∩ Ai = ∅, i = 1, 2, 3. What if the set A is infinite?

995. One day, the students living in the dorms of a university got the flu. First some students
got it, then they were taken care of by their friends, who got themselves sick as a result.
Each student was sick exactly for one day, after which he was immune for a day and
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healthy for another, during which he could contact the flu if close to a sick friend and
get sick the day after. While healthy, each student takes care of all sick friends. Once
the epidemics started, the students forgot that vaccines are available.

(a) Show that if right before the epidemics started some students got vaccinated, so
that they were immune on the first day, then it could happen that the epidemics
lasts forever.

(b) If on the first day none of the students is immune, then the epidemicswill eventually
die out.

996. In a tournament 2n teams took part. On the first day, n pairs of teams competed. On
the second day, other n pairs of teams competed. Show that at the end of the second
day one can find n teams such that no two have competed with each other yet.

997. Let G be a connected graph with k edges. Show that it is possible to label the edges of
this graph with the numbers 1, 2, . . . , k, so that for every vertex that belongs to at least
two edges, the greatest common divisor of the integers that label the edges containing
this vertex is equal to 1.

998. Let G be the complete graphs with 4 vertices from which we deleted one edge. Find
the number of circuits of length n in G.

999. LetG be a graph with the property that for every connected subgraph H ofG, the graph
G\H is also connected. Prove that G is either a complete graph, or a cycle. (Here
G\H is obtained from G by deleting all edges of H and all vertices of H that do not
belong to edges that are not in H ).

1000. A triangle is divided into smaller triangles that do not overlap such that any two triangles
of the decomposition are either disjoint, have a vertex in common, or have an entire
side in common. The three vertices of the original triangle are colored red, green, and
blue, respectively. The vertices of the triangles from the decomposition are colored
red, green, or blue, so that the vertices that lie on a side of the original triangle are only
colored with the colors of the vertices of that side. Prove that among the triangles of
the decomposition there is one whose vertices are colored by each of red, green, and
blue.

1001. Prove that if a convex polyhedron has the property that every vertex belongs to an even
number of edges, then any section determined by a plane that does not pass through a
vertex is a polygon with an even number of sides.

1002. Consider a graph with the property that each vertex belongs to an odd number of edges.
Initially, the vertices are colored red or blue, then at each step the following operation
is performed repeatedly: if for a vertex more than half of its neighbors are colored by
a different color then the vertex changes its color, otherwise it stays the same. Show
that after awhile there will be some vertices that don’t change color anymore and some
that change color at every step.
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6.3.2 Euler’s Formula for Planar Graphs

This section is about a graph-theoretical result with geometric flavor, the famous Euler’s
formula. A planar graph is a graph embedded in the plane in such a way that edges do not
cross. The connected components of the complement of a planar graph are called faces.
For example, the graph in Figure 45 has four faces (this includes the infinite face). Unless
otherwise specified, all our graphs are assumed to be connected.

Euler’s theorem. Given a connected planar graph, denote by V the number of vertices, by
E the number of edges, and by F the number of faces (including the infinite face). Then

V − E + F = 2.

Proof. The proof is an easy induction on F . If F = 1 the graph is a tree, and the number of
vertices exceeds that of edges by 1. The formula is thus verified in this case.

Figure 45

Let us now consider some F > 1 and assume that the formula holds for all graphs with
at most F − 1 faces. Since there are at least two faces, the graph is not a tree. Therefore, it
must contain cycles. Remove one edge from a cycle. The new graph is still connected. The
number of edges has decreased by 1; that of faces has also decreased by 1. By the induction
hypothesis,

V − (E − 1) + (F − 1) = 2;
hence Euler’s formula holds for the original graph, too. This completes the proof. �

This method of proof is called reduction of complexity, and is widely applied in a combi-
natorial branch of geometry called low-dimensional topology.

As a corollary, if V , E , and F are the numbers of vertices, edges, and faces of a convex
polyhedron, then V − E + F = 2. As you can see, it was much easier to prove this formula
for general planar graphs. The number 2 in Euler’s formula is called the Euler (or Euler-
Poincaré) characteristic of the sphere, since any convex polyhedron has the shape of a sphere.
If a polyhedron has the shape of a sphere with g handles (a so-called surface of genus g), this
number should be replaced by 2 − 2g. The faces of such a graph should be planar polygons
(no holes or handles). The Euler characteristic is an example of a “topological invariant”;
it detects the number of handles of a polyhedral surface. The Euler characteristic has far
reaching generalizations throughout algebraic topology.
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As an application of Euler’s formula, let us determine the Platonic solids. Recall that a
Platonic solid (i.e., a regular polyhedron) is a polyhedron whose faces are congruent regular
polygons and such that each vertex belongs to the same number of edges.

Example. Find all Platonic solids.

Solution. Letm be the number of edges that meet at a vertex and let n be the number of edges
of a face. With the usual notation, when counting vertices by edges, we obtain 2E = mV .
When counting faces by edges, we obtain 2E = nF . Euler’s formula becomes

2

m
E − E + 2

n
E = 2,

or

E =
(
1

m
+ 1

n
− 1

2

)−1

.

The right-hand side must be a positive integer. In particular, 1
m + 1

n > 1
2 . The only possibilities

are the following:
1. m = 3, n = 3, in which case E = 6, V = 4, F = 4; this is the regular tetrahedron.
2. m = 3, n = 4, in which case E = 12, V = 8, F = 6; this is the cube.
3. m = 3, n = 5, in which case E = 30, V = 20, F = 12; this is the regular

dodecahedron.
4. m = 4, n = 3, in which case E = 12, V = 6, F = 8; this is the regular octahedron.
5. m = 5, n = 3, in which case E = 30, V = 12, F = 20; this is the regular icosahedron.
We have proved the well-known fact that there are five Platonic solids. �

1003. In the plane are given n > 2 points joined by segments, such that the interiors of any
two segments are disjoint. Find the maximum possible number of such segments as a
function of n.

1004. Three conflicting neighbors have three common wells. Can one draw nine paths con-
necting each of the neighbors to each of the wells such that no two paths intersect?

1005. Consider a polyhedron with at least five faces such that exactly three edges emerge
from each vertex. Two players play the following game: the players sign their names
alternately on precisely one face that has not been previously signed. The winner is the
player who succeeds in signing the name on three faces that share a common vertex.
Assuming optimal play, prove that the player who starts the game always wins.

1006. Denote by V the number of vertices of a convex polyhedron, and by � the sum of the
(planar) angles of its faces. Prove that 2πV − � = 4π .

1007. (a) Given a connected planar graph whose faces are polygons with at least three sides
(no loops or bigons), prove that there is a vertex that belongs to at most five edges.
(b) Prove that any map in the plane can be colored by five colors such that adjacent
regions have different colors (the regions are assumed to be polygons, two regions are
adjacent if they share at least one side).
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1008. Consider a convex polyhedron whose faces are triangles and whose edges are oriented.
A singularity is a face whose edges form a cycle, a vertex that belongs only to incoming
edges, or a vertex that belongs only to outgoing edges. Show that the polyhedron has
at least two singularities.

6.3.3 Ramsey Theory

Ramsey theory is a difficult branch of combinatorics, which gathers results showing that when
a sufficiently large set is partitioned into a fixed number of subsets, one of the subsets has a
certain property. Finding sharp bounds on how large the set should be is a truly challenging
question, unanswered inmost cases. Becausemost of Ramsey theory is about finding structure
on graphs, we placed it in the section about graphs.

The origins of this field lie in Ramsey’s theorem, which states that for every pair of positive
integers (p, q) there is a smallest integer R(p, q), nowadays called the Ramsey number, such
that whenever the edges of a complete graph with R(p, q) vertices are colored red and blue,
there is either a complete subgraph with p vertices whose edges are all red, or a complete
subgraph with q vertices whose edges are all blue. (Recall that a complete graph is an
unoriented graph in which any two vertices are connected by an edge.)

Here is a simple problem in Ramsey theory.

Example. Show that if the points of the plane are colored black or white, then there exists an
equilateral triangle whose vertices are colored by the same color.

Solution. Suppose that there exists a configuration in which no monochromatic equilateral
triangle is formed.

Figure 46

Start with two points of the same color, say black. Without loss of generality, we may
assume that they are (1, 0) and (−1, 0). Then (0,

√
3) and (0,−√

3) must both be white.
Consequently, (2, 0) is black, and so (1,

√
3) is white. Then on the one hand, (1, 2

√
3) cannot

be black, and on the other hand it cannot be white, a contradiction. Hence the conclusion.
This argument can be followed easily on Figure 46. �
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We now present a problem from the 2000 Belarus Mathematical Olympiad, which we
particularly liked because the solution contains a nice interplay between combinatorics and
number theory.

Example. LetM = {1, 2, . . . , 40}. Find the smallest positive integer n for which it is possible
to partition M into n disjoint subsets such that whenever a, b, and c (not necessarily distinct)
are in the same subset, a 	= b + c.

Solution. We will show that n = 4. Assume first that it is possible to partition M into three
such sets X , Y , and Z . First trick: order the sets in decreasing order of their cardinalities
as |X | ≥ |Y | ≥ |Z |. Let x1, x2, . . . , x|X | be the elements of X in increasing order. These
numbers, together with the differences xi −x1, i = 2, 3, . . . , |X |, must all be distinct elements
of M . Altogether, there are 2|X |−1 such numbers, implying that 2|X |−1 ≤ 40, or |X | ≤ 20.
Also, 3|X | ≥ |X | + |Y | + |Z | = 40, so |X | ≥ 14.

There are |X | · |Y | ≥ |X | × 1
2 (40− |X |) pairs in X × Y . The sum of the numbers in each

pair is at least 2 and at most 80, a total of 79 possible values. Because 14 ≤ |X | ≤ 20 and the
function f (t) = 1

2 t (40 − t) is concave on the interval [14, 20], we have that
|X |(20 − |X |)

2
≥ min

{
14 · 26

2
,
20 · 20

2

}
= 182 > 2 · 79.

We can use the pigeonhole principle to find three distinct pairs (x1, y1), (x2, y2), (x3, y3) ∈
X × Y with x1 + y1 = x2 + y2 = x3 + y3.

If any of the xi ’s were equal, then the corresponding yi ’s would be equal, which is impos-
sible because the pairs (xi , yi ) are distinct. We may thus assume, without loss of generality,
that x1 < x2 < x3. For 1 ≤ j < k ≤ 3, the value xk − x j in M but cannot be in X because
otherwise x j + (xk − x j ) = xk . Similarly, y j − yk /∈ Y for 1 ≤ j < k ≤ 3. Therefore, the
three common differences x2 − x1 = y1 − y2, x3 − x2 = y2 − y3, and x3 − x1 = y1 − y3 are
in M \ (X ∪ Y ) = Z . However, setting a = x2 − x1, b = x3 − x2, and c = x3 − x1, we have
a + b = c with a, b, c ∈ Z, a contradiction.

Therefore, it is impossible to partition M into three sets with the desired property. Let us
show that this can be done with four sets. The question is how to organize the 40 numbers.

We write the numbers in base 3 as . . . at . . . a3a2a1 with only finitely many digits not
equal to 0. The sets A1, A2, A3, . . . are constructed inductively as follows. A1 consists of all
numbers for which a1 = 1. For k > 1 the set Ak consists of all numbers with ak = 0 that
were not already placed in other sets, together with the numbers that have ak = 1 and ai = 0
for i < k. An alternative description is that Ak consists of those numbers that are congruent
to some integer in the interval

(
1
23

k−1, 3k−1
]
modulo 3k . For our problem,

A1 = {1, 11, 21, 101, 111, 121, 201, 211, 221, 1001, 1011, 1021, 1101, 1111},
A2 = {2, 10, 102, 110, 202, 210, 1002, 1010, 1102, 1110},
A3 = {12, 20, 22, 100, 1012, 1020, 1022, 1100},
A4 = {112, 120, 122, 200, 212, 220, 222, 1000}.
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Using the first description of these sets, we see that they exhaust all positive integers. Using
the second description we see that (Ak + Ak)∩ Ak = ∅, k ≥ 1. Hence A1, A2, A3, A4 provide
the desired example, showing that the answer to the problem is n = 4. �

Remark. In general, for positive integers n and k and a partition of {1, 2, . . . , k} into n sets,
a triple (a, b, c) such that a, b, and c are in the same set and a + b = c is called a Schur
triple. Schur’s theorem proves that for each n there exists a minimal number S(n) such that
for any partition of {1, 2, . . . , S(n)} into n sets one of the sets will contain a Schur triple.
No general formula for S(n) exists although upper and lower bounds have been found. Our
problem proves that S(4) > 40. In fact, S(4) = 45.

We suggest that after solving Problems 1013 and 1014 below, the reader takes a look at
the remark after the solution of the second of these problems given in the second part of the
book. That remark will explain how the problem we just solved is actually a question in graph
theory.

1009. What is the largest number of vertices that a complete graph can have so that its edges
can be colored by two colors in such a way that no monochromatic triangle is formed?

1010. For theRamseynumbers defined above, prove that R(p, q) ≤ R(p−1, q)+R(p, q−1).
Conclude that for p, q ≥ 2,

R(p, q) ≤
(
p + q − 2

p − 1

)
.

1011. A group of people is said to be n-balanced if in any subgroup of 3 people there exists
(at least) a pair acquainted with each other and in any subgroup of n people there exists
(at least) a pair not acquainted with each other. Prove that the number of people in an
n-balanced group has an upper bound, and compute this upper bound for n = 3, 4, 5.

1012. The edges of a complete graph with �k!e� + 1 vertices are colored by k colors. Prove
that there is a triangle whose edges are colored by the same color.

1013. An international society has members from six different countries. The list of members
contains 1978 names, numbered 1, 2, . . . , 1978. Prove that there exists at least one
member whose number is the sum of the numbers of two members from his/her own
country, or twice as large as the number of one member from his/her country.

6.4 Binomial Coefficients and Counting Methods

6.4.1 Combinatorial Identities

The binomial coefficient
(n
k

)
counts the number of ways one can choose k objects from given

n. Binomial coefficients show up in Newton’s binomial expansion

(x + 1)n =
(
n

0

)
xn +

(
n

1

)
xn−1 + · · · +

(
n

n − 1

)
x +

(
n

n

)
.
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Explicitly, (
n

k

)
= n!

k!(n − k)! = n(n − 1) · · · (n − k + 1)

k! if 0 ≤ k ≤ n.

The recurrence relation (
n

k

)
=
(
n − 1

k

)
+
(
n − 1

k − 1

)

allows the binomial coefficients to be arranged in Pascal’s triangle:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Here every entry is obtained by summing the two entries just above it.
Let us familiarize ourselves with Pascal’s triangle with the following problem published

by A. Avramov in the Russian Journal Kvant (Quantum).

Example. In the seventh row of Pascal’s triangle, there are three consecutive binomial coeffi-
cients that form an arithmetic progression, namely 7, 21, 35. Find all rows that contain 3-term
arithmetic progressions.

Solution. Assume that for some n and k,
( n
k−1

)
,
(n
k

)
and

( n
k+1

)
form an arithmetic progression.

This means that

2

(
n

k

)
=
(

n

k − 1

)
+
(

n

k + 1

)
.

Writing

2n!
k!(n − k)! = n!

(k − 1)!(n − k + 1)! + n!
(k + 1)!(n − k − 1)! ,

we obtain, after some cancellations,

4k2 − 4nk + n2 − n − 2 = 0.

We solve this like a quadratic equation in k to obtain

k1,2 = n ± √
n + 2

2
.

We deduce that n + 2 must be a perfect square, say n + 2 = m2. Then the solutions to this
quadratic equation are

k1 = (m + 1)(m − 2)

2
and k2 = (m − 1)(m + 2)

2
.
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The numerators are even numbers in both cases, so these are integers. Note also that since
n ≥ 0 and k ≥ 1, we must have m ≥ 3. In that case both k1 and k2 yield solutions, but they
must be the same solution because of the fact that

(n
k

) = ( n
n−k

)
.

We conclude that the ranks of the rows in which this happens are of the form m2 − 2, with
m ≥ 3. In each row there are exactly two such progressions, one being the other written in
reverse. �

As a corollary we obtain that there are no rows of Pascal’s triangle that contain four-
term arithmetic progressions. And now a problem from the 2001 Hungarian Mathematical
Olympiad.

Example. Let m and n be integers such that 1 ≤ m ≤ n. Prove that m divides the number

n
m−1∑
k=0

(−1)k
(
n

k

)
.

Solution. We would like to express the sum in closed form. To this end, we apply the
recurrence formula for binomial coefficients and obtain

n
m−1∑
k=0

(−1)k
(
n

k

)
= n

m−1∑
k=0

(−1)k
((

n − 1

k

)
+
(
n − 1

k − 1

))

= n
m−1∑
k=0

(−1)k
(
n − 1

k

)
− n

m−2∑
k=0

(−1)k
(
n − 1

k

)

= n(−1)m−1

(
n − 1

m − 1

)
= m(−1)m−1

(
n

m

)
.

The answer is clearly divisible by m. �

The methods used in proving combinatorial identities can be applied to problems outside
the field of combinatorics. As an example, let us take a fresh look at a property that we
encountered elsewhere in the solution to a problem about polynomials.

Example. If k and m are positive integers, prove that the polynomial

(xk+m − 1)(xk+m−1 − 1) · · · (xk+1 − 1)

is divisible by
(xm − 1)(xm−1 − 1) · · · (x − 1)

in the ring of polynomials with integer coefficients.

Solution. Let us analyze the quotient

pk,m(x) = (xk+m − 1)(xk+m−1 − 1) · · · (xk+1 − 1)

(xm − 1)(xm−1 − 1) · · · (x − 1)
,
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which conjecturally is a polynomial with integer coefficients. The main observation is that

lim
x→1

pk,m(x) = lim
x→1

(xk+m − 1)(xk+m−1 − 1) · · · (xk+1 − 1)

(xm − 1)(xm−1 − 1) · · · (x − 1)

= lim
x→1

xk+m − 1

x − 1
· · · x

k+1 − 1

x − 1
· x − 1

xm − 1
· · · x − 1

x − 1

= (k + m)(k + m − 1) · · · (k + 1)

m(m − 1) · · · 1 =
(
k + m

m

)
.

With this in mind, we treat pk,m(x) as some kind of binomial coefficient. Recall that one way

of showing that
(n
m

) = n!
m!(n − m)! is an integer number is by means of Pascal’s triangle. We

will construct a Pascal’s triangle for the polynomials pk,m(x). The recurrence relation
(
k + m + 1

m

)
=
(
k + m

m

)
+
(
k + m

m − 1

)

has the polynomial analogue

(xk+m+1 − 1) · · · (xk+2 − 1)

(xm − 1) · · · (x − 1)
= (xk+m − 1) · · · (xk+1 − 1)

(xm − 1) · · · (x − 1)

+ xk+1 (x
k+m − 1) · · · (xk+2 − 1)

(xm−1 − 1) · · · (x − 1)
.

Now the conclusion follows by induction on m + k, with the base case the obvious

xk+1 − 1

x − 1
= xk + xk−1 + · · · + 1. �

In quantum physics the variable x is replaced by q = ei�, where � is Planck’s constant,
and the polynomials pn−m,m(q) are denoted by

(n
m

)
q
and called quantum binomial coefficients

(or Gauss polynomials). They arise in the context of the Heisenberg uncertainty principle.
Specifically, if P and Q are the linear transformations that describe, respectively, the time
evolution of the momentum and of the position of a particle, then PQ = qQP . The binomial
formula for them reads

(Q + P)n =
n∑

k=0

(
n

k

)
Qk Pn−k .

The recurrence relation we obtained a moment ago,
(
n

m

)
q

=
(
n − 1

m

)
q

+ qn−m

(
n − 1

m − 1

)
q

,

gives rise to what is called the q-Pascal triangle.

1014. Prove that (
2k

k

)
= 2

π

∫ π
2

0
(2 sin θ)2kdθ.
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1015. Consider the triangular n × n matrix

A =

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 . . . 1
0 1 1 . . . 1
0 0 1 . . . 1
...

...
...

. . .
...

0 0 0 . . . 1

⎞
⎟⎟⎟⎟⎟⎠

.

Compute the matrix Ak , k ≥ 1.

1016. Let (Fn)n be the Fibonacci sequence, F1 = F2 = 1, Fn+1 = Fn + Fn−1. Prove that for
any positive integer n,

F1

(
n

1

)
+ F2

(
n

2

)
+ · · · + Fn

(
n

n

)
= F2n.

1017. For an arithmetic sequence a1, a2, . . . , an, . . ., let Sn = a1 + a2 + · · · + an , n ≥ 1.
Prove that

n∑
k=0

(
n

k

)
ak+1 = 2n

n + 1
Sn+1.

1018. Show that for any positive integer n, the number

Sn =
(
2n + 1

0

)
· 22n +

(
2n + 1

2

)
· 22n−2 · 3 + · · · +

(
2n + 1

2n

)
· 3n

is the sum of two consecutive perfect squares.

1019. For a positive integer n define the integers an , bn , and cn by

an + bn
3
√
2 + cn

3
√
4 = (1 + 3

√
2 + 3

√
4)n.

Prove that

2− n
3

n∑
k=0

(
n

k

)
ak =

⎧⎨
⎩
an if n ≡ 0 (mod 3),
bn

3
√
2 if n ≡ 2 (mod 3),

cn
3
√
4 if n ≡ 1 (mod 3).

1020. Prove the analogue of Newton’s binomial formula

[x + y]n =
n∑

k=0

(
n

k

)
[x]k[y]n−k,

where [x]n = x(x − 1) · · · (x − n + 1).

1021. Prove that the quantum binomial coefficients
(n
k

)
q
previously defined satisfy

n∑
k=0

(−1)kq
k(k−1)

2

(
n

k

)
q

= 0.
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6.4.2 Generating Functions

The terms of a sequence (an)n≥0 can be combined into a function

(x) = a0 + a1x + a2x
2 + · · · + anx

n + · · · ,

called the generating function of the sequence. Sometimes this function can be written in
closed form and carries useful information about the sequence. For example, if the sequence
satisfies a second-order linear recurrence, say an+1 + uan + van−1 = 0, then the generating
function satisfies the functional equation

G(x) − a0 − a1x + ux(G(x) − a0) + vx2G(x) = 0.

This equation can be solved easily, giving

G(x) = a0 + (ua0 + a1)x

1 + ux + vx2
.

If r1 and r2 are the roots of the characteristic equation λ2 + uλ + v = 0, then by using the
partial fraction decomposition, we obtain

G(x) = a0 + (ua0 + a1)x

(1 − r1x)(1 − r2x)
= α

1 − r1x
+ β

1 − r2x
=

∞∑
n=0

(αrn1 + βrn2 )xn.

And we recover the general-term formula an = αrn1 + βrn2 , n ≥ 0, where α and β depend on
the initial condition.

It is useful to notice the analogy with the method of the Laplace transform used for solving
linear ordinary differential equations. Recall that the Laplace transform of a function y(t) is
defined as

Ly(s) =
∫ ∞

0
y(t)etsdt.

The Laplace transform applied to the differential equation

y′′ + uy′ + vy = 0

produces the algebraic equation

s2L(y) − y′(0) − sy(0) + u(sL(y) − y(0)) − vL(y) = 0,

with the solution

L(y) = sy(0) + uy(0) + y′(0)
s2 + us + v

.

Again the partial fraction decomposition comes in handy, since we know that the inverse
Laplace transforms of 1

s−r1
and 1

s−r2
are er1x and er2x . The similarity of these two methods is

not accidental, for recursive sequences are discrete approximations of differential equations.
Let us return to problems and look at the classical example of the Catalan numbers.
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Example. Prove that the number of ways one can insert parentheses into a product of n + 1
factors is the Catalan number

Cn = 1

n + 1

(
2n

n

)
.

Solution. Alternatively, the Catalan numberCn is the number of ways the terms of the product
can be grouped for performing the multiplication. This is a better point of view, because the
location of the final multiplication splits the product in two, giving rise to the recurrence
relation

Cn = C0Cn−1 + C1Cn−2 + · · · + Cn−1C0, n ≥ 1.

Indeed, for every k = 0, 1, . . . , n − 1, the first k + 1 terms can be grouped in Ck ways, while
the last n − k terms can be grouped in Cn−k−1 ways. You can recognize that the expression
on the right shows up when the generating function is squared. We deduce that the generating
function satisfies the equation

G(x) = xG(x)2 + 1.

This is a quadratic equation, with two solutions. And because lim
x→0

G(x) = a0, we know

precisely which solution to choose, namely

G(x) = 1 − √
1 − 4x

2x
.

Expanding the square root with Newton’s binomial formula, we have

√
1 − 4x = (1 − 4x)1/2 =

∞∑
n=0

(
1/2

n

)
(−4x)n

=
∞∑
n=0

(
1

2

)(
1

2
− 1

)
· · ·

(
1

2
− n + 1

)

n! (−4x)n

= 1 −
∞∑
n=1

(2n − 3)(2n − 5) · · · 1
n! (2x)n

= 1 − 2
∞∑
n=1

(2n − 2)!
(n − 1)!(n − 1)!

xn

n

= 1 − 2
∞∑
n=1

(
2n − 2

n − 1

)
xn

n
.

Substituting in the expression for the generating function and shifting the index, we obtain

G(x) =
∞∑
n=0

1

n + 1

(
2n

n

)
xn,

which gives the formula for the Catalan number

Cn = 1

n + 1

(
2n

n

)
. �
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The binomial coefficients
(n
k

)
are generated by a very simple function, G(x) = (x + 1)n ,

and variations of this fact can be exploited to obtain combinatorial identities. This is the case
with a problem published in the American Mathematical Monthly by N. Gonciulea.

Example. Prove that
n∑
j=0

(
n

j

)
2n− j

(
j

� j/2�
)

=
(
2n + 1

n

)
.

Solution. Observe that
( j
� j/2�

)
is the constant term in (1 + x)(x−1 + x) j . It follows that the

sum is equal to the constant term in

n∑
j=0

(
n

j

)
2n− j (1 + x)(x−1 + x) j = (1 + x)

n∑
j=0

(
n

j

)
(x−1 + x) j2n− j

= (1 + x)(2 + x−1 + x)n

= 1

xn
(1 + x)(2x + 1 + x2)n = 1

xn
(1 + x)2n+1.

And the constant term in this last expression is
(2n+1

n

)
. �

1022. Find the general-term formula for the sequence (yn)n≥0 with y0 = 1 and yn = ayn−1+bn

for n ≥ 1, where a and b are two fixed distinct real numbers.

1023. Compute the sums
n∑

k=1

k

(
n

k

)
and

n∑
k=1

1

k + 1

(
n

k

)
.

1024. (a) Prove the identity (
m + n

k

)
=

k∑
j=0

(
m

j

)(
n

k − j

)
.

(b) Prove that the quantum binomial coefficients defined in the previous section satisfy
the identity (

m + n

k

)
q

=
k∑
j=0

q(m− j)(k− j)

(
m

j

)
q

(
n

k − j

)
q

.

1025. Compute the sum

(
n

0

)
−
(
n

1

)
+
(
n

2

)
− · · · + (−1)m

(
n

m

)
.

1026. Write in short form the sum
(
n

k

)
+
(
n + 1

k

)
+
(
n + 2

k

)
+ · · · +

(
n + m

k

)
.
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1027. Prove that the Fibonacci numbers satisfy

Fn+1 =
(
n

0

)
+
(
n − 1

1

)
+
(
n − 2

2

)
+ · · ·

1028. Denote by P(n) the number of partitions of the positive integer n, i.e., the number of
ways of writing n as a sum of positive integers. Prove that the generating function of
P(n), n ≥ 1, is given by

∞∑
n=0

P(n)xn = 1

(1 − x)(1 − x2)(1 − x3) · · ·
with the convention P(0) = 1.

1029. Prove that the number of ways of writing n as a sum of distinct positive integers is
equal to the number of ways of writing n as a sum of odd positive integers.

1030. Let p be an odd prime number. Find the number of subsets of {1, 2, . . . , p} with the
sum of elements divisible by p.

1031. For a positive integer n, denote by S(n) the number of choices of the signs “+′′ or “−′′
such that ±1 ± 2 ± · · · ± n = 0. Prove that

S(n) = 2n−1

π

∫ 2π

0
cos t cos 2t · · · cos ntdt.

1032. The distinct positive integers a1, a2, . . . , an , b1, b2, . . . , bn , with n ≥ 2, have the prop-
erty that the

(n
2

)
sums ai + a j are the same as the

(n
2

)
sums bi + b j (in some order).

Prove that n is a power of 2.

1033. Let A1, A2, . . . , An, . . . and B1, B2, . . . , Bn, . . . be sequences of sets defined by A1 =
∅, B1 = {0}, An+1 = {x + 1 | x ∈ Bn}, Bn+1 = (An ∪ Bn) \ (An ∩ Bn). Determine all
positive integers n for which Bn = {0}.

6.4.3 Counting Strategies

We illustrate how some identities can be proved by counting the number of elements of a set in
two different ways. For example, we give a counting argument to the well-known reciprocity
law, which we have already encountered in Section 5.1.3, of the greatest integer function.

Example. Given p and q coprime positive integers, prove that
⌊
p

q

⌋
+
⌊
2p

q

⌋
+ · · · +

⌊
(q − 1)p

q

⌋
=
⌊
q

p

⌋
+
⌊
2q

p

⌋
+ · · · +

⌊
(p − 1)q

p

⌋
.

Solution. Let us look at the points of integer coordinates that lie inside the rectangle with
vertices O(0, 0), A(q, 0), B(q, p), C(0, p) (see Figure 47). There are (p − 1)(q − 1) such
points. None of them lies on the diagonal OB because p and q are coprime. Half of them lie
above the diagonal and half below.

http://dx.doi.org/10.1007/978-3-319-58988-6_5
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O A(q,0)

B(q,p)C(0,p)

Figure 47

Now let us count by a different method the points underneath the line OB. The equation
of this line is y = p

q x . For each 0 < k < q on the vertical segment x = k there are �kp/q�
points below OB. Summing up, we obtain

⌊
p

q

⌋
+
⌊
2p

q

⌋
+ · · · +

⌊
(q − 1)p

q

⌋
= (p − 1)(q − 1)

2
.

The expression on the right remains unchanged if we switch p and q, which proves the
identity. �

Next, a combinatorial identity.

Example. Let m and n be two integers, m ≤ n − 1

2
. Prove the identity

n−1
2∑

k=m

(
n

2k + 1

)(
k

m

)
= 2n−2m−1

(
n − m − 1

m

)
.

Solution. The solution is a “Fubini-type” argument (counting the same same thing in two
different ways). Consider the set P of pairs (A, B), where A is a subset of {1, 2, . . . , n} with
an odd number of elements a1 < a2 < · · · < a2k+1 and B is a subset of {a2, a4, . . . , a2k−2, a2k}
with m elements b1 < b2 < · · · < bm .

For a given k there are
( n
2k+1

)
such subsets A, and for each A there are

( k
m

)
subsets B, so

the left-hand side of the identity is the number of elements of P counted by choosing A first.
Let us count the same number choosing B first. Note that if (A, B) ∈ P , then B contains

no pairs of consecutive numbers. More precisely, B = {b1, b2, . . . , bm} ⊂ {2, 3, . . . , n − 1}
with bi+1 − bi ≥ 2.

Fix B0, a set with this property. We want to count the number of pairs (A, B0) in X .
Choose c0, c1, . . . , cm such that

1 ≤ c0 ≤ b1 < c1 < b2 < · · · < bi < ci < bi+1 < · · · < bm < cm ≤ n.

Then for any subset E of {1, 2, . . . , n} \ {c0, b1, c1, b2, . . . , bm, cm} there is a unique A such
that (A, B0) ∈ P and

E = A ∩ ({1, 2, . . . , n}\{c0, b1, c1, b2, . . . , bm, cm}).
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Indeed, if (A, B0) ∈ P and E ⊂ A we have to decide which ci ’s are in A. Since the
set Di = {x ∈ A | bi < x < bi+1} must contain an odd number of elements for each
0 ≤ i ≤ m + 1 (with b0 = 0, bm+1 = n + 1), and the set Di is either {x ∈ E | bi < x < bi+1}
or {x ∈ E | bi < x < bi+1} ∪ {ci }, the parity condition on the cardinality of Di decides
whether ci belongs to A. It is now clear that the number of pairs (A, B0) in P is the same as
the number of subsets of {1, 2, . . . , n} \ {c0, b1, . . . , bm, cm} and the latter is 2n−2m−1.

How many subsets B with m elements of {2, 3, . . . , n − 1} do not contain consecutive
numbers? If B = {b1 < b2 < · · · < bm} is such a set, let B ′ = {b1 − 1, b2 − 2, . . . , bm −m}.
It is easy to see that B ′ is an (arbitrary) subset of {1, 2, . . . , n −m − 1} with m elements, and
for each such subset B ′ = {b′

1 < b′
2 < · · · < b′

m}, by letting bi = b′
i + i , we obtain a set B

as above. Hence the number of such B’s is
(n−m−1

m

)
, and by choosing B first we count the

number of elements in P as 2n−2m−1
(n−m−1

m

)
. The identity is proved. �

Using similar ideas solve the following problems.

1034. Find in closed form

1 · 2
(
n

2

)
+ 2 · 3

(
n

3

)
+ · · · + (n − 1) · n

(
n

n

)
.

1035. Prove the combinatorial identity

n∑
k=1

k

(
n

k

)2

= n

(
2n − 1

n − 1

)
.

1036. Prove the identity
m∑

k=0

(
m

k

)(
n + k

m

)
=

m∑
k=0

(
m

k

)(
n

k

)
2k .

1037. For integers 0 ≤ k ≤ n, 1 ≤ m ≤ n, prove the identity

m∑
i=0

(
m

i

)(
n − i

k

)
=

m∑
i=0

(
m

i

)(
n − m

k − i

)
2m−i .

1038. Show that for any positive integers p and q,

q∑
k=0

1

2p+k

(
p + k

k

)
+

p∑
k=0

1

2q+k

(
q + k

k

)
= 2.

1039. Let cn = ( n
�n/2�

)
. Prove that

n∑
k=0

(
n

k

)
ckcn−k = cncn+1.
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1040. Let p and q be odd, coprime positive integers. Set p′ = p−1
2 and q ′ = q−1

2 . Prove the
identity
(⌊

q

p

⌋
+
⌊
2q

p

⌋
+ · · · +

⌊
p′q
p

⌋)
+
(⌊

p

q

⌋
+
⌊
2p

q

⌋
+ · · · +

⌊
q ′ p
p

⌋)
= p′q ′.

Now we turn to more diverse counting arguments.

Example. What is the number of ways of writing the positive integer n as an ordered sum of
m positive integers?

Solution. This is a way of saying that we have to count the number of m-tuples of positive
integers (x1, x2, . . . , xm) satisfying the equation x1 + x2 + · · · + xm = n. These m-tuples are
in one-to-one correspondence with the strictly increasing sequences 0 < y1 < y2 < · · · <

ym = n of positive integers, with the correspondence given by y1 = x1, y2 = x1 + x2, . . .,
ym = x1 + x2 + · · · + xm . The numbers y1, y2, . . . , ym−1 can be chosen in

(n−1
m−1

)
ways from

1, 2, . . . , n − 1. Hence the answer to the question is
(n−1
m−1

)
.

This formula can also be proved using induction on m for arbitrary n. The case m = 1 is
obvious. Assume that the formula is valid for partitions of any positive integer into k ≤ m
positive integers, and let us prove it for partitions into m + 1 positive integers. The equation
x1 + x2 + · · · + xm + xm+1 = n can be written as

x1 + x2 + · · · + xm = n − xm+1.

As xm+1 ranges among 1, 2, . . . , n−m, we are supposed to count the total number of solutions
of the equations x1 + x2 + · · · + xm = r , with r = m, m + 1, . . ., n − 1. By the induction
hypothesis, this number is

n−1∑
r=m

(
r − 1

m − 1

)
.

We have seen in Section 6.4.2 that this number is equal to
(n−1
m−1

)
. This equality can also be

proved using Pascal’s triangle as follows:
(
m − 1

n − 1

)
+
(

m

m − 1

)
+ · · · +

(
n − 2

m − 1

)
=
(
m

m

)
+
(

m

m − 1

)
+ · · · +

(
n − 2

m − 1

)

=
(
m + 1

m

)
+
(
m + 1

m − 1

)
+ · · · +

(
n − 2

m − 1

)

=
(
m + 2

m

)
+ · · · +

(
n − 2

m − 1

)
= · · ·

=
(
n − 2

m

)
+
(
n − 2

m − 1

)
=
(
n − 1

m

)
.

This proves that the formula is true for m + 1, and the induction is complete. �

Example. There are n students at a university, n an odd number. Some students join together
to form several clubs (a student may belong to different clubs). Some clubs join together
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to form several societies (a club may belong to different societies). There are k societies.
Suppose that the following hold:

(i) each pair of students is in exactly one club,

(ii) for each student and each society, the student is in exactly one club of the society,

(iii) each club has an odd number of students; in addition, a club with 2m + 1 students
(m > 0) is in exactly m societies.

Find all possible values of k.

Solution. This is a short-listed problem from the 45th International Mathematical Olympiad,
2004, proposed by Puerto Rico, which was given a year later at an Indian team selection test.
Here is an ingenious approach found by one of the Indian students, R. Shah.

Fix a student x and list the clubs to which the student belongs: C1,C2, . . . ,Cr . If Ci

has 2mi + 1 students, then it belongs to mi societies. Condition (ii) implies that for i 	= j
the societies to which Ci belongs are all different from the societies to which C j belongs.
Moreover, condition (ii) guarantees that any societywill contain oneof the clubsCi . Therefore,
m1 + m2 + · · · + mr = k.

From condition (i) we see that any two clubsCi andC j have in common exactly the student
x . Therefore, in C1,C2, . . . ,Cr there are altogether 2(m1 + m2 + · · · + mr ) + 1 students.
But these are all the students, because by condition (i) any other student is in some club with
x . We obtain

2(m1 + m2 + · · · + mr ) + 1 = 2k + 1 = n.

Hence k = n−1
2 is the only possibility. And this situation can be achieved when all students

belong to one club, which then belongs to n−1
2 societies. �

Here is a third example.

Example. On an 8× 8 chessboard whose squares are colored black and white in an arbitrary
way we are allowed to simultaneously switch the colors of all squares in any 3× 3 and 4× 4
region. Can we transform any coloring of the board into one where all the squares are black?

Solution. We claim that the answer is no. It is a matter of counting into how many regions
can an all-black board be transformed by applying the two moves several times. The total
number of 3 × 3 regions is (8 − 2) × (8 − 2) = 36, which is the same as the number of
moves in which the colors in a 3 × 3 region are switched. As for the 4 × 4 regions, there are
(8 − 3) × (8 − 3)25 of them. Hence the total number of colorings that can be obtained from
an all-black coloring by applying the specified operations does not exceed

236 × 225 = 261.

This number is less than the total number of colorings, which is 264. Hence there are colorings
that cannot be achieved. Since the operations are reversible, this actually proves our claim. �

And now the problems.
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1041. Two hundred students took part in a mathematics contest. They had 6 problems to
solve. It is known that each problem was correctly solved by at least 120 participants.
Prove that there exist two participants such that every problem was solved by at least
one of them.

1042. Prove that the number of nonnegative integer solutions to the equation

x1 + x2 + · · · + xm = n

is equal to
(m+n−1

m−1

)
.

1043. Find the number of subsets of the set {1, 2, . . . , n}, including the empty set, that do not
contain two consecutive integers.

1044. Consider a polyhedron whose faces are triangles. Color the vertices by n ≥ 3 colors.
Prove that the number of faces with vertices colored by three different colors is even.

1045. A number n of tennis players take part in a tournament in which each of them plays
exactly one game with each of the others. If xi and yi denote the number of victories,
respectively, losses, of the i th player, i = 1, 2, . . . , n, show that

x21 + x22 + · · · + x2n = y21 + y22 + · · · + y2n .

1046. Let A be a finite set and f and g two functions on A. Let m be the number of pairs
(x, y) ∈ A× A for which f (x) = g(y), n the number of pairs for which f (x) = f (y),
and k the number of pairs for which g(x) = g(y). Prove that

2m ≤ n + k.

1047. A set S containing four positive integers is called connected if for every x ∈ S at least
one of the numbers x − 1 and x + 1 belongs to S. Let Cn be the number of connected
subsets of the set {1, 2, . . . , n}.
(a) Evaluate C7.
(b) Find a general formula for Cn .

1048. Prove that the set of numbers {1, 2, . . . , 2005} can be colored with two colors such that
any of its 18-term arithmetic sequences contains both colors.

1049. For A = {1, 2, . . . , 100} let A1, A2, . . . , Am be subsets of Awith four elementswith the
property that any two have at most two elements in common. Prove that if m ≥ 40425
then among these subsets there exist 49 whose union is equal to A but with the union
of any 48 of them not equal to A.

1050. Let S be a finite set of points in the plane. A linear partition of S is an unordered pair
{A, B} of subsets of S such that A ∪ B = S, A ∩ B = ∅, and A and B lie on opposite
sides of some straight line disjoint from S (A or B may be empty). Let LS be the
number of linear partitions of S. For each positive integer n, find the maximum of LS

over all sets S of n points.
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1051. Let A be a 101-element subset of the set S = {1, 2, . . . , 1000000}. Prove that there
exist numbers t1, t2, . . . , t100 in S such that the sets

A j = {x + t j | x ∈ A}, j = 1, 2, . . . , 100,

are pairwise disjoint.

1052. Given a set A with n2 elements, n ≥ 2, and F a family of subsets of A each of which
has n elements, suppose that any two sets of F have at most one element in common.

(a) Prove that there are at most n2 + n sets in F .
(b) In the case n = 3, show with an example that this bound can be reached.

1053. A sheet of paper in the shape of a square is cut by a line into two pieces. One of the
pieces is cut again by a line, and so on. What is the minimum number of cuts one
should perform such that among the pieces one can find one hundred polygons with
twenty sides?

1054. Twenty-one girls and twenty-one boys took part in a mathematics competition. It
turned out that
(i) each contestant solved at most six problems, and
(ii) for each pair of a girl and a boy, there was at least one problem that was solved by
both the girl and the boy.
Show that there is a problem that was solved by at least three girls and at least three
boys.

1055. Is it possible to color the squares of a rectangular grid by black and white such that
there are as many black squares as white squares and on each row and column more
than 3/4 of the squares are of the same color?

6.4.4 The Inclusion-Exclusion Principle

A particular counting method that we emphasize is the inclusion-exclusion principle, also
known as the Boole-Sylvester formula. It concerns the counting of the elements in a union of
sets A1 ∪ A2 ∪ · · · ∪ An , and works as follows. If we simply wrote

|A1 ∪ A2 ∪ · · · ∪ An| = |A1| + |A2| + · · · + |An|,

we would overcount the elements in the intersections Ai ∩ A j . Thus we have to subtract
|A1 ∩ A2| + |A1 ∩ A3| + · · · + |An−1 ∩ An|. But then the elements in the triple intersections
Ai ∩ A j ∩ Ak were both added and subtracted. We have to put them back. Therefore, we
must add |A1 ∩ A2 ∩ A3| + · · · + |An−2 ∩ An−1 ∩ An|. And so on. The final formula is

|A1 ∪ A2 ∪ · · · ∪ An| =
∑
i

|Ai | −
∑
i, j

|Ai ∩ A j | + · · · + (−1)n−1|A1 ∩ A2 ∩ · · · ∩ An|.

Example. How many integers less than 1000 are not divisible by 2, 3, or 5?
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Solution. To answer the question, we will count instead how many integers between 1 and
1000 are divisible by 2, 3, or 5. Denote by A2, A3, and A5 be the sets of integers divisible by
2, 3, respectively, 5. The Boole-Sylvester formula counts |A2 ∪ A3 ∪ A5| as

|A2| + |A3| + |A5| − |A2 ∩ A3| − |A2 ∩ A5| − |A3 ∩ A5| + |A2 ∩ A3 ∩ A5|

=
⌊
1000

2

⌋
+
⌊
1000

3

⌋
+
⌊
1000

5

⌋
−
⌊
1000

6

⌋
−
⌊
1000

10

⌋
−
⌊
1000

15

⌋
+
⌊
1000

30

⌋

= 500 + 333 + 200 − 166 − 100 − 66 + 33 = 734.

It follows that there are 1000− 734 = 266 integers less than 1000 that are not divisible by 2,
3, or 5. �

Example. How many colorings of the faces of the cube by 6 different colors exist? (Two
colorings are the same if they coincide after a rotation.)

Solution. Let three of the colors be red, blue, green. Look at the red face. It is adjacent to
either the blue face or the green face, since the opposite face can only be of one color.

Assume that red is adjacent to blue. The other four faces can be colored in 4×3×2×1 = 24
ways, and any two ways are distinct, since once the location of adjacent red and blue faces
is fixed, the cube is rigid. If the red is adjacent to green, there are also 24 ways to color the
other four faces.

But blue and green can be simultaneously adjacent to red. The can be opposite to each
other, and then there are 3 × 2 × 1 = 6 ways to color the other three faces, and the colorings
are distinct since fixing the locations of the red, blue, and green faces makes the cube rigid.
Or the red-blue-green faces can be pairwise adjacent, in which case, modulo a rotation, we
have two possibilities: they lie in the xy, yz, xz planes or they lie in the xy, xz, yz planes,
respectively. For each of the two situations the other faces can be colored in 3 × 2 × 1 = 6
ways, and the colorings are distinct. So when the blue and the green faces are adjacent to the
red face, then we have 6 + 6 + 6 = 18 colorings.

We conclude that the number of colorings of the faces of the cube is

24 + 24 − 18 = 30.

Here at the last step we applied the inclusion-exclusion principle. �

The third example comes from I. Tomescu’s book Problems in Combinatorics (Wiley,
1985).

Example. An alphabet consists of the letters a1, a2, . . . , an . Prove that the number of all
words that contain each of these letters twice, but with no consecutive identical letters, is
equal to

1

2n

[
(2n)! −

(
n

1

)
2(2n − 1)! +

(
n

2

)
22(2n − 2)! − · · · + (−1)n2nn!

]
.
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Solution. The number of suchwordswithout imposing the restriction about consecutive letters
is

(2n)!
(2!)n = (2n)!

2n
.

This is so because the identical letters can be permuted.
Denote by Ai the number of words formed with the n letters, each occurring twice, for

which the two letters ai appear next to each other. The answer to the problem is then

(2n)!
2n

− |A1 ∪ A2 ∪ · · · ∪ An|.

We evaluate |A1 ∪ A2 ∪ · · · ∪ An| using the inclusion-exclusion principle. To this end,
let us compute |Ai1 ∩ Ai2 ∩ · · · ∩ Aik | for some indices i1, i2, . . . , ik , k ≤ n. Collapse the
consecutive letters ai j , j = 1, 2, . . . , k. As such, we are, in fact, computing the number of
words made of the letters a1, a2, . . . , an in which ai1, ai2, . . . , aik appear once and all other
letters appear twice. This number is clearly equal to

(2n − k)!
2n−k

,

since such a word has 2n − k letters, and identical letters can be permuted. There are
(n
k

)
k-tuples (i1, i2, . . . , ik). We thus have

|A1 ∪ A2 ∪ · · · ∪ An| =
∑
k

∑
i1...ik

(−1)k−1|Ai1 ∩ Ai2 ∩ · · · ∩ Aik |

=
∑
k

(−1)k−1

(
n

k

)
(2n − k)!
2n−k

,

and the formula is proved. �

1056. Let m, n, p, q, r, s be positive integers such that p < r < m and q < s < n. In
how many ways can one travel on a rectangular grid from (0, 0) to (m, n) such that at
each step one of the coordinates increases by one unit and such that the path avoids the
points (p, q) and (r, s)?

1057. Let E be a set with n elements and F a set with p elements, p ≤ n. How many
surjective (i.e., onto) functions f : E → F are there?

1058. A permutation σ of a set S is called a derangement if it does not have fixed points, i.e.,
if σ(x) 	= x for all x ∈ S. Find the number of derangements of the set {1, 2, . . . , n}.

1059. Given a graph with n vertices, prove that either it contains a triangle, or there exists a
vertex that is the endpoint of at most

⌊
n
2

⌋
edges.

1060. In the plane are given two closed polygonal lines, eachwith an odd number of segments,
so that the lines of support of the sides are distinct and no three such lines intersect.
Show that one can choose one side of the first polygonal line and one side of the second,
so that they are the opposite sides of a convex quadrilateral.



330 6 Combinatorics and Probability

1061. Let m ≥ 5 and n be given positive integers, and suppose that P is a regular (2n + 1)-
gon. Find the number of convex m-gons having at least one acute angle and having
vertices exclusive among the vertices of P .

1062. Let S1 = {z ∈ C | |z| = 1}. For all functions f : S1 → S1 set f 1 = f and
f n+1 = f ◦ f n , n ≥ 1. Call w ∈ S1 a periodic point of f of period n if f i (w) 	= w for
i = 1, . . . , n − 1 and f n(w) = w. If f (z) = zm , m a positive integer, find the number
of periodic points of f of period 1989.

1063. For positive integers x1, x2, . . . , xn denote by [x1, x2, . . . , xn] their least common mul-
tiple and by (x1, x2, . . . , xn) their greatest common divisor. Prove that for positive
integers a, b, c,

[a, b, c]2
[a, b][b, c][c, a] = (a, b, c)2

(a, b)(b, c)(c, a)
.

1064. A 150 × 324 × 375 rectangular solid is made by gluing together 1 × 1 × 1 cubes. An
internal diagonal of this solid passes through the interiors of howmany of the 1×1×1
cubes?

6.5 Probability

6.5.1 Equally Likely Cases

In this section we consider experiments with finitely many outcomes each of which can occur
with equal probability. In this case the probability of an event A is given by

P(A) = number of favorable outcomes

total number of possible outcomes
.

The computation of the probability is purely combinatorial; it reduces to a counting problem.
We start with the example that gave birth to probability theory.

Example. Show that the probability of getting a six when a die is rolled four times is greater
than the probability of getting a double six when two dice are rolled 24 times.

Here is a brief history of the problem. Chevalier de Méré, a gambler of the seventeenth
century, observed while gambling that the odds of getting a six when rolling a die four times
seem to be greater than 1

2 , while the odds of getting a double six when rolling two dice 24
times seem to be less than 1

2 . De Méré thought that this contradicted mathematics because
4
6 = 24

36 . He posed this question to B. Pascal and P. Fermat. They answered the question…and
probability theory was born. Let us see the solution.

Solution. The probability that a six does not occur when rolling a die four times is
(
5
6

)4
, and

so the probability that a six occurs is 1 − (
5
6

)4 ≈ 0.5177. The probability that a double six

does not occur when rolling two dice 24 times is
(
35
36

)24
, whence the probability that a double

six occurs is 1 − (
35
36

)24 ≈ 0.4914. The second number is smaller. �
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Example. Consider n indistinguishable balls randomly distributed in m boxes. What is the
probability that exactly k boxes remain empty?

Solution. Number the boxes 1, 2, . . . ,m and let xi be the number of balls in the i th box. The
number of ways one can distribute n balls in m boxes is equal to the number of nonnegative
integer solutions to the equation

x1 + x2 + · · · + xm = n.

These solutions were counted in problem 1042 from Section 6.4.3 and were found to be(m+n−1
m−1

)
. This is the total number of cases.

If we fix k boxes and distribute the balls in the remaining n − k boxes such that each box
receives at least one ball, then the number of ways to do this is equal to the number of positive
integer solutions to the equation

x1 + x2 + · · · + xm−k = n.

This was also computed in one of the examples from Section 6.4.3 and was shown to be( n−1
m−k−1

)
. The k boxes can be chosen in

(m
k

)
ways. We find the number of favorable cases to

be
(m
k

)( n−1
m−k−1

)
. The required probability is therefore

(m
k

)( n−1
m−k−1

)
(m+n−1

m−1

) .

�

If you grab n balls and place them one at a time randomly in boxes, you will find that
they do not seem to fit the probabilities just calculated. This is because they are not really
indistinguishable balls: the order of placement and the fact that they are macroscopic balls
makes them distinguishable. However, this example does correspond to a real world situation,
namely that about particles and states. The above considerations apply to bosons, particles
that obey the Bose-Einstein statistics, which allows several particles to occupy the same state.
Examples of bosons are photons, gluons, and the helium-4 atom. Electrons and protons, on
the other hand, are fermions. They are subject to the Pauli exclusion principle: at most one
can occupy a certain state. As such, fermions obey what is called the Fermi-Dirac statistics.

A third problem comes from C. Reischer, A. Sâmboan, Collection of Problems in Proba-
bility Theory andMathematical Statistics (Editura Didactică şi Pedagogică, Bucharest, 1972).
It shows how probabilities can be used to prove identities.

Example. Prove the identity

1 + n

m + n − 1
+ · · · + n(n − 1) · · · 1

(m + n − 1)(m + n − 2) · · ·m = m + n

m
.
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Solution. Consider a box containing n white balls and m black balls. Let Ai be the event of
extracting the first white ball at the i th extraction. We compute

P(A1) = m

m + n
,

P(A2) = n

m + n
· m

m + n − 1
,

P(A3) = n

m + n
· n − 1

m + n − 1
· m

m + n − 2
,

. . .

P(Am) = n

m + n
· n − 1

m + n − 1
· · · 1

m + 1
.

The events A1, A2, A3, . . . are disjoint, and therefore

1 = P(A1) + P(A2) + · · · + P(Am)

= m

m + n

[
1 + n

m + n − 1
+ · · · + n(n − 1) · · · 1

(m + n − 1)(m + n − 2) · · ·m
]

.

The identity follows. �

Because it will be needed in several problems, let us recall the following definition.

Definition. The expected value of an experiment X with possible outcomes a1, a2, . . . , an is
the weighted mean

E[X ] = a1P(X = a1) + a2P(X = a2) + · · · + an P(X = an).

If X is distributed in a “geometric” domain (like in the last section of this chapter), with
probability density p(x), then the expected value is

E[X ] =
∫

xp(x)dx .

So let us see the problems.

1065. Let v and w be distinct, randomly chosen roots of the equation z1997 − 1 = 0. Find the

probability that
√
2 + √

3 ≤ |v + w|.
1066. Find the probability that in a group of n people there are two with the same birthday.

Ignore leap years.

1067. A solitaire game is played as follows. Six distinct pairs of matched tiles are placed in
a bag. The player randomly draws tiles one at a time from the bag and retains them,
except that matching tiles are put aside as soon as they appear in the player’s hand.
The game ends if the player ever holds three tiles, no two of which match; otherwise,
the drawing continues until the bag is empty. Find the probability that the bag will be
emptied.
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1068. An urn contains n balls numbered 1, 2, . . . , n. A person is told to choose a ball and then
extract m balls among which is the chosen one. Suppose he makes two independent
extractions, where in each case he chooses the remaining m − 1 balls at random. What
is the probability that the chosen ball can be determined?

1069. A bag contains 1993 red balls and 1993 black balls. We remove two balls at a time
repeatedly and

(i) discard them if they are of the same color,
(ii) discard the black ball and return to the bag the red ball if they are of different

colors.

What is the probability that this process will terminate with one red ball in the bag?

1070. The numbers 1, 2, 3, 4, 5, 6, 7, and 8 are written on the faces of a regular octahedron
so that each face contains a different number. Find the probability that no two consec-
utive numbers are written on faces that share an edge, where 8 and 1 are considered
consecutive.

1071. What is the probability that a permutation of the first n positive integers has the numbers
1 and 2 within the same cycle.

1072. An unbiased coin is tossed n times. Find a formula, in closed form, for the expected
value of |H − T |, where H is the number of heads, and T is the number of tails.

1073. Prove the identities
n∑

k=1

1

(k − 1)!
n−k∑
i=0

(−1)i

i ! = 1,

n∑
k=1

1

(k − 1)!
n−k∑
i=0

(−1)i

i ! = 2.

6.5.2 Establishing Relations Among Probabilities

Weadopt the usual notation: P(A) is the probability of the event A, P(A∩B) is the probability
that A and B occur simultaneously, P(A ∪ B) is the probability that either A or B occurs,
P(A − B) is the probability that A occurs but not B, and P(A/B) is the probability that A
occurs given that B also occurs.

Recall the classical formulas:

• addition formula:

P(A ∪ B) = P(A) + P(B) − P(A ∩ B);
• multiplication formula:

P(A ∩ B) = P(A)P(B/A);
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• total probability formula: if Bi ∩ Bj = ∅, i, j = 1, 2, . . . , n (meaning that they are
independent), and A ⊂ B1 ∪ B2 ∪ · · · ∪ Bn , then

P(A) = P(A/B1)P(B1) + P(A/B2)P(B2) + · · · + P(A/Bn)P(Bn);

• Bayes’ formula: with the same hypothesis,

P(Bi/A) = P(A/Bi )P(Bi )

P(A/B1)P(B1) + P(A/B2)P(B2) + · · · + P(A/Bn)P(Bn)
.

In particular, if B1, B2, . . . , Bn cover the entire probability field, then

P(Bi/A) = P(Bi )

P(A)
P(A/Bi ).

The Bernoulli scheme. As a result of an experiment either the event A occurs with probability
p or the contrary event A occurs with probability q = 1 − p. We repeat the experiment n
times. The probability that A occurs exactly m times is

(n
m

)
pmqn−m . This is also called the

binomial scheme because the generating function of these probabilities is (q + px)n .

The Poisson scheme. We perform n independent experiments. For each k, 1 ≤ k ≤ n, in the
kth experiment the event A can occur with probability pk , or A can occur with probability
qk = 1 − pk . The probability that A occurs exactly m times while the n experiments are
performed is the coefficient of xm in the expansion of

(p1x + q1)(p2x + q2) · · · (pnx + qn).

Here is a problem from the 1970 Romanian Mathematical Olympiad that applies the
Poisson scheme.

Example. In a selection test, each of three candidates receives a problem sheetwith n problems
from algebra and geometry. The three problem sheets contain, respectively, one, two, and
three algebra problems. The candidates choose randomly a problem from the sheet and answer
it at the blackboard. What is the probability that

(a) all candidates answer geometry problems;
(b) all candidates answer algebra problems;
(c) at least one candidate answers an algebra problem?

Solution. We apply the Poisson scheme. Define the polynomial

P(x) =
(
1

m
x + n − 1

n

)(
2

n
x + n − 2

n

)(
3

n
x + n − 3

n

)

= 1

n3
[6x3 + (11n − 18)x2 + (6n2 − 22n + 18)x + (n − 1)(n − 2)(n − 3)]

= P3x
3 + P2x

2 + P1x + P0.
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The answer to question (a) is the free term

P0 = (n − 1)(n − 2)(n − 3)

n3
.

The answer to (b) is the coefficient of x3, namely,

P3 = 6

n3
.

The answer to (c) is

P = 1 − P0 = 6n2 − 11n + 6

n3
. �

And now another problem posed to Pascal and Fermat by the Chevalier de Méré.

Example. Two players repeatedly play a game in which the first wins with probability p and
the second wins with probability q = 1 − p. They agree to stop when one of them wins a
certain number of games. They are forced to interrupt their game when the first player has a
more games to win and the second player has b more games to win. How should they divide
the stakes correctly? Use the answer to prove the combinatorial identities

pa
b−1∑
k=0

(
a − 1 + k

a − 1

)
qk + qb

a−1∑
k=0

(
b − 1 + k

b − 1

)
pk = 1,

pa
b−1∑
k=0

(
a − 1 + k

a − 1

)
qk = (a + b − 1)!

a!(b − 1)! paqb−1

[
1 +

b−1∑
k=1

(b − 1) · · · (b − k)

(a + 1) · · · (a + k)

(
p

q

)k
]

.

Solution. Call P the probability that the first player wins the a remaining games before the
second player wins the b games he needs, and Q = 1 − P , the probability that the second
player wins b games before the first wins a. The players should divide the stakes in the ratio
P
Q .

We proceed with the computation of P . The first player could have won the a games in
several mutually exclusive ways: in exactly a games, in exactly a + 1 games,…, in exactly
a + b − 1 games. In all cases the last game should be won by the first player.

Let us find the probability that thefirst playerwins in exactlya+k games, k = 0, 1, . . . , b−
1. The probability that the first player wins a−1 games out of a+k−1 is computed using the
Bernoulli scheme and is equal to

(a+k−1
a−1

)
pa−1qk , and the probability of winning the (a + k)th

is p. The probability of winning in exactly a + k games is the product of the two, namely(a+k−1
a−1

)
paqk .

We deduce that the probability of the first player winning the stakes is

P =
b−1∑
k=0

(
a + k − 1

a − 1

)
paqk,

while for the second player this is

Q = qb
a−1∑
k=0

(
b − 1 + k

b − 1

)
pk .



336 6 Combinatorics and Probability

The stakes should be divided in the ratio

P

Q
=

pa
b−1∑
k=0

(
a − 1 + k

a − 1

)
qk

qb

a−1∑
k=0

(
b − 1 + k

b − 1

)
pk

.

The first combinatorial identity is equivalent to P + Q = 1. For the second combinatorial
identity, we look for a different way to compute P . Observe that after at most a + b − 1
games have been played, the winner is known. Let us assume that regardless of the results,
the players kept playing all the a + b− 1 games. If the first player had won at least a of these
games, he would have won the stakes as well. Hence P is the probability that the first player
won a, a + 1, . . ., a + b − 1 of the final a + b − 1 games. Each of these is computed using
the Bernoulli scheme, and P is their sum, since the events are incompatible. We obtain

P =
b−1∑
k=0

(
a + b − 1

a + k

)
pa+kqb−1−k

= (a + b − 1)!
a!(b − 1)! paqb−1

[
1 +

b−1∑
k=1

(b − 1) · · · (b − k)

(a + 1) · · · (a + k)

(
p

q

)k
]

.

The second identity follows by equating the two formulas that we obtained for P . �

This is yet another example of how probability theory can be used to prove identities.
Since “wisdom is the daughter of experience” (Leonardo da Vinci), we let you train your
probabilistic skills with the following problems.

1074. An exam consists of 3 problems selected randomly from a list of 2n problems, where
n is an integer greater than 1. For a student to pass, he needs to solve correctly at least
two of the three problems. Knowing that a certain student knows how to solve exactly
half of the 2n problems, find the probability that the student will pass the exam.

1075. The probability that a woman has breast cancer is 1%. If a woman has breast cancer,
the probability is 60% that she will have a positive mammogram. However, if a woman
does not have breast cancer, the mammogram might still come out positive, with a
probability of 7%. What is the probability for a woman with positive mammogram to
actually have cancer?

1076. Find the probability that in the process of repeatedly flipping a coin, one will encounter
a run of 5 heads before one encounters a run of 2 tails.

1077. The temperatures in Chicago and Detroit are x◦ and y◦, respectively. These tempera-
tures are not assumed to be independent; namely, we are given the following:
(i) P(x◦ = 70◦) = a, the probability that the temperature in Chicago is 70◦,
(ii) P(y◦ = 70◦) = b, and
(iii) P(max(x◦, y◦) = 70◦) = c.
Determine P(min(x◦, y◦) = 70◦) in terms of a, b, and c.
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1078. An urn contains both black and white marbles. Each time you pick a marble you return
it to the urn. Let p be the probability of drawing a white marble and q = 1 − p the
probability of drawing a black marble. Marbles are drawn until n black marbles have
been drawn. If n + x is the total number of draws, find the probability that x = m.

1079. Three independent students took an exam. The random variable X , representing the
students who passed, has the distribution

(
0 1 2 3
2
5

13
30

3
20

1
60

)
.

Find each student’s probability of passing the exam.

1080. Given the independent events A1, A2, . . . , An with probabilities p1, p2, . . . , pn , find
the probability that an odd number of these events occurs.

1081. Out of every batch of 100 products of a factory, 5 are quality checked. If one sample
does not pass the quality check, then the whole batch of one hundred will be rejected.
What is the probability that a batch is rejected if it contains 5% faulty products.

1082. There are two jet planes and a propeller plane at the small regional airport of Gauss
City. A plane departs from Gauss City and arrives in Eulerville, where there were
already five propeller planes and one jet plane. Later, a farmer sees a jet plane flying
out of Eulerville. What is the probability that the plane that arrived from Gauss City
was a propeller plane, provided that all events are equiprobable?

1083. Acoin is tossedn times. What is the probability that twoheadswill turn up in succession
somewhere in the sequence?

1084. Two people, A and B, play a game in which the probability that A wins is p, the
probability that B wins is q, and the probability of a draw is r . At the beginning, A has
m dollars and B has n dollars. At the end of each game, the winner takes a dollar from
the loser. If A and B agree to play until one of them loses all his/her money, what is
the probability of A winning all the money?

1085. We play the coin tossing game in which if tosses match, I get both coins; if they differ,
you get both. You have m coins, I have n. What is the expected length of the game
(i.e., the number of tosses until one of us is wiped out)?

6.5.3 Geometric Probabilities

In this section we look at experiments whose possible outcomes are parametrized by the points
of a geometric region. Here we interpret “at random” to mean that the probability that a point
lies in a certain region is proportional to the area or volume of the region. The probability of a
certain event is then computed by taking the ratio of the area (volume) of the favorable region
to the area (volume) of the total region. We start with the game of franc-carreau investigated
by George-Louis Leclerc, Comte de Buffon, in his famous Essai d’arithmetique morale.
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Example. A coin of diameter d is thrown randomly on a floor tiled with squares of side l.
Two players bet that the coin will land on exactly one, respectively, more than one, square.
What relation should l and d satisfy for the game to be fair?

Figure 48

Solution. The center of the coin falls on some tile. For the coin to lie entirely on that tile, its
center must fall inside the dotted square of side length l − 2 · d

2 = l − d shown in Figure 48.
This happens with probability

P = (l − d)2

l2
.

For the game to be fair, P must be equal to 1
2 , whence the relation that d and l should satisfy is

d = 1

2
(2 − √

2)l.
�

Example. What is the probability that three randomly chosen points on a circle form an acute
triangle?

Solution. The fact that the triangle is acute is equivalent to the fact that each of the arcs
determined by the vertices is less than a semicircle.

Because of the rotational symmetry of the figure, we can assume that one of the points is
fixed. Cut the circle at that point to create a segment. In this new framework, the problem
asks us to find the probability that two randomly chosen points on a segment cut it in three
parts, none of which is larger than half of the original segment.

Identify the segment with the interval [0, 1], and let the coordinates of the two points be
x and y. Then the possible choices can be identified with points (x, y) randomly distributed
in the interior of the square [0, 1] × [0, 1]. The area of the total region is therefore 1. The
favorable region, namely, the set of points inside the square that yield an acute triangle, is

{
(x, y) | 0 < x <

1

2
,
1

2
< y <

1

2
+ x

}
∪
{
(x, y) | 1

2
< x < 1, x − 1

2
< y <

1

2

}
.

The area of this region is 1
4 . Hence the probability in question is

1
4 . �

As an outcome of the solution we find that when cutting a segment into three random
parts, the probability that the three segments can be the sides of an acute triangle is 1

4 .
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In all problems below, points are chosen randomly with respect to the uniform distribution
on segments, circles, spheres (the one that comes from the standard integration measure).

1086. What is the probability that the sum of two randomly chosen numbers in the interval
[0, 1] does not exceed 1 and their product does not exceed 2

9?

1087. Let α and β be given positive real numbers, with α < β. If two points are selected
at random from a straight line segment of length β, what is the probability that the
distance between them is at least α?

1088. A husband and wife agree to meet at a street corner between 4 and 5 o’clock to go
shopping together. The one who arrives first will await the other for 15 minutes, and
then leave. What is the probability that the two meet within the given time interval,
assuming that they can arrive at any time with the same probability?

1089. Two airplanes are supposed to park at the same gate of a concourse. The arrival times
of the airplanes are independent and randomly distributed throughout the 24 hours of
the day. What is the probability that both can park at the gate, provided that the first
to arrive will stay for a period of two hours, while the second can wait behind it for a
period of one hour?

1090. Find the expected value of the square of the distance between two randomly chosen
points on the unit sphere.

1091. What is the probability that three points selected at random on a circle lie on a semi-
circle?

1092. Let n ≥ 4 be given, and suppose that the points P1, P2, . . . , Pn are randomly chosen
on a circle. Consider the convex n-gon whose vertices are these points. What is the
probability that at least one of the vertex angles of this polygon is acute?

1093. LetC be the unit circle x2+y2 = 1. A point p is chosen randomly on the circumference
of C and another point q is chosen randomly from the interior of C (these points are
chosen independently and uniformly over their domains). Let R be the rectangle with
sides parallel to the x- and y-axes with diagonal pq . What is the probability that no
point of R lies outside of C?

1094. If a needle of length 1 is dropped at random on a surface ruled with parallel lines at
distance 2 apart, what is the probability that the needle will cross one of the lines?

1095. Four points are chosen uniformly and independently at random in the interior of a given
circle. Find the probability that they are the vertices of a convex quadrilateral.
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1. Assume the contrary, namely that
√

2 + √3 + √5 = r, where r is a rational number.
Square the equality

√
2+√3 = r −√5 to obtain 5+ 2

√
6 = r2+ 5− 2r

√
5. It follows that

2
√

6 + 2r
√

5 is itself rational. Squaring again, we find that 24 + 20r2 + 8r
√

30 is rational,
and hence

√
30 is rational, too. Pythagoras’ method for proving that

√
2 is irrational can now

be applied to show that this is not true. Write
√

30 = m
n in lowest terms; then transform this

into m2 = 30n2. It follows that m is divisible by 2 and because 2
(

m
2

)2 = 15n2 it follows
that n is divisible by 2 as well. So the fraction was not in lowest terms, a contradiction. We
conclude that the initial assumption was false, and therefore

√
2+√3+√5 is irrational.

2. Assume that such numbers do exist, and let us look at their prime factorizations. For primes
p greater than 7, at most one of the numbers can be divisible by p, and the partition cannot
exist. Thus the prime factors of the given numbers can be only 2, 3, 5, and 7.

We now look at repeated prime factors. Because the difference between two numbers
divisible by 4 is at least 4, at most three of the nine numbers are divisible by 4. Also, at most
one is divisible by 9, at most one by 25, and at most one by 49. Eliminating these at most
3 + 1 + 1 + 1 = 6 numbers, we are left with at least three numbers among the nine that do
not contain repeated prime factors. They are among the divisors of 2 · 3 · 5 · 7, and so among
the numbers

2, 3, 5, 6, 7, 10, 14, 15, 21, 30, 35, 42, 70, 105, 210.

Because the difference between the largest and the smallest of these three numbers is at
most 9, none of them can be greater than 21. We have to look at the sequence 1, 2, 3, . . . , 29.
Any subsequence of consecutive integers of length 9 that has a term greater than 10 contains
a prime number greater than or equal to 11, which is impossible. And from 1, 2, . . . , 10
we cannot select nine consecutive numbers with the required property. This contradicts our
assumption, and the problem is solved.

Remark. In the argument, the number 29 can be replaced by 27, namely by 21 plus the 6
numbers that can have repeated prime factor.

© Springer International Publishing AG 2017
R. Gelca and T. Andreescu, Putnam and Beyond, DOI 10.1007/978-3-319-58988-6

341



342 Methods of Proof

3. The example 22, 32, 52, . . . , 432, where we considered the squares of the first 14 prime
numbers, shows that n ≥ 15.

Assume that there exist a1, a2, . . . , a15, pairwise relatively prime integers greater than
1 and less than 2005, none of which is a prime. Let qk be the least prime number in the
factorization of ak , k = 1, 2, . . . , 15. Let qi be the maximum of q1, q2, . . . , q15. Then
qi ≥ p15 = 47. Because ai is not a prime, qi

qi
is divisible by a prime number greater than or

equal to qi. Hence ai ≥ q2
i = 472 > 2005, a contradiction. We conclude that n = 15.

4. Let X = {x1, x2, . . . , xn} and E1 = {x1, x2, . . . , xn−2}. Arguing by contradiction, let
us assume that ∪m

k=1Ek = S. Choose Ej and Ek such that xn−1 ∈ Ej and xn ∈ Ek . Then
E1 ∪ Ej ∪ Ek = S, a contradiction.

(Romanian Mathematical Olympiad, 1986, proposed by I. Tomescu)

5. Arguing by contradiction, we assume that none of the colors has the desired property. Then
there exist distances r ≥ g ≥ b such that r is not attained by red points, g by green points,
and b by blue points (for these inequalities to hold we might have to permute the colors).

Consider a sphere of radius r centered at a red point. Its surface has green and blue points
only. Since g, b ≤ r, the surface of the sphere must contain both green and blue points.
Choose M a green point on the sphere. There exist two points P and Q on the sphere such
that MP = MQ = g and PQ = b. So on the one hand, either P or Q is green, or else P and
Q are both blue. Then either there exist two green points at distance g, namely M and P, or
Q, or there exist two blue points at distance b. This contradicts the initial assumption. The
conclusion follows.

(German Mathematical Olympiad, 1985)

6. Arguing by contradiction, let us assume that the area of the overlap of any two surfaces is
less than 1

9 . In this case, if S1, S2, . . . , S9 denote the nine surfaces, then the area of S1 ∪ S2

is greater than 1 + 8
9 , the area of S1 ∪ S2 ∪ S3 is greater than 1 + 8

9 + 7
9 , . . ., and the area of

S1 ∪ S2 ∪ · · · ∪ S9 is greater than

1+ 8

9
+ 7

9
+ · · · + 1

9
= 45

9
= 5

a contradiction. Hence the conclusion.
(L. Panaitopol, D. Şerbănescu, Probleme de Teoria Numerelor şi Combinatorică pentru

Juniori (Problems in Number Theory and Combinatorics for Juniors), GIL, 2003)

7. Assume that such an f exists. We focus on some particular values of the variable. Let
f (0) = a and f (5) = b, a, b ∈ {1, 2, 3}, a �= b. Because |5 − 2| = 3, |2 − 0| = 2, we have
f (2) �= a, b, so f (2) is the remaining number, say c. Finally, because |3−0| = 3, |3−5| = 2,
we must have f (3) = c. Therefore, f (2) = f (3). Translating the argument to an arbitrary
number x instead of 0, we obtain f (x + 2) = f (x + 3), and so f is constant. But this violates
the condition from the definition. It follows that such a function does not exist.

8. Arguing by contradiction, let us assume that such a function exists. Set f (3) = k. Using
the inequality 23 < 32, we obtain

33 = f (2)3 = f (23) < f (32) = f (3)2 = k2,
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hence k > 5. Similarly, using 33 < 25, we obtain

k3 = f (3)3 = f (33) < f (25) = f (2)5 = 35 = 243 < 343 = 73.

This implies that k < 7, and consequently k can be equal only to 6. Thus we should have
f (2) = 3 and f (3) = 6. The monotonicity of f implies that 2u < 3v if and only if 3u < 6v,
u, v being positive integers. Taking logarithms this means that v

u > log2 3 if and only if
v
u > log3 6. Since rationals are dense, it follows that log2 3 = log3 6. This can be written as
log2 3 = 1

log2 3+1, and so log2 3 is the positive solution of the quadratic equation x2−x−1 = 0,

which is the golden ratio 1+√5
2 . The equality 2

1+√5
2 = 3 translates to 21+√5 = 9. But this

would imply
65536 = 25×3.2 < 25(1+√5) = 95 = 59049.

We have reached a contradiction, which proves that the function f cannot exist.
(B.J. Venkatachala, Functional Equations: A Problem Solving Approach, Prism Books

PVT Ltd., Bangalore, 2002)

9. The constant function f (x) = k, where k is a positive integer, is the only possible solution.
That any such function satisfies the given condition is easy to check.

Now suppose there exists a nonconstant solution f . There must exist two positive integers
a and b such that f (a) < f (b). This implies that (a+ b)f (a) < af (b)+ bf (a) < (a+ b)f (b),
which by the given condition is equivalent to (a+ b)f (a) < (a+ b)f (a2+ b2) < (a+ b)f (b).
We can divide by a + b > 0 to find that f (a) < f (a2 + b2) < f (b). Thus between any two
different values of f we can insert another. But this cannot go on forever, since f takes only
integer values. The contradiction shows that such a function cannot exist. Thus constant
functions are the only solutions.

(Canadian Mathematical Olympiad, 2002)

10. Assume that A, B, and a satisfy A ∪ B = [0, 1], A ∩ B = ∅, B = A + a. We can
assume that a is positive; otherwise, we can exchange A and B. Then (1− a, 1] ⊂ B; hence
(1 − 2a, 1 − a] ⊂ A. An inductive argument shows that for any positive integer n, the
interval (1 − (2n + 1)a, 1 − 2na] is in B, the interval (1 − (2n + 2)a, 1 − (2n + 1)a] is in
A. However, at some point this sequence of intervals leaves [0, 1]. The interval of the form
(1 − na, 1 − (n − 1)a] that contains 0 must be contained entirely in either A or B, which
is impossible since this interval exits [0, 1]. The contradiction shows that the assumption is
wrong, and hence the partition does not exist.

(Austrian-Polish Mathematics Competition, 1982)

11. Assume the contrary. Our chosen numbers a1, a2, . . . , ak+1 must have a total of at most k
distinct prime factors (the primes less than or equal to n). Let op(q) denote the highest value
of d such that pd|q. Also, let a = a1a2 · · · ak+1 be the product of the numbers. Then for each
prime p,

op(a) =
k+1∑

i=1

op(ai),

and it follows that there can be at most one hostile value of i for which op(ai) >
op(a)

2 . Because
there are at most k primes that divide a, there is some i that is not hostile for any such prime.
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Then 2op(ai) ≤ op(a), so op(ai) ≤ op

(
a
ai

)
for each prime p dividing a. This implies that ai

divides a
ai

, which contradicts the fact that the ai does not divide the product of the other aj’s.
Hence our assumption was false, and the conclusion follows.

(Hungarian Mathematical Olympiad, 1999)

12. The base case n = 1 is 1
2 = 1− 1

2 , true. Now the inductive step. The hypothesis is that

1

k + 1
+ 1

k + 2
+ · · · + 1

2k
= 1− 1

2
+ · · · + 1

2k − 1
− 1

2k
.

We are to prove that

1

k + 2
+ · · · + 1

2k
+ 1

2k + 1
+ 1

2k + 2
= 1− 1

2
+ · · · − 1

2k
+ 1

2k + 1
− 1

2k + 2
.

Using the induction hypothesis, we can rewrite this as

1

k + 2
+ · · · + 1

2k
+ 1

2k + 1
+ 1

2k + 2
= 1

k + 1
+ 1

k + 2
+ · · · + 1

2k
+ 1

2k + 1
− 1

2k + 2
,

which reduces to
1

2k + 2
= 1

k + 1
− 1

2k + 2
,

obvious. This completes the induction.

13. The base case is trivial. However, as I.M. Vinogradov once said, “it is the first nontrivial
example that matters”. And this is n = 2, in which case we have

| sin 2x| = 2| sin x|| cos x| ≤ 2| sin x|.
This suggests to us to introduce cosines as factors in the proof of the inductive step. Assuming
the inequality for n = k, we can write

| sin(k + 1)x| = | sin kx cos x + sin x cos kx| ≤ | sin kx|| cos x| + | sin x|| cos kx|
≤ | sin kx| + | sin x| ≤ k| sin x| + | sin x| = (k + 1)| sin x|.

The induction is complete.

14. As in the solution to the previous problem we argue by induction on n using trigonometric
identities. The base case holds because

| sin x1| + | cos x1| ≥ sin2 x1 + cos2 x1 = 1.

Next, assume that the inequality holds for n = k and let us prove it for n = k + 1. Using the
inductive hypothesis, it suffices to show that

| sin xn+1| + | cos(x1 + x2 + · · · + xn+1)| ≥ | cos(x1 + x2 + · · · + xn)|.
To simplify notation let xn+1 = x and x1 + x2 + · · · + xn + xn+1 = y, so that the inequality to
be proved is | sin x| + | cos y| ≥ | cos(y − x)|. The subtraction formula gives

| cos(y− x)| = | cos y cos x + sin y sin x| ≤ | cos y|| cos x| + | sin y|| sin x|
≤ | cos y| + | sin x|.

This completes the inductive step, and concludes the solution.
(Revista Mathematică din Timişoara (Timişoara Mathematics Gazette), proposed by

T. Andreescu)
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15. We expect an inductive argument, with a possible inductive step given by

3n+1 = 3 · 3n ≥ 3n3 ≥ (n+ 1)3.

In order for this to work, the inequality 3n3 ≥ (n + 1)3 needs to be true. This inequality
is equivalent to 2n3 ≥ 3n2 + 3n + 1, which would, for example, follow from the separate
inequalities n3 ≥ 3n2 and n3 ≥ 3n+ 1. These are both true for n ≥ 3. Thus we can argue by
induction starting with the base case n = 3, where equality holds. The cases n = 0, n = 1,
and n = 2 can be checked by hand.

16. The base case 26 < 6! < 36 reduces to 64 < 720 < 729, which is true. Assuming the
double inequality true for n we are to show that

(
n+ 1

3

)n+1

< (n+ 1)! <
(

n+ 1

2

)n+1

.

Using the inductive hypothesis we can reduce the inequality on the left to

(
n+ 1

3

)n+1

< (n+ 1)
(n

3

)n
,

(
1+ 1

n

)n

< 3,

while the inequality on the right can be reduced to
(

1+ 1

n

)n

> 2.

These are both true for all n ≥ 1 because the sequence
(
1+ 1

n

)n
is increasing and converges

to e, which is less than 3. Hence the conclusion.

17. The left-hand side grows with n, while the right-hand side stays constant, so apparently
a proof by induction would fail. It works, however, if we sharpen the inequality to

1+ 1

23
+ 1

33
+ · · · + 1

n3
<

3

2
− 1

n
, n ≥ 2.

As such, the cases n = 1 and n = 2 need to be treated separately, and they are easy to check.
The base case is for n = 3:

1+ 1

23
+ 1

33
< 1+ 1

8
+ 1

27
<

3

2
− 1

3
.

For the inductive step, note that from

1+ 1

23
+ 1

33
+ · · · + 1

n3
<

3

2
− 1

n
, for some n ≥ 3,

we obtain

1+ 1

23
+ 1

33
+ · · · + 1

n3
+ 1

(n+ 1)3
<

3

2
− 1

n
+ 1

(n+ 1)3
.
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All we need to check is
3

2
− 1

n
+ 1

(n+ 1)3
<

3

2
− 1

(n+ 1)
,

which is equivalent to
1

(n+ 1)3
<

1

n
− 1

(n+ 1)
,

or
1

(n+ 1)3
<

1

n(n+ 1)
.

This is true, completing the inductive step. This proves the inequality.

18. We prove both parts by induction on n. For (a), the case n = 1 is straightforward. Assume
now that we have found an n-digit number m divisible by 2n made out of the digits 2 and 3
only. Let m = 2nk for some integer k. If n is even, then

2× 10n + m = 2n(2 · 5n + k)

is an (n + 1)-digit number written only with 2’s and 3’s, and divisible by 2n+1. If k is odd,
then

3× 10n + m = 2n(3 · 5n + k)

has this property.
The idea of part (b) is the same. The base case is trivial, m = 5. Now if we have found an

n-digit number m = 5nk with this property, then looking modulo 5, one of the (n + 1)-digit
numbers

5× 10n + m = 5n(5 · 2n + k),

6× 10n + m = 5n(6 · 2n + k),

7× 10n + m = 5n(7 · 2n + k),

8× 10n + m = 5n(8 · 2n + k),

9× 10n + m = 5n(9 · 2n + k)

has the required property, and the problem is solved.
(USA Mathematical Olympiad, 2003, proposed by T. Andreescu)

19. We proceed by induction on n. The base case is obvious; the decomposition consists
of just one piece. For the induction step, let us assume that the tiling is possible for such a
2n × 2n board and consider a 2n+1 × 2n+1 board. Start by placing a piece in the middle of the
board as shown in Figure 49. The remaining surface decomposes into four 2n × 2n boards
with corner squares removed, each of which can be tiled by the induction hypothesis. Hence
we are done.
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Figure 49

20. The property is clearly true for a single number. Now assume that it is true whenever
we have such a sequence of length k and let us prove it for a sequence of length k + 1:
x1, x2, . . . , xk+1. Call a cyclic shift with all partial sums positive “good”.

With indices taken modulo k+1, there exist two terms xj and xj+1 such that xj > 0, xj+1 ≤ 0.
Without loss of generality, we may assume that these terms are xk and xk+1. Define a new
sequence by yj = xj, j ≤ k − 1, yk = xk + xk+1. By the inductive hypothesis, y1, y2, . . . , yk

has a unique good cyclic shift. Expand yk into xk , xk+1 to obtain a good cyclic shift of
x1, x2, . . . , xk+1. This proves the existence. To prove uniqueness, note that a good cyclic shift
of x1, x2, . . . , xk+1 can start only with one of x1, x2, . . . , xk (since xk+1 < 0). It induces a good
cyclic shift of y1, y2, . . . , yk that starts at the same term; hence two good cyclic shifts of the
longer sequence would produce two good cyclic shifts of the shorter. This is ruled out by the
induction hypothesis, and the uniqueness is proved.

(G. Raney)

21. We induct on m+n. The base case m+n = 4 can be verified by examining the equalities

1+ 1 = 1+ 1 and 1+ 2 = 1+ 2.

Now let us assume that the property is true for m + n = k and prove it for m + n = k + 1.
Without loss of generality, we may assume that x1 = maxi xi and y1 = maxi yi, x1 ≥ y1. If
m = 2, then

y1 + y2 = x1 + x2 + · · · + xn ≥ x1 + n− 1 ≥ y1 + n− 1.

It follows that y1 = x1 = n or n − 1, y2 = n − 1, x2 = x3 = · · · = xn = 1. Consequently,
y2 = x2 + x3 + · · · + xn, and we are done. If m > 2, rewrite the original equality as

(x1 − y1)+ x2 + · · · + xn = y2 + · · · + ym.

This is an equality of the same type, with the observation that x1− y1 could be zero, in which
case x1 and y1 are the numbers to be suppressed.

We could apply the inductive hypothesis if y1 ≥ n, in which case y2 + · · · + ym were less
than mn− y1 < (m− 1)n. In this situation just suppress the terms provided by the inductive
hypothesis; then move y1 back to the right-hand side.

Let us analyze the case in which this argument does not work, namely when y1 < n. Then
y2+y3+· · ·+ym ≤ (m−1)y1 < (m−1)n, and again the inductive hypothesis can be applied.
This completes the solution.
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22. Let f be the function. We will construct g and h such that f = g + h, with g an odd
function and h a function whose graph is symmetric with respect to the point (1, 0).

Let g be any odd function on the interval [−1, 1] for which g(1) = f (1). Define h(x) =
f (x) − g(x), x ∈ [−1, 1]. Now we proceed inductively as follows. For n ≥ 1, let h(x) =
−h(2−x) and g(x) = f (x)−h(x) for x ∈ (2n−1, 2n+1], and then extend these functions such
that g(x) = −g(−x) and h(x) = f (x)−g(x) for x ∈ [−2n−1,−2n+1). It is straightforward
to check that the g and h constructed this way satisfy the required condition.

(Kvant (Quantum))

23. First solution. We prove the property by induction on n. For n = 2, any number of the
form n = 2t2, t an integer, would work.

Let us assume that for n = k there is a number m with the property from the statement,
and let us find a number m′ that fulfills the requirement for n = k + 1.

We need the fact that every integer p ≥ 2 can be represented as a2+b2− c2, where a, b, c
are positive integers. Indeed, if p is even, say p = 2q, then

p = 2q = (3q)2 + (4q − 1)2 − (5q − 1)2,

while if p is odd, p = 2q + 1, then

p = 2q + 1 = (3q − 1)2 + (4q − 4)2 − (5q − 4)2,

if q > 1, while if q = 1, then p = 3 = 42 + 62 − 72.
Returning to the inductive argument, let

m = a2
1 + a2

2 = b2
1 + b2

2 + b2
3 = · · · = l2

1 + l2
2 + · · · + l2

k ,

and also m = a2 + b2 − c2. Taking m′ = m+ c2 we have

m′ = a2 + b2 = a2
1 + a2

2 + c2 = b2
1 + b2 + c2 = · · · = l2

1 + l2
2 + · · · + l2

2 + c2.

This completes the induction.

Second solution. We prove by induction that m = 25n−1 can be written as the sum of 1, 2, ..., n
nonzero perfect squares. Base case: 1 = 12. Inductive step: Suppose 25n−1 can be expressed
as the sum of 1, 2, ..., n positive squares. Then 25n can be written as the sum of p positive
squares, for any p in 1, 2, ..., n, by multiplying each addend in the decomposition of 25n−1

into p squares by 25. Now let

25n−1 = (a1)
2 + · · · + (an)

2.

We have

25n = (3a1)
2 + (4a1)

2 + (5a2)
2 + (5a3)

2 + ...+ (5an)
2,

and we’re done (for n = 1, we simply have 25 = 9+ 16).
(Gazeta Matematică (Mathematics Gazette, Bucharest), 1980, proposed by M. Cavachi,

second solution by E. Glazer)
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24. We will prove a more general inequality namely that for all m > 1,

m
√

a1 − m
√

a2 + m
√

a3 − · · · − m
√

a2n + m
√

a2n+1 < m
√

a1 − a2 + a3 − · · · − a2n + a2n+1.

The inequality from the statement is the particular case m = n.
This more general inequality will be proved by induction on n. For n = 2, we have to

show that if a1 < a2 < a3, then

m
√

a1 − m
√

a2 + m
√

a3 < m
√

a1 − a2 + a3.

Denote a = a1, b = a3, t = a2 − a1 > 0. The inequality can be written as

m
√

a+ t − m
√

a >
m
√

b− m
√

b− t.

Define the function f : (0,∞) → R, f (x) = m
√

x + t − m
√

x. Its first derivative is f ′(x) =
1
m [(x+ t)(1−m)/m−x(1−m)/m], which is negative. This shows that f is strictly decreasing, which
proves the inequality.

For the induction step, let us assume that the inequality holds for n ≤ k − 1 and prove it
for n = k. Using the induction hypothesis we deduce that

m
√

a1 − m
√

a2 + m
√

a3 − · · · − m
√

a2k + m
√

a2k+1

< m
√

a1 − a2 + a3 − · · · − a2k−2 + a2k−1 − m
√

a2k + m
√

a2k+1.

Using the base case n = 2, we deduce that the latter is less than m
√

a1 − a2 + a3 − · · · − a2k + a2k+1,
which completes the induction.

(Balkan Mathematical Olympiad, 1998, proposed by B. Enescu)

25. We will say that the lines of the set X pass through k nodes if there are k points in the
plane such that each line in X passes through at least one of them. We denote by S(n, k) the
statement which says that from the fact that any n lines of set X pass through k nodes it follows
that all the lines of X pass through k nodes. We are supposed to prove S(k2 + 1, k) for k ≥ 1.
We do this by induction.

First note that S(3, 1) is obvious, if any three lines pass through a point, then all lines pass
through a point. Next notice that S(6, 2) is a corollary of S(3, 1) by the following argument:

Consider 6 lines, which, by hypothesis pass through 2 points. Then through one of the
points, which we call P, pass at least 3 lines. Denote the set of all lines passing through P by
M. We will show that any 3 lines in A\M pass through a point. Consider 3 such lines, and
add to them 3 lines in M. Then these six lines pass through 2 points. One of these poins must
be P, or else the lines passing through P would generate 3 different nodes. Hence the other 3
lines must themselves pass through a point.

The argument can be adapted to prove that S(6, 2) implies S(10, 3). Basically one starts
again with 6 lines outside the similar set M, add the 4 lines in M and argue the same.

This argument can be adapted to prove S((k − 1)2 + 1, k − 1) implies S(k2 + 1, k) as
follows. Consider k2 + 1 points in A and the k points through which they pass. Through one
of these points, which we call P, pass at least k + 1 lines. Denote by M the set of lines in
A that pass through P. We will show that for the lines in A\M any (k − 1)2 + 1 lines pass
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through k − 1 nodes. Indeed, to each subset of (k − 1)2 + 1 lines in A\M add lines from M,
and some other lines if M is exhausted, until we obtain k2+1 lines. By hypothesis, these pass
through k nodes. One of these nodes is P, for else the more than k + 1 lines passing through
it would pass through at least that many nodes, contradicting the hypothesis. It follows that
the lines in A\M pass throgh the remaining k − 1 nodes, proving the claim. By the induction
hypothesis, all lines in A\M pass through k − 1 nodes. Add P to these nodes to complete the
induction step.

(Moscow Mathematical Olympiad, 1995–1996)

26. The property can be checked easily for small integers, which will constitute the base
case. Assuming the property true for all integers less than n, let Fk be the largest term of the
Fibonacci sequence that does not exceed n. The number n−Fk is strictly less than n, so by the
induction hypothesis it can be written as a sum of distinct terms of the Fibonacci sequence,
say n−Fk =

∑

j

Fij . The assumption on the maximality of Fk implies that n−Fk < Fk (this

because Fk+1 = Fk + Fk−1 < 2Fk for k ≥ 2). It follows that Fk �= Fij , for all j. We obtain

n =
∑

j

Fij + Fk , which gives a way of writing n as a sum of distinct terms of the Fibonacci

sequence.

27. We will prove a more general identity, namely,

Fm+n+1 = Fm+1Fn+1 + FmFn, for m, n ≥ 0.

We do so by induction on n. The inductive argument will assume the property to be true for
n = k − 1 and n = k, and prove it for n = k + 1. Thus the base case consists of n = 0,
Fm+1 = Fm+1; and n = 1, Fm+2 = Fm+1 + Fm – both of which are true.

Assuming that Fm+k = Fm+1Fk + FmFk−1 and Fm+k+1 = Fm+1Fk+1 + FmFk , we obtain
by addition,

Fm+k + Fm+k+1 = Fm+1(Fk + Fk+1)+ Fm(Fk−1 + Fk),

which is, in fact, the same as Fm+k+2 = Fm+1Fk+2 + FmFk+1. This completes the induction.
For m = n, we obtain the identity in the statement.

28. Inspired by the previous problem, we generalize the identity to

Fm+n+p = Fm+1Fn+1Fp+1 + FmFnFp − Fm−1Fn−1Fp−1,

which should hold for m, n, p ≥ 1. In fact, we can augment the Fibonacci sequence by
F−1 = 1 (so that the recurrence relation still holds), and then the above formula makes sense
for m, n, p ≥ 0. We prove it by induction on p. Again for the base case we consider p = 0,
with the corresponding identity

Fm+n = Fm+1Fn+1 − Fm−1Fn−1,

and p = 1, with the corresponding identity

Fm+n+1 = Fm+1Fn+1 + FmFn.
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Of the two, the second was proved in the solution to the previous problem. And the first identity
is just a consequence of the second, obtained by subtracting Fm+n−1 = FmFn + Fm−1Fn−1

from Fm+n+1 = Fm+1Fn+1 + FmFn. So the base case is verified. Now we assume that the
identity holds for p = k − 1 and p = k, and prove it for p = k + 1. Indeed, adding

Fm+n+k+1 = Fm+1Fn+1Fk + FmFnFk−1 − Fm−1Fn−1Fk−2

and
Fm+n+k = Fm+1Fn+1Fk+1 + FmFnFk − Fm−1Fn−1Fk−1,

we obtain

Fm+n+k+1 = Fm+n+k−1 + Fm+n+k

= Fm+1Fn+1(Fk + Fk+1)+ FmFn(Fk−1 + Fk)− Fm−1Fn−1(Fk−2 + Fk−1)

= Fm+1Fn+1Fk+2 + FmFnFk+1 − Fm−1Fn−1Fk.

This proves the identity. Setting m = n = p, we obtain the identity in the statement.

29. The base case consists of the dissections for n = 4, 5, and 6 shown in Figure 50. The
induction step jumps from P(k) to P(k+3) by dissecting one of the triangles into four triangles
similar to it.

(R. Gelca)

Figure 50

30. First, we explain the inductive step, which is represented schematically in Figure 51. If
we assume that such a k-gon exists for all k < n, then the n-gon can be obtained by cutting
off two vertices of the (n − 2)-gon by two parallel lines. The sum of the distances from an
interior point to the two parallel sides does not change while the point varies, and of course
the sum of distances to the remaining sides is constant by the induction hypothesis. Choosing
the parallel sides unequal, we can guarantee that the resulting polygon is not regular.

Figure 51
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The base case consists of a rectangle (n = 4) and an equilateral triangle with two vertices
cut off by parallel lines (n = 5). Note that to obtain the base case we had to apply the idea
behind the inductive step.

31. The property is obviously true for the triangle since there is nothing to dissect. This will
be our base case. Let us assume that the property is true for any coloring of a k-gon, for all
k < n, and let us prove that it is true for an arbitrary coloring of an n-gon. Because at least
three colors were used, there is a diagonal whose endpoints have different colors, say red (r)
and blue (b). If on both sides of the diagonal a third color appears, then we can apply the
induction hypothesis to two polygons and solve the problem.

If this is not the case, then on one side there will be a polygon with an even number of
sides and with vertices colored in cyclic order rbrb . . . rb. Pick a blue point among them that
is not an endpoint of the initially chosen diagonal and connect it to a vertex colored by a third
color (Figure 52). The new diagonal dissects the polygon into two polygons satisfying the
property from the statement, and having fewer sides. The induction hypothesis can be applied
again, solving the problem.

r

r

b r

b

b

Figure 52

32. We prove the property by induction on the number of vertices. The base case is the
triangle, where there is nothing to prove.

Let us assume now that the property holds for polygons with fewer than n vertices and
prove it for a polygon with n vertices. The inductive step consists in finding one interior
diagonal.

We commence with an interior angle less than π . Such an angle can be found at one
of the vertices of the polygon that are also vertices of its convex hull (the convex hull is the
smallest convex set in the plane that contains the polygon). Let the polygon be A1A2 . . . An,
with ∠AnA1A2 the chosen interior angle. Rotate the ray |A1An toward |A1A2 continuously
inside the angle as shown in Figure 53. For each position of the ray, strictly between A1An

and A1A2, consider the point on the polygon that is the closest to A1. If for some position of
the ray this point is a vertex, then we have obtained a diagonal that divides the polygon into
two polygons with fewer sides. Otherwise, A2An is the diagonal.
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A

A

A

n

2

1

Figure 53

Dividing by the interior diagonal, we obtain two polygons with fewer vertices, which by
hypothesis can be divided into triangles. This completes the induction.

33. We induct on the number to be represented. For the base case, we have

1 = 12

2 = −12 − 22 − 32 + 42,

3 = −12 + 22,

4 = −12 − 22 + 32.

The inductive step is “P(n) implies P(n+ 4)”; it is based on the identity

m2 − (m+ 1)2 − (m + 2)2 + (m+ 3)2 = 4.

Remark. This result has been generalized by J. Mitek, who proved that every integer k can be
represented in the form k = ±1s ± 2s ± · · · ± ms for a suitable choice of signs, where s is a
given integer ≥ 2. The number of such representations is infinite.

(P. Erdös, J. Surányi)

34. First, we show by induction on k that the identity holds for n = 2k . The base case is
contained in the statement of the problem. Assume that the property is true for n = 2k and
let us prove it for n = 2k+1. We have

f

(
x1 + · · · + x2k + x2k+1 · · · + x2k+1

2k+1

)
=

f

(
x1 + · · · + x2k

2k

)
+ f

(
x2k+1 + · · · + x2k+1

2k

)

2

=
f (x1)+ · · · + f (x2k )

2k
+ f (x2k+1)+ · · · + f (x2k+1)

2k

2

= f (x1)+ · · · + f (x2k )+ f (x2k+1)+ · · · + f (x2k+1)

2k+1
,

which completes the induction. Now we work backward, showing that if the identity holds
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for some n, then it holds for n − 1 as well. Consider the numbers x1, x2, . . . , xn−1 and
xn = x1+x2+···+xn−1

n−1 . Using the hypothesis, we have

f

⎛

⎜
⎝

x1 + · · · + xn−1 + x1 + · · · + xn−1

n− 1
n

⎞

⎟
⎠ =

f (x1)+ · · · + f (xn−1)+ f

(
x1 + · · · + xn−1

n− 1

)

n
,

which is the same as

f

(
x1 + · · · + xn−1

n− 1

)
= f (x1)+ · · · + f (xn−1)

n
+ 1

n
f

(
x1 + · · · + xn−1

n− 1

)
.

Moving the last term on the right to the other side gives

n− 1

n
f

(
x1 + x2 + · · · + xn−1

n− 1

)
= f (x1)+ f (x2)+ · · · + f (xn−1)

n
.

This is clearly the same as

f

(
x1 + x2 + · · · + xn−1

n− 1

)
= f (x1)+ f (x2)+ · · · + f (xn−1)

n− 1
,

and the argument is complete.

35. This is a stronger form of the inequality discussed in the beginning, which can be obtained
from it by applying the AM-GM inequality.

We first prove that the property holds for n a power of 2. The base case

(1+ a1)(1+ a2) ≥ (1+√a1a2)
2

reduces to the obvious a1 + a2 ≥ 2
√

a1a2.
If

(1+ a1)(1+ a2)+ · · · + (1+ a2k ) ≥ (1+ 2k√a1a2 · · · a2k )2k

for every choice of nonnegative numbers, then

(1+ a1) · · · (1+ a2k+1) = (1+ a1) · · · (1+ a2k )(1+ a2k+1) · · · (1+ a2k+1)

≥ (1+ 2k√a1 · · · a2k

)2k

(1+ 2k√a2k+1 · · · a2k+1)2k

≥
[(

1+
√

2k√a1 · · · a2k 2k√a2k+1 · · · a2k+1

)2
]2k

= (1+ 2k+1√a1 · · · a2k+1

)2k+1

.

This completes the induction.
Now we work backward. If the inequality holds for n+ 1 numbers, then choosing an+1 =

n
√

a1a2 · · · an, we can write

(1+ a1) · · · (1+ an)(1+ n
√

a1 · · · an) ≥
(

1+ n+1
√

a1 · · · an
n
√

a1 · · · an

)n+1

,
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which is the same as

(1+ a1) · · · (1+ an)(1+ n
√

a1 · · · an) ≥ (1+ n
√

a1 · · · an)
n+1.

Canceling the common factor, we obtain the inequality for n numbers. The inequality is
proved.

36. The “pigeons” are the numbers. The “holes” are the 49 sets

{1, 98}, {2, 97}, . . . , {40, 50}.
Two of the numbers fall in the same set; their sum is equal to 99. We are done.

37. As G. Pólya said, “a trick applied twice becomes a technique”. Here we repeat the idea
of the Mongolian problem from the 26th International Mathematical Olympiad.

Let b1, b2, . . . , bn be the sequence, where bi ∈ {a1, a2, . . . , an}, 1 ≤ i ≤ m. For each
j ≤ m define the n-tuple Kj = (k1, k2, . . . , kn), where ki = 0 if ai appears an even number of
times in b1, b2, . . . , bj and ki = 1 otherwise.

If there exists j ≤ m such that Kj = (0, 0, . . . , 0) then b1b2 · · · bj is a perfect square
and we are done. Otherwise, there exist j < l such that Kj = Kl. Then in the sequence
bj+1, bj+2, . . . , bl each ai appears an even number of times. The product bj+1bj+2 · · · bl is a
perfect square.

38. The sequence has the property that for any n the first n + 1 terms are less than or equal
to 2n. The problem would be solved if we showed that given a positive integer n, from any
n + 1 distinct integer numbers between 1 and 2n we can choose two whose difference is n.
This is true, indeed, since the pigeonhole principle implies that one of the n pairs (1, n+ 1),
(2, n+ 2), . . . , (n, 2n) contains two terms of the sequence.

(Austrian-Polish Mathematics Competition, 1980)

39. The “holes” will be the residue classes, and the “pigeons”, the numbers ax2, c − by2,
x, y = 0, 1, . . . , p− 1. There are 2p such numbers. Any residue class, except for 0, can have
at most two elements of the form ax2 and at most two elements of the form c− by2 from the
ones listed above. Indeed, ax2

1 ≡ ax2
2 implies x2

1 ≡ x2
2, so (x1 − x2)(x1 + x2) ≡ 0. This can

happen only if x1 = ±x2. Also, ax2 ≡ 0 only when x = 0.
We distinguish two cases. If c−by2

0 ≡ 0 for some y0, then (0, y0) is a solution. Otherwise,
the 2p − 1 numbers ax2, c − by2, x = 1, 2, . . . , p − 1, y = 0, 1, . . . , p − 1 are distributed
into p− 1 “holes”, namely the residue classes 1, 2, . . . , p− 1. Three of them must lie in the
same residue class, so there exist x0 and y0 with ax2

0 ≡ c− by2
0 (mod p). The pair (x0, y0) is

a solution to the equation from the statement.

Remark. A more advanced solution can be produced based on the theory of quadratic residues.

40. In any 2 × 2 square, only one of the four numbers can be divisible by 2, and only one
can be divisible by 3. Tiling the board by 2× 2 squares, we deduce that at most 25 numbers
are divisible by 2 and at most 25 numbers are divisible by 3. There are at least 50 remaining
numbers that are not divisible by 2 or 3, and thus must equal one of the numbers 1, 5, or 7.
By the pigeonhole principle, one of these numbers appears at least 17 times.

(St. Petersburg City Mathematical Olympiad, 2001)
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41. A more general property is true, namely that for any positive integer n there exist infinitely
many terms of the Fibonacci sequence divisible by n.

We apply now the pigeonhole principle, letting the “objects” be all pairs of consecutive
Fibonacci numbers (Fn, Fn+1), n ≥ 1, and the “boxes” the pairs of residue classes modulo
n. There are infinitely many objects, and only n2 boxes, and so there exist indices i > j > 1
such that Fi ≡ Fj (mod n) and Fi+1 ≡ Fj+1 (mod m).

In this case
Fi−1 = Fi+1 − Fi ≡ Fj+1 − Fj = Fj−1 (mod n),

and hence Fi−1 ≡ Fj−1 (mod n) as well. An inductive argument proves that Fi−k ≡
Fj−k (mod n), k = 1, 2, . . . , j. In particular, Fi−j ≡ F0 = 0 (mod n). This means that Fi−j

is divisible by n. Moreover, the indices i and j range in an infinite family, so the difference
i − j can assume infinitely many values. This proves our claim, and as a particular case, we
obtain the conclusion of the problem.

(Irish Mathematical Olympiad, 1999)

42. We are allowed by the recurrence relation to set x0 = 0. We will prove that there is an
index k ≤ m3 such that xk divides m. Let rt be the remainder obtained by dividing xt by m
for t = 0, 1, . . . , m3 + 2. Consider the triples (r0, r1, r2), (r1, r2, r3), . . ., (rm3, rm3+1, rm3+2).
Since rt can take m values, the pigeonhole principle implies that at least two triples are equal.
Let p be the smallest number such that the triple (rp, rp+1, rp+2) is equal to another triple
(rq, rq+1, rq+2), p < q ≤ m3. We claim that p = 0.

Assume by way of contradiction that p ≥ 1. Using the hypothesis, we have

rp+2 ≡ rp−1 + rprp+1 (mod m) and rq+2 ≡ rq−1 + rqrq+1 (mod m).

Because rp = rq, rp+1 = rq+1, and rp+2 = rq+2, it follows that rp−1 = rq−1, so (rp−1, rp, rp+1)

= (rq−1, rq, rq+1), contradicting the minimality of p. Hence p = 0, so rq = r0 = 0, and
therefore xq is divisible by m.

(T. Andreescu, D. Miheţ)

43. We focus on 77 consecutive days, starting on a Monday. Denote by an the number of
games played during the first n days, n ≥ 1. We consider the sequence of positive integers

a1, a2, . . . , a77, a1 + 20, a2 + 20, . . . , a77 + 20.

Altogether there are 2 × 77 = 154 terms not exceeding 11 × 12 + 20 = 152 (here we took
into account the fact that during each of the 11 weeks there were at most 12 games). The
pigeonhole principle implies right away that two of the above numbers are equal. They cannot
both be among the first 77, because by hypothesis, the number of games increases by at least
1 each day. For the same reason the numbers cannot both be among the last 77. Hence there
are two indices k and m such that am = ak + 20. This implies that in the time interval starting
with the (k + 1)st day and ending with the nth day, exactly 20 games were played, proving
the conclusion.
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Remark. In general, if a chess player decides to play d consecutive days, playing at least one
game a day and a total of no more than m with d < m < 2d, then for each i ≤ 2d − n − 1
there is a succession of days on which, in total, the chess player played exactly i games.

(D.O. Shklyarskyi, N.N. Chentsov, I.M. Yaglom, Izbrannye Zadachi i Theoremy Elemen-
tarnoy Matematiki (Selected Problems and Theorems in Elementary Mathematics), Nauka,
Moscow, 1976)

44. The solution combines the induction and pigeonhole principles. We commence with
induction. The base case m = 1 is an easy check, the numbers can be only −1, 0, 1.

Assume now that the property is true for any 2m − 1 numbers of absolute value not
exceeding 2m − 3. Let A be a set of 2m + 1 numbers of absolute value at most 2m − 1. If A
contains 2m−1 numbers of absolute value at most 2m−3, then we are done by the induction
hypothesis. Otherwise, A must contain three of the numbers ±(2m − 1), ±(2m − 2). By
eventually changing signs we distinguish two cases.

Case I. 2m − 1,−2m + 1 ∈ A. Pair the numbers from 1 through 2m − 2 as (1, 2m − 2),
(2, 2m− 3), . . ., (m− 1, m) so that the sum of each pair is equal to 2m− 1, and the
numbers from 0 through−2m+1 as (0,−2m+1), (−1,−2m+2), . . ., (−m+1,−m),
so that the sum of each pair is−2m+ 1. There are 2m− 1 pairs, and 2m elements of
A lie in them, so by the pigeonhole principle there exists a pair with both elements
in A. Those elements combined with either 2m − 1 or −2m + 1 give a triple whose
sum is equal to zero.

Case II. 2m−1, 2m−2,−2m+2 ∈ A and−2m+1 /∈ A. If 0 ∈ A, then 0−2m+2+2m−2 =
0 and we are done. Otherwise, consider the pairs (1, 2m − 3), (2, 2m − 4), . . .,
(m−2, m), each summing up to 2m−2, and the pairs (1,−2m), . . ., (−m+1,−m),
each summing up to−2m+ 1. Altogether there are 2m− 2 pairs containing 2m− 1
elements from A, so both elements of some pair must be in A. Those two elements
combined with either −2m + 2 or 2m− 1 give a triple with the sum equal to zero.

This concludes the solution.
(Kvant (Quantum))

45. Denote by � the set of ordered triples of people (a, b, c) such that c is either a common
acquaintance of both a and b or unknown to both a and b. If c knows exactly k participants,
then there exist exactly 2k(n− 1− k) ordered pairs in which c knows exactly one of a and b
(the factor 2 shows up because we work with ordered pairs). There will be

(n− 1)(n− 2)− 2k(n− 1− k) ≥ (n− 1)(n− 2)− 2

(
n− 1

2

)2

= (n− 1)(n− 3)

2

ordered pairs (a, b) such that c knows either both or neither of a and b. Counting by the c’s,
we find that the number of elements of � satisfies

|�| ≥ n(n− 1)(n− 3)

2
.

To apply the pigeonhole principle, we let the “holes” be the ordered pairs of people (a, b),
and the “pigeons” be the triples (a, b, c) ∈ �. Put the pigeon (a, b, c) in the hole (a, b) if c
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knows either both or neither of a and b. There are f n(n− 1)(n− 3)2 pigeons distributed in
n(n− 1) holes. So there will be at least

⌈
n(n− 1)(n− 3)

2

/
n(n− 1)

⌉
=
⌊n

2

⌋
− 1

pigeons in one hole, where �x� denotes the least integer greater than or equal to x. To the
“hole” corresponds a pair of people satisfying the required condition.

(USA Mathematical Olympiad, 1985)

46. The beautiful observation is that if the sequence

an = cos(nπx1)+ cos(nπx2)+ · · · + cos(nπxk), n ≥ 1,

assumes finitely many distinct values, then so does the sequence of k-tuples un = (an, a2n,

. . . , akn), n ≥ 1. By the pigeonhole principle there exist m < n such that an = am,
a2n = a2m, . . ., akn = akm. Let us take a closer look at these relations. We know that
cos(nx) is a polynomial of degree n with integer coefficients in cos(x), namely the Chebyshev
polynomial. If Ai = cos(nπxi) and Bi = cos(mπxi), then the previous relations combined
with this observation show that Aj

1+Aj
2+· · ·+Aj

k = Bj
1+Bj

2+· · ·+Bj
k for all j = 1, 2, . . . , k.

Using Newton’s formulas, we deduce that the polynomials having the zeros A1, A2, . . . , Ak ,
respectively, B1, B2, . . . , Bk are equal (they have equal coefficients). Hence there is a permu-
tation σ of 1, 2, . . . , n such that Ai = Bσ(i). Thus cos(nπxi) = cos(mπxσ(i)), which means
that nxi − mxσ(i) is a rational number ri for 1 ≤ i ≤ k. We want to show that the xi’s are
themselves rational. If σ(i) = i, this is obvious. On the other hand, if we consider a cycle of
σ , (i1i2i3, . . . , is), we obtain the linear system

mxi1 − nxi2 = ri1,

mxi2 − nxi3 = ri2,

. . .

mxis − nxi1 = ris .

It is not hard to compute the determinant of the coefficient matrix, which is ns − ms (for
example, by expanding by the first row, then by the first column, and then noting that the
new determinants are triangular). The determinant is nonzero; hence the system has a unique
solution. By applying Cramer’s rule we determine that this solution consists of rational
numbers. We conclude that the xi’s are all rational, and the problem is solved.

(V. Pop)

47. Place the circle at the origin of the coordinate plane and consider the rectangular grid
determined by points of integer coordinates, as shown in Figure 54. The circle is inscribed
in an 8 × 8 square decomposed into 64 unit squares. Because 32 + 32 > 42, the four unit
squares at the corners lie outside the circle. The interior of the circle is therefore covered by
60 squares, which are our “holes”. The 61 points are the “pigeons”, and by the pigeonhole
principle two lie inside the same square. The distance between them does not exceed the
length of the diagonal, which is

√
2. The problem is solved.
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Figure 54

48. If r = 1, all lines pass through the center of the square. If r �= 1, a line that divides the
square into two quadrilaterals with the ratio of their areas equal to r has to pass through the
midpoint of one of the four segments described in Figure 55 (in that figure the endpoints of
the segments divide the sides of the square in the ratio r). Since there are four midpoints and
nine lines, by the pigeonhole principle three of them have to pass through the same point.

Figure 55

49. Choose a face with maximal number of edges, and let n be this number. The number of
edges of each of the n adjacent faces ranges between 3 and n, so by the pigeonhole principle,
two of these faces have the same number of edges.

(Moscow Mathematical Olympiad)

50. An n-gon has
(n

2

) − n = 1

2
n(n − 3) diagonals. For n = 21 this number is equal to 189.

If through a point in the plane we draw parallels to these diagonals, 2× 189 = 378 adjacent
angles are formed. The angles sum up to 360◦, and thus one of them must be less than 1◦.

51. The geometric aspect of the problem is only apparent. If we number the vertices of the
polygon counterclockwise 1, 2, . . . , 2n, then P1, P2, . . . , P2n is just a permutation of these
numbers. We regard indices modulo 2n. Then PiPi+1 is parallel to PjPj+1 if and only if
Pi − Pj ≡ Pj+1 − Pi+1 (mod 2n), that is, if and only if Pi + Pi+1 ≡ Pj + Pj+1 (mod 2n).
Because

2n∑

i=1

(Pi + Pi+1) ≡ 2
2n∑

i=1

Pi ≡ 2n(2n− 1) ≡ 0 (mod 2n)
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and
2n∑

i=1

i = n(2n− 1) ≡ n (mod 2n),

it follows that Pi + Pi+1, i = 1, 2, . . . , 2n, do not exhaust all residues modulo 2n. By the
pigeonhole principle there exist i �= j such that Pi+Pi+1 ≡ Pj+Pj+1 (mod 2n). Consequently,
the sides PiPi+1 and PjPj+1 are parallel, and the problem is solved.

(German Mathematical Olympiad, 1976)

52. Let C be a circle inside the triangle formed by three noncollinear points in S. Then
C is contained entirely in S. Set m = np + 1 and consider a regular polygon A1A2 . . . Am

inscribed in C. By the pigeonhole principle, some n of its vertices are colored by the same
color. We have thus found a monochromatic n-gon. Now choose α an irrational multiple of
π . The rotations of A1A2 . . . Am by kα, k = 0, 1, 2, . . ., are all disjoint. Each of them contains
an n-gon with vertices colored by n colors. Only finitely many incongruent n-gons can be
formed with the vertices of A1A2 . . . Am. So again by the pigeonhole principle, infinitely many
of the monochromatic n-gons are congruent. Of course, they might have different colors. But
the pigeonhole principle implies that one color occurs infinitely many times. Hence the
conclusion.

(Romanian Mathematical Olympiad, 1995)

53. First solution. This is an example with the flavor of Ramsey theory (see Section 6.3.3)
that applies the pigeonhole principle. Pick two infinite families of lines, {Ai, i ≥ 1}, and
{Bj, j ≥ 1}, such that for any i and j, Ai and Bj are orthogonal. Denote by Mij the point of
intersection of Ai and Bj. By the pigeonhole principle, infinitely many of the M1j’s, j ≥ 1,
have the same color. Keep only the lines Bj corresponding to these points, and delete all the
others. So again we have two families of lines, but such that M1j are all of the same color;
call this color c1.

Next, look at the line A2. Either there is a rectangle of color c1, or at most one point M2j

is colored by c1. Again by the pigeonhole principle, there is a color c2 that occurs infinitely
many times among the M2j’s. We repeat the reasoning. Either at some step we encounter a
rectangle, or after finitely many steps we exhaust the colors, with infinitely many lines Ai still
left to be colored. The impossibility to continue rules out this situation, proving the existence
of a rectangle with vertices of the same color.

Second solution. Let there be p colors. Consider a (p + 1) × ((p+1
2

)+ 1
)

rectangular grid.
By the pigeonhole principle, each of the

(p+1
2

)+ 1 horizontal segments contains two points of
the same color. There are

(p+1
2

)
possible configurations of monochromatic pairs, so two must

repeat. The repeating pairs are vertices of a monochromatic rectangle.

54. We place the unit square in standard position. The “boxes” are the vertical lines crossing
the square, while the “objects” are the horizontal diameters of the circles (Figure 56). Both
the boxes and the objects come in an infinite number, but what we use for counting is length
on the horizontal. The sum of the diameters is

10

π
= 3× 1+ ε, ε > 0.

http://dx.doi.org/10.1007/978-3-319-58988-6_6
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Consequently, there is a segment on the lower side of the square covered by at least four
diameters. Any vertical line passing through this segment intersects the four corresponding
circles.

55. If three points are collinear then we are done. Thus we can assume that no three points are
collinear. The convex hull of all points is a polygon with at most n sides, which has therefore
an angle not exceeding (n−2)π

n . All other points lie inside this angle. Ordered counterclockwise
around the vertex of the angle they determine n − 2 angles that sum up to at most (n−2)π

n . It
follows that one of these angles is less than or equal to (n−2)π

n(n−2)
= π

n . The three points that form
this angle have the required property.

Figure 56

56. Denote by D(O, r) the disk of center O and radius r. Order the disks

D(O1, r1), D(O2, r2), . . . , D(On, rn),

in decreasing order of their radii.
Choose the disk D(O1, r1) and then delete all disks that lie entirely inside the disk of center

O1 and radius 3r1. The remaining disks are disjoint from D(O1, r1). Among them choose the
first in line (i.e., the one with maximal radius), and continue the process with the remaining
circles.

The process ends after finitely many steps. At each step we deleted less than eight times
the area of the chosen circle, so in the end we are left with at least 1

9 of the initial area. The
chosen circles satisfy the desired conditions.

(M. Pimsner, S. Popa, Probleme de Geometrie Elementară (Problems in Elementary
Geometry), Editura Didactică şi Pedagogică, Bucharest, 1979)

57. Given a circle of radius r containing n points of integer coordinates, we must prove that
n < 2π

3
√

r2. Because r > 1 and 2π > 6 we may assume n ≥ 7.
Label the n lattice points counterclockwise P1, P2, . . . , Pn. The (counterclockwise) arcs

�

P1P3,
�

P2P4, . . .,
�

PnP2 cover the circle twice, so they sum up to 4π . Therefore, one of them,

say
�

P1P3, measures at most 4π
n .

Consider the triangle P1P2P3, which is inscribed in an arc of measure 4π
n . Because n ≥ 7,

the arc is less than a quarter of the circle. The area of P1P2P3 will be maximized if P1 and P3

are the endpoints and P2 is the midpoint of the arc. In that case,
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Area(P1P2P3) = abc

4r
=

2r sin
π

n
· 2r sin

π

n
· 2r sin

2π

n
4r

≤
2r

π

n
· 2r

π

n
· 2r

2π

n
4r

= 4r2π3

n3
.

And in general, the area of P1P2P3 cannot exceed 4r2π3

n3 . On the other hand, if the coordinates
of the points P1, P2, P3 are, respectively, (x1, y1), (x2, y2), and (x3, y3), then

Area(P1P2P3) = ±1

2

∣
∣
∣
∣
∣
∣

1 1 1
x1 x2 x3

y1 y2 y3

∣
∣
∣
∣
∣
∣

= 1

2
|x1y2 − x2y1 + x2y3 − x3y2 + x3y1 − x1y3|

Because the coordinates are integers, the area cannot be less than 1
2 . We obtain the inequality

1
2 ≤ 4r2π3

n3 , which proves that 2π
3
√

r2 ≥ n, as desired.

Remark. The weaker inequality n(r) < 6 3
√

πr2 was given in 1999 at the Iranian Mathematical
Olympiad.

58. Order the eight integers a1 < a2 < · · · < a8 ≤ 2004. We argue by contradiction. Assume
that for any choice of the integers a, b, c, d, either a + b + c < d + 4 or a + b + c > 4d.
Let us look at the situation in which d is a3 and a, b, and c are a1, a2 and a4. The inequality
a1 + a2 + a4 < 4 + a3 is impossible because a4 ≥ a3 + 1 and a1 + a2 ≥ 3. Thus with our
assumption, a1 + a2 + a4 > 4a3, or

a4 > 4a3 − a2 − a1.

By similar logic,

a5 > 4a4 − a2 − a1 > 16a3 − 5a2 − 5a1,

a6 > 4a5 − a2 − a1 > 64a3 − 21a2 − 21a1,

a7 > 4a6 − a2 − a1 > 256a3 − 85a2 − 85a1,

a8 > 4a7 − a2 − a1 > 1024a3 − 341a2 − 341a1.

We want to show that if this is the case, then a8 should exceed 2004. The expression 1024a3−
341a2 − 341a1 can be written as 683a3 + 341(a3 − a2)+ 341(a3 − a1), so to minimize it we
have to choose a1 = 1, a2 = 2, a3 = 3. But then the value of the expression would be 2049,
which, as predicted, exceeds 2004. This contradiction shows that our assumption was false,
proving the existence of the desired four numbers.

(Mathematical Olympiad Summer Program, 2004, proposed by T. Andreescu)

59. There is no loss of generality in supposing that a1 < a2 < · · · < an < · · · . Now proceed
by induction on n. For n = 1, a2

1 ≥ 2×1+1
3 a1 follows from a1 ≥ 1. The inductive step reduces

to

a2
n+1 ≥

2

3
(a1 + a2 + · · · + an)+ 2n+ 3

3
an+1.
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An equivalent form of this is

3a2
n+1 − (2n+ 3)an+1 ≥ 2(a1 + a2 + · · · + an).

At this point there is an interplay between the indices and the terms of the sequence, namely
the observation that a1 + a2 + · · · + an does not exceed the sum of integers from 1 to an.
Therefore,

2(a1 + a2 + · · · + an) ≤ 2(1+ 2+ · · · + an) = an(an + 1) ≤ (an+1 − 1)an+1.

We are left to prove the sharper, yet easier, inequality

3a2
n+1 − (2n+ 3)an+1 ≥ (an+1 − 1)an+1.

This is equivalent to an+1 ≥ n+ 1, which follows from the fact that an+1 is the largest of the
numbers.

(Romanian Team Selection Test for the International Mathematical Olympiad, proposed
by L. Panaitopol)

60. Again, there will be an interplay between the indices and the values of the terms. We
start by ordering the ai’s increasingly a1 < a2 < · · · < an. Because the sum of two elements
of X is in X, given ai in the complement of X, for each 1 ≤ m ≤ ai

2 , either m or ai − m is not
in X. There are

⌈ ai
2

⌉
such pairs and only i − 1 integers less than ai and not in X, where �x�

denotes the least integer greater than or equal to x. Hence ai ≤ 2i− 1. Summing over i gives
a1 + a2 + · · · + an ≤ n2 as desired.

(Proposed by R. Stong for the USAMO, 2000)

61. Because P(P(x)) − x is a polynomial of degree n, A is finite. If a, b ∈ A, a �= b, then
a − b divides P(a) − P(b) and P(a) − P(b) divides P(P(a)) − P(P(b) = a − b. It follows
that |a− b| = |P(a)− P(b)|. Let the elements of A be x1 < x2 < · · · < xk . We have

xk − x1 =
k−1∑

i=1

(xi+1 − xi) =
k−1∑

i=1

|P(xi+1)− P(xi)|

≥
∣∣
∣∣∣

k−1∑

i=1

(P(xi+1)− P(xi))

∣∣
∣∣∣
= |P(xk)− P(x1)| = xk − x1.

It follows that the inequality in this relation is an equality, and so all the numbers P(xi+1−P(xi)

have the same sign. So either P(xi+1)−P(xi) = xi+1−xi, for all i, or P(xi+1)−P(xi) = xi−xi+1

for all i. It follows that the numbers x1, x2, . . . , xk are the roots of a polynomial equation of the
form P(x)± x = a. And such an equation has at most n real roots. The conclusion follows.

(Romanian Mathematics Competition, 1986, proposed by Gh. Eckstein)

62. Call the elements of the 4 × 4 tableau aij, i, j = 1, 2, 3, 4, according to their location.
As such, a13 = 2, a22 = 5, a34 = 8 and a41 = 3. Look first at the row with the largest sum,
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namely, the fourth. The unknown entries sum up to 27; hence all three of them, a42, a43, and
a44, must equal 9. Now we consider the column with smallest sum. It is the third, with

a13 + a23 + a33 + a43 = 2+ a23 + a3 + 9 = 13.

We see that a23 + a33 = 2; therefore a23 = a33 = 1. We than have

a31 + a32 + a33 + a34 = a31 + a32 + 1+ 8 = 26.

Therefore, a31 + a32 = 17, which can happen only if one of them is 8 and the other is 9.
Checking the two cases separately, we see that only a31 = 8, a32 = 9 yields a solution, which
is described in Figure 57.

2

5

3 30

14

16

26

16 21 25 13 27 20

7 2 3

3 1 7

8 9 1 8

9 9 9

Figure 57

Remark. Such puzzles would appear in the Sunday edition of the San Francisco Chronicle at
the time of publication of this book.

63. There are only finitely many polygonal lines with these points as vertices. Choose
the one of minimal length P1P2 . . . Pn. If two sides, say PiPi+1 and PjPj+1, intersect at some
point M, replace them by PiPj and Pi+1Pj+1 to obtain the closed polygonal line
P1 . . . PiPjPj−1 . . . Pi+1Pj+1 . . . Pn (Figure 58). The triangle inequality in triangles MPiPj

and MPi+1Pj+1 shows that this polygonal line has shorter length, a contradiction. It follows
that P1P2 . . . Pn has no self-intersections, as desired.

. . .. . . 

P

P

P

i

j+1
i+1

P
j

Figure 58

64. Let AiAi+1 be the longest side of the polygon (or one of them if more such sides exist).
Perpendicular to it and at the endpoints Ai and Ai+1 take the lines L and L′, respectively. We
argue on the configuration from Figure 59.

If all other vertices of the polygon lie to the right of L′, then Ai−1Ai > AiAi+1, because
the distance from Ai to a point in the half-plane determined by L′ and opposite to Ai is greater
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. . . . . .

L L

A Ai+1i

Figure 59

than the distance from Ai to L′. This contradicts the maximality, so it cannot happen. The
same argument shows than no vertex lies to the left of L. So there exists a vertex that either
lies on one of L and L′, or is between them. That vertex projects onto the (closed) side AiAi+1,
and the problem is solved.

Remark. It is possible that no vertex projects in the interior of a side, as is the case with
rectangles or with the regular hexagon.

(M. Pimsner, S. Popa, Probleme de Geometrie Elementară (Problems in Elementary
Geometry), Editura Didactică şi Pedagogică, Bucharest, 1979)

65. First solution: Consider the oriented graph of roads and cities. By hypothesis, the graph
has no cycles. Define a partial order of the cities, saying that A < B if one can travel from A
to B. A partial order on a finite set has maximal and minimal elements. In a maximal city all
roads enter, and from a minimal city all roads exit.

Second solution: Pick an itinerary that travels through a maximal number of cities (more than
one such itinerary may exist). No roads enter the starting point of the itinerary, while no roads
exit the endpoint.

(Kvant (Quantum))

66. Let b be a boy dancing with the maximal number of girls. There is a girl g′ he does not
dance with. Choose as b′ a boy who dances with g′. Let g be a girl who dances with b but
not with b′. Such a girl exists because of the maximality of b, since b′ already dances with a
girl who does not dance with b. Then the pairs (b, g), (b′, g′) satisfy the requirement.

(26th W.L. Putnam Mathematical Competition, 1965)

67. Arguing by contradiction, assume that we can have a set of finitely many points with this
property. Let V1 ⊂ V be the vectors whose x-coordinate is positive or whose x-coordinate is
0 and the y-coordinate is positive. Let V2 = V \V1.

Order the points marked points lexicographically by their coordinates (x, y). Then exam-
ining the largest point we obtain |V1| < |V2| and examining the smallest point we obtain
|V2| < |V1|. This impossible. The conclusion follows.

(Kvant (Quantum), proposed by D. Rumynin)

68. Let (aij)ij, 1 ≤ i ≤ m, 1 ≤ j ≤ n, be the matrix. Denote the sum of the elements in the
ith row by si, i = 1, 2, . . . , m. We will show that among all matrices obtained by permuting
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the elements of each column, the one for which the sum |s1| + |s2| + · · · + |sm| is minimal
has the desired property.

If this is not the case, then |sk| ≥ 2 for some k. Without loss of generality, we can assume
that sk ≥ 2. Since s1 + s2 + · · · + sm = 0, there exists j such that sj < 0. Also, there exists
an i such that aik > aij for otherwise sj would be larger than sk . When exchanging aik and aij

the sum |s1| + |s2| + · · · + |sm| decreases. Indeed,

|sk − aik + aij| + |sj + aik − aij| = sk − aik + aij + |sj + aik − aij|
< sk − aik + aij + |sj| + aik − aij,

where the equality follows from the fact that sk ≥ 2 ≥ aik − aij, while the strict inequality
follows from the triangle inequality and the fact that sj and aik − aij have opposite signs. This
shows that any minimal configuration must satisfy the condition from the statement. Note that
a minimal configuration always exists, since the number of possible permutations is finite.

(Austrian-Polish Mathematics Competition, 1984)

69. We call a number good if it satisfies the given condition. It is not difficult to see that all
powers of primes are good. Suppose n is a good number that has at least two distinct prime
factors. Let n = prs, where p is the smallest prime dividing n and s is not divisible by p.
Because n is good, p+ s−1 must divide n. For any prime q dividing s, s < p+ s−1 < s+q,
so q does not divide p + s − 1. Therefore, the only prime factor of p + s − 1 is p. Then
s = pc − p+ 1 for some integer c > 1. Because pc must also divide n, pc + s− 1 = 2pc − p
divides n. Because 2pc−1 − 1 has no factors of p, it must divide s. But

p− 1

2
(2pc−1 − 1) = pc − pc−1 − p− 1

2
< pc − p+ 1 <

p+ 1

2
(2pc−1 − 1)

= pc + pc−1 − p+ 1

2
,

a contradiction. It follows that the only good integers are the powers of primes.
(Russian Mathematical Olympiad, 2001)

70. Let us assume that no infinite monochromatic sequence exists with the desired property,
and consider a maximal white sequence 2k1 < k1 + k2 < · · · < 2kn and a maximal black
sequence 2l1 < l1 + l2 < · · · < 2lm. By maximal we mean that these sequences cannot be
extended any further. Without loss of generality, we may assume that kn < lm.

We look at all white even numbers between 2kn + 1 and some arbitrary 2x; let W be their
number. If for one of these white even numbers 2k the number k + kn were white as well,
then the sequence of whites could be extended, contradicting maximality. Hence k+ kn must
be black. Therefore, the number b of blacks between 2kn + 1 and x + kn is at least W .

Similarly, if B is the number of black evens between lm+1 and 2x, the number w of whites
between 2lm+1 and x+ lm is at least B. We have B+W ≥ x− lm, the latter being the number
of even integers between 2lm + 1 and 2x, while b + w ≤ x − kn, since x − kn is the number
of integers between 2kn + 1 and x + kn. Subtracting, we obtain

0 ≤ (b−W )+ (w− B) ≤ lm − kn,

and this inequality holds for all x. This means that as x varies there is an upper bound for
b − W and w − B. Hence there can be only a finite number of black squares that cannot be
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written as kn + k for some white 2k and there can only be a finite number of white squares
which cannot be written as lm + 1 for some black 2l. Consequently, from a point onward
all white squares are of the form lm + l for some black 2l and from a point onward all black
squares are of the form kn + k for some white 2k.

We see that for k sufficiently large, k is black if and only if 2k − 2kn is white, while k is
white if and only if 2k − 2lm is black. In particular, for each such k, 2k − 2kn and 2k − 2lm
have the same color, opposite to the color of k. So if we let lm − kn = a > 0, then from
some point onward 2x and 2x+ 2a are of the same color. The arithmetic sequence 2x+ 2na,
n ≥ 0, is thus monochromatic. It is not hard to see that it also satisfies the condition from the
statement, a contradiction. Hence our assumption was false, and sequences with the desired
property do exist.

(Communicated by A. Neguţ)

71. We begin with an observation that will play an essential role in the solution. Given a
triangle XYZ , if ∠XYZ ≤ π

3 , then either the triangle is equilateral or else max{XY , YZ} > XZ ,
and if ∠XYZ ≤ π

3 , then either the triangle is equilateral or else min{YX, YZ} < XZ .
Choose vertices A and B that minimize the distance between vertices. If C is a vertex

such that ∠ACB = π
3 , then max{CA, CB} ≤ AB, so by our observation the triangle ABC is

equilateral. So there exists an equilateral triangle ABC formed by vertices of the polygon
and whose side length is the minimal distance between two vertices of the polygon. By a
similar argument there exists a triangle A1B1C1 formed by vertices whose side length is the
maximal distance between two vertices of the polygon. We will prove that the two triangles
are congruent.

The lines AB, BC, CA divide the plane into seven open regions. Denote by RA the region
distinct from the interior of ABC and bounded by side BC, plus the boundaries of this region
except for the vertices B and C. Define RB and RC analogously. These regions are illustrated
in Figure 60. Because the given polygon is convex, each of A1, B1, and C1 lies in one of these
regions or coincides with one of A, B, and C.

R

C

A

B

R

R

A

B
C

Figure 60

If two of A1, B1, C1, say A1 and B1, are in the same region RX , then ∠A1XB1 < π
3 . Hence

max{XA1, XB1} > A1B1, contradicting the maximality of the length A1B1. Therefore, no two
of A1, B1, C1 are in the same region.

Suppose now that one of A1, B1, C1 (say A1) lies in one of the regions (say RA). Because
min{A1B, A1C} ≥ BC, we have that ∠BA1C ≤ π

3 . We know that B1 does not lie in RA. Also,
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because the polygon is convex, B does not lie in the interior of the triangle AA1B1, and C does
not lie in the interior of triangle AA1B1. It follows that B1 lies in the closed region bounded
by the rays |A1B and |A1C. So does C1. Therefore, π

3 = ∠B1A1C1 ≤ ∠BA1C ≤ π
3 , with

equalities if B1 and C1 lie on rays |A1B and |A1C. Because the given polygon is convex, this
is possible only if B1 and C1 equal B and C in some order, in which case BC = B1C1. This
would imply that triangles ABC and A1B1C1 are congruent.

The remaining situation occurs when none of A1, B1, C1 are in RA ∪ RB ∪ RC , in which
case they coincide with A, B, C in some order. Again we conclude that the two triangles are
congruent.

We have proved that the distance between any two vertices of the given polygon is the
same. Therefore, given a vertex, all other vertices are on a circle centered at that vertex.
Two such circles have at most two points in common, showing that the polygon has at most
four vertices. If it had four vertices, it would be a rhombus, whose longer diagonal would be
longer than the side, a contradiction. Hence the polygon can only be the equilateral triangle,
the desired conclusion.

(Romanian Mathematical Olympiad, 2000)

72. Because

a2 + b2 =
(

a+ b√
2

)2

+
(

a− b√
2

)2

,

the sum of the squares of the numbers in a triple is invariant under the operation. The sum of
squares of the first triple is 13

2 and that of the second is 6+ 2
√

2, so the first triple cannot be
transformed into the second.

(D. Fomin, S. Genkin, I. Itenberg, Mathematical Circles, AMS, 1996)

73. Assign the value i to each white ball, −i to each red ball, and −1 to each green ball. A
quick check shows that the given operations preserve the product of the values of the balls in
the box. This product is initially i2000 = 1. If three balls were left in the box, none of them
green, then the product of their values would be ±i, a contradiction. Hence, if three balls
remain, at least one is green, proving the claim in part (a). Furthermore, because no ball has
value 1, the box must contain at least two balls at any time. This shows that the answer to the
question in part (b) is no.

(Bulgarian Mathematical Olympiad, 2000)

74. Let I be the sum of the number of stones and heaps. An easy check shows that the
operation leaves I invariant. The initial value is 1002. But a configuration with k heaps, each
containing 3 stones, has I = k + 3k = 4k. This number cannot equal 1002, since 1002 is not
divisible by 4.

(D. Fomin, S. Genkin, I. Itenberg, Mathematical Circles, AMS, 1996)

75. The quantity I = xv+ yu does not change under the operation, so it remains equal to 2mn
throughout the algorithm. When the first two numbers are both equal to gcd(m, n), the sum
of the latter two is 2mn

gcd(m,n)
= 2lcm(m, n).

(St. Petersburg City Mathematical Olympiad, 1996)

76. We can assume that p and q are coprime; otherwise, shrink the size of the chessboard by
their greatest common divisor. Place the chessboard on the two-dimensional integer lattice
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such that the initial square is centered at the origin, and the other squares, assumed to have
side length 1, are centered at lattice points. We color the chessboard by the Klein four group

K = {a, b, c, e | a2 = b2 = c2 = e, ab = c, ac = b, bc = a}
as follows: if (x, y) are the coordinates of the center of a square, then the square is colored
by e if both x and y are even, by c if both are odd, by a if x is even and y is odd, and by b if
x is odd and y is even (see Figure 61). If p and q are both odd, then at each jump the color
of the location of the knight is multiplied by c. Thus after n jumps the knight is on a square
colored by cn. The initial square was colored by e, and the equality cn = e is possible only if
n is even.

If one of p and q is even and the other is odd, then at each jump the color of the square is
multiplied by a or b. After n jumps the color will be akbn−k . The equality akbn−k = e implies
ak = bn−k , so both k and n − k have to be even. Therefore, n itself has to be even. This
completes the solution.

(German Mathematical Olympiad)

77. The invariant is the 5-colorability of the knot, i.e., the property of a knot to admit a
coloring by the residue classes modulo 5 such that

(i) at least two residue classes are used;

(ii) at each crossing, a+ c ≡ 2b (mod 5),

where b is the residue class assigned to the overcrossing, and a and c are the residue classes
assigned to the other two arcs.

c b c b c b
a e a e a e
c b c b c b
a e a e a e
c b c b c b
a e a e a e

Figure 61

A coloring of the figure eight knot is given in Figure 62, while the trivial knot does not
admit 5-colorings since its simplest diagram does not. This proves that the figure eight knot
is knotted.
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013

4

Figure 62

78. The answer is no. The idea of the proof is to associate to the configuration (a) an encoding
defined by a pair of vectors (v, w) ∈ Z

2
2 square contains a+ if the ith coordinate of v is equal

to the jth coordinate of w, and a − otherwise. A possible encoding for our configuration
is v = w = (1, 1, 0). Any other configuration that can be obtained from it admits such an
encoding. Thus we choose as the invariant the possibility of encoding a configuration in such
a manner.

It is not hard to see that the configuration in (b) cannot be encoded this way. A slick proof
of this fact is that the configuration in which all signs are negative except for the one in the
center can be obtained from this by the specified move, and this latter one cannot be encoded.
Hence it is impossible to transform the first configuration into the second.

(Russian Mathematical Olympiad 1983–1984, solution by A. Badev)

79. The answer is no. The essential observation is that

99 . . . 99 ≡ 99 ≡ 3 (mod 4).

When we write this number as a product of two factors, one of the factors is congruent to 1
and the other is congruent to 3 modulo 4. Adding or subtracting a 2 from each factor produces
numbers congruent to 3, respectively, 1 modulo 4. We deduce that what stays invariant in
this process is the parity of the number of numbers on the blackboard that are congruent to 3
modulo 4. Since initially this number is equal to 1, there will always be at least one number
that is congruent to 3 modulo 4 written on the blackboard. And this is not the case with the
sequence of nines. This proves our claim.

(St. Petersburg City Mathematical Olympiad, 1997)

80. Without loss of generality, we may assume that the length of the hypotenuse is 1 and
those of the legs are p and q. In the process, we obtain homothetic triangles that are in the
ratio pmqn to the original ones, for some nonnegative integers m and n. Let us focus on the
pairs (m, n).

Each time we cut a triangle, we replace the pair (m, n) with the pairs (m + 1, n) and
(m, n + 1). This shows that if to the triangle corresponding to the pair (m, n) we associate
the weight 1

2m+n , then the sum I of all the weights is invariant under cuts. The initial value of
I is 4. If at some stage the triangles were pairwise incongruent, then the value of I would be
strictly less than

∞∑

m,n=0

1

2m+n
=

∞∑

m=0

1

2m

∞∑

n=0

1

2n
= 4,

a contradiction. Hence a configuration with all triangles of distinct sizes cannot be achieved.
(Russian Mathematical Olympiad, 1995)
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81. First solution: Here the invariant is given; we just have to prove its invariance. We first
examine the simpler case of a cyclic quadrilateral ABCD inscribed in a circle of radius R.
Recall that for a triangle XYZ the radii of the incircle and the circumcircle are related by

r = 4R sin
X

2
sin

Y

2
sin

Z

2
.

Let ∠CAD = α1, ∠BAC = α2, ∠ABD = β. Then ∠DBC = α1, and ∠ACD = β, ∠BDC =
α2, and ∠ACB = ∠ADB = 180◦ − α1 − α2 − β. The independence of the sum of the inradii
in the two possible dissections translates, after dividing by 4R, into the identity

sin
α1 + α2

2
sin

β

2
sin

(
90◦ − α1 + α2 + β

2

)
+ sin

(
90◦ − α1 + α2

2

)
sin

α1

2
sin

α2

2

= sin
α1 + β1

2
sin

α2

2
sin

(
90◦ − α1 + α2 + β

2

)
+ sin

(
90◦ − α1 + β1

2

)
sin

α1

2
sin

β

2
.

This is equivalent to

cos
α1 + β1 + α2

2

(
sin

α1 + α2

2
sin

β

2
− sin

α1 + β

2
sin

α2

2

)

= sin
α1

2

(
sin

β

2
cos

α1 + β1

2
− sin

α2

2
cos

α1 + α2

2

)
,

or

cos
α1 + α2 + β

2

(
cos

α1 + α2 − β

2
− cos

α1 − α2 + β

2

)

= sin
α1

2

(
sin
(
β1 + α1

2

)
− sin
(
α2 + α1

2

))
.

Using product-to-sum formulas, both sides can be transformed into

cos(α1 + α2)+ cos β1 − cos(α1 + β1)− cos α2.

Figure 63

The case of a general polygon follows from the particular case of the quadrilateral. This
is a consequence of the fact that any two dissections can be transformed into one another by
a sequence of quadrilateral moves (Figure 63). Indeed, any dissection can be transformed
into a dissection in which all diagonals start at a given vertex, by moving the endpoints of
diagonals one by one to that vertex. So one can go from any dissection to any other dissection
using this particular type as an intermediate step. Since the sum of the inradii is invariant
under quadrilateral moves, it is independent of the dissection.
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Second solution: This time we use the trigonometric identity

1+ r

R
= cos X + cos Y + cos Z.

We will check therefore that the sum of 1 + ri
R is invariant, where ri are the inradii of the

triangles of the decomposition. Again we prove the property for a cyclic quadrilateral and
then obtain the general case using the quadrilateral move. Using the fact that the sum of
cosines of supplementary angles is zero and chasing angles in the cyclic quadrilateral ABCD,
we obtain

cos ∠DBA+ cos ∠BDA+ cos ∠DAB+ cos ∠BDC + cos ∠CBD+ cos ∠CDB

= cos ∠DBA+ cos ∠BDA+ cos ∠CBD+ cos ∠CDB

= cos ∠DCA+ cos ∠BCA+ cos ∠CAD+ cos ∠CAB

= cos ∠DCA+ cos ∠CAD+ cos ∠ADC + cos ∠BCA+ cos ∠CAB+ cos ∠ABC,

and we are done.

Remark. A more general theorem states that two triangulations of a polygonal surface (not
necessarily by diagonals) are related by the move from Figure 63 and the move from Figure 64
or its inverse. These are called Pachner moves.

Figure 64

(Indian Team Selection Test for the International Mathematical Olympiad, 2005, second
solution by A. Tripathy)

82. Let S be the sum of the elements of the table. By performing moves on the rows or
columns with negative sum, we obtain a strictly increasing sequence S1 < S2 < · · · . Because
S can take at most 2n2

values (all possible sign choices for the entries of the table), the sequence
becomes stationary. At that time no row or column will have negative sum.

83. Skipping the first step, we may assume that the integers are nonnegative. The semi-
invariant is S(a, b, c, d) = max(a, b, c, d). Because for nonnegative numbers x, y, we have
|x − y| ≤ max(x, y), S does not increase under T . If S decreases at every step, then it
eventually becomes 0, in which case the quadruple is (0, 0, 0, 0). Let us see in what situation
S is preserved by T . If

S(a, b, c, d) = S(T(a, b, c, d)) = S(|a− b|, |b− c|, |c− d|, |d − a|),
then next to some maximal entry there must be a zero. Without loss of generality, we may
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assume a = S(a, b, c, d) and b = 0. Then

(a, 0, c, d)
T−→ (a, c, |c− d|, |d − a|)
T−→ (|a− c|, |c− |c− d|, ||c− d| − |d − a||, |a− |d − a||).

Can S stay invariant in both these steps? If |a − c| = a, then c = 0. If |c − |c − d|| = a,
then since a is the largest of the four numbers, either c = d = a or else c = 0, d = a. The
equality ||c − d| − |d − a|| = a can hold only if c = 0, d = a, or d = 0, c = a. Finally,
|a−|d−a|| = a if d = a. So S remains invariant in two consecutive steps only for quadruples
of the form

(a, 0, 0, d), (a, 0, 0, a), (a, 0, a, 0), (a, 0, c, a),

and their cyclic permutations.
At the third step these quadruples become

(a, 0, d, |d − a|), (a, 0, a, 0), (a, a, a, a), (a, c, |c − a|, 0).

The second and the third quadruples become (0, 0, 0, 0) in one and two steps, respectively.
Now let us look at the first and the last. By our discussion, unless they are of the form
(a, 0, a, 0) or (a, a, 0, 0), respectively, the semi-invariant will decrease at the next step. So
unless it is equal to zero, S can stay unchanged for at most five consecutive steps. If initially
S = m, after 5m steps it will be equal to zero and the quadruple will then be (0, 0, 0, 0).

84. If a, b are erased and c < d are written instead, we have c ≤ min(a, b) and d ≥ max(a, b).
Moreover, ab = cd. Using derivatives we can show that the function f (c) = c+ ab

c is strictly
decreasing on

(
0, a+b

2

)
, which implies a + b ≤ c + d. Thus the sum of the numbers is

nondecreasing. It is obviously bounded, for example by n times the product of the numbers,
where n is the number of numbers on the board. Hence the sum of the numbers eventually
stops changing. At that moment the newly introduced c and d should satisfy c + d = a + b
and cd = ab, which means that they should equal a and b. Hence the numbers themselves
stop changing.

(St. Petersburg City Mathematical Olympiad, 1996)

85. To a configuration of pebbles we associate the number

S =
∑ 1

2|i|+|j|
,

where the sum is taken over the coordinates of all nodes that contain pebbles. At one move
of the game, a node (i, j) loses its pebble, while two nodes (i1, j1) and (i2, j2) gain pebbles.
Since either the first coordinate or the second changes by one unit, |ik| + |jk| ≤ |i| + |j| + 1,
k = 1, 2. Hence

1

2|i|+|j|
= 1

2|i|+|j|+1
+ 1

2|i|+|j|+1
≤ 1

2|i1|+|j1|
+ 1

2|i2|+|j2|
,
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which shows that S is a nondecreasing semi-invariant. We will now show that at least one
pebble is inside or on the boundary of the square R determined by the lines x ± y = ±5.
Otherwise, the total value of S would be less than

∑

|i|+|j|>5

1

2|i|+|j|
= 1+ 4

∞∑

i=1

∞∑

j=0

1

2i+j
−
∑

|i|+|j|≤5

1

2|i|+|j|

= 1+ 4
∞∑

i=1

1

2i

∞∑

j=0

1

2j
− 1− 4

(
1 · 1

2
+ 2 · 1

4
+ 3 · 1

8
+ 4 · 1

16
+ 5 · 1

32

)
.

This equals 9− 65
8 = 7

8 which is impossible, since the original value of S was 1. So there is
always a pebble inside R, which is at distance at most 5 from the origin.
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86. Assume that both numbers are perfect cubes. Then so is their product

(n+ 3)(n2 + 3n+ 3) = n3 + 6n2 + 12n+ 9.

However, this number differs from the perfect cube (n + 2)3 = n3 + 6n2 + 12n + 8 by one
unit. And this is impossible because no perfect cubes can be consecutive integers (unless one
of them is zero). This proves the claim.

87. Let m = pq. We use the identity

xm − ym = (x − y)(xm−1 + xm−2y+ · · · + ym−1),

which can be applied to the matrices A and −B since they commute. We have

(A− (−B))(Am−1 + Am−2(−B)+ · · · + (−B)m−1)

= Am − (−B)m = (Ap)q − (−1)pq(Bq)p = In.

Hence the inverse of A+ B = A− (−B) is Am−1 + Am−2(−B)+ · · · + (−B)m−1.

88. First solution: Let F(x) be the polynomial in question. If F(x) is the square of a
polynomial, then write F(x) = G(x)2 + 02. In general, F(x) is nonnegative for all real
numbers x if and only if it has even degree and is of the form

F(x) = R(x)2(x2 + a1x + b1)(x
2 + a2x + b2) · · · (x2 + anx + bn),

where the discriminant of each quadratic factor is negative. Completing the square

x2 + akx + bj =
(

x + ak

2

)2 +�2
k, with �k =

√

bk − a2
k

4
,
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we can write

F(x) = (P1(x)
2 + Q1(x)

2)(P2(x)
2 + Q2(x)

2) · · · (Pn(x)
2 + Qn(x)

2),

where the factor R(x)2 is incorporated in P1(x)2 and Q1(x)2. Using the Lagrange identity

(a2 + b2)(c2 + d2) = (ac+ bd)2 + (ad − bc)2,

we can transform this product in several steps into P(x)2 + Q(x)2, where P(x) and Q(x) are
polynomials.

Second solution: Likewise with the first solution write the polynomial as

F(x) = R(x)2(x2 + a1x + b1)(x
2 + a2x + b2) · · · (x2 + anx + bn).

Factor the quadratics as (x + αk + iβk)(x + αk − iβk). Group the factors with +iβk into a
polynomial P(x)+ iQ(x) and the factors with −iβk into the polynomial P(x)− iQ(x). Then

F(x) = (R(x)P(x))2 + (R(x)Q(x))2,

which proves the conclusion.

Remark. D. Hilbert discovered that not every positive two-variable polynomial can be written
as a sum of squares of polynomials. The appropriate generalization to the case of rational
functions makes the object of his 16th problem. While Hilbert’s proof is nonconstructive,
the first examples of such polynomials were discovered surprisingly late, and were quite
complicated. Here is a simple example found by T. Motzkin:

f (x, y) = 1+ x2y2(x2 + y2 − 3).

89. Simply substitute x = 55n
in the factorization

x5 + x + 1 = (x2 + x + 1)(x3 − x2 + 1)

to obtain a factorization of the number from the statement. It is not hard to prove that both
factors are greater than 1.

(T. Andreescu, published in T. Andreescu, D. Andrica, 360 Problems for Mathematical
Contests, GIL, 2003)

90. Let

N = 5n−1 −
(

n

1

)
5n−2 +

(
n

2

)
5n−3 − · · · +

(
n

n− 1

)
.

Then 5N − 1 = (5− 1)n. Hence

N = 4n + 1

5
= 4(2k)4 + 1

5
= (22k+1 + 2k+1 + 1)(22k+1 − 2k+1 + 1)

5
,

where k = n−1
2 . Since n ≥ 5, both factors at the numerator are greater than 5, which shows

that after canceling the denominator, the expression on the right can still be written as a
product of two numbers. This proves that N is not prime.

(T. Andreescu, published in T. Andreescu, D. Andrica, 360 Problems for Mathematical
Contests, GIL, 2003)
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91. We use the identity

a5 − 1 = (a− 1)(a4 + a3 + a2 + a+ 1)

applied for a = 5397. The difficult part is to factor a4 + a3 + a2 + a+ 1. Note that

a4 + a3 + a2 + a+ 1 = (a2 + 3a+ 1)2 − 5a(a+ 1)2.

Hence

a4 + a3 + a2 + a+ 1 = (a2 + 3a+ 1)2 − 5398(a+ 1)2

= (a2 + 3a+ 1)2 − (5199(a+ 1))2

= (a2 + 3a+ 1+ 5199(a+ 1))(a2 + 3a+ 1− 5199(a+ 1)).

It is obvious that a− 1 and a2 + 3a+ 1+ 5199(a+ 1) are both greater than 5100. As for the
third factor, we have

a2 + 3a+ 1− 5199(a+ 1) = a(a− 5199)+ 3a− 5199 + 1 ≥ a+ 0+ 1 ≥ 5100.

Hence the conclusion.
(Proposed by Russia for the 26th International Mathematical Olympiad, 1985)

92. The number from the statement is equal to a4 + a3 + a2 + a + 1, where a − 525. As in
the case of the previous problem, we rely on the identity

a4 + a3 + a2 + a+ 1 = (a2 + 3a+ 1)2 − 5a(a+ 1)2,

and factor our number as follows:

a4 + a3 + a2 + a+ 1 = (a2 + 3a+ 1)2 − (513(a+ 1))2

= (a2 + 3a+ 1+ 513(a+ 1))(a2 + a+ 1− 513(a+ 1)).

The first factor is obviously greater than 1. The second factor is also greater than 1, since

a2 + a+ 1− 513a− 513 = a(a− 513)+ (a− 513)+ 1,

and a > 513. This proves that the number from the statement of the problem is not prime.
(Proposed by South Korea for the 33rd International Mathematical Olympiad, 1992)

93. The solution is based on the identity

ak + bk = (a+ b)(ak−1 + bk−1)− ab(ak−2 + bk−2).

This identity arises naturally from the fact that both a and b are solutions to the equation
x2 − (a+ b)x + ab = 0, hence also to xk − (a+ b)xk−1 + abxk−2 = 0.

Assume that the conclusion is false. Then for some n, a2n+ b2n is divisible by a+ b. For
k = 2n, we obtain that the right-hand side of the identity is divisible by a + b, hence so is
ab(a2n−2+ b2n−2). Moreover, a and b are coprime to a+ b, and therefore a2n−2+ b2n−2 must
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be divisible by a+ b. Through a backward induction, we obtain that a0 + b0 = 2 is divisible
by a+ b, which is impossible since a, b > 1. This contradiction proves the claim.

(R. Gelca)

94. Let n be an integer and let n3−n
6 = k. Because n3 − n is the product of three consecutive

integers, n− 1, n, n+ 1, it is divisible by 6; hence k is an integer. Then

n3 − n = 6k = (k − 1)3 + (k + 1)3 − k3 − k3.

It follows that
n = n3 − (k − 1)3 − (k + 1)3 + k3 + k3,

and thus

n = n3 +
(

1− n3 − n

6

)3

+
(
−1− n3 + n

6

)3

+
(

n3 − n

6

)3

+
(

n3 − n

6

)3

.

Remark. Lagrange showed that every positive integer is a sum of at most four perfect squares.
Wieferich showed that every positive integer is a sum of at most nine perfect cubes of positive
integers. Waring conjectured that in general, for every n there is a number w(n) such that every
positive integer is the sum of at most w(n) nth powers of positive integers. This conjecture
was proved by Hilbert.

95. Let a = (k − 1)4/5 and b = (k + 1)4/5. We have

1

(k − 1)4/5 − k4/5 + (k − 1)4/5
<

1

(k − 1)4/5 − (k2 − 1)2/5 + (k − 1)4/5

= 1

a4 − a2b2 + b4
<

1

a4 − a3b+ a2b2 − ab3 + b4
= a+ b

a5 + b5

= (k − 1)1/5 + (k + 1)1/5

(k − 1)+ (k + 1)
.

In this computation we used that a3b+ab3 ≥ 2a2b2 (a consequence of the AM-GM inequality).
It follows that

31∑

k=1

k

(k − 1)4/5 − k4/5 + (k − 1)4/5
<

1

2

31∑

k=1

[
(k − 1)1/5 + (k + 1)1/5

]

= −1

2
+

31∑

k=1

(k − 1)(1/5)+ 1

2
311/5 + 1

2
321/5,

and the conclusion follows.
(T. Andreescu)

96. First solution: Using the identity

a3 + b3 + c3 − 3abc = 1

2
(a+ b+ c)((a− b)2 + (b− c)2 + (c− a)2)
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applied to the (distinct) numbers a = 3
√

x − 1, b = 3
√

x, and c = 3
√

x + 1, we transform the
equation into the equivalent

(x − 1)+ x + (x + 1)− 3 3
√

(x − 1)x(x + 1) = 0.

We further change this into x = 3
√

x3 − x. Raising both sides to the third power, we obtain
x3 = x3 − x. We conclude that the equation has the unique solution x = 0.

Second solution: The function f : R → R, f (x) = 3
√

x − 1 + 3
√

x + 3
√

x + 1 s strictly
increasing, so the equation f (x) = 0 has at most one solution. Since x = 0 satisfies this
equation, it is the unique solution.

97. The key observation is that the left-hand side of the equation can be factored as

(x + y+ z)(x2 + y2 + z2 − xy − yz − zx) = 0.

Since x+y+z > 1 and p is prime, we must have x+y+z = p and x2+y2+z2−xy−yz−zx = 1.
The second equality can be written as (x − y)2 + (y − z)2 + (z − x)2 = 2. Without loss of
generality, we may assume that x ≥ y ≥ z. If x > y > z, then x − y ≥ 1, y − z ≥ 1, and
x − z ≥ 2, which would imply that (x − y)2 + (y− z)2 + (z − x)2 ≥ 6 > 2.

Therefore, either x = y = z + 1 or x − 1 = y = z. According to whether the prime

p is of the form 3k + 1 or 3k + 2, the solutions are
(

p−1
3 ,

p−1
3 ,

p+2
3

)
and the corresponding

permutations, or
(

p−2
3 ,

p+1
3 ,

p+1
3

)
and the corresponding permutations.

(T. Andreescu, D. Andrica, An Introduction to Diophantine Equations, GIL 2002)

98. The inequality to be proved is equivalent to

a3 + b3 + c3 − 3abc ≥ 9k.

The left-hand side can be factored, and the inequality becomes

(a+ b+ c)(a2 + b2 + c2 − ab− bc− ca) ≥ 9k.

Without loss of generality, we may assume that a ≥ b ≥ c. It follows that a−b ≥ 1, b−c ≥ 1,
a− c ≥ 2; hence (a− b)2 + (b− c)2 + (c− a)2 ≥ 1+ 1+ 4 = 6. Dividing by 2, we obtain

a2 + b2 + c2 − ab− bc− ca ≥ 3.

The solution will be complete if we show that a+ b+ c ≥ 3k. The computation

(a+ b+ c)2 = a2 + b2 + c2 − ab− bc− ca+ 3(ab+ bc+ ca)

≥ 3+ 3(3k2 − 1) = 9k2

completes the proof.
(T. Andreescu)

99. Apply the identity

a3 + b3 + c3 − 3abc = 1

2
(a+ b+ c)[(a− b)2 + (b− c)2 + (c− a)2]

= (a+ b+ c)(a2 + b2 + c2 − ab− bc− ca)
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to obtain that the expression is equal to

1

2
(x2 + y2 + z2 − xy − xz − yz)[(x2 − yz − y2 + xz)2 + (y2 − xz − z2 + xy)2

+(z2 − xy − x2 + yz)2]
= 1

2
(x2 + y2 + z2 − xy − xz − yz)(x + y + z)2[(x − y)2 + (x − z)2 + (y− z)2]

= (x + y+ z)2(x2 + y2 + z2 − xy − yz − zx) = (x3 + y3 + z3 − 3xyz)2.

(C. Coşniţă, Teme şi Probleme Alese de Matematici (Selected Mathematics Themes and
Problems), Ed. Didactică şi Pedagogică, Bucharest)

100. This is a difficult exercise in completing squares. We have

mnp = 1+ x2

z2
+ z2

y2
+ x2

y2
+ y2

x2
+ y2

z2
+ z2

x2
+ 1

=
(

x

y
+ y

x

)2

+
(

y

z
+ z

y

)2

+
(

z

x
+ x

z

)2

− 4.

Hence
m2 + n2 + p2 = mnp+ 4.

Adding 2(mn+ np+ pm) to both sides yields

(m+ n+ p)2 = mnp+ 2(mn+ np+ pm)+ 4.

Adding now 4(m + n+ p)+ 4 to both sides gives

(m+ n+ p+ 2)2 = (m + 2)(n+ 2)(p+ 2).

It follows that
(m+ 2)(n+ 2)(p+ 2) = 20042.

But 2004 = 22 × 3 × 167, and a simple case analysis shows that the only possibilities are
(m+2, n+2, p+2) = (4, 1002, 1002), (1002, 4, 1002), (1002, 1002, 4). The desired triples
are (2, 1000, 1000), (1000, 2, 1000), (1000, 1000, 2).

(Proposed by T. Andreescu for the 43rd International Mathematical Olympiad, 2002)

101. Let M(a, b) = max(a2 + b, b2 + a). Then M(a, b) ≥ a2 + b and M(a, b) ≥ b2 + a, so
2M(a, b) ≥ a2 + b+ b2 + a. It follows that

2M(a, b)+ 1

2
≥
(

a+ 1

2

)2

+
(

b+ 1

2

)2

≥ 0,

hence M(a, b) ≥ − 1
4 . We deduce that
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min
a,b∈R

M(a, b) = −1

4
,

which, in fact, is attained when a = b = − 1
2 .

(T. Andreescu)

102. Let a = 2x and b = 3x. We need to show that

a+ b− a2 + ab− b2 ≤ 1.

But this is equivalent to

0 ≤ 1

2
[(a− b)2 + (a− 1)2 + (b− 1)2].

The equality holds if and only if a = b = 1, i.e., x = 0.
(T. Andreescu, Z. Feng, 101 Problems in Algebra, Birkhäuser, 2001)

103. Clearly, 0 is not a solution. Solving for n yields −4x−3
x4 ≥ 1, which reduces to x4+4x+3 ≤

0. The last inequality can be written in its equivalent form,

(x2 − 1)2 + 2(x + 1)2 ≤ 0,

whose only real solution is x = −1.
Hence n = 1 is the unique solution, corresponding to x = −1.
(T. Andreescu)

104. If x = 0, then y = 0 and z = 0, yielding the triple (x, y, z) = (0, 0, 0). If x �= 0, then
y �= 0 and z �= 0, so we can rewrite the equations of the system in the form

1+ 1

4x2
= 1

y
,

1+ 1

4y2
= 1

z
,

1+ 1

4z2
= 1

x
.

Summing up the three equations leads to
(

1− 1

x
+ 1

4x2

)
+
(

1− 1

y
+ 1

4y2

)
+
(

1− 1

z
+ 1

4z2

)
= 0.

This is equivalent to

(
1− 1

2x

)2

+
(

1− 1

2y

)2

+
(

1− 1

2z

)2

= 0.

It follows that 1
2x = 1

2y = 1
2z = 1, yielding the triple (x, y, z) = ( 12 , 1

2 ,
1
2

)
. Both triples satisfy

the equations of the system.
(Canadian Mathematical Olympiad, 1996)
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105. First, note that
(
x − 1

2

)2 ≥ 0 implies x − 1
4 ≤ x2, for all real numbers x. Applying this

and using the fact that the xi’s are less than 1, we find that

logxk

(
xk+1 − 1

4

)
≥ logxk

(x2
k+1) = 2 logxk

xk+1 = 2
ln xk+1

ln xk
.

Therefore,

n∑

k=1

logxk

(
xk+1 − 1

4

)
≥ 2

n∑

k=1

logxk
xk+1 ≥ 2n n

√
ln x2

ln x1
· ln x3

ln x2
· · · ln xn

ln x1
= 2n,

where for the last step we applied the AM-GM inequality (see Section 2.1.5). So a good
candidate for the minimum is 2n, which is actually attained for x1 = x2 = · · · = xn = 1

2 .
(Romanian Mathematical Olympiad, 1984, proposed by T. Andreescu)

106. Assume the contrary, namely that 7a+ 5b+ 12ab > 9. Then

9a2 + 8ab+ 7b2 − (7a+ 5b+ 12ab) < 6− 9.

Hence

2a2 − 4ab+ 2b2 + 7

(
a2 − a+ 1

4

)
+ 5

(
b2 − b+ 1

4

)
< 0,

or

2(a− b)2 + 7

(
a− 1

2

)2

+ 5

(
b− 1

2

)2

< 0,

a contradiction. The conclusion follows.
(T. Andreescu)

107. We rewrite the inequalities to be proved as −1 ≤ ak − n ≤ 1. In this respect, we have

n∑

k=1

(ak − n)2 =
n∑

k=1

a2
k − 2n

n∑

k=1

ak + n · n2 ≤ n3 + 1− 2n · n2 + n3 = 1,

and the conclusion follows.
(Math Horizons, proposed by T. Andreescu)

108. Adding up the two equations yields
(

x4 + 2x3 − x + 1

4

)
+
(

y4 + 2y3 − y+ 1

4

)
= 0.

Here we recognize two perfect squares, and write this as

(
x2 + x − 1

2

)2

+
(

y2 + y− 1

2

)2

= 0.

http://dx.doi.org/10.1007/978-3-319-58988-6_2
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Equality can hold only if x2 + x − 1
2 = y2 + y − 1

2 = 0, which then gives {x, y} ⊂{
− 1

2 −
√

3
2 ,− 1

2 +
√

3
2

}
. Moreover, since x �= y, {x, y} =

{
− 1

2 −
√

3
2 ,− 1

2 +
√

3
2

}
. A simple

verification leads to (x, y) =
(
− 1

2 +
√

3
2 ,− 1

2 −
√

3
2

)
.

(Mathematical Reflections, proposed by T. Andreescu)

109. Let n = 2k. It suffices to prove that

1

2
± x + x2 ± x3 + x4 ± . . .± x2k−1 + x2k > 0,

for all 2k choices of the signs + and −. This reduces to
(

1

2
± x + 1

2
x2

)
+
(

1

2
x2 ± x3 + 1

2
x4

)
+ . . .+

(
1

2
x2k−2 ± x2k−1 1

2
x2k

)
+ 1

2
x2k > 0,

which is true because 1
2 x2k−2 ± x2k−1 + 1

2 x2k = 1
2 (xk−1 ± xk)2 ≥ 0 and 1

2 x2k ≥ 0, and the
equality cases cannot hold simultaneously.

110. This is the Cauchy-Schwarz inequality applied to the numbers a1 = a
√

b, a2 = b
√

c,
a3 = c

√
a and b1 = c

√
b, b2 = a

√
c, b3 = b

√
a. Indeed,

9a2b2c2 = (abc+ abc+ abc)2 = (a1b1 + a2b2 + a3b3)
2

≤ (a2
1 + a2

2 + a2
3)(b

2
1 + b2

2 + b2
3) = (a2b+ b2c+ c2a)(c2b+ a2c+ b2a).

111. By the Cauchy-Schwarz inequality,

(a1 + a2 + · · · + an)
2 ≤ (1+ 1+ · · · + 1)(a2

1 + a2
2 + · · · + a2

n).

Hence a2
1 + a2

2 + · · · + a2
n ≥ n. Repeating, we obtain

(a2
1 + a2

2 + · · · + a2
n)

2 ≥ (1+ 1+ · · · + 1)(a4
1 + a4

2 + · · · + a4
n),

which shows that a4
1 + a4

2 + . . .+ a4
n ≥ n, as desired.

112. Apply Cauchy-Schwarz:

(a1aσ(a) + a2aσ(2) + · · · + anaσ(n))
2 ≤ (a2

1 + a2
2 + · · · + a2

n)(aσ(1) + aσ(2) + · · · + a2
σ(n))

= (a2
1 + a2

2 + · · · + a2
n)

2.

The maximum is a2
1+a2

2+· · ·+a2
n. The only permutation realizing it is the identity permutation.

113. Applying the Cauchy-Schwarz inequality to the numbers
√

f1x1,
√

f2x2, . . .,
√

fnxn and√
f1,
√

f2, . . . ,
√

fn, we obtain

(f1x2
1 + f2x2

2 + · · · + fnx2
n)(f1 + f2 + · · · + fn) ≥ (f1x1 + f2x2 + · · · + fnxn)

2,

hence the inequality from the statement.
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Remark. In statistics the numbers fi are integers that record the frequency of occurrence of
the sampled random variable xi, i = 1, 2, . . . , n. If f1 + f2 + · · · + fn = N , then

s2 =
f1x2

1 + f2x2
2 + · · · + fnx2

n −
(f1x1 + f2x2 + · · · + fnxn)

2

N
N − 1

is called the sample variance. We have just proved that the sample variance is nonnegative.

114. By the Cauchy-Schwarz inequality,

(k1 + · · · + kn)

(
1

k1
+ · · · + 1

kn

)
≥ n2.

We must thus have 5n − 4 ≥ n2, so n ≤ 4. Without loss of generality, we may suppose that
k1 ≤ · · · ≤ kn.

If n = 1, we must have k1 = 1, which is a solution. Note that hereinafter we cannot have
k1 = 1.

If n = 2, we have (k1, k2) ∈ {(2, 4), (3, 3)}, neither of which satisfies the relation from
the statement.

If n = 3, we have k1 + k2 + k3 = 11, so 2 ≤ k1 ≤ 3. Hence (k1, k2, k3) ∈ {(2, 2, 7),

(2, 3, 6), (2, 4, 5), (3, 3, 5), (3, 4, 4)}, and only (2, 3, 6) works.
If n = 4, we must have equality in the Cauchy-Schwarz inequality, and this can happen

only if k1 = k2 = k3 = k4 = 4.
Hence the solutions are n = 1 and k1 = 1, n = 3, and (k1, k2, k3) is a permutation of

(2, 3, 6), and n = 4 and (k1, k2, k3, k4) = (4, 4, 4, 4).
(66th W.L. Putnam Mathematical Competition, 2005, proposed by T. Andreescu)

115. One can check that geometric progressions satisfy the identity. A slick proof of the
converse is to recognize that we have the equality case in the Cauchy-Schwarz inequality. It
holds only if a0

a1
= a1

a2
= · · · = an−1

an
, i.e., only if a0, a1, . . . , an is a geometric progression.

116. Let P(x) = cnxn + cn−1xn−1 + · · · + c0. Then

P(a)P(b) = (cnan + cn−1an−1 + · · · + c0)(cnbn + cn−1bn−1 + · · · + c0)

≥ (cn(
√

ab)n + cn−1(
√

ab)n−1 + · · · + c0)
2 = (P(

√
ab))2,

by the Cauchy-Schwarz inequality, and the conclusion follows.

117. First solution: If a1, a2, . . . , an are positive integers, the Cauchy-Schwarz inequality
implies

(a1 + a2 + · · · + an)

(
1

a1
+ 1

a2
+ · · · + 1

an

)
≥ n2.

For a1 = x0 − x1, a2 = x1 − x2, . . ., an = xn−1 − xn this gives

1

x0 − x1
+ 1

x1 − x2
+ · · · + 1

xn−1 − xn
≥ n2

x0 − x1 + x1 − x2 + · · · + xn−1 − xn

= n2

x0 − xn
.
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The inequality from the statement now follows from

x0 + xn + n2

x0 − xn
≥ 2n,

which is rather easy, because it is equivalent to

(√
x0 − xn − n√

x0 − xn

)2

≥ 0.

Equality in Cauchy-Schwarz holds if and only if x0−x1, x1−x2, . . ., xn−1−xn are proportional
to 1

x0−x1
, 1

x1−x2
, . . ., 1

xn−1−xn
. This happens when x0 − x1 = x1 − x2 = · · · = xn−1 − xn. Also,√

x0 − xn − n/
√

x0 − xn = 0 only if x0 − xn = n. This means that the inequality from the
statement becomes an equality if and only if x0, x1, . . . , xn is an arithmetic sequence with
common difference 1.

Second solution: As before, let ai = xi − xi+1. The inequality can be written as

n−1∑

i=1

(
ai + 1

ai

)
≥ 2n.

This follows immediately from x + x−1 ≥ 2.
(St. Petersburg City Mathematical Olympiad, 1999, second solution by R. Stong)

118. Because
1

sec(a− b)
= cos(a− b) = sin a sin b+ cos a cos b,

it suffices to show that
(

sin3 a

sin b
+ cos3 a

cos b

)
(sin a sin b+ cos a cos b) ≥ 1.

This is true because by the Cauchy-Schwarz inequality,

(
sin3 a

sin b
+ cos3 a

cos b

)
(sin a sin b+ cos a cos b) ≥ (sin2 a+ cos2 a)2 = 1.

119. Bring the denominator to the left:

(a+ b)(b+ c)(c + a)

(
1

a+ b
+ 1

b+ c
+ 1

c+ a
+ 1

2 3
√

abc

)
≥ (a+ b+ c+ 3

√
abc)2.

The identity

(a+ b)(b+ c)(c + a) = c2(a+ b)+ b2(c+ a)+ a2(b+ c)+ 2abc

enables us to transform this into
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(c2(a+ b)+ b2(c+ a)+ a2(b+ c)+ 2abc)

(
1

a+ b
+ 1

b+ c
+ 1

c+ a
+ 1

2 3
√

abc

)

≥ (c+ b+ a+ 3
√

abc)2.

And now we recognize the Cauchy-Schwarz inequality. Equality holds only if a = b = c.
(Mathematical Olympiad Summer Program, T. Andreescu)

120. Let c be the largest side. By the triangle inequality, cn < an + bn for all n ≥ 1. This is
equivalent to

1 <
(a

c

)n +
(

b

c

)n

, n ≥ 1.

If a < c and b < c, then by letting n →∞, we obtain 1 < 0, impossible. Hence one of the
other two sides equals c, and the triangle is isosceles.

121. Define
−→
d = −−→a −−→b −−→c . The inequality becomes

‖−→a ‖ + ‖−→b ‖ + ‖−→c ‖ + ‖−→d ‖ ≥ ‖−→a +−→d ‖ + ‖−→b +−→d ‖ + ‖−→c +−→d ‖.

If the angles formed by −→a come in increasing order, then the closed polygonal line −→a ,
−→
b ,

−→c ,
−→
d is a convex quadrilateral. Figure 65 shows how this quadrilateral can be transformed

into one that is skew by choosing one angle such that one of the pairs of adjacent angles
containing it totals at most 180◦ and the other at least 180◦ and then folding that angle in.

The triangle inequality implies ‖−→b ‖ + ‖−→c ‖ ≥ ‖−→b + −→d ‖ + ‖−→c + −→d ‖. To be more
convincing, let us explain that the left-hand side is the sum of the lengths of the dotted segments,
while the right-hand side can be decomposed into the lengths of some four segments, which
together with the dotted segments form two triangles. The triangle inequality also gives

‖−→a ‖ + ‖−→d ‖ ≥ ‖−→a +−→d ‖. Adding the two yields the inequality from the statement.
(Kvant (Quantum))

122. Let λ1, λ2, . . . , λn be the roots of the polynomial, D1 = {z, |z − c| ≤ R} the disk
covering them, and D2 = {z, |z−c| ≤ R+|k|}. We will show that the roots of nP(z)−kP′(z)
lie inside D2.

a

d
b

c

a

c

b

d
a

b c
d

Figure 65

For u /∈ D2, the triangle inequality gives

|u− λi| ≥ |u− c| − |c− λi| > R+ |k| − R = |k|.
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Hence |k|
|u−λi| < 1, for i = 1, 2, . . . , n. For such a u we then have

|nP(u)− kP′(u)| =
∣
∣
∣
∣
∣
nP(u)− kP(u)

n∑

i=1

1

u− λi

∣
∣
∣
∣
∣
= |P(u)|

∣
∣
∣
∣
∣
n− k

n∑

i=1

1

u− λi

∣
∣
∣
∣
∣

≥ |P(u)|
∣
∣
∣
∣
∣
n−

n∑

i=1

|k|
|u− λi|

∣
∣
∣
∣
∣
,

where the last inequality follows from the triangle inequality.
But we have seen that

n−
n∑

i=1

|k|
|u− λi| =

n∑

i=1

(
1− |k|

|u− λi|
)

> 0,

and since P(u) �= 0, it follows that u cannot be a root of nP(u) − kP′(u). Thus all roots of
this polynomial lie in D2.

(17th W.L. Putnam Mathematical Competition, 1956)

123. The inequality in the statement is equivalent to

(a2 + b2 + c2)2 < 4(a2b2 + b2c2 + c2a2).

The latter can be written as

0 < (2bc)2 − (a2 − b2 − c2)2,

or
(2bc+ b2 + c2 − a2)(2bc− b2 − c2 + a2).

This is equivalent to

0 < (a+ b+ c)(−a+ b+ c)(a− b+ c)(a− b− c).

It follows that −a+ b+ c, a− b+ c, a− b− c are all positive, because a+ b+ c > 0, and
no two of the factors could be negative, for in that case the sum of the three numbers would
also be negative. Done.

124. The first idea is to simplify the problem and prove separately the inequalities |AB−|CD| ≥
|AC − BD| and |AD− BC| ≥ |AC − BD|. Because of symmetry it suffices to prove the first.

Let M be the intersection of the diagonals AC and BD. For simplicity, let AM = x,
BM = y, AB = z. By the similarity of triangles MAB and MDC there exists a positive number
k such that DM = kx, CM = ky, and CD = kz (Figure 66). Then

|AB− CD| = |k − 1|z
and

|AC − BD| = |(kx + y)− (ky + x)| = |k − 1| · |x − y|.
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By the triangle inequality, |x − y| ≤ z, which implies |AB − CD| ≥ |AC − BD|, completing
the proof.

(USA Mathematical Olympiad, 1999, proposed by T. Andreescu, solution by P.R. Loh)

A

B C

D

z

x

y
M

kx

ky
kz

Figure 66

125. We induct on m. When m = 1 there is nothing to prove. Now assume that the inequality

holds for m− 1 isometries and let us prove that it holds for m isometries. Define V =
m−1∏

i=1

Vi

and W =
m−1∏

i=1

Wi. Both V and W are isometries. For a vector x with ‖x‖ ≤ 1, we have

∥∥
∥∥∥

(
m∏

i=1

Vi

)

x −
(

m∏

i=1

Wi

)

x

∥∥
∥∥∥
= ‖V Vmx −W Wmx‖

= ‖V (Vm −Wm)x + (V −W )Wmx‖.
Now we use the triangle inequality to increase the value of this expression to

‖V (Vm −Wm)x‖ + ‖(V −W )Wmx‖.
From the fact that V is an isometry it follows that

‖V (Vm −Wm)x‖ = ‖(Vm −Wm)x‖ ≤ 1.

From the fact that Wm is an isometry, it follows that ‖Wmx‖ ≤ 1, and so ‖(V − W )Wmx‖ ≤
m − 1 by the induction hypothesis. Putting together the two inequalities completes the
induction, and the inequality is proved.

Remark. In quantum mechanics the vector spaces are complex (not real) and the word isometry
is replaced by unitary. Unitary linear transformations model evolution, and the above property
shows that (measurement) errors accumulate linearly.

126. Place triangle ABC in the complex plane such that the coordinates of the vertices A, B,
and C are, respectively, the third roots of unity 1, ε, ε2. Call z the complex coordinate of P.
Start with the obvious identity

(z − 1)+ ε(z − ε)+ ε2(z − ε2) = 0.
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Move one term to the other side:

−ε2(z − ε2) = (z − 1)+ ε(z − ε).

Now take the absolute value and use the triangle inequality:

|z − ε2| = |(z − 1)+ ε(z − ε)| ≤ |z − 1| + |ε(z − ε)| = |z − 1| + |z − ε2|.
Geometrically, this is PC ≤ PA+ PB.

Equality corresponds to the equality case in the triangle inequality for complex numbers,
which holds if the complex numbers have positive ratio. Specifically, (z− 1) = aε(z− ε) for
some positive real number a, which is equivalent to

z − 1

z − ε
= aε.

In geometric terms this means that PA and PB form an angle of 120◦, so that P is on the arc
�

AB. The other two inequalities are obtained by permuting the letters.
(D. Pompeiu)

127. We start with the algebraic identity

x3(y− z)+ y3(z − x)+ z3(x − y) = (x + y+ z)(x − y)(y − z)(z − x),

where x, y, z are complex numbers. Applying to it the triangle inequality, we obtain

|x|2|y− z| + |y|3|z − x| + |z|3|x − y| ≥ |x + y + z||x − y||x − z||y − z|.
So let us see how this can be applied to our problem. Place the triangle in the complex plane
so that M is the origin, and let a, b, and c, respectively, be the complex coordinates of A, B, C.
The coordinate of G is (a+b+c)

3 , and if we set x = a, y = b, and z = c in the inequality we just
derived, we obtain the geometric inequality from the statement.

(M. Dincă, M. Chiriţă, Numere Complexe în Matematica de Liceu (Complex Numbers in
High School Mathematics), ALL Educational, Bucharest, 1996)

128. Because P(x) has odd degree, it has a real zero r. If r > 0, then by the AM-GM
inequality

P(r) = r5 + 1+ 1+ 1+ 25 − 5 · 2 · r ≥ 0.

And the inequality is strict since 1 �= 2. Hence r < 0, as desired.

129. We must have x > 0. From the AM-GM inequality we obtain

x · 2 1
x + 1

x
· 2x ≥ 2

√
2

1
x+x = 2 · 2

1
x +x

2 .

Because x+ 1
x ≥ 2, it follows that this is greater or equal to 4. Since we should have equality,

we deduce that x = 1.
(Gazeta Matematică (Mathematics Gazette, Bucharest), proposed by L. Panaitopol)
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130. First solution: The inequality is homogeneous in the sense that if we multiply some ak

and bk simultaneously by a positive number, the inequality does not change. Hence we can
assume that ak + bk = 1, k = 1, 2, . . . , n. In this case, applying the AM-GM inequality, we
obtain

(a1a2 · · · an)
1/n + (b1b2 · · · bn)

1/n ≤ a1 + a2 + · · · + an

n
+ b1 + b2 + · · · + bn

n

= a1 + b1 + a2 + b2 + · · · + an + bn

n
= n

n
= 1,

and the inequality is proved.
Second solution: There is an approach that uses multivariable differentiable calculus. The

case where ai = bi = 0 for some i is trivial, so let us assume that this does not happen.
We observe that the inequality does not change if for some i we divide both ai and bi by

the same positive constant λi. Let us choose λi = (ai+bi) for each i, and divide the inequality
by λ1λ2 · · · λn. As such, the inequality becomes

(a1a2 · · · an)
1/n + (b1b2 · · · bn)

1/n ≤ 1,

with the hypothesis that a1 + b1 = a2 + b2 = · · · = an + bn = 1. We can rewrite this
inequality as

(a1a2 · · · an)
1/n + ((1− a1)(1− a2) · · · (1− an))

1/n ≤ 1,

which is supposed to hold for all a1, a2, . . . , an ∈ [0, 1]. Let us consider the function f :
[0, 1]n → [0,∞),

f (x1, x2, . . . , xn) = (x1x2 · · · xn)
1/n + ((1− x1)(1− x2) · · · (1− xn))

1/n.

We want to find the maximum of f . The critical points inside the domain of definition satisfy
the system of equations

∂f

∂xi
= 0, i = 1, 2, . . . , n,

which translates to

1

xi
(x1x2 · · · xn)

1/n − 1

1− xi
((1− x1)(1− x2) · · · (1− xn))

1/n = 0.

This implies that

1− xi

xi
= ((1− x1)(1− x2) · · · (1− xn))

1/n

(x1x2 · · · xn)1/n
.

Since the equation 1−x
x = k is linear in x, it has a unique solution. Thus the critical points are

disposed along the line: x1 = x2 = · · · = xn.
We have

f (x1, x1, . . . , x1) = x1 + (1− x1) = 1.
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On the other hand, on the boundary of the domain some xi is 0 or 1. So on the boundary one
of the terms in f is zero, while the other term is a product of numbers not exceeding 1. This
proves that on the boundary of the domain f is less than or equal to 1. We conclude that the
maximum of f is 1, which proves the inequality.

(64th W.L. Putnam Mathematical Competition, 2003)

131. The inequality from the statement is equivalent to

0 < 1− (a+ b+ c)+ ab+ bc+ ca− abc <
1

27
,

that is,

0 < (1− a)(1− b)(1− c) ≤ 1

27
.

From the triangle inequalities a+b > c, b+c > a, a+c > b and the condition a+b+c = 2
it follows that 0 < a, b, c < 1. The inequality on the left is now evident, and the one on the
right follows from the AM-GM inequality

3
√

xyz ≤ x + y+ z

3

applied to x = 1− a, y = 1− b, z = 1− c.

132. It is natural to try to simplify the product, and for this we make use of the AM-GM
inequality:

25∏

n=1

(
1− n

365

)
≤
[

1

25

25∑

n=1

(
1− n

365

)]25

=
(

352

365

)25

=
(

1− 13

365

)25

.

We now use Newton’s binomial formula to estimate this power. First, note that

(
25

k

)(
13

365

)k

≥
(

25

k + 1

)(
13

365

)k+1

,

since this reduces to
13

365
≤ k + 1

25− k
,

and the latter is always true for 1 ≤ k ≤ 24. For this reason if we ignore the part of the
binomial expansion beginning with the fourth term, we increase the value of the expression.
In other words,

(
1− 13

365

)25

≤ 1−
(

25

1

)
13

365
+
(

25

2

)
132

3652
= 1− 65

73
+ 169 · 12

632
<

1

2
.

We conclude that the second number is larger.
(Soviet Union University Student Mathematical Olympiad, 1975)
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133. The solution is based on the Lagrange identity, which in our case states that if M is a
point in space and G is the centroid of the tetrahedron ABCD, then

AB2 + AC2 + CD2 + AD2 + BC2 + BD2

= 4(MA2 +MB2 + NC2 +MD2)− 16MG2.

For M = O the center of the circumscribed sphere, this reads

AB2 + AC2 + CD2 + AD2 + BC2 + BD2 = 16− 16OG2.

Applying the AM-GM inequality, we obtain

6 3
√

AB · AC · CD · AD · BC · BD ≤ 16− 16OG2.

This combined with the hypothesis yields 16 ≤ 16 − OG2. So on the one hand we have
equality in the AM-GM inequality, and on the other hand O = G. Therefore, AB = AC =
AD = BC = BD = CD, so the tetrahedron is regular.

134. Adding 1 to all fractions transforms the inequality into

x2 + y2 + 1

2x2 + 1
+ y2 + z2 + 1

2y2 + 1
+ z2 + x2 + 1

2z2 + 1
≥ 3.

Applying the AM-GM inequality to the left-hand side gives

x2 + y2 + 1

2x2 + 1
+ y2 + z2 + 1

2y2 + 1
+ z2 + x2 + 1

2z2 + 1

≥ 3

√
x2 + y2 + 1

2x2 + 1
· y2 + z2 + 1

2y2 + 1
· z2 + x2 + 1

2z2 + 1
.

We are left with the simpler but sharper inequality

x2 + y2 + 1

2x2 + 1
+ y2 + z2 + 1

2y2 + 1
+ z2 + x2 + 1

2z2 + 1
≥ 1.

This can be proved by multiplying together

x2 + y2 + 1 = x2 + 1

2
+ y2 + 1

2
≥ 2

√(
x2 + 1

2

)(
y2 + 1

2

)
,

y2 + z2 + 1 = y2 + 1

2
+ z2 + 1

2
≥ 2

√(
y2 + 1

2

)(
z2 + 1

2

)
,

z2 + x2 + 1 = z2 + 1

2
+ x2 + 1

2
≥ 2

√(
z2 + 1

2

)(
y2 + 1

2

)
,

and each of these is just the AM-GM inequality.
(Greek Team Selection Test for the Junior Balkan Mathematical Olympiad, 2005)
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135. Denote the positive number 1− (a1 + a2 + · · · + an) by an+1. The inequality from the
statement becomes the more symmetric

a1a2 · · · anan+1

(1− a1)(1− a2) · · · (1− an)(1− an+1)
≤ 1

nn+1
.

But from the AM-GM inequality,

1− a1 = a2 + a3 + · · · + an+1 ≥ n n
√

a2a3 · · · an+1,

1− a2 = a1 + a3 + · · · + an+1 ≥ n n
√

a1a3 · · · an+1,

. . .

1− an+1 = a1 + a2 + · · · + an ≥ n n
√

a1a2 · · · an.

Multiplying these n+ 1 inequalities yields

(1− a1)(1− a2) · · · (1− an+1) ≥ nn+1a1a2 . . . an,

and the conclusion follows.
(Short list of the 43rd International Mathematical Olympiad, 2002)

136. Trick number 1: Use the fact that

1 = n− 1+ xj

n− 1+ xj
= (n− 1)

1

n− 1+ xj
+ xj

n− 1+ xj
, j = 1, 2, . . . , n,

to transform the inequality into

x1

n− 1+ x1
+ x2

n− 1+ x2
+ · · · + xn

n− 1+ xn
≥ 1.

Trick number 2: Break this into the n inequalities

xj

n− 1+ xj
≥ x

1− 1
n

j

x
1− 1

n
1 + x

1− 1
n

2 + · · · + x
1− 1

n
n

, j = 1, 2, . . . , n.

We are left with n somewhat simpler inequalities, which can be rewritten as

x
1− 1

n
1 + x

1− 1
n

2 + x
1− 1

n
j−1 + x

1− 1
n

j+1 + · · · + x
1− 1

n
n ≥ (n− 1)x

− 1
n

j .

Trick number 3: Use the AM-GM inequality

x
1− 1

n
1 + x

1− 1
n

2 + x
1− 1

n
j−1 + x

1− 1
n

j+1 + · · · + x
1− 1

n
n

n− 1
≥
(
(x1x2 · · · xj−1xj+1 · · · xn)

n−1
n

) 1
n−1

= (x1x2 · · · xj−1xj+1 · · · xn)
1
n = x

− 1
n

j .

This completes the proof.
(Romanian Team Selection Test for the International Mathematical Olympiad, 1999, pro-

posed by V. Cârtoaje and Gh. Eckstein)
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137. First solution: Note that the triple (a, b, c) ranges in the closed and bounded set D =
{(x, y, z) ∈ R

3 | 0 ≤ x, y, z ≤ 1, x+ y+ z = 1}. The function f (x, y, z) = 4(xy+ yz+ zx)−
9xyz − 1 is continuous; hence it has a maximum on D. Let (a, b, c) be a point in D at which
f attains this maximum. By symmetry we may assume that a ≥ b ≥ c. This immediately
implies c ≤ 1

3 .
Let us apply Sturm’s method. Suppose that b < a, and let 0 < x < a− b. We show that

f (a− x, b+ x, c) > f (a, b, c). The inequality is equivalent to

4(a− x)(b+ x)− 9(a− x)(b+ x)c > 4ab− 9abc,

or
(4− 9c)((a− b)x − x2) > 0,

and this is obviously true. But this contradicts the fact that (a, b, c) was a maximum. Hence
a = b. Then c = 1 − 2a, and it suffices to show that f (a, a, 1 − 2a) ≤ 0. Specifically, this
means

4a2 − 8a(1− 2a)− 9a2(1− 2a)− 1 ≤ 0.

The left-hand side factors as −(1− 2a)(3a− 1)2 = −c(3a− 1)2, which is negative or zero.
The inequality is now proved. Moreover, we have showed that the only situations in which
equality is attained occur when two of the numbers are equal to 1

2 and the third is 0, or when
all three numbers are equal to 1

3 .

Second solution: A solution is possible using the Viète relations. Here it is. Consider the
polynomial

P(x) = (x − a)(x − b)(x − c) = x3 − x2 + (ab+ bc+ ca)x − abc,

the monic polynomial of degree 3 whose roots are a, b, c. Because a + b + c = 1, at most
one of the numbers a, b, c can be equal to or exceed 1

2 . If any of these numbers is greater than
1
2 , then

P

(
1

2

)
=
(

1

2
− a

)(
1

2
− b

)(
1

2
− c

)
< 0.

This implies
1

8
− 1

4
+ 1

2
(ab+ bc+ ca)− abc < 0,

and so 4(ab+ bc+ ca)− 8abc ≤ 1, and the desired inequality holds.
If 1

2 − a ≥ 0, 1
2 − b ≥ 0, 1

2 − c ≥ 0, then

2

√(
1

2
− a

)(
1

2
− b

)
≤
(

1

2
− a

)
+
(

1

2
− b

)
= 1− a− b = c.

Similarly,

2

√(
1

2
− b

)(
1

2
− c

)
≤ a and 2

√(
1

2
− c

)(
1

2
− a

)
≤ b.
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It follows that

8

(
1

2
− a

)(
1

2
− b

)(
1

2
− c

)
≤ abc,

and the desired inequality follows.
(Mathematical Reflections, proposed by T. Andreescu)

138. Define

f : {(x1, x2, . . . , xn) ∈ R
n | xj > 0, x1 + x2 + · · · + xn = 1} → (0,∞),

f (x1, x2, . . . , xn) =
(

1+ 1
x1

) (
1+ 1

x2

)
· · ·
(

1+ 1
xn

)
.

The domain is not compact but it is bounded, and f becomes infinite on the boundary. So f
has a minimum inside the domain. We will show that the minimum is attained when all xj are
equal.

If xi < xj for some i and j, increase xi and decrease xj by some number a, 0 < a ≤ xj− xi.
We need to show that

(
1+ 1

xi + a

)(
1+ 1

xj − a

)
<

(
1+ 1

xi

)(
1+ 1

xj

)
,

or
(xi + a+ 1)(xj − a+ 1)

(xi + a)(xj − a)
<

(xi + 1)(xj + 1)

xixj
.

All denominators are positive, so after multiplying out and canceling terms, we obtain the
equivalent inequality

−ax2
i + ax2

j − a2xi − a2xi − axi + axj − a2 > 0.

This can be rewritten as

a(xj − xi)(xj + xi + 1) > a2(xj + xi + 1),

which is true, since a < xj − xi. So the minimum can only be attained with x1 = x2 = · · · =
xn = 1

n . The value of the the minimum is f
(

1
n ,

1
n , . . . , 1

n

) = (n+1)n. The inequality is proved.

139. Project orthogonally the ellipse onto a plane to make it a circle. Because all areas are
multiplied by the same constant, namely the cosine of the angle made by the plane of the
ellipse and that of the projection, the problem translates to finding the largest area triangles
inscribed in a given circle. We apply Sturm’s principle, after we guess that all these triangles
have to be equilateral.

Let C be the circle and let us define f : C3 → R, f (P1, P2, P3) equal to the area of triangle
P1, P2, P3. The area depends continuously on the vertices (because you can write it as a
determinant with entries the coordinates of the vertices). C3 is closed and bounded in R

3. So
f has a maximum. Let P1P2P3 be a triangle for which the maximum is achieved.

If P1P2P3 is not equilateral, two cases can be distinguished. Either the triangle is obtuse,
in which case it lies inside a semidisk. Then its area is less than half the area of the disk,
and consequently smaller than the area of the inscribed equilateral triangle. Or otherwise the
triangle is acute.
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Figure 67

In this case, one of the sides of the triangle is larger than the side of the equilateral
triangle and one is smaller (since some side must subtend an arc greater than 2π

3 and another
an arc smaller than 2π

3 ). Moving the vertex on the circle in the direction of the longer side
increases the area, as seen in Figure 67. So this is not the maximum. Therefore, the inscribed
triangles that maximize the area are the equilateral triangles. These triangles are exactly
those whose centroid coincides with the center of the circle. Returning to the ellipse, since
the orthogonal projection preserves centroids, we conclude that the maximal-area triangles
inscribed an ellipse are those with the centroid at the center of the ellipse.

(12th W.L. Putnam Mathematical Competition, 1952)

140. This is equivalent to asking what is the largest ratio between the area of an inscribed
convex n-gon and the area of the circle.

We can assume that the circle has fixed radius R and vary the polygon. Let C be this circle,
viewed as a subspace of R

2. Then Cn is a closed bounded subset of R
2n, and any continuous

function defined on Cn has a maximum.
We define thus

f : Cn → R,

f (P1, P2, . . . , Pn) equal to the area of the convex polygon that has vertices P1, P2, . . . , Pn in
some order. Note that some of the vertices might coincide, but that will not affect the final
answer, as we will see. The function f is continuous since the area depends continuously on
the vertices.

Hence f has a maximum, and let (P1, P2, . . . , Pn) be the point in Cn where the maximum
is attained. Without loss of generality we may assume that the points appear in this order
on the circle. Working with indices modulo n, assume that for some j ∈ {1, 2, . . . , n},
PjPj+1 �= Pj+1Pj+2. Moving Pj+1 to the midpoint of the arc

�

PjPj+1Pj+2 we obtain a polygon
with strictly larger area. This is impossible, so P1P2 . . . Pn must be the regular n-gon.

Since the area of the regular n-gon is related to the area of the circumcircle by A =
1
2 nR2 sin 2π

n , the smallest radius that the circle can have is

R =
√

2

n sin 2π
n

.
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141. The first inequality follows easily from ab ≥ abc and bc ≥ abc. For the second, set

K = {(a, b, c) ∈ R
3 | a, b, c ≥ 0, a+ b+ c = 1}.

Then K is closed and bounded (in other words it is compact). Define the function

E : K → (0,∞), E(a, b, c) = ab+ bc+ ac− 2abc.

The function E has a maximum on K . We claim that the minimum is attained when a = b =
c = 1

3 .
Suppose that the maximum is attained at (a, b, c), without loss of generality, we may

assume that a ≤ b ≤ c. Note that b ≤ c and a+ b+ c = 1 imply b ≤ 1
2 . If a < c, choose α

a positive number smaller than c− a. We have

E(a+ α, b, c− α)− E(a, b, c) = α(1− 2b)[(c− a)− α] > 0.

So (a, b, c) is not the maximum. This means that the maximum is atttained when all three
numbers are equal, and the inequality is proved.
Second solution. Let us also give a proof to the inequality on the right that does not rely on
real analysis. Define E(a, b, c) = ab+ bc+ ac− 2abc. Assume that a ≤ b ≤ c, a < c, and
let α = min

(
1
3 − a, c− 1

3

)
, which is a positive number. We compute

E(a+ α, b, c− α) = E(a, b, c)+ α(1− 2b)[(c− a)− α].
Since b ≤ c and and a + b + c = 1, we have b ≤ 1

2 . This means that E(a + α, b, c − α) ≥
E(a, b, c). So we were able to make one of a and c equal to 1

3 by increasing the value of the
expression. Repeating the argument for the remaining two numbers, we are able to increase
E(a, b, c) to E

(
1
3 ,

1
3 ,

1
3

) = 7
27 . This proves the inequality.

(Communicated by V. Grover)

142. The inequality from the statement can be rewritten as

n∏

j=1

xj

n∏

j=1

(1− xj)

≤

⎛

⎝
n∑

j=1

xj

⎞

⎠

n

⎛

⎝
n∑

j=1

(1− xj)

⎞

⎠

n .

We prove the inequality for a fixed, but arbitrary value S of the sum x1 + x2 + · · · xn. Then
the right-hand side is equal to

(
S

n−S

)n
.Define

K =
{
(x1, x2, . . . , xn) ∈ R

n | 0 ≤ xj ≤ 1

2
, x1 + x2 + · · · + xn = 1

}
.

The K is closed and bounded, so the continuous function

f : K → (0,∞), f (x1, x2, . . . , xn) =

n∏

j=1

xj

n∏

j=1

(1− xj)
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has a maximum on K . We are supposed to show that the maximum is attained when all xj are
equal (in which case we have equality in the given inequality).

Let (x1, x2, . . . , xn) be a point where the maximum is attained. If the xj’s are not all equal,
then there exist two of them, xk and xi, with xk < S

n < xl. We would like to show that by
adding a small positive number α to xk and subtracting the same number from xl the expression
grows. This reduces to

(xk + α)(xl − α)

(1− xk − α)(1− xl + α)
<

xkxl

(1− xk)(1− xl)
.

Some computations transform this into

α(1− xk − xl)(xl − xk − α) > 0,

which is true if α < xl − xk . So this is not the maximum. Hence the maximum is attained
when all numbers are equal. Doing this for all possible values of S proves the inequality.

(Indian Team Selection Test for the International Mathematical Olympiad, 2004)

143. We apply the same kind of reasoning, varying the parameters until we reach the maxi-
mum. To find the maximum of

√
a + √b + √c + √d, we increase the sum a + b + c + d

until it reaches the upper limit 30. Because a + b+ c ≤ 14 it follows that d ≥ 16. Now we
fix a, b and vary c, d to maximize

√
c+√d. This latter expression is maximal if c and d are

closest to c+d
2 . But since c+ d ≤ 30, c+d

2 ≤ 15. So in order to maximize
√

c+√d, we must
choose d = 16.

Now we have a+ b+ c = 14, a+ b ≤ 5, and a ≤ 1. The same argument carries over to
show that in order to maximize

√
a+√b+√c we have to choose c = 9. And the reasoning

continues to show that a has to be chosen 1 and b has to be 4.
We conclude that under the constraints a ≤ 1, a+b ≤ 5, a+b+c ≤ 14, and a+b+c+d ≤

30, the sum
√

a+√b+√c +√d is maximal when a = 1, b = 4, c = 9, d = 16, in which
case the sum of the square roots is equal to 10. The inequality is proved.

(V. Cârtoaje)

144. There exist finitely many n-tuples of positive integers with the sum equal to m, so the
expression from the statement has indeed a maximal value.

We show that the maximum is not attained if two of the xi’s differ by 2 or more. Without
loss of generality, we may assume that x1 ≤ x2 − 2. Increasing x1 by 1 and decreasing x2 by
1 yields ∑

2<i<j

xixj + (x1 + 1)
∑

2<i

xi + (x2 − 1)
∑

2<i

xi + (x1 + 1)(x2 − 1)

=
∑

2<i<j

xixj + x1

∑

2<i

xi + x2

∑

2<i

xi + x1x2 − x1 + x2 + 1.

The sum increased by x2 − x1 − 1 ≥ 1, and hence the original sum was not maximal.
This shows that the expression attains its maximum for a configuration in which the xi’s

differ from each other by at most 1. If m = rn + s, with 0 ≤ s < n, then for this to happen
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s of the xi’s must be equal to r + 1 and the remaining must be equal to r. This gives that the
maximal value of the expression must be equal to

1

2
(n− s)(n− s− 1)r2 + s(n− s)r(r + 1)+ 1

2
s(s− 1)(r + 1)2.

(Mathematical Olympiad Summer Program 2002, communicated by Z. Sunik)

145. There are finitely many such products, so a smallest product does exist. Examining the
2× 2, 3× 3, and 4× 4 arrays, we conjecture that the smallest product is attained on the main
diagonal and is 1 · 3 · 5 · · · (2n − 1). To prove this, we show that if the permutation σ of
{1, 2, . . . , n} has an inversion, then a1σ(1)a2σ(2) · · · anσ(n) is not minimal.

i+j+k−1

i+m+j+k−1i+m+j−1

i+j−1

Figure 68

So assume that the inversion gives rise to the factors i + (j + k)− 1 and (i + m)+ j − 1
in the product. Let us replace them with i + j − 1 and (i + m) + (j + k) − 1, as shown in
Figure 68. The product of the first pair is

i2 + ik + i(j − 1)+ mi + mk + m(j − 1)+ (j − 1)i + (j − 1)k + (j − 1)2,

while the product of the second pair is

i2 + im+ ik + i(j − 1)+ (j − 1)m+ (j − 1)k + (j − 1)2.

We can see that the first of these expressions exceeds the second by mk. This proves that if the
permutation has an inversion, then the product is not minimal. The only permutation without
inversions is the identity permutation. By Sturm’s principle, it is the permutation for which
the minimum is attained. This minimum is 1 · 3 · 5 · · · (2n− 1), as claimed.

146. Order the numbers x1 < x2 < · · · < xn and call the expression from the statement

E(x1, x2, . . . , xn). Note that E(x1, x2, . . . , xn) >
x2

n
n , which shows that as the variables tend

to infinity, so does the expression. This means that the minimum exists. Assume that the
minimum is attained at the point (y1, y2, . . . , yn). If yn − y1 > n then there exist indices
i and j, i < j, such that y1, . . . , yi + 1, . . . , yj − 1, . . . , yn are still distinct integers. When
substituting these numbers into E the denominator stays constant while the numerator changes
by 3(yj + yi)(yj − yi − 1), a negative number, decreasing the value of the expression. This
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contradicts the minimality. We now look at the case with no gaps: yn − y1 = n − 1. Then
there exists a such that y1 = a+ 1, y2 = a+ 2, . . ., yn = a+ n. We have

E(y1, . . . , yn) =
na3 + 3

n(n+ 1)

2
a2 + n(n+ 1)(2n+ 1)

2
a+ n2(n+ 1)2

4

na+ n(n+ 1)

2

=
a3 + 3(n+ 1)

2
a2 + (n+ 1)(2n+ 1)

2
a+ n(n+ 1)2

4

a+ n+ 1

2

.

When a = 0 this is just n(n+1)

2 . Subtracting this value from the above, we obtain

a3 + 3(n+ 1)

2
a2 +
[
(n+ 1)(2n+ 1)

2
− n(n+ 1)

2

]
a

a+ n+ 1

2

> 0.

We deduce that n(n+1)

2 is a good candidate for the minimum.
If yn − y1 = n, then there exist a and k such that y1 = a, . . ., yk = a + k − 1, yk+1 =

a+ k + 1, . . ., yn = a+ n. Then

E(y1, . . . , yn) = a3 + · · · + (a+ k − 1)3 + (a+ k + 1)3 + · · · + (a+ n)3

a+ · · · + (a+ k − 1)+ (a+ k + 1)+ · · · + (a+ n)

=

n∑

j=0

(a+ j)3 − (a+ k)3

n∑

j=0

(a+ j)− (a+ k)

=
na3 + 3

[
n(n+ 1)

2
− k

]
a2 + 3

[
n(n+ 1)(2n+ 1)

6
− k2

]
a+
[

n2(n+ 1)2

4
− k3

]

na+ n(n+ 1)

2
− k

.

Subtracting n(n+1)

2 from this expression, we obtain

na3 + 3

[
n(n+ 1)

2
− k

]
a2 +
[

n(n+ 1)(2n+ 1)

2
− 3k2 − n2(n+ 1)

2

]

a− k3 + n(n+ 1)

2
k

na+ n(n+ 1)

2
− k

.

The numerator is the smallest when k = n and a = 1, in which case it is equal to 0. Otherwise,
it is strictly positive, proving that the minimum is not attained in that case. Therefore, the
desired minimum is n(n+1)

2 , attained only if xk = k, k = 1, 2, . . . , n.
(American Mathematical Monthly, proposed by C. Popescu)
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147. First, note that the inequality is obvious if either x or y is at least 1. For the case
x, y ∈ (0, 1), we rely on the inequality

ab ≥ a

a+ b− ab
,

which holds for a, b ∈ (0, 1). To prove this new inequality, write it as

a1−b ≤ a+ b− ab,

and then use the Bernoulli inequality to write

a1−b = (1+ a− 1)1−b ≤ 1+ (a− 1)(1− b) = a+ b− ab.

Using this, we have

xy + yx ≥ x

x + y− xy
+ y

x + y− xy
>

x

x + y
+ y

x + y
= 1,

completing the solution to the problem.
(French Mathematical Olympiad, 1996)

148. We have
x5 − x2 + 3 ≥ x3 + 2,

for all x ≥ 0, because this is equivalent to (x3 − 1)(x2 − 1) ≥ 0. Thus

(a5 − a2 + 3)(b5 − b2 + 3)(c5 − c2 + 3) ≥ (a3 + 1+ 1)(1+ b3 + 1)(1+ 1+ c3).

Let us recall Hölder’s inequality, which in its most general form states that for r1, r2, . . . , rk >

0, with 1
r1
+ 1

r2
+· · ·+ 1

rk
= 1 and for positive real numbers aij, i = 1, 2, . . . , k, j = 1, 2, . . . , n,

n∑

i=1

a1ia2i · · · aki ≤
(

n∑

i=1

ar1
1i

) 1
r1
(

n∑

i=1

ar2
2i

) 1
r2

· · ·
(

n∑

i=1

ark
ki

) 1
rk

.

Applying it for k = n = 3, r1 = r3 = 3, and the numbers a11 = a, a12 = 1, a13 = 1, a21 = 1,
a22 = b, a23 = 1, a31 = 1, a32 = 1, a33 = c, we obtain

(a+ b+ c) ≤ (a3 + 1+ 1)
1
3 (1+ b3 + 1)

1
3 (1+ 1+ c)

1
3 .

we thus have
(a3 + 1+ 1)(1+ b3 + 1)(1+ 1+ c3) ≥ (a+ b+ c)3,

and the inequality is proved.
(USA Mathematical Olympiad, 2004, proposed by T. Andreescu)

149. Let xi, i = 1, 2, . . . , n, xi > 0, be the roots of the polynomial. Using the relations
between the roots and the coefficients, we obtain

∑
x1x2 · · · xm =

(
n

m

)
and
∑

x1x2 · · · xp =
(

n

p

)
.
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The generalized Maclaurin inequality

m

√√
√
√
∑

x1x2 · · · xm
(n

m

) ≥ m

√√
√
√
∑

x1x2 · · · xp
(n

p

)

thus becomes equality. This is possible only if x1 = x2 = · · · = xn. Since
∑

x1x2 · · · xm =(
n

m

)
, it follows that xi = 1, i = 1, 2, . . . , n, and hence P(x) = (x − 1)n.

(Revista Matematică din Timişoara (Timişoara Mathematics Gazette), proposed by T.
Andreescu)

150. The idea of the solution is to reduce the inequality to a particular case of the Huygens
inequality,

n∏

i=1

(ai + bi)
pi ≥

n∏

i=1

api
i +

n∏

i=1

bpi
i ,

which holds for positive real numbers p1, p2, . . . , pn, a1, a2, . . . , an, b1, b2, . . . , bn with p1 +
p2 + · · · + pn = 1,

To this end, start with

n− xi

1− xi
= 1+ n− 1

x1 + · · · + xi−1 + xi+1 + · · · + xn

and apply the AM-GM inequality to get

n− xi

1− xi
≤ 1+ 1

n−1
√

x1 · · · xi−1xi+1 · · · xn
.

Multiplying all n inequalities gives

n∏

i=1

(
n− xi

1− xi

)
≤

n∏

i=1

(
1+ 1

n−1
√

x1 · · · xi−1xi+1 · · · xn

)
.

Thus we are left to prove

n∏

i=1

(
1+ 1

xi

)
≥

n∏

i=1

(
1+ 1

n−1
√

x1 · · · xi−1xi+1 · · · xn

)
.

This inequality is a product of the individual inequalities

∏

j �=i

(
1+ 1

xj

)
≥
⎛

⎝1+ n−1

√√
√√
∏

j �=i

1

xi

⎞

⎠

n−1

, j = 1, 2, . . . , n.

Each of these is Huygens’ inequality applied to the numbers 1, 1, . . . , 1 and 1
x1

, . . . , 1
xi−1

,
1

xi+1
, . . ., 1

xn
, with p1 = p2 = · · · = pn = 1

n−1 .
(Crux Mathematicorum, proposed by W. Janous)
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151. We will use

Aczel’s inequality. If x1, x2, . . . , xn, y1, y2, . . . , ym are real numbers such that x2
1 > x2

2 +
· · · + x2

m, then

(x1y1 − x2y2 − · · · xmym)2 ≥ (x2
1 − x2

2 − · · · − x2
m)(y2

1 − y2
2 − · · · y2

m).

Proof. Consider

f (t) = (x1t + y1)
2 −

m∑

i=2

(xit + yi)
2

and note that f
(
− y1

x1

)
≤ 0. It follows that the discriminant of the quadratic function f (t) is

nonnegative. This condition that the discriminant is nonnegative is basically Aczel’s inequal-
ity. �

Let us return to the problem. It is clear that a2
1+a2+· · ·+a2

n−1 and b2
1+b2

2+· · ·+b2
n−1

have the same sign. If

1 > a2
1 + a2

2 + · · · + a2
n or 1 > b2

1 + b2
2 + · · · + b2

n,

then by Aczel’s inequality,

(1− a1b1 − · · · − anbn)
2 ≥ (1− a2

1 − a2
2 − · · · − a2

n)(1− b2
1 − b2

2 − · · · − b2
n),

which contradicts the hypothesis. The conclusion now follows.
(USA Team Selection Test for the International Mathematical Olympiad, proposed by T.

Andreescu and D. Andrica)

152. The solution is based on the Muirhead inequality.

Theorem. If a1, a2, a3, b1, b2, b3 are real numbers such that

a1 ≥ a2 ≥ a3 ≥ 0, b1 ≥ b2 ≥ b3 ≥ 0, a1 ≥ b1, a1 + a2 ≥ b1 + b2,

a1 + a2 + a3 = b1 + b2 + b3,

then for any positive real numbers x, y, z, one has

∑

sym

xa1ya2za3 ≥
∑

sym

xb1yb2zb3,

where the index sym signifies that the summation is over all permutations of x, y, z.
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Using the fact that abc = 1, we rewrite the inequality as

1

a3(b+ c)
+ 1

b3(c+ a)
+ 1

c3(a+ b)
≥ 3

2(abc)4/3
.

Set a = x3, b = y3, c = z3, with x, y, z > 0. The inequality becomes

∑

cyclic

1

x9(y3 + z3)
≥ 3

2x4y4z4
.

Clearing denominators, this becomes
∑

sym

x12y12 + 2
∑

sym

x12y9z3 +
∑

sym

x9y9z6 ≥ 3
∑

sym

x11y8z5 + 6x8y8z8,

or (
∑

sym

x12y12 −
∑

sym

x11y8z5

)

+ 2

(
∑

sym

x12y9z3 −
∑

sym

x11y8z5

)

+
(
∑

sym

x9y9z6 −
∑

sym

x8y8z8

)

≥ 0.

And every term on the left-hand side is nonnegative by the Muirhead inequality.
(36th International Mathematical Olympiad, 1995)

153. The equation can be transformed into

(x2 + 6x + 5)(x2 + 6x + 8)(x2 + 6x + 9) = 360.

Substitute x2 + 6x = y. We obtain

(y+ 5)(y + 8)(y + 9) = 360

or

y3 + 22y2 + 157y = 0.

We find y = 0, y = −11 + 6i, and y = −11 − 6i. The equation x2 + 6x = 0 gives x = 0,
x = −6.

Let us solve x2 + 6x = −11 + 6i. This is equivalent to (x + 3)2 = −2 + 6i. Setting
x + 3 = u+ iv, we obtain the system

u2 − v2 = −2

2uv = 6.

It follows that (u2 + v2)2 = (u2 − v2)2 + (2uv)2 = 40. Hence u2 + v2 = 2
√

10. Then
u2 = √10− 1, v2 = √10+ 1. So u = ±

√√
10− 1, v = ±

√√
10+ 1, and x = u+ iv− 3,

for all four choices of signs for u and v.
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154. Note that (
√

5+ 1)2 = 6+ 2
√

5. The polynomial equation can be written as

x3 − (6+ 2
√

5)x − x +√5+ 1 = 0,

or

x(x2 − (
√

5+ 1)2)− (x − (
√

5+ 1)) = 0.

This factors as

[x − (
√

5+ 1)][x2 + (
√

5+ 1)x − 1] = 0,

with solutions

x1 =
√

5+ 1, x2,3 = −
√

5− 1±
√

10+ 2
√

5

2
.

(Gazeta Matematică (Mathematics Gazette, Bucharest), proposed by A. Eckstein)

155. Moving 3 to the left and distributing it among the three terms we obtain

[x − (a+ b+ c)]
[

1

x − a
+ 1

x − b
+ 1

x − c

]
= 0.

One solution is x = a+ b+ c. The other two are the roots of the quadratic equation

3x2 − 2(a+ b+ c)x + (ab+ bc+ ac) = 0.

The discriminant of this equation is

(a+ b+ c)2 − 3(ab+ bc+ ac) = a2 + b2 + c2 − ab− bc− ac.

This is further equal to

1

2
[(a− b)2 + (b− c)2 + (c− a)2],

which is nonnegative.
(C. Coşniţă, Teme şi Probleme Alese de Matematici (Selected Mathematical Themes and

Problems), Ed. Didactică şi Pedagogică, Bucharest)

156. The relation (x + 1)P(x) = (x − 10)P(x + 1) shows that P(x) is divisible by (x − 10).
Shifting the variable, we obtain the equivalent relation xP(x − 1) = (x − 11)P(x), which
shows that P(x) is also divisible by x. Hence P(x) = x(x − 10)P1(x) for some polynomial
P1(x). Substituting in the original equation and canceling common factors, we find that P1(x)
satisfies

xP1(x) = (x − 9)P1(x + 1).
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Arguing as before, we find that P1(x) = (x − 1)(x − 9)P2(x). Repeating the argument, we
eventually find that P(x) = x(x − 1)(x − 2) · · · (x − 10)Q(x), where Q(x) satisfies Q(x) =
Q(x + 1). It follows that Q(x) is constant, and the solution to the problem is

P(x) = ax(x − 1)(x − 2) · · · (x − 10),

where a is an arbitrary constant.

157. Subtract the right-hand side from the left-hand side to obtain a polynomial P(x) of degree
n− 1, with zeros a1, a2, . . . , an. This polynomial is therefore identically equal to zero.

158. Having odd degree, P(x) is surjective. Hence for every root ri of P(x) = 0 there exists
a solution ai to the equation P(ai) = ri, and trivially ai �= aj if ri �= rj. Then P(P(ai)) = 0,
and the conclusion follows.

(Russian Mathematical Olympiad, 2002)

159. Since

P(x) =
(

x + 2007

2

)2

− 20072

4
+ 1,

the range of P is A = [− 20072

4 + 1,∞), which contains the interval D = [− 2007
2 ,∞). Since

D ⊂ f (D), we obtain that the image of P(n) is A, which contains 0.
(Brazilian Mathematical Olympiad, 2007)

160. First solution: Let m be the degree of P(x), and write

P(x) = amxm + am−1xm−1 + · · · + a0.

Using the binomial formula for
(
x ± 1

n

)m
and
(
x ± 1

n

)m−1
we transform the identity from the

statement into

2amxm + 2am−1xm−1 + 2am−2xm−2 + am
m(m− 1)

n2
xm−2 + Q(x)

= 2amam + 2am−1xm−1 + 2am−2xm−2 + R(x),

where Q and R are polynomials of degree at most m − 3. If we identify the coefficients of
the corresponding powers of x, we find that am

m(m−1)

n2 = 0. But am �= 0, being the leading
coefficient of the polynomial; hence m(m − 1) = 0. So either m = 0 or m = 1. One can
check in an instant that all polynomials of degree 0 or 1 satisfy the required condition.

Second solution: Fix a point x0. The graph of P(x) has infinitely many points in common
with the line that has slope

m = n

(
P

(
x0 + 1

n

)
− P(x0)

)

and passes through the point (x0, P(x0)). Therefore, the graph of P(x) is a line, so the
polynomial has degree 0 or 1.
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Third solution: If there is such a polynomial of degree m ≥ 2, differentiating the given relation
m− 2 times we find that there is a quadratic polynomial that satisfies the given relation. But
then any point on its graph would be the vertex of the parabola, which of course is impossible.
Hence only linear and constant polynomials satisfy the given relation.

(Romanian Team Selection Test for the International Mathematical Olympiad, 1979, pro-
posed by D. Buşneag)

161. Let x = √2+ 3
√

3. Then 3
√

3 = x −√2, which raised to the third power yields

3 = x3 − 3
√

2x2 + 6x − 2
√

2, or x3 + 6x − 3 = (3x2 + 2)
√

2.

By squaring this equality we deduce that x satisfies the polynomial equation

x6 − 6x4 − 6x3 + 12x2 − 36x + 1 = 0.

(Belgian Mathematical Olympiad, 1978, from a note by P. Radovici-Mărculescu)

162. We compute P(0) = −1, and then inductively P(−3k) = −1 for all positive integers k.
We conclude that P(−1989) = −1. The polynomial is constant!

(Gazeta Matematică (Mathematics Gazette, Bucharest) proposed by A. Szőrös)

163. We know that

x6 + ax5 + bx4 + cx3 + bx2 + ax + 1 =
6∏

k=1

(x − xk).

Setting x = i we obtain

6∏

k=1

(i − xk) = i6 + ai5 + bi4 + ci3 + bi2 + ai + 1 = 2ai − ci.

Setting x = −i we obtain

6∏

k=1

(−i − xk) = (−i)6 + a(−i)5 + b(−i)4 + c(−i)3 + b(−i)2 + a(−i)+ 1 = −2ai + ci.

Multiplying we obtain

6∏

k=1

(i − xk)(−i − xk) = (2a− c)2,

or

6∏

k=1

(x2
k + 1) = (2a− c)2,

as desired.
(Gazeta Matematică (Mathematics Gazette, Bucharest), proposed by M. Szőrös)
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164. First, it suffices to show that for any r, z, w with 0 < r < 1, |z| = 1, and |w| ≥ 1,
∣
∣
∣
∣

z − w

rz − w

∣
∣
∣
∣ ≤

2

1+ r
,

then replace w by each root of P(z) and multiply the resulting inequalities.
Without loss of generality we may assume z = 1. It remains to prove that for 0 < r < 1

and |w| ≥ 1,
∣
∣
∣
∣
1− w

r − w

∣
∣
∣
∣ ≤

2

r + 1
.

This is equivalent to

2

|w− 1| ≥
1+ r

|w− r|
Let A, B, C, D be the points in the complex plane of coordinates w, 1, r,−1 respectively. We
have to prove BD/AB ≥ CD/AC. This is equivalent to sin DAB/ sin BDA ≥ sin DAC/ sin BDA.
And this is true because ∠DAB > ∠DAC and both are in the first quadrant. Equality is attained
if A = D, that is if w = −1.

Remark. This simple inequality was used by the author of the problem to prove the 2-
dimensional case of a conjecture in functional analysis. The conjecture, due to R. Douglas
and V. Paulsen, states that an ideal of polynomials in several complex variables is closedin the
topology induced by the Hardy space of the polydisk if and only if every algebraic component
of its zero set intersects the closed polydisk.

(R. Gelca)

165. Note that r and s are zeros of both P(x) and Q(x). So on the one hand, Q(x) =
(x − r)(x − s). and on the other, r and s are roots of P(x)− Q(x). The assumption that this
polynomial is nonnegative implies that the two roots are double; hence

P(x)− Q(x) = (x − r)2(x − s)2 = Q(x)2.

We find that P(x) = Q(x)(Q(x)+1). Because the signs of P(x) and Q(x) agree, the quadratic
polynomial Q(x) + 1 is nonnegative. This cannot happen because its discriminant is (r −
s)2 − 4 > 0. The contradiction proves that our assumption was false; hence for some x0,
P(x0) < Q(x0).

(Russian Mathematical Olympiad, 2001)

166. Because P(0) = 0, there exists a polynomial Q(x) such that P(x) = xQ(x). Then

Q(k) = 1

k + 1
, k = 1, 2, . . . , n.

Let H(x) = (x + 1)Q(x) − 1. The degree of H(x) is n and H(k) = 0 for k = 1, 2, . . . , n.
Hence

H(x) = (x + 1)Q(x)− 1 = a0(x − 1)(x − 2) · · · (x − n).
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In this equality H(−1) = −1 yields a0 = (−1)n+1

(n+1)! . For x = m, m > n, which gives

Q(m) = (−1)n+1(m− 1)(m − 2) · · · (m− n)+ 1

(n+ 1)!(m + 1)
+ 1

m+ 1
,

and so

P(m) = (−1)m+1m(m− 1) · · · (m− n)

(n+ 1)!(m + 1)
+ m

m+ 1
.

(D. Andrica, published in T. Andreescu, D. Andrica, 360 Problems for Mathematical
Contests, GIL, 2003)

167. Adding and subtracting the conditions from the statement, we find that a1+a2+· · ·+an

and a1 − a2 + · · · + (−1)nan are both real numbers, meaning that P(1) and P(−1) are real
numbers. It follows that P(1) = P(1) and P(−1) = P(−1). Writing P(x) = (x − x1)(x −
x2) · · · (x − xn), we deduce

(1− x1)(1− x2) · · · (1− xn) = (1− x1)(1− x2) · · · (1− xn),

(1+ x1)(1+ x2) · · · (1+ xn) = (1+ x1)(1+ x2) · · · (1+ xn).

Multiplying, we obtain

(1− x2
1)(1− x2

2) · · · (1− x2
n) = (1− x2

1)(1− x2
2) · · · (1− x2

n).

This means that Q(1) = Q(1), and hence b1 + b2 + · · · + bn is a real number, as desired.
(Revista Matematică din Timişoara (Timişoara Mathematics Gazette), proposed by T.

Andreescu)

168. If such a Q(x) exists, it is clear that P(x) is even. Conversely, assume that P(x) is an
even function. Writing P(x) = P(−x) and identifying coefficients, we conclude that no odd
powers appear in P(x). Hence

P(x) = a2nx2n + a2n−2x2n−2 + · · · + a2x2 + a0 = P1(x
2).

Factoring
P1(y) = a(y − y1)(y − y2) · · · (y − yn),

we have
P(x) = a(x2 − y1)(x

2 − y2) · · · (x2 − yn).

Now choose complex numbers b, x1, x2, . . . , xn such that b2 = (−1)na and x2
j = yj, j =

1, 2, . . . , n. We have the factorization

P(x) = b2(x2
1 − x2)(x2

2 − x2) · · · (x2
n − x2)

= b2(x1 − x)(x1 + x)(x2 − x)(x2 + x) · · · (xn − x)(xn + x)

= [b(x1 − x)(x2 − x) · · · (xn − x)][b(x1 + x)(x2 + x) · · · (xn + x)]
= Q(x)Q(−x),

where Q(x) = b(x1 − x)(x2 − x) · · · (xn − x). This completes the proof.
(Romanian Mathematical Olympiad, 1979, proposed by M. Ţena)
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169. View Q(x, y, z) as a polynomial in x. It is easy to see that y is a zero of this polynomial;
hence Q(x, y, z) is divisible by x − y. By symmetry, it is also divisible by y − z and z − x.

170. View the expression as a polynomial P(x, y, z). Then

P(0, y, z) = (y + z)3 − (y+ z)3 − (−y+ z)3 − (y− z)3 = 0.

Similarly P(x, 0, z) = 0 and P(x, y, 0) = 0. So P(x, y, z) = xyzQ(x, y, z). But P(x, y, z) is of
third degree, so Q(x, y, z) is constant. In fact by setting x = y = z we obtain Q(x, y, z) = 24.

Hence

(x + y+ z)3 − (−x + y+ z)3 − (x − y+ z)3 − (x + y− z)3 = 2 · 2 · 2 · 3 · x · y · z.
(C. Coşniţă, Teme şi Probleme Alese de Matematici (Selected Mathematical Themes and

Problems), Ed. Didactică şi Pedagogică, Bucharest)

171. Like in the case of the previous problem, we view the expression as a polynomial
P(x, y, z). We check P(0, y, z) = P(x, 0, z) = P(x, y, 0) = 0, so P(x, y, z) =
xyzQ(x, y, z), where Q(x, y, z) is a cuadratic homogeneous symmetric polynomial. Then
there exist constants α and β such that

Q(x, y, z) = α(x2 + y2 + z2)+ β(xy + xz + yz).

Setting x = y = z in P(x, y, z) = xyzQ(x, y, z) we obtain

243x5 − x5 − x5 = 3x5(α + β),

so α + β = 80. Setting x = y = −z in the same equality we obtain

x5 + x5 + x5 − 243x5 = −x3(3α − β)

so 3α − β = 240. We obtain α = 80 and β = 0, hence

(x + y+ z)5 − (−x + y+ z)5 − (x − y+ z)5 − (x + y− z)5 = 80xyz(x2 + y2 + z2).

(C. Coşniţă, Teme şi Probleme Alese de Matematici (Selected Mathematical Themes and
Problems), Ed. Didactică şi Pedagogică, Bucharest)

172. View the expression as a polynomial in a, b, c and write it in decreasing order of the
degree of a as

E = a3(b− c)− a(b3 − c3)+ bc(b2 − c2).

We can see that a (b− c) can be factored:

E = (b− c)[a3 − a(b2 + bc+ c2)+ bc(b+ c)].
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The expression in the bracket can be viewed as a polynomial in b, which ordered by the
degrees of the monomials yields

E = (b− c)[b2(c− a)+ bc(c− a)− a(c2 − a2)].
Now we factor a c − a, and finally a b− a to obtain

E = −(b− c)(c − a)(a− b)(a+ b+ c).

173. View a, b, c, d as independent variables. The left-hand side is a cubic polynomial P(x).
We see that P(a) = P(b) = P(c) = P(d) = 1, so P(x) = 1, hence we obtain the identity

(x − b)(x − c)(x − d)

(a− b)(a− c)(a− d)
+ (x − a)(x − c)(x − d)

(b− a)(b− c)(b− d)
+ (x − a)(x − b)(x − d)

(c− a)(c− b)(c− d)

+ (x − a)(x − b)(x − c)

(d − a)(d − b)(d − c)
= 1.

Thus the equation has solutions if a, b, c, d are distinct real numbers with abcd = 1. Then
every real number is a solution.

(C. Coşniţă, Teme şi Probleme Alese de Matematici (Selected Mathematical Themes and
Problems), Ed. Didactică şi Pedagogică, Bucharest)

174. The answer is yes. We rely on the identity

a3 + b3 + c3 − 3abc = 1

2
(a+ b+ c)((a− b)2 + (b− c)2 + (c− a)2),

which shows that a+ b+ c and a3 + b3 + c3 − 3abc have the same sign for all real numbers
a, b, c, not all of them equal. With the obvious choice, we want a polynomial such that
f (x, y, z) and x3 + 2y3 + 3z3 − 3 3

√
6xyz have the same sign. We choose

P(x, y, z) = (x3 + 2y3 + 3z3)3 − 27 · 6(xyz)3.

175. Let p = x, q = y and view

x2 + y2 + r2 + xyr = x2 + y2 + z2 + xyz

as a quadratic equation in r. Rewrite it as

r2 + (xy)r + (z2 − xyz) = 0.

We already know the solution r = z. The other solution is r = −xy− z. So the answer to the
problem is negative.

176. View the polynomial as a one variable polynomial in x, P(x). The condition from the
statement is equivalent to

P(−y) = 0, P′(−y) = 0.
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Explicitly, these conditions are

(−y)p + a(−y)p−qyq + a(−y)p−2qy2q + yp = 0

p(−y)p−1 + a(p− q)(−y)p−q−1yq + a(p− 2q)(−y)p−2q−1y2q = 0.

Canceling yp in the first and yp−1 in the second yields the equivalent conditions

(−1)p + 1+ a(−1)p[(−1)q + 1] = 0

p+ a(p− q)(−1)q + a(p− 2q) = 0.

We distinguish the following cases:

• If p and q are odd, then the first condition is satisfied, and the second yields a = p/q.

• If p and q are even, then the first condition gives 2+ 2a = 0, i.e. a = −1, and the secod
condition implies p = 3q.

• If p is even and q is odd, the first condition cannot be satisfied.

• If p is odd and q is even, then the first condition implies a = 0. But the second condition
gives p = 0, so again no solutions.

(C. Coşniţă, Teme şi Probleme Alese de Matematici (Selected Mathematical Themes and
Problems), Ed. Didactică şi Pedagogică, Bucharest)

177. With a change of variables, we consider the polynomial

Q(x, y) = P

(
x + y

2
,

x − y

2

)
.

Then

Q(x, y)Q(z, t) = Q(xz, yt).

Hence

Q(x, y) = Q(x, 1)Q(1, y).

The one-variable polynomials Q(x, 1) and Q(1, y) are multiplicative so they are either equal
to zero, or of the form xp. We conclude that either P(x, y) = 0 or P(x, y) = Q(x+ y, x− y) =
(x + y)k(x − y)l.

(Balkan Mathematical Olympiad, 1988, proposed by B. Enescu and M. Becheanu)

178. The trick is to view this as an equation in a. The discriminant is � = 4(x− 1)2, and we
get

a = x2 + x

x
or a = x2 − x + 2

x
.

These are quadratic equations that can be solved easily.
(Gh. Andrei, I. Cucurezeanu, C. Caragea, Gh. Bordea, Exerciţii şi Probleme de Algebră

(Exercises and Problems in Algebra), 1990)
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179. Assume for some n, x = p/q is a rational solution, with gcd(p, q) = 1. Then

(n3 − n+ 1)p2 − (n5 − n+ 1)pq − (n7 − n+ 1)q2 = 0.

Each of the coefficients (n3− n+ 1), (n5− n+ 1), (n7− n+ 1) is odd, and of the numbers p
and q, either both are odd, or one is odd and the other is even. It follows that the expression
on the left is an odd number, which cannot be equal to 0, as 0 is an even number.

We conclude that the answer to the problem is negative.
(Konhauser Problem Fest, 2010, proposed by R. Gelca)

180. We have f (x) = (x− r1)(x− r2), so f (n) = (n− r1)(n− r2). Because n− r1 and n− r2

are integers that divide 13, one of them is ±1 and the other is ±13 (signs agree). If one is 1
and the other is 13 then f (n+ 1) = (n− r1 + 1)(n− r2 + 1) = 2 · 14 = 28. If one is −1 and
the other is −13, then f (n− 1) = 28.

(Kvant (Quantum))

181. (a) If a2 + b2 > c2 then (2ab + 1)2 − 4(a2 + b2 − c2) is the square of an odd number
less than 2ab+ 1. Hence

(2ab+ 1)2 − 4(a2 + b2 − c2) ≤ (2ab− 1)2

so c2 ≤ (a − b)2, a contradiction. The case c2 > a2 + b2 is similar. We conclude that
c2 = a2 + b2; the triangle is right.

(b) If the equation has integer roots, then (a2+b2+c2+1)2−4(ab+bc+ac) is a perfect
square less than (a2 + b2 + c2 + 1)2 and of the same parity with this number. We obtain

(a2 + b2 + c2 + 1)2 − 4(ab+ bc+ ac) ≤ (a2 + b2 + c2 − 1)2.

This is equivalent to

(a− b)2 + (b− c)2 + (c− a)2 ≤ 0.

This can only happen if a = b = c; the triangle is equilateral.
(I. Cucurezeanu)

182. If a + b + c + d = 0, then x = 1 is a common root. For the converse, let x0 be the
common root. Multiplying the equations respectively by b− c, c− a and a− b, then adding,
we obtain

(a2 + b2 + c2 − ab− ac− bc)x0 = a2 + b2 + c2 − ab− ac− bc.

But a2 + b2 + c2 − ab− ac − bc = (a− b)2 + (b− c)2 + (c− a)2 �= 0. Hence x0 = 1 and
we are done.

(V. Matrosenco and M. Andronache)

183. Rewrite the inequality as

2ax2 + 2x(2ay − y − 1)+ 2ay2 − y2 + 1 ≥ 0.
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The left-hand side is a quadratic function in x. A first condition is that a > 0. Also the
discriminant should be negative, namely

(2ay − y− 1)2 − 2a(2ay2 − y2 + 1) ≤ 0.

This implies (1−2a)(y+1)2 ≥ 0, hence a should be at least 1/2. The answer to the problem
is a ≥ 1

2 .
(Romanian Mathematical Olympiad, 1986, proposed by I. Mitrache)

184. The discriminant of the second quadratic equation is

[a2 − 2(b− 1)]2 − 4(a2 + (b− 1)2] = a2(a2 − 4b) ≥ 0.

185. It suffices to prove that log2 3 + log3 4 + log4 5 > 4, and combine it with log5 6 > 1.
Because 3 ·210 = 2072 < 3125 = 55 it follows that 5 log2 5 > 10+ log2 3. Setting x = log2 3
we are left to prove that

x + 2

x
+ 1

2

(
2+ x

5

)
> 4.

This is equivalent to 11x2 − 30x + 20 > 0. The roots of the equation are 15−√5
11 and 15+√5

11 .
It suffices to show that

log2 3 >
15+√5

11
.

We have 15+√5
11 < 17.6

11 = 1.6 and log2 3 >
8

5
is equivalent to 28 > 35 i.e. 256 > 243, true.

186. As a quadratic function in x, the left-hand side has the discriminant equal to

� = −my2 + 2y(2m− 3)− 2m + 1

which has to be negative for all y. So m > 0 and the discriminant of this new quadratic function
in y should be negative. Hence (2m − 3)2 − m(2m + 1) ≤ 0. Thus 2m2 − 11m + 9 ≤ 0, so
m ∈ [1, 9/2].

(Gh. Andrei, I. Cucurezeanu, C. Caragea, Gh. Bordea, Exerciţii şi Probleme de Algebră
(Exercises and Problems in Algebra), 1990)

187. If a = b = 0 the equation is of first degree, with unique solution x0 = 0. Otherwise we
have that a �= 0 or b �= 0. The equation is

(a2 + b2)x2 − (4ab+ 1)x + a2 + b2 = 0;
a quadratic function with roots x1, x2, where x1 ∈ Z. From

x1 = (ax1 − b)2 + (bx1 − a)2,

we deduce that x1 > 0. Now, since the roots are real, the discriminant will be non-negative,

(4ab+ 1)2 − 4(a2 + b2)2 ≥ 0.
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This is equivalent to

(1− 2(a− b)2)(1+ 2(a− b)2) ≥ 0

which means that 1− 2(a− b)2 ≥ 0. Since (a− b)2 ∈ Z we must have that (a− b) = 0, or
equivalently, a = b. Taking this into account the original expression becomes

2a2 − (4a2 + 1)x + 2a2 = 0

and using Viète’s relations we obtain

x1 + x2 = 2+ 1

2a2
, x1x2 = 1.

We observe that x1 being a non-negative integer, neither x1 = 0 nor x1 = 1 can be roots of the
above quadratic equation. Therefore x1 ≥ 2. Now, since x2 = 1

x1
> 0, it follows that

x1 < x1 + x2 = 2+ 1

2a2
< 3.

Hence 2 ≤ x1 < 3, but since x1 is an integer this implies that x1 = 2, x2 = 1
2 . By substituting

the values of x1 and x2 we obtain a2 = 1, thus a = b = ±1 and the roots are 2 and 1
2 .

(M. Becheanu)

188. Let f1(x) and f2(x) be the two quadratic functions, and let

f (x) = f1(x)− f2(x).

Note that the hypothesis implies p1 �= p2. The equation f (x) = 0 has the root γ = − q1−q2
p1−p2

, so

f (x) = (p1 − p2)(x − γ ).

Writing

(p1 − p2)
2f2(x) = f (x)g(x)+ R,

we see that R = (q1 − q2)
2 + (p1 − p2)(p1q2 − p2q1). Hence (p1 − p2)

2f2(γ ) = R < 0. So
f1(γ ) = f2(γ ) < 0, which shows that the two quadratic functions have distinct real roots. Let
α1, β1 and α2, β2 be these roots. We have

f1(α2)f1(β2) = f (α2)f (β2) = (p1 − p2)
2(α2 − γ )(β2 − γ ) = (p1 − p2)

2f2(γ ) < 0.

The conclusion follows.
(Kvant (Quantum))

189. Consider the function f (x) = x2 + bx + ac. Then f (a) < 0, and since the coefficient
of x2 is positive, it follows that f has real zeros, thus the discriminant is positive. Hence the
conclusion.

(Matematika v Škole (Mathematics in Schools), 1988)
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190. We compute a2 + b2 = (x1 + x2)
2 + (x1x2 − 1)2 = (x2

1 + 1)(x2
2 + 1). If one root is an

integer, so is the other, and they are nonzero. Hence a2 + b2 is composite, a contradiction.
(All Union Mathematical Olympiad, 1986)

191. Let AB = c, AC = b, BC = a, BD = x, CD = a− x. By Stewart’s relation in a triangle

c2(a− x)+ b2x = ax(a− x)+ aAD2.

With the given hypothesis, AD2 = x(a− x), so the relation yields the quadratic equation in x:

2ax2 − (2a2 − b2 + c2)x + c2a = 0.

We want to have a real root x, with 0 < x < a. The discriminant is

� = (2a2 − b2 + c2)2 − 8a2c2

= (2a2 − b2 + c2 − 2
√

2ac)(2a2 − b2 + c2 + 2
√

2ac).

Factoring further we obtain

(
√

2a− c+ b)(
√

2a− c− b)(
√

2a+ c+ b)(
√

2a− c+ b).

This has to be positive. The first, third and fourth factors are positive, so a necessary and
sufficient condition for the equation to have real roots is that b+ c ≤ √2a. Let us show that
in this case the root is in the desired interval. We have f (0) > 0 and the vertex of the parabola
has the x-coordinate 2a2−b2+c2

4a , which is less than a. We are done.

192. The conditions from the statement imply that for i, j ∈ {1, 2, . . . , n},
(ai − aj)(bi − bj) ≤ 0.

Consider the quadratic function f : R → R,

f (x) =
∑

1≤i<j≤n

(aix − aj)(bix − bj).

If we write f (x) = Ax2 − Bx + C, then

A =
∑

i<j

aibi =
n∑

i=1

n∑

j=i+1

aibi =
n∑

i=1

(n− i)aibi,

B =
∑

i<j

(aibj + ajbi),

C =
∑

i<j

ajbj =
n∑

j=2

j−1∑

i=1

ajbj =
n∑

j=1

(j − 1)ajbj.
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But

B =
(

n∑

i=1

ai

)(
n∑

i=1

bi

)

−
(

n∑

i=1

aibi

)

.

Because A > 0 and f (1) < 0, it follows that the discirminant of the quadratic function is
positive, namely that B2 ≥ 4AC. This is the inequality to be proved.

(Gazeta Matematică (Mathematics Gazette, Bucharest, proposed by D. Andrica and M.O.
Drimbe)

193. Consider the quadratic function f : R → R,

f (x) = (ax − b)2 − (a1x − b1)
2 − (a2x − b2)

2 − · · · − (a2nx − b2n)
2.

Then f (x) = f1(x)+ f2(x), where

f1(x) = 1

2
A1x2 − Bx + 1

2
C2

1 and f2(x) = 1

2
A2x2 − Bx + 1

2
C2

2

with

A1 = a2 − 2a2
1 − 2a2

3 − · · · − 2a2
2n−1, A2 = a2 − 2a2

2 − 2a2
4 − · · · − 2a2

2n

B = ab− a1b1 − a2b2 − · · · − a2nb2n

C1 = b2 − 2b2
1 − 2b2

3 − · · · − 2b2
2n−1, C2 = b2 − 2b2

2 − 2b2
4 − · · · − 2b2

2n.

Note that A1 and A2 are positive. On the other hand, f (b/a) is the negative of a sum of squares,
so f (b/a) ≤ 0. So either f1(b/a) ≤ 0 or f2(b/a) ≤ 0. It follows that one of the functions
has non-negative discriminant. This implies that either B2 ≥ A1C1 or B2 ≥ A2C2, and so
B2 ≥ min(A1C1, A2C2). This is the inequality to be proved.

(Gazeta Matematică (Mathematics Gazette, Bucharest, proposed by D. Andrica and M.O.
Drimbe)

194. Let A be the vertex of the cone, O the center of the sphere, and B the center of the base
of the cone. Let C be a point on the base circle, and R the radius of the sphere. If we denote
BAC = α, then AB = R(1 + sin α)/ sin α, and BC = R(1 + sin α) tan α/ sin α. Using the
formula for the volume of the cone we obtain

V1 = πR3 (1+ sin α)2

3 sin α(1− sin α)
.

Also V2 = 2πR3. Consequently

k = (1+ sin α)2

6 sin α(1− sin α)
.

We can rewrite this as a quadratic equation in sin α

(1+ 6k) sin2 α + 2(1− 3k) sin α + 1 = 0.
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The discriminant of this quadratic must be non-negative. Hence

0 ≤ (1− 3k)2 − (1+ 6k) = k(9k − 12).

Therefore k ≥ 4/3. It follows that k cannot be 1. The case k = 4/3 yields sin α = 1/3, hence
the smallest value that k can take is 4/3.

195. Denote the zeros of P(x) by x1, x2, x3, x4, such that x1+ x2 = 4. The first Viète relation
gives x1 + x2 + x3 + x4 = 6; hence x3 + x4 = 2. The second Viète relation can be written as

x1x2 + x3x4 + (x1 + x2)(x3 + x4) = 18,

from which we deduce that x1x2 + x3x4 = 18 − 2 · 4 = 10. This, combined with the
fourth Viète relation x1x2x3x4 = 25, shows that the products x1x2 and x3x3 are roots of the
quadratic equation u2 − 10u + 25 = 0. Hence x1x2 = x3x4 = 5, and therefore x1 and x2

satisfy the quadratic equation x2 − 4x+ 5 = 0, while x3 and x4 satisfy the quadratic equation
x2 − 2x + 5 = 0. We conclude that the zeros of P(x) are 2+ i, 2− i, 1+ 2i, 1− 2i.

196. If a ≥ 0, b ≥ 0, c ≥ 0, then obviously a+ b+ c > 0, ab+ bc + ca ≥ 0, and abc ≥ 0.
For the converse, let u = a + b+ c, v = ab + bc + ca, and w = abc, which are assumed to
be positive. Then a, b, c are the three zeros of the polynomial

P(x) = x3 − ux2 + vx − w.

Note that if t < 0, that is, if t = −s with s > 0, then P(t) = s3 + us2 + vs+ w > 0; hence t
is not a zero of P(x). It follows that the three zeros of P(x) are nonnegative, and we are done.

197. Taking the conjugate of the first equation, we obtain

x + y+ z = 1,

and hence
1

x
+ 1

y
+ 1

z
= 1.

Combining this with xyz = 1, we obtain

xy + yz + xz = 1.

Therefore, x, y, z are the roots of the polynomial equation

t3 − t2 + t − 1 = 0,

which are 1, i, −i. Any permutation of these three complex numbers is a solution to the
original system of equations.

198. Let α = x5
1 + x3

2 + x2
3. Because x1 is solution to the original equation, we have

x3
1 = x2

1 + 2x1 − 4.
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Hence

x5
1 = x2

1 · x3
1 = x2

1(x
2
1 + 2x1 − 4) = x1 · x3

1 + 2x3
1 − 4x2

1

= x1(x
2
1 + 2x1 − 4)+ 2(x2

1 + 2x1 − 4)− 4x2
1 = x3

1 − 8 = x2
1 + 2x1 − 4− 8

= x2
1 + 2x1 − 12.

Similarly

x3
2 = x2

2 + 2x2 − 4.

Hence

α = x5
1 + x3

2 + x2
3 = x2

1 + 2x1 − 12+ x2
2 + 2x2 − 4+ x2

3

= (x2
1 + x2

2 + x2
3)+ 2(x1 + x2 + x3)− 16− 2x3

= −2x3 − 9,

where we used the Viète relations:

x1 + x2 + x3 = −1,

x2
1 + x2

2 + x2
3 = (x1 + x2 + x3)

2 − 2(x1x2 + x1x3 + x2x3) = 1+ 4 = 5.

It is not hard to check that the original polynomial is irreducible over Q, hence the polynomial
obtained by applying x �→ −2x−9 is also irreducible. This polynomial has the roots−2xi−9,
i = 1, 2, 3, being irreducible, and having integer coefficients, it is a multiple of the desired
polynomial. Computing we obtain that the anwer to the problem is the polynomial

x3 + 29x2 + 271x + 463.

(Gazeta Matematică (Mathematics Gazette, Bucharest), proposed by L. Panaitopol)

199. Dividing by the nonzero xyz yields x
z + y

x + z
y = y

z + z
x + x

y = r. Let a = x
y , b = y

z ,

c = z
x . Then abc = 1, 1

a + 1
b + 1

c = r, a+ b+ c = r. Hence

a+ b+ c = r,

ab+ bc+ ca = r,

abc = 1.

We deduce that a, b, c are the solutions of the polynomial equation t3 − rt2 + rt − 1 = 0.
This equation can be written as

(t − 1)[t2 − (r − 1)t + 1] = 0.

Since it has three real solutions, the discriminant of the quadratic must be positive. This means
that (r − 1)2 − 4 ≥ 0, leading to r ∈ (−∞,−1] ∪ [3,∞). Conversely, all such r work.
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200. Assume first that a, b, c, d are nonzero. Consider the equation

x4 −
(∑

a
)

x3 +
(∑

ab
)
−
(∑

abc
)
+ abcd = 0,

with roots a, b, c, d. Substitute x by a, b, c, d and cancel a, b, c, d �= 0, then add the three
equations to obtain

∑
a3 −
(∑

a
) (∑

a2
)
+
(∑

ab
) (∑

a
)
− 3
∑

abc = 0.

The second and the third term are zero, and the identity follows. The case where one of the
numbers is zero is simpler, and we leave it to the reader.

201. Denoting b = ∑ xy, c = ∑ xyz, d = xyzt, we see that x, y, z, t are the roots of the
polynomial equation

u4 + bu2 − cu+ d = 0.

If we let Sk = ∑ xk , k ≥ 1, then using Viète’s relations we can deduce S1 = 0, S2 = −2b,
S3 = 3c, S4 = 2b2 − 4d. Multiplying the polynomial equation by uk , substituting u by the
x, y, z, t, and then adding, we obtain the recursive relation

Sk+4 = −bSk+2 + cSk+1 − dSk.

From this recursion we obtain S5 = −5bc and S7 = 7c(b2 − d). So either c = 0, or b2 = d.
In the first case, x, y, z, t are the roots of the equation u4 + bu2 + d = 0, which, being

real, are of the form ±u1,±u2, where u1, u2 are the roots of u2 + bu + d = 0. The desired
relations clearly holds.

In the second case, b2 = d, so S4 = −2b2. But S4 is nonnegative, which means that b = 0,
and hence d = 0. Then x, y, z, t are the roots of the equation u4 − cu = 0. One of the roots
is zero, and so the relation holds again.

(Romanian Mathematics Competition, 1989, proposed by M. Becheanu)

202. Consider the polynomial P(t) = r5 + qt4 + rt3 + st2 + ut + v with roots a, b, c, d, e.
The condition from the statement implies that q is divisible by n. Moreover, since

∑
ab = 1

2

(∑
a
)2 − 1

2

(∑
a2
)

,

it follows that r is also divisible by n. Adding the equalities P(a) = 0, P(b) = 0, P(c) = 0,
P(d) = 0, P(e) = 0, we deduce that

a5 + b5 + c5 + d5 + e5 + s(a2 + b2 + c2 + d2 + e2)+ u(a+ b+ c+ d + e)+ 5v

is divisible by n. But since v = −abcde, it follows that

a5 + b5 + c5 + d5 + e5 − 5abcde

is divisible by n, and we are done.
(Kvant (Quantum))
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203. Let P(x) = anxn + an−1xn−1 + · · · + a0. Denote its zeros by x1, x2, . . . , xn. The first
two of Viète’s relations give

x1 + x2 + · · · + xn = −an−1

an
,

x1x2 + x1x3 + · · · + xn−1xn = an−2

an
.

Combining them, we obtain

x2
1 + x2

2 + · · · + x2
n =
(

an−1

an

)2

− 2

(
an−2

an

)
.

The only possibility is x2
1 + x2

2 + · · · + x2
n = 3. Given that x2

1x2
2 · · · x2

n = 1, the AM-GM
inequality yields

3 = x2
1 + x2

2 + · · · + x2
n ≥ n n

√
x2

1x2
2 · · · x2

n = n.

Therefore, n ≥ 3. Eliminating case by case, we find among linear polynomials x+1 and x−1,
and among quadratic polynomials x2+x−1 and x2−x−1. As for the cubic polynomials, we
should have equality in the AM-GM inequality. So all zeros should have the same absolute
values. The polynomial should share a zero with its derivative. This is the case only for
x3 + x2 − x− 1 and x3 − x2 − x+ 1, which both satisfy the required property. Together with
their negatives, these are all desired polynomials.

(Indian Olympiad Training Program, 2005)

204. The first Viète relation gives

r1 + r2 + r3 + r4 = −b

a
,

so r3 + r4 is rational. Also,

r1r2 + r1r3 + r1r4 + r2r3 + r2r4 + r3r4 = c

a
.

Therefore,
r1r2 + r3r4 = c

a
− (r1 + r2)(r3 + r4).

Finally,

r1r2r3 + r1r2r4 + r1r3r4 + r2r3r4 = −d

a
,

which is equivalent to

(r1 + r2)r3r4 + (r3 + r4)r1r2 = −d

a
.

We observe that the products r1r2 and r3r4 satisfy the linear system of equations

αx + βy = u,

γ x + δy = v,
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where α = 1, β = 1, γ = r3 + r4, δ = r1+ r2, u = c
a − (r1+ r2)(r3 + r4), v = − d

a . Because
r1+ r2 �= r3+ r4, this system has a unique solution; this solution is rational. Hence both r1r2

and r3r4 are rational, and the problem is solved.
(64th W.L. Putnam Mathematical Competition, 2003)

205. Set x1
x2
= t. Let us observe that if either x1 or x2 is rational, so is the other, and by Vit̀e’s

relations x3 is rational as well. Also, if x3 is rational, then x1 + x2 = x2(1+ x1
2 ) is rational, so

x2 is rational, and x1 is rational as well. Hence it suffices to show that P(x) has a rational root.
Substituting x1 = tx2 in Viète’s relations we obtain

(t + 1)x2 + x3 = −a

x2[tx2 + (t + 1)x3] = b.

Substituting x3 from the first equation we obtain the quadratic equation in x2,

(t2 + t + 1)x2
2 + (t + 1)ax2 + b = 0.

Thus x2 is a zero of the quadratic polynomial with rational coefficients Q(x) = (t2 + t +
1)x2 + (t + 1)ax + b. We deduce that the greatest common divisor of P(x) and Q(x) is a
non-constant polynomial. Moreover, because both P(x) and Q(x) have rational coefficients
their greatest common divisor must have rational coefficients as well. So P(x) can be written
as a product of two polynomials with rational coefficients. One of the factors must be a linear
polynomial, showing that P(x) has a rational zero. Hence the conclusion.

(Romanian Mathematics Competition, 1995, proposed by B. Enescu)

206. First solution: Let α = arctan u, β = arctan v, and γ = arctan w. We are required to
determine the sum α + β + γ . The addition formula for the tangent of three angles,

tan(α + β + γ ) = tan α + tan β + tan γ − tan α tan β tan γ

1− (tan α tan β + tan β tan γ + tan α tan γ )
,

implies

tan(α + β + γ ) = u+ v+ w− uvw

1− (uv + vw+ uv)
.

Using Viète’s relations,

u+ v+ w = 0, uv + vw + uw = −10, uvw = −11,

we further transform this into tan(α+ β + γ ) = 11
1+10 = 1. Therefore, α+ β + γ = π

4 + kπ ,
where k is an integer that remains to be determined.

From Viète’s relations we can see the product of the zeros of the polynomial is negative,
so the number of negative zeros is odd. And since the sum of the zeros is 0, two of them are
positive and one is negative. Therefore, one of α, β, γ lies in the interval

(−π
2 , 0
)

and two of
them lie in

(
0, π

2

)
. Hence k must be equal to 0, and arctan u+ arctan v+ arctan w = π

4 .

Second solution: Because
Im ln(1+ ix) = arctan x,
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we see that

arctan u+ arctan v + arctan w = Im ln(iP(i)) = Im ln(11+ 11i) = arctan 1 = π

4
.

(Kőzépiskolai Matematikai Lapok (Mathematics Magazine for High Schools, Budapest),
proposed by K. Bérczi).

207. Expanding the binomial (cos α + i sin α)m, and using the de Moivre formula,

(cos α + i sin α)m = cos mα + i sin mα,

we obtain

sin mα =
(

m

1

)
cosm−1 α sin α −

(
m

3

)
cosm−3 α sin3 α +

(
m

5

)
cosm−5 α sin5 α + · · ·

For m = 2n+ 1, if α = π
2n+1 ,

2π
2n+1 , . . . ,

nπ
2n+1 then sin(2n+ 1)α = 0, and sin α and cos α are

both different from zero. Dividing the above relation by sin2n α, we find that
(

2n+ 1

1

)
cot2n α −

(
2n+ 1

3

)
cot2n−2 α + · · · + (−1)n

(
2n+ 1

2n+ 1

)
= 0

holds true for α = π
2n+1 ,

2π
2n+1 , . . . ,

nπ
2n+1 . Hence the equation

(
2n+ 1

1

)
xn −
(

2n+ 1

3

)
xn−1 + · · · + (−1)n

(
2n+ 1

2n+ 1

)
= 0

has the roots

xk = cot2 kπ

2n+ 1
, k = 1, 2, . . . , n.

The product of the roots is

x1x2 · · · xn =
(2n+1

2n+1

)

(2n+1
1

) = 1

2n+ 1
.

So

cot2 π

2n+ 1
cot2 2π

2n+ 1
· · · cot2 nπ

2n+ 1
= 1

2n+ 1
.

Because 0 < kπ
2n+1 < π

2 , k = 1, 2, . . . , n, it follows that all these cotangents are positive.
Taking the square root and inverting the fractions, we obtain the identity from the statement.

(Romanian Team Selection Test for the International Mathematical Olympiad, 1970)

208. A good guess is that P(x) = (x − 1)n. We want to show that this is the case. To this
end, let x1, x2, . . . , xn be the zeros of P(x). Using Viète’s relations, we can write

∑

i

(xi − 1)2 =
(
∑

i

xi

)2

− 2
∑

i<j

xixj − 2
∑

i

xi + n

= n2 − 2
n(n− 1)

2
− 2n+ n = 0.
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This implies that all squares on the left are zero. So x1 = x2 = · · · = xn = 1, and P(x) =
(x − 1)n, as expected.

(Gazeta Matematică (Mathematics Gazette, Bucharest))

209. Let α, β, γ be the zeros of P(x). Without loss of generality, we may assume that
0 ≤ α ≤ β ≤ γ . Then

x − a = x + α + β + γ ≥ 0 and P(x) = (x − α)(x − β)(x − γ ).

If 0 ≤ x ≤ α, using the AM-GM inequality, we obtain

−P(x) = (α − x)(β − x)(γ − x) ≤ 1

27
(α + β + γ − 3x)3

≤ 1

27
(x + α + β + γ )3 = 1

27
(x − a)3,

so that P(x) ≥ − 1
27(x − a)3. Equality holds exactly when α − x = β − x = γ − x in the

first inequality and α + β + γ − 3x = x + α + β + γ in the second, that is, when x = 0 and
α = β = γ .

If β ≤ x ≤ γ , then using again the AM-GM inequality, we obtain

−P(x) = (x − α)(x − β)(γ − x) ≤ 1

27
(x + γ − α − β)3

≤ 1

27
(x + α + β + γ )3 = 1

27
(x − a)3,

so that again P(x) ≥ − 1
27(x − a)3. Equality holds exactly when there is equality in both

inequalities, that is, when α = β = 0 and γ = 2x.
Finally, when α < x < β or x > γ , then

P(x) > 0 ≥ − 1

27
(x − a)3.

Thus the desired constant is λ = − 1

27
, and the equality occurs when α = β = γ and x = 0,

or when α = β = 0, γ is any nonnegative real, and x = γ

2 .
(Chinese Mathematical Olympiad, 1999)

210. The key idea is to view an+1 − (a + 1)n − 2001 as a polynomial in a. Its free term is
2002, so any integer zero divides this number.

From here the argument shifts to number theory and becomes standard. First, note that
2002 = 2 × 7 × 11 × 13. Since 2001 is divisible by 3, we must have a ≡ 1 (mod 3);
otherwise, one of an+1 and (a + 1)n would be a multiple of 3 and the other not, and their
difference would not be divisible by 3. We deduce that a ≥ 7. Moreover, an+1 ≡ 1 (mod 3),
so we must have (a+1)n ≡ 1 (mod 3), which forces n to be even, and in particular at least 2.

If a is even, then an+1− (a+ 1)n ≡ −(a+ 1)n (mod 4). Because n is even,−(a+ 1)n ≡
−1 (mod 4). But on the right-hand side, 2001 ≡ 1 (mod 4), so equality is impossible.
Therefore, a must odd, so it divides 1001 = 7 × 11 × 13. Moreover, an+1 − (a + 1)n ≡
a (mod 4), so a ≡ 1 (mod 4).
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Of the divisors of 7 × 11 × 13, those congruent to 1 modulo 3 are precisely those not
divisible by 11 (since 7 and 13 are both congruent to 1 modulo 3). Thus a divides 7 × 13.
Now a ≡ 1 (mod 4) is possible only if a divides 13.

We cannot have a = 1, since 1 − 2n �= 2001 for any n. Hence the only possibility is
a = 13. One easily checks that a = 13, n = 2 is a solution; all that remains to check is that
no other n works. In fact, if n > 2, then 13n+1 ≡ 2001 ≡ 1 (mod 8). But 13n+1 ≡ 138 since
n is even, a contradiction. We conclude that a = 13, n = 2 is the unique solution.

(62nd W.L. Putnam Mathematical Competition, 2001)

211. Let us first consider the case n ≥ 2. Let P(x) = anxn + an−1xn−1 + · · · + a0, an �= 0.
Then

P′(x) = nanxn−1 + (n− 1)an−1xn−2 + · · · + a1.

Identifying the coefficients of xn(n−1) in the equality P(P′(x)) = P′(P(x)), we obtain

an+1
n · nn = an

n · n.

This implies annn−1 = 1, and so

an = 1

nn−1
.

Since an is an integer, n must be equal to 1, a contradiction. If n = 1, say P(x) = ax + b,

then we should have a2 + b = a, hence b = a − a2. Thus the answer to the problem is the
polynomials of the form P(x) = ax2 + a− a2.

(Revista Matematică din Timişoara (Timişoara Mathematics Gazette), proposed by T.
Andreescu)

212. Let m be the degree of P(x), so P(x) = amxm+ am−1xm−1+· · ·+ a0. If P(x) = xkQ(x),
then

xkn(Q(x))n = xknQ(xn),

so
(Q(x))n = Q(xn),

which means that Q(x) satisfies the same relation.
Thus we can assume that P(0) �= 0. Substituting x = 0, we obtain an

0 = a0, and since a0

is a nonzero real number, it must be equal to 1 if n is even, and to ±1 if n is odd.
Differentiating the relation from the statement, we obtain

nPn−1(x)P′(x) = nP′(xn)xn−1.

For x = 0 we have P′(0) = 0; hence a1 = 0. Differentiating the relation again and reasoning
similarly, we obtain a2 = 0, and then successively a3 = a4 = · · · = am = 0. It follows that
P(x) = 1 if n is even and P(x) = ±1 if n is odd.

In general, the only solutions are P(x) = xm if n is even, and P(x) = ±xm if n is odd, m
being some nonnegative integer.

(T. Andreescu)
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213. Since a �= 0, P(x) and Q(x) are relatively prime. Assuming they are nonconstant (if one
is constant then so is the other), differentiate the equations from the statement to obtain

3(P(x))2P′(x) = 2Q(x)Q′(x).

Thus (P(x))2 divides Q′(x), and so 2deg P(x) < deg Q(x). But from the initial equation
2deg Q(x) = 3deg P(x). We reached a contradiction which shows that our assumption was
false, so P(x) and Q(x) are both constant.

(Mathematical Reflections, proposed by M. Athanasios)

214. Assume without loss of generality that deg(P(z)) = n ≥ deg(Q(z)). Consider the
polynomial R(z) = (P(z)−Q(z))P′(z). Clearly, deg(R(z)) ≤ 2n−1. If ω is a zero of P(z) of
multiplicity k, then ω is a zero of P′(z) of multiplicity k − 1. Hence ω is also a zero of R(z),
and its multiplicity is at least k. So the n zeros of P(z) produce at least n zeros of R(z), when
multiplicities are counted.

Analogously, let ω be a zero of P(z)− 1 of multiplicity k. Then ω is a zero of Q(z)− 1,
and hence of P(z) − Q(z). It is also a zero of (P(z) − 1)′ = P′(z) of multiplicity k − 1. It
follows that ω is a zero of R(z) of multiplicity at least k. This gives rise to at least n more
zeros for R(z).

It follows that R(z), which is a polynomial of degree less than or equal to 2n − 1, has at
least 2n zeros. This can happen only if R(z) is identically zero, hence if P(z) ≡ Q(z).

(Soviet Union University Student Mathematical Olympiad, 1976)

215. Let Q(x) = xP(x). The conditions from the statement imply that the zeros of Q(x)
are all real and distinct. From Rolle’s theorem, it follows that the zeros of Q′(x) are real and
distinct.

Let H(x) = xQ′(x). Reasoning similarly we deduce that the polynomial H ′(x) has all
zeros real and distinct. Note that the equation H ′(x) = 0 is equivalent to the equation

x2P′′(x)+ 3xP′(x)+ P(x) = 0;
the problem is solved.

(D. Andrica, published in T. Andreescu, D. Andrica, 360 Problems for Mathematical
Contests, GIL, 2003)

216. Let a ∈ R such that P(a) �= 0. It suffices to show that the discriminant

D = 16[P′(a)]2 − 20P(a)P′′(a)

of the quadratic equation x2P(a)+ 4xP′(a)+ 5P′′(a) = 0 is nonegative, or equivalently that

4[P′(a)]2 ≥ nP(a)P′′(a).

More generally, we will show that if n ≥ 2 is an integer, P(x) is a polynomial of degree n
with real coefficients and real roots, and a ∈ R is such that P(a) �= 0, then we have

(n− 1)[P′(a)]2 ≥ nP(a)P′′(a).
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Let P(x) = c(x − r1)(x − r2) · · · (x − rn), where c, r1, r2, . . . , rn ∈ R and c �= 0. If a ∈ R is
such that P(a) �= 0, then it is easy to see that

P′(a)

P(a)
=

n∑

i=1

1

a− ri

and

P′′(a)P(a)− [P′(a)]2
[P(a)]2 = −

n∑

i=1

1

(a− ri)2
.

Hence

P′′(a)

P(a)
=
[

P′(a)

P(a)

]2

−
n∑

i=1

1

(a− ri)2
,

or, equivalently,

P′′(a)

P(a)
=
(

n∑

i=1

1

a− ri

)2

−
n∑

i=1

1

(a− ri)2
.

We apply the Cauchy-Schwarz inequality to obtain

(
1

a− ri

)2

≤
(

n∑

i=1

12

)(
n∑

i=1

1

(a− ri)2

)

= n
n∑

i=1

1

(a− ri)2
.

The above inequality can be written equivalently as

(n− 1)

(
n∑

i=1

1

a− ri

)2

≥ n

(
n∑

i=1

1

a− ri

)2

− n
n∑

i=1

1

(a− ri)2
,

which is the desired inequality.
(Mathematical Reflections, proposed by T. Andreescu)

217. Differentiating the product, we obtain

P′(x) =
n∑

k=1

kxk−1(xn − 1) · · · (xk+1 − 1)(xk−1 − 1) · · · (x − 1).

We will prove that each of the terms is divisible by P�n/2�(x). This is clearly true if k >
⌊

n
2

⌋
.

If k ≤ ⌊ n
2

⌋
, the corresponding term contains the factor

(xn − 1) · · · (x�n/2�+2 − 1)(x�n/2�+1 − 1).

That this is divisible by P�n/2�(x) follows from a more general fact, namely that for any positive
integers k and m, the polynomial

(xk+m − 1)(xk+m−1 − 1) · · · (xk+1 − 1)
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is divisible by
(xm − 1)(xm−1 − 1) · · · (x − 1)

in the ring of polynomials with integer coefficients. Since the two polynomials are monic and
have integer coefficients, it suffices to prove that the zeros of the second are also zeros of the
first, with at least the same multiplicity.

Note that if ζ is a primitive rth root of unity, then ζ is a zero of xj − 1 precisely when j is
divisible by r. So the multiplicity of ζ as a zero of the polynomial (xm−1)(xm−1−1) · · · (x−1)

is
⌊

m
r

⌋
, while its multiplicity as a zero of (xk+m−1)(xk+m−1−1) · · · (xk+1−1) is

⌊
m+k

r

⌋−⌊ k
r

⌋
.

The claim now follows from the inequality
⌊

m+ k

r

⌋
−
⌊

k

r

⌋
≥
⌊m

r

⌋
.

This completes the solution.
(Communicated by T.T. Le)

218. The equation Q(x) = 0 is equivalent to

n
P(x)P′′(x)− (P′(x))2

P(x)2
+
[

P′(x)
P(x)

]2

= 0.

We recognize the first term on the left to be the derivative of P′(x)
P(x) . Denoting the roots of P(x)

by x1, x2, . . . , xn, the equation can be rewritten as

−n
n∑

k=1

1

(x − xk)2
+
(

n∑

k=1

1

x − xk

)2

= 0,

or

n
n∑

k=1

1

(x − xk)2
=
(

n∑

k=1

1

x − xk

)2

.

If this were true for some real number x, then we would have the equality case in the Cauchy-
Schwarz inequality applied to the numbers ak = 1, bk = 1

x−xk
, k = 1, 2, . . . , n. This would

then further imply that all the xi’s are equal, which contradicts the hypothesis that the zeros
of P(x) are distinct. Therefore the equality cannot hold for a real number, meaning that none
of the zeros of Q(x) is real.

(D.M. Bătineţu, I.V. Maftei, I.M. Stancu-Minasian, Exerciţii şi Probleme de Analiză
Matematică (Exercises and Problems in Mathematical Analysis), Editura Didactică şi Peda-
gogică, Bucharest, 1981)

219. We start with the identity

P′(x)
P(x)

= 1

x − x1
+ 1

x − x2
+ · · · + 1

x − xn
, for x �= xj, j = 1, 2, . . . , n.

If P′
( x1+x2

2

) = 0, then this identity gives

0 = 1
x1 + x2

2
− x3

+ 1
x1 + x2

2
− x4

+ · · · + 1
x1 + x2

2
− xn

< 0+ 0+ · · · + 0 = 0,
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a contradiction. Similarly, if P′
( xn−1+xn

2

) = 0, then

0 = 1
xn−1 + xn

2
− x1

+ 1
xn−1 + xn

2
− x2

+ · · · + 1
xn−1 + xn

2
− xn−2

> 0+ 0+ · · · + 0 = 0,

another contradiction. The conclusion follows.
(T. Andreescu)

220. The condition |F(a)| = |F(−a)| for all a is equivalent to F2(a) = F2(−a) for all a, that
is to F2(x) = F2(−x). In other words

F2(x)− F2(−x) = (F(x)− F(−x))(F(x)+ F(−x)) = 0.

For this to be identically equal to zero, one of the factors must be identically equal to zero.
We conclude that F(x) is mirror if and only if it has either just terms of even degree, or just
terms of odd degree. So the mirror polynomials are precisely the polynomials of the form
G(x2) or xG(x2), where G(x) is a polynomial with real coefficients.

The next idea is that P(x) and Q(x) can be computed explicitly in terms of F(x). First
note that P(x) is unique, because if P1(x) − P′1(x) = P2(x) − P′2(x) then P1(x) − P2(x) =
P′1(x)− P′2(x), and a polynomial equals its derivative only if it is identically zero. The sum

P(x) = F(x)+ F ′(x)+ F ′′(x)+ · · ·
is finite, and

P(x)− P′(x) = (F(x)+ F ′(x)+ F ′′(x)+ · · · )− (F ′(x)+ F ′′(x)+ · · · ) = F(x).

So we have found P(x). A similar argument shows that

Q(x) = F(x)− F ′(x)+ F ′′(x)− · · · .
So

P(x)+ Q(x) = F(x)+ F ′′(x)+ · · · .
If F(x) is a mirror polynomial, then the monomials appearing in F(x) have only odd degree,
and the same is true for its derivatives of even order. The same is true if F(x) has only even
degree terms. This implies that P(x) + Q(x) is a mirror polynomial. For the converse, note
that

F(x) = 1

2
[(P(x)+ Q(x))− (P(x)+ Q(x))′′),

and by the same reasoning F(x) is a mirror polynomial.
(Mathematical Reflections, proposed by I. Boreico)

221. The equation P(x) = 0 is equivalent to the equation f (x) = 1, where

f (x) = a1

x
+ a2

x2
+ · · · + an

xn
.

Since f is strictly decreasing on (0,∞), lim
x→0+

f (x) = ∞ and lim
x→∞ f (x) = 0, the equation has

a unique solution.
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Remark. A more general principle is true, namely that if the terms of the polynomial are written
in decreasing order of their powers, then the number of sign changes of the coefficients is the
maximum possible number of positive zeros; the actual number of positive zeros may differ
from this by an even number.

222. Assume to the contrary that there is z with |z| ≥ 2 such that P(z) = 0. Then by the
triangle inequality,

0 =
∣
∣
∣
∣
P(z)

z7

∣
∣
∣
∣ =
∣
∣
∣
∣1+

7

z3
+ 4

z6
+ 1

z7

∣
∣
∣
∣ ≥ 1− 7

|z|3 −
4

|z|6 −
1

|z|7
≥ 1− 7

8
− 4

64
− 1

128
= 7

128
> 0,

a contradiction. Hence our initial assumption was false, and therefore all the zeros of P(z) lie
inside the disk of radius 2 centered at the origin.

223. Let x1, x2 be the two roots of the quadratic equation. Then from |p|+ |q| < 1 we obtain,
using Viète’s relations,

|x1 + x2| + |x1x2| < 1.

From the triangle inequality we have

|x1| − |x2| < |x1 + x2|.
Combining the two inequalities we obtain

|x1| − |x2| + |x1| · |x2| − 1 < 0.

Factoring we obtain

(|x1| − 1)(|x2| + 1) < 0.

Since the second factor is positive, the first factor is negative, so |x1| < 1. By symmetry,
|x2| < 1 as well.

(Romanian Mathematics Competition, 1986, proposed by B. Enescu)

224. Let P(x) = (x − 1)r(x − 2)sQ(x), where the roots x1, x2, . . . , xk of Q(x) are different
from 1 and 2 (and of course lie in (0, 3)). Then Q(0)Q(1)Q(2)Q(3) is a nonzero integer
number, so the absolute value of this number is greater than or equal to 1. We thus have

1 ≤ |Q(0)Q(1)Q(2)Q(3)| =
∣∣∣
∣∣∣

k∏

j=1

xj(1− xj)(2− xj)(3− xj)

∣∣∣
∣∣∣

=
∣∣
∣∣∣
∣

k∏

j=1

(x4
j − 6x3

j + 11x2
j − 6xj)

∣∣
∣∣∣
∣
.
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We have t4−6t3+11t2−6t = (t2−3t+1)2−1. Notice that the function f (t) = (t2−3t+1)2−1
has the minimum at the zeros of t2−3t+1, which are 3±√5

2 and the maximum at the vertex of
the parabola t2−3t+1, and this maximum is 9/16. Hence the maximum of |t4−6t3+11t2−6t|
on (0, 3) is 1 and is attained precisely when t = 3±√5

2 .

Thus |Q(0)Q(1)Q(2)Q(3)| is strictly less than 1 unless all xj are equal to 3±√5
2 . The

problem is solved.
(Test from the International Mathematical Olympiad training program of Brazil, 2013)

225. Let z = r(cos t + i sin t), sin t �= 0. Using the de Moivre formula, the equality
zn + az + 1 = 0 translates to

rn cos nt + ar cos t + 1 = 0,

rn sin nt + ar sin t = 0.

View this as a system in the unknowns rn and ar. Solving the system gives

rn =

∣
∣∣∣
−1 cos t
0 sin t

∣
∣∣∣

∣
∣∣∣

cos nt cos t
sin nt sin t

∣
∣∣∣

= sin t

sin(n− 1)t
.

An exercise in the section on induction shows that for any positive integer k, | sin kt| ≤ k| sin t|.
Then

rn = sin t

sin(n− 1)t
≥ 1

n− 1
.

This implies the desired inequality |z| = r ≥ n

√
1

n−1 .
(Romanian Mathematical Olympiad, proposed by I. Chiţescu)

226. By the theorem of Lucas, if the zeros of a polynomial lie in a closed convex domain,
then the zeros of the derivative lie in the same domain. In our problem, change the variable
to z = 1

x to obtain the polynomial Q(z) = zn + zn−1 + a. If all the zeros of axn + x + 1
were outside of the circle of radius 2 centered at the origin, then the zeros of Q(z) would lie
in the interior of the circle of radius 1

2 . Applying the theorem of Lucas to the convex hull
of these zeros, we deduce that the same would be true for the zeros of the derivative. But
Q′(z) = nzn−1 + (n − 1)zn−2 has z = n−1

n ≥ 1
2 as one of its zeros, which is a contradiction.

This implies that the initial polynomial has a root of absolute value less than or equal to 2.

227. The problem amounts to showing that the zeros of Q(z) = zP′(z) − n
2 P(z) lie on the

unit circle. Let the zeros of P(z) be z1, z2, . . . , zn, and let z be a zero of Q(z). The relation
Q(z) = 0 translates into

z

z − z1
+ z

z − z2
+ · · · + z

z − zn
= n

2
,

or (
2z

z − z1
− 1

)
+
(

2z

z − z2
− 1

)
+ · · · +

(
2z

z − zn
− 1

)
= 0,
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and finally
z + z1

z − z1
+ z + z2

z − z2
+ · · · + z + zn

z − zn
= 0.

The terms of this sum should remind us of a fundamental transformation of the complex plane.
This transformation is defined as follows: for a a complex number of absolute value 1, we let
φa(z) = (z+ a)/(z− a). The map φa has the important property that it maps the unit circle to
the imaginary axis, the interior of the unit disk to the half-plane Re z < 0, and the exterior of
the unit disk to the half-plane Re z > 0. Indeed, since the unit disk is invariant under rotation
by the argument of a, it suffices to check this for a = 1. Then φ(eiθ ) = −i cot θ

2 , which proves
that the unit circle maps to the entire imaginary axis. The map is one-to-one, so the interior
of the unit disk is mapped to that half-plane where the origin goes, namely to Re z < 0, and
the exterior is mapped to the other half-plane. If z has absolute value less than one, then all
terms of the sum

z + z1

z − z1
+ z + z2

z − z2
+ · · · + z + zn

z − zn

have negative real part, while if z has absolute value greater than 1, all terms in this sum have
positive real part. In order for this sum to be equal to zero, z must have absolute value 1. This
completes the proof.

An alternative approach to this last step was suggested by R. Stong. Taking the real part
of

z + z1

z − z1
+ z + z2

z − z2
+ · · · + z + zn

z − zn
= 0,

we obtain

n∑

j=1

Re

(
z + zj

z − zj

)
=

n∑

j=1

1

|z − zj|2 Re ((z + zj)(z − zj)) =
n∑

j=1

|z|2 − |zj|2
|z − zj|2 .

Since |zj| = 1 for all j, we conclude that |z| = 1.

Remark. When a = −i, φa is called the Cayley transform.

228. Let the zeros of the polynomial be p, q, r, s. We have p+ q+ r+ s = 0, pq+ pr+ rs+
qr+ qs+ rs = −2, and hence p2+ q2+ r2+ s2 = 02− 2(−2) = 4. By the Cauchy-Schwarz
inequality, (1 + 1 + 1)(q2 + r2 + s2) ≥ (q + r + s)2. Furthermore, because q, r, s must be
distinct, the inequality is strict. Thus

4 = p2 + q2 + r2 + s2 > p2 + (−p)2

3
= 4p2

3
,

or |p| < √3. The same argument holds for the other zeros.
(Hungarian Mathematical Olympiad, 1999)

229. We argue by induction on k. For k = 1 the property is obviously true.
Assume that the property is true for polynomials of degree k−1 and let us prove it for the

polynomials Pn(z), n ≥ 1, and P(z) of degree k. Subtracting a constant from all polynomials,
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we may assume that P(0) = 0. Order the zeros of Pn(z) such that |z1(n)| ≤ |z2(n)| ≤ · · · ≤
|zk(n)|. The product z1(n)z2(n) · · · zk(n), being the free term of Pn(z), converges to 0. This
can happen only if z1(n)→ 0. So we have proved the property for one of the zeros.

In general, the polynomial obtained by dividing a monic polynomial Q(z) by z−a depends
continuously on a and on the coefficients of Q(z). This means that the coefficients of Pn(z)/(z−
z1(n)) converge to the coefficients of P(z)/z, so we can apply the induction hypothesis to these
polynomials. The conclusion follows.

Remark. A stronger result is true, namely that if the coefficients of a monic polynomial are
continuous functions of a parameter t, then the zeros are also continuous functions of t.

230. The hypothesis of the problem concerns the coefficients am and a0, and the conclusion is
about a zero of the polynomial. It is natural to write the Viète relations for the two coefficients,

am

an
= (−1)m

∑
x1x2 · · · xm,

a0

an
= (−1)nx1x2 · · · xn.

Dividing, we obtain ∣
∣∣∣
∑ 1

x1x2 · · · xm

∣
∣∣∣ =
∣
∣∣∣
am

a0

∣
∣∣∣ >
(

n

m

)
.

An application of the triangle inequality yields

∑ 1

|x1||x2| · · · |xm| >

(
n

m

)
.

Of the absolute values of the zeros, let α be the smallest. If we substitute all absolute values
in the above inequality by α, we obtain an even bigger left-hand side. Therefore,

(
n

m

)
1

αn−m
>

(
n

m

)
.

It follows that α < 1, and hence the corresponding zero has absolute value less than 1, as
desired.

(Revista Matematică din Timişoara (Timişoara Mathematics Gazette), proposed by T.
Andreescu)

231. Let

f (x) = P′(x)
P(x)

= 1

x − x1
+ 1

x − x2
+ · · · + 1

x − xn
.

First, note that from Rolle’s theorem applied to φ(x) = e−kxf (x) it follows that all roots of
the polynomial P′(x)− kP(x) are real. We need the following lemma.

Lemma. If for some j, y0 and y1 satisfy y0 < xj < y1 ≤ y0 + δ(P), then y0 and y1 are not
zeros of f and f (y0) < f (y1).
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Proof. Let d = δ(P). The hypothesis implies that for all i, y1−y0 ≤ d ≤ xi+1−xi. Hence for
1 ≤ i ≤ j− 1 we have y0− xi ≥ y1− xi+1 > 0, and so 1/(y0− xi) ≤ 1/(y1− xi+1); similarly,
for j ≤ i ≤ n− 1 we have y1 − xi+1 ≤ y0 − xi < 0 and again 1/(y0 − xi) ≤ 1/(y1 − xi+1).

Finally, y0 − xn < 0 < y1 − x1, so 1/(y0 − xn) < 0 < 1/(y1 − x1), and the result follows
by addition of these inequalities. �

Returning to the problem, we see that if y0 and y1 are zeros of P′(x)− kP(x) with y0 < y1,
then they are separated by a zero of P and satisfy f (y0) = f (y1) = k. From the lemma it
follows that we cannot have y1 ≤ y0 + δ(P(x)), so y1 − y0 > d, and we are done.

(American Mathematical Monthly, published in a note by P. Walker, solution by R. Gelca)

232. The number 101 is prime, yet we cannot apply Eisenstein’s criterion because of the
102. The trick is to observe that the irreducibility of P(x) s equivalent to the irreducibility of
P(x − 1). Because the binomial coefficients

(101
k

)
, 1 ≤ k ≤ 100, are all divisible by 101, the

polynomial P(x−1) has all coefficients but the first divisible by 101, while the last coefficient
is (−1)101+101(−1)101+102 = 202, which is divisible by 101 but not by 1012. Eisenstein’s
criterion proves that P(x − 1) is irreducible; hence P(x) is irreducible as well.

233. Note that P(x) = (xp − 1)/(x − 1). If P(x) were reducible, then so would be P(x + 1).
But

P(x + 1) = (x + 1)p − 1

x
= xp−1 +

(
p

1

)
xp−1 + · · · +

(
p

p− 1

)
.

The coefficient
(p

k

)
is divisible by p for all 1 ≤ k ≤ p−1, and

( p
p−1

) = p is not divisible by p2;
thus Eisenstein’s criterion applies to show that P(x + 1) is irreducible. It follows that P(x)
itself is irreducible, and the problem is solved.

234. Same idea as in the previous problem. We look at the polynomial

P(x + 1) = (x + 1)2n + 1 = x2n +
(

2n

1

)
x2n−1 +

(
2n

2

)
x2n−1−2 + · · · +

(
2n

2n − 1

)
x + 2.

For 1 ≤ k ≤ 2n, the binomial coefficient
(2n

k

)
is divisible by 2. This follows from the equality

(
2n

k

)
= 2n

k

(
2n − 1

k − 1

)
,

since the binomial coefficient on the right is an integer, and 2 appears to a larger power in the
numerator than in the denominator. The application of Eisenstein’s irreducibility criterion is
now straightforward.

235. Arguing by contradiction, assume that P(x) can be factored, and let P(x) = Q(x)R(x).
Because P(ai) = −1, i = 1, 2, . . . , n, and Q(ai) and R(ai) are integers, either Q(ai) = 1
and R(ai) = −1, or Q(ai) = −1 and R(ai) = 1. In both situations (Q + R)(ai) = 0,
i = 1, 2, . . . , n. Since the ai’s are all distinct and the degree of Q(x) + R(x) is at most
n − 1, it follows that Q(x) + R(x) ≡ 0. Hence R(x) = −Q(x), and P(x) = −Q2(x). But
this contradicts the fact that the coefficient of the term of maximal degree in P(x) is 1. The
contradiction proves that P(x) is irreducible.

(I. Schur)
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236. Assume that the polynomial P(x) is reducible, and write it as a product Q(x)R(x) of
monic polynomials with integer coefficients of degree i, respectively, 2n − i. Both Q(x)
and R(x) are positive for any real number x (being monic and with no real zeros), and from
Q(ak)R(ak) = 1, k = 1, 2, . . . , n, we find Q(ak) = R(ak) = 1, k = 1, 2, . . . , n. If, say, i < n,
then the equation Q(x) = 1 has n solutions, which, taking into account the fact that Q(x) has
degree less than n, means that Q(x) is identically equal to 1. This contradicts our original
assumption. Also, if i = n, the polynomial Q(x)− R(x) has n zeros, and has degree less than
n, so it is identically equal to 0. Therefore, Q(x) = R(x), which means that

(x − a1)
2(x − a2)

2 · · · (x − an)
2 + 1 = Q(x)2.

Substituting integer numbers for x, we obtain infinitely many equalities of the form p2+1 = q2,
with p and q integers. But this equality can hold only if p = 0 and q = 1, and we reach
another contradiction. Therefore, the polynomial is irreducible.

(I. Schur)

237. Let P(x) = anxn+an−1xn−1+· · ·+a0, and assume to the contrary that P(x) = Q(x)R(x),
where Q(x) and R(x) are polynomials with integer coefficients of degree at least 1 (the degree
zero is ruled out because any factor that divides all coefficients of P(x) divides the original
prime).

Because the coefficients of P(x) are nonnegative integers between 0 and 9, and the leading
coefficient is positive, it follows that the zeros of P(x) are in the union of the left half-plane
Re z ≤ 0 and the disk |z| < 4. Otherwise, if Re z > 0 and |z| ≥ 4, then

1 ≤ an ≤ Re (an + an−1z−1) = Re (−an−2z−2 − · · · − a0z−n)

≤ 9(|z|−2 + |z|−3 + · · · + |z|−n) <
9|z|−2

1− |z|−1
≤ 3

4
,

a contradiction.
On the other hand, by hypothesis P(10) is prime; hence either Q(10) or R(10) is 1 (or

−1 but then just multiply both polynomials by −1). Assume Q(10) = 1, and let Q(x) =
c(x − x1)(x − x2) · · · (x − xk). Then xi, i = 1, 2, . . . , k, are also zeros of P(x), and we have
seen that these lie either in the left half-plane or in the disk of radius 4 centered at the origin.
It follows that

1 = Q(10) = |Q(10)| = |c| · |10− x1| · |10− x2| · · · |10− xk| ≥ |c| · 6k,

a contradiction. We conclude that P(x) is irreducible.

238. Assume the contrary, and let

(x2 + 1)n + p = Q(x)R(x),

with Q(x) and R(x) of degree at least 1. Denote by Q̂(x), R̂(x) the reduction of these poly-
nomials modulo p, viewed as polynomials in Zp[x]. Then Q̂(x)̂R(x) = (x2 + 1)n. The
polynomial x2 + 1 is irreducible in Zp[x], since −1 is not a quadratic residue in Zp. This
implies Q̂(x) = (x2 + 1)k and R̂(x) = (x2 + 1)n−k , with 1 ≤ k ≤ n− 1 (the polynomials are
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monic and their degree is at least 1). It follows that there exist polynomials Q1(x) and R1(x)
with integer coefficients such that

Q(x) = (x2 + 1)k + pQ1(x) and R(x) = (x2 + 1)n−k + pR1(x).

Multiplying the two, we obtain

(x2 + 1)n + p = (x2 + 1)n + p((x2 + 1)n−kQ1(x)+ (x2 + 1)kR1(x))+ p2Q1(x)R1(x).

Therefore,
(x2 + 1)n−kQ1(x)+ (x2 + 1)kR1(x)+ pQ1(x)R1(x) = 1.

Reducing modulo p we see that x2+ 1 divides 1 in Zp[x], which is absurd. The contradiction
proves that the polynomial from the statement is irreducible.

239. We will show that all the zeros of P(x) have absolute value greater than 1. Let y be a
complex zero of P(x). Then

0 = (y− 1)P(y) = yp + yp−1 + yp−2 + · · · + y− p.

Assuming |y| ≤ 1, we obtain

p = |yp + yp−1 + yp−2 + · · · + y| ≤
p∑

i=1

|y|i ≤
p∑

i=1

1 = p.

This can happen only if the two inequalities are, in fact, equalities, in which case y = 1. But
P(1) > 0, a contradiction that proves our claim.

Next, let us assume that P(x) = Q(x)R(x) with Q(x) and R(x) polynomials with integer
coefficients of degree at least 1. Then p = P(0) = Q(0)R(0). Since both Q(0) and R(0)

are integers, either Q(0) = ±1 or R(0) = ±1. Without loss of generality, we may assume
Q(0) = ±1. This, however, is impossible, since all zeros of Q(x), which are also zeros of
P(x), have absolute value greater than 1. We conclude that P(x) is irreducible.

(Proposed by M. Manea for Mathematics Magazine)

240. Let n be the degree of P(x). Suppose that we can find polynomials with integer coef-
ficients R1(x) and R2(x) of degree at most 2n − 1 such that Q(x) = P(x2) = R1(x)R2(x).
Then we also have Q(x) = Q(−x) = R1(−x)R2(−x). Let F(x) be the greatest common
divisor of R1(x) and R1(−x). Since F(x) = F(−x), we can write F(x) = G(x2) with the
degree of G(x) at most n − 1. Since G(x2) divides Q(x) = P(x2), we see that G(x) divides
P(x) and has lower degree; hence by the irreducibility of P(x), G(x) is constant. Simi-
larly, the greatest common divisor of R2(x) and R2(−x) is constant. Hence R1(−x) divides
R2(x), while R2(x) divides R1(−x). It follows that R1(x) and R2(x) both have degree n,
R2(x) = cR1(−x), and Q(x) = cR1(x)R2(x). Because P(x) is monic, we compute c = (−1)n

and P(0) = (−1)nR1(0)2. Hence |P(0)| is a square, contradicting the hypothesis.
(Romanian Team Selection Test for the International Mathematical Olympiad, 2003, pro-

posed by M. Piticari)

241. These are just direct consequences of the trigonometric identities

cos(n+ 1)θ = cos θ cos nθ − sin θ sin nθ
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and
sin(n+ 1)θ

sin θ
= cos θ

sin nθ

sin θ
+ cos nθ.

242. Denote the second determinant by Dn. Expanding by the first row, we obtain

Dn = 2xDn−1 −

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 1 0 . . . 0
0 2x 1 . . . 0
0 1 2x . . . 0
...

...
...

. . .
...

0 0 0 . . . 2x

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 2xDn−1 − Dn−2.

Since D1 = 2x and D2 = 4x2 − 1, we obtain inductively Dn = Un(x), n ≥ 1. The same
idea works for the first determinant, except that we expand it by the last row. With the same
recurrence relation and with the values x for n = 1 and 2x2 − 1 for n = 2, the determinant is
equal to Tn(x) for all n.

243. Let P(x) = x4+ax3+bx2+cx+d and denote by M the maximum of |P(x)| on [−1, 1].
From −M ≤ P(x) ≤ M, we obtain the necessary condition −M ≤ 1

2 (P(x) + P(−x)) ≤ M
for x ∈ [−1, 1]. With the substitution y = x2, this translates into

−M ≤ y2 + by + d ≤ M, for y ∈ [0, 1].
For a monic quadratic function to have the smallest variation away from 0 on [0, 1], it needs
to have the vertex (minimum) at 1

2 . The variation is minimized by
(
y − 1

2

)2 − 1
8 , and so we

obtain M ≥ 1
8 . Equality is attained for 1

8 T4(x).
Now let us assume that P(x) is a polynomial for which M = 1

8 . Then b = −1. d = 1
8 .

Writing the double inequality− 1
8 ≤ P(x) ≤ 1

8 for x = 1 and−1, we obtain− 1
8 ≤ 1

8+a+c ≤ 1
8

and − 1
8 ≤ 1

8 − a− c ≤ 1
8 . So on the one hand, a+ c ≥ 0, and on the other hand, a+ c ≤ 0.

It follows that a = −c. But then for x = 1√
2
, 0 ≤ a

(
1

2
√

2
− 1√

2

)
≤ 1

4 , and for x = − 1√
2
,

0 ≤ −a
(

1
2
√

2
− 1√

2

)
≤ 1

4 . This can happen only if a = 0. Therefore,

P(x) = x4 − x2 + 1

8
= 1

8
T4(x).

244. From the identity

x3 + 1

x3
=
(

x + 1

x

)3

− 3

(
x + 1

x

)
,

it follows that √
r + 1√

r
= 63 − 3× 6 = 198.
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Hence (
4
√

r − 1
4
√

r

)2

= 198− 2,

and the maximum value of 4
√

r − 1
4√r

is 14.
(University of Wisconsin at Whitewater Math Meet, 2003, proposed by T. Andreescu)

245. Let x1 = 2 cos α, x2 = 2 cos 2α, . . ., xn = 2 cos nα. We are to show that the determinant
∣
∣
∣
∣
∣
∣
∣
∣
∣

T0(x1) T0(x2) . . . T0(xn)

T1(x1) T1(x2) . . . T1(xn)
...

...
. . .

...

Tn−1(x1) Tn−1(x2) . . . Tn−1(xn)

∣
∣
∣
∣
∣
∣
∣
∣
∣

is nonzero. Substituting T0(xi) = 1, T1(xi) = x, i = 1, 2, . . . , n, and performing row
operations to eliminate powers of xi, we can transform the determinant into

2 · 4 · · · 2n−1

∣∣
∣∣∣∣
∣∣∣

1 1 . . . 1
x1 x2 . . . xn
...

...
. . .

...

xn−1
1 xn−1

2 . . . xn−1
n

∣∣
∣∣∣∣
∣∣∣

.

This is a Vandermonde determinant, and the latter is not zero since xi �= xj, for 1 ≤ i < j ≤ n,
whence the original matrix is invertible. Its determinant is equal to

2(n−1)(n−2)/2
∏

1≤i<j≤n

(cos jα − cos iα) �= 0.

246. Because the five numbers lie in the interval [−2, 2] we can find corresponding angles
t1, t2, t3, t4, t5 ∈ [0, π] such that x = 2 cos t1, y = 2 cos t2, z = 2 cos t3, v = 2 cos t4,
and w = 2 cos t5. We would like to translate the third and fifth powers into trigonometric
functions of multiples of the angles. For that we use the polynomials Tn(a). For example,
T5(a) = a5−5a3+5a. This translates into the trigonometric identity 2 cos 5θ = (2 cos θ)5−
5(2 cos θ)3 + 5(2 cos θ).

Add to the third equation of the system the first multiplied by 5 and the second multiplied
by −5, then use the above-mentioned trigonometric identity to obtain

2 cos 5t1 + 2 cos 5t2 + 2 cos 5t3 + 2 cos 5t4 + 2 cos 5t5 = −10.

This can happen only if cos 5t1 = cos 5t2 = cos 5t3 = cos 5t4 = cos 5t5 = −1. Hence

t1, t2, t3, t4, t5 ∈
{

π

5
,

3π

5
,

5π

5

}
.

Using the fact that the roots of x5 = 1, respectively, x10 = 1, add up to zero, we deduce that

4∑

k=0

cos
2kπ

5
= 0 and

9∑

k=0

cos
kπ

5
= 0.
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It follows that

cos
π

5
+ cos

3π

5
+ cos

5π

5
+ cos

7π

5
+ cos

9π

5
= 0.

Since cos π
5 = cos 9π

5 and cos 3π
5 = cos 7π

5 , we find that cos π
5 + cos 3π

5 = 1
2 . Also, it is not

hard to see that the equation T5(a) = −2 has no rational solutions, which implies that cos π
5

is irrational.

The first equation of the system yields
5∑

i=1

ti = 0, and the above considerations show

that this can happen only when two of the ti are equal to π
5 , two are equal to 3π

5 , and one
is equal to π . Let us show that in this situation the second equation is also satisfied. Using

T3(a) = a3 − 3a, we see that the first two equations are jointly equivalent to
5∑

k=1

cos ti = 0

and
5∑

k=1

cos 3ti = 0. Thus we are left to check that this last equality is satisfied. We have

2 cos
3π

5
+ 2 cos

9π

5
= 2 cos

3π

5
+ 2 cos

π

5
+ cos π = 0,

as desired. We conclude that up to permutations, the solution to the system is
(

2 cos
π

5
, 2 cos

π

5
, 2 cos

3π

5
, 2 cos

3π

5
, 2 cos π

)
.

(Romanian Mathematical Olympiad, 2002, proposed by T. Andreescu)

247. The Lagrange interpolation formula applied to the Chebyshev polynomial Tn−1(x) and
to the points x1, x2, . . . , xn gives

Tn−1(x) =
n∑

k=1

Tn−1(xk)
(x − x1) · · · (x − xk−1)(x − xk+1) · · · (x − xn)

(xk − x1) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)
.

Equating the leading coefficients on both sides, we obtain

2n−2 =
n∑

k=1

Tn−1(xk)

(xk − x1) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)
.

We know that the maximal variation away from 0 of Tn−1(x) is 1; in particular, |Tn−1(xk)| ≤ 1,
k = 1, 2, . . . , n. Applying the triangle inequality, we obtain

2n−2 ≤
n∑

k=1

|Tn−1(xk)|
|xk − x1| · · · |xk − xk−1||xk − xk+1| · · · |xk − xn| ≤

n∑

k=1

1

tk
.

The inequality is proved.
(T. Andreescu, Z. Feng, 103 Trigonometry Problems, Birkhauser, 2004)
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248. We will prove that

n−1
2∑

k=1

sec
2kπ

n
=
{ n−1

2 , if n ≡ 1(mod 4),

− n+1
2 , if n ≡ 3(mod 4).

To prove this, we use the Chebyshev polynomial of the second kind. From Un−1(cos θ) =
sin nθ
sin θ

, it is not hard to guess that the n roots of Un−1(x) are cos kπ
n , 1 ≤ k ≤ n− 1. In fact

Un−1(x) = 2n−1
n−1∏

k=1

(
x − cos

kπ

n

)
.

We have

U ′
n−1(x)

Un−1(x)
=

n−1∑

k=1

1

x − cos kπ
n

.

Since cos kπ
n = cos (n−k)π

n , we can further write this as

1

2

n−1∑

k=1

(
1

x − cos kπ
n

+ 1

x + cos kπ
n

)

=
n−1∑

k=1

x

x2 − cos2 kπ
n

=
n−1∑

k=1

2x

2x2 − 1− cos 2kπ
n

.

Substituting x = cos θ , we obtain

U ′
n−1(cos θ)

Un−1(cos θ)
=

n−1∑

k=1

2 cos θ

cos 2θ − cos 2kπ
n

.

But we also have

(− sin θ)
U ′

n−1(cos θ)

Un−1(cos θ)
= (Un−1(cos θ))′

Un−1(cos θ)
=
(

sin nθ
sin θ

)′

sin nθ
sin θ

= n cot nθ − cot θ.

Therefore

n−1∑

k=1

1

cos 2θ − cos 2kπ
n

= 1

2 sin2 θ
− n cot nθ

sin 2θ
.

This is equivalent for n odd to

n−1
2∑

k=1

1

cos 2kπ
n − cos 2θ

= n cot nθ

2 sin 2θ
− 1

4 sin2 θ
.

Taking θ = π
4 , we obtain the desired identity.

(Mathematical Reflections, proposed by T. Andreescu)
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249. Let us try to prove the first identity. Viewing both sides of the identity as sequences in
n, we will show that they satisfy the same recurrence relation and the same initial condition.
For the left-hand side the recurrence relation is, of course,

Tn+1(x)√
1− x2

= 2x
Tn(x)√
1− x2

− Tn+1(x)√
1− x2

,

and the initial condition is T1(x)/
√

1− x2 = x/
√

1− x2. It is an exercise to check that the
right-hand side satisfies the same initial condition. As for the recurrence relation, we compute

dn+1

dxn+1
(1− x2)n+1− 1

2 = dn

dxn

d

dx
(1− x2)n+1− 1

2

= dn

dxn

(
n+ 1− 1

2

)
(1− x2)n− 1

2 (−2x)

Here we apply the Leibniz rule for the differentiation of a product to obtain

−(2n+ 1)x
dn

dxn
(1− x2)n− 1

2 − (2n+ 1)

(
n

1

)(
d

dx
x

)
dn−1

dxn−1
(1− x2)n− 1

2

= −(2n+ 1)x
dn

dxn
(1− x2)n− 1

2 − n(2n+ 1)
dn−1

dxn−1
(1− x2)n− 1

2 .

So if tn(x) denotes the right-hand side, then

tn+1(x) = xtn(x)− (−1)n−1n

1 · 3 · · · (2n− 1)

dn−1

dxn−1
(1− x2)n−1+ 1

2 .

Look at the second identity from the statement! If it were true, then the last term would
be equal to

√
1− x2Un−1(x). This suggests a simultaneous proof by induction. Call the

right-hand side of the second identity un(x).
We will prove by induction on n that tn(x) = Tn(x)/

√
1− x2 and un−1(x) =√

1− x2Un−1(2x). Let us assume that this holds true for all k < n. Using the induction
hypothesis, we have

tn(x) = x
Tn−1(x)√

1− x2
−
√

1− x2Un−2(x).

Using the first of the two identities proved in the first problem of this section, we obtain

tn(x) = Tn(x)√
1− x2

.

For the second half of the problem we show that
√

1− x2Un−1(x) and un−1(x) are equal by
verifying that their derivatives are equal, and that they are equal at x = 1. The latter is easy
to check: when x = 1 both are equal to 0. The derivative of the first is

−x√
1− x2

Un−1(x)+ 2
√

1− x2U ′
n−1(x).



442 Algebra

Using the inductive hypothesis, we obtain u′n−1(x) = −nTn(x)/
√

1− x2. Thus we are left to
prove that

−xUn−1(x)+ 2(1− x2)U ′
n−1(x) = −nTn(x),

which translates to

− cos x
sin nx

sin x
+ 2 sin2 x

n cos nx sin x − cos x sin nx

sin2 x
· 1

sin x
= n cos nx.

This is straightforward, and the induction is complete.

Remark. These are called the formulas of Rodrigues.

250. If M = A+ iB, then Mt = At − iBt = A− iB. So we should take

A = 1

2
(M +Mt) and B = 1

2i
(M −Mt),

which are of course both Hermitian.

Remark. This decomposition plays a special role, especially for linear operators on infinite-
dimensional spaces. If A and B commute, then M is called normal.

251. The answer is negative. The trace of AB − BA is zero, while the trace of In is n; the
matrices cannot be equal.

Remark. The equality cannot hold even for continuous linear transformations on an infinite-
dimensional vector space. If P and Q are the linear maps that describe the momentum and the
position in Heisenberg’s matrix model of quantum mechanics, and if � is reduced Planck’s
constant, then the equality PQ−QP = −�I is the canonical commutation relation from which
the Heisenberg’s uncertainty principle. We now see that the position and the momentum cannot
be modeled using finite-dimensional matrices (not even infinite-dimensional continuous linear
transformations). Note on the other hand that the matrices whose entries are residue classes
in Z4,

A =

⎛

⎜⎜
⎝

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎞

⎟⎟
⎠ and B =

⎛

⎜⎜
⎝

0 0 0 0
1 0 0 0
0 2 0 0
0 0 3 0

⎞

⎟⎟
⎠ ,

satisfy AB− BA = I4, as matrices in Z4.

252. To simplify our work, we note that in general, for any two square matrices A and B of
arbitrary dimension, the trace of AB− BA is zero. We can therefore write

AB− BA =
(

a b
c −a

)
.

But then (AB− BA)2 = kI2, where k = a2 + bc. This immediately shows that an odd power
of AB− BA is equal to a multiple of this matrix. The odd power cannot equal I2 since it has
trace zero. Therefore, n is even.
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The condition from the statement implies that k is a root of unity. But there are only two
real roots of unity and these are 1 and −1. The squares of both are equal to 1. It follows that
(AB− BA)4 = k2I2 = I2, and the problem is solved.

(Revista Matematică din Timişoara (Timişoara Mathematics Gazette), proposed by T.
Andreescu)

253. Assume that p �= q. The second relation yields A2B2 = B2A2 = rA4 and rB2A =
rAB2 = A3. Multiplying the relation pAB+ qBA = In on the right and then on the left by B,
we obtain

pBAB− qB2A = B and pAB2 = qBAB = B.

From these two identities and the fact that B2A = AB2 and p �= q we deduce BAB = AB2 =
B2A. Therefore, (p+q)AB2 = (p+q)B2A = B. This implies right away that (p+q)A2B2 = AB
and (p+ q)B2A2 = BA. We have seen that A2 and B2 commute, and so we find that A and B
commute as well, which contradicts the hypothesis. Therefore, p = q.

(V. Vornicu)

254. For any number t,
(

1 t
0 1

)(
1 −t
0 1

)
=
(

1 −t
0 1

)(
1 t
0 1

)
=
(

1 0
0 1

)
.

The equality from the statement can be rewritten
(

1 u
0 1

)(
a b
c d

)(
1 v
0 1

)
=
(

1 0
c 1

)
.

This translates to (
a+ uc v(a+ uc)+ b+ ud

c cv + d

)
=
(

1 0
c 1

)
.

Because c �= 0 we can choose u such that a + uc = 1. Then choose v = −(b + ud). The
resulting matrix has 1 in the upper left corner and 0 in the upper right corner. In the lower
right corner it has

cv + d = c(b+ ud)+ d = −bc − cud + d = 1− ad − ucd + d

= 1− (a+ uc)d + d = 1.

This also follows from the fact that the determinant of the matrix is 1. The numbers u and v
that we have constructed satisfy the required identity.

Remark. This factorization appears in Gaussian optics. The matrices
(

1 ±u
0 1

)
and

(
1 ±v
0 1

)

model a ray of light that travels on a straight line through a homogeneous medium, while the
matrix (

1 0
c 1

)
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models refraction between two regions of different refracting indices. The result we have just
proved shows that any SL(2, R) matrix with nonzero lower left corner is an optical matrix.

255. First solution: Computed by hand, the second, third, and fourth powers of J4(λ) are

⎛

⎜
⎜
⎝

λ2 2λ 1 0
0 λ2 2λ 1
0 0 λ2 2λ

0 0 0 λ2

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

λ3 3λ2 3λ 1
0 λ3 3λ2 3λ

0 0 λ3 3λ2

0 0 0 λ3

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

λ4 4λ3 6λ2 4λ

0 λ4 4λ3 6λ2

0 0 λ4 4λ3

0 0 0 λ4

⎞

⎟
⎟
⎠ .

This suggest that in general, the ijth entry of Jm(λ)n is (Jm(λ)n)ij =
( i

j−i

)
λn+i−j, with the

convention
(k

l

) = 0 if l < 0. The proof by induction is based on the recursive formula for
binomial coefficients. Indeed, from Jm(λ)n+1 = Jm(λ)nJm(λ), we obtain

(Jm(λ)n+1)ij = λ(Jm(λ)n)ij + (Jm(λ)n)i,j−1

= λ

(
n

j − i

)
λn+i−j +

(
n

j − 1− i

)
λn+i−j+1 =

(
n+ 1

j − i

)
λn+1+i−j,

which proves the claim.

Second solution: Define S to be the n× n matrix with ones just above the diagonal and zeros
elsewhere (usually called a shift matrix), and note that Sk has ones above the diagonal at
distance k from it, and in particular Sn = On. Hence

Jm(λ)n = (λIn + S)n =
n−1∑

k=0

(
n

k

)
λn−kSk.

The conclusion follows.

Remark. The matrix Jm(λ) is called a Jordan block. It is part of the Jordan canonical form
of a matrix. Specifically, given a square matrix A there exists an invertible matrix S such that
S−1AS is a block diagonal matrix whose blocks are matrices of the form Jmi(λi). The numbers
λi are the eigenvalues of A. As a consequence of this problem, we obtain a standard method
for raising a matrix to the nth power. The idea is to write the matrix in the Jordan canonical
form and then raise the blocks to the power.

256. There is one property of the trace that we need. For an n× n matrix X with real entries,
tr(XXt) is the sum of the squares of the entries of X. This number is nonnegative and is equal
to 0 if and only if X is the zero matrix. It is noteworthy to mention that ‖X‖ = √tr(CCt) is a
norm known as the Hilbert-Schmidt norm.

We would like to apply the above-mentioned property to the matrix A − Bt in order to
show that this matrix is zero. Writing

tr[(A− Bt)(A− Bt)t] = tr[(A− Bt)(At − B)] = tr(AAt + BtB− AB− BtAt)

= tr(AAt + BtB)− tr(AB+ BtAt),
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we see that we could almost use the equality from the statement, but the factors in two
terms come in the wrong order. Another property of the trace comes to the rescue, namely,
tr(XY) = tr(YX). We thus have

tr(AAt + BtB)− tr(AB+ BtAt) = tr(AAt)+ tr(BtB)− tr(AB)− tr(BtAt)

= tr(AAt)+ tr(BBt)− tr(AB)− tr(AtBt) = 0.

It follows that tr[(A− Bt)(A− Bt)t] = 0, which implies A− Bt = On, as desired.

Remark. The Hilbert-Schmidt norm plays an important role in the study of linear transfor-
mations of infinite-dimensional spaces. It was first considered by E. Schmidt in his study of
integral equations of the form

f (x)−
∫ b

a
K(x, y)f (y)dy = g(x).

Here the linear transformation (which is a kind of infinite-dimensional matrix) is

f (x)→
∫ b

a
K(x, y)f (y)dy,

and its Hilbert-Schmidt norm is

(∫ b

a

∫ b

a
|K(x, y)2dxdy

)1/2

.

For a (finite- or infinite-dimensional) diagonal matrix D, whose diagonal elements are d1, d2,

. . . ∈ C, the Hilbert-Schmidt norm is
√

trDDt = (|d1|2 + |d2|2 + · · · )1/2.

257. The elegant solution is based on the equality of matrices

⎛

⎝
(x2 + 1)2 (xy + 1)2 (xz + 1)2

(xy + 1)2 (y2 + 1)2 (yz + 1)2

(xz + 1)2 (yz + 1)2 (z2 + 1)2

⎞

⎠ =
⎛

⎝
1 x x2

1 y y2

1 z z2

⎞

⎠

⎛

⎝
1 1 1
2x 2y 2z
x2 y2 z2

⎞

⎠ .

Passing to determinants and factoring a 2, we obtain a product of two Vandermonde determi-
nants, hence the formula from the statement.

(C. Coşniţă, F.Turtoiu, Probleme de Algebră (Problems in Algebra), Editura Tehnică,
Bucharest, 1972)

258. Consider the matrix

M =
(

1 1
1 0

)
,
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which has the property that

Mn =
(

Fn+1 Fn

Fn Fn−1

)
, for n ≥ 1.

Taking determinants, we have

Fn+1Fn−1 − F2
n = det Mn = (det M)n = (−1)n,

as desired.
(J.D. Cassini)

259. Subtract the pth row from the (p+1)st, then the (p−1)st from the pth, and so on. Using
the identity

(n
k

)− (n−1
k

) = (n−1
k−1

)
, the determinant becomes

∣
∣
∣
∣∣∣∣
∣∣∣∣

1
(m

1

)
. . .

(m
p

)

0
(m

0

)
. . .
( m

p−1

)

...
...

. . .
...

0
(m−1+p

0

)
. . .
(m−1+p

p−1

)

∣
∣
∣
∣∣∣∣
∣∣∣∣

.

Expanding by the first row, we obtain a determinant of the same form but with m replaced by
m − 1 and p replaced by p − 1. For p = 0 the determinant is obviously equal to 1, and an
induction on p proves that this is also true in the general case.

(C. Năstăsescu, C. Niţă, M. Brandiburu, D. Joiţa, Exerciţii şi Probleme de Algebră (Exer-
cises and Problems in Algebra), Editura Didactică şi Pedagogică, Bucharest, 1983)

260. The determinant ∣
∣∣∣∣
∣∣∣
∣∣∣

(x1
0

) (x2
0

)
. . .
(xn

0

)

(x1
1

) (x2
1

)
. . .
(xn

1

)

...
...

. . .
...( x1

n−1

) ( x2
n−1

)
. . .
( x2

n−1

)

∣
∣∣∣∣
∣∣∣
∣∣∣

is an integer. On the other hand, for some positive integer m and k the binomial coefficient(m
k

)
is a linear combination of mk ,

( m
k−1

)
, . . . ,
(m

0

)
whose coefficients do not depend on m. In

this linear combination the coefficient of mk is 1/k!. Hence by performing row operations in
the above determinant we can transform it into

∣
∣∣∣∣
∣∣∣∣

1 1 . . . 1
x1 x2 . . . xn
...

...
. . .

...

xn−1
1 xn−1

2 . . . xn−1
n

∣
∣∣∣∣
∣∣∣∣

.

The Vandermonde determinant has the value
∏

i>j

(xi − xj).
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It follows that our determinant is equal to
∏

i>j

(xi − xj)/(1!2! · · · (n− 1)!), which therefore

must be an integer. Hence the conclusion.
(Mathematical Mayhem, 1995)

261. Let us consider a matrix with entries equal to ±1. Its determinant is clearly an integer.
Adding the first row to the second, third, ..., eleventh we transform the elements of these rows
in either 0 or ±2. The entries of these new rows are therefore divisible by 2, and factoring
these out we deduce that the determinant of the matrix is a multiple of 210. There are only
three integers that are multiples of 210 in the specified interval, namely 0,±210. Let us show
that each can be the determinant of such a matrix. To obtain 0, just make two rows equal. To
obtain 210 take the matrix that has 1 on and above the main diagonal, and −1 elsewhere. To
obtain −210 take the negative of this matrix.

(21st Annual Iowa Collegiate Mathematics Competition, 2015, proposed by R. Gelca)

262. First solution: The determinant is an nth-degree polynomial in each of the xi’s. Adding
all other columns to the first, we obtain that the determinant is equal to zero when x1 + x2 +
· · · + xn = 0, so x1 + x2 + · · · + xn is a factor of the polynomial. This factor corresponds to
j = 0 on the right-hand side of the identity from the statement. For some other j, multiply
the first column by ζ j, the second by ζ 2j, and so forth; then add all columns to the first. As

before, we see that the determinant is zero when
n∑

k=1

ζ jkxk = 0, so
n∑

k=1

ζ jkxk is a factor of

the determinant. No two of these polynomials are a constant multiple of the other, so the
determinant is a multiple of

n−1∏

j=1

(
n∑

k=1

ζ jkxk

)

.

The quotient of the two is a scalar C, independent of x1, x2, . . . , xn. For x1 = 1, x2 = x3 =
· · · = xn = 0, we obtain

xn
1C

n−1∏

j=1

(ζ jx1) = Cζ 1+2+...+(n−1)x1 = Cζ n(n−1)/2xn
1 = Ce(n−1)π ixn

1 = C(−1)n−1x1.

Hence C = (−1)n−1, which gives rise to the formula from the statement.
Second solution: We use the discrete Fourier transform:

Fn = 1√
n

⎛

⎜⎜⎜⎜
⎜
⎝

1 1 1 · · · 1
1 ε ε2 · · · εn−1

1 ε2 ε4 · · · ε2(n−1)

...
...

...
. . .

...

1 εn−1 ε2(n−1) · · · ε(n−1)2

⎞

⎟⎟⎟⎟
⎟
⎠

.
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If we let fj(t) =∑n−1
j=0 ajtj, then

⎛

⎜
⎜
⎜
⎝

a0 a1 · · · an−1

an−1 a0 · · · an−2
...

...
. . .

...

a1 a2 · · · a0

⎞

⎟
⎟
⎟
⎠
× 1√

n

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 1 · · · 1
1 ε · · · εn−1

1 ε2 · · · ε2(n−1)

...
...

. . .
...

1 εn−1 · · · ε(n−1)2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

= 1√
n

⎛

⎜
⎜
⎜
⎝

f (1) f (ε) · · · f (εn−1)

f (1) εf (ε) · · · εn−1f (εn−1)
...

...
. . .

...

f (1) εn−1f (ε) · · · ε(n−1)2
f (εn−1)

⎞

⎟
⎟
⎟
⎠

= 1√
n

⎛

⎜
⎜
⎜
⎝

1 1 · · · 1
1 ε · · · εn−1

...
...

. . .
...

1 εn−1 · · · ε(n−1)2

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜⎜
⎝

f (1) 0 · · · 0
0 f (ε) · · · 0
0 0 · · · 0
...

...
. . .

...

0 0 · · · f (εn−1)

⎞

⎟
⎟
⎟
⎟⎟
⎠

.

Taking determinants of both sides, and using the fact that the discrete Fourier transform is
invertible and so it has nonzero determinant, we obtain the desired formula.

Remark. This formula for the circulant determinant was first proved by L. Cremona. The
second proof of the formula is due to Cremona, and it shows that the discrete Fourier transform
diagonalizes the circulant determinant. This is the reason why circulant determinants are
important in telecommunications and signal processing.

R. Dedekind has generalized this formula as: Given a finite abelian group G = g1, g2,

. . . , gn, consider a sequence ag1, ag2, . . . , agn . Define the determinant det(agjg
−1
k

), whose jk
entry is agj g

−1
k

. Dedekind proved that

det(agj g
−1
k

) =
∏

χ∈Ĝ

⎛

⎝
∑

g∈G

χ(g)ag

⎞

⎠

where Ĝ is the group of homomorphisms of G in C\{0}. Some mathematicians consider this
formula the birth point of the theory of group representations.

263. Add the second, third, and fourth columns to the first. Now let us examine the first
column. Recall that by expanding the circulant determinant

∣
∣∣∣∣
∣

a b c
c a b
b c a

∣
∣∣∣∣
∣

in two ways: first with the Sarrus rule, and second with the formula given in the previous
problem, we have the following factorization (see also Section 2.1.1)

x3 + y3 + z3 − 3xyz = (x + y+ z)(x2 + y2 + z2 − xy − yz − xz).

http://dx.doi.org/10.1007/978-3-319-58988-6_2
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Using this formula for x = a, y = b, z = −1, the first entry on the first column is

a3 + b3 − 1+ 3ab = a3 + b3 + (−1)3 − 3ab(−1)

= (a+ b− 1)(a2 + b2 + 1− ab+ a+ b).

The second entry is

−1+ a2 + b2 + 2ab = (a+ b)2 − 1 = (a+ b− 1)(a+ b+ 1)

and the third entry is

2b− 1+ a2 − b2 = a2 − (b− 1)2 = (a+ b− 1)(a− b+ 1).

And the fourth entry is a+ b− 1. It follows that the determinant is divisible by a+ b− 1 =
3× 11× 61, and we are done.

(Konhauser Problem Fest, 2014, proposed by R. Gelca)

264. By adding the second row to the first, the third row to the second,…, the nth row to the
(n− 1)st, the determinant does not change. Hence

det(A) =

∣∣∣∣
∣∣∣
∣∣∣∣
∣∣

2 −1 +1 . . . ±1 ∓1
−1 2 −1 . . . ∓1 ±1
+1 −1 2 . . . ±1 ∓1

...
...

...
. . .

...
...

∓1 ±1 ∓1 . . . 2 −1
±1 ∓1 ±1 . . . −1 2

∣∣∣∣
∣∣∣
∣∣∣∣
∣∣

=

∣∣∣∣
∣∣∣
∣∣∣∣
∣∣

1 1 0 0 . . . 0 0
0 1 1 0 . . . 0 0
0 0 1 1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 1 1
±1 ∓1 ±1 ∓1 . . . −1 2

∣∣∣∣
∣∣∣
∣∣∣∣
∣∣

.

Now subtract the first column from the second, then subtract the resulting column from the
third, and so on. This way we obtain

det(A) =

∣
∣∣∣
∣∣∣∣
∣∣∣

1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 1 0
±1 ∓2 ±3 . . . −n+ 1 n+ 1

∣
∣∣∣
∣∣∣∣
∣∣∣

= n+ 1.

(9th International Mathematics Competition for University Students, 2002)

265. View the determinant as a polynomial in the independent variables x1, x2, . . . , xn.
Because whenever xi = xj the determinant vanishes, it follows that the determinant is divisible

by xi − xj, and therefore by the product
∏

1≤i<j≤n

(xj − xi). Because the ki’s are positive, the

determinant is also divisible by x1x2 · · · xn. To solve the problem, it suffices to show that for
any positive integers x1, x2, . . . , xn, the product

x1x2 · · · xn

∏

1≤i<j≤n

(xj − xi)
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is divisible by n!. This can be proved by induction on n. A parity check proves the case n = 2.
Assume that the property is true for any n− 1 integers and let us prove it for n. Either one of
the numbers x1, x2, . . . , xn is divisible by n, or, by the pigeonhole principle, the difference of
two of them is divisible by n. In the first case we may assume that xn is divisible by n, in the
latter that xn − x1 is divisible by n. In either case,

x1x2 · · · xn−1

∏

1≤i<j≤n−1

(xj − xi)

is divisible by (n − 1), by the induction hypothesis. It follows that the whole product is
divisible by n× (n− 1)! = n! as desired. We are done.

(Proposed for the Romanian Mathematical Olympiad by N. Chichirim)

266. Expand the determinant as

det(xA+ yB) = a0(x)y
3 + a1(x)y

2 + a2(x)y + a3(x),

where ai(x) are polynomials of degree at most i, i = 0, 1, 2, 3. For y = 0 this gives det(xA) =
x3 det A = 0, and hence a3(x) = 0 for all x. Similarly, setting y = x we obtain det(xA+xB) =
x3 det(A+ B) = 0, and thus

a0(x)x
3 + a1(x)x

2 + a2(x)x = 0.

Also, for y = −x we obtain det(xA− xB) = x3 det(A− B) = 0; thus

−a0(x)x
3 + a1(x)x

2 − ax(x)x = 0.

Adding these two relations gives a1(x) = 0 for all x. For x = 0 we find that det(yB) =
y3 det B = 0, and hence a0(0)y3 + ax(0)y = 0 for all y. Therefore, a0(0) = 0. But a0(x) is
constant, so a0(x) = 0. This implies a2(x)x = 0 for all x, and so a2(x) = 0 for all x. We
conclude that det(xA+ yB) is identically equal to zero, and the problem is solved.

(Romanian Mathematics Competition, 1979, M. Martin)

267. We reduce the problem to a computation with 4×4 determinants. Expanding according
to the rule of Laplace, we see that

x2 =

∣∣∣∣
∣∣∣∣

a 0 b 0
c 0 d 0
0 b 0 a
0 d 0 c

∣∣∣∣
∣∣∣∣

and x′2 =

∣∣∣∣
∣∣∣∣

b′ a′ 0 0
d ′ c′ 0 0
0 0 b′ a′
0 0 d ′ c′

∣∣∣∣
∣∣∣∣

.

Multiplying these determinants, we obtain (xx′)2.
(C. Coşniţă, F. Turtoiu, Probleme de Algebră (Problems in Algebra), Editura Tehnică,

Bucharest, 1972)

268. First, suppose that A is invertible. Then we can write
(

A B
C D

)
=
(

A 0
C In

)(
In A−1B
0 D− CA−1B

)
.
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The matrices on the right-hand side are of block-triangular type, so their determinants are the
products of the determinants of the blocks on the diagonal, as can be seen on expanding the
determinants using the rule of Laplace. Therefore,

det

(
A B
C D

)
= (det A)(det(D− CA−1B)) = det(AD− ACA−1B).

The equality from the statement now follows form that fact that A and C commute.
If A is not invertible, then since the polynomial det(A + εIn) has finitely many zeros,

A+ εIn is invertible for any sufficiently small ε > 0. This matrix still commutes with C, so
we can apply the above argument to A replaced by A+ εIn. The identity from the statement
follows by letting ε → 0.

269. Applying the previous problem, we can write

det(In − XY) = det

(
In X
Y In

)
= (−1)n det

(
Y In

In X

)

= (−1)2n det

(
In Y
X In

)
= det(In − YX).

Note that we performed some row and column permutations in the process, while keeping
track of the sign of the determinant.

270. For k even, that is, k = 2m, the inequality holds even without the assumption from
the statement. Indeed, there exists ε arbitrarily small such that the matrix B0 = B + εIn is
invertible. Then

det(A2m + B2m
0 ) = det B2m

0 det((AmB−m
0 )2 + In),

and the latter is nonnegative, as seen in the introduction. Taking the limit with ε approaching
zero, we obtain det(A2m + B2m) ≥ 0.

For k odd, k = 2m + 1, let x0 = −1, x1, x2, . . . , x2m be the zeros of the polynomial
x2m+1 + 1, with xj+m = xj, j = 1, 2, . . . , m. Because A and B commute, we have

A2m+1 + B2m+1 = (A+ B)

m∏

j=1

(A− xjB)(A− xjB).

Since A and B have real entries, by taking determinants we obtain

det(A− xjB)(A− xjB) = det(A− xjB) det(A− xjB)

= det(A− xjB) det (A− xjB)

= det(A− xjB)det(A− xjB) ≥ 0,

for j = 1, 2, . . . , m. This shows that the sign of det(A2m+1 + B2m+1) is the same as the sign
of det(A+ B) and we are done.

(Romanian Mathematical Olympiad, 1986)
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271. The case λ ≥ 0 was discussed before. If λ < 0, let ω = √−λ. We have

det(In + λA2) = det(In − ω2A2) = det(In − ωA)(In + ωA)

= det(In − ωA) det(In + ωA).

Because −A = At , it follows that

In − ωA = In + ωAt = t(In + ωA).

Therefore,

det(In + λA2) = det(In + ωA) det t(In + ωA) = (det(In + ωA))2 ≥ 0,

and the inequality is proved.
(Romanian Mathematics Competition, proposed by S. Rădulescu)

272. We can assume that the leading coefficient of P(t) is 1. Let α be a real number such that
P(t)+ α is strictly positive and let Y be a matrix with negative determinant. Assume that f is
onto. Then there exists a matrix X such that P(X) = Y − αIn.

Because the polynomial Q(t) = P(t)+ α has no real zeros, it factors as

Q(t) =
m∏

k=1

[(t + ak)
2 + b2

k]

with ak, bk ∈ R. It follows that

det Q(X) =
m∏

k=1

det[(X + ak)
2 + b2

kIn] ≥ 0,

and the latter is positive, since for all k,

det[(X + ak)
2 + b2

kIn] = b2n
k det

[(
1

bk
X + ak

bk

)2

+ In

]

≥ 0.

In particular, Q(X) �= Y and thus the function f is not onto.
(Gazeta Matematică (Mathematics Gazette, Bucharest), proposed by D. Andrica)

273. If A2 = On, then

det(A+ In) = det

(
1

4
A2 + A+ In

)
= det

(
1

2
A+ In

)2

=
(

det

(
1

2
A+ In

))2

≥ 0.
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Similarly,

det(A− In) = det(−(In − A)) = (−1)n det(In − A) = (−1)n det

(
In − A+ 1

4
A2

)

= (−1)n det

(
In − 1

2
A

)2

= (−1)n

(
det

(
In − 1

2
A

))2

≤ 0,

since n is odd. Hence det(A+ In) ≥ 0 ≥ det(A− In).
If A2 = In, then

0 ≤ (det(A+ In))
2 = det(A+ In)

2 = det(A2 + 2A+ In)

= det(2A+ 2In) = 2n det(A+ In).

Also,

det(A− In) = (−1)n det(In − A) = (−1)n det

(
1

2
(2In − 2A)

)

=
(
−1

2

)n

det(In − 2A+ In) =
(
−1

2

)n

det(A2 − 2A+ In)

=
(
−1

2

)n

det(A− In)
2 =
(
−1

2

)n

(det(A− In))
2 ≤ 0,

and the inequality is proved in this case, too.
(Romanian Mathematics Competition, 1987)

274. All the information about the inverse of A is contained in its determinant. If we compute
the determinant of A by expanding along the kth column, we obtain a polynomial in xk , and
the coefficient of xm−1

k is exactly the minor used for computing the entry bkm of the adjoint

matrix multiplied by (−1)k+m. Viewing the product
∏

i>j

(xi − xj) as a polynomial in xk , we

have
∏

i>j

(xi − xj) = �(x1, . . . , xk−1, xk+1, . . . , xn)× (xk − x1) · · · (xk − xk−1)

× (xk+1 − xk) · · · (xn − xk)

= (−1)n−k�(x1, . . . , xk−1, xk+1, . . . , xn)×
∏

j �=k

(xk − xj).

In the product
∏

j �=k

(xk − xj) the coefficient of xm−1
k is

(−1)n−mSn−m(x1, . . . , xk−1, xk+1, . . . , xn).

Combining all these facts, we obtain

bkm = (−1)k+m�(x1, x2, . . . , xn)
−1(−1)k+m(−1)n−k(−1)n−m

×�(x1, . . . , xk−1, xk+1, . . . , xn)Sm(x1, . . . , xk−1, xk+1, . . . , xn)
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= (−1)k+m�(x1, x2, . . . , xn)
−1�(x1, . . . , xk−1, xk+1, . . . , xn)

× Sm(x1, . . . , xk−1, xk+1, . . . , xn),

as desired.

275. The inverse of a 2 × 2 matrix C = (cij)i,j with integer entries is a matrix with integer
entries if and only if det C = ±1 (one direction of this double implication follows from the
formula for the inverse, and the other from det C−1 = 1/ det C).

With this in mind, let us consider the polynomial P(x) ∈ Z[x], P(x) = det(A + xB).
The hypothesis of the problem implies that P(0), P(1), P(2), P(3), P(4) ∈ {−1, 1}. By the
pigeonhole principle, three of these numbers are equal, and because P(x) has degree at most
2, it must be constant. Therefore, det(A + xB) = ±1, for all x, and in particular for x = 5
the matrix A + 5B is invertible and has determinant equal to ±1. Consequently, the inverse
of this matrix has integer entries.

(55th W.L. Putnam Mathematical Competition, 1994)

276. We know that AA∗ = A∗A = (det A)I3, so if A is invertible then so is A∗, and
A = det A(A∗)−1. Also, det A det A∗ = (det A)3; hence det A∗ = (det A)2. Therefore,
A = ±√det A∗(A∗)−1.

Because

A∗ = (1− m)

⎛

⎝
−m − 1 1 1

1 −m − 1 1
1 1 −m − 1

⎞

⎠ ,

we have

det A∗ = (1− m)3[−(m + 1)3 + 2+ 3(m+ 1)] = (1− m)4(m+ 2)2.

Using the formula with minors, we compute the inverse of the matrix

⎛

⎝
−m − 1 1 1

1 −m − 1 1
1 1 −m − 1

⎞

⎠

to be

1

(1− m)(m + 2)2

⎛

⎝
−m2 − m− 2 m + 2 m+ 2

m+ 2 −m2 − m− 2 m+ 2
m+ 2 m + 2 −m2 − m− 2

⎞

⎠ .

Then (A∗)−1 is equal to this matrix divided by (1 − m)3. Consequently, the matrix we are
looking for is

A = ±√det A∗(A∗)−1

= ± 1

(1− m)2(m+ 2)

⎛

⎝
−m2 − m− 2 m+ 2 m+ 2

m+ 2 −m2 − m− 2 m+ 2
m+ 2 m+ 2 −m2 − m− 2

⎞

⎠ .

(Romanian Mathematics Competition)
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277. The series expansion

1

1− x
= 1+ x + x2 + x3 + · · ·+

suggests that
(In − A)−1 = In + A+ A2 + A3 + · · ·

But does the series on the right converge?
Let

α = max
i

⎛

⎝
n∑

j=1

|aij|
⎞

⎠ < 1.

Then
∑

k

∣
∣
∣
∣
∣∣

∑

j

aijajk

∣
∣
∣
∣
∣∣
≤
∑

j,k

|aijajk| =
∑

j

(

|aij|
∑

k

|ajk|
)

≤ α
∑

j

|aij| ≤ α2.

Inductively we obtain that the entries aij(n) of An satisfy
∑

i

|aij(n)| < αn for all i. Because

the geometric series 1+ α + α2 + α3 + · · · converges, so does In + A+ A2 + A3 + · · · And
the sum of this series is the inverse of In − A.

(P.N. de Souza, J.N. Silva, Berkeley Problems in Mathematics, Springer, 2004)

278. The trick is to compute A2. The elements on the diagonal are

n∑

k=1

sin2 kmα, m = 1, 2, . . . , n,

which are all nonzero. Off the diagonal, the (m, j)th entry is equal to

n∑

k=1

sin kmα sin kjα = 1

2

[
n∑

k=1

cos k(m− j)α −
n∑

k=1

cos k(m+ j)α

]

.

We are led to the computation of two sums of the form
n∑

k=1

cos kx. This is done as follows:

n∑

k=1

cos kx = 1

2 sin
x

2

n∑

k=1

sin
x

2
cos kx = 1

2 sin
x

2

n∑

k=1

[
sin

(
k + 1

2

)
x − sin

(
k − 1

2
x

)]
.

The sum telescopes, and we obtain

n∑

k=1

cos kx =
sin

(
n+ 1

2

)
x

2 sin
x

2

− 1

2
.
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Note that for x = (m± j)α = (m±j)π
n+1 ,

sin

(
n+ 1

2

)
x = sin

(
(m± j)π − x

2

)
= (−1)m+j+1 sin

x

2
.

Hence
n∑

k=1

cos(m± j)kα = (−1)m+j+1

2
− 1

2
.

It follows that for m �= j, the (m, j)entry of the matrix A2 is zero. Hence A2 is a diagonal
matrix with nonzero diagonal entries. This shows that A2 is invertible, and so is A.

Remark. This is the discrete sine transform.

279. If A+ iB is invertible, then so is A† − iB†. Let us multiply these two matrices:

(A† − iB†)(A+ iB) = A†A+ B†B+ i(A†B− B†A).

We have

〈(A†A+ B†B+ i(A†B− B†A))v, v〉 = 〈A†Av, v〉 + 〈B†Bv, v〉 + 〈i(A†B− B†A)v, v〉
= ‖Av‖2 + ‖Bv‖2 + 〈i(A†B− B†A)v, v〉,

which is strictly greater than zero for any vector v �= 0. This shows that the product (A† −
iB†)(A + iB) is a positive definite matrix (i.e., 〈(A† − iB†)(A + iB)v, v〉 > 0 for all v �= 0).
The linear transformation that it defines is therefore injective, hence an isomorphism. This
implies that (†−iB†)(A+ iB) is invertible, and so (A+ iB) itself is invertible.

280. First solution: The fact that A − In is invertible follows from the Spectral mapping
theorem. To find its inverse, we recall the identity

1+ x + x2 + · · · = xk = xk+1 − 1

x − 1
,

which by differentiation gives

1+ 2x + · · · + kxk−1 = kxx+1 − (k + 1)xk + 1

(x − 1)2
.

Substituting A for x, we obtain

(A− In)
2(In + 2A+ · · · + kAk−1) = kAk+1 − (k + 1)Ak + In = In.

Hence
(A− In)

−1 = (A− In)(In + 2A+ · · · + kAk−1).
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Second solution: Simply write

In = kAk+1 − (k + 1)Ak + In = (A− In)(kAk − Ak−1 − · · · − A− In),

which gives the inverse written in a different form.
(Mathematical Reflections, proposed by T. Andreescu)

281. If α �= −1, then
(

A−1 − 1

α + 1
A−1BA−1

)
(A+ B) = In + A−1B− 1

α + 1
A−1BA−1B− 1

α + 1
A−1B.

But (A−1B)2 = A−1X(YA−1X)Y = αA−1XY = αA−1B. Hence in the above equality, the
right-hand side is equal to the identity matrix. This proves the claim.

If α = −1, then (A−1B)2 + A−1B = 0, that is, (In + A−1B)A−1B = 0. This implies that
In+A−1B is a zero divisor. Multiplying by A on the right we find that A+B is a zero divisor
itself. Hence in this case A+ B is not invertible.

(C. Năstăsescu, C. Niţă, M. Brandiburu, D. Joiţa, Exerciţii şi Probleme de Algebră (Exer-
cises and Problems in Algebra), Editura Didactică şi Pedagogică, Bucharest, 1983)

282. The computation
(A− bIn)(B− aIn) = abIn

shows that A− bIn is invertible, and its inverse is 1
ab(B− aIn). Then

(B− aIn)(A− bIn) = abIn,

which translates into BA− aA− bB = On. Consequently, BA = aA+ bB = AB, proving that
the matrices commute.

283. We have
(A+ iB2)(B+ iA2) = AB− B2A2 + i(A3 + B3) = In.

This implies that A+ iB2 is invertible, and its inverse is B+ iA2. Then

In = (B+ iA2)(A+ iB2) = BA− A2B2 + i(A3 + B3) = BA− A2B2,

as desired.
(Romanian Mathematical Olympiad, 1982, proposed by I.V. Maftei)

284. Of course, one can prove that the coefficient matrix is nonsingular. But there is a slick
solution. Add the equations and group the terms as

3(x1 + x2 + x3)+ 3(x4 + x5 + x6)+ · · · + 3(x97 + x98 + x99)+ 3x100 = 0.

The terms in the parentheses are all zero; hence x100 = 0. Taking cyclic permutations yields
x1 = x2 = · · · = x100 = 0.
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285. If y is not an eigenvalue of the matrix

⎛

⎜
⎜
⎜
⎜
⎝

0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

⎞

⎟
⎟
⎟
⎟
⎠

,

then the system has the unique solution x1 = x2 = x3 = x4 = x5 = 0. Otherwise, the
eigenvectors give rise to nontrivial solutions. Thus, we have to compute the determinant

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

−y 1 0 0 1
1 −y 1 0 0
0 1 −y 1 0
0 0 1 −y 1
1 0 0 1 −y

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

Adding all rows to the first and factoring 2− y, we obtain

(2− y)

∣∣∣∣
∣∣∣∣
∣∣

1 1 1 1 1
1 −y 1 0 0
0 1 −y 1 0
0 0 1 −y 1
1 0 0 1 −y

∣∣∣∣
∣∣∣∣
∣∣

.

The determinant from this expression is computed using row-column operations as follows:

∣∣∣∣
∣∣∣
∣∣∣

1 1 1 1 1
1 −y 1 0 0
0 1 −y 1 0
0 0 1 −y 1
1 0 0 1 −y

∣∣∣∣
∣∣∣
∣∣∣

=

∣∣∣∣
∣∣∣
∣∣∣

1 0 0 0 0
1 −y − 1 0 −1 −1
0 1 −y 1 0
0 0 1 −y 1
1 −1 −1 0 −y − 1

∣∣∣∣
∣∣∣
∣∣∣

=

∣∣
∣∣∣∣
∣∣

−y− 1 0 −1 −1
1 −y 1 0
0 1 −y 1
−1 −1 0 −y − 1

∣∣
∣∣∣∣
∣∣

=

∣∣
∣∣∣∣
∣∣

−y− 1 0 −1 −1
−y −y 0 −1
0 1 −y −1
−1 0 −y −y

∣∣
∣∣∣∣
∣∣

=

∣∣∣
∣∣∣∣
∣

−y− 1 0 0 −1
0 −y 1 −1
−1 1 −y− 1 −1
−1 0 0 −y

∣∣∣
∣∣∣∣
∣

,

which, after expanding with the rule of Laplace, becomes

−
∣∣∣∣
−y −1
1 −y − 1

∣∣∣∣ ·
∣∣∣∣
−y − 1 −1
−1 −y

∣∣∣∣ = −(y2 + y− 1)2.
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Hence the original determinant is equal to (y−2)(y2+y−1)2. If y = 2, the space of solutions
is therefore one-dimensional, and it is easy to guess the solution x1 = x2 = x3 = x4 = x5 = λ,
λ ∈ R.

If y = −1+√5
2 or if y = −1−√5

2 , the space of solutions is two-dimensional. In both cases,
the minor ∣

∣
∣
∣
∣
∣

−y 1 0
1 −y 1
0 1 −y

∣
∣
∣
∣
∣
∣

is nonzero, hence x3, x4, and x5 can be computed in terms of x1 and x2. In this case the general
solution is

(λ, μ,−λ+ yμ,−y(λ+ μ), yλ− μ), λ, μ ∈ R.

Remark. The determinant of the system can also be computed using the formula for the
determinant of a circulant matrix.

(5th International Mathematical Olympiad, 1963, proposed by the Soviet Union)

286. Taking the logarithms of the four relations from the statement, we obtain the following
system of linear equations in the unknowns ln a, ln b, ln c, ln d:

−x ln a+ ln b+ ln c+ ln d = 0,

ln a− y ln b+ ln c+ ln d = 0,

ln a+ ln b− z ln c+ ln d = 0,

ln a+ ln b+ ln c− t ln d = 0.

We are given that this system has a nontrivial solution. Hence the determinant of the coefficient
matrix is zero, which is what had to be proved.

(Romanian Mathematics Competition, 2004)

287. First solution: Suppose there is a nontrivial solution (x1, x2, x3). Without loss of gener-
ality, we may assume x1 ≤ x2 ≤ x3. Let x2 = x1 + m, x3 = x1 + m + n, m, n ≥ 0. The first
and the last equations of the system become

(a11 + a12 + a13)x1 + (a12 + a13)m + a13n = 0,

(a31 + a32 + a33)x1 + (a32 + a33)m + a33n = 0.

The hypotheses a31 + a32 + a33 > 0 and a31 < 0 imply a32 + a33 ≥ 0, and therefore
(a32 + a33)m ≥ 0 and a33n ≥ 0. We deduce that x1 ≤ 0, which combined with a12 < 0,
a13 < 0, a11 + a12 + a13 > 0 gives

(a11 + a12 + a13)x1 ≤ 0, (a12 + a13)m ≤ 0, a13n ≤ 0.

The sum of these three nonpositive terms can be zero only when they are all zero. Hence
x1 = 0, m = 0, n = 0, which contradicts our assumption. We conclude that the system has
the unique solution x1 = x2 = x3 = 0.
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Second solution: Suppose there is a nontrival solution (x1, x2, x3). Without loss of generality,
we may assume that |x3| ≥ |x2| ≥ |x1|. We have a31, a32 < 0 and 0 < −a31 − a32 < a33, so

|a33x3| = | − a31x1 − a32x2| ≤ (−a31 − a32)|x2| ≤ (−a31 − a32)|x3| < a33|x3|.
This is a contradiction, which proves that the system has no nontrivial solution.

(7th International Mathematical Olympiad, 1965, proposed by Poland)

288. First solution: The zeros of P(x) are ε, ε2, . . . , εn, where ε is a primitive (n+ 1)st root
of unity. As such, the zeros of P(x) are distinct. Let

P(xn+1) = Q(x) · P(x)+ R(x),

where R(x) = an−1xn−1 + · · · + a1x + a0 is the remainder. Replacing x successively by
ε, ε2, . . . , εn, we obtain

anε
n−1 + · · · + a1ε + a0 = n+ 1,

an(ε
2)n−1 + · · · + a1ε

2 + a0 = n+ 1,

. . .

an(ε
n)n−1 + · · · + a1ε

n + a0 = n+ 1,

or

[a0 − (n+ 1)] + a1ε + · · · + an−1ε
n−1 = 0,

[a0 − (n+ 1)] + a1(ε
2)+ · · · + an−1(ε

2)n−1 = 0,

. . .

[a0 − (n+ 1)] + a1(ε
n)+ · · · + an−1(ε

n)n−1 = 0.

This can be interpreted as a homogeneous system in the unknowns a0 − (n + 1), a1, a2,

. . . , an−1. The determinant of the coefficient matrix is Vandermonde, thus nonzero, and so
the system has the unique solution a0 − (n + 1) = a1 = · · · = an−1 = 0. We obtain
R(x) = n+ 1.

Second solution: Note that
xn+1 = (x − 1)P(x)+ 1;

hence
xk(n+1) = (x − 1)(x(k−1)(n+1) + x(k−2)(n+1) + · · · + 1)P(x)+ 1.

Thus the remainder of any polynomial F(xn+1) modulo P(x) is F(1). In our situation this is
n+ 1, as seen above.

(Gazeta Matematică (Mathematics Gazette, Bucharest), proposed by M. Diaconescu)

289. The function φ(t) = t−3
t+1 has the property that φ ◦ φ ◦ φ equals the identity function.

And φ(φ(t)) = 3+t
1−t . Replace x in the original equation by φ(x) and φ(φ(x)) to obtain two

more equations. The three equations form a linear system

f

(
x − 3

x + 1

)
+ f

(
3+ x

1− x

)
= x,
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f

(
3+ x

1− x

)
+ f (x) = x − 3

x + 1
,

f (x)+ f

(
x − 3

x + 1

)
= 3+ x

1− x
,

in the unknowns

f (x), f

(
x − 3

x + 1

)
, f

(
3+ x

1− x

)
.

Solving, we find that

f (t) = 4t

1− t2
− t

2
,

which is the unique solution to the functional equation.
(Kvant (Quantum), also appeared at the S. Korean Mathematical Olympiad, 1999)

290. It is obvious that gcd(x, x + y) = gcd(x, x + z) = 1. So in the equality from the
statement, x divides y+ z. Similarly, y divides z+ x and z divides x+ y. It follows that there
exist integers a, b, c with abc = t and

x + y = cz,

y+ z = ax,

z + x = by.

View this as a homogeneous system in the variables x, y, z. Because we assume that the
system admits nonzero solutions, the determinant of the coefficient matrix is zero. Writing
down this fact, we obtain a new Diophantine equation in the unknowns a, b, c:

abc− a− b− c− 2 = 0.

This can be solved by examining the following cases:

1. a = b = c. Then a = 2 and it follows that x = y = z, because these numbers are
pairwise coprime. This means that x = y = z = 1 and t = 8. We have obtained the
solution (1, 1, 1, 8).

2. a = b, a �= c. The equation becomes a2c − 2 = 2a + c, which is equivalent to
c(a2 − 1) = 2(a + 1), that is, c(a − 1) = 2. We either recover case 1, or find the new
solution c = 1, a = b = 3. This yields the solution to the original equation (1, 1, 2, 9).

3. a > b > c. In this case abc−2 = a+b+ c < 3a. Therefore, a(bc−3) < 2. It follows
that bc− 3 < 2, that is, bc < 5. We have the following situations:

(i) b = 2, c = 1, so a = 5 and we obtain the solution (1, 2, 3, 10).
(ii) b = 3, c = 1, so a = 3 and we return to case 2.

(iii) b = 4, c = 1, so 3a = 7, which is impossible.
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In conclusion, we have obtained the solutions (1, 1, 1, 8), (1, 1, 2, 9), (1, 2, 3, 10), and
those obtained by permutations of x, y, z.

(Romanian Mathematical Olympiad, 1995)

291. Note that m comparisons give rise to a homogeneous linear system of m equations with
n unknowns, namely the masses, whose coefficients are −1, 0, and 1. Determining whether
all coins have equal mass is the same as being able to decide whether the solution belongs to
the one-dimensional subspace of R

n spanned by the vector (1, 1, . . . , 1). Since the space of
solutions has dimension at least n−m, in order to force the solution to lie in a one-dimensional
space one needs at least n − 1 equations. This means that we need to perform at least n − 1
comparisons.

(Mathematical Olympiad Summer Program, 2006)

292. We are given that a0 = an+1 = 0 and ak−1 − 2ak + ak+1 = bk , with bk ∈ [−1, 1],
k = 1, 2, . . . , n. Consider the linear system of equations

a0 − 2a1 + a2 = b1,

a1 − 2a2 + a3 = b2,

. . .

an−1 − 2an + an+1 = bn

in the unknowns a1, a2, . . . , an. To determine ak for some k, we multiply the first equation by
1, the second by 2, the third by 3, and so on up to the (k − 1)st, which we multiply by k − 1,
then add them up to obtain

−kak−1 + (k − 1)ak =
∑

j<k

jbj.

Working backward, we multiply the last equation by by 1, the next-to-last by 2, and so on up
to the (k + 1)st, which we multiply by n− k, then add these equations to obtain

−(n− k + 1)ak+1 + (n− k)ak =
∑

j>k

(n− j + 1)bj.

We now have a system of three equations,

−kak−1 + (k − 1)ak =
∑

j<k

jbj,

ak−1 − 2ak + ak+1 = bk,

−(n− k + 1)ak+1 + (n− k)ak =
∑

j>k

(n− j + 1)bj

in the unknowns ak−1, ak, ak+1. Eliminating ak−1 and ak+1, we obtain
(

k − 1

k
− 2+ n− k

n− k + 1

)
ak = bk + 1

k

∑

j<k

jbj + 1

n− k + 1

∑

j>k

(n− j + 1)bj.
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Taking absolute values and using the triangle inequality and the fact that |bj| ≤ 1, for all j,
we obtain

∣
∣
∣
∣
−n− 1

k(n− k + 1)

∣
∣
∣
∣ |ak| ≤ 1+ 1

k

∑

j<k

j + 1

n− k + 1

∑

j>k

(n− j + 1)

= 1+ k − 1

2
+ n− k

2
= n+ 1

2
.

Therefore, |ak| ≤ k(n− k + 1)/2, and the problem is solved.

293. The fact that the matrix is invertible is equivalent to the fact that the system of linear
equations

x1

1
+ x2

2
+ · · · + xn

n
= 0,

x1

2
+ x2

3
+ · · · + xn

n+ 1
= 0,

. . .

x1

n
+ x2

n+ 1
+ · · · + xn

2n− 1
= 0

has only the trivial solution. For a solution (x1, x2, . . . , xn) consider the polynomial

P(x) = x1(x + 1)(x + 2) · · · (x + n− 1)+ x2x(x + 2) · · · (x + n− 1)+ · · ·
+ xnx(x + 1) · · · (x + n− 2).

Bringing to the common denominator each equation, we can rewrite the system in short form
as P(1) = P(2) = · · · = P(n) = 0. The polynomial P(x) has degree n − 1; the only way it
can have n zeros is if it is identically zero. Taking successively x = 0,−1,−2, . . . ,−n, we
deduce that xi = 0 for all i. Hence the system has only the trivial solution, and the matrix is
invertible.

For the second part, note that the sum of the entries of a matrix A is equal to the sum of
the coordinates of the vector A1, where 1 is the vector (1, 1, . . . , 1). Hence the sum of the
entries of the inverse matrix is equal to x1+ x2+· · ·+ xn, where (x1, x2, . . . , xn) is the unique
solution to the system of linear equations

x1

1
+ x2

2
+ · · · + xn

n
= 0,

x1

2
+ x2

3
+ · · · + xn

n+ 1
= 0,

. . .

x1

n
+ x2

n+ 1
+ · · · + xn

2n− 1
= 0

This time, for a solution to this system, we consider the polynomial

Q(x) = x1(x + 1)(x + 2) · · · (x + n− 1)+ · · · + xnx(x + 1) · · · (x + n− 2)+ · · ·
+ x(x + 1) · · · (x + n− 1).
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Again we observe that Q(1) = Q(2) = · · · = Q(n) = 0. Because Q(x) has degree n and
dominating coefficient −1, it follows that Q(x) = −(x − 1)(x − 2) · · · (x − n). So

x1
(x + 1)(x + 2) · · · (x + n− 1)

xn−1
+ · · · + xn

x(x + 1) · · · (x + n− 2)

xn−1

= x(x + 1) · · · (x + n− 1)− (x − 1)(x − 2) · · · (x − n)

xn−1
.

The reason for writing this complicated relation is that as x →∞, the left-hand side becomes
x1+ x2+· · ·+ xn, while the right-hand side becomes the coefficient of xn−1 in the numerator.
And this coefficient is

1+ 2+ · · · + (n− 1)+ 1+ 2+ · · · + n = n(n− 1)

2
+ n(n+ 1)

2
= n2.

The problem is solved.

Remark. It is interesting to note that the same method allows the computation of the inverse
as (bk,m)km, giving

bk,m = (−1)k+m(n+ k − 1)!(n+ m− 1)!
(k + m− 1)[(k − 1)!(m− 1)!]2(n− m)!(n− k)! .

294. First, note that the polynomials
(x

1

)
,
(x+1

3

)
,
(x+2

5

)
, . . . are odd and have degrees 1, 3, 5, . . .,

and so they form a basis of the vector space of the odd polynomial functions with real coeffi-
cients.

The scalars c1, c2, . . . , cm are computed successively from

P(1) = c1,

P(2) = c1

(
2

1

)
+ c2,

P(3) = c1

(
3

1

)
+ c2

(
4

3

)
+ c3.

The conclusion follows.
(G. Pólya, G. Szegö, Aufgaben und Lehrsätze aus der Analysis, Springer-Verlag, 1964)

295. Inspired by the previous problem we consider the integer-valued polynomials
(

x

m

)
= x(x − 1) · · · (x − m+ 1)/m!, m = 0, 1, 2, . . .

They form a basis of the vector space of polynomials with real coefficients. The system of
equations

P(k) = b0

(
x

n

)
+ b1

(
x

n− 1

)
+ · · · + bn−1

(
x

1

)
+ bn, k = 0, 1, . . . , n,
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can be solved by Gaussian elimination, producing an integer solution b0, b1 . . . , bn. Yes, we
do obtain an integer solution because the coefficient matrix is triangular and has ones on the
diagonal! Finally, when multiplying

(x
m

)
, m = 0, 1, . . . , n, by n!, we obtain polynomials with

integer coefficients. We find that n!P(x) has integer coefficients, as desired.
(G. Pólya, G. Szegö, Aufgaben und Lehrsätze aus der Analysis, Springer-Verlag, 1964)

296. For n = 1 the rank is 1. Let us consider the case n ≥ 2. Observe that the rank does
not change under row/column operations. For i = n, n− 1, . . . , 2, subtract the (i − 1)st row
from the ith. Then subtract the second row from all others. Explicitly, we obtain

rank

⎛

⎜
⎜
⎜
⎝

2 3 . . . n+ 1
3 4 . . . n+ 2
...

...
. . .

...

n+ 1 n+ 2 . . . 2n

⎞

⎟
⎟
⎟
⎠
= rank

⎛

⎜
⎜
⎜
⎝

2 3 . . . n+ 1
1 1 . . . 1
...

...
. . .

...

1 1 . . . 1

⎞

⎟
⎟
⎟
⎠

= rank

⎛

⎜⎜⎜
⎜⎜
⎝

1 2 . . . n
1 1 . . . 1
0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

⎞

⎟⎟⎟
⎟⎟
⎠
= 2.

So the rank is 2.
(12th International Competition in Mathematics for University Students, 2005)

297. The polynomials Pj(x) = (x + j)k , j = 0, 1, . . . , n − 1, lie in the (k + 1)-dimensional
real vector space of polynomials of degree at most k. Because k + 1 < n, they are linearly
dependent. The columns consist of the evaluations of these polynomials at 1, 2, . . . , n, so the
columns are linearly dependent. It follows that the determinant is zero.

298. We prove this property by induction on n. For n = 1, if f1 is identically equal to zero,
then so is f . Otherwise, pick a vector e /∈ f −1

1 (0). Note that any other vector v ∈ V is of the
form αe + w with α ∈ R and w ∈ f −1

1 (0). It follows that f = f (e)
f1(e)

f1, and the base case is
proved.

We now assume that the statement is true for n = k−1 and prove it for n = k. By passing
to a subset, we may assume that f1, f2, . . . , fk are linearly independent. Because fk is linearly
independent of f1, f2, . . . , fk−1, by the induction hypothesis there exists a vector ek such that
f1(ek) = f2(ek) = · · · = fk−1(ek) = 0, and fk(ek) �= 0. Multiplying ek by a constant, we may
assume that fk(ek) = 1. The vectors e1, e2, . . . , ek−1 are defined similarly, so that fj(ei) = 1
if i = j and 0 otherwise.

For an arbitrary vector v ∈ V and for i = 1, 2, . . . , k, we have

fi

⎛

⎝v−
k∑

j=1

fj(v)ej

⎞

⎠ = fi(v)−
k∑

j=1

fj(v)fi(ej) = fi(v)− fi(v)fi(ei) = 0.

By hypothesis

f

⎛

⎝v−
n∑

j=1

fj(v)ej

⎞

⎠ = 0.
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Since f is linear, this implies

f (v) = f (e1)f1(v)+ f (e2)f2(v)+ · · · + f (ek)fk(v), for all v ∈ V .

This expresses f as a linear combination of f1, f2, . . . , fk , and we are done.
(5th International Competition in Mathematics for University Students, 1998)

299. First solution: We will prove this property by induction on n. For n = 1 it is obviously
true. Assume that it is true for n−1, and let us prove it for n. Using the induction hypothesis,
we can find x1, x2, . . . , xn−1 ∈ S such that a1x1 + a2x2 + · · · + an−1xn−1 is irrational for any
nonnegative rational numbers a1, a2, . . . , an not all equal to zero. Denote the other elements
of S by xn, xn+1, . . . , x2n−1 and assume that the property does not hold for n. Then for each
k = 0, 1, . . . , n− 1 we can find rational numbers rk such that

(
n−1∑

i=1

bikxi

)

+ ckxn+k = rk

with bik , ck some nonnegative integers, not all equal to zero. Because linear combinations
of the xi’s, i = 1, 2, . . . , n− 1, with nonnegative coefficients are irrational, it follows that ck

cannot be equal to zero. Dividing by the appropriate numbers if necessary, we may assume
that for all k, ck = 1. We can write

xn+k = rk −
n−1∑

i=1

bikxi.

Note that the irrationality of xn+k implies in addition that for a fixed k, not all the bik’s are
zero.

Also, for the n numbers xn, xn+1, . . . , x2n−1, we can find nonnegative rationals d1, d2,

. . . , dn, not all equal to zero, such that

n−1∑

k=0

dkxn+k = r,

for some rational number r. Replacing each xn+k by the formula found above, we obtain

n−1∑

k=0

dk

(

−
n−1∑

i=1

bikxi + rk

)

= r.

It follows that
n−1∑

i=1

(
n−1∑

k=0

dkbik

)

xi

is rational. Note that there exists a nonzero dk , and for that particular k also a nonzero bik .
We found a linear combination of x1, x2, . . . , xn−1 with coefficients that are positive, rational,
and not all equal to zero, which is a rational number. This is a contradiction. The conclusion
follows.
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Second solution: Let V be the span of 1, x1, x2, . . . , x2n−1 over Q. Then V is a finite-
dimensional Q-vector space inside R. Choose a Q-linear function f : V → Q such that
f (1) = 0 and f (xi) �= 0. Such an f exists since the space of linear functions with f (1) = 0
has dimension dim V − 1 and the space of functions that vanish on 1 and xi has dimension
dim V − 2, and because Q is infinite, you cannot cover an m-dimensional vector space with
finitely many (m− 1)-dimensional subspaces. By the pigeonhole principle there are n of the
xi for which f (xi) has the same sign. Since f (r) = 0 for all rational r, no linear combination
of these n with positive coefficients can be rational.

(Second solution by R. Stong)

300. First solution: Assume first that all numbers are integers. Whenever we choose a
number, the sum of the remaining ones is even; hence the parity of each number is the same
as the parity of the sum of all. And so all numbers have the same parity.

By subtracting one of the numbers from all we can assume that one of them is zero. Hence
the numbers have the same parity as zero. After dividing by 2, we obtain 2n + 1 numbers
with the same property. So we can keep dividing by 2 forever, which is possible only if all
numbers are zero. It follows that initially all numbers were equal.

The case of rational numbers is resolved by multiplying by the least common multiple of
the denominators. Now let us assume that the numbers are real. The reals form an infinite-
dimensional vector space over the rationals. Using the Axiom of choice we can find a basis of
this vector space (sometimes called a Hammel basis). The coordinates of the 2n+ 1 numbers
are rational, and must also satisfy the property from the statement (this follows from the fact
that the elements of the basis are linearly independent over the rationals). So for each basis
element, the corresponding coordinates of the 2n + 1 numbers are the same. We conclude
that the numbers are all equal, and the problem is solved.

However, this solution works only if we assume the Axiom of choice to be true. The
axiom states that given a family of sets, one can choose an element from each. Obvious as
this statement looks, it cannot be deduced from the other axioms of set theory and has to
be taken as a fundamental truth. A corollary of the axiom is Zorn’s lemma, which is the
actual result used for constructing the Hammel basis. Zorn’s lemma states that if every totally
ordered subset of a partially ordered set has an upper bound, then the set has a maximal
element. In our situation this lemma is applied to families of linearly independent vectors
with the ordering given by the inclusion to yield a basis.

Second solution: The above solution can be improved to avoid the use of the axiom of choice.
As before, we prove the result for rational numbers. Arguing by contradiction we assume that
there exist 2n + 1 real numbers, not all equal, such that whenever one is removed the others
can be separated into two sets with n elements having the sum of their elements equal. If in
each of these equalities we move all numbers to one side, we obtain a homogeneous system
of 2n + 1 equations with 2n + 1 unknowns. In each row of the coefficient matrix, 1 and
−1 each occur n times, and 0 appears once. The solution to the system obviously contains
the one-dimensional vector space V spanned by the vector (1, 1, . . . , 1). By hypothesis, it
contains another vector that does not lie in V . Solving the system using Gaussian elimination,
we conclude that there must also exist a vector with rational coordinates outside of V . But
we already know that this is impossible. The contradiction proves that the numbers must be
all equal.
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301. Let S be a crucial subset of V . Let VS be the vector space spanned by V \S. By adding
any vector of S to VS, we turn this space into R

n. This implies that VS is a vector space of
dimension n−1 and all the vectors of V but the ones in S are in VS. Now let W = ∩VS, where
the intersection is over all crucial subsets. By the finiteness of dimensions, W can bw written
as the intersection of a finite collection of spaces VS, say W = VS1∩VS2∩· · ·∩VSm , and assume
m is minimal. Starting with VS1 we add at each step to the intersection VS1 ∩ VS2 ∩ · · · ∩ VSj a
subspace VSj+1 such that

dim(VS1 ∩ VS2 ∩ · · · ∩ VSj) > dim(VS1 ∩ VS2 ∩ · · · ∩ VSj ∩ VSj+1).

Hence m ≤ n. As all but finitely many vectors of V belong to VSi , we conclude that all but
finitely many vectors of V belong to W . But the vectors from S do not belong to VS, and
hence do not belong to W , for any crucial subset S. The we only have finitely many vectors
of V , namely those not in W , to choose from for building a crucial set. Thus there are only
finitely many crucial sets.

(Mathematical Reflections, proposed by I. Boreico)

302. Let λ1, λ2 be the eigenvalues of A. Then −λ1I2 and −λ2I2 both belong to C(A), so

0 = | det(A−λiI2)| ≥ |λi|2, for i = 1, 2.

It follows that λ1 = λ2 = 0. Change the basis to v, w with v an eigenvector of A (which does
exist because Av = 0 has nontrivial solutions). This transforms the matrix into one of the
form (

0 a
0 0

)
.

One easily checks that the square of this matrix is zero.
Conversely, assume that A2 = O2. By the spectral mapping theorem both eigenvalues of

A are zero, so by appropriately choosing the basis we can make A look like
(

0 a
0 0

)
.

If a = 0, we are done. If not, then

C(A) =
{(

α β

0 α

)
| α, β ∈ R

}
.

One verifies immediately that for every B ∈ C(A), det(A + B) = det B. So the inequality
from the statement is satisfied with equality. This completes the solution.

(Romanian Mathematical Olympiad, 1999, proposed by D. Miheţ)

303. Since det B = 1, B is invertible and B−1 as integer entries. From

A3 + B3 = ((AB−1)3 + I2)B
3,

it follows that det((AB−1)3 + I2) = 1. We will show that (AB−1)2 = O2. Set AB−1 = C.
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We know that det(C3 + I2) = 1. We have the factorization

C3 + I2 = (C + I2)(C + εI2)(C + ε2I2),

where ε is a primitive cubic root. Taking determinants, we obtain

P(−1)P(−ε)P(−ε2) = 1,

where P is the characteristic polynomial of C.
Let P(x) = x2 − mx + n; clearly m, n are integers. Because P(−ε2) = P(−ε) = P(ε),

it follows that P(−ε)P(−ε2) is a positive integer. So P(−1) = P(−ε)P(−ε2) = 1. We
obtain 1+m+ n = 1 and (ε2 +mε + n)(ε +mε2 + 1) = 1, which, after some algebra, give
m = n = 0. So C has just the eigenvalue 0, and being a 2× 2 matrix, its square is zero.

Finally, from the fact that AB = BA and (AB−1)2 = O2, we obtain A2B−2 = O2, and
multiplying on the right by B2 we have A2 = O2, as desired.

(Romanian Mathematics Competition, 2004, proposed by M. Becheanu)

304. First solution The eigenvalues are the zeros of the polynomial det(λIn − aA − bAt).
The matrix λIn − aA − bAt is a circulant matrix, and the determinant of a circulant matrix
was the subject of problem 262 in Section 2.3.2. According to that formula,

det(λIn − aA− bAt) = (−1)n−1
n−1∏

j=0

(λζ j − aζ 2j − b),

where ζ = e2π i/n is a primitive nth root of unity. We find that the eigenvalues of aA+ bAt are
aζ j + bζ−j, j = 0, 1, . . . , n− 1.

Second solution: Simply note that for ζ = e2π i/n and j = 0, 1, . . . , n − 1, (1, ζ j, ζ 2j, . . . ,

ζ (n−1)j) is an eigenvector with eigenvalue aζ j + bζ−j.

305. We have

det(In − A) = det(A) det(In − A) = det(At) det(In − A)

= det(At − In) = det(A− In) = − det(In − A).

Hence det(In − A) = 0, showing that 1 is an eigenvalue.

Remark. The matrices with the property from the statement form the special orthogonal group
SO(3), which is a Lie group whose Lie algebra will be introduced in Section 4.1.1. This is the
group of orientation-preserving isometries of R

3, and as a corollary of what we just proved
we obtain the fact that any such isometry is the rotation about an axis (the axis of rotation is
specified by the corresponding eigenvector).

306. For n = 2007 we may choose the signs so that each row of A sums to zero. This means
that Au = 0 for u the column vector with all entries equal to 1 and hence det(A) = 0.

For n = 2008, let J be the 2008 × 2008 matrix all whose entries are 1, and let u be
the column vector with all entries equal to 1. Note that J = utu. Then u is an eigenvector

http://dx.doi.org/10.1007/978-3-319-58988-6_2
http://dx.doi.org/10.1007/978-3-319-58988-6_4
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of J − I2008 with eigenvalue 2007, and a 2007-dimensional eigenspace with eigenvalue −1
(namely the space of all vectors v with utv = 0). Thus

det(J − I2008) = (−1)2007 × 2007 = −2007.

This number is odd. For any matrix A of the given form, A ≡ J − I2008(mod 2). Hence
det(A) ≡ det(J − I2008)(mod 2), so det A is an odd number, which therefore cannot be equal
to zero.

(Mathematical Reflections, proposed by A. Ilič)

307. Since A is skew-symmetric, its eigenvalues are purely imaginary. It follows that the
nonzero roots of the equation

det(A+ xIn) = 0

come in pairs (zj, z̄j) = (zj,−zj), j = 1, 2, . . . , k. Then

det(A+ xIn) · det(A+ yIn) = xn−2k
k∏

j=1

(x2 + |zj|2)yn−2k
∏

j = 1k(y2 + |zj|2)

= (xy)n−2k
k∏

j=1

(x2 + |zj|2)(y2 + |zj|2)

≥ (xy)n−2k
k∏

j=1

(xy + |zj|2)2 = (det(A+√xyIn)
)2

.

Here we used the Cauchy-Schwarz identity:

(x2 + |zj|2)(y2 + |zj|2) ≥ (xy + |zj|2)2.

The problem is solved.
(Romanian Mathematical Olympiad, 2008)

308. Let φ be the linear transformation of the space R
n whose matrix in a certain basis

e1, e2, . . . , en is A. Consider the orthogonal decompositions of the space R
n = ker φ ⊕ T

R
n = Im φ⊕ S. Set φ′ = φ|T . Then φ′ : T → Im φ is an isomorphism. Let γ ′ be its inverse,

which we extend to a linear transformation γ of the whole of R
n by setting γ |S = 0. Then

φγφ = φ′γ ′φ′ = φ′ on T and φγφ = 0 on T⊥ = ker φ. Hence φγφ = φ, and we can choose
B to be the matrix of γ in the basis e1, e2, . . . , en.

(Soviet Union University Student Mathematical Olympiad, 1976)

309. The map that associates to the angle the measure of its projection onto a plane is linear
in the angle. The process of taking the average is also linear. Therefore, it suffices to check
the statement for a particular angle. We do this for the angle of measure π , where it trivially
works.
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Remark. This lemma allows another proof of Fenchel’s theorem, which is the subject of
problem 758 in Section 4.1.6. If we defined the total curvature of a polygonal line to be
the sum of the “exterior” angles, then the projection of any closed polygonal line in three-
dimensional space onto a one-dimensional line has total curvature at least π + π = 2π (two
complete turns). Hence the total curvature of the curve itself is at least 2π .

(Communicated by J. Sullivan)

310. The first involution A that comes to mind is the symmetry with respect to a hyperplane.
For that particular involution, the operator B = 1

2 (A+I) is the projection onto the hyperplane,
where I is the identity map. Let us show that in general for any involution A, the operator B
defined as such is a projection. We have

B2 = 1

4
(A+ I)2 = 1

4
(A2 + 2AI + I2) = 1

4
(I + 2A+ I) = B.

There exists a basis of V consisting of eigenvectors of B. Just consider the decomposition
of V into the direct sum of the image of B and the kernel of B. The eigenvectors that form
the basis are either in the image of B, in which case their eigenvalue is 1, or in the kernel, in
which case their eigenvalue is 0. Because A = 2B − I, it has the same eigenvectors as B,
with eigenvalues ±1. This proves (a).

Part (b) is based on the fact that any family of commuting diagonalizable operators on V
can be diagonalized simultaneously. Let us prove this property by induction on the dimension
of V . If all operators are multiples of the identity, there is nothing to prove. If one of them, say
S, is not a multiple of the identity, then consider the eigenspace Vλ of a certain eigenvalue λ.
If T is another operator in the family, then since STv = TSv = λTv, it follows that Tv ∈ Vλ;
hence Vλ is an invariant subspace for all operators in the family. This is true for all eigenspaces
of A, and so all operators in the family are diagonal blocks on the direct decomposition of
V into eigenvectors of A. By the induction hypothesis, the family can be simultaneously
diagonalized on each of these subspaces, and so it can be diagonalized on the entire space V .

Returning to the problem, diagonalize the pairwise commuting involutions. Their diagonal
entries may equal +1 or −1 only, showing that there are at most 2n such involutions. The
number can be attained by considering all choices of sign on the diagonal.

(3rd International Competition in Mathematics for University Students, 1996)

311. From the orthogonality of Au and u, we obtain

〈Au, u〉 = 〈u, Atu〉 = 〈Atu, u〉 = 0.

Adding, we obtain that 〈(A+At)u, u〉 = 0 for every vector u. But A+At is symmetric, hence
diagonalizable. For an eigenvector v of eigenvalue λ, we have

〈(A+ At)v, v〉 = 〈λv, v〉 = λ〈v, v〉 = 0.

This shows that all eigenvalues are zero, so A+ At = 0, which proves (a).
As a corollary of this, we obtain that A is of the form

A =
⎛

⎝
0 a12 a13

−a12 0 a23

−a13 −a23 0

⎞

⎠ .

http://dx.doi.org/10.1007/978-3-319-58988-6_4
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So A depends on only three parameters, which shows that the matrix can be identified with a
three-dimensional vector. To choose this vector, we compute

Au =
⎛

⎝
0 a12 a13

−a12 0 a23

−a13 −a23 0

⎞

⎠

⎛

⎝
u1

u2

u3

⎞

⎠ =
⎛

⎝
a12u1 + a13u2

−a12u1 + a23u3

−a13u1 − a23u2

⎞

⎠ .

It is easy to see now that if we set v = (−a23, a13,−a12), then Au = v× u.

Remark. The set of such matrices is the Lie algebra so(3), and the problem describes two of
its well-known properties.

312. There is a more general property, of which the problem is a particular case.

Riesz lemma. If V is a finite-dimensional vector space with inner product 〈·, ·〉, then any
linear functional f : V → R is of the form f (x) = 〈x, z〉 for some unique z ∈ V .

Proof. This result can be generalized to any (complex) Hilbert space, and it is there where it
carries the name of F. Riesz. If f is identically zero, then f (x) = 〈x, 0〉. Otherwise, let W be
the kernel of f , which has codimension 1 in V . There exists a nonzero vector y orthogonal to
W such that f (y) = 1. Set μ = 〈y, y〉 and define z = μ−1y. Then 〈z, z〉 = μ−1. Any vector
x ∈ V is of the form x′ + λz, with x′ ∈ W . We compute

f (x) = f (x′)+ λf (z) = λμ−1 = λ〈z, z〉 = 〈x′, z〉 + λ〈z, z〉 = 〈x, z〉.
Note that z is unique, because if 〈x, z〉 = 〈x, z′〉 for all x, then z − z′ is orthogonal to all
vectors, hence is the zero vector. There exists a simpler proof, but the one we gave here can
be generalized to infinite-dimensional Hilbert spaces! �

For our particular case, V = Mn(R) and the inner product is the famous Hilbert-Schmidt
inner product 〈A, B〉 = tr(ABt).

For the second part of the problem, the condition from the statement translates to tr((AB−
BA)C) = 0 for all matrices A and B. First, let us show that all off-diagonal entries of C are
zero. If cij is an entry of C with i �= j, let A be the matrix whose entry aik is 1 and all others
are 0, and B the matrix whose entry bkj is 1 and all others are 0, for some number k. Then
tr((AB − BA)C) = cij = 0. So C is diagonal. Moreover, choose aij = bij = 1, with i �= j.
Then AB− BA has two nonzero entries, the (i, i) entry, which is 1, and the (j, j) entry, which
is −1. Therefore, tr((AB − BA)C) = cii − cjj = 0. We deduce that all diagonal entries of C
are equal to some number λ, and hence

f (A) = tr(AC) = tr(λA) = λtr(A),

as decided.
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Remark. The condition f (AB) = f (BA) gives

tr(AC) = f (A) = f (ABB−1) = f (B−1AB) = tr(B−1ABC) = tr(ABCB−1);
hence by uniqueness of C, we have shown that C = BCB−1 for all B, or BC = CB. The
solution of the problem is essentially a proof that if C commutes with all invertible matrices
B, then C = λIn for some scalar λ.

313. Fix x ∈ R
n with ‖x‖ = 1, and let y = U−1V−1x. Because U and V are isometric

transformations, ‖y‖ = 1. Then

‖U V U−1V−1x − x‖ = ‖U V y − V Uy‖
= ‖(U − In)(V − In)y− (V − In)(U − In)y‖
≤ ‖(U − In)(V − In)y‖ + ‖(V − In)(U − In)y‖.

The claim follows if we prove that ‖(U − In)(V − In)y‖ and ‖(V − In)(U − In)y‖ are
both less than 1

4 , and because of symmetry, it suffices to check this for just one of them. If
(V − In)y = 0, then ‖(U − In)(V − In)y‖ = 0 < 1

4 . Otherwise, using the properties of
vector length, we proceed as follows:

‖(U − In)(V − In)y‖ =
∥
∥∥∥(U − In)(V − In)y‖ (V − In)y

‖(V − In)y‖
∥
∥∥∥

= ‖(V − In)y‖ × ‖(U − In)z‖,
where z is the length one vector 1

‖(V−In)y‖(V − In)y. By the hypothesis, each factor in the

product is less than 1
2 . This proves the claim and completes the solution.

314. The equality for general k follows from the case k = n, when it is the well-known
det(AB) = det(BA). Apply this to

(
In A
On In

)(
λIn − AB On

B In

)
=
(

λIn A
B In

)
=
(
In On

B In

)(
In A
On λIn − BA

)

to obtain
det(λIn − AB) = det(λIn − BA).

The coefficient of λk in the left-hand side is φk(AB), while the coefficient of λk in the right-hand
side is φk(BA), and they must be equal.

Remark. From the many applications of the functions φk(A), we mention the construction of
Chern classes in differential geometry.

315. From

I2 = (uI2 + vA)(u′I2 + v′A) = uu′I2 + (uv′ + vu′)A+ vv′A2,

by using the Cayley-Hamilton Theorem, we obtain

I2 = (uu′ − vv′ det A)I2 + (uv′ + vu′ + vv′trA)A.
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Thus u′ and v′ should satisfy the linear system

uu′ − (v det A)v′ = 1,

vu′ + (u+ vtrA)v′ = 0.

The determinant of the system is u2 + uvtrA + v2 det A, and an easy algebraic computation
shows that this is equal to det(uI2 + vA), which is nonzero by hypothesis. Hence the system
can be solved, and its solution determines the desired inverse.

316. Rewriting the matrix equation as

X2(X − 3I2) =
(−2 −2
−2 −2

)

and taking determinants, we obtain that either det X = 0 or det(X − 3I2) = 0. In the first
case, the Cayley-Hamilton equation implies that X2 = (trX)X, and the equation takes the
form

[(trX)2 − 3trX]X =
(−2 −2
−2 −2

)
.

Taking the trace of both sides, we find that the trace of X satisfies the cubic equation t3 −
3t2 + 4 = 0. with real roots t = 2 and t = −1. In the case trX = 2, the matrix equation is

−2X =
(−2 −2
−2 −2

)

with the solution

X =
(

1 1
1 1

)
.

When trX = −1, the matrix equation is

4X =
(−2 −2
−2 −2

)

with the solution

X =
(− 1

2 − 1
2

− 1
2 − 1

2

)

.

Let us now study the case det(X − 3I2) = 0. One of the two eigenvalues of X is 3. To
determine the other eigenvalue, add 4I2 to the equation from the statement. We obtain

X3 − 3X2 + 4I2 = (X − 2I2)(X + I2) =
(−2 −2
−2 −2

)
.

Taking determinants we find that either det(X − 2I2) = 0 or det(X + I2) = 0. So the second
eigenvalue of X is either 2 or −1. In the first case, the Cayley-Hamilton equation for X is

X2 − 5X + 6I2 = 0,
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which can be used to transform the original equation into

4X − 12I2 =
(−2 −2
−2 −2

)

with the solution

X =
(

5
2 − 1

2

− 1
2

5
2

)

.

The case in which the second eigenvalue of X is−1 is treated similarly and yields the solution

X =
(

1 −2
−2 1

)
.

(Romanian competition, 2004, proposed by A. Buju)

317. Because the trace of [A, B] is zero, the Cayley.Hamilton Theorem for this matrix is
[A, B]2 + (det[A, B])I2 = 0, which shows that [A, B]2 is a multiple of the identity. The same
argument applied to the matrices [C, D] and [A, B] + [C, D] shows that their squares are also
multiples of the identity.

We have

[A, B] · [C, D] + [C, D] · [A, B] = ([A, B] + [C, D])2 − [A, B]2 − [C, D]2.
Hence [A, B] · [C, D] + [C, D] · [A, B] is also a multiple of the identity, and the problem

is solved.
(Romanian Mathematical Olympiad, 1981, proposed by C. Năstăsescu)

318. The Cayley-Hamilton Theorem gives

(AB− BA)3 − c1(AB− BA)2 + c2(AB− BA)− c3I3 = O3,

where c1 = tr(AB − BA) = 0, and c3 = det(AB − BA). Taking the trace and using the fact
that the trace of AB − BA is zero, we obtain tr((AB − BA)3)− 3 det(AB − BA) = 0, and the
equality is proved.

(Revista Matematică din Timişoara (Timişoara Mathematics Gazette), proposed by
T. Andreescu)

319. Let F(x) = x2 − tr(AB)x + det(AB) be the characteristic polynomial of AB. Using
the division algorithm, write P(x) = F(x)Q(x)+ αx + β. By the Cayley-Hamilton theorem,
F(AB) = F(BA) = 0. So P(AB) = α(AB)+βI2. Similarly P(BA) = α(BA)+βI2. Equating
the two we obtain α(AB− BA) = O2, so α = 0. Thus P(AB) = βI2.

(Mathematical Reflections, proposed by G. Dospinescu)

320. Let C = AB− BA. We have

AB2 + BA2 = (AB− BA)B+ B(AB− BA) = CB+ BC = 2BC.

Let PB(λ) = λ2 + rλ + s be the characteristic polynomial of B. By the Cayley-Hamilton
Theorem, PB(B) = 0. We have

O2 = APB(B)− PB(B)A = AB2 − B2A+ r(AB− BA) = 2BC + rC.
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Using this and the fact that C commutes with A and B, we obtain

O2 = A(2BC + rC)− (2BC + rC)A = 2(AB− BA)C = 2C2.

Therefore, C2 = O2. In some basis

C =
(

0 α

0 0

)
.

Hence C commutes only with polynomials in C. But if A and B are polynomials in C, then
C = O2, a contradiction. So C must be scalar whose square is equal to zero, whence C = O2

again. This shows that such matrices A and B do not exist.
(American Mathematical Monthly, solution by W. Gustafson)

321. Choose λ ∈ R sufficiently large such that λIn + A has positive entries. By the Perron-
Frobenius theorem, the largest eigenvalue ρ of λIn + A is positive, and all other eigenvalues
lie inside the circle of radius ρ centered at the origin. In particular, ρ is real and all other
eigenvalues lie strictly to its left. The eigenvalues of A are the horizontal translates by λ of
the eigenvalues of λIn + A, so they enjoy the same property.

Remark. The result is true even for matrices whose off-diagonal entries are nonnegative, the
so-called Metzler matrices, where a more general form of the Perron-Frobenius theorem needs
to be applied.

322. First solution: Define A = (aij)
3
i,j=1. Then replace A by B = αI3−A, where α is chosen

large enough so that the entries bij of the matrix B are all positive. By the Perron-Frobenius
theorem, there exist a positive eigenvalue λ and an eigenvector c = (c1, c2, c3) with positive
coordinates. The equality Bc = λc yields

a11c1 + a12c2 + a13c3 = (α − λ)c1,

a21c1 + a22c2 + a23c3 = (α − λ)c2,

a31c1 + a32c2 + a33c3 = (α − λ)c3.

The three expressions from the statement have the same sign as α−λ: they are either all three
positive, all three zero, or all three negative.

Second solution: The authors of this problem had a geometric argument in mind. Here it is.
Consider the points P(a11, a21, a31), Q(a12, a22, a32), R(a13, a23, a33) in three-

dimensional Euclidean space. It is enough to find a point in the interior of the triangle
PQR whose coordinates are all positive, all negative, or all zero.

Let P′, Q′, R′ be the projections of P, Q, R onto the xy-plane. The hypothesis implies that
P′, Q′, and R′ lie in the fourth, second, and third quadrant, respectively.

Case 1. The origin O is in the exterior or on the boundary of the triangle P′Q′R′ (Figure 69).
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Figure 69

Denote by S′ the intersection of the segments P′Q′ and OR′, and let S be the point on the
segment PQ whose projection is S′. Note that the z-coordinate of the point S is negative, since
the z-coordinates of P′ and Q′ are negative. Thus any point in the interior of the segment SR
sufficiently close to S has all coordinates negative, and we are done.

Case 2. The origin O is in the interior of the triangle P′Q′R′ (Figure 70).

x

R

O

y

Q

P

Figure 70

Let T be the point inside the triangle PQR whose projection is O. If T = O, we are done.
Otherwise, if the z-coordinate of T is negative, choose a point S close to it inside the triangle
PQR whose x- and y-coordinates are both negative, and if the z-coordinate of T is positive,
choose S to have the x- and y-coordinates positive. Then the coordinates of S are all negative,
or all positive, and again we are done.

(Short list of the 44th International Mathematical Olympiad, 2003, proposed by the USA)

323. Let λ be the positive eigenvalue and v = (v1, v2, . . . , vn) the corresponding eigenvector
with positive entries of the transpose of the coefficient matrix. The function y(t) = v1x1(t)+
v2x2(t)+ · · · + vnxn(t) satisfies

dy

dt
=
∑

i,j

viaijxj =
∑

j

λvjxj = λy.

Therefore, y(t) = eλty0, for some vector y0. Because

lim
t→∞ y(t) =

∑

i

vi lim
t→∞ xi(t) = 0,
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and lim
t→∞ eλt = ∞, it follows that y0 is the zero vector. Hence

y(t) = v1x1(t)+ v2x2(t)+ · · · + vnxn(t) = 0,

which shows that the functions x1, x2, . . . , xn are necessarily linearly dependent.
(56th W.L. Putnam Mathematical Competition, 1995)

324. We try some particular cases. For n = 2, we obtain c = 1 and the sequence 1, 1, for
n = 3, c = 2 and the sequence 1, 2, 1, and for n = 4, c = 3 and the sequence 1, 3, 3, 1. We
formulate the hypothesis that c = n− 1 and xk =

(n−1
k−1

)
.

The condition xn+1 = 0 makes the recurrence relation from the statement into a linear
system in the unknowns (x1, x2, . . . , xn). More precisely, the solution is an eigenvector of the
matrix A = (aij)ij defined by

aij =
⎧
⎨

⎩

i if j = i + 1,

n− j if j = i − 1,

0 otherwise.

This matrix has nonnegative entries, so the Perron-Frobenius Theorem as stated here does
not really apply. But let us first observe that A has an eigenvector with positive coordinates,
namely xk =

(n−1
k−1

)
, k = 1, 2, . . . , n, whose eigenvalue is n− 1. This follows by rewriting the

combinatorial identity (
n− 1

k

)
=
(

n− 2

k

)
+
(

n− 2

k − 1

)

as (
n− 1

k

)
= k + 1

n− 1

(
n− 1

k + 1

)
+ n− k

n− 1

(
n− 1

k − 1

)
.

To be more explicit, this identity implies that for c = n− 1, the sequence xk =
(n−1

k−1

)
satisfies

the recurrence relation from the statement, and xn+1 = 0.
Let us assume that n − 1 is not the largest value that c can take. For a larger value,

consider an eigenvector v of A. Then (A+ In)v = (c+ 1)v, and (A+ In)
nv = (c+ 1)nv. The

matrix (A+ In)
n has positive entries, and so by the Perron-Frobenius Theorem has a unique

eigenvector with positive coordinates. We already found one such vector, that for which
xk =
(n−1

k−1

)
. Its eigenvalue has the largest absolute value among all eigenvalues of (A+ In)

n,
which means that nn > (c + 1)n. This implies n > c + 1, contradicting our assumption. So
n− 1 is the largest value c can take, and the sequence we found is the answer to the problem.

(57th W.L. Putnam Mathematical Competition, 1997, solution by G. Kuperberg published
in K. Kedlaya, B. Poonen, R. Vakil, The William Lowell Putnam Mathematical Competition
1985–2000, MAA, 2002)

325. Let us first show that if the two numbers are equal, then the product can be found in
six steps. For x �= −1, we compute (1) x → 1

x , (2) x → x + 1, (3) x + 1 → 1
x+1 , (4)

1
x ,

1
x+1 → 1

x − 1
x+1 = 1

x2+x
, (5) 1

x2+x
→ x2 + x, (6) x2 + x, x → x2.

If x = −1, replace step (2) by x → x−1 and make the subsequent modifications thereon.
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If the two numbers are distinct, say x and y, perform the following sequence of operations,
where above each arrow we count the steps:

x, y
1−→ x + y

7−→ (x + y)2,

x, y
8−→ x − y

14−→ (x − y)2,

(x + y)2, (x − y)2 15−→ 4xy
16−→ 1

4xy
,

1

4xy
,

1

4xy
17−→ 1

4xy
+ 1

4xy
= 2

xy
,

2

4xy
,

2

4xy
18−→ 2

4xy
+ 2

4xy
= 4

4xy
= 1

xy
19−→ xy.

So we are able to compute the product in just 19 steps.
(Kvant (Quantum))

326. Building on the previous problem, we see that it suffices to produce an operation ◦, from
which the subtraction and reciprocal are derivable. A good choice is 1

x−y . Indeed, 1
x = 1

x−0 ,

and also x − y = 1
(1/(x−y)−0)

. Success!
(D.J. Newman, A Problem Seminar, Springer-Verlag)

327. Fix a and c in S and consider the function

fa,c(b) = a ∗ (b ∗ c).

Because a ∗ fa,c(b) ∗ c = (a ∗ a) ∗ b ∗ (c ∗ c) = b, the function is one-to-one. It follows that
there are exactly two elements that are not in the image of fa,c. These elements are precisely
a and c. Indeed, if a ∗ (b ∗ c) = a, then (a ∗ a) ∗ (b ∗ c) = a ∗ a, so b ∗ c = a ∗ a, and then
b∗ (c ∗ c) = (a∗a)∗ c, which implies b = c. This contradicts the fact that a, b, c are distinct.
A similar argument rules out the case a ∗ (b ∗ c) = c.

Now choose a′, c′ different from both a and c. The union of the ranges of fa,c and fa′,c′ ,
which is contained in the set under discussion, is the entire set S. The conclusion follows.

Remark. An example of such a set is the Klein 4-group.
(R. Gelca)

328. Consider the set
U = {h(x, y) | h(−x,−y) = −h(x, y)}.

It is straightforward to check that U is closed under subtraction and taking reciprocals. Because
f (x, y) = x and g(x, y) = y are in U , the entire set S is in U . But U does not contain nonzero
constant functions, so neither does S.

(American Mathematical Monthly, 1987, proposed by I. Gessel, solution by O.P. Lossers)
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329. All three parts of the conclusion follow from appropriate substitutions in the identity
from the statement. For example,

(e ∗ e′) ◦ (e′ ∗ e) = (e ◦ e′) ∗ (e′ ◦ e)

simplifies to e′ ◦ e′ = e ∗ e, which further yields e′ = e, proving (a). Then, from

(x ∗ e) ◦ (e ∗ y) = (x ◦ e) ∗ (e ◦ y),

we deduce x ◦ y = x ∗ y, for every x, y ∈ M, showing that the two binary operations coincide.
This further yields

(e ∗ x) ∗ (y ∗ e) = (e ∗ x) ◦ (y ∗ e) = (e ◦ y) ∗ (x ◦ e) = (e ∗ y) ∗ (x ∗ e),

and so x ∗ y = y ∗ x. Thus ∗ is commutative and (c) is proved.
(Romanian high school textbook)

330. Substituting x = u ∗ v and y = v, with u, v ∈ S, in the given condition gives (u ∗ v) ∗
(v ∗ (u ∗ v)) = v. But v ∗ (u ∗ v) = u, for all u, v ∈ S. So (u ∗ v) ∗ u = v, for all u, v ∈ S.
Hence the existence and uniqueness of the solution to the equation a ∗ x = b is equivalent to
the existence and uniqueness of the solution to the equation x ∗ a = b.

The existence of the solution for the equation a∗x = b follows from the fact that x = b∗a
is a solution. To prove the uniqueness, let c ∈ S be a solution. By hypothesis we have the
equalities a ∗ (b ∗ a) = b, b ∗ (c ∗ b) = c, c ∗ (a ∗ c) = a. From a ∗ c = b it follows that
c∗ (a∗ c) = c∗b = a. So a = c∗b, and from a∗ c = b it follows that c∗ (a∗ c) = c∗b = a.
Therefore, b ∗ a = b ∗ (c ∗ b) = c, which implies that b ∗ a = c. This completes the proof.

331. Substituting y = e in the second relation, and using the first, we obtain x∗z = (x∗e)∗z =
(z ∗ e) ∗ x = z ∗ x, which proves the commutativity. Using it, the associativity is proved as
follows:

(x ∗ y) ∗ z = (z ∗ x) ∗ y = (y ∗ z) ∗ x = x ∗ (y ∗ z).

(A. Gheorghe)

332. The answer is yes. Let φ be any bijection of F with no fixed points. Define x∗y = φ(x).
The first property obviously holds. On the other hand, x ∗ (y ∗ z) = φ(x) and (x ∗ y) ∗ z =
φ(x ∗ y) = φ(φ(x)). Again since φ has no fixed points, these two are never equal, so the
second property also holds.

(45th W.L. Putnam Mathematical Competition, 1984)

333. From a ∗ (a ∗ a) = (a ∗ a) ∗ a we deduce that a ∗ a = a. We claim that

a ∗ (b ∗ a) = a for all a, b ∈ S.

Indeed, we have a ∗ (a ∗ (b ∗ a)) = (a ∗ a) ∗ (b ∗ a) = a ∗ (b ∗ a) and (a ∗ (b ∗ a)) ∗ a =
(a ∗ b) ∗ (a ∗ a) = (a ∗ b) ∗ a. Using associativity, we obtain

a ∗ (a ∗ (b ∗ a)) = a ∗ (b ∗ a) = (a ∗ b) ∗ a = (a ∗ (b ∗ a)) ∗ a.

The “noncommutativity” condition from the statement implies a ∗ (b ∗ a) = a, proving the
claim.
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We apply this property as follows:

(a ∗ (b ∗ c)) ∗ (a ∗ c) = (a ∗ b) ∗ (c ∗ (a ∗ c)) = (a ∗ b) ∗ c,

(a ∗ c) ∗ (a ∗ (b ∗ c)) = (a ∗ (c ∗ a)) ∗ (b ∗ c) = a ∗ (b ∗ c).

Since (a ∗ b) ∗ c = a ∗ (b ∗ c) (by associativity), we obtain

(a ∗ (b ∗ c)) ∗ (a ∗ c) = (a ∗ c) ∗ (a ∗ (b ∗ c)).

This means that a ∗ (b ∗ c) and a ∗ c commute, so they must be equal, as desired.
For an example of such a binary operation consider any set S endowed with the operation

a ∗ b = a for any a, b ∈ S.

334. Using the first law we can write

y ∗ (x ∗ y) = (x ∗ (x ∗ y)) ∗ (x ∗ y).

Now using the second law, we see that this is equal to x. Hence y ∗ (x ∗ y) = x. Composing
with y on the right and using the first law, we obtain

y ∗ x = y ∗ (y ∗ (x ∗ y)) = x ∗ y.

This proves commutativity.
For the second part, the set S of all integers endowed with the operation x ∗ y = −x − y

provides a counterexample. Indeed,

x ∗ (x ∗ y) = −x − (x ∗ y) = −x − (−x − y) = y

and
(y ∗ x) ∗ x = −(y ∗ x)− x = −(−y− x)− x = y.

Also, (1 ∗ 2) ∗ 3 = 0 and 1 ∗ (2 ∗ 3) = 4, showing that the operation is not associative.
(33rd W.L. Putnam Mathematical Competition, 1972)

335. Define r(x) = 0 ∗ x, x ∈ Q. First, note that

x ∗ (x + y) = (0+ x) ∗ (y + x) = 0 ∗ y+ x = r(y)+ x.

In particular, for y = 0 we obtain x ∗ x = r(0)+ x = 0 ∗ 0+ x = x.
We will now prove a multiplicative property of r(x), namely that r

(
m
n x
) = m

n r(x) for any
positive integers m and n. To this end, let us show by induction that for all y and all positive
integers n, 0 ∗ y ∗ · · · ∗ ny = nr(y). For n = 0 we have 0 = 0 · r(y), and for n = 1 this follows
from the definition of r(y). Assume that the property is true for k ≤ n and let us show that it
is true for n+ 1. We have

0 ∗ y ∗ · · · ∗ ny ∗ (n+ 1)y = 0 ∗ y ∗ · · · ∗ (ny ∗ ny) ∗ (n+ 1)y

= (0 ∗ y ∗ · · · ∗ ny) ∗ (ny ∗ (n+ 1)y)

= (n(0 ∗ y)) ∗ ((0+ ny) ∗ (y+ ny))

= (0 ∗ y+ (n− 1)(0 ∗ y)) ∗ (0 ∗ y+ ny)

= (n− 1)r(y) ∗ ny + 0 ∗ y.
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Using the induction hypothesis, (n− 1)r(y) ∗ ny = 0 ∗ y ∗ · · · ∗ (n− 1)y ∗ ny = nr(y) (this
works even when n = 1). Hence 0 ∗ y ∗ · · · ∗ (n+ 1)y = nr(y)+ r(y) = (n+ 1)r(y), which
proves the claim.

Using this and the associativity and commutativity of ∗, we obtain

2nr(y) = 0 ∗ y ∗ 2y ∗ · · · ∗ 2ny

= (0 ∗ ny) ∗ (y ∗ (n+ 1)y) ∗ (2y ∗ (n+ 2)y) ∗ · · · ∗ (ny ∗ 2ny)

= r(ny) ∗ (y ∗ (y+ ny)) ∗ (2y ∗ (2y+ ny)) ∗ · · · ∗ (ny ∗ (ny + ny)).

The first formula we have proved implies that this is equal to

(0+ r(ny)) ∗ (y+ r(ny)) ∗ · · · ∗ (ny + r(ny)).

The distributive-like property of ∗ allows us to transform this into

(0 ∗ y ∗ 2y ∗ · · · ∗ ny)+ r(ny) = nr(y)+ r(ny).

Hence 2nr(y) = nr(y)+ r(ny), or r(ny) = nr(y). Replacing y by x
n , we obtain r

(
x
n

) = 1
n r(x),

and hence r
(

m
n x
) = m

n r(x), as desired.
Next, note that r ◦ r = r; hence r is the identity function on its image. Also,

r(z) = 0 ∗ z = (−z + z) ∗ (0+ z) = (−z) ∗ 0+ z = r(−z)+ z,

or r(z) − r(−z) = z. Hence for z �= 0, one of the numbers r(z) and r(−z) is nonzero. Let
y be this number. Since r(y) = y, we have y = r(y) − r(−y) = y − r(−y), so r(−y) = 0.
Also, if x = m

n y, then r(x) = m
n r(y) = m

n y = x, and r(−x) = m
n r(−y) = 0. If y > 0,

then r(y) = max(y, 0) and consequently r(x) = x = max(x, 0), for all x > 0, while
r(x) = 0 = max(x, 0) for all x < 0. Similarly, if y < 0, then r(y) = min(y, 0), and then
r(x) = min(x, 0) for all x ∈ Q. The general case follows (a−b+b)∗(0+b) = (a−b)∗0+b.

(American Mathematical Monthly, proposed by H. Derksen, solution by J. Dawson)

336. For x ∈ G and x′ its left inverse, let x′′ ∈ G be the left inverse of x′, meaning that
x′′x′ = e. Then

xx′ = e(xx′) = (x′′x′)(xx′) = x′′(x′x)x′ = x′′(ex′) = x′′x′ = e.

So x′ is also a right inverse for x. Moreover,

xe = x(x′x) = (xx′)x = ex = x,

which proves that e is both a left and right identity. It follows that G is a group.

337. Let e ∈ G be the identity element. Set b = e in the relation from the statement. Then

a = a ∗ e = (a ⊥ a) ⊥ (a ⊥ e) = (a ⊥ a) ⊥ a,

and canceling a we obtain a ⊥ a = e, for all a ∈ G. Using this fact, we obtain

a ∗ b = (a ⊥ a) ⊥ (a ⊥ b) = e ⊥ (a ⊥ b) = a ⊥ b,
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which shows that the composition laws coincide. Because a ∗ a = e, we see that a−1 = a, so
for a, b ∈ G,

ab = (ab)−1 = b−1a−1 = ba,

which proves the commutativity.
(D. Ştefănescu)

338. We can find the integers u and v such that us+ vt = 1. Since ab = ba, we have

ab = (ab)us+vt = (abus((ab)t)v = (ab)use = (ab)us = aus(bs)u = ause = aus.

Therefore,
br = ebr = arbr = (ab)r = ausr = (ar)us = e.

Again we can find x, y such that xr + ys = 1. Then

b = bxr+ys = (br)x(bs)y = e.

Applying the same argument, mutatis mutandis, we find that a = e, so the first part of the
problem is solved.

A counterexample for the case of a noncommutative group is provided by the cycles of
permutations a = (123) and b = (34567) in the permutation group S7 of order 7. Then
ab = (1234567) and a3 = b5 = (ab)7 = e.

(8th International Competition in Mathematics for University Students, 2001)

339. For g ∈ G the map Tg : G → G, Tg(x) = gx is bijective, because it is easy to check
that its inverse is the map Tg−1 . For given g, each of the sets A and

Tg(A
−1) = {ga−1 | a ∈ A}

contains more than one half of the elements of G, so they overlap. If a1 and ga2 are in the
overlap, that is if a1 = ga−1

2 , with a1, a2 ∈ A, then g = a1a2. We have proved that every
element of G is the product of two elements of A, as desired.

(29th William Lowell Putnam Mathematical Competition, 1968)

340. Note first that if (M, ∗) is a group, then the product of any two elements of M is again
in M. Thus for x, y �= 3, we must have

x ∗ y = 3(x − 3)(y − 3)+ (m− 27) �= 3.

For m �= 30 this is not always true, for example for x = 10/3 and y = 33− m.
To see that m = 30 does produce a group, first note that in this case x ∗ y = 3(x− 3)(y−

3) + 3. Define the map f : M → R\{0} by f (x) = 3(x − 3). then f is a bijection whose
inverse is f −1(t) = (t + 9)/3. Further we compute that

f (x ∗ y) = 9(x − 3)(y − 3) = f (x)f (y).
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Thus for m = 30, (M, ∗) is a group isomorphic to the multiplicative group of nozero real
numbers.

(Mathematical Reflections, proposed by B. Enescu)

341. Set c = aba−1 and observe that ca = ab and cn = e. We have

a = ea = cna = cn−1ca = cn−1ab = cn−2(ca)b = cn−2ab2,

and, inductively,
a = cn−kabk, 1 ≤ k ≤ n.

From a = abn, we obtain the desired conclusion bn = e.
(Gazeta Matematică (Mathematics Gazette, Bucharest), proposed by D. Bătineţu-Giurgiu)

342. Applying the identity from the statement to the elements x and yx−1, we have

xy2x−1 = x(yx−1)x(yx−1) = (yx−1)x(yx−1)x = y2.

Thus for any x, y, we have xy2 = y2x. This means that squares commute with everything.
Using this fact, we rewrite the identity from the statement as

xyxyx−1y−1x−1y−1 = e

and proceed as follows:

e = xyxyx−1y−1x−1y−1 = xyxyx−2xy−2yx−2xy−2y

= xyxyy−2x−2xyxyy−2x−2 = (xyxyy−2x−2)2.

Because there are no elements of order 2, it follows that xyxyy−2x−2 = e and hence xyxy =
x2y2. Cancel an x and a y to obtain yx = xy. This proves that the group is Abelian, and we
are done.

(K.S.Williams, K. Hardy, The Red Book of Mathematical Problems, Dover, Mineola, NY,
1996)

343. The first axiom shows that the squares of all elements in M are the same; denote the
common value by e. Then e2 = e, and from (ii), ae = a for all a ∈ M. Also, a ∗ b = a(eb)

for all a, b ∈ M. Let us verify the associativity of ∗. Using (iii) in its new form e(bc) = cb,
we obtain

a ∗ (b ∗ c) = a[e(b(ec))] = a[(ec)b].
Continue using (iv) as follows:

a[(ec)b] = [a(eb)][((ec)b)(eb)] = [a(eb)][(ec)e] = [a(eb)](ec) = (a ∗ b) ∗ c.

Here we used the fact that de = d, for the case d = ec. Thus associativity is proved. The
element e is a right identity by the following argument:

a ∗ e = a(e2e) = a(ee) = ae2 = ae = a.
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The right inverse of a is ae, since

a ∗ (ea) = a[e(ea)] = a(ae) = a2 = e.

So there exists a right identity, and every element has a right inverse, which then implies that
(M, ∗) is a group.

(M. Becheanu, C. Vraciu, Probleme de Teoria Grupurilor (Problems in Group Theory),
University of Bucharest, 1982)

344. The condition from the statement implies that for all integers m and n,

f (m
√

2+ n
√

3) = f (0).

Because the ratio
√

2/
√

3 is irrational, the additive group generated by
√

2 and
√

3 is not
cyclic. It means that this group is dense in R. So f is constant on a dense subset of R. Being
continuous, it must be constant on the real axis.

345. The conclusion follows from the fact that the additive group

S = {n+ 2πm; m, n integers}
is dense in the real numbers. Indeed, by Kronecker’s theorem, we only need to check that
S is not cyclic. This is so because n and 2mπ cannot both be integer multiples of the same
number (they are incommensurable).

346. That 2k starts with a 7 is equivalent to the existence of an integer m such 2k

10m ∈ [7, 8). Let

us show that the set
{

2k

10m | k, m integers
}

is dense in the positive real numbers. Canceling the

powers of 2, this amounts to showing that
{

2n

5m | m, n integers
}

is dense. We further simplify
the problem by applying the function log2 to the fraction. This function is continuous, so it
suffices to prove that {n−m log2 5 | m, n integers} is dense on the real axis. This is an additive
group, which is not cyclic since log2 5 is irrational (and so 1 and log2 5 cannot both be integer
multiples of the same number). It follows that this group is dense in the real numbers, and
the problem is solved.

(V.I. Arnol’d, Mathematical Methods of Classical Mechanics, Springer-Verlag, 1997)

347. If r is the original ratio of the sides, after a number of folds the ratio will be 2m3nr, where
m and n are integer numbers. It suffices to show that the set {2m3nr | m, n ∈ Z} is dense in
the positive real axis. This is the same as showing that {2m3n | m, n ∈ Z} is dense. Taking the
logarithm, we reduce the problem to the fact that the additive group {m+ n log2 3 | m, n ∈ Z}
is dense in the real axis. And this is true by Kronecker’s theorem since the group is not cyclic.

(German Mathematical Olympiad)

348. Call the regular pentagon ABCDE and the set �. Composing a reflection across AB with
a reflection across BC, we can obtain a 108◦ rotation around B. The set � is invariant under
this rotation. There is a similar rotation around C, of the same angle and opposite direction,
which also preserves �. Their composition is a translation by a vector that makes an angle
of 36◦ with BC and has length 2 sin 54◦BC. Figure 71 helps us understand why this is so.
Indeed, if P rotates to P′ around B, and P′ to P′′ around C, then the triangle P′BC transforms
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B C

P

P

P"

Figure 71

to the triangle P′PP′′ by a rotation around P′ of angle ∠CP′P′′ = 36◦ followed by a dilation
of ratio P′P′′/P′C = 2 sin 54◦. Note that the translation preserves the set �.

Reasoning similarly with vertices A and D, and taking into account that AD is parallel to
BC, we find a translation by a vector of length 2 sin 54◦AD that makes an angle of 36◦ with
BC and preserves �. Because AD/BC = 2 sin 54◦ =

√
5+1
2 , the group GBC generated by the

two translations is dense in the group of all translations by vectors that make an angle of 36◦
with BC. The same is true if BC is replaced by AB. It follows that � is preserved both by the
translations in the group GBC and in the analogous group GAB. These generate a group that
is dense in the group of all translations of the plane. We conclude that � is a dense set in the
plane, as desired.

(Communicated by K. Shankar)

349. Assume that A is a 4×4 matrix with A �= I4 but A7 = I4. Then the minimal polynomial
of A divides x7 − 1 = (x − 1)(x6 + x5 + x4 + · · · + x + 1). Also the minimal polynomial
divides the characteristic polynomial of A, which has degree at most 4. But in Problem 233
that x6+x5+· · ·+1 is irreducible, so it has no divisor of degree at most 4. This contradiction
shows that no such A exists.

(Mathematical Reflections, proposed by J.C. Mathieux)

350. How can we make the sum M interact with the multiplicative structure of �? The idea
is to square M and use the distributivity of multiplication with respect to the sum of matrices.
If G1, G2, . . . , Gk are the elements of �, then

M2 = (G1 + G2 + · · · + Gk)
2 =

k∑

i=1

Gi

⎛

⎝
k∑

j=1

Gj

⎞

⎠ =
k∑

i=1

Gi

(
∑

G∈�

G−1
i G

)

=
∑

G∈�

k∑

i=1

Gi(G
−1
i G) = k

∑

G∈�

G = kM.

Taking determinants, we find that (det M)2 = kn det M. Hence either det M = 0 or det M is
equal to the order of � raised to the nth power. The matrix C = 1

k M, is an idempotent, that is
C2 = C. It follows that rank(C) = tr C, and so tr B = mrank(C) is a multiple of k.
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Remark. In fact, much more is true. The determinant of the sum of the elements of a finite
multiplicative group of matrices is nonzero only when the group consists of one element, the
identity, in which case it is equal to 1. This is the corollary of a basic fact in representation
theory.

First notice that the determinant is invariant under change of basis. A representation of a
group is a homomorphism of the group into a group of matrices. In our situation the group is
already represented as a group of matrices. A representation is called irreducible if there does
not exist a basis in which it can be decomposed into blocks. Any representation of a finite
group is the block sum of irreducible representations. (Certainly we need to change basis to
see the block decomposition, but the determinant is invariant under change of basis). The
simplest representation, called the trivial representation, sends all elements of the group to
the identity element. A result in representation theory states that for any nontrivial irreducible
representation of a finite group, the sum of the matrices of the representation is zero. In
an appropriately chosen basis, our group can be written as the block sum of irreducible
representations. If the group is nontrivial, then at least one representation is nontrivial. In
summing the elements of the group, the diagonal block corresponding to this irreducible
representation is the zero matrix. Taking the determinant, we obtain zero.

The trace is also invariant under change of basis. M has nonzero entries only for the blocks
that correspond to 1-dimensional irreducible representations, and in those blocks, the element
of M is just k (you add a 1 for each matrix in �). The trace is either 0 or the sum of several
k’s, so it is a multiple of k. This shows that the value of the trace can only be a multiple of the
order of �, and easily constructed examples using permutation matrices show that any such
multiple can be obtained.

351. Let G be a finite group with the properties from the hypothesis. Then each element of
the group has finite order.

Lemma. If A = In + 4B, where B is a nonzero matrix with integer coefficients, then for no
power of A is the identity matrix.

Proof. Arguing by contradiction, let m be the smallest positive integer such that Am = In.
Writing m = pk, with p prime, we see that (Ak)p = In, and we can also see that Ak = In+4B′
for some matrix B′. Note that B′ =�= On, because Ak �= In. So by substituting A with Ak we
may assume that m = p, a prime number.

We expand

(In + 4B)p = In + 4pB+ 42

(
p

2

)
B2 + · · · + 4pBp = In.

Hence

4pB+ 42

(
p

2

)
B2 + · · · + 4pBp = On,

from where

4pB = −42

(
p

2

)
B2 − · · · − 4pBp.
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Let 2j be the largest power of 2 that divides all entries of B. Then the largest power of 2
dividing the left hand side is either 2j+2 or 2j+3 (depending on whether p = 2 or not), while
the largest power of 2 dividing the right-hand side is at least 42 × 2m = 2m+4. Thus the
equality cannot hold, which is the desired contradiction. The lemma is proved. �

From the lemma it follows that each element of G that is not the identity matrix has order
exactly 2. Indeed, if A = In + 2B ∈ G, then A2 = In + 4(B2 + B), and because A has finite
order, B2 + B must be equal to zero. We have seen in the example from our discussion about
groups that every such group is Abelian. Because all matrices of G commute, they can be
simultaneously diagonalized. In diagonal form they still form a group, so the diagonal entries
must be ±1. There are only 2n possibilities for choosing these diagonal entries, so G has at
most 2n elements. This is optimal since we can consider the group of all diagonal matrices
with diagonal entries ±1, and this group has 2n elements and satisfies the condition from the
statement.

(Mathematical Reflections, proposed by G. Dospinescu)

352. Let A ∈ G, then for all integers k, Ak ∈ G, so ‖Ak − In‖ < a. Let λ be an eigenvalue
of A and let x be a corresponding eigenvector. Then

(
Ak − In

)
x = (λk − 1

)
x,

and so |λk−1| ≤ a < 2 for all integers k. Thus |λ|k < 3 for all integers k, positive or negative,
which can only happen if |λ| = 1. Set λ = eiπr , r ∈ R. Since |λk − 1| ≤ a < 2, we have

cos(πkr) ≥ 1− a2

2
> −1.

This means that cos πkr is not dense in [−1, 1]. As a consequence of Kronecker’s Theorem,
this can only happen if r is rational. Moreover, the inequality implies that the denominator
of r is bounded in terms of r only. Consequently, there is a positive integer M such that for
every A ∈ G and every eigenvalue λ of A, there is k < M with λk = 1. Setting N = M!, we
obtain λN = 1 for all A ∈ G, and all eigenvalues λ of A.

Fix A ∈ G, and write AN = In + B. Then B is nilpotent (that is Bn = On) because by
the Spectral mapping theorem all of its eigenvalues are zero. We know that for all positive
integers p, ‖ANp − In‖ < 2. By using the binomial formula, we obtain that

∥∥
∥∥

(
p

1

)
B+
(

p

2

)
B2 + · · · +

(
p

n− 1

)
Bn−1

∥∥
∥∥ < 2.

Here we used the fact that Bk = On for all k ≥ n. Assume that B is not zero and let j be the
largest positive integer such that Bj �= On. Then, using the triangle inequality, we have

2 >

(
p

j

)
‖Bj‖ −

(
p

j − 1

)
‖Bj−1‖ − · · · −

(
p

1

)
‖B‖.

This cannot hold for all p, since the right-hand side is a polynomial in p of degree j with
dominant coefficient 1

j! ‖Bj‖. We conclude that B = 0.
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So there is an integer N such that AN = In for all A ∈ G. The following result will show
that G is finite.

Burnside’s theorem. If a multiplicative group G of matrices has the property that there exists
a positive integer N such that for every A ∈ G, AN = IN , then G is finite.

Proof. There are elements A1, A2, . . . , Ar of G that form a basis for the linear space spanned
by elements of G in the space of n×n matrices (they exist because any spanning set of a finite
dimensional vector space contains a basis). We claim that the function

f : G → C
r, f (X) = (tr(A1X), tr(A2X), . . . , tr(ArX)),

is injective. Assume to the contrary that there are A, B ∈ G with f (A) = f (B). Because
A1, A2, . . . , Ar are a basis of the linear space spanned by G, and because trace is linear, it
follows that tr(AX) = tr(BX) for all X ∈ G. Thus if U = AB−1, we have tr(UX) = tr(X),
for all X ∈ G. Set X = In to conclude that tr(U ) = n. But we also know that U N = In,
so U = IN , because the trace is the sum of the eigenvalues which are roots of unity. Thus
A = B.

The image of f consists of sums of roots of unity of order N , so it is finite. Hence G itself
is finite, and the theorem is proved. �

Remark. The definition of ‖A‖ is standard in mathematics, it is called the norm of A, and has
the same properties that the norm (length) of a vector has: (i) ‖A‖ = 0 if and only if A = On,
(ii) ‖λA‖ = |λ|‖A‖, (iii) ‖A + B‖ ≤ ‖A‖ + ‖B‖. The norm allows us to define a distance
between matrices, and so we can define the notion of convergence of a sequence of matrices.
The algebra of all n×matrices endowed with this norm has the properties that addition, scalar
multiplication, and multiplication are continuous in the norm, and also ‖AB‖ ≤ ‖A‖‖B‖.
Moreover, every Cauchy sequence is convergent. As such it is a Banach algebra. The theory
of Banach algebras is an important chapter in functional analysis.

(Mathematical Reflections, proposed by G. Dospinescu and A. Thiery)

353. The symmetry groups are, respectively, C2v, D2h, and D2d .

354. (a) In the first example from this section, let x = ab, y = c.
(b) If

A =
(

1 0
0 0

)
, B =

(
0 1
1 0

)
, C =

(
0 1
0 0

)

then In − ABC = In while

In − CBA =
(

0 0
0 1

)
,

which is not invertible.

355. If x is an idempotent, then 1− x is an idempotent as well. Indeed,

(1− x)2 = 1− 2x + x2 = 1− 2x + x = 1− x.
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Thus there is an involution on M, x �→ 1 − x. This involution has no fixed points, since
x = 1 − x implies x2 = x − x2 or x = x − x = 0. But then 0 = 1 − 0 = 1, impossible.
Having no fixed points, the involution pairs the elements of M, showing that the cardinality
of M is even.

(Gazeta Matematică (Mathematics Gazette, Bucharest), proposed by V. Zidaru)

356. We have y = y6 = (−y)6 = −y, hence 2y = 0 for any y ∈ R. Now let x be an arbitrary
element in R. Using the binomial formula, we obtain

x + 1 = (x + 1)6 = x6 + 6x5 + 15x4 + 20x3 + 15x2 + 6x + 1 = x4 + x2 + x + 1,

where we canceled the terms that had even coefficients. Hence x4+x2 = 0, or x4 = −x2 = x2.
We then have

x = x6 = x2x4 = x2x2 = x4 = x2,

and so x2 = x, as desired. From the equality (x + y)2 = x + y we deduce xy + yx = 0, so
xy = −yx = yx for any x, y. This shows that the ring is commutative, as desired.

357. Substituting x by x + 1 in the relation from the statement, we find that

((x + 1)y)2 − (x + 1)2y2 = (xy)2 + xy2 + yxy + y2 − x2y2 − 2xy2 − y2

= yxy − xy2 = 0.

Hence xy2 = yxy for all x, y ∈ R. Substituting in this relation y by y+ 1, we find that

xy2 + 2xy + x = yxy + yx + xy + x.

Using the fact that xy2 = yxy, we obtain xy = yx, as desired.

358. (a) First let us notice that for every a ∈ R, na = 0 (this is because n is the order of the
additive group of R). Now suppose there is a nilpotent element x, and let m be the smallest
positive integer such that xm = 0. Then y = xm−1 has the property that y �= 0 but y2 = 0.
Using the binomial expansion we obtain

(1+ y)n = 1+ ny = 1.

So 1+ y = 1, which forces y to be zero, a contradiction. This proves (a)
(b) Let x1, x2, . . . , xn be the elements of R. The set of n-tuples

{(xj
1, xj

2, . . . , xj
n) | j > 0}

is finite, since each entry can only take finitely many values. So there are positive integers
p < q such that xp = xq for all x ∈ R. For each x ∈ R, x(xq−p − 1) is therefore nilpotent, and
therefore zero by part (a). If we take k = q− p+ 1, we have k ≥ 2 and xk = x for all x ∈ R,
as desired.

Remark. The author of the problem pointed out the following fact. By Jacobson’s theorem,
mentioned after the second example from the theory, R is commutative. Moreover, R is
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a product of fields, which can be proved by induction on the number of elements of R as
follows.

If R contains no nontrivial idempotent (an idempotent is element e �= 0, 1 such that em = 1
for some m), then because xk−1 is an idempotent, it is either equal to 0 or 1. Consequently,
every x ∈ R is either 0 or is invertible (here we use the fact that there are no nilpotents),
making R into a field.

If R has a nontrivial idempotent e, then 1− e is also an idempotent, and R is isomorphic
to Re×R(1− e). All elements of Re and R(1− e) satisfy xk = x, so by induction, these rings
are products of fields, and so is R.

(Romanian Mathematical Olympiad, 2008)

359. For every x ∈ R, we have 2x = x + x = (1+ 1)x = 0. Let

U = {x ∈ R | x2 = 0} and V = {x ∈ R | x2 = 1}.
We define the map φ : R → R, φ(x) = x+1. If x ∈ U , then x2 = 0, so (φ(x))2 = (x+1)2 =
x2 + 2x + 1 = 1. Hence φ(x) ∈ V . On the other hand, if y ∈ V , set x = y − 1. Then
x2 = y2− 2y+ 1 = 1+ 1 = 0, thus x ∈ U . We conclude that φ is a bijection between U and
V and we are done.

(Mathematical Reflections, proposed by M. Piticari)

360. This problem generalizes the first example from the introduction. The idea of the solution
is similar. Let v be the inverse of 1 − (xy)n. Then v(1 − (xy)n) = (1 − (xy)n)v = 1; hence
v(xy)n = (xy)nv = v − 1. We claim that the inverse of 1 − (yx)n is 1+ (yx)n−1yvx. Indeed,
we compute

(1+ (yx)n−1yvx)(1− (yx)n) = 1− (yx)n + (yx)n−1yvx − (yx)n−1yvx(yx)n

= 1− (yx)n + (yx)n−1yvx − (yx)n−1yv(xy)nx

= 1− (yx)n + (yx)n−1yvx − (yx)n−1y(v− 1)x = 1.

Similarly,

(1− (yx)n)(1+ (yx)n−1yvx) = 1− (yx)n + (yx)n−1yvx − (yx)n(yx)n−1yvx

= 1− (yx)n + (yx)n−1yvx − (yx)n−1y(xy)nvx

= 1− (yx)n + (yx)n−1yvx − (yx)n−1y(v− 1)x = 1.

It follows that 1− (yx)n is invertible and its inverse is 1+ (yx)n−1yvx.

361. (a) Let x and z be as in the statement. We compute

(zxz − xz)2 = (zxz − xz)(zxz − xz)

= (zxz)(zxz)− (zxz)(xz)− (xz)(zxz)+ (xz)(xz)

= zxz2xz − zxzxz − xz2xz + xzxz

= zxzxz − zxzxz − xzxz − xzxz = 0.

Therefore, (zxz − xz)2 = 0, and the property from the statement implies that zxz − xz = 0.
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(b) We have seen in part (a) that if z is an idempotent, then zxz − xz = 0. The same
argument works, mutatis mutandis, to prove that zxz = zx. Hence xz = zxz = zx, which
shows that z is in the center of R, and we are done.

362. We will show that the elements

ac, a2c, a3c, . . . , anc, . . .

are distinct. Let us argue by contradiction assuming that there exist n > m such that anc = amc.
Multiplying by c on the left, we obtain ca(an−1c) = ca(am−1c), so by (iii), ban−1c = bam−1c.
Cancel b as allowed by hypothesis (ii) to obtain an−1c = am−1c. Inductively an−jc = am−jc
for j ≤ m. Thus akc = c, where k = n− m. Multiplying on the right by a and using ca = b,
we also obtain akb = b. The first condition shows that b commutes with a, and so bak = b;
canceling b yields ak = 1. Hence a is invertible and a−1 = ak−1.

The hypothesis ca = b implies

c = ba−1 = bak−1 = ak−1b = a−1b,

hence ac = b, contradicting (iii). The contradiction proves that the elements listed in the
beginning of the solution are all distinct, and the problem is solved.

(Gazeta Matematică (Mathematics Gazette, Bucharest), proposed by C. Guţan)
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363. Examining the sequence, we see that the mth term of the sequence is equal to n exactly
for those m that satisfy

n2 − n

2
+ 1 ≤ m ≤ n2 + n

2
.

So the sequence grows about as fast as the square root of twice the index. Let us rewrite the
inequality as

n2 − n+ 2 ≤ 2m ≤ n2 + n,

then try to solve for n. We can almost take the square root. And because m and n are integers,
the inequality is equivalent to

n2 − n+ 1

4
< 2m < n2 + n+ 1

4
.

Here it was important that n2 − n is even. And now we can take the square root. We obtain

n− 1

2
<
√

2m < n+ 1

2
,

or

n <
√

2m+ 1

2
< n+ 1.

Now this happens if and only if n =
⌊√

2m+ 1
2

⌋
, which then gives the formula for the general

term of the sequence

am =
⌊√

2m + 1

2

⌋
, m ≥ 1.

(R. Graham, D. Knuth, O. Patashnik, Concrete Mathematics: A Foundation for Computer
Science, 2nd ed., Addison-Wesley, 1994)
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364. If we were given the recurrence relation xn = xn−1 + n, for all n, the terms of the
sequence would be the triangular numbers Tn = n(n+1)

2 . If we were given the recurrence

relation xn = xn−1 + n − 1, the terms of the sequence would be Tn−1 + 1 = n2−n+2
2 . In our

case,
n2 − n+ 2

2
≤ xn ≤ n2 + n

2
.

We expect xn = P(n)/2 for some polynomial P(n) = n2 + an + b; in fact, we should have

xn = �P(n)/2� because of the jumps. From here one can easily guess that xn =
⌊

n2+1
2

⌋
, and

indeed
⌊

n2 + 1

2

⌋
=
⌊

(n− 1)2 + 1

2
+ 2(n− 1)+ 1

2

⌋
=
⌊

(n− 1)2 + 1

2
+ 1

2

⌋
+ (n− 1),

which is equal to
⌊

(n−1)2+1
2

⌋
+ (n− 1) if n is even, and to

⌊
(n−1)2+1

2

⌋
+ n if n is odd.

Remark. The answer to the problem can also be given in the form

xn =
⌊n

2

⌋2 +
⌈n

2

⌉2
.

365. From the hypothesis it follows that a4 = 12, a5 = 25, a6 = 48. We observe that

a1

1
= a2

2
= 1,

a3

3
= 2,

a4

4
= 3,

a5

5
= 5,

a6

6
= 8

are the first terms of the Fibonacci sequence. We conjecture that an = nFn, for all n ≥ 1.
This can be proved by induction with the already checked cases as the base case.

The inductive step is

an+4 = 2(n+ 3)Fn+ 3+ (n+ 2)Fn+2 − 2(n+ 1)Fn+1 − nFn

= 2(n+ 3)Fn+ 3+ (n+ 2)Fn+2 − 2(n+ 1)Fn+1 − n(Fn+2 − Fn+1)

= 2(n+ 3)Fn+3 + 2Fn+2 − (n+ 2)(Fn+3 − Fn+2)

= (n+ 4)(Fn+3 + Fn+2) = (n+ 4)Fn+4.

This proves our claim.
(Revista Matematică din Timişoara (Timişoara Mathematics Gazette), proposed by D.

Andrica)

366. Note that (i) implies xi < 2n for all i. We will examine the possible values of x1. It
cannot happen that x1 = 1, because then (ii) implies that all numbers less than 2n should be
terms of the sequence, which is impossible since the sequence has only n− 1 terms.

If x1 = 2, then by (ii) the numbers 2, 4, 6, . . . , 2n−2 are terms of the sequence, and since
the sequence has exactly n − 1 terms we get xi = 2i, i = 1, 2, . . . , n − 1. This sequence
satisfies condition (i) as well, so it is a solution to the problem.

Let us examine the case x1 ≥ 3. If n = 2, the only possibility is x1 = 3, which violates
(i). If n = 3, then we have the possibilities x1 = 3, x2 = 4; x1 = 3, x2 = 5; x1 = 4, x2 = 5,
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all three of which violate (a). This suggests that this case yields no solutions to the problem.
Assume that for some n there is such a sequence with x1 ≥ 3. The numbers

x1, 2x1, . . . ,

⌊
2n

x1

⌋
x1

are terms of the sequence, and no other multiples of x1 are. Because x1 ≥ 3, the above
accounts for at most 2

3 n terms of the sequence, so there must be another term besides these.
Let xj be the smallest term of the sequence that does not appear in the above listing. Then the
first j terms of the sequence are

x1, x2 = 2x1, . . . , xj−1 = (j − 1)x1, xj,

and we have xj < jx1. Condition (i) implies that the last j terms of the sequence must be

xn−1 = 2n− x1, xn−2 = 2n− 2x1, . . . , xn−j+1 = 2n− (j − 1)x1, xn−j = 2n− xj.

But then x1 + xn−j < x1 + xn−1 = 2n, hence by condition (ii) there exists k such that
x1 + xn−j = xk . We have

xk = x1 + xn−j = x1 + 2n− xj = 2n− (xj − x1)

> 2n− (jx1 − x1) = 2n− (j − 1)x1 = xn−j+1

on the one hand, and

xk = x1 + xn−j < x1 + xn−j+1 = xn−j+2.

This means that xk is between xn−j+1 and xn−j+2 which contradicts the fact that the terms
xn−1, xn−2, . . . , xn−j are the last j terms of the sequence.

We conclude that there is no such sequence with x1 ≥ 3, and so the only sequence with
the required property is xi = 2i, i = 1, 2, . . . , n− 1.

Remark. This problem was inspired by the properties of the Weierstrass gaps in the theory
of Riemann surfaces. In short, a Riemann surface is a surface that has local coordinates that
look like the complex coordinates of the plane. A meromorphic function on the Riemann
surface is locally a quotient of two holomorphic functions (see Section 3.3.3). The points
where the meromorphic function has a zero denominator is called a pole. Around a pole p, the
meromorphic function can be written as f (z)/(z−p)n where f is a holomorphic function that is
not zero at p; the number n is called the order of the pole. The Weierstrass gaps theorem states
that for every compact Riemann surface, which has genus g (meaning that it resembles a sphere
with g handles), for every point p there exist g positive integers 1 = n1 < n2 < · · · < ng < 2g
such that for no j does there exist a meromorphic function that is holomorphic off p and has
a pole of order nj at p.

(USA Junior Mathematical Olympiad, 2010, proposed by R. Gelca)

367. The relations

am + am = 1

2
(a2m + a0) and a2m + a0 = 1

2
(a2m + a2m)

http://dx.doi.org/10.1007/978-3-319-58988-6_3
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imply a2m = 4am, as well as a0 = 0. We compute a2 = 4, a4 = 16. Also, a1 + a3 =
(a2 + a4)/2 = 10, so a3 = 9. At this point we guess that ak = k2 for all k ≥ 1.

We prove our guess by induction on k. Suppose that aj = j2 for all j < k. The given
equation with m = k − 1 and n = 1 gives

an = 1

2
(a2n−2 + a2)− an−2 = 2an−1 + 2a1 − an−2

= 2(n2 − 2n+ 1)+ 2− (n2 − 4n+ 4) = n2.

This completes the proof.
(Russian Mathematical Olympiad, 1995)

368. First solution: If we compute some terms, a0 = 0, a1 = 2, a3 = 8, a4 = 34, a5 = 144, we
recognize Fibonacci numbers, namely F0, F3, F6, F9, and F12. So a good working hypothesis
is that an = F3n and also that bn = (Fn)

3, for all n ≥ 0, from which the conclusion would
then follow.

We use induction. Everything is fine for n = 0 and n = 1. Assuming ak = F3k for all
k ≤ n, we have

an+1 = 4F3n + F3n−3 = 3F3n + F3n + F3n−3

= 3F3n + F3n−1 + F3n−2 + F3n−3 = 3F3n + F3n−1 + F3n−1

= F3n + 2F3n + 2F3n−1 = F3n + 2F3n+1 = F3n + F3n+1 + F3n+1

= F3n+2 + F3n+1 = F3n+3 = F3(n+1),

which proves the first part of the claim.
For the second part we deduce from the given recurrence relations that

bn+1 = 3bn + 6bn−1 − 3bn−2 − bn−3, n ≥ 3.

We point out that this is done by substituting an = bn+1+bn−bn−1 into the recurrence relation
for (an)n. On the one hand, bn = (Fn)

3 is true for n = 0, 1, 2, 3. The assumption bk = (Fk)
3

for all k ≤ n yields

bn+1 = 3(Fn)
3 + 6(Fn−1)

3 − 3(Fn−2)
3 − (Fn−3)

3

= 3(Fn−1 + Fn−2)
3 + 6(Fn−1)

3 − 3(Fn−2)
3 − (Fn−1 − Fn−2)

3

= 8(Fn−1)
3 + 12(Fn−1)

2Fn−2 + 6Fn−1(Fn−2)
2 + (Fn−2)

3

= (2Fn−1 + Fn−2)
3 = (Fn+1)

3.

This completes the induction, and with it the solution to the problem.

Second solution: Another way to prove that bn = (Fn)
3 is to observe that both sequences

satisfy the same linear recurrence relation. Let

M =
(

1 1
1 0

)
.
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We have seen before that

Mn =
(

Fn+1 Fn

Fn Fn−1

)
.

Now the conclusion follows from the equality M3n = (Mn)3.

Remark. A solution based on the Binet formula is possible if we note the factorization

λ4 − 3λ3 − 6λ2 + 3λ+ 1 = (λ2 − 4λ− 1)(λ2 + λ− 1).

Setting the left-hand side equal to 0 gives the characteristic equation for the sequence (bn)n,
while setting the first factor on the right equal to 0 gives the characteristic equation for (an)n.

(Proposed by T. Andreescu for a Romanian Team Selection Test for the International
Mathematical Olympiad, 2003, remark by R. Gologan)

369. We compute u0 = 1 + 1, u1 = 2 + 1
2 , u2 = 2 + 1

2 , u3 = 8 + 1
8 . A good guess is

un = 2xn + 2−xn for some sequence of positive integers (xn)n.
The recurrence gives

2xn+1 + 2−xn+1 = 2xn+2xn−1 + 2−xn−2xn−1 + 2xn−2xn−1 + 2−xn+2xn−1 − 2x1 − 2−x1 .

In order to satisfy this we hope that xn+1 = xn + 2xn−1 and that xn − 2xn−1 = ±x1 = ±1.
The characteristic equation of the first recurrence is λ2 − λ − 2 = 0, with the roots 2 and
−1, and using the fact that x0 = 0 and x1 = 1 we get the general term of the sequence
xn = (2n − (−1)n)/3. Miraculously this also satisfies xn − 2xn−1 = (−1)n+1 so the second
condition holds as well. We conclude that �un� = 2xn , and so �un� = 2[2n−(−1)n]/3.

(18th International Mathematical Olympiad, 1976, proposed by the UK)

370. We need to determine m such that bm > an > bm−1. It seems that the difficult part is
to prove an inequality of the form an > bm, which reduces to 3an−1 > 100bm−1 , or an−1 >

(log3 100)bm−1. Iterating, we obtain 3an−2 > (log3 100)100bm−2 , that is,

an−2 > log3(log3 100)+ (log3 100)bm−2.

Seeing this we might suspect that an inequality of the form an > u + vbn, holding for all n
with some fixed u and v, might be useful in the solution. From such an inequality we would
derive an+1 = 3an > 3u(3v)bm . If 3v > 100, then an+1 > 3ubm+1, and if 3u > u + v, then
we would obtain an+1 > u+ vbm+1, the same inequality as the one we started with, but with
m + 1 and n+ 1 instead of m and n.

The inequality 3v > 100 holds for v = 5, and 3u > u + 5 holds for u = 2. Thus
an > 2+ 5bm implies an+1 > 2+ 5bm+1. We have b1 = 100, a1 = 3, a2 = 27, a3 = 327, and
2+ 5b1 = 502 > 729 = 36, so a3 = 2+ 5b1. We find that an > 2+ 5bn−2 for all n ≥ 3. In
particular, an ≥ bn−2.

On the other hand, an < bm implies an+1 = 3an < 100bm < bm+1, which combined with
a2 < b1 yields an < bn−1 for all n ≥ 2. Hence bn−2 < an < bn−1, which implies that
m = n− 1, and for n = 100, m = 99.

(Short list of the 21st International Mathematical Olympiad, 1979, proposed by Romania,
solution by I. Cuculescu)
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371. Assume that we have found such numbers for every n. Then qn+1(x)− xqn(x) must be
divisible by p(x). But

qn+1(x)− xqn(x) = xn+1 − an+1x − bn+1 − xn+1 + anx2 + bnx

= −an+1x − bn+1 + an(x
2 − 3x + 2)+ 3anx − 2an + bnx

= an(x
2 − 3x + 2)+ (3an + bn − an+1)x − (2an + bn+1),

and this is divisible by p(x) if and only if 3an + bn − an+1 and 2an + bn+1 are both equal to
zero. This means that the sequences an and bn are uniquely determined by the recurrences
a1 = 3, b1 = −2, an+1 = 3an + bn, bn+1 = −2an. The sequences exist and are uniquely
defined by the initial condition.

372. Divide through by the product (n+ 1)(n+ 2)(n+ 3). The recurrence relation becomes

xn

n+ 3
= 4

xn−1

n+ 2
+ 4

xn−2

n+ 1
.

The sequence yn = xn/(n+ 3) satisfies the recurrence

yn = 4yn−1 − 4yn−2.

Its characteristic equation has the double root 2. Knowing that y0 = 1 and y1 = 1, we obtain
yn = 2n − n2n−1. follows that the answer to the problem is

xn = (n+ 3)2n − n(n+ 3)2n−1.

(D. Buşneag, I. Maftei, Teme pentru cercurile şi concursurile de matematică (Themes for
mathematics circles and contests), Scrisul Românesc, Craiova)

373. Define c = b/x1 and consider the matrix

A =
(

0 c
x1 a

)
.

It is not hard to see that

An =
(

cxn−1 cxn

xn xn+1

)
.

Using the equality det An = (det A)n, we obtain

c(xn−1xn+1 − x2
n) = (−x1c)n = (−b)n.

Hence x2
n − xn+1xn−1 = (−b)n−1x1, which does not depend on a.

Remark. In the particular case a = b = 1, we obtain the well-known identity for the Fibonacci
sequence Fn+1Fn−1 − F2

n = (−1)n+1.
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374. A standard idea is to eliminate the square root. If we set bn = √
1+ 24an, then

b2
n = 1+ 24an, and so

b2
n+1 = 1+ 24an+1 = 1+ 3

2
(1+ 4an +

√
1+ 24an)

= 1+ 3

2

(
1+ 1

6
(b2

n − 1)+ bn

)

= 1

4
(b2

n + 6bn + 9) =
(

bn + 3

2

)2

.

Hence bn+1 = 1
2 bn + 3

2 , b1 = 5. This is an inhomogeneous first-order linear recursion. We
can solve this by analogy with inhomogeneous linear first-order equations. Recall that if a, b
are constants, then the equation f ′(x) = af (x)+ b has the solution

f (x) = eax
∫

e−axbdx + ceax.

In our problem the general term should be

bn = 1

2n
+ 3

n−1∑

k=1

1

2k
, n ≥ 1.

Summing the geometric series, we obtain bn = 3− 1
2n−1 , and the answer to our problem is

an = b2
n − 1

24
= 1

3
− 1

2n+1
+ 1

3
· 1

22n+1
.

(Proposed by Germany for the 22nd International Mathematical Olympiad, 1981)

375. Call the expression from the statement Sn. It is not hard to find a way to write it in closed
form. For example, if we let u = 1+ i

√
a, then Sn = 1

2 (un + un).
Notice that u and u are both roots of the quadratic equation z2 − 2z + a+ 1 = 0, so they

satisfy the recurrence relation xn+1+2xn+1− (a+1)xn. The same should be true for Sn; hence

Sn+1 = 2Sn+1 − (a+ 1)Sn, n ≥ 1.

One verifies that S1 = 1 and S2 = 1 − a are divisible by 2. Also, if Sn is divisible by 2n−1

and Sn+1 is divisible by 2n, then (a+ 1)Sn and 2Sn+1 are both divisible by 2n+1, and hence so
must be Sn+2. The conclusion follows by induction.

(Romanian Mathematical Olympiad, 1984, proposed by D. Miheţ)

376. Denote the vertices of the octagon by A1 = A, A2, A3, A4, A5 = E, A6, A7, A8 in
successive order. Any time the frog jumps back and forth it makes two jumps, so to get from
A1 to any vertex with odd index, in particular to A5, it makes an even number of jumps. This
shows that a2n−1 = 0.

We compute the number of paths with 2n jumps recursively. Consider the case n > 2.
After two jumps, the frog ends at A1, A3, or A7. It can end at A1 via A2 or A8. Also, the
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configurations where it ends at A3 or A7 are symmetric, so they can be treated simultaneously.
If we denote by b2n the number of ways of getting from A3 to A5 in 2n steps, we obtain the
recurrence a2n = 2a2n−2+2b2n−2. On the other hand, if the frog starts at A3, then it can either
return to A3 in two steps (which can happen in two different ways), or end at A1 (here it is
important that n > 2). Thus we can write b2n = a2n−2+2b2n−2. In vector form the recurrence
is (

a2n

b2n

)
=
(

2 2
1 2

)(
a2n−2

b2n−2

)
=
(

2 2
1 2

)n−1 (
a2

b2

)
.

To find the nth power of the matrix we diagonalize it. The characteristic equation is λ2−4λ+
2 = 0, with roots x = 2 +√2 and y = 2 −√2. The nth power of the matrix will be of the
form

X

(
xn 0
0 yn

)
X−1,

for some matrix X. Consequently, there exist constants α, β determined by the initial condi-
tion, such that a2n = αxn−1 + βyn−1. To determine α and β, note that a2 = 0, b2 = 1, and
using the recurrence relation, a4 = 2 and b4 = 3. We obtain α = 1√

2
and β = − 1√

2
, whence

a2n = 1√
2
(xn−1 − yn−1), for n ≥ 1.

(21st International Mathematical Olympiad, 1979, proposed by Germany)

377. We first try a function of the form f (n) = n+ a. The relation from the statement yields
a = 667, and hence f (n) = n+ 667 is a solution. Let us show that this is the only solution.

Fix some positive integer n and define a0 = n, and ak = f (f (· · · (f (n) · · · ))), where the
composition is taken k times, k ≥ 1. The sequence (ak)k≥0 satisfies the inhomogeneous linear
recurrence relation

ak+3 − 3ak+2 + 6ak+1 − 4ak = 2001.

A particular solution is ak = 667k. The characteristic equation of the homogeneous recurrence
ak+3 − 3ak+2 + 6ak+1 − 4ak = 0 is

λ3 − 3λ2 + 6λ− 4 = 0.

An easy check shows that λ1 = 1 is a solution to this equation. Since λ3−3λ2+6λ−4 = (λ−
1)(λ2−2λ+4), the other two solutions are λ2,3 = 1±i

√
3, that is, λ2,3 = 2

(
cos π

3 ± i sin π
3

)
. It

follows that the formula for the general term of a sequence satisfying the recurrence relation is

ak = c1 + c22k cos
kπ

3
+ c32k sin

kπ

3
+ 667k, k ≥ 0,

with c1, c2, and c3 some real constants.
If c2 > 0, then a3(2m+1) will be negative for large m, and if c2 < 0, then a6m will be

negative for large m. Since f (n) can take only positive values, this implies that c2 = 0. A
similar argument shows that c3 = 0. It follows that ak = c1 + 667k. So the first term of the
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sequence determines all the others. Since a0 = n, we have c1 = n, and hence ak = n+ 667k,
for all k. In particular, a1 = f (n) = n+ 667, and hence this is the only possible solution.

(Mathematics Magazine, proposed by R. Gelca)

378. We compute x3 = 91, x4 = 436, x5 = 2089. And we already suggested by placing the
problem in this section that the solution should involve some linear recurrence. Let us hope
that the terms of the sequence satisfy a recurrence xn+1 = αxn + βxn−1. Substituting n = 2
and n = 3 we obtain α = 5, β = −1, and then the relation is also verified for the next term
2089 = 5 · 436− 91. Let us prove that this recurrence holds in general.

If yn is the general term of this recurrence, then yn = arn + bsn, where

r = 5+√21

2
, s = 5−√21

2
, rs = 1, r − s = √21;

and

a = 7+√21

14
, b = 7−√21

14
, ab = 1.

We then compute

yn+1 − y2
n

yn − 1
= yn+1yn−1 − y2

n

yn−1
= (arn+1 + bsn+1)(arn−1 + bsn−1)− (arn + bxn)2

arn−1 + bsn−1

= ab(rs)n−1(r − s)2

yn−1
= 3

yn − 1
.

Of course, 0 < 3
yn−1 < 1 for n ≥ 2. Because yn+1 is an integer, it follows that

yn+1 =
⌈

y2
n

yn−1

⌉
.

Hence xn and yn satisfy the same recurrence. This implies that xn = yn for all n. The conclusion
now follows by induction if we rewrite the recurrence as

(xn+1 − 1) = 5(xn − 1)− (xn−1 − 1)+ 3.

(Proposed for the USA Mathematical Olympiad by G. Heuer)

379. From the recurrence relation for (an)n, we obtain

2an+1 − 3an =
√

5a2
n − 4,

and hence
4a2

n+1 − 12an+1an + 9a2
n = 5a2

n − 4.

After canceling similar terms and dividing by 4, we obtain

a2
n+1 − 3an+1an + a2

n = −1.

Subtracting this from the analogous relation for n− 1 instead of n yields

a2
n+1 − 3an+1an + 3anan−1 − a2

n−1 = 0.
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This is the same as
(an+1 − an−1)(an+1 − 3an + an−1) = 0,

which holds for n ≥ 1. Looking at the recurrence relation we see immediately that the
sequence (an)n is strictly increasing, so in the above product the first factor is different from
0. Hence the second factor must equal to 0, i.e.,

an+1 = 3an − an−1, n ≥ 2.

This is a linear recurrence that can, of course, be solved by the usual algorithm. But this
is a famous recurrence relation, satisfied by the Fibonacci numbers of odd index. A less
experienced reader can simply look at the first few terms, and then prove by induction that
an = F2n+1, n ≥ 1.

The sequence (bn)n also satisfies a recurrence relation that can be found by substituting
an = bn+1 − bn in the recurrence relation for (an)n. After computations, we obtain

bn+1 = 2bn + 2bn−1 − bn−2, n ≥ 3.

But now we are told that bn should be equal to (Fn)
2, n ≥ 1. Here is a proof by induction on

n. It is straightforward to check the equality for n = 1, 2, 3. Assuming that bk = (Fk)
2 for

all k ≤ n, it follows that

bn+1 = 2(Fn)
2 + 2(Fn−1)

2 − (Fn−2)
2

= (Fn + Fn−1)
2 + (Fn − Fn−1)

2 − (Fn−2)
2

= (Fn+1)
2 + (Fn−2)

2 − (Fn−2)
2 = (Fn+1)

2.

With this the problem is solved.
(Mathematical Reflections, proposed by T. Andreescu)

380. Of course, we can find the formula for the general term of the sequence, and then pass
to the limit, but here is a clever way to find this particular limit.

Write the numbers in binary form. Then x2 = 0.1, x3 = 0.11, x4 = 0.101, x5 = 0.1011,
x6 = 0.10101, and by an easy induction one can prove that x2n = 0.1010 . . . 01 where there
are n ones and x2n+1 = 0.1010 . . . 011 where there are n+ 1 ones. The limit is therefore the
number in binary form 0.10101010 . . ., which is 2

3 .

381. The function | sin x| is periodic with period π . Hence

lim
n→∞ | sin π

√
n2 + n+ 1| = lim

n→∞ | sin π(
√

n2 + n+ 1− n)|.

But

lim
n→∞(
√

n2 + n+ 1− n) = lim
n→∞

n2 + n+ 1− n2

√
n2 + n+ 1+ n

= 1

2
.

It follows that the limit we are computing is equal to
∣∣sin π

2

∣∣, which is 1.
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382. Using the binomial expansion, we see that (1+√2)2n+ (1−√2)2n is an integer for all
n. Note also that (1−√2)2n < 1 for all n. Hence

{(1+√2)2n} = 1− (1−√2)2n.

Passing to the limit in this equality we obtain

lim
n→∞{(1+

√
2)2n} = 1− lim

n→∞(1−√2)2n = 1.

383. The limit is computed as follows:

lim
n→∞

(
n

k

)(μ
n

)k (
1− μ

n

)n−k

= lim
n→∞

n!
k!(n− k)!

⎛

⎜
⎝

μ

n

1− μ

n

⎞

⎟
⎠

k

(
1− μ

n

)n

= 1

k! lim
n→∞

n(n− 1) · · · (n− k + 1)
(

n

μ
− 1

)k
· lim

n→∞

(
1− μ

n

) n
μ
·μ

= eμ

k! lim
n→∞

nk − (1+ . . .+ (k − 1))nk−1 + · · · + (−1)k−1(k − 1)!
1

μk
nk −
(

k

1

)
1

μk−1
nk−1 + · · · + (−1)k

= 1

eμ · k! ·
1
1

μk

= μk

eμ · k! .

Remark. This limit is applied in probability theory in the following context. Consider a large
population n in which an event occurs with very low probability p. The probability that the
event occurs exactly k times in that population is given by the binomial formula

P(k) =
(

n

k

)
pk(1− p)n−k.

But for n large, the number (1 − p)n−k is impossible to compute. In that situation we set
μ = np (the mean occurrence in that population), and approximate the probability by the
Poisson distribution

P(k) ≈ μk

ek · k! .
The exercise we just solved shows that this approximation is good.

384. Let us assume that the answer is negative. Then the sequence has a bounded subsequence
(xnk )k . The set {xxnk

| k ∈ Z} is finite, since the indices xnk belong to a finite set. But xxnk
= n4

k ,
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and this takes infinitely many values for k ≥ 1. We reached a contradiction that shows that
our assumption was false. So the answer to the question is yes.

(Romanian Mathematical Olympiad, 1978, proposed by S. Rădulescu)

385. Suppose a �= 0. Then a > 0 or else the expression would eventually become negative.
Let xn =

√
a · 2n + b. We have

lim
n→∞(2xn − xn+2) = lim

n→∞(
√

a · 2n+2 + 4b−
√

a · 2n+2 + b)

= lim
n→∞

3b√
a · 2n+2 + 4b+√a · 2n+2 + b

= 0.

This is a sequence of integers, so there is some N such that 2xn = xn+2 for n ≥ N . But
the equality 2xn = xn+2 is equivalent to b = 0. Then a and 2a are both squares, which is
impossible, by the prime factor decomposition. So a must be zero.

(Polish Team Selection Test for the International Mathematical Olympiad)

386. Let xn =
√

an2 + bn+ c. Note that

xn − n
√

a = xn + n
√

a

an2 + bn+ c− an2
= xn + n

√
a

bn+ c

=
√

an2 + bn+ c+ n
√

a

bn+ c
.

And this converges to 2
√

a
b . Hence xn+1− xn converges to

√
a. Because this sequence consists

of integers, it eventually becomes constant. So for sufficiently large integers, xn+1 = xn+√a.
It follows that a is a perfect square, say a = x2. Fix M such that for n ≥ M, xn+1 = xn + x.
Then xn = xM + (n−M)x. So (xM −Mx + nx)2 = x2n2 + bn+ c, giving b = 2(xM −Mx)x
and c = (xM −Mx)2.

387. Define the sequence (bn)n by

bn = max{|ak|, 2n−1 ≤ k < 2n}.
From the hypothesis it follows that bn ≤ bn−1

2 . Hence 0 ≤ bn ≤ b1
2n−1 , which implies that

(bn)n converges to 0. We also have that |an| ≤ bn, for n ≥ 1, so by applying the squeezing
principle, we obtain that (an)n converges to zero, as desired.

(Romanian Mathematical Olympiad, 1975, proposed by R. Gologan)

388. First solution: Using the fact that lim
n→∞

n
√

a = 1, we pass to the limit in the relation from

the statement to obtain
1+ 1+ · · · + 1︸ ︷︷ ︸

k times

= 1+ 1+ · · · + 1︸ ︷︷ ︸
m times

.

Hence k = m. Using L’Hôpital’s theorem, one can prove that lim
x→0

x(ax−1) = ln a, and hence

lim
n→∞ n( n

√
a− 1) = ln a. Transform the relation from the hypothesis into

n( n
√

a1 − 1)+ · · · + n( n
√

ak − 1) = n(
n
√

b1 − 1)+ · · · + n(
n
√

bk − 1).
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Passing to the limit with n →∞, we obtain

ln a1 + ln a2 + · · · + ln ak = ln b1 + ln b2 + · · · + ln bk.

This implies that a1a2 · · · ak = b1b2 · · · bk , and we are done.

Second solution: Fix N > k; then taking n = (N !)
m for 1 ≤ m ≤ k, we see that the power-sum

symmetric polynomials in a1/N !
i agree with the power-sum symmetric polynomials in b1/N !

i .
Hence the elementary symmetric polynomials in these variables also agree and hence there is
a permutation π such that bi = aπ(i).

(Revista Matematică din Timişoara (Timişoara Mathematics Gazette), proposed by
D. Andrica, second solution by R. Stong)

389. It is known that
lim

x→0+
xx = 1.

Here is a short proof using L’Hôpital’s theorem:

lim
x→0+

xx = lim
x→0+

ex ln x = elimx→0+ ln x = e
limx→0+ ln x

1
x = elimx→0+ (−x) = 1.

Returning to the problem, fix ε > 0, and choose δ > 0 such that for 0 < x < δ,

|xx − 1| < ε.

Then for n ≥ 1
δ

we have

∣∣∣∣
∣
n2
∫ 1

n

0
(xx+1 − x)dx

∣∣∣∣
∣
≤ n2
∫ 1

n

0
|xx+1 − x|dx

= n2
∫ 1

n

0
x|xx − 1|dx < εn2

∫ 1
n

0
xdx = ε

2
.

It follows that

lim
n→∞

∫ 1
n

0
(xx+1 − x)dx = 0,

and so

lim
n→∞ n2

∫ 1
n

0
xx+1dx = lim

n→∞ n2
∫ 1

n

0
xdx = 1

2
.

(Revista Matematică din Timişoara (Timişoara Mathematics Gazette), proposed by D.
Andrica)

390. We will prove by induction on n ≥ 1 that

xn+1 >

n∑

k=1

kxk > a · n!,

from which it will follow that the limit is∞.
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For n = 1, we have x2 ≥ 3x1 > x1 = a. Now suppose that the claim holds for all values
up through n. Then

xn+2 ≥ (n+ 3)xn+1 −
n∑

k=1

kxk = (n+ 1)xn+1 + 2xn+1 −
n∑

k=1

kxk

> (n+ 1)xn+1 + 2
n∑

k=1

kxk −
n∑

k=1

kxk =
n+1∑

k=1

kxk,

as desired. Furthermore, x1 > 0 by definition and x2, x3, . . . , xn are also positive by the
induction hypothesis. Therefore, xn+2 > (n + 1)xn+1 > (n + 1)(a · n!) = a · (n + 1)!. This
completes the induction, proving the claim.

(Romanian Team Selection Test for the International Mathematical Olympiad, 1999)

391. Denote λ = inf
n≥1

xn
n and for simplicity assume that λ > −∞. Fix ε > 0. Then there

exists n0 such that
xn0
n0
≤ λ+ ε. Let M = max

1≤i≤n0
xi.

An integer m can be written as n0q + n1, with 0 ≤ n1 < q and q =
⌊

m
n0

⌋
. From the

hypothesis it follows that xm ≤ qxn0 + xn1 ; hence

λ ≤ xm

m
≤ qxn0

m
+ xn1

m
≤ qn0

m
(λ+ ε)+ M

m
.

Therefore,

λ ≤ xm

m
≤

⌊
m

n0

⌋

m

n0

(λ+ ε)+ M

m
.

Since

lim
m→∞

⌊
m

n0

⌋

m

n0

= 1 and lim
m→∞

M

m
= 0,

it follows that for large m,

λ ≤ xm

m
≤ λ+ 2ε.

Since ε was arbitrary, this implies

lim
n→∞

xn

n
= λ = inf

n≥1

xn

n
,

as desired.

392. We use the fact that
lim

x→0+
xx = 1.

As a consequence, we have

lim
x→0+

xx+1

x
= 1.
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For our problem, let ε > 0 be a fixed small positive number. There exists n(ε) such that for
any integer n ≥ n(ε),

1− ε <

(
k

n2

) k
n2+1

k

n2

< 1+ ε, k = 1, 2, . . . , n.

From this, using properties of ratios, we obtain

1− ε <

n∑

k=1

(
k

n2

) k
n2+1

n∑

k=1

k

n2

< 1+ ε, for n ≥ n(ε).

Knowing that
n∑

k=1

k = n(n+ 1)

2
, this implies

(1− ε)
n+ 1

2n
<

n∑

k=1

(
k

n2

) k
n2+1

< (1+ ε)
n+ 1

2n
, for n ≥ n(ε).

It follows that

lim
n→∞
∑

n→∞

(
k

n2

) k
n2+1

= 1

2
.

(D. Andrica)

393. Assume that xn is a square for all n > M. Consider the integers yn = √xn, for n ≥ M.
Because in base b,

b2n

b− 1
= 11 . . . 1︸ ︷︷ ︸

2n

.111 . . . ,

it follows that

lim
n→∞

b2n

b− 1
xn

= 1.

Therefore,

lim
n→∞

bn

yn
= √b− 1.

On the other hand,

(byn + yn+1)(byn − yn+1) = b2xn − xn+1 = bn+2 + 3b2 − 2b− 5.

The last two relations imply

lim
n→∞(byn − yn+1) = lim

n→∞
bn+2

byn + yn+1
= b

√
b− 1

2
.
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Here we used the fact that

lim
n→∞

bn+2

byn
= lim

n→∞
bn+2

yn+1
= b

√
b− 1.

Since byn − yn+1 is an integer, if it converges then it eventually becomes constant. Hence
there exists N > M such that byn − yn+1 = b

√
b−1
2 for n > N . This means that b − 1 is a

perfect square. If b is odd, then
√

b−1
2 is an integer, and so b divides b

√
b−1
2 . Since the latter is

equal to byn − yn+1 for n > N , and this divides bn+2 + 3b2 − 2b− 5, it follows that b divides
5. This is impossible.

If b is even, then by the same argument b
2 divides 5. Hence b = 10. In this case we have

indeed that xn =
(

10n+5
3

)2
, and the problem is solved.

(Short list of the 44th International Mathematical Olympiad, 2003)

394. Recall the double inequality

(
1+ 1

n

)n

< e <

(
1+ 1

n

)n+1

, n ≥ 1.

Taking the natural logarithm, we obtain

n ln

(
1+ 1

n

)
< 1 < (n+ 1) ln

(
1+ 1

n

)
,

which yields the double inequality

1

n+ 1
< ln(n+ 1)− ln n <

1

n
.

Applying the one on the right, we find that

an − an−1 = 1

n
− ln(n+ 1)+ ln n > 0, for n ≥ 2,

so the sequence is increasing. Adding the inequalities

1 ≤ 1,

1

2
< ln 2− ln 1,

1

3
< ln 3− ln 2,

. . .

1

n
< ln n− ln(n− 1),

we obtain

1+ 1

2
+ 1

3
+ · · · + 1

n
< 1+ ln n < 1+ ln(n+ 1).
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Therefore, an < 1, for all n. We found that the sequence is increasing and bounded, hence
convergent.

395. The sequence is increasing, so all we need to show is that it is bounded. The main trick
is to factor a

√
2. The general term of the sequence becomes

an =
√

2

√√
√
√1

2
+
√

2

4
+
√

3

8
+ · · · + n

2n

<
√

2

√

1+
√

1+
√

1+ · · · + √1.

Let bn =
√

1+
√

1+ · · · + √1, where there are n radicals. Then bn+1 = √1+ bn. We see
that b1 = 1 < 2, and if bn < 2, then bn+1 <

√
1+ 2 < 2. Inductively we prove that bn < 2

for all n. Therefore, an < 2
√

2 for all n. Being monotonic and bounded, the sequence (an)n

is convergent.
(Matematika v Škole, 1971, solution from R. Honsberger, More Mathematical Morsels,

Mathematical Association of America, 1991)

396. We examine first the expression under the square root. Its zeros are −1±√5
2 . In order

for the square root to make sense, an should be outside the interval
(
−1−√5

2 , −1+√5
2

)
. Since

an ≥ 0 for n ≥ 2, being the square root of an integer, we must have an ≥ −1+√5
2 for n ≥ 2.

To simplify the notation, let r = −1+√5
2 .

Now suppose by contradiction that a1 ∈ (−2, 1). Then

a2
2 = a2

1 + a1 − 1 =
(

a1 + 1

2

)2

− 5

4
<

(
3

2

)2

− 5

4
= 1,

so a2 ∈ [r, 1). Now if an ∈ [r, 1), then

a2
n+1 = a2

n + an − 1 < a2
n < 1.

Inductively we prove that an ∈ [r, 1) and an+1 < an. The sequence (an)n is bounded and
strictly decreasing; hence it has a limit L. This limit must lie in the interval [r, 1). Passing to
the limit in the recurrence relation, we obtain L = √L2 + L − 1, and therefore L2 = L2+L−1.
But this equation has no solution in the interval [r, 1), a contradiction. Hence a1 cannot lie in
the interval (−2, 1).

(Bulgarian Mathematical Olympiad, 2002)

397. This is the Bolzano-Weierstrass theorem. For the proof, let us call a term of the sequence
a giant if all terms following it are smaller. If the sequence has infinitely many giants, they
form a bounded decreasing subsequence, which is therefore convergent. If the sequence has
only finitely many giants, then after some rank each term is followed by larger term. These
terms give rise to a bounded increasing subsequence, which is again convergent.
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Remark. The idea can be refined to show that any sequence of mn+1 real numbers has either
a decreasing subsequence with m+ 1 terms or an increasing subsequence with n+ 1 terms.

398. Consider the truncations

sn = a1 − a2 + a3 − · · · ± an, n ≥ 1.

We are to show that the sequence (sn)n is convergent. For this we verify that the sequence
(sn)n is Cauchy. Because (an)n≥1 is decreasing, for all n > m,

|sn − sm| = am − am+1 + am+2 − · · · ± an

= am − (am+1 − am+2)− (am+3 − am+4)− · · · ,
where the sum ends either in an or in−(an−1 − an). All terms of this sum, except for the first
and maybe the last, are negative. Therefore, |sn − sm| ≤ am + an, for all n > m ≥ 1. As
an → 0, this shows that the sequence (sn)n is Cauchy, and hence convergent.

(The Leibniz criterion)

399. For a triple of real numbers (x, y, z) define �(x, y, z) = max(|x − y|, |x − z|, |y − z|).
Let �(a0, b0, c0) = δ. From the recurrence relation we find that

�(an+1, bn+1, cn+1) = 1

2
�(an, bn, cn), n ≥ 0.

By induction �(an, bn, cn) = 1
2n δ. Also, max(|an+1 − an|, |bn+1 − bn|, |cn+1 − cn|) =

1
2�(an, bn, cn). We therefore obtain that |an+1 − an|, |bn+1 − bn|, |cn+1 − cn| are all less
than or equal to 1

2n δ. So for n > m ≥ 1, the absolute values |an− am|, |bn− bm|, and |cn− cm|
are less than (

1

2m
+ 1

2m+1
+ · · · + 1

2n

)
δ <

δ

2m
.

This proves that the sequences are Cauchy, hence convergent. Because as n tends to infinity
�(an, bn, cn) approaches 0, the three sequences converge to the same limit L. Finally, because
for all n, ab+ bn+ cn = a0+ b0+ c0, we should have 3L = a0+ b0+ c0; hence the common
limit is (a0+b0+c0)

3 .

400. Because
∑

an converges, Cauchy’s criterion implies that

lim
n→∞(a�n/2�+1 + a�n/2�+2 + · · · + an) = 0.

By monotonicity

a�n/2�+1 + a�n/2�+2 + · · · + an ≥
⌈n

2

⌉
an,

so lim
n→∞
⌈

n
2

⌉
an = 0. Consequently, lim

n→∞
n
2 an = 0, and hence lim

n→∞ nan = 0, as desired.

(Abel’s lemma)

401. Think of the larger map as a domain D in the plane. The change of scale from one map to
the other is a contraction, and since the smaller map is placed inside the larger, the contraction
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maps D to D. Translating into mathematical language, a point such as the one described in
the statement is a fixed point for this contraction. And by the fixed point theorem the point
exists and is unique.

402. Define the function f (x) = ε sin x + t. Then for any real numbers x1 and x2,

|f (x1)− f (x2)| = |ε| · | sin x1 − sin x2| ≤ 2|ε| ·
∣
∣
∣
∣sin

x1 − x2

2

∣
∣
∣
∣ ·
∣
∣
∣
∣cos

x1 + x2

2

∣
∣
∣
∣

≤ 2|ε| ·
∣
∣
∣
∣sin

x1 − x2

2

∣
∣
∣
∣ ≤ ε|x1 − x2|.

Hence f is a contraction, and there exists a unique x such that f (x) = ε sin x + t = x. This x
is the unique solution to the equation.

(J. Kepler)

403. Define f : (0,∞) → (0,∞), f (x) = 1
2

(
x + c

x

)
. Then f ′(x) = 1

2

(
1− c

x2

)
, which is

negative for x <
√

c and positive for x >
√

c. This shows that
√

c is a global minimum
for f and henceforth f ((0,∞)) ⊂ [√c,∞). Shifting indices, we can assume that x0 ≥ √c.
Note that |f ′(x)| < 1

2 for x ∈ [√c,∞), so f is a contraction on this interval. Because
xn = f (f (· · · f (x0))), n ≥ 1, the sequence (xn)n converges to the unique fixed point x∗ of f .
Passing to the limit in the recurrence relation, we obtain x∗ = 1

2

(
x∗ + c

x∗
)
, which is equivalent

to the quadratic equation (x∗)2−c = 0. We obtain the desired limit of the sequence x∗ = √c.
(Hero)

404. Define

xn =
√

1+
√

1+
√

1+ · · · + √1, n ≥ 1,

where in this expression there are n square roots. Note that xn+1 is obtained from xn by replacing√
1 by
√

1+√1 at the far end. The square root function being increasing, the sequence
(xn)n is increasing. To prove that the sequence is bounded, we use the recurrence relation
xn+1 = √1+ xn, n ≥ 1. Then from xn < 2, we obtain that xn+1 = √1+ xn <

√
1+ 2 < 2, so

inductively xn < 2 for all n. Being bounded and monotonic, the sequence (xn)n is convergent.
Let L be its limit (which must be greater than 1). Passing to the limit in the recurrence relation,
we obtain L = √1+ L, or L2 − L − 1 = 0. The only positive solution is the golden ratio√

5+1
2 , which is therefore the limit of the sequence.

405. If the sequence converges to a certain limit L, then L = √a+ bL, so L is equal to the
(unique) positive root α of the equation x2 − bx − a = 0.

The convergence is proved by verifying that the sequence is monotonic and bounded. The
condition xn+1 ≥ xn translates to x2

n ≥ a + bxn, which holds if and only if xn > α. On the
other hand, if xn ≥ α, then x2

n+1 = a + bxn ≥ a + bα = α2; hence xn+1 ≥ α. Similarly,
if xn ≤ α, then xn+1 ≤ α. There are two situations. Either x1 < α, and then by induction
xn < α for all n, and hence xn+1 > xn for all n. In this case the sequence is increasing and
bounded from above by α; therefore, it is convergent, its limit being of course α. Or x1 ≥ α,
in which case the sequence is decreasing and bounded from below by the same α, and the
limit is again α.
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406. By the AM-GM inequality, an < bn, n ≥ 1. Also,

an+1 − an =
√

anbn − an = √an(
√

bn −√an) > 0;
hence the sequence (an)n is increasing. Similarly,

bn+1 − bn = an + bn

2
− bn = an − bn

2
< 0,

so the sequence bn is decreasing. Moreover,

a0 < a1 < a2 < · · · < an < bn < · · · < b1 < b0,

for all n, which shows that both sequences are bounded. By the Weierstrass theorem, they
are convergent. Let a = lim

n→∞ an and b = lim
n→∞ bn. Passing to the limit in the first recurrence

relation, we obtain a = √ab, whence a = b. Done.

Remark. The common limit, denoted by M(a, b), is called the arithmetic-geometric mean of
the numbers a and b. It was Gauss who first discovered, as a result of laborious computa-
tions, that the arithmetic-geometric mean is related to elliptic integrals. The relation that he
discovered is

M(a, b) = π

4
· a+ b

K

(
a− b

a+ b

) ,

where

K(k) =
∫ 1

0

1
√

(1− t2)(1− k2t2)
dt

is the elliptic integral of first kind. It is interesting to note that this elliptic integral is used to
compute the period of the spherical pendulum. More precisely, for a pendulum described by
the differential equation

d2θ

dt2
+ ω2 sin θ = 0,

with maximal angle θmax, the period is given by the formula

P = 2
√

2

ω
K

(
sin

(
1

2
θmax

))
.

407. The function fn(x) = xn + x − 1 has positive derivative on [0, 1], so it is increasing on
this interval. From fn(0) · fn(1) < 0 it follows that there exists a unique xn ∈ (0, 1) such that
f (xn) = 0.

Since 0 < xn < 1, we have xn+1
n + xn − 1 < xn

n + xn − 1 = 0. Rephrasing, this means
that fn+1(xn) < 0, and so xn+1 > xn. The sequence (xn)n is increasing and bounded, thus it
is convergent. Let L be its limit. There are two possibilities, either L = 1, or L < 1. But L
cannot be less than 1, for when passing to the limit in xn

n + xn − 1 = 0 we obtain L − 1 = 0,
or L = 1, a contradiction. Thus L = 1, and we are done.

(Gazeta Matematică (Mathematics Gazette, Bucharest), proposed by A. Leonte)
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408. Let

xn =

√√
√
√

1+ 2

√

1+ 2

√

1+ · · · + 2

√
1+ 2

√
1969

with the expression containing n square root signs. Note that

x1(1+
√

2) = √1969− (1+√2) < 50.

Also, since
√

1+ 2(1+√2) = 1+√2, we have

xn+1 − (1+√2) = √1+ 2xn −
√

1+ 2(1+√2) = 2(xn − (1−√2))

√
1+ 2xn +

√
1+ 2(1+√2)

<
xn − (1+√2)

1+√2
.

From here we deduce that

x1969 − (1+√2) <
50

(1+√2)1968
< 10−3,

and the approximation of x1969 with two decimal places coincides with that of 1+√2 = 2.41.
This argument proves also that the limit of the sequence is 1+√2.

(St. Petersburg Mathematical Olympiad, 1969)

409. Write the equation as
√

x + 2

√

x + · · · + 2
√

x + 2
√

x + 2x = x.

We can iterate this equality infinitely many times, always replacing the very last x by its value
given by the left-hand side. We conclude that x should satisfy

√

x + 2
√

x + 2
√

x + 2 · · · = x,

provided that the expression on the left makes sense! Let us check that indeed the recursive
sequence given by x0 = x, and xn+1 = √

x + 2xn, n ≥ 0, converges for any solution x to
the original equation. Squaring the equation, we find that x < x2, hence x > 1. But then
xn+1 < xn, because it reduces to x2

n − 2xn + x > 0. This is always true, since when viewed as
a quadratic function in xn, the left-hand side has negative discriminant. Our claim is proved,
and we can now transform the equation, the one with infinitely many square roots, into the
much simpler

x = √x + 2x.

This has the unique solution x = 3, which is also the unique solution to the equation from the
statement, and this regardless of the number of radicals.

(D.O. Shklyarski, N.N. Chentsov, I.M. Yaglom, Selected Problems and Theorems in Ele-
mentary Mathematics, Arithmetic and Algebra, Mir, Moscow)
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410. The sequence satisfies the recurrence relation

xn+2 =
√

7−√7+ xn, n ≥ 1,

with x1 =
√

7 and x2 =
√

7−√7. Let us first determine the possible values of the limit L,
assuming that it exists. Passing to the limit in the recurrence relation, we obtain

L =
√

7−√7+ L.

Squaring twice, we obtain the polynomial equation L4 − 14L2 − L + 42 = 0. Two roots are
easy to find by investigating the divisors of 42, and they are L = 2 and L = −3. The other
two are L = 1

2 ±
√

29
2 . Only the positive roots qualify, and of them 1

2 +
√

29
2 is not a root of the

original equation, since

1

2
+
√

29

2
> 3 >

√
7−√7+ 3 >

√√√
√

7−
√

7+ 1

2
+
√

29

2
.

So the only possible value of the limit is L = 2.
Let xn = 2+ αn. Then α1, α2 ∈ (0, 1). Also,

αn+2 = 3−√9+ αn√
7−√9+ αn + 2

.

If αn ∈ (0, 1), then

0 > αn+2 >
3−√9+ αn

4
≥ −1

2
αn,

where the last inequality follows from 3+ 2αn ≥ √9+ αn. Similarly, if αn ∈ (−1, 0), then

0 < αn+2 <
3−√9+ αn

4
≤ 1

2
|αn|,

where the last inequality follows from 3 <
√

9− |αn| + 2α. Inductively, we obtain that
αn− (−2−�n/2�, 2−�n/2�), and hence αn → 0. Consequently, the sequence (xn)n is convergent,
and its limit is 2.

(13th W.L. Putnam Mathematics Competition, 1953)

411. (a) The answer is cleary∞.
(b) We define the sequence

x0 = 1, xn+1 =
√

2
xn

, n ≥ 0.

Then x0 < x1 and since x �→ √
2

x
is increasing, we obtain inductively that xn < xn+1 for all

n. The sequence is increasing, so it has a limit L. We know that L = √
2

L
. One possible

solution is L = ∞, another is L = 2, and another is L = 4. Are there other positive solutions
to the equation x = √2

x
?
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Squaring we transform the equation into

2x = x2

which after taking the logarithm becomes

x ln 2− 2 ln x.

Consider the function f : (0,∞) → R, f (x) = x ln 2 − 2 ln x. We are to find the zeros of f .
Differentiating we obtain

f ′(x) = ln 2− 2

x
,

which is strictly increasing. The unique zero of the derivative is 2/ ln 2, and so f ′ is negative
for x < 2/ ln 2 and positive for x > 2/ ln 2. Note also that limx→0 f (x) = limx→∞ f (x) = ∞.
There are two possibilities, either f (2/ ln 2) > 0 in which case the equation f (x) = 0 has no
solutions, or f (2/ ln 2) < 0 in which case the equation f (x) = 0 has exactly two solutions.
The latter must be true, as f (2) = f (4) = 0. Therefore x = 2 and x = 4 are the only solutions
to f (x) = 0, and hence also to the original equation.

Now we have to decide which of 2, 4,∞ is the limit of the sequence. Notice that x0 < 2,

and if xn < 2, then xn+1 =
√

2
xn

<
√

2
2 = 2. So inductively we obtain xn < 2. Hence L, the

limit of xn, must be 2.
(c) Like in the case of (b), the sequence xn+1 = axn , x1 = a is increasing and it has a limit

L. Then L
1
L = a, that is ln L

L = ln a. The maximum of the function f (x) = ln x
x is attained

when f ′(x) = ln x−1
x2 is zero, that is when x = e. In that case a = e

1
e . So we know for sure that

L = ∞ if a > e
1
e . On the other hand, if a < e

1
e , then we can prove by induction that xn ≤ e

1
e .

So we have an increasing sequence and bounded sequence, which by the Weierstrass theorem
is convergent. Thus the answer to the question is a ≤ e

1
e .

Remark. Note that e
1
e ≈ 1.44466....

412. The solution is a direct application of the Cesàro-Stolz theorem. Indeed, if we let
an = ln un and bn = n, then

ln
un+1

un
= ln un1 − ln un = an+1 − an

bn+1 − bn

and

ln n
√

un = 1

n
ln un = an

bn
.

The conclusion follows.

Remark. This gives an easy proof of limn→∞
n
√

n! = ∞.

413. In view of the Cesàro-Stolz theorem, it suffices to prove the existence of and to compute
the limit

lim
n→∞

(n+ 1)p

(n+ 1)p+1 − np+1
.
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We invert the fraction and compute instead

lim
n→∞

(n+ 1)p+1 − np+1

(n+ 1)p
.

Dividing both the numerator and denominator by (n+ 1)p+1, we obtain

lim
n→∞

1−
(

1− 1

n+ 1

)p+1

1

n+ 1

,

which, with the notation h = 1
n+1 and f (x) = (1− x)p+1, becomes

− lim
h→0

f (h)− f (0)

h
= −f ′(0) = p+ 1.

We conclude that the required limit is 1
p+1 .

414. An inductive argument shows that 0 < xn < 1 for all n. Also, xn+1 = xn − x2
n < xn, so

(xn)n is decreasing. Being bounded and monotonic, the sequence converges; let x be its limit.
Passing to the limit in the defining relation, we find that x = x − x2, so x = 0.

We now apply the Cesàro-Stolz theorem. We have

lim
n→∞ nxn = lim

n→∞
n
1

xn

= lim
n→∞

n+ 1− n
1

xn+1
− 1

xn

= lim
n→∞

1
1

xn − x2
n

− 1

xn

= lim
n→∞

xn − x2
n

1− (1− xn)
= lim

n→∞(1− xn) = 1,

and we are done.

415. It is not difficult to see that lim
n→∞ xn = 0. Because of this fact,

lim
n→∞

xn

sin xn
= 1.

If we are able to find the limit of n
1

sin2 xn

,

then this will equal the square of the limit under discussion. We use the Cesàro-Stolz theorem.
Suppose 0 < x0 ≤ 1 (the cases x0 < 0 and x0 = 0 being trivial; see above). If 0 < xn ≤ 1,

then 0 < arcsin(sin2 xn) < arcsin(sin xn) = xn, so 0 < xn+1 < xn. It follows by induction
on n that xn ∈ (0, 1] for all n and xn decreases to 0. Rewriting the recurrence as sin xn+1 =
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sin xn

√
1− sin4 xn − sin2 xn cos xn gives

1

sin xn+1
− 1

sin xn
= sin xn − sin xn+1

sin xn sin xn+1

= sin xn − sin xn

√
1− sin4 xn + sin2 xn cos xn

sin xn(sin xn

√
1− sin4 xn − sin2 xn cos xn)

= 1−
√

1− sin4 xn + sin xn cos xn

sin xn

√
1− sin4 xn − sin2 xn cos xn

=
sin4 xn

1+
√

1− sin4 xn

+ sin xn cos xn

sin xn

√
1− sin4 xn − sin2 xn cos xn

=
sin3 xn

1+
√

1− sin4 xn

+ cos xn

√
1− sin4 xn − sin xn cos xn

.

Hence

lim
n→∞

(
1

sin xn+1
− 1

sin xn

)
= 1.

From the Cesàro-Stolz theorem it follows that lim
n→∞

1
n sin xn

= 1, and so we have lim
n→∞ nxn = 1.

(Gazeta Matematică (Mathematics Gazette, Bucharest), 2002, proposed by T. Andreescu)

416. We compute the square of the reciprocal of the limit, namely lim
n→∞

1
nx2

n
. To this end,

we apply the Cesàro-Stolz theorem to the sequences an = 1
x2

n
and bn = n. First, note that

lim
n→∞ xn = 0. Indeed, in view of the inequality 0 < sin x < x on (0, π), the sequence is

bounded and decreasing, and the limit L satisfies L = sin L, so L = 0. We then have

lim
n→∞

(
1

x2
n+1

− 1

x2
n

)
= lim

n→∞

(
1

sin2 xn
− 1

x2
n

)
= lim

n→∞
x2

n − sin2 xn

x2
n sin2 xn

= lim
xn→0

x2
n −

1

2
(1− cos 2xn)

1

2
x2

n(1− cos 2xn)

= lim
xn→0

2x2
n −
[
(2xn)

2

2! − (2xn)
4

4! + · · ·
]

x2
n

[
(2xn)

2

2! − (2xn)
4

4! + · · ·
]

= 24/4!
22/2! =

1

3
,

where we have used the Taylor series of cos 2x. We conclude that the original limit is
√

3.
(J. Dieudonné, Infinitesimal Calculus, Hermann, 1962, solution by Ch. Radoux)

417. Through a change of variable, we obtain

bn =

∫ n

0
f (t)dt

n
= xn

yn
,
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where xn =
∫ n

0
f (t)dt and yn = n. We are in the hypothesis of the Cesàro-Stolz theorem,

since (yn)n is increasing and unbounded and

xn+1 − xn

yn+1 − yn
=

∫ n+1

0
f (t)dt −

∫ n

0
f (t)dt

(n+ 1)− n
=
∫ n+1

n
f (t)dt =

∫ 1

0
f (n+ x)dx = an,

which converges. It follows that the sequence (bn)n converges; moreover, its limit is the same
as that of (an)n.

(Proposed by T. Andreescu for the W.L. Putnam Mathematics Competition)

418. Because P(x) > 0, for x = 1, 2, . . . , n, the geometric mean is well defined. We analyze
the two sequences separately. First, let

Sn,k = 1+ 2k + 3k + · · · + nk.

Because

lim
n→∞

Sn+1,k − Sn,k

(n+ 1)k+1 − nk+1
= lim

n→∞
(n+ 1)k

(k+1
1

)
nk + (k+1

2

)
nk−1 + · · · + 1

= 1

k + 1
,

by the Cesàro-Stolz theorem we have that

lim
n→∞

Sn,k

nk+1
= 1

k + 1
.

Writing

An = P(1)+ P(2)+ · · · + P(n)

n
= am

Sn,m

n
+ am−1

Sn,m−1

n
+ · · · + am,

we obtain

lim
n→∞

An

nm
= am

m+ 1
.

Now we turn to the geometric mean. Applying the Cesàro-Stolz theorem to the sequences

un = ln
P(1)

1m
+ ln

P(2)

2m
+ · · · + ln

P(n)

nm

and vn = n, n ≥ 1, we obtain

lim
n→∞

un

vn
= lim

n→∞ ln
Gn

(n!)m/n
= lim

n→∞ ln
P(n)

nm
= ln am.

We therefore have

lim
n→∞

An

Gn
·
(

n
√

n!
n

)m

= 1

m+ 1
.

Now we can simply invoke Stirling’s formula (see Section 3.2.12)

n! ≈ nne−n
√

2πn,

http://dx.doi.org/10.1007/978-3-319-58988-6_3
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or we can argue as follows. If we let un = n!
nn , then the Cesàro-Stolz theorem applied to ln un

and vn = n shows that if un+1
un

converges, then so does n
√

un, and to the same limit. Because

lim
n→∞

un+1

un
= lim

n→∞

(
n

n+ 1

)n

= 1

e
,

we have

lim
n→∞

n
√

n!
n
= 1

e
.

Therefore,

lim
n→∞

An

Gn
= em

m+ 1
.

(Gazeta Matematică (Mathematics Gazette, Bucharest), 1937, proposed by T. Popoviciu)

419. Clearly, (an)n≥0 is an increasing sequence. Assume that an is bounded. Then it must
have a limit L. Taking the limit of both sides of the equation, we have

lim
n→∞ an+1 = lim

n→∞ an + lim
n→∞

1
k
√

an
,

or L = L + 1
k√L

, contradiction. Thus lim
n→∞ an = ∞ and dividing the equation by an, we get

lim
n→∞

an+1
an
= 1. Let us write

lim
n→∞

ak+1
n

nk

⎛

⎝ lim
n→∞

a
k+1

k
n

n

⎞

⎠

k

.

Using the Cesàro-Stolz theorem, we have

lim
n→∞

a
k+1

k
n

n
= lim

n→∞
a

k
k+1
n+1 − a

k+1
k

n

= lim
n→∞

k

√
ak+1

n+1 − k

√
ak+1

n

= lim
n→∞

ak+1
n+1 − ak+1

n
(

k

√
ak+1

n+1

)k−1

+
(

k

√
ak+1

n+1

)k−2
k
√

ak+1
n + · · · +

(
k
√

ak+1
n

)k−1

= lim
n→∞

(an+1 − an)(ak
n+1 + ak−1

n+1an + · · · + ak
n)

(
k

√
ak+1

n+1

)k−1

+
(

k

√
ak+1

n+1

)k−2
k
√

ak+1
n + · · · +

(
k
√

ak+1
n

)k−1

= lim
n→∞

ak
n+1 + ak−1

n+1an + · · · + ak
n

k
√

an

((
k

√
ak+1

n+1

)k−1

+
(

k

√
ak+1

n+1

)k−2
k
√

ak+1
n + · · · +

(
k
√

ak+1
n

)k−1
) .

Dividing both sides by ak
n, we obtain

lim
n→∞

a
k+1

k
n

n
= lim

n→∞

(
an+1

an

)k

+
(

an+1

an

)k−1

+ . . .+ 1

(
an+1

an

) (k+1)(k−1)
k

+
(

an+1

an

) (k+1)(k−2)
k

+ · · · + 1

.
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Since lim
n→∞

an+1
an
= 1, we obtain

lim
n→∞

a
k+1

k
n

n
= k + 1

k
.

Hence

lim
n→∞

ak+1
n

nk
=
(

1+ 1

k

)k

.

(67th W.L. Putnam Mathematical Competition, proposed by T. Andreescu; the special
case k = 2 was the object of the second part of a problem given at the regional round of the
Romanian Mathematical Olympiad in 2004)

420. Assume no such ξ exists. Then f (a) > a and f (b) < b. Construct recursively the
sequences (an)n≥1 and (bn)n≥1 with a1 = a, b1 = b, and

an+1 = an and bn+1 = an + bn

2
if f

(
an + bn

2

)
<

an + bn

2
,

or

an+1 = an + bn

2
and bn+1 = bn if f

(
an + bn

2

)
>

an + bn

2
.

Because bn − an = b−a
2n → 0, the intersection of the nested sequence of intervals

[a1, b1] ⊃ [a2, b2] ⊃ [a3, b3] ⊃ · · · ⊃ [an, bn] ⊃ · · ·
consists of one point; call it ξ . Note that

ξ = lim
n→∞ an = lim

n→∞ bn.

We have constructed the two sequences such that an < f (an) < f (bn) < bn for all n, and the
squeezing principle implies that (f (an))n and (f (bn))n are convergent, and

lim
n→∞ f (an) = lim

n→∞ f (bn) = ξ.

Now the monotonicity of f comes into play. From an ≤ ξ ≤ bn, we obtain f (xn) ≤ f (ξ) ≤
f (bn). Again, by the squeezing principle,

f (ξ) = lim
n→∞ f (an) = lim

n→∞ f (bn) = ξ.

This contradicts our initial assumption, proving the existence of a point ξ with the desired
property.

Remark. This result is known as Knaster’s theorem. Its most general form is the Knaster-
Tarski theorem: Let L be a complete lattice and let f : L → L be an order-preserving function.
Then the set of fixed points of f in L is also a complete lattice, and in particular this set is
nonempty.
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421. Let P1(x) = x and Pn+1(x) = Pn(x)
(
Pn(x)+ 1

n

)
, for n ≥ 1. Then Pn(x) is a polynomial

of degree 2n−1 with positive coefficients and xn = Pn(x1). Because the inequality xn+1 > xn

is equivalent to xn > 1− 1
n , it suffices to show that there exists a unique positive real number t

such that 1− 1
n < Pn(t) < 1 for all n. The polynomial function Pn(x) is strictly increasing for

x ≥ 0, and Pn(0) = 0, so there exist unique numbers an and bn such that Pn(an) = 1− 1
n and

Pn(bn) = 1, respectively. We have that an < an+1, since Pn+1(an) = 1− 1
n and Pn+1(an+1) =

1− 1
n+1 . Similarly, bn+1 < bn, since Pn+1(bn+1) = 1 and Pn+1(bn) = 1+ 1

n .
It follows by induction on n that the polynomial function Pn(x) is convex for x ≥ 0, since

P′′n+1(x) = P′′n(x)
(

2Pn(x)+ 1

n

)
+ (P′n(x))

2,

and Pn(x) ≥ 0, for x ≥ 0. Convexity implies

Pn(x) ≤ Pn(bn)− P(0)

bn − 0
x = x

bn
, for 0 ≤ x ≤ bn.

In particular, 1 − 1
n = Pn(an) ≤ an

bn
. Together with the fact that bn ≤ 1, this means that

bn − an ≤ 1
n . By Cantor’s nested intervals theorem there exists a unique number t such that

an < t < bn for every n. This is the unique number satisfying 1 − 1
n < Pn(t) < 1 for

all n. We conclude that t is the unique number for which the sequence xn = Pn(t) satisfies
0 < xn < xn+1 < 1 for every n.

(26th International Mathematical Olympiad, 1985)

422. The answer to the question is yes. We claim that for any sequence of positive integers
nk , there exists a number γ > 1 such that (�γ k�)k and (nk)k have infinitely many terms in
common. We need the following lemma.

Lemma. For any α, β, 1 < α < β, the set
∞⋃

k=1

[αk, βk − 1] contains some interval of the form

(a,∞).

Proof. Observe that (β/α)k → ∞ as k → ∞. Hence for large k, αk+1 < βk − 1, and the
lemma follows. �

Let us return to the problem and prove the claim. Fix the numbers α1 and β1, 1 < α1 < β1.
Using the lemma we can find some k1 such that the interval [αk1

1 , β
k1
1 −1] contains some terms

of the sequence (nk)k . Choose one of these terms and call it t1. Define

α2 = t1/k1
1 , β2 =

(
t1 + 1

2

)1/k1

.

Then [α2, β2] ⊂ [α1, β1], and for any x ∈ [α2, β2], �xk1� = t1. Again by the lemma, there
exists k2 such that [αk2

2 , β
k2
2 − 1] contains a term of (nk)k different from n1. Call this term t2.
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Let

α3 = t1/k2
2 , β3 =

(
t2 + 1

2

)1/k2

.

As before, [α3, β3] ⊂ [α2, β2] and �xk2� = t2 for any x ∈ [α3, β3]. Repeat the construction
infinitely many times. By Cantor’s nested intervals theorem, the intersection of the decreas-
ing sequence of intervals [αj, βj], j = 1, 2, . . ., is nonempty. Let γ be an element of this
intersection. Then �γ kj� = tj, j = 1, 2, . . ., which shows that the sequence (�γ j�)j contains a
subsequence of the sequence (nk)k . This proves the claim.

To conclude the solution to the problem, assume that the sequence (an)n does not converge
to 0. Then it has some subsequence (ank )k that approaches a nonzero (finite or infinite) limit
as n → ∞. But we saw above that this subsequence has infinitely many terms in common
with a sequence that converges to zero, namely with some (a�γ k�)k . This is a contradiction.
Hence the sequence (an)n converges to 0.

(Soviet Union University Student Mathematical Olympiad, 1975)

423. The solution follows closely that of the previous problem. Replacing f by |f | we may
assume that f ≥ 0. We argue by contradiction. Suppose that there exists a > 0 such that the
set

A = f −1((a,∞)) = {x ∈ (0,∞) | f (x) > a}
is unbounded. We want to show that there exists x0 ∈ (0,∞) such that the sequence (nx0)n≥1

has infinitely many terms in A. The idea is to construct a sequence of closed intervals I1 ⊃
I2 ⊃ I3 ⊃ · · · with lengths converging to zero and a sequence of positive integers n1 < n2 <

n3 < · · · such that nkIk ⊂ A for all k ≥ 1.
Let I1 be any closed interval in A of length less than 1 and let n1 = 1. Exactly as in the

case of the previous problem, we can show that there exists a positive number m1 such that⋃

m≥m1

mI1 is a half-line. Thus there exists n2 > n1 such that n2I1 intersects A. Let J2 be a

closed interval of length less than 1 in this intersection. Let I2 = 1
n2

J2. Clearly, I2 ⊂ I1, and

the length of I2 is less than 1
n2

. Also, n2I2 ⊂ A. Inductively, let nk > nk−1 be such that nkIk−1

intersects A, and let Jk be a closed interval of length less than 1 in this intersection. Define
Ik = 1

nk
Jk .

We found the decreasing sequence of intervals I1 ⊃ I2 ⊃ I3 ⊃ · · · and positive integers
n1 < n2 < n3 < · · · such that nkIk ⊂ A. Cantor’s nested intervals theorem implies the
existence of a number x0 in the intersection of these intervals. The subsequence (nkx0)k lies
in A, which means that (nx0)n has infinitely many terms in A. This implies that the sequence
f (nx0) does not converge to 0, since it has a subsequence bounded away from zero. But this
contradicts the hypothesis. So our assumption was false, and therefore lim

x→∞ f (x) = 0.

Remark. This result is known as Croft’s lemma. It has an elegant proof using the Baire
category theorem.

424. Adding a few terms of the series, we can guess the identity

1

1+ x
+ 2

1+ x2
+ · · · + 2n

1+ x2n = 1

x − 1
+ 2n+1

1− x2n+1 , n ≥ 1.



Real Analysis 523

And indeed, assuming that the formula holds for n, we obtain

1

1+ x
+ 2

1+ x2
+ · · · + 2n

1+ x2n + 2n+1

1+ x2n+1 =
1

x − 1
+ 2n+1

1− x2n+1 +
2n+1

1+ x2n+1

= 1

x − 1
+ 2n+2

1− x2n+2 .

This completes the inductive proof.
Because

1

x − 1
+ lim

n→∞
2n+1

1− x2n+1 =
1

x − 1
+ lim

m→∞
m

1− xm
= 1

x − 1
,

our series converges to 1/(x − 1).
(C. Năstăsescu, C. Niţă, M. Brandiburu, D. Joiţa, Exerciţii şi Probleme de Algebră (Exer-

cises and Problems in Algebra), Editura Didactică şi Pedagogică, Bucharest, 1983)

425. The series clearly converges for x = 1. We will show that it does not converge for x �= 1.
The trick is to divide through by x− 1 and compare to the harmonic series. By the Mean

value theorem applied to f (t) = t1/n, for each n there exists cn between x and 1 such that

n
√

x − 1

x − 1
= 1

n
c

1
n−1.

Note also that t �→ t
1
n−1 is concave, so its minimum on the interval with endpoints 1 and x is

attained at one of the endpoints. It follows that

n
√

x − 1

x − 1
>

1

n
(max(1, x))

1
n−1 >

1

n
(max(1, x))−1.

Summing, we obtain
∞∑

n=1

n
√

x − 1

x − 1
≥ max(1, x))−1

∞∑

n=1

1

n
= ∞,

which proves that the series diverges.
(G.T. Gilbert, M.I. Krusemeyer, L.C. Larson, The Wohascum County Problem Book, MAA,

1996)

426. Using the AM-GM inequality we have

∞∑

n=1

√
anan+1 ≤

∞∑

n=1

an + an+1

2
= 1

2

∞∑

n=1

an + 1

2

∞∑

n=2

an <∞.

Therefore, the series converges. Here we can change the order of summation because the
terms are positive.
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427. There are exactly 8 · 9n−1 n-digit numbers in S (the first digit can be chosen in 8 ways,
and all others in 9 ways). The least of these numbers is 10n. We can therefore write

∑

xj<10n

1

xj
=

n∑

i=1

∑

10i−1≤xj<10i

1

xj
<

n∑

i=1

∑

10i−1≤xj≤10i

1

10i−1

=
n∑

i=1

8 · 9i−1

10i−1
= 80

(
1−
(

9

10

)n)
.

Letting n →∞, we obtain the desired inequality.

428. Define the sequence

yn = xn + 1+ 1

22
+ · · · + 1

(n− 1)2
, n ≥ 2.

By the hypothesis, (yn)n is a decreasing sequence; hence it has a limit. But

1+ 1

22
+ · · · + 1

(n− 1)2
+ · · ·

converges to a finite limit (which is π2

6 as shown by Euler, see Problem 595), and therefore

xn = yn − 1− 1

22
− · · · − 1

(n− 1)2
, n ≥ 2,

has a limit.
(P.N. de Souza, J.N. Silva, Berkeley Problems in Mathematics, Springer, 2004)

429. We have

sin π
√

n2 + 1 = (−1)n sin π(
√

n2 + 1− n) = (−1)n sin
π√

n2 + 1+ n
.

Clearly, the sequence xn = π√
n2+1+n

lies entirely in the interval
(
0, π

2

)
, is decreasing, and

converges to zero. It follows that sin xn is positive, decreasing, and converges to zero. By the
Leibniz alternating series test,

∑

k≥1

(−1)n sin xn, which is the series in question, is convergent.

(Gh. Sireţchi, Calcul Diferenţial şi Integral (Differential and Integral Calculus), Editura
Ştiinţifică şi Enciclopedică, 1985)

430. (a) We claim that the answer to the first question is yes. We construct the sequences
(an)n and (bn)n inductively, in a way inspired by the proof that the harmonic series diverges.
At step 1, let a1 = 1, b1 = 1

2 . Then at step 2, let a2 = a3 = 1
8 and b2 = b3 = 1

2 . In general,
at step k we already know a1, a2, . . . , ank and b1, b2, . . . , bnk for some integer nk . We want to
define the next terms. If k is even, and if

bnk =
1

2rk
,
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let

bnk+1 = · · · = bnk+2rk = 1

2rk

and

ank+1 = · · · = ank+2rk = 1

2k · 2rk
.

If k is odd, we do precisely the same thing, with the roles of the sequences (an)n and (bn)n

exchanged. As such we have

∑

n

bn ≥
∑

k odd

2rk
1

2rk
= 1+ 1+ · · · = ∞,

∑

n

an ≥
∑

k even

2rk
1

2rk
= 1+ 1+ · · · = ∞,

which shows that both series diverge. On the other hand, if we let cn = min(an, bn), then

∑

n

cn =
∑

k

2rk
1

2k2rk
=
∑

k

1

2k
,

which converges to 1. The example proves our claim.
(b) The answer to the second question is no, meaning that the situation changes if we work

with the harmonic series. Suppose there is a series
∑

n

an with the given property. If cn = 1
n

for only finitely many n’s, then for large n, an = cn, meaning that both series diverge. Hence
cn = 1

n for infinitely many n. Let (km)m be a sequence of integers satisfying km+1 ≥ 2km and
ckm = 1

km
. Then

km+1∑

k=km+1

ck ≥ (km+1 − km)ckm+1 = (km+1 − km)
1

km+1
= 1

2
.

This shows that the series
∑

n

cn diverges, a contradiction.

(Short list of the 44th International Mathematical Olympiad, 2003)

431. For n ≥ 1, define the function fn : (0, 1) → R, fn(x) = x − nx2. It is easy to see that
0 < fn(x) ≤ 1

4n , for all x ∈ (0, 1). Moreover, on
(
0, 1

2n

]
the function is decreasing. With this

in mind, we prove by induction that

0 < xn <
2

n2
,

for n ≥ 2. We verify the first three cases:

0 = f1(0) < x2 = f1(x1) = x1 − x2
1 ≤

1

4
<

2

4
,

0 = f2(0) < x3 = f2(x2) = x2 − 2x2
2 ≤

1

8
<

2

9
,

0 = f3(0) < x4 = f3(x3) = x3 − 3x2
3 ≤

1

12
<

2

16
.
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Here we used the inequality x1 − x2
1 − 1

4 = −
(
x1 − 1

2

)2 ≤ 0 and the like. Now assume that
the inequality is true for n ≥ 4 and prove it for n + 1. Since n ≥ 1, we have xn ≤ 2

n2 ≤ 1
2n .

Therefore,

0 = fn(0) < xn+1 = fn(xn) ≤ fn

(
2

n2

)
= 2

n2
− n · 4

n4
= 2n− 4

n3
.

It is an easy exercise to check that

2n− 4

n3
<

2

(n+ 1)2
,

which then completes the induction.
We conclude that the series

∑

n

xn has positive terms and is bounded from above by the

convergent p-series 2
∑

n

1

n2
, so it is itself convergent.

(Gazeta Matematică (Mathematics Gazette, Bucharest), 1980, proposed by L. Panaitopol)

432. The series is convergent because it is bounded from above by the geometric series with
ratio 1

2 . Assume that its sum is a rational number a
b . Choose n such that b < 2n. Then

a

b
−

n∑

k=1

1

2k2 =
∑

k≥n+1

1

2k2 .

But the sum
n∑

k=1

1

2k2 is equal to n
2n2 for some integer n. Hence

a

b
−

n∑

k=1

1

2k2 =
a

b
− m

2n2 >
2n2b

>
1

2n2+n
>

1

2(n+1)2−1
=
∑

k≥(n+1)2

1

2k
>
∑

k≥n+1

1

2k2 ,

a contradiction. This shows that the sum of the series is an irrational number.

Remark. In fact, this number is transcendental.

433. The series is bounded from above by the geometric series |a0|(1+ |z| + |z|2 + . . .), so
it converges absolutely. Using the discrete version of integration by parts, known as the Abel
summation formula, we can write

a0 + a1z + a2z2 + . . .+ anzn + · · ·
= (a0 − a1)+ (a1 − a2)(1+ z)+ · · · + (an − an+1)(1+ z + · · · + zn)+ · · ·

Assume that this is equal to zero. Multiplying by 1− z, we obtain

(a0 − a1)(1− z)+ (a1 − a2)(1− z2)+ · · · + (an − an+1)(1− zn+1)+ · · · = 0.
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Define the sequence bn = an − an+1, n ≥ 0. It is positive and
∑

n

bn = a0. Because |z| < 1,

the series
∑

n

bnzn converges absolutely. This allows us in the above inequality to split the

left-hand side into two series and move one to the right to obtain

b0 + b1 + . . .+ bn + · · · = b0z + b1z2 + · · · + bnzn+1 + · · ·
Applying the triangle inequality to the expression on the right gives

|b0z + b1z2 + · · · + bnzn+1| ≤ b0|z| + b1|z2| + · · · + bn|zn| + · · ·
< b0 + b1 + · · · + bn + · · · ,

which implies that equality cannot hold. We conclude that the sum of the series is not equal
to zero.

434. If such a sequence existed, then the numbers

1

p0p1
− 1

p0p1p2
+ 1

p0p1p2p3
− · · · and

1

p0p1p2
− 1

p0p1p2p3
+ · · ·

should both be positive. It follows that

0 <
1

p0
− w = 1

p0p1
− 1

p0p1p2
+ 1

p0p1p2p3
− · · · < 1

p0p1
<

1

p0(p0 + 1)
.

Hence p0 has to be the unique integer with the property that

1

p0 + 1
< w <

1

p0
.

This integer satisfies the double inequality

p0 <
1

w
< p0 + 1,

which is equivalent to 0 < 1− p0w < w.
Let w1 = 1− p0w. Then

w = 1

p0
− w1

p0
.

The problem now repeats for w1, which is irrational and between 0 and 1. Again p1 has to be
the unique integer with the property that

1

p1 + 1
< 1− p0w <

1

p1
.

If we set w2 = 1− p1w1, then

w = 1

p0
− 1

p0p1
+ w2

p0p1
.
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Now the inductive pattern is clear. At each step we set wk+1 = 1−pkwk , which is an irrational
number between 0 and 1. Then choose pk+1 such that

1

pk+1 + 1
< wk+1 <

1

pk+1
.

Note that

wk+1 = 1− pkwk < 1− pk
1

pk + 1
= 1

pk + 1
,

and therefore pk+1 ≥ pk + 1 > pk .
Once the numbers p0, p1, p2, . . . have been constructed, it is important to observe that

since wk ∈ (0, 1) and p0p1 · · · pk ≥ (k + 1)!, the sequence

1

p0
− 1

p0p1
+ · · · + (−1)k+1 wk+1

p1p2 · · · pk

converges to w. So p0, p1, . . . , pk, . . . have the required properties, and as seen above, they
are unique.

(13th W.L. Putnam Mathematical Competition, 1953)

435. First, denote by M the set of positive integers greater than 1 that are not perfect powers
(i.e., are not of the form an, where a is a positive integer and n ≥ 2). Note that the terms of
the series are positive, so we can freely permute them. The series is therefore equal to

∑

m∈M

∞∑

k=2

1

mk − 1
.

Expanding each term as a geometric series, we transform this into

∑

m∈M

∞∑

k=2

∞∑

j=1

1

mkj
=
∑

m∈M

∞∑

j=1

∞∑

k=2

1

mkj
.

Again, we can change the order of summation because the terms are positive. The innermost
series should be summed as a geometric series to give

∑

m∈M

∞∑

j=1

1

mj(mj − 1)
.

This is the same as ∞∑

n=2

1

n(n− 1)
=

∞∑

n=2

(
1

n− 1
− 1

n

)
.

The latter is a telescopic series that sums up to 1, and we are done.
(Ch. Goldbach, solution from G.M. Fihtenholts, Kurs Differentsial’novo i Integral’novo

Ischisleniya (Course in Differential and Integral Calculus), Gosudarstvennoe Izdatel’stvo
Fiziko-Matematicheskoi Literatury, Moscow 1964)
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436. Let us make the convention that the letter p always denotes a prime number. Consider
the set A(n) consisting of those positive integers that can be factored into primes that do not
exceed n. Then

∏

p≤n

(
1+ 1

p
+ 1

p2
+ · · ·
)
=
∑

m∈A(n)

1

m
.

This sum includes
n∑

m=1

1

m
, which is known to exceed ln n. Thus, after summing the geometric

series, we obtain
∏

p≤n

(
1− 1

p

)−1

> ln n.

For the factors of the product we use the estimate

et+t2 ≥ (1− t)−1, for 0 ≤ t ≤ 1

2
.

To prove this estimate, rewrite it as f (t) ≥ 1, where f (t) = (1 − t)et+t2
. Because f ′(t) =

t(1− 2t)et+t2 ≥ 0 on
[
0, 1

2

]
, f is increasing; thus f (t) ≥ f (0) = 1.

Returning to the problem, we have

∏

p≤n

exp

(
1

p
+ 1

p2

)
≥
∏

p≤n

(
1− 1

p

)−1

> ln n.

Therefore,
∑

p≤n

1

p
+
∑

p≤n

1

p2
> ln ln n.

But
∑

p≤n

1

p2
<

∞∑

n=2

1

k2
= π2

6
− 1 < 1.

Hence ∑

p≤n

1

p
≥ ln ln n− 1,

as desired.

Remark. This is another proof that there are infinitely many primes.
(Solution from I. Niven, H.S. Zuckerman, H.L. Montgomery, An Introduction to the Theory

of Numbers, Wiley, 1991)

437. We have

(k2 + 1)k! = (k2 + k − k + 1)k! = k(k + 1)k! − (k − 1)k!
= k(k + 1)! − (k − 1)k! = ak+1 − ak,

where ak = (k − 1)k!. The sum collapses to an+1 − a1 = n(n+ 1)!.
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438. If ζ is an mth root of unity, then all terms of the series starting with the mth are zero.
We are left to prove that

ζ−1 =
m−1∑

n=0

ζ n(1− ζ )(1− ζ 2) · · · (1− ζ n).

Multiplying both sides by ζ yields the equivalent identity

1 =
m−1∑

n=0

ζ n+1(1− ζ )(1− ζ 2) · · · (1− ζ n).

The sum telescopes as follows:

m−1∑

n=0

ζ n+1(1− ζ )(1− ζ 2) · · · (1− ζ n) =
m−1∑

n=0

(1− (1− ζ n+1))(1− ζ )(1− ζ 2) · · · (1− ζ n)

=
m−1∑

n=0

[(1− ζ )(1− ζ 2) · · · (1− ζ n)− (1− ζ )(1− ζ 2) · · · (1− ζ n+1)] = 1− 0 = 1,

and the identity is proved.

439. We have

1+
r−1∑

k=0

(
r

k

)
Sk(n) = 1+

r−1∑

k=0

(
r

k

) n∑

p=1

pk = 1+
n∑

p=1

r−1∑

k=0

(
r

k

)
pk

= 1+
n∑

p=1

[(p+ 1)r − pr] = (n+ 1)r .

440. Set bn =
√

2n− 1 and observe that 4n = b2
n+1 + b2

n. Then

an = b2
n+1 + b2

n + bn+1bn

bn+1 + bn
= (bn+1 − bn)(b2

n+1 + bn+1bn + b2
n−1)

(bn+1 − bn)(bn+1 + bn)

= b3
n+1 − b3

n

b2
n+1 − b2

n

= 1

2
(b3

n+1 − b3
n).

So the sum under discussion telescopes as

a1 + a2 + · · · + a40 = 1

2
(b3

2 − b3
1)+

1

2
(b3

3 − b3
2)+ · · · +

1

2
(b3

41 − b3
40)

= 1

2
(b3

41 − b3
1) =

1

2
(
√

813 − 1) = 364,

and we are done.
(Romanian Team Selection Test for the Junior Balkan Mathematical Olympiad, proposed

by T. Andreescu)
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441. The important observation is that

(−1)k+1

12 − 22 + 32 − · · · + (−1)k+1k2
= 2

k(k + 1)
.

Indeed, this is true for k = 1, and inductively, assuming it to be true for k = l, we obtain

12 − 22 + 32 − · · · + (−1)l+1l2 = (−1)l+1 l(l + 1)

2
.

Then

12 − 22 + 32 − · · · + (−1)l+2(l + 1)2 = (−1)l+1 l(l + 1)

2
+ (−1)l+2(l + 1)2

= (−1)l+2(l + 1)

(
− l

2
+ l + 1

)
,

whence
(−1)l+2

12 − 22 + 33 − · · · + (−1)l+2(l + 1)2
= 2

(l + 1)(l + 2)
,

as desired. Hence the given sum equals

n∑

k=1

2

k(k + 1)
= 2

n∑

k=1

(
1

k
− 1

k + 1

)
,

telescoping to

2

(
1− 1

n+ 1

)
= 2n

n+ 1
,

and we are done.
(T. Andreescu)

442. The sum telescopes once we rewrite the general term as

1

(
√

n+√n+ 1)( 4
√

n+ 4
√

n+ 1)
=

4
√

n+ 1− 4
√

n

(
√

n+ 1+√n)( 4
√

n+ 1+ 4
√

n)( 4
√

n+ 1− 4
√

n)

=
4
√

n+ 1− 4
√

n

(
√

n+ 1+√n)(
√

n+ 1−√n)

=
4
√

n+ 1− 4
√

n

n+ 1− n
= 4
√

n+ 1− 4
√

n.

The sum from the statement is therefore equal to 4
√

10000− 1 = 10− 1 = 9.
(Mathematical Reflections, proposed by T. Andreescu)
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443. As usual, the difficulty lies in finding the “antiderivative” of the general term. We have

1
√

1+
(

1+ 1

n

)2

+
√

1+
(

1− 1

n

)2
=

√

1+
(

1+ 1

n

)2

−
√

1+
(

1− 1

n

)2

1+
(

1+ 1

n

)2

− 1−
(

1− 1

n

)2

=

√

1+
(

1+ 1

n

)2

−
√

1+
(

1− 1

n

)2

4

n

= 1

4

(√
n2 + (n+ 1)2 −

√
n2 + (n− 1)2

)

= 1

4
(bn+1 − bn),

where bn =
√

n2 + (n− 1)2. Hence the given sum collapses to 1
4(29− 1) = 7.

(Mathematical Reflections, proposed by T. Andreescu)

444. Let us look at the summation over n first. Multiplying each term by (m+n+2)−(n+1)

and dividing by m+ 1, we obtain

m!
m+ 1

∞∑

n=0

(
n!

(m+ n+ 1)! −
(n+ 1)!

(m+ n+ 2)!
)

.

This is a telescopic sum that adds up to

m!
m+ 1

· 0!
(m+ 1)! .

Consequently, the expression we are computing is equal to
∞∑

m=0

1

(m+ 1)2
= π2

6
,

where we have used Euler’s formula (see Section 3.2.12 Problem 595).
(Mathematical Mayhem, 1995)

445. This problem is similar to the last example from the introduction. We start with

ak − bk = 1

2

[
4k + (k + 1)+ (k − 1)− 4

√
k2 + k + 4

√
k2 − k + 2

√
k2 − 1

]

= 1

2

(
2
√

k −√k + 1−√k − 1
)2

.

From here we obtain
√

ak − bk = 1√
2

(
2
√

k −√k + 1−√k − 1
)

= − 1√
2

(√
k + 1−√k

)
+ 1√

2

(√
k −√k + 1

)
.

http://dx.doi.org/10.1007/978-3-319-58988-6_3
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The sum from the statement telescopes to

− 1√
2

(√
50−√1

)
+ 1√

2

(√
49−√0

)
= −5+ 4

√
2.

(Romanian Mathematical Olympiad, 2004, proposed by T. Andreescu)

446. First solution: Let Sn =
n∑

k=0

(−1)k(n − k)!(n + k)!. Reordering the terms of the sum,

we have

Sn = (−1)n
n∑

k=0

(−1)kk!(2n− k)!

= (−1)n 1

2

(

(−1)nn!n! +
2n∑

k=0

(−1)kk!(2n− k)!
)

= (n!)2

2
+ (−1)n Tn

2
,

where Tn =
2n∑

k=0

(−1)kk!(2n− k)!. We now focus on the sum Tn. Observe that

Tn

(2n)! =
2n∑

k=0

(−1)k

(2n
k

)

and
1
(2n

k

) = 2n+ 1

2(n+ 1)

[
1
(2n+1

k

) + 1
(2n+1

k+1

)

]

.

Hence

Tn

(2n)! =
2n+ 1

2(n+ 1)

[
1
(2n+1

0

) + 1
(2n+1

1

) − 1
(2n+1

1

) − 1
(2n+1

2

) + · · · + 1
(2n+1

2n

) + 1
(2n+1

2n+1

)

]

.

This sum telescopes to

2n+ 1

2(n+ 1)

[
1
(2n+1

0

) + 1
(2n+1

2n+1

)

]

= 2n+ 1

n+ 1
.

Thus Tn = (2n+1)!
n+1 , and therefore

Sn = (n!)2

2
+ (−1)n (2n+ 1)!

2(n+ 1)
.
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Second solution: Multiply the kth term in Sn by (n − k + 1) + (n + k + 1) and divide by
2(n+ 1) to obtain

Sn = 1

2(n+ 1)

n∑

k=0

[(−1)k(n− k + 1)!(n+ k)! + (−1)k(n− k)!(n+ k + 1)!].

This telescopes to
1

2(n+ 1)
[n!(n+ 1)! + (−1)n(2n+ 1)!].

(T. Andreescu, second solution by R. Stong)

447. The sequence is obviously strictly decreasing. Because ak − ak+1 = 1− 1
ak+1 , we have

an = a0 + (a1 − a0)+ · · · + (an − an−1) = 1994− n+ 1

a0 + 1
+ · · · + 1

an−1 + 1

> 1994− n.

Also, because the sequence is strictly decreasing, for 1 ≤ n ≤ 998,

1

a0 + 1
+ · · · + 1

an−1 + 1
<

n

an−1 + 1
<

998

a997 + 1
< 1,

since we have seen above that a997 > 1994−997 = 997. Hence �an� = 1994−n, as desired.
(Short list of the 35th International Mathematical Olympiad, 1994, proposed by

T. Andreescu)

448. Let x1 = k + √k2 + 1 and x2 = k − √k2 + 1. We have |x2| = 1
x1

< 1
2k ≤ 1

2 , so

− ( 12
)2 ≤ xn

2 ≤
(

1
2

)n
. Hence

xn
1 + xn

2 − 1 < xn
1 +
(

1

2

)n

− 1 < an ≤ xn
1 −
(

1

2

)n

+ 1 < xn
1 + xn

2 + 1,

for all n ≥ 1. From

xn+1
1 + xn+1

2 = (x1 + x2)(x
n
1 + xn

2)− x1x2(x
n−1
1 + xn−1

2 )

= 2k(xn
1 + xn

2)+ (xn−1
1 + xn−1

2 )

for n ≥ 1, we deduce that xn
1 + xn

2 is an integer for all n. We obtain the more explicit formula
an = xn

1 + xn
2 for n ≥ 0, and consequently the recurrence relation an+1 = 2kan + an−1, for all

n ≥ 1. Then

1

an−1an+1
= 1

2kan
· 2kan

an−1an+1
= 1

2k
· an+1 − an−1

an−1anan+1
= 1

2k

(
1

an−1an
− 1

anan+1

)
.

It follows that

∞∑

n=1

1

an−1an+1
= 1

2k

(
1

a0a1
− lim

N→∞
1

aN aN+1

)
= 1

2ka0a1
= 1

8k2
.
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449. For N ≥ 2, define

aN =
(

1− 4

1

)(
1− 4

9

)(
1− 4

25

)
· · ·
(

1− 4

(2N − 1)2

)
.

The problem asks us to find lim
N→∞ aN . The defining product for aN telescopes as follows:

aN =
[(

1− 2

1

)(
1+ 2

1

)][(
1− 2

3

)(
1+ 2

3

)]
· · ·
[(

1− 2

2N − 1

)(
1+ 2

2N − 1

)]

= (−1 · 3)

(
1

3
· 5

3

)(
3

5
· 7

5

)
· · ·
(

2N − 3

2N − 1
· 2N + 1

2N − 1

)
= −2N + 1

2N − 1
.

Hence the infinite product is equal to

lim
N→∞ aN = − lim

N→∞
2N + 1

2N − 1
= −1.

450. Define the sequence (aN)N by

aN =
N∏

n=1

(1+ x2n
).

Note that (1− x)aN telescopes as

(1− x)(1+ x)(1+ x2)(1+ x4) · · · (1+ x2N
) = (1− x2)(1+ x2)(1+ x4) · · · (1+ x2N

)

= (1− x4)(1+ x4) · · · (1+ x2N
) · · ·

= (1− x2N+1
).

Hence (1− x)aN → 1 as N →∞, and therefore

∏

n≥0

(1+ x2n
) = 1

1− x
.

451. Let PN =
N∏

n=1

(
1− xn

xn+1

)
, N ≥ 1. We want to examine the behavior of PN as N →∞.

Using the recurrence relation we find that this product telescopes as

PN =
n∏

n=1

(
xn+1 − xn

xn+1

)
=

n∏

n=1

nxn

xn+1
= N !

xN+1
.

Hence

1

Pn+1
− 1

Pn
= xn+2

(n+ 1)! −
xn+1

n! =
xn+2 − (n+ 1)xn+1

(n+ 1)! = xn+1

(n+ 1)! , for n ≥ 1.
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Adding up these relations for 1 ≤ n ≤ N + 1, and using the fact that the sum on the left
telescopes, we obtain

1

PN+1
= 1

P1
+ x2

2! +
x3

3! + · · · +
xN+1

(N + 1)!
= 1+ x

1! +
x2

2! + · · · +
xN+1

(N + 1)! .

Because this last expression converges to ex, we obtain that lim
N→∞PN = e−x, as desired.

(Revista Matematică din Timişoara (Timişoara Mathematics Gazette), proposed by T.
Andreescu and D. Andrica)

452. One can see immediately that x = 0 is a solution. The left-hand side is an increasing
function, while the right-hand side is a decreasing function. So the solution is unique.

(Romanian Math Olympiad, 1975, proposed by L. Panaitopol)

453. We have n
√

3 + n
√

7 > 2 2n
√

21 > 2 n
√

4.5. On the other hand, for d > 0 the function
f : (0,∞)→ R,

f (x) = n
√

x + d − n
√

x = d

(
n
√

x + d)n−1 + (
n
√

x + d)n−2
√

x + · · · + ( n
√

x)n−1

is decreasing. Hence n
√

4.5− n
√

4 >
n
√

5− n
√

4.5. The inequality follows.

454. Assume that such a function exists. Remove the 2015 solutions from R to obtain a set A,
and restrict f to A. Then f (f (x)) = x has 5102− 2015 = 3087 solutions in A while f (x) = x
has none. The 3087 solutions can be grouped in pairs (x, y) such that f (x) = y and f (y) = x.
But this is impossible since 3087 is an odd number. It follows that such a function does not
exist, so the answer to the question is negative.

455. It is not hard to see that f (0) = 0, because the graph is invariant under the 180◦ rotation
about the origin, which maps (0, f (0)) to (0,−f (0)).

For x �= 0 we can use the formula

f (x) = x

|x| − (−1)�−|x|�x.

456. If f is such a function, then

(f ◦ f ◦ f ◦ f ◦ f )(x) = [(f ◦ f ) ◦ (f ◦ f ◦ f )](x) = (f ◦ f )(x3) = x5.

So

(f ◦ f )(x) = x5/3.

Then

(f ◦ f ◦ f )(x) = [f ◦ (f ◦ f )](x) = f (x5/3) = x3.
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Setting t = x5/3 and substituting in the above we obtain

f (t) = t9/5.

But this function does not satisfy either of the conditions from the statement. Hence the
answer is negative.

(Konhauser Problem Fest, 2014, proposed by R. Gelca)

457. Write the system as

3x = 2y + 3y

9x = 6y + 19y.

Square the first equation then substitute 9x from the second to obtain

4y + 2 · 6y + 9y = 6y + 19y.

Rewrite this as

4y + 6y + 9y = 19y.

It is easy to see that y = 1 is a solution. There are no other solutions to this equation because
after dividing by 19y we obtain

(
4

19

)y

+
(

6

19

)y

+
(

9

19

)y

= 1

and the left-hand side is a strictly decreasing function which assumes the value 1 exactly once.
We conclude that the only pair of real numbers satisfying the system is (log3 5, 1).
(Konhauser Problem Fest, 2014, proposed by R. Gelca)

458. The right-hand side is less than 1, hence so is the left-hand side. This shows that
x ∈ (0, 1). Taking the logarithm in base a, we obtain

ax loga x = xa

or ax loga x− xa = 0. The left-hand side is a decreasing functions, so the solution, if it exists,
is unique. Of course, x = a is a solution.

(Romanian Mathematical Olympiad, 1983, proposed by T. Andreescu and I.V. Maftei)

459. It is not hard to guess that x = 2, y = 3, z = 4 is a solution. Using the logarithms we
obtain

y log2 x = 3, z log3 y = 4, x log4 z = 2.

Furthermore,

log3 y+ log3(log2 x) = 1, log4 z + log4(log3 y) = 1, log4 z = 2

x
.
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Eliminating y and z we obtain

2

x
+ log4(1− log3(log2 x)) = 1.

The function on the left is decreasing, so the solution x = 2 is unique. Hence the system has
the unique solution x = 2, y = 3, z = 4.

(Gazeta Matematică (Mathematics Gazette), proposed by A. Ene)

460. The functions x �→ xn + 1 and x �→ n
√

x − 1 are strictly increasing on R, hence their
composition, f : R → R, f (x) = n

√
xn + 1 − 1 is also strictly increasing. Note that f is

also onto, so it is bijective, and its inverse is f −1 = n
√

(x + 1)n − 1. The equation from the
statement translates to

f (x) = f −1(x).

Let α be a solution. Then f (f (α)) = α. If f (α) < α, then f (f (α)) < f (α) and so α < f (α), a
contradiction. If f (α) > α, then f (f (α)) > f (α), so α > f (α), again a contradiction. Hence
f (α) = α, which leads to the simpler equation to solve

n
√

xn + 1 = x + 1,

which is equivalent to

(α + 1)n = αn + 1.

It is easy to check that x = 0,−1 are solutions. Newton’s binomial formula shows that there
are no positive solutions.

If α < −1, set β = −α − 1 > 0. The equation translates to (β + 1)n = βn + 1, which
has no solutions. If α ∈ (−1, 0), then set β = −α. We have (1 − β)n = (−β)n + 1 or
(1− β)n + βn = 1. But the left-hand side is less than 1− β + β, so this is again impossible.
Thus the equation has the only solutions x = 0 and x = −1.

Remark. A similar problem: “solve the equation 2 3
√

2y− 1 = y3 + 1” was part of the
collection of problems used for the oral admission exam by the Moscow State University
during communist times to prevent Jewish people and other undesirables from entering that
school (cf. T. Khovanova, A. Radul, Killer Problems, The American Mathematical Monthly,
Vol. 119, No. 10, 2012)

(Gazeta Matematică (Mathematics Gazette, Bucharest), proposed by I. Băetu)

461. Let g : R → R, g(x) = ax2 + bx + c. The functional equation from the statement
implies that f ◦ g = g ◦ f .

On the other hand the condition 4ac ≤ (b−1)2 is equivalent to the fact that the discriminant
of the quadratic equation g(x) = x is nonnegative. Hence g has fixed points. In fact it has
either one or two fixed points.

Let u be a fixed point of g. Then

f (g(u)) = f (u) = g(f (u)),
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so f (u) is a fixed point of g as well. From f (u) = g(f (u)) we obtain

f (f (u)) = f (g(f (u))) = g(f (f (u))),

which shows that f (f (u)) is a fixed point of g. Among the three fixed points of g, u, f (u),

f (f (u)), two must coincide.
Case I. f (u) = u. Then u is a fixed point for f , and hence for f ◦ f .
Case II. f (f (u)) = u. This is exactly what we desire.
Case III. f (f (u)) = f (u). In this case f has a fixed point, and, as in Case I, so does f ◦ f .
(Romanian Mathematical Olympiad, 1986, proposed by T. Andreescu)

462. We will show that cos A < cos 72◦. Squaring the formula provided by the law of cosines
we obtain

a4 = b4 + c4 + 4b2c2 cos2 A+ 2b2c2 − 4b3c cos A− 4bc3 cos A.

Subtituting a4 = b4 + c4 and dividing by 2 we obtain

2bc cos2 A− 2(b2 + c2) cos A+ bc = 0.

Solving this as a quadratic equation in cos A, we obtain

cos A = 1

2

[(
b

c
+ c

b

)
±
√

b2

c2
+ c2

b2

]

The larger of the two values exceeds 1, since b
c + c

b ≥ 2. We thus conclude that

cos A = 1

2

[(
b

c
+ c

b

)
−
√

b2

c2
+ c2

b2

]

For simplicity, set x = b
c . Consider the function f : (0,∞)→ R,

f (x) =
(

x + 1

x
−
√

x2 + 1

x2

)

,

and observe that

f (x) =
(
x + 1

x

)2 −
(√

x2 + 1
x2

)2

(
x + 1

x +
√

x2 + 1
x2

) = 2
(

x + 1
x −
√

x2 + 1
x2

) .

The maximum of f is attained when the denominator is minimal, and this happens when x = 1.
This shows that f (x) ≤ f (1) = 2−√2 for all x, and hence

cos A ≤ 2−√2

2
.
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On the other hand,

cos 72◦ =
√

5− 1

4
.

To see why this is true, note that cos 72◦ + i sin 72◦ is a root of the equation x5 − 1 = 0.
Removing the solution x = 1, we obtain the reciprocal equation

x4 + x3 + x2 + x + 1 = 0.

Dividing through by x2, and substituting x + 1
x = y, we obtain the quadratic equation y2 +

y− 1 = 0, with roots y1,2 = −1±√5
2 . We are interested in the positive root only. We thus have

x + 1

x
=
√

5− 1

2
.

Solving we obtain

x =
√

5− 1

4
± i

√
10+ 2

√
5

4
,

which proves the claim. An easy check shows that

2−√2

2
<

√
5− 1

4
,

and we are done.
(Romanian Teams Selection Test, 1983, proposed by I. Tomescu)

463. We are supposed to find m and n such that

lim
x→∞

3
√

8x3 + mx2 − nx = 1 or lim
x→−∞

3
√

8x3 + mx − nx = 1.

We compute

3
√

8x3 + mx2 − nx = (8− n3)x3 + mx2

3
√

(8x3 + mx2)2 + nx 3
√

8x3 + mx2 + n2x2
.

For this to have a finite limit at either +∞ or −∞, 8 − n3 must be equal to 0 (otherwise
the highest degree of x in the numerator would be greater than the highest degree of x in the
denominator). We have thus found that n = 2.

Next, factor out and cancel an x2 to obtain

f (x) = m

3

√(
8+ m

x

)2 + 2 3

√
8+ m

x
+ 4

.

We see that lim
x→∞ f (x) = m

12 . For this to be equal to 1, m must be equal to 12. Hence the answer

to the problem is (m, n) = (12, 2).
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464. This is a limit of the form 1∞. It can be computed as follows:

lim
x→π/2

(sin x)
1

cos x = lim
x→π/2

(1+ sin x − 1)
1

sin x−1 · sin x−1
cos x

=
(

lim
t→0

(1+ t)1/t

)limx→π/2
sin x−1

cos x

= exp

(
lim
u→0

cos u− 1

sin u

)

= exp

(
cos u− 1

u
· u

sin u

)
= e0·1 = e0 = 1.

The limit therefore exists.

465. Without loss of generality, we may assume that m > n. Write the limit as

lim
x→0

mn
√

cosn x − mn
√

cosm x

x2
.

Now we can multiply by the rational conjugate and obtain

lim
x→0

cosn x − cosm x

x2
(

mn
√

(cosn x)mn−1 + · · · + mn
√

(cosm x)mn−1
)

= lim
x→0

cosn x(1− cosm−n x)

mnx2
= lim

x→0

1− cosm−n x

mnx2

= lim
x→0

(1− cos x)(1+ cos x + · · · + cosm−n−1 x)

mnx2

= m− n

mn
lim
x→0

1− cos x

x2
= m− n

2mn
.

We are done.

466. For x > 1 define the sequence (xn)n≥0 by x0 = x and xn+1 = x2
n+1
2 , n ≥ 0. The sequence

is increasing because of the AM-GM inequality. Hence it has a limit L, finite or infinite.
Passing to the limit in the recurrence relation, we obtain L = L2+1

2 ; hence either L = 1 or
L = ∞. Since the sequence is increasing, L ≥ x0 > 1, so L = ∞. We therefore have

f (x) = f (x0) = f (x1) = f (x2) = · · · = lim
n→∞ f (xn) = lim

x→∞ f (x).

This implies that f is constant, which is ruled out by the hypothesis. So the answer to the
question is negative.

467. We can assume that m > 1; otherwise, we can flip the fraction and change t to 1
m t. There

is an integer n such that m < 2n. Because f is increasing, f (t) < f (mt) < f (2nt), We obtain

1 <
f (mt)

f (t)
<

f (2nt)

f (t)
.

The right-hand side is equal to the telescopic product

f (2nt)

f (2n−1t)
· f (2n−1t)

f (2n−2t)
· · · f (2t)

f (t)
,
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whose limit as t goes to infinity is 1. The squeezing principle implies that

lim
t→∞

f (mt)

f (t)
= 1,

as desired.
(V. Radu)

468. The sum under discussion is the derivative of f at 0. We have
∣
∣
∣
∣
∣

n∑

k=1

kak

∣
∣
∣
∣
∣
= |f ′(0)| = lim

x→0

∣
∣
∣
∣
f (x)− f (0)

x − 0

∣
∣
∣
∣

= lim
x→0

∣
∣
∣
∣
f (x)

x

∣
∣
∣
∣ = lim

x→0

∣
∣
∣
∣

f (x)

sin x

∣
∣
∣
∣ ·
∣
∣
∣
∣
sin x

x

∣
∣
∣
∣ ≤ 1.

The inequality is proved.
(28th W.L. Putnam Mathematics Competition, 1967)

469. The condition from the statement implies that f (x) = f (−x), so it suffices to check that
f is constant on [0,∞). For x ≥ 0, define the recursive sequence (xn)n≥0, by x0 = x, and
xn+1 = √xn, for n ≥ 0. Then

f (x0) = f (x1) = f (x2) = · · · = f
(

lim
n→∞ xn

)
.

And lim
n→∞ xn = 1 if x > 0. It follows that f is constant and the problem is solved.

470. The answer is yes, there is a tooth function with this property. We construct f to have
local maxima at 1

22n+1 and local minima at 0 and 1
22n , n ≥ 0. The values of the function at the

extrema are chosen to be f (0) = f (1) = 0, f
(

1
2

) = 1
2 , and f

(
1

22n+1

) = 1
2n and f

(
1

22n

) = 1
2n+1

for n ≥ 1. These are connected through segments. The graph from Figure 72 convinces the
reader that f has the desired properties.

. .
 .

Figure 72

(Kőzépiskolai Matematikai Lapok (Mathematics Gazette for High Schools, Budapest))

471. We prove by induction on n that f
(

m
3n

) = 0 for all integers n ≥ 0 and all integers
0 ≤ m ≤ 3n. The given conditions show that this is true for n = 0. Assuming that it is true
for n− 1 ≥ 0, we prove it for n.
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If m ≡ 0 (mod 3), then

f
(m

3n

)
= f

⎛

⎜
⎝

m

3
3n−1

⎞

⎟
⎠ = 0

by the induction hypothesis.
If m ≡ 1 (mod 3), then 1 ≤ m ≤ 3n − 2 and

3f
(m

3n

)
= 2f

⎛

⎜
⎝

m − 1

3
3n−1

⎞

⎟
⎠+ f

⎛

⎜
⎝

m+ 2

3
3n−1

⎞

⎟
⎠ = 0+ 0 = 0.

Thus f
(

m
3n

) = 0.
Finally, if m ≡ 2 (mod 3), then 2 ≤ m ≤ 3n − 1 and

3f
(m

3n

)
= 2f

⎛

⎜
⎝

m + 1

3
3n−1

⎞

⎟
⎠+ f

⎛

⎜
⎝

m− 2

3
3n−1

⎞

⎟
⎠ = 0+ 0 = 0.

Hence f
(

m
3n

) = 0 in this case, too, finishing our induction.
Because the set

{
m
3n ; m, n ∈ N

}
is dense in [0, 1] and f is equal to zero on this set, f is

identically equal to zero.
(Vietnamese Mathematical Olympiad, 1999)

472. We argue by contradiction. Assume that there exist a < b such that f (a) �= f (b), say,
f (a) > f (b).

Let g : R → R, g(x) = f (x)+λx, where λ > 0 is chosen very small such that g(a) > g(b).
We note that

lim
h→0+

g(x + 2h)− g(x + h)

h
= λ > 0, for all x ∈ R.

Since g is a continuous function on a closed and bounded interval, g has a maximum. Let
c ∈ [a, b] be the point where g attains its maximum. It is important that this point is not b,
since g(a) > g(b). Fix 0 < ε < λ. Then there exists δ = δ(ε) > 0 such that

0 < λ− ε <
g(c+ 2h)− g(c+ h)

h
< λ+ ε, for all 0 < h < δ.

For 0 < h0 < min
{
δ, b−c

2

}
. The above inequality written for h = h0, h0

2 , h0
4 , etc., yields

g(c+ 2h0) > g(c+ h0) > g

(
c+ h0

2

)
> · · · > g

(
c+ h0

2n

)
> · · ·

Passing to the limit, we obtain that g(c+ 2h) > g(c), contradicting the maximality of c. The
contradiction proves that our initial assumption was false, and the conclusion follows.
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473. From the given condition, it follows that f is one-to-one. Indeed, if f (x) = f (y), then
f (f (x)) = f (f (y)), so bx = by, which implies x = y. Because f is continuous and one-to-one,
it is strictly monotonic.

We will show that f has a fixed point. Assume by way of contradiction that this is not the
case. So either f (x) > x for all x, or f (x) < x for all x. In the first case f must be strictly
increasing, and then we have the chain of implications

f (x) > x ⇒ f (f (x)) > f (x)⇒ af (x)+ bx > f (x)⇒ f (x) <
bx

1− a
,

for all x ∈ R. In particular, f (1) < b
1−a < 1, contradicting our assumption.

In the second case the simultaneous inequalities f (x) < x and f (f (x)) < f (x) show that f
must be strictly increasing again. Again we have a chain of implications

f (x) < x ⇒ f (f (x)) < f (x)⇒ f (x) > af (x)+ bx ⇒ f (x) >
bx

1− a
,

for all x ∈ R. In particular, f (−1) > − b
1−a > −1, again a contradiction.

In conclusion, there exists a real number c such that f (c) = c. The condition f (f (c)) =
af (c) + bc implies c = ac + bc; thus c(a + b − 1) = 0. It follows that c = 0 (because
a+ b < 1/2+ 1/2 = 1), and we obtain f (0) = 0.

(45th W.L. Putnam Mathematical Competition, 2002, proposed by T. Andreescu)

474. Being continuous on the closed interval [0, 1], the function f is bounded and has a
maximum and a minimum. Let M be the maximum and m the minimum. Then m

2n ≤ f (xn)

2n ≤ M
2n ,

which implies that the series is absolutely convergent and its limit is a number in the interval
[m, M].

Let a ∈ (0, 1) and ma and Ma be the minimum and the maximum of f on [0, a]. If
α ∈ [0, a] is such that f (α) = Ma, then

Ma = f (α) =
∞∑

n=1

f (αn)

2n
≤ Ma

∞∑

n=1

1

2n
= Ma,

whence we must have equality in the above inequality, so f (αn) = Ma. Since lim
n→∞αn = 0, it

follows that Ma must equal lim
x→0

f (x) = f (0). Similarly, ma = f (0), and hence f is constant on

[0, a]. Passing to the limit with a → 1, we conclude that f is constant on the interval [0, 1].
Clearly, constant functions satisfy the property, providing all solutions to the problem.

(Gazeta Matematică (Mathematics Gazette, Bucharest), proposed by M. Bălună)

475. Let φ : [0, 1] × [0, 1] be a continuous surjection. Define ψ to be the composition

[0, 1] φ−→ [0, 1] × [0, 1] φ×id−→ [0, 1] × [0, 1] × [0, 1] pr12−→ [0, 1] × [0, 1],
where pr12 : [0, 1] × [0, 1] × [0, 1] → [0, 1] × [0, 1] is the projection of the cube onto the
bottom face. Each function in the above chain is continuous and surjective, so the composition
is continuous and surjective. Moreover, because the projection takes each value infinitely
many times, so does ψ . Therefore, ψ provides the desired example.
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476. The first example of such a function was given by Weierstrass. The example we present
here, of a function f : [0, 1] → [0, 1], was published by S. Marcus in the Mathematics
Gazette, Bucharest.

If 0 ≤ x ≤ 1 and x = 0.a1a2a3 . . . is the ternary expansion of x, we let the binary
representation off (x) be 0.b1b2b3 . . ., where the binary digits b1, b2, b3, . . . are uniquely
determined by the conditions

(i) b1 = 1 if and only if 1 = 1,
(ii) bn+1 = bn if and only if an+1 = an, n ≥ 1.
It is not hard to see that f (x) does not depend on which ternary representation you choose

for x. For example

f (0.0222 . . .) = 0.0111 . . . = 0.1000 . . . = f (0.1000 . . .).

Let us prove first that the function is continuous. If x is a number that has a unique ternary
expansion and (xn)n is a sequence converging to x, then the first m digits of xn become equal
to the first m digits of x for n sufficiently large. It follows from the definition of f that the
first m binary digits of f (xn) become equal to the first m binary digits of f (x) for n sufficiently
large. Hence f (xn) converges to f (x), so f is continuous at x.

If x is a number that has two possible ternary expansions, then in one expansion x has
only finitely many nonzero digits x = 0.a1a2 . . . ak00 . . ., with ak �= 0. The other expansion
is 0.a1a2 . . . a′k222 . . ., with a′k = ak − 1 (=0 or 1). Given a sequence (xn)n that converges to
x, for sufficiently large n the first k − 1 digits of xn are equal to a1, a2, . . . , ak−1, while the
next m− k+1 are either ak, 0, 0, . . . , 0, or a′k, 2, 2, . . . , 2. If f (x) = f (0.a1a2 . . . ak00 . . .) =
0.b1b2b3 . . ., then for n sufficiently large, the first k − 1 digits of f (xn) are b1, b2, . . . , bk−1,
while the next m− k + 1 are either bk , bk+1 = bk+2 = · · · = bm (the digits of f (x)) or 1− bk ,
1− bk+1 = · · · = 1− bm. The two possible binary numbers are 0.b1b2 . . . bk−10111 . . . and
0.b1b2 . . . bk−11000 . . .; they differ from f (x) by at most 1

2m+1 . We conclude again that as
n →∞, f (xn)→ f (x). This proves the continuity of f .

Let us show next that f does not have a finite derivative from the left at any point x ∈ (0, 1].
For such x consider the ternary expansion x = 0.a1a2a3 . . . that has infinitely many nozero
digits, and, applying the definition of f for this expansion, let f (x) = 0.b1b2b3 . . . Now
consider an arbitrary positive number n, and let kn ≥ n be such that akn �= 0. Construct a
number x′ ∈ (0, 1) whose first kn − 1 digits are the same as those of x, whose knth digit is
zero, and all of whose other digits are equal to 0 if bkn+1 = 1 and to 1 if bkn+1 = 0. Then

0 < x − x′ < 2 · 3−kn + 0. 00 . . . 0︸ ︷︷ ︸
kn

22 . . . = 3−kn+1,

while in the first case,

|f (x)− f (x′)| ≥ 0. 00 . . . 0︸ ︷︷ ︸
kn

bkn+1 = 0. 00 . . . 0︸ ︷︷ ︸
kn

1,

and in the second case,

|f (x)− f (x′)| ≥ 0. 00 . . . 0︸ ︷︷ ︸
kn

11 . . . 1− 0. 00 . . . 0︸ ︷︷ ︸
kn

0bkn+2,
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and these are both greater than or equal to 2−kn−1. Since kn ≥ n, we have 0 < x− x′ < 3−n+1

and ∣
∣
∣
∣
f (x)− f (x′)

x − x′

∣
∣
∣
∣ >

2−kn−1

3−kn+1
= 1

6

(
3

2

)kn

≥ 1

6

(
3

2

)n

.

Letting n →∞, we obtain

x′ → x, while

∣
∣
∣
∣
f (x)− f (x′)

x − x′

∣
∣
∣
∣→∞.

This proves that f does not have a derivative on the left at x. The argument that f does not
have a derivative on the right at x is similar and is left to the reader.

Remark. S. Banach has shown that in some sense, there are far more continuous functions
that are not differentiable at any point than continuous functions that are differentiable at least
at some point.

477. We apply the intermediate value property to the function g : [a, b] → [a, b], g(x) =
f (x)− x. Because f (a) ≥ a and f (b) ≤ b, it follows that g(a) ≤ 0 and g(b) ≥ 0. Hence there
is x ∈ [a, b] such that g(c) = 0. This c is a fixed point of f .

478. Let L be the length of the trail and T the total duration of the climb, which is the
same as the total duration of the descent. Counting the time from the beginning of the
voyage, denote by f (t) and g(t) the distances from the monk to the temple at time t on
the first and second day, respectively. The functions f and g are continuous; hence so is
φ : [0, T ] → R, φ(t) = f (t) − g(t). It follows that φ has the intermediate value property.
Because φ(0) = f (0)− g(0) = L− 0 = L > 0 and φ(T) = f (T)− g(T) = 0− L < 0, there
is a time t0 with φ(t0) = 0. At t = t0 the monk reached the same spot on both days.

479. The fact that f is decreasing implies immediately that

lim
x→−∞(f (x)− x) = ∞ and lim

x→∞(f (x)− x) = −∞.

By the intermediate value property, there is x0 such that f (x0) = x0. The function cannot have
another fixed point because if x and y are fixed points, with x < y, then x = f (x) ≥ f (y) = y,
impossible.

The triple (x0, x0, x0) is a solution to the system. And if (x, y, z) is a solution then
f (f (f (x))) = x. The function f ◦ f ◦ f is also continuous and decreasing, so it has a unique
fixed point. And this fixed point can only be x0. Therefore, x = y = z = x0, proving that the
solution is unique.

480. The inequality from the statement implies right away that f is injective, and also that f
transforms unbounded intervals into unbounded intervals. The sets f ((−∞, 0]) and f ([0,∞))

are unbounded intervals that intersect at one point. They must be two intervals that cover the
entire real axis.

(P.N. de Souza, J.N. Silva, Berkeley Problems in Mathematics, Springer, 2004)
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481. Let x denote the distance along the course, measured in miles from the starting line. For
each x ∈ [0, 5], let f (x) denote the time that elapses for the mile from the point x to the point
x + 1. Note that f depends continuously on x. We are given that

f (0)+ f (1)+ f (2)+ f (3)+ f (4)+ f (5) = 30.

It follows that not all of f (0), f (1), . . . , f (5) are smaller than 5, and not all of them are larger
than 5. Choose a, b ∈ {0, 1, . . . , 5} such that f (a) ≤ 5 ≤ f (b). By the intermediate value
property, there exists c between a and b such that f (c) = 5. The mile between c and c + 1
was run in exactly 5 minutes.

(L.C. Larson, Problem-Solving Through Problems, Springer-Verlag, 1990)

482. Without loss of generality, we may assume that the cars traveled on one day from A to
B keeping a distance of at most one mile between them, and on the next day they traveled in
opposite directions in the same time interval, which we assume to be of length one unit of
time.

Since the first car travels in both days on the same road and in the same direction, it defines
two parametrizations of that road. Composing the motions of both cars during the second
day of travel with a homeomorphism (continuous bijection) of the time interval [0, 1], we can
ensure that the motion of the first car yields the same parametrization of the road on both days.
Let f (t) be the distance from the second car to A when the first is at t on the first day, and g(t) the
distance from the second car to A when the first is at t on the second day. These two functions
are continuous, so their difference is also continuous. But f (0) − g(0) = −dist(A, B), and
f (1)− g(1) = dist(A, B), where dist(A, B) is the distance between the cities.

The intermediate value property implies that there is a moment t for which f (t)−g(t) = 0.
At that moment the two cars are in the same position as they were the day before, so they are
at distance at most one mile. Hence the answer to the problem is no.

483. We compute

n∑

j=0

P(2j) =
n∑

j=0

n∑

k=1

ak2kj =
n∑

k=1

⎛

⎝
n∑

j=0

2kj

⎞

⎠ ak

=
n∑

k=1

2k(n+1) − 1

2k − 1
= Q(2n+1)− Q(1) = 0.

It follows that P(1) + P(2) + · · · + P(2n) = 0. If P(2k) = 0 for some k < n, we are done.
Otherwise, there exist 1 ≤ i, j ≤ n such that P(2i)P(2j) < 0, and by the intermediate value
property, P(x) must have a zero between 2i and 2j.

(USA Team Selection Test for the International Mathematical Olympiad, proposed by R.
Gelca)

484. Consider the lines fixed, namely the x- and the y-axes, and vary the position of the
surface in the plane. Rotate the surface by an angle φ, then translate it in such a way that the
x-axis divides it into two regions of equal area. The coordinate axes divide it now into four
regions of areas A, B, C, D, counted counterclockwise starting with the first quadrant. Further
translate it such that A = B. The configuration is now uniquely determined by the angle φ.
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It is not hard to see that A = A(φ), B = B(φ), C = C(φ), and D = D(φ) are continuous
functions of φ.

If C(0◦) = D(0◦), then the equality of the areas of the regions above and below the x-axis
implies A(0◦) = B(0◦) = C(0◦) = D(0◦), and we are done.

If C(0◦) > D(0◦), then the line that divides the region below the x-axis into two polygons
of equal area lies to the left of the y-axis (see Figure 73). This means that after a 180◦-rotation
the line that determines the regions A(180◦) and B(180◦) will divide the other region into
C(180◦) and D(180◦) in such a way that C(180◦) < D(180◦). Similarly, if C(0◦) < D(0◦),
then C(180◦) > D(180◦).

AB

C D x

y

Figure 73

It follows that the continuous function C(φ)− D(φ) assumes both positive and negative
values on the interval [0◦, 180◦], so by the intermediate value property there is an angle φ0 for
which C(φ0) = D(φ0). Consequently, A(φ0) = B(φ0) = C(φ0) = D(φ0), and the problem is
solved.

Remark. This result was called the “Pancake theorem” in W.G. Chinn, N.E. Steenrod, First
Concepts of Topology, MAA 1966.

485. Assume that f is not continuous at some point a. Then there exists ε > 0 and a sequence
sn → a such that |f (xn) − f (a)| > ε for all n ≥ 1. Without loss of generality, we may
assume that there is a subsequence (xnk )k such that f (xnk ) < f (a), for all k, in which case
f (xnk ) ≤ f (a) − ε. Choose γ in the interval (f (a) − ε, f (a)). Since f has the intermediate
value property, and f (xnk ) < γ < f (a), for each k there exists yk between xnk and a such that
f (yk) = γ . The set f −1(γ ) contains the sequence (yk)k , but does not contain its limit a, which
contradicts the fact that the set is closed. This contradiction proves that the initial assumption
was false; hence f is continuous on the interval I .

(A.M. Gleason)

486. The function is continuous off 0, so it maps any interval that does not contain 0 onto
an interval. Any interval containing 0 is mapped onto [−1, 1], which proves that f has the
intermediate value property for any a ∈ [−1, 1].
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For the second part of the problem, we introduce the function

F(x) =
{

x2 sin 1
x for x �= 0,

0 for x = 0.

One can verify easily that

F ′(x) =
{

2x sin 1
x for x �= 0,

0 for x = 0
+
{

cos 1
x for x �= 0,

0 for x = 0.

The only place where this computation might pose some difficulty is x = 0, which can be
done using L’Hôpital’s theorem. The first function is continuous; hence it is the derivative
of a function. Because the differentiation operator is linear we find that the second function,
which is f0(x) is a derivative. And because when a �= 0,

fa(x)− f0(x) =
{

0 for x �= 0,

a for x = 0,

does not have the intermediate value property, so it is not the derivative of a function, fa(x)
itself cannot be the derivative of a function. This completes the solution.

(Romanian high school textbook)

487. Taking the logarithm, transform the equation into the equivalent x ln 2 = 2 ln x. Define
the function f : (0,∞)→ R, f (x) = x ln 2− 2 ln x. We are to find the zeros of f . Differenti-
ating, we obtain

f ′(x) = ln 2− 2

x
,

which is strictly increasing. The unique zero of the derivative is 2
ln 2 , and so f ′ is negative for

x < 2/ ln 2 and positive for x > 2
ln 2 . Note also that lim

x→0
f (x) = lim

x→∞ f (x) = ∞. There are

two possibilities: either f
(

2
ln 2

)
> 0, in which case the equation f (x) = 0 has no solutions, or

f
(

2
ln 2

)
< 0, in which case the equation f (x) = 0 has exactly two solutions. The latter must be

true, since f (2) = f (4) = 0. Therefore, x = 2 and x = 4 are the only solutions to f (x) = 0,
and hence also to the original equation.

488. If f (x) ≥ 0 for all x, then the function g(x) = (x−a1)(x−a2)(x−a3) is increasing, since
its derivative is f . It follows that g has only one zero, and we conclude that a1 = a2 = a3.

(V. Boskoff)

489. The inequality is homogeneous, so we can transform it into one for a single variable by
dividing both sides by bn and denoting a/b by x. We obtain the equivalent inequality

(n− 1)xn + 1 ≥ nxn−1,

or

(n− 1)xn − nxn−1 + 1 ≥ 0.
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The left-hand side is a differentiable function f (x). Let us find the critical points of f in the
interval (0,∞). The equation f ′(x) = 0 reads

n(n− 1)xn−1 − n(n− 1)xn−2 = 0,

which yields the unique critical point x = 1. We compute f (1) = 0, f (0) = 1, and
limx→∞ f (x) = ∞. It follows that 1 is a global minimum, and consequently f (x) is non-
negative. This proves the inequality.

Remark. It should be noticed that the inequality is a particular case of the AM-GM inequality
applied to the numbers an, an, ..., an, bn, where there are n− 1 powers of a.

(L. Larson Problem-Solving through Problems, Springer, 1983)

490. Let f : C → C, f (x) = z3 − z + 2. We have to determine max|z|=1
|f (z)|2. For this, we

switch to real coordinates. If |z| = 1, then z = x + iy with y2 = 1− x2, −1 ≤ x ≤ 1. View
the restriction of |f (z)|2 to the unit circle as a function depending on the real variable x:

|f (z)|2 = |(x + iy)3 − (x + iy)+ 2|2
= |(x3 − 3xy2 − x + 2)+ iy(3x2 − y2 − 1)|2
= |(x3 − 3x(1− x2)− x + 2)+ iy(3x2 − (1− x2)− 1)|2
= (4x3 − 4x + 2)2 + (1− x2)(4x2 − 2)2

= 16x3 − 4x2 − 16x + 8.

Call this last expression g(x). Its maximum on [−1, 1] is either at a critical point or at an
endpoint of the interval. The critical points are the roots of g′(x) = 48x2 − 8x − 16 = 0,
namely, x = 2

3 and x = − 1
2 . We compute g(−1) = 4, g

(− 1
2

) = 13, g
(

2
3

) = 8
27 , g(1) = 4.

The largest of them is 13, which is therefore the answer to the problem. It is attained when
z = − 1

2 ±
√

3
2 i.

(8th W.L. Putnam Mathematical Competition, 1947)

491. After we bring the function into the form

f (x) =

(
x − 1+ 1

x

)3

x3 − 1+ 1

x3

,

the substitution x + 1
x = s becomes natural. We are to find the minimum of the function

h(s) = (s− 1)3

s3 − 3s− 1
= 1+ −3s2 + 6s

s3 − 3s− 1

over the domain (−∞,−2] ∪ [2,∞). Setting the first derivative equal to zero yields the
equation

3(s− 1)(s3 − 3s2 + 2) = 0.
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The roots are s = 1 (double root) and s = 1 ± √3. Of these, only s = 1 + √3 lies in the
domain of the function.

We compute

lim
x→±∞ h(s) = 1, h(2) = 1, h(−2) = 9, h(1+√3) =

√
3

2+√3
.

Of these the last is the least. Hence the minimum of f is
√

3/(2 + √3), which is attained
when x + 1

x = 1+√3, that is, when x = (1+√3± 4
√

12)/2.
(Mathematical Reflections, proposed by T. Andreescu)

492. Let f (x) = sin(sin(sin(sin(sin(x))))). The first solution is x = 0. We have

f ′(0) = cos 0 cos(sin 0) cos(sin(sin 0)) cos(sin(sin(sin 0))) cos(sin(sin(sin(sin 0))))

= 1 >
1

3
.

Therefore, f (x) > x
3 in some neighborhood of 0. On the other hand, f (x) < 1, whereas x

3 is
not bounded as x → ∞. Therefore, f (x0) = x0

3 for some x0 > 0. Because f is odd, −x0 is
also a solution. The second derivative of f is

− cos(sin x) cos(sin(sin x)) cos(sin(sin(sin x))) cos(sin(sin(sin(sin x)))) sin x

− cos2 x cos(sin(sin x)) cos(sin(sin(sin x))) cos(sin(sin(sin(sin x)))) sin(sin x)

− cos2 x cos2(sin x) cos(sin(sin(sin x))) cos(sin(sin(sin(sin x)))) sin(sin(sin x))

− cos2 x cos2(sin x) cos2(sin(sin x)) cos(sin(sin(sin(sin x)))) sin(sin(sin(sin x)))

− cos2 x cos2(sin x)) cos2(sin(sin x)) cos2(sin(sin(sin x))) sin(sin(sin(sin(sin x)))),

which is clearly nonpositive for 0 ≤ x ≤ 1. This means that f ′(x) is monotonic. Therefore,
f ′(x) has at most one root x′ in [0,+∞) Then f (x) is monotonic at [0, x′] and [x′,∞) and
has at most two nonnegative roots. Because f (x) is an odd function, it also has at most two
nonpositive roots. Therefore, −x0, 0, x0 are the only solutions.

493. Let f : R → R,

f (x) = ex + nx − 2.

Then f ′(x) = ex + n > 0, so f is strictly increasing. Also f (0) < 0 and f (1) > 0, thus an

exists and is unique. Moreover, an ∈ (0, 1). Because 2 > nan, (an)n converges to 0. Passing
to the limit in the definition of an we see that (nan)n converges to 1. Finally, note that

lim
n→∞

n(1− nan)

nan
= lim

n→∞
ean − 1

an
= 1,

the latter being the derivative of ex at 0. So (n(1− nan))n also converges to 1.
(Mathematical Reflections, proposed by T.L. Rădulescu)
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494. If both x and y are negative, then |x|n > nn + |y|n+1 and |y|n > nn + |x|n+1. Without
loss of generality, |x| ≥ |y|; then |x|n > nn + |x|n+1. This means that |x|, and consequently
|y| are are less than 1, which is impossible.

For the inequality x + y ≤ 1 to hold, one of the numbers has to be negative, or else both
are less than or equal to 1 and nn < xn + yn+1 < 2. So let y < 0 and x > 0, and assume
x + y ≤ 1. Set y = −a, a > 0. Then x ∈ (0, 1 + a), and so xn < (1 + a)n. The relation
yn+1 + xn > nn implies

(1+ a)n − an+1 > nn.

Consider the function f : (0,∞) → R, f (a) = an+1 − (1 + a)n + nn. We will show that
f > 0. We have

f ′(a) = (n+ 1)an − n(1+ a)n−1,

and we see that f ′(a) = 0 at the unique point a0 satisfying (1 + a0)
n−1 = n+1

n an
0. Because

f (0) = nn − 1 > 0 and lima→∞ f (a) = ∞, it follows that a0 is a global minimum, and so it
suffices to show that f (a0) > 0. We have f ′(0) < 0 and f ′(n− 1) = (n+ 1)(n− 1)n − nn =
(n− 1)n(n+ 1− (1+ 1

n−1)
n) > 0, so a0 < n− 1. Hence

f (a0) = an+1
0 − (1+ a0)

n+ 1

n
an

0 + nn = nn − an
0

n
(1+ a0 + n) > nn − (n− 1)n · 2n

n
> 0,

since nn − 2(n− 1)n = (n− 1)n((1− 1
n−1)

n − 2) > 0. So f > 0. Thus our assumption was
false, and so x + y > 1.

(Gazeta Matematică (Mathematics Gazette, Bucharest), proposed by L. Panaitopol)

495. For x �= y this is the same as
∣∣∣∣
f (x)− f (y)

x − y

∣∣∣∣ ≤ |x − y|.

In the right-hand term we have limy→x |x − y| = 0, so by the squeezing principle

lim
y→x

∣
∣∣∣
f (x)− f (y)

x − y

∣
∣∣∣ = 0,

and so f is differentiable at x and f ′(x) = 0. This means that f is constant. And every constant
function satisfies the given inequality.

(from a note published in The American Mathematical Monthly by T. Khovanova and
A. Radul)

496. Assume that this is not true. Then there is ε > 0 so that for every α ∈ R there is x > α

such that |f (x)| > ε. By choosing only those values of f with the same sign, and maybe
changing f to −f , we may remove the bars in the last equality, so that it reads f (x) > ε.
Choose α large enough so that |f (x)+ f ′(x)| < ε/2 for all x > α.

If f (x) > ε on [α,∞), then f ′(x) < −ε/2, which forces limx→∞ f (x) = −∞, and
consequently limx→∞ f (x) + f ′(x) = −∞. Hence f takes values smaller than ε on every
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interval [β,∞). So we can find an interval [a, b] a > α which contains an x such that
f (x) > ε and such that f (a), f (b) < ε. But then f has a point of maximum c ∈ (a, b). Then
f ′(c) = 0, and of course f (c) > ε since this inequality already holds for a point in (a, b). But
this is impossible since c > α implies f (c) = |f (c)+ f ′(c)| < ε/2. The conclusion follows.

497. Define the function G : R → R, G(x) =
(∫ x

0
f (t)dt

)2

. It satisfies

G ′(x) = 2f (x)
∫ x

0
f (t)dt.

Because G ′(0) = 0 and G ′(x) = g(x) is nonincreasing it follows that G ′ is nonnegative on
(−∞, 0) and nonpositive on (0,∞). This implies that G is nondecreasing on (−∞, 0) and
nonincreasing on (0,∞). And this, combined with the fact that G(0) = 0 and G(x) ≥ 0 for

all x, implies G(x) = 0 for all x. Hence
∫ x

0
f (t)dt = 0. Differentiating with respect to x, we

conclude that f (x) = 0 for all x, and we are done.
(Romanian Mathematical Olympiad, 1978, proposed by S. Rădulescu)

498. Consider the function

F(t) =
[∫ t

0
f (x)dx

]2

−
∫ t

0
[f (x)]3dx for t ∈ [0, 1].

We want to show that F(t) ≥ 0, from which the conclusion would then follow. Because
F(0) = 0, it suffices to show that F is increasing. To prove this fact we differentiate and
obtain

F ′(t) = f (t)

[
2
∫ t

0
f (x)dx − f 2(t)

]
.

It remains to check that G(t) = 2
∫ t

0
f (x)dx − f 2(t) is positive on [0, 1]. Because G(0) = 0,

it suffices to prove that G itself is increasing on [0, 1]. We have

G ′(t) = 2f (t)− 2f (t)f ′(t).

This function is positive, since on the one hand f ′(0) ≤ 1, and on the other hand f is increasing,
having a positive derivative, and so f (t) ≥ f (0) = 0. This proves the inequality. An example
in which equality holds is the function f : [0, 1] → R, f (x) = x.

(34th W.L. Putnam Mathematical Competition, 1973)

499. Define h : R → R,

h(t) = f (et)− et.

The given equation becomes

h(3t)+ h(2t)+ h(t) = 0 for all t.
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The chain rule shows that this function is differentiable at 0.

h(3 · 0)+ h(2 · 0)+ h(0) = 3h(0) = 0,

so h(0) = 0. Also

3h′(0)+ 2h′(0)+ h′(0) = 6h′(0) = 0,

so h′(0) = 0. We can write this as

lim
t→0

h(t)− h(0)

t
= lim

t→0

h(t)

t
= 0.

So for every ε > 0, there is δ > 0 such that

sup
0<|t|<δ

∣
∣
∣
∣
h(t)

t

∣
∣
∣
∣ < ε.

Fix such an ε, and the corresponding δ. We have
∣∣∣
∣
h(3t)

3t

∣∣∣
∣ ≤
∣∣∣
∣
h(2t)

3t

∣∣∣
∣+
∣∣∣
∣
h(t)

3t

∣∣∣
∣ =

2

3

∣∣∣
∣
h(2t)

2t

∣∣∣
∣+

1

3

∣∣∣
∣
h(t)

t

∣∣∣
∣ .

Choosing |t| < δ/2, the right-hand side is less than ε. But then y = 3t is between
(−3δ/2, 3δ/2). And |h(y)/y| is still less than ε. Thus we can increase δ by a factor of
3/2 and the inequality still holds. Repeating, we can make δ arbitrarily large, so we conclude
that |h(t)/t| < ε for all t. But ε is an arbitrary positive number, so h(t) = 0 for all t.

We therefore have f (x) = x as the only solution to the functional equation.
(Mathematical Reflections, proposed by M. Piticari)

500. (a) To avoid the complicated exponents, divide the inequality by the right-hand side;
then take the natural logarithm. Next, fix positive numbers y and z, and then introduce the
function f : (0,∞)→ R,

f (x) = (x + y+ z) ln(x + y+ z)+ x ln x + y ln y + z ln z

− (x + y) ln(x + y)− (y+ z) ln(y+ z)− (z + x) ln(z + x).

Differentiating f (x) with respect to x, we obtain

f ′(x) = ln
(x + y+ z)x

(x + y)(z + x)
= ln

x2 + yx + zx

x2 + yx + zx + yz
< ln 1 = 0,

for all positive numbers x. It follows that f (x) is strictly decreasing, so f (x) < lim
t→0

f (t) = 0,

for all x > 0. Hence ef (x) < 1 for all x > 0, which is equivalent to the first inequality from
the statement.

(b) We apply the same idea, fixing y, z > 0 and considering the function g : (0,∞)→ R,

g(x) = (x + y+ z)2 ln(x + y+ z)+ x2 ln x + y2 ln y+ z2 ln z

− (x + y)2 ln(x + y)− (y+ z)2 ln(y + z)− (z + x)2 ln(z + x).
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Differentiating with respect to x, we obtain

g′(x) = 2 ln
(x + y+ z)x+y+zxx

(x + y)x+y(z + x)z+x
.

We would like to show this time that g is increasing, for then g(x) > lim
t→0

g(t) = 0, from which

the desired inequality is obtained by exponentiation. We are left to prove that g′(x) > 0, which
is equivalent to

(x + y+ z)x+y+zxx > (x + y)x+y(z + x)z+x, for x, y, z > 0.

And we take the same path as in (a). Because we want to make the derivative as simple as
possible, we fix x, y > 0 and define h : (0,∞)→ R,

h(z) = (x + y+ z) ln(x + y+ z)+ x ln x − (x + y) ln(x + y)− (z + x) ln(z + x).

Then
h′(z) = ln

x + y+ z

z + x
> ln 1 = 0,

for z > 0. Hence h(z) > lim
t→0

h(t) = 0, z > 0. This implies the desired inequality and

completes the solution.
(American Mathematical Monthly, proposed by Sz. András, solution by H.-J. Seiffert)

501. Let us examine the function F(x) = f (x) − g(x). Because F(n)(a) �= 0, we have
F(n)(x) �= 0 for x in a neighborhood of a. Hence F(n−1)(x) �= 0 for x �= a and x in a
neighborhood of a (otherwise, this would contradict Rolle’s theorem). Then F(n−2)(x) is
monotonic to the left, and to the right of a, and because F(n−2)(a) = 0, F(n−2)(x) �= 0 for
x �= a and x in a neighborhood of a. Inductively, we can decrease the order of the derivative,
to botain F(x) �= 0 and so f (x) �= g(x) in some neighborhood of a.

The limit from the statement can be written as

lim
x→a

eg(x) ef (x)−g(x) − 1

f (x)− g(x)
.

We only have to compute the limit of the fraction, since g(x) is a continuous function. We
are in a 0

0 situation, and can apply L’Hôpital’s theorem:

lim
x→a

ef (x)−g(x) − 1

f (x)− g(x)
= lim

x→a

(f ′(x)− g′(x))ef (x)−g(x)

f ′(x)− g′(x)
= e0 = 1.

Hence the limit from the statement is equal to eg(a) = eα.
(N. Georgescu-Roegen)

502. The function h : [1,∞) → [1,∞) given by h(t) = t(1 + ln t) is strictly increasing,
and h(1) = 1, lim

t→∞ h(t) = ∞. Hence h is bijective, and its inverse is clearly the function

f : [1,∞)→ [1,∞), λ→ f (λ). Since h is differentiable, so is f , and

f ′(λ) = 1

h′(x(λ))
= 1

2+ ln f (λ)
.
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Also, since h is strictly increasing and lim
t→∞ h(t) = ∞, f (λ) is strictly increasing, and its limit

at infinity is also infinity. Using the defining relation for f (λ), we see that

f (λ)

λ

ln λ

= ln λ · f (λ)

λ
= ln λ

1+ ln f (λ)
.

Now we apply L’Hôpital’s theorem and obtain

lim
λ→∞

f (λ)

λ

ln λ

= lim
λ→∞

1

f (λ)

1

2+ ln f (λ)

= lim
λ→∞

f (λ)

λ
(2+ ln f (λ)) = lim

λ→∞
2+ ln f (λ)

1+ ln f (λ)
= 1,

where the next-to-last equality follows again from f (λ)(1 + ln f (λ)) = λ. Therefore, the
required limit is equal to 1.

(Gazeta Matematică (Mathematics Gazette, Bucharest), proposed by I. Tomescu)

503. We want to find a formula for limx→0 fn(x)/gn(x). Inductively we prove that

lim
x→0

fn(x) = lim
n→0

gn(x) = 0,

so we might be able to apply L’Hospital.
Let us check small cases of n. For n = 1, L’Hospital can indeed be applied, since

lim
x→0

f ′1(x)
g′1(x)

= lim
x→0

1
1+3x2 · 2 · 3x

1
1+5x2 · 2 · 5x

= 3

5
.

So limx→0 f1(x)/g1(x) = 3/5. Also for n = 2, we check

lim
x→0

f ′2(x)
g′2(x)

= lim
x→0

1
1+2(f1(x))2 · 2 · 3f1(x)f ′1(x)

1
1+3g1(x)

· 2 · 5 · g1(x)g′1(x)
= 33

53
.

So limx→0 f1(x)/g1(x) = 33/53. Inductively we prove that

lim
x→0

fn(x)

gn(x)
= lim

x→0

f ′n(x)
g′n(x)

= 32n−1

52n−1
.

Indeed,

lim
n→0

f ′n+1(x)

g′n+1(x)
= lim

n→0

1
1+3(fn(x))2 · 2 · 3 · fn(x)f ′n(x)

1
1+5(gn(x))2 · 2 · 5gn(x)g′n(x)

= 3

5
lim
x→0

1+ 5(gn(x))2

1+ 3(fn(x))2
· lim

x→0

fn(x)

gn(x)
· lim

x→0

f ′n(x)
g′n(x)

= 3

5
· 1 · 32n−1

52n−1
· 32n−1

52n−1
= 32n+1

52n+1
.
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Hence the answer to the problem is

lim
x→0

f2014(x)

g2014(x)
= 322014−1

522014−1
.

(Konhauser Problem Fest, 2014, proposed by R. Gelca)

504. If all four zeros of the polynomial P(x) are real, then by Rolle’s theorem all three zeros
of P′(x) are real, and consequently both zeros of P′′(x) = 12x2 − 6

√
7x + 8 are real. But

this quadratic polynomial has the discriminant equal to−132, which is negative, and so it has
complex zeros. The contradiction implies that not all zeros of P(x) are real.

505. Replacing f by−f if necessary, we may assume f (b) > f (c), hence f (a) > f (c) as well.
Let ξ be an absolute minimum of f on [a, b], which exists because the function is continuous.
Then ξ ∈ (a, b) and therefore f ′(ξ) = 0.

506. Consider the function f : [2,∞) → R, f (x) = x cos π
x . By the Mean value theorem

there exists u ∈ [x, x+1] such that f ′(u) = f (x+1)− f (x). The inequality from the statement
will follow from the fact that f ′(u) > 1. Since f ′(u) = cos π

u + π
u sin π

u , we have to prove that

cos
π

u
+ π

u
sin

π

u
> 1,

for all u ∈ [2,∞). Note that f ′′(u) = −π2

u3 cos π
u < 0, for u ∈ [2,∞), so f ′ is strictly

decreasing. This implies that f ′(u) > lim
v→∞ f ′(v) = 1 for all u, as desired. The conclusion

follows.
(Romanian college admission exam, 1987)

507. Let α be the slope of the line through the collinear points (ai, f (ai)), i = 0, 1, . . . , n, on
the graph of f . Then

f (ai)− f (ai−1)

ai − ai−1
= α, i = 1, 2, . . . , n.

From the Mean value theorem it follows that there exist points ci ∈ (ai−1, ai) such that
f ′(ci) = α, i = 1, 2, . . . , n. Consider the function F : [a0, an] → R, F(x) = f ′(x)− α. It is
continuous, (n − 1)-times differentiable, and has n zeros in [a0, an]. Applying successively
Rolle’s theorem, we conclude that F(n−1) = f (n) has a zero in [a, b], and the problem is solved.

(Gazeta Matematică (Mathematics Gazette, Bucharest), proposed by G. Sireţchi)

508. The functions φ,ψ : [a, b] → R, φ(x) = f (x)
x−α

and ψ(x) = 1
x−α

satisfy the conditions
of Cauchy’s theorem. Hence there exists c ∈ (a, b) such that

φ(b)− φ(a)

ψ(b)− ψ(a)
= φ′(c)

ψ ′(c)
.

Replacing φ and ψ with their formulas gives

(a− α)f (b)− (b− α)f (a)

a− b
= f (c)− (c− α)f ′(c).
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On the other hand, since m lies on the line determined by (a, f (a)), (b, f (b)), the coordinates
of M are related by

β = (a− α)f (b)− (b− α)f (a)

a− b
.

This implies that β = f ′(c)(c − α) + f (c), which shows that M(α, β) lies on the tangent to
the graph of f at (c, f (c)), and we are done.

509. Consider the function F : [a, b] → R,

F(x) = f ′(x)e−λf (x), λ ∈ R.

Because f is twice differentiable, F is differentiable. We have F(a) = F(b), which by Rolle’s
theorem implies that there exists c ∈ (a, b) with F ′(c) = 0. But

F ′(x) = e−λf (x)(f ′′(x)− λ(f ′(x))2),

so f ′′(c)− λ(f ′(c))2 = 0. We are done.
(D. Andrica)

510. First solution: Let us assume that such numbers do exist. If x = y it follows that
x(2x + 2−x) = 2x, which implies x = y = 0. This is impossible because x and y are assumed
to be positive.

Hence x should be different from y. Let x1 > x2 > x3 > 0 be such that y = x1 − x2 and
x = x2 − x3. The relation from the statement can be written as

2x1−x2 − 1

1− 2x3−x2
= x1 − x2

x2 − x3
,

or
2x1 − 2x2

x1 − x2
= 2x2 − 2x3

x2 − x3
.

Applying the Mean value theorem to the exponential, we deduce the existence of the numbers
θ1 ∈ (x2, x1) and θ2 ∈ (x3, x2) such that

2x1 − 2x2

x1 − x2
= 2θ1 ln 2,

2x2 − 2x3

x2 − x3
= 2θ2 ln 2.

But this implies 2θ1 ln 2 = 2θ2 ln 2, or θ1 = θ2, which is impossible since the two numbers lie
in disjoint intervals. This contradiction proves the claim.

Second solution: Define F(z) = (2z − 1)/z. Note that by L’Hôpital’s rule, defining F(0) =
log 2 extends F continuously to z = 0. Rearrange the equality to give

F(−x) = 2−x − 1

−x
= 2y − 1

y
= F(y).
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Thus the lack of solutions will follow if we show that F is strictly increasing. Recall that
e−t > 1− t for t �= 0, hence 2−z > 1− z log 2 for z �= 0. Hence

F ′(z) = 2z(z log 2− 1+ 2−z)

z2
> 0

for z �= 0 and hence F is strictly increasing.
(T. Andreescu, second solution by R. Stong)

511. Clearly, α is nonnegative. Define�f (x) = f (x+1)−f (x), and�(k)f (x) = �(�(k−1)f (x)),
k ≥ 2. By the Mean value theorem, there exists θ1 ∈ (0, 1) such f (x+1)− f (x) = f ′(x+ θ1),
and inductively for every k, there exists θk ∈ (0, k) such that �(k)f (x) = f (k)(θk). Applying
this to f (x) = xα and x = n, we conclude that for every k there exists θk ∈ (0, k) such that
f (k)(n+ θk) is an integer. Choose k = �α� + 1. Then

f (k)(n+ θk) = α(α − 1) · · · (α + 1− k)

(n+ θk)k−α
.

This number is an integer by hypothesis. It is not hard to see that it is also positive and less
than 1. The only possibility is that it is equal to 0, which means that α = k − 1, and the
conclusion follows.

(W.L. Putnam Mathematical Competition)

512. The equation is a3 + b3 + c3 = 3abc, with a = 2x, b = −3x−1, and c = −1. Using the
factorization

a3 + b3 + c3 − 3abc = 1

2
(a+ b+ c)[(a− b)2 + (b− c)2 + (c− a)2]

we find that a+b+ c = 0 (the other factor cannot be zero since, for example, 2x cannot equal
−1). This yields the simpler equation

2x = 3x−1 + 1.

Rewrite this as
3x−1 − 2x−1 = 2x−1 − 1.

We immediately notice the solutions x = 1 and x = 2. Assume that another solution exists,
and consider the function f (t) = tx−1. Because f (3)− f (2) = f (2)− f (1), by the Mean value
theorem there exist t1 ∈ (2, 3) and t2 ∈ (1, 2) such that f ′(t1) = f ′(t2). This gives rise to the
impossible equality (x−1)tx−2

1 = (x−1)tx−2
2 . We conclude that there are only two solutions:

x = 1 and x = 2.
(Mathematical Reflections, proposed by T. Andreescu)

513. We first show that P(x) has rational coefficients. Let k be the degree of P(x), and for
each n, let xn be the rational root of P(x) = n. The system of equations in the coefficients

P(xn) = n, n = 0, 1, 2, . . . , k,

has a unique solution since its determinant is Vandermonde. Cramer’s rule yields rational
solutions for this system, hence rational coefficients for P(x). Multiplying by the product
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of the denominators, we may thus assume that P(x) has integer coefficients, say P(x) =
akxk+· · ·+ a1x+ a0, that ak > 0, and that P(x) = Nn has a rational solution xn for all n ≥ 1,
where N is some positive integer (the least common multiple of the previous coefficients).

Because xn is a rational number, its representation as a fraction in reduced form has the
numerator a divisor of a0− n and the denominator a divisor of ak . If m �= n, then xm �= xn, so

|xm − xn| ≥ 1

ak
.

Let us now show that under this hypothesis the derivative of the polynomial is constant.
Assume the contrary. Then lim|x|→∞ |P

′(x)| = ∞. Also, lim
n→∞P(xn) = lim

n→∞ n = ∞. Hence

|xn| → ∞, and so |P′(xn)| → ∞, for n →∞.
For some n, among the numbers xn, xn+1, xn+2 two have the same sign, call them x and y.

Then, by the Mean value theorem, there exists a cn between x and y such that

P′(cn) = P(y)− P(x)

y− x
.

Taking the absolute value, we obtain

|P′(cn)| ≤ (n+ 2)− n

|y− x| ≤ 2ak,

where we use the fact that x and y are at least 1/ak apart. But cn tends to infinity, and so
|P′(cn)| must also tend to infinity, a contradiction. This shows that our assumption was false,
so P′(x) is constant. We conclude that P(x) is linear.

(Gazeta Matematică (Mathematics Gazette, Bucharest), proposed by M. Dădărlat)

514. Divide the inequality by 2, and notice that what you obtain is the inequality

f (x)+ f (y)

2
≤ f

(
x + y

2

)
,

for the concave function f : (0,∞)→ (0,∞), f (x) = 3
√

x, and for x = 3+ 3
√

3, y = 3− 3
√

3.

515. Arrange the xi’s in increasing order x1 ≤ x2 ≤ . . . ≤ xn. The function

f (a) = |a− x1| + |a− x2| + · · · + |a− xn|
is convex, being the sum of convex functions. It is piecewise linear. The derivative at a point
a, in a neighborhood of which f is linear, is equal to the difference between the number of
xi’s that are less than a and the number of xi’s that are greater than a. The global minimum is
attained where the derivative changes sign. For n odd, this happens precisely at x�n/2�+1. If
n is even, the minimum is achieved at any point of the interval [x�n/2�, x�n/2�+1] at which the
first derivative is zero and the function is constant.

So the answer to the problem is a = x�n/2�+1 if n is odd, and a is any number in the interval
[x�n/2�, x�n/2�+1] if n is even.
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Remark. The required number x is called the median of x1, x2, . . . , xn. In general, if the
numbers x ∈ R occur with probability distribution dμ(x) then their median a minimizes

E(|x − a|) =
∫ ∞

−∞
|x − a|dμ(x).

The median is any number such that
∫ a

−∞
dμ(x) = P(x ≤ a) ≥ 1

2

and ∫ ∞

a
dμ(x) = P(x ≥ a) ≥ 1

2
.

In the particular case of our problem, the numbers x1, x2, . . . , xn occur with equal probability,
so the median lies in the middle.

516. The function f (t) = tc is convex, while g(t) = xt is convex and increasing. Therefore,
h(t) = g(f (t)) = xtc

is convex. We thus have

xac + xbc = h(a)+ h(b) ≥ 2h

(
a+ b

2

)
= 2x

(
a+b

2

)2c

≥ 2x(ab)c/2
.

This completes the solution.
(P. Alexandrescu)

517. The problem amounts to showing that ln(cos x) − tan x ln(sin x) is non-negative for
0 < x < π

4 . The concavity of the natural logarithm implies that

ln(λa+ (1− λ)b) > λ ln a+ (1− λ) ln b,

for all a, b > 0 and λ ∈ (0, 1). If we set a = sin x, b = sin x + cos x and λ = tan x, then

ln(cos x) > tan x ln(sin x)+ (1− tan x) ln(cos x + sin x)

The last term is positive since sin x + cos x = √2 cos(π/4− x) > 1. Hence the conclusion.
(American Mathematical Monthly, proposed by W.W. Chao)

518. We can assume that the triangle is inscribed in a circle of diameter 1, so that a = sin A,
b = sin B, c = sin C, A ≥ B ≥ C. The sine function is concave on the interval [0, π], and
since B is between A and C, and all three angles lie in this interval, we have

sin B− sin C

B− C
≥ sin A− sin C

A− C
.

Multiplying out, we obtain

(A− C)(sin B− sin C) ≥ (B− C)(sin A− sin C),
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or
A sin B− A sin C − C sin B ≥ B sin A− C sin A− B sin C.

Moving the negative terms to the other side and substituting the sides of the triangle for the
sines, we obtain the inequality from the statement.

519. First solution: Consider the function f (x) = x2+√x. Since f ′′(x) = 2− 1
4 x−3/2, f ′′ ≥ 0

for x ≥ 1
4 . It follows that on [ 1

4 ,∞) the function f is convex. Hence

f (x1)+ f (x2)

2
≥ f

(
x1 + x2

2

)
,

for all x1, x2 ≥ 1
4 . Substituting x1 = a2, x2 = b2, we obtain the inequality from the statement.

Second solution: So that the reader can see the advantage of using derivatives, we also give
an entirely algebraic solution. The inequality is equivalent to

(a2 − b2)2 ≥ 2
√

2(a2 + b2)− 2(a+ b),

which can be transformed into

(a2 − b2)2 + 2(a+ b) ≥ 2
√

2(a2 + b2).

Squaring we obtain the equivalent inequality

(a2 − b2)4 + 4(a2 − b2)2(a+ b)+ 4(a+ b)2 ≥ 8(a2 + b2).

Move everything to the left:

(a2 − b2)4 + 4(a2 − b2)2(a+ b)− 4(a− b)2 ≥ 0.

This can be factored as

(a− b)2((a− b)2(a+ b)4 + 4(a+ b)3 − 4) ≥ 0.

The first factor is obviously non-negative. We show that the second factor is non-negative as
follows

(a− b)2(a+ b)4 + 4(a+ b)3 − 4 ≥ 4(a+ b)3 − 4 ≥ 4 · 13 − 4 = 0,

and the inequality is proved.
(Kvant (Quantum), second solution by A.J.S. Chen)

520. Fix x0 ∈ (a, b) and let α and β be two limit points of f : α from the left and β from the
right. We want to prove that they are equal. If not, without loss of generality we can assume
α < β. We argue from Figure 74. Choose x < x0 and y > x0 very close to x0 such that
|f (x)− α| and |f (y)− β| are both very small. Because β is a limit point of f at x0, there will
exist points on the graph of f close to (x0, β), hence above the segment joining (x, f (x)) and
(y, f (y)). But this contradicts the convexity of f . Hence α = β.
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(y,f(y))

(x,f(x))

β

α

)

)0

0(x  ,

(x  ,

x  0

Figure 74

Because all limit points from the left are equal to all limit points from the right, f has a
limit at x0. Now redo the above argument for x = x0 to conclude that the limit is equal to the
value of the function at x0. Hence f is continuous at x0.

521. The key point of the solution is Cauchy’s method of backward induction discussed in the
first chapter of the book. We first prove that for any positive integer k and points x1, x2, . . . , x2k ,
we have

f

(
x1 + x2 + · · · + x2k

2k

)
≤ f (x1)+ f (x2)+ · · · + f (x2k )

2k
.

The base case is contained in the statement of the problem, while the inductive step is

f

(
x1 + · · · + x2k + x2k+1 + · · · + x2k+1

2k+1

)
≤

f

(
x1 + · · · + x2k

2k

)
+ f

(
x2k+1 + · · · + x2k+1

2k

)

2

≤
f (x1)+ · · · + f (x2k )

2k
+ f (x2k+1)+ · · · + f (x2k+1)

2k

2

= f (x1)+ · · · + f (x2k )+ f (x2k + 1)+ · · · + f (x2k+1)

2k+1

Next, we show that

f

(
x1 + x2 + · · · + xn

n

)
≤ f (x1)+ f (x2)+ · · · + f (xn)

n
, for all x1, x2, . . . , xn.

Assuming that the inequality holds for any n points, we prove that it holds for any n − 1
points as well. Consider the points x1, x2, . . . , xn−1 and define xn = x1+x2+···+xn−1

n−1 . Using the
induction hypothesis, we can write

f

⎛

⎜
⎝

x1 + · · · + xn−1 + x1 + · · · + xn−1

n− 1
n

⎞

⎟
⎠ ≤

f (x1)+ · · · + f (xn−1)+ f

(
x1 + · · · + xn−1

n− 1

)

n
.
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This is the same as

f

(
x1 + · · · + xn−1

n− 1

)
≤ f (x1)+ · · · + f (xn−1)

n
+ 1

n
f

(
x1 + · · · + xn−1

n− 1

)
.

Moving the last term on the right to the other side gives the desired inequality. Starting with
a sufficiently large power of 2 we can cover the case of any positive integer n.

In the inequality

f

(
x1 + x2 + · · · + xn

n

)
≤ f (x1)+ f (x2)+ · · · + f (xn)

n

that we just proved, for some m < n set x1 = x2 = · · · = xm = x and xm+1 = xm+2 = · · · =
xn = y. Then

f
(m

n
x +
(

1− m

n

)
y
)
≤ m

n
f (x)+

(
1− m

n

)
f (y).

Because f is continuous we can pass to the limit with m
n → λ to obtain the desired

f (λx + (1− λ)y) ≤ λf (x)+ (1− λ)f (y), for every λ ∈ (0, 1),

which characterizes convex functions.

522. First solution: Fix n− 1. For each integer i, define

�i = f

(
i + 1

n

)
− f

(
i

n

)
.

If in the inequality from the statement we substitute x = i+2
n and y = i

n , we obtain

f

(
i + 2

n

)
− f

(
i

n

)

2
≥ f

(
i + 1

n

)
+ 2

n
, i = 1, 2, . . . , n,

or

f

(
i + 2

n

)
− f

(
i + 1

n

)
≥ f

(
i + 1

n

)
− f

(
i

n

)
+ 4

n
, i = 1, 2, . . . , n.

In other words, �i+1 ≥ �i + 4
n . Combining this for n consecutive values of i gives

�i+n ≥ �i + 4.

Summing this inequality for i = 0 to n− 1 and canceling terms yields

f (2)− f (1) ≥ f (1)− f (0)+ 4n.

This cannot hold for all n ≥ 1. Hence, there are no very convex functions.

Second solution: We show by induction on n that the given inequality implies

f (x)+ f (y)

2
− f

(
x + y

2

)
≥ 2n|x − y|, for n ≥ 0.
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This will yield a contradiction, because for fixed x and y the right-hand side gets arbitrarily
large, while the left-hand side remains fixed.

The statement of the problem gives us the base case n = 0. Now, if the inequality holds
for a given n, then for two real numbers a and b,

f (a)+ f (a+ 2b)

2
≥ f (a+ b)+ 2n+1|b|,

f (a+ b)+ f (a+ 3b) ≥ 2(f (a+ 2b)+ 2n+1|b|),
and

f (a+ 2b)+ f (a+ 4b)

2
≥ f (a+ 3b)+ 2n+1|b|.

Adding these three inequalities and canceling terms yields

f (a)+ f (a+ 4b)

2
≥ f (a+ 2b)+ 2n+3|b|.

Setting x = a, y = a+ 4b, we obtain

f (x)+ f (y)

2
≥ f

(
x + y

2

)
+ 2n+1|x − y|,

completing the induction. Hence the conclusion.
(USA Mathematical Olympiad, 2000, proposed by B. Poonen)

523. The case x = y = z is straightforward, so let us assume that not all three numbers are
equal. Without loss of generality, we may assume that x ≤ y ≤ z. Let us first discuss the case
y ≤ x+y+z

3 . Then y ≤ x+z
2 , and so

x + y+ z

3
≤ x + z

2
≤ z.

Obviously x ≤ (x + y+ z)/3, and consequently

x + y+ z

3
≤ y+ z

2
≤ z.

It follows that there exist s, t ∈ [0, 1] such that

x + z

2
= s

x + y+ z

3
+ (1− s)z,

y+ z

2
= t

x + y+ z

3
+ (1− t)z.

Adding up these inequalities and rearranging yields

x + y− 2z

2
= (s+ t)

x + y− 2z

3
.
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Since x + y < 2z, this equality can hold only if s+ t = 3
2 . Writing the fact that f is a convex

function, we obtain

f

(
x + z

2

)
= f

(
s

x + y + z

3
+ (1− s)z

)
≤ sf

(
x + y + z

3

)
+ (1− s)f (z),

f

(
y+ z

2

)
= f

(
t
x + y+ z

3
+ (1− t)z

)
≤ tf

(
x + y+ z

3

)
+ (1− t)f (z),

f

(
x + y

2

)
≤ 1

2
f (x)+ 1

2
f (y).

Adding the three, we obtain

f

(
x + y

2

)
+ f

(
y+ z

2

)
+ f

(
z + x

2

)

≤ (s+ t)f

(
x + y+ z

3

)
+ 1

2
f (x)+ 1

2
f (y)+ (2− s− t)f (z)

= 2

3
f

(
x + y+ z

3

)
+ 1

2
f (x)+ 1

2
f (y)+ 1

2
f (z),

and the inequality is proved.
(T. Popoviciu, solution published by Gh. Eckstein in Timişoara Mathematics Gazette)

524. The fact that all sequences (anbn)n are convex implies that for any real number a,
an+1bn+1 − 2anbn + an−1bn−1 ≥ 0. Hence bn+1a2 − 2bna + bn−1 ≥ 0 for all a. Viewing
the left-hand side as a quadratic function in a, its discriminant must be less than or equal to
zero. This is equivalent to b2

n ≤ bn+1bn−1 for all n. Taking the logarithm, we obtain that
2 ln bn ≤ ln bn+1 + ln bn−1, proving that the sequence (ln bn)n is convex.

525. We will show that the largest such constant is C = 1
2 . For example, if we consider the

sequence a1 = ε, a2 = 1, a3 = ε, with ε a small positive number, then the condition from the
statement implies

C ≤ 1

2
· (1+ 2ε)2

1+ 2ε2
.

Here if we let ε → 0, we obtain C ≤ 1
2 .

Let us now show that C = 1
2 satisfies the inequality for all concave sequences. For

every i, concavity forces the elements a1, a2, . . . , ai to be greater than or equal to the corre-
sponding terms in the arithmetic progression whose first term is a1 and whose ith term is ai.
Consequently,

a1 + a2 + · · · + ai ≥ i

(
a1 + ai

2

)
.

The same argument repeated for ai, ai+1, . . . , an shows that

ai + ai+1 + · · · + an ≥ (n− i + 1)

(
ai + an

2

)
.
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Adding the two inequalities, we obtain

a1 + a2 + · · · + an ≥ i

(
a1 + ai

2

)
+ (n− i + 1)

(
ai + an

2

)
− ai

= i
a1

2
+ (n− i + 1)

an

2
+ (n− 1)ai

2

≥
(

n− 1

2

)
ai.

Multiplying by ai and summing the corresponding inequalities for all i gives

(a1 + a2 + · · · + an)
2 ≥ n− 1

2
(a2

1 + a2
2 + · · · + a2

n).

This shows that indeed C = 1
2 is the answer to our problem.

(Mathematical Olympiad Summer Program, 1994)

526. We assume that α ≤ β ≤ γ , the other cases being similar. The expression is a convex
function in each of the variables, so it attains its maximum for some x, y, z = a or b.

Now let us fix three numbers x, y, z ∈ [a, b], with x ≤ y ≤ z. We have

E(x, y, z)− E(x, z, y) = (γ − α)((z − x)2 − (y− z)2) ≥ 0,

and hence E(x, y, z) ≥ E(x, z, y). Similarly, E(x, y, z) ≥ E(y, x, z) and E(z, y, x) ≥ E(y, z, x).
So it suffices to consider the cases x = a, z = b or x = b and z = a. For these cases we have

E(a, a, b) = E(b, b, a) = (β + γ )(b− a)2

and
E(a, b, b) = E(b, a, a) = (α + γ )(b− a)2.

We deduce that the maximum of the expression under discussion is (β + γ )(b − a)2, which
is attained for x = y = a, z = b and for x = y = b, z = a.

(Revista Matematică din Timişoara (Timişoara Mathematics Gazette), proposed by D.
Andrica and I. Raşa)

527. The left-hand side of the inequality under discussion is a convex function in each xi.
Hence in order to maximize this expression we must choose some of the xi’s equal to a and
the others equal to b. For such a choice, denote by u the sum of the ti’s for which xi = a and
by v the sum of the ti’s for which xi = b. It remains to prove the simpler inequality

(ua+ bv)
(u

a
+ v

b

)
≤ (a+ b)2

4ab
(u+ b)2.

This is equivalent to

4(ua+ vb)(ub+ va) ≤ (ua+ vb+ ub+ va)2,

which is the AM-GM inequality applied to ua+ vb and ub+ va.
(L.V. Kantorovich)
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528. Expanding with Newton’s binomial formula, we obtain

(1+ x)n + (1− x)n =
� n

2�∑
k=0

(
n

2k

)
x2k.

The coefficients in the expansion are positive, so the expression is a convex function in x
(being a sum of power functions that are convex). Its maximum is attained when |x| = 1, in
which case the value of the expression is 2n. This proves the inequality.

(C. Năstăsescu, C. Niţă, M. Brandiburu, D. Joiţa, Exerciţii şi Probleme de Algebră (Exer-
cises and Problems in Algebra), Editura Didactică şi Pedagogică, Bucharest, 1983)

529. Without loss of generality, we may assume that b is the number in the middle. The
inequality takes the form

a+ b+ c− 3
3
√

abc ≤ 3(a+ c− 2
√

ac).

For fixed a and c, define f : [a, c] → R, f (b) = 3(a+ c− 2
√

ac)− a− b− c+ 3
√

abc. This
function is concave because f ′′(b) = − 2

3(ac)1/3b−5/3 < 0, so it attains its minimum at one of
the endpoints of the interval [a, c]. Thus the minimum is attained for b = a or b = c. Let us
try the case b = a. We may rescale the variables so that a = b = 1. The inequality becomes

2c+ 3c1/3 + 1

6
≥ c1/2,

and this is just an instance of the generalized AM-GM inequality. The case a = c is similar.
(USA Team Selection Test for the International Mathematical Olympiad, 2002, proposed

by T. Andreescu)

530. For (a) we apply Sturm’s principle. Given x ∈ (a, b) choose h > 0 such that a < x−h <

x + h < b. The Mean value theorem implies that f (x) ≤ max
x−h≤y≤x+y

f (y), with equality only

when f is constant on [x− h, x+ h]. Hence f (x) is less than or equal to the maximum of f on
[a, b], with equality if and only if f is constant on [a, b]. We know that the maximum of f is
attained on [a, b]. It can be attained at the chosen point x only if f is constant on [a, b]. This
proves that the maximum is attained at one of the endpoints of the interval.

To prove (b) we define the linear function

L(x) = (x − a)f (b)+ (b− x)f (a)

b− a
.

It is straightforward to verify that L itself satisfies the mean value inequality from the statement
with equality, and so does−L. Therefore, the function G(x) = f (x)−L(x) satisfies the mean
value inequality, too. It follows that G takes its maximum value at a or at b. A calculation
shows that G(a) = G(b) = 0. Therefore, G(x) ≤ 0 for x ∈ [a, b]. This is equivalent to

f (x) ≤ (x − a)f (b)+ (b− x)f (a)

b− a
,

which is, in fact, the condition for f to be convex.
(P.N. de Souza, J.N. Silva, Berkeley Problems in Mathematics, Springer, 2004)
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531. The function f (t) = sin t is concave on the interval [0, π]. Jensen’s inequality yields

sin A+ sin B+ sin C ≥ 3 sin
A+ B+ C

3
= 3 sin

π

3
= 3

√
3

2
.

532. If we set yi = ln xi, then xi ∈ (0, 1] implies yi ≤ 0, i = 1, 2, . . . , n. Consider the
function f : (−∞, 0] → R, f (y) = (1+ ey)−1. This function is twice differentiable and

f ′′(y) = ey(ey − 1)(1+ ey)−3 ≤ 0, for y ≤ 0.

It follows that this function is concave, and we can apply Jensen’s inequality to the points
y1, y2, . . . , yn and the weights a1, a2, . . . , an. We have

n∑

i=1

ai

1+ xi
=

n∑

i=1

ai

1+ eyi
≤ 1

1+ e
∑n

i=1 aiyi

= 1

1+
n∏

i=1

eaiyi

= 1

1+
n∏

i=1

xai
i

,

which is the desired inequality.
(D. Buşneag, I. Maftei, Teme pentru cercurile şi concursurile de matematică (Themes for

mathematics circles and contests), Scrisul Românesc, Craiova)

533. First solution: Apply Jensen’s inequality to the convex function f (x) = x2 and to

x1 = a2
1 + a2

2 + a2
3

2a2a3
, x2 = a2

1 + a2
2 + a2

3

2a3a1
, x3 = a2

1 + a2
2 + a2

3

2a1a2
,

λ1 = a2
1

a2
1 + a2

2 + a2
3

, λ2 = a2
2

a2
1 + a2

2 + a2
3

, λ3 = a2
3

a2
1 + a2

2 + a2
3

.

The inequality
f (λ1x2 + λ2x2 + λ3x3) ≤ λ1f (x1)+ λ2f (x2)+ λ3f (x3)

translates to
(a3

1 + a3
2 + a3

3)
2

4a2
1a2

2a2
3

≤ (a4
1 + a4

2 + a4
3)(a

2
1 + a2

2 + a2
3)

4a2
1a2

2a2
3

,

and the conclusion follows.
Second solution: The inequality from the statement is equivalent to

(a2
1 + a2

2 + a2
3)(a

4
1 + a4

2 + a4
3) ≥ (a3

1 + a3
2 + a3

3)
2.

This is just the Cauchy-Schwarz inequality applied to a1, a2, a3 and a2
1, a2

2, a2
3.

(Gazeta Matematică (Mathematics Gazette, Bucharest))



570 Real Analysis

534. Take the natural logarithm of both sides, which are positive because xi ∈ (0, π), i =
1, 2, . . . , n, to obtain the equivalent inequality

n∑

i=1

ln
sin xi

xi
≤ n ln

sin x

x
.

All we are left to check is that the function f (t) = ln sin t
t is concave on (0, π).

Because f (t) = ln sin t − ln t, its second derivative is

f ′′(t) = − 1

sin2 t
+ 1

t2
.

The fact that this is negative follows from sin t < t for t > 0, and the inequality is proved.
(39th W.L. Putnam Mathematical Competition, 1978)

535. The function f : (0, 1) → R, f (x) = x√
1−x

is convex. By Jensen’s inequality,

1

n

n∑

i=1

xi√
1− xi

≥

1

n

n∑

i=1

xi

√√
√√1− 1

n

n∑

i=1

xi

= 1√
n(n− 1)

.

We have thus found that

x1√
1− x1

+ x2√
1− x2

+ · · · + xn√
1− xn

≥
√

n

n− 1
.

On the other hand, by the Cauchy-Schwarz inequality

n = n
n∑

i=1

xi ≥
(

n∑

i=1

√
xi

)2

,

whence
n∑

i=1

√
xi ≤ √n. It follows that

√
x1 +√x2 + · · · + √xn√

n− 1
≤
√

n

n− 1
.

Combining the two inequalities, we obtain the one from the statement.

536. We apply Jensen’s inequality for the concave function f (x) = √x and λ1 = 1
10 , λ2 = 2

10 ,
λ3 = 3

10 and λ4 = 4
10 . We have

1

10

√
a+ 2

10

√
b

4
+ 3

10

√
c

9
+ 4

10

√
d

16
≤
√

a

10
+ b

20
+ c

30
+ d

40
.
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Hence

√
a+√b+√c+√d ≤ 10

√
12a+ 6b+ 4c+ 3d

120
.

But

12a+ 6b+ 4c+ 3d = 3(a+ b+ c+ d)+ (a+ b+ c)+ 2(a+ b)+ 6a

≤ 3 · 30+ 14+ 2 · 5+ 6 · 1 = 120.

The inequality follows.
(Romanian Team Selection Test for the International Mathematical Olympiad, proposed

by V. Cârtoaje)

537. Split the integral as ∫
ex2

dx +
∫

2x2ex2
dx.

Denote the first integral by I1. Then use integration by parts to transform the second integral
as ∫

2x2ex2
dx = xex2 −

∫
ex2

dx = xex2 − I1.

The integral from the statement is therefore equal to

I1 + xex2 − I1 = xex2 + C.

538. Adding and subtracting ex in the numerator, we obtain
∫

x + sin x − cos x − 1

x + ex + sin x
dx =
∫

x + ex + sin x − 1− ex − cos x

x + ex + sin x
dx

=
∫

x + ex + sin x

x + ex + sin x
dx −
∫

1+ ex + cos x

x + ex + sin x
dx

= x + ln(x + ex + sin x)+ C.

(Romanian college entrance exam)

539. The trick is to bring a factor of x inside the cube root:
∫

(x6 + x3)
3
√

x3 + 2dx =
∫

(x5 + x2)
3
√

x6 + 2x3dx.

The substitution u = x6 + 2x3 now yields the answer

1

6
(x6 + 2x3)4/3 + C.

(G.T. Gilbert, M.I. Krusemeyer, L.C. Larson, The Wohascum County Problem Book, MAA,
1993)
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540. We want to avoid the lengthy method of partial fraction decomposition. To this end, we
rewrite the integral as

∫ x2

(
1+ 1

x2

)

x2

(
x2 − 1+ 1

x2

)dx =
∫ 1+ 1

x2

x2 − 1+ 1

x2

dx.

With the substitution x − 1
x = t we have

(
1+ 1

x2

)
dx = dt, and the integral takes the form

∫
1

t2 + 1
dt = arctan t + C.

We deduce that the integral from the statement is equal to

arctan

(
x − 1

x

)
+ C.

541. Substitute u =
√

ex−1
ex+1 , 0 < u < 1. Then x = ln(1 + u2) − ln(1 − u2), and dx =

(
2u

1+u2 + 2u
1−u2

)
du. The integral becomes

∫
u

(
2u

u2 + 1
+ 2u

u2 − 1

)
du =
∫ (

4− 2

u2 + 1
+ 2

u2 − 1

)
du

= 4u− 2 arctan u+
∫ (

1

u+ 1
+ 1

1− u

)
du

= 4u− 2 arctan u+ ln(u+ 1)− ln(u− 1)+ C.

In terms of x, this is equal to

4

√
ex − 1

ex + 1
− 2 arctan

√
ex − 1

ex + 1
+ ln

(√
ex − 1

ex + 1
+ 1

)

− ln

(√
ex − 1

ex + 1
− 1

)

+ C.

542. Note that

1+ x2 ln x

x + x2 ln x
= 1

x
+ 1− 1+ ln x

1+ x ln x
.

We thus have
∫

1+ x2 ln x

x + x2 ln x
dx =
∫

1

x
dx +
∫

dx −
∫

1+ ln x

1+ x ln x
dx

= ln x + x − ln(1+ x ln x)+ C.

(slightly modified version of a Mathematical Reflections problem, proposed by Z. Starc)
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543. If we naively try the substitution t = x3 + 1, we obtain

f (t) =
√

t + 1− 2
√

t +
√

t + 9− 6
√

t.

Now we recognize the perfect squares, and we realize that

f (x) =
√

(
√

x3 + 1− 1)2 +
√

(
√

x3 + 1− 3)2 = |
√

x3 + 1− 1| + |
√

x3 + 1− 3|.
When x ∈ [0, 2], 1 ≤ √x3 + 1 ≤ 3. Therefore,

f (x) =
√

x3 + 1− 1+ 3−
√

x3 + 1 = 2.

The antiderivatives of f are therefore the linear functions f (x) = 2x+C, where C is a constant.
(Communicated by E. Craina)

544. Let fn = 1+ x + x2

2! + · · · + xn

n! . Then f ′(x) = 1+ x + · · · + xn−1

(n−1)! . The integral in the
statement becomes

In =
∫

n!(fn(x)− f ′n(x))
fn(x)

dx = n!
∫ (

1− f ′n(x)
fn(x)

)
dx = n!x − n! ln fn(x)+ C

= n!x − n! ln
(

1+ x + x2

2! + · · · +
xn

n!
)
+ C.

(C. Mortici, Probleme Pregătitoare pentru Concursurile de Matematică (Training Prob-
lems for Mathematics Contests), GIL, 1999)

545. The substitution is
u = x

4
√

2x2 − 1
,

for which

du = x2 − 1

(2x2 − 1)
4
√

2x2 − 1
dx.

We can transform the integral as follows:
∫

2x2 − 1

−(x2 − 1)2
· x2 − 1

(2x2 − 1)
4
√

2x2 − 1
dx =
∫

1

−x4 + 2x2 − 1

2x2 − 1

· x2 − 1

(2x2 − 1)
4
√

2x2 − 1
dx

=
∫

1

1− x4

2x2 − 1

· x2 − 1

(2x2 − 1)
4
√

2x2 − 1
dx

=
∫

1

1− u4
du.

This is computed using Jacobi’s method of partial fraction decomposition, giving the final
answer to the problem

1

4
ln

4
√

2x2 − 1+ x
4
√

2x2 − 1− x
− 1

2
arctan

4
√

2x2 − 1

x
+ C.
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546. Of course, Jacobi’s partial fraction decomposition method can be applied, but it is more
laborious. However, in the process of applying it we factor the denominator as x6 + 1 =
(x2 + 1)(x4 − x2 + 1), and this expression can be related somehow to the numerator. Indeed,
if we add and subtract an x2 in the numerator, we obtain

x4 + 1

x6 + 1
= x4 − x2 + 1

x6 + 1
+ x2

x6 + 1
.

Now integrate as follows:

∫
x4 + 1

x6 + 1
dx =
∫

x4 − x2 + 1

x6 + 1
dx +
∫

x2

x6 + 1
dx

=
∫

1

x2 + 1
dx +
∫

1

3

(x3)′

(x3)2 + 1
dx

= arctan x + 1

3
arctan x3.

To write the answer in the required form we should have

3 arctan x + arctan x3 = arctan
P(x)

Q(x)
.

Applying the tangent function to both sides, we deduce

3x − x3

1− 3x2
+ x3

1− 3x − x3

1− 3x2
· x3

= tan

(
arctan

P(x)

Q(x)

)
.

From here

arctan
P(x)

Q(x)
= arctan

3x − 3x5

1− 3x2 − 3x4 + x6
,

and hence P(x) = 3x − 3x5, Q(x) = 1− 3x2 − 3x4 + x6. The final answer is

1

3
arctan

3x − 3x5

1− 3x2 − 3x4 + x6
+ C.

547. The function f : [−1, 1] → R,

f (x) =
3
√

x
3
√

1− x + 3
√

1+ x
,

is odd; therefore, the integral is zero.

548. We use the example from the introduction for the particular function f (x) = x
1+x2 to

transform the integral into

π

∫ π
2

0

sin x

1+ sin2 x
dx.
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This is the same as

π

∫ π
2

0
− d(cos x)

2− cos2 x
,

which with the substitution t = cos x becomes

π

∫ 1

0

1

2− t2
dt = π

2
√

2
ln

√
2+ t√
2− t

∣
∣
∣
1

0
= π

2
√

2
ln

√
2+ 1√
2− 1

.

549. We have

∫ √ π
3

0
sin x2dx +

∫ √ π
3

−√ π
3

x2 cos x2dx =
∫ √ π

3

0
sin x2dx + 2

∫ √ π
3

0
x2 cos x2dx

=
∫ √ π

3

0
[sin x2 + x(cos x2) · 2x]dx =

∫ √ π
3

0

d

dx
(x sin x2)dx

= x sin x2|
√

π
3

0 =
√

π

2
.

(21st Annual Iowa Collegiate Mathematics Competition, proposed by R. Gelca)

550. Denote the value of the integral by I . With the substitution t = ab
x we have

I =
∫ b

a

e
b
t − e

t
a

ab

t

· −ab

t2
dt = −

∫ b

a

e
t
a − e

b
t

t
dt = −I.

Hence I = 0.

551. The substitution t = 1− x yields

I =
∫ 1

0

3
√

2(1− t)3 − 3(1− t)2 − (1− t)+ 1dt = −
∫ 1

0

3
√

2t3 − 3t2 − t + 1dt = −I.

Hence I = 0.
(Mathematical Reflections, proposed by T. Andreescu)

552. Using the substitutions x = a sin t, respectively, x = a cos t, we find the integral to be
equal to both the integral

L1 =
∫ π/2

0

sin t

sin t + cos t
dt

and the integral

L2 =
∫ π/2

0

cos t

sin t + cos t
dt.

Hence the desired integral is equal to

1

2
(L1 + L2) = 1

2

∫ π/2

0
1dt = π

4
.
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553. Denote the integral by I . With the substitution t = π
4 − x the integral becomes

I =
∫ 0

π
4

ln
(

1+ tan
(π

4
− t
))

(−1)dt =
∫ π

4

0
ln

(
1+ 1− tan t

1+ tan t

)
dt

=
∫ π

4

0
ln

2

1+ tan t
dt = π

4
ln 2− I.

Solving for I , we obtain I = π
8 ln 2.

554. With the substitution arctan x = t the integral takes the form

I =
∫ π

4

0
ln(1+ tan t)dt.

This we already computed in the previous problem. (“Happiness is longing for repetition”,
says M. Kundera.) So the answer to the problem is π

8 ln 2.
(66th W.L. Putnam Mathematical Competition, 2005, proposed by T. Andreescu)

555. The function ln x is integrable near zero, and the function under the integral sign is
dominated by x−3/2 near infinity; hence the improper integral converges. We first treat the
case a = 1. The substitution x = 1/t yields

∫ ∞

0

ln x

x2 + 1
dx =
∫ 0

∞

ln
1

t
1

t2
+ 1

(
− 1

t2

)
dt = −

∫ ∞

0

ln t

t2 + 1
dt,

which is the same integral but with opposite sign. This shows that for a = 1 the integral is
equal to 0. For general a we compute the integral using the substitution x = a/t as follows

∫ ∞

0

ln x

x2 + a2
dx =
∫ 0

∞
ln a− ln t
(a

t

)2 + a2

(
− a

t2

)
dt = 1

a

∫ ∞

0

ln a− ln t

1+ t2
dt

= ln a

a

∫ ∞

0

dt

t2 + 1
− 1

a

∫ ∞

0

ln t

t2 + 1
dt = π ln a

2a
.

(P.N. de Souza, J.N. Silva, Berkeley Problems in Mathematics, Springer, 2004)

556. The statement is misleading. There is nothing special about the limits of integration!
The indefinite integral can be computed as follows:

∫
x cos x − sin x

x2 + sin2 x
dx =
∫ cos x

x
− sin x

x2

1+
(

sin x

x

)2 dx =
∫

1

1+
(

sin x

x

)2

(
sin x

x

)′
dx

= arctan

(
sin x

x

)
+ C.



Real Analysis 577

Therefore, ∫ π
2

0

x cos x − sin x

x2 + sin2 x
dx = arctan

2

π
− π

4
.

(Z. Ahmed)

557. If α is a multiple of π , then I(α) = 0. Otherwise, use the substitution x = cos α+t sin α.
The indefinite integral becomes

∫
sin αdx

1− 2x cos α + x2
=
∫

dt

1+ t2
= arctan t + C.

It follows that the definite integral I(α) has the value

arctan

(
1− cos α

sin α

)
− arctan

(−1− cos α

sin α

)
,

where the angles are to be taken between −π
2 and π

2 . But

1− cos α

sin α
× −1− cos α

sin α
= −1.

Hence the difference between these angles is ±π
2 . Notice that the sign of the integral is the

same as the sign of sin α.
Hence I(α) = π

2 if α ∈ (2kπ, (2k+1)π) and−π
2 if α ∈ ((2k+1)π, (2k+2)π) for some

integer k.

Remark. This is an example of an integral with parameter that does not depend continuously
on the parameter. (E. Goursat, A Course in Mathematical Analysis, Dover, NY, 1904)

558. First, note that 1/
√

x has this property for p > 2. We will alter slightly this function
to make the integral finite for p = 2. Since we know that logarithms grow much slower than
power functions, a possible choice might be

f (x) = 1√
x ln x

.

Then ∫ ∞

2
f 2(x)dx =

∫ ∞

2

1

x ln2 x
= − 1

ln x

∣∣
∣
∞
2
= 1

ln 2
<∞.

Consequently, the integral of f p is finite for all real numbers p ≥ 2.
Let us see what happens for p < 2. An easy application of L’Hôpital’s theorem gives

lim
x→∞

f (x)p

x−1
= lim

x→∞
x−

p
2 ln−p x

x−1
= lim

x→∞
x1− p

2

lnp x
= ∞,

and hence the comparison test implies that for p < 2 the integral is infinite. Therefore,
f (x) = 1√

x ln x
satisfies the required condition.
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Remark. Examples like the above are used in measure theory to prove that inclusions between
Lp spaces are strict.

559. Suppose (f (x))2 + (f ′(x))2 > 1 for all x ∈ [−π
2 , π

2

]
. We can rewrite this inequality as

f ′(x)
√

1− f 2(x)
> 1, x ∈

[
−π

2
,
π

2

]
.

Integrating from −π
2 to π

2 we obtain

arcsin f
(π

2

)
− arcsin f

(
−π

2

)
> π.

But the difference of two arcsines is at most π , which is a contradiction. Hence the conclusion.
(Mathematical Reflections, proposed by T. Andreescu)

560. Let n be the degree of P(x). Integrating successively by parts, we obtain

∫ t

0
e−xP(x)dt = −e−xP(x)

∣∣
∣
t

0
+
∫ t

0
e−xP′(x)dx

= −e−xP(x)
∣∣∣
t

0
− e−xP′(x)

∣∣∣
t

0
+
∫ t

0
e−xP′(x)dx = · · ·

= −e−xP(x)
∣
∣∣
t

0
− e−xP′(x)

∣
∣∣
t

0
− · · · − e−xP(n)(x)

∣
∣∣
t

0
.

Because lim
t→∞ e−tP(k)(t) = 0, k = 0, 1, . . . , n, when passing to the limit we obtain

lim
t→∞

∫ t

0
e−xP(x)dx = P(0)+ P′(0)+ P′′(0)+ · · · ,

hence the conclusion.

561. First, note that by L’Hôpital’s theorem,

lim
x→0

1− cos nx

1− cos x
= n2,

which shows that the integrand can be extended continuously to [0, 1]. So the integral is well
defined.

Denote the integral by In. Then

In+1 + In−1

2
=
∫ π

0

2− cos(n+ 1)x − cos(n− 1)x

2(1− cos x)
dx =
∫ π

0

1− cos nx cos x

1− cos x
dx

=
∫ π

0

(1− cos nx)+ cos nx(1− cos x)

1− cos x
dx = In +

∫ π

0
cos nxdx = In.

Therefore,

In = 1

2
(In+1 + In−1), n ≥ 1.
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This shows that I0, I1, I2, . . . is an arithmetic sequence. From I0 = 0 and I1 = π it follows
that In = nπ , n ≥ 1.

562. Integration by parts gives

In =
∫ π/2

0
sinn xdx =

∫ π/2

0
sinn−1 x sin xdx

= − sinn−1 x cos2 x
∣
∣
∣
π/2

0
+ (n− 1)

∫ π/2

0
sinn−2 x cos2 xdx

= (n− 1)

∫ π/2

0
sinn−2 x(1− sin2 x)dx = (n− 1)In−2 − (n− 1)In.

We obtain the recursive formula

In = n− 1

n
In−2, n ≥ 2.

This combined with I0 = π
2 and I1 = 1 yields

In =

⎧
⎪⎪⎨

⎪⎪⎩

1 · 3 · 5 · · · (2k − 1)

2 · 4 · 6 · · · (2k)
· π

2
, if n = 2k

2 · 4 · 6 · · · (2k)

1 · 3 · 5 · · · (2k + 1)
, if n = 2k + 1.

To prove the Wallis formula, we use the obvious inequality sin2n+1 x < sin2n x < sin2n−1 x,
x ∈ (0, π

2

)
to deduce that I2n+1 < I2n < I2n−1, n ≥ 1. This translates into

2 · 4 · 6 · · · (2n)

1 · 3 · 5 · · · (2n+ 1)
<

1 · 3 · 5 · · · (2n− 1)

2 · 4 · 6 · · · (2n)
· π

2
<

2 · 4 · 6 · · · (2n− 2)

1 · 3 · 5 · · · (2n− 1)
,

which is equivalent to

[
2 · 4 · 6 · · · (2n)

1 · 3 · 5 · · · (2n− 1)

]2

· 2

2n+ 1
< π <

[
2 · 4 · 6 · · · (2n)

1 · 3 · 5 · · · (2n− 1)

]2

· 2

2n
.

We obtain the double inequality

π <

[
2 · 4 · 6 · · · (2n)

1 · 3 · 5 · · · (2n− 1)

]2

· 1

n
< π · 2n+ 1

2n
.

Passing to the limit and using the squeezing principle, we obtain the Wallis formula.

563. Denote the integral from the statement by In, n ≥ 0. We have

In =
∫ 0

−π

sin nx

(1+ 2x) sin x
dx +
∫ π

0

sin nx

(1+ 2x) sin x
dx.
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In the first integral change x to −x to further obtain

In =
∫ π

0

sin nx

(1+ 2−x) sin x
dx +
∫ π

0

sin nx

(1+ 2x) sin x
dx

=
∫ π

0

2x sin nx

(1+ 2x) sin x
dx +
∫ π

0

sin nx

(1+ 2x) sin x
dx

=
∫ π

0

(1+ 2x) sin nx

(1+ 2x) sin x
dx =
∫ π

0

sin nx

sin x
dx.

And these integrals can be computed recursively. Indeed, for n ≥ 0 we have

In+2 − In =
∫ π

0

sin(n+ 2)x − sin nx

sin x
dx = 2

∫ π

0
cos(n− 1)xdx = 0,

a very simple recurrence. Hence for n even, In = I0 = 0, and for n odd, In = I1 = π .
(3rd International Mathematics Competition for University Students, 1996)

564. We have

sn = 1√
4n2 − 12

+ 1√
4n2 − 22

+ · · · + 1√
4n2 − n2

= 1

n

⎡

⎣ 1
√

4− ( 1n
)2
+ 1
√

4− ( 2n
)2
+ · · · + 1

√
4− ( nn

)2

⎤

⎦ .

Hence sn is the Riemann sum of the function f : [0, 1] → R, f (x) = 1√
4−x2 associated to the

subdivision x0 = 0 < x1 = 1
n < x2 = 2

n < · · · < xn = n
n = 1, with the intermediate points

ξi = i
n ∈ [xi, xi+1]. The answer to the problem is therefore

lim
n→∞ sn =

∫ 1

0

1√
4− x2

dx = arcsin
x

2

∣∣∣
1

0
= π

6
.

565. Dividing by n and moving the negative term to the right, we can turn the left side
inequality into

0.785 <
1

n
+ 1

n

√

1−
(

1

n

)2

+ 1

n

√

1−
(

2

n

)2

+ · · · + 1

n

√

−
(

n− 1

n

)2

,

that is

0.785 <
1

n

n−1∑

k=0

√

1−
(

k

n

)2

.
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On the right we have an upper Darboux sum of
√

1− x2 (i.e. the Riemann sum with the points
ξk being the maxima of f on the corresponding intervals) on the interval [0, 1]. Since

∫ 1

0

√
1− x2 = π

4
> .785,

the inequality on the left is proved.
Write the inequality on the right as

1

n

n∑

k=1

√

1−
(

k

n

)2

< .79.

The term on the left is a lower Darboux sum of
√

1− x2 on [0, 1], so it is less than the integral
of this function which is π

4 . The inequality follows from the fact that π/4 < .79.
(Kvant (Quantum))

566. Rewrite the formula for the term of the sequence as

xn =
n∑

k=1

k
n

1+ 2
(

k
n

)2 ·
1

n
.

We recognize a Riemann sum for the integral

∫ 1

0

x

1+ 2x2
dx.

Hence the sequence converges to the value of this integral, which is 1
4 ln 2.

(Konhauser Problem Fest, 2014, proposed by R. Gelca)

567. Write the inequality as

1

n

n∑

i=1

1
√

2
i

n
+ 5

<
√

7−√5.

The left-hand side is the Riemann sum of the strictly decreasing function f (x) = 1√
2x+5

. This
Riemann sum is computed at the right ends of the intervals of the subdivision of [0, 1] by the
points i

n , i = 1, 2, . . . , n− 1. It follows that

1

n

n∑

i=1

1
√

2
i

n
+ 5

<

∫ 1

0

1√
2x + 5

dx = √2x + 5
∣
∣∣
1

0
= √7−√5,

the desired inequality.
(Communicated by E. Craina)
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568. We would like to recognize the general term of the sequence as being a Riemann sum.
This, however, does not seem to happen, since we can only write

n∑

i=

2i/n

n+ 1

i

= 1

n

n∑

i=1

2i/n

1+ 1

ni

.

But for i ≥ 2,

2i/n >
2i/n

1+ 1

ni

,

and, using the inequality ex > 1+ x,

2i/n

1+ 1

ni

= 2(i−1)/n 21/n

1+ 1

ni

= 2(i−1)/n eln 2/n

1+ 1

ni

> 2(i−1)/n
1+ ln 2

n

1+ 1

ni

> 2(i−1)/n,

for i ≥ 2. By the intermediate value property, for each i ≥ 2 there exists ξi ∈
[

i−1
n , i

n

]
such

that
2i/n

1+ 1

ni

= 2ξi .

Of course, the term corresponding to i = 1 can be neglected when n is large. Now we see
that our limit is indeed a Riemann sum of the function 2x integrated over the interval [0, 1].
We obtain

lim
n→∞

⎛

⎜
⎝

21/n

n+ 1
+ 22/n

n+ 1

2

+ · · · + 2n/n

n+ 1

n

⎞

⎟
⎠ =
∫ 1

0
2xdx = 1

ln 2
.

(Soviet Union University Student Mathematical Olympiad, 1976)

569. This is an example of an integral that is computed using Riemann sums. Divide the
interval [0, π] into n equal parts and consider the Riemann sum

π

n

[
ln
(

a2 − 2a cos
π

n
+ 1
)
+ ln

(
a2 − 2a cos

2π

n
+ 1

)
+ · · ·

+ ln

(
a2 − 2a cos

(n− 1)π

n
+ 1

)]
.

This expression can be written as

π

n
ln

[(
a2 − 2a cos

π

n
+ 1
)(

a2 − 2a cos
2π

n
+ 1

)
· · ·
(

a2 − 2a cos
(n− 1)π

n
+ 1

)]
.

The product inside the natural logarithm factors as

n−1∏

k=1

[
a−
(

cos
kπ

n
+ i sin

kπ

n

)][
a−
(

cos
kπ

n
− i sin

kπ

n

)]
.
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These are exactly the factors in a2n − 1, except for a − 1 and a + 1. The Riemann sum is
therefore equal to

π

n
ln

a2n − 1

a2 − 1
.

We are left to compute the limit of this expression as n goes to infinity. If |a| ≤ 1, this limit
is equal to 0. If |a| > 1, the limit is

lim
n→∞π ln

n

√
a2n − 1

a2 − 1
= 2π ln |a|.

Try to prove this last limit!
(S.D. Poisson)

570. The condition f (x)f (2x) · · · f (nx) ≤ ank can be written equivalently as

n∑

j=1

ln f (jx) ≤ ln a+ k ln n, for all x ∈ R, n ≥ 1.

Taking α > 0 and x = α
n , we obtain

n∑

j=1

ln f

(
jα

n

)
≤ ln a+ k ln n,

or
n∑

j=1

α

n
ln f

(
jα

n

)
≤ α ln a+ kα ln n

n
.

The left-hand side is a Riemann sum for the function ln f on the interval [0, α]. Because f is
continuous, so is ln f , and thus ln f is integrable. Letting n tend to infinity, we obtain

∫ 1

0
ln f (x)dx ≤ lim

n→∞
α ln a+ kα ln n

n
= 0.

The fact that f (x) ≥ 1 implies that ln f (x) ≥ 0 for all x. Hence ln f (x) = 0 for all x ∈ [0, α].
Since α is an arbitrary positive number, f (x) = 1 for all x ≥ 0. A similar argument yields
f (x) = 1 for x < 0. So there is only one such function, the constant function equal to 1.

(Romanian Mathematical Olympiad, 1999, proposed by R. Gologan)

571. The relation from the statement can be rewritten as
∫ 1

0
(xf (x)− f (x)2)dx =

∫ 1

0

x2

4
dx.

Moving everything to one side, we obtain

∫ 1

0

(
f (x)2 − xf (x)+ x2

4

)
dx = 0.
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We now recognize a perfect square and write this as

∫ 1

0

(
f (x)− x

2

)2
dx = 0.

The integral of the nonnegative continuous function
(
f (x)− x

2

)2
is strictly positive, unless the

function is identically equal to zero. It follows that the only function satisfying the condition
from the statement is f (x) = x

2 , x ∈ [0, 1].
(Revista de Matematică din Timişoara (Timişoara Mathematics Gazette), proposed by

T. Andreescu)

572. Performing the substitution x
1
k = t, the given conditions become

∫ 1

0
(f (t))n−ktk−1dt = 1

n
, k = 1, 2, . . . , n− 1.

Observe that this equality also holds for k = n. With this in mind we write

∫ 1

0
(f (t)− t)n−1dt =

∫ 1

0

n−1∑

k=0

(
n− 1

k

)
(−1)k(f (t))n−1−ktkdt

=
∫ 1

0

n∑

k=1

(
n− 1

k − 1

)
(−1)k−1(f (t))n−ktk−1dt

=
n∑

k=1

(−1)k−1

(
n− 1

k − 1

)∫ 1

0
(f (t))n−ktk−1dt

=
n∑

k=1

(−1)k−1

(
n− 1

k − 1

)
1

n
= 1

n
(1− 1)n−1 = 0.

Because n − 1 is even, (f (t) − t)n−1 ≥ 0. The integral of this function can be zero only if
f (t) − t = 0 for all t ∈ [0, 1]. Hence the only solution to the problem is f : [0, 1] → R,
f (x) = x.

(Romanian Mathematical Olympiad, 2002, proposed by T. Andreescu)

573. Note that the linear function g(x) = 6x−2 satisfies the same conditions as f . Therefore,

∫ 1

0
(f (x)− g(x))dx =

∫ 1

0
x(f (x)− g(x))dx = 0.

Considering the appropriate linear combination of the two integrals, we obtain

∫ 1

0
p(x)(f (x)− g(x))dx = 0.
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We have

0 ≤
∫ 1

0
(f (x)− g(x))2dx =

∫ 1

0
f (x)(f (x)− g(x))dx −

∫ 1

0
g(x)(f (x)− g(x))dx

=
∫ 1

0
f 2(x)− f (x)g(x)dx =

∫ 1

0
f 2(x)dx − 6

∫ 1

0
xf (x)dx + 2

∫ 1

0
f (x)dx

=
∫ 1

0
f 2(x)dx − 4.

Here we used the fact that
∫ 1

0
g(x)(f (x)− g(x))dx = 6

∫ 1

0
x(f (x)− g(x))dx − 2

∫ 1

0
(f (x)− g(x))dx = 0.

The inequality is proved.
(Romanian Mathematical Olympiad, 2004, proposed by I. Raşa)

574. We change this into a minimum problem, and then relate the latter to an inequality of
the form x ≥ 0. Completing the square, we see that

xf (x)2 − x2f (x) = √xf (x)2 − 2
√

xf (x)
x

3
2

2
=
(
√

xf (x)− x
3
2

2

)2

− x3

4
.

Hence, indeed,

J(f )− I(f ) =
∫ 1

0

(
√

xf (x)− x
3
2

2

)2

dx −
∫ 1

0

x3

4
dx ≥ − 1

16
.

It follows that I(f )− J(f ) ≤ 1
16 for all f . The equality holds, for example, for f : [0, 1] → R,

f (x) = x
2 . We conclude that

max
f

(I(f )− J(f )) = 1

16
.

(49th W.L. Putnam Mathematical Competition, 2006, proposed by T. Andreescu)

575. We can write the inequality as

∑

i,j

xixj(ai + aj − 2 min(ai, aj)) ≤ 0.

Note that
∑

i,j

xixjai = xj

n∑

i=1

aixi = 0,

and the same stays true if we exchange i with j. So it remains to prove that

∑

i,j

xixj min(ai, aj) ≥ 0.
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If χ[0,ai] is the characteristic function of the interval [0, ai] (equal to 1 on the interval and to 0
outside), then our inequality is, in fact,

∫ ∞

0

(
n∑

i=1

xiχ[0,ai](t)

)2

dt ≥ 0,

which is obvious. Equality holds if and only if
n∑

i=1

xiχ[0,ai] = 0 everywhere except at finitely

many points. It is not hard to see that this is equivalent to the condition from the statement.
(G. Dospinescu)

576. This is just the Cauchy-Schwarz inequality applied to the functions f and g, with g(t) = 1
for t ∈ [0, 1].
577. By Hölder’s inequality,

∫ 3

0
f (x) · 1dx ≤

(∫ 3

0
|f (x)|3dx

) 1
3
(∫ 3

0
1

3
2 dx

) 2
3

= 3
2
3

(∫ 3

0
|f (x)|3dx

) 1
3

.

Raising everything to the third power and using the fact that f is positive, we obtain
(∫ 3

0
f (x)dx

)3

/

∫ 3

0
f (x)3dx ≤ 9.

To see that the maximum 9 can be achieved, choose f to be constant.

578. The argument relies on Figure 75. The left-hand side is the area of the shaded region
(composed of the subgraph of f and the subgraph of f −1). The product ab is the area of the
rectangle [0, a] × [0, b], which is contained inside the shaded region. Equality holds if and
only if the two regions coincide, which is the case exactly when b = f (a).

(Young’s inequality)

y=f(x)

a

b

Figure 75

579. Suppose that x > y. Transform the inequality successively into

mn(x − y)(xm+n−1 − ym+n−1) ≥ (m+ n− 1)(xm − ym)(xn − yn),
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and then
xm+n−1 − ym+n−1

(m+ n− 1)(x − y)
≥ xm − ym

m(x − y)
· xn − yn

n(x − y)
.

The last one can be written as

(x − y)
∫ x

y
tm+n−2dt ≥

∫ x

y
tm−1dt ·

∫ x

y
tn−1dt.

Here we recognize Chebyshev’s inequality applied to the integrals of the functions f , g :
[y, x] → R, f (t) = tm−1 and g(t) = tn−1.

(Austrian-Polish Competition, 1995)

580. Observe that f being monotonic, it is automatically Riemann integrable. Taking the
mean of f on the intervals [0, α] and [1 − α, 1] and using the monotonicity of the function,
we obtain

1

1− α

∫ 1

α

f (x)dx ≤ 1

α

∫ α

0
f (x)dx,

whence

α

∫ 1

α

f (x)dx ≤ (1− α)

∫ σ

0
f (x)dx.

Adding
∫ α

0
f (x)dx to both sides gives

α

∫ 1

0
f (x)dx ≤

∫ α

0
f (x)dx,

as desired.
(Soviet Union University Student Mathematical Olympiad, 1976)

581. For x ∈ [0, 1], we have f ′(x) ≤ f ′(1), and so

f ′(1)

f (x)2 + 1
≤ f ′(x)

f (x)2 + 1
.

Integrating, we obtain

f ′(1)

∫ 1

0

dx

f (x)2 + 1
≤
∫ 1

0

f ′(x)
f (x)2 + 1

= arctan f (1)− arctan f (0) = arctan f (1).

Because f ′(1) > 0 and arctan y ≤ y for y ≥ 0 (since this is equivalent to y ≤ tan y), we further
obtain ∫ 1

0

dx

f (x)2 + 1
≤ arctan f (1)

f ′(1)
≤ f (1)

f ′(1)
,

proving the inequality. In order for equality to hold we must have arctan f (1) = f (1), which

happens only when f (1) = 0. Then
∫ 1

0

dx

f (x)2 + 1
= 0. But this cannot be true since the
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function that is integrated is strictly positive. It follows that the inequality is strict. This
completes the solution.

(Romanian Mathematical Olympiad, 1978, proposed by R. Gologan)

582. The Leibniz-Newton fundamental theorem of calculus gives

f (x) =
∫ x

a
f ′(t)dt.

Squaring both sides and applying the Cauchy-Schwarz inequality, we obtain

f (x)2 =
(∫ b

a
f ′(t)dt

)2

≤ (b− a)

∫ b

a
f ′(t)2dt.

The right-hand side is a constant, while the left-hand side depends on x. Integrating the
inequality with respect to x yields

∫ b

a
f (x)2dx ≤ (b− a)2

∫ b

a
f ′(t)2dt.

Substitute t by x to obtain the inequality as written in the statement of the problem.

583. This is an example of a problem in which it is important to know how to organize
the data. We start by letting A be the subset of [0, 1] on which f is nonnegative, and B its
complement. Let m(A), respectively, m(B) be the lengths (measures) of these sets, and IA

and IB the integrals of |f | on A, respectively, B. Without loss of generality, we can assume
m(A) ≥ 1

2 ; otherwise, change f to −f .
We have
∫ 1

0

∫ 1

0
|f (x)+ f (y)|dxdy =

∫

A

∫

A
(f (x)+ f (y))dxdy +

∫

B

∫

B
(|f (x)| + |f (y)|)dxdy

+ 2
∫

A

∫

B
|f (x)+ f (y)|dxdy.

Let us first try a raw estimate by neglecting the last term. In this case we would have to prove

2m(A)IA + 2m(B)IB ≥ IA + IB.

Since m(A)+ m(B) = 1, this inequality translates into
(

m(A)− 1

2

)
(IA − IB) ≥ 0,

which would be true if IA ≥ IB. However, if this last assumption does not hold, we can return
to the term that we neglected, and use the triangle inequality to obtain

∫

A

∫

B
|f (x)+ f (y)|dxdy ≥

∫

A

∫

B
|f (x)| − |f (y)|dxdy = m(A)IB − m(B)IA.

The inequality from the statement would then follow from

2m(A)IA + 2m(B)IB + 2m(A)IB − 2m(B)IA ≥ IA + IB,
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which is equivalent to
(

m(A)− 1

2

)
(IA + IB)+ m(B)(IB − IA) ≥ 0.

This is true since both terms are positive.
(64th W.L. Putnam Mathematical Competition, 2003)

584. We have
∫ b

a
f (x)dx =

∫ a+b
2

a

(
f (x)+ f

(
x + b− a

2

))
dx.

Using Jensen’s inequality for the function f , we see that this is greater than or equal than

2
∫ a+b

2

a
f

(
x + b− a

4

)
dx = 2

∫ 3b+a
4

3a+b
4

f (x)dx.

This proves the inequality on the left. For the inequality on the right, we use the integral form
of Jensen’s inequality:

Jensen’s inequality. If f : [a, b] → R and g : [c, d] → [a, b] are two functions, with f
being convex, then

f

(
1

b− a

∫ b

a
g(x)dx

)
≤ 1

b− a

∫ b

a
f (g(x))dx.

Applying this inequality we can write

2
∫ 3b+a

4

3a+b
4

f (x)dx ≥ 2
b− a

2
f

(
2

b− a

∫ 3b+a
4

3a+b
4

xdx

)

= (b− a)f

(
1

b− a

[(
3b+ a

4

)2

−
(

3a+ b

4

)2
])

= (b− a)f

(
1

b− a
· b− a

2
· (b+ a)

)

= (b− a)f

(
a+ b

2

)
.

The problem is solved.
(Mathematical Reflections, proposed by C. Lupu)

585. Combining the Taylor series expansions

cos x = 1− x2

2! +
x4

4! −
x6

6! +
x8

8! + · · · ,

cosh x = 1+ x2

2! +
x4

4! +
x6

6! +
x8

8! + · · · ,
we see that the given series is the Taylor series of 1

2 (cos x + cosh x).
(The Mathematics Gazette Competition, Bucharest, 1935)
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586. Denote by p the numerator and by q the denominator of this fraction. Recall the Taylor
series expansion of the sine function,

sin x = x

1! −
x3

3! +
x5

5! −
x7

7! +
x9

9! + · · ·

We recognize the denominators of these fractions inside the expression that we are computing,
and now it is not hard to see that pπ − qπ3 = sin π = 0. Hence pπ = qπ3, and the value of
the expression from the statement is π2.

(Soviet Union University Student Mathematical Olympiad, 1975)

587. Consider the series expansion

1

1+ x2
= 1− x2 + x4 − x6 + x8 − · · · ,

which converges uniformly on any interval of the form [−a, a] with 0 < a < 1. We can
integrate both sides, and obtain the Taylor series expansion for the arctangent:

arctan x = x − 1

3
x3 + 1

5
x5 − 1

7
x7 + · · · ,

for x ∈ (−1, 1). Substituting x = 1√
3
, we obtain that the value of the series from the statement

is arctan 1√
3
= π

6 .

Remark. The series of the arctangent also converges for x = 1 (but not for x = −1), giving
another proof the Leibniz formula for π/4, which was proved in Section 3.2.9.

(Communicated by J. Staff)

588. Expand the cosine in a Taylor series,

cos ax = 1− (ax)2

2! + (ax)4

4! − (ax)6

6! + · · ·

Let us forget for a moment the coefficient (−1)na2n

(2n)! and understand how to compute

∫ ∞

−∞
e−x2

x2ndx.

If we denote this integral by In, then integration by parts yields the recursive formula

In = 2n− 1

2
In−1.

Starting with

I0 =
∫ ∞

−∞
e−x2

dx = √π,

we obtain

In = (2n)!√π

4nn! .

http://dx.doi.org/10.1007/978-3-319-58988-6_3
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It follows that the integral in question is equal to

∞∑

n=0

(−1)n a2n

(2n)! ·
(2n)!√π

4nn! = √π

∞∑

n=0

(
−a2

4

)n

n! ,

and this is clearly equal to
√

πe−a2/4.
One thing remains to be explained: why are we allowed to perform the expansion and

then the summation of the integrals? This is because the series that consists of the integrals
of the absolute values of the terms converges itself. Indeed,

∞∑

n=1

a2n

(2n)!
∫ ∞

−∞
e−x2

x2ndx = √π

∞∑

1

(
a2

4

)n

n! = √πea2/4 <∞.

With this the problem is solved.
(G.B. Folland, Real Analysis, Modern Techniques and Their Applications, Wiley, 1999)

589. Consider the Taylor series expansion around 0,

1

x − 4
= −1

4
− 1

16
x − 1

64
x2 − 1

256
x3 − · · ·

A good guess is to truncate this at the third term and let

P(x) = 1

4
+ 1

16
x + 1

64
x2.

By the residue formula for Taylor series we have
∣∣
∣∣P(x)+ 1

x − 4

∣∣
∣∣ =

x3

256
+ 1

(ξ − 4)4
x5,

for some ξ ∈ (0, x). Since |x| ≤ 1 and also |ξ | ≤ 1, we have x3

256 ≤ 1
256 and x4/(ξ−4)5 ≤ 1

243 .
An easy numerical computation shows that 1

256 + 1
243 < 1

100 , and we are done.
(Romanian Team Selection Test for the International Mathematical Olympiad, 1979, pro-

posed by O. Stănăşilă)

590. By Taylor’s formula, one can write

sin t = t − sin(θ t)

2
t2,

for some θ = θ(t) ∈ (0, 1). In particular, for t = 1
x , we have

sin
1

x
= 1

x
− sin θ

x

2x2
,
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so

x2 sin
1

x
= x − 1

2
sin

θ

x
.

By substituting this into the original equation, we find that any solution should satisfy

x − 1

2
sin

θ

x
= 2x − 1977

or

x = 1977− 1

2
sin

θ

x
.

From here we deduce that x > 1976, and so θ
x < 1

1976 . It follows that x = 1977+ ε, where

|ε| = 1

2
sin

θ

x
<

1

2
sin

1

1976
<

1

2 · 1976
< 0.001.

It follows that x = 1977 with an error less than 0.01.
(V.A. Sadovnichii, A.S. Podkolzin, Problems of the University Students Mathematical

Olympiad, Nauka, Moscow, 1978)

591. The Taylor series expansion of cos
√

x around 0 is

cos
√

x = 1− x

2! +
x2

4! −
x3

6! +
x4

8! − · · ·

Integrating term by term, we obtain

∫ 1

0
cos
√

xdx =
∞∑

n=1

(−1)n−1xn

(n+ 1)(2n)!

∣∣
∣∣∣

1

0

=
∞∑

n=0

(−1)n−1

(n+ 1)(2n)! .

Grouping consecutive terms we see that
(

1

5 · 8! −
1

6 · 10!
)
+
(

7 · 12! −
1

8 · 14!
)
+ · · · < 1

2 · 104
+ 1

2 · 105
+ 1

2 · 106
+ · · · < 1

104
.

Also, truncating to the fourth decimal place yields

0.7638 < 1− 1

4
+ 1

72
− 1

2880
< 0.7639.

We conclude that ∫ 1

0
cos
√

xdx ≈ 0.763.
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592. Consider the Newton binomial expansion

(x + 1)−
1
2 =

∞∑

k=0

(− 1
2

x

)
xk

=
∞∑

k=0

(
−1

2

)(
−1

2
− 1

)(
−1

2
− 2

)
· · ·
(
−1

2
− k + 1

)

k! xk

=
∞∑

k=0

(−1)k 1 · 3 · · · (2k − 1)

2k · k! xk =
∞∑

k=0

(−1)k (2k)!
22k · k! · k!x

k

=
∞∑

k=0

(−1)k 1

22k

(
2k

x

)
xk.

Replacing x by −x2 then taking antiderivatives, we obtain

arcsin x =
∫ x

0
(1− t2)−

1
2 dt =

∞∑

k=0

1

22k

(
2k

k

)∫ x

0
t2kdt

=
∞∑

k=0

1

22k(2k + 1)

(
2k

k

)
x2k+1,

as desired.

593. (a) Differentiating the identity from the second example from the introduction, we obtain

2 arcsin x√
1− x2

=
∑

k≥1

1

k
(2k

k

)22kx2k−1,

whence
x arcsin x√

1− x2
=
∑

k≥1

1

k
(2k

k

)22k−1x2k.

Differentiating both sides and multiplying by x, we obtain

x
arcsin x + x

√
1− x2

(1− x2)3/2
=
∑

k≥0

1
(2k

k

)22kx2k.

Substituting x
2 for x, we obtain the desired identity.

Part (b) follows from (a) if we let x = 1.
(S. Rădulescu, M. Rădulescu, Teoreme şi Probleme de Analiză Matematică (Theorems

and Problems in Mathematical Analysis), Editura Didactică şi Pedagogică, Bucharest, 1982)

594. Consider the function f of period 2π defined by f (x) = x if 0 ≤ x < 2π . This function
is continuous on (0, 2π), so its Fourier series converges (pointwise) on this interval. We
compute

a0 = 1

2π

∫ 2π

0
xdx = π, am = 0, for m ≥ 1,
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bm = 1

π

∫ 2π

0
x sin mxdx = −x cos mx

mπ

∣
∣
∣
2π

0
+ 1

mπ

∫ 2π

0
cos mxdx = − 2

m
, for m ≥ 1.

Therefore,

x = π − 2

1
sin x − 2

2
sin 2x − 2

3
sin 3x − · · ·

Divide this by 2 to obtain the identity from the statement. Substituting x = π
2 , we obtain the

Leibniz series (see Section 3.2.9)

π

4
= 1− 1

3
+ 1

5
− 1

7
+ · · ·

In the series
π − x

2
=

∞∑

n=1

sin nx

n
,

replace x by 2x, and then divide by 2 to obtain

π

4
− x

2
=

∞∑

k=1

sin 2kx

2k
, x ∈ (0, π).

Subtracting this from the original formula, we obtain

π

4
=

∞∑

k=1

sin(2k − 1)x

2k − 1
, x ∈ (0, π).

595. One computes ∫ 1

0
f (x)dx = 0,

∫ 1

0
f (x) cos 2πnxdx = 0, for all n ≥ 1,

∫ 1

0
f (x) sin 2πnxdx = 1

2πk
, for all n ≥ 1.

Recall that for a general Fourier expansion

f (x) = a0 +
∞∑

n=1

(
an cos

2π

T
nx + bn sin

2π

T
nx

)
,

one has

Parseval’s identity.
1

T

∫ T

0
|f (x)|2dx = a2

0 + 2
∞∑

n=1

(a2
n + b2

n).

http://dx.doi.org/10.1007/978-3-319-58988-6_3
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Geometrically, Parseval’s identity is just the Pythagorean theorem in the infinite dimen-
sional Hilbert space of square integrable functions. Our particular function has the Fourier
series expansion

f (x) = 1

2π

∞∑

n=−∞

1

n
cos 2πnx,

and in this case Parseval’s identity reads

∫ 1

0
|f (x)|2dx = 1

2π2

∞∑

n=1

1

n2
.

The left-hand side is
∫ 1

0
|f (x)|2dx = 1

12
, and the formula follows.

596. This problem uses the Fourier series expansion of f (x) = |x|, x ∈ [−π, π]. A routine
computation yields

|x| = π

2
− 4

π

∞∑

k=0

cos(2k + 1)x

(2k + 1)2
, for x ∈ [−π, π].

Setting x = 0, we obtain the identity from the statement.

597. We will use only trigonometric considerations, and compute no integrals. A first remark
is that the function is even, so only terms involving cosines will appear. Using Euler’s formula

eiα = cos α + i sin α

we can transform the identity
n∑

k=1

e2ikx = e2i(n+1)x − 1

e2ix − 1

into the corresponding identities for the real and imaginary parts:

cos 2x + cos 4x + · · · + cos 2nx = sin nx cos(n+ 1)x

sin x
,

sin 2x + sin 4x + · · · + sin 2nx = sin nx sin(n+ 1)x

sin x
.

These two relate to our function as

sin2 nx

sin2 x
=
(

sin nx cos(n+ 1)x

sin x

)2

+
(

sin nx sin(n+ 1)x

sin x

)2

,

which allows us to write the function as an expression with no fractions:

f (x) = (cos 2x + cos 4x + · · · + cos 2nx)2 + (sin 2x + sin 4x + · · · + sin 2nx)2.
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Expanding the squares, we obtain

f (x) = n+
∑

1≤l<k≤n

(2 sin 2lx sin 2kx + 2 cos 2lx cos 2kx)

= n+ 2
∑

1≤l<k≤n

cos 2(k − l)x = n+
n−1∑

m=1

2(n− m) cos 2mx.

In conclusion, the nonzero Fourier coefficients of f are

a2m = 2(n− m), m = 1, 2, . . . , n− 1.

(D. Andrica)

598. Expand the function f as a Fourier series

f (x) =
∞∑

n=1

an sin nx,

where

an = 2

π

∫ π

0
f (t) sin ntdt.

This is possible, for example, since f can be extended to an odd function on [−π, π].
Fix n ≥ 2, and consider the function g : [0, π] → R, g(x) = n sin x − sin nx. The

function g is nonnegative because of the inequality n| sin x| ≥ | sin nx|, x ∈ R, which was
proved in the section on induction.

Integrating repeatedly by parts and using the hypothesis, we obtain

(−1)m
∫ π

0
f (2m)(t) sin ntdt = n2man

π

2
, for m ≥ 0.

It follows that

(−1)m
∫ π

0
f (2m)(x)(n sin x − sin nx)dx = (na1 − n2man)

π

2
≥ 0.

Indeed, the first term is the integral of a product of two nonnegative functions. This must hold
for any integer m; hence an ≤ 0 for any n ≥ 2.

Similarly

(−1)m
∫ π

0
f (2m)(x)(n sin x + sinnx)dx = (na1 − n2man)

π

2
≥ 0.

This implies that an ≥ 0, for n ≥ 2. We deduce that an = 0 for n ≥ 2, and so f (x) = a1 sin x,
for x ∈ [0, π].

(S. Rădulescu, M. Rădulescu, Teoreme şi Probleme de Analiză Matematică (Theorems
and Problems in Mathematical Analysis), Editura Didactică şi Pedagogică, Bucharest, 1982)
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599. This is an exercise in the product and chain rules. We compute

∂v

∂t
(x, t) = ∂

∂t

(
t−

1
2 e−

x2
4t u(xt−1,−t−1)

)

= −1

2
t−

3
2 e−

x2
4t v(x, t)+ x2t−

5
2

4
e−

x2
4t v(x, t)− xt−

5
2 e−

x2
4t

∂u

∂x
(xt−1,−t−1)

+ t−
5
2 e−

x2
4t

∂u

∂t
(xt−1,−t−1),

then
∂v

∂x
(x, t) = t−

1
2 e−

x2
4t

(
−1

2
t−1x

)
u(xt−1,−t−1)+ t−

3
2 e−

x2
4t

∂u

∂x
(xt−1,−t−1)

and

∂2v

∂x2
(x, t) = 1

4
x2t−

5
2 e−

x2
4t v(x, t)− 1

2
t−

3
2 e−

x2
4t v(x, t)− 1

2
xt−

5
2 e−

x2
4t

∂u

∂x
(xt−1,−t−1)

− 1

2
xt−

5
2 e−

x2
4t

∂u

∂x
(xt−1,−t−1)+ t−

5
2 e−

x2
4t

∂2u

∂x2
(xt−1,−t−1).

Comparing the two formulas and using the fact that ∂u
∂t = ∂2u

∂x2 , we obtain the desired equality.

Remark. The equation
∂u

∂t
= ∂2u

∂x2

is called the heat equation. It describes how heat spreads through a long, thin metal bar.

600. We switch to polar coordinates, where the homogeneity condition becomes the simpler

u(r, θ) = rng(θ),

where g is a one-variable function of period 2π . Writing the Laplacian

� = ∂2

∂x2
+ ∂2

∂y2

in polar coordinates, we obtain

� = ∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂θ2
.

For our harmonic function,

0 = �u = �(rng(θ)) = n(n− 1)rn−2g(θ)+ nrn−2g(θ)+ rn−2g′′(θ)

= rn−2(n2g(θ)+ g′′(θ)).
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Therefore, g must satisfy the differential equation g′′+n2g = 0. This equation has the general
solution g(θ) = A cos nθ + B sin nθ . In order for such a solution to be periodic of period 2π ,
n must be an integer.

(P.N. de Souza, J.N. Silva, Berkeley Problems in Mathematics, Springer, 2004)

601. Assume the contrary and write P(x, y) = (x2+y2)mR(x, y), where R(x, y) is not divisible
by x2 + y2. The harmonicity condition can be written explicitly as

4m2(x2 + y2)m−1R+ 2m(x2 + y2)m−1

(
x
∂R

∂x
+ y

∂R

∂y

)

+ (x2 + y2)m

(
∂2R

∂x2
+ ∂2R

∂y2

)
= 0.

If R(x, y) were n-homogeneous for some n, then Euler’s formula would allow us to simplify
this to

(4m2 + 2mn)(x2 + y2)m−1R+ (x2 + y2)m

(
∂2R

∂x2
+ ∂2R

∂y2

)
= 0.

If this were true, it would imply that R(x, y) is divisible by x2 + y2, a contradiction. But the
polynomial x2+ y2 is 2-homogeneous and R(x, y) can be written as a sum of n-homogeneous
polynomials, n = 0, 1, 2, . . .. Since the Laplacian ∂

∂x2 + ∂

∂y2 maps an n-homogeneous polyno-
mial to an (n− 2)-homogeneous polynomial, the nonzero homogeneous parts of R(x, y) can
be treated separately to reach the above-mentioned contradiction. Hence P(x, y) is identically
equal to zero.

Remark. The solution generalizes in a straightforward manner to the case of n variables,
which was the subject of a Putnam problem in 2005. But as I.M. Vinogradov said, "it is the
first nontrivial example that counts".

602. Using the Leibniz-Newton fundamental theorem of calculus, we can write

f (x, y)− f (0, 0) =
∫ x

0

∂f

∂x
(s, 0)ds+

∫ y

0

∂f

∂y
(x, t)dt.

Using the changes of variables s = xσ and t = yτ , and the fact that f (0, 0) = 0, we obtain

f (x, y) = x
∫ 1

0

∂f

∂x
(xσ, 0)dσ + y

∫ 1

0

∂f

∂y
(x, yτ)dτ.

Hence if we set

g1(x, y) =
∫ 1

0

∂f

∂x
(xσ, 0), dσ and g2(x, y) =

∫ 1

0

∂f

∂y
(x, yτ)dτ,

then f (x, y) = xg1(x, y) + yg2(x, y). Are g1 and g2 continuous? The answer is yes, and
we prove it only for g1, since for g2 the proof is identical. Our argument uses the uniform
continuity of a continuous function on a closed bounded interval.
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Lemma. If φ : [a, b] → R is continuous, then for every ε > 0 there is δ > 0 such that
whenever |x − y| < δ, we have |f (x)− f (y) < ε.

Proof. The property is called uniform continuity; the word “uniform” signifies the fact that
the “δ” from the definition of continuity is the same for all points in [a, b].

We argue by contradiction. Assume that the property is not true. Then there exist two
sequences (xn)n≥1 and (yn)n≥1 such that xn− yn → 0, but |f (xn)− f (xy)| ≥ ε for some ε > 0.
Because any sequence in [a, b] has a convergent subsequence, passing to subsequences we
may assume that (xn)n and (yn)n converge to some c in [a, b]. Then by the triangle inequality,

ε ≤ |f (xn)− f (yn)| ≤ |f (xn)− f (c)| + |f (c)− f (yn)|,
which is absurd because the right-hand side can be made arbitrarily close to 0 by taking n
sufficiently large. This proves the lemma. �

Returning to the problem, note that as x′ ranges over a small neighborhood of x and δ

ranges between 0 and 1, the numbers xσ and x′σ lie inside a small interval of the real axis.
Note also that |xσ − x′σ | ≤ |x − x′| when 0 ≤ σ ≤ 1. Combining these two facts with the
lemma, we see that for every ε > 0, there exists δ > 0 such that for |x − x′| < δ we have

∣∣∣
∣
∂f

∂x
(xσ, 0)− ∂f

∂x
(x′σ, 0)

∣∣∣
∣ < ε.

In this case, ∫ 1

0

∣∣∣∣
∂f

∂x
(xσ, 0)− ∂f

∂x
(x′σ, 0)

∣∣∣∣ dσ < ε,

showing that g1 is continuous. This concludes the solution.

603. First, observe that if |x| + |y| → ∞, then f (x, y) →∞, hence the function indeed has
a global minimum. The critical points of f are solutions to the system of equations

∂f

∂x
(x, y) = 4x3 + 12xy2 − 9

4
= 0,

∂f

∂y
(x, y) = 12x2y+ 4y3 − 7

4
= 0.

If we divide the two equations by 4 and then add, respectively, subtract them, we obtain

x3 + 3x2y+ 3xy2 + y3 − 1 = 0 and x3 − 3x2y+ 3xy3 − y3 = 1

8
.

Recognizing the perfect cubes, we write these as (x+ y)3 = 1 and (x − y)3 = 1
8 , from which

we obtain x + y = 1 and x − y = 1
2 . We find a unique critical point x = 3

4 , y = 1
4 . The

minimum of f is attained at this point, and it is equal to f
(

3
4 ,

1
4

) = − 51
32 .

(R. Gelca)
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604. Since the function is continuous, it suffices to find its absolute extrema in the domain
[−1, 1]2, and the range will be a closed interval with endpoints the values of these extrema.

First, notice that if we extend the function to the entire plane, then as the distance from a
point (x, y) to the origin grows to infinity, so does the value of f (x, y). This means that the
(extended) function has an absolute minimum on R

2. We will show that this minimum lies
inside [−1, 1]2. We compute

∂f

∂x
= 4x3 + 12xy2 + 8y

∂f

∂y
= 4y3 + 12x2y+ 8x.

Setting these equal to zero we obtain the system of equations

4x3 + 12xy2 + 8y = 0

4y3 + 12x2y + 8x = 0.

Multiply the first equation by x and the second equation by y, then subtract the two equations to
obtain 4(x4−y4) = 0. This can only happen if x = ±y. Returning to the system, one solution
is x = y = 0, and for any other solution we can only have x = −y. Then 4x3 + 12x3 − 8x =
0, so x = ±√1/2. We conclude that the critical points are (0, 0), (

√
1/2,−√1/2) and

(−√1/2,
√

1/2). One of these is the point where the function reaches its absolute minimum,
and because f (0, 0) = 0 and f (

√
1/2,−√1/2) = f (−√1/2,

√
1/2) = −2, we deduce that

the absolute minimum of f on [−1, 1]2 is the same as the absolute minimum of f on R
2, and

this is −2.
The maximum of f is attained on the boundary, because f (1, 1) = 16 > 0 = f (0, 0). So

let us examine the behaviour of f on the boundary. Because of symmetry we only need to
analyze the sides y = 1 and y = −1 of the square. We have f (x, 1) = x4 + 6x2 + 8x + 1. Its
second derivative with respect to x is 12x2 + 12, which is positive, so f (x, 1) is convex. This
means that its maximum on [−1, 1] is attained at one of the endpoints of the interval [−1, 1].
Repeating the argument we deduce that in order to find the maximum of f we only need to
check the four corners: (1, 1), (−1, 1), (1,−1), (−1,−1). We deduce that the maximum of
f is 16.

We conclude that the range of f is the interval [−2, 16].
(21st Annual Iowa Collegiate Mathematics Competition, 2015, proposed by R. Gelca)

605. The diameter of the sphere is the segment that realizes the minimal distance between
the lines. So if P(t+1, 2t+4,−3t+5) and Q(4s−12,−t+8, t+17), we have to minimize
the function

‖PQ‖2 = (s− 4t + 13)2 + (2s+ t − 4)2 + (−3s− t − 12)2

= 14s2 + 2st + 18t2 + 82s− 88t + 329.

To minimize this function we set its partial derivatives equal to zero:

28s+ 2t + 82 = 0,
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2s+ 36t − 88 = 0.

This system has the solution t = −782/251, s = 657/251. Substituting into the equation
of the line, we deduce that the two endpoints of the diameter are P

(− 531
251 ,− 560

251 ,
3601
251

)
and

Q
(− 384

251 ,
1351
251 , 4924

251

)
. The center of the sphere is 1

502 (−915, 791, 8252), and the radius 147√
1004

.
The equation of the sphere is

(502x + 915)2 + (502y − 791)2 + (502z − 8525)2 = 251(147)2.

(20th W.L. Putnam Competition, 1959)

606. Writing C = π − A− B, the expression can be viewed as a function in the independent
variables A and B, namely,

f (A, B) = cos A+ cos B− cos(A+ B).

And because A and B are angles of a triangle, they are constrained to the domain A, B > 0,
A + B < π . We extend the function to the boundary of the domain, then study its extrema.
The critical points satisfy the system of equations

∂f

∂A
(A, B) = − sin A+ sin(A+ B) = 0,

∂f

∂B
(A, B) = − sin B+ sin(A+ B) = 0.

From here we obtain sin A = sin B = sin(A+B), which can happen only if A = B = π
3 . This

is the unique critical point, for which f
(

π
3 , π

3

) = 3
2 . On the boundary, if A = 0 or B = 0, then

f (A, B) = 1. Same if A+ B = π . We conclude that the maximum of cos A+ cos B+ cos C
is 3

2 , attained for the equilateral triangle, while the minimum is 1, which is attained only for
a degenerate triangle in which two vertices coincide.

607. We rewrite the inequality as

sin α cos β cos γ + cos α sin β cos γ + cos α cos β sin γ ≤ 2√
3
,

and prove it for α, β, γ ∈ [0, π
2

]
. To this end, we denote the left-hand side by f (α, β, γ ) and

find its maximum in the specified region. The critical points in the interior of the domain are
solutions to the system of equations

cos α cos β cos γ − sin α sin β cos γ − sin α cos β sin γ = 0,

− sin α sin β cos γ + cos α cos β cos γ − cos α sin β sin γ = 0,

− sin α cos β sin γ − cos α sin β sin γ + cos α cos β cos γ = 0.

Bring this system into the form

cos α cos β cos γ = sin α sin(β + γ ),

cos α cos β cos γ = sin β sin(γ + α),

cos α cos β cos γ = sin γ sin(α + β).
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From the first two equations, we obtain

sin α

sin(α + γ )
= sin β

sin(β + γ )
.

The function g : (0, π
2

)
, g(t) = sin t

sin(t+γ )
is strictly increasing, since

g′(t) = cos t sin(t + γ )− sin t cos(t + γ )

(sin(t + γ ))2
= sin γ

(sin(t + γ ))2
> 0.

Hence g(α) = g(β) implies α = β. Similarly, β = γ . The condition that (α, α, α) is
a critical point is the trigonometric equation cos3 α = sin α sin 2α, which translates into

cos3 α = 2(1− cos2 α) cos α. We obtain cos α =
√

2
3 , and f (α, α, α) = 2√

3
. This will be the

maximum once we check that no value on the boundary of the domain exceeds this number.
But when one of the three numbers, say α, is zero, then f (0, β, γ ) = sin(β + γ ) ≤ 1.

Also, if α = π
2 , then f

(
π
2 , β, γ

) = cos β cos γ ≤ 1. Hence the maximum of f is 2√
3

and the
inequality is proved.

608. Consider a coordinate system in the plane and let the n points be P1(x1, y1), P2(x2, y2),

. . ., Pn(xn, yn). For an oriented line l, we will denote by l⊥ the oriented line passing through
the origin that is the clockwise rotation of l by 90◦. The origin of the coordinate system of
the plane will also be the origin of the coordinate system on l⊥.

An oriented line l is determined by two parameters: θ , the angle it makes with the positive
side of the x-axis, which should be thought of as a point on the unit circle or an element of
R/2πZ; and x, the distance from l to the origin, taken with sign on l⊥. Define f : ( R

2πZ

)×R →
R,

f (θ, x) =
n∑

i=1

dist(Pi, l),

where l is the line determined by the pair (θ, x). The function f is continuous and
lim

x→±∞ f (θ, x) = ∞ for all θ ; hence f has an absolute minimum f (θmin, xmin).

For fixed θ , f (θ, x) is of the form
n∑

i=1

|x − ai|, which is a piecewise linear convex func-

tion. Here a1 ≤ a2 ≤ · · · ≤ an are a permutation of the coordinates of the projections of
P1, P2, . . . , Pn onto l⊥. It follows from Problem 515 that at the absolute minimum of f ,
xmin = a�n/2�+1 if n is odd and a�n/2� ≤ xmin ≤ a�n/2�+1 if n is even (i.e., xmin is the median of
the ai, i = 1, 2, . . . , n).

If two of the points project to a�n/2�+1, we are done. If this is not the case, let us examine
the behavior of f in the direction of θ . By applying a translation and a rotation of the original
coordinate system, we may assume that ai = xi, i = 1, 2, . . . , n, xmin = x�n/2�+1 = 0,

y�n/2�+1 = 0, and θmin = 0. Then f (0, 0) =
∑

i

|xi|. If we rotate the line by an angle θ
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keeping it through the origin, then for small θ ,

f (θ, 0) =
∑

i<�n/2�+1

(−xi cos θ − yi sin θ)+
∑

i>�n/2�+1

(xi cos θ + yi sin θ)

=
n∑

i=1

|xi| cos θ +
∑

i<�n/2�+1

(−yi) sin θ +
∑

i>�n/2�+1

yi sin θ.

Of course, the absolute minimum of f must also be an absolute minimum in the first coordinate,
so

∂f

∂θ
(0, 0) =

∑

i<�n/2�+1

(−yi)+
∑

i>�n/2�+1

yi = 0.

The second partial derivative of f with respect to θ at (0, 0) should be positive. But this
derivative is

∂2f

∂θ2
(0, 0) = −

n∑

i=1

|xi| < 0.

Hence the second derivative test fails, a contradiction. We conclude that the line for which
the minimum is achieved passes through two of the points. It is important to note that the
second derivative is strictly negative; the case in which it is zero makes the points collinear,
in which case we are done.

Remark. This is the two-dimensional least absolute deviations problem. This method for
finding the line that best fits a set of data was used well before Gauss’ least squares method,
for example by Laplace; its downside is that it can have multiple solutions (for example, if
four points form a rectangle, both diagonals give a best approximation). The property proved
above also holds in n dimensions, in which case a hyperplane that minimizes the sum of
distances from the points passes through n of the given points.

609. We assume that the light ray travels from A to B crossing between media at point P.
Let C and D be the projections of A and B onto the separating surface. The configuration is
represented schematically in Figure 76.

A

B

D
yC x

P

Figure 76



604 Real Analysis

Let AP = x, BP = y, variables subject to the constraint g(x, y) = x + y = CD. The
principle that light travels on the fastest path translates to the fact that x and y minimize the
function

f (x, y) =
√

x2 + AC2

v1
+
√

y2 + BD2

v2
.

The method of Lagrange multipliers gives rise to the system

x

v1

√
x2 + AC2

= λ,

y

v2

√
y2 + BD2

= λ,

x + y = CD.

From the first two equations, we obtain

x

v1

√
x2 + AC2

= y

v2
√

y2 + BD2
,

which is equivalent to
cos APC

cos BPD
= v1

v2
.

Snell’s law follows once we note that the angles of incidence and refraction are, respectively,
the complements of ∠APC and ∠BPD.

610. Let D, E, F be the projections of the incenter onto the sides BC, AC, and AB, respectively.
If we set x = AF, y = BD, and z = CE, then

cot
A

2
= x

r
, cot

B

2
= y

r
, cot

C

2
= z

r
.

The lengths x, y, z satisfy
x + y+ z = s,

x2 + 4y2 + 9z2 =
(

6s

7

)2

.

We first determine the triangle similar to the one in question that has semiperimeter equal to
1. The problem asks us to show that the triangle is unique, but this happens only if the plane
x+ y+ z = 1 and the ellipsoid x2 + 4y2 + 9z2 = 36

49 are tangent. The tangency point must be
at an extremum of f (x, y, z) = x+ y+ z with the constraint g(x, y, z) = x2+ 4y2+ 9z2 = 36

49 .
We determine the extrema of f with the given constraint using Lagrange multipliers. The

equation ∇f = λ∇g becomes

1 = 2λx,

1 = 8λy,

1 = 18λz.
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We deduce that x = 1
2λ

, y = 1
8λ

, and z = 1
18λ

, which combined with the constraint g(x, y, z) =
36
49 yields λ = 49

72 . Hence x = 36
49 , y = 9

49 , and z = 4
49 , and so f (x, y, z) = 1. This proves that,

indeed, the plane and the ellipsoid are tangent. It follows that the triangle with semiperimeter
1 satisfying the condition from the statement has sides equal to x + y = 43

49 , x + z = 45
49 , and

y + z 13
49 .

Consequently, the unique triangle whose sides are integers with common divisor equal to
1 and that satisfies the condition from the statement is 45, 43, 13.

(USA Mathematical Olympiad, 2002, proposed by T. Andreescu)

611. We will show that if a triangle is right or obtuse, then the product of the measures of
its angles is at most π3/32. Let x, y, z be these measures, and assume that x is obtuse. We
consider the domain

D = {(x, y, z) ∈ R
3 |π/2 ≤ x ≤ π, y ≥ 0, z ≥ 0, x + y+ z = π}

and the function

f : D → [0,∞), f (x, y, z) = xyz.

The method of Lagrange multipliers shows that the maxima of f are reached either on the
boundary of the planar domain D, or at the points (x, y, z) which arise by solving the system
of equations

xy = λ

yz = λ

zx = λ

x + y+ z = π.

The only solution to this system is (π/3, π/3, π/3), which is not in the domain. Hence we
must examine the boundary. The part of the boundary with y = 0 or z = 0 yields a minimum
for the function, so we only focus on the part where x = π/2. In this case f becomes the two
variable function f

(
π
2 , y, z
) = π

2 yz, which, by using the constraint, is turned into a quadratic

f (π/2, y, π/2− y) = π/2y(π/2− y).

The maximum of its quadratic is at its vertex, and is equal to π3/32. We conclude that our
triangle cannot be right or obtuse, so it is acute.

(Konhauser Problem Fest, 2014, proposed by R. Gelca)

612. Let a, b, c, d be the sides of the quadrilateral in this order, and let x and y be the cosines
of the angles formed by the sides a and b, respectively, c and d. The condition that the triangle
formed by a and b shares a side with the triangle formed by c and d translates, via the law of
cosines, into the relation

a2 + b2 − 2abx = c2 + d2 − 2cdy.

We want to maximize the expression ab
√

1− x2+ cd
√

1− y2, which is twice the area of the
rectangle. Let

f (x, y) = ab
√

1− x2 + cd
√

1− y2,

g(x, y) = a2 + b2 − 2abx − c2 − d2 + 2cdy.



606 Real Analysis

We are supposed to maximize f (x, y) over the square [−1, 1] × [−1, 1], with the constraint
g(x, y) = 0. Using Lagrange multipliers we see that any candidate for the maximum that lies
in the interior of the domain satisfies the system of equations

−ab
2x√

1− x2
= −λ2ab,

−cd
2y
√

1− y2
= λ2cd,

for some λ. It follows that
√

1− x2/x = −√1− y2/y, and so the tangents of the opposite
angles are each the negative of the other. It follows that the angles are supplementary. In this
case x = −y. The constraint becomes a linear equation in x. Solving it and substituting in
the formula of the area yields Brahmagupta’s formula for the area:

A = √(s− a)(s− b)(s− c)(s− d), where s = a+ b+ c+ d

2
.

Is this the maximum? Let us analyze the behavior of f on the boundary. When x = 1 or
y = 1, the quadrilateral degenerates to a segment; the area is therefore 0. Let us see what
happens when y = −1. Then the quadrilateral degenerates to a triangle, and the area can be
computed using Hero’s formula

A = √s(s− a)(s− b)(s− (c+ d)).

Since s(s−(c+d)) < (s−c)(s−d) (because this is the same as s2−sc−sd < s2−sc−sd+cd),
we conclude that the cyclic quadrilateral maximizes the area.

(E. Goursat, A Course in Mathematical Analysis, Dover, New York, 1904)

613. Without loss of generality, we may assume that the circle has radius 1. If a, b, c
are the sides, and A(a, b, c) the area, then (because of the formula S = sr, where s is the
semiperimeter) the constraint reads A = a+b+c

2 . We will maximize the function f (a, b, c) =
A(a, b, c)2 with the constraint g(a, b, c) = A(a, b, c)2−( a+b+c

2

)2 = 0. Using Hero’s formula,
we can write

f (a, b, c) = a+ b+ c

2
· −a+ b+ c

2
· a− b+ c

2
· a+ b− c

2

= −a4 − b4 − c4 + 2(a2b2 + b2c2 + a2c2)

16
.

The method of Lagrange multipliers gives rise to the system of equations

(λ− 1)
−a3 + a(b2 + c2)

4
= a+ b+ c

2
,

(λ− 1)
−b3 + b(a2 + c2)

4
= a+ b+ c

2
,
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(λ− 1)
−c3 + c(a2 + b2)

4
= a+ b+ c

2
,

g(a, b, c) = 0.

Because a+ b+ c �= 0, λ cannot be 1, so this further gives

−a3 + a(b2 + c2) = −b3 + b(a2 + c2) = −c3 + c(a2 + b2).

The first equality can be written as (b− a)(a2 + b2 − c2) = 0. This can happen only if either
a = b or a2 + b2 = c2, so either the triangle is isosceles, or it is right. Repeating this for all
three pairs of sides we find that either b = c or b2 + c2 = a2, and also that either a = c or
a2 + c2 = b2. Since at most one equality of the form a2 + b2 = c2 can hold, we see that,
in fact, all three sides must be equal. So the critical point given by the method of Lagrange
multipliers is the equilateral triangle.

Is this the global minimum? We just need to observe that as the triangle degenerates, the
area becomes infinite. So the answer is yes, the equilateral triangle minimizes the area.

614. Let f (x, y, z) = xy + yz + zx − 2xyz and g(x, y, z) = x + y + z. We want to find the
extrema of f (x, y, z) subject to the constraint g(z, y, z) = 1. Applying the Lagrange multiplier
method we write ∇f = λ∇g, which yields the system

x + y− 2xy − λ = 0

x + z − 2xz − λ = 0

y + z − 2yz − λ = 0.

x + y+ z = 1

The solutions are (1/2, 1/2, 0), (0, 1/2, 1/2), (1/2, 0, 1/2) and (1/3, 1/3, 1/3). Note that on
the boundary f (x, y, z) = xy which lies in the interval [0, 1/4]. We compute
f (1/3, 1/3, 1/3) = 7/27, while the other values are non-negative and smaller than this.
Hence the range of f is [0, 7/27] and the inequality follows.

(solution from V. Boju, L. Funar, The Math Problems Notebook, Birkhäuser, 2007)

615. Consider the function f : {(a, b, c, d) | a, b, c, d ≥ 1, a+ b+ c+ d = 1} → R,

f (a, b, c, d) = 1

27
+ 176

27
abcd − abc− bcd − cda− dab.

Being a continuous function on a closed and bounded set in R
4, f has a minimum. We claim

that the minimum of f is nonnegative. The inequality f (a, b, c, d) ≥ 0 is easy on the boundary,
for if one of the four numbers is zero, say d = 0, then f (a, b, c, 0) = 1

27 − abc, and this is
nonnegative by the AM-GM inequality.
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Any minimum in the interior of the domain should arise by applying the method of
Lagrange multipliers. This method gives rise to the system

∂f

∂a
= 176

27
bcd − bc− cd − db = λ,

∂f

∂b
= 176

27
acd − ac− cd − ad = λ,

∂f

∂c
= 176

27
abd − ab− ad − bd = λ,

∂f

∂d
= 176

27
abc− ab− bc− ac = λ,

a+ b+ c+ d = 1.

One possible solution to this system is a = b = c = d = 1
4 , in which case f

(
1
4 ,

1
4 ,

1
4 ,

1
4

) = 0.
Otherwise, let us assume that the numbers are not all equal. If three of them are distinct, say
a, b, and c, then by subtracting the second equation from the first, we obtain

(
176

27
cd − c− d

)
(b− a) = 0,

and by subtracting the third from the first, we obtain
(

176

27
bd − b− d

)
(c− a) = 0.

Dividing by the nonzero factors b− a, respectively, c− a, we obtain

176

27
cd − c− d = 0,

176

27
bd − b− d = 0;

and subtracting the equations we deduce b = c, a contradiction. It follows that the numbers
a, b, c, d for which a minimum is achieved have at most two distinct values. Modulo permu-
tations, either a = b = c or a = b and c = d. In the first case, by subtracting the fourth
equation from the third and using the fact that a = b = c, we obtain

(
176

27
a2 − 2a

)
(d − a) = 0.

Since a �= d, it follows that a = b = c = 27
88 and d = 1− 3a = 7

88 . One can verify that

f

(
27

88
,

27

88
,

27

88
,

7

88

)
= 1

27
+ 6

88
· 27

88
· 27

88
> 0.

The case a = b and c = d yields

176

27
cd − c− d = 0,
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176

27
ab− a− b = 0,

which gives a = b = c = d = 27
88 , impossible. We conclude that f is nonnegative, and the

inequality is proved.
(Short list of the 34th International Mathematical Olympiad, 1993, proposed by Vietnam)

616. Fix α, β, γ and consider the function

f (x, y, z) = cos x

sin α
+ cos y

sin β
+ cos z

sin γ

with the constraints x + y + z = π , x, y, z ≥ 0. We want to determine the maximum of
f (x, y, z). In the interior of the triangle described by the constraints the Lagrange multipliers
theorem shows that a maximum satisfies

sin x

sin α
= −λ,

sin y

sin β
= −λ,

sin z

sin β
= −λ,

x + y+ z = π.

By the law of sines, the triangle with angles x, y, z is similar to that with angles α, β, γ , hence
x = α, y = β, and z = γ .

Let us now examine the boundary. If x = 0, then cos z = − cos y. We prove that

1

sin α
+ cos y

(
1

sin β
− 1

sin γ

)
< cot α + cot β + cot γ.

This is a linear function in cos y, so the inequality will follow from the corresponding inequal-
ities at the two endpoints of the interval [−1, 1], namely from

1

sin α
+ 1

sin β
− 1

sin γ
< cot α + cot β + cot γ

and
1

sin α
− 1

sin β
+ 1

sin γ
< cot α + cot β + cot γ.

By symmetry, it suffices to prove just one of these two, the first for example. Eliminating the
denominators, we obtain

sin β sin γ + sin α sin γ − sin α sin β < sin β sin γ cos α + sin α sin γ cos β

+ sin α sin β cos γ.
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The laws of sine and cosine allow us to transform this into the equivalent

bc+ ca− ab <
b2 + c2 − a2

2
+ a2 + c2 − b2

2
+ a2 + b2 − c2

2
,

and this is equivalent to (a+ b− c)2 > 0. Hence the conclusion.
(Kvant (Quantum), proposed by R.P. Ushakov)

617. The domain is bounded by the hyperbolas xy = 1, xy = 2 and the lines y = x and
y = 2x. This domain can mapped into a rectangle by the transformation

T : u = xy, v = y

x
.

Thus it is natural to consider the change of coordinates

T−1 : x =
√

u

v
, y = √uv.

The domain becomes the rectangle D∗ = {(u, v) ∈ R
2 | 1 ≤ u ≤ 2, 1 ≤ v ≤ 2}. The

Jacobian of T−1 is 1
2v �= 0. The integral becomes

∫ 2

1

∫ 2

1

√
u

v

1

2v
dudv = 1

2

∫ 2

1
u1/2du

∫ 2

1
v−3/2dv = 1

3
(5
√

2− 6).

(Gh. Bucur, E. Câmpu, S. Găină, Culegere de Probleme de Calcul Diferenţial şi Integral
(Collection of Problems in Differential and Integral Calculus), Editura Tehnică, Bucharest,
1967)

618. Denote the integral by I . The change of variable (x, y, z) → (z, y, x) transforms the
integral into ∫∫∫

B

z4 + 2y4

x4 + 4y4 + z4
dxdydz.

Hence

2I =
∫∫∫

B

x4 + 2y4

x4 + 4y4 + z4
dxdydz +

∫∫∫

B

2y4 + z4

x4 + 4y4 + z4
dxdydz

=
∫∫∫

B

x4 + 4y4 + z4

x4 + 4y4 + z4
dxdydz = 4π

3
.

It follows that I = 2π
3 .

619. The domain D is depicted in Figure 77. We transform it into the rectangle D1 =[
1
4 ,

1
2

]× [ 16 , 1
2

]
by the change of coordinates

x = u

u2 + v2
, y = v

u2 + v2
.

The Jacobian is

J = − 1

(u2 + v2)2
.
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D

Figure 77

Therefore, ∫∫

D

dxdy

(x2 + y2)2
=
∫∫

D1

dudv = 1

12
.

(D. Flondor, N. Donciu, Algebră şi Analiză Matematică (Algebra and Mathematical
Analysis), Editura Didactică şi Pedagogică, Bucharest, 1965)

620. In the equation of the curve that bounds the domain

(
x2

a2
+ y2

b2

)2

= x2

a2
− y2

b2
,

the expression on the left suggests the use of generalized polar coordinates, which are suited
for elliptical domains. And indeed, if we set x = ar cos θ and y = br sin θ , the equation of the
curve becomes r4 = r2 cos 2θ , or r = √cos 2θ . The condition x ≥ 0 becomes −π

2 ≤ θ ≤ π
2 ,

and because cos 2θ r4 = r2 cos 2, or r = should be positive we should further have−π
4 ≤ θ ≤ π

4 .
Hence the domain of integration is

{
(r, θ); 0 ≤ r ≤ √cos 2θ, −π

4
≤ θ ≤ π

4

}
.

The Jacobian of the transformation is J = abr. Applying the formula for the change of
variables, the integral becomes

∫ π
4

− π
4

∫ √cos 2θ

0
a2b2r3 cos θ |sinθ |drdθ = a2b2

4

∫ π
4

0
cos2 2θ sin 2θdθ = a2b2

24
.

(Gh. Bucur, E. Câmpu, S. Găină, Culegere de Probleme de Calcul Diferenţial şi Integral
(Collection of Problems in Differential and Integral Calculus), Editura Tehnică, Bucharest,
1967)

621. The method is similar to that for computing the Fresnel integrals, only simpler. If we
denote the integral by I , then

I2 =
∫ ∞

−∞
e−x2

dx
∫ ∞

−∞
e−y2

dy =
∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2)dxdy.
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Switching to polar coordinates, we obtain

I2 =
∫ 2π

0

∫ ∞

0
e−e2

rdrdθ =
∫ 2π

0

(
−1

2

)
e−r2
∣
∣
∣
∞
0

dθ =
∫ 2π

0

1

2
dθ = π.

Hence the desired formula I = √π .

622. Call the integral I . By symmetry, we may compute it over the domain {(u, v, w) ∈ R
3 |

0 ≤ v ≤ u ≤ 1}, then double the result. We substitute u = r cos θ , v = r sin θ , w = tan φ,
taking into account that the limits of integration become 0 ≤ θ , φ ≤ π

4 , and 0 ≤ r ≤ sec θ .
We have

I = 2
∫ π

4

0

∫ π
4

0

∫ sec θ

0

r sec2 φ

(1+ r2 cos2 θ + r2 sin2 θ + tan2 φ)2
drdθdφ

= 2
∫ π

4

0

∫ π
4

0

∫ sec θ

0

r sec2 φ

(r2 + sec2 φ)2
drdθdφ

= 2
∫ π

4

0

∫ π
4

0
sec2 φ

−1

2(r2 + sec2 φ)

∣∣∣∣
∣

r=sec θ

r=0

dθdφ

= −
∫ π

4

0

∫ π
4

0

sec2 φ

sec2 θ + sec2 φ
dθdφ +

(π
4

)2
.

But notice that this is the same as
∫ π

4

0

∫ π
4

0

(
1− sec2 φ

sec2 θ + sec2 φ

)
dθdφ =

∫ π
4

0

∫ π
4

0

sec2 θ

sec2 θ + sec2 φ
dθdφ.

If we exchange the roles of θ and φ in this last integral we see that

−
∫ π

4

0

∫ π
4

0

sec2 φ

sec2 θ + sec2 φ
dθdφ +

(π
4

)2 =
∫ π

4

0

∫ π
4

0

sec2 φ

sec2 θ + sec2 φ
dθdφ.

Hence ∫ π
4

0

∫ π
4

0

sec2 φ

sec2 θ + sec2 φ
dθdφ = π2

32
.

Consequently, the integral we are computing is equal to π2

32 .
(American Mathematical Monthly, proposed by M. Hajja and P. Walker)

623. We have

I =
∫∫

D
ln | sin(x − y)|dxdy =

∫ π

0

(∫ y

0
ln | sin(y − x)|dx

)
dy

=
∫ π

0

(∫ y

0
ln sin tdt

)
dy = y

∫ y

0
ln sin tdt

∣∣∣
∣

y=π

y=0

−
∫ π

0
y ln sin ydy

= πA− B,
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where A =
∫ π

0
ln sin tdt, B =

∫ π

0
t ln sin tdt. Note that here we used integration by parts!

We compute further

A =
∫ π

2

0
ln sin tdt +

∫ π

π
2

ln sin tdt =
∫ π

2

0
ln sin tdt +

∫ π
2

0
ln cos tdt

=
∫ π

2

0
(ln sin 2t − ln 2)dt = −π

2
ln 2+ 1

2
A.

Hence A = −π ln 2. For B we use the substitution t = π − x to obtain

B =
∫ π

0
(π − x) ln sin xdx = πA− B.

Hence B = π
2 A. Therefore, I = πA− B = −π2

2 ln 2, and we are done.

Remark. The identity ∫ π
2

0
ln sin tdt = −π

2
ln 2

belongs to Euler.
(S.Rădulescu, M. Rădulescu, Teoreme şi Probleme de Analiză Matematică (Theorems and

Problems in Mathematical Analysis), Editura Didactică şi Pedagogică, Bucharest, 1982)

624. This problem applies the discrete version of Fubini’s theorem. Define

f (i, j) =
{

1 for j ≤ ai,

0 for j > ai.

The left-hand side is equal to
n∑

i=1

m∑

j=1

f (i, j), while the right-hand side is equal to
m∑

j=1

n∑

i=1

f (i, j). The equality follows.

625. First, note that for x > 0,
e−sxx−1| sin x| < e−sx,

so the integral that we are computing is finite.
Now consider the two-variable function

f (x, y) = e−sxy sin x.

We have
∫ ∞

0

∫ ∞

1
|f (x, y)|dydx =

∫ ∞

0

∫ ∞

1
e−sxy| sin x|dydx = 1

s

∫ ∞

0
e−sxx−1| sin x|dx,

and we just saw that this is finite. Hence we can apply Fubini’s theorem, to conclude that on
the one hand, ∫ ∞

0

∫ ∞

1
f (x, y)dydx = 1

s

∫ ∞

0
e−sxx−1 sin xdx,
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and on the other hand,
∫ ∞

0

∫ ∞

1
f (x, y)dydx =

∫ ∞

1

1

s2y2 + 1
dy.

Here of course we used the fact that
∫ ∞

0
e−ax sin xdx = 1

a2 + 1
, a > 0,

a formula that can be proved by integrating by parts. Equating the two expressions that we
obtained for the double integral, we obtain

∫ ∞

0
e−sxx−1 sin xdx = π

2
− arctan s = arctan(s−1),

as desired.
(G.B. Folland, Real Analysis, Modern Techniques and Their Applications, Wiley, 1999)

626. Applying Tonelli’s theorem to the function f (x, y) = e−xy, we can write

∫ ∞

0

e−ax − e−bx

x
dx =
∫ ∞

0

∫ b

a
e−xydydx =

∫ b

a

∫ ∞

0
e−xydxdy

=
∫ b

a

1

y
dy = ln

b

a
.

Remark. This is a particular case of integrals of the form
∫ ∞

0

f (ax)− f (bx)

x
dx, known as

Froullani integrals. In general, if f is continuous and has finite limit at infinity, the value of
the integral is (f (0)− lim

x→∞ f (x)) ln b
a .

627. We do the proof in the case 0 < x < 1, since for −1 < x < 0 the proof is completely
analogous, while for x = 0 the property is obvious. The function f : N × [0, x] → R,
f (n, t) = tn−1 satisfies the hypothesis of Fubini’s theorem. So integration commutes with
summation: ∞∑

n=0

∫ x

0
tn−1dt =

∫ x

0

dt

1− t
.

This implies
∞∑

n=1

xn

n
= − ln(1− x).

Dividing by x, we obtain
∞∑

n=1

xn−1

n
= −1

x
ln(1− x).
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The right-hand side extends continuously at 0, since lim
x→0

1
t ln(1 − t) = −1. Again we can

apply Fubini’s theorem to f (n, t) = tn−1

n on N× [0, x] to obtain

∞∑

n=1

xn

n2
=

∞∑

n=1

∫ x

0

tn−1

n
dt =
∫ x

0

∞∑

n=1

tn−1

n
dt = −

∫ x

0

1

t
ln(1− t)dt,

as desired.

628. We can apply Tonelli’s theorem to the function f (x, n) = 1
x2+n4 . Integrating term by

term, we obtain

∫ x

0
F(t)dt =

∫ x

0

∞∑

n=1

f (t, n)dt =
∞∑

n=1

∫ x

0

dt

t2 + n4
=

∞∑

n=1

1

n2
arctan

x

n2
.

This series is bounded from above by
∞∑

n=1

1

n2
= π2

6
(see Problem 595). Hence the summation

commutes with the limit as x tends to infinity. We have

∫ ∞

0
F(t)dt = lim

x→∞

∫ x

0
F(t)dt = lim

x→∞

∞∑

n=1

1

n2
arctan

x

n2
=

∞∑

n=1

1

n2
· π

2
.

Using the identity
∑

n≥1

1

n2
= π2

6
, we obtain

∫ ∞

0
F(t)dt = π3

12
.

(Gh. Sireţchi, Calcul Diferenţial şi Integral (Differential and Integral Calculus), Editura
Ştiinţifică şi Enciclopedică, Bucharest, 1985)

629. The integral from the statement can be written as
∮

∂D
xdy − ydx.

Applying Green’s theorem for P(x, y) = −y and Q(x, y) = x, we obtain
∮

∂D
xdy − ydx =

∫∫

D
(1+ 1)dxdy,

which is twice the area of D. The conclusion follows.

630. (a) Because each horizontal side is followed by a vertical side, there are as many
horizontal as vertical sides. Thus n = 2k, where k is the number of vertical sides. Let the
coordinates of the consecutive vertices of the polygon be

(a1, b1), (a2, b1), (a2, b2), (a3, b2), (a3, b3), . . . ,

(ak−1, bk−1), (ak, bk−1), (ak, bk), (a1, bk),
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and assume that we travel around the polygon counterclockwise.
We know that the numbers aj+1−aj and bj+1−bj are odd integers, j = 1, 2, . . . , k (where

ak+1 = a1 and bk+1 = b1). As all the differences aj+1−aj are odd, the parities of the numbers

a1, a2, . . . , ak, ak+1 = a1

alternate, and this is only possible when k is even, that is k = 2m. So n = 2k = 4m is a
multiple of 4, which solves the first part of the problem.

(b) For the second part we will use Green’s formula for the area of the domain D surrounded
by the curve C oriented counterclockwise (see previous problem):

∫∫

D
1dxdy =

∮

C
xdy.

For our particular case,

∮

C
xdy =

2m∑

j=1

aj(bj+1 − bj).

As all the differences bj+1−bj are odd, the sum has the same parity as a1+a2+· · ·+a2m. On
the other hand, as the parity of the numbers a1, a2, . . . , a2m alternate, the sums a1 + a2, a3 +
a4, · · · a2m−1 + a2m are odd. Writing

a1 + a2 + a3 + · · · + a2m = (a1 + a2)+ (a3 + a4)+ · · · + (a2m−1 + a2m),

we deduce that the sum has the same parity as m, so the area of the polygon has the same
parity as m. For n = 100, we have m = 25, so the area is odd. The problem is solved.

(Kvant (Quantum), proposed by M. Kontsevich)

631. It can be checked that div
−→
F = 0 (in fact,

−→
F is the curl of the vector field eyx−→i +

ezx−→j + exy−→k ). If S be the union of the upper hemisphere and the unit disk in the xy-plane,
then by the divergence theorem ∫∫

S

−→
F · −→n dS = 0.

And on the unit disk
−→
F · −→n = 0, which means that the flux across the unit disk is zero. It

follows that the flux across the upper hemisphere is zero as well.

632. We simplify the computation using the Kelvin-Stokes theorem:
∮

C
y2dx + z2dy + x2dz = −2

∫∫

S
ydxdy + zdydz + xdzdx,

where S is the portion of the sphere bounded by the Viviani curve. We have

−2
∫∫

S
ydxdy + zdydz + xdzdx = −2

∫∫

S
(z, x, y) · −→n dσ,
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where (z, x, y) denotes the three-dimensional vector with coordinates z, x, and y, while −→n
denotes the unit vector normal to the sphere at the point of coordinates (x, y, z). We parametrize
the portion of the sphere in question by the coordinates (x, y), which range inside the circle
x2 + y2 − ax = 0. This circle is the projection of the Viviani curve onto the xy-plane.

The unit vector normal to the sphere is

−→n =
(x

a
,

y

a
,

z

x

)
=
(

x

a
,

y

a
,

√
a2 − x2 − y2

a

)

,

while the area element is

dσ = 1

cos α
dxdy,

α being the angle formed by the normal to the sphere with the xy-plane. It is easy to see that

cos α = z
a =

√
a2−x2−y2

a . Hence the integral is equal to

−2
∫∫

D

(
z

x

a
+ x

y

a
+ y

z

a

) a

z
dxdy = −2

∫∫

D

(

x + y+ xy
√

a2 − x2 − y2

)

dxdy,

the domain of integration D being the disk x2 + y2 − ax ≤ 0. Split the integral as

−2
∫∫

D
(x + y)dxdy − 2

∫∫

D

xy
√

a2 − x2 − y2
dxdy.

Because the domain of integration is symmetric with respect to the y-axis, the second double
integral is zero. The first double integral can be computed using polar coordinates: x =
a
2 + r cos θ , y = r sin θ , 0 ≤ r ≤ a

2 , 0 ≤ θ ≤ 2π . Its value is −πa3

4 , which is the answer to
the problem.

(D. Flondor, N. Donciu, Algebră şi Analiză Matematică (Algebra and Mathematical
Analysis), Editura Didactică şi Pedagogică, Bucharest, 1965)

633. We will apply the Kelvin-Stokes theorem. We begin with

∂φ

∂y

∂ψ

∂z
− ∂φ

∂z

∂ψ

∂y
= ∂φ

∂y

∂ψ

∂z
+ φ

∂2ψ

∂y∂z
− ∂φ

∂z

∂ψ

∂y
− φ

∂2ψ

∂z∂y

= ∂

∂y

(
φ

∂ψ

∂z

)
− ∂

∂z

(
φ

∂ψ

∂y

)
,

which combined with the two other analogous computations gives

∇φ ×∇ψ = curl(φ∇ψ).

By the Kelvin-Stokes theorem, the integral of the curl of a vector field on a surface without
boundary is zero.

(Soviet University Student Mathematical Competition, 1976)

634. For the solution, recall the following identity.
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Green’s first identity. If f and g are twice-differentiable functions on the solid region R
bounded by the closed surface S, then

∫∫∫

R
(f∇2g + ∇f · ∇g)dV =

∫∫

S
f
∂g

∂n
dS,

where ∂g
∂n is the derivative of g in the direction of the normal to the surface.

Proof. For the sake of completeness we will prove Green’s identity. Consider the vector field−→
F = f∇g. Then

div
−→
F = ∂

∂x

(
f
∂g

∂x

)
+ ∂

∂y

(
f
∂g

∂y

)
+ ∂

∂z

(
f
∂g

∂z

)

= f

(
∂2g

∂x2
+ ∂2g

∂y2
+ ∂2g

∂z2

)
+
(

∂f

∂x

∂g

∂x
+ ∂f

∂y

∂g

∂y
+ ∂f

∂z

∂g

∂z

)
.

So the left-hand side of the identity is
∫∫∫

R
div
−→
F dV . By the Gauss-Ostrogradsky divergence

theorem this is equal to
∫∫

S
(f∇g) · −→n dS =

∫∫

S
f (∇g · −→n )dS =

∫∫

S
f
∂g

∂n
dS.

The conclusion follows. �

Writing Green’s first identity for the vector field g∇f and then subtracting it from that of
the vector field f∇g, we obtain

Green’s second identity.
∫∫∫

R
(f∇2g − g∇2f )dV =

∫∫

S

(
f
∂g

∂n
− g

∂f

∂n

)
dS.

Returning to the problem, the fact that f and g are constant along the lines passing through
the origin means that on the unit sphere,

∂f

∂n
= ∂g

∂n
= 0.

Plug this into the right-hand side of Green’s second identity to obtain the equality from the
statement.

635. Because
−→
F is obtained as an integral of the point-mass contributions of the masses

distributed in space, it suffices to prove this equality for a mass M concentrated at one point,
say the origin. We will use
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Newton’s law. The gravitational force between two masses m1 and m2 at distance r is equal
to −→

F = m1m2G

r2
.

By Newton’s law, a mass M located at the origin generates the gravitational field

−→
F (x, y, z) = MG

1

x2 + y2 + z2
· x
−→
i + y

−→
j + z

−→
k

√
x2 + y2 + z2

= −MG
x
−→
i + y

−→
j + z

−→
k

(x2 + y2 + z2)3/2
.

One can easily check that the divergence of this field is zero. Consider a small sphere S0

of radius r centered at the origin, and let V be the solid lying between S0 and S. By the
Gauss-Ostrogradsky divergence theorem,

∫∫

S

−→
F · −→n dS −

∫∫

S0

−→
F · −→n dS =

∫∫∫

V
div
−→
F dV = 0.

Hence it suffices to prove the Gauss law for the sphere S0. On this sphere the flow
−→
F · −→n is

constantly equal to −GM
r2 . Integrating it over the sphere gives −4πMG, proving the Gauss’

law.

636. The condition curl
−→
F = 0 suggests the use of the Kelvin-Stokes theorem:
∫∫

S
curl

−→
F · −→n dS =

∮

∂C

−→
F · d−→R .

We expect the answer to the question to be negative. All we need is to find a surface S whose
boundary lies in the xy-plane and such that the integral of

−→
G (x, y) on ∂S is nonzero.

A simple example that comes to mind is the interior S of the ellipse x2 + 4y2 = 4.
Parametrize the ellipse as x = 2 cos θ , y = sin θ , θ ∈ [0, 2π). Then

∮

∂S

−→
G · d−→R =

∫ 2π

0

(− sin θ

4
,

2 cos θ

4
, 0

)
· (−2 sin θ, cos θ, 0)dθ =

∫ 2π

0

1

2
dθ = π.

By the Kelvin-Stokes theorem this should be equal to the integral of the curl of
−→
F over the

interior of the ellipse. The curl of
−→
F is zero except at the origin, but we can fix that by

adding a smooth tiny upward bump at the origin, which does not alter too much the above
computation. The integral should on the one hand be close to 0, and on the other hand close
to π , which is impossible. This proves that such a vector field

−→
F cannot exist.

(48th W.L. Putnam Mathematical Competition, 1987, solution from K. Kedlaya, B. Poo-
nen, R.Vakil, The William Lowell Putnam Mathematical Competition 1985-2000, MAA, 2002)

637. Let D = [a1, b1]×[a2, b2] be a rectangle in the plane, and a, b ∈ R, a < b. We consider
the three-dimensional parallelepiped V = D × [a, b]. Denote by −→n the outward normal
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vector field on the boundary ∂V of V (which is defined everywhere except on the edges). By
the Leibniz-Newton fundamental theorem of calculus,
∫ b

a

d

dt

∫∫

D
G(x, y, t)dxdydt =

∫ b

a

∫∫

D

∂

∂t
G(x, y, t)dxdydt

=
∫∫

D

∫ b

a

∂

∂t
G(x, y, t)dtdxdy

=
∫∫

D
G(x, y, b)dxdy −

∫∫

D
G(x, y, a)dxdy

=
∫

D×{b}
G(x, y, t)

−→
k · d−→n +

∫

D×{a}
G(x, y, t)

−→
k · d−→n ,

where
−→
k denotes the unit vector that points in the z-direction. With this in mind, we compute

0 =
∫ b

a

(
d

dt

∫∫

D
G(x, y, t)dxdy +

∮

C

−→
F · d−→R

)
dt

=
∫

D×{b}
G(x, y, t)

−→
k · d−→n +

∫

D×{a}
G(x, y, t)

−→
k · d−→n

+
∫ b

a

∫ b1

a1

F1(x, a2)dx −
∫ b

a

∫ a1

b1

F1(x, b2)dx

+
∫ b

a

∫ b2

a2

F2(b1, y)dy −
∫ b

a

∫ a2

b2

F2(a1, y)dy.

If we introduce the vector field
−→
H = F2

−→
i +F1

−→
j +G

−→
k , this equation can be written simply

as ∫∫

∂V

−→
H · −→n dS = 0.

By the divergence theorem,
∫∫∫

V
div
−→
H dV =

∫∫

∂V

−→
H · −→n dS = 0.

Since this happens in every parallelepiped, div
−→
H must be identically equal to 0. Therefore,

div
−→
H = ∂F2

∂x
+ ∂F1

∂y
+ ∂G

∂t
= 0,

and the relation is proved.

Remark. The interesting case occurs when
−→
F and G depend on spatial variables (spatial

dimensions). Then G becomes a vector field
−→
B , or better a 2-form, called the magnetic flux,

while F becomes the electric field strength E. The relation

d

dt

∫

S

−→
B = −

∫

∂S
E
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is Faraday’s law of induction. Introducing a fourth dimension (the time), and redoing mutatis
mutandis the above computation gives rise to the first group of Maxwell’s equations

div
−→
B = 0,

∂
−→
B

∂t
= curlE.

638. In the solution we ignore the factor 1
4π

, which is there only to make the linking number
an integer. We will use the more general form of Green’s theorem applied to the curve
C = C1 ∪ C′1 and surface S,

∮

C
Pdx +W dy + Rdz =

∫∫

S

(
∂Q

∂x
− ∂P

∂y

)
dxdy +

(
∂R

∂y
− ∂Q

∂z

)
dydz

+
(

∂P

∂z
− ∂R

∂x

)
dzdx.

Writing the parametrization with coordinate functions −→v 1(s) = (x(s), y(s), z(s)), −→v 2(t) =
(x′(t), y′(t), z′(t)), the linking number of C1 and C2 (with the factor 1

4π
ignored) becomes

∮

C1

∮

C2

(x′ − x)(dz′dy − dy′dz)+ (y′ − y)(dx′dz − dz′dx)+ (z′ − z)(dy′dx − dx′dy)

((x′ − x)2 + (y′ − y)2 + (z′ − z)2)3/2
.

The 1-form Pdx + Qdy + Rdz, which we integrate on C = C1 ∪ C′1, is

∮

C2

(x′ − x)(dz′dy − dy′dz)+ (y′ − y)(dx′dz − dz′dx)+ (z′ − z)(dy′dx − dx′dy)

((x′ − x)2 + (Y ′ − y)2 + (z′ − z)2)3/2
.

Note that here we integrate against the variables x′, y′, z′, so this expression depends only on
x, y, and z. Explicitly,

P(x, y, z) =
∮

C2

−(y′ − y)dz + (x′ − z)dy′

((x′ − x)2 + (y′ − y)2 + (z′ − z)2)3/2
,

Q(x, y, z) =
∮

C2

(x′ − x)dz′ − (z′ − z)dx′

((x′ − x)2 + (y′ − y)2 + (z′ − z)2)3/2
,

R(x, y, z) =
∮

C2

−(x′ − x)dy′ + (y′ − y)dx′

((x′ − x)2 + (y′ − y)2 + (z′ − z)2)3/2
.

By the Kelvin-Stokes theorem, lk(C1, C2) = lk(C′1, C2) if

∂Q

∂x
− ∂P

∂y
= ∂R

∂y
− ∂Q

∂z
= ∂P

∂z
− ∂R

∂x
= 0.
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We will verify only ∂Q
∂x − ∂P

∂y = 0, the other equalities having similar proofs. The part of it
that contains dz′ is equal to

∮

C2

− 2((x′ − x)2 + (y′ − y)2 + (z′ − z)2)−3/2

+ 3(x′ − x)2((x′ − x)2 + (y′ − y)2 + (z′ − z)2)−5/2

+ 3(y′ − y)2((x′ − x)2 + (y′ − y)2 + (z′ − z)2)−5/2dz′

=
∮

C2

((x′ − x)2 + (y′ − y)2 + (z′ − z)2)−3/2

+ 3(z′ − z)2((x′ − z)2 + (y′ − y)2 + (z′ − z)2)−5/2dz′

=
∮

C2

∂

∂z′
((x′ − x)2 + (y′ − y)2 + (z′ − z)2)−3/2dz′ = 0,

where the last equality is a consequence of the Leibniz-Newton fundamental theorem of
calculus. Also, of the two terms, only ∂Q

∂x has a dx′ in it, and that part is

3
∮

C2

((x − x′)2 + (y− y′)2 + (z − z′)2)−5/2(x − x′)(z − z′)dx′

=
∮

C2

∂

∂x′
z − z′

((x − x′)2 + (y− y′)2 + (z − z′)2)3/2
dx′ = 0.

The term involving dy′ is treated similarly. This yields

∂Q

∂x
− ∂P

∂y
= 0,

and the conclusion follows.

Remark. The linking number is, in fact, an integer, which measures the number of times the
curves wind around each other. It was defined by C.F. Gauss, who used it to decide, based on
astronomical observations, whether the orbits of certain asteroids were winding around the
orbit of the earth. The way Gauss discovered the linking number was by using the Bio-Savart
law, which computes the magnetic field

−→
B at a given point −→r produced by an electric field

of a steady current I in a thin closed wire C1. The Bio-Savart law gives

−→
B (−→r ) = μ0

4π

∫

C1

I

‖−→r −−→r1 ‖3

d−→r 1

ds
× (−→r −−→r1 )ds,

where μ0 is the permeability of the vacuum, and −→r 1(s) is the parametrization of C1. Gauss
made the point −→r vary along C2.

639. Plugging in x = y, we find that f (0) = 0, and plugging in x = −1, y = 0, we find that
f (1) = −f (−1). Also, plugging in x = a, y = 1, and then x = a, y = −1, we obtain

f (a2 − 1) = (a− 1)(f (a)+ f (1)),
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f (a2 − 1) = (a+ 1)(f (a)− f (1)).

Equating the right-hand sides and solving for f (a) gives f (a) = f (1)a for all a.
So any such function is linear. Conversely, a function of the form f (x) = kx clearly

satisfies the equation.
(S. Korean Mathematical Olympiad, 2000)

640. Replace z by 1− z to obtain

f (1− z)+ (1− z)f (z) = 2− z.

Combine this with f (z)+ zf (1− z) = 1+ z, and eliminate f (1− z) to obtain

(1− z + z2)f (z) = 1− z + z2.

Hence f (z) = 1 for all z except maybe for z = e±π i/3, when 1 − z + z2 = 0. For α = eiπ/3,
α = α2 = 1 − α; hence f (α) + αf (α) = 1 + α. We therefore have only one constraint,
namely f (α) = [1 + α − f (α)]/α = α − 1 − αf (α). Hence the solution to the functional
equation is of the form

f (z) = 1 for z �= e±iπ/3, f (eiπ/3) = β, f (e−iπ/3) = α + 1− αβ,

where β is an arbitrary complex parameter.
(20th W.L. Putnam Competition, 1959)

641. Successively, we obtain

f (−1) = f

(
−1

2

)
= f

(
−1

3

)
= · · · = lim

n→∞ f

(
−1

n

)
= f (0).

Hence f (x) = f (0) for x ∈ {0,−1,− 1
2 , . . . ,− 1

n , . . .
}
.

If x �= 0,−1, . . . ,− 1
n , . . . replacing x by x

1+x in the functional equation, we obtain

f

(
x

1+ x

)
= f

⎛

⎜
⎝

x

1+ x

1− x

1+ x

⎞

⎟
⎠ = f (x).

And this can be iterated to yield

f

(
x

1+ nx

)
= f (x), n = 1, 2, 3, . . .

Because f is continuous at 0 it follows that

f (x) = lim
n→∞ f

(
x

1+ nx

)
= f (0).

This shows that only constant functions satisfy the functional equation.



624 Real Analysis

642. In this problem we denote by f n the composition of f with itself n times. By induction
one can check that

f (2nx0) = 2n+1x0, for all n ≥ 0.

Going backwards, we can write

f (x0)− 3x0 + 2f −1(x0) = 0,

so f −1(x0) = x0/2. Again by induction

f −1(2−nx0) = 2−n+1x0, for all n ≥ 0.

As a consequence, for every x ∈ (0,∞) there is x1 such that x ∈ [x1, 2x1] and f (x1) = 2x1,
f (2x1) = 4x1.

Next, we rewrite the original functional equation in terms of f −1 as

2f −1(f −1(x))− 3f −1(x)+ x = 0.

Fix an arbitrary x, and define recursively the sequence a0 = f (x), and an+1 = f −1(an), n ≥ 0.
Then an satisfies the linear recursive relation

2an+2 − 3an+1 + an = 0, a0 = f (x), a1 = x.

Solving for the general term we obtain

an = 1

2n−1
[(2n − 1)x − (2n−1 − 1)f (x)],

that is

(f −1)n−1(x) = 1

2n−1
[(2n − 1)x − (2n−1 − 1)f (x)].

Because f −1 is positive, this gives f (x)/x ≤ 2. We will actually prove a finer inequality.
Because f is increasing, f −1 is increasing, and so is f −1 composed with itself n− 1 times.

So for x < y, (f −1)n−1(x) < (f −1)n−1(y), which means that

(2n − 1)x − (2n−1 − 1)f (x) < (2n − 1)y− (2n−1 − 1)f (y).

We obtain

f (y)− f (x)

y− x
<

2n − 1

2n−1 − 1
= 2+ 1

2n−1 − 1
for all n = 1, 2, 3, . . . .

Passing to the limit, we conclude that for x < y,

f (y)− f (x)

y− x
≤ 2.

Now let x ∈ (0,∞) be arbitrary. We want to show that f (x) = 2x. If x = 2nx0, for some
n ∈ Z, then we are done. Otherwise, choose x1 such that x1 < x < 2x1 and f (x1) = 2x1,
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f (2x1) = 4x1. Because f is increasing, f (x) ∈ (2x1, 4x1). Using the above inequality we can
write

f (x)− 2x1

x − x1
≤ 2 and

4x1 − f (x)

2x1 − x
≤ 2.

The first inequality yields f (x)− 2x1 ≤ 2x− 2x1, so f (x) ≤ 2x. The second inequality yields
4x1 − f (x) ≤ 4x1 − 2x, so f (x) ≥ 2x. Combining the two inequalities we obtain f (x) = 2x.
We conclude that

f (x) = 2x for all x

is the only function satisfying the conditions from the statement.
(R. Gelca)

643. Plugging in x = t, y = 0, z = 0 gives

f (t)+ f (0)+ f (t) ≥ 3f (t),

or f (0) ≥ f (t) for all real numbers t. Plugging in x = t
2 , y = t

2 , z = − t
2 gives

f (t)+ f (0)+ f (0) ≥ 3f (0),

or f (t) ≥ f (0) for all real numbers t. Hence f (t) = f (0) for all t, so f must be constant.
Conversely, any constant function f clearly satisfies the given condition.

(Russian Mathematical Olympiad, 2000)

644. No! In fact, we will prove a more general result.

Proposition. Let S be a set and g : S → S a function that has exactly two fixed points
{a, b} and such that g ◦ g has exactly four fixed points {a, b, c, d}. Then there is no function
f : S → S such that g = f ◦ f .

Proof. Let g(c) = y. Then c = g(g(c)) = g(y); hence y = g(c) = g(g(y)). Thus y is a fixed
point of g ◦ g. If y = a, then a = g(a) = g(y) = c, leading to a contradiction. Similarly,
y = b forces c = b. If y = c, then c = g(y) = g(c), so c is a fixed point of g, again a
contradiction. It follows that y = d, i.e., g(c) = d, and similarly g(d) = c.

Suppose there is f : S → S such that f ◦ f = g. Then f ◦ g = f ◦ f ◦ f = g ◦ f . Then
f (a) = f (g(a)) = g(f (a)), so f (a) is a fixed point of g. Examining case by case, we conclude
that f ({a, b}) ⊂ {a, b} and f ({a, b, c, d}) ⊂ {a, b, c, d}. Because f ◦ f = g, the inclusions
are, in fact, equalities.

Consider f (c). If f (c) = a, then f (a) = f (f (c)) = g(c) = d, a contradiction since
f (a) is in {a, b}. Similarly, we rule out f (c) = b. Of course, c is not a fixed point of f ,
since it is not a fixed point of g. We are left with the only possibility f (c) = d. But then
f (d) = f (f (c)) = g(c) = d, and this again cannot happen because d is not a fixed point of g.
We conclude that such a function f cannot exist. �
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In the particular case of our problem, g(x) = x2 − 2 has the fixed points −1 and 2, and
g(g(x)) = (x2 − 2)2 − 2 has the fixed points −1, 2, −1+√5

2 , and −1−√5
2 . This completes the

solution.
(B.J. Venkatachala, Functional Equations: A Problem Solving Approach, Prism Books

PVT Ltd., 2002)

645. The standard approach is to substitute particular values for x and y. The solution found
by the student S.P. Tungare does quite the opposite. It introduces an additional variable z.
The solution proceeds as follows:

f (x + y+ z) = f (x)f (y+ z)− c sin x sin(y+ z)

= f (x)[f (y)f (z)− c sin y sin z] − c sin x sin y cos z − c sin x cos y sin z

= f (x)f (y)f (z)− cf (x) sin y sin z − c sin x sin y cos z − c sin x cos y sin z.

Because obviously f (x + y+ z) = f (y+ x + z), it follows that we must have

sin z[f (x) sin y− f (y) sin x] = sin z[cos x sin y− cos y sin x].
Substitute z = π

2 to obtain

f (x) sin y− f (y) sin x = cos x sin y− cos y sin x.

For x = π and y not an integer multiple of π , we obtain sin y[f (π) + 1] = 0, and hence
f (π) = −1.

Then, substituting in the original equation x = y = π
2 yields

f (π) =
[
f
(π

2

)]2 − c,

whence f
(

π
2

) = ±√c− 1. Substituting in the original equation y = π we also obtain
f (x + π) = −f (x). We then have

−f (x) = f (x + π) = f
(

x + π

2

)
f
(π

2

)
− c cos x

= f
(π

2

) (
f (x)f
(π

2

)
− c sin x

)
− c cos x,

whence

f (x)

[(
f
(π

2

))2 − 1

]
= cf
(π

2

)
sin x − x cos x.

It follows that f (x) = f
(

π
2

)
sin x + cos x. We find that the functional equation has two

solutions, namely,

f (x) = √c− 1 sin x + cos x and f (x) = −√c− 1 sin x + cos x.

(Indian Team Selection Test for the International Mathematical Olympiad, 2004)
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646. Because |f | is bounded and is not identically equal to zero, its supremum is a positive
number M. Using the equation from the statement and the triangle inequality, we obtain that
for any x and y,

2|f (x)||g(y)| = |f (x + y)+ f (x − y)|
≤ |f (x + y)| + |f (x − y)| ≤ 2M.

Hence

|g(y)| ≤ M

|f (x)| .
If in the fraction on the right we take the supremum of the denominator, we obtain |g(y)| ≤
M
M = 1 for all y, as desired.

Remark. The functions f (x) = sin x and g(x) = cos x are an example.
(14th International Mathematical Olympiad, 1972)

647. Substituting for f a linear function ax + b and using the method of undetermined
coefficients, we obtain a = 1, b = − 3

2 , so f (x) = x − 3
2 is a solution.

Are there other solutions? Setting g(x) = f (x)−(x − 3
2

)
, we obtain the simpler functional

equation
3g(2x + 1) = g(x), for all x ∈ R.

This can be rewritten as

g(x) = 1

3
g

(
x − 1

2

)
, for all x ∈ R.

For x = −1 we have g(−1) = 1
3 g(−1); hence g(−1) = 0. In general, for an arbitrary x,

define the recursive sequence x0 = x, xn+1 = xn−1
2 for n ≥ 0. t is not hard to see that this

sequence is Cauchy, for example, because |xm+n − xm| ≤ 1
2m−2 max(1, |x|). This sequence is

therefore convergent, and its limit L satisfies the equation L = L−1
2 . It follows that L = −1.

Using the functional equation, we obtain

g(x) = 1

3
g(x1) = 1

9
g(x2) = · · · = 1

3n
g(xn) = lim

n→∞ g(xn) = g(−1) = 0.

This shows that f (x) = x − 3
2 is the unique solution to the functional equation.

(B.J. Venkatachala, Functional Equations: A Problem Solving Approach, Prism Books
PVT Ltd., 2002)

648. We will first show that f (x) ≥ x for all x. From (i) we deduce that f (3x) ≥ 2x, so
f (x) ≥ 2x

3 . Also, note that if there exists k such that f (x) ≥ kx for all x, then f (x) ≥ k3+2
3 x for

all x as well. We can iterate and obtain f (x) ≥ knx, where kn are the terms of the recursive

sequence defined by k1 = 2
3 , and kn+1 = k3

n+2
3 for k ≥ 1. Let us examine this sequence.

By the AM-GM inequality,

kn+1 = k3
n + 13 + 13

3
≥ kn,
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so the sequence is increasing. An easy induction shows that kn < 1. Weierstrass’ criterion
implies that (kn)n is convergent. Its limit L should satisfy the equation

L = L3 + 2

3
,

which shows that L is a root of the polynomial equation L3 − 3L + 2 = 0. This equation has
only one root in [0, 1], namely L = 1. Hence lim

n→∞ kn = 1, and so f (x) ≥ x for all x.

It follows immediately that f (3x) ≥ 2x + f (x) for all x. Iterating, we obtain that for all
n ≥ 1,

f (3nx)− f (x) ≥ (3n − 1)x.

Therefore, f (x)− x ≤ f (3nx)− 3nx. If we let n →∞ and use (ii), we obtain f (x)− x ≤ 0,
that is, f (x) ≤ x. We conclude that f (x) = x for all x > 0. Thus the identity function is the
unique solution to the functional equation.

(G. Dospinescu)

649. We should keep in mind that f (x) = sin x and g(x) = cos x satisfy the condition. As we
proceed with the solution to the problem, we try to recover some properties of sin x and cos x.
First, note that the condition f (t) = 1 and g(t) = 0 for some t �= 0 implies g(0) = 1; hence
g is nonconstant. Also, 0 = g(t) = g(0)g(t) + f (0)f (t) = f (0); hence f is nonconstant.
Substituting x = 0 in the relation yields g(−y) = g(y), so g is even.

Substituting y = t, we obtain g(x − t) = f (x), with its shifted version f (x + t) = g(x).
Since g is even, it follows that f (−x) = g(x + t). Now let us combine these facts to obtain

f (x − y) = g(x − y − t) = g(x)g(y + t)+ f (x)f (y+ t)

= g(x)f (−y)+ f (x)g(y).

Change y to −y to obtain f (x + y) = f (x)g(y)+ g(x)f (y) (the addition formula for sine).
The remaining two identities are consequences of this and the fact that f is odd. Let us

prove f odd. From g(x − (−y)) = g(x + y) = g(−x − y), we obtain

f (x)f (−y) = f (y)f (−x)

for all x and y in R. Setting y = t and x = −t yields f (−t)2 = 1, so f (−t) = ±1. The choice
f (−t) = 1 gives f (x) = f (x)f (−t) = f (−x)f (t) = f (−x); hence f is even. But then

f (x − y) = f (x)g(−y)+ g(x)f (−y) = f (x)g(y)+ g(x)f (y) = f (x + y),

for all x and y. For x = z+w
2 , y = z−w

2 , we have f (z) = f (w), and so f is constant, a
contradiction. For f (−t) = −1, we obtain f (−x) = −f (−x)f (−t) = −f (x)f (t) = −f (x);
hence f is odd. It is now straightforward that

f (x − y) = f (x)g(y)+ g(x)f (−y) = f (x)g(y)− g(x)f (y)

and
g(x + y) = g(x − (−y)) = g(x)g(−y)+ f (x)f (−y) = g(x)g(y)− f (x)f (y),

where in the last equality we also used the fact, proved above, that g is even.
(American Mathematical Monthly, proposed by V.L. Klee, solution by P.L. Kannappan)
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650. Substituting x and y by x/2 we obtain f (x) = f (x/2)2 > 0, the function g(x) = ln f (x)
is well defined. It satisfies Cauchy’s equation and is continuous; therefore, g(x) = αx for
some constant α. We obtain f (x) = cx, with c = eα.

651. Adding 1 to both sides of the functional equation and factoring, we obtain

f (x + y)+ 1 = (f (x)+ 1)(f (y)+ 1).

The continuous function g(x) = f (x)+1 satisfies the functional equation g(x+y) = g(x)g(y),
and we have seen in the previous problem that g(x) = cx for some nonnegative constant c.
We conclude that f (x) = cx − 1 for all x.

652. If there exists x0 such that f (x0) = 1, then

f (x) = f (x0 + (x − x0)) = 1+ f (x − x0)

1+ f (x − x0)
= 1.

In this case, f is identically equal to 1. In a similar manner, we obtain the constant solution
f (x) ≡ −1.

Let us now assume that f is never equal to 1 or−1. Define g : R → R, g(x) = 1+f (x)
1−f (x) . To

show that g is continuous, note that for all x,

f (x) =
2f
(x

2

)

1+ f
(x

2

) < 1.

Now the continuity of g follows from that of f and of the function h(t) = 1+t
1−t on (−∞, 1).

Also,

g(x + y) = 1+ f (x + y)

1− f (x + y)
= f (x)f (y)+ 1+ f (x)+ f (y)

f (x)f (y)+ 1− f (x)− f (y)

= 1+ f (x)

1− f (x)
· 1+ f (y)

1− f (y)
= g(x)g(y).

Hence g satisfies the functional equation g(x + y) = g(x)g(y). As seen in Problem 651,
g(x) = cx for some c > 0. We obtain f (x) = cx−1

cx+1 . The solutions to the equation are therefore

f (x) = cx − 1

cx + 1
, f (x) = 1, f (x) = −1.

Remark. You might have recognized the formula addition formula for the hyperbolic tangent.
This explains the choice of g, by expressing the exponential in terms of the hyperbolic tangent.

653. Rewrite the functional equation as

f (xy)

xy
= f (x)

x
+ f (y)

y
.
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It now becomes natural to let g(x) = f (x)
x . which satisfies the equation

g(xy) = g(x)+ g(y).

The particular case x = y yields g(x) = 1
2 g(x2), and hence

g(−x) = 1

2
g((−x)2) = 1

2
g(x2) = g(x).

Thus we only need to consider the case x > 0.
Note that g is continuous on (0,∞). If we compose g with the continuous function

h : R → (0,∞), h(x) = ex, we obtain a continuous function on R that satisfies Cauchy’s
equation. Hence g ◦ h is linear, which then implies g(x) = loga x for some positive base a. It
follows that f (x) = x loga x for x > 0 and f (x) = x loga |x| if x < 0.

All that is missing is the value of f at 0. This can be computed directly setting x = y = 0,
and it is seen to be 0. We conclude that f (x) = x cosa |x| if x �= 0, and f (0) = 0, where a is
some positive number. The fact that any such function is continuous at zero follows from

lim
x→0+ x loga x = 0,

which can be proved by applying the L’Hôpital’s theorem to the functions loga x and 1
x . This

concludes the solution.

654. Setting y = z = 0 yields φ(x) = f (x) + g(0) + h(0), and similarly φ(y) = g(y) +
f (0)+ h(0). Substituting these three relations in the original equation and letting z = 0 gives
rise to a functional equation for φ, namely

φ(x + y) = φ(x)+ φ(y)− (f (0)+ g(0)+ h(0)).

This should remind us of the Cauchy equation, which it becomes after changing the function
φ to ψ(x) = φ(x) − (f (0) + g(0) + h(0)). The relation ψ(x + y) = ψ(x) + ψ(y) together
with the continuity of ψ shows that ψ(x) = cx for some constant c. We obtain the solution
to the original equation

φ(x) = cx + α + β + γ, f (x) = cx + α, g(x) = cx + β, h(x) = cx + γ,

where α, β, β are arbitrary real numbers. These functions satisfy the given equation.
(Gazeta Matematică (Mathematics Gazette, Bucharest), proposed by M. Vlada)

655. This is a generalization of Cauchy’s equation. Trying small values of n, one can guess
that the answer consists of all polynomial functions of degree at most n− 1 with no constant
term (i.e., with f (0) = 0). We prove by induction on n that this is the case.

The case n = 2 is Cauchy’s equation. Assume that the claim is true for n − 1 and let us
prove it for n. Fix xn and consider the function gxn : R → R, gxn(x) = f (x+xn)−f (x)−f (xn).
It is continuous and, more importantly, it satisfies the functional equation for n − 1. Hence
gxn(x) is a polynomial of degree n− 2. And this is true for all xn.

It follows that f (x + xn) − f (x) is a polynomial of degree n − 2 for all xn. In particular,
there exist polynomials P1(x) and P2(x) such that f (x+ 1)− f (x) = P1(x), and f (x+√2)−
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f (x) = P2(x). Note that for any a, the linear map from the vector space of polynomials of
degree at most n − 1 to the vector space of polynomials of degree at most n − 2, P(x) �→
P(x + a) − P(x), has kernel the one-dimensional space of constant polynomials (the only
periodic polynomials). Because the first vector space has dimension n and the second has
dimension n− 1, the map is onto. Hence there exist polynomials Q1(x) and Q2(x) of degree
at most n− 1 such that

Q1(x + 1)− Q1(x) = P1(x) = f (x + 1)− f (x),

Q2(x +
√

2)− Q2(x) = P2(x) = f (x +√2)− f (x).

We deduce that the functions f (x) − Q1(x) and f (x) − Q2(x) are continuous and periodic,
hence bounded. Their difference Q1(x) − Q2(x) is a bounded polynomial, hence constant.
Consequently, the function f (x)−Q1(x) is continuous and has the periods 1 and

√
2. Since the

additive group generated by 1 and
√

2 is dense in R, f (x)−Q1(x) is constant. This completes
the induction.

That any polynomial of degree at most n−1 with no constant term satisfies the functional
equation also follows by induction on n. Indeed, the fact that f satisfies the equation is
equivalent to the fact that gxn satisfies the equation. And gxn is a polynomial of degree n− 2.

(G. Dospinescu)

656. First solution: Assume that such functions do exist. Because g ◦ g is a bijection, f is
one-to-one and g is onto. Since f is a one-to-one continuous function, it is monotonic, and
because g is onto but f ◦ g is not, it follows that f maps R onto an interval I strictly included
in R. One of the endpoints of this interval is finite, call this endpoint a. Without loss of
generality, we may assume that I = (a,∞). Then as g ◦ f is onto, g(I) = R. This can
happen only if lim sup

x→∞
g(x) = ∞ and lim inf

x→∞ g(x) = −∞, which means that g oscillates in a

neighborhood of infinity. But this is impossible because f (g(x)) = x2 implies that g assumes
each value at most twice. Hence the question has a negative answer; such functions do not
exist.

Second solution: Since g◦f is a bijection, f is one-to-one and g is onto. Note that f (g(0)) = 0.
Since g is onto, we can choose a and b with g(a) = g(0) − 1 and g(b) = g(0) + 1. Then
f (g(a)) = a2 > 0 and f (g(b)) = b2 > 0. Let c = min(a2, b2)/2 > 0. The intermediate value
property guarantees that there is an x0 ∈ (g(a), g(0)) with f (x0) = c and an x1 ∈ (g(0), g(b))

with f (x1) = c. This contradicts the fact that f is one-to-one. Hence no such functions can
exist.

(R. Gelca, second solution by R. Stong)

657. The relation from the statement implies that f is injective, so it must be monotonic.
Let us show that f is increasing. Assuming the existence of a decreasing solution f to the
functional equation, we can find x0 such that f (x0) �= x0. Rewrite the functional equation as
f (f (x)) − f (x) = f (x) − x. If f (x0) < x0, then f (f (x0)) < f (x0), and if f (x0) > x0, then
f (f (x0)) > f (x0), which both contradict the fact that f is decreasing. Thus any function f that
satisfies the given condition is increasing.

Pick some a > b, and set �f (a) = f (a)− a and �f (b) = f (b)− b. By adding a constant
to f (which yields again a solution to the functional equation), we may assume that �f (a)
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and �f (b) are positive. Composing f with itself n times, we obtain f n(a) = a+ n�f (a) and
f n(b) = b + n�f (b). Recall that f is an increasing function, so f n is increasing, and hence
f n(a) > f n(b), for all n. This can happen only if �f (a) ≥ �f (b).

On the other hand, there exists m such that b + m�f (b) = f m(b) > a, and the same
argument shows that �f (f m−1(b)) > �f (a). But �f (f m−1(b)) = �f (b), so �f (b) ≥ �f (a).
We conclude that �f (a) = �f (b), and hence �f (a) = f (a)−a is independent of a. Therefore,
f (x) = x+ c, with c ∈ R, and clearly any function of this type satisfies the equation from the
statement.

658. The answer is yes! We have to prove that for f (x) = ex2
, the equation f ′g+f g′ = f ′g′ has

nontrivial solutions on some interval (a, b). Explicitly, this is the first-order linear equation
in g,

(1− 2x)ex2
g′ + 2xex2

g = 0.

Separating the variables, we obtain

g′

g
= 2x

2x − 1
= 1+ 1

2x − 1
,

which yields by integration ln g(x) = x + 1
2 ln |2x − 1| + C. We obtain the one-parameter

family of solutions
g(x) = aex

√|2x − 1|, a ∈ R,

on any interval that does not contain 1
2 .

(49th W.L. Putnam Mathematical Competition, 1988)

659. Rewrite the equation f 2 + g2 = f ′2 + g′2 as

(f + g)2 + (f − g)2 = (f ′ + g′)2 + (g′ − f ′)2.

This, combined with f + g = g′ − f ′, implies that (f − g)2 = (f ′ + g′)2.
Let x0 be the second root of the equation f (x) = g(x). On the intervals I1 = (−∞, 0),

I2 = (0, x0), and I3 = (x0,∞) the function f − g is nonzero; hence so is f ′ + g′. These two
functions maintain constant sign on the three intervals; hence f − g = εj(f ′ + g′) on Ij, for
some εj ∈ {−1, 1}, j = 1, 2, 3.

If on any of these intervals f −g = f ′ +g′, then since f +g = g′ − f ′ it follows that f = g′
on that interval, and so g′ +g = g′ −g′′. This implies that g satisfies the equation g′′ +g = 0,
or that g(x) = A sin x + B cos x on that interval. Also, f (x) = g′(x) = A cos x − B sin x.

If f − g = −f ′ − g′ on some interval, then using again f + g = g′ − f ′, we find that g = g′
on that interval. Hence g(x) = C1ex. From the fact that f = −f ′, we obtain f (x) = C2e−x.

Assuming that f and g are exponentials on the interval (0, x0), we deduce that C1 =
g(0) = f (0) = C2 and that C1ex0 = g(x0) = f (x0) = C2e−x. These two inequalities cannot
hold simultaneously, unless f and g are identically zero, ruled out by the hypothesis of the
problem. Therefore, f (x) = A cos x − B sin x and g(x) = A sin x + B cos x on (0, x0), and
consequently x0 = π .

On the intervals (−∞, 0] and [x0,∞) the functions f and g cannot be periodic, since then
the equation f = g would have infinitely many solutions. So on these intervals the functions
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are exponentials. Imposing differentiability at 0 and π , we obtain B = A, C1 = A on I1 and
C1 = −Ae−π on I3 and similarly C2 = A on I1 and C2 = −Aeπ on I3. Hence the answer to
the problem is

f (x) =
⎧
⎨

⎩

Aex for x ∈ (−∞, 0],
A(sin x + cos x) for x ∈ (0, π],
−Ae−x+π for x ∈ (π,∞),

g(x) =
⎧
⎨

⎩

Aex for x ∈ (−∞, 0],
A(sin x − cos x) for x ∈ (0, π],
−Aex−π for x ∈ (π,∞),

where A is some nonzero constant.
(Romanian Mathematical Olympiad, 1976, proposed by V. Matrosenco)

660. The idea is to integrate the equation using an integrating factor. If instead we had the
first-order differential equation (x2 + y2)dx + xydy = 0, then the standard method finds x as
an integrating factor. So if we multiply our equation by f to transform it into

(f 3 + f g2)f ′ + f 2gg′ = 0,

then the new equation is equivalent to

(
1

4
f 4 + 1

2
f 2g2

)′
= 0.

Therefore, f and g satisfy
f 4 + 2f 2g2 = C,

for some real constant C. In particular, f is bounded.
(R. Gelca)

661. The idea is to write the equation as

Bydx + Axdy+ xmyn(Dydx + Cxdy) = 0,

then find an integrating factor that integrates simultaneously Bydx + Axdy and xmyn(Dydx +
Cxdy). An integrating factor of Bydx + Axdy will be of the form x−1y−1φ1(xByA), while an
integrating factor of xmyn(Dydx + Cxdy) = Dxmyn+1dx + Cxm+1yndy will be of the form
x−m−1y−n−1φ2(xDyC), where φ1 and φ2 are one-variable functions. To have the same integrat-
ing factor for both expressions, we should have

xmynφ1(x
ByA) = φ2(x

DyC).

It is natural to try power functions, say φ1(t) = tp and φ2(t) = tq. The equality condition
gives rise to the system

Ap− Cq = −n,

Bp− Dq = −m,



634 Real Analysis

which according to the hypothesis can be solved for p and q. Using Cramer’s rule, we find
that

p = Bn− Am

AD− BC
, q = Dn− Cm

AD− BC
.

Multiplying the equation by x−1y−1(xByA)p = x−1−my−1−n(xDyC)q and integrating, we obtain

1

p+ 1
(xByA)p+1 + 1

q + 1
(xDyC)q+1 = constant,

which gives the solution in implicit form.
(M. Ghermănescu, Ecuaţii Diferenţiale (Differential Equations), Editura Didactică şi Ped-

agogică, Bucharest, 1963)

662. The differential equation can be rewritten as

ey′ ln y = eln x.

Because the exponential function is injective, this is equivalent to y′ ln y = ln x. Integrating,
we obtain the algebraic equation y ln y− y = x ln x− x+C, for some constant C. The initial
condition yields C = 0. We are left with finding all differentiable functions y such that

y ln y− y = x ln x − x.

Let us focus on the function f (t) = t ln t − t. Its derivative is f ′(t) = ln t, which is negative
if t < 1 and positive if t > 1. The minimum of f is at t = 1, and is equal to −1. An easy
application of L’Hôpital’s rule shows that lim

t→0
f (t) = 0. It follows that the equation f (t) = c

fails to have a unique solution precisely when c ∈ (0, 1)∪ (1, e), in which case it has exactly
two solutions.

If we solve algebraically the equation y ln y − y = x ln x − x on (1, e), we obtain two
possible continuous solutions, one that is greater than 1 and one that is less than 1. The
continuity of y at e rules out the second, so on the interval [1,∞), y(x) = x. On (0, 1)

again we could have two solutions, y1(x) = x, and some other function y2 that is greater than
1 on this interval. Let us show that y2 cannot be extended to a solution having continuous
derivative at x = 1. On (1,∞), y2(x) = x, hence lim

x→1+ y′2(x) = 1. On (0, 1), as seen above,

y′2 ln y2 = ln x, so y′2 = ln x/ ln y2 < 0, since x < 1, and y2(x) > 1. Hence lim
x→1− y′2(x) ≤ 0,

contradicting the continuity of y′2 at x = 1. Hence the only solution to the problem is y(x) = x
for all x ∈ (0,∞).

(R. Gelca)

663. Define
g(x) = f (x)f ′

(a

x

)
, x ∈ (0,∞).

We want to show that g is a constant function.
Substituting x → a

x in the given condition yields

f
(a

x

)
f ′(x) = a

x
,
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for all x > 0. We have

g′(x) = f ′(x)f
(a

x

)
+ f (x)f ′

(a

x

) (
− a

x2

)
= f ′(x)f

(a

x

)
− a

x2
f
(a

x

)
f (x)

= a

x
− a

x
= 0,

so g is identically equal to some positive constant b. Using the original equation we can write

b = g(x) = f (x)f
(a

x

)
= f (x) · a

x
· 1

f ′(x)
,

which gives
f ′(x)
f (x)

= a

bx
.

Integrating both sides, we obtain ln f (x) = a
b ln x + ln c, where c > 0. It follows that

f (x) = cx
a
b , for all x > 0. Substituting back into the original equation yields

c · a

b
· a

a
b−1

x
a
b − 1

= x

cx
a
b
,

which is equivalent to
c2a

a
b = b.

By eliminating c, we obtain the family of solutions

fb(x) =
√

b

(
x√
a

) a
b

, b > 0.

All such functions satisfy the given condition.
(66th W.L. Putnam Mathematical Competition, 2005, proposed by T. Andreescu)

664. Let us look at the solution to the differential equation

∂y

∂x
= f (x, y),

passing through some point (x0, y0). The condition from the statement implies that along this
solution, df (x,y)

dx = 0, and so along the solution the function f is constant. This means that
the solution to the differential equation with the given initial condition is a line (y − y0) =
f (x0, y0)(x − x0). If for some (x1, y1), f (x1, y1) �= f (x0, y0), then the lines (y − y0) =
f (x0, y0)(x−x0) and (y−y1) = f (x1, y1)(x−x1) intersect somewhere, providing two solutions
passing through the same point, which is impossible. This shows that f is constant, as desired.

(Soviet Union University Student Mathematical Olympiad, 1976)

665. The equation can be rewritten as

(xy)′′ + (xy) = 0.



636 Real Analysis

Solving, we find xy = C1 sin x + C2 cos x, and hence

y = C1
sin x

x
+ C2

cos x

x
,

on intervals that do not contain 0.

666. The function f ′(x)f ′′(x) is the derivative of 1
2 (f ′(x))2. The equation is therefore equivalent

to
f ′(x)2 = constant.

And because f ′(x) is continuous, f ′(x) itself must be constant, which means that f (x) is linear.
Clearly, all linear functions are solutions.

667. The relation from the statement implies right away that f is differentiable. Differentiating

f (x)+ x
∫ x

0
f (t)dt −

∫ x

0
tf (t)dt = 1,

we obtain

f ′(x)+
∫ x

0
f (t)dt + xf (x)− xf (x) = 0,

that is

f ′(x)+
∫ x

0
f (t)dt = 0.

Again we conclude that f is twice differentiable, and so we can transform this equality into the
differential equation f ′′+ f = 0. The general solution is f (x) = A cos x+B sin x. Substituting
in the relation from the statement, we obtain A = 1, B = 0, that is, f (x) = cos x.

(E. Popa, Analiză Matematică, Culegere de Probleme (Mathematical Analysis, Collection
of Problems), Editura GIL, 2005)

668. The equation is of Laplace type, but we can bypass the standard method once we make
the following observation. The associated homogeneous equation can be written as

x(y′′ + 4y′ + 4y)− (y′′ + 5y′ + 6y) = 0,

and the equations y′′ + 4y′ + 4y = 0 and y′′ + 5y′ + 6y = 0 have the common solution
y(x) = e−2x. This will therefore be a solution to the above equation, as well. To find a
solution to the inhomogeneous equation, we use the method of variation of the constant. Set
y(x) = C(x)e−2x. The equation becomes

(x − 1)C′′ − C′ = x,

which as a first order equation has the solution

C′(x) = λ(x − 1)+ (x − 1) ln |x − 1| − 1.

Integrating, we obtain

C(x) = 1

2
(x − 1)2 ln |x − 1| +

(
λ

2
− 1

4

)
(x − 1)2 − x + C1.
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If we set C2 = λ
2 − 1

4 , then the general solution to the equation from the start is

y(x) = e−2x

[
C1 + C2(x − 1)2 + 1

2
(x − 1)2 ln |x − 1| − x

]
.

(D. Flondor, N. Donciu, Algebră şi Analiză Matematică (Algebra and Mathematical
Analysis), Editura Didactică şi Pedagogică, Bucharest, 1965)

669. Consider the change of variable x = cos t. Then, by the chain rule,

dy

dx
=

dy

dt
dx

dt

= −
dy

dt
sin t

and

d2y

dx2
=

d2y

dt2
− dy

dx

d2x

dt2
(

dx

dt

)2 =
d2y

dt2

sin2 t
−

cos t
dy

dt
sin3 t

.

Substituting in the original equation, we obtain the much simpler

d2y

dt2
+ n2y = 0.

This has the function y(t) = cos nt as a solution. Hence the original equation admits the
solution y(x) = cos(n arccos x), which is the nth Chebyshev polynomial.

670. We interpret the differential equation as being posed for a function y of x. In this
perspective, we need to write d2x

dy2 in terms of the derivatives of y with respect to x. We have

dx

dy
= 1

dy

dx

,

and using this fact and the chain rule yields

d2x

dy2
= d

dy

⎛

⎜
⎝

1
dy

dx

⎞

⎟
⎠ = d

dx

⎛

⎜
⎝

1
dy

dx

⎞

⎟
⎠ · dx

dy

= − 1
(

dy

dx

)2 ·
d2y

dx2
· dx

dy
= − 1
(

dy

dx

)3 ·
d2y

dx2
.

The equation from the statement takes the form

d2y

dx2

⎛

⎜⎜⎜
⎝

1− 1
(

dy

dx

)3

⎞

⎟⎟⎟
⎠
= 0.
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This splits into
d2y

dx2
= 0 and

(
dy

dx

)3

= 1.

The first of these has the solutions y = ax + b, with a �= 0, because y has to be one-to-one,
while the second reduces to y′ = 1, whose family of solutions y = x + c is included in the
first. Hence the answer to the problem consists of the nonconstant linear functions.

(M. Ghermănescu, Ecuaţii Diferenţiale (Differential Equations), Editura Didactică şi Ped-
agogică, Bucharest, 1963)

671. First solution: Multiplying the equation by e−xy′ and integrating from 0 to x, we obtain

y2(x)− y2(0)+ 2
∫ x

0
e−ty′y′′dt = 0.

The integral in this expression is positive. To prove this we need the following lemma.

Lemma. Let f : [0, a] → R be a continuous function and φ : [0, a] → R a positive,
continuously differentiable, decreasing function with φ(0) = 1. Then there exists c ∈ [0, a]
such that ∫ a

0
φ(t)f (t)dt =

∫ c

0
f (t)dt.

Proof. Let F(x) =
∫ x

0
f (t)dt, x ∈ [0, a], and let α be the negative of the derivative of φ,

which is a positive function. Integrating by parts, we obtain
∫ a

0
φ(t)f (t)dt = φ(a)F(a)+

∫ a

0
α(t)F(t)dt = F(a)−

∫ a

0
(F(a)− F(t))α(t)dt.

We are to show that there exists a point c such that

F(a)− F(c) =
∫ a

0
(F(a)− F(t))α(t)dt.

If
∫ a

0
α(t)dt were equal to 1, this would be true by the Mean value theorem applied to the

function F(a)−F(t) and the probability measure α(t)dt. But in general, this integral is equal to
some subunitary number θ , so we can find c′ such that the integral is equal to θ(F(a)−F(c′)).
But this number is between F(a) − F(a) and F(a) − F(c′), so by the intermediate value
property, there is a c such that θ(F(a)− F(c′)) = F(a)− F(c). This proves the lemma. �

Returning to the problem, we see that there exists c ∈ [0, x] such that
∫ x

0
e−ty′y′′dt =

∫ c

0
y′y′′dt = 1

2
[(y′(c))2 − (y′(0))2].

In conclusion,
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y(x)2 + y′(c)2 = y(0)2 + y′(0)2, for x > 0,

showing that y is bounded as x →∞.

Second solution: Use an integrating factor as in the previous solution to obtain

y(x)2 − y(0)2 + 2
∫ x

0
e−ty′y′′dt = 0.

Then integrate by parts to obtain

y(x)2 + e−xy′(x)2 +
∫ x

0
e−t(y′(t))2dt = y(0)2 + y′(0)2.

Because every term on the left is nonnegative, it follows immediately that

|y(x)| ≤ (y(0)2 + y′(0)2)1/2

is bounded, and we are done.
(27th W.L. Putnam Mathematical Competition, 1966)

672. We have

y′′1(t)+ y1(t) =
∫ ∞

0

t2e−tx

1+ t2
dt +
∫ ∞

0

e−tx

1+ t2
dt =
∫ ∞

0
e−txdt = 1

x
.

Also, integrating by parts, we obtain

y2(x) = − cos t

t + x

∣∣
∣∣

∞

0

−
∫ ∞

0

cos t

(t + x)2
dt = 1

x
− sin t

(t + x)2

∣∣
∣∣

∞

0

−
∫ ∞

0

2 sin t

(t + x)3
dt

= 1

x
− y′′2(x).

Since the functions y1 and y2 satisfy the same inhomogeneous equation, their difference y1−y2

satisfies the homogeneous equation y′′ + y = 0, and hence is of the form A cos x + B sin x.
On the other hand,

lim
x→∞(y1(x)− y2(x)) = lim

x→∞ y1(x)− lim
x→∞ y2(x) = 0,

which implies that A = B = 0, and therefore y1 = y2, as desired.
(M. Ghermănescu, Ecuaţii Diferenţiale (Differential Equations), Editura Didactică şi Ped-

agogică, Bucharest, 1963)

673. Let F(t) =
∫ t

0
f (s)ds be the antiderivative of f that is 0 at the origin. The inequality

from the problem can be written as

F ′(t)√
1+ 2F(t)

≤ 1,

which now reminds us of the method of separation of variables. The left-hand side is the
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derivative of
√

1+ 2F(t), a function whose value at the origin is 1. Its derivative is dominated
by the derivative of g(t) = t + 1, another function whose value at the origin is also 1.
Integrating, we obtain √

1+ 2F(t) ≤ t + 1.

Look at the relation from the statement. It says that f (t) ≤ √1+ 2F(t). Hence the conclusion.
(P.N. de Souza, J.N. Silva, Berkeley Problems in Mathematics, Springer, 2004)

674. We will use the “integrating factor” ex. The inequality

f ′′(x)ex + 2f ′(x)ex + f (x)ex ≥ 0

is equivalent to (f (x)ex)′′ ≥ 0. So the function f (x)ex is convex, which means that it attains
its maximum at one of the endpoints of the interval of definition. We therefore have f (x)ex ≤
max(f (0), f (1)e) = 0, and so f (x) ≤ 0 for all x ∈ [0, 1].

(P.N. de Souza, J.N. Silva, Berkeley Problems in Mathematics, Springer, 2004)

675. Assume that such a function exists. Because f ′(x) = f (f (x)) > 0, the function is strictly
increasing.

The monotonicity and the positivity of f imply that f (f (x)) > f (0) for all x. Thus f (0) is
a lower bound for f ′(x). Integrating the inequality f (0) < f ′(x) for x < 0, we obtain

∫ 0

x
f (0)dt ≤

∫ 0

x
f ′(t)dt

that is −f (0)x ≤ f (0) − f (x), so f (x) < f (0) + f (0)x = (x + 1)f (0). But then for x ≤ −1,
we would have f (x) ≤ 0, contradicting the hypothesis that f (x) > 0 for all x. We conclude
that such a function does not exist.

(9th International Mathematics Competition for University Students, 2002)

676. We use the separation of variables, writing the relation from the statement as

n∑

i=1

P′(x)
P(x)− xi

= n2

x
.

Integrating, we obtain
n∑

i=1

ln |P(x)− xi| = n2 ln C|x|,

where C is some positive constant. After adding the logarithms on the left we have

ln
n∏

i=1

|P(x)− xi| = ln Cn2 |x|n2
,

and so ∣∣∣∣
∣

n∏

i=1

(P(x)− xi)

∣∣∣∣
∣
= k|x|n2

,
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with k = Cn2
. Eliminating the absolute values, we obtain

P(P(x)) = λxn2
, λ ∈ R.

We end up with an algebraic equation. An easy induction can prove that the coefficient of
the term of kth degree is 0 for k < n. Hence P(x) = axn, with a some constant, are the only
polynomials that satisfy the relation from the statement.

(Revista Matematică din Timişoara (Timişoara Mathematics Gazette), proposed by T.
Andreescu)

677. The idea is to use an “integrating factor” that transforms the quantity under the integral
into the derivative of a function. We already encountered this situation in a previous problem,
and should recognize that the integrating factor is e−x. We can therefore write

∫ 1

0
|f ′(x)− f (x)|dx =

∫ 1

0
|f ′(x)e−x − f (x)e−x|exdx =

∫ 1

0
|(f (x)e−x)′|exdx

≥
∫ 1

0
|(f (x)e−x)′|dx = f (1)e−1 − f (0)e−0 = 1

e
.

We have found a lower bound. We will prove that it is the greatest lower bound. Define
fa : [0, 1] → R,

fa(x) =

⎧
⎪⎨

⎪⎩

ea−1

a
x for x ∈ [0, a],

ex−1 for x ∈ [a, 1].
The functions fa are continuous but not differentiable at a, but we can smoothen this “corner”
without altering too much the function or its derivative. Ignoring this problem, we can write

∫ 1

0
|f ′a(x)− fa(x)|dx =

∫ a

0

∣
∣∣∣
ea−1

a
− ea−1

a
x

∣
∣∣∣ dx = ea−1

a

(
a− a2

2

)
= ea−1

(
1− a

2

)
.

As a → 0, this expression approaches 1
e . This proves that 1

e is the desired greatest lower
bound.

(41st W.L. Putnam Mathematical Competition, 1980)

678. Without loss of generality, we can assume that a < b < c. Set α = a
c and β = b

c , and
t = cx. Choose n such that g(n) ≡ 0 and αn + βn < 1. Differentiate the equation from the
statement with respect to t to obtain the nth order differential equation

f (n)(t) = −αnf (n)(αt)− βnf (n)(βt).

Fix u > 0 and set M be the maximum of f (n) on the interval [−u, u]. If M > 0, then

|f n(t)| ≤ |αnf (n)(αt)| + |βnf (n)(βt)| ≤ (αn + βn)M < M.

Taking the supremum of the left-hand side over t ∈ [−u, u], we obtain M < M. So M = 0.
Varying u we obtain that f (n) is identically equal to 0 on R. So f is a polynomial function.

(Mathematical Reflections, proposed by M. Băluna and M. Piticari)
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679. First solution: This is the famous Jacobi identity. Identifying vectors with matrices in
the Lie algebra so(3), we compute

−→u × (−→v ×−→w )+−→v × (−→w ×−→u )+−→w × (−→u ×−→v )

= U (V W −W V )− (V W −W V )U + V (WU −U W )− (WU −U W )V

+W (U V − V U )− (U V − V U )W

= U V W −U W V − V WU +W V U + V WU − V U W −WU V +U W V

+WU V −W V U −U V W + V U W.

All terms of the latter sum cancel, giving the answer zero.

Second solution: We use the BAC-CAB identity

−→a × (
−→
b ×−→c ) = −→b (−→a · −→c )−−→c (−→a · −→b ).

We write

−→u × (−→v ×−→w )+−→v × (−→w ×−→u )+−→w × (−→u ×−→v )

= −→v (−→u · −→w )−−→w (−→u · −→v )+−→w (−→v · −→u )−−→u (−→v · −→w )+−→u (−→w · −→v )−−→v (−→w · −→u ).

Given that the dot product is commutative, the terms cancel in pairs and so this is equal to
zero.

680. One checks easily that−→u +−→v +−→w = 0; hence−→u ,−→v ,−→w form a triangle. We compute

−→u · −→c = (
−→
b · −→c )(−→a · −→c )− (−→c · −→a )(

−→
b · −→c ) = 0.

It follows that −→u and −→c are orthogonal. Similarly, we prove that −→v is orthogonal to −→a ,

and −→w is orthogonal to
−→
b . Hence the sides of the triangle formed with −→u ,−→v ,−→w are

© Springer International Publishing AG 2017
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perpendicular to the sides of the triangle formed with −→a ,
−→
b ,−→c . This shows that the two

triangles have equal angles so they are similar, and we are done.
(Romanian Mathematical Olympiad, 1976, proposed by M. Chiriţă)

681. Multiply the second equation on the left by −→a to obtain

−→a × (−→x ×−→b ) = −→a ×−→c .

Using the BAC-CAB formula, we transform this into

(−→a · −→b )−→x − (−→a · −→x )
−→
b = −→a ×−→c .

Hence the solution to the equation is

−→x = m
−→a · −→b

−→
b + 1

−→a · −→b
−→a ×−→c .

(C. Coşniţă, I. Sager, I. Matei, I. Dragotă, Culegere de Probleme de Geometrie Analitică
(Collection of Problems in Analytical Geometry), Editura Didactică şi Pedagogică, Bucharest,
1963)

682. The vectors
−→
b − −→a and −→c − −→a belong to the plane under discussion, so the vector

(
−→
b −−→a )× (−→c −−→a ) is perpendicular to this plane. Multiplying out, we obtain

(
−→
b −−→a )× (−→c −−→a ) = −→b ×−→c −−→a ×−→c −−→b ×−→a

= −→b ×−→c +−→c ×−→a +−→a ×−→b .

Hence the conclusion.

683. The hypothesis implies that

(−→a ×−→b )− (
−→
b ×−→c ) = −→0 .

It follows that
−→
b ×(−→a +−→c ) = −→0 , hence

−→
b = λ(−→a +−→c ), where λ is a scalar. Analogously,

we deduce −→c × (−→a +−→b ) = −→0 , and substituting the formula we found for
−→
b , we obtain

−→c × (−→a + λ−→a + λ−→c ) = −→0 .

Hence (1 + λ)−→c × −→a = −→0 . It follows that λ = −1 and so
−→
b = −−→a − −→c . Therefore,−→a +−→b +−→c = −→0 .

(C. Coşniţă, I. Sager, I. Matei, I. Dragotă, Culegere de Probleme de Geometrie Analitică
(Collection of Problems in Analytical Geometry), Editura Didactică şi Pedagogică, Bucharest,
1963)

684. Differentiating the equation from the statement, we obtain

−→u ′ × −→u ′ + −→u ×−→u ′′ = −→u ×−→u ′′ = −→v ′.
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It follows that the vectors −→u and −→v ′ are perpendicular. But the original equation shows that−→u and −→v are also perpendicular, which means that −→u stays parallel to −→v × −→v ′. Then we
can write−→u = f−→v ×−→v ′ for some scalar function f = f (t). The left-hand side of the original
equation is therefore equal to

f (−→v ×−→v ′)× [f ′−→v ×−→v ′ + f−→v ′ × −→v ′ + f−→v ×−→v ′′]
= f 2(−→v ×−→v ′)× (−→v ×−→v ′′).

By the BAC-CAB formula this is further equal to

f 2(−→v ′′ · (−→v ×−→v ′)−→v −−→v · (−→v ×−→v ′)−→v ) = f 2((−→v ×−→v ′) · −→v ′′)−→v .

The equation reduces therefore to

f 2((−→v ×−→v ′) · −→v ′′)−→v = −→v .

By hypothesis −→v is never equal to
−→
0 , so the above equality implies

f = 1
√

(−→v ×−→v ) · −→v ′′
.

So the equation can be solved only if the frame (−→v ,−→v ′,−→v ′′) consists of linearly independent
vectors and is positively oriented and in that case the solution is

−→u = 1
√

Vol(−→v ,−→v ′,−→v ′′)
−→v ×−→v ′,

where Vol(−→v ,−→v ′,−→v ′′) denotes the volume of the parallelepiped determined by the three
vectors.

(Revista Matematică din Timişoara (Timişoara Mathematics Gazette), proposed by M.
Ghermănescu)

685. (a) Yes: simply rotate the plane 90◦ about some axis perpendicular to it. For example,
in the xy-plane we could map each point (x, y) to the point (y,−x).

(b) Suppose such a bijection existed. In vector notation, the given condition states that

(−→a −−→b ) · (f (−→a )− f (
−→
b )) = 0

for any three-dimensional vectors −→a and
−→
b .

Assume without loss of generality that f maps the origin to itself; otherwise, g(−→p ) =
f (−→p )− f (

−→
0 ) is still a bijection and still satisfies the above equation. Plugging

−→
b = (0, 0, 0)

into the above equation, we obtain that −→a · f (−→a ) = 0 for all −→a . The equation reduces to

−→a · f (−→b )+−→b · f (−→a ) = 0.

Given any vectors −→a ,
−→
b ,−→c and any real numbers m, n, we then have

m(−→a · f (−→b )+−→b · f (−→a )) = 0,
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n(−→a · f (−→c )+−→c · f (−→a )) = 0,

a · f (m−→b + n−→c )+ (m
−→
b + n−→c ) · f (−→a ) = 0.

Adding the first two equations and subtracting the third gives

−→a · (mf (
−→
b )+ nf (−→c )− f (m

−→
b + n−→c )) = 0.

Because this is true for any vector −→a , we must have

f (m
−→
b + n−→c ) = mf (

−→
b )+ nf (−→c ).

Therefore, f is linear, and it is determined by the images of the unit vectors
−→
i = (1, 0, 0),−→

j = (0, 1, 0), and
−→
k = (0, 0, 1). If

f (
−→
i ) = (a1, a2, a3), f (

−→
j ) = (b1, b2, b3), and f (

−→
k ) = (c1, c2, c3),

then for a vector −→x we have

f (−→x ) =
⎡

⎣
a1 b1 c1

a2 b2 c2

a3 b3 c3

⎤

⎦−→x .

Substituting in f (−→a ) · −→a = 0 successively −→a = −→i ,
−→
j ,
−→
k , we obtain a1 = b2 = c3 = 0.

Then substituting in −→a · f (
−→
b ) + −→b · f (−→a ) = 0, (−→a ,

−→
b ) = (

−→
i ,
−→
j ), (

−→
j ,
−→
k ), (

−→
k ,
−→
i ),

we obtain b1 = −a2, c2 = −b3, c1 = −a3.
Setting k1 = c2, k2 = −c1, and k3 = b1 yields

f (k1
−→
i + k2

−→
j + k3

−→
k ) = k1f (

−→
i )+ k2f (

−→
j )+ k3f (

−→
k ) = −→0 .

Because f is injective and f (
−→
0 ) = −→0 , this implies that k1 = k2 = k3 = 0. Then f (−→x ) = 0

for all −→x , contradicting the assumption that f was a surjection. Therefore, our original
assumption was false, and no such bijection exists.

(Team Selection Test for the International Mathematical Olympiad, Belarus, 1999)

686. The important observation is that

A ∗ B = AB− 1

2
tr(AB),

which can be checked by hand. The identity is therefore equivalent to

CBA− BCA+ ABC − ACB = −1

2
tr(AC)B+ 1

2
tr(AB)C.

And this is the BAC-CAB identity once we notice that

−→a · −→b = −1

2
tr(AB).
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687. An easy computation shows that the map f : R3 → su(2),

f (x, y, z) =
( −iz y− ix

y+ ix iz

)
,

has the desired property.

688. We will show that for n vectors, if each line has at least k < n/2 on each side, then the
sum −→s of the vectors does not exceed n− 2k.

Choose the positive Ox ray to be in the direction of the sum −→s of the n vectors. Let the
vectors in the upper half-plane be numbered clockwise as−→a 1,

−→a 2,
−→a 3, . . . ,

−→a k, . . . , and the

vectors in the lower half-plane be numbered counterclockwise as
−→
b 1,

−→
b 2,

−→
b 3, . . . ,

−→
b k, . . .

(there are at least k in each group by hypothesis).
Also there are at least k vectors in the left half-plane, let these be (in counterclockwise

order) ...,−→a �,
−→a �−1, · · · ,−→a 1,

−→
b1 ,
−→
b 2,

−→
b k−l, .... There are k vectors on each side of the

line of support of−→a �−j, j = 0, 1, 2, . . . , �−1, and for this reason
−→
b k−�+j+1 is to the “left" of

this line, meaning that −→a �−j +−→b k−�+j+1, has a negative projection on the x-axis. Similarly−→
b k−�−j +−→a �+j+1 has a negative projection on the x-axis.

It follows that the sum

−→s 0 = −→a 1 +−→a 2 + · · · + −→a k +−→b 1 +−→b2 + · · · + −→b k

has a negative projection on the x-axis. Let −→s 1 be the sum of the remaining 2n− k vectors.
By the triangle inequality ‖−→s 1‖ ≤ n− 2k. Then −→s , −→s 0 and −→s 1 form and obtuse triangle,
with −→s 1 opposite to the obtuse angle. Thus

‖−→s ‖ ≤ ‖−→s 1‖ ≤ n− 2k

and we are done.
(Kvant (Quantum), proposed by P.A. Kalugin and V.V. Prasolov)

689. Denoting by
−→
A ,
−→
B ,
−→
C ,
−→
A ′,

−→
B ′,

−→
C ′ the position vectors of the vertices of the two

triangles, the condition that the triangles have the same centroid reads

−→
A +−→B +−→C = −→A ′ + −→B ′ + −→C ′.

Subtracting the left-hand side, we obtain

−→
AA′ + −→BB′ + −→CC′ = −→0 .

This shows that
−→
AA′,

−→
BB′,

−→
CC′ form a triangle, as desired.

690. Set−→v 1 = −→AB,−→v 2 = −→BC,−→v 3 = −→CD,−→v 4 = −→DA,−→u 1 = −−→A′B′,−→u 2 = −−→B′C′,−→u 3 = −−→C′D′,
−→u 4 = −−→D′A′. By examining Figure 78 we can write the system of equations

2−→v 2 −−→v 1 = −→u 1,

2−→v 3 −−→v 2 = −→u 2,
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2−→v 4 −−→v 3 = −→u 3,

2−→v 1 −−→v 4 = −→u 4,

in which the right-hand side is known. Solving, we obtain

−→v 1 = 1

15
−→u 1 + 2

15
−→u 2 + 4

15
−→u 3 + 8

15
−→u 4,

and the analogous formulas for −→v 2, −→v 3, and −→v 4.

D
A

BC

A

C

B

D

Figure 78

Since the rational multiple of a vector and the sum of two vectors can be constructed with
straightedge and compass, we can construct the vectors −→v i, i = 1, 2, 3, 4. Then we take the

vectors
−→
A′B = −−→v 1,

−→
B′C = −−→v 2,

−−→
C′D = −−→v 3, and

−→
D′A = −−→v 4 from the points A′, B′,

C′, and D′ to recover the vertices B, C, D, and A.

Remark. Maybe we should elaborate more on how one effectively does these constructions.
The sum of two vectors is obtained by constructing the parallelogram they form. Parallelo-
grams can also be used to translate vectors. An integer multiple of a vector can be constructed
by drawing its line of support and then measuring several lengths of the vector with the com-
pass. This construction enables us to obtain segments divided into an arbitrary number of
equal parts. In order to divide a given segment into equal parts, form a triangle with it and an
already divided segment, then draw lines parallel to the third side and use Thales’ theorem.

691. Let O be the intersection of the perpendicular bisectors of A1A2 and B1B2. We want to
show that O is on the perpendicular bisector of C1C2. This happens if and only if (

−−→
OC1 +−−→

OC2) · −−→C1C2 = 0.
Set

−→
OA = −→

l ,
−→
OB = −→m ,

−→
OC = −→n ,

−→
AA2 = −→a ,

−→
BB2 = −→

b ,
−−→
CC2 = −→c . That the

perpendicular bisectors of A1A2 and B1B2 pass through O can be written algebraically as

(2
−→
l +−→a +−→c ) · (−→c −−→a ) = 0 and (2−→m +−→a +−→b ) · (−→a −−→b ) = 0.

The orthogonality of the sides of the rectangles translates into formulas as

(−→m −−→l ) · −→a = 0, (−→m −−→n ) · −→b = 0, (−→n −−→l ) · −→c = 0.
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We are required to prove that (2−→n +−→b +−→c ) · (−→b −−→c ) = 0. And indeed,

(2−→n +−→b +−→c ) · (−→c −−→b ) = 2−→n · −→c − 2−→n · −→b +−→c 2 −−→b 2

= 2(−→m −−→l ) · −→a + 2
−→
l · −→c − 2−→m · −→b +−→c 2 −−→b 2

= 2−→m · −→a − 2−→m · −→b +−→a 2 −−→b 2 + 2
−→
l · −→c − 2

−→
l · −→a −−→a 2 +−→c 2 = 0.

Hence the conclusion.

692. Let H ′ be the orthocenter of triangle ACD. The quadrilaterals HPBQ and HCH ′A satisfy
HC ⊥ BP, H ′C ⊥ HP, H ′A ⊥ HQ, AH ⊥ BQ, AC ⊥ HB (see Figure 79). The conclusion
follows from a more general result.

A

B

C

D

H

P
Q

H

Figure 79

Lemma. Let MNPQ and M ′N ′P′Q′ be two quadrilaterals such that MN ⊥ N ′P′, NP ⊥ M ′N ′,
PQ ⊥ Q′M ′, QM ⊥ P′Q′, and MP ⊥ N ′Q′. Then NQ ⊥ M ′P′.

Proof. Let
−→
MN = −→v 1,

−→
NP = −→v 2,

−→
PQ = −→v 3,

−→
QM = −→v 4, and

−−→
M ′N ′ = −→w 1,

−−→
N ′P′ = −→w 2,−−→

P′Q′ = −→w 3,
−−→
Q′M ′ = −→w 4. The conditions from the statement can be written in vector form as

−→v 1 · −→w 2 = −→v 2 · −→w 1 = −→v 3 · −→w 4 = −→v 4 · −→w 3 = 0,

−→v 1 +−→v 2 +−→v 3 +−→v 4 = −→w 1 +−→w 2 +−→w 3 +−→w 4 = −→0 ,

(−→v 1 +−→v 2) · (−→w 2 +−→w 3) = 0.

We are to show that
(−→v 2 +−→v 3) · (−→w 1 +−→w 2) = 0.
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First, note that

0 = (−→v 1 +−→v 2)(
−→w 2 +−→w 3) = −→v 1 · −→w 2 +−→v 1 · −→w 3 +−→v 2 · −→w 2 +−→v 2 · −→w 3

= −→v 1 · −→w 3 +−→v 2 · −→w 2 +−→v 2 · −→w 3.

Also, the dot product that we are supposed to show is zero is equal to

(−→v 2 +−→v 3) · (−→w 1 +−→w 2) = −→v 2 · −→w 1 +−→v 2 · −→w 2 +−→v 3 · −→w 1 +−→v 3 · −→w 2

= −→v 2 · −→w 2 +−→v 3 · −→w 1 +−→v 3 · −→w 2.

This would indeed equal zero if we showed that

−→v 1 · −→w 3 +−→v 2 · −→w 3 = −→v 3 · −→w 1 +−→v 3 · −→w 2.

And indeed,

−→v 1 · −→w 3 +−→v 2 · −→w 3 = (−→v 1 +−→v 2) · −→w 3

= −(−→v 3 +−→v 4) · −→w 3 = −−→v 3 · −→w 3 −−→v 4 · −→w 3 = −−→v 3 · −→w 3

= −−→v 3 · −→w 3 −−→v 3 · −→w 4 = −−→v 3 · (−→w 3 +−→w 4)

= −→v 3 · (−→w 1 +−→w 2) = −→v 3 · −→w 1 +−→v 3 · −→w 2.

The lemma is proved. �

Remark. A. Dang gave an alternative solution by observing that triangles AHC and QHP
are orthological, and then using the property of orthological triangles proved by us in the
introduction.

(Indian Team Selection Test for the International Mathematical Olympiad, 2005, proposed
by R. Gelca)

693. Let −→a ,
−→
b ,−→c ,

−→
d , and −→p denote vectors from a common origin to the vertices

A, B, C, D of the tetrahedron and to the point P of concurrency of the four lines. Then
the vector equation for the altitude from A is given by

−→r a = −→a + λ[(−→b +−→c +−→d )/3−−→p ].

The position vector of the point corresponding to λ = 3 is−→a +−→b +−→c +−→d −3−→p , which is
the same for all four vertices of the tetrahedron. This shows that the altitudes are concurrent.

For the converse, if the four altitudes are concurrent at a point H with position vector
−→
h ,

then the line through the centroid of the face BCD and perpendicular to that face is described
by

−→r ′
a = [(

−→
b +−→c +−→d )/3] + λ′(−→a −−→h ).

This time the common point of the four lines will correspond, of course, to λ′ = 1
3 , and the

problem is solved.
(Proposed by M. Klamkin for Mathematics Magazine)
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694. The double of the area of triangle ONQ is equal to

‖−→ON ×−→OQ‖ =
∥
∥
∥
∥

(
1

3
−→
OA+ 2

3
−→
OB

)
×
(

2

3
−→
OD+ 1

3
−→
OC

)∥∥
∥
∥ .

Since
−→
OA is parallel to

−→
OC and

−→
OB is parallel to

−→
OD, this is further equal to

∥
∥
∥
∥

2

9
(
−→
OA×−→OD+−→OB×−→OC)

∥
∥
∥
∥ .

A similar computation shows that this is also equal to ‖−→OM × −→OP‖, which is twice the area
of triangle OMP. Hence the conclusion.

695. The area of triangle AMN is equal to

1

2
‖−→AM ×−→AN‖ = 1

8
‖(−→AB+−→AD)+ (

−→
AE ×−→AC)‖ = 1

8
‖(−→AB×−→AC −−→AE ×−→AD)‖.

Since
−→
AB ×−→AC and

−→
AE ×−→AD are perpendicular to the plane of the triangle and oriented the

same way, this is equal to one-fourth of the area of the quadrilateral BCDE. Done.

696. We work in affine coordinates with the diagonals of the quadrilateral as axes. The
vertices are A(a, 0), B(0, b), C(c, 0), D(0, d). The midpoints of the sides are M

(
a
2 , b

2

)
,

N
(

c
2 ,

b
2

)
, P
(

c
2 , d

2

)
, and Q

(
a
2 , d

2

)
. The segments MP and NQ have the same midpoint, namely,

the centroid
(

a+c
4 , b+d

4

)
. of the quadrilateral. Hence MNPQ is a parallelogram.

697. Choose a coordinate system that places M at the origin and let the coordinates of A, B,
C, respectively, be (xA, yA), (xB, yB), (xC, yC). Then the coordinates of the centroids of MAB,
MAC, and MBC are, respectively,

GA =
(

xA + xB

3
,

yA + yB

3

)
,

GB =
(

xA + xC

3
,

yA + yC

3

)
,

GC =
(

xB + xC

3
,

yB + yC

3

)
.

The coordinates of GA, GB, GC are obtained by subtracting the coordinates of A, B, and C
from (xA+xB+xC, yA+yB+yC), then dividing by 3. Hence the triangle GAGBGC is obtained
by taking the reflection of triangle ABC with respect to the point (xA+ xB+ xC, yA+ yB+ yC),
then contracting with ratio 1

3 with respect to the origin M. Consequently, the two triangles
are similar.

698. Denote by δ(P, MN) the distance from P to the line MN . The problem asks for the locus
of points P for which the inequalities

δ(P, AB) < δ(P, BC)+ δ(P, CA),



652 Geometry and Trigonometry

δ(P, BC) < δ(P, CA)+ δ(P, AB),

δ(P, CA) < δ(P, AB)+ δ(P, BC)

are simultaneously satisfied.
Let us analyze the first inequality, written as f (P) = δ(P, BC)+δ(P, CA)−δ(P, AB) > 0.

As a function of the coordinates (x, y) of P, the distance from P to a line is of the form
mx + ny + p. Combining three such functions, we see that f (P) = f (x, y) is of the same
form, f (x, y) = αx + βy + γ . To solve the inequality f (x, y) > 0 it suffices to find the line
f (x, y) = 0 and determine on which side of the line the function is positive. The line intersects
the side BC where δ(P, CA) = δ(P, AB), hence at the point E where the angle bisector from
A intersects this side. It intersects side CA at the point F where the bisector from B intersects
the side. Also, f (x, y) > 0 on side AB, hence on the same side of the line EF as the segment
AB.

Arguing similarly for the other two inequalities, we deduce that the locus is the interior
of the triangle formed by the points where the angle bisectors meet the opposite sides.

699. Consider an affine system of coordinates such that none of the segments determined
by the n points is parallel to the x-axis. If the coordinates of the midpoints are (xi, yi),
i = 1, 2, . . . , m, then xi �= xj for i �= j. Thus we have reduced the problem to the one-
dimensional situation. So let A1, A2, . . . , An lie on a line in this order. The midpoints of
A1A2, A1A3, . . ., A1An are all distinct and different from the (also distinct) midpoints of A2An,
A3An, . . ., An−1An. Hence there are at least (n−1)+ (n−2) = 2n−3 midpoints. This bound
can be achieved for A1, A2, . . . , An the points 1, 2, . . . , n on the real axis.

(Kőzépiskolai Matematikai Lapok (Mathematics Magazine for High Schools, Budapest),
proposed by M. Salát)

700. We consider a Cartesian system of coordinates with BC and AD as the x- and y-axes,
respectively (the origin is at D). Let A(0, a), B(b, 0), C(c, 0), M(0, m). Because the triangle
is acute, a, c > 0 and b < 0. Also, m > 0. The equation of BM is mx + by = bm, and the
equation of AC is ax + cy = ac. Their intersection is

E

(
bc(a− m)

ab− cm
,

am(b− c)

ab− cm

)
.

Note that the denominator is strictly negative, hence nonzero. The point E therefore exists.
The slope of the line DE is the ratio of the coordinates of E, namely,

am(b− c)

bc(a− m)
.

Interchanging b and c, we find that the slope of DF is

am(c− b)

bc(a− m)
,
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which is the negative of the slope of DE. It follows that the lines DE and DF are symmetric
with respect to the y-axis, i.e., the angles ∠ADE and ∠ADF are equal.

(18th W.L. Putnam Mathematical Competition, 1958)

701. We refer everything to Figure 80. Let A(c, 0), c being the parameter that determines the
variable line. Because B has the coordinates

(
a
2 , b

2

)
, the line AB is given by the equation

y = b

a− 2c
x + bc

2c− a
.

Hence C has coordinates
(
0, bc

2c−a

)
.

The slope of the line CM is b
a , so the equation of this line is

y = b

a
x + bc

2c− a
.

Intersecting it with AP, whose equation is

y = b

a− c
x + bc

c− a
,

A

M

B

O

C
x

y P

Figure 80

we obtain M of coordinates
(

ac
2c−a , 2bc

2c−a

)
. This point lies on the line y = 2b

a x, so this line
might be the locus.

One should note, however, that A = O yields an ambiguous construction, so the origin
should be removed from the locus. On the other hand, any (x, y) on this line yields a point c,
namely, c = ax

2x−a , except for x = a
2 . Hence the locus consists of the line of slope 2b

a through
the origin with two points removed.

(A. Myller, Geometrie Analitică (Analytical Geometry), 3rd ed., Editura Didactică şi
Pedagogică, Bucharest, 1972)

702. First, assume that ABCD is a rectangle (see Figure 81). Let H be the intersection
point of FG and BD. In the right triangles ABC and FBG, the segments BE and BH are
altitudes. Then ∠ABE = ∠ACB and ∠BGF = ∠HBC. Since ∠HBC = ∠ACB, it follows
that ∠GBE = ∠BGF and BE = GE. This implies that in the right triangle BGF, GE = EF.

For the converse, we employ coordinates. We reformulate the problem as follows:
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A B

CD

H

G

E

F

Figure 81

Alternative problem. Given a triangle ABC with AB �= BC, let BE be the altitude from B
and O the midpoint of side AC. The perpendicular from E to BO intersects AB at G and BC
at F. Show that if the segments GE and EF are equal, then the angle ∠B is right.

Let E be the origin of the rectangular system of coordinates, with line EB as the y-axis.
Let also A(a, 0), B(0, b), C(−c, 0), where a, b, c > 0. We have to prove that b2 = ac, and
then use the reciprocal of the Right triangle altitude theorem.

By standard computations, we obtain the following equations and coordinates:

line GF: y = a− c

2b
x;

line BC: −x

c
+ y

b
= 1;

point F: xF = 2b2c

−2b2 − c2 + ac
, yF = bc(a− c)

−2b2 − c2 + ac
;

line AB:
x

a
+ y

b
= 1;

point G: xG = 2ab2

2b2 + a2 − ac
, yG = ab(a− c)

2b2 + a2 − ac
.

The condition EG = EF is equivalent to xG = −xF , that is,

2b2c

2b2 + c2 − ac
= 2ab2

2b2 + a2 − ac
.

This yields 2(b2 − ac)(c − a) = 0, hence b2 = ac or a = c, and since the latter is ruled out
by hypothesis, b2 = ac and this completes the solution.

(Romanian Mathematics Competition, 2004, proposed by M. Becheanu)

703. If we let D = (0,−1), F = (x1, y1), E = (x2, y2) with x2
k + y2

k = 1 then

K = (x1 + x2, y1 + y2 − 1), B =
(

1+ y1

x1
,−1

)
, C =

(
1+ y2

x2
,−1

)
.
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We then compute

BE2 − CF2 = 2x1
1+ y2

x2
− 2x2

1+ y1

x1
+ 2y2 − 2y1 = BK2 − CK2,

and we are done.
(proposed for 2015 USAMO by T. Andreescu and C. Pohoaţă)

704. The inequality from the statement can be rewritten as

−
√

2− 1

2
≤
√

1− x2 − (px + q) ≤
√

2− 1

2
,

M

A

B

O 2

O 1

Figure 82

or
√

1− x2 −
√

2− 1

2
≤ px + q ≤

√
1− x2 +

√
2− 1

2
.

Let us rephrase this in geometric terms. We are required to include a segment y = px + q,
0 ≤ x ≤ 1, between two circular arcs.

The arcs are parts of two circles of radius 1 and of centers O1

(
0,

√
2−1
2

)
and

O2

(
0,−

√
2−1
2

)
. By examining Figure 82 we will conclude that there is just one such segment.

On the first circle, consider the points A
(

1,
√

2−1
2

)
and B
(

0,
√

2+1
2

)
. The distance from B to

O2 is
√

2, which is equal to the length of the segment AB. In the isosceles triangle BO2A, the
altitudes from O2 and A must be equal. The altitude from A is equal to the distance from A
to the y-axis, hence is 1. Thus the distance from O2 to AB is 1 as well. This shows that the
segment AB is tangent to the circle centered at O2. This segment lies between the two arcs,
and above the entire interval [0, 1]. Being inscribed in one arc and tangent to the other, it is
the only segment with this property.

This answers the problem, by showing that the only possibility is p = −1, q =
√

2+1
2 .

(Romanian Team Selection Test for the International Mathematical Olympiad, 1983)

705. The fact that the points
(

xi,
1
xi

)
lie on a circle means that there exist numbers A, B, and

C such that

x2
i +

1

x2
i

+ 2xiA+ 2
1

xi
B+ C = 0, for i = 1, 2, 3, 4.
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View this as a system in the unknowns 2A, 2B, C. The system admits a solution only if the
determinant of the augmented matrix of the system is zero. This determinant is equal to

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

x2
1 + 1

x2
1

x1
1
x1

1

x2
2 + 1

x2
2

x2
1
x2

1

x2
3 + 1

x2
3

x3
1
x3

1

x2
4 + 1

x2
4

x4
1
x4

1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

x2
1 x1

1
x1

1

x2
2 x2

1
x2

1

x2
2 x3

1
x3

1

x2
4 x4

1
x4

1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1
x2

1
x1

1
x1

1

1
x2

2
x2

1
x2

1

1
x2

3
x3

1
x3

1

1
x2

4
x4

1
x4

1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=
(
− 1

x1x2x3x4
+ 1

x2
1x2

2x2
3x2

4

)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

x3
1 x2

1 x1 1

x3
2 x2

2 x2 1

x3
3 x2

3 x3 1

x3
3 x2

4 x4 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

One of the factors is a determinant of Vandermonde type, hence it cannot be 0. Thus the other
factor is equal to 0. From this we infer that x1x2x3x4 = 1, which is what had to be proved.

(A. Myller, Geometrie Analitică (Analytical Geometry), 3rd ed., Editura Didactică şi
Pedagogică, Bucharest, 1972)

706. Choosing a Cartesian system of coordinates with origin at A and axes AB and AC, we
have A(0, 0), B(1, 0), C(0, 1), D(1/2,−1/2). Let M(0, t), t ∈ [0, 1]. Then

BC : y = −x + 1

DM : y = −(2t + 1)x + t.

Hence N = ( t−1
2t , t+1

2t ). We have

BM : y = −tx + t

AN : y = t + 1

t − 1
x,

and so

P =
(

t2 − t

t2 + 1
,

t2 + t

t2 + 1

)
.

Let us find the equation in Cartesian coordinates of the arc that P describes. We want to
eliminate t from the equations x = (t2 − t)/(t2 + 1) and y = (t2 + t)/(t2 + 1). We have

t2 − t = (t2 + 1)x

t2 + t = (t2 + 1)y.

Adding and subtracting we get

2t2 = (t2 + 1)(x + y)

2t = (t2 + 1)(x − y).
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Dividing we obtain

t = x + y

x − y
.

After substituting in 2t = (t2 + 1)(x − y) and performing the algebraic computations we
obtain

x2 + y2 − x − y = 0,

which is the equation of the circle of radius
√

2/2 centered at (1/2, 1/2). The arc of curve in
question is the arc of this circle with endpoints A and C; its length is 1/4 of the total circle,
hence π

√
2/4.

(Kohnauser Problem Fest, 2014, proposed by R. Gelca)

707. Consider complex coordinates with the origin O at the center of the circle. The coordi-
nates of the vertices, which we denote correspondingly by α, β, γ, δ, η, φ, have absolute value
|r|. Moreover, because the chords AB, CD, and EF are equal to the radius, ∠AOB = ∠COD =
∠EOF = π

3 . It follows that β = αeiπ/3, δ = γ eiπ/3, and φ = ηeiπ/3. The midpoints P, Q, R
of BC, DE, FA, respectively, have the coordinates

p = 1

2
(αeiπ/3 + γ ), q = 1

2
γ eiπ/3 + η), r = 1

2
(ηeiπ/3 + α).

We compute

r − q

p− q
= αeiπ/3 + γ (1− eiπ/3)− η

α − γ eiπ/3 + η(eiπ/3 − 1)

= αeiπ/3 − γ e2iπ/3 + ηe3iπ/3

α − γ eiπ/3 + ηe2iπ/3
= eiπ/3.

It follows that RQ is obtained by rotating PQ around Q by 60◦. Hence the triangle PQR is
equilateral, as desired.

(28th W.L. Putnam Mathematical Competition, 1967)

708. We work in complex coordinates such that the circumcenter is at the origin. Let the
vertices be a, b, c on the unit circle. Since the complex coordinate of the centroid is a+b+c

3 ,
we have to show that the complex coordinate of the orthocenter is a + b+ c. By symmetry,
it suffices to check that the line passing through a and a + b + c is perpendicular to the line
passing through b and c. This is equivalent to the fact that the argument of b−c

b+c is±π
2 . This is

true because the vector b+c is constructed as one of the diagonals of the rhombus determined
by the vectors (of the same length) b and c, while b− c is the other diagonal of the rhombus.
And the diagonals of a rhombus are perpendicular. This completes the solution.

(L. Euler)

709. With the convention that the lowercase letter denotes the complex coordinate of the
point denoted by the same letter in uppercase, we translate the geometric conditions from the
statement into the algebraic equations

m− a

b− a
= n− c

b− c
= p− c

d − c
= q − a

d − a
= ε,
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where ε = cos π
3 + i sin π

3 . Therefore,

m = a+ (b− a)ε, n = c+ (b− c)ε,

p = c+ (d − c)ε, q = a+ (d − a)ε.

It is now easy to see that 1
2 (m + p) = 1

2 (n + q), meaning that MP and NQ have the same
midpoint. So either the four points are collinear, or they form a parallelogram.

(Short list of the 23rd International Mathematical Olympiad, 1982)

710. We refer everything to Figure 83. The triangle BAQ is obtained by rotating the triangle
PAC around A by the angle α. Hence the angle between the lines PC and BQ is equal to

α. It follows that in the circumcircle of BRC, the measure of the arc
�

BRC is equal to 2α,
and this is also the measure of ∠BOC. We deduce that O is obtained from B through the
counterclockwise rotation about C by the complement of α followed by contraction by a
factor of 2 sin α.

A

P

O

B

R

C

Q

Figure 83

Now we introduce complex coordinates with the origin at A, with the coordinates of B
and C being b and c. Set ω = eiα, so that the counterclockwise rotation by α is multiplication
by ω, and hence rotation by the complement of α is multiplication by i/ω = iω. Then the
coordinate z of O satisfies

z − c

b− c
= 1

2 sin α
· i

ω
,

from which we compute

z = b− c

2 sin α
· i

ω
+ c = b− c

−i(ω − ω)
· i

ω
+ c = b− c

1− ω2
.

On the other hand, P is obtained by rotating B around A by −α, so its coordinate is p = bω.
Similarly, the coordinate of Q is q = cω. It is now straightforward to check that

q − p

z − 0
= ω − 1

ω
,

a purely imaginary number. Hence the lines PQ and AO form a 90◦ angle, which is the desired
result.

(USA Team Selection Test for the International Mathematical Olympiad, 2006, solution
by T. Leung)
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711. In the language of complex numbers we are required to find the maximum of

n∏

k=1

|z − εk|

as z ranges over the unit disk, where ε = cos 2π
n + i sin 2π

n . We have

n∏

k=1

|z − εk| =
∣
∣
∣
∣
∣

n∏

k=1

(z − εk)

∣
∣
∣
∣
∣
= |zn − 1| ≤ |zn| + 1 = 2.

The maximum is 2, attained when z is an nth root of −1.
(Romanian Mathematics Competition “Grigore Moisil”, 1992, proposed by D. Andrica)

712. First solution: In a system of complex coordinates, place each vertex Ak , k = 0, 1, . . . ,

n− 1, at εk , where ε = e2iπ/n. Then

A0A1 · A0A2 · · ·A0An−1 = |(1− ε)(1− ε2) · · · (1− εn−1)|.
Observe that, in general,

(z − ε)(z − ε2) · · · (z − εn−1) = 1

z − 1
(z − 1)(z − ε) · · · (z − εn−1)

= 1

z − 1
(zn − 1) = zn−1 + zn−2 + · · · + 1.

By continuity, this equality also holds for z = 1. Hence

A0A1 · A0A2 · · ·A0An−1 = 1n−1 + 1n−2 + · · · + 1 = n,

and the identity is proved.

Second solution: Choose a point P on the ray |OA0, where O is center of the circumcircle
of the polygon, such that A0 is between O and P. If OP = x, then the last problem in the
introduction showed that A0A1 · A0A2 · · ·A0An−1 = xn − 1. Hence

A0A1 · A0A2 · · ·A0An−1 = lim
x→1

xn − 1

x − 1
= n.

Remark. Let us show how this geometric identity can be used to derive a trigonometric identity.
For n = 2m+ 1, m an integer,

A0A1 · A0A2 · · ·A0Am = A0A2m · A0A2m−1 · · ·A0Am+1;
hence

A0A1 · A0A2 · · ·A0Am =
√

2m+ 1.

On the other hand, for i = 1, 2, . . . , m, in triangle A0OAi,

AAi = 2 sin
2π

2m+ 1
.
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We conclude that

sin
2π

2m+ 1
sin

4π

2m+ 1
· · · sin

2mπ

2m+ 1
= 1

2m

√
2m+ 1.

(J. Dürschák, Matemaikai Versenytételek, Harmadik Kiadás Tankönyviadó, Budapest,
1965)

713. Note that the positive integers a1, a2, . . . , an, are the side-lengths of an equiangular
polygon, in this order, if and if for

ε = cos
2π

n
+ i sin

2π

n
,

one has

anε
n−1 + an−1ε

n−2 + · · · + a2ε + a1 = 0.

Let us assume that p is prime, and that we are given an equiangular polygon with rational
side-lengths, and let these side-lengths be a1, a2, . . . , an. Then the polynomial

P(x) = apxp−1 + ap−1xp−2 + · · · + a1

has ε as a root. But ε is also a root of

Q(x) = xp−1 + xp−2 + · · · + 1.

It follows that P(x) and Q(x) have a non-constant common divisor. But Q(x) is irreducible,
which can be shown by applying the Eisenstein irreducibility criterion to Q(x+ 1) = xp−1 +(p

1

)
xp−2 + · · · + ( p

p−1

)
. So P(x) must be a multiple of Q(x), in which case all coefficients of

P(x) are equal. So the polygon is regular.
Conversely, assume that p is not prime. Let p = mn, with m, n > 1. It follows that εn is

an mth root of unity, that is

1+ εn + ε2n + · · · ε(m−1)n = 0.

But ε is an mnth root of unity, so

1+ ε + · · · + εmn = 0.

Adding these equalities we obtain a polynomial with some coefficients equal to 1 and the
others equal to 2 that has ε as a root. It follows that there is an equiangular polygon with some
of the sides equal to 1 and the other equal to 2, which is not equiangular.

(Revista Matematică din Timişoara (Timişoara Mathematics Gazette), proposed by M.
Piticari)
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714. First solution: We assume that the radius of the circle is equal to 1. Set the origin
at B with BA the positive x-semiaxis and t the y-axis (see Figure 84). If ∠BOM = θ , then
BP = PM = tan θ

2 . In triangle PQM, PQ = tan θ
2/ sin θ . So the coordinates of Q are

⎛

⎜
⎝

tan
θ

2
sin θ

, tan
θ

2

⎞

⎟
⎠ =
(

1

1+ cos θ
,

sin θ

1+ cos θ

)
.

The x and y coordinates are related as follows:
(

sin θ

1+ cos θ

)2

= 1− cos2 θ

(1+ cos θ)2
= 1− cos θ

1+ cos θ
= 2

1

1+ cos θ
− 1.

Hence the locus of Q is the parabola y2 = 2x − 1.

Second solution: With ∠BOM = θ we have ∠POM = ∠POB = θ
2 . Since PQ is parallel to

OB, it follows that ∠OPQ = θ
2 . So the triangle OPQ is isosceles, and therefore QP = OQ.

We conclude that Q lies on the parabola of focus O and directrix t. A continuity argument
shows that the locus is the entire parabola.

(A. Myller, Geometrie Analitică (Analytical Geometry), 3rd ed., Editura Didactică şi Ped-
agogică, Bucharest, 1972, solutions found by the students from the Mathematical Olympiad
Summer Program, 2004)

O

M

P

BA

Q

Figure 84

715. We will use the equation of the tangent with prescribed slope. Write the parabola in
standard form

y2 = 4px.

The tangent of slope m to this parabola is given by

y = mx + p

m
.

If A(p+a, 0) and B(p−a, 0) are the two fixed points, (p, 0) being the focus, then the distances
to the tangent are ∣∣

∣∣∣
∣∣

m(p± a)+ p

m√
1+ m2

∣∣
∣∣∣
∣∣
.
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The difference of their squares is
(

m2(p+ a)2 + 2p(p+ a)+ p2

m2

)
−
(

m2(p− a)2 + 2p(p− a)+ p2

m2

)

1+ m2
.

An easy computation shows that this is equal to 4pa, which does not depend on m, meaning
that it does not depend on the tangent.

(A. Myller, Geometrie Analitică (Analytical Geometry), 3rd ed., Editura Didactică şi
Pedagogică, Bucharest, 1972)

716. The statement of the problem is invariant under affine transformations, so we can assume
the hyperbola to have the equation xy = 1, such that the asymptotes are the coordinate axes. If
P(x1, y1) and Q(x2, y2) are two of the vertices, then the other two vertices of the parallelogram
are (x1, y2) and (x2, y1). The line they determine has the equation

y− y1 = y2 − y1

x1 − x2
(x − x2).

Substituting the coordinates of the origin in this equation yields−y1 = y2−y1
x1−x2

(−x2), or x1y1−
x2y1 = x2y2 − x2y1. This clearly holds, since x1y1 = x2y2 = 1, and the property is proved.

(A. Myller, Geometrie Analitică (Analytical Geometry), 3rd ed., Editura Didactică şi
Pedagogică, Bucharest, 1972)

717. Since the property we are trying to prove is invariant under affine changes of coordinates,
we can assume that the equation of the hyperbola is

xy = 1.

The asymptotes are the coordinate axes. In the two-intercept form, the equation of the line is

x

a
+ y

b
= 1.

Then the coordinates of A and B are, respectively, (a, 0) and (0, b). To find the coordinates of
P and Q, substitute y = 1

x in the equation of the line. This gives rise to the quadratic equation

x2 − ax + a

b
= 0.

The roots x1 and x2 of this equation satisfy x1 + x2 = a. Similarly, substituting x = 1
y in the

same equation yields

y2 − by + b

a
= 0,

and the two roots y1 and y2 satisfy y1+ y2 = b. The coordinates of P and Q are, respectively,
(x1, y1) and (x2, y2). We have

AP2 = (x1 − a)2 + y2
1 = (a− x2 − a)2 + (b− y2)

2 = x2
2 + (b− y2)

2 = BQ2.

The property is proved.
(L.C. Larson, Problem Solving through Problems, Springer-Verlag, 1983)



Geometry and Trigonometry 663

718. The condition that a line through (x0, y0) be tangent to the parabola is that the system

y2 = 4px,

y− y0 = m(x − x0)

have a unique solution. This means that the discriminant of the quadratic equation in x
obtained by eliminating y,

(mx − mx0 + y0)
2 − 4px = 0,

is equal to zero. This translates into the condition

m2x0 − my0 + p = 0.

The slopes m of the two tangents are therefore the solutions to this quadratic equation. They
satisfy

m1 + m2 = y0

x0
,

m1m2 = p

x0
.

We also know that the angle between the tangents is φ. We distinguish two situations.
First, if φ = 90◦, then m1m2 = −1. This implies p

x0
= −1, so the locus is the line x = −p,

which is the directrix of the parabola.
If φ �= 90◦, then

tan φ = m1 − m2

1+ m1m2
= m1 − m2

1+ p

x0

.

We thus have
m1 + m2 = y0

x0
,

m1 − m2 = tan φ + p

x0
tan φ.

We can compute m1m2 by squaring the equations and then subtracting them, and we obtain

m1m2 = y2
0

4x2
0

−
(

1+ p

x0

)2

tan2 φ.

This must equal p
x0

. We obtain the equation of the locus to be

−y2 + (x + p)2 tan2 φ + 4px = 0,

which is a hyperbola. One branch of the hyperbola contains the points from which the parabola
is seen under the angle φ, and one branch contains the points from which the parabola is seen
under an angle equal to the suplement of φ.

(A. Myller, Geometrie Analitică (Analytical Geometry), 3rd ed., Editura Didactică şi
Pedagogică, Bucharest, 1972)
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719. Choose a Cartesian system of coordinates such that the equation of the parabola is
y2 = 4px. The coordinates of the three points are Ti(4pα2

i , 4pαi), for appropriately chosen
αi, i = 1, 2, 3. Recall that the equation of the tangent to the parabola at a point (x0, y0) is
yy0 = 2p(x + x0). In our situation the three tangents are given by

2αiy = x + 4pα2
i , i = 1, 2, 3.

If Pij is the intersection of ti and tj, then its coordinates are (4pαiαj, 2p(αi + αj)). The area of
triangle T1T2T3 is given by a Vandermonde determinant:

±1

2

∣
∣
∣
∣
∣
∣
∣
∣

4pα2
1 4pα1 1

4pα2
2 4pα2 1

4pα2
3 4pα3 1

∣
∣
∣
∣
∣
∣
∣
∣

= ±8p2

∣
∣
∣
∣
∣
∣
∣
∣

α2
1 α1 1

α2
2 α2 1

α2
3 α3 1

∣
∣
∣
∣
∣
∣
∣
∣

= 8p2|(α1 − α2)(α1 − α3)(α2 − α3)|.

The area of the triangle P12P23P31 is given by

±

∣∣
∣∣∣∣
∣∣

4pα1α2 2p(α1 + α2) 1

4pα3α3 2p(α2 + α3) 1

4pα3α1 2p(α3 + α1) 1

∣∣
∣∣∣∣
∣∣

= ±4p2

∣∣
∣∣∣∣
∣∣

α1α2 (α1 + α2) 1

α2α3 (α2 + α3) 1

α3α1 (α3 + α1) 1

∣∣
∣∣∣∣
∣∣

= ±4p2

∣
∣∣∣
∣∣∣∣

(α1 − α3)α2 (α1 − α3) 0

(α2 − α1)α3 (α2 − α1) 0

α3α1 (α3 + α1) 1

∣
∣∣∣
∣∣∣∣

= 4p2|(α1 − α3)(α1 − α2)(α2 − α3)|.

We conclude that the ratio of the two areas is 2, regardless of the location of the three points
or the shape of the parabola.

(Gh. Călugăriţa, V. Mangu, Probleme de Matematică pentru Treapta I şi a II-a de Liceu
(Mathematics Problems for High School), Editura Albatros, Bucharest, 1977)

720. Choose a Cartesian system of coordinates such that the focus is F(p, 0) and the directrix
is x = −p, in which case the equation of the parabola is y2 = 4px. Let the three points be

A
(

a2

4p , a
)

, B
(

b2

4p , b
)

, C
(

c2

4p , c
)

.

(a) The tangents NP, PM, and MN to the parabola are given, respectively, by

ay = 2px + a2

2
, by = 2px + b2

2
, cy = 2px + c2

2
,

from which we deduce the coordinates of the vertices

M

(
bc

4p
,

b+ c

2

)
, N

(
ca

4p
,

c+ a

2

)
, P

(
ab

4p
,

a+ b

2

)
.

The intersection of the line AC of equation 4px − (c + a)y + ca = 0 with the parallel to the

symmetry axis through B, which has equation y = b, is L
(

ab+bc−ca
4p , b

)
. It is straightforward

to verify that the segments MP and LN have the same midpoint, the point with coordinates(
b(c+a)

8p , a+2b+c
4

)
. Consequently, LMNP is a parallelogram.
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(b) Writing that the equation of the circle x2 + y2 + 2αx + 2βx + γ = 0 is satisfied by
the points M, N, P helps us determine the parameters α, β, γ . We obtain the equation of the
circumcircle of MNP,

x2 + y2 − ab+ bc+ ca+ 4p2

4p
x + abc− 4p2(a+ b+ c)

8p2
y+ ab+ bc+ ca

4
= 0.

This equation is satisfied by (p, 0), showing that the focus F is on the circle.
(c) Substituting the coordinates of L in the equation of the circle yields

(ac+ 4p2)(a− b)(c− b) = 0.

Since a �= b �= c, we must have ac = −4p2. Thus the x-coordinate of N is −p, showing that
this point is on the directrix.

(d) The condition for F to be on AC is 4p2 + ac = 0, in which case N is on the directrix.
The slope of BF is m = 4pb

b2−4p2 . The orthogonality condition is

4pb

b2 − 4p2
· 4p

c+ a
= −1,

which is equivalent to
(b2 − 4p2)(c+ a)+ 16p2b = 0.

The locus is obtained by eliminating a, b, c from the equations

4px − (c+ a)y + ca = 0,

y = b,

4p2 + ac = 0,

(b2 − 4p2)(c+ a)+ 16p2b = 0.

The answer is the cubic curve

(y2 − 4p2)x + 3py2 + 4p3 = 0.

(The Mathematics Gazette Competition, Bucharest, 1938)

721. An equilateral triangle can be inscribed in any closed, non-self-intersecting curve,
therefore also in an ellipse. The argument runs as follows. Choose a point A on the ellipse.
Rotate the ellipse around A by 60◦. The image of the ellipse through the rotation intersects
the original ellipse once in A, so it should intersect it at least one more time. Let B an be
intersection point different from A. Note that B is on both ellipses, and its preimage C through
rotation is on the original ellipse. The triangle ABC is equilateral.

A square can also be inscribed in the ellipse. It suffices to vary an inscribed rectangle with
sides parallel to the axes of the ellipse and use the intermediate value property.

Let us show that these are the only possibilities. Up to a translation, a rotation, and a
dilation, the equation of the ellipse has the form

x2 + ay2 = b, with a, b > 0, a �= 1.
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Assume that a regular n-gon, n ≥ 5, can be inscribed in the ellipse. Its vertices (xi, yi) satisfy
the equation of the circumcircle:

x2 + y2 + cx + dy + e = 0, i = 1, 2, . . . , n.

Writing the fact that the vertices also satisfy the equation of the ellipse and subtracting, we
obtain

(1− a)y2
i + cxi + dyi + (e+ b) = 0.

Hence

y2
i = −

c

1− a
xi − d

1− a
yi − e+ b

1− a
.

The number c cannot be 0, for otherwise the quadratic equation would have two solutions yi

and each of these would yield two solutions xi, so the polygon would have four or fewer sides,
a contradiction. This means that the regular polygon is inscribed in a parabola. Change the
coordinates so that the parabola has the standard equation y2 = 4px. Let the new coordinates
of the vertices be (ξi, ηi) and the new equation of the circumcircle be x2+y2+c′x+d ′y+e′ = 0.
That the vertices belong to both the parabola and the circle translates to

η2
i = 4pξi and ξ 2

i + η2
i + c′ξ + d ′η + e′ = 0, for i = 1, 2, . . . , n.

So the ηi’s satisfy the fourth-degree equation

1

16p2
η4

i + η2
i +

c′

4
η2

i + d ′ηi + e′ = 0.

This equation has at most four solutions, and each solution yields a unique xi. So the regular
polygon can have at most four vertices, a contradiction. We conclude that no regular polygon
with five or more vertices can be inscribed in an ellipse that is not also a circle.

722. Set FBk = tk , k = 1, 2, . . . , n. Also, let α be the angle made by the ray |FB1 with the
x-axis and αk = α + 2(k−1)π

n , k = 2, . . . , n. The coordinates of the focus F are
( p

2 , 0
)
.

In general, the coordinates of the points on a ray that originates in F and makes an angle
β with the x-axis are

( p
2 + t cos β, t sin β

)
, t > 0 (just draw a ray from the origin of the

coordinate system that makes an angle β with the x-axis; then translate it to F). It follows
that the coordinates of Bk are

( p
2 + tk cos αk, tk sin αk

)
, k = 1, 2, . . . , n.

The condition that Bk belongs to the parabola is written as t2
k sin2 αk = p2 + 2ptk cos αk .

The positive root of this equation is tk = p/(1 − cos αk). We are supposed to prove that
t1 + t2 + · · · + tk > np, which translates to

1

1− cos α1
+ 1

1− cos α2
+ · · · + 1

1− cos αn
> n.

To prove this inequality, note that

(1− cos α1)+ (1− cos α2)+ · · · + (1− cos αn) = n−
n∑

k=1

cos

(
α + 2(k − 1)π

n

)
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= n− cos α

n∑

k=1

cos

(
2(k − 1)π

n

)
+ sin α

n∑

k=1

sin

(
2(k − 1)π

n

)
= n.

By the Cauchy-Schwarz inequality,
(

1

1− cos α1
+ 1

1− cos α2
+ · · · + 1

1− cos αn

)

≥ n2

(1− cos α1)+ (1− cos α2)+ · · · + (1− cos αn)
= n2

n
= n.

The equality case would imply that allαk’s are equal, which is impossible. Hence the inequality
is strict, as desired.

(Romanian Mathematical Olympiad, 2004, proposed by C. Popescu)

723. We solve part (e). Choose a coordinate system such that B = (−1, 0), C = (1, 0),
S = (0,

√
3), S′ = (0,−√3). Assume that the ellipse has vertices (0,±k) with k >

√
3, so

its equation is
x2

k2 − 3
+ y2

k2
= 1.

If we set r = √k2 − 3, then the ellipse is parametrized by A = (r cos θ, k sin θ). Parts (a)
through (d) are covered by the degenerate situation k = √3, when the ellipse becomes the
line segment SS′.

Let A = (r cos θ, k sin θ) with θ not a multiple of π . Consider the points D, E, F, respec-
tively, on BC, AC, AB, given by

D = ((r + k) cos θ, 0),

E =
(

(2k2 + rk − 3) cos θ + k − r

r + 2k + 3 cos θ
,

k(2r + k) sin θ

r + 2k + 3 cos θ

)
,

F =
(

(2k2 + rk − 3) cos θ − k + r

r + 2k − 3 cos θ
,

k(2r + k) sin θ

r + 2k − 3 cos θ

)
.

The denominators are never zero since r ≥ 0 and k ≥ √3. The lines AD, BE, and CF intersect
at the point

P =
(

r + 2k

3
cos θ,

2r + k

3
sin θ

)
,

as one can verify, using r2 = k2 − 3, that, coordinate-wise,

P = k + 2r

3k
A+ 2k − 2r

3k
D

= k − r − 3 cos θ

3k
B+ 2k + r + 3 cos θ

3k
E

= k − r + 3 cos θ

3k
C + 2k + r − 3 cos θ

3k
F.

An algebraic computation shows that AD = BE = CF = k, so P is an equicevian point, and
AP
PD = (2k−2r)

(k+2r) is independent of A.
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To find the other equicevian point note that if we replace k by −k and θ by −θ , then A
remains the same. In this new parametrization, we have the points

D′ = ((r − k) cos θ, 0),

E′ =
(

(2k2 − rk − 3) cos θ − k − r

r − 2k + 3 cos θ
,

k(2r − k) sin θ

r − 2k + 3 cos θ

)
,

F ′ =
(

(2k2 − rk − 3) cos θ + k + r

r − 2k − 3 cos θ
,

k(2r − k) sin θ

r − 2k − 3 cos θ

)
,

P′ =
(

r − 2k

3
cos θ,

k − 2r

3
sin θ

)
.

Of course, P′ is again an equicevian point, and AP′
P′D′ = (2k+2r)

(k−2r) , which is also independent of
A. When r �= 0 the points P and P′ are distinct, since sin θ �= 0. When r = 0, the two points
P and P′ coincide when A = S, a case ruled out by the hypothesis. As θ varies, P and P′ trace
an ellipse. Moreover, since

(
r ± 2k

3

)2

−
(

k ± 2r

3

)2

= 1,

this ellipse has foci at B and C.
(American Mathematical Monthly, proposed by C.R. Pranesachar)

724. The interesting case occurs of course when b and c are not both equal to zero. Set
d = √b2 + c2 and define the angle α by the conditions

cos α = b√
b2 + c2

and sin α = c√
b2 + c2

.

The integral takes the form ∫
dx

a+ d cos(x − α)
,

which, with the substitution u = x − α, becomes the simpler
∫

du

a+ d cos u
.

The substitution t = tan u
2 changes this into

2

a+ d

∫
dt

1+ a− d

a+ d
t2

.

If a = d the answer to the problem is 1
a tan x−α

2 + C. If a−d
a+d > 0, the answer is

2√
a2 − d2

arctan

(√
a− d

a+ d
tan

x − α

2
+ C

)

,



Geometry and Trigonometry 669

while if a−d
a+d < 0, the answer is

1√
d2 − a2

ln

∣
∣
∣
∣
∣
∣
∣
∣

1+
√

d − a

d + a
tan

x − α

2

1−
√

d − a

d + a
tan

x − α

2

∣
∣
∣
∣
∣
∣
∣
∣

+ C.

725. The first equation is linear, so it is natural to solve for one of the variables, say u, and
substitute in the second equation. We obtain

2xy = z(x + y− z),

or
z2 − xz − yz + 2xy = 0.

This is a homogeneous equation. Instead of looking for its integer solutions, we can divide
through by one of the variables, and then search for the rational solutions of the newly obtained
equation. In fancy language, we switch from a projective curve to an affine curve. Dividing
by y2 gives (

z

y

)2

−
(

z

y

)(
x

y

)
−
(

z

y

)
+ 2

(
x

y

)
= 0.

The new equation is
Z2 − ZX − Z + 2X = 0,

which defines a hyperbola in the XZ-plane. Let us translate the original problem into a problem
about this hyperbola. The conditions x ≥ y and m ≤ x

y become X ≥ 1 and X ≥ m. We are
asked to find the largest m such that any point (X, Z) with rational coordinates lying on the
hyperbola and in the half-plane X ≥ 1 has X ≥ m.

There is a standard way to see that the points of rational coordinates are dense in the
hyperbola, which comes from the fact that the hyperbola is rational. Substituting Z = tX, we
obtain

X(t2X − tX − t + 2) = 0.

The root X = 0 corresponds to the origin. The other root X = t−2
t2−t

gives the desired

parametrization of the hyperbola by rational functions
(

t−2
t2−t

, t2−2t
t2−t

)
, t real. So the problem

has little to do with number theory, and we only need to find the leftmost point on the hyperbola
that lies in the half-plane X ≥ 1. Write the equation of the hyperbola as

(
Z − X

2

)2

−
(

X

2
− 2

)2

= 6.

The center is at (4, 2), and the asymptotes are Z = 2 and Z = X − 2. Let us first minimize X
for the points on the hyperbola and in the half-plane X ≥ 4. We thus minimize the function
f (X, Z) = X on the curve g(X, Z) = Z2 − ZX − Z + 2X = 0. The Lagrange multipliers
method gives

1 = λ(−Z + 2),

0 = λ(2Z − X − 1).
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From the second equation we obtain Z = X+1
2 . Substitute in g(X, Z) = 0 to obtain X =

3± 2
√

2. The further constraint X ≥ 1 shows that X = 3+ 2
√

2 gives the actual minimum.
The same argument shows that the other branch of the hyperbola lies in the half-plane X < 1,
and so the answer to the problem is m = 3+ 2

√
2.

(Short list of the 42nd International Mathematical Olympiad, 2001)

726. We start with (b) and show that the only possible value of a2015 ·a2016 is 0. By translating
the sequence we may assume instead that a0 and a1 are the only terms that are squares of
integers. Say a0 = p2 and a1 = q2.

Now consider the cubic curve

y2 = x3 + bx2 + cx + d.

Let us first assume that the curve is elliptic, and consider the Abelian group structure defined
in the example from the introduction. P + Q + R = 0 if R is the third intersection point of
PQ with the cubic.

Now consider the subgroup generated by P = (0, p) and Q = (1, q). The identity of this
subgroup is the point at infinity of vertical lines, and the subgroup also contains−P = (0,−p)

and−Q = (1,−q). We observe that points P+Q and P−Q have integer coordinates, because
the line through P and Q has equation y = (q − p)x + p and the line through P and −Q has
equation y = −(q + p)x + p. Consequently the x-coordinate of P + Q is a root of

x3 + (b− (q − p)2)x2 + (c− 2(q − p)p)x + (d − p2) = 0

with the other two roots being 0 and 1. So the x-coordinate of P+Q is (q−p)2−b−1 (from the
first Viète’s relation). The y coordinate is obtained by plugging this in the equation of a line.
But this would provide a third perfect square term of the sequence, unless (q−p)2 = b+1 or
(q−p)2 = b+2, in which case the line through P and Q is tangent to the cubic (either at P or
at Q). Using the other pair of points, we find that (q+p)2 = b+1 or (q+p)2 = b+2. Since
(q + p)2 and (q − p)2 have the same parity, they must simmultaneously be equal to either
b+ 1 or two b+ 2, which can only happen if either p or q is zero. Thus a0 · a1 = 0, and (b) is
proved for elliptic curves. But all the geometric constructs above apply even when the curve
is not elliptic, as we always “add” points that are distinct, so no tangent line is taken, and then
we have a well defined line that we intersect with the curve. So removing the sophisticated
language of group theory, we can repeat the argument for singular curves.

Inspired by the above discussion, we choose a curve such that (0, 0) and (1, 1) are on the
curve, with (1, 1) a double point. Then an = n3− n2+ n. If n(n2− n+ 1) is a perfect square
for n ≥ 2, then both factors must be perfect squares (since they are coprime as the second is
a multiple of the first plus 1). But (n − 1)2 < n2 − n + 1 < n2, so the second factor is not a
perfect square. This answers (a).

(Romanian Master of Mathematics, 2016)

727. The curve from the statement is a cubic. In fact it is a singular cubic. Indeed, we can
write it in the form

f (x, y) = (x + y+ 3)3 − 27(x2 + xy + y2)
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and set

∂f

∂x
= 3(x + y+ 3)2 − 27(2x + y) = 0

∂f

∂y
= 3(x + y+ 3)2 − 27(x + 2y) = 0.

The difference between the two equations is 27(x − y), which should be zero, and this gives
x = y. But then we easily solve to obtain x = y = 3. The graph of the cubic is shown in
Figure 85.

Figure 85

We can move the node to the origin by the substitution x = a+ 3, y = b+ 3 to obtain the
equation

(a+ b)3 = −27ab.

We want to turn this into the standard equation

v2 = αu3 + βu2.

It is natural to require (a + b)3 to be equal to u3, for example by using u = a + b. Then the
product ab can be obtain by subtracting (a − b)2 from (a + b)2 and then dividing by 4. Set
u = a+ b, v = a− b, and note that they are both even since a and b must have the same
parity (or else the equation that they satisfy has an even term on the right and an odd term on
the left). We obtain the equation

u3 = −27

4
(u2 − v2).

In other words the cubic in standard form is

v2 = 4

27
u3 + u2.
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We are to find the points of integer coordinates on this cubic. We repeat the trick that leads to
Euler’s substitutions. We draw a line passing through the origin and the point of coordinates
(u, v), and let t be the slope of the line. We want to parametrize the cubic by t. Since t = u/v,
we obtain

1 = 4

27
ut2 + t2,

and this gives

u = 27

4
· 1− t2

t2
, v = u

t
= 27

4
· 1− t2

t3
.

So this cubic is a rational curve! The geometric part of the problem is over. We now want to
find the values of t for which u and v are integers. We know that t is rational, so let t = p/q,
with p coprime with q. Then

v = 27

4
· q(q2 − p2)

p3
.

So p3 divides 27. Thus p = 1 or p = 3 (we can incorporate the sign in q).
We can do both cases simultaneously by allowing q to be a multiple of 3. Thus t = 3

q .

Then u = 3
4(q

2−9) and v = 1
4 q(q2−9). We deduce that q is an odd number, say q = 2n+1.

We compute u = 3(n2 + n − 2), v = (2n + 1)(n2 + n − 2). So a = (n + 2)2(n − 1) and
b = −(n− 1)2(n+ 2), and we obtain family of solutions:

x = (n+ 2)2(n− 1)+ 3 = n3 + 3n2 − 1,

y = −(n− 1)2(n+ 2)+ 3 = −n3 + 3n+ 1, n ∈ Z.

Remark. Note that the substitution n → −n − 1 turns the formula for x into that for y and
viceversa, as expected from the symmetry of the original equation.

(USA Mathematical Olympiad, 2015, proposed by T. Andreescu)

728. Let x + y = s. Then x3 + y3 + 3xys = s3, so 3xys − 3xy = s3 − 1. It follows that the
locus is described by

(s− 1)(s2 + s+ 1− 3xy) = 0.

Recalling that s = x+y, we notice that the cubic is degenerate: it consists of the line x+y = 1
and the conic (x + y)2 + x + y+ 1− 3xy = 0.

The equation of the conic is

1

2
[(x − y)2 + (x + 1)2 + (y+ 1)2] = 0,

i.e., x = y = −1. So the conic itself degenerates to one point! Thus the cubic in the problem
consists of the line x + y = 1 and the point (−1,−1), which we will call A. Points B and
C are on the line x + y = 1 such that they are symmetric to one another with respect to the
point D

(
1
2 , 1

2

)
and such that BC

√
3

2 = AD. It is clear that there is only one set {B, C} with
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this property, so we have justified the uniqueness of the triangle ABC (up to the permutation
of vertices). Because

AD =
√(

1

2
+ 1

)2

+
(

1

2
+ 1

)2

= 3

2

√
2,

it follows that BC = √6; hence Area(ABC) = 6
√

3
4 = 3

√
3

2 .
(49th W.L. Putnam Mathematical Competition, 2006, proposed by T. Andreescu)

729. If P(x) = x3 + ax2 + bx + c has a double rational root, then this root is necessarily an
integer, so P(x) = (x− p)2(x− q) with p, q ∈ Z. We can choose an integer n such that n− q
is not a perfect square which then makes

√
P(n) irrational.

If P(x) is squarefree over Q, then y2 = P(x) is an elliptic curve E over Q. Now we use
a deep result about height functions in algebraic geometry. The height of a rational number
x written in lowest terms as u/v is H(r) = max(|u|, |v|). For B > 0, N(E, B) be the number
of points of rational coordinates (x, y) on E with the property that H(x) < B. A theorem of
A. Néron implies that

N(E, B) ∼ (ln B)r/2,

0 2.0 1

40

0.8

20

0.6
0

-20

0.4

-40

Figure 86

where r is the rank of the elliptic curve over Q. For defining the rank consider the Abelian
group E(Q) consisting only of points of rational coordinates. The Mordell-Weil theorem
implies that this group is finitely generated. The rank is the number of copies of Z in E(Q).

Returning to the problem, for sufficiently large B, N(E, B) < B, so not all the integers
between 1 and B yield a point of integer coordinates on the curve. That is not all of the
numbers

√
P(n), n = 1, 2 . . . , B are integers.

We challenge the reader to find an elementary proof!
(59th W.L. Putnam Mathematical Competition, 1998, solution from K. Kedlaya,

B. Poonen, R. Vakil, The William Lowell Putnam Mathematical Competition, 1985–2000,
MAA, 2002)

730. We convert to Cartesian coordinates, obtaining the equation of the cardioid
√

x2 + y2 = 1+ x
√

x2 + y2
,

or
x2 + y2 = √x2 + y2 + x.
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By implicit differentiation, we obtain

2x + 2y
dy

dx
= (x2 + y2)−1/2

(
x + y

dy

dx

)
+ 1,

which yields
dy

dx
= −2x + x(x2 + y2)−1/2 + 1

2y− y(x2 + y2)−1/2
.

The points where the tangent is vertical are among those where the denominator cancels.
Solving 2y − y(x2 + y2)−1/2 = 0, we obtain y = 0 or x2 + y2 = 1

4 . Combining this with
the equation of the cardioid, we find the possible answers to the problem as (0, 0), (2, 0),(
− 1

4 ,
√

3
4

)
, and
(
− 1

4 ,−
√

3
4

)
. Of these the origin has to be ruled out, since there the cardioid

has a corner, while the other three are indeed points where the tangent to the cardioid is
vertical.
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731. Let AB = a and consider a system of polar coordinates with pole A and axis AB. The
equation of the curve traced by M is obtained as follows. We have AM = r, AD = a

cos θ
, and

AC = a cos θ . The equality AM = AD− AC yields the equation

r = a

cos θ
− a cos θ.

The equation of the locus is therefore r = a sin2 θ
cos θ

. This curve is called the cisoid of Diocles
(Figure 86).

732. Let O be the center and a the radius of the circle, and let M be the point on the circle.
Choose a system of polar coordinates with M the pole and MO the axis. For an arbitrary
tangent, let I be its intersection with MO, T the tangency point, and P the projection of M
onto the tangent. Then

OI = OT

cos θ
= a

cos θ
.

Hence
MP = r = (MO+ OI) cos θ =

(
a+ a

cos θ

)
cos θ.

We obtain r = a(1+ cos θ), which is the equation of a cardioid (Figure 87).
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733. Working in polar coordinates we place the pole at O and axis OA. Denote by a the radius
of the circle. We want to find the relation between the polar coordinates (r, θ) of the point L.
We have AM = AL = 2a sin θ

2 . In the isosceles triangle LAM, ∠LMA = π
2 − θ

2 ; hence

LM = 2AM cos

(
π

2
− θ

2

)
= 2 · 2a sin

θ

2
· sin

θ

2
= 4a sin2 θ

2
.

210
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Figure 88

Substituting this in the relation OL = OM − LM, we obtain

r = a− 4a sin2 θ

2
= a[1− 2(1− cos θ)].

The equation of the locus is therefore

r = a(2 cos θ − 1),

a curve known as Pascal’s snail, or limaçon, whose shape is described in Figure 88.

734. As before, we work with polar coordinates, choosing O as the pole and OA as the axis.
Denote by a the length of the segment AB and by P(r, θ) the projection of O onto this segment.
Then OA = r

cos θ
and OA = AB sin θ , which yield the equation of the locus

r = a sin θ cos θ = a

2
sin 2θ.

This is a four-leaf rose.

735. Choosing a Cartesian system of coordinates whose axes are the asymptotes, we can
bring the equation of the hyperbola into the form xy = a2. The equation of the tangent to the
hyperbola at a point (x0, y0) is x0y + y0x − 2a2 = 0. Since a2 = x0y0, the x and y intercepts
of this line are 2x0 and 2y0, respectively.

Let (r, θ) be the polar coordinates of the foot of the perpendicular from the origin to the
tangent. In the right triangle determined by the center of the hyperbola and the two intercepts
we have 2x0 cos θ = r and 2y0 sin θ = r. Multiplying, we obtain the polar equation of the
locus

r2 = 2a2 sin 2θ.

This is the lemniscate of Bernoulli, shown in Figure 89.
(1st W.L. Putnam Mathematical Competition, 1938)
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736. The solution uses complex and polar coordinates. Our goal is to map the circle onto a
cardioid of the form

r = a(1+ cos θ), a > 0.

Because this cardioid passes through the origin, it is natural to work with a circle that itself
passes through the origin, for example |z − 1| = 1. If φ : C → C maps this circle into the
cardioid, then the equation of the cardioid will have the form

|φ−1(z)− 1| = 1.

So we want to bring the original equation of the cardioid into this form. First, we change it to

r = a · 2 cos2 θ

2
;

then we take the square root, √
r = √2a cos

θ

2
.

Multiplying by
√

r, we obtain

r = √2a
√

r cos
θ

2
,

or

r −√2a
√

r cos
θ

2
= 0.

This should look like the equation of a circle. We modify the expression as follows:

r −√2a
√

r cos
θ

2
= r

(
cos2 θ

2
+ sin2 θ

2

)
−√2a

√
r cos

θ

2
+ 1− 1

=
(√

r cos
θ

2

)2

−√2a
√

r cos
θ

2
+ 1+

(√
r sin

θ

2

)2

− 1.

If we set a = 2, we have a perfect square, and the equation becomes
(√

r cos
θ

2
− 1

)2

+
(√

r sin
θ

2

)2

= 1,

which in complex coordinates reads |√z− 1| = 1. Of course, there is an ambiguity in taking
the square root, but we are really interested in the transformation φ, not in φ−1. Therefore, we
can choose φ(z) = z2, which maps the circle |z − 1| = 1 into the cardioid r = 2(1+ cos θ).
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Remark. Of greater practical importance is the Zhukovski transformation z → 1
2

(
z + 1

z

)
,

which maps the unit circle onto the profile of the airplane wing (the so-called aerofoil).
Because the Zhukovski map preserves angles, it helps reduce the study of the air flow around
an airplane wing to the much simpler study of the air flow around a circle.

737. View the parametric equations of the curve as a linear system in the unknowns tn

and tp:
a1tn + b1tp = x − c1,

a2tn + b2tp = x − c2,

a3tn + b3tp = x − c3.

This system admits solutions; hence the augmented matrix of the system is singular. We thus
have ∣

∣
∣
∣∣∣

a1 b1 x − c1

a2 b2 x − c2

a3 b3 x − c3

∣
∣
∣
∣∣∣
= 0.

This is the equation of a plane that contains the given curve.
(C. Ionescu-Bujor, O. Sacter, Exerciţii şi Probleme de Geometrie Analitica şi Diferenţială

(Exercises and Problems in Analytic and Differential Geometry), Editura Didactică şi Peda-
gogică, Bucharest, 1963)

738. Let the equation of the curve be y(x). Let T(x) be the tension in the chain at the point
(x, y(x)). The tension acts in the direction of the derivative y′(x). Let H(x) and V (x) be,
respectively, the horizontal and vertical components of the tension. Because the chain is in
equilibrium, the horizontal component of the tension is constant at all points of the chain (just
cut the chain mentally at two different points). Thus H(x) = H. The vertical component of
the tension is then V (x) = Hy′(x).

On the other hand, for two infinitesimally close points, the difference in the vertical tension
is given by dV = ρds, where ρ is the density of the chain and ds is the length of the arc
between the two poins. Since ds = √1+ (y′(x))2dx, it follows that y satisfies the differential
equation

Hy′′ = ρ
√

1+ (y′)2.

If we set z(x) = y′(x), we obtain the separable first-order equation

Hz′ = ρ
√

1+ z2.

By integration, we obtain z = sinh
(

ρ

H x + C1
)
. The answer to the problem is therefore

y(x) = H

ρ
cosh
( ρ

H
+ C1

)
+ C2.

Remark. Galileo claimed that the curve was a parabola, but this was later proved to be false.
The correct equation was derived by G.W. Leibniz, Ch. Huygens, and Johann Bernoulli. The
curve is called a “catenary” and plays an important role in the theory of minimal surfaces.
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739. An edge adjacent to the main diagonal describes a cone. For an edge not adjacent to
the main diagonal, consider an orthogonal system of coordinates such that the rotation axis is
the z-axis and, in its original position, the edge is parallel to the y-plane (Figure 90). In the
appropriate scale, the line of support of the edge is y = 1, z = √3x.

x y

z

O

Figure 90

The locus of points on the surface of revolution is given in parametric form by

(x, y, z) = (t cos θ + sin θ, cos θ − t sin θ,
√

3t), t ∈ R, θ ∈ [0, 2π).

A glimpse at these formulas suggests the following computation:

x2 + y2 − 1

3
z2 = t2 cos2 θ + sin2 θ + 2t sin θ cos θ + cos2 θ + t2 sin2 θ − 2t cos θ sin θ − t2

= t2(cos2 θ + sin2 θ)+ cos2 θ + sin2 θ − t2 = 1.

The locus is therefore a hyperboloid of one sheet, x2 + y2 − 1
3 z3 = 1.

Remark. The fact that the hyperboloid of one sheet is a ruled surface makes it easy to build. It
is a more resilient structure than the cylinder. This is why the cooling towers of power plants
are built as hyperboloids of one sheet.

740. The equation of the plane tangent to the hyperboloid at a point M(x0, y0, z0) is

x0x

a2
+ y0y

b2
− z0z

c2
= 1.

This plane coincides with the one from the statement if and only if

x0

a2

1

a

=
y0

b2

1

b

=
z0

c2

1

c

.

We deduce that the point of contact has coordinates (a, b, c), and therefore the given plane is
indeed tangent to the hyperboloid.
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741. The area of the ellipse given by the equation

x2

A2
+ y2

B2
= R2

is πABR2. The section perpendicular to the x-axis is the ellipse

y2

b2
+ z2

c2
= 1− x2

0

a2

in the plane x = x0. Hence Sx = πbc
(

1− x2
0

a2

)
. Similarly, Sy = πac

(
1− y2

0
b2

)
and Sx =

πab
(

1− z2
0

c2

)
. We thus have

aSx + bSy + cSz = πabc

(
3− x2

0

a2
+ y2

0

b2
+ z2

0

c2

)
= 2πabc,

which, of course, is independent of M.

742. Figure 91 describes a generic ellipsoid. Since parallel cross-sections of the ellipsoid
are always similar ellipses, any circular cross-section can be increased in size by taking a
parallel cutting plane passing through the origin. Because of the condition a > b > c, a
circular cross-section cannot lie in the xy-, xz-, or yz-plane. Looking at the intersection of
the ellipsoid with the yz-plane, we see that some diameter of the circular cross-section is a
diameter (segment passing through the center) of the ellipse x = 0, y2

b2 + z2

c2 = 1. Hence the
radius of the circle is at most b. The same argument for the xy-plane shows that the radius is
at least b, whence b is a good candidate for the maximum radius.

Figure 91

To show that circular cross-sections of radius b actually exist, consider the intersection of
the plane (c

√
a2 − b2)x = (a

√
b2 − c2)z with the ellipsoid. We want to compute the distance

from a point (x0, y0, z0) on this intersection to the origin. From the equation of the plane, we
obtain by squaring

x2
0 + z2

0 = b2

(
x2

0

a2
+ z2

0

c2

)
.

The equation of the ellipsoid gives

y2
0 = b2

(
1− x2

0

a2
− z2

0

c2

)
.
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Adding these two, we obtain x2
0 + y2

0 + z2
0 = 1; hence (x0, y0, z0) lies on the circle of radius

1 centered at the origin and contained in the plane (c
√

a2 − b2)x + (a
√

b2 − c2)z = 0. This
completes the proof.

(31st W.L. Putnam Mathematical Competition, 1970)

743. Without loss of generality, we may assume a < b < c. Fix a point (x0, y0, z0) and let us
examine the equation in λ,

f (λ) = x2
0

a2 − λ
+ y2

0

b2 − λ
+ z2

0

c2 − λ
− 1 = 0.

For the function f (λ) we have the following table of signs:

f (−∞) f (a2 − ε) f (a2 + ε) f (b2 − ε) f (b2 + ε) f (c2 − ε) f (c2 + ε) f (+∞)

+ + − + − + − −
where ε is a very small positive number. Therefore, the equation f (λ) = 0 has three roots,
λ1, λ2, λ3, with λ1 < a2 < λ2 < b2 < λ3 < c2. These provide the three surfaces, which are
an ellipsoid for λ = λ1 (Figure 91), a hyperboloid of one sheet for λ = λ2, and a hyperboloid
of two sheets for λ = λ3 (Figure 92).

Figure 92

To show that the surfaces are pairwise orthogonal we have to compute the angle between
the normals at an intersection point. We do this for the roots λ1 and λ2 the other cases being
similar. The normal to the ellipsoid at a point (x, y, z) is parallel to the vector

−→v 1 =
(

x

a2 − λ1
,

y

b2 − λ1
,

z

c2 − λ1

)
,

while the normal to the hyperboloid of one sheet is parallel to the vector

−→v 2 =
(

x

a2 − λ2
,

y

b2 − λ2
,

z

c2 − λ2

)
.

The dot product of these vectors is

−→v 1 · −→v 2 = x

a2 − λ1
· x

a2 − λ2
+ y

b2 − λ1
· y

b2 − λ2
+ z

c2 − λ1
· z

c2 − λ2
.
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To prove that this is equal to 0, we use the fact that the point (x, y, z) belongs to both quadrics,
which translates into the relation

x2

a2 − λ1
+ y2

b2 − λ1
+ z2

c2 − λ1
= x2

a2 − λ2
+ y2

b2 − λ2
+ z2

c2 − λ2
.

If we write this as
(

x2

a2 − λ1
− x2

a2 − λ2

)
+
(

y2

b2 − λ1
− y2

b2 − λ2

)
+
(

z2

c2 − λ1
− xz

c2 − λ2

)
= 0,

we recognize immediately the left-hand side to be (λ1 − λ2)
−→v 1 · −→v 2. We obtain the desired−→v 1 ·−→v 2 = 0, which proves the orthogonality of the two surfaces. This completes the solution.

(C. Ionescu-Bujor, O. Sacter, Exerciţii şi Probleme de Geometrie Analitică şi Diferenţială
(Exercises and Problems in Analytic and Differential Geometry), Editura Didactică şi Peda-
gogică, Bucharest, 1963)

744. Using the algebraic identity (see Section 2.1.1):

(u3 + v3 + w3 − 3uvw) = 1

2
(u+ v+ w)[3(u2 + v2 + w2)− (u+ v+ w)2],

we obtain

z − 3 = 3

2
xy − 1

2
x3,

or
x3 − 3xy + 2z − 6 = 0.

This is the cubic surface from Figure 93.

Figure 93

(C. Coşniţă, I. Sager, I. Matei, I. Dragotă, Culegere de Probleme de Geometrie Analitică
(Collection of Problems in Analytical Geometry), Editura Didactică şi Pedagogică, Bucharest,
1963)

745. By the (2n + 1)-dimensional version of the Pythagorean theorem, the edge L of the
cube is the square root of an integer. The volume of the cube is computed as a determinant
in coordinates of vertices; hence it is also an integer. We conclude that L2 and L2n+1 are
both integers. It follows that L2n+1/(L2)n = L is a rational number. Because its square is an
integer, L is actually an integer, as desired.

http://dx.doi.org/10.1007/978-3-319-58988-6_2
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746. The equation of the locus can be expressed in a simple form using determinants as
∣
∣
∣
∣
∣
∣
∣
∣
∣

x1 x2 . . . xn

xn x1 . . . xn−1
...

...
. . .

...

x2 x3 . . . x1

∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0.

Adding all rows to the first, we see that the determinant has a factor of x1 + x2 + · · · + xn.
Hence the hyperplane x1 + x2 + · · · + xn = 0 belongs to the locus.

747. Without loss of generality, we may assume that the edges of the cube have length equal
to 2, in which case the cube consists of the points (x1, x2, . . . , xn) with max |xi| ≤ 1. The

intersection of the cube with the plane determined by −→a and
−→
b is

P =
{

s−→a + t
−→
b | max

k

∣
∣
∣
∣s cos

2kπ

n
+ t sin

2kπ

n

∣
∣
∣
∣ ≤ 1

}
.

This set is a convex polygon with at most 2n sides, being the intersection of n strips determined
by parallel lines, namely the strips

Pk =
{

s−→a + t
−→
b |
∣∣∣
∣s cos

2kπ

n
+ t sin

2kπ

n

∣∣∣
∣ ≤ 1

}
.

Adding 2π
n to all arguments in the coordinates of −→a and

−→
b permutes the Pk’s, leaving P

invariant. This corresponds to the transformation

−→a �→ cos
2π

n
−→a − sin

2π

n

−→
b ,

−→
b �→ sin

2π

n
−→a + cos

2π

n

−→
b ,

which is a rotation by 2π
n in the plane of the two vectors. Hence P is invariant under a rotation

by 2π
n , and being a polygon with at most 2n sides, it must be a regular 2n-gon.
(V.V. Prasolov, V.M. Tikhomirov, Geometry, AMS, 2001)

748. We consider the case of the unit cube, whose vertices are of the form (x1, x2, . . . , xn),
xn ∈ {0, 1}.

First, consider the hyperplanes

Hk : x1 + x2 + · · · + xn = k + 1

2
, 0 ≤ k ≤ n− 1.

Then Hk crosses every edge joining one of the
(n

k

)
points with k nonzero coordinates to its

n − k neighbors with k + 1 nonzero coordinates and only these edges. thus such a plane
crosses

(n− k)

(
n

k

)
= n!

k!(n− k − 1)! .
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By examining the monotonicity and the minimum of the function f (x) = x(n − x − 1), we
deduce that the above fraction is maximized when n is as close as possible to n−1

2 . So the
maximum number of crossings of edges with one of the hyperplanes Hk is

n!
�(n− 1)/2�!�(n− 1)/2�! ,

where �·� and �·� are the greatest integer and the least integer functions. We will prove that
this is the desired maximum.

Let us consider a hyperplane

H :
n∑

j=1

ajxj = b.

Using the symmetries of the cube, we may assume aj ≥ 0 for all j, and hence b ≥ 0. Now
cosider any of the n! paths from (0, 0, . . . , 0) to (1, 1, . . . , 1), in which we increase one
coordinate at a time, from 0 to 1. The function

∑
j ajxj is nondecreasing on such a path, hence

there is at most one edge on the path that is cut by H. This happens when
∑

j ajxj transitions
from less than b to more than b (we do not count the edges contained in H, where this function
is constantly equal to b).

If an edge e = (x, y) joins the vertex x that has k coordinates equal to 1 to a vertex y that
has k + 1 coordinates equal to 1, that edge lies on k!(n − k − 1)! such paths. Indeed, along
such a path the k locations that correspond to 1’s in x are turned first one-by-one from 0 into
1’s, and this can be done in k! ways, and then we move to y, after which the remaining 0’s are
turned one-by-one into 1’s, and again this can be done in (n − k − 1)! ways. As explained
above,

k!(n− k − 1)! ≥ �(n− 1)/2�!�(n− 1)/2�!.
There are exactly n! paths, and one edge appears in at least �(n−1)/2�!�(n−1)/2�! paths,

and since each path is cut at most once by the hyperplane P, this hyperplane intersects at most

n!
�(n− 1)/2�!�(n− 1)/2�! .

The conclusion follows.
(Mathematical Reflections, proposed by G. Dospinescu)

749. Consider the unit sphere in R
n,

Sn−1 =
{

(x1, x2, . . . , xn) ∈ R
n |

n∑

k=1

x2
k = 1

}

.

The distance between two points X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , yn) is given by

d(X, Y) =
(

n∑

k=1

(xk − yk)
2

)1/2

.
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Note that d(X, Y) >
√

2 if and only if

d2(X, Y) =
n∑

k=1

x2
k +

n∑

k=1

y2
k − 2

n∑

k=1

xkyk > 2.

Therefore, d(X, Y) >
√

2 implies
n∑

k=1

xkyk < 0.

Now let A1, A2, . . . , Amn be points satisfying the condition from the hypothesis, with mn

maximal. Using the symmetry of the sphere we may assume that A1 = (−1, 0, . . . , 0). Let
Ai = (x1, x2, . . . , xn) and Aj = (y1, y2, . . . , yn), i, j ≥ 2. Because d(A1, Ai) and d(A1, Aj) are
both greater than

√
2, the above observation shows that x1 and y1 are positive.

The condition d(Ai, Aj) >
√

2 implies
n∑

k=1

xkyk < 0, and since x1y1 is positive, it follows

that
n∑

k=2

xkyk < 0.

This shows that if we normalize the last n− 1 coordinates of the points Ai by

x′k =
xk√√√

√
n−1∑

k=1

x2
k

, k = 1, 2, . . . , n− 1,

we obtain the coordinates of point Bi in Sn−2, and the points B2, B3, . . . , Bn satisfy the condition
from the statement of the problem for the unit sphere in R

n−1.
It follows that mn ≤ 1 + mn−1, and m1 = 2 implies mn ≤ n + 1. The example of the n-

dimensional regular simplex inscribed in the unit sphere shows that mn = n+1. To determine
explicitly the coordinates of the vertices, we use the additional information that the distance
from the center of the sphere to a hyperface of the n-dimensional simplex is 1

n and then find
inductively

A1 = (−1, 0, 0, 0, . . . , 0, 0),

A2 =
(

1

n
,−c1, 0, 0, . . . , 0, 0

)
,

A3 =
(

1

n
,

1

n− 1
· c1,−c2, 0, . . . , 0, 0

)
,

A4 =
(

1

n
,

1

n− 1
· c1,

1

n− 2
· c2, c3, . . . , 0, 0

)
,

. . .

An−1 =
(

1

n
,

1

n− 1
· c1, . . . ,

1

3
· cn−3,−cn−2, 0

)
,
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An =
(

1

n
,

1

n− 1
· c1, . . . ,

1

3
· cn−3,

1

2
· cn−2,−cn−1

)
,

An=1 =
(

1

n
,

1

n− 1
· c1, . . . ,

1

3
· cn−3,

1

2
· cn−2, cn−1

)
,

where

ck =
√(

1+ 1

n

)(
1− 1

n− k + 1

)
, k = 1, 2, . . . , n− 1.

One computes that the distance between any two points is

√
2

√

1+ 1

n
>
√

2,

and the problem is solved.
(8th International Mathematics Competition for University Students, 2001)

750. View the ring as the body obtained by revolving about the x-axis the surface that lies
between the graphs of f , g : [−h/2, h/2] → R, f (x) = √R2 − x2, g(x) = √R2 − h2/4. Here
R denotes the radius of the sphere. Using the washer method we find that the volume of the
ring is

π

∫ h/2

−h/2
(
√

R2 − x2)2 − (
√

R2 − h2/4)2dx = π

∫ h/2

−h/2
(h2/4− x2)dx = h3π

12
,

which does not depend on R.

751. Let the inscribed sphere have radius R and center O. For each big face of the polyhedron,
project the sphere onto the face to obtain a disk D. Then connect D with O to form a cone.
Because the interiors of the cones are pairwise disjoint, the cones intersect the sphere in several

nonoverlapping regions. Each circular region is a slice of the sphere, of width R
(

1− 1
2

√
2
)

.

Recall the lemma used in the solution to the first problem from the introduction. We apply it
to the particular case in which one of the planes is tangent to the sphere to find that the area

of a slice is 2πR2
(

1− 1
2

√
2
)

, and this is greater than 1
7 of the sphere’s surface. Thus each

circular region takes up more than 1
7 of the total surface area of the sphere. So there can be at

most six big faces.
(Russian Mathematical Olympiad, 1999)

752. Keep the line of projection fixed, for example the x-axis, and rotate the segments in A
and B simultaneously.

Now, given a segment with one endpoint at the origin, the length of its projection onto
the z-axis is r| cos φ|, where (r, θ, φ) are the spherical coordinates of the second endpoint,
i.e., r is the length of the segment, φ is the angle it makes with the semiaxis Oz, and θ is the
oriented angle that its projection onto the xy-plane makes with Ox. If we average the lengths
of the projections onto the x-axis of the segment over all possible rotations, we obtain

1

4π

∫ π

0

∫ 2π

0
r| cos φ| sin φdθdφ = r

2
.
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Denote by a and b the sums of the lengths of the segments in A and B, respectively. Then the
average of the sum of the lengths of the projections of segments in A is r

2 a, and the average
of the same sum for B is r

2 b. The second is smaller, proving that there exists a direction such
that the sum of the lengths of the projections of the segments from A onto that direction is
larger that the corresponding sum for B.

753. This is just a two-dimensional version of the previous problem. If we integrate the length
of the projection of a segment onto a line over all directions of the line, we obtain twice the
length of the segment. Doing this for the sides of a convex polygon, we obtain the perimeter
(since the projection is double covered by the polygon). Because the projection of the inner
polygon is always smaller than the projection of the outer, the same inequality will hold after
integration. Hence the conclusion.

754. For i = 1, 2, . . . , n, let ai be the lengths of the segments and let φi be the angles they
make with the positive x-axis (0 ≤ φi ≤ π). The length of the projection of ai onto some line
that makes an angle φ with the x-axis is fi(φ) = ai| cos(φ − φi)|; denote by f (φ) the sum of
these lengths. The integral mean of f over the interval [0, π] is

1

π

∫ π

0
f (φ)dφ = 1

π

n∑

i=1

∫ π

0
fi(φ)dφ = 1

π

n∑

i=1

ai

∫ π

0
| cos(φ − φi)|dφ

= 2

π

n∑

i=1

ai = 2

π
.

Here we used the fact that | cos x| is periodic with period π . Since the integral mean of f is
2
π

and since f is continuous, by the intermediate value property there exists an angle φ for
which f (φ) = 2

π
. This completes the proof.

755. The law of cosines in triangle APB gives

AP2 = x2 + c2 − 2xc cos B

and
x2 = c2 + AP2 = x2 + c2 − 2xc cos B− 2c

√
x2 + c2 − 2xc cos B cos t,

whence

cos t = c− x cos B√
x2 + c2 − 2xc cos B

.

The integral from the statement is
∫ a

0
cos t(x)dx =

∫ a

0

c− x cos B√
x2 + c2 − 2xc cos B

dx.

Using the standard integration formulas
∫

dx
√

x2 + αx + β
= ln
(

2x + α + 2
√

x2 + αx + β
)

,

∫
xdx

√
x2 + αx + β

=
√

x2 + αx + β − α

2
ln
(

2x + α + 2
√

x2 + αx + β
)

,
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we obtain
∫ a

0
cos t(x)dx = c sin2 B ln

(
2x + 2c cos B+ 2

√
x2 − 2cx cos B+ c2

) ∣∣
∣
a

0

− cos B
√

x2 − 2cx cos B+ c2
∣
∣
∣
a

0

= c sin2 B ln
a− c cos B+ b

c(1− cos B)
+ cos B(c− b).

756. It is equivalent to ask that the volume of the dish be half of that of the solid of revolution
obtained by rotating the rectangle 0 ≤ x ≤ a and 0 ≤ y ≤ f (a). Specifically, this condition is

∫ a

0
2πxf (x)dx = 1

2
πa2f (a).

Because the left-hand side is differentiable with respect to a for all a > 0, the right-hand side
is differentiable, too. Differentiating, we obtain

2πaf (a) = πaf (a)+ 1

2
πa2f ′(a).

This is a differential equation in f , which can be written as f ′(a)/f (a) = 2
a . Integrating, we

obtain ln f (a) = 2 ln a, or f (a) = ca2 for some constant c > 0. This solves the problem.
(Math Horizons)

757. Parametrize the curve by its length as (x(s), y(s), z(s)), 0 ≤ s ≤ L. Then the coordinates
(ξ, η, ζ ) of its spherical image are given by

ξ = dx

ds
, η = dy

ds
, ζ = dz

ds
.

The fact that the curve is closed implies that
∫ L

0
ξds =

∫ L

0
ηds =

∫ L

0
ζds = 0.

Pick an arbitrary great circle of the unit sphere, lying in some plane αx + βy + γ z = 0.
To show that the spherical image of the curve intersects the circle, it suffices to show that it
intersects the plane. We compute

∫ L

0
(αξ + βη + γ ζ ) = 0,

which implies that the continuous function αξ + βη + γ ζ vanishes at least once (in fact, at
least twice since it takes the same value at the endpoints of the interval). The equality

αξ(s)+ βη(x)+ γ ζ(s) = 0

is precisely the condition that (ξ(s), η(x), ζ(s)) is in the plane. The problem is solved.

Remark. The spherical image of a curve was introduced by Gauss.
(K. Löwner)
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758. We use Löwner’s theorem, which was the subject of the previous problem. The total
curvature is the length of the spherical image of the curve. In view of Löwner’s theorem, it
suffices to show that a curve γ (t) that intersects every great circle of the unit sphere has length
at least 2π .

For each t, let Ht be the hemisphere centered at γ (t). The fact that the curve intersects every
great circle implies that the union of all the Ht’s is the entire sphere. We prove the conclusion
under this hypothesis. Let us analyze how the covered area adds up as we travel along the
curve. Looking at Figure 94, we see that as we add to a hemisphere Ht0 the hemisphere Ht1 ,
the covered surface increases by the portion of the sphere contained within the dihedral angle
formed by two planes. The area of such a “wedge” is directly proportional to the length of
the arc of the great circle passing through γ (t0) and γ (t1). When the arc is the whole great
circle the area is 4π , so in general, the area is numerically equal to twice the length of the
arc. This means that as we move along the curve from t to t +�t, the covered area increases
by at most 2‖γ ′(t)‖. So after we have traveled along the entire curve, the covered area has

increased by at most 2
∫

C
‖γ ′(t)‖dt (C denotes the curve). For the whole sphere, we should

have 2
∫

C
‖γ ′(t)‖dt ≥ 4π . This implies that the length of the spherical image, which is equal

to
∫

C
‖γ ′(t)‖dt, is at least 2π , as desired.

Figure 94

Remark. More is true, namely that the total curvature is equal to 2π if and only if the curve
is planar and convex. A result of Milnor and Fáry shows that the total curvature of a knotted
curve in space exceeds 4π .

(W. Fenchel)

759. Consider a coordinate system with axes parallel to the sides of R (and hence to the sides
of all rectangles of the tiling). It is not hard to see that if D = [a, b] × [c, d] rectangle whose
sides are parallel to the axes, then the four integrals

∫∫

D
sin 2πx sin 2πydxdy,

∫∫

D
sin 2πx cos 2πydxdy,

∫∫

D
cos 2πx sin 2πydxdy,

∫∫

D
cos 2πx cos 2πydxdy
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are simultaneously equal to zero if and only if either b− a or d − c is an integer. Indeed, this
is equivalent to the fact that

(cos 2πb− cos 2πa)(cos 2πd − cos 2πc) = 0,

(cos 2πb− cos 2πa)(sin 2πd − sin 2πc) = 0,

(sin 2πb− sin 2πa)(cos 2πd − cos 2πc) = 0,

(sin 2πb− sin 2πa)(sin 2πd − sin 2πc) = 0,

and a case check shows that either cos 2πb = cos 2πa and sin 2πb = sin 2πa, or cos 2πd =
cos 2πc and sin 2πd = sin 2πc, which then implies that either a and b or c and d differ by
an integer. Because the four integrals are zero on each rectangle of the tiling, by adding they
are zero on R. Hence at least one of the sides of R has integer length.

(Short list of the 30th International Mathematical Olympiad, 1989, proposed by France)

760. For the solution we will use the following result

Isoperimetric Inequality. Let γ : [0, 2π ] → R
2 be a smooth simple closed curve of length

L that encloses a domain � of area A. Then

L2 ≥ 4πA.

Equality holds if and only if γ is a circumference.

Proof. We present the proof given by Hurwitz. Consider a parametrization γ (t) = (x(t), y(t))
of the curve with constant velocity |γ ′(t)| = L

2π
, t ∈ [0, 2π ]. The functions x and y can be

extended periodically over R by smooth functions. Expand in Fourier series:

x(t) =
∞∑

n=−∞
aneint and y(t) =

∞∑

n=−∞
bneint.

We have

x′(t) =
∞∑

n=−∞
inaneint and y′(t) =

∞∑

n=−∞
inbneint.

An application of the Parseval identity yields

L2

2π
=
∫ 2π

0
(x′(t))2 + (y′(t))2dt = 2π

∞∑

n=−∞
n2(|an|2 + |bn|2).

On the other hand, from Green’s formula we obtain

A = 1

2

∣∣
∣∣

∫ 2π

0
(x(t)y′(t)− x′(t)y(t))dt

∣∣
∣∣ = π

∣
∣∣∣
∣

∞∑

n=−∞
n(anbn − anbn)

∣
∣∣∣
∣
.
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Hence

4πA = 4π2

∣
∣
∣
∣
∣

∞∑

n=−∞
n(anbn − anbn)

∣
∣
∣
∣
∣
≤ 4π2

∞∑

n=−∞
|n||anbn − anbn|

≤ 4π2
∞∑

n=−∞
|n|(|an|2 + |bn|2) ≤ 4π2

∞∑

n=−∞
n2(|an|2 + |bn|2) = L2,

where we used the fact that

|anbn − anbn| ≤ 2|an||bn| ≤ |an|2 + |bn|2.
Equality holds if and only if an = bn = 0, for n ≥ 2, which then implies |a1| = |b1| = 1. But
this only happens when γ is a circle. �

Returning to the problem, for an arbitrary line � with olar angle θ , denote by r(θ) the
length of the projection of the polygon K on the line �. Then the perimeter of K can be
expressed as

P =
∫ π

0
r(θ)dθ.

But since r(θ) ≤ 1, we have P ≤ π . Using the isoperimetric inequality we deduce that the
area of K is less than π

4 .

Remark. The original problem was given at a Romanian Team Selection Test for the Interna-
tional Mathematical Olympiad in 2005, with π/4 replaced by the larger number

√
3/2. The

solution and the better upper bound were found by the contestant G. Kreindler during the
competition.

(communicated by C. Lupu)

761. We denote by A(XYZ) the area of triangle XYZ . Look first at the degenerate situation
described in Figure 95, when P is on one side of the triangle. With the notation from that
figure, we have

A(BMP)

A(ABC)
=
(

BP

BC

)2

and
A(CNP)

A(ABC)
=
(

PC

BC

)2

.

A

B C
P

M

N

Figure 95
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Adding up, we obtain

A(BMP)+ A(CNP)

A(ABC)
= BP2 + PC2

(BP + PC)2
≥ 1

2
.

The last inequality follows from the AM-GM inequality:

BP2 + PC2 ≥ 2BP · PC.

Note that in the degenerate case the inequality is even stronger, with 1
3 replaced by 1

2 .
Let us now consider the general case, with the notation from Figure 96. By what we just

proved, we know that the following three inequalities hold:

S1 + S2 ≥ 1

2
A(A1B2C),

S1 + S3 ≥ 1

2
A(A2BC1),

S2 + S3 ≥ 1

2
A(AB1C2).

A

B C

S S

S

A A

B

B
C

C

1

1

23

P
2 1

1 2

2

Figure 96

Adding them up, we obtain

2S1 + 2S2 + 2S3 ≥ 1

2
(A(ABC)+ S1 + S2 + S3).

The inequality follows.
(M. Pimsner, S. Popa, Probleme de Geometrie Elementară (Problems in Elementary

Geometry), Editura Didactică şi Pedagogică, Bucharest, 1979)

762. Assume that the two squares do not overlap. Then at most one of them contains the
center of the circle. Take the other square. The line of support of one of its sides separates
it from the center of the circle. Looking at the diameter parallel to this line, we see that the
square is entirely contained in a half-circle, in such a way that one of its sides is parallel to
the diameter. Translate the square to bring that side onto the diameter, then translate it further
so that the center of the circle is the middle of the side (see Figure 97).



692 Geometry and Trigonometry

x/2

x
1

Figure 97

The square now lies inside another square with two vertices on the diameter and two
vertices on the circle. From the Pythagorean theorem compute the side of the larger square

to be
√

4
5 . This is smaller than 0.9, a contradiction. Therefore, the original squares overlap.

(R. Gelca)

763. The Möbius band crosses itself if the generating segments at two antipodal points of the
unit circle intersect. Let us analyze when this can happen. We refer everything to Figure 98.
By construction, the generating segments at the antipodal points M and N are perpendicular.
Let P be the intersection of their lines of support. Then the triangle MNP is right, and its acute
angles are α

2 and π
2 − α

2 . The generating segments intersect if they are longer than twice the
longest leg of this triangle. The longest leg of this triangle attains its shortest length when the
triangle is isosceles, in which case its length is

√
2. We conclude that the maximal length that

the generating segment of the Möbius band can have so that the band does not cross itself is
2
√

2.

O

N M

z

P

α/2

α/2

Figure 98

Remark. Even if we allow the Möbius band to be flexible, there is a maximal width it can
have before crossing itself.

764. Comparing the perimeters of AOB and BOC, we find that ‖AB‖+‖AO‖ = ‖CB‖+‖CO‖,
and hence A and C belong to an ellipse with foci B and O. The same argument applied to
triangles AOD and COD shows that A and C belong to an ellipse with foci D and O. The
foci of the two ellipses are on the line BC; hence the ellipses are symmetric with respect to
this line. It follows that A and C are symmetric with respect to BC, hence AB = BC and
AD = DC. Exchanging the roles of A and C with B and D, we find that AB = AD and
BC = CD. Therefore, AB = BC = CD = DE and the quadrilateral is a rhombus.
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The property is no longer true if O is not the intersection of the diagonals. A counterex-
ample consists of a quadrilateral with AB = BC = 3, BC = CD = 4, BD = 5, and O on BD
such that OB = 3 and OD = 2.

(Romanian Team Selection Test for the International Mathematical Olympiad, 1978, pro-
posed by L. Panaitopol)

765. Assume by way of contradiction that the interiors of finitely many parabolas cover the
plane. The intersection of a line with the interior of a parabola is a half-line if that line is
parallel to the axis of the parabola, and it is void or a segment otherwise. There is a line
that is not parallel to the axis of any parabola. The interiors of the parabolas cover the union
of finitely many segments on this line, so they do not cover the line entirely. Hence the
conclusion.

766. Without loss of generality, we may assume that AC = 1, and let as usual AB = c. We
have

BC2 = AB2 + AC2 − 2AB · AC cos ∠BAC ≥ AB2 + AC2 − AB = c2 + 1− c,

because ∠BAC ≥ 60◦. On the other hand,

CD2 = AC2 + AD2 − 2AC · AD cos ∠CAD ≥ 1+ c6 + c3,

because ∠CAD ≤ 120◦ (so 2AC · cos ∠BAC < 1). We are left to prove the inequality

c6 + c3 + 1 ≤ 3(c2 − c+ 1)3,

which, after dividing both sides by c3 > 0, takes the form

c3 + 1+ 1

c3
≤ 3

(
c− 1+ 1

c

)3

.

With the substitution c+ 1
c = x, the inequality becomes

x3 − 3x + 1 ≤ 3(x − 1)3, for x ≥ 2.

But this reduces to
(x − 2)2(2x − 1) ≥ 0,

which is clearly true. Equality holds if and only if ∠A = 60◦ and c = 1 (AB = AC), i.e.,
when the triangle ABC is equilateral.

(Proposed by T. Andreescu for the USA Mathematical Olympiad, 2006)

767. First solution: Denote by a, b, c, d, e, f , g, h the lengths of the sides of the octagon. Its
angles are all equal to 135◦ (see Figure 99). If we project the octagon onto a line perpendicular
to side d, we obtain two overlapping segments. Writing the equality of their lengths, we obtain

a

√
2

2
+ b+ c

√
2

2
= e

√
2

2
+ f + g

√
2

2
.
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b

d

f
e

g

a c

h

Figure 99

Because a, b, c, e, f , g are rational, equality can hold only if b = f . Repeating the
argument for all sides, we see that the opposite sides of the octagon have equal length. The
opposite sides are also parallel. This means that any two consecutive main diagonals intersect
at their midpoints, so all main diagonals intersect at their midpoints. The common intersection
is the center of symmetry.

Second solution: Note that the positive integers a1, a2, . . . , an, are the side-lengths of an
equiangular polygon, in this order, if and if for

ε = cos
2π

n
+ i sin

2π

n
,

one has

anε
n−1 + an−1ε

n−2 + · · · + a2ε + a1 = 0.

In our case the side-lengths would therefore satisfy

a8ε
7 + a7ε

6 + · · · + a1 = 0.

Using the fact that ε4 = 1, we obtain

(a4 − a8)ε
3 + (a3 − a7)ε

2 + (a2 − a6)ε + (a1 − a5) = 0.

Thus ε is the root of a cubic equation with integer coefficients. But also ε is a zero of the
polynomial x4+1, which is irreducible, by Eisenstein’s criterion (see Section 2.2.7) applied to
(x+1)4+1 = x4+4x3+6x2+4x+2. It follows that the cubic polynomial is identically equal
to zero, so a1 = a5, a2 = a6, a3 = a7, a4 = a8. The octagon being equiangular, opposite
sides are parallel, so they pairwise form parallelograms. Hence all three diagonals meet at
their midpoints. The common intersection point is the center of symmetry.

(Russian Mathematical Olympiad)

768. Let us assume that the three diagonals do not intersect. Denote by M the intersection
of AD with CF, by N the intersection of BE with CF, and by P the intersection of AD with
BE. There are two possibilities: either M is between A and P, or P is between A and M. We
discuss only the first situation, shown in Figure 100, and leave the second, which is analogous,
to the reader.

http://dx.doi.org/10.1007/978-3-319-58988-6_2
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A

D

B
C

E

F P

NM

Figure 100

Let A(x) denote the area of the polygon x. From A(BCDE) = A(ABEF) it follows that

A(EPD)+ A(NPDC)+ A(BNC) = A(ENF)+ A(AMF)+ A(MNBA).

Adding A(MNP) to both sides, we obtain

A(EPD)+ A(DMC)+ A(BNC) = A(ENF)+ A(AMF)+ A(APB).

Writing the other two similar relations and then subtracting these relations two by two, we
obtain

A(AMF) = A(DMC), A(APB) = A(EPD), A(BNC) = A(ENF).

The equality A(AMF) = A(DMC) implies that MF ·MA · ∠AMF = MC ·MD · sin ∠CMD,
hence MF ·MA = MC ·MD. Similarly, BN · CN = EN · FN and AP · BP = DP · EP. If we
write AM = a, AP = α, BN = b, BP = β, CN = c, CM = γ , DP = d, DM = δ, EP = e,
EN = η, FM = f , FN = φ, then

a

δ
= γ

f
,

b

η
= φ

c
,

e

β
= α

d
.

Also, any Latin letter is smaller than the corresponding Greek letter. Hence

a

δ
= γ

f
>

c

φ
= η

b
>

e

β
= α

d
>

a

δ
.

This is a contradiction. The study of the case in which P is between A and M yields a similar
contradiction, since M is now between D and P, and D can take the role of A above, showing
that the three main diagonals must intersect.

(Revista Matematică din Timişoara (Timişoara Mathematics Gazette))

769. (a) Define f : Z → [0, 1), f (x) = √3 − �x√3�. By the pigeonhole principle, there
exist distinct integers x1 and x2 such that |f (x1)− f (x2)| < 0.001. Set a = |x1− x2|. Then the
distance either between (a, a

√
3) and (a, �a√3�) or between (a, a

√
3) and (a, �a√3�+ 1) is

less than 0.001. Therefore, the points (0, 0), (2a, 0), (a, a
√

3) lie in different disks and form
an equilateral triangle.
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(b) Suppose that P′Q′R′ is an equilateral triangle of side l ≤ 96, whose vertices P′, Q′, R′
lie in disks with centers P, Q, R, respectively. Then

l − 0.002 ≤ PQ, PR, RP ≤ l + 0.002.

On the other hand, since there is no equilateral triangle whose vertices have integer coordinates
(which can be proved easily using complex coordinates), we may assume that PQ �= QR.
Therefore,

|PQ2 − QR2| = (PQ+ QR)|PQ− QR|
≤ ((l + 0.002)+ (l + 0.002))((l + 0.002)− (l − 0.002))

≤ 2× 96.002× 0.004 < 1.

However, PQ2 − QR2 is an integer. This contradiction proves the claim.
(Short list of the 44th International Mathematical Olympiad, 2003)

770. Imagine instead that the figure is fixed and the points move on the cylinder, all rigidly
linked to each other. Let P be one of the n points; when another point traces S, P itself will
trace a figure congruent to S. So after all the points have traced S, P alone has traced a surface
F of area strictly less than n.

On the other hand, if we rotate P around the cylinder or translate it back and forth by n
4πr ,

we trace a surface of area exactly equal to n. Choose on this surface a point P′ that does not
lie in F, and consider the transformation that maps P to P′. The fact that P′ is not in F means
that at this moment none of the points lies in S. This transformation, therefore, satisfies the
required condition.

(M. Pimsner, S. Popa, Probleme de Geometrie Elementară (Problems in Elementary
Geometry), Editura Didactică şi Pedagogică, Bucharest, 1979)

771. The left-hand side is equal to

cos 20◦ sin 40◦ − sin 10◦ cos 10◦ = 2 sin 20◦ cos2 20◦ − sin 20◦

2

= 1

2
(3 sin 20◦ − 4 sin3 20◦) = 1

2
sin 60◦ =

√
3

4
.

(Romanian Mathematical Olympiad, 1967, proposed by C. Ionescu- Ţiu)

772. Because −π
2 < 1 ≤ sin x ≤ 1 < π

2 , cos(sin x) > 0. Hence sin(cos x) > 0, and so
cos x > 0. We deduce that the only possible solutions can lie in the interval

(−π
2 , π

2

)
. Note

that if x is a solution, then −x is also a solution; thus we can restrict our attention to the first
quadrant. Rewrite the equation as

sin(cos x) = sin
(π

2
− sin x

)
.
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Then cos x = π
2 − sin x, and so sin x + cos x = π

2 . This equality cannot hold, since the range
of the function f (x) = sin x + cos x = √2 cos

(
π
4 − x
)

is [−√2,
√

2], and π
2 >

√
2.

773. The relation from the statement can be transformed into

tan2 b = tan2 a+ 1

tan2 a− 1
= − 1

cos 2a
.

This is further equivalent to
sin2 b

1− sin2 b
= 1

2 sin2 a− 1
.

Eliminating the denominators, we obtain

2 sin2 a sin2 b = 1,

which gives the desired sin a sin b = ±
√

2
2 = ± sin 45◦.

(Romanian Mathematical Olympiad, 1959)

774. We have

f (x) = sin x cos x + sin x + cos x + 1 = 1

2
(sin x + cos x)2 − 1

2
+ sin x + cos x + 1

= 1

2
[(sin x + cos x)2 + 2(sin x + cos x)+ 1] = 1

2
[(sin x + cos x)+ 1]2.

This is a function of y = sin x + cos x, namely f (y) = 1
2 (y+ 1)2. Note that

y− cos
(π

2
− x
)
+ cos x = 2 cos

π

4
cos
(

x − π

4

)
= √2 cos

(
x − π

4

)
.

So y ranges between −√2 and
√

2. Hence f (y) ranges between 0 and 1
2 (
√

2+ 1)2.

775. Relate the secant and the cosecant to the tangent and cotangent:

sec2 x = tan2 x + 1 ≥ 2 tan x and csc2 x = cot2 x + 1 ≥ 2 cot x,

where the inequalities come from the most particular case of AM-GM. It follows that

sec2n x + csc2n x ≥ 2n(tann x + cotn x).

Now observe that

tann x + cotn x = tann x + 1

tann x
≥ 2,
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again by the AM-GM inequality. We obtain

sec2x x + csc2n x ≥ 2n+1,

as desired.
(Gazeta Matematică (Mathematics Gazette, Bucharest), proposed by D. Andrica)

776. We would like to eliminate the square root, and for that reason we recall the trigonometric
identity

1− sin t

1+ sin t
= cos2 t

(1+ sin t)2
.

The proof of this identity is straightforward if we express the cosine in terms of the sine and
then factor the numerator. Thus if we substitute x = sin t, then dx = cos tdt and the integral
becomes ∫

cos2 t

1+ sin t
dt =
∫

1− sin tdt = t + cos t + C.

Since t = arcsin x, this is equal to arcsin x +√1− x2 + C.
(Romanian high school textbook)

777. We will prove that a function of the form f (x, y) = cos(ax + by), a, b integers, can be
written as a polynomial in cos x, cos y, and cos(x + ky) if and only if b is divisible by k.

For example, if b = k, then from

cos(ax + ky) = 2 cos x cos((a± 1)x + ky)− cos((a± 2)x + ky),

we obtain by induction on the absolute value of a that cos(ax + by) is a polynomial in cos x,
cos y, cos(x + ky). In general, if b = ck, the identity

cos(ax + cky) = 2 cos y cos(ax + (c± 1)ky)− cos(ax + (c± 2)ky)

together with the fact that cos ax is a polynomial in cos x allows an inductive proof of the fact
that cos(ax + by) can be written as a polynomial in cos x, cos y, and cos(x + ky) as well.

For the converse, note that by using the product-to-sum formula we can write any polyno-
mial in cosines as a linear combination of cosines. We will prove a more general statement,
namely that if a linear combination of cosines is a polynomial in cos x, cos y, and cos(x+ ky),
then it is of the form

∑

m

⎡

⎣bm cos mx +
∑

0≤q<|p|
cm,p,q(cos(mx + (pk + q)y)+ cos(mx + (pk − q)y))

⎤

⎦ .

This property is obviously true for polynomials of degree one, since any such polynomial is just
a linear combination of the three functions. Also, any polynomial in cos x, cos y, cos(x+ ky)
can be obtained by adding polynomials of lower degrees, and eventually multiplying them by
one of the three functions.

Hence it suffices to show that the property is invariant under multiplication by cos x, cos y,
and cos(x + ky). It can be verified that this follows from

2 cos(ax + by) cos x = cos((a+ 1)x + by)+ cos((a− 1)x + by),
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2 cos(ax + by) cos y = cos(ax + (b+ 1)y)+ cos(ax + (b− 1)y),

2 cos(ax + by) cos(x + ky) = cos((a+ 1)x + (b+ k)y)+ cos((a− 1)x + (b− k)y).

So for cos(ax+ by) to be a polynomial in cos x, cos y, and cos(x+ ky), it must be such a sum
with a single term. This can happen only if b is divisible by k.

The answer to the problem is therefore k = ±1,±3,±9,±11,±33,±99.
(Proposed by R. Gelca for the USA Mathematical Olympiad, 1999)

778. Clearly, this problem is about the addition formula for the cosine. For it to show up we
need products of sines and cosines, and to obtain them it is natural to square the relations. Of
course, we first separate a and d from b and c. We have

(2 cos a+ 9 cos d)2 = (6 cos b+ 7 cos c)2,

(2 sin a− 9 sin d)2 = (6 sin b− 7 sin c)2.

This further gives

4 cos2 a+ 36 cos a cos d + 81 cos2 d = 36 cos2 b+ 84 cos b cos c+ 49 cos2 c,

4 sin2 a− 36 sin a sin d + 81 sin2 d = 36 sin2 b− 84 sin b sin c+ 49 sin2 c.

After adding up and using sin2 x + cos2 x = 1, we obtain

85+ 36(cos a cos d − sin a sin d) = 85+ 84(cos b cos c− sin b sin c).

Hence 3 cos(a+ d) = 7 cos(b+ c), as desired.
(S. Korean Mathematics Competition, 2002, proposed by T. Andreescu)

779. The first equality can be written as

sin3 a+ cos3 a+
(
−1

5

)3

− 3(sin a)(cos a)

(
−1

5

)
= 0.

We have seen in Section 2.1.1 that the expression x3 + y3 + z3 − 3xyz factors as

1

2
(x + y+ z)[(x − y)2 + (y− z)2 + (z − x)2].

Here x = sin a, y = cos a, z = − 1
5 . It follows that either x + y + z = 0 or x = y = z.

The latter would imply sin a = cos a = − 1
5 , which violates the identity sin2 a + cos2 a = 1.

Hence x + y+ z = 0, implying sin a+ cos a = 1
5 . Then 5(sin a+ cos a) = 1, and so

sin2 a+ 2 sin a cos a+ cos2 a = 1

25
.

It follows that 1+ 2 sin a cos a = 0.04; hence

5(sin a+ cos a)+ 2 sin a cos a = 0.04,

as desired.

http://dx.doi.org/10.1007/978-3-319-58988-6_2
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Conversely,
5(sin a+ cos a)+ 2 sin a cos a = 0.04

implies
125(sin a+ cos a) = 1− 50 sin a cos a.

Squaring both sides and setting 2 sin a cos a = b yields

1252 + 1252b = 1− 50b+ 252b2,

which simplifies to
(25b+ 24)(25b− 651) = 0.

We obtain 2 sin a cos a = − 24
25 , or 2 sin a cos a = 651

25 . The latter is impossible because
sin 2a ≤ 1. Hence 2 sin a cos a = −0.96, and we obtain sin a+ cos a = 0.2. Then

5(sin3 a+ cos3 a)+ 3 sin a cos a

= 5(sin a+ cos a)(sin2 a− sin a cos a+ cos2 a)+ 3 sin a cos a

= sin2 a− sin a cos a+ cos2 a+ 3 sin a cos a = (sin a+ cos a)2 = (0.2)2 = 0.04,

as desired.
(Mathematical Reflections, proposed by T. Andreescu)

780. If we set bk = tan
(
ak − π

4

)
, k = 0, 1, . . . , n, then

tan
(

ak − π

4
+ π

4

)
=

1+ tan
(

ak − π

4

)

1− tan
(

ak − π

4

) = 1+ bk

1− bk
.

So we have to prove that
n∏

k=0

1+ bk

1− bk
≥ nn+1.

The inequality from the statement implies

1+ bk ≥
∑

l �=k

(1− bl), k = 0, 1, . . . , n.

Also, the condition ak ∈
(
0, π

2

)
implies−1 < bk < 1, k = 0, 1, . . . , n, so the numbers 1− bk

are all positive. To obtain their product, it is natural to apply the AM-GM inequality to the
right-hand side of the above inequality, and obtain

1+ bk ≥ n n

√∏

l �=k

(1− bl), k = 0, 1, . . . , n.

Multiplying all these inequalities yields

n∏

k=0

(1+ bk) ≥ nn+1 n

√√√√
n∏

l=0

(1− bl)
n.
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Hence
n∏

k=0

1+ bk

1− bk
≥ nn+1,

as desired.
(USA Mathematical Olympiad, 1998, proposed by T. Andreescu)

781. If we multiply the denominator and the numerator of the left-hand side by cos t, and of
the right-hand side by cos nt, we obtain the obvious equality

(
eit

e−it

)n

= eint

e−int
.

782. Using the de Moivre formula, we obtain

(1+ i)n =
[√

2
(

cos
π

4
+ i sin

π

4

)]n = 2n/2
(

cos
nπ

4
+ i sin

nπ

4

)
.

Expanding (1+ i)n and equating the real parts on both sides, we deduce the identity from the
statement.

783. Denote the sum in question by S1 and let

S2 =
(

n

1

)
sin x +

(
n

2

)
sin 2x + · · · +

(
n

n

)
sin nx.

Using Euler’s formula, we can write

1+ S1 + iS2 =
(

n

0

)
+
(

n

1

)
eix +
(

n

2

)
e2ix + · · · +

(
n

n

)
einx.

By the multiplicative property of the exponential we see that this is equal to

n∑

k=0

(
n

k

)
(eix)k = (1+ix)n =

(
2 cos

x

2

)n
(ei x

2 )n.

The sum in question is the real part of this expression less 1, which is equal to

2n cosn x

2
cos

nx

2
− 1.

784. Combine f (x) with the function g(x) = ex cos θ sin(sin x sin θ) to write

f (x)+ ig(x) = ex cos θ (cos(x sin θ)+ i sin(x sin θ))

= ex cos θ · eix sin θ = ex(cos θ+i sin θ).

Using the de Moivre formula we expand this in a Taylor series as

1+ x

1!(cos θ + i sin θ)+ x2

2! (cos 2θ + i sin 2θ)+ · · · + xn

n! (cos nθ + i sin nθ)+ · · ·
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Consequently, the Taylor expansion of f (x) around 0 is the real part of this series, i.e.,

f (x) = 1+ cos θ

1! x + cos 2θ

2! x2 + · · · + cos nθ

n! xn + · · ·

785. Let zj = r(cos tj + i sin tj), with r �= 0 and tj ∈ (0, π) ∪ (π, 2π), j = 1, 2, 3. By
hypothesis,

sin t1 + r sin(t2 + t3) = 0,

sin t2 + r sin(t3 + t1) = 0,

sin t3 + r sin(t1 + t2) = 0.

Let t = t1 + t2 + t3. Then

sin tj = −r sin(t − ti) = −r sin t cos tj − r cos t sin tj, for j = 1, 2, 3,

which means that

cot tj sin t = 1

r
− cos t, for j = 1, 2, 3.

If sin t �= 0, then cot t1 = cot t2 = cot t3. There are only two possible values that t1, t2, t3 can
take between 0 and 2π , and so two of the tj are equal, which is ruled out by the hypothesis. It
follows that sin t = 0. Then on the one hand, r cos t − 1 = 0, and on the other, cos t = ±1.
This can happen only if cos t = 1 and r = 1. Therefore, z1z2z3 = r3 cos t = 1, as desired.

786. Consider the complex number ω = cos θ + i sin θ . The roots of the equation

(
1+ ix

1− ix

)n

= ω2n

are precisely ak = tan
(
θ + kπ

n

)
, k = 1, 2, . . . , n. Rewriting this as a polynomial equation of

degree n, we obtain

0 = (1+ ix)2 − ω2n(1− ix)n

= (1− ω2n)+ ni(1+ ω2n)x + · · · + nin−1(1− ω2n)xn−1 + in(1+ ω2n)xn.

The sum of the zeros of the latter polynomial is

−nin−1(1− ω2n)

in(1+ ω2n)
,

and their product
−(1− ω2n)

in(1+ ω2n)
.

Therefore,
a1 + a2 + · · · + an

a1a2 · · · an
= nin−1 = n(−1)(n−1)/2.

(67th W.L. Putnam Competition, 2006, proposed by T. Andreescu)
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787. More generally, for an odd integer n, let us compute

S = (cos α)(cos 2α) · · · (cos nα)

with α = 2π
2n+1 . We can let ζ = eiα and then

S = 2−n
n∏

k=1

(ζ k + ζ−k).

Since ζ k + ζ−k = ζ 2n+1−k + ζ−(2n+1−k), k = 1, 2, . . . , n, we obtain

S2 = 2−2n
2n∏

k=1

(ζ k + ζ−k) = 2−2n ×
2n∏

k=1

ζ−k ×
2n∏

k=1

(1+ ζ 2k).

The first of the two products is just ζ−(1+2+···+2n). Because 1 + 2 + · · · + 2n = n(2n + 1),
which is a multiple of 2n+ 1, this product equals 1.

As for the product
2n∏

k=1

(1+ζ 2k), note that it can be written as
2n∏

k=1

(1+ζ k), since the numbers

ζ 2k range over the (2n+ 1)st roots of unity other than 1 itself, taking each value exactly once.
We compute this using the factorization

zn+1 − 1 = (z − 1)

2n∏

k=1

(z − ζ k).

Substituting z = −1 and dividing both sides by −2 gives

2n∏

k=1

(−1− ζ k) = 1,

so
2n∏

k=1

(1+ ζ k) = 1.

Hence S2 = 2−2n, and so S = ±2−n. We need to determine the sign.
For 1 ≤ k ≤ n, cos kα < 0 when π

2 < kα < π . The values of k for which this happens
are
⌈

n+1
2

⌉
through n. The number of such k is odd if n ≡ 1 or 2 (mod 4), and even if n ≡ 0

or 3 (mod 4). Hence

S =
{+2−n if n ≡ 1 or 2 (mod 4),

−2−n if n ≡ 0 or 3 (mod 4).

Taking n = 999 ≡ 3 (mod 4), we obtain the answer to the problem, −2−999.
(Proposed by J. Propp for the USA Mathematical Olympiad, 1999)

788. Define the complex numbers p = xeiA, q = yeiB, and r = zeiC and consider f (n) =
pn + qn + rn. Then F(n) = Im(f (n)). We claim by induction that f (n) is real for all n, which
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would imply that F(n) = 0. We are given that f (1) and f (2) are real, and f (0) = 3 is real as
well.

Now let us assume that f (k) is real for all k ≤ n for some n ≥ 3, and let us prove that
f (n+1) is also real. Note that a = p+q+r = f (1), b = pq+qr+rp = 1

2 (f (1)2− f (2)), and
c = pqr = xyzei(A+B+C) are all real. The numbers p, q, r are the zeros of the cubic polynomial
P(t) = t3 − at2 + bt − c, which has real coefficients. Using this fact, we obtain

f (n+ 1) = pn+1 + qn+1 + rn+1

= a(pn + qn + rn)− b(pn−1 + qn−1 + rn−1)+ c(pn−2 + qn−2 + rn−2)

= af (n)− bf (n− 1)+ cf (n− 2).

Since f (n), f (n− 1) and f (n− 2) are real by the induction hypothesis, it follows that f (n+ 1)

is real, and we are done.

789. By eventually changing φ(t) to φ(t)+ θ
2 , where θ is the argument of 4P2− 2Q, we may

assume that 4P2 − 2Q is real and positive. We can then ignore the imaginary parts and write

4P2 − 2Q = 4

(∫ ∞

0
e−t cos φ(t)dt

)2

− 4

(∫ ∞

0
e−t sin φ(t)dt

)2

− 2
∫ ∞

0
e−2t cos φ(t)dt.

Ignore the second term. Increase the first term using the Cauchy-Schwarz inequality:

(∫ ∞

0
e−t cos φ(t)dt

)2

=
(∫ ∞

0
e−

1
2 te−

1
2 t cos φ(t)dt

)2

≤
(∫ ∞

0
e−tdt

)(∫ ∞

0
e−t cos2 φ(t)dt

)

=
∫ ∞

0
e−t cos2 φ(t)dt.

We then have

4P2 − 2Q ≤ 4
∫ ∞

0
e−t cos2 φ(t)dt − 2

∫ ∞

0
e−2t cos 2φ(t)dt

= 4
∫ ∞

0
(e−t − e−2t) cos2 φ(t)dt + 1

≤ 4
∫ ∞

0
(e−t − e−2t)dt + 1 = 3.

Equality holds only when cos2 φ(t) = 1 for all t, and in general if φ(t) is constant.
(K. Löwner, from G. Pólya, G. Szegö, Aufgaben und Lehrsätze aus der Analysis, Springer-

Verlag, 1964)

790. The given inequality follows from the easier
√

ab+√(1− a)(1− b) ≤ 1.
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To prove this one, let a = sin2 α and b = sin2 β, α, β ∈ [0, π
2

]
. The inequality becomes

sin α sin β + cos α cos β ≤ 1, or cos(α − β) ≤ 1, and this is clearly true.

791. First, note that if x > 2, then x3−3x > 4x−3x = x >
√

x + 2, so all solutions x should
satisfy −2 ≤ x ≤ 2. Therefore, we can substitute x = 2 cos a for some a ∈ [0, π]. Then the
given equation becomes

2 cos 3a = √2(1+ cos a) = 2 cos
a

2
,

so

2 sin
7a

4
sin

5a

4
= 0,

meaning that a = 0, 4π
7 , 4π

5 . It follows that the solutions to the original equation are x = 2,
2 cos 4π

7 , − 1
2 (1+√5).

792. The points (x1, x2) and (y1, y2) lie on the circle of radius c centered at the origin. Parame-
trizing the circle, we can write (x1, x2) = (c cos φ, c sin φ) and (y1, y2) = (c cos ψ, c sin ψ).
Then

S = 2− c(cos φ + sin φ + cos ψ + sin ψ)+ c2(cos φ cos ψ + sin φ sin ψ)

= 2+ c
√

2
(
− sin
(
φ + π

4

)
− sin
(
ψ + π

4

))
+ c2 cos(φ − ψ).

We can simultaneously increase each of − sin
(
φ + π

4

)
, − sin

(
ψ + π

4

)
, and cos(φ − ψ) to 1

by choosing φ = ψ = 5π
4 . Hence the maximum of S is 2+ 2c

√
2+ c2 = (c+√2)2.

(Proposed by C. Rousseau for the USA Mathematical Olympiad, 2002)

793. Let a = tan α, b = tan β, c = tan γ , α, β, γ ∈ (−π
2 , π

2

)
. Then a2 + 1 = sec2 α,

b2 + 1 = sec2 β, c2 + 1 = sec2 γ , and the inequality takes the simpler form

| sin(α − β)| ≤ | sin(α − γ )| + | sin(β − γ )|.
This is proved as follows:

| sin(α − β)| = | sin(α − γ + γ − β)| = | sin(α − γ ) cos(γ − β)+ sin(γ − β) cos(α − γ )|
≤ | sin(α − γ )|| cos(γ − β)| + | sin(γ − β)|| cos(α − γ )| ≤ | sin(α − γ )| + | sin(γ − β)|.

(N.M. Sedrakyan, A.M. Avoyan, Neravenstva, Metody Dokazatel’stva (Inequalities,
Methods of Proof), FIZMATLIT, Moscow, 2002)

794. Expressions of the form x2 + 1 suggest a substitution by the tangent. We let a = tan u,
b = tan v, c = tan w, u, v, w ∈ (−π

2 , π
2

)
. The product on the right-hand side becomes

sec2 u sec2 v sec2 w, and the inequality can be rewritten as

−1 ≤ (tan u tan v+ tan u tan w+ tan v tan w− 1) cos u cos v cos w ≤ 1.
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The expression in the middle is simplified as follows:

(tan u tan v+ tan u tan w+ tan v tan w− 1) cos u cos v cos w

= sin u sin v cos w+ sin u cos v sin w+ cos u sin v sin w− cos u cos v cos w

= sin u sin(v+ w)− cos u cos(v+ w) = − cos(u+ v+ w).

And of course this takes values in the interval [−1, 1]. The inequality is proved.
(T. Andreescu, Z. Feng, 103 Trigonometry Problems, Birkhäuser 2004)

795. The denominators suggest the substitution based on tangents. This idea is further
enforced by the identity x + y + z = xyz, which characterizes the tangents of the angles of
a triangle. Set x = tan A, y = tan B, z = tan C, with A, B, C the angles of an acute triangle.
Note that

tan A√
1+ tan2 A

= tan A

sec A
= sin A,

so the inequality is equivalent to

sin A+ sin B+ sin C ≤ 3
√

3

2
.

This is Jensen’s inequality (see Section 3.2.7) applied to the function f (x) = sin x, which is
concave on

(
0, π

2

)
.

796. If we multiply the inequality through by 2, thus obtaining

2x

1− x2
+ 2y

1− y2
+ 2z

1− z2
≥ 3
√

3,

the substitution by tangents becomes transparent. This is because we should recognize the
double-angle formulas on the left-hand side.

The conditions 0 < x, y, z < 1 and xy + xz + yz = 1 characterize the tangents of the
half-angles of an acute triangle. Indeed, if x = tan A

2 , y = tan B
2 , and z = tan C

2 , then
0 < x, y, z < 1 implies A, B, C ∈ (0, π

2

)
. Also, the equality xy + xz + yz = 1, which is the

same as
1

z
= x + y

1− xy
,

implies

cot
C

2
= tan

A+ B

2
.

And this is equivalent to π
2 − C

2 = A+B
2 , or A+ B+ C = π .

Returning to the problem, with the chosen trigonometric substitution the inequality
assumes the much simpler form

tan A+ tan B+ tan C ≥ 3
√

3.

And this is Jensen’s inequality applied to the tangent function, which is convex on
(
0, π

2

)
, and

to the points A, B, C ∈ (0, π
2 ), with A+ B+ C = π .

797. The numbers x, y, z have all the same sign, and if (x, y, z) is a solution, then so is
(−x,−y,−z). Thus it suffices to find the positive solutions.

http://dx.doi.org/10.1007/978-3-319-58988-6_3
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If we denote x = tan α, y = tan β, and z = tan γ , with α, β, γ ∈ (0, π
2 ), then the last

equation implies that α, β, γ add up to π
2 . Indeed, this equation can be rewritten as

1

z
= x + y

1− xy
,

which is the same as cot α = tan(α + β).
On the other hand, the first group of equations can be rewritten as

x

3(1+ x2)
= y

4(1+ y2)
= z

5(1+ z2)
.

Using the trigonometric identity

sin 2t = 2 tan t

1+ tan2 t
,

can rewrite this as

sin 2α

3
= sin 2β

4
= sin 2γ

5
.

Given that 2α, 2β and 2γ are the angles of a triangle, we deduce using the law of sines that the
side-lengths of this triangle are proportional to 3, 4, and 5. This implies γ = 45◦, so z = 1.
Also sin 2α = 3

5 and sin 2β = 4
5 and hence x = tan α = 1

3 and y = tan β = 1
2 . We obtain the

solutions
(

1

3
,

1

2
, 1

)
and

(
−1

3
,−1

2
,−1

)
.

798. From the first equation, it follows that if x is 0, then so is y, making x2 indeterminate;
hence x, and similarly y and z, cannot be 0. Solving the equations, respectively, for y, z, and
x, we obtain the equivalent system

y = 3x − x3

1− 3x2
,

z = 3y − y3

1− 3y2
,

x = 3z − z3

1− 3z2
,

where x, y, z are real numbers different from 0.
There exists a unique number u in the interval

(−π
2 , π

2

)
such that x = tan u. Then

y = 3 tan u− tan3 u

1− 3 tan2 u
= tan 3u,

z = 3 tan 3u− tan3 3u

1− 3 tan2 3u
= tan 9u,
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x = 3 tan 9u− tan3 9u

1− 3 tan2 9u
= tan 27u.

The last equality yields tan u = tan 27u, so u and 27u differ by an integer multiple of π .
Therefore, u = kπ

26 for some k satisfying −π
2 < kπ

26 < π
2 . Besides, k must not be 0, since

x �= 0. Hence the possible values of k are ±1,±2, . . . ,±12, each of them generating the
corresponding triple

x = tan
kπ

26
, y = tan

3kπ

26
, z = tan

9kπ

26
.

It is immediately checked that all of these triples are solutions of the initial system.

799. In the case of the sequence (an)n, the innermost square root suggests one of the substi-
tutions an = 2 sin tn or an = 2 cos tn, with tn ∈

[
0, π

2

]
, n ≥ 0. It is the first choice that allows

a further application of a half-angle formula:

2 sin tn+1 = an+1 =
√

2−
√

4− 4 sin2 tn =
√

2− 2 cos tn = 2 sin
tn
2

.

It follows that tn+1 = tn
2 , which combined with t0 = π

4 gives tn = π

2n+2 for n ≥ 0. Therefore,
an = 2 sin π

2n+2 for n ≥ 0.
For (bn)n, the innermost square root suggests a trigonometric substitution as well, namely

bn = 2 tan un, n ≥ 0. An easy induction shows that the sequence (bn)n is positive, so we can
choose un ∈

[
0, π

2

)
. Substituting in the recursive formula, we obtain

2 tan un+1 = bn+1 = 2 tan un

2+√4+ 4 tan un
= 4 tan un

2+ 2

cos un

= 2 · sin un

1+ cos un
= 2 tan

un

2
.

Therefore, un+1 = un
2 , which together with u0 = π

4 implies un = π

2n+2 , n ≥ 0. Hence
bn = 2 tan π

2n+2 for n ≥ 0.
Returning to the problem, we recall that sine and tangent are decreasing on

(
0, π

2

)
and

their limit at 0 is 0. This takes care of (a).
For (b), note that the functions sin x/x and tan x/x are increasing, respectively, decreasing,

on
(
0, π

2

)
(this can be checked using derivatives). Hence 2nan = π

2 sin π

2n+2 /
π

2n+2 is increasing,
and 2nbn = π

2 tan π

2n+2 /
π

2n+2 is decreasing. Also, since

lim
x→0

sin x

x
= lim

x→0

tan x

x
= 1,

it follows that

lim
n→∞ 2nan = π

2
lim

n→∞

sin
π

2n+2

π

2n+2

= π

2
,

and similarly lim
n→∞ 2nbn = π

2 . This answers (b).
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The first inequality in (c) follows from the fact that tan x > sin x for x ∈ (0, π
2

)
. For the

second inequality we use Taylor series expansions. We have

tan x − sin x = x − x3

12
+ o(x4)− x + x3

6
+ o(x4) = x3

12
+ o(x4).

Hence

bn − an = 2
(

tan
π

2n+2
− sin

π

2n+2

)
= π3

6 · 26
· 1

8n
+ o

(
1

24n

)
.

It follows that for C > π3

6·26 we can find n0 such that bn − an < C
8n for n ≥ n0. Choose C such

that the inequality also holds for (the finitely many) n < n0. This concludes (c).
(8th International Competition in Mathematics for University Students, 2001)

800. With the substitution y = 1/x we obtain the equation y3 − 3y+ 1 = 0. The expression
on the left should remind us of the trigonometric identity

2 sin 3t = 3(2 sin t)− (2 sin t)3.

With the trigonometric substitution 2 sin t = y we obtain the equation 2 sin 3t = 1. Hence
3t = k · 360◦ + 30◦ and 3t = k · 360◦ + 150◦, k ∈ Z. The solutions in [0◦, 360◦] are
t = 10◦, 50◦, 130◦, 170◦, 250◦, 290◦. Checking cases, we obtain that the solutions to the
equation y3 − 3y + 1 = 0 are 2 cos 10◦, 2 cos 50◦, 2 cos 250◦. Hence the solutions to the
original equation are 1

2 sin 10◦ , 1
2 sin 50◦ , 1

2 sin 250◦ = − 1
2 sin 70◦ . Of these the last is negative and the

first two are positive, with the largest being 1
2 sin 10◦ . Thus α = 1

2 sin 10◦ . Set β = 1
2 sin 50◦ and

γ = − 1
2 sin 70◦ . Clearly β > |γ |. Also, since 2 sin 50◦ > 2 sin 45◦ = √2, β <

√
2

2 < 0.75.
Thus for n ≥ 3,

0 < βn + γ n < 1.

Let us consider the sequence un = αn+βn+γ n, n ≥ 0. Then un+3 = 3un+2−un, u0 = 3,
u1 = 3, u2 = 9 (the recursive relation for Newton’s polynomials). In particular it follows that
un is an integer, for all n, and consequently, if n ≥ 3, �αn� = un − 1.

Modulo 17 the sequence must be periodic, by the Pigeonhole Principle. We compute
u0 ≡ 3, u1 ≡ 3, u2 ≡ 9, u3 ≡ 7, u4 ≡ 1, u5 ≡ 11, u6 ≡ 9, u7 ≡ 9, u8 ≡ 16, u9 ≡ 5, u10 ≡ 6,
u11 ≡ 2, u12 ≡ 1, u13 ≡ 14, u14 ≡ 6, u15 ≡ 0, u16 ≡ 3, u17 ≡ 3, u18 ≡ 9. This shows that
un is periodic modulo 17 with period 16. Since 1788 ≡ 12(mod 17) and 1988 ≡ 4(mod 17),
we obtain u1788 ≡ u12 ≡ 1(mod 17) and u1988 ≡ u4 ≡ 1(mod 17). The problem is solved.

(Short list, 29th International Mathematical Olympiad, 1988)

801. Writing xn = tan an for 0◦ < an < 90◦, we have

xn+1 = tan an +
√

1+ tan2 an = tan an + sec an = 1+ sin an

cos an
= tan

(
90◦ + an

2

)
.

Because a1 = 60◦, we have a2 = 75◦, a3 = 82.5◦, and in general an = 90◦ − 30◦
2n−1 , whence

xn = tan

(
90◦ − 30◦

2n−1

)
= cot

(
30◦

2n−1

)
= cot θn, where θn = 30◦

2n−1
.
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A similar calculation shows that

yn = tan 2θn = 2 tan θn

1− tan2 θn
,

which implies that

xnyn = 2

1− tan2 θn
.

Because 0◦ < θn < 45◦, we have 0 < tan2 θn < 1 and xnyn > 2. For n > 1, we have θn < 30◦,
and hence tan2 θn < 1

3 . It follows that xnyn < 3, and the problem is solved.
(Team Selection Test for the International Mathematical Olympiad, Belarus, 1999)

802. Let a = tan x, b = tan y, c = tan z, where x, y, z ∈ (0, π
2

)
. From the identity

tan(x + y+ z) = tan x + tan y+ tan z − tan x tan y tan z

1− tan x tan y− tan y tan z − tan x tan z

it follows that abc = a + b + c only if x + y + z = kπ , for some integer k. In this case
tan(3x + 3y+ 3z) = tan 3kπ = 0, and from the same identity it follows that

tan 3x tan 3y tan 3z = tan 3x + tan 3y + tan 3z.

This is the same as

3a− a3

3a2 − 1
· 3b− b3

3b2 − 1
· 3c− c3

3c2 − 1
= 3a− a3

3a2 − 1
+ 3b− b3

3b2 − 1
+ 3c− c3

3c2 − 1
,

and we are done.
(Mathematical Olympiad Summer Program, 2000, proposed by T. Andreescu)

803. Rewrite the second equation as

a2

yz
+ b2

zx
+ c2

xy
+ abc

xyz
= 4.

We recognize

u2 + v2 + w2 + uvw = 4.

Then there is an acute triangle ABC with u = 2 cos A, v = 2 cos B, w = 2 cos C. The first
equation reads

x + y+ z = 2
√

xy cos C + 2
√

yz cos A+ 2
√

zx cos B.

We solve this as a quadratic in
√

x. The discriminant is −4(
√

y sin C − √z sin B)2. Hence√
y sin C = √z sin B. It follows that

√
x = √y cos C +√z cos B = √y cos C +

√
y

sin B
sin C cos B

=
√

y

sin B
(sin B cos C + sin C cos B) =

√
y

sin B
sin(B+ C) =

√
y

sin B
sin A.



Geometry and Trigonometry 711

Combining the last two relations we find that
√

x

sin A
=
√

y

sin B
=

√
z

sin C
.

Using the fact that cos A = a
2
√

yz , cos B = b
2
√

zx , cos C = c
2
√

xy we get

x = b+ c

2
, y = c+ a

2
, z = a+ b

2
.

804. With the substitution x = cosh t, the integral becomes

∫
1

sinh t + cosh t
sinh tdt =

∫
et − e−t

2et
dt = 1

2

∫
(1− e−2t)dt = 1

2
t + e−2t

4
+ C

= 1

2
ln(x +

√
x2 − 1)+ 1

4
· 1

2x2 − 1+ 2x
√

x2 − 1
+ C.

805. Suppose by contradiction that there exists an irrational a and a positive integer n such that
the expression from the statement is rational. Substitute a = cosh t, where t is an appropriately
chosen real number. Then

n
√

a+
√

a2 − 1+ n
√

a−
√

a2 − 1 = n
√

cosh t + sinh t + n
√

cosh t − sinh t

= n
√

et + n
√

e−t = et/n + e−t/n = 2 cosh
t

n
.

It follows that cosh t
n is rational. From the recurrence relation

cosh(k + 1)α = 2 cosh α cosh kα − cosh(k − 1)α, k ≥ 1,

applied to α = t
n , we can prove inductively that cosh k t

n is rational for all positive integers k.
In particular, cosh n t

n = cosh t = a is rational. This contradicts the hypothesis. Hence our
assumption was false and the conclusion follows.

(Romanian Team Selection Test for the International Mathematical Olympiad, 1979, pro-
posed by T. Andreescu)

806. We use the triple-angle formula

sin 3x = 3 sin x − 4 sin3 x,

which we rewrite as

sin3 x = 1

4
(3 sin x − sin 3x).

The expression on the left-hand side of the identity from the statement becomes

3 · 3 sin 9◦ − sin 27◦

4
+ 9 · 3 sin 27◦ − sin 81◦

4
+ 3 · 3 sin 81◦ − sin 243◦

4

+3 sin 243◦ − sin 729◦

4
.
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This collapses to

81 sin 9◦ − sin 729◦

4
= 81 sin 9◦ − sin 9◦

4
= 20 sin 9◦.

(T. Andreescu)

807. The triple-angle formula for the tangent gives

3 tan 3x = 3(3 tan x − tan2 x)

1− 3 tan2 x
= 3 tan3 x − 9 tan x

3 tan2 x − 1
= tan x − 8 tan x

3 tan2 x − 1
.

Hence

1

cot x − 3 tan x
= tan x

1− 3 tan2 x
= 1

8
(3 tan 3x − tan x) for all x �= k

π

2
, k ∈ Z.

It follows that the left-hand side telescopes as

1

8
(3 tan 27◦ − tan 9◦ + 9 tan 81◦ − 3 tan 27◦ + 27 tan 243◦ − 9 tan 81◦ + 81 tan 729◦

− 27 tan 243◦) = 1

8
(81 tan 9◦ − tan 9◦) = 10 tan 9◦,

and we are done.
(T. Andreescu)

808. Multiply the left-hand side by sin 1◦ and transform it using the identity

sin((k + 1)◦ − k◦)
sin k◦ sin(k + 1)◦

= cot k◦ − cot(k + 1)◦.

We obtain

cot 45◦ − cot 46◦ + cot 47◦ − cot 48◦ + · · · + cot 131◦ − cot 132◦ + cot 133◦ − cot 134◦.

At first glance this sum does not seem to telescope. It does, however, after changing the order
of terms. Indeed, if we rewrite the sum as

cot 45◦ − (cot 46◦ + cot 134◦)+ (cot 47◦ + cot 133◦)− (cot 48◦ + cot 132◦)
+ · · · + (cot 89◦ + cot 91◦)− cot 90◦,

then the terms in the parentheses cancel, since they come from supplementary angles. The
conclusion follows from cot 45◦ = 1 and cot 90◦ = 0.

(T. Andreescu)

809. The formula

tan(a− b) = tan a− tan b

1+ tan a tan b

translates into
arctan

x − y

1+ xy
= arctan x − arctan y.
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Applied to x = n+ 1 and y = n− 1, it gives

arctan
2

n2
arctan

(n+ 1)− (n− 1)

1+ (n+ 1)(n− 1)
= arctan(n+ 1)− arctan(n− 1).

The sum in part (a) telescopes as follows:

∞∑

n=1

arctan
2

n2
= lim

N→∞

N∑

n=1

arctan
2

n2
= lim

N→∞

N∑

n=1

(arctan(n+ 1)− arctan(n− 1))

= lim
N→∞(arctan(N + 1)+ arctan N − arctan 1− arctan 0)

= π

2
+ π

2
− π

4
= 3π

4
.

The sum in part (b) is only slightly more complicated. In the above-mentioned formula for the

difference of arctangents we have to substitute x =
(

n+1√
2

)2
and y =

(
n−1√

2

)2
. This is because

8n

n4 − 2n2 + 5
= 8n

4+ (n2 − 1)2
= 2[(n+ 1)2 − (n− 1)2]

4− (n+ 1)2(n− 1)2
=

(
n+ 1√

2

)2

−
(

n− 1√
2

)2

1−
(

n+ 1√
2

)2 (n− 1√
2

)2 .

The sum telescopes as

∞∑

n=1

arctan
8n

n4 − 2n2 + 5
= lim

N→∞

N∑

n=1

arctan
8n

n4 − 2n2 + 5

= lim
N→∞

N∑

n=1

[

arctan

(
n+ 1√

2

)2

− arctan

(
n− 1√

2

)2
]

= lim
N→∞

[

arctan

(
N + 1√

2

)2

+ arctan

(
N√

2

)2

− arctan 0− arctan
1

2

]

= π − arctan
1

2
.

(American Mathematical Monthly, proposed by J. Anglesio)

810. In order for the series to telescope, we wish to write the general term in the form
arcsin bn − arcsin bn+1. To determine bn let us apply the sine function and write

√
n+ 1−√n√

n+ 2
√

n+ 1
= sin un = bn

√
1− b2

n+1 − bn+1

√
1− b2

n.
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If we choose bn = 1√
n+1

, then this equality is satisfied. Therefore,

S = lim
N→∞

N∑

n=0

(
arcsin

1√
n+ 1

− arcsin
1√

n+ 2

)
= arcsin 1− lim

N→∞ arcsin
1√

N + 2
= π

2
.

(The Mathematics Gazette Competition, Bucharest, 1927)

811. The radii of the circles satisfy the recurrence relation

R1 = 1, Rn+1 = Rn cos
π

2n+1
.

Hence

lim
n→∞Rn =

∞∏

n=1

cos
π

2n
.

The product can be made to telescope if we use the double-angle formula for sine written
cos x = sin 2x

2 sin x . We then have

∞∏

n=2

cos
π

2n
= lim

N→∞

N∏

n=2

cos
π

2n
= lim

N→∞

N∏

n=2

1

2
·

sin
π

2n−1

sin
π

2n

= lim
N→∞

1

2N

1

2N

sin
π

2

sin
π

2N

= 2

π
lim

N→∞

π

2N

sin
π

2N

= 2

π
.

Thus the answer to the problem is 2
π

.

Remark. As a corollary, we obtain the formula

2

π
=
√

2

2
·
√

2+√2

2
·
√

2+
√

2+√2

2
· · · .

This formula is credited to F.Viète, although Archimedes already used this approximation of
the circle by regular polygons to compute π .

812. For k = 1, 2, . . . , 59,

1− cos(60◦ + k◦)
cos k◦

= cos k◦ − cos(60◦ + k◦)
cos k◦

= 2 sin 30◦ sin(30◦ + k◦)
cos k◦

= cos(90◦ − 30◦ − k◦)
cos k◦

= cos(60◦ − k◦)
cos k◦

.

So
59∏

k=1

(
1− cos(60◦ + k◦)

cos k◦

)
= cos 59◦ cos 58◦ · · · cos 1◦

cos 1◦ cos 2◦ · · · cos 59◦
= 1.
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813. We have

(1− cot 1◦)(1− cot 2◦) · · · (1− cot 44◦)

=
(

1− cos 1◦

sin 1◦

)(
1− cos 2◦

sin 2◦

)
· · ·
(

1− cos 44◦

sin 44◦

)

= (sin 1◦ − cos 1◦)(sin 2◦ − cos 2◦) · · · (sin 44◦ − cos 44◦)
sin 1◦ sin 2◦ · · · sin 44◦

.

Using the identity sin a−cos a = √2 sin(a−45◦) in the numerators, we transform this further
into √

2 sin(1◦ − 45◦) · √2 sin(2◦ − 45◦) · · ·√2 sin(44◦ − 45◦)
sin 1◦ sin 2◦ · · · sin 44◦

= (
√

2)44(−1)44 sin 44◦ sin 43◦ · · · sin 1◦

sin 44◦ sin 43◦ . . . sin 1◦
.

After cancellations, we obtain 222.

814. We can write
√

3+ tan n◦ = tan 60◦ + tan n◦ = sin 60◦

cos 60◦
+ sin n◦

cos n◦

= sin(60◦ + n◦)
cos 60◦ cos n◦

= 2 · sin(60◦ + n◦)
cos n◦

= 2 · cos(30◦ − n◦)
cos n◦

.

And the product telescopes as follows:

29∏

n=1

(
√

3+ tan n◦) = 229
29∏

n=1

cos(30◦ − n◦)
cos n◦

= 229 · cos 29◦ cos 28◦ · · · cos 1◦

cos 1◦ cos 2◦ · · · cos 29◦
= 229.

(T. Andreescu)

815. (a) Note that

1− 2 cos 2x = 1− 2(2 cos2 x − 1) = 3− 4 cos2 x = −cos 3x

cos x
.

The product becomes
(
−1

2

)3 cos 3π
7

cos π
7

· cos 9π
7

cos 3π
7

· cos 27π
7

cos 9π
7

= −1

8
· cos 27π

7

cos π
7

.

Taking into account that cos 27π
7 = cos

(
2π − π

7

) = cos π
7 , we obtain the desired identity.

(b) Analogously,

1+ 2 cos 2x = 1+ 2(1− 2 sin2 x) = 3− 4 sin2 x = sin 3x

sin x
,

and the product becomes

1

24
· sin 3π

20

sin π
20

· sin 9π
20

sin 3π
20

· sin 27π
20

sin 9π
20

· sin 81π
20

sin 27π
20

= 1

16
· sin 81π

20

sin π
20

.

Because sin 81π
20 = sin

(
4π + π

20

) = sin π
20 , this is equal to 1

16 .
(T. Andreescu)
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816. (a) We observe that

sec x = 1

cos x
= 2 sin x

2 sin x cos x
= 2

sin x

sin 2x
.

Applying this to the product in question yields

24∏

n=1

sec(2n)◦ = 224
24∏

n=1

sin(2n)◦

sin(2n+1)◦
= 224 sin 2◦

sin(225)◦
.

We want to show that sin(225)◦ = cos 2◦. To this end, we prove that 225 − 2 − 90 is
an odd multiple of 180. This comes down to proving that 223 − 23 is an odd multiple of
45 = 5 × 9. Modulo 5, this is 2 · (22)11 − 3 = 2 · (−1)11 − 3 = 0, and modulo 9,
4 · (23)7 − 5 = 4 · (−1)7 − 5 = 0. This completes the proof of the first identity.

(b) As usual, we start with a trigonometric computation

2 cos x − sec x = 2 cos2 x − 1

cos x
= cos 2x

cos x
.

Using this, the product becomes

25∏

n=2

cos(2n+1)◦

cos(2n)◦
= cos(226)◦

cos 4◦
.

The statement of the problem suggests that cos(226)◦ = − cos 4◦, which is true only if 226−4
is a multiple of 180, but not of 360. And indeed, 226− 22 = 4(224− 1), which is divisible on
the one hand by 24 − 1 and on the other by 26 − 1. This number is therefore an odd multiple
of 4× 5× 9 = 180, and we are done.

(T. Andreescu)
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817. Because an−1 ≡ n − 1 (mod k), the first positive integer greater than an−1 that is
congruent to n modulo k must be an−1 + 1. The nth positive integer greater than an−1 that is
congruent to n modulo k is simply (n − 1)k more than the first positive integer greater than
an−1 that satisfies this condition. Therefore, an = an−1+1+(n−1)k. Solving this recurrence
gives

an = n+ (n− 1)nk

2
.

(Austrian Mathematical Olympiad, 1997)

818. First, let us assume that none of the progressions contains consecutive numbers, for
otherwise the property is obvious. Distributing the eight numbers among the three arithmetic
progressions shows that either one of the progressions contains at least four of the numbers,
or two of them contain exactly three of the numbers. In the first situation, if one progression
contains 2, 4, 6, 8, then it consists of all positive even numbers, and we are done. If it contains
1, 3, 5, 7, then the other two contain 2, 4, 6, 8 and again we have two possibilities: either
a progression contains two consecutive even numbers, whence it contains all even numbers
thereafter, or one progression contains 2, 6, the other 4, 8, and hence the latter contains 1980.

Let us assume that two progressions each contain exactly three of the numbers 1, 2, 3,
4, 5, 6, 7, 8. The numbers 3 and 6 must belong to different progressions, for otherwise all
multiples of 3 occur in one of the progressions and we are done. If 3 belongs to one of the
progressions containing exactly three of the numbers, then these numbers must be 3, 5, 7. But
then the other two progressions contain 2, 4, 6, 8, and we saw before that 1980 occurs in one
of them. If 6 belongs to one of the progressions containing exactly three of the numbers, then
these numbers must be 4, 6, 8, and 1980 will then belong to this progression. This completes
the proof.

(Austrian-Polish Mathematics Competition, 1980)

819. From f (1)+2f (f (1)) = 8 we deduce that f (1) is an even number between 1 and 6, that is,
f (1) = 2, 4, or 6. If f (1) = 2 then 2+2f (2) = 8, so f (2) = 3. Continuing with 3+2f (3) = 11,

© Springer International Publishing AG 2017
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we obtain f (3) = 4, and formulate the conjecture that f (n) = n+1 for all n ≥ 1. And indeed,
in an inductive manner we see that f (n) = n+ 1 implies n+ 1+ 2f (n+ 1) = 3n+ 5; hence
f (n+ 1) = n+ 2.

The case f (1) = 4 gives 4+ 2f (4) = 8, so f (4) = 2. But then 2+ 2f (f (4)) = 17, which
cannot hold for reasons of parity. Also, if f (1) = 6, then 6 + 2f (6) = 8, so f (6) = 1. This
cannot happen, because f (6)+ 2f (f (6)) = 1+ 2 · 6, which does not equal 3 · 6+ 5.

We conclude that f (n) = n+ 1, n ≥ 1, is the unique solution to the functional equation.

820. Let g(x) = f (x)−x. The given equation becomes g(x) = 2g(f (x)). Iterating, we obtain
that g(x) = 2nf (n)(x) for all x ∈ Z, where f (n)(x) means f composed n times with itself. It
follows that for every x ∈ Z, g(x) is divisible by all powers of 2, so g(x) = 0. Therefore, the
only function satisfying the condition from the statement is f (x) = x for all x.

(Revista Matematică din Timişoara (Timişoara Mathematics Gazette), proposed by L.
Funar)

821. Assume such a function exists, and define g : N → 3N+ 1, g(x) = 3f (x)+ 1. Then g
is bijective and satisfies g(xy) = g(x)g(y). This implies in particular that g(1) = 1.

We will need the following fact. If x is such that g(x) = n, where n = pq, and p, q are
prime numbers congruent to 2 modulo 3, then x is prime. Indeed, if x = yz, y, z ≥ 2, then
g(x) = g(y)g(z). This implies that n can be factored as the product of two numbers in 3N+1
which is not true.

Now choose two distinct numbers p and q that are congruent to 2 modulo 3 (for example,
2 and 5). Then pq, p2, and q2 are all in the image of g. Let g(a) = p2, g(b) = q2, and
g(c) = pq. We have

g(c2) = g(c)2 = p2q2 = g(a)g(b) = g(ab).

It follows that c2 = ab, with a, b, and c distinct prime numbers, and this is impossible.
Therefore, such a function f does not exist.

(Balkan Mathematical Olympiad, 1991)

822. We will prove that a sequence of positive integers satisfying the double inequality from
the statement terminates immediately. Precisely, we show that if a1, a2, . . . , aN satisfy the
relation from the statement for n = 1, 2, . . . , N , then N ≤ 5.

Arguing by contradiction, let us assume that the sequence has a sixth term a6. Set bn =
an+1− an, n = 1, . . . , 5. The relation from the statement implies an ≥ an−1 for n ≥ 2, and so
bn is a nonnegative integer for n = 1, . . . , 5. For n = 2, 3, 4 we have

−an ≤ −b2
n ≤ −an−1,

an ≤ b2
n+1 ≤ an+1.

Adding these two inequalities, we obtain

0 ≤ b2
n+1 − b2

n ≤ bn + bn−1,

or
0 ≤ (bn+1 − bn)(bn+1 + bn) ≤ bn + bn−1.
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Therefore, bn+1 ≤ bn for n = 2, 3, 4. If for n = 3 or n = 4 this inequality were strict, then
for that specific n we would have

0 < b2
n+1 − b2

n ≤ bn + bn−1 < bn+1 + bn,

with the impossible consequence 0 < bn+1−bn < 1. It follows that b3 = b4 = b5. Combining
this with the inequality from the statement, namely with

b2
3 ≤ a3 ≤ b2

4 ≤ a4 ≤ b2
5,

we find that a3 = a4. But then b3 = a4 − a3 = 0, which would imply a2 ≤ b2
3 = 0, a

contradiction. We conclude that the sequence can have at most five terms. This limit is sharp,
since a1 = 1, a2 = 3, a3 = 4, a4 = 6, a5 = 8 satisfies the condition from the statement.

(Romanian Team Selection Test for the International Mathematical Olympiad, 1985, pro-
posed by L. Panaitopol)

823. Setting x = y = z = 0 we find that f (0) = 3(f (0))3. This cubic equation has
the unique integer solution f (0) = 0. Next, with y = −x and z = 0 we have f (0) =
(f (x))3 + (f (−x))3 + (f (0))3, which yields f (−x) = −f (x) for all integers x; hence f is
an odd function. Now set x = 1, y= z = 0 to obtain f (1) = (f (1))3 + 2(f (0))3; hence
f (1) = f (1)3. Therefore, f (1) ∈ {−1, 0, 1}. Continuing with x = y = 1 and z = 0 and
x = y = z = 1 we find that f (2) = 2(f (1))3 = 2f (1) and f (3) = 3(f (1))3 = 3f (1). We
conjecture that f (x) = xf (1) for all integers x. We will do this by strong induction on the
absolute value of x, and for that we need the following lemma.

Lemma. If x is an integer whose absolute value is greater than 3, then x3 can be written as
the sum of five cubes whose absolute values are less than x.

Proof. We have

43 = 33 + 33 + 23 + 13 + 13, 53 = 43 + 43 + (−1)3 + (−1)3 + (−1)3,

63 = 53 + 43 + 33 + 03 + 03, 73 = 63 + 53 + 13 + 13 + 03,

and if x = 2k + 1 with k > 3, then

x3 = (2k + 1)3 = (2k − 1)3 + (k + 4)3 + (4− k)3 + (−5)3 + (−1)3.

In this last case it is not hard to see that 2k − 1, k + 4, |4 − k|, 5, and 1 are all less than
2k + 1. If x > 3 is an arbitrary integer, then we write x = my, where y is 4, 6, or an odd
number greater than 3, and m is an integer. If we express y3 = y3

1 + y3
2 + y3

3 + y3
4 + y3

5, then
x3 = (my1)

3 + (my2)
3 + (my3)

3 + (my4)
3 + (my5)

3, and the lemma is proved. �

Returning to the problem, using the fact that f is odd and what we proved before, we see
that f (x) = xf (1) for |x| ≤ 3. For x > 4, suppose that f (y) = yf (1) for all y with |y| < |x|.
Using the lemma write x3 = x3

1 + x3
2 + x3

3 + x3
4 + x3

5, where |xi| < |x|, i = 1, 2, 3, 4, 5. After
writing

x3 + (−x4)
3 + (−x5)

3 = x3
1 + x3

2 + x3
3,
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we apply f to both sides and use the fact that f is odd and the condition from the statement to
obtain

(f (x))3 − (f (x4))
3 − (f (x5))

3 = f (x1)
3 + f (x2)

3 + f (x3)
3.

The inductive hypothesis yields

(f (x))3 − (x4f (1))3 − (x5f (1))3 = (x1f (1))3 + (x2f (1))3 + (x3f (1))3;
hence

(f (x))3 = (x3
1 + x3

2 + x3
3 + x3

4 + x3
5)(f (1))3 = x3(f (1))3.

Hence f (x) = xf (1), and the induction is complete. Therefore, the only answers to the
problem are f (x) = −x for all x, f (x) = 0 for all x, and f (x) = x for all x. That these satisfy
the given equation is a straightforward exercise.

(American Mathematical Monthly, proposed by T. Andreescu)

824. The number on the left ends in a 0, 1, 4, 5, 6, or 9, while the one on the right ends in
a 0, 2, 3, 5, 7, or 8. For equality to hold, both x and z should be multiples of 5, say x = 5x0

and z = 5z0. But then 25x2
0 + 10y2 = 3 · 25z2. It follows that y is divisible by 5 as well,

y = 5y0. The positive integers x0, y0, z0 satisfy the same equation, and continuing we obtain
an infinite descent. Since this is not possible, the original equation does not have positive
integer solutions.

825. It suffices to show that there are no positive solutions. Adding the two equations, we
obtain

6(x2 + y2) = z2 + t2.

So 3 divides z2 + t2. Since the residue of a square modulo 3 is either 0 or 1, this can happen
only if both z and t are divisible by 3, meaning that z = 3z1, t = 3t1. But then

6(x2 + y2) = 9(z2
1 + t2

1),

and hence x2 + y2 is divisible by 3. Again, this can happen only if x = 3x1, and y = 3y1,
with x1, y1 positive integers. So (x1, y1, z1, t1) is another solution. We construct inductively a
decreasing infinite sequence of positive solutions, which, of course, cannot exist. Hence the
system does not admit nontrivial solutions.

(W. Sierpiński, 250 Problems in Elementary Number Theory, Państwowe Wydawnictwo
Naukowe,Warszawa, 1970)

826. Assume that the positive integers x, y, z satisfy the given equation, and let d = xy. If
d = 1, then x = y = 1 and z = 0, which cannot happen. Hence d > 1. Let p be a prime
divisor of d. Because

(x + y)(x − y) = x2 − y2 = 2xyz ≡ 0 (mod p),

either x ≡ y (mod p) or x ≡ −y (mod p). But p divides one of x and y, so p must divide the
other, too. Hence x1 = x/p and y1 = y/p are positive integers, and x1, y1, z satisfy the given
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equation as well. Repeating the argument, we construct an infinite sequence of solutions
(xn, yn, zn), n ≥ 1, to the original equation, with x1 > x2 > x3 > · · · . This is, of course,
impossible; hence the equation has no solutions.

(T. Andreescu, D. Andrica, An Introduction to Diophantine Equations, GIL, 2002)

827. If (a2
n)n is an infinite arithmetic progression, then

a2
k+1 − a2

k = a2
k − a2

k−1, for k ≥ 2.

Such an arithmetic progression must be increasing, so ak+1 + ak > ak + ak−1. Combining
the two relations, we obtain ak+1 − ak < ak − ak−1, for all k ≥ 2. We have thus obtained an
infinite descending sequence of positive integers

a2 − a1 > a3 − a2 > a4 − a3 > · · ·
Clearly, such a sequence cannot exist. Hence there is no infinite arithmetic progression whose
terms are perfect squares.

Remark. In fact, much more is true. No four perfect squares can form an arithmetic progres-
sion.

(T.B. Soulami, Les olympiades de mathématiques: Réflexes et stratégies, Ellipses, 1999)

828. Assume that the property does not hold, and fix a. Only finitely many numbers of the
form f (a + k) can be less than a, so we can choose r such that f (a + nr) > f (a) for all n.
By our assumption f (a+ 2m+1r) < f (a+ 2mr) for all m, for otherwise a and d = 2mr would
satisfy the desired property. We have constructed an infinite descending sequence of positive
integers, a contradiction. Hence the conclusion.

(British Mathematical Olympiad, 2003)

829. We will apply Fermat’s infinite descent method to the prime factors of n.
Let p1 be a prime divisor of n, and q the smallest positive integer for which p1 divides

2q − 1. From Fermat’s little theorem (Section 5.2.4 below) it follows that p1 also divides
2p1−1. Hence q ≤ p1 − 1 < p1.

Let us prove that q divides n. If not, let n = kq + r, where 0 < r < q. Then

2n − 1 = 2kq · 2r − 1 = (2q)k · 2r − 1 = (2q − 1+ 1)k · 2r − 1

=
k∑

j=1

(
k

j

)
(2q − 1)j · 2r − 1 ≡ 2r − 1 (mod p1).

It follows that p1 divides 2r − 1, contradicting the minimality of q. Hence q divides n,
and 1 < q < p1. Let p2 be a prime divisor of q. Then p2 is also a divisor of n, and
p2 < p1. Repeating the argument, we construct an infinite sequence of prime divisors of n,
p1 > p2 > · · · , which is impossible. Hence the conclusion.

(1st W.L. Putnam Mathematical Competition, 1939)

830. The divisibility condition can be written as

k(ab+ a+ b) = a2 + b2 + 1,

http://dx.doi.org/10.1007/978-3-319-58988-6_5
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where k is a positive integer. The small values of k are easy to solve. For example, k = 1
yields ab+ a+ b = a2 + b2 + 1, which is equivalent to (a− b)2 + (a− 1)2 + (b− 1)2 = 0,
whose only solution is a = b = 1. Also, for k = 2 we have 2ab + 2a + 2b = a2 + b2 + 1.
This can be rewritten either as 4a = (b− a− 1)2 or as 4b = (b− a+ 1)2, showing that both
a and b are perfect squares. Assuming that a ≤ b, we see that (b− a+ 1)− (b− a− 1) = 2,
and hence a and b are consecutive squares. We obtain as an infinite family of solutions the
pairs of consecutive perfect squares.

Now let us examine the case k ≥ 3. This is where we apply Fermat’s infinite descent
method. Again we assume that a ≤ b. A standard approach is to interpret the divisibility
condition as a quadratic equation in b:

b2 − k(a+ 1)b+ (a2 − ka+ 1) = 0.

Because one of the roots, namely b, is an integer, the other root must be an integer, too (the
sum of the roots is k(a+1)). Thus we may substitute the pair (a, b) by the smaller pair (r, a),
provided that 0 < r < a.

Let us verify first that 0 < r. Assume the contrary. Since br = a2− ka+1, we must have
a2− ka+ 1 ≤ 0. The equality case is impossible, since a(k− a) = 1 cannot hold if k ≥ 3. If
a2− ka+ 1 < 0, the original divisibility condition implies b(b− ak− k) = ak− a2− 1 > 0,
hence b− ak− k > 0. But then b(b− ak− k) > (ak+ k) · 1 > ak− a2− 1, a contradiction.
This proves that r is positive. From the fact that br = a2 − ka+ 1 < a2 and b ≥ a, it follows
that r < a. Successively, we obtain the sequence of pairs of solutions to the original problem
(a1, b1) = (a, b), (a2, b2) = (r, a), (a3, b3), . . ., with ai ≤ bi and a1 > a2 > a3 > · · · ,
b1 > b2 > b3 > · · · , which of course is impossible. This shows that the ratio of a2 + b2 + 1
to ab+ a+ b cannot be greater than or equal to 3, and so the answer to the problem consists
of the pair (1, 1) together with all pairs of consecutive perfect squares.

(Mathematics Magazine)

831. We argue by contradiction: assuming the existence of one triple that does not satisfy the
property from the statement, we construct an infinite decreasing sequence of such triples. Let
(x0, y0, z0) be a triple such that x0y0 − z2

0 = 1, but for which there do not exist nonnegative
integers a, b, c, d such that x0 = a2 + b2, y0 = c2 + d2, and z0 = ac + bd. We can assume
that x0 ≤ y0, and also x0 ≥ 2, for if x0 = 1, then x0 = 12 + 02, y0 = z2

0 + 12, and
z0 = z0 · 1+ 0 · 1. We now want to construct a new triple (x1, y1, z1) satisfying x2

1y2
1 − z2

1 = 1
such that x1 + y1 + z1 < x0 + y0 + z0. To this end, set z0 = x0 + u. Then

1 = x0y0 − (x0 + u)2 = x0y0 − x2
0 − 2x0u+ u2

= x0(y− x0 − 2u)− u2 = x0(x0 + y0 − 2z0)− (z0 − x0)
2.

A good candidate for the new triple is (x1, y1, z1) with x1 = min(x0, x0 + y0 − 2z0), y1 =
max(x0, x0 + y0 − 2z0), z1 = z0 − x0. Note that x1 + y1 + z1 = x0 + y0 − z0 < x0 + y0 + z0.

First, let us verify that x1, y1, z1 are positive. From

z2
0 = x0y0 − 1 < x0y0 ≤

(
x0 + y0

2

)2
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we deduce that x0 + y0 ≥ 2z0, which means that x0 + y0 − 2z0 > 0. It follows that both x1

and y1 are positive. Also,
z2

0 = x0y0 − 1 ≥ x2
0 − 1,

which implies (z0 − x0)(z0 + x0) ≥ −1. Since z0 + x0 ≥ 3, this can happen only if z0 ≥ x0.
Equality would yield x0(y0 − x0) = 1, which cannot hold in view of the assumption x0 ≥ 2.
Hence z1 = z0 − x0 > 0. If for the new triple we could find nonnegative integers m, n, p, q
such that

x0 = m2 + n2, x0 + y0 − 2z0 = p2 + q2, z0 − x0 = mp+ nq.

In that case,

y0 = p2 + q2 + 2z0 − x0 = p2 + q2 + 2mp+ 2nq + m2 + n2 = (m+ p)2 + (n+ q)2

and
z0 = m(m+ p)+ n(n+ q),

contradicting our assumption.
We therefore can construct inductively an infinite sequence of triples of positive numbers

(xn, yn, zn), n ≥ 0, none of which admits the representation from the statement, and such that
xn + yn + zn > xn+1 + yn+1 + zn+1 for all n. This is of course impossible, and the claim is
proved.

(Short list of the 20th International Mathematical Olympiad, 1978)

832. First solution: Choose k such that

�x� + k

n
≤ x < �x� + k + 1

n
.

Then
⌊

x + j
n

⌋
is equal to �x� for j = 0, 1, . . . , n−k−1, and to �x�+1 for x = n−k, . . . , n−1.

It follows that the expression on the left is equal to n�x� + k. Also, �nx� = n�x� + k, which
shows that the two sides of the identity are indeed equal.

Second solution: Define f : R → N,

f (x) = �x� +
⌊

x + 1

n

⌋
+ · · · +

⌊
x + n− 1

n

⌋
− �nx�.

We have

f

(
x + 1

n

)
=
⌊

x + 1

n

⌋
+ · · · +

⌊
x + n− 1

n

⌋
+
⌊

x + n

n

⌋
− �nx + 1� = f (x).

Therefore, f is periodic, with period 1
n . Also, since f (x) = 0 for x ∈ [0, 1

n

)
, it follows that f

is identically 0, and the identity is proved.
(Ch. Hermite)

833. Denote the sum in question by Sn. Observe that

Sn − Sn−1 =
⌊x

n

⌋
+
⌊

x + 1

n

⌋
+ · · · +

⌊
x + n− 1

n

⌋

=
⌊x

n

⌋
+
⌊

x

n
+ 1

n

⌋
+ · · · +

⌊
x

n
+ n− 1

n

⌋
,
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and, according to Hermite’s identity,

Sn − Sn−1 =
⌊

x
x

n

⌋
= �x�.

Because S1 = �x�, it follows that Sn = n�x� for all n ≥ 1.
(S. Savchev, T. Andreescu, Mathematical Miniatures, MAA, 2002)

834. Let t = �x�3 + 4�x�. The equation becomes

t2 + 3t = �y�2.

The number t is an integer. If t > 1, then (t + 1)2 < t2 + 3t = �y�2 < (t + 2)2 which
is impossible. It t ≤ 1, then �x�2 + 4�x� ≤ 1, which only leaves the posibilities �x� ∈
{−4,−3,−2,−1, 0}. Checking cases we find that the set of solutions is

[−4,−2)× [0, 1) ∪ [−2,−1) ∪ ([−2,−1) ∪ [2, 3)) ∪ [−1, 1)× [0, 1).

835. Set k = �√n�. We want to prove that

k =
⌊√

n+ 1√
n+√n+ 2

⌋
,

which amounts to proving the double inequality

k ≤ √n+ 1√
n+√n+ 2

< k + 1.

The inequality on the left is obvious. For the other, note that k ≤ √n < k+ 1, which implies
k2 ≤ n ≤ (k + 1)2 − 1. Using this we can write

√
n+ 1√

n+√n+ 2
= √n+

√
n+ 2−√n

2
=
√

n+ 2+√n

2

≤
√

(k + 1)2 + 1+√(k + 1)2 − 1

2
< k + 1.

The last inequality in this sequence needs to be explained. Rewriting it as

1

2

√
(k + 1)2 + 1+ 1

2

√
(k + 1)2 − 1 <

√
(k + 1)2,

we recognize Jensen’s inequality for the (strictly) concave function f (x) = √x. This com-
pletes the solution.

(Gh. Eckstein)

836. We will show that this equality holds for all x ≥ 1. Let n be the positive integer for
which

n4 ≤ x < (n+ 1)4.



Number Theory 725

Then n2 ≤ √x < (n+ 1)2, and so on the one hand

n ≤
√√

x < n+ 1

and therefore

�
√√

x� = n,

and on the other hand

n2 ≤ �√x� ≤ (n+ 1)2,

and therefore

n ≤
√
�√x� ≤ n+ 1.

This proves that
⌊√
�√x�
⌋
= n,

and we are done.
(Kvant (Quantum), proposed by V. Prasolov)

837. We apply the identity proved in the introduction to the function f : [1, n] → [1,
√

n],
f (x) = √x. Because n(Gf ) = �√n�, the identity reads

n∑

k=1

�√k� +
�√n�∑

k=1

�k2� − �√n� = n�n�.

Hence the desired formula is

n∑

k=1

�√k� = (n+ 1)a− a(a+ 1)(2a+ 1)

6
.

(S. Korean Mathematical Olympiad, 1997)

838. The function f :
[
1, n(n+1)

2

]
→ R,

f (x) = −1+√1+ 8x

2
,

is, in fact, the inverse of the increasing bijective function g : [1, n] →
[
1, n(n+1)

2

]
,

g(x) = x(x + 1)

2
.
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We apply the identity proved in the introduction to g in order to obtain

n∑

k=1

⌊
k(k + 1)

2

⌋
+

n(n+1)
2∑

k=1

⌊
−1+√1+ 8k

2

⌋

− n = n2(n+ 1)

2
.

Note that k(k+1)

2 is an integer for all k, and so

n∑

k=1

⌊
k(k + 1)

2

⌋
=

n∑

k=1

k(k + 1)

2
= 1

2

n∑

k=1

(k2 + k) = n(n+ 1)

4
+ n(n+ 1)(2n+ 1)

12

= n(n+ 1)(n+ 2)

6
.

The identity follows.

839. The property is clearly satisfied if a = b or if ab = 0. Let us show that if neither of
these is true, and a and b satisfy the property from the statement, then a and b are integers.

First, note that for an integer x, �2x� = 2�x� if x − �x� ∈ [0, 1
2

)
and �2x� = 2�x� + 1 if

x − �x� ∈ [ 12 , 1
)
. Let us see which of the two holds for a and b. If �2a� = 2�a� + 1, then

a�2b� = b�2a� = 2�a�b+ b = 2a�b� + b.

This implies �2b� = 2�b� + b
a , and so b

a is either 0 or 1, which contradicts our working
hypothesis. Therefore, �2a� = 2�a� and also �2b� = 2�b�. This means that the fractional
parts of both a and b are less than 1

2 . With this as the base case, we will prove by induction
that �2ma� = 2m�a� and �2mb� = 2m�b� for all m ≥ 1.

The inductive step works as follows. Assume that the property is true for m and let us
prove it for m+ 1. If �2m+1a� = 2�2ma�, we are done. If �2m+1a� = 2�2ma� + 1, then

a�2m+1b� = b�2m+1a� = 2�2ma�b+ b = 2m+1�a�b+ b = 2m+1a�b� + 1.

As before, we deduce that �2m+1b� = 2m+1�b�+ b
a . Again this is an impossibility. Hence the

only possibility is that �2m+1a� = 2m+1�a� and by a similar argument �2m+1b� = 2m+1�b�.
This completes the induction.

From �2ma� = 2m�a� and �2mb� = 2m�b� we deduce that the fractional parts of a and b
are less than 1

2m . Taking m →∞, we conclude that a and b are integers.
(Short list of the 39th International Mathematical Olympiad, 1998)

840. We compute

x

�x� +
x

{x} =
�x� + {x}
�x� + �x� + {x}{x} = 2+ {x}

�x� +
�x�
{x} > 4.
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Hence

1

�x� +
1

{x} >
4

x
>

7

2x
.

(Gazeta Matematică (Mathematics Gazette, Bucharest), proposed by R. Ghiţă and I. Ghiţă)

841. Ignoring the “brackets” we have

p

q
+ 2p

q
+ · · · + (q − 1)p

q
= (q − 1)p

2
.

The difference between kp/q and �kp/q� is r/q, where r is the remainder obtained on dividing
kp by q. Since p and q are coprime, p, 2p, . . . , (q−1)p form a complete set of residues modulo
q. So for k = 1, 2, . . . , q−1, the numbers k/p−�kp/q� are a permutation of 1, 2, . . . , q−1.
Therefore,

q−1∑

k=1

⌊
kp

q

⌋
=

q−1∑

k=1

kp

q
−

q−1∑

k=1

k

q
= (q − 1)p

2
− q − 1

2
= (p− 1)(q − 1)

2
,

and the reciprocity formula follows.

Remark. This identity can be used to prove Gauss’ quadratic reciprocity law.

842. The function

f (x) = �nx� − �x�
1
− �2x�

2
− �3x�

3
− · · · − �nx�

n

satisfies f (x) = f (x + 1) for all x and f (0) = 0. Moreover, the function is constant on
subintervals of [0, 1) that do not contain numbers of the form p/q, 2 ≤ q ≤ n and 1 ≤ p ≤
q−1. Thus it suffices to verify the inequality for x = p/q, where p and q are coprime positive
integers, 2 ≤ q ≤ n, 1 ≤ p ≤ q − 1. Subtracting the inequality from

nx = x

1
+ 2x

2
+ · · · + nx

n
,

we obtain the equivalent inequality for the fractional part {·} ({x} = x − �x�),

{nx} ≤ {x}
1
+ {2x}

2
+ {3x}

3
+ · · · + {nx}

n
,

which we prove for the particular values of x mentioned above. If rk is the remainder obtained
on dividing kp by q, then {kx} = rk

q , and so the inequality can be written as

rn

q
≤ r1/q

1
+ r2/q

2
+ r3/q

3
+ · · · + rn/q

n
,

or
rn ≤ r1

1
+ r2

2
+ r3

3
+ · · · + rn

n
.
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Truncate the sum on the right to the (q − 1)st term. Since p and q are coprime, the numbers
r1, r2, . . . , rq−1 are a permutation of 1, 2, . . . , q − 1. Applying this fact and the AM-GM
inequality, we obtain

r1

1
+ r2

2
+ r3

3
+ · · · + rq−1

q − 1
≥ (q − 1)

(
r1

1
· r2

2
· r3

3
· · · rq−1

q − 1

)1/(q−1)

= (q − 1) ≥ rn.

This proves the (weaker) inequality

r1

1
+ r2

2
+ r3

3
+ · · · + rn

n
≥ rn,

and consequently the inequality from the statement of the problem.
(O.P. Lossers)

843. Let x1 be the golden ratio, i.e., the (unique) positive root of the equation x2− x− 1 = 0.
We claim that the following identity holds:

⌊
x1

⌊
x1n+ 1

2

⌋
+ 1

2

⌋
=
⌊

nx1 + 1

2

⌋
+ n.

If this were so, then the function f (n) = ⌊x1n+ 1
2

⌋
would satisfy the functional equation.

Also, since α = 1+√5
2 > 1, f would be strictly increasing, and so it would provide an example

of a function that satisfies the conditions from the statement.
To prove the claim, we only need to show that

⌊
(x1 − 1)

⌊
x1n+ 1

2

⌋
+ 1

2

⌋
= n.

We have
⌊
(x1 − 1)

⌊
x1n+ 1

2

⌋
+ 1

2

⌋
≤
⌊
(x1 − 1)

(
x1n+ 1

2

)
+ 1

2

⌋

=
⌊

x1n+ n− x1n+ x1

2

⌋
= n.

Also,

n =
⌊

n+ 2− x1

2

⌋
≤
⌊
(x1 − 1)

(
x1n− 1

2

)
+ 1

2

⌋
≤
⌊
(x1 − 1)

⌊
x1n+ 1

2

⌋
+ 1

2

⌋
.

This proves the claim and completes the solution.
(34th International Mathematical Olympiad, 1993)

844. Suppose first that the pair (f , g) is not unique and that there is a second pair of func-
tions (f ′, g′) subject to the same conditions. Write the sets {f (n), n ≥ 1} ∪ {g(n), n ≥ 1},
respectively, {f ′(n), n ≥ 1} ∪ {g′(n), n ≥ 1}, as increasing sequences, and let n0 be the
smallest number where a difference occurs in the values of f (n) and g(n) versus f ′(n) and
g′(n). Because the pairs of functions exhaust the positive integers, either f (n1) = g′(n0) or
f ′(n0) = g(n1). The situations are symmetric, so let us assume that the first occurs. Then

f (n1) = g′(n0) = f ′(f ′(kn0))+ 1 = f (f (kn0))+ 1 = g(n0).
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We stress that the third equality occurs because f ′(kn0) occurs earlier in the sequence (since
it is smaller than f (n1)), so it is equal to f (kn0), and the same is true for f ′(f ′(kn0)). But the
equality f (n1) = g(n0) is ruled out by the hypothesis, which shows that our assumption was
false. Hence the pair (f , g) is unique.

Inspired by the previous problems we take α to be the positive root of the quadratic
equation kx2 − kx − 1 = 0, and set β = kα2. Then 1

α
+ 1

β
= 1, and because k is an integer,

both α and β are irrational. By Beatty’s theorem the sequences f (n) = �αn� and g(n) = �βn�
are strictly increasing and define a partition of the positive integers into two disjoint sets. Let
us show that f and g satisfy the functional equation from the statement.

Because kα2 = kα + 1,

g(n) = �kα2n� = �(kα + 1)n� = �kαn� + n,

and we are left to prove that �αkn�+n = �α�αkn��+1, the latter being f (f (kn))+1. Reduce
this further to

�(α − 1)�αkn�� = n− 1.

Since (α − 1)αk = 1 and α is irrational, �(α − 1)�αkn�� < n. Also,

(α − 1)�αkn� > (α − 1)(αkn− 1) = (α2k − αk)n+ 1− α = n+ 1− α > n− 1,

since α < 2 (which can be checked by solving the quadratic equation that defines α). Hence

g(n) = �αkn� + n = �α�αn�� + 1 = f (f (kn))+ 1,

and the problem is solved.

Remark. The case k = 1 was given at the 20th International Mathematical Olympiad, 1978;
the idea of the solution was taken from I.J. Schoenberg, Mathematical Time Exposures (MAA,
1982).

845. If we multiplied the fraction by 8, we would still get an integer. Note that

8
n3 − 3n2 + 4

2n− 1
= 4n2 − 10n− 5+ 27

2n− 1
.

Hence 2n− 1 must divide 27. This happens only when 2n− 1 = ±1, ±3, ±9, ±27, that is,
when n = −13, −4, −1, 1, 2, 5, 14. An easy check shows that for each of these numbers the
original fraction is an integer.

846. The factor to be erased is 50!. Indeed, using the equality (2k)! = (2k − 1)! · 2k, we see
that

P = (1!)2 · 2 · (3!)2 · 4 · (5!)2 · 6 · · · (99!)2 · 100 = (1! · 3! · 5! · · · 99!)2 · 2 · 4 · 6 · · · 100

= (1! · 3! · 5! · · · 99!)2 · 250 · 50! = (1! · 3! · 5! · · · 99! · 225)2 · 50!.
It is noteworthy that P itself is not a perfect square, since 50! is not, the latter because 47
appears to the first power in 50!.

(First stage of the Moscow Mathematical Olympiad, 1995-1996)
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847. For any integer m, we have gcd(am, a2m) = gcd(2m, m) = m, and so m divides am.
It follows that for any other integer n, m divides an if and only if it divides gcd(am, an) =
gcd(m, n). Hence an has exactly the same divisors as n, so it must equal n, for all n.

(Russian Mathematical Olympiad, 1995)

848. Because gcd(a, b) divides both a and b, we can factor ngcd(a,b)− 1 from both na− 1 and
nb − 1. Therefore, ngcd(a,b) − 1 divides gcd(na − 1, nb − 1).

On the other hand, using Euclid’s algorithm we can find positive integers x and y such
that ax − by = gcd(a, b). Then na − 1 divides nax − 1 and nb − 1 divides nby − 1. In order
to combine these two, we use the equality

nby(ngcd(a,b) − 1) = (nax − 1)− (nby − 1).

Note that gcd(na− 1, nb− 1) divides the right-hand side, and has no common factor with nby.
It therefore must divide ngcd(a,b) − 1. We conclude that ngcd(a,b)−1 = gcd(na − 1, nb − 1), as
desired.

849. We use the particular case n = 2 of the previous problem as a lemma. To obtain the
negative signs we incorporate 2a+1 and 2b+1 into 22a−1 and 22b−1, then apply the lemma
to these two numbers. We have

2gcd(2a,2b) − 1 = gcd(22a − 1, 22b − 1) = gcd((2a − 1)(2a + 1), (2b − 1)(2b + 1)).

Because 2a − 1 and 2a + 1 are coprime, and so are 2b − 1 and 2b + 1, this is further equal to

gcd(2a − 1, 2b − 1) · gcd(2a − 1, 2b + 1) · gcd(2a + 1, 2b − 1) · gcd(2a + 1, 2b + 1).

It follows that gcd(2a + 1, 2b + 1) divides 2gcd(2a,2b) − 1. Of course,

2gcd(2a,2b) − 1 = 22 gcd(a,b) − 1 = (2gcd(a,b) − 1)(2gcd(a,b) + 1),

so gcd(2a + 1, 2b + 1) divides the product (2gcd(a,b) − 1)(2gcd(a,b) + 1). Again because
gcd(2a + 1, 2a − 1) = gcd(2b + 1, 2b − 1) = 1, it follows that gcd(2a + 1, 2b + 1) and
2gcd(a,b) − 1 do not have common factors. We conclude that gcd(2a + 1, 2b + 1) divides
2gcd(a,b) + 1.

850. We compute

a2 = (k + 1)2 − k(k + 1)+ k = (k + 1)+ k = a1 + k,

a3 = a2(a2 − k)+ k = a2a1 + k,

a4 = a3(a3 − k)+ k = a3a2a1 + k,

and in general if an = an−1an−2 · · · a1 + k, then

an+1 = an(an − k)+ k = anan−1an−2 · · · a1 + k.
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Therefore, an − k is divisible by am for 1 ≤ m < n. On the other hand, inductively we
obtain that am and k are relatively prime. It follows that am and an = (an − k) + k are also
relatively prime. This completes the solution.

(Polish Mathematical Olympiad, 2002)

851. By hypothesis, all coefficients of the quadratic polynomial

P(x) = (x + a)(x + b)(x + c)− (x − d)(x − e)(x − f )

= (a+ b+ c+ d + e+ f )x2 + (ab+ bc+ ca− de− ef − fd)x + (abc+ def )

are divisible by S = a + b + c + d + e + f . Evaluating P(x) at d, we see that P(d) =
(a + d)(b + d)(c + d) is a multiple of S. This readily implies that S is composite because
each of a+ d, b+ d, and c+ d is less than S.

(Short list of 46th International Mathematical Olympiad, 2005)

852. The polynomial

P(n) = n(n− 1)4 + 1 = n5 − 4n4 + 6n3 − 4n2 + n+ 1

does not have integer zeros, so we should be able to factor it as a product a quadratic and a
cubic polynomial. This means that

P(n) = (n2 + an+ 1)(n3 + bn2 + cn+ 1),

for some integers a, b, c. Identifying coefficients, we must have

a+ b = −4,

c+ ab+ 1 = 6,

b+ ac+ 1 = −4,

a+ c = 1.

From the first and last equations, we obtain b − c = −5, and from the second and the third,
(b − c)(a − 1) = 10. It follows that a − 1 = −2; hence a = −1, b = −4 + 1 = −3,
c = 1+ 1 = 2. Therefore,

n(n− 1)4 + 1 = (n2 − n+ 1)(n3 − 3n2 + 2n+ 1),

a product of integers greater than 1.
(T. Andreescu)

853. Setting n = 0 in (i) gives

f (1)2 = f (0)2 + 6f (0)+ 1 = (f (0)+ 3)2 − 8.
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Hence
(f (0)+ 3)2 − f (1)2 = (f (0)+ 3+ f (1))(f (0)+ 3− f (1)) = 4× 2.

The only possibility is f (0)+ 3+ f (1) = 4 and f (0)+ 3− f (1) = 2. It follows that f (0) = 0
and f (1) = 1.

In general,
(f (2n+ 1)− f (2n))(f (2n+ 1)+ f (2n)) = 6f (n)+ 1.

We claim that f (2n+1)− f (2n) = 1 and f (2n+1)+ f (2n) = 6f (n)+1. To prove our claim,
let f (2n+ 1)− f (2n) = d. Then f (2n+ 1)+ f (2n) = d + 2f (2n). Multiplying, we obtain

6f (n)+ 1 = d(d + 2f (2n)) ≥ d(d + 2f (n)),

where the inequality follows from condition (ii). Moving everything to one side, we obtain
the inequality

d2 + (2d − 6)f (n)− 1 ≤ 0,

which can hold only if d ≤ 3. The cases d = 2 and d = 3 cannot hold, because d divides
6f (n) + 1. Hence d = 1, and the claim is proved. From it we deduce that f is computed
recursively by the rule

f (2n+ 1) = 3f (n)+ 1,

f (2n) = 3f (n).

At this moment it is not hard to guess the explicit formula for f ; it associates to a number in
binary representation the number with the same digits but read in ternary representation. For
example, f (5) = f (1012) = 1013 = 10. The formula is easily proved by induction.

854. It is better to rephrase the problem and prove that there are infinitely many prime numbers
of the form 4m − 1. Euclid’s proof of the existence of infinitely many primes, presented in
the first section of the book, works in this situation, too. Assume that there exist only finitely
many prime numbers of the form 4m − 1, and let these numbers be p1, p2, . . . , pn. Consider
M = 4p1p2p3 · · · pn − 1. This number is of the form 4m − 1, so it has a prime divisor of the
same form, for otherwise M would be a product of numbers of the form 4m + 1 and itself
would be of the form 4m+ 1. But M is not divisible by any of the primes p1, p2, . . . , pn so it
must be divisible by some other prime of the form 4m − 1. This contradicts our assumption
that p1, p2, . . . , pn are all primes of the form 4m− 1, showing that it was false. We conclude
that there exist infinitely many prime numbers of the form 4m+ 3, m an integer.

Remark. A theorem of Dirichlet shows that for any two coprime numbers a and b, the arith-
metic progression an+ b, n ≥ 0 contains infinitely many prime terms.
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855. We have

m

n
= 1

1
− 1

2
+ 1

3
− 1

4
+ · · · + 1

2k − 1
− 1

2k

= 1+ 1

2
+ 1

3
+ · · · + 1

2k
− 2

(
1

2
+ 1

4
+ · · · + 1

2k

)

= 1+ 1

2
+ 1

3
+ · · · + 1

2k
−
(

1+ 1

2
+ · · · + 1

k

)

= 1

k + 1
+ 1

k + 2
+ · · · + 1

2k − 1
+ 1

2k

=
(

1

k + 1
+ 1

2k

)
+
(

1

k + 2
+ 1

2k − 1

)
+ · · ·

= 3k + 1

(k + 1)2k
+ 3k + 1

(k + 2)(2k − 1)
+ · · ·

For a proof by induction of this equality, see Problem 12. It follows that m(2k)! = n(3k+1)q
for some positive integer q; hence p = 3k + 1 divides m(2k)!. But p is a prime greater than
2k, so it is coprime to (2k)!. Thus p divides m, and we are done.

(Mathematical Reflections, proposed by T. Andreescu)

856. The numbers x and y have the same prime factors,

x =
k∏

i=1

pαi
i , y =

k∏

i=1

pβi
i .

The equality from the statement can be written as

k∏

i=1

pαi(x+y)
i =

k∏

i=1

pβi(y−x)
i ;

hence αi(y + x) = βi(y − x) for i = 1, 2, . . . , k. From here we deduce that αi < βi,
i = 1, 2, . . . , k, and therefore x divides y. Writing y = zx, the equation becomes xx(z+1) =
(xz)x(z−1), which implies x2 = zz−1 and then y2 = (xz)2 = zz+1. A power is a perfect square
if either the base is itself a perfect square or if the exponent is even. For z = t2, t ≥ 1, we
have x = tt2−1, y = tt2+1, which is one family of solutions. For z − 1 = 2s, s ≥ 0, we obtain
the second family of solutions x = (2s+ 1)s, y = (2s+ 1)s+1.

(Austrian-Polish Mathematics Competition, 1999, communicated by I. Cucurezeanu)

857. If n is even, then we can write it as (2n)− n. If n is odd, let p be the smallest odd prime
that does not divide n. Then write n = (pn) − ((p − 1)n). The number pn contains exactly
one more prime factor than n. As for (p− 1)n, it is divisible by 2 because p− 1 is even, while
its odd factors are less than p, so they all divide n. Therefore, (p− 1)n also contains exactly
one more prime factor than n, and therefore pn and (p− 1)n have the same number of prime
factors.

(Russian Mathematical Olympiad, 1999)

858. The only numbers that do not have this property are the products of two distinct primes.
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Let n be the number in question. If n = pq with p, q primes and p �= q, then any cycle
formed by p, q, pq will have p and q next to each other. This rules out numbers of this form.

For any other number n = pα1
1 pα2

2 · · · pαk
k , with k ≥ 1, αi ≥ 1 for i = 1, 2, . . . , k and

α1 + α2 ≥ 3 if k = 2, arrange the divisors of n around the circle according to the following
algorithm. First, we place p1, p2, . . . , pk arranged clockwise around the circle in increasing
order of their indices. Second, we place pipi+1 between pi and pi+1 for i = 1, . . . , k − 1.
Third, we place n between pk and p1. Note that at this point every pair of consecutive numbers
has a common factor and each prime pi occurs as a common factor for some pair of adjacent
numbers. Now for any remaining divisor of n we choose a prime pi that divides it and place
it between pi and one of its neighbors.

(USA Mathematical Olympiad, 2005, proposed by Z. Feng)

859. The answer is negative. To motivate our claim, assume the contrary, and let
a0, a1, . . . , a1995 = a0 be the integers. Then for i = 1, 2, . . . , 1995, the ratio ak−1/ak is
either a prime, or the reciprocal of a prime. Suppose the former happens m times and the
latter 1995− m times. The product of all these ratios is a0/a1995 = 1, which means that the
product of some m primes equals the product of some 1995 − m primes. This can happen
only when the primes are the same (by unique factorization), and in particular they must be
in the same number on both sides. But the equality m = 1995−m is impossible, since 1995
is odd, a contradiction. This proves our claim.

(Russian Mathematical Olympiad, 1995)

860. First solution: The cases p = 2, 3, 5 are done as before. Let p ≥ 7. The numbers p,
2p, . . ., 9999999999p have distinct terminating ten-digit sequences. Indeed, the difference
mp−np = (m−n)p is not divisible by 1010, since p is relatively prime to 10 and m−n < 1010.
There are 1010−1 ten-digit terminating sequences, so all possible combinations of digits should
occur. Many of these sequences consist of distinct digits, providing solutions to the problem.

Second solution: The statement is true for p = 2 and p = 5. Suppose that p �= 2, 5. Then
p is relatively prime to 10. From Fermat’s little theorem, 10p−1 ≡ 1 (mod p) and hence
10k(p−1) ≡ 1 (mod p) for all positive integers k. Let a be a 10-digit number with distinct
digits, and let a ≡ n (mod p), with 0 ≤ n ≤ p− 1. Since p ≥ 3, 106(p−1) > 1010. Therefore,

Na = 10(p−n+5)(p−1) + · · · + 106(p−1) + a ≡ 1+ · · · + 1+ n ≡ 0 (mod p).

For all positive integers k, the numbers of the form

1010kp+ Na,

end in a and are divisible by p.
(Proposed by T. Andreescu for the 41st International Mathematical Olympiad, 2000, first

solution by G. Galperin, second solution by Z. Feng)

861. The case p = 2 is easy, so assume that p is an odd prime. Note that if p2 = a2 + 2b2,
then 2b2 = (p − a)(p + a). In particular, a is odd. Also, a is too small to be divisible by p.
Hence gcd(p− a, p+ a) = gcd(p− a, 2p) = 2. By changing the sign of a we may assume
that p− a is not divisible by 4, and so we must have |p+ a| = m2 and |p− a| = 2n2 for some
integers m and n.
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Because |a| < p, both p+a and p−a are actually positive, so p+a = m2 and p−a = 2n2.
We obtain 2p = m2+ 2n2. This can happen only if m is even, in which case p = n2+ 2

(
m
2

)2
,

as desired.
(Romanian Mathematical Olympiad, 1997)

862. Note that if d is a divisor of n, then so is n
d . So the sum s is given by

s =
k−1∑

i=1

didi+1 = n2
k−1∑

i=1

1

didi+1
≤ n2

k−1∑

i=1

(
1

di
− 1

di+1

)
<

n2

d1
= n2.

For the second part, note also that d2 = p, dk−1 = n
p , where p is the least prime divisor of

n. If n = p, then k = 2, and s = p, which divides n2. If n is composite, then k > 2, and
s > dk−1dk = n2

p . If such an s were a divisor of n2, then n2

s would also be a divisor of n2. But

1 < n2

s < p, which is impossible, because p is the least prime divisor of n2. Hence the given
sum is a divisor of n2 if and only if n is a prime.

(43rd International Mathematical Olympiad, 2002, proposed by M. Manea (Romania))

863. We look instead at composite odd positive numbers. Each such number can be written
as (2a + 3)(2b + 3), for a and b nonnegative integers. In fact, n is composite if and only if
it can be written this way. We only need to write this product as a difference of two squares.
And indeed,

(2a+ 3)(2b+ 3) = (a+ b+ 3)2 − (a− b)2.

Thus we can choose f (a, b) = (a+ b+ 3)2 and g(a, b) = (a− b)2.
(Nea Mărin)

864. Arguing by contradiction, assume that there is some k, 0 ≤ k ≤ n−2, such that k2+k+n
is not prime. Choose s to be the smallest number with this property, and let p be the smallest
prime divisor of s2 + s+ n. First, let us notice that p is rather small, in the sense that p ≤ 2s.
For if p ≥ 2s+ 1, one has

s2 + s+ n ≥ p2 ≥ (2s+ 1)2 = s2 + s+ 3s2 + 3s+ 1 ≥ s2 + s+ n+ 3s+ 1

> s2 + s+ n,

which is so because s >
√ n

3 . This is clearly impossible, which proves p ≤ 2s.
It follows that either p = s − k or p = s + k + 1 for some 0 ≤ k ≤ s − 1. But then for

this k,
s2 + s+ n− k2 − k − n = (s− k)(s+ k + 1).

Because p divides s2+ s+n and the product (s− k)(s+ k+1), it must also divide k2+ k+n.
Now, this number cannot be equal to p, because s− k < n− k < k2 + k + n and s+ k+ 1 <

n− 1+ k+ 1 < k2+ k+ n. It follows that the number k2+ k+ n is composite, contradicting
the minimality of s. Hence the conclusion.

Remark. Euler noticed that 41 has the property that k2 + k + 41 is a prime number for all
0 ≤ k ≤ 39. Yet 402 + 40+ 41 = 412 is not prime!
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865. There are clearly more 2’s than 5’s in the prime factorization of n!, so it suffices to solve
the equation ⌊n

5

⌋
+
⌊ n

52

⌋
+
⌊ n

53

⌋
+ · · · = 1000.

On the one hand,

⌊n

5

⌋
+
⌊ n

52

⌋
+
⌊ n

53

⌋
+ · · · < n

5
+ n

52
+ n

53
+ · · · = n

5
· 1

1− 1

5

= n

4
,

and hence n > 4000. On the other hand, using the inequality �a� > a− 1, we have

1000 >
(n

5
− 1
)
+
( n

52
− 1
)
+
( n

53
− 1
)
+
( n

54
− 1
)
+
( n

55
− 1
)

= n

5

(
1+ 1

5
+ 1

52
+ 1

53
+ 1

54

)
− 5 = n

5
·

1−
(

1

5

)5

1− 1

5

− 5,

so

n <
1005 · 4 · 3125

3124
< 4022.

We have narrowed down our search to {4001, 4002, . . . , 4021}. Checking each case with
Polignac’s formula, we find that the only solutions are n = 4005, 4006, 4007, 4008, and
4009.

866. Polignac’s formula implies that the exponent of the number 2 in n! is
⌊n

2

⌋
+
⌊ n

22

⌋
+
⌊ n

23

⌋
+ · · ·

Because n

2
+ n

22
+ n

23
+ · · · = n

and not all terms in this infinite sum are integers, it follows that n is strictly greater than the
exponent of 2 in n!, so 2n does not divide n!.

(Mathematics Competition, Soviet Union, 1971)

867. Let p be a prime number. The power of p in lcm
(
1, 2, . . . ,

⌊
n
i

⌋)
is equal to k if and only

if ⌊
n

pk+1

⌋
< i ≤

⌊
n

pk

⌋
.

Hence the power of p in the expression on the right-hand side is

∑

k≥1

k

(⌊
n

pk

⌋
−
⌊

n

pk+1

⌋)
=
∑

k≥1

(k − (k − 1))

⌊
n

pk

⌋
=
∑

k≥1

⌊
n

pk

⌋
.

By Polignac’s formula this is the exponent of p in n! and we are done.
(64th W.L. Putnam Mathematical Competition, 2003)
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868. First solution: We will show that for any prime number p the power to which it appears
in the numerator is greater than or equal to the power to which it appears in the denominator,
which solves the problem.

Assume that p appears to the power α in n and to the power β in m, α ≥ β ≥ 0. Then
among the inequalities

⌊
n

pk

⌋
≥
⌊

m

pk

⌋
+
⌊

n− m

pk

⌋
, k = 1, 2, . . .

those with β < k ≤ α are strict. Using this fact when applying Polignac’s formula to n!, m!,
and (n−m)!, we deduce that the power of p in

(n
m

)
is at least α − β. Of course, the power of

p in gcd(m, n) is β. Hence p appears to a nonnegative power in
gcd(m, n)

n

(
n

m

)
, and we are

done.

Second solution: A solution that does not involve prime numbers is also possible. Since

gcd(m, n) is an integer linear combination of m and n, it follows that
gcd(m, n)

n

(
n

m

)
is an

integer linear combination of the integers

m

n

(
n

m

)
=
(

n− 1

m− 1

)
and

n

n

(
n

m

)
=
(

n

m

)
,

and hence is itself an integer.
(61st W.L. Putnam Mathematical Competition, 2000)

869. Let p be a prime divisor of k. Then p ≤ n, so p is also a divisor of n!. Denote the powers
of p in k by α and in n! by β. The problem amounts to showing that α ≤ β for all prime
divisors p of k.

By Polignac’s formula, the power of p in n! is

β =
∞∑

i=1

⌊
n

pi

⌋
.

Of course, the sum terminates at the mth term, where m is defined by pm ≤ n < pm+1.
Write γ = ⌊α

2

⌋
, so that α equals either 2γ or 2γ + 1. From the hypothesis,

n2 ≥ 4k ≥ 4pα,

and hence n ≥ 2pα/2 ≥ 2pγ . Since n < pm+1, this leads to pm+1−γ > 2. If means that if
p = 2, then γ < m, and if p ≥ 3, then γ ≤ m.

If p = 2, we will show that β ≥ m + γ , from which it will follow that β ≥ 2γ + 1 ≥ α.
The coefficient of 2 in n! is ⌊n

2

⌋
+
⌊ n

22

⌋
+ · · · +

⌊ n

2m

⌋
.

All terms in this sum are greater than or equal to 1. Moreover, we have seen that n ≥ 2 · 2γ ,
so the first term is greater than or equal to 2γ , and so this sum is greater than or equal to
2γ + m− 1. It is immediate that this is greater than or equal to γ + m for any γ ≥ 1.
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If p ≥ 3, we need to show that
⌊

n

p

⌋
+
⌊

n

p2

⌋
+ · · · +

⌊
n

pm

⌋
≥ m+ γ + 1.

This time m ≥ γ , and so m + γ + 1 ≥ γ + γ + 1 ≥ α. Again, since n ≥ 2pγ , the first term
of the left-hand side is greater than or equal to 2pγ−1. So the inequality can be reduced to
2pγ−1 + m − 1 ≥ m + γ + 1, or 2pγ−1 ≥ γ + 2. This again holds true for any p ≥ 3 and
γ ≥ 2. For γ = 1, if α = 2, then we have 2pγ−1 + m − 1 ≥ m + γ > α. If α = 3, then
n2 ≥ 2p3 implies n ≥ 2�√p�p ≥ 3p, and hence the first term in the sum is greater than or
equal to 3, so again it is greater than or equal to α.

We have thus showed that any prime appears to a larger power in n! than in k, which means
that k divides n!.

(Austrian-Polish Mathematics Competition, 1986)

870. Define
E(a, b) = a3b− ab3 = ab(a− b)(a+ b).

Since if a and b are both odd, then a+ b is even, it follows that E(a, b) is always even. Hence
we only have to prove that among any three integers we can find two, a and b, with E(a, b)

divisible by 5. If one of the numbers is a multiple of 5, the property is true. If not, consider the
pairs {1, 4} and {2, 3} of residue classes modulo 5. By the pigeonhole principle, the residues
of two of the given numbers belong to the same pair. These will be a and b. If a ≡ b (mod 5),
then a − b is divisible by 5, and so is E(a, b). If not, then by the way we defined our pairs,
a+ b is divisible by 5, and so again E(a, b) is divisible by 5. The problem is solved.

(Romanian Team Selection Test for the International Mathematical Olympiad, 1980, pro-
posed by I. Tomescu)

871. Observe that 2002 = 103 + 103 + 13 + 13. so that

20022002 = 20022001 · 2002 = ((2002)667)3(103 + 103 + 13 + 13)

= (10 · 2002667)3 + (10 · 2002667)3 + (2002667)3 + (2002667)3.

This proves the first claim. For the second, note that modulo 9, a perfect cube can be only±1
or 0. Therefore, the sum of the residues modulo 9 of three perfect cubes can be only 0, ±1,
±2, or ±3. We verify that

20022002 ≡ 42002 ≡ (43)667 · 4 ≡ 1 · 4 ≡ 4 (mod 9).

It is easy now to see that 20022002 cannot be written as the sum of three cubes.
(Communicated by V.V. Acharya)

872. Denote the perfect square by k2 and the digit that appears in the last four positions by a.
Then k2 ≡ a · 1111 (mod 10000). Perfect squares end in 0, 1, 4, 5, 6, or 9, so a can only be
one of these digits.

Now let us examine case by case. If a = 0, we are done. The cases a ∈ {1, 5, 9} can
be ruled out by working modulo 8. Indeed, the quadratic residues modulo 8 are 0, 1, and 4,
while as a ranges over the given set, a · 1111 has the residues 7 or 3.



Number Theory 739

The cases a = 2 or 4 are ruled out by working modulo 16, since neither 4 · 1111 ≡
12 (mod 16) nor 6 · 1111 ≡ 10 (mod 16) is a quadratic residue modulo 16.

873. Reducing modulo 4, the right-hand side of the equation becomes equal to 2. So the
left-hand side is not divisible by 4, which means that x = 1. If y > 1, then reducing modulo
9 we find that z has to be divisible by 6. A reduction modulo 6 makes the left-hand side 0,
while the right-hand side would be 1 + (−1)z = 2. This cannot happen. Therefore, y = 1,
and we obtain the unique solution x = y = z = 1.

(Matematika v Škole (Mathematics in Schools), 1979, proposed by I. Mihailov)

874. Note that a perfect square is congruent to 0 or to 1 modulo 3. Using this fact we can
easily prove by induction that an ≡ 2 (mod 3) for n ≥ 1. Since 2 · 2 ≡ 1 (mod 3), the
question has a negative answer.

(Indian International Mathematical Olympiad Training Camp, 2005)

875. By hypothesis, there exist integers t and N such that aN + b = tk . Choose m arbitrary
positive integers s1, s2, . . . , sm, and consider the number

s = (as1 + t)k +
m∑

j=2

(asj)
k.

Then
s ≡ tk ≡ aN + b ≡ b (mod a).

Since s ≡ b (mod a), there exists n such that s = an+ b, and so s is a term of the arithmetic
progression that can be written as a sum of m kth powers of integers. Varying the parameters
s1, s2, . . . , sn, we obtain infinitely many terms with this property.

(Proposed by E. Just for Mathematics Magazine)

876. Denote the sum from the statement by Sn. We will prove a stronger inequality, namely,

Sn >
n

2
(log2 n− 4).

The solution is based on the following obvious fact: no odd number but 1 divides 2n evenly.
Hence the residue of 2n modulo such an odd number is nonzero. From here we deduce that
the residue of 2n modulo a number of the form 2m(2k + 1), k > 1. is at least 2m. Indeed,
if 2n−m = (2k + 1)q + r, with 1 ≤ r < 2k + 1, then 2n = 2m(2k + 1)q + 2mr, with
2m < 2mr < 2m(2k+1). And so 2mr is the remainder obtained by dividing 2n by 2m(2k+1).

Therefore, Sn ≥ 1×(the number of integers of the form 2k + 1, k > 1, not exceeding
n)+2×(the number of integers of the form 2(2k + 1), k > 1, not exceeding n)+22×(the
number of integers of the form 22(2k + 1), k > 1, not exceeding n)+ · · · .

Let us look at the (j+ 1)st term in this estimate. This term is equal to 2j multiplied by the
number of odd numbers between 3 and n

2j , and the latter is at least 1
2

(
n
2j − 3
)
. We deduce that

Sn ≥
∑

j

2j n− 3 · 2j

2j+1
=
∑

j

1

2
(n− 3 · 2j),
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where the sums stop when 2j · 3 > n, that is, when j = ⌊log2
n
3

⌋
. Setting l = ⌊log2

n
3

⌋
, we

have

Sn ≥ (l + 1)
n

2
− 3

2

l∑

j=0

2i > (l + 1)
n

2
− 3 · 2l+1

2
.

Recalling the definition of l, we conclude that

Sn >
n

2
log2

n

3
− n = n

2

(
log2

n

3
− 2
)

>
n

2
(log2 n− 4),

and the claim is proved. The inequality from the statement follows from the fact that for
n > 1000, 1

2 (log2 n− 4) > 1
2 (log2 1000− 4) > 2.

(Kvant (Quantum), proposed by A. Kushnirenko, solution by D. Grigoryev)

877. First, observe that all terms of the progression must be odd. Let p1 < p2 < · · · < pk be
the prime numbers less than n. We prove the property true for pi by induction on i. For i = 1
the property is obviously true, since p1 = 2 and the consecutive terms of the progression are
odd numbers. Assume the property is true for p1, p2, . . . , pi−1 and let us prove it for pi.

Let a, a+ d, a+ 2d, . . ., a+ (n− 1)d be the arithmetic progression consisting of prime
numbers. Using the inequality d ≥ p1p2 · · · pi−1 > pi, we see that if a term of the progression
is equal to pi, then this is exactly the first term (in the special case of p2 = 3, for which the
inequality does not hold, the claim is also true because 3 is the first odd prime). But if a = pi,
then a+ pid, which is a term of the progression, is divisible by pi, and the problem states that
this number is prime. This means that a �= pi, and consequently the residues of the numbers a,
a+d, . . ., a+ (pi−1)d modulo pi range over {1, 2, . . . , pi−1}. By the pigeonhole principle,
two of these residues must be equal, i.e.,

a+ sd ≡ a+ td (mod pi),

for some 0 ≤ i < j ≤ pi − 1. Consequently, a + sd − a − td = (s − t)d is divisible by pi,
and since |s − t| < pi. it follows that d is divisible by pi. This completes the induction, and
with it the solution to the problem.

(G. Cantor)

878. We reduce everything modulo 3; thus we work in the ring of polynomials with Z3

coefficients. The coefficients of both P(x) and Q(x) are congruent to 1, so the reduced
polynomials are P̂(x) = xm+1−1

x−1 and Q̂(x) = xn+1−1
x−1 . The polynomial P̂(x) still divides Q̂(x);

therefore xm+1 − 1 divides xn+1 − 1.
Let g be the greatest common divisor of m+1 and n+1. Then there exist positive integers

a and b such that a(m+1)−b(n+1) = g. The polynomial xm+1−1 divides xa(m+1)−1, while
the polynomial xn+1 − 1 divides xb(n+1) − 1 and so does xm+1 − 1. It follows that xm+1 − 1
divides

xa(m+1) − 1− (xb(n+1) − 1) = xb(n+1)(xa(m+1)−b(n+1) − 1) = xb(n+1)(xg − 1).

Hence xm+1− 1 divides xg − 1. Because g divides m+ 1, this can happen only if g = m+ 1.
Therefore, m+ 1 is a divisor of n+ 1, and we are done.

(Romanian Mathematical Olympiad, 2002)
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879. We use complex coordinates, and for this, let

ε = cos
2π

n
+ i sin

2π

n
.

The vertices of the equiangular polygon should have coordinates

k∑

i=0

σ(i)εi, k = 1, 2, . . . , n− 1,

where σ is a certain permutation of 1, 2, . . . , n. The sides are parallel to the rays σ(k)εk , so
the angle between two consecutive sides is indeed 2π

n , except for maybe the first and the last!
For these two sides to form the appropriate angle, the equality

n−1∑

i=0

σ(i)εi = 0

must hold. We are supposed to find a permutation σ for which this relation is satisfied. It is
here that residues come into play.

Let n = ab with a and b coprime. Represent the nth roots of unity as

εaj+bk, j = 0, 1, . . . , b− 1, k = 0, 1, . . . , a− 1.

Note that there are ab = n such numbers altogether, and no two coincide, for if aj + bk ≡
aj′ + bk′ (mod n), then a(j − j′) ≡ b(k′ − k) (mod n), which means that j − j′ is divisible
by b and k − k′ is divisible by a, and so j = j′ and k = k′. Thus we have indeed listed all nth
roots of unity.

Order the roots of unity in the lexicographic order of the pairs (j, k). This defines the
permutation σ . We are left with proving that

b−1∑

j=0

a−1∑

k=0

(aj + k)εaj+bk = 0.

And indeed,

b−1∑

j=0

a−1∑

k=0

(aj + k)εaj+bk =
b−1∑

j=0

ajεaj
a−1∑

k=0

(εb)k +
a−1∑

k=0

bεbk
b−1∑

k=0

(εa)j = 0.

880. Let S be the set of all primes with the desired property. We claim that S = {2, 3, 5, 7, 13}.
It is easy to verify that these primes are indeed in S. So let us consider a prime p in S,

p > 7. Then p − 4 can have no factor q larger than 4, for otherwise p −
⌊

p
q

⌋
q = 4. Since

p−4 is odd, p−4 = 3a for some a ≥ 2. For a similar reason, p−8 cannot have prime factors
larger than 8, and so p− 8 = 3a − 4 = 5b7c. Reducing the last equality modulo 24, we find
that a is even and b is odd.
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If c �= 0, then p−9 = 5b7c−1 = 2d . Here we used the fact that p−9 has no prime factor
exceeding 8 and is not divisible by 3, 5, or 7. Reduction modulo 7 shows that the last equality
is impossible, for the powers of 2 are 1, 2, and 4 modulo 7. Hence c = 0 and 3a − 4 = 5b,
which, since 3a/2− 2 and 3a/2+ 2 are relatively prime, gives 3a/2− 2 = 1 and 3a/2+ 2 = 5b.
Thus a = 2, b = 1, and p = 13. This proves the claim.

(American Mathematical Monthly, 1987, proposed by M. Cipu and M. Deaconescu, solu-
tion by L. Jones)

881. Note that

n = 1+ 10+ · · · + 10p−2 = 10p−1 − 1

10− 1
.

By Fermat’s little theorem the numerator is divisible by p, while the denominator is not. Hence
the conclusion.

882. We have the factorization

16320 = 26 · 3 · 5 · 17.

First, note that pab − 1 = (pa)b − 1 is divisible by pa − 1. Hence p32 − 1 is divisible by
p2 − 1, p4 − 1, and p16 − 1. By Fermat’s little theorem, p2 − 1 = p3−1 − 1 is divisible by 3,
p4− 1 = p5−1− 1 is divisible by 5, and p16− 1 = p17−1− 1 is divisible by 17. Here we used
the fact that p, being prime and greater than 17, is coprime to 3, 5, and 17.

We are left to show that p32 − 1 is divisible by 26. Of course, p is odd, say p = 2m + 1,
m an integer. Then p32 − 1 = (2m + 1)32 − 1. Expanding with Newton’s binomial formula,
we get

(2m)32 +
(

32

1

)
(2m)31 + · · · +

(
32

2

)
(2m)2 +

(
32

1

)
(2m).

In this sum all but the last five terms contain a power of two greater than or equal to 6. On
the other hand, it is easy to check that in

(
32

5

)
(2m)5 +

(
132

4

)
(2m)4 +

(
32

3

)
(2m)3 +

(
32

2

)
(2m)2 +

(
32

1

)
(2m)

the first binomial coefficient is divisible by 2, the second by 22, the third by 23, the fourth by
24, and the fifth by 25. So this sum is divisible by 26, and hence (2m+ 1)32 − 1 = p32 − 1 is
itself divisible by 26. This completes the solution.

(Gazeta Matematică (Mathematics Gazette, Bucharest), proposed by I. Tomescu)

883. If x is a solution to the equation from the statement, then using Fermat’s little theorem,
we obtain

1 ≡ xp−1 ≡ a
p−1

2 (mod p).

If m is an integer, then every odd prime factor p of m2 + 1 must be of the form 4m + 1, with
m an integer. Indeed, in this case m2 ≡ −1 (mod p), and by what we just proved,

(−1)
p−1

2 = 1,

which means that p− 1 is divisible by 4.
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Now assume that there are only finitely many primes of the form 4m+1, m an integer, say
p1, p2, . . . , pn. The number (2p1p2 · · · pn)

2+ 1 has only odd prime factors, and these must be
of the form 4m+ 1, m an integer. Yet these are none of p1, p2, . . . , pn, a contradiction. Hence
the conclusion.

884. Assume a solution (x, y) exists. If y were even, then y3 + 7 would be congruent to
3 modulo 4. But a square cannot be congruent to 3 modulo 4. Hence y must be odd, say
y = 2k + 1. We have

x2 + 1 = y3 + 23 = (y+ 2)[(y− 1)2 + 3] = (y+ 2)(4k2 + 3).

We deduce that x2 + 1 is divisible by a number of the form 4m+ 3, namely, 4k2 + 3. It must
therefore be divisible by a prime number of this form. But we have seen in the solution to the
previous problem that this is impossible. Hence the equation has no solutions.

(V.A. Lebesgue)

885. Assume that the equation admits a solution (x, y). Let p be the smallest prime number
that divides n. Because (x + 1)n − xn is divisible by p, and x and x + 1 cannot both be
divisible by p, it follows that x and x+ 1 are relatively prime to p. By Fermat’s little theorem,
(x + 1)p−1 ≡ 1 ≡ xp−1 (mod p). Also, (x + 1)n ≡ xn (mod p) by hypothesis.

Additionally, because p is the smallest prime dividing n, the numbers p − 1 and n are
coprime. Then there exist integers a and b such that a(p− 1)+ bn = 1. It follows that

x + 1 = (x + 1)a(p−1)+bn ≡ xa(p−1)+bn ≡ x (mod p),

which is impossible. Hence the equation has no solutions.
(I. Cucurezeanu)

886. We construct the desired subsequence (xn)n inductively. Suppose that the prime numbers
that appear in the prime factor decompositions of x1, x2, . . . , xk−1 are p1, p2, . . . , pm. Because
the terms of the sequence are odd, none of these primes is equal to 2. Define

xk = 2(p1−1)(p2−1)···(pm−1) − 3.

By Fermat’s little theorem, 2(p1−1)(p2−1)···(pm−1) − 1 is divisible by each of the numbers
p1, p2, . . . , pn. It follows that xk is not divisible by any of these primes. Hence xk is rel-
atively prime to x1, x2, . . . , xk−1, and thus it can be added to the sequence. This completes
the solution.

887. The recurrence relation is linear. Using the characteristic equation we find that xn =
A · 2n + B · 3n, where A = 3x0 − x1 and B = x1 − 2x0. We see that A and B are integers.

Now let us assume that all but finitely many terms of the sequence are prime. Then
A, B �= 0, and

lim
n→∞ xn = lim

n→∞ 3n

(
A

(
2

3

)n

+ B

)
= ∞.

Let n be sufficiently large so that xn is a prime number different from 2 and 3. Then for k ≥ 1,

xn+k(p−1) = A · 2n+k(p−1) + B · 3n+k(p−1) = A · 2n · (2p−1)k + B · 3n · (3p−1)k.
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By Fermat’s little theorem, this is congruent to A · 2n + B · 3n modulo p, hence to xn which
is divisible by p. So the terms of the subsequence xn+k(p−1), k ≥ 1, are divisible by p, and
increase to infinity. This can happen only if the terms become composite at some point, which
contradicts our assumption. The problem is solved.

888. All congruences in this problem are modulo 13. First, let us show that for 0 ≤ k < 12,

12∑

x=0

xk ≡ 0 (mod 13).

The case k = 0 is obvious, so let us assume k > 0. First, observe that 2 is a primitive root
modulo 13, meaning that 2m, m ≥ 1, exhaust all nonzero residues modulo 13. So on the one
hand, 2k �≡ 1 for 1 ≤ k < 12, and on the other hand, the residue classes 2, 4, 6, . . . , 24 are a
permutation of the residue classes 1, 2, . . . , 12. We deduce that

12∑

x=0

xk ≡
12∑

x=0

(2x)k = 2k
12∑

x=0

xk,

and because 2k �≡ 1, we must have
12∑

x=0

xk ≡ 0.

Now let S = {(x1, x2, . . . , xn) | 0 ≤ xi ≤ 12}. Because |S| = 13n is divisible by 13, it
suffices to show that the number of n-tuples (x1, x2, . . . , xn) ∈ S such that f (x1, x2, . . . , xn) �≡ 0
is divisible by 13. Consider the sum

∑

(x1,x2,...,xn)∈S

(f (x1, x2, . . . , xn))
12.

This sum is congruent modulo 13 to the number of n-tuples (x1, x2, . . . , xn) ∈ S such that
f (x1, x2, . . . , xn) �≡ 0, since by Fermat’s little theorem,

(f (x1, x2, . . . , xn))
12 =
{

1 if f (x1, x2, . . . , xn) �≡ 0,

0 if f (x1, x2, . . . , xn) ≡ 0.

On the other hand, (f (x1, x2, . . . , xn))
12 can be expanded as

(f (x1, x2, . . . , xn))
12 =

m∑

j=1

cj

n∏

j=1

x
αji

i ,

for some integers m, cj, αji. Because f is a polynomial of total degree less than n, we have
αj1 + αj2 + · · · + αjn < 12n for every j, so for each j there exists i such that αji ≤ 12. Using
what we proved above, we obtain for 1 ≤ j ≤ m,

∑

(x1,x2,...,xn)∈S

cj

n∏

i=1

x
αji

i = cj

n∏

i=1

12∑

xi=0

x
αji

i ≡ 0,
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since one of the sums in the product is congruent to 0. Therefore,

∑

(x1,x2,...,xn)∈S

(f (x1, x2, . . . , xn))
12 =

∑

(x1,x2,...,xn)∈S

m∑

j=1

cj

n∏

i=1

x
αji

i ≡ 0.

This implies that the number of n-tuples (x1, x2, . . . , xn) in S with the property that
f (x1, x2, . . . , xn) �≡ 0 (mod 13) is divisible by 13, and we are done.

(Turkish Mathematical Olympiad, 1998)

889. We have 12321 = (111)2 = 32×372. It becomes natural to work modulo 3 and modulo
37. By Fermat’s little theorem,

a2 ≡ 1 (mod 3),

and since we must have ak ≡ −1 (mod 3), it follows that k is odd. Fermat’s little theorem
also gives

a36 ≡ 1 (mod 37).

By hypothesis ak ≡ −1 (mod 37). Using Euclid’s algorithm we find integers x and y such
that kx + 36y = gcd(k, 36). Since the gcd(k, 36) is odd, x is odd. We obtain that

agcd(k,36) ≡ akx+36y ≡ (−1) · 1 = −1 (mod 37).

Since gcd(k, 36) can be 1, 3, or 9, we see that a must satisfy a ≡ −1, a3 ≡ −1, or a9 ≡ −1
modulo 37. Thus a is congruent to−1 modulo 3 and to 3, 4, 11, 21, 25, 27, 28, 30, or 36 modulo
37. These residue classes modulo 37 are precisely those for which a is a perfect square but not
a perfect fourth power. Note that if these conditions are satisfied, then ak ≡ −1 (mod 3×37),
for some odd integer k.

How do the 32 and 372 come into the picture? The algebraic identity

xn − yn = (x − y)(xn−1 + xn−2y+ · · · + xyn−2 + yn−1)

shows that if x ≡ y (mod n), then xn ≡ yn (mod n2). Indeed, modulo n, the factors on the
right are 0, respectively, nxn−1, which is again 0.

We conclude that if a is a perfect square but not a fourth power modulo 37, and is −1
modulo 3, then ak ≡ −1 (mod 3× 37) and ak×3×37 ≡ −1 (mod 32 × 372). The answer to
the problem is the residue classes

11, 41, 62, 65, 77, 95, 101, 104, 110

modulo 111.
(Indian Team Selection Test for the International Mathematical Olympiad, 2004, proposed

by S.A. Katre)

890. More generally, for an integer n ≥ 3, we are supposed to find the greatest common
divisor of the numbers

2(2n−1 − 1), 3(3n−1 − 1), . . . , n(nn−1 − 1).
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Let p be a prime dividing all these numbers. If p > n, then p divides kn−1 − 1 for k =
1, 2, . . . , n. So the residue classes of 0, 1, 2, . . . , p− 1 are zeros of the polynomial xn−1 − 1
in Zp[x]. This is impossible, because it would imply that this is the null polynomial in Zp[x]
and it is not.

If p ≤ n, then p does not divide the numbers 2, 3, . . . , p− 1, so p divides the numbers

2n−1 − 1, 3n−1 − 1, . . . , (p− 1)n−1 − 1.

It also divides 1n−1 − 1, so the residue classes of 1, 2, . . . , p− 1 are zeros of the polynomial
xn−1−1 in Zp[x]. But they are also zeros of xp−1−1, by Fermat’s little theorem. Hence xp−1−1
divides xn−1−1. From here we deduce that p−1 divides n−1. Indeed, if n−1 = q(p−1)+r,
with 0 ≤ r < p− 1, then xn−1 − 1 = xr(xq(p−1) − 1)+ (xr − 1), so xp−1 − 1 divides xr − 1,
whence r = 0.

Conversely, if p− 1 divides n− 1, then by Fermat’s little theorem p divides kn − k for all
k, so p divides the numbers from the statement.

Finally, since p2 does not divide p(pn−1 − 1), p2 does not divide all numbers. So the
greatest common divisor is the product of all primes p such that p− 1 divides n− 1.

In our case n− 1 = 560 whose divisors are

1, 2, 4, 5, 7, 8, 10, 14, 16, 20, 28, 35, 40, 56, 70, 80, 112, 140, 280.

Add 1 to each and notice that the only primes are 2, 3, 5, 11, 17, 29, 41, 71, 113, 281, so the
answer to the problem is

2 · 3 · 5 · 11 · 17 · 29 · 41 · 71 · 113 · 281.

Remark. The number 561 was chosen by the author of the problem because it has a special
property: it is the smallest Carmichael number (a Carmichael number is an odd nonprime
number n such that an−1 ≡ 1(mod n) for all integers a with gcd(a, n) = 1). The solution
to the problem has as consequence a result by A. Korselt from 1899 that n is Carmichael if
and only if it is square-free and has the property that p− 1 divides n− 1 for each prime that
divides n.

(Romanian Team Selection Test for the International Mathematical Olympiad, 2008)

891. If n + 1 is composite, then each prime divisor of (n + 1)! is less than n, which also
divides n!. Then it does not divide n! + 1. In this case the greatest common divisor is 1.

If n + 1 is prime, then by the same argument the greatest common divisor can only be a
power of n+ 1. Wilson’s theorem implies that n+ 1 divides n! + 1. However, (n+ 1)2 does
not divide (n+ 1)!, and thus the greatest common divisor is (n+ 1).

(Irish Mathematical Olympiad, 1996)

892. We work modulo 7. None of the six numbers is divisible by 7, since otherwise the
product of the elements in one set would be divisible by 7, while the product of the elements
in the other set would not.
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By Wilson’s theorem, the product of the six consecutive numbers is congruent to −1
modulo 7. If the partition existed, denote by x the product of the elements in one set. Then

x2 = n(n+ 1) · · · (n+ 5) ≡ −1 (mod 7).

But this is impossible since −1 is not a quadratic residue modulo 7.
(12th International Mathematical Olympiad, 1970)

893. Consider all pairs of numbers i and j with ij ≡ a (mod p). Because the equation
x2 ≡ a (mod p) has no solutions, i is always different from j. Since every nonzero element
is invertible in Zp, the pairs exhaust all residue classes modulo p. Taking the product of all
such pairs, we obtain

a
p−1

2 ≡ (p− 1)! (mod p),

which by Wilson’s theorem is congruent to −1, as desired.

894. We claim that if p ≡ 1 (mod 4), then x =
(

p−1
2

)
! is a solution to the equation

x2 ≡ −1 (mod p). Indeed, by Wilson’s theorem,

−1 ≡ (p− 1)! = 1 · 2 · · ·
(

p− 1

2

)(
p+ 1

2

)
· · · (p− 1)

= 1 · 2 · · ·
(

p− 1

2

)(
p− p− 1

2

)(
p− p− 3

2

)
· · · (p− 1)

≡ (−1)
p−1

2

[(
p− 1

2

)
!
]2

(mod p).

Hence [(
p− 1

2

)
!
]2

≡ −1 (mod p),

as desired.
To show that the equation has no solution if p ≡ 3 (mod 4), assume that such a solution

exists. Call it a. Using Fermat’s little theorem, we obtain

1 ≡ ap−1 ≡ a2· p−1
2 ≡ (−1)

p−1
2 = −1 (mod p).

This is impossible. Hence the equation has no solution.

895. Multiplying the obvious congruences

1 ≡ −(p− 1) (mod p),

2 ≡ −(p− 2) (mod p),

. . .

n− 1 ≡ −(p− n+ 1) (mod p),

we obtain
(n− 1)! ≡ (−1)n−1(p− 1)(p− 2) · · · (p− n+ 1) (mod p).



748 Number Theory

Multiplying both sides by (p− n)! further gives

(p− n)!(n− 1)! ≡ (−1)n−1(p− 1)! (mod p).

Because by Wilson’s theorem (p− 1)! ≡ −1 (mod p), this becomes

(p− n)!(n− 1)! ≡ (−1)n (mod p),

as desired.
(A. Simionov)

896. Because the common difference of the progression is not divisible by p, the numbers
a1, a2, . . . , ap represent different residue classes modulo p. One of them, say ai, is divisible by
p, and the others give the residues 1, 2, . . . , p− 1 in some order. Applying Wilson’s theorem,
we have a1a2 · · · ap

ai
≡ (p− 1)! ≡ −1 (mod p);

hence a1a2···ap

ai
+ 1 is divisible by p. Since ai is divisible by p, we find that a1a2 · · · ap + ai is

divisible by p2, as desired.
(I. Cucurezeanu)

897. We use strong induction. The property is true for n = 1. Let n = pq, where p is a prime
number and q is relatively prime to p (q is allowed to be 1). Assume that the formula holds
for q. Any number k that divides n is of the form pjm, where 0 ≤ j ≤ α, and m divides q.
Hence we can write

α∑

j=0

∑

m|q
φ(pjm) =

α∑

j=0

∑

m|q
φ(pj)φ(m) =

α∑

j=0

φ(pj)
∑

m|q
φ(m)

=
⎛

⎝1+
α∑

j=1

pj−1(p− 1)

⎞

⎠ q = pαq = n.

This completes the induction.
(C.F. Gauss)

898. If n = 2m, m ≥ 2, then

φ(n) = 2m − 2m−1 = 2m−1 ≥ √2m = √n.

If n = pm, where m ≥ 2 and p is an odd prime, then

φ(n) = pm−1(p− 1) ≥ √pm = √n.

Observe, moreover, that if n = pm, m ≥ 2, where p is a prime greater than or equal to 5, then
φ(n) ≥ √2n.

Now in general, if n is either odd or a multiple of 4, then

φ(n) = φ(pα1
1 ) · · ·φ(pαk

k ) ≥
√

pα1
1 · · ·
√

pαk
k = √n.
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We are left with the case n = 2t, with t odd and different from 1 or 3. If any prime factor of t
is greater than or equal to 5, then φ(n) = φ(t) ≥ √2t. It remains to settle the case n = 2 · 3i,
i ≥ 2. For i = 2, φ(18) = 6 >

√
18. For i ≥ 3, φ(n) = 2 · 3i−1, and the inequality reduces

to
√

2 · 3 i
2−1 > 1, which is obvious.

899. An example is n = 15. In that case φ(15) = φ(3 · 5) = 2 · 4 = 8, and 82 + 152 = 172.
Observe that for α, β ≥ 1,

φ(3α · 5β) = 3α−1 · 5β−1(3− 1)(5− 1) = 3α−1 · 5β−1 · 8
and

(3α−1 · 5β−1 · 8)2 + (3α · 5β)2 = (3α−1 · 5β−1 · 17)2,

so any number of the form n = 3α · 5β has the desired property.

900. We will prove that if m = 2 · 7r , r ≥ 1, then the equation φ(n) = m has no solutions.
If n = pα1

1 · · · pαk
k , then

φ(n) = pα1−1
1 · · · pαk−1

k (p1 − 1) · · · (pk − 1).

If at least two of the primes p1, . . . , pk are odd, then φ(n) is divisible by 4, so is not equal to
m.

If m = 2α, or n = 2αpβ , with α > 2, then φ(n) is again divisible by 4, so again φ(n) �= m.
The only cases left are n = 2αpβ , with α = 0, α = 1, or α = 2. In the first case,

φ(n) = pβ−1(p− 1).

This implies p = 7, but even then equality cannot hold. For the other two cases,

φ(n) = 2α−1pβ−1(p− 1).

The equality φ(n) = m implies right away that α = 1, p = 7, but 7β−1 · 6 cannot equal 2 · 7r .
Hence the conclusion.

901. Let s = 2α5β t, where t is coprime to 10. Define

n = 10α+β(10φ(t) + 102φ(t) + · · · + 10sφ(t)).

The sum of the digits of n is 1+ 1+ · · · + 1 = s. By Euler’s theorem, 10φ(t) ≡ 1 (mod t),
and so 10kφ(t) ≡ 1 (mod t), k = 1, 2, . . . , s. It follows that

n ≡ 10α+β(1+ 1+ · · · + 1) = s · 10α+β (mod t),

so n is divisible by t. This number is also divisible by 2α5β and therefore has the desired
property.

(W. Sierpiński)

902. To have few residues that are cubes, 3 should divide the Euler totient function of the
number. This is the case with 7, 9, and 13, since φ(7) = 6, φ(9) = 6, and φ(13) = 6. The
cubes modulo 7 and 9 are 0, 1, and −1; those modulo 13 are 0, 1, −1, 8, and −8.
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So let us assume that the equation admits a solution x, z. Reducing modulo 7, we find
that x = 3k + 2, with k a positive integer. The equation becomes 4 · 8k + 3 = z3. A
reduction modulo 9 implies that k is odd, k = 2n + 1, and the equation further changes into
32 · 64n + 3 = z3. This is impossible modulo 13. Hence, no solutions.

(I. Cucurezeanu)

903. First solution: Here is a proof by induction on n. The case n = 1 is an easy check. Let
us verify the inductive step from n to n+ 1. We transform the left-hand side as

n+1∑

k=1

φ(k)

⌊
n+ 1

k

⌋
=

n+1∑

k=1

φ(k)
⌊n

k

⌋
+

n+1∑

k=1

φ(k)

(⌊
n+ 1

k

⌋
−
⌊n

k

⌋)
.

The last term in the first sum can be ignored since it is equal to zero. To evaluate the second
sum, we observe that ⌊

n+ 1

k

⌋
−
⌊n

k

⌋
=
{

1 if k divides n,

0 otherwise.

Therefore,
n+1∑

k=1

φ(k)

⌊
n+ 1

k

⌋
=

n∑

k=1

φ(k)
⌊n

k

⌋
+
∑

k|n+1

φ(k).

Using the induction hypothesis and Gauss’ identity
∑

k|n
φ(k) = n (Problem 897), we find that

this is equal to n(n+1)

2 + (n+ 1), which is further equal to the desired answer (n+1)(n+2)

2 . This
completes the induction, and the solution to the problem.

Second solution: Using the Gauss identity for Euler’s totient function (Problem 897), we can
write

n(n+ 1)

2
=

n∑

m=1

m =
n∑

m=1

∑

k|m
φ(k) =

n∑

k=1

φ(k)

�n/k�∑

m=1

1.

This is clearly equal to the left-hand side of the identity from the statement, and we are done.
(M.O. Drimbe, 200 de Identităţi şi Inegalităţi cu “Partea Întreagă” (200 Identities and

Inequalities about the “Greatest Integer Function”), GIL, 2004, second solution by R. Stong)

904. We may assume gcd(a, d) = 1, d ≥ 1, a > d. Since aφ(d) ≡ 1 (mod d), it follows that
akφ(d) ≡ 1 (mod d) for all integers k. Hence for all k ≥ 1,

akφ(d) = 1+ mkd,

for some positive integers mk . If we let nk = amk , k ≥ 1, then

a+ nkd = akφ(d)+1,

so the prime factors of a+ nkd, k ≥ 1, are exactly those of a.
(G. Pólya,G. Szegö, Aufgaben und Lehrsätze aus der Analysis, Springer-Verlag, 1964)

905. The customer picks a number k and transmits it securely to the bank using the algorithm
described in the essay. Using the two large prime numbers p and q, the bank finds m such that
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km ≡ 1 (mod (p− 1)(q − 1)). If α is the numerical information that the customer wants to
receive, the bank computes αm (mod n), then transmits the answer β to the customer. The
customer computes βk (mod n). By Euler’s theorem, this is α. Success!

906. As before, let p and q be two large prime numbers known by the United Nations experts
alone. Let also k be an arbitrary secret number picked by these experts with the property
that gcd(k, (p − 1)(q − 1)) = 1. The number n = pq and the inverse m of k modulo
φ(n) = (p− 1)(q− 1) are provided to both the country under investigation and to the United
Nations.

The numerical data α that comprises the findings of the team of experts is raised to the
power k, then reduced modulo n. The answer β is handed over to the country. Computing
βm modulo n, the country can read the data. But it cannot encrypt fake data, since it does not
know the number k.

907. We are to find the smallest positive solution to the system of congruences

x ≡ 1 (mod 60),

x ≡ 0 (mod 7).

The general solution is 7b1+ 420t, where b1 is the inverse of 7 modulo 60 and t is an integer.
Since b1 is a solution to the Diophantine equation 7b1 + 60y = 1, we find it using Euclid’s
algorithm. Here is how to do it: 60 = 8 · 7+ 4, 7 = 1 · 3+ 3, 4 = 1 · 3+ 1. Then

1 = 4− 1 · 3 = 4− 1 · (7− 1 · 4) = 2 · 4− 7 = 2 · (60− 8 · 7)− 7

= 2 · 60− 17 · 7.

Hence b1 = −17, and the smallest positive number of the form 7b1+420t is−7·17+420·1 =
301.

(Brahmagupta)

908. Let p1, p2, . . . , p2n be different primes. By the Chinese remainder theorem there exists
x such that

x ≡ 0 (mod p1p2),

x ≡ −1 (mod p3p4),

. . .

x ≡ −n+ 1 (mod p2n−1, p2n).

Then the numbers x + k, 0 ≤ k ≤ n− 1, are each divisible by p2k+1p2k+2, and we are done.

Remark. This problem shows that there exist arbitrarily long arithmetic progressions contain-
ing no prime numbers.

909. Let m = m1m2. If x ∈ {0, 1, . . . , m − 1} is such that P(x) ≡ 0 (mod n), then
P(x) ≡ 0 (mod m1). Let a1 be the residue of x modulo m1. Then P(a1) ≡ 0 (mod m1).
Similarly, if a2 is the residue of x modulo m2, then P(a2) ≡ 0 (mod m2). Thus for each
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solution x to P(x) ≡ 0 (mod m), we have constructed a pair (a1, a2) with ai a solution to
P(x) ≡ 0 (mod mi), i = 1, 2.

Conversely, given the residues ai such that P(ai) ≡ 0 (mod mi), i = 1, 2, by the Chinese
remainder theorem there exists a unique x ∈ {0, 1, . . . , m − 1} such that x ≡ ai (mod mi),
i = 1, 2. Then P(x) ≡ 0 (mod mi), i = 1, 2, and consequently P(x) ≡ 0 (mod m). We have
established a bijection from the set of solutions to the equation P(x) ≡ 0 (mod m) to the
Cartesian product of the sets of solutions to P(x) ≡ 0 (mod mi), i = 1, 2. The conclusion
follows.

(I. Niven, H.S. Zuckerman, H.L. Montgomery, An Introduction to the Theory of Numbers,
Wiley, 1991)

910. Since this is a game with finite number of possibilities, there is always a winning strategy,
either for the first player, or for the second. Arguing by contradiction, let us assume that there
are only finitely many n’s, say n1, n2, . . . , nm for which Bob has a winning strategy. Then for
every other nonnegative integer n, Alice must have some move on a heap of n stones leading
to a position in which the second player wins. This means that any other integer n is of the
form p− 1+ nk for some prime p and some 1 ≤ k ≤ m.

We will prove that this is not the case. Choose an integer N greater than all the nk’s and let
p1, p2, . . . , pN be the first N prime numbers. By the Chinese remainder theorem, there exists
a positive integer x such that

x ≡ −1 (mod p2
1),

x ≡ −2 (mod p2
2),

. . .

x ≡ −N (mod p2
r ).

Then the number x + N + 1 is not of the form p − 1 + nk , because each of the numbers
x + N + 1− nk − 1 is composite, being a multiple of a square of a prime number. We have
reached a contradiction, which proves the desired conclusion.

(67th W.L. Putnam Mathematical Competition, 2006)

911. Let p1 < p2 < p3 < · · · be the sequence of all prime numbers. Set a1 = 2. Inductively,
for n ≥ 1, let an+1 be the least integer greater than an that is congruent to−k modulo pk+1, for
all k ≤ n. The existence of such an integer is guaranteed by the Chinese remainder theorem.
Observe that for all k ≥ 0, k + an ≡ 0 (mod pk+1) for n ≥ k + 1. Then at most k + 1
values in the sequence k + an, n ≥ 1, can be prime, since from the (k + 2)nd term onward,
the terms of the sequence are nontrivial multiples of pk+1, and therefore must be composite.
This completes the proof.

(Czech and Slovak Mathematical Olympiad, 1997)

912. We construct such a sequence recursively. Suppose that a1, a2, . . . , am have been chosen.
Set s = a1+a2+· · ·+am, and let n be the smallest positive integer that is not yet a term of the
sequence. By the Chinese remainder theorem, there exists t such that t ≡ −s (mod m + 1),
and t ≡ −s−n (mod m+2). We can increase t by a suitably large multiple of (m+1)(m+2) to
ensure that it does not equal any of a1, a2, . . . , am. Then a1, a2, . . . , am, t, n is also a sequence
with the desired property. Indeed, a1 + a2 + · · · + am + t = s + t is divisible by m + 1 and
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a1+· · ·+am+ t+n = s+ t+n is divisible by m+2. Continue the construction inductively.
Observe that the algorithm ensures that 1, . . . , m all occur among the first 2m terms.

(Russian Mathematical Olympiad, 1995)

913. First, let us fulfill a simpler task, namely to find a k such that k · 2n + 1 is composite
for every n in an infinite arithmetic sequence. Let p be a prime, and b some positive integer.
Choose k such that k · 2b ≡ −1 (mod p) (which is possible since 2b has an inverse modulo
p), and such that k · 2b + 1 > p. Also, let a be such that 2a ≡ 1 (mod p). Then k · 2am+b + 1
is divisible by p for all m ≥ 0, hence is composite.

Now assume that we were able to find a finite set of triples (ai, bj, pj), 1 ≤ j ≤ s, with
2aj ≡ 1 (mod pj) and such that for any positive integer n there exist m and j with n = ajm+bj.
We would like to determine a k such that k · 2ajm+bj + 1 is divisible by pj, 1 ≤ j ≤ s, m ≥ 0.
Using the Chinese remainder theorem we can use k as a sufficiently large solution to the
system of equations

k ≡ −2−bj (mod pj), 0 ≤ j ≤ s.

Then for every n, k · 2n+ 1 is divisible by one of the pj’s, j = 0, 1, . . . , s, hence is composite.
An example of such a family of triples is (2, 0, 3), (3, 0, 7), (4, 1, 5), (8, 3, 17), (12, 7, 13),

(24, 23, 241).
(W. Sierpiński, 250 Problems in Elementary Number Theory, Państwowe Wydawnictwo

Naukowe, Warszawa, 1970)

914. Assume the contrary and consider a prime p that does not divide b− a. By the Chinese
remainder theorem we can find a positive integer n such that

n ≡ 1 (mod p− 1),

n ≡ −a (mod p).

Then by Fermat’s little theorem,

an + n ≡ a+ n ≡ a− a ≡ 0 (mod p)

and
bn + n ≡ bn ≡ b− a (mod p).

It follows that p divides an + n but does not divide bn + n, a contradiction. Hence a = b, as
desired.

(Short list of the 46th International Mathematical Olympiad, 2005)

915. The idea is to place (a, b) at the center of a square of size (2n+1)× (2n+1) having the
property that all lattice points in its interior and on its sides are not visible from the origin. To
this end, choose (2n + 1)2 distinct primes pij, −n ≤ i, j ≤ n. Apply the Chinese remainder
theorem to find an a with a + i ≡ 0 (mod pij) for all i, j and a b with b + j ≡ 0 (mod pij)

for all i, j. For any i and j, a+ i and b+ j are both divisible by pij. Hence none of the points
(a+ i, b+ j) are visible from the origin. We conclude that any point visible from the origin
lies outside the square of size (2n+ 1)× (2n+ 1) centered at (a, b), hence at distance greater
than n from (a, b).

(The American Mathematical Monthly, 1977, proposed by A.A. Mullin)
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916. We claim the answer is b = 6.

Lemma. If n, d are integers and p is prime, and if p divides P(n) and P(n− d), then p is odd
and p divides d2 + 3 or p divides d.

Proof. Note that if p is a prime and p|n2 + n+ 1, then p is odd, since n2 + n is even.
If p|n2+n+1 and p|n2−2dn+d2+n−d+1, then p divides their difference−2dn+d2−d.

If p does not divide d, then p divides −2n + d − 1, so n ≡ d−1
2 (mod p) (note that p is odd).

So p divides

(
d − 1

2

)2

+
(

d − 1

2

)
+ 1 = 1

4
(d2 + 3),

and hence p divides d2 + 3. �

In view of the lemma, given an integer d, we will call a prime p for which there exists n
such that p divides P(n) and P(n−d) a d-prime. All d-primes are odd. One can see that there
are no 1-primes, because there is no odd prime that divides either 1 or 12+3 = 4, impossible.
So there are no 1-primes. If p is a 2-prime, then p|2 or p|22 + 3 = 7. Thus p = 7 is the only
2-prime. If p is a 3-prime, p|3 or p|32 + 3 = 12, so p = 3 is the only 3-prime.

Now let us return to the problem. We will show first that b = 1, 2, 3, 4, 5 cannot yield a
fragrant set.

If b = 2, then some p divides P(a + 1) and P(a + 2), meaning that p is a 1-prime,
impossible.

If b = 3 the some p divides either P(a + 1) and P(a + 2) or P(a + 2) and P(a + 3),
impossible for the same reason.

If b = 4, then P(a + 2) musth share a prime divisor with P(a + 4), so the prime p must
be 7. Thus 7 divides P(a + 2) and P(a + 4). For the same reason 7 divides P(a + 1) and
P(a+ 3). Thus 7 is a 1-prime (with P(a+ 1) and P(a+ 2)), impossible.

If b = 5, then P(a + 3) shares a prime divisor with either P(a + 1) or P(a + 5). Thus
this prime is 7. But then P(a+ 2) and P(a+ 4) cannot share a prime factor because then this
factor would be 7 as well, ans then 7 would be a 1-prime (with P(a + 2) and P(a + 3)). So
P(a+ 2) must share a factor with P(a+ 5). The only 3-prime is 3, so 3 divides both P(a+ 2)

and P(a + 5). A similar argument shows that 3 divides P(a + 1) and P(a + 4), so 3 is a
1-prime, impossible.

We conclude that b ≥ 6. Now take b = 6. By the Chinese remainder theorem, there
exists a positive integer a such that

a ≡ 6 (mod 19)

a ≡ 0 (mod 7)

a ≡ 1 (mod 3).
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Then, because P(x) ≡ P(y)(mod p) if x ≡ y (modp),

P(a+ 1) ≡ P(7) = 49+ 7+ 1 ≡ 0 (mod 19)

P(a+ 2) ≡ P(2) = 4+ 2+ 1 ≡ 0 (mod 7)

P(a+ 3) ≡ P(1) = 1+ 1+ 1 ≡ 0 (mod 3)

P(a+ 4) ≡ P(4) = 16+ 4+ 1 ≡ 0 (mod 7)

P(a+ 5) ≡ P(11) = 121+ 11+ 1 ≡ 0 (mod 19)

P(a+ 6) ≡ P(1) = 1+ 1+ 1 ≡ 0 (mod 3).

So {P(a+ 1), P(a+ 2), . . . , P(a+ 6)} is fragrant.
(57th International Mathematical Olympiad, 2016, solution by M. Kural)

917. As seen in the solution to Problem 883 every prime factor of n2+1 is of the form 4k+1.
Thus every such prime factor is the sum of two squares. Thus m is a product of sums of two
squares. Using the Lagrange identity

(x2 + y2)(z2 + w2) = (xz + yw)2 + (xw− yz)2,

we can inductively reduce the number of factors until m itself will be a sum two squares.

918. First let us discuss the case x odd. Then the equation can be written as

(2+ xi)(2− xi) = y3.

Let us show that 2+ xi and 2− xi are coprime in Z[i]. Indeed, if c+ di = gcd(2+ xi, 2− xi),
then c + id divides 2+ xi + 2− xi = 4 in Z[i]. It follows that c − di divides 4, and so their
product (c+di)(c−di) = c2+d2 divides 4×4 = 16. On the other hand, c+di dividing 2+xi
implies c−di divides 2−xi, so (c+di)(c−di) = c2+d2 divides (2+xi)(2−xi) = 4+x2. But
x is odd, so the greatest common divisor of 16 and 4+x2 in Z is 1. Consequently c2+d2 = 1,
and hence c+ di is a unit in Z[i].

So 2+ xi and 2− xi are coprime, and so (2+ xi)(2− xi) = y3 implies 2+ xi = (a+ bi)3

for some integers a and b. Identifying the real and imaginary parts, we obtain

a(a2 − 3b2) = 2 and 3a2b− b3 = x.

The first equation yields a = ±1 or a = ±2, and this gives the solutions x = ±11, y = 5.
If x is even, then y is even. Substitute in the equation x = 2u, y = 2v, then divide the

equation by 4 to obtain u2 + 1 = 2v3, that is

(u+ i)(u− i) = 2v3.

The numbers u+ i and u− i differ by 2i. If they had a common divisor, then this should be a
divisor of 2 = (1+ i)(1− i). But u+ i and 1± i are coprime (since 1± i are prime), unless
u = 1. Then 1+ i and 1− i are coprime. So u+ i and u− i are coprime in Z[i]. Using again
the uniqueness of prime factorization, we deduce that there are integers a and b such that

u+ i = (1+ i)(a+ bi)3, u− i = (1− i)(a− bi)3,
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(here we can enforce the signs to match because (1 − i)(a + bi)3 = (1 + i)(a − bi)). We
identify the real and imaginary parts

a3 − 3a2b− 3ab2 + b3 = u and a3 + 3a2b− 3ab2 − b3 = 1.

The last relation can be written as (a − b)(a2 + 4ab + b2) = 1, and yields the systems of
equations

{
a− b = 1
a2 + 4ab+ b2 = 1

and

{
a− b = −1
a2 + 4ab+ b2 = −1

The first sistem yields a = b + 1, (b + 1)2 + 4(b + 1)b + b2 = 6b2 + 6b + 1 = 1.
This gives (a, b) = (1, 0) or (a, b) = (0,−1). The second system yields a = b − 1,
(b − 1)2 + 4(b − 1)b + b2 = 6b2 − 6b + 1 = −1, with no solutions. We thus obtain the
solutions to the equation (x, y) = (2, 2) and (x, y) = (−2, 2).

Remark. The more general equation x2+k = y3 with k a nonzero integer is called the Mordell
equation. L. Mordell proved that for every nonzero k this equation has only finitely many
integral solutions.

(P. Fermat)

919. Because x, y are coprime, they have different parities. Indeed, if they are both odd,
x2 + y2 is 2 modulo 4, which cannot be a perfect square. Hence z is odd. The equation is
equivalent to

(x + yi)(x − yi) = z2m.

Let d = gcd(x+ yi, x− yi). Then d|(x+ yi)+ (x− yi) = 2x, and d|(x+ yi)− (x− yi) = 2iy;
hence d|2x and d|2y. Since x and y are coprime, d must divide 2. But we also know that d
divides the product of x + yi and x − yi, so it divides zm. And z is odd, so d must be a unit in
Z[i], that is x + yi and x − yi are coprime. From the uniqueness of prime factorization, we
must have

x + iy = ik(a+ bi)2m

that is x + yi is a unit times a 2mth power. Here a, b, k are integers. We compute

(a+ ib)4m = (a+ bi)p+1 = (a+ bi)p(a+ bi)

≡ (ap + (bi)p)(a+ bi) (mod p)

= (ap − bpi)(a+ bi) (mod p).

By Fermat’s little theorem, the last expression is further congruent, modulo p, to (a− bi)(a+
bi) = a2 + b2. Therefore

(a+ bi)4m ≡ a2 + b2 (mod p).

On the other hand, from x + yi = ik(a+ bi)2m, it follows, by squaring, that

x2 − y2 + 2xyi = (−1)k(a+ bi)4m,
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and hence

x2 − y2 + 2xyi ≡ (−1)k(a2 + b2) (mod p).

We deduce that there is u+ vi ∈ Z[i] such that

p(u+ vi) = pu+ pvi = x2 − y2 − (−1)k(a2 + b2)+ 2xyi.

We conclude that p divides 2xy, and since p is odd, p divides xy.
(The American Mathematical Monthly)

920. First note that y must be odd, because no cube is 2 modulo 4. Write x3 = y2 + 2 =
(y+√−2)(y −√−2). Let δ = gcd(y +√−2), y −√−2). Then

δ|(y +√−2)− (y−√−2) = 2
√−2.

Notice that N(
√−2) = 2, which is prime in the integer ring, hence

√−2 is prime. Thus δ is
a power of

√−2. On the other hand,

δ|(y +√−2)(y −√−2) = y2 + 2,

which is odd. This is impossible unless δ is a unit (because N(δ), which is even unless δ is a
unit, divides N(y2 + 2) which is odd).

So y+√−2 and y−√−2 are coprime. Because Z[√−2] is a unique factorization domain,
this implies that each of y+√−2 and y−√−2 is a cube up to multiplication by a unit. But
the units are ±1, which are cubes as well, so we can write

y+√−2 = (a+ b
√−2)3.

Equating the real and imaginary parts, we obtain y = a3−6ab2 and 1 = 3a2b−2b3. From the
second equation we see that b, which divides the right-hand side, must be ±1. Then a = ±1
as well. Consequently y = ±1, and x = 3 are the only solutions.

(P. Fermat)

921. First we look modulo 13, and notice that 3y ≡ 1, 3, or 9 (mod 13) while x2 + 11 ≡
11, 12, 2, 7, 1, 10, or 8 (mod 13). For the two to be equal modulo 13, 3y must be congruent
to 1, so y must be a multiple of 3, that is y = 3k for some positive integer k. Let z = 3k . The
equation becomes x2 + 11 = z3. The right-hand side is odd (z is a power of 3), so x is even.
Using the uniqueness of the prime factorization in the ring of integers of Q[√−11] we can
write

x ±√−11 =
(

a+ b
√−11

2

)3

,

where a and b are either both even or both odd (here we can check using the norm that the
only units of Q[√−11] are ±1, so if a unit appears in front of the left-hand side, it can be
incorporated into the cube).



758 Number Theory

Identifying the imaginary parts, we obtain ±23 = 3a2b − 11b3, hence b|23. Analyzing
cases we obtain that the only solutions are a = ±1, b = ±1. Hence (4, 3) is the only solution
to the original equation.

(T. Andreescu, D. Andrica, I. Cucurezeanu, An Introduction to Diophantine Equations (A
Problem-Based Approach), Birkhäuser, 2010)

922. This problem tests whether you really understood our discussion of the procedure of
writing the elements of SL(2, Z) in terms of the generators.

Call the first matrix from the statement S. This matrix is no longer in SL(2, Z)! Let us
see again where the linear equation is. The determinant of the matrix

[
12 5
7 3

]

is equal to 12 · 3− 7 · 5 = 1, so (3, 5) is a solution to the linear equation 12x− 7y = 1. Note
that

S

(
p

q

)
=
(

q

p

)
, T n

(
p

q

)
=
(

p+ nq

q

)
.

So S flips a fraction, and T k adds k to it. This time it is the continued fraction expansion

12

7
= 1 = 1

1+ 1

2+ 1

2

(no negatives !). All we need to do is start with S and apply to it T 2, then S, then again T 2,
and so on, following the continued fraction expansion from bottom to top. We thus obtain

[
12 5
7 3

]
= TSTST 2ST 2S,

and the problem is solved.

923. Consider first the case a = 0. Since by = m always has solutions, it follows that
b = ±1. From this we deduce that y = ±m. The second equation becomes a linear equation
in x, cx = n∓dm, which is supposed always to have an integer solution. This implies c = ±1,
and hence ad − bc = bc = ±1. The same argument applies if any of b, c, or d is 0.

If none of them is zero, set � = ab− cd. Again we distinguish two cases. If � = 0, then
a
c = b

d = λ. Then m = ax + by = λ(cx + dy) = λn, which restricts the range of m and n.
Hence � �= 0.

Solving the system using Cramer’s rule, we obtain

x = dm − bn

�
, y = an− cm

�
.

These numbers are integers for any m and n. In particular, for (m, n) = (1, 0), x1 = d
�

,
y1 = − c

�
, and for (m, n) = (0, 1), x2 = − b

�
, y2 = a

�
. The number

x1y2 − x2y1 = ad − bc

�2
= 1

�
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is therefore an integer. Since � is an integer, this can happen only if � = ±1, and the problem
is solved.

Remark. A linear map T : R
2 → R

2 is called orientation preserving if its determinant is
positive, and orientation reversing otherwise. As a consequence of what we just proved, we
obtain that SL(2, Z) consists of precisely those orientation-preserving linear transformations
of the plane that map Z

2 onto itself.

924. Because gcd(a, b) = 1, the equation au− bv = 1 has infinitely many positive solutions
(u, v). Let (t, z) be a solution. Consider now the system in (x, y),

{
ax − yz − c = 0,

bx − yt + d = 0.

The determinant of its coefficient matrix is−1, so the system admits integer solutions. Solving,
we obtain (

x
y

)
=
(

t − z
b− a

)(
c
−d

)
=
(

tc+ zd
bc+ ad

)
.

So each positive solution (t, z) to the equation au − bv = 1 yields a positive solution (tc +
zd, bc+ ad, z, t) to the original system of equations. This solves the problem.

925. At each cut we add 7 or 11 new pieces. Thus after cutting x times in 8 and y times in 12
we have 7x+11y+1 pieces. The problem amounts to showing that the equation 7x+11y = n
has nonnegative solutions for every n ≥ 60, but no nonnegative solution for n = 59. This
is of course a corollary to Sylvester’s theorem, but let us see how the proof works for this
particular situation.

The numbers 11 · 0, 11 · 1, . . ., 11 · 6 form a complete set of residues modulo 7. This
means that for n equal to one of the numbers 60 = 11 ·6−6, 61 = 11 ·6−5, . . ., 66 = 11 ·6,
one can find nonnegative x and y such that 7x + 11y = n. Indeed,

60 = 7 · 7+ 11 · 1,

61 = 7 · 4+ 11 · 3,

62 = 7 · 1+ 11 · 5,

63 = 7 · 9+ 11 · 0,

64 = 7 · 6+ 11 · 2,

65 = 7 · 3+ 11 · 4,

66 = 7 · 0+ 11 · 6.

Since if we are able to cut the sheet of paper into n pieces we are also able to cut it into n+ 7,
we can prove by induction that the cut is possible for any n ≥ 61.

Let us now show that the equation 7x + 11y = 59 has no solution. Rewrite it as 7x +
11(y − 5) = 4. This implies 7x ≡ 4 (mod 11). But this means x ≡ 10 (mod 11), hence
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x ≥ 10. This is impossible since 7x + 11y = 59 implies x ≤ 8. Hence we cannot obtain 60
pieces, and the problem is solved.

(German Mathematical Olympiad, 1970/71)

926. Multiply the geometric series

1

1− xa
= 1+ xa + x2a + · · · and

1

1− xb
= 1+ xb + x2b + · · ·

The coefficient of xn in the product counts the number of ways exponents of the form ka and
mb add up to n. And this is s(n).

927. The number n can be represented as 4m, 4m + 1, 4m + 2, or 4m + 3. The required
solution is provided by one of the following identities:

4m = (2m − 1)+ (2m+ 1),

4m + 1 = 2m+ (2m+ 1),

4m + 2 = (2m− 1)+ (2m+ 3),

4m + 3 = (2m+ 1)+ (2m+ 2).

The two terms on the right are coprime because either they differ by 1, or they are odd and
differ by 2 or 4.

928. Note that for any integer k, we can dissect the d-dimensional cube into kd pieces. If we
do this for two integers a and b, then performing the appropriate dissections we can obtain
(ad − 1)x + (bd − 1)y+ 1 cubes.

By Sylvester’s theorem for coprime positive numbers α and β, the equation αx+ βy = n
has nonnegative solutions provided that n is sufficiently large.

To complete the solution, we just have to find a and b such that ad − 1 and bd − 1 are
coprime. We can choose any a and then let b = ad − 1. Indeed, (ad − 1)d − 1 differs from a
power of ad − 1 by 1, so the two numbers cannot have a common divisor.

929. There exist integers u and v such that the two sides in question are a = u2 − v2 and
b = 2uv. We are also told that a+ b = k2, for some integer k. Then

a3 + b3 = (a+ b)(a2 − ab+ b2) = k2((u2 − v2)2 − 2uv(u2 − v2)+ 4u2v2)

= k2(u4 + v4 − 2u3v+ 2uv3 + 2u2v2) = [k(u2 − uv)]2 + [k(v2 + uv)]2,
and the problem is solved.

930. We use the characterization of Pythagorean triples as

a = k(u2 − v2), b = 2kuv, c = k(u2 + v2)

for some k, u, v positive integers, gcd(u, v) = 1. The condition from the statement translates
into

k2uv(u2 − v2) = 2k(u2 + uv).
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Dividing by ku and moving 2v to the left we obtain

v(ku2 − kv2 − 2) = 2u.

Since gcd(u, v) = 1, v = 1 or 2. If v = 1 we obtain ku2−k−2 = 2u, that is ku(u−2) = k−2.
This can only happen for small values of k and u, and an easy check yields k = u = 2. We
then obtain the Pythagorean triple (6, 8, 10).

If v = 2, then ku(u − 1) = 4k + 2, and again this can only happen for small values of k
and u. An easy check yields k = 1, u = 3, and we obtain the Pythagorean triple (5, 12, 13).

931. We guess immediately that x = 2, y = 4, and z = 2 is a solution because of the
Pythagorean triple 3, 4, 5. This gives us a hint as to how to approach the problem. Checking
parity, we see that y has to be even. A reduction modulo 4 shows that x must be even, while
a reduction modulo 3 shows that z must be even. Letting x = 2m and z = 2n, we obtain a
Pythagorean equation

(3m)2 + y2 = (5n)2.

Because y is even, in the usual parametrization of the solution we should have 3m = u2 − v2

and 5n = u2 + v2. From (u − v)(u + v) = 3m we find that u − v and u + v are powers of
3. Unless u − v is 1, u = (u − v + u + v)/2 and v = (u + v − u + v)/2 are both divisible
by 3, which cannot happen because u2 + v2 is a power of 5. So u − v = 1, u + v = 3m, and
u2 + v2 = 5n. Eliminating the parameters u and v, we obtain the simpler equation

2 · 5n = 9m + 1.

First, note that n = 1 yields the solution (3, 4, 5). If n > 1, then looking at the equation
modulo 25, we see that m has to be an odd multiple of 5, say m = 5(2k + 1). But then

2 · 5n = (95)2k+1 + 1 = (95 + 1)((95)2k − (95)2k−1 + · · · + 1),

which implies that 2 · 5n is a multiple of 95 + 1 = 2 · 52 · 1181. This is of course impossible;
hence the equation does not have other solutions.

(I. Cucurezeanu)

932. The last digit of a perfect square cannot be 3 or 7. This implies that x must be even, say
x = 2x′. The condition from the statement can be written as

(2x′)2 + (5y)2 = z2,

for integers x′, y, and z. It follows that there exist integers u and v such that 5y = u2 − v2 and
2x′ = 2uv (looking at parity, we rule out the case 5y = 2uv and 2x′ = u2 − v2). From the first
equality we see that any common factor of u and v is a power of 5. From the second we find
that u and v are powers of 2. Thus u = 2x′−1 and v = 1. It follows that x′ and y satisfy the
simpler Diophantine equation

5y = 22x′−2 − 1.

But then 5y = (2x′−1 − 1)(2x′−1 + 1), and the factors on the right differ by 2, which cannot
happen since no powers of 5 differ by 2. Hence no such numbers can exist.
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933. Here is how to transform the equation from the statement into a Pythagorean equation:

x2 + y2 = 1997(x − y),

2(x2 + y2) = 2 · 1997(x − y),

(x + y)2 + (x − y)2 − 2 · 1997(x − y) = 0,

(x + y)2 + (1997− x + y)2 = 19972.

Because x and y are positive integers, 0 < x+ y < 1997, and for the same reason 0 < 1997−
x + y < 1997. The problem reduces to solving the Pythagorean equation a2 + b2 = 19972

in positive integers. Since 1997 is prime, the greatest common divisor of a and b is 1. Hence
there exist coprime positive integers u > v with the greatest common divisor equal to 1 such
that

1997 = u2 + v2, a = 2uv, b = u2 − v2.

Because u is the larger of the two numbers, 1997
2 < u2 < 1997; hence 33 ≤ u ≤ 44. There

are 12 cases to check. Our task is simplified if we look at the equality 1997 = u2 + v2 and
realize that neither u nor v can be divisible by 3. Moreover, looking at the same equality
modulo 5, we find that u and v can only be 1 or −1 modulo 5. We are left with the cases
m = 34, 41, or 44. The only solution is (m, n) = (34, 29). Solving x + y = 2 · 34 · 29 and
1997 − x + y = 342 − 292, we obtain x = 1827, y = 145. Solving x + y = 342 − 292,
1997− x + y = 2 · 34 · 29, we obtain (x, y) = (170, 145). These are the two solutions to the
equation.

(Bulgarian Mathematical Olympiad, 1997)

934. One can verify that x = 2m2 + 1 and y = 2m is a solution.
(Diophantus)

935. We will search for numbers x and y for which 2x2 = a2 and 2y2 = 2a, so that 1+2x2+2y2 =
(a+ 1)2. Then x = 2z for some positive integer z, and

a = 22z2 = 2y2−1.

This leads to the Pell equation
y2 − 2z2 = 1.

This equation has infinitely many solutions, given by

yn + zn

√
2 = (3+ 2

√
2)n,

and we are done.
(Revista Matematică din Timişoara (Timişoara Mathematics Gazette), proposed by M.

Burtea)

936. The Pell equation x2−2y2 = 1 has infinitely many solutions. Choose n = x2−1. Then
n = y2 + y2, n+ 1 = x2 + 02, and n+ 2 = x2 + 12, and we are done.

(61st W.L. Putnam Mathematical Competition, 2000)
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937. In other words, the problem asks us to show that the Diophantine equation x2 − 2 = 7y

has no positive solutions. A reduction modulo 8 makes the right-hand side equal to (−1)y,
while the left-hand side could only be equal to −2, −1, 2. This means that y must be odd,
y = 2z + 1, with z an integer. Multiplying by 7y = 72z+1 and completing the square, we
obtain the equivalent equation

(72z+1 + 1)2 − 7(7zx)2 = 1.

Let us analyze the associated Pell equation

X2 − 7Y 2 = 1.

Its fundamental solution is X1 = 8, Y1 = 3, and its general solution is given by

Xk + Yk

√
7 = (8+ 3

√
7)k, k = 1, 2, . . .

Substituting X = 72z+1 + 1 and Y = 7zx, we obtain

72z+1 + 1 = 8k +
(

k

2

)
8k−2 · 32 · 7+

(
k

4

)
8k−4 · 34 · 72 + · · · ,

7zx =
(

k

1

)
8k−1 · 3+

(
k

3

)
8k−3 · 33 · 7+

(
k

5

)
8k−5 · 35 · 72 + · · ·

Let us compare the power of 7 in k = (k1
)

with the power of 7 in
( k

2m+1

)
7m, m > 1. Writing

(
k

2m+ 1

)
7m = 7mk(k − 1) · · · (k − 2m − 1)

1 · 2 · · · k ,

we see that the power of 7 in the numerator grows faster than it can be canceled by the
denominator. Consequently, in the second equality from above, the power of 7 in the first
term is less than in the others. We thus obtain that 7z divides k. But then 8k > 87z

> 72z+1,
and the first inequality could not hold. This shows that the equation has no solutions.

(I. Cucurezeanu)

938. Expanding the cube, we obtain the equivalent equation 3x2 + 3x + 1 = y2. After
multiplying by 4 and completing the square, we obtain (2y)2 − 3(2x + 1)2 = 1, a Pell
equation, namely, u2 − 3v2 = 1 with u even and v odd. The solutions to this equation are
generated by un ± vn

√
3 = (2 ± √3)n, and the parity restriction shows that we must select

every other solution. So the original equation has infinitely many solutions generated by

2yn ± (2xn + 1)
√

3 = (2±√3)(5± 4
√

3)n,

or, explicitly,

xn = (2+√3)(5+ 4
√

3)n − (2−√3)(5− 4
√

3)n − 1

2
,

yn = (2+√3)(5+ 4
√

3)n + (2−√3)(5− 4
√

3)n

2
.
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939. One family of solutions is of course (n, n), n ∈ N. Let us see what other solutions the
equation might have. Denote by t the greatest common divisor of x and y, and let u = x

t ,
v = y

t . The equation becomes t5(u− v)5 = t3(u3 − v3). Hence

t2(u− v)4 = u3 − v3

u− v
= u2 + uv + v2 = (u− v)2 + 3uv,

or
(u− v)2[t2(u− v)2 − 1] = 3uv.

It follows that (u− v)2 divides 3uv, and since u and v are relatively prime and u > v, this can
happen only if u− v = 1. We obtain the equation 3v(v+ 1) = t2 − 1, which is the same as

(v+ 1)3 − v3 = t2.

This was solved in the previous problem. The solutions to the original equation are then given
by x = (v+ 1)t, y = vt, for any solution (v, t) to this last equation.

(A. Rotkiewicz)

940. It is easy to guess that (x, y, z, t) = (10, 10,−1, 0) is a solution. Because quadratic
Diophantine equations are usually simpler than cubic equations, we try to reduce the given
equation to a quadratic. We do this by perturbing the particular solution that we already know.

We try to find numbers u and v such that
(
10+ u, 10− u,− 1

2 + v,− 1
2 − v
)

is a solution.
Of course, v has to be a half-integer, so it is better to replace it by w

2 , where w is an odd integer.
The equation becomes

(2000+ u2)− 1+ 3w2

4
= 1999,

which is the same as
w2 − 80u2 = 1.

This is a Pell equation. The smallest solution is (w1, u1) = (9, 1), and the other positive
solutions are generated by

wn + un

√
80 =
(

w1 + u1

√
80
)n

.

This gives rise to the recurrence

(wn+1, un+1) = (9wn + 80un, wn + 9un), n ≥ 1.

It is now easy to prove by induction that all the wn’s are odd, and hence any solution (wn, un)

to Pell’s equation yields the solution

(xn, yn, zn, tn) =
(

10+ un, 10− un,−1

2
+ wn

2
,−1

2
− wn

2

)

to the original equation.
(Bulgarian Mathematical Olympiad, 1999)
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941. Consider first the case that n is even, n = 2k, k an integer. We have

(√
m+√m− 1

)2k =
(

2m− 1+ 2
√

m(m− 1)
)k

.

The term on the right-hand side generates the solution to Pell’s equation

X2 − m(m− 1)Y 2 = 1.

If for a certain n, (Xn, Yn) is the corresponding solution, then choose p = X2
n . Since p− 1 =

X2
n − 1 = m(m− 1)Y 2

n , it follows that

(√
m+√m− 1

)2k =
(

2m− 1+ 2
√

m(m− 1)
)k = Xn + Yn

√
m(m− 1)

= √p+√p− 1,

as desired.
This now suggests the path we should follow in the case that n is odd. Write

(√
m+√m− 1

)n = Un
√

m+ Vn

√
m− 1.

This time, (Un, Vn) is a solution to the generalized Pell equation

mU 2 − (m− 1)V 2 = 1.

In a similar manner we choose p = mU 2
n and obtain the desired identity.

(I. Tomescu, Problems in Combinatorics, Wiley, 1985)

942. First solution: This solution is based on an idea that we have already encountered in the
section on factorizations and divisibility. Solving for y, we obtain

y = −x2 + 4006x + 20032

3x + 4006
.

To make the expression on the right easier to handle we multiply both sides by 9 and write

9y = −3x − 8012− 20032

3x + 4006
.

If (x, y) is an integer solution to the given equation, then 3x + 4006 divides 20032. Because
2003 is a prime number, we have 3x + 4006 ∈ {±1,±2003,±20032}. Working modulo 3
we see that of these six possibilities, only 1, −2003, and 20032 yield integer solutions for
x. We deduce that the equation from the statement has three solutions: (−1334,−446224),
(−2003, 0), and (1336001,−446224).

Second solution: Rewrite the equation as

(3x + 4006)(3x + 9y+ 8012) = −20032.

This yields a linear system
3x + 4006 = d,
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3x + 9y+ 8012 = −20032

d
,

where d is a divisor of −20032. Since 2003 is prime, one has to check the cases d = ±1,
±2003, ±20032, which yield the above solutions.

(American Mathematical Monthly, proposed by Wu Wei Chao)

943. Divide through by x2y2 to obtain the equivalent equation

1

y2
+ 1

xy
+ 1

x2
= 1.

One of the denominators must be less than or equal to 3. The situations x = 1 and y = 1 are
ruled out. Thus we can have only xy = 2 or 3. But then again either x or y is 1, which is
impossible. Hence the equation has no solutions.

944. Note that 2002 = 34 + 54 + 64. It suffices to consider

xk = 3 · 2002k, yk = 5 · 2002k, zk = 6 · 2002k, wk = 4k + 1,

with k a positive integer. Indeed,

x4
k + y4

k + z4
k = (34 + 54 + 64)20024k = 20024k+1,

for all k ≥ 1.

945. If x ≤ y ≤ z, then since 4x + 4y + 4z is a perfect square, it follows that the number
1+4y−x+4z−x is also a perfect square. Then there exist an odd integer t and a positive integer
m such that

1+ 4y−x + 4z−x = (1+ 2mt)2.

It follows that
4y−x(1+ 4z−x) = 2m+1t(1+ 2m−1t);

hence m = 2y− 2x − 1. From 1+ 4z−x = t + 2m−1t2, we obtain

t − 1 = 4y−x−1(4z−2y+x+1 − t2) = 4y−x−1(2z−2y+x+1 + t)(2z−2y+x+1 − t).

Since 2z−2y+x+1+ t > t, this equality can hold only if t = 1 and z = 2y−x−1. The solutions
are of the form (x, y, 2y − x − 1) with x, y nonnegative integers.

946. With the substitution u = 2x + 3, v = 2y + 3, w = 2z + 3, the equation reads

u2 + v2 + w2 = 7.

By eliminating the denominators, it is equivalent to show that the equation

U 2 + V 2 +W 2 = 7T 2

has no integer solution (U, V, W, T) �= (0, 0, 0, 0). Assuming the contrary, pick a solution
for which |U | + |V | + |W | + |T | is minimal. Reducing the equality modulo 4, we find that
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|U |, |V |, |W |, |T | are even, hence
(

U
2 , V

2 , W
2 , T

2

)
is also an integer solution, contradicting

minimality. Hence the equation does not have solutions.
(Bulgarian Mathematical Olympiad, 1997)

947. First solution: One can see immediately that x = 1 is a solution. Assume that there
exists a solution x > 1. Then x! is even, so 3x! has residue 1 modulo 4. This implies that the
last digit of the number 23x!

is 2, so the last digit of 32x! = 23x! + 1 is 3. But this is impossible
because the last digit of an even power of 3 is either 1 or 9. Hence x = 1 is the only solution.

Second solution: We will prove by induction the inequality

32x!
< 23x!

,

for x ≥ 2. The base case x = 2 runs as follows: 322 = 34 = 81 < 512 < 29 = 232
. Assume

now that 32x!
< 23x!

and let us show that 32(x+1)!
< 23(x+1)!

.
Raising the inequality 32x!

< 23x!
to the power 2x!·x, we obtain

(
32x!)2x!·x

<
(

23x!)2x!·x
<
(

23x!)3x!·x
.

Therefore, 32(x+1)!
< 23(x+1)!

, and the inequality is proved. The inequality we just proved shows
that there are no solutions with x ≥ 2. We are done.

Remark. The proof by induction can be avoided if we perform some computations. Indeed,
the inequality can be reduced to

32x!
< 23x!

and then to

x! < log log 3− log log 2

log 3− log 2
= 1.13588 . . .

(Romanian Mathematical Olympiad, 1985)

948. First solution: The solutions are

(v+ 1, v, 1, 1), for all v; (2, 1, 1, y), for all y; (2, 3, 2, 1), (3, 2, 2, 3).

To show that these are the only solutions, we consider first the simpler case v = u+ 1. Then
ux − (u + 1)y = 1. Considering this equation modulo u, we obtain −1 ≡ ux − (u + 1)y =
1 (mod u). So u = 1 or 2. The case u = 1 is clearly impossible, since then vy = 0, so we
have u = 2, v = 3. We are left with the simpler equation 2x − 3y = 1. Modulo 3 it follows
that x is even, x = 2x′. The equality 22x′ − 1 = (2x′ − 1)(2x′ + 1) = 3y can hold only if
x′ = 1 (the only consecutive powers of 3 that differ by 2 are 1 and 3). So x = 2, y = 1, and
we obtain the solution (2, 3, 2, 1).

Now suppose that u = v + 1. If v = 1, then u = 2, x = 1, and y is arbitrary. We have
found the solution (2, 1, 2, y). If v = 2, the equation reduces to 3x − 2y = 1. If y ≥ 2, then
modulo 4 we obtain that x is even, x = 2x′, and so 32x′ − 1 = (3x′ − 1)(3x′ + 1) = 2y. Two
consecutive powers of 2 differ by 2 if they are 2 and 4. We find that either x = y = 1 or x = 2,
y = 3. This gives the solutions (2, 1, 1, 1) and (3, 2, 2, 3).
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Next let us assume v ≥ 3. The case y = 1 gives the solutions (v + 1, v, 1, 1). If y > 1,
then v2 divides uy, so 1 ≡ (v + 1)x ≡ 0 + (x1

)
v + 1 (mod v2), and therefore v divides x.

Considering the equation modulo v+1, we obtain 1 ≡ (v+1)x−vy ≡ −(−1)y (mod (v+1)).
Since v + 1 > 2, 1 �≡ −1 (mod (v + 1)), so y must be odd. Now if x = 1, then vy = v, so
v = 1, giving again the family of solutions (v + 1, v, 1, 1). So let us assume x > 1. Then
(v+ 1)2 divides (v+ 1)x, so

1 ≡ (v+ 1)x − vy ≡ −(v + 1− 1)y

≡ 0−
(

y

1

)
(v+ 1)(−1)y−1 − (−1)y

≡ −y(v+ 1)+ 1 (mod (v + 1)2).

Hence v+ 1 divides y. Since y is odd, v+ 1 is odd and v is even. Since v divides x, x is also
even. Because v is even and v ≥ 3, it follows that v ≥ 4. We will need the following result.

Lemma. If a and q are odd, if 1 ≤ m < t, and if a2m
q ≡ 1 (mod 2t), then a ≡

±1 (mod 2t−m).

Proof. First, let us prove the property for q = 1. We will do it by induction on m. For m = 1
we have a2 = (a − 1)(a + 1), so one of the factors is divisible by 2t−1. Assume that the
property is true for m−1 and let us prove it for m. Factoring, we obtain (a2m−1+1)(a2m−1−1).
For m ≥ 2, the first factor is 2 modulo 4, hence a2m−1

is 1 modulo 2t−1. From the induction
hypothesis it follows that a ≡ ±1 (mod 2t−m) (note that t − m = (t − 1)− (m− 1)).

For arbitrary q, from what we have proved so far it follows that aq ≡ ±1 (mod 2t−m).
Because φ(2t−m) = 2t−m−1, by Euler’s theorem a2t−m−1 ≡ 1 (mod 2t−m). Since q is odd,
we can find a positive integer c such that cq ≡ 1 (mod 2t−m−1). Then a ≡ acq ≡ (±1)c ≡
±1 (mod 2t−m), and the lemma is proved. �

Let us return to the problem. Let x = 2mq, where m ≥ 1 and q is odd. Because
(v + 1)x − vy = 1, clearly y ≥ x. We have shown that v + 1 divides y, so y ≥ v + 1. Let us
prove that y ≥ 2m+ 1. Indeed, if m ≤ 2 this holds since y ≥ v+ 1 ≥ 5 ≥ 2m+ 1; otherwise,
y ≥ x = 2mq ≥ 2m ≥ 2m + 1.

Looking at the equation modulo 2y , we have (v + 1)2mq ≡ 1 (mod 2y), because 2y

divides vy. Using this and the lemma we obtain that v + 1 ≡ ±1 (mod 2y−m). But
v+ 1 ≡ 1 (mod 2y−m) would imply that 2m+1 divides v, which is impossible since v divides
x. Therefore, v+1 ≡ −1 (mod 2y−m) and v ≡ −2 (mod 2y−m). In particular, v ≥ 2y−m−2,
so y ≥ 2y−m−1. But since y ≥ 2m+1 and y ≥ 5, it follows that 2y−m−1 > y, a contradiction.
This shows that there are no other solutions.

Second solution: Begin as before until we reduce to the case u = v + 1 and v ≥ 3. Then we
use the following lemma.

Lemma. Suppose ps ≥ 3 is a prime power, r ≥ 1, and a ≡ 1 (mod ps), but not mod ps+1.
If ak ≡ 1 (mod pr+s), then pr divides k.
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Proof. Write a = 1 + cps + dps+1, where 1 ≤ c ≤ p − 1. Then we compute ak ≡ 1 +
kcps (mod ps+1), and

ap = 1+ cps+1 + dps+2 +
(

p

2

)
p2s(c+ dp)+

(
p

3

)
p3s(c+ dp)3 + · · ·

Since either s ≥ 2 or p is odd, ps+2 divides
(p

2

)
p2s; hence the fourth term is zero modulo ps+2.

Since s + 2 ≤ 3s, the latter terms are also zero mod ps+2; hence ap ≡ 1 (mod ps+1), but
not modulo ps+2.

We now proceed by induction on r. Since r ≥ 1, the first equation above shows that p
divides k, which is the base case. For the inductive step, we note that the second calculation
above lets us apply the previous case to (ap)k/p. �

To use this lemma, let ps ≥ 3 be the highest power of the prime p that divides v. Then
u = v+1 ≡ 1 (mod ps), but not modulo ps+1, and ux = vy+1 ≡ 1 (mod psy). Hence by the
lemma, ps(y−1) divides x, and in particular, x ≥ ps(y−1) ≥ 3y−1. Thus either x > y or y = 1.

Similarly, let qt ≥ 3 be the highest power of the prime q that divides u. Then (−v) =
1− u ≡ 1 (mod qt), but not modulo qt+1. Since (−v)y ≡ 1 (mod qt) and (−v)y = (−1)y −
(−1)yux ≡ (−1)y (mod qt), we see that y is even. Hence (−v)y = 1 − ux ≡ 1 (mod qtx).
Thus by the lemma, qt(x−1) divides y, and in particular, y ≥ qt(x−1) ≥ 3x−1, so either y > x or
x = 1.

Combining these, we see that we must have either x = 1 or y = 1. Either of these implies
the other and gives the solution (v+ 1, v, 1, 1).

Remark. Catalan conjectured in 1844 a more general fact, namely that the Diophantine equa-
tion ux − vy = 1 subject to the condition x, y ≥ 2 has the unique solution 32 − 23 = 1. This
would mean that 8 and 9 are the only consecutive powers. Catalan’s conjecture was proved
by P. Mihăilescu in 2002.

(Kvant (Quantum), first solution by R. Barton, second solution by R. Stong)
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949. The relation from the statement implies

(A ∩ X) ∪ (B ∩ X) = A ∩ B.

Applying de Morgan’s law, we obtain

(A ∪ B) ∩ X = A ∩ B.

But the left-hand side is equal to (A ∪ B ∪ X) ∩ X. and this is obviously equal to X. Hence
X = A ∩ B.

(Russian Mathematics Competition, 1977)

950. We prove the property by induction on the number of elements of the set. For a set with
one element the property clearly holds. Let us assume that we could find the required list
A1, A2, . . . , A2n of the subsets of the set with n elements, n ≥ 1. Add the element x to obtain
a set with n+ 1 elements. The list for this new set is

A1, A2, . . . , A2n, A2n ∪ {x}, . . . , A2 ∪ {x}, A1 ∪ {x},
and the induction is complete.

951. Fix A ∈ F and consider the function f : P(S)→ P(S) on the subsets of S, f (X) = X�A.
Because

f (f (X)) = (X�A)�A = ((X�A)\A) ∪ (A\(X�A))

= (X\A) ∪ (X ∩ A) = X,

f is one-to-one. Therefore, f (F) has at least m elements. The conclusion follows.
(I. Tomescu, Problems in Combinatorics, Wiley, 1985)
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952. If all functions fn, n = 1, 2, 3, . . ., are onto, then the property is obvious. We will reduce
the general situation to this particular one. For some k and n, define

Bn,k = (fn ◦ fn+1 ◦ · · · ◦ fn+k−1)(An+k).

We have the descending sequence of sets

An ⊃ Bn,1 ⊃ Bn,2 ⊃ · · ·
Because all these sets are finite, the sequence is stationary, so there exists k0 such that Bn,k =
Bn,k+1, for k ≥ k0. Let Bn = Bn,k0 . It is not hard to see that fn(Bn+1) = Bn, and in this way
we obtain a sequence of sets and surjective maps. For these the property holds; hence it holds
for the original sets as well.

(C. Năstăsescu, C. Niţă, M. Brandiburu, D. Joiţa, Exerciţii şi Probleme de Algebră (Exer-
cises and Problems in Algebra), Editura Didactică şi Pedagogică, Bucharest, 1983)

953. For a person X we will denote by mX the number of people he knows. Let A and B be
two people who know each other. We denote by MA and MB the set of acquaintances of A,
respectively, B. By hypothesis MA and MB are disjoint. If X ∈ MA, then X has exactly one
acquaintance in MB. Indeed, either X = A, in which case he only knows B in MB, or X �= A,
in which case he does not know B, so he has exactly one common acquaintance with B. This
latter person is the only one he knows in MB. Similarly, any person in MB has exactly one
acquaintance in MA. This allows us to establish a bijection between MA and MB, and conclude
that mA = mB.

Finally, if A and B do not know each other, then they have a common acquaintance C.
The above argument shows that mA = mB = mC and we are done.

(Kvant (Quantum))

954. The answer is positive. Because 1% of 20 million is 200, 000 > 311 = 177147, we can
actually assume that the number of supporters of the president is 311.

First, call a group of type O if all of its members are opponents of Miraflores and of type
S if the group contains some supporters. Divide the voters in 5 groups of 4 million each, such
that the first two groups are of type O. Then divide the two groups of type O arbitrarily in 5
subgroups, then again in 5 until we obtain groups of size 28, then divide each of these in 16
groups of 16 people.

We now have to design the groups of type S. Divide the supporters evenly among these
groups, 310 in each. Then divide each of the three groups of type S into five groups, two of
which are of type O and three of which are of type S. Now repeat until we reach the groups
of size 28. Divide each into 24 groups, make 7 of them be of type O and 9 of type S. In each
of the type S groups of size 16 put 9 supporters. At this moment the entire population has
been evenly divided and in each group of type S that shows up in the successive division the
supporters of Miraflores win.

(23rd Moscow Mathematical Olympiad)

955. (a) The first player starts by writing 6 on the blackboard. In what follows only the
numbers 4, 5, 7, 8, 9, 10 can be written. Split them in pairs (4, 5), (7, 9), (8, 10). At each
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move, whenever the second player writes one of the numbers from the pair, the first player
writes the second number of that pair.

(b) The first player has a winning strategy. Assume that this is not the case, and so that for
every number the player chooses, the second can continue to a win. Then the first player can
just write 1, because then whatever number the second player writes, the first can continue to
a win.

(Kvant (Quantum), proposed by D. Ivanov)

956. Note that the product of the three elements in each of the sets {1, 4, 9}, {2, 6, 12},
{3, 5, 15}, and {7, 8, 14} is a square. Hence none of these sets is a subset of M. Because they
are disjoint, it follows that M has at most 15− 4 = 11 elements.

Since 10 is not an element of the aforementioned sets, if 10 /∈ M, then M has at most 10
elements. Suppose 10 ∈ M. Then none of {2, 5}, {6, 15}, {1, 4, 9}, and {7, 8, 14} is a subset
of M. If {3, 12} �⊂ M, it follows again that M has at most 10 elements. If {3, 12} ⊂ M, then
none of {1}, {4}, {9}, {2, 6}, {5, 15}, and {7, 8, 14} is a subset of M, and then M has at most 9
elements. We conclude that M has at most 10 elements in any case.

Finally, it is easy to verify that the subset

M = {1, 4, 5, 6, 7, 10, 11, 12, 13, 14}
has the desired property. Hence the maximum number of elements in M is 10.

(Short list of the 35th International Mathematical Olympiad, 1994, proposed by Bulgaria)

957. Let us try to find a counterexample. We represent the numbers as the six vertices of a
graph. If two numbers are not coprime, we connect them by an edge labeled by their greatest
common divisor. The labels must be pairwise coprime, or else we could find three (actually
four) numbers with the greatest common divisor greater than 1. A second condition is that
from any three vertices, two must be connected by an edge, for otherwise the three vertices
would correspond to numbers that are pairwise coprime. We can cosider the complete graph
with six vertices color its edges by the first 15 prime numbers. Place at each vertex the product
of the labels of the edges adjacent to the vertex. The set of six numbers obtained this way is
a counterexample.

Remark. One should contrast this with the property that given a complete graph with six
vertices whose edges are colored by two colors, there is a monochromatic triangle.

(Kvant (Quantum))

958. Let us try to construct such a set S. Chosing all numbers greater than n/2 solves the first
requirement. To fullfil the second, it suffices to choose all even numbers. It is not difficult to
see that the number of elements in this S is � n+2

4 �.
We claim that this is the maximum number. Indeed, let S be a set with the required

properties and let a be its least element. If a ≤ n
2 , replace a by 2a. Clearly the new set still
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has the required properties. Repeat this until all elements are greater than n/2. And there
should be no consecutive elements.

(Balkan Mathematical Olympiad, 2005)

959. We will prove this by induction on the number of digits of the given number. For a
3-digit number, two digits have the same parity. Delete the third and you are done.

Now let us assume that the property is true for any 2k − 1-digit number and let us prove
it for a 2k + 1 digit number N . N either has two consecutive digits of the same parity, or the
first and the last have the same parity. In either case we can ignore those digits for a moment,
to obtain a 2k− 1 digit number. Delete a digit of this number to obtain an acceptable number.
Adding back the two digits we obtain a number that is still acceptable. This completes the
induction.

(Kvant (Quantum), proposed by A. Sidorenko)

960. Label initially the people in order, by 0, 1, . . . , 2n − 1. Since the table is round, we
consider the labels modulo 2n. Assume that after the rearrangement, the person on position
j moved to the position j + f (j), for some f (j) ∈ {0, 1, . . . , 2n − 1} (recall that everything
is considered modulo 2n). We have to show that there are two people j and k, such that
f (j) = f (k). If this is not true, then f (1), f (2), . . . , f (2n) is a permutation of 1, 2, . . . , 2n.
Then on the one hand

2n∑

j=1

(j + f (j)) ≡ 2
2n∑

j=1

j = 2n(2n+ 1) ≡ 0( mod 2n),

and on the other hand

2n∑

j=1

(j + f (j)) ≡
2n∑

j=1

j = n(2n+ 1) ≡ n( mod 2n),

the latter because the residule classes of the numbers j + f (j) are a permutation of
0, 1, 2, . . . , 2n − 1. Since n �≡ 0(mod 2n), this cannot happen, so two of the f (j)’s are
equal.

If the number of people is odd, say n = 2n + 1, let σ(j) = 2j − 1 if 1 ≤ j ≤ n and
σ(j) = 2(j − n) if j ≥ n+ 1, where σ(j) is the position of the jth person after the break. It is
not hard to see that if j < k, then k− j �= |σ(k)−σ(j)|, hence for any two people, the number
of people sitting between them changes after the break.

(Romanian Mathematics Competition, 1989, see also German Math Olympiad, 1976)

961. Because the sum of the elements in the given set is nk(nk + 1)/2, for the partition to
exist it is necessary that either k is even or nk is odd. Let us show that this is also a sufficient
condition.

For easy reference and intuition, we will write the sets one underneath the other as the
rows of an n× k table.
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Case I. k even. We write the numbers 1, 2, . . . , nk in the table in a snake-like fashion, as
shown in Figure 101 for n = 5 and k = 6.

8

12

10 11

9

7

6

14

15 16

17

25

20

19

1813

24

23

22

26

27

28

29

21 301

2

3

4

5

Figure 101

Case II. Let us first see how this can be done for k = 3, namely for a table of the
form (2m + 1) × 3. In this table we first set ai1 = i, i = 1, 2, . . . , 2m + 1. Then we set
ai2 = 3m + 1 + i, 1 ≤ i ≤ m + 1, and ai2 = m + i if m + 2 ≤ i ≤ 2m + 1. Finally,
ai3 = 6m + 4 − 2i, 1 ≤ i ≤ m + 1 and ai3 = 8m + 6− 2i if m + 2 ≤ i ≤ 2m + 1. It is not
hard to check that the sum of the elements on each row is 9m+ 6.

For an arbitrary k, write the first three rows in this fashion, and then arrange the remaining
n(k − 3) numbers in the snake-like fashion from Case I to the right of the table (here k − 3 is
even, so this is possible). The rows of the resulting table have the same sum of elements.

(Kvant (Quantum), proposed by S. Berkolaiko)

962. (a) Let us assume that 1 and n are placed at Ai respectively Aj. The sum of the absolute
values of the differences of neighboring numbers one either of the two arcs joining Ai to Aj is
at least n− 1, so the sum of all these absolute values is at least 2n− 2.

(b) In order for the value 2n− 2 to be reached, the numbers must be written in increasing
order on each of the arcs. Each such configuration is uniquely determined if we specify the
location of the number 1, and the numbers on the forward arc from 1 to n. These numbers
form a subset of {2, 3, · · · , n− 1}, so they can be chosen in 2n−2 ways. The location of 1 can
be chosen in n ways. So the answer to the question is n2n−2.

(Kvant (Quantum), proposed by A. Razborov)

963. For m = 2n and k = 2n−1+ n, we will construct a sequence of positive integers with the
required property. Let A be the set consisting of all odd numbers and all powers of 2 less or
equal to 2n. Then A has 2n−1 + n elements, and we will show that it has the desired property.

If p < q, then 2p + 2q = 2p(2q−p + 1), which does not divide 2p2q because it has an odd
divisor greater than 1. A number of the form 2p + 2k + 1 is odd and greater than 2k + 1, so
it cannot divide 2p(2k + 1). Finally, the sum of two odd numbers is even, so it cannot divide
their product. It follows that A has the desired property.

(Romanian Team Selection Test for the International Mathematical Olympiad, 1983, pro-
posed by I. Tomescu)

964. Assume we can place the numbers so that the difference between the numbers in adjacent
triangles is at most 3. Divide the big triangle into 4 equal equilateral triangles T1, T2, T3, T4,
with T4 at the center. Consider the sets S1 = {1, 2, 3, 4, 5} and S2 = {12, 13, 14, 15, 16}.
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None of these 4 triangles can contain numbers from both sets. So there will be 2 of these
triangles that contain only numbers from S1 (say T1 and T2) and 2 of these triangles that
contain only numbers from S2 (say T3 and T4). Now consider the division of T4 into 4 small
triangles t1, t2, t3, t4 (again with the convention that t4 lies at the center). Notice that between
a number from S1 and a number from S2 must lie at least 2 squares.

If one number from S2 lies in the center of t4, it follows that the numbers from S1 must lie
in the 3 rhombi formed at the vertices of the big triangle. But only the rhombi from T1 and T2

are allowed, and there are 4 equilateral triangles to be filled with 5 numbers. Impossible. So
the number must be in t1, t2 or t3. A second number from S2 lying in t4 would allow only at
most 4 triangles in T1 and T2 to be filled with numbers from S1, again a contradiction. Hence
t4 contains just one number from S2, and this number is not in the center. In fact the triangle
containing it must touch T3, for if it touches T1 or T2, there won’t be enough fields in these
triangles to fill with numbers from S1.

So the five elements of S2 fill completely T3 and one triangle of T4 that is adjacent to T3

(say t3). For the numbers from S1 the only available fields are the 4 triangles that touch the
side opposite to T3 and one of the triangles that fills a parallelogram in the corner (the one that
is furthest away from t3). The number 1 is in one of these fields, and it is adjacent to a triangle
that contains a number that is not in S1. That number is greater than 5, a contradiction. We
are done.

(Mathematical Reflections, proposed by I. Borsenco)

965. If the lines are parallel then the integers are all zero and we violate (i). So we have at
least two non-parallel lines.

To each half-plane we associate either a +1 or a −1. We color each point of the plane
with the product of the numbers associated to the half-planes that cover it. Finally associate
to each region its color multiplied by the number of vertices that the region has.

Note that neighboring regions are colored by numbers of opposite signs, and two such
numbers a and b satisfy ab < a + b. To see that the sum of the numbers in one half-plane
is zero, count by intersection points of lines, and note that at each such intersection points
one has the colors (+1, −1, +1, −1) around the point if the point lies on the boundary, and
(+1,−1) if the point lies in the interior.

(Balkan Mathematical Olympiad, 2004)

966. We solve the more general case of the permutations of the first 2n positive integers,
n ≥ 1. The average of the sum

n∑

k=1

|a2k−1 − a2k|

is just n times the average value of |a1 − a2|, because the average value of |a2i−1 − a2i| is the
same for all i = 1, 2, . . . , n. When a1 = k, the average value of |a1 − a2| is

(k − 1)+ (k − 2)+ · · · + 1+ 1+ 2+ · · · + (2n− k)

2n− 1

= 1

2n− 1

[
k(k − 1)

2
+ (2n− k)(2n− k + 1)

2

]
= k2 − (2n+ 1)k + n(2n+ 1)

2n− 1
.



Combinatorics and Probability 777

It follows that the average value of the sum is

n · 1

2n

2n∑

k=1

k2 − (2n+ 1)k + n(2n+ 1)

2n− 1

= 1

4n− 2

[
2n(2n+ 1)(4n+ 1)

6
− (2n+ 1)

2n(2n+ 1)

2
+ 2n2(2n+ 1)

]

= n(2n+ 1)

3
.

For our problem n = 5 and the average of the sums is 55
3 .

(American Invitational Mathematics Examination, 1996)

967. The condition from the statement implies that any such permutation has exactly two
disjoint cycles, say (ai1, . . . , air ) and (air+1, . . . , ai6). This follows from the fact that in order
to transform a cycle of length r into the identity, r − 1 transpositions are needed. Moreover,
we can only have r = 5, 4, or 3.

When r = 5, there are
(6

1

)
choices for the number that stays unpermuted. There are (5−1)!

possible cycles, so in this case we have 6× 4! = 144 possibilities.
When r = 4, there are

(6
4

)
ways to split the numbers into the two cycles (two cycles are

needed and not just one). One cycle is a transposition. There are (4 − 1)! = 6 choices for
the other. Hence in this case the number is 90. Note that here exactly four transpositions are
needed.

Finally, when r = 3, then there are
(6

3

)× (3− 1)! × (3− 1)! = 40 cases. Therefore, the
answer to the problem is 144+ 90+ 40 = 274.

(S. Korean Mathematical Olympiad, 1999)

968. We would like to find a recursive scheme for f (n). Let us attempt the less ambitious
goal of finding a recurrence relation for the number g(n) of permutations of the desired form
satisfying an = n. In that situation either an−1 = n− 1 or an−1 = n− 2, and in the latter case
we necessarily have an−2 = n− 1 and an−3 = n− 3. We obtain the recurrence relation

g(n) = g(n− 1)+ g(n− 3), for n ≥ 4.

In particular, the values of g(n) modulo 3 are 1, 1, 1, 2, 0, 1, 0, 0, . . . repeating with period 8.
Now let h(n) = f (n) − g(n). We see that h(n) counts permutations of the desired form

with n occurring in the middle, sandwiched between n− 1 and n− 2. Removing n leaves an
acceptable permutation, and any acceptable permutation on n−1 symbols can be so produced,
except those ending in n− 4, n− 2, n− 3, n− 1. So for h(n), we have the recurrence

h(n) = h(n− 1)+ g(n− 1)− g(n− 4) = h(n− 1)+ g(n− 2), for n ≥ 5.

A routine check shows that modulo 3 h(n) repeats with period 24.
We find that f (n) repeats with period equal to the least common multiple of 8 and 24,

which is 24. Because 1996 ≡ 4 (mod 24), we have f (1996) ≡ f (4) = 4 (mod 3). So
f (1996) is not divisible by 3.

(Canadian Mathematical Olympiad, 1996)
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969. To solve this problem we will apply Sturm’s principle, a method discussed in Sec-
tion 2.1.6. The fact is that as σ ranges over all permutations, there are n! sums of the form

n∑

i=1

(xi − yσ(i))
2,

and one of them must be the smallest. If σ is not the identity permutation, then it must contain
an inversion, i.e., a pair (i, j) with i < j and σ(i) > σ(j). We have

(xi − yσ(i))
2 + (xj − yσ(j))

2 − (xi − yσ(j))
2 − (xj − yσ(i))

2 = (xj − xi)(yσ(i) − yσ(j)).

This product is positive, so by exchanging yσ(i) and yσ(j) we decrease the sum. This means that
this permutation does not minimize the sum. Therefore, the sum is minimal for the identity
permutation. The inequality follows.

970. Let N(σ ) be the number we are computing. Denote by Ni(σ ) the average number of
large integers ai. Taking into account the fact that after choosing the first i − 1 numbers, the
ith is completely determined by the condition of being large, for any choice of the first i − 1
numbers there are (n − i + 1)! choices for the last n − i + 1, from which (n − i)! contain a
large integer in the ith position. We deduce that Ni(σ ) = 1

n−i+1 .
The answer to the problem is therefore

N(σ ) =
n∑

i=1

Ni(σ ) = 1+ 1

2
+ · · · + 1

n
.

(19th W.L. Putnam Mathematical Competition, 1958)

971. We will show that σ is the identity permutation. Assume the contrary and let
(i1, i2, . . . , ik) be a cycle, i.e., σ(i1) = i2, σ(i2) = i3, . . ., σ(ik) = i1. We can assume
that i1 is the smallest of the ij’s, j = 1, 2, . . . , k. From the hypothesis,

ai1ai2 = ai1aσ(i1) < aik aσ(ik) = aik ai1,

so ai2 < aik and therefore i2 < ik . Similarly,

ai2ai3 = ai2aσ(i2) < aik aσ(ik) = aik ai1,

and since ai2 > ai1 it follows that ai3 < aik , so i3 < ik . Inductively, we obtain that ij < ik ,
j = 1, 2, . . . , k − 1. But then

aik−1aik = aik−1aσ(ik−1) < aik aσ(ik) = aik ai1,

hence ik−1 < i1, a contradiction. This proves that σ is the identity permutation, and we are
done.

(C. Năstăsescu, C. Niţă, M. Brandiburu, D. Joiţa, Exerciţii şi Probleme de Algebră (Exer-
cises and Problems in Algebra), Editura Didactică şi Pedagogică, Bucharest, 1983)

972. Let S = {1, 2, . . . , 2004}. Write the permutation as a function f : S → S, f (n) = an,
n = 1, 2, . . . , 2004. We start by noting three properties of f :

http://dx.doi.org/10.1007/978-3-319-58988-6_2
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(i) f (i) �= i for any i,

(ii) f (i) �= f (j) if i �= j,

(iii) f (i) = j implies f (j) = i.

The first two properties are obvious, while the third requires a proof. Arguing by con-
tradiction, let us assume that f (i) = j but f (j) �= i. We discuss first the case j > i. If we
let k = j − i, then f (i) = i + k. Since k = |f (i) − i| = |f (j) − j| and f (j) �= i, it follows
that f (j) = i + 2k, i.e., f (i + k) = i + 2k. The same reasoning yields f (i + 2k) = i + k or
i + 3k. Since we already have f (i) = i + k, the only possibility is f (i + 2k) = i + 3k. And
the argument can be repeated to show that f (i + nk) = i + (n + 1)k for all n. However, this
then forces f to attain ever increasing values, which is impossible since its range is finite. A
similar argument takes care of the case j < i. This proves (iii).

The three properties show that f is an involution on S with no fixed points. Thus f partitions
S into 1002 distinct pairs (i, j) with i = f (j) and j = f (i). Moreover, the absolute value of
the difference of the elements in any pair is the same. If f (1)− 1 = k then f (2) = k + 1, . . .,
f (k) = 2k, and since f is an involution, the values of f on k + 1, k + 2, . . ., 2k are already
determined, namely f (k + 1) = 1, f (k + 2) = 2, . . ., f (2k) = k. So the first block of
2k integers is invariant under f . Using similar reasoning, we obtain f (2k + 1) = 3k + 1,
f (2k + 2) = 3k + 2, . . ., f (3k) = 4k, f (3k + 1) = 2k + 1, . . ., f (4k) = 3k. So the next
block of 2k integers is invariant under f . Continuing this process, we see that f partitions
S into blocks of 2k consecutive integers that are invariant under f . This can happen only if
2k divides 2004, hence if k divides 1002. Furthermore, for each such k we can construct f
following the recipe given above. Hence the number of such permutations equals the number
of divisors of 1002, which is 8.

(Australian Mathematical Olympiad, 2004, solution by L. Field)

973. Expanding |σ(k)− k| as ±σ(k)± k and reordering, we see that

|σ(1)− 1| + |σ(2)− 2| + · · · + |σ(n)− n| = ±1± 1± 2± 2± · · · ± n± n,

for some choices of signs. The maximum of |σ(1) − 1| + |σ(2) − 2| + . . . + |σ(n) − n| is
reached by choosing the smaller of the numbers to be negative and the larger to be positive,
and is therefore equal to

2

(
−1− 2− · · · − n− 1

2

)
− n+ 1

2
+ n+ 1

2
+ 2

(
n+ 3

2
+ · · · + n

)

= −
(

1+ n− 1

2

)
n− 1

2
+
(

n+ 3

2
+ n

)
n− 1

2
= n2 − 1

2
.

Therefore, in order to have |σ(1)− 1| + · · · + |σ(n)− n| = n2−1
2 , we must have

{
σ(1), · · · , σ

(
n− 1

2

)}
⊂
{

n+ 1

2
,

n+ 3

2
, . . . , n

}

and {
σ

(
n+ 3

2

)
, σ

(
n+ 5

2

)
, . . . , σ (n)

}
⊂
{

1, 2, . . . ,
n+ 1

2

}
.
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Let σ
(

n+1
2

) = k. If k ≤ n+1
2 , then

{
σ(1), . . . , σ

(
n− 1

2

)}
=
{

n+ 3

2
,

n+ 5

2
, . . . , n

}

and {
σ

(
n+ 3

2

)
, σ

(
n+ 5

2

)
, . . . , σ (n)

}
=
{

1, 2, . . . ,
n+ 1

2

}
− {k}.

If k ≥ n+1
2 , then

{
σ(1), . . . , σ

(
n− 1

2

)}
=
{

n+ 1

2
,

n+ 3

2
, . . . , n

}
− {k}

and {
σ

(
n+ 3

2

)
, σ

(
n+ 5

2

)
, . . . , σ (n)

}
=
{

1, 2, . . . ,
n− 1

2

}
.

For any value of k, there are
[(

n−1
2

)!]2 choices for the remaining values of σ , so there are

n

[(
n− 1

2

)
!
]2

such permutations.
(T. Andreescu)

974. Color the triangles black and white in a chessboard pattern (or equivalently look at the
triangles that are oriented upwards and those that are oriented downwards). One color exceeds
the other by n, and two consecutive triangles have opposite colors. So a chain cannot have
more than n2 − n+ 1 triangles. A chain with n2 − n+ 1 triangles is shown in Figure 102.

Figure 102

975. The grid is made up of n(n+1)

2 small equilateral triangles of side length 1. In each of these
triangles, at most 2 segments can be marked, so we can mark at most 2

3 · 3n(n+1)

2 = n(n + 1)

segments in all. Every segment points in one of three directions, so we can achieve the
maximum n(n+ 1) by marking all the segments pointing in two of the three directions.

(Russian Mathematical Olympiad, 1999)
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976. To each point we associate a triple of coordinates (x1, x2, x3) ∈ {0, 1, . . . , n}3, where
xi is the number of units one has to travel in the direction of the ith side in order to meet the
i + 1st side (with i taken modulo 3). Then x1 + x2 + x3 = 2n. Reformulating, the problem
asks us to find the largest number of non-negative integers solutions to the equation

x1 + x2 + x3 = 2n,

that can be chosen so that in no two solutions the variable xi is the same (i = 1, 2, 3). In other
words, what is the largest number m such that one can produce a 3 × m array consisting of
non-negative integers, so that the sum of the numbers on each row is m and the numbers on
each column are different.

We will show that m = � 4n
3 � + 1. To prove that m cannot exceed � 4n

3 � + 1, we argue as
follows.

Because the numbers in each column do not repeat, the sum of the numbers in that column
is at least

0+ 1+ · · · + (m− 1) = m(m− 1)

2
.

In the array there are 3 columns, so the sum of all numbers is at least 3m(m−1)

2 . On the other
hand, because the sum on a row is 2n, the total sum is 2mn. So

2mn ≥ 3m(m− 1)

2
.

It follows that 4n
3 ≥ m − 1, and hence the inequality. Let us show that the bound can be

attained.
If 2n = 3k, then m = 2k + 1, and we can choose the following solutions

(2j, k − j, 2k − j), j = 0, 1, . . . , k

(2j + 1, 2k − j, k − j − 1), j = 0, 1, . . . , k − 1.

If 2n = 3k + 1, then m = 2k + 1, and we can choose the following solutions

(2j, k − j, 2k + 1− j), j = 0, 1, . . . , k

(2j + 1, 2k − j, k − j), j = 0, 1, . . . , k − 1.

If 2n = 3k − 1, then m = 2k and we choose the following solutions

(2j, k − j − 1, 2k − j), j = 0, 1, . . . , k − 1

(2j + 1, 2k − 1− j, k − 1− j), j = 0, 1, . . . , k − 1.

(Kvant (Quantum), proposed by M.L. Gerver)

977. Let us consider a red square R0 and the 3 × 3 square S centered at R0. None of the
squares next to R0 on the vertical and horizontal can be red, or else the 2 × 3 rectangle that
lies in S and does not contain this square has only one red square, namely R0. Then two
opposite corners of S must be red, and the other two are blue. Analyzing all 3 × 3 squares,
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we conclude that the lattice consist of “diagonals” of red squares separated by two diagonals
of “blue” squares. As such, every 3× 3 square contains exactly three red squares.

As a 9× 11 rectangle can be dissected into nine 3× 3 squares and three 2× 3 rectangles,
it contains precisely 9 · 3+ 3 · 2 = 33 red squares.

(Kvant (Quantum), proposed by N. Kartashov)

978. Assume that such a tiling exists. In this case each of the 10 interior segments that join
opposite sides in the 6× 6 lattice intersects one tile. In fact each such segment must intersect
an even number of tiles, because on each side of the segment there is a rectangle of even area.
And no tile is cut by two such segments. But this would imply that there are at least 20 tiles,
contrary to the fact that we only have 18 tiles at hand. Hence such a tiling does not exist.

(Kvant (Quantum), proposed by A.A. Kirilov, solution by N.B. Vassiliev)

979. (a) Divide the rectangle into unit squares and color red the unit squares at odd locations
on odd rows. Then each 1× 4 rectangle covers an even number of red squares (two or zero),
while a 2× 2 square covers one red square. So the answer to the problem is negative.

(b) Sometimes it is possible, as shown in Figure 103.

Figure 103

980. First solution: We will prove that the maximum value of n is 11. Figure 104 describes
an arrangement of 12 dominoes such that no additional domino can be placed on the board.
Therefore, n ≤ 11.

Figure 104

Let us show that for any arrangement of 11 dominoes on the board one can add one more
domino. Arguing by contradiction, let us assume that there is a way of placing 11 dominoes
on the board so that no more dominoes can be added. In this case there are 36 − 22 = 14
squares not covered by dominoes.
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Denote by S1 the upper 5 × 6 subboard, by S2 the lower 1 × 6 subboard, and by S3 the
lower 5× 6 subboard of the given chessboard as shown in Figure 105.

Because we cannot place another domino on the board, at least one of any two neighboring
squares is covered by a domino. Hence there are at least three squares in S2 that are covered
by dominoes, and so in S2 there are at most three uncovered squares. If A denotes the set of
uncovered squares in S1, then |A| ≥ 14− 3 = 11.

S

S

S

1

2

3

Figure 105

Let us also denote by B the set of dominoes that lie completely in S3. We will construct
a one-to-one map f : A → B. First, note that directly below each square s in S1 there is a
square t of the chessboard (see Figure 106). If s is in A, then t must be covered by a domino
d in B, since otherwise we could place a domino over s and t. We define f (s) = d. If f were
not one-to-one, that is, if f (s1) = f (s2) = d, for some s1, s2 ∈ A, then d would cover squares
directly below s1 and s2 as described in Figure 106. Then s1 and s2 must be neighbors, so
a new domino can be placed to cover them. We conclude that f is one-to-one, and hence
|A| ≤ |B|. It follows that |B| ≥ 11. But there are only 11 dominoes, so |B| = 11. This means
that all 11 dominoes lie completely in S3 and the top row is not covered by any dominoes! We
could then put three more dominoes there, contradicting our assumption on the maximality
of the arrangement. Hence the assumption was wrong; one can always add a domino to an
arrangement of 11 dominoes. The answer to the problem is therefore n = 11.

t

s s s

d

21

Figure 106

Second solution: Suppose we have an example with k dominoes to which no more can
be added. Let X be the number of pairs of an uncovered square and a domino that covers an
adjacent square. Let m = 36− 2k be the number of uncovered squares, let m∂ be the number
of uncovered squares that touch the boundary (including corner squares), and mc the number
of uncovered corner squares. Since any neighbor of an uncovered square must be covered by
some domino, we have X = 4m−m∂ −mc. Similarly, let k∂ be the number of dominoes that
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touch the boundary and kc the number of dominoes that contain a corner square. A domino in
the center of the board can have at most four unoccupied neighbors, for otherwise, we could
place a new domino adjacent to it. Similarly, a domino that touches the boundary can have
at most three unoccupied neighbors, and a domino that contains a corner square can have at
most two unoccupied neighbors. Hence X ≤ 4k − k∂ − kc. Also, note that k∂ ≥ m∂ , since
as we go around the boundary we can never encounter two unoccupied squares in a row, and
mc+kc ≤ 4, since there are only four corners. The inequality 4m−m∂−mc = X ≤ 4k−k∂−kc

gives 4m−4 ≤ 4k; hence 35−3k ≤ k and 4k ≥ 35. Thus k must be at least 12. This argument
also shows that on an n× n board, 3k2 ≥ n2 − 1.

(T. Andreescu, Z. Feng, 102 Combinatorial Problems, Birkhäuser, 2000, second solution
by R. Stong)

981. Let f (n) be the desired number. We count immediately f (1) = 2, f (2) = 4. For
the general case we argue inductively. Assume that we already have constructed n circles.
When adding the (n + 1)st, it intersects the other circles in 2n points. Each of the 2n arcs
determined by those points splits some region in two. This produces the recurrence relation
f (n+ 1) = f (n)+ 2n. Iterating, we obtain

f (n) = 2+ 2+ 4+ 6+ · · · + 2(n− 1) = n2 − n+ 2.

(25th W.L. Putnam Mathematical Competition, 1965)

982. Again we try to derive a recursive formula for the number F(n) of regions. But this time
counting the number of regions added by a new sphere is not easy at all. The previous problem
comes in handy. The first n spheres determine on the (n+1)st exactly n2−n+2 regions. This
is because the conditions from the statement give rise on the last sphere to a configuration of
circles in which any two, but no three, intersect. And this is the only condition that we used
in the solution to the previous problem. Each of the n2−n+2 spherical regions divides some
spatial region into two parts. This allows us to write the recursive formula

F(n+ 1) = F(n)+ n2 − n+ 2, F(1) = 2.

Iterating, we obtain

F(n) = 2+ 4+ 8+ · · · + [(n− 1)2 − (n− 1)+ 2] =
n−1∑

k=1

(k2 − k + 2)

n∑

k=1

k2 −
n∑

k=1

k + 2(n− 1) = n3 − 3n2 + 8n

3
,

where we have used the formulas for the sum of the first n − 1 integers and the sum of the
first n− 1 perfect squares.

983. Choose three points A, B, C of the given set that lie on the boundary of its convex hull.
There are

(n−3
2

)
ways to select two more points from the set. The line DE cuts two of the sides

of the triangle ABC, say, AB and AC. Then B, C, D, E form a convex quadrilateral. Making
all possible choices of the points D and E, we obtain

(n−3
2

)
convex quadrilaterals.

(11th International Mathematical Olympiad, 1969)
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984. Assume by way of contradiction that the distance between any two points is greater than
or equal to 1. Then the spheres of radius 1

2 with centers at these 1981 points have disjoint
interiors, and are included in the cube of side length 10 determined by the six parallel planes
to the given cube’s faces and situated in the exterior at distance 1

2 . It follows that the sum of
the volumes of the 1981 spheres is less than the volume of the cube of side 10, meaning that

1981 ·
4π ·
(

1

2

)3

3
= 1981 · π

6
> 1000,

a contradiction. This completes the proof.

Remark. If we naively divide each side of the cube into
⌊

3
√

1981
⌋
= 12 congruent segments,

we obtain 123 = 1728 small cubes of side 9
12 = 3

4 . The pigeonhole principle guarantees that
some small cube contains two of the points, but unfortunately the upper bound that we get for
the distance between the two points is 3

4
3
√

3, which is greater than 1.

(Revista Matematică din Timişoara (Timişoara Mathematics Gazette), proposed by T.
Andreescu)

985. We examine separately the cases n = 3, 4, 5. A triangle can have at most one right
angle, a quadrilateral four, and a pentagon three (if four angles of the pentagon were right,
the fifth would have to be equal to 180◦).

Let us consider an n-gon with n ≥ 6 having k internal right angles. Because the other
n−k angles are less than 360◦ and because the sum of all angles is (n−2) ·180◦, the following
inequality holds:

(n− k) · 360◦ + k · 90◦ > (n− 2) · 180◦.

This readily implies that k < 2n+4
3 , and since k and n are integers, k ≤ ⌊ 2n

3

⌋+ 1.
We will prove by induction on n that this upper bound can be reached. The base cases

n = 6, 7, 8 are shown in Figure 107.

Figure 107

We assume that the construction is done for n and prove that it can be done for n + 3.
For our method to work, we assume in addition that at least one internal angle is greater than
180◦. This is the case with the polygons from Figure 107. For the inductive step we replace
the internal angle greater than 180◦ as shown in Figure 108. This increases the angles by 3
and the right angles by 2. The new figure still has an internal angle greater than 180◦, so the
induction works. This construction proves that the bound can be reached.

(Short list of the 44th International Mathematical Olympiad, 2003)

986. It seems that the situation is complicated by successive colorings. But it is not! Observe
that each time the moving circle passes through the original position, a new point will be
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Figure 108

colored. But this point will color the same points on the fixed circle. In short, only the first
colored point on one circle contributes to newly colored points on the other; all other colored
points follow in its footsteps. So there will be as many colored points on the small circle as
there are points of coordinate 2πk, k an integer, on the segment [0, 200π

√
2]. Their number

is ⌊
200π

√
2

2π

⌋

=
⌊

100
√

2
⌋
= 141.

(Ukrainian Mathematical Olympiad)

987. The solution is based on the pigeonhole principle. Let us assume that the sum of lengths
of the chords is greater than or equal to kπ . Then the sum of the lengths of the arcs subtended
by these chords is greater than kπ . Add to these arcs their reflections about the center of
the circle. The sum of the lengths of all arcs is greater than 2kπ , so there exists a point
covered by at least k+1 arcs. The diameter through that point intersects at least k+1 chords,
contradicting our assumption. Hence the conclusion.

(Kvant (Quantum), proposed by A.T. Kolotov)

988. Assume that the side-length of the square is 1. Let ak ≤ bk , 1 ≤ k ≤ n be the side-lengths
of the rectangles of the decomposition. Using the fact that bk ≤ 1, we can write

a1

b1
+ a2

b2
+ · · · + ak

bk
≥ a1b1 + a2b2 + · · · + akbk = 1,

because the right-hand side is the area of the square.
Equality holds precisely when all bk are equal to 1, namely when the square is divided by

segments parallel to one of the sides.
(Kvant (Quantum), proposed by S. Fomin)

989. The center of the desired circle must lie at distance at least 1 from the boundary of the
square. We will be able to find it somewhere inside the square whose sides are parallel to
those of the initial square and at distance 1 from them. The side length of this smaller square
is 36.

The locus of all points that lie at distance less than 1 from a convex polygonal surface P
is a polygonal surface Q with sides parallel to those of P and whose corners are rounded. The
areas of P and Q are related by

S[Q] = S[P] + (perimeter of P)× 1+ π.

This is because the circular sectors from the corners of Q complete themselves to a disk of
radius 1.
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So the locus of the points at distance less than 1 from a polygon of area at most π and
perimeter at most 2π is less than or equal to π + 2π + π = 4π . It follows that the area of
the region of all points that are at distance less than 1 from any of the given 100 polygons is
at most 400π . But

400π ≤ 400 · 3.2 = 40 · 32 = 362 − 42 < 362.

So the set of these points does not cover entirely the interior of the square of side length 36.
Pick a point that is not covered; the unit disk centered at that point is disjoint from any of the
polygons, as desired.

(M. Pimsner, S. Popa, Probleme de Geometrie Elementară (Problems in Elementary
Geometry), Editura Didactică şi Pedagogică, Bucharest, 1979)

990. The sum of the perimeters in which the square is divided is 40 = 2×18+4. Assume that
the square is divided in n regions, let xi, yi be the sum of the vertical respectively horizontal
sides of the region, and let σi be the area of the ith region. Then xiyi ≥ σi, so

xi + yi ≥ 2
√

xiyi ≥ 2
√

σi, 1 ≤ i ≤ n.

Then

40 =
n∑

i=1

(2xi + 2yi) ≥ 4
n∑

i=1

√
σi,

whence
∑n

i=1
√

σi ≤ 10.
On the other hand, if for all i, σi < 0.01, then

1 =
n∑

i=1

σi =
n∑

i=1

√
σi
√

σi <

n∑

i=1

0.1
√

σi.

This implies
∑n

i=1
√

σi > 10, a contradiction. Hence the conclusion.
(Kvant (Quantum), proposed by A. Andjan)

991. Place n disks of radius 1 with the centers at the given n points. The problem can be
reformulated in terms of these disks as follows.

Alternative problem. Given n ≥ 3 disks in the plane such that any 3 intersect, show that the
intersection of all disks is nontrivial.

This is a well-known property, true in d-dimensional space, where “disks” becomes “d-
dimensional balls” and the number 3 is replaced by d + 1. The case d = 1 is rather simple.
Translating the problem for the real axis, we have a finite family of intervals [ai, bi], 1 ≤ i ≤ n,
such that any two intersect. Then ai < bj for any i, j, and hence

[max ai, min bi] ⊂ ∩i[ai, bi],
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proving the claim. In general, we proceed by induction on d. Assume that the prop-
erty is not true, and select the d-dimensional balls (disks in the two-dimensional case)
B1, B2, . . . , Bk−1, Bk such that

B1 ∩ B2 ∩ · · · ∩ Bk−1 = G �= ∅ and B1 ∩ B2 ∩ · · · ∩ Bk−1 ∩ Bk = ∅.
Let H be a hyperplane (line in the two-dimensional case) that separates G from Bk . Since Bk

intersects each of the balls B1, B2, . . . , Bk−1, the sets Xi = Bi ∩ H, i = 1, 2, . . . , k − 1, are
nonempty. Moreover, since by hypothesis Bk and any d of the other k−1 balls have nontrivial
intersection, any collection of d sets Xi has nontrivial intersection. But then, by the induction
hypothesis, all Xi have nontrivial intersection. Therefore,

H ∩ B1 ∩ B2 ∩ · · · ∩ Bk−1 �= ∅,
i.e., H ∩ G �= ∅, a contradiction. Our assumption was false, which proves the inductive step.
So the property is true in general, in particular in the two-dimensional case.

992. We will prove the property by induction on the number n of circles. The cases n ≤ 4
are trivial since we can color all circles by different colors.

Now let us assume that the property holds for any choice of n = k circles with the required
property, and let us prove it for n = k+ 1. Choose a point P in the plane and consider a circle
from our collection whose center is at maximal distance from P. This circle is tangent to at
most three other circles, because the centers of these circles must be inside or on the circle
of center P and radius OP. Leave this circle aside, and color the remaining k circles by four
colors such that any two tangent circles have different colors. Then add this circle, and color
it differently than the (at most three circles) that are tangent to it. The new configuration has
the desired property, and so the induction is complete.

Three colors do not suffice, for example for the configuration in Figure 109. If this
configuration could be colored by only three colors, then since any two circles that are tangent
to two others must be of the same color, it follows that M, D, F, H, L must be of the same
color. But then the circles M and L have the same color and are tangent, which is not allowed.

A

D
C

M

L
K

B
H

G
F

E

Figure 109

(Kvant (Quantum), proposed by G. Ringel)

993. This is an easy application of the pigeonhole principle. Let n be the number of vertices.
Associate to each vertex the set of vertices connected to it by edges. There are n such sets,
and each of them has at most n− 1 elements. Hence there are two sets with the same number
of elements. Their corresponding vertices are endpoints of the same number of edges.
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994. We set f 0 = 1A, f n+1 = f n ◦ f , n ≥ 0. Define on A the relation x ∼ y if there exist m
and n such that f n(x) = f m(y). One verifies immediately that ∼ is an equivalence relation,
and that equivalence classes are invariant under f . An equivalence class resembles a spiral
galaxy, with a cycle into which several branches enter. Such an equivalence class is illustrated
in Figure 110, where the dots are elements of E and the arrows describe the action of f .

Figure 110

Thus f defines a directed graph whose connected components are the equivalence classes.
We color the vertices of this graph by 0, 1, 2, 3 according to the following rule. All fixed
points are colored by 0. Each cycle is colored alternately 1, 2, 1, 2, . . . with its last vertex
colored by 3. Finally, each branch is colored alternately so that no consecutive vertices have
the same color. The coloring has the property that adjacent vertices have different colors. If
we let Ai consist of those elements of A colored by i, i = 0, 1, 2, 3, then these sets have the
required property. The construction works also in the case that the cycle has length one, that
is, when it is a fixed points of f . Note that in general the partition is not unique.

This argument can be easily adapted to the case in which A is infinite. All cycles are finite
and they are taken care of as in the case of a finite set. The coloring can be done provided
that we can choose one element from each cycle to start with, thus we have to assume the
Axiom of choice. This axiom states that given a family of sets one can choose one element
from each of them. Now let us consider an equivalence class as defined above, and look at the
dynamic process of repeated applications of f . It either ends in A0 or in a cycle, or it continues
forever. In the equivalence class we pick a reference point x0, which is either the point where
the equivalence class enters A0 or a cycle, or otherwise is an arbitrary point. Either x0 has
been colored, by 0 or as part of a cycle, or if not, we color it by the color of our choice. Say
the color of x0 is i, and let j and k be two other colors chosen from 1, 2, and 3. If x ∼ x0

then f n(x) = f m(x0) for some integers m and n. For that particular x, choose m and n to be
minimal with this property. Color x by j if m− n is even, and by k if m− n is odd.

Note that x and f (x) cannot have the same color, for otherwise in the equalities f n(x) =
f m(x0) and f n+1(x) = f m′(x0) the minimality of m and m′ implies that m = m′, and then n−m
and n+1−m would have the same parity, which is impossible. Again, the coloring partitions
A into four sets with the desired properties.

995. (a) Let us consider the model in which only three students A, B and C live in the dorm,
and they are friends with each other. Assume that on the first day A is imune, B is sick, and
C is healthy but not immune. On the second day B is immune, C is sick, and A is healthy but
not immune. The epidemics continues in this cyclic fashion, so it never dies out.
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(b) Let us represent the student population by a graph, vertices being the students and
edges connecting pairs of friends. We define the distance between two students to be the
minimal number of edges that path connecting them can have. We partition the vertices in
the sets M0, M1, M2, . . . with M0 being the vertices corresponding to students that were sick
on the first day, and for k ≥ 1, Mk being the vertices at distance k from M0. We ignore
the vertices who are in none of these sets; those students will never get sick. Note that the
students corresponding to vertices in the set Mk get sick for the first time on the kth day of the
epidemics, and they can only transmit the disease to the students corresponding to vertices in
the set Mk+1 (because their friends are only in Mk−1 and Mk+1, and those in Mk−1 are immune
at that time). Since there are finitely many sets Mk , the epidemics ends once the largest index
is reached.

(Kvant (Quantum), proposed by A. Kolotov)

996. Let the 2n teams be the vertices of a graph. Draw a red edge for pairs that competed
on the first day, and a blue edge for the pairs that competed on the second day. Then each
vertex belongs to exactly a red edge and exactly a blue edge. We now have a graph consisting
of cycles, each of which having an even number of vertices. Choose every other vertex from
each cycle to obtain the desired set of n teams that have not played with each other.

(Kvant (Quantum), proposed by M. Bona)

997. Recall that the degree of a vertex is the number of edges containing it. If G has some
vertices of odd degree, the number of such vertices is even because the sum of the degrees
of all vertices equals twice the number of edges. In this situation we add a vertex to G and
connect it by edges to all vertices of odd degree. The new graph, G ′ has all vertices of even
degree, therefore G ′ has an Eulerian cycle. We label the edges of G by 1, 2, . . . , k in the order
in which we encounter these when traveling on the Eulerian cycle.

When passing through a vertex of G of even degree, two edges are labeled by consecutive
numbers, hence this vertex will have the desired property. On the other hand, we are only
interested in vertices of G of odd degree that have a degree greater than or equal to 3. Through
one such vertex we pass at least twice, and only once do we pass through it on edges that don’t
belong to G (since there is only one such edge). Hence again there are two edges labeled by
consecutive integers. The problem is solved.

(32nd International Mathematical Olympiad, 1992, solution by R.A. Todor)

998. Label the vertices 1,2,3,4 such that 1 and 4 are not connected, and denote by Ni,j(n) the
number of paths of length n that join vertices i, j. By symmetry:

N1,2(n) = N1,3(n) = N4,2(n) = N4,3(n) = N2,1(n) = N2,4(n) = N3,1(n) = N3,4(n),

N2,3(n) = N3,2(n), N1,4(n) = N4,1(n), N1,1(n) = N4,4(n), N2,2(n) = N3,3(n).
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Denote this numbers, respectively, by an, bn, cn, xn, and yn. We should also observe that, since
1 and 4 can be reached only from 2 or 3, then cn = xn for n ≥ 1, but c0 = 0, and x0 = 1. The
problem asks for 2xn + 2yn.

Vertex 1 can be reached in one step only from vertices 2 and 3, so a circuit starting at 1 is
a path from 1 to either 2 or 3 followed by a step back to 1. Thus xn = 2an−1. Vertex 2 can be
reached from any of the other 3 vertices, and a path of length n from 1 to 2 is the sum of the
numbers of the paths from 1 to 1,3, or 4 followed by a step to 2. So an = an−1 + 2xn−1. The
number of paths from 2 to 1 of length n is the sum of the numbers of paths from 2 to itself and
from 2 to 3, followed by a step to 1, so an = yn−1+ bn−1. Thus an+ 2xn = bn+ yn. Similarly
yn = bn−1 + 2an−1 = 3an−1 + 2xn−1 − yn−1. We obtain a recurrence relation of the form

⎛

⎝
an

xn

yn

⎞

⎠ =
⎛

⎝
1 2 0
2 0 0
3 2 −1

⎞

⎠

⎛

⎝
an−1

xn−1

yn−1

⎞

⎠ .

Now we apply the techniques from Section 3.1.2. The characteristic polynomial of the matrix
that defines the recursion is (λ+ 1)(λ2 − λ− 4), with roots −1, 1±√17

2 . The initial condition
a1, x1 = y1 = 0 give a2 = 1, x2 = 2, y2 = 3, and x3 = 2, y3 = 4. Thus the desired number of
circuits zn = 2(xn+yn) satisfies the recursive relation with the same characteristic polynomial,
so

zn = A(−1)n + B

(
1+√17

2

)n

+ C

(
1−√17

2

)n

,

where A, B, C are computed from and z1 = 0, z2 = 10, z3 = 12 (and the latter are computed
from the corresponding values of xn, yn). We obtain a system of 3 equations with 3 unknowns
in A, B, C, with the unique solution A = B = C = 1. We conclude that the answer to the
problem is

(−1)n +
(

1+√17

2

)n

+
(

1−√17

2

)n

.

(Mathematical Reflections, proposed by I. Borsenco)

999. We will prove that if G is not a complete graph, then it is a cycle. If G is not complete,
then there are distinct vertices v1, v2 that are not connected by an edge. Then from the
hypothesis we obtain that v1 and v2 are connected by at least 2 disjoint paths. So G\{v1, v2}
is disconnected. Let H1, H2, . . . , Hk be its connected components, k ≥ 2. Because the trivial
graph with one vertex is trivially connected, by removing either v1 or v2 we deduce that both
v1 and v2 are connected to at least one vertex of each Hj, j = 1, 2, . . . , k.

Now assume k > 2. Then {v1, v2} ∪ H1 is connected and by removing it there remain
at least k − 1 ≥ 2 connected components (namely H2, H3, . . . , Hk). This contradicts the
hypothesis, thus k = 2.

http://dx.doi.org/10.1007/978-3-319-58988-6_3
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Now since {v1, v2} ∪ H1 and {v1, v2} ∪ H2 are connected, we can find Pk , k = 1, 2, paths
of minimal lengths connecting v1 to v2 in these two graphs. Since these paths have minimal
lengths, they do not have repeated vertices. If P1 does not use every vertex in H1, then in
G − P1 the remaining vertices of H1 will be disconnected from H2, a contradiction. So P1

uses all vertices of {v1, v2} ∪ H1. By minimality, there cannot be any edges in {v1, v2} ∪ H1

that are not in P1, or else we can use such an edge to shorten P1. We draw the same conclusion
about P2. So H1 = P1 and H2 = P2, and hence G is a cycle.

(Mathematical Reflections, proposed by C. Pohoaţă)

1000. We turn the problem into a question about graphs by allowing the triangles to have
curved edges. In this case we can use an inductive argument on the number of triangles in the
decomposition. The base case is where there is only one triangle in the decomposition, the
original triangle.

Now let us assume that the property is true for all decompositions and colorings with less
than n triangle, and let us consider some configuration with n triangles. If no edge has the
endpoints colored by the same color, then we are done. If there is an edge with endpoints
colored by the same color, contract that edge in such a way that the triangles that contain that
edge degenerate into edges. There are two triangles if this edge is in the interior of the original
triangle, or just one if the edge is on the side. In either situation we arrived at a configuration
with fewer triangles, which by the induction hypothesis has one triangle with vertices colored
by different colors. This triangle was present in the original configuration, and the problem
is solved.

Note that we had to allow curved edges, because some edges might bend in the process
of contraction.

(A.M. Yaglom, I.M. Yaglom, Neelementarnye Zadachi v Elementarnom izlozhenii (Non-
Elementary Problems with Elementary Solutions), Government Publication House for
Technical-Theoretical Literature, Moscow, 1954)

1001. To prove the claim, we will slightly generalize it; namely, we show that if in a planar
graph every vertex belongs to an even number of edges, then the faces of the graph and its
exterior can be colored black and white such that neighboring regions are of different colors.
Once we allow edges to bend, and faces to be bigons, we can induct on the number of faces.

The base case consists of a face bounded by two edges, for which the property obviously
holds. Assume that the property holds true for all graphs with at most k faces and let us
prove it for an arbitrary graph with k + 1 faces. Choose a face of the graph, which may look
as in Figure 111. Shrink it to a point. Color the new graph as permitted by the inductive
hypothesis. Blow up the face back into the picture. Because an even number of edges meet
at each vertex, all the faces that share an edge with the chosen one are colored by the same
color (when moving clockwise around the chosen face we get from one neighboring face to
the next in an even number of steps). Hence the face can be given the opposite color. This
completes the argument.

(Kvant (Quantum))

1002. Let the vertices of the graph be v1, v2, . . . , vn. Double each vertex and consider the
graph with 2n vertices v′1, v′′1, v′2, v′′2, . . . , v′n, v′′n , and if vi and vj were connected, join v′i and v′′j
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Figure 111

by an edge, as well as v′j and v′′i . Let A = {v′1, v′2, . . . , v′n} and B = {v′′1, v′′2, . . . , v′′n}.
In the new graph impose that at the first step only vertices in A change their color, at the

second step only vertices in B, then again in A, and so on, with the same conditions. We will
show that at some moment the doubled graph stops changing colors. If this is true, then in
the original graph, the vertices for which v′i and v′′i have the same color stay unchanged, those
for which v′i and v′′i have different colors change at every step.

Given a vertex that changes colors, because it assumes the color of the majority of its
neighbors, the number of monochromatic edges grows. Hence, at a step where some vertices
change colors, the number of monochromatic edges grows. This cannot happen forever,
because there are only finitely many edges. So from some moment on, the colorings won’t
change anymore. The problem is solved.

(Kvant (Quantum), proposed by O. Kozlov)

1003. For finding the upper bound we employ Euler’s formula. View the configuration as
a planar graph, and complete as many curved edges as possible, until a triangulation of the
plane is obtained. If V = n is the number of vertices, E the number of edges and F the
number of faces (with the exterior infinite face counted among them), then V − E + F = 2,
so E − F = n+ 2. On the other hand, since every edge belongs to two faces and every face
has three edges, 2E = 3F. Solving, we obtain E = 3n − 6. Deleting the “alien” curved
edges, we obtain the inequality E ≤ 3n− 6. That the bound can be reached is demonstrated
in Figure 112.

(German Mathematical Olympiad, 1976)

1004. If this were possible, then the configuration would determine a planar graph with V = 6
vertices (the 3 neighbors and the 3 wells) and E = 9 edges (the paths). Each of its F faces
would have 4 or more edges because there is no path between wells or between neighbors. So

F ≤ 2

4
E = 9

2
.
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On the other hand, by Euler’s relation we have

F = 2+ E − V = 5.

We have reached a contradiction, which shows that the answer to the problem is negative.

1005. With the standard notation, we are given that F ≥ 5 and E = 3V
2 . We will show that

not all faces of the polyhedron are triangles. Otherwise, E = 3F
2 and Euler’s formula yields

F − 3F
2 + F = 2, that is, F = 4, contradicting the hypothesis.

We will indicate now the game strategy for the two players. The first player writes his/her
name on a face that is not a triangle; call this face A1A2 . . . An, n ≥ 4. The second player, in an
attempt to obstruct the first, will sign a face that has as many common vertices with the face
signed by the first as possible, thus claiming a face that shares an edge with the one chosen
by the first player. Assume that the second player signed a face containing the edge A1A2.
The first player will now sign a face containing the edge A3A4. Regardless of the play of the
second player, the first can sign a face containing either A3 or A4, and wins!

(64th W.L. Putnam Mathematical Competition, 2003, proposed by T. Andreescu)

1006. Start with Euler’s relation V − E + F = 2. and multiply it by 2π to obtain 2πV −
2πE + 2πF = 4π . If nk , k ≥ 3, denotes the number of faces that are k-gons, then F =
n3 + n4 + n5 + · · · . Also, counting edges by the faces, and using the fact that each edge
belongs to two faces, we have 2E = 3n3 + 4n4 + 5n5 + · · · . Euler’s relation becomes

2πV − π(n3 + 2n4 + 3n5 + · · · ) = 4π.

Because the sum of the angles of a k-gon is (k − 2)π , the sum in the above relation is equal
to �. Hence the conclusion.

Remark. In general, if a polyhedron P resembles a sphere with g handles, then 2πV −� =
2π(2− 2g). As mentioned before, the number 2 − 2g, denoted by χ(P), is called the Euler
characteristic of the polyhedron. The difference between 2π and the sum of the angles around
a vertex is the curvature Kv at that vertex. Our formula then reads

∑

v

Kv = 2πχ(P).

This is the piecewise linear version of the Gauss-Bonnet theorem.

Figure 112
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In the differential setting, the Gauss-Bonnet theorem is expressed as
∫

S
KdA = 2πχ(S),

or in words, the integral of the Gaussian curvature K over a closed surface S is equal to
the Euler characteristic of the surface multiplied by 2π . This means that no matter how we
deform a surface, although locally its Gaussian curvature will change, the total curvature
remains unchanged.

1007. (a) We use an argument by contradiction. The idea is to start with Euler’s formula

V − E + F = 2

and obtain a relation that is manifestly absurd. By our assumption each vertex belongs to at
least 6 edges. Counting the vertices by the edges, we obtain 2E (each edge has two vertices).
But we overcounted the vertices at least 6 times. Hence 2E ≥ 6V . Similarly, counting faces
by the edges and using the fact that each face has at least three edges, we obtain 2E ≥ 3F.
We thus have

2 = V − E + F ≤ 1

3
E − E + 2

3
E = 0,

an absurdity. It follows that our assumption was false, and hence there is a vertex belonging
to at most five edges.

(b) We use the first part. To the map we associate a connected planar graph G. The
vertices of G are the regions. The edges cross the boundary arcs (see Figure 113). For a
border consisting of consecutive segments that separates two neighboring regions we add just
one edge! The constructed graph satisfies the conditions from part (a). We claim that it can
be colored by 5 colors so that whenever two vertices are joined by an edge, they have different
colors.

We prove the claim by induction on the number of vertices. The result is obvious if G has
at most 5 vertices. Now assume that the coloring exists for any graph with V − 1 vertices and
let us prove that it exists for graphs with V vertices.

Figure 113

By (a), there is a vertex v that has at most 5 adjacent vertices. Remove v and the incident
edges, and color the remaining graph by 5 colors. The only situation that poses difficulties
for extending the coloring to v is if v has exactly 5 adjacent vertices and they are colored by
different colors. Call these vertices w1, w2, w3, w4, w5 in clockwise order, and assume they
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are colored A, B, C, D, E, respectively. Look at the connected component containing w1 of
the subgraph of G consisting of only those vertices colored by A and C. If w3 does not belong
to this component, switch the colors A and C on this component, and then color v by A. Now
let us examine the case in which w3 belongs to this component. There is a path of vertices
colored by A and C that connects w1 and w3.

v

w

C

C

A

B

D

B

w

A

A

B

D

D

1

3

w

5w

w2

4

C

E

Figure 114

Next, let us focus on w2 and w4 (Figure 114). The only case in which we would not know
how to perform the coloring is again the one in which there is a path of vertices colored by
B and D that joins w2 to w4. Add v to the two paths (from w1 to w3 and from w2 to w4) to
obtain two cycles. Because of how we ordered the wi’s and because the graph is planar, the
two cycles will intersect at a vertex that must be simultaneously colored by one of A or C
and by one of B or D. This is impossible, so this situation cannot occur. This completes the
solution.

Remark. The famous Four color theorem states that four colors suffice. This was first con-
jectured by F. Guthrie in 1853, and proved by K. Appel and W. Haken in 1977 with the aid of
a computer. The above Five-color theorem was proved in 1890 by P.J. Heawood using ideas
of A. Kempe.

1008. We will prove a more precise result. To this end, we need to define one more type
of singularity. A vertex is called a (multi)saddle of index −k, k ≥ 1, if it belongs to some
incoming and to some outgoing edge, and if there are k+1 changes from incoming to outgoing
edges in making a complete turn around the vertex. The name is motivated by the fact that if
the index is −1, then the arrows describe the way liquid flows on a horse saddle. Figure 115
depicts a saddle of index −2.

Figure 115
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Call a vertex that belongs only to outgoing edges a source, a vertex that belongs only to
incoming edges a sink, and a face whose edges form a cycle a circulation. Denote by n1 the
number of sources, by n2 the number of sinks, by n3 the number of circulations, and by n4 the
sum of the indices of all (multi)saddles.

Figure 116

We refer everything to Figure 116. We start with the count of vertices by incoming edges;
thus for each incoming edge we count one vertex. Sources are not counted. With the standard
notation, if we write

E = V − n1,

we have overcounted on the left-hand side. To compensate this, let us count vertices by faces.
Each face that is not a circulation has two edges pointing toward the same vertex. In that case,
for that face we count that vertex. All faces but the circulations count, and for vertices that
are not singularities this takes care of the overcount. So we can improve our “equality” to

E = V − n1 + F − n3.

Each sink is overcounted by 1 on the right. We improve again to

E = V − n1 + F − n3 − n2.

Still, the right-hand side undercounts saddles, and each saddle is undercounted by the absolute
value of its index. We finally reach equality with

E = V − n1 + F − n3 − n2 + |n4| = V + F − n1 − n2 − n3 − n4.

Using Euler’s formula, we obtain

n1 + n2 + n3 + n4 = V − E + F = 2.

Because n4 ≤ 0, we have n1 + n2 + n3 ≥ 2, which is what we had to prove.

Remark. The polyhedron can be thought of as a discrete approximation of a surface. The
orientation of edges is the discrete analogue of a smooth vector field on the surface. The
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number n1 + n2 + n3 + n4 is called the total index of the vector field. The result we just
proved shows that if the polyhedron resembles a (triangulated) sphere, the total index of any
vector field is 2. This is a particular case of the Poincaré-Hopf index theorem, which in its
general setting states that given a smooth vector field with finitely many zeros on a compact,
orientable manifold, the total index of the vector field is equal to the Euler characteristic of
the manifold.

Figure 117

1009. Figure 117 shows that this number is greater than or equal to 5.
Let us show that any coloring by two colors of the edges of a complete graph with 6

vertices has a monochromatic triangle. Assume the contrary. By the pigeonhole principle,
3 of the 5 edges starting at some point have the same color (see Figure 118). Each pair of
such edges forms a triangle with another edge. By hypothesis, this third edge must be of the
other color. The three pairs produce three other edges that are of the same color and form a
triangle. This contradicts our assumption. Hence any coloring of a complete graph with six
vertices contains a monochromatic triangle. We conclude that n = 5.

Figure 118

Remark. This shows that the number R(3, 3) is equal to 6.

1010. Let n = R(p − 1, q) + R(p, q − 1). We will prove that for any coloring of the edges
of a complete graph with n vertices by red or blue, there is a red complete subgraph with p
vertices or a blue complete subgraph with q vertices. Fix a vertex x and consider the n − 1
edges starting at x. Among them there are either R(p − 1, q) red edges, or R(p, q − 1) blue
edges. Without loss of generality, we may assume that the first case is true, and let X be
the set of vertices connected to x by red edges. The complete graph on X has R(p − 1, q)

vertices. It either has a blue complete subgraph with q edges, in which case we are done,
or it has a red complete subgraph with p − 1 edges, to which we add the red edges joining
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x to X to obtain a red complete subgraph with p edges of the original graph. This proves
R(p, q) ≤ R(p− 1, q)+ R(p, q − 1).

To prove the upper bound for the Ramsey numbers we argue by induction on p + q.
The base case consists of all configurations with p = 2 or q = 2, in which case R(p, 2) =
R(2, p) = p = ( p

p−1

)
, since any graph with p vertices either has an edge colored red, or is

entirely colored blue. Let us assume that the inequality is true for all p, q ≥ 2, p + q = n.
Either p = 2, or q = 2, or otherwise

R(p, q) ≤ R(p− 1, q)+ R(p, q − 1) ≤
(

p+ q − 3

p− 2

)
+
(

p+ q − 3

p− 1

)
=
(

p+ q − 2

p− 1

)

(P. Erdős, G. Szekeres)

1011. The number from the statement is R(3, n) − 1, where R(3, n) is the Ramsey number.
By the Erdős-Szekeres inequality from the previous problem, R(3, n) ≤ (n+1

2

)
.

So for n = 3, the estimate is 5. An example where equality is attained is a cycle of
length 5. This is the same as the graph with vertices the elements of Z5 with two vertices j, k
connected if and only if j − k is ±1 modulo 5.

For n = 4, the number cannot exceed
(5

2

)− 1 = 9. If we had equality, then (see solution
to the previous problem) from each vertex should start exactly 3 red edges and 5 blue edges.
This is impossible since, in the graph whose edges are the blue edges, the number of vertices
of odd degree must be even. So for n = 4 we can have at most 8 vertices. A model is the
graph with vertices the elements of Z8 such that j and k are connected by an edge if and only
if j − k is either ±1 or ±2 modulo 8.

Finally, p5 ≤ 13, and an example is the graph with vertices the elements of Z13 and j, k
connected by an edge if and only if j − k is ±1,±2,±3± 5 modulo 13.

Remark. The only other Ramsey numbers R(3, n) that are known are R(3, 6) = 18, R(3, 7) =
23, R(3, 8) = 28, R(3, 9) = 36.

1012. We prove the property by induction on k. First, observe that

�k!e� = k!
1
+ k!

1! +
k!
2! + · · · +

k!
k! .

For k = 2, �k!e� + 1 = 6, and the property was proved in the previous problem. Assume
that the property is true for a complete graph replaced with �(k − 1)!e� + 1 vertices colored
by k − 1 colors, and let us prove it for a complete graph with �k!e� + 1 vertices colored by
k colors. Choose a vertex v of the graph. By the pigeonhole principle, v is connected to
�(�k!e� + 1)/k� + 1 vertices by edges of the same color c. Note that
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⌊�k!e� + 1

k

⌋
=
⌊

1

k

(
k!
1
+ k!

1! +
k!
2! + · · · +

k!
k!
)⌋
+ 1

= (k − 1)!
1

+ (k − 1)!
1! + (k − 1)!

2! + · · · + (k − 1)!
(k − 1)! + 1

= �(k − 1)!e� + 1.

If two of these vertices are connected by an edge of color c, then a c-colored triangle is formed.
If not, the complete graph on these �(k− 1)!e�+ 1 vertices is colored by the remaining k− 1
colors, and by the induction hypothesis a monochromatic triangle is formed. This completes
the proof.

Remark. This proves that the k-color Ramsey number R(3, 3, . . . , 3) is bounded from above
by �k!e� + 1.

(F.P. Ramsey)

1013. Yet another Olympiad problem related to Schur numbers. We can reformulate the
problem as follows:

Alternative problem. Show that if the set {1, 2, . . . , 1978} is partitioned into six sets, then
in one of these sets there are a, b, c (not necessarily distinct) such that a+ b = c.

The germs of the solution have already been glimpsed in the Bielorussian problem from
the introduction. Observe that by the pigeonhole principle, one of the six sets, say A, has
at least

⌊
1978

6

⌋ + 1 = 330 elements; call them a1 < a2 < · · · < a330. If any of the 329
differences

b1 = a330 − a329, b2 = a330 − a328, . . . , b329 = a330 − a1

is in A, then we are done, because a330 − am = an means am + an = a330. So let us assume
that none of these differences is in A. Then one of the remaining sets, say B, contains at least⌊

329
5

⌋+ 1 = 66 of these differences. By eventually renumbering them, we may assume that
they are b1 < b2 < · · · < b66. We repeat the argument for the common differences

c1 = b66 − b65, 2 = b66 − b64, . . . , c65 = b66 − b1.

Note that
cj = b66 − b66−j = (a330 − am)− (a330 − an) = an − am.

So if one of the cj’s is in A or B, then we are done. Otherwise, there is a fourth set D, which
contains

⌊
65
4

⌋ + 1 = 17 of the cj’s. We repeat the argument and conclude that either one of
the sets A, B, C, D contains a Schur triple, or there is a fifth set E containing

⌊
17
3

⌋+ 1 = 6 of
the common differences dk = c17 − c17−k . Again either we find a Schur triple in A, B, C, or
D, or there is a set E containing

⌊
5
2

⌋+ 1 = 3 of the five differences ei = d5 − d5−k . If any of
the three differences e2 − e1, e3 − e2, e3 − e1 belongs to A, B, C, D, E, then we have found a
Schur triple in one of these sets. Otherwise, they are all in the sixth set F, and we have found
a Schur triple in F.
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Remark. Look at the striking similarity with the proof of Ramsey’s theorem, which makes the
object of the previous problem. And indeed, Ramsey’s theorem can be used to prove Schur’s
theorem in the general case: S(n) is finite and is bounded above by the k-color Ramsey number
R(3, 3, . . . , 3).

Here is how the proof runs. Think of the partition of the set of the first N positive integers
into n subsets as a coloring c : {1, 2, . . . , N} → {1, 2, . . . , n}. Consider the complete graph
with vertices 1, 2, . . . , N and color its edges so that for i > j, (i, j) is colored by c(i − j). If
N ≥ R(3, 3, . . . , 3) (the k-color Ramsey number), then there is a monochromatic triangle. If
i < j < k are the vertices of this triangle, then the numbers x = j− i, y = k− j, and z− k− i
form a Schur triple. The fact that they have the same color means that they belong to the same
set of the partition. The theorem is proved.

(20th International Mathematical Olympiad, 1978)

1014. Let

Ik =
∫ π

2

0
(sin θ)2kdθ, k ≥ 0.

Integrating by parts, we obtain

Ik =
∫ π

2

0
(2 sin θ)2k−1(2 sin θ)dθ

= (2 sin θ)2k(−2 cos θ)

∣∣∣
π
2

0
+
∫ π

2

0
(2k − 1)(2 sin θ)2k−24 cos2 θdθ

= (2k − 1)

∫ π
2

0
(2 sin θ)2k−2(4− 4 sin2 θ)dθ

= 4(2k − 1)Ik−1 − (2k − 1)Ik.

Hence Ik = 4k−2
k Ik−1, k ≥ 1. Comparing this with

(
2k

k

)
= (2k)(2k − 1)(2k − 2)!

k2((k − 1)!)2
= 4k − 2

k

(
2k − 2

k

)
,

we see that all that remains to check is the equality 2
π

I0 = 1, and that is obvious.

1015. We compute

A2 =

⎛

⎜⎜⎜⎜
⎜⎜⎜
⎜⎜
⎝

1 2 3 . . . n

0 1 2 . . . n− 1

0 0 1 . . . n− 2

...
...

...
. . .

...

0 0 0 . . . 1

⎞

⎟⎟⎟⎟
⎟⎟⎟
⎟⎟
⎠

=

⎛

⎜
⎜⎜⎜⎜
⎜⎜⎜
⎝

(1
1

) (2
1

) (3
1

)
. . .
(n

1

)

0
(1

1

) (2
1

)
. . .
(n−1

1

)

0 0
(1

1

)
. . .
(n−2

1

)

...
...

...
. . .

...

0 0 0 . . .
(1

1

)

⎞

⎟
⎟⎟⎟⎟
⎟⎟⎟
⎠

.
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Also,

A3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(2
2

) (3
2

) (4
2

)
. . .
(n+1

2

)

0
(2

2

) (3
2

)
. . .
(n

2

)

0 0
(2

2

)
. . .
(n−1

2

)

...
...

...
. . .

...

0 0 0 . . .
(2

2

)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

In general,

Ak =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(k−1
k−1

) ( k
k−1

) (k+1
k−1

)
. . .
(k+n−2

k−1

)

0
(k−1

k−1

) ( k
k−1

)
. . .
(k+n−3

k−1

)

0 0
(k−1

k−1

)
. . .
(k+n−4

k−1

)

...
...

...
. . .

...

0 0 0 . . .
(k−1

k−1

)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

This formula follows inductively from the combinatorial identity
(

m

m

)
+
(

m+ 1

m

)
+ · · · +

(
m+ p

m

)
=
(

m+ p+ 1

m+ 1

)
,

which holds for m, p ≥ 0. This identity is quite straightforward and can be proved using
Pascal’s triangle as follows:
(

m

m

)
+
(

m+ 1

m

)
+ · · · +

(
m+ p

m

)
=
(

m+ 1

m+ 1

)
+
(

m + 1

m

)
+ · · · +

(
m+ p

m

)

=
(

m+ 2

m+ 1

)
+
(

m+ 2

m

)
+ · · · +

(
m+ p

m

)

=
(

m+ 3

m+ 1

)
+
(

m + 3

m

)
+ · · · +

(
m+ p

m

)

= · · · =
(

m+ p

m+ 1

)
+
(

m+ p

m

)
=
(

m+ p+ 1

m + 1

)
.

1016. The general term of the Fibonacci sequence is given by the Binet formula

Fn = 1√
5

[(
1+√5

2

)n

−
(

1−√5

2

)n]

, n ≥ 0.
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Note that because F0 = 0, we can start the summation at the 0th term. We therefore have

n∑

i=0

Fi

(
n

i

)
= 1√

5

⎡

⎣
n∑

i=0

(
n

i

)(
1+√5

2

)i

−
n∑

i=0

(
n

i

)(
1−√5

2

)i
⎤

⎦

= 1√
5

[(
1+√5

2
+ 1

)n

−
(

1−√5

2
+ 1

)n]

= 1√
5

[(
3+√5

2

)n

−
(

3−√5

2

)n]

.

But
3±√5

2
=
(

1±√5

2

)2

.

So the sum is equal to

1√
5

⎡

⎣
(

1+√5

2

)2n

−
(

1−√5

2

)2n
⎤

⎦ ,

and this is F2n. The identity is proved.
(E. Cesàro)

1017. Note that for k = 0, 1, . . . , n,

(ak+1 + an−k+1)(n+ 1) = 2Sn+1.

If we add the two equal sums
∑

k

(
n

k

)
ak+1 and

∑

k

(
n

n− k

)
an−k+1, we obtain

n∑

k=0

(
n

k

)
(ak+1 + an−k+1) = 2Sn+1

n+ 1

n∑

k=0

(
n

k

)
= 2n+1

n+ 1
Sn+1.

The identity follows.

1018. Newton’s binomial expansion can be used to express our sum in closed form as

Sn = 1

4

[(
2+√3

)2n+1 +
(

2−√3
)2n+1
]

.

The fact that Sn = (k − 1)2 + k2 for some positive integer k is equivalent to

2k2 − 2k + 1− Sn = 0.

View this as a quadratic equation in k. Its discriminant is

� = 4(2Sn − 1) = 2

[(
2+√3

)2n+1 +
(

2−√3
)2n+1 − 2

]
.
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Is this a perfect square? The numbers
(

2+√3
)

and
(

2−√3
)

are one the reciprocal of the

other, and if they were squares, we would have a perfect square. In fact,
(

4± 2
√

3
)

are the

squares of
(

1±√3
)

. We find that

� =
⎛

⎜
⎝

(
1+√3

)2n+1 +
(

1−√3
)2n+1

2n

⎞

⎟
⎠

2

.

Solving the quadratic equation, we find that

k = 1

2
+
(

1+√3
)2n+1 +

(
1−√3

)2n+1

22n+2

= 1

2
+ 1

4

[(
1+√3

) (
2+√3

)n +
(

1−√3
) (

2−√3
)n]

.

This is clearly a rational number, but is it an integer? The numbers 2 +√3 and 2 −√3 are
the roots of the equation

λ2 − 4λ+ 1 = 0,

which can be interpreted as the characteristic equation of a recursive sequence xn+1 − 4xn +
xn−1 = 0. Given that the general formula of the terms of the sequence is

(
1+√3

)

(
2+√3

)n +
(

1−√3
) (

2−√3
)n

, we also see that x0 = 2 and x1 = 10. An induc-

tion based on the recurrence relation shows that xn is divisible by 2 but not by 4. It follows
that k is an integer and the problem is solved.

(Romanian Team Selection Test for the International Mathematical Olympiad, 1999, pro-
posed by D. Andrica)

1019. We have

an + bn
3
√

2+ cn
3
√

4 =
3
√

2
(

1+ 3
√

2+ 3
√

4
)n

(
3
√

2
)n = 2−

n
3

(
3
√

2+ 3
√

4+ 2
)n

= 2−
n
3

(
1+
(

1+ 3
√

2+ 3
√

4
))n

= 2−
n
3

n∑

k=0

(
n

k

)(
ak + bk

3
√

2+ ck
3
√

4
)

.

Hence

an + bn
3
√

2+ cn
3
√

4 = 2−
n
3

n∑

k=0

(
n

k

)
ak + 2−

n
3

n∑

k=0

(
n

k

)
bk

3
√

2+ 2−
n
3

n∑

k=0

(
n

k

)
ck

3
√

4.

The conclusion follows from the fact that 2−n/3 is an integer if n is divisible by 3, is an integer
times 3

√
4 if n is congruent to 1 modulo 3, and is an integer times 3

√
2 if n is congruent to 2

modulo 3.
(Revista Matematică din Timişoara (Timişoara Mathematics Gazette), proposed by T.

Andreescu and D. Andrica)
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1020. First solution: We prove the formula by induction on n. The case n = 1 is straightfor-
ward. Now let us assume that the formula holds for n and let us prove it for n+ 1. Using the
induction hypothesis, we can write

[x + y]n+1 = (x + y− n)[x + y]n = (x + y− n)

n∑

k=0

(
n

k

)
[x]n−k[y]k

=
n∑

k=0

(
n

k

)
((x − k)+ (y − n+ k))[x]k[y]n−k

=
n∑

k=0

(
n

k

)
(x − k)[x]k[y]n−k +

n∑

k=0

(
n

k

)
(y − (n− k))[x]k[y]n−k

=
n∑

k=0

(
n

k

)
[x]k+1[y]n−k +

n∑

k=0

(
n

k

)
[x]k[y]n−k+1

=
n+1∑

k=1

(
n

k − 1

)
[x]k[y]n−k+1 +

n∑

k=0

(
n

k

)
[x]k[y]n−k+1

=
n+1∑

k=0

((
n

k

)
+
(

n

k − 1

))
[x]k[y]n−k+1

=
n+1∑

k=0

(
n+ 1

k

)
[x]k[y]n+1−k.

The induction is complete.

Second solution: The identity can also be proved by computing
(

d
dt

)n
tx+y in two different

ways. First,

(
d

dt

)n

tx+y = (x + y)(x + y− 1) · · · (x + y− n+ 1)tx+y−n = [x + y]ntx+y−n.

Second, by the Leibniz rule for differentiating the product,

(
d

dt

)n

(tx · ty) =
n∑

k=0

(
n

k

)((
d

dt

)k

tx

)((
d

dt

)n−k

ty

)

=
n∑

k=0

(
n

k

)
[x]k[y]n−ktx+y−n.

The conclusion follows.

1021. The binomial formula (Q+P)n =
n∑

k=0

(
n

k

)

q

QkPn−k is of no use because the variables

Q and P do not commute, so we cannot set P = −Q. The solution relies on the q-Pascal
triangle. The q-Pascal triangle is defined by

(
n

k

)

q

= qk

(
n− 1

k

)

q

+
(

n− 1

k − 1

)

q

.
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With the standard convention that
(n

k

)
q
= 0 if k < 0 or k > n, we have

∑

k

(−1)kq
k(k−1)

2

(
n

k

)

q

=
∑

k

(−1)kq
k(k−1)

2

(

qk

(
n− 1

k

)

q

+
(

n− 1

k − 1

)

q

)

=
∑

k

(−1)kq
k(k+1)

2

(
n− 1

k

)

q

−
∑

k

(−1)k−1q
k(k−1)

2

(
n− 1

k − 1

)

q

.

Now just shift the index in the second sum k �→ k + 1 to obtain the difference of two equal
sums. The identity follows.

1022. Let G(x) =
∑

n

ynxn be the generating function of the sequence. It satisfies the

functional equation

(1− ax)G(x) = 1+ bx + bx2 + · · · = 1

1− bx
.

We find that

G(x) = 1

(1− ax)(1− bx)
= A

1− ax
+ B

1− bx
=
∑

n

(Aan + Bbn)xn,

for some A and B. It follows that yn = Aan + Bbn, and because y0 = 1 and y1 = a + b,
A = a

a−b and B = − b
a−b . The general term of the sequence is therefore

1

a− b
(an+1 − bn+1).

1023. The first identity is obtained by differentiating (x + 1)n =
n∑

k=1

(
n

k

)
xk , then setting

x = 1. The answer is n2n−1. The second identity is obtained by integrating the same equality
and then setting x = 1, in which case the answer is 2n+1

n+1 .

1024. The identity in part (a) is the Vandermonde formula. It is proved using the generating
function of the binomial coefficients, by equating the coefficients of xk on the two sides of the
equality (x + 1)m+n = (x + 1)m(x + 1)n.

The identity in part (b) is called the Chu-Vandermonde formula. This time the generating
function in question is (Q+P)n, where Q and P are the noncommuting variables that describe
the time evolution of the position and the momentum of a quantum particle. They are noncom-
muting variables satisfying PQ = qQP, the exponential form of the canonical commutation
relations which lead to the Heisenberg uncertainty principle. The Chu-Vandermonde formula
is obtained by identifying the coefficients of QkPm+n−k on the two sides of the equality

(Q+ P)m+n = (Q+ P)m(Q+ P)n.
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Observe that the powers of q arise when we switch P’s and Q’s as follows:
(

m

j

)

q

QjPm−j

(
n

k − j

)

q

Qk−jPn−k+j =
(

m

j

)

q

(
n

k − j

)

q

QjPm−jQk−jPn−k+j

= q(m−j)(k−j)

(
m

j

)

q

(
n

k − j

)

q

QkPm+n−k.

1025. The sum is equal to the coefficient of xn in the expansion of

xn(1− x)n + xn−1(1− x)n + · · · + xn−m(1− x)n.

This expression is equal to

xn−m · 1− xm+1

1− x
(1− x)n,

which can be written as (xn−m − xn+1)(1 − x)n−1. Hence the sum is equal to (−1)m
(n−1

m

)
if

m < n, and to 0 if m = n.

1026. The sum from the statement is equal to the coefficient of xk in the expansion of

(1+ x)n + (1+ x)n+1 + · · · + (1+ x)n+m.

This expression can be written in compact form as

1

x
((1+ x)n+m+1 − (1+ x)n).

We deduce that the sum is equal to
(n+m+1

k+1

)− ( n
k+1

)
for k < n and to

(n+m+1
n+1

)
for k = n.

1027. The generating function of the Fibonacci sequence is

φ(x) = 1

1− x − x2
.

Expanding like a geometric series, we obtain

1

1− x − x2
= 1

1− x(1+ x)
= 1+ x(1+ x)+ x2(1+ x)2 + · · · + xn(1+ x)n + · · ·

The coefficient of xn is on the one hand Fn+1 and on the other hand
(

n

0

)
+
(

n− 1

1

)
+
(

n− 2

2

)
+ · · · .

The identity follows.

1028. We introduce some additional parameters and consider the expansion

1

(1− a1x)(1− a2x2)(1− a3x3) · · ·
= (1+ a1x + a2

1x2 + · · · )(1+ a2x2 + a2
2x4 + · · · )(1+ a3x3 + a2

3x6 + · · · ) · · ·
= 1+ a1x + (a2

1 + a2)x
2 + · · · + (aλ1

1 aλ2
2 · · · aλk

k + · · · )xn + · · ·
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The term aλ1
1 aλ2

2 · · · aλk
k that is part of the coefficient of xn has the property that λ1 + 2λ2 +

· · · + kλk = n; hence it defines a partition of n, namely,

n = 1+ 1+ · · · + 1︸ ︷︷ ︸
λ1

+ 2+ 2+ · · · + 2︸ ︷︷ ︸
λ2

+ · · · + k + k + · · · + k︸ ︷︷ ︸
λk

.

So the terms that appear in the coefficient of xn generate all partitions of n. Setting a1 = a2 =
a3 = · · · = 1, we obtain for the coefficient of xn the number P(n) of the partitions of n. And
we are done.

1029. The argument of the previous problem can be applied mutatis mutandis to show that
the number of ways of writing n as a sum of odd positive integers is the coefficient of xn in
the expansion of

1

(1− x)(1− x3)(1− x5)(1− x7) · · · ,
while the number of ways of writing n as a sum of distinct positive integers is the coefficient
of xn in

(1+ x)(1+ x2)(1+ x3)(1+ x4) · · ·
We have

1

(1− x)(1− x3)(1− x5)(1− x7) · · · =
1− x2

1− x
· 1− x4

1− x2
· 1− x6

1− x3
· 1− x8

1− x4
· 1− x10

1− x5
· · ·

= (1+ x)(1+ x2)(1+ x3)(1+ x4) · · ·
This proves the desired equality.

Remark. This property is usually phrased as follows: Prove that the number of partitions of
n into distinct parts is equal to the number of partitions of n into odd parts.

(L. Euler)

1030. The number of subsets with the sum of the elements equal to n is the coefficient of xn

in the product
G(x) = (1+ x)(1+ x2) · · · (1+ xp).

We are asked to compute the sum of the coefficients of xn for n divisible by p. Call this number
s(p). There is no nice way of expanding the generating function; instead we compute s(p)

using particular values of G. It is natural to try pth roots of unity.

The first observation is that if ξ is a pth root of unity, then
p∑

k=1

ξ p is zero except when

ξ = 1. Thus if we sum the values of G at the pth roots of unity, only those terms with exponent
divisible by p will survive. To be precise, if ξ is a pth root of unity different from 1, then

p∑

k=1

G(ξ k) = ps(p).
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We are left with the problem of computing G(ξ k), k = 1, 2, . . . , p. For k = p, this is just 2p.
For k = 1, 2, . . . , p− 1,

G(ξ k) =
p∏

j=1

(1+ ξ kj) =
p∏

j=1

(1+ ξ j) = (−1)p
p∏

j=1

((−1)− ξ j) = (−1)p((−1)p − 1) = 2.

We therefore have ps(p) = 2p + 2(p − 1) = 2p + 2p − 2. The answer to the problem is
s(p) = 2p−2

p + 2. The expression is an integer because of Fermat’s little theorem.
(T. Andreescu, Z. Feng, A Path to Combinatorics for Undergraduates, Birkhäuser 2004)

1031. We introduce the generating function

Gn(x) =
(

x + 1

x

)(
x2 + 1

x2

)
· · ·
(

xn + 1

xn

)
.

Then S(n) is the term not depending on x in Gn(x). If in the expression
(

x + 1

x

)(
x2 + 1

x2

)
· · ·
(

xn + 1

xn

)
= S(n)+

∑

k �=0

ckxk

we set x = eit and then integrate between 0 and 2π , we obtain

∫ 2π

0
(2 cos t)(2 cos 2t) · · · (2 cos nt)dt = 2πS(n)+ 0,

whence the desired formula

S(n) = 2n−1

π

∫ 2π

0
cos t cos 2t · · · cos ntdt.

(Communicated by D. Andrica)

1032. Let us assume that n is not a power of 2. We consider a more exotic kind of generating
function where the sequence is encoded in the exponents, not in the coefficients:

f (x) = xa1 + xa2 + · · · + xan and g(x) = xb1 + xb2 + · · · + xbn .

In fact, these are the generating functions of the characteristic functions of the sets A and B.
By assumption,

f (x)2 − f (x2) = 2
∑

i<j

xai+aj = 2
∑

i<j

xbi+bj = g(x)2 − g(x2).

Therefore,
(f (x)− g(x))(f (x)+ g(x)) = f (x2)− g(x2).

Let h(x) = f (x) − g(x) and p(x) = f (x) + g(x). We want to prove that if n is not a power
of 2, then h is identically 0. Note that h(1) = 0. We will prove by strong induction that all
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derivatives of h at 1 are zero, which will make the Taylor series of h identically zero. Note
that

h′(x)p(x)+ h(x)p′(x) = 2xh′(x2),

and so h′(1)p(1) = 2h′(1). Since p(1) = f (1) + g(1) = 2n, which is not a power of 2, it
follows that h′(1) = 0. Assuming that all derivatives of h of order less than k at 1 are zero,
by differentiating the functional equation k times and substituting x = 1, we obtain

h(k)(1)p(1) = 2kh(k)(1).

Hence h(k)(1) = 0. This completes the induction, leading to a contradiction. It follows that
n is a power of 2, as desired.

(Communicated by A. Neguţ)

1033. We use the same generating functions as in the previous problem. So to the set An we
associate the function

an(x) =
∞∑

a=1

caxa,

with ca = 1 if a ∈ An and ca = 0 if a /∈ An. To Bn we associate the function bn(x) in a similar
manner. These functions satisfy the recurrence a1(x) = 0, b1(x) = 1,

an+1(x) = xbn(x),

bn+1 ≡ an(x)+ bn(x) (mod 2).

From now on we understand all equalities modulo 2. Let us restrict our attention to the
sequence of functions bn(x), n = 1, 2, . . .. It satisfies b1(x) = b2(x) = 1,

bn+1(x) = bn(x)+ xbn−1(x).

We solve this recurrence the way one usually solves second-order recurrences, namely by
finding two linearly independent solutions p1(x) and p2(x) satisfying

pi(x)
n+1 = pi(x)

n + xpi(x)
n−1, i = 1, 2.

Again the equality is to be understood modulo 2. The solutions p1(x) and p2(x) are formal
power series whose coefficients are residue classes modulo 2. They satisfy the “characteristic”
equation

p(x)2 = p(x)+ x,

which can be rewritten as
p(x)(p(x)+ 1) = x.

So p1(x) and p2(x) can be chosen as the factors of this product, and thus we may assume that
p1(x) = xh(x) and p2(x) = 1 + p1(x), where h(x) is again a formal power series. Writing
p1(x) =

∑
αaxa and substituting in the characteristic equation, we find that α1 = 1, α2k = α2

k ,
and α2k+1 = 0 for k > 1. Therefore,

p1(x) =
∞∑

k=0

x2k
.
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Since p1(x)+ p2(x) = p1(x)2 + p2(x)2 = 1, it follows that in general,

bn(x) = p1(x)
n + p2(x)

n =
( ∞∑

k=0

x2k

)n

+
(

1+
∞∑

k=0

x2k

)n

, for n ≥ 1.

We emphasize again that this is to be considered modulo 2. In order for bn(x) to be identically
equal to 1 modulo 2, we should have

(( ∞∑

k=0

x2k

)

+ 1

)n

=
( ∞∑

k=0

x2k

)n

+ 1 (mod 2).

This obviously happens if n is a power of 2, since all binomial coefficients in the expansion
are even.

If n is not a power of 2, say n = 2i(2j + 1), j ≥ 1, then the smallest m for which
(n

m

)
is

odd is 2j. The left-hand side will contain an x2j
with coefficient equal to 1, while the smallest

nonzero power of x on the right is n. Hence in this case equality cannot hold.
We conclude that Bn = {0} if and only if n is a power of 2.
(Chinese Mathematical Olympiad)

1034. We will count the number of committees that can be chosen from n people, each
committee having a president and a vice-president.

Choosing first a committee of k people, the president and the vice-president can then be
elected in k(k − 1) ways. It is necessary that k ≥ 2. The committees with president and
vice-president can therefore be chosen in

1 · 2
(

n

2

)
+ 2 · 3

(
n

3

)
+ · · · + (n− 1) · n

(
n

n

)

ways.
But we can start by selecting first the president and the vice-president, and then adding

the other members to the committee. From the n people, the president and the vice-president
can be selected in n(n− 1) ways. The remaining members of the committee can be selected
in 2n−2 ways, since they are some subset of the remaining n− 2 people. We obtain

1 · 2
(

n

2

)
+ 2 · 3

(
n

3

)
+ · · · + (n− 1) · n

(
n

n

)
= n(n− 1)2n−2.

1035. Rewrite the identity as

n∑

k=1

k

(
n

k

)(
n

n− k

)
= n

(
2n− 1

n− 1

)
.

We claim that both sides count the number of n-member committees with a physicist president
that can be elected from a group of n mathematicians and n physicists. Indeed, on the left-hand
side we first elect k physicists and n− k mathematicians, then elect the president among the
k physicists, and do this for all k. On the right-hand side we first elect the president and then
elect the other members of the committee from the remaining 2n− 1 people.
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1036. We will prove that both terms of the equality count the same thing. To this end, we
introduce two disjoint sets M and N containing m, respectively, n elements.

For the left-hand side, choose first k elements in M. This can be done in
(m

k

)
ways. Now

add these k elements to N and choose m elements from the newly obtained set. The number
of ordered pairs of sets (X, Y) with X ⊂ M, Y ⊂ N ∪ X, |X| = k, and |Y | = m is equal to(m

k

)(n+k
m

)
. Varying k, we obtain, for the total number of pairs (X, Y),

m∑

k=0

(
m

k

)(
n+ k

m

)
.

The same problem can be solved differently, namely choosing Y first. If we fix the cardinality
of Y ∩N , say |Y ∩N | = j, 0 ≤ j ≤ m, then |Y ∩M| = m− j, and so there are

(n
j

)( m
m−j

) = (nj
)(m

j

)

ways to choose Y . Now X contains the set Y ∩M, the union with some (arbitrary) subset of
M\Y . There are j elements in M\Y , so there are 2j possible choices for X. Consequently, the
number of pairs with the desired property is

n∑

j=0

(
n

j

)(
m

j

)
2j.

Setting the two numbers equal yields the identity from the statement.
(I. Tomescu, Problems in Combinatorics, Wiley, 1985)

1037. First solution: We prove the identity by counting, in two different ways, the cardinality
of the set of words of length n using the alphabet {A, B, C} and satisfying the condition that
precisely k of the letters are A, and all of the letters B must be among the first m letters as read
from the left.

The first count is according to the number of B’s. Place m symbols X in a row and following
them n− m symbols Y :

XX . . . XX︸ ︷︷ ︸
m

YY . . . YY︸ ︷︷ ︸
n−m

.

Choose i of the X’s (in
(m

i

)
ways), and replace them by B’s. Choose k of the n− i remaining

symbols (in
(n−i

k

)
ways), and replace them by A’s. Any remaining X’s or Y ’s are now replaced

by C’s. We have constructed
(m

i

)(n−i
k

)
words satisfying the conditions. Summing over i, we

have the sum on the left.
The second count is according to the number of A’s among the first m letters of the word.

We start with the same sequence of X’s and Y ’s as before. Choose i of the m X’s (in
(m

i

)

ways), replace each of them by A and replace each of the other m− i X’s by B or C (this can
be done in 2m−i ways). Then choose k − i of the n−m Y ’s (in

(n−m
k−i

)
ways) and replace each

of them by A, and replace the remaining Y ’s by C. We have constructed
(m

i

)(n−m
k−i

)
2m−i words

satisfying the conditions. Summing over i, we obtain the right-hand side of the identity.

Second solution: There is also a solution by generating functions. Fix m and consider the two
expressions that are to be shown equal as functions of n, and let the expression on the left be
An and the one on the right Bn. Then, consider the generating function for the numbers An:

F(x) =
∑

n

Anxn =
∑

n

m∑

i=0

(
m

i

)(
n− i

k

)
xn.
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We compute

F(x) =
∑

i

(
m

i

)∑

n

(
n− i

k

)
xn =
∑

i

(
m

i

)
xi
∑

n

(
n− i

k

)
xn−i

=
∑

i

(
m

i

)
xi xk

(1− x)k+1
= xk(1+ x)m

(1− x)k+1
.

Considering the generating function for the numbers Bn:

G(x) =
∑

n

Bnxn =
∑

n

m∑

i=0

(
m

i

)(
n− m

k − i

)
2m−ixn,

we compute

G(x) =
∑

i

(
m

i

)
xm2m−i

∑

n

(
n− m

k − i

)
xn−m =

∑

i

(
m

i

)
xm2m−i xk−i

(1− x)k−i+1

=
∑

i

(
m

i

)(
1− x

2x

)i

· (2x)mxk

(1− x)k+1
= (2x)mxk

(1− x)k+1

(
1− 1− x

2x

)m

= xk(1+ x)m

(1− x)k+1
.

We see that F(x) = G(x), and hence An = Bn, proving the combinatorial identity.
(Mathematics Magazine, the case m = k − 1 proposed by D. Callan, first solution and

generalization by W. Moser, second solution by M.C. Zanarella)

1038. First solution: For a counting argument to work, the identity should involve only
integers. Thus it is sensible to write it as

q∑

k=0

2q−k

(
p+ k

k

)
+

p∑

k=0

2p−k

(
q + k

k

)
= 2p+q+1.

This looks like the count of the elements of a set partitioned into two subsets. The right-hand
side counts the number of subsets of a set with p+ q + 1 elements. It is better to think of it
as the number of elements of {0, 1}p+q+1. We partition this set into two disjoint sets A and
B such that A is the set of (p + q + 1)-tuples with at least p + 1 entries equal to 1, and B,
its complement, is the set of (p + q + 1)-tuples with at least q + 1 entries equal to 0. If the
position of the (p + 1)st 1 is p + k + 1, 0 ≤ k ≤ q, then there are

(p+k
p

) = (p+k
k

)
ways of

choosing the positions of the first p ones. Several subsequent coordinates can also be set to 1,
and this can be done in 2q−k ways. It follows that 2q−k

(p+k
k

)
elements in A have the (p+1)st 1

in position p+ k+ 1. Therefore, the first sum counts the elements of A. Similarly, the second
sum counts the elements of B, and the conclusion follows.

Second solution: Like with most combinatorial identities, there is a solution with generating
functions. Denote the expression on the left-hand side of the identity by Ap,q, and consider
the generating function of the numbers Aij:

F(x, y) =
∑

i,j≥0

Ai,jx
iyj



814 Combinatorics and Probability

We compute

F(x, y) =
∑

i

∑

j

[
j∑

k=0

1

2i+k

(
i + k

k

)
+

i∑

k=0

1

2j+k

(
j + k

k

)]

xiyj

=
∑

j

yj
j∑

k=0

∑

i

1

2i+k

(
i + k

k

)
xi +
∑

i

xi
i∑

k=0

∑

j

1

2j+k

(
j + k

k

)
yj.

Since
∑

i

(
i + k

k

)
xi = 1

(1− x)k+1

we have
∑

i

1

2i+k

(
i + k

k

)
xi = 1

2k
(

1− x

2

)k+1
.

From there we obtain
∑

k

yk
∑

i

(
i + k

k

)
xi

2i+k
=
∑

k

yk

2k
(

1− x

2

)k+1
= 1

1− x

2

· 1

1− y

2− x

.

Notice that in general, if L(y) =∑k ykBk , then

L(y)

1− y
=
∑

k

yk
k∑

j=0

Bj.

Using this we deduce that

∑

j

yj
j∑

k=0

∑

i

1

2i+k

(
i + k

k

)
xi = 1

1− y

∑

k

yk
∑

i

(
i + k

k

)
xi

2i+k

= 1

1− y
· 1

1− x

2

· 1

1− y

2− x

= 2

(1− y)(2− x − y)
.

By symmetry,

∑

i

xi
i∑

k=0

∑

j

1

2j+k

(
j + k

k

)
yj = 2

(1− x)(2− x − y)
.

Therefore

F(x, y) = 2

(1− y)(2− x − y)
+ 2

(1− x)(2− x − y)
= 2

(1− x)(1− y)
=
∑

i

∑

j

2xiyj.

We conclude that Ap,q = 2 for all p, q.
(French Contest, 1985, solution from T.B. Soulami, Les olympiades de mathématiques:

Réflexes et stratégies, Ellipses, 1999, second solution by M.C. Zanarella)
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1039. A group of 2n + 1 people, consisting of n male/female couples and one extra male,
wish to split into two teams. Team 1 should have n people, consisting of

⌊
n
2

⌋
women and⌊

n+1
2

⌋
men, while Team 2 should have n + 1 people, consisting of

⌈
n
2

⌉
women and

⌈
n+1

2

⌉

men, where �x� denotes the least integer greater than or equal to x. The number of ways to
do this is counted by the first team, and is cncn+1.

There is a different way to count this, namely by the number k of couples that are split
between the two teams. The single man joins Team 1 if and only if k and n have opposite
parity. The split couples can be chosen in

(n
k

)
ways. From the remaining n − k couples, the

number to join Team 1 is
⌊

n−k
2

⌋
, which can be chosen in cn−k ways. Since these couples

contribute
⌊

n−k
2

⌋
women to Team 1, the number of women from the k split couples that join

Team 1 must be
⌊

n
2

⌋ − ⌊ n−k
2

⌋
, which equals either

⌊
k
2

⌋
for n odd or

⌈
k
2

⌉
for n even. Since( k

�k/2�
) = ( k

�k/2�
)
, these women can be chosen in ck ways. Thus the left side also counts the

choices.
(American Mathematical Monthly, proposed by D.M. Bloom, solution by Ch.N. Swanson)

1040. We count the points of integer coordinates in the rectangle

1 ≤ x ≤ p′, 1 ≤ y ≤ q′.

Their total number is p′q′. Now let us look at the expression in the first set of parentheses.
The terms count the number of points with integer coordinates that lie below the line y = q

p x
and on the lines x = 1, x = 2, . . ., x = p′. Here it is important to remark that since p and
q are coprime, none of these points lie on the line y = q

p x. Similarly, the expression in the
second parentheses counts the number of points with integer coordinates that lie above the
line y = q

p x and on the lines y = 1, y = 2, . . ., y = q′. Together, these are all the points of the
rectangle. That there are no others follows from the inequalities

⌊
p′q
p

⌋
≤ q′ and

⌊
q′p
q

⌋
≤ p′.

Indeed,

⌊
p′q
p

⌋
=
⌊

p′(2q′ + 1)

2p′ + 1

⌋
=

⎢
⎢⎢⎢⎢
⎣

q′ + 1

2

1+ 1

2p′

⎥
⎥⎥⎥⎥
⎦ ≤
⌊

q′ + 1

2

⌋
= q′,

and the other inequality is similar.
Thus both sides of the identity in question count the same points, so they are equal.
(G. Eisenstein)

1041. First solution: For each pair of students, consider the set of those problems not solved
by them. There are

(200
2

)
such sets, and we have to prove that at least one of them is empty.

For each problem there are at most 80 students who did not solve it. From these students
at most

(80
2

) = 3160 pairs can be selected, so the problem can belong to at most 3160 sets.
The 6 problems together can belong to at most 6 · 3160 sets.

Hence at least 19900− 18960 = 940 sets must be empty, and the conclusion follows.

Second solution: Since each of the six problems was solved by at least 120 students, there
were at least 720 correct solutions in total. Since there are only 200 students, there is some
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student who solved at least four problems. If a student solved five or six problems, we are
clearly done. Otherwise, there is a student who solved exactly four. Since the two problems
he missed were solved by at least 120 students, there must be a student (in fact, at least 40)
who solved both of them.

(9th International Mathematical Competition for University Students, 2002)

1042. First solution: We prove the formula by induction on m. For m = 1 it clearly is true,
since there is only one solution, x1 = n. Assume that the formula is valid when the number
of unknowns is k ≤ m, and let us prove it for m+ 1 unknowns. Write the equation as

x1 + x2 + · · · + xm = n− xm+1.

As xm+1 ranges between 0 and n, the right-hand sides assumes all values between 0 and n.
Using the induction hypothesis for all these cases and summing up, we find that the total
number of solutions is

n∑

r=0

(
m+ r − 1

m− 1

)
.

As before, this sums up to
(m+n

m

)
, proving the formula for m + 1 unknowns. This completes

the solution.

Second solution: Let yi = xi + 1. Then y1, . . . , ym is a solution in positive integers to the
equation y1 + y2 + · · · + ym = n+ m. These solutions were counted in one of the examples
discussed at the beginning of this section.

1043. We associate to such a subset S a word a1a2 . . . an with ai = 1 if i ∈ S and ai = 0 if
i /∈ S. It suffices to count the number of words that do not contain two consecutive ones.

Let us first count the number of such words that contain precisely k ones. Such a word is
obtained by starting with a sequence of n− k zeros. This sequence has n− k+ 1 slots where
ones can be inserted: one between every two consecutive zeros, one at the beginning, and one
at the end. The word is the obtained by choosing k slots, and inserting a one in each of them.
It follows that the number of such words is

(n−k+1
k

)
.

So the total number of words is

f (n) =
∑

k

(
n− k + 1

k

)
.

To write this in short form note that
(

n− k + 1

k

)
=
(

n− k

k

)
+
(

n− k

k − 1

)
=
(

(n− 1)− k + 1

k

)
+
(

(n− 2)− (k − 1)+ 1

(k − 1)

)
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hence f (n) = f (n − 1)+ f (n − 2) for all n ≥ 2. It is easy to count f (1) = 2, f (2) = 3, and
therefore f (n) = Fn+1, where (Fn)n≥0 is the Fibonacci sequence.

Remark. Note the similarity with the second solution given to the previous problem.

1044. Let M1 be the set of edges whose endpoints have different colors, M2 the set of faces
with vertices colored by three different colors, and M3 the set of faces with exactly two vertices
colored by the same color. As usually, we denote by |A| the number of elements of the set A.

Each triangle in M2 contains exactly 3 edges in M1, and each triangle in M3 contains
exaclty two edges in M1. Every edge in M1 belongs to either two faces in M2, two faces in
M3, or a face in M2 and one in M3. Counting the edges by faces, we obtain

2|M1| = 3|M2| + 2|M3|.
Hence |M2| is even, as desired.

(Romanian Team Selection Test for the International Mathematical Olympiad, 1983, prop-
sosed by I. Tomescu, solution by O. Bucikovski)

1045. Since each tennis player played n− 1 games, xi+ yi = n− 1 for all i. Altogether there
are as many victories as losses; hence x1 + x2 + · · · + xn = y1 + y2 + · · · + yn. We have

x2
1 + x2

2 + · · · + x2
n − y2

1 − y2
2 − · · · − y2

n = (x2
1 − y2

1)+ (x2
2 − y2

2)+ · · · + (x2
n − y2

n)

= (x1 + y1)(x1 − y1)+ (x2 + y2)(x2 − y2)+ · · · + (xn + yn)(xn − yn)

= (n− 1)(x1 − y1 + x2 − y2 + · · · + xn − yn)

= (n− 1)(x1 + x2 + · · · + xn − y1 − y2 − · · · − yn) = 0,

and we are done.
(L. Panaitopol, D. Şerbănescu, Probleme de Teoria Numerelor şi Combinatorică pentru

Juniori (Problems in Number Theory and Combinatorics for Juniors), GIL, 2003)

1046. Let B = {b1, b2, . . . , bp} be the union of the ranges of the two functions. For bi ∈ B,
denote by nbi the number of elements x ∈ A such that f (x) = bi, and by kbi the number of
elements x ∈ A such that g(x) = bi. Then the number of pairs (x, y) ∈ A × A for which
f (x) = g(x) = bi is nbi kbi , the number of pairs for which f (x) = f (y) = bi is n2

bi
, and the

number of pairs for which g(x) = g(y) = bi is k2
bi

. Summing over i, we obtain

m = nb1kb1 + nb2kb2 + · · · + nbpkbp,

n = n2
b1
+ n2

b2
+ · · · + n2

bp
,

k = k2
b1
+ k2

b2
+ · · · + k2

bp
.

The inequality from the statement is a consequence of the AM-GM inequality 2ab ≤ a2+b2.
(T.B. Soulami, Les Olympiades de Mathématiques: Réflexes et stratégies, Ellipses, 1999)

1047. Let a < b < c < d be the members of a connected set S. Because a−1 does not belong
to the set, it follows that a+ 1 ∈ S, hence b = a+ 1. Similarly, since d + 1 /∈ S, we deduce
that d− 1 ∈ S; hence c = d− 1. Therefore, a connected set has the form {a, a+ 1, d− 1, d},
with d − a > 2.
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(a) There are 10 connected subsets of the set {1, 2, 3, 4, 5, 6, 7}, namely,

{1, 2, 3, 4}; {1, 2, 4, 5}; {1, 2, 5, 6}; {1, 2, 6, 7}; {2, 3, 4, 5};
{2, 3, 5, 6}; {2, 3, 6, 7}; {3, 4, 5, 6}; {2, 4, 6, 7}; and {4, 5, 6, 7}.

(b) Call D = d − a + 1 the diameter of the set {a, a + 1, d − 1, d}. Clearly, D > 3 and
D ≤ n − 1 + 1 = n. For D = 4 there are n − 3 connected sets, for D = 5 there are n − 4
connected sets, and so on. Adding up yields

Cn = 1+ 2+ 3+ · · · + n− 3 = (n− 3)(n− 2)

2
,

which is the desired formula.
(Romanian Mathematical Olympiad, 2006)

1048. The solution involves a counting argument that shows that the total number of colorings
exceeds those that make some 18-term arithmetic sequence monochromatic.

There are 22005 colorings of a set with 2005 elements by two colors. The number of
colorings that make a fixed 18-term sequence monochromatic is 22005−17, since the terms not
belonging to the sequence can be colored without restriction, while those in the sequence can
be colored either all black or all white.

How many 18-term arithmetic sequences can be found in the set {1, 2, . . . , 2005}? Such
a sequence a, a+ r, a+ 2r, . . . , a+ 17r is completely determined by a and r subject to the
condition a+17r ≤ 2005. For every a there are

⌊
2005−a

17

⌋
arithmetic sequences that start with

a. Altogether, the number of arithmetic sequences does not exceed

2005∑

a=1

2005− a

17
= 2004 · 2005

2 · 17
.

So the total number of colorings that makes an arithmetic sequence monochromatic does not
exceed

22005−17 · 2004 · 2005

34
,

which is considerably smaller than 22005. The conclusion follows.
(Communicated by A. Neguţ)

1049. Let us consider the collection of all subsets with 2 elements of A1, A2, . . . , Am. We thus
have a collection of 6m subsets with two elements of A. But the number of distinct subsets
of cardinal 2 in A is 4950. By the pigeonhole principle, there exist distinct elements x, y ∈ A
that belong to at least 49 subsets. Let these subsets be A1, A2, . . . , A49. Then the conditions
of the problem imply that the union of these subsets has 2 + 49× 2 = 100 elements, so the
union is A. However, the union of any 48 subsets among the 49 has at most 2+ 2× 48 = 98
elements, and therefore it is different from A.

(G. Dospinescu)

1050. First, it is not hard to see that a configuration that maximizes the number of partitions
should have no three collinear points. After examining several cases we guess that the maximal
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number of partitions is
(n

2

)
. This is exactly the number of lines determined by two points, and

we will use these lines to count the number of partitions. By pushing such a line slightly so
that the two points lie on one side or the other, we obtain a partition. Moreover, each partition
can be obtained this way. There are 2

(n
2

)
such lines, obtained by pushing the lines through the

n points to one side or the other. However, each partition is counted at least twice this way,
except for the partitions that come from the sides of the polygon that is the convex hull of the
n points, but those can be paired with the partitions that cut out one vertex of the convex hull
from the others. Hence we have at most 2

(n
2

)
/2 = (n2

)
partitions.

Equality is achieved when the points form a convex n-gon, in which case
(n

2

)
counts the

pairs of sides that are intersected by the separating line.
(67th W.L. Putnam Mathematical Competition, 2006)

1051. First solution: Consider the set of differences D = {x − y | x, y ∈ A}. It contains at
most 101×100+1 = 10101 elements. Two sets A+ ti and A+ tj have nonempty intersection
if and only if ti − tj is in D. We are supposed to select the 100 elements in such a way that no
two have the difference in D. We do this inductively.

First, choose one arbitrary element. Then assume that k elements have been chosen,
k ≤ 99. An element x that is already chosen prevents us from selecting any element from
the set x + D. Thus after k elements are chosen, at most 10101k ≤ 10101 × 99 = 999999
elements are forbidden. This allows us to choose the (k+ 1)st element, and induction works.
With this the problem is solved.

Second solution: The first solution can be improved if we look instead at the set of positive
differences P = {x − y, | x, y ∈ A, x ≥ y}. The set P has

(101
2

) + 1 = 5051 elements.
The inductive construction has to be slightly modified, by choosing at each step the smallest
element that is not forbidden. In this way we can obtain far more elements than the required
100. In fact, in the general situation, the argument proves that if A is a k-element subset of

S = {1, 2, . . . , n} and m is a positive integer such that n > (m − 1)
((k

2

)+ 1
)

, then there

exist t1, t2, . . . , tm ∈ S such that the sets Aj = {x + tj | x ∈ A}, j = 1, 2, . . . , m, are pairwise
disjoint.

(44th International Mathematical Olympiad, 2003, proposed by Brazil)

1052. (a) For fixed x ∈ A, denote by k(x) the number of sets B ∈ F that contain x. List these
sets as B1, B2, . . . , Bk(x). Then B1\{x}, B2\{x}, . . ., Bk(x)\{x} are disjoint subsets of A\{x}.
Since each Bi\{x} has n− 1 elements, and A\{x} has n2 − 1 elements, k(x) ≤ n2−1

n−1 = n+ 1.
Repeating the argument for all x ∈ A and adding, we obtain

∑

x∈A

k(x) ≤ n2(n+ 1).

But ∑

x∈A

k(x) =
∑

B∈F
|B| = n|F |.

Therefore, n|F | ≤ n2(n+ 1), which implies |F | ≤ n2 + n, proving (a).
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For (b) arrange the elements 1, 2, . . . , 9 in a matrix

1 2 3
4 5 6
7 8 9

and choose the sets ofF as the rows, columns, and the “diagonals” that appear in the expansion
of the 3× 3 determinant by the Sarrus rule:

{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {1, 4, 7}, {2, 5, 8}, {3, 6, 9},
{1, 5, 9}, {2, 6, 7}, {3, 4, 8}, {3, 5, 7}, {2, 4, 9}, {1, 6, 8}.

It is straightforward to check that they provide the required counterexample.
(Romanian Team Selection Test for the International Mathematical Olympiad, 1985)

1053. At every cut the number of pieces grows by 1, so after n cuts we will have n+1 pieces.
Let us evaluate the total number of vertices of the polygons after n cuts. After each cut

the number of vertices grows by 2 if the cut went through two vertices, by 3 if the cut went
through a vertex and a side, or by 4 if the cut went through two sides. So after n cuts there
are at most 4n+ 4 vertices.

Assume now that after N cuts we have obtained the one hundred polygons with 20 sides.
Since altogether there are N+1 pieces, besides the one hundred polygons there are N+1−100
other pieces. Each of these other pieces has at least 3 vertices, so the total number of vertices
is 100 · 20+ (N − 99) · 3. This number does not exceed 4N + 4. Therefore,

4N + 4 ≥ 100 · 20+ (N − 99) · 3 = 3N + 1703.

We deduce that N ≥ 1699.
We can obtain one hundred polygons with twenty sides by making 1699 cuts in the

following way. First, cut the square into 100 rectangles (99 cuts needed). Each rectangle
is then cut through 16 cuts into a polygon with twenty sides and some triangles. We have
performed a total of 99+ 100 · 16 = 1699 cuts.

(Kvant (Quantum), proposed by I. Bershtein)

1054. We give a proof by contradiction. Let us assume that the conclusion is false. We can
also assume that no problem was solved by at most one sex. Denote by bi and gi the number
of boys, respectively, girls, that solved problem i, and by p the total number of problems.
Then since bi, gi ≥ 1, it follows that (bi − 2)(gi − 2) ≤ 1, which is equivalent to

bigi ≤ 2(bi + gi)− 3.

Let us sum this over all problems. Note that condition (ii) implies that 441 ≤
∑

bigi. We
thus have

441 ≤
∑

bigi ≤ 2(bi + gi)− 3 ≤ 2(6 · 21+ 6 · 21)− 3p = 504− 3p.

This implies that p ≤ 21, so 21 is an upper bound for p.
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We now do a different count of the problems that will produce a lower bound for p. Pairing
a girl with each of the 21 boys, and using the fact that she solved at most six problems, by
the pigeonhole principle we conclude that some problem was solved by that girl and 4 of the
boys. By our assumption, there are at most two girls who solved that problem. This argument
works for any girl, which means that there are at least 11 problems that were solved by at least
4 boys and at most 2 girls. Symmetrically, 11 other problems were solved by at least 4 girls
and at most 2 boys. This shows that p ≤ 22, a contradiction. The problem is solved.

(42nd International Mathematical Olympiad, 2001)

1055. By examining a few cases, we are led to believe that this is impossible. Nevertheless, let
us assume that there is an m× n rectangle for which the coloring is possible. We associate to
a row/column the color the dominating color. Let m1, m2 be the number of black respectively
white rows, and n1, n2 be the number of black respectively white columns. Then m1+m2 = m
and n1 + n2 = n. Without loss of generality we may assume that m1 ≤ m2.

All squares at the intersection of a row and a column of different colors differ from the
color of either their row or of their column. There are m1n2 + m2n1 such squares. Again
without loss of generality we may assume that the color of more than half of these squares
differs from that of the rows they are in.

By hypothesis, in the white rows there are more than 3
4 m2n white squares. Hence in the

black rows there are less than mn
2 − 3

4 m2n white squares, so that the total number of white
squares is mn

2 . On the other hand, in the white rows there are less than 1
4 m2n black squares.

So the number of squares whose color differs from that of the rows they are in is less than

mn

2
− 3

4
m2n+ 1

4
m2n = m1n

2
.

We obtain the inequality

1

2
(m1n2 + m2n1) <

m1n

2
= 1

2
(m1n1 + m1n2).

It follows that m1 > m2, a contradiction. Hence the answer to the question is negative, as
claimed.

(Kvant (Quantum), proposed by S. Konyagyn)

1056. First, let us forget about the constraint and count the number of paths from (0, 0) and
(m, n) such that at each step one of the coordinates increases by 1. There are a total of m+ n
steps, out of which n go up. These n can be chosen in

(m+n
n

)
ways from the total of m + n.

Therefore, the number of paths is
(m+n

n

)
.

How many of these go through (p, q)? There are
(p+q

q

)
paths from (0, 0) to (p, q) and

(m+n−p−q
n−q

)
paths from (p, q) to (m, n). Hence

(
p+ q

q

)
·
(

m+ n− p− q

n− q

)

of all the paths pass through (p, q). And, of course,
(

r + s

s

)
·
(

m+ n− r − s

n− s

)
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paths pass through (r, s). To apply the inclusion-exclusion principle, we also need to count
the number of paths that go simultaneously through (p, q) and (r, s). This number is

(
p+ q

q

)
·
(

r + s− p− q

s− q

)
·
(

m+ n− r − s

n− s

)
.

Hence, by the inclusion-exclusion principle, the number of paths avoiding (p, q) and (r, s) is
(

m+ n

n

)
−
(

p+ q

q

)
·
(

m+ n− p− q

n− q

)
−
(

r + s

s

)
·
(

m+ n− r − s

n− s

)

+
(

p+ q

q

)
·
(

r + s− p− q

s− q

)
·
(

m+ n− r − s

n− s

)
.

1057. Let E = {1, 2, . . . , n} and F = {1, 2, . . . , p}. There are pn functions from E to F. The
number of surjective functions is pn − N , where N is the number of functions that are not
surjective. We compute N using the inclusion-exclusion principle.

Define the sets
Ai = {f : E → F | i /∈ f (E)}.

Then

N =
∣∣
∣∣∣

p⋃

i=1

Ai

∣∣
∣∣∣
=
∑

i

|Ai| −
∑

i �=j

|Ai ∩ Aj| + · · · + (−1)p−1

∣∣
∣∣∣

p⋂

i=1

Ai

∣∣
∣∣∣
.

But Ai consists of the functions E to F\{i}; hence |Ai| = (p − 1)n. Similarly, for all k,
2 ≤ k ≤ p− 1, Ai1 ∩ Ai2 ∩ · · · ∩ Aik is the set of functions from E to F\{i1, i2, . . . , ik}; hence
|Ai1 ∩ Ai2 ∩ · · · ∩ Aik | = (p − k)n. Also, note that for a certain k, there are

(p
k

)
terms of the

form |Ai1 ∩ Ai2 ∩ · · · ∩ Aik |. It follows that

N =
(

p

1

)
(p− 1)n −

(
p

2

)
(p− 2)n + · · · + (−1)p−1

(
p

p− 1

)
.

We conclude that the total number of surjections from E to F is

pn −
(

p

1

)
(p− 1)n +

(
p

2

)
(p− 2)n + · · · + (−1)p−1

(
p

p− 1

)
.

1058. We count instead the permutations that are not derangements. Denote by Ai the set of
permutationsσ withσ(i) = i. Because the elements in Ai have the value at i already prescribed,
it follows that |Ai| = (n− 1)!. And for the same reason, |Ai1 ∪ Ai2 ∪ · · · ∪ Aik | = (n− k)! for
any distinct i1, i2, . . . , ik , 1 ≤ k ≤ n. Applying the inclusion-exclusion principle, we find that

|A1 ∪ A2 ∪ · · · ∪ An| =
(

n

1

)
(n− 1)! −

(
n

2

)
(n− 2)! + · · · + (−1)n

(
n

n

)
1!.

The number of derangements is therefore n! − |A1 ∪ A2 ∪ · · · ∪ An|, which is

n! −
(

n

1

)
(n− 1)! +

(
n

2

)
(n− 2)! + · · · + (−1)n

(
n

n

)
0!.
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This number can also be written as

n!
[

1− 1

1! +
1

2! − · · · +
(−1)n

n!
]

.

This number is approximately equal to n!
e .

1059. For a vertex x, denote by Ax the set of vertices connected to x by an edge. Assume that
|Ax| ≥

⌊
n
2

⌋+ 1 for all vertices x.
Now choose two vertices x and y such that y ∈ Ax. Counting with the inclusion-exclusion

principle, we get
|Ax ∪ Ay| = |Ax| + |Ay| − |Ax ∩ Ay|.

Rewrite this as
|Ax ∩ Ay| = |Ax| + |Ay| − |Ax ∪ Ay|.

From the fact that |Ax ∪ Ay| ≤ n we find that |Ax ∩ Ay| is greater than or equal to

2
⌊n

2

⌋
+ 2− n ≥ 1.

If follows that the set Ax∩Ay contains some vertex z, and so x, y, z are the vertices of a triangle.
(D. Buşneag, I. Maftei, Teme pentru Cercurile şi Concursurile de Matematică (Themes

for Mathematics Circles and Contests), Scrisul Românesc, Craiova)

1060. Let the polygonal lines be P1 and P2. The case where a side of P1 is parallel to a side
of P2 is obvious, since then they form a parallelogram. So let us consider the case where no
side of P1 is parallel to a side of P2.

The number N of intersections of the lines of support of the sides of P1 with the lines of
support of the sides of P2 is odd. The pairs of sides that do not form a convex quadrilateral
are those for which the line of support of one side crosses the other side. We denote by

• n1 the number of pairs of sides, one from each polygonal line, such that the line of
support of the side of P1 crosses the side of P2,

• n2 be the number of pairs of sides, one from each polygonal line, such that the line of
support of the side of P2 crosses the side of P1,

• n12 be the number of pairs of sides, one from each polygonal line, that cross each other.

Then, by the inclusion-exclusion principle, the number of pairs of sides, one from each
polygonal line, such that the line of support of one crosses the other side is

n1 + n2 − n12.

We will prove that n1, n2, n12 are all even. To prove that n1 is even, we can choose a point P
in the plane that is not on any line of support and consider a homothety of center P with very
small ratio. This homothety maps the second polygon to one in which no line of support of P1

cuts a side of P2. Now view the homothety as a continuous process. The only events where
the number of intersections changes is where one vertex of P2 goes from one half-plane of
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the line of support of a side of P1 to the other half-plane. But since the vertex belongs to two
sides, the number of intersections grows by 2 or decreases by 2, so the parity does not change.
Thus the parity of n1 is the same as the parity of 0, showing that n1 is even. Similarly n2 and
n12 are even.

The number of pairs of sides that determine a convex quadrilateral is

N − (n1 + n2 − n12);
this is an odd number, so it is nonzero.

(Kvant (Quantum), proposed by Yu. Khokhlov)

1061. If the m-gon has three acute angles, say at vertices A, B, C, then with a fourth vertex
D they form a cyclic quadrilateral ABCD that has three acute angles, which is impossible.
Similarly, if the m-gon has two acute angles that do not share a side, say at vertices A and C,
then they form with two other vertices B and D of the m-gon a cyclic quadrilateral ABCD that
has two opposite acute angles, which again is impossible. Therefore, the m-gon has either
exactly one acute angle, or has two acute angles and they share a side.

To count the number of such m-gons we employ the principle of inclusion and exclusion.
Thus we first find the number of m-gons with at least one acute angle, then subtract the number
of m-gons with two acute angles (which were counted twice the first time).

If the acute angle of the m-gon is AkA1Ak+r , the condition that this angle is acute translates
into r ≤ n. The other vertices of the m-gon lie between Ak and Ak+r; hence m − 2 ≤ r, and
these vertices can be chosen in

( r−1
m−3

)
ways. Note also that 1 ≤ k ≤ 2n− r. Thus the number

of m-gons with an acute angle at A1 is

n∑

r=m−2

2n−r∑

k=1

(
r − 1

m− 3

)
= 2n

n∑

m−2

(
r − 1

m− 3

)
−

n∑

r=m−2

r

(
r − 1

m− 3

)

= 2n

(
n

m− 2

)
− (m− 2)

(
n+ 1

m− 1

)
.

There are as many polygons with an acute angle at A2, A3, . . . , A2n+1.
To count the number of m-gons with two acute angles, let us first assume that these acute

angles are AsA1Ak and A1AkAr . The other vertices lie between Ar and As. We have the
restrictions 2 ≤ k ≤ 2n−m+ 3, n+ 2 ≤ r < s ≤ k + n if k ≤ n and no restriction on r and
s otherwise. The number of such m-gons is

n∑

k=1

(
k − 1

m− 2

)
+

2n+1−(m−2)∑

k=n+1

(
2n+ 1− k

m− 2

)
=

n∑

k=m−1

(
k − 1

m− 2

)
+

n∑

s=m−2

(
s

m− 2

)

=
(

n+ 1

m− 1

)
+
(

n

m− 1

)
.

This number has to be multiplied by 2n+ 1 to take into account that the first acute vertex can
be at any other vertex of the regular n-gon.

We conclude that the number of m-gons with at least one acute angle is

(2n+ 1)

(
2n

(
n

m− 2

)
− (m− 1)

(
n+ 1

m− 1

)
−
(

n

m− 1

))
.
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1062. Denote by Un the set of z ∈ S1 such that f n(z) = z. Because f n(z) = zmn
, Un is the set

of the roots of unity of order mn − 1. In our situation n = 1989, and we are looking for those
elements of U1989 that do not have period less than 1989. The periods of the elements of U1989

are divisors of 1989. Note that 1989 = 32 × 13× 17. The elements we are looking for lie in
the complement of U1989/3 ∪U1989/13 ∪U1989/17. Using the inclusion-exclusion principle, we
find that the answer to the problem is

|U1989| − |U1989/3| − |U1989/13| − |U1989/17| + |U1989/3 ∩U1989/13| + |U1989/3 ∩U1989/17|
+ |U1989/13 ∩U1989/17| + |U1989/3 ∩U1989/13 ∩U1989/17|,

i.e.,
|U1989| − |U663| − |U153| − |U117| + |U51| + |U39| + |U9| − |U3|.

This number is equal to

m1989 − m663 − m153 − m117 + m51 + m39 + m9 − m3,

since the −1’s in the formula for the cardinalities of the Un’s cancel out.
(Chinese Mathematical Olympiad, 1989)

1063. Here we apply a “multiplicative” inclusion-exclusion formula for computing the
least common multiple of several integers, which states that the least common multiple
[x1, x2, . . . , xn] of the numbers x1, x2, . . . , xn is equal to

x1x2 · · · xn
1

(x1, x2)(x1, x3) · · · (xn−1, xn)
(x1, x2, x3) · · · (xn−2, xn−1, xn) . . .

For three numbers, this formula reads

[a, b, c] = abc
1

(a, b)(b, c)(c, a)
(a, b, c),

while for two numbers, it reads

[a, b] = ab
1

(a, b)
.

Let us combine the two. Square the first formula; then substitute the products ab, bc, and ca
using the second. In detail,

[a, b, c]2 = ab · bc · ca
1

(a, b)2(b, c)2(c, a)2
(a, b, c)2

= [a, b][b, c][c, a](a, b)(b, c)(c, a)
1

(a, b)2(b, c)2(c, a)2
(a, b, c)2

= [a, b][b, c][c, a] (a, b, c)2

(a, b)(b, c)(c, a)
.

The identity follows.

1064. We solve the problem for the general case of a rectangular solid of width w, length l,
and height h, where w, l, and h are positive integers. Orient the solid in space so that one
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vertex is at O = (0, 0, 0) and the opposite vertex is at A = (w, l, h). Then OA is the diagonal
of the solid.

The diagonal is transversal to the planes determined by the faces of the small cubes, so
each time it meets a face, edge, or vertex, it leaves the interior of one cube and enters the
interior of another. Counting by the number of interiors of small cubes that the diagonal
leaves, we find that the number of interiors that OA intersects is equal to the number of points
on OA having at least one integer coordinate.

We count these points using the inclusion-exclusion principle. The first coordinate of the
current point P = (tw, tl, th), 0 < t ≤ 1, on the diagonal is a positive integer for exactly
w values of t, namely, t = 1

w , 2
w , . . . , w

w . The second coordinate is an integer for l values
of t, and the third coordinate is an integer for h values of t. However, the sum w + l + h
doubly counts the points with two integer coordinates, and triply counts the points with three
integer coordinates. The first two coordinates are integers precisely when t = k

gcd(w,l) , for
some integer k, 1 ≤ k ≤ gcd(w, l). Similarly, the second and third coordinates are positive
integers for gcd(l, h), respectively, gcd(h, w) values of t, and all three coordinates are positive
integers for gcd(w, l, h) values of t.

The inclusion-exclusion principle shows that the diagonal passes through the interiors of

w+ l + h− gcd(w, l)− gcd(l, h)− gcd(h, w)+ gcd(w, l, h)

small cubes. For w = 150, l = 324, h = 375 this number is equal to 768.
(American Invitational Mathematics Examination, 1996)

1065. Because the 1997 roots of the equation are symmetrically distributed in the complex
plane, there is no loss of generality to assume that v = 1. We are required to find the probability
that

|1+ w|2 = |(1+ cos θ)+ i sin θ |2 = 2+ 2 cos θ ≥ 2+√3.

This is equivalent to cos θ ≥ 1
2

√
3, or |θ | ≤ π

6 . Because w �= 1, θ is of the form ± 2kπ
1997 k,

1 ≤ k ≤ ⌊ 1997
12

⌋
. There are 2 · 166 = 332 such angles, and hence the probability is

332

1996
= 83

499
≈ 0.166.

(American Invitational Mathematics Examination, 1997)

1066. It is easier to compute the probability that no two people have the same birthday.
Arrange the people in some order. The first is free to be born on any of the 365 days. But
only 364 dates are available for the second, 363 for the third, and so on. The probability that
no two people have the same birthday is therefore

364

365
· 363

365
· · · 365− n+ 1

365
= 365!

(365− n)!365n
.

And the probability that two people have the same birthday is

1− 365!
(365− n)!365n

.
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Remark. Starting with n = 23 the probability becomes greater than 1
2 , while when n > 365

the probability is clearly 1 by the pigeonhole principle.

1067. Denote by P(n) the probability that a bag containing n distinct pairs of tiles will be
emptied, n ≥ 2. Then P(n) = Q(n)P(n − 1) where Q(n) is the probability that two of the
first three tiles selected make a pair. The latter one is

Q(n) = number of ways to select three tiles, two of which match

number of ways to select three tiles

= n(2n− 2)
(2n

3

) = 3

2n− 1
.

The recurrence relation

P(n) = 3

2n− 1
P(n− 1)

yields

P(n) = 3n−2

(2n− 1)(2n− 3) · · · 5P(2).

Clearly, P(2) = 1, and hence the answer to the problem is

P(6) = 34

11 · 9 · 7 · 5 =
9

385
≈ 0.023.

(American Invitational Mathematics Examination, 1994)

1068. Because there are two extractions each of with must contain a certain ball, the total
number of cases is

(n−1
m−1

)2
. The favorable cases are those for which the balls extracted the

second time differ from those extracted first (except of course the chosen ball). For the first
extraction there are

(n−1
m−1

)
cases, while for the second there are

(n−m
m−1

)
, giving a total number

of cases
(n−1

m−1

)(n−m
m−1

)
. Taking the ratio, we obtain the desired probability as

P =
(n−1

m−1

)(n−m
m−1

)

(n−1
m−1

)2 =
(n−m

m−1

)

(n−1
m−1

) .

(Gazeta Matematică (Mathematics Gazette, Bucharest), proposed by C. Marinescu)

1069. First, observe that since at least one ball is removed during each stage, the process will
eventually terminate, leaving no ball or one ball in the bag. Because red balls are removed 2
at a time and since we start with an odd number of red balls, the number of red balls in the
bag at any time is odd. Hence the process will always leave red balls in the bag, and so it
must terminate with exactly one red ball. The probability we are computing is therefore 1.

(Mathematics and Informatics Quarterly, proposed by D. Macks)

1070. Consider the dual cube to the octahedron. The vertices A, B, C, D, E, F, G, H of
this cube are the centers of the faces of the octahedron (here ABCD is a face of the cube and
(A, G), (B, H), (C, E), (D, F) are pairs of diagonally opposite vertices). Each assignment of
the numbers 1, 2, 3, 4, 5, 6, 7, and 8 to the faces of the octahedron corresponds to a permutation
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of ABCDEFGH , and thus to an octagonal circuit of these vertices. The cube has 16 diagonal
segments that join nonadjacent vertices. The problem requires us to count octagonal circuits
that can be formed by eight of these diagonals.

Six of these diagonals are edges of the tetrahedron ACFH , six are edges of the tetrahedron
DBEG, and four are long diagonals, joining opposite vertices of the cube. Notice that each
vertex belongs to exactly one long diagonal. It follows that an octagonal circuit must contain
either 2 long diagonals separated by 3 tetrahedron edges (Figure 119a), or 4 long diagonals
(Figure 119b) alternating with tetrahedron edges.

a b
A B

D C

E F

GH

A B

CD

G

FE

H

Figure 119

When forming a (skew) octagon with 4 long diagonals, the four tetrahedron edges need to
be disjoint; hence two are opposite edges of ACFH and two are opposite edges of DBEG. For
each of the three ways to choose a pair of opposite edges from the tetrahedron ACFH , there
are two possible ways to choose a pair of opposite edges from tetrahedron DBEG. There are
3 · 22 = 6 octagons of this type, and for each of them, a circuit can start at 8 possible vertices
and can be traced in two different ways, making a total of 6 · 8 · 2 = 96 permutations.

An octagon that contains exactly two long diagonals must also contain a three-edge path
along the tetrahedron ACFH and a three-edge path along tetrahedron the DBEG. A three-edge
path along the tetrahedron the ACFH can be chosen in 4! = 24 ways. The corresponding
three-edge path along the tetrahedron DBEG has predetermined initial and terminal vertices;
it thus can be chosen in only 2 ways. Since this counting method treats each path as different
from its reverse, there are 8 · 24 · 2 = 384 permutations of this type.

In all, there are 96+384 = 480 permutations that correspond to octagonal circuits formed
exclusively from cube diagonals. The probability of randomly choosing such a permutation
is 480

8! = 1
84 .

(American Invitational Mathematics Examination, 2001)

1071. The total number of permutations is of course n!. We will count instead the number of
permutations for which 1 and 2 lie in different cycles.

If the cycle that contains 1 has length k, we can choose the other k − 1 elements in
(n−2

k−1

)

ways from the set {3, 4, . . . , n}. There exist (k − 1)! circular permutations of these elements,
and (n − k)! permutations of the remaining n − k elements. Hence the total number of
permutations for which 1 and 2 belong to different cycles is equal to

n−1∑

k=1

(
n− 2

k − 1

)
(k − 1)!(n− k)! = (n− 2)!

n−1∑

k=1

(n− k) = (n− 2)!n(n− 1)

2
= n!

2
.
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It follows that exactly half of all permutations contain 1 and 2 in different cycles, and so half
contain 1 and 2 in the same cycle. The probability is 1

2 .
(I. Tomescu, Problems in Combinatorics, Wiley, 1985)

1072. There are
(n

k

)
ways in which exactly k tails appear, and in this case the difference is

n− 2k. Hence the expected value of |H − T | is

1

2n

n∑

k=0

|n− 2k|
(

n

k

)
.

Evaluate the sum as follows:

1

2n

n∑

m=0

|n− 2m|
(

n

m

)
= 1

2n−1

�n/2�∑

m=0

(n− 2m)

(
n

m

)

= 1

2n−1

(�n/2�∑

m=0

(n− m)

(
n

m

)
−
�n/2�∑

m=0

m

(
n

m

))

= 1

2n−1

(�n/2�∑

m=0

n

(
n− 1

m

)
−
�n/2�∑

m=0

n

(
n− 1

m− 1

))

= n

2n−1

(
n− 1
⌊

n
2

⌋
)

.

(35th W.L. Putnam Mathematical Competition, 1974)

1073. Use n cards with the numbers 1, 2, . . . , n on them. Shuffle the cards and stack them
with the numbered faces down. Then pick cards from the top of this pack, one at a time. We
say that a matching occurs at the ith draw if the number on the card drawn is i. The probability
that no matching occurs is

n∑

i=0

(−1)i

i! = p(n),

which follows from the derangements formula (see Section 6.4.4.). The probability that
exactly k matches occur is

(
n

k

)
p(n− k)(n− k)!

n! = 1

k!p(n− k) = 1

k!
n−k∑

i=0

(−1)i

i! .

Denote by X the number of matchings in this n-card game. The expected value of X is

E(X) =
n∑

k=0

kP(X = k) =
n∑

k=0

k
1

k!
n−k∑

i=0

(−1)i

i! =
n∑

k=1

1

(k − 1)!
n−k∑

i=0

(−1)i

i! ,

because

P(X = k) = 1

k!
n−k∑

i=0

(−1)i

i! .

http://dx.doi.org/10.1007/978-3-319-58988-6_6


830 Combinatorics and Probability

Let us compute E(X) differently. Set

Xi =
{

1 if there is a match at the ith draw,

0 if there is no match at the ith draw.

Then

E(X) = E(X1 + · · · + Xn) =
n∑

i=1

E(Xi) = n
1

n
= 1,

because

E(Xi) = 1 · P(Xi = 1) = (n− 1)!
n! = 1

n
.

Combining the two, we obtain

n∑

k=1

1

(k − 1)!
n−k∑

i=0

(−1)i

i! = 1,

which proves the first identity. The proof of the second identity is similar. We have

E(X2) = E

⎛

⎝
(

n∑

i=1

Xi

)2
⎞

⎠ =
n∑

i=1

E(X2
i )+ 2

∑

i<j

E(XiXj).

But

E(X2
i ) = E(Xi) = 1

n
and E(XiXj) = 1 · 1 · P(Xi = 1, Xj = 1) = 1

n(n− 1)
.

Hence E(X2) = 1+ 1 = 2. On the other hand,

E(X2) =
n∑

k=1

k2 1

k!
n−k∑

i=0

(−1)i

i! ,

which proves the second identity.
(Proposed for the USA Mathematical Olympiad by T. Andreescu)

1074. Denote by Ai the event “the student solves correctly exactly i of the three proposed
problems”, i = 0, 1, 2, 3. The event A whose probability we are computing is

A = A2 ∪ A3,

and its probability is
P(A) = P(A2)+ P(A3),

since A2 and A3 exclude each other.
Because the student knows how to solve half of all the problems,

P(A0) = P(A3) and P(A1) = P(A2).

The equality
P(A0)+ P(A1)+ P(A2)+ P(A3) = 1
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becomes
2[P(A2)+ P(A3)] = 1.

It follows that the probability we are computing is

P(A) = P(A2)+ P(A3) = 1

2
.

(N. Negoescu, Probleme cu…Probleme (Problems with…Problems), Editura Facla, 1975)

1075. For the solution we will use Bayes’ theorem for conditional probabilities. We denote
by P(A) the probability that the event A holds, and by P

(
B
A

)
the probability that the event B

holds given that A in known to hold. Bayes’ theorem states that

P(B/A) = P(B)

P(A)
· P(A/B).

For our problem A is the event that the mammogram is positive and B the event that the woman
has breast cancer. Then P(B) = 0.01, while P(A/B) = 0.60. We compute P(A) from the
formula

P(A) = P(A/B)P(B)+ P(A/not B)P(not B) = 0.6 · 0.01+ 0.07 · 0.99 = 0.0753.

The answer to the question is therefore

P(B/A) = 0.01

0.0753
· 0.6 = 0.795 ≈ 0.08

The chance that the woman has breast cancer is only 8%!

1076. We call a successful string a sequence of H’s and T ’s in which HHHHH appears before
TT does. Each successful string must belong to one of the following three types:

(i) those that begin with T , followed by a successful string that begins with H;

(ii) those that begin with H, HH , HHH , or HHHH , followed by a successful string that
begins with T ;

(iii) the string HHHHH.

Let PH denote the probability of obtaining a successful string that begins with H, and let
PT denote the probability of obtaining a successful string that begins with T . Then

PT = 1

2
PH,

PH =
(

1

2
+ 1

4
+ 1

8
+ 1

16

)
PT + 1

32
.

Solving these equations simultaneously, we find that

PH = 1

17
and PT = 1

34
.

Hence the probability of obtaining five heads before obtaining two tails is 3
34 .

(American Invitational Mathematics Examination, 1995)
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1077. Let us denote the events x = 70◦, y = 70◦, max(x◦, y◦) = 70◦, min(x◦, y◦) = 70◦ by
A, B, C, D, respectively. We see that A ∪ B = C ∪ D and A ∩ B = C ∩ D. Hence

P(A)+ P(B) = P(A ∪ B)+ P(A ∩ B) = P(C ∪ D)+ P(C ∩ D) = P(C)+ P(D).

Therefore, P(D) = P(A)+ P(B)− P(C), that is,

P(min(x◦, y◦) = 70◦) = P(x◦ = 70◦)+ P(y◦ = 70◦)− P(max(x◦, y◦) = 70◦)
= a+ b− c.

(29th W.L. Putnam Mathematical Competition, 1968)

1078. In order for n black marbles to show up in n+ x draws, two independent events should
occur. First, in the initial n + x − 1 draws exactly n − 1 black marbles should be drawn.
Second, in the (n+ x)th draw a black marble should be drawn. The probability of the second
event is simply q. The probability of the first event is computed using the Bernoulli scheme;
it is equal to (

n+ x − 1

x

)
pxqn−1.

The answer to the problem is therefore
(

n+ m− 1

m

)
pmqn−1q =

(
n+ m− 1

m

)
pmqn.

(Romanian Mathematical Olympiad, 1971)

1079. First solution: Denote by p1, p2, p3 the three probabilities. By hypothesis,

P(X = 0) =
∏

i

(1− pi) = 1−
∑

i

pi +
∑

i �=j

pipj − p1p2p3 = 2

5
,

P(X = 1) =
∑

{i,j,k}={1,2,3}
pi(1− pj)(1− pk) =

∑

i

pi − 2
∑

i �=j

pipj + 3p1p2p3 = 13

30
,

P(X = 2) =
∑

{i,j,k}={1,2,3}
pipj(1− pk) =

∑

i �=j

pipj − 3p1p2p3 = 3

20
,

P(X = 3) = p1p2p3 = 1

60
.

This is a linear system in the unknowns
∑

i

pi,
∑

i �=j

pipj, and p1p2p3 with the solution

∑

i

pi = 47

60
,
∑

i �=j

pipj = 1

5
, p1p2p3 = 1

60
.

It follows that p1, p2, p3 are the three solutions to the equation

x3 − 47

60
x2 + 1

5
x − 1

60
= 0.
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Searching for solutions of the form 1
q with q dividing 60, we find the three probabilities to be

equal to 1
3 , 1

4 , and 1
5 .

Second solution: Using the Poisson scheme

(p1x + 1− p1)(p2x + 1− p2)(p3x + 1− p3) = 2

5
+ 13

30
x + 3

20
x2 + 1

60
x3,

we deduce that 1− 1
pi

, i = 1, 2, 3, are the roots of x3+ 9x2+ 26x+ 24 = 0 and p1p2p3 = 1
60 .

The three roots are −2, −3, −4, which again gives pi’s equal to 1
3 , 1

4 , and 1
5 .

(N. Negoescu, Probleme cu…Probleme (Problems with…Problems), Editura Facla, 1975)

1080. Set qi = 1− pi, i = 1, 2, . . . , n, and consider the generating function

Q(x) =
n∏

i=1

(pix + qi) = Q0 + Q1x + · · · + Qnxn.

The probability for exactly k of the independent events A1, A2, . . . , An to occur is equal to the
coefficient of xk in Q(x), hence to Qk . The probability P for an odd number of events to occur
is thus equal to Q1 + Q3 + · · · . Let us compute this number in terms of p1, p2, . . . , pn.

We have

Q(1) = Q0 + Q1 + · · · + Qn and Q(−1) = Q0 − Q1 + · · · + (−1)nQn.

Therefore,

P = Q(1)− Q(−1)

2
= 1

2

(

1−
n∏

i=1

(1− 2pi)

)

.

(Romanian Mathematical Olympiad, 1975)

1081. It is easier to compute the probability of the contrary event, namely that the batch passes
the quality check. Denote by Ai the probability that the ith checked product has the desired
quality standard. We then have to compute P

(∩5
i=1Ai

)
. The events are not independent, so

we use the formula

P
(∩5

i=1Ai

) = P(A1)P(A2/A1)(A3/A1 ∩ A2)P(A4/A1 ∩ A2 ∩ A3)

× P(A5/A1 ∩ A2 ∩ A3 ∩ A4).

We find successively P(A1) = 95
100 , P(A2/A1) = 94

99 (because if A1 occurs then we are left
with 99 products out of which 94 are good), P(A3/A1 ∩ A2) = 93

98 , P(A4/A1 ∩ A2 ∩ A3) = 92
97 ,

P(A5/A1 ∩ A2 ∩ A3 ∩ A4) = 91
96 . The answer to the problem is

1− 95

100
· 94

99
· 93

98
· 92

97
· 91

96
≈ 0.230.

1082. We apply Bayes’ formula. Let B be the event that the plane flying out of Eulerville is
a jet plane and A1, respectively, A2, the events that the plane flying between the two cities is
a jet, respectively, a propeller plane. Then

P(A1) = 2

3
, P(A2) = 1

3
, P(B/A1) = 2

7
, P(B/A2) = 1

7
.
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Bayes formula gives

P(A2/B) = P(A2)P(B/A2)

P(A1)P(B/A1)+ P(A2)P(B/A2)
=

1

3
· 1

7
2

3
· 2

7
+ 1

3
· 1

7

= 1

5
.

Thus the answer to the problem is 1
5 .

Remark. Without the farmer seeing the jet plane flying out of Eulerville, the probability would
have been 1

3 . What you know affects your calculation of probabilities.

1083. We find instead the probability P(n) for no consecutive heads to appear in n throws.
We do this recursively. If the first throw is tails, which happens with probability 1

2 , then the
probability for no consecutive heads to appear afterward is P(n − 1). If the first throw is
heads, the second must be tails, and this configuration has probability 1

4 . The probability that
no consecutive heads appear later is P(n− 2). We obtain the recurrence

P(n) = 1

2
P(n− 1)+ 1

4
P(n− 2),

with P(1) = 1, and P(2) = 3
4 . Make this relation more homogeneous by substituting

xn = 2nP(n). We recognize the recurrence for the Fibonacci sequence xn+1 = xn + xn−1,
with the remark that x1 = F3 and x2 = F4. It follows that xn = Fn+2, P(n) = Fn+2

2n , and the
probability required by the problem is P(n) = 1− Fn+2

2n .
(L.C. Larson, Problem-Solving Through Problems, Springer-Verlag, 1990)

1084. Fix N = m+n, the total amount of money, and vary m. Denote by P(m) the probability
that A wins all the money when starting with m dollars. Clearly, P(0) = 0 and P(N) = 1. We
want a recurrence relation for P(m).

Assume that A starts with k dollars. During the first game, A can win, lose, or the game
can be a draw. If A wins this game, then the probability of winning all the money afterward
is P(k + 1). If A loses, the probability of winning in the end is P(k − 1). Finally, if the first
game is a draw, nothing changes, so the probability of A winning in the end remains equal to
P(k). These three situations occur with probabilities p, q, r, respectively; hence

P(k) = pP(k + 1)+ qP(k − 1)+ rP(k).

Taking into account that p+ q + r = 1, we obtain the recurrence relation

pP(k + 1)− (p+ q)P(k)+ qP(k − 1) = 0.

The characteristic equation of this recurrence is pλ2− (p+q)λ+q = 0. There are two cases.
The simpler is p = q. Then the equation has the double root λ = 1, in which case the general
term is a linear function in k. Since P(0) = 0 and P(N) = 1, it follows that P(m) = m

N = m
n+m .

If p �= q, then the distinct roots of the equation are λ1 = 1 and λ2 = p
q , and the general term
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must be of the form P(k) = c1 + c2

(
q
p

)k
. Using the known values for k = 0 and N , we

compute

c1 = −c2 = 1

1−
(

q

p

)N .

Hence the required probability is

m

m+ n
if p = q and

1−
(

q

p

)m

1−
(

q

p

)m+n if p �= q.

(K.S. Williams, K. Hardy, The Red Book of Mathematical Problems, Dover, Mineola, NY,
1996)

1085. Seeking a recurrence relation, we denote by E(m, n) this expected length. What
happens, then, after one toss? Half the time you win, and then the parameters become m+ 1,
n − 1; the other half of the time you lose, and the parameters become m − 1, n + 1. Hence
the recurrence relation is

E(m, n) = 1+ 1

2
E(m− 1, n+ 1)+ 1

2
E(m+ 1, n− 1),

the 1 indicating the first toss. Of course, this assumes m, n > 0. The boundary conditions
are that E(0, n) = 0 and E(m, 0) = 0, and these, together with the recurrence formula, do
determine uniquely the function E(m, n).

View E(m, n) as a function of one variable, say n, along the line m+n = constant. Solving
the inhomogeneous second-order recurrence relation, we obtain E(m, n) = mn. Alternately,
the recursive formula says that the second difference is the constant (−2), and so E(m, n) is
a quadratic function. Vanishing at the endpoints forces it to be cmn, and direct evaluation
shows that c = 1.

(D.J. Newman, A Problem Seminar, Springer-Verlag, 1982)

1086. Let x and y be the two numbers. The set of all possible outcomes is the unit square

D = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}.
The favorable cases consist of the region

Df =
{
(x, y) ∈ D | x + y ≤ 1, xy ≤ 2

9

}
.

This is the set of points that lie below both the line f (x) = 1− x and the hyperbola g(x) = 2
9x .

The required probability is P = Area(Df )

Area(D)
. The area of D is 1. The area of Df is equal to

∫ 1

0
min(f (x), g(x))dx.
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The line and the hyperbola intersect at the points
(

1
3 ,

2
3

)
and
(

2
3 ,

1
3

)
. Therefore,

Area(Df )

∫ 1/3

0
(1− x)dx +

∫ 2/3

1/3

2

9x
dx +
∫ 1

2/3
(1− x)dx = 1

3
+ 2

9
ln 2.

We conclude that P = 1
3 + 2

9 ln 2 ≈ 0.487.
(C. Reischer, A. Sâmboan, Culegere de Probleme de Teoria Probabilităţilor şi Statistică

Matematică (Collection of Problems of Probability Theory and Mathematical Statistics),
Editura Didactică şi Pedagogică, Bucharest, 1972)

1087. The total region is a square of side β. The favorable region is the union of the two
triangular regions shown in Figure 120, and hence the probability of a favorable outcome is

(β − α)2

β2
=
(

1− α

β

)2

.

Figure 120

(22nd W.L. Putnam Mathematical Competition, 1961)

1088. Denote by x, respectively, y, the fraction of the hour when the husband, respectively,
wife, arrive. The configuration space is the square

D = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}.
In order for the two people to meet, their arrival time must lie inside the region

Df =
{
(x, y) | |x − y| ≤ 1

4

}
.

The desired probability is the ratio of the area of this region to the area of the square.
The complement of the region consists of two isosceles right triangles with legs equal to

3
4 , and hence of areas 1

2

(
3
4

)2
. We obtain for the desired probability

1− 2 · 1

2
·
(

3

4

)2

= 7

16
≈ 0.44.

(B.V. Gnedenko)
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1089. The set of possible events is modeled by the square [0, 24] × [0, 24]. It is, however,
better to identify the 0th and the 24th hours, thus obtaining a square with opposite sides
identified, an object that in mathematics is called a torus (which is, in fact, the Cartesian
product of two circles). The favorable region is outside a band of fixed thickness along the
curve x = y on the torus as depicted in Figure 121. On the square model this region is obtained
by removing the points (x, y) with |x − y| ≤ 1 together with those for which |x − y− 1| ≤ 1
and |x − y + 1| ≤ 1. The required probability is the ratio of the area of the favorable region
to the area of the square, and is

P = 242 − 2 · 24

242
= 11

12
≈ 0.917.

Figure 121

1090. Let −−→y denote the antipode of −→y . The Pythagorean theorem gives

‖−→x −−→y ‖2 + ‖−→x − (−−→y )‖2 = ‖−→y − (−−→y )‖2 = 4‖−→y ‖2 = 4.

Also note that if −→x and −→y are randomly chosen, then so are −→x and −−→y . So we have an
equality of expected values:

E[‖−→x −−→y ‖2] = E[‖−→x +−→y ‖2]
So

2E[‖−→x −−→y ‖2] = E[‖−→x −−→y ‖2] + E[‖−→x +−→y ‖2] = E[4] = 4.

The answer to the problem is

E[‖−→x −−→y ‖2] = 2.

(Mathematical Reflections, proposed by I. Borsenco)

1091. We assume that the circle of the problem is the unit circle centered at the origin O.
The space of all possible choices of three points P1, P2, P3 is the product of three circles; the
volume of this space is 2π × 2π × 2π = 8π3.

Let us first measure the volume of the configurations (P1, P2, P3) such that the arc
�

P1P2P3

is included in a semicircle and is oriented counterclockwise from P1 to P3. The condition
that the arc is contained in a semicircle translates to 0 ≤ ∠P1OP2 ≤ π and 0 ≤ ∠P2OP3 ≤
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π − ∠P1OP2 (see Figure 122). The point P1 is chosen randomly on the circle, and for each
P1 the region of the angles θ1 and θ2 such that 0 ≤ θ1 ≤ π and 0 ≤ θ1 ≤ π−θ1 is an isosceles
right triangle with leg equal to π . Hence the region of points (P1, P2, P3) subject to the above
constraints has volume 2π · 1

2π2 = π3. There are 3! = 6 such regions and they are disjoint.
Therefore, the volume of the favorable region is 6π3. The desired probability is therefore
equal to 6π3

8π3 = 3
4 .

P

P

P

2

3
1θ θ12

Figure 122

1092. The angle at the vertex Pi is acute if and only if all other points lie on an open semicircle
facing Pi. We first deduce from this that if there are any two acute angles at all, they must
occur consecutively. Otherwise, the two arcs that these angles subtend would overlap and
cover the whole circle, and the sum of the measures of the two angles would exceed 180◦.

So the polygon has either just one acute angle or two consecutive acute angles. In partic-
ular, taken in counterclockwise order, there exists exactly one pair of consecutive angles the
second of which is acute and the first of which is not.

We are left with the computation of the probability that for one of the points Pj, the angle
at Pj is not acute, but the following angle is. This can be done using integrals. But there is a
clever argument that reduces the geometric probability to a probability with a finite number
of outcomes. The idea is to choose randomly n− 1 pairs of antipodal points, and then among
these to choose the vertices of the polygon. A polygon with one vertex at Pj and the other
among these points has the desired property exactly when n− 2 vertices lie on the semicircle
to the clockwise side of Pj and one vertex on the opposite semicircle. Moreover, the points on
the semicircle should include the counterclockwise-most to guarantee that the angle at Pj is
not acute. Hence there are n− 2 favorable choices of the total 2n−1 choices of points from the
antipodal pairs. The probability for obtaining a polygon with the desired property is therefore
(n− 2)2−n+1.

Integrating over all choices of pairs of antipodal points preserves the ratio. The events
j = 1, 2, . . . , n are independent, so the probability has to be multiplied by n. The answer to
the problem is therefore n(n− 2)2−n+1.

(66th W.L. Putnam Mathematical Competition, 2005, solution by C. Lin)

1093. The pair (p, q) is chosen randomly from the three-dimensional domain C×int C, which
has a total volume of 2π2 (here int C denotes the interior of C). For a fixed p, the locus of
points q for which R does not have points outside of C is the rectangle whose diagonal is the
diameter through p and whose sides are parallel to the coordinate axes (Figure 123). If the
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coordinates of p are (cos θ, sin θ), then the area of the rectangle is 2| sin 2θ |.

x

y

p

θ

Figure 123

The volume of the favorable region is therefore

V =
∫ 2π

0
2| sin 2θ |dθ = 4

∫ π/2

0
2 sin 2θdθ = 8.

Hence the probability is

P = 8

2π2
= 4

π2
≈ 0.405.

(46th W.L. Putnam Mathematical Competition, 1985)

1094. Mark an endpoint of the needle. Translations parallel to the given (horizontal) lines
can be ignored; thus we can assume that the marked endpoint of the needle always falls on
the same vertical. Its position is determined by the variables (x, θ), where x is the distance to
the line right above and θ the angle made with the horizontal (Figure 124).

The pair (x, θ) is randomly chosen from the region [0, 2) × [0, 2π). The area of this
region is 4π . The probability that the needle will cross the upper horizontal line is

1

4π

∫ π

0

∫ sin θ

0
dxdθ =

∫ π

0

sin θ

4π
dθ = 1

2π
,

which is also equal to the probability that the needle will cross the lower horizontal line. The
probability for the needle to cross either the upper or the lower horizontal line is therefore 1

π
.

Remark. This gives an experimental way of approximating π .
(G.-L. Leclerc, Comte de Buffon)

1095. First solution: We will prove that the probability is 1− 35
12π2 . To this end, we start with

some notation and simplifications. The area of a triangle XYZ will be denoted by A(XYZ).
For simplicity, the circle is assumed to have radius 1. Also, let E denote the expected value
of a random variable over all choices of P, Q, R.



840 Combinatorics and Probability

x

θ

Figure 124

If P, Q, R, S are the four points, we may ignore the case in which three of them are
collinear, since this occurs with probability zero. Then the only way they can fail to form
the vertices of a convex quadrilateral is if one of them lies inside the triangle formed by the
other three. There are four such configurations, depending on which point lies inside the
triangle, and they are mutually exclusive. Hence the desired probability is 1 minus four times
the probability that S lies inside triangle PQR. That latter probability is simply E(A(PQR))

divided by the area of the disk.
Let O denote the center of the circle, and let P′, Q′, R′ be the projections of P, Q, R onto

the circle from O. We can write

A(PQR) = ±A(OPQ)± A(OQR)± A(ORP)

for a suitable choice of signs, determined as follows. If the points P′, Q′, R′ lie on no semicircle,
then all of the signs are positive. If P′, Q′, R′ lie on a semicircle in that order and Q lies inside
the triangle OPR, then the sign on A(OPR) is positive and the others are negative. If P′, Q′, R′
lie on a semicircle in that order and Q lies outside the triangle OPR, then the sign on A(OPR)

is negative and the others are positive.
We first calculate

E(A(OPQ)+ A(OQR)+ A(ORP)) = 3E(A(OPQ)).

Write r1 = OP, r2 = OQ, θ = ∠POQ, so that

A(OPQ) = 1

2
r1r2 sin θ.

The distribution of r1 is given by 2r1 on [0, 1] (e.g., by the change of variable formula to polar
coordinates, or by computing the areas of annuli centered at the origin), and similarly for r2.
The distribution of θ is uniform on [0, π]. These three distributions are independent; hence

E(A(OPQ)) = 1

2

(∫ 1

0
2r2dr

)2 (
1

π

∫ π

0
sin θdθ

)
= 4

9π
,

and

E(A(OPQ)+ A(OQR)+ A(ORP)) = 4

3π
.
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We now treat the case in which P′, Q′, R′ lie on a semicircle in that order. Set θ1 = ∠POQ
and θ2 = ∠QOR; then the distribution of θ1, θ2 is uniform on the region

0 ≤ θ1, 0 ≤ θ2, θ1 + θ2 ≤ π.

In particular, the distribution on θ = θ1 + θ2 is 2θ

π2 on [0, π]. Set rP = OP, rQ = OQ,
rR = OR. Again, the distribution on rP is given by 2rP on [0, 1], and similarly for rQ, rR;
these are independent of each other and the joint distribution of θ1, θ2. Write E′(X) for the
expectation of a random variable X restricted to this part of the domain.

Let χ be the random variable with value 1 if Q is inside triangle OPR and 0 otherwise.
We now compute

E′(A(OPR)) = 1

2

(∫ 1

0
2r2dr

)2 (∫ π

0

2θ

π2
sin θdθ

)
= 4

9π

and

E′(χA(OPR)) = E′
(

2A(OPR)2

θ

)

= 1

2

(∫ 1

0
2r3dr

)2 (∫ π

0

2θ

π2
θ−1 sin2 θdθ

)
= 1

8π
.

Also, recall that given any triangle XYZ , if T is chosen uniformly at random inside XYZ , the
expectation of A(TXY) is the area of triangle bounded by XY and the centroid of XYZ , namely,
1
3 A(XYZ).

Let χ be the random variable with value 1 if Q is inside triangle OPR and 0 otherwise.
Then

E′(A(OPQ)+ A(OQR)+ A(ORP)− A(PQR))

= 2E′(χ(A(OPQ)+ A(OQR)))+ 2E′((1− χ)A(OPR))

= 2E′
(

2

3
χA(OPR)

)
+ 2E′(A(OPR))− 2E′(χA(OPR))

= 2E′(A(OPR))− 2

3
E′(χA(OPR)) = 29

36π
.

Finally, note that the case in which P′, Q′, R′ lie on a semicircle in some order occurs with
probability 3

4 . (The case in which they lie on a semicircle proceeding clockwise from P′ to
its antipode has probability 1

4 ; this case and its two analogues are exclusive and exhaustive.)
Hence

E(A(PQR)) = E(A(OPQ)+ A(OQR)+ A(ORP))

−3

4
E′(A(OPQ)+ A(OQR)+ A(ORP)− A(PQR))

= 4

3π
− 29

48π
= 35

48π
.
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We conclude that the original probability is

1− 4E(A(PQR))

π
= 1− 35

12π2
.

Second solution: As in the first solution, it suffices to check that for P, Q, R chosen uniformly
at random in the disk, E(A(PQR)) = 35

48π
. Draw the lines PQ, QR, RP, which with probability

1 divide the interior of the circle into seven regions. Set a = A(PQR), let b1, b2, b3 denote the
areas of the other three regions sharing a side with the triangle, and let c1, c2, c3 denote the areas
of the other three regions. Set A = E(a), B = E(b1), C = E(c1), so that A+ 3B+ 3C = π .

Note that c1+ c2+ c3+a is the area of the region in which we can choose a fourth point S
such that the quadrilateral PQRS fails to be convex. By comparing expectations we find that
3C + A = 4A, so A = C and 4A+ 3B = π .

We will compute B + 2A = B + 2C, which is the expected area of the part of the circle
cut off by a chord through two random points D, E, on the side of the chord not containing
a third random point F. Let h be the distance from the center O of the circle to the line DE.
We now determine the distribution of h.

Set r = OD. As seen before, the distribution of r is 2r on [0, 1]. Without loss of
generality, we may assume that O is the origin and D lies on the positive x-axis. For fixed
r, the distribution of h runs over [0, r], and can be computed as the area of the infinitesimal
region in which E can be chosen so the chord through DE has distance to O between h and
h+dh, divided by π . This region splits into two symmetric pieces, one of which lies between
chords making angles of arcsin

(
h
r

)
and arcsin

(
h+dh

r

)
with the x-axis. The angle between these

is dθ = dh
r2−h2 . Draw the chord through D at distance h to O, and let L1, L2 be the lengths of

the parts on opposite sides of D; then the area we are looking for is 1
2 (L2

1 + L2
2)dθ . Because

{L1, L2} =
{√

1− h2 +
√

r2 − h2,
√

1− h2 −
√

r2 − h2
}

,

the area we are seeking (after doubling) is

2
1+ r2 − 2h2

√
r2 − h2

.

Dividing by π , then integrating over r, we compute the distribution of h to be

1

π

∫ 1

h
2

1+ r2 − 2h2

√
r2 − h2

2rdr = 16

3π
(1− h2)3/2.

Let us now return to the computation of B+ 2A. Denote by A(h) the smaller of the two areas
of the disk cut off by a chord at distance h. The chance that the third point is in the smaller
(respectively, larger) portion is A(h)

π
(respectively, 1− A(h)

π
), and then the area we are trying to

compute is π − A(h) (respectively, A(h)). Using the distribution on h, and the fact that

A(h) = 2
∫ 1

h

√
1− h2dh = π

2
− arcsin(h)− h

√
1− h2,
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we obtain

B+ 2A = 2

π

∫ 1

0
A(h)(π − A(h))

16

3π
(1− h2)3/2dh = 35+ 24π2

72π
.

Using the fact that 4A+ 3B = π , we obtain A = 35
48π

as in the first solution.

Remark. This is a particular case of the Sylvester four-point problem, which asks for the
probability that four points taken at random inside a convex domain D form a non-convex
quadrilateral. Nowadays the standard method for computing this probability uses Crofton’s
theorem on mean values. We have seen above that when D is a disk the probability is

35
12π2 . When D is a triangle, square, regular hexagon, or regular octagon, the probability is,

respectively, 1
3 , 11

36 , 289
972 , and 1181+867

√
2

4032+2880
√

2
(cf. H. Solomon, Geometric Probability, SIAM,

1978).

(First solution by D. Kane, second solution by D. Savitt)
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N the set of positive integers 1, 2, 3, . . .

Z the set of integers
Q the set of rational numbers
R the set of real numbers
C the set of complex numbers
[a, b] closed interval, i.e., all x such that a ≤ x ≤ b
(a, b) open interval, i.e., all x such that a < x < b
[a, b) half-open interval, i.e., all x such that a ≤ x < b
|x| absolute value of x
z complex conjugate of z
Re z real part of z
Im z imaginary part of z−→v the vector v
‖−→x ‖ norm of the vector −→x
〈−→v ,−→w 〉 inner (dot) product of vectors −→v and −→w−→v · −→w dot product of vectors −→v and −→w−→v ×−→w cross-product of vector −→v and −→w
�x� greatest integer not exceeding x
{x} fractional part of x, equal to x − �x�

n∑

i=1

ai the sum a1 + a2 + . . .+ an

n∏

i=1

ai the product a1 · a2 . . . an

n! n factorial, equal to n(n− 1) . . . 1
x ∈ A element x is in set A
A ⊂ B A is a subset of B
A ∪ B the union of the sets A and B
A ∩ B the intersection of the sets A and B
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A\B the set of the elements of A that are not in B
A× B the Cartesian product of the sets A and B
P(A) the family of all subsets of the set A
∅ the empty set
a ≡ b (mod c) a is congruent to b modulo c, i.e., a− b is divisible by c
a|b a divides b
gcd(a, b) greatest common divisor of a and b(n

k

)
binomial coefficient n choose k

On the n× n zero matrix
In the n× n identity matrix
det A determinant of the matrix A
trA trace of the matrix A
A−1 inverse of A
At transpose of the matrix A
A† transpose conjugate of the matrix A
f ◦ g f composed with g
lim
x→a

limit as x approaches a

f ′(x) derivative of f (x)
df
dx derivative of f (x)
∂f
∂x partial derivative of f with respect to x
f (n)(x) nth derivative of f (x) with respect to x∫

f (x)dx indefinite integral of f (x)
∫ b

a
f (x)dx definite integral of f (x) from a to b

∫

D
f (x)dx integral of f (x) over the domain D

φ(x) Euler’s totient function of x
∠ABC angle ABC
�

AB arc of a circle with extremities A and B
sign(σ ) signature of the permutation σ

div
−→
F divergence of the vector field

−→
F

curl
−→
F curl of the vector field

−→
F

∇f gradient of f∮

C
f (x)dx integral of f along the closed path C



Index

A
Abel summation formula, 526
AM-GM, see arithmetic mean-geometric mean

inequality
Argument by contradiction, 1
Arithmetic mean-geometric mean inequality,

38
Axiom of choice, 200

B
BAC-CAB identity, 212
Baker-Heegner-Stark theorem, 280
Basis, 86
Bayes’ formula, 334
Bernoulli scheme, 334
Binary operation, 96

associative, 96
commutative, 96

Binet formula, 112
Binomial coefficient, 313

quantum, 316
Burnside’s theorem, 489

C
Cantor set, 141
Cantor’s nested intervals theorem, 120
Catalan numbers, 318
Cauchy-Schwarz inequality, 32, 159

for integrals, 170
Cauchy’s criterion for convergence, 119
Cauchy’s equation, 200
Cayley-Hamilton theorem, 91

Cesàro-Stolz theorem, 120
Characteristic equation

of a differential equation, 204
of a sequence, 110

Chebyshev polynomial, 68
Chebyshev’s inequality, 170
Chebyshev’s theorem, 68
Chinese remainder theorem, 278
Commutator of matrices, 92
Congruent, 269
Conic, 221

equation of tangent line, 222
Continued fraction expansion, 283
Coordinates

affine, 216
Cartesian, 216
complex, 219
cylindrical, 186
polar, 186
spherical, 186

Coprime, 264
Critical point, 146
Crofton’s theorem, 238
Cross-product, 212

area, 212

D
De Moivre’s formula, 247
Derivative, 146

partial, 180
Determinant, 72

rule of Laplace, 76
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Vandermonde, 73
Differentiable function

multivariable, 182
Directrix, 222
Divergence theorem, see Gauss-Ostrogradsky

theorem
Divisor, 264
Dot product, 211

E
Eigenvalue, 88
Eigenvector, 88
Ellipse, 222
Ellipsoid, 232
Elliptic curves, 227
Euclid’s algorithm, 282
Euclid’s theorem, 1
Euler’s formula, 247

for homogeneous functions, 180
Euler’s substitutions, 226
Euler’s theorem, 180
Euler’s totient function, 275
Exact differential equation, 202
Expected value, 332

F
Fermat’s infinite descent principle, 260
Fermat’s little theorem, 4
Fibonacci sequence, 9
Flux, 191
Focus, 222
Fourier series, 177
Fubini’s theorem, 188
Function

concave, 154
continuous, 140
contractive, 119
convex, 154
differentiable, 146
harmonic, 181

G
Gaussian integral, 187
Gauss-Ostrogradsky theorem, 191
Generalized mean inequality, 158
Generating function, 318
Gradient, 192
Graph, 305

circuit, 305
complete, 305

cycle, 305
Eulerian, 305
Hamiltonian, 305
path, 305
traceable, 305

Greatest integer function, 261
Green’s theorem, 190
Group, 99

Abelian, 99
Klein, 99
special linear, 283

H
Hölder’s inequality, 154

for integrals, 170
Holomorphic function, 192, 193
Hyperbola, 222
Hyperboloid

of one sheet, 232
of two sheets, 232

I
Identity element, 96
Identity matrix, 71
Inclusion-exclusion principle, 327
Induction, 3

strong, 7
Inductively, see induction
Infinite descent, see Fermat’s infinite descent

principle
Integral

computed recursively, 164
definite, 131
Fresnel, 186
Gaussian, 187
indefinite, 160
multivariable, 186

Integrating factor, 203
Intermediate value property, 143
Inverse, 78

modulo n, 269
of a matrix, 78

Invertible matrix, see inverse of a matrix
Irreducible polynomial, 66
Isoperimetric inequality, 689

J
Jacobian, 186
Jacobson’s theorem, 104
Jensen’s inequality, 158

integral form, 589
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K
Kelvin-Stokes’ theorem, 191
Kronecker’s theorem, 101

L
Lagrange multipliers, 183
Laplacian, 194
Leibniz formula, 164
L’Hôpital’s rule, see L’Hôpital’s theorem
L’Hôpital’s theorem, 149
Limit

of a function, 138
of a sequence, 114

Linear
combination, 86
dependence, 86
independence, 86

Linear Diophantine equation, 282
Linear map, see linear transformation
Linear transformation, 88

M
Matrix, 71

circulant, 75
commutator, 92
rank, 82
transpose conjugate, 80

Mean value theorem, 151
Minkowski’s inequality, 170
Mod, see modulo
Modulo, 269
Monovariant, 22

N
N-gon, 9

O
Order, 14

total, 14
Ordinary differential equation

first-order, 201
higher-order, 204
homogeneous, 204
inhomogeneous, 204

Orthological triangles, 214

P
Parabola, 222
Paraboloid

elliptic, 232
hyperbolic, 232

Pascal’s triangle, 314
Peano curve, 141
Pell’s equation, 287
Permutation, 295

cycle, 295
inversion, 295
signature, 295
transposition, 295

Perron-Frobenius theorem, 91
Pigeonhole principle, 11
Point group, 102
Poisson scheme, 334
Polynomial, 47

monic, 47
Prime, see prime number
Prime number, 265
Probability, 330

geometric, 337
Pythagorean triple, 285

Q
Quadric, 232

equation of tangent plane, 233

R
Ramsey number, 311
Ramsey theory, 311
Rational curve, 225
Regular polyhedron, 310
Relatively prime, see coprime
Residue, 269
Residue class, see residue
Riemann sum, 166
Ring, 103
Rolle’s theorem, 151
Root, 47
Roots of unity, 247
Ruled surface, 234

S
Schur number, 313
Semi-invariant, 22
Separation of variables, 206
Sequence

Cauchy, 119
convex, 123
first difference, 123
linear recursive, 110
second difference, 123

Series, 126
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geometric, 127
p-series, 127
ratio test, 127
telescopic, 131

Spectral mapping theorem, 88
Squeezing principle, 114
Stirling’s formula, 174
Sturm’s principle, 43
System of linear equations, 84

T
Taylor series, 172
Tonelli’s theorem, 189
Trace, 71
Triangle inequality, 35

V
Vector, 211
Vector field

curl, 191
divergence, 191

Vector space, 86
Viète’s relations, 58

W
Wallis formula, 166
Weierstrass’ criterion, see Weierstrass’ theo-

rem
Weierstrass’ theorem, 118
Wilson’s theorem, 274

Z
Zero matrix, 71
Zero of a polynomial, 47
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