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Life is good for only two things, discovering
mathematics and teaching mathematics.
Siméon Poisson



Preface to the Second Edition

The first edition of the book has generated great interest and a large amount of input from the
readers, who have expressed their views and have suggested corrections and improvements.
We are deeply grateful to all, as their contributions have significantly impacted the book.

At the same time, the authors have remained involved in mathematics competitions, being
exposed to the constant flow of problems and to the evolution of ideas. The first author has
continued training the United States International Mathematical Olympiad team. The second
author has started and perfected the Awesome Math Summer program, and as editor-in-chief
of Mathematical Reflections, has established it as one of the important journals promoting
problem solving at high-school and college levels. Both authors have continued writing prob-
lems for mathematics contests at high school and collegiate levels. Some new perspectives in
problem solving that appeared since the publication of the first edition have thus found their
way into the book.

Also, by using Putnam and Beyond in teaching and coaching, the authors have realized
that some material had to be improved and expanded to make it more accessible and com-
plete.

The new edition adds 180 new problems and examples, eight new sections, some new
solutions to previously existing problems, and corrects all the errors and typos that have been
found in the first edition. It gives more substance to some topics that had a rather shallow
treatment before. The experience of ten years of use gave rise to a more polished product.

April 2017 Rézvan Gelca
Texas Tech University

Titu Andreescu
University of Texas at Dallas



Preface to the First Edition

A problem book at the college level. A study guide for the Putnam competition. A bridge
between high school problem solving and mathematical research. A friendly introduction to
fundamental concepts and results. All these desires gave life to the pages that follow.

The William Lowell Putnam Mathematical Competition is the most prestigious mathe-
matics competition at the undergraduate level in the world. Historically, this annual event
began in 1938, following a suggestion of William Lowell Putnam, who realized the merits
of an intellectual intercollegiate competition. Nowadays, over 2500 students from more than
300 colleges and universities in the USA and Canada take part in it. The name Putnam has
become synonymous with excellence in undergraduate mathematics.

Using the Putnam competition as a symbol, we lay the foundations of higher mathematics
from a unitary, problem-based perspective. As such, Putnam and Beyond is a journey through
the world of college mathematics, providing a link between the stimulating problems of the
high school years and the demanding problems of scientific investigation. It gives motivated
students a chance to learn concepts and acquire strategies, hone their skills and test their
knowledge, seek connections, and discover real world applications. Its ultimate goal is to
build the appropriate background for graduate studies, whether in mathematics or applied
sciences.

Our point of view is that in mathematics it is more important to understand why than to
know how. Because of this we insist on proofs and reasoning. After all, mathematics means,
as the Romanian mathematician Grigore Moisil once said, “correct reasoning”. The ways of
mathematical thinking are universal in today’s science.

Putnam and Beyond targets primarily Putnam training sessions, problem-solving semi-
nars, and math clubs at the college level, filling a gap in the undergraduate curriculum. But it
does more than that. Written in the structured manner of a textbook, but with strong emphasis
on problems and individual work, it covers what we think are the most important topics and
techniques in undergraduate mathematics, brought together within the confines of a single
book in order to strengthen one’s belief in the unitary nature of mathematics. It is assumed
that the reader possesses a moderate background, familiarity with the subject, and a certain
level of sophistication, for what we cover reaches beyond the usual textbook, both in diffi-
culty and in depth. When organizing the material, we were inspired by Georgia O’Keeffe’s
words: “Details are confusing. It is only by selection, by elimination, by emphasis that we
get at the real meaning of things.”
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The book can be used to enhance the teaching of any undergraduate mathematics course,
since it broadens the database of problems for courses in real analysis, linear algebra,
trigonometry, analytical geometry, differential equations, number theory, combinatorics, and
probability. Moreover, it can be used by graduate students and educators alike to expand
their mathematical horizons, for many concepts of more advanced mathematics can be found
here disguised in elementary language, such as the Gauss-Bonnet theorem, the linear propa-
gation of errors in quantum mechanics, knot invariants, or the Heisenberg group. The way of
thinking nurtured in this book opens the door for true scientific investigation.

As for the problems, they are in the spirit of mathematics competitions. Recall that the
Putnam competition has two parts, each consisting of six problems, numbered Al through
A6, and B1 through B6. It is customary to list the problems in increasing order of difficulty,
with A1 and B1 the easiest, and A6 and B6 the hardest. We keep the same ascending pattern
but span a range from AO to B7. This means that we start with some inviting problems below
the difficulty of the test, then move forward into the depths of mathematics.

As sources of problems and ideas we used the Putnam exam itself, the International Com-
petition in Mathematics for University Students, the International Mathematical Olympiad,
national contests from the USA, Romania, Russia, China, India, Bulgaria, mathematics jour-
nals such as the American Mathematical Monthly, Mathematics Magazine, Revista Matem-
aticd din Timissoara (Timigssoara Mathematics Gazette), Gazeta Matematicd (Mathemat-
ics Gazette, Bucharest), Kvant (Quantum), Kozépiskolai Matematikai Lapok (Mathematical
Magazine for High Schools (Budapest)), and a very rich collection of Romanian publications.
Many problems are original contributions of the authors. Whenever possible, we give the his-
torical background and indicate the source and author of the problem. Some of our sources
are hard to find; this is why we offer you their most beautiful problems. Other sources are
widely circulated, and by selecting some of their most representative problems we bring them
to your attention.

Here is a brief description of the contents of the book. The first chapter is introductory,
giving an overview of methods widely used in proofs. The other five chapters reflect areas
of mathematics: algebra, real analysis, geometry and trigonometry, number theory, combina-
torics and probability. The emphasis is placed on the first two of these chapters, since they
occupy the largest part of the undergraduate curriculum.

Within each chapter, problems are clustered by topic. We always offer a brief theoretical
background illustrated by one or more detailed examples. Several problems are left for the
reader to solve. And since our problems are true brainteasers, complete solutions are given
in the second part of the book. Considerable care has been taken in selecting the most ele-
gant solutions and writing them so as to stir imagination and stimulate research. We always
“judged mathematical proofs”, as Andrew Wiles once said, “by their beauty”.

Putnam and Beyond is the fruit of work of the first author as coach of the University of
Michigan and Texas Tech University Putnam teams and of the International Mathematical
Olympiad teams of the USA and India, as well as the product of the vast experience of the
second author as head coach of the United States International Mathematical Olympiad team,
coach of the Romanian International Mathematical Olympiad team, director of the American
Mathematics Competitions, and member of the Question Writing Committee of the William
Lowell Putnam Mathematical Competition.
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In conclusion, we would like to thank Elgin Johnston, Dorin Andrica, Chris Jeuell,
Ioan Cucurezeanu, Marian Deaconescu, Gabriel Dospinescu, Ravi Vakil, Vinod Grover, V.V.
Acharya, B.J. Venkatachala, C.R. Pranesachar, Bryant Heath, and the students of the Interna-
tional Mathematical Olympiad training programs of the USA and India for their suggestions
and contributions. Most of all, we are deeply grateful to Richard Stong, David Kramer, and
Paul Stanford for carefully reading the manuscript and considerably improving its quality.
We would be delighted to receive further suggestions and corrections; these can be sent to
rgelca@gmail.com.

May 2007 Rézvan Gelca
Texas Tech University

Titu Andreescu
University of Texas at Dallas
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A Study Guide

The book has six chapters: Methods of Proof, Algebra, Real Analysis, Geometry and
Trigonometry, Number Theory, Combinatorics and Probability, divided into subchapters such
as Linear Algebra, Sequences and Series, Geometry, and Arithmetic. All subchapters are
self-contained and independent of each other and can be studied in any order. In most cases
they reflect standard undergraduate courses or fields of mathematics. The sections within
each subchapter are best followed in the prescribed order.

If you are an undergraduate student trying to acquire skills or test your knowledge in a
certain field, study first a regular textbook and make sure that you understand it very well.
Then choose the appropriate chapter or subchapter of this book and proceed section by sec-
tion. Read first the theoretical background and the examples from the introductory part; then
do the problems. These are listed in increasing order of difficulty, but even the very first can
be tricky. Don’t get discouraged; put effort and imagination into each problem; and only if
all else fails, look at the solution from the back of the book. But even if you are successful,
you should read the solution, since many times it gives a new insight and, more important,
opens the door toward more advanced mathematics.

Beware! The last few problems of each section can be very hard. It might be a good idea
to skip them at the first encounter and return to them as you become more experienced.

If you are a Putnam competitor, then as you go on with the study of the book try your
hand at the true Putnam problems (which have been published in three excellent volumes).
Identify your weaknesses and insist on the related chapters of Putnam and Beyond. Every
once in a while, for a problem that you have solved, write down the solution in detail, then
compare it to the one given at the end of the book. It is very important that your solutions be
correct, structured, convincing, and easy to follow.

Mathematical Olympiad competitors can also use this book. Appropriate chapters are
Methods of Proof, Number Theory, and Combinatorics, as well as the subchapters 2.1
and 4.2.

An instructor can add some of the problems from the book to a regular course in order
to stimulate and challenge the better students. Some of the theoretical subjects can also
be incorporated in the course to give better insight and a new perspective. Putnam and
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Beyond can be used as a textbook for problem-solving courses, in which case we recommend
beginning with the first chapter. Students should be encouraged to come up with their own
original solutions.

If you are a graduate student in mathematics, it is important that you know and under-
stand the contents of this book. First, mastering problems and learning how to write down
arguments are essential matters for good performance in doctoral examinations. Second,
most of the presented facts are building blocks of graduate courses; knowing them will make
these courses natural and easy.

It is important to keep in mind that detailed solutions to all problems are given in the
second part of the book. After the solution we list the author of the problem and/or the place
where it was published. In some cases we also describe how the problem fits in the big picture
of mathematics.

“Don’t bother to just be better than your contemporaries or predecessors. Try to be better
than yourself” (W. Faulkner).



1

Methods of Proof

In this introductory chapter we explain some methods of mathematical proof. They are argu-
ment by contradiction, the principle of mathematical induction, the pigeonhole principle, the
use of an ordering on a set, and the principle of invariance.

The basic nature of these methods and their universal use throughout mathematics makes
this separate treatment necessary. In each case we have selected what we think are the most
appropriate examples, solving some of them in detail and asking you to train your skills
on the others. And since these are fundamental methods in mathematics, you should try to
understand them in depth, for “it is better to understand many things than to know many
things” (Gustave Le Bon).

1.1 Argument by Contradiction

The method of argument by contradiction proves a statement in the following way:

First, the statement is assumed to be false. Then, a sequence of logical deductions yields
a conclusion that contradicts either the hypothesis (indirect method), or a fact known to be
true (reductio ad absurdum). This contradiction implies that the original statement must be
true.

This is a method that Euclid loved, and you can find it applied in some of the most
beautiful proofs from his Elements. Euclid’s most famous proof is that of the infinitude of
prime numbers.

Euclid’s theorem. There are infinitely many prime numbers.

Proof. Assume, to the contrary, that only finitely many prime numbers exist. List them as
pr=2,pp=3,p3=5,..., p,. Thenumber N = p;p,... p, + 1isdivisible by a prime p,
yetis coprime to py, pa, ..., p,. Therefore, p does not belong to our list of all prime numbers,
a contradiction. Hence the initial assumption was false, proving that there are infinitely many
primes.

© Springer International Publishing AG 2017 1
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2 1 Methods of Proof

Here is a variation of this proof using repunits. If there are only finitely many primes,
then the terms of the sequence

X1 = 1,)(2 = 11,)63 = 111,)(?4 = 1111,

have only finitely many prime divisors, so there are finitely many terms of the sequence that
exhaust them. Assume that the first n terms exhaust all prime divisors. Then x,, is divisible
by x1, x2, ..., x,, since for each k < n, we can group the digits of x,, in strings of k. Then
Xm+1 = 10x, + 1 is coprime with all of xi, x5, ..., x,. This is a contradiction because
all prime divisors of terms of the sequence were exhausted by xi, x3, ..., x,. So there are
infinitely many primes. U

We continue our illustration of the method of argument by contradiction with an example
of Euler.

Example. Prove that there is no polynomial
P(x) = apx" + ay_1x" ' 4+ ...+ ap

with integer coefficients and of degree at least 1 with the property that P (0), P(1), P(2), ...
are all prime numbers.

Solution. Assume the contrary and let P(0) = p, p prime. Then ay = p and P (kp) is
divisible by p for all K > 1. Because we assumed that all these numbers are prime, it follows
that P(kp) = p for k > 1. Therefore, P(x) takes the same value infinitely many times, a
contradiction. Hence the conclusion. |

The last example comes from I. Tomescu’s book Problems in Combinatorics (Wiley, 1985).

Example. Let F = {Ey, E,, ..., E;} be a family of subsets with r elements of some set X.
Show that if the intersection of any r 4 1 (not necessarily distinct) sets in F is nonempty, then
the intersection of all sets in F' in nonempty.

Solution. Again we assume the contrary, namely that the intersection of all sets in F is empty.
Consider the set E; = {x1, x2, ..., x,} Because none of the x;, i = 1,2, ..., r, lies in the
intersection of all the e;’s (this intersection being empty), it follows that for each i we can
find some E, such that x; ¢ E;,. Then

E\NE,NE,N...NE; =0,

since, at the same time, this intersection is included in E; and does not contain any element
of E;. But this contradicts the hypothesis. It follows that our initial assumption was false,
and hence the sets from the family F have a nonempty intersection. O

The following problems help you practice this method, which will be used often in the
book.
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11.

1.1 Argument by Contradiction 3

. Prove that \/5 + ﬁ + \/5 is an irrational number.

Show that no set of nine consecutive integers can be partitioned into two sets with
the product of the elements of the first set equal to the product of the elements of the
second set.

Find the least positive integer n such that any set of n pairwise relatively prime integers
greater than 1 and less than 2005 contains at least one prime number.

. Let F ={E\, E,, ..., E,} be a family of subsets with n — 2 elements of a set S with

n elements, n > 3. Show that if the union of any three subsets from F is not equal to
S, then the union of all subsets from F is different from S.

. Every point of three-dimensional space is colored red, green, or blue. Prove that one

of the colors attains all distances, meaning that any positive real number represents the
distance between two points of this color.

The union of nine planar surfaces, each of area equal to 1, has a total area equal to 5.
Prove that the overlap of some two of these surfaces has an area greater than or equal
to 3.

Show that there does not exist a function f : Z — {1, 2, 3} satisfying f(x) # f(y)
for all x, y € Z such that [x — y| € {2, 3, 5}.

. Show that there does not exist a strictly increasing function f : N — N satisfying

£(2) =3and f(mn) = f(m)f(n) forallm,n € N.

. Determine all functions f : N — N satisfying

XD+ ) = (x+ ) f&* 4y
for all positive integers x and y.

Show that the interval [0, 1] cannot be partitioned into two disjoint sets A and B such
that B = A + a for some real number a.

Letn > 1be an arbitrary real number and let k be the number of positive prime numbers
less than or equal to n. Select k 4 1 positive integers such that none of them divides
the product of all the others. Prove that there exists a number among the chosen k + 1
that is bigger than n.

1.2 Mathematical Induction

The principle of mathematical induction, which lies at the very heart of Peano’s axiomatic
construction of the set of positive integers, is stated as follows.

Induction principle. Given P(n), a property depending on a positive integer n,

(i) if P(no) is true for some positive integer ny, and

(ii) if for every k > ng, P (k) true implies P(k + 1) true,

then P (n) is true for all n > ny.



4 1 Methods of Proof

This means that when proving a statement by mathematical induction you should (i) check
the base case and (ii) verify the inductive step by showing how to pass from an arbitrary integer
to the next. Here is a simple example from combinatorial geometry.

Example. Finitely many lines divide the plane into regions. Show that these regions can be
colored by two colors in such a way that neighboring regions have different colors.

Solution. We prove this by induction on the number n of lines. The base case n = 1 is
straightforward, color one half-plane black, the other white.

For the inductive step, assume that we know how to color any map defined by k lines.
Add the (k + 1)st line to the picture; then keep the color of the regions on one side of this
line the same while changing the color of the regions on the other side. The inductive step is
illustrated in Figure 1.

Figure 1

Regions that were adjacent previously still have different colors. Regions that share a
segment of the (k 4 1)st line, which were part of the same region previously, now lie on
opposite sides of the line. So they have different colors, too. This shows that the new map
satisfies the required property and the induction is complete. U

A classical proof by induction is that of Fermat’s so-called little theorem.

Fermat’s little theorem. Ler p be a prime number, and n a positive integer. Then n? — n is
divisible by p.

Proof. We prove the theorem by induction on n. The base case n = 1 is obvious. Let us
assume that the property is true for n = k and prove it for n = k 4+ 1. Using the induction
hypothesis, we obtain

p—1 p—1
(k+1)1’—(k+1)Ekp+2(?)kf+1—k—1EZ(?)H (mod p).
j=1 j=1

The key observation is thatfor 1 < j < p — 1, (f) is divisible by p. Indeed, examining

(p)_p(p—1)~--(p—j+1)
il 1.2+ ’

itiseasy tosee that when 1 < j < p—1, the numerator is divisible by p while the denominator
is not. Therefore, (k + 1) — (k+ 1) =0 (mod p), which completes the induction. [l
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The third example is a problem from the 5th W.L. Putnam Mathematical Competition,
and it was selected because its solution combines several proofs by induction. If you find it
too demanding, think of Vincent van Gogh’s words: “The way to succeed is to keep your
courage and patience, and to work energetically”.

Example. For m a positive integer and » an integer greater than 2, define fi(n) = n, fo(n) =
nh firi(n) = nfi®™ . Prove that

fm) <nll--l < f01(n),

where the term in the middle has m factorials.

Solution. For convenience, let us introduce go(n) = n, and recursively g; . 1(n) = (g;(n))!.
The double inequality now reads

fm() < gn(n) < fuy1(n).

For m = 1 this is obviously true, and it is only natural to think of this as the base case. We
start by proving the inequality on the left by induction on m. First, note that if ¢ > 2n% is a
positive integer, then

> (’/LZ)t—n2 — ntnt—2nz = I’lt.
Now, it is not hard to check that g,,(n) > 2n* for m > 2 and n > 3. With this in mind, let us
assume the inequality to be true for m = k. Then

Ser1(n) = (g () > nsW > pk® = £ (n),

which proves the inequality for m = k + 1. This verifies the inductive step and solves half of
the problem.

Here we pause for a short observation. Sometimes the proof of a mathematical statement
becomes simpler if the statement is strengthened. This is the case with the second inequality,
which we replace by the much stronger

go(m)gi(n) - - - gu(n) < funs1(n),

holding true for m and n as above.
As an intermediate step, we establish, by induction on m, that

80(”)g1(”) e 8m (n) < ngo(ﬂ)gl(ﬂ)"-gmfl(n)’

for all m and all n > 3. The base case m = 1 is the obvious n - n! < n”. Now assume that the
inequality is true for m = k, and prove it for m = k + 1. We have

go(n)gi(n) - -- grp1(n) = go(n)go(n!) - - - gr(n!) < go(n)(n!)g()(”!)gl("!)"'gkfl(n!)
< n(n!)gl(l’l)‘..gk(") < n- n!)gl(n)wgk(n)

< (nn)gl(n)-~gk(n) — ngo(n)gl(n)mgk(n)’

completing this induction, and proving the claim.
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Next, we show, also by induction on m, that go(n)g;(n) - - - gn(n) < fint1(n) for all n.
The base case m = 1isn -n! < n"; it follows by multiplying 1 -2 <nand3-4---n <n
Let’s see the inductive step. Using the inequality for the g, s proved above and the assumption

1 Methods of Proof

that the inequality holds for m = k, we obtain

which is the inequality for m = k + 1.

80(n) +++ gm (M) g1 (n) < O < st = f, 45 (),

problem!

Listen and you will forget, learn and you will remember, do it yourself and you will

understand. Practice induction with the following examples.

12.

13.
14.

15.
16.

17.

18.

19.

Prove for all positive integers n the identity
1 n 1 R I ) 1 N 1 n 1 1
n+l n+2 2n 2 3 2n—1 2n’

Prove that | sinnx| < n|sin x| for any real number x and positive integer 7.

Prove that for any real numbers x;, x5, ..., x,, n > 1,
|sinx;| 4 |sinxy| + --- 4 |sinx,| + | cos(x; +x2 + - -- + x,)| > 1.

Prove that 3" > n? for all positive integers 7.

Let n > 6 be an integer. Show that

() <n=()

Let n be a positive integer. Prove that

(I 1
R T e

N W

Prove that for any positive integer n there exists an n-digit number
(a) divisible by 2" and containing only the digits 2 and 3;
(b) divisible by 5" and containing only the digits 5, 6, 7, 8, 9.

Prove that for any n > 1, a 2" x 2" checkerboard with a 1 x 1 corner square removed

can be tiled by pieces of the form described in Figure 2.
1

1

Figure 2

This completes the last induction, and with it
the solution to the problem. No fewer than three inductions were combined to solve the
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20. Given a sequence of integers xi, xa, . .., X, whose sum is 1, prove that exactly one of
the cyclic shifts

x17x27"',xn; x27'-'9xl’l,xl;"'; xn9x1?"'9x}’l—l

has all of its partial sums positive. (By a partial sum we mean the sum of the first k
terms, k < n.)

21. Letxy, x2, ..., Xu, Y1, Y2, - - -, Y b€ positive integers, n, m > 1. Assume that
Xpt+x2+-Fxy=y1+y2++yu <mn.
Prove that in the equality
Xp+Xo+ -+ Xy =y + Y2+t Ym

one can suppress some (but not all) terms in such a way that the equality is still satisfied.

22. Prove that any function defined on the entire real axis can be written as the sum of two
functions whose graphs admit centers of symmetry.

23. Prove that for any positive integer n > 2 there is a positive integer m that can be written
simultaneously as a sum of 2, 3, ..., n squares of nonzero integers.

24. Let n be a positive integer, n > 2, and let ay, a, . . ., az,+1 be positive real numbers
such thata; < a; < --+ < as,+;. Prove that

Jay — Yar + Yaz — - - — Yaoy + Yaryi < Jay —ar +az — - — azy + azy.

25. It is given a finite set A of lines in a plane. It is known that, for some positive integer
k > 3, for every subset B of A consisting of k> + 1 lines there are k points in the plane
such that each line in B passes through at least one of them. Prove that there are k&
points in the plane such that every line in A passes through at least one of them.

Even more powerful is strong induction.
Induction principle (strong form). Given P(n) a property that depends on an integer n,

(i) if P(ng), P(ng+1),..., P(ng+m) are true for some positive integer ny and nonneg-
ative integer m, and

(ii) if for every k > ng +m, P(j) true for all no < j < k implies P (k) true,
then P (n) is true for all n > n.

We use strong induction to solve a problem from the 24th W.L. Putnam Mathematical
Competition.

Example. Let f : N — N be a strictly increasing function such that f(2) = 2 and f(mn) =
f(m) f (n) for every relatively prime pair of positive integers m and n. Prove that f(n) = n
for every positive integer n.
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Solution. The proof is of course by induction on n. Monotonicity implies right away that
f(1) = 1. However, the base case is not the given f(2) = 2, but f(2) =2 and f(3) = 3.

So let us find f(3). Because f is strictly increasing, f(3)f(5) = f(15) < f(18) =
F2)f(). Hence f(3)f(5) <2f(9) and f(9) < f(10) = f(2)f(5) = 2f(5). Combining
these inequalities, we obtain f(3) f(5) < 4f(5), so f(3) < 4. But we know that f(3) >
f(2) = 2, which means that f(3) can only be equal to 3.

The base case was the difficult part of the problem; the induction step is rather straight-
forward. Let k > 3 and assume that f(j) = j for j < k. Consider 2" (2m + 1) to be the
smallest even integer greater than or equal to k that is not a power of 2. This number is equal
toeither k, k + 1, k + 2, or k + 3, and since k > 3, both 2" and 2m + 1 are strictly less than k.
From the induction hypothesis, we obtain f(2"2m+ 1)) = fQ2") fCm+1) =2"2m + 1).
Monotonicity, combined with the fact that there are at most 2" (2m + 1) values that the function
can take in the interval [1, 2" (2m + 1)], implies that f (/) = [ for! < 2"(2m+1). In particular,
f (k) = k. We conclude that f(n) = n for all positive integers 7. O

A function f : N — C with the property that f(1) = 1 and f(mn) = f(m)f(n)
whenever m and n are coprime is called a multiplicative function. Examples include the
Euler totient function and the Mobius function. In the case of our problem, the multiplicative
function is also strictly increasing. A more general result of P. Erdos shows that any increasing
multiplicative function that is not constant is of the form f(n) = n* for some o > 0.

The second example is from the 1999 Balkan Mathematical Olympiad, being proposed
by B. Enescu.

Example. Let0 < xp < x; <xp <--- <x, <--- be asequence of non-negative integers
such that for every index k&, the number of the terms of the sequence that are less than or equal
to k is finite. We denote this number by y;. Prove that for any two positive integer numbers
m and n, the following inequality holds

Dxi+ Dy =+ Dm0,
i=0 j=0
Solution. We will prove this by strong induction on s = m + n.
The base case s = 0 is obvious, since either xo > 0, in which case the first sum is at least
1, or xo = 0, in which case yy > 1 and the second sum is at least 1. Let us now assume that
the inequality holds for all s < N — 1 and let us prove it for s = N.
If x, > m + 1, then

n m n—1 m
Zx,-—i-Zyj =Zx,~+2yj+xn,
i=0 j=0 i=0 j=0

where Z;:& x; is taken to be zero if n = 0. The induction hypothesis implies that this is
greater than or equal ton(m + 1) + (m + 1) = (n 4+ 1)(m + 1), and we are done.
Ifx, <m+41,then y,, > n+ 1andso

m—1

ZXi+ZYj:in+Zyj+ym >m+Im+m+1D)=m+Dm+1),
- =

i=0 j=0
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where for the inequality we used again the induction hypothesis. This completes the induction
and we are done. t

26.

27.

28.

29.

30.

31.

32.

33.

Show that every positive integer can be written as a sum of distinct terms of the
Fibonacci sequence. (The Fibonacci sequence (F,), is defined by Fy = 0, F} = 1,
anan—H =F+F_,n> 1)

Prove that the Fibonacci sequence satisfies the identity

Fopp1 = F?

2.+ F7, forn > 0.

Prove that the Fibonacci sequence satisfies the identity
Fy,=F) +F)—F) |, forn>0.

Show that an isosceles triangle with one angle of 120° can be dissected into n > 4
triangles similar to it.

Show that for all n > 3 there exists an n-gon whose sides are not all equal and such
that the sum of the distances from any interior point to each of the sides is constant.
(An n-gon is a polygon with n sides.)

The vertices of a convex polygon are colored by at least three colors such that no two
consecutive vertices have the same color. Prove that one can dissect the polygon into
triangles by diagonals that do not cross and whose endpoints have different colors.

Prove that any polygon (convex or not) can be dissected into triangles by interior
diagonals.

Prove that any positive integer can be represented as 12 £ 2% 4 ... & n? for some
positive integer n and some choice of the signs.

Now we demonstrate a less frequently encountered form of induction that can be traced
back to Cauchy’s work, where it was used to prove the arithmetic mean-geometric mean
inequality. We apply this method to solve a problem from D. Bugneag, I. Maftei, Themes for
Mathematics Circles and Contests (Scrisul Romanesc, Craiova, 1983).

Example. Letay, ay, ..., a, be real numbers greater than 1. Prove the inequality

. 1 n
> .
glll—i-ai T 1+ Yajar---a,

Solution. As always, we start with the base case:

1 n 1 . 2 .
14+ a 1+ a 14+ /aa

Multiplying out the denominators yields the equivalent inequality

2+ar +a)(1 + Jaiar) = 2(1 +a; + a, + a1az).
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After multiplications and cancellations, we obtain

2Jaia; + (a; + ax)Jarax > ay + a + 2a1a;.

This can be rewritten as

2Jaiax(1 — Jaiaz) + (a1 + ax)(Jajax — 1) > 0,

or
(Waia, — )(ay + ar — 2/aiaz) > 0.

The inequality is now obvious since aja, > 1 and a; + a, > 2,/a;a,.

Now instead of exhausting all positive integers n, we downgrade our goal and check just
the powers of 2. So we prove that the inequality holds for n = 2* by induction on k. Assuming
it true for k, we can write

ok+1 ok ok-+1

1 1
Zl-i-ai _Zl-i-ai +_Z I +a
i=1 i=1 i=2k41

o ! . 1

- 1 + 24/6116l2 ... Aok 1 + 2\"/a2k+1a2k+2 © e Aokl
2

k

>
- 1+ zktl/éllaz s Aok+1 ’

where the first inequality follows from the induction hypothesis, and the second is just the
base case. This completes the induction.

Now we have to cover the cases in which n is not a power of 2. We do the induction
backward, namely, we assume that the inequality holds for n 4+ 1 numbers and prove it
for n. Let ay, ay, ..., a, be some real numbers greater than 1. Attach to them the number
J/aiay - - - a,. When writing the inequality for these n 4 1 numbers, we obtain

1 1 n+1
4+ > .
I+a I+ Yaraz---an = 1+ "“VYay---a,aia; - a,
Recognize the complicated radical on the right to be {/aja, ... a,. After cancelling the last
term on the left, we obtain
1 . 1 R 1 - n
l+a  l1+a l+a, ~ 1+ Yaray-—ay

as desired. The inequality is now proved, since we can reach any positive integer n by starting
with a sufficiently large power of 2 and working backward. g

Try to apply the same technique to the following problems.
34. Let f : R — R be a function satisfying
f (xl +x2) S+ f(x)

5 5 for any xy, x,.



1.2 Mathematical Induction 11

Prove that
f(xl+x2+"'+xn) _ SO+ fO) -4 f )
n n
for any x1, x2, ..., X,.
35. Show thatif ay, as, ..., a, are nonnegative numbers, then

(I+a)d+a) - (+a) =+ Jaraz---an)".

1.3 The Pigeonhole Principle

The pigeonhole principle (or Dirichlet’s box principle) is usually applied to problems in
combinatorial set theory, combinatorial geometry, and number theory. In its intuitive form, it
can be stated as follows.

Pigeonhole principle. Ifkn + 1 objects (k > 1 not necessarily finite) are distributed among
n boxes, one of the boxes will contain at least k 4+ 1 objects.

This is merely an observation, and it was Dirichlet who first used it to prove nontrivial
mathematical results. The name comes from the intuitive image of several pigeons entering
randomly in some holes. If there are more pigeons than holes, then we know for sure that
one hole has more than one pigeon. We begin with an easy problem, which was given at the
International Mathematical Olympiad in 1972, proposed by Russia.

Example. Prove that every set of 10 two-digit integer numbers has two disjoint subsets with
the same sum of elements.

Solution. Let S be the set of 10 numbers. It has 2! —2 = 1022 subsets that differ from both §
and the empty set. They are the “pigeons”. If A C §, the sum of elements of A cannot exceed
914924 ---499 = 855. The numbers between 1 and 855, which are all possible sums, are
the “holes”. Because the number of “pigeons” exceeds the number of “holes”, there will be
two “pigeons” in the same “hole”. Specifically, there will be two subsets with the same sum
of elements. Deleting the common elements, we obtain two disjoint sets with the same sum
of elements. O

Here is a more difficult problem from the 26th International Mathematical Olympiad,
proposed by Mongolia.

Example. Given a set M of 1985 distinct positive integers, none of which has a prime divisor
greater than 26, prove that M contains at least one subset of four distinct elements whose
product is the fourth power of an integer.

Solution. We show more generally that if the prime divisors of elements in M are among the
prime numbers py, p», ..., p, and M has at least 3 - 2" + 1 elements, then it contains a subset
of four distinct elements whose product is a fourth power.
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To each element m in M we associate an n-tuple (xi, x, ..., x,), where x; is O if the
exponent of p; in the prime factorization of m is even, and 1 otherwise. These n-tuples are the
“objects”. The “boxes” are the 2" possible choices of 0’s and 1’s. Hence, by the pigeonhole
principle, every subset of 2" 4 1 elements of M contains two distinct elements with the same
associated n-tuple, and the product of these two elements is then a square.

We can repeatedly take aside such pairs and replace them with two of the remaining
numbers. From the set M, which has at least 3 - 2" 4+ 1 elements, we can select 2" 4+ 1 such
pairs or more. Consider the 2" 4+ 1 numbers that are products of the two elements of each
pair. The argument can be repeated for their square roots, giving four elements a, b, ¢, d in
M such that ~/ab~/cd is a perfect square. Then abcd is a fourth power and we are done. For
our problem n = 9, while 1985 > 3.2° + 1 = 1537. U

The third example comes from the 67th W.L. Putnam Mathematical Competition, 2006.

Example. Prove that for every set X = {xi, x2, ..., x,} of n real numbers, there exists a
nonempty subset S of X and an integer m such that

m +Zs
seS

Solution. Recall that the fractional part of a real number x is x — |x]. Let us look at the

=

n+1

fractional parts of the numbers x1, x; + x2, ..., X1 +x2 + ... + x,,. If any of them is either in
the interval [O, #] or [# l], then we are done. If not, we consider these n numbers as the
“pigeons” and the n — 1 intervals [# #] [% %] s [ﬁ #] as the “holes”. By

the pigeonhole principle, two of these sums, say x; +x, + - - - +x, and x; + X2 + - - - + X
belong to the same interval. But then their difference x;,; + - - - + x41,, lies within a distance
of L of an integer, and we are done. ([l
n+1

More problems are listed below.

36. Given 50 distinct positive integers strictly less than 99, prove that some two of them
sum to 99.

37. A sequence of m positive integers contains exactly n distinct terms. Prove that if
2" < m then there exists a block of consecutive terms whose product is a perfect
square.

38. Letxy, xp,...,x3,...beasequence of integers such that
l=xi<xy<x3<---andx,y <2nforn=1,2,3,....

Show that every positive integer k is equal to x; — x; for some i and ;.

39. Let p be a prime number and a, b, ¢ integers such that a and b are not divisible by p.
Prove that the equation ax? + by? = ¢ (mod p) has integer solutions.

40. In each of the unit squares of a 10 x 10 checkerboard, a positive integer not exceeding
10 is written. Any two numbers that appear in adjacent or diagonally adjacent squares
of the board are relatively prime. Prove that some number appears at least 17 times.
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41. Show that there is a positive term of the Fibonacci sequence that is divisible by 1000.

42. Letx; = xp = x3 = 1 and x,,13 = Xx,, + X, 41x,42 for all positive integers n. Prove that
for any positive integer m there is an index k such that m divides xy.

43. A chess player trains by playing at least one game per day, but, to avoid exhaustion, no
more than 12 games a week. Prove that there is a group of consecutive days in which
he plays exactly 20 games.

44. Let m be a positive integer. Prove that among any 2m + 1 distinct integers of absolute
value less than or equal to 2m — 1 there exist three whose sum is equal to zero.

45. There are n people at a party. Prove that there are two of them such that among the
remaining n — 2 people there are at least L%J — 1, each of whom knows both or else
knows neither of the two.

46. Let xy, x2, ..., x; be real numbers such that the set
A = {cos(nmx;) + cos(nmxy) + -+ -+ cos(nmxy) | n > 1}
is finite. Prove that all the x; are rational numbers.

Particularly attractive are the problems in which the pigeons and holes are geometric
objects. Here is a problem from a Chinese mathematical competition.

Example. Given nine points inside the unit square, prove that some three of them form a
triangle whose area does not exceed %.

Solution. Divide the square into four equal squares, which are the “boxes”. From the 9 =
2 x 4 + 1 points, at least 3 = 2 4 1 will lie in the same box. We are left to show that the area
of a triangle placed inside a square does not exceed half the area of the square.

Cut the square by the line passing through a vertex of the triangle, as in Figure 3. Since
the area of a triangle is t%height and the area of a rectangle is base x height, the inequality
holds for the two smaller triangles and their corresponding rectangles. Adding up the two

inequalities, we obtain the inequality for the square. This completes the solution. ([

Figure 3
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47. Inside a circle of radius 4 are chosen 61 points. Show that among them there are two
at distance at most \/5 from each other.

48. Each of nine straight lines divides a square into two quadrilaterals with the ratio of
their areas equal to » > 0. Prove that at least three of these lines are concurrent.

49. Show that any convex polyhedron has two faces with the same number of edges.

50. Draw the diagonals of a 21-gon. Prove that at least one angle of less than 1° is formed.
(Angles of 0° are allowed in the case that two diagonals are parallel.)

51. Let Py, P, ..., Py, be a permutation of the vertices of a regular polygon. Prove that
the closed polygonal line Py P; ... P, contains a pair of parallel segments.

52. Let S be a convex set in the plane that contains three noncollinear points. Each point of
S is colored by one of p colors, p > 1. Prove that for any n > 3 there exist infinitely
many congruent n-gons whose vertices are all of the same color.

53. The points of the plane are colored by finitely many colors. Prove that one can find a
rectangle with vertices of the same color.

54. Inside the unit square lie several circles the sum of whose circumferences is equal to
10. Prove that there exist infinitely many lines each of which intersects at least four of
the circles.

1.4 Ordered Sets and Extremal Elements

An order on a set is a relation < with three properties: (i) a < a; (ii) ifa < band b < a,
then a = b; (iii) a < b and b < c implies a < c¢. The order is called total if any two elements
are comparable, that is, if for every a and b, either a < b or b < a. The simplest example of
a total order is < on the set of real numbers. The existing order on a set can be useful when
solving problems. This is the case with the following two examples, the second of which is a
problem of G. Galperin published in the Russian journal Quantum.

Example. Prove that among any 50 distinct positive integers strictly less than 100 there are
two that are coprime.

Solution. Order the numbers: x; < x < ... < xso. If in this sequence there are two
consecutive integers, they are coprime and we are done. Otherwise, xso > x; + 2 - 49 = 99.
Equality must hold, since x5y < 100, and in this case the numbers are precisely the 50 odd
integers less than 100. Among them 3 is coprime to 7. The problem is solved.

Example. Given finitely many squares whose areas add up to 1, show that they can be arranged
without overlaps inside a square of area 2.

Solution. The guess is that a tight way of arranging the small squares inside the big square is
by placing the squares in decreasing order of side-lengths.

To prove that this works, denote by x the side length of the first (that is, the largest) square.
Arrange the squares inside a square of side V2 in the following way. Place the first in the
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lower-left corner, the next to its right, and so on, until obstructed by the right side of the big
square. Then jump to height x, and start building the second horizontal layer of squares by
the same rule. Keep going until the squares have been exhausted (see Figure 4).

Figure 4

Let / be the total height of the layers. We are to show that & < /2, which in turn will
imply that all the squares lie inside the square of side /2. To this end, we will find a lower
bound for the total area of the squares in terms of x and /4. Let us mentally transfer the first
square of each layer to the right side of the previous layer. Now each layer exits the square,
as shown in Figure 4.

It follows that the sum of the areas of all squares but the first is greater than or equal to
(ﬁ — x)(h — x). This is because each newly obtained layer includes rectangles of base
V2 — x and with the sum of heights equal to 4 — x. From the fact that the total area of the
squares is 1, it follows that

P+ W2—x)h—x) < 1.

This implies that
2x2 — \/Ex —1
h< ———F7r—.
X — «/i
That h < +/2 will follow from
2x2 —/2x — 1
2oV -l _ o
X — \/5
This is equivalent to
2x% —24/2x +1 >0,

or (x«/i — 1)? > 0, which is obvious and we are done. OJ

What we particularly like about the shaded square from Figure 4 is that it plays the role
of the “largest square” when placed on the left, and of the “smallest square” when placed on
the right. Here are more problems.
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55. Given n > 3 points in the plane, prove that some three of them form an angle less than
or equal to .

56. Consider a planar region of area 1, obtained as the union of finitely many disks. Prove
that from these disks we can select some that are mutually disjoint and have total area
at least %.

57. Suppose that n(r) denotes the number of points with integer coordinates on a circle of
radius r > 1. Prove that

n(r) < 272,

58. Prove that among any eight positive integers less than 2004 there are four, say a, b, c,
and d, such that

4+d<a+b+c<4d

59. Letay, ay,...,a,,...be asequence of distinct positive integers. Prove that for any
positive integer n,

2>2n—1—1
"= 3

ai+a3+-+a (a1 +az+ - +ay).
60. Let X be a subset of the positive integers with the property that the sum of any two not
necessarily distinct elements in X is again in X. Suppose that {a, as, ..., a,} is the

set of all positive integers not in X. Prove thata; +a + - - - + a, < n°.

61. Let P(x) be a polynomial with integer coefficients, of degree n > 2. Prove that the set
A ={x € Z| P(P(x)) = x} has at most n elements.

An order on a finite set has maximal and minimal elements. If the order is total, the
maximal (respectively, minimal) element is unique. Quite often it is useful to look at such
extremal elements, like in the solution to the following problem.

Example. Prove that it is impossible to dissect a cube into finitely many cubes, no two of
which are the same size.

Solution. For the solution, assume that such a dissection exists, and look at the bottom face.
It is cut into squares. Take the smallest of these squares. It is not hard to see that this square
lies in the interior of the face, meaning that it does not touch any side of the bottom face. Look
at the cube that lies right above this square! This cube is surrounded by bigger cubes, so its
upper face must again be dissected into squares by the cubes that lie on top of it. Take the
smallest of the cubes and repeat the argument. This process never stops, since the cubes that
lie on top of one of these little cubes cannot end up all touching the upper face of the original
cube. This contradicts the finiteness of the decomposition. Hence the conclusion. 0

By contrast, a square can be dissected into finitely many squares of distinct size. Why
does the above argument not apply in this case?
And now an example of a more exotic kind.
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Example. Given is a finite set of spherical planets, all of the same radius and no two inter-
secting. On the surface of each planet consider the set of points not visible from any other
planet. Prove that the total area of these sets is equal to the surface area of one planet.

Solution. The problem was on the short list of the 22nd International Mathematical Olympiad,
proposed by the Soviet Union. The solution below we found in I. Cuculescu’s book on the
International Mathematical Olympiads (Editura Tehnicd, Bucharest, 1984).

Choose a preferential direction in space, which defines the north pole of each planet. Next,
define an order on the set of planets by saying that planet A is greater than planet B if on
removing all other planets from space, the north pole of B is visible from A. Figure 5 shows
that for two planets A and B, either A < B or B < A, and also that for three planets A, B, C,
if A< Band B < C then A < C. The only case in which something can go wrong is that
in which the preferential direction is perpendicular to the segment joining the centers of two
planets. If this is not the case, then < defines a total order on the planets. This order has
a unique maximal element M. The north pole of M is the only north pole not visible from
another planet.

Now consider a sphere of the same radius as the planets. Remove from it all north poles
defined by directions that are perpendicular to the axes of two of the planets. This is a set of
area zero. For every other point on this sphere, there exists a direction in space that makes it
the north pole, and for that direction, there exists a unique north pole on one of the planets that
is not visible from the others. As such, the surface of the newly introduced sphere is covered
by patches translated from the other planets. Hence the total area of invisible points is equal
to the area of this sphere, which in turn is the area of one of the planets. g

62. Complete the square in Figure 6 with integers between 1 and 9 such that the sum of
the numbers in each row, column, and diagonal is as indicated.

(&) (O,
x (=)

) @

Figure 5

63. Given n points in the plane, no three of which are collinear, show that there exists a
closed polygonal line with no self-intersections having these points as vertices.

64. Show that any polygon in the plane has a vertex, and a side not containing that vertex,
such that the projection of the vertex onto the side lies in the interior of the side or at
one of its endpoints.

65. In some country all roads between cities are one-way and such that once you leave a
city you cannot return to it again. Prove that there exists a city into which all roads
enter and a city from which all roads exit.



18

66.

67.

68.

69.

70.

71.

1 Methods of Proof

At a party assume that no boy dances with all the girls, but each girl dances with at least
one boy. Prove that there are two girl-boy couples gb and g’b’ who dance, whereas b
does not dance with g’, and g does not dance with &’.

In the plane we have marked a set S of points with integer coordinates. We are also
given a finite set V of vectors with integer coordinates. Assume that S has the property
that for every marked point P, if we place all vectors from V with origin are P, then
more of their ends are marked than unmarked. Show that the set of marked points is
infinite.

The entries of a matrix are real numbers of absolute value less than or equal to 1, and
the sum of the elements in each column is 0. Prove that we can permute the elements of
each column in such a way that the sum of the elements in each row will have absolute
value less than or equal to 2.

Find all odd positive integers n greater than 1 such that for any coprime divisors a and
b of n, the number a + b — 1 is also a divisor of n.

The positive integers are colored by two colors. Prove that there exists an infinite
sequence of positive integers k; < k, < --- < k, < --- with the property that the
terms of the sequence 2k; < k; +ky < 2ky < ko + k3 < 2ks < - - - are all of the same
color.

Let P, P, ... P, be a convex polygon in the plane. Assume that for any pair of vertices
P; and P;, there exists a vertex P of the polygon such that ZP; P, P; = 7 /3. Show
that n = 3.

2

5

8 |20
i@%é@@@%\t

1.5 Invariants and Semi-Invariants

In general, a mathematical object can be studied from many points of view, and it is always
desirable to decide whether various constructions produce the same object. One usually
distinguishes mathematical objects by some of their properties. An elegant method is to
associate to a family of mathematical objects an invariant, which can be a number, an algebraic
structure, or some property, and then distinguish objects by the different values of the invariant.

The general framework is that of a set of objects or configurations acted on by transfor-
mations that identify them (usually called isomorphisms). Invariants then give obstructions
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to transforming one object into another. Sometimes, although not very often, an invariant is
able to tell precisely which objects can be transformed into one another, in which case the
invariant is called complete.

An example of an invariant (which arises from more advanced mathematics yet is easy to
explain) is the property of a knot to be 3-colorable. Formally, a knot is a simple closed curve
in R3. Intuitively it is a knot on a rope with connected endpoints, such as the right-handed
trefoil knot from Figure 7.

/'\/

Figure 7

How can one prove mathematically that this knot is indeed “knotted”? The answer is,
using an invariant. To define this invariant, we need the notion of a knot diagram. Such a
diagram is the image of a regular projection (all self-intersections are nontangential and are
double points) of the knot onto a plane with crossing information recorded at each double
point, just like the one in Figure 7. But a knot can have many diagrams (pull the strands
around, letting them pass over each other).

A deep theorem of K. Reidemeister states that two diagrams represent the same knot if
they can be transformed into one another by the three types of moves described in Figure 8.

/7
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Figure 8

The simplest knot invariant was introduced by the same Reidemeister, and is the property
of a knot diagram to be 3-colorable. This means that you can color each strand in the knot
diagram by a residue class modulo 3 such that

(1) at least two distinct residue classes modulo 3 are used, and

(ii) at each crossing, a + ¢ = 2b (mod 3), where b is the color of the arc that crosses
over, and a and c are the colors of the other two arcs (corresponding to the strand that
crosses under).

It is rather easy to prove, by examining the local picture, that this property is invariant
under Reidemeister moves. Hence this is an invariant of knots, not just of knot diagrams.
The trefoil knot is 3-colorable, as demonstrated in Figure 9. On the other hand, the
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unknotted circle is not 3-colorable, because its simplest diagram, the one with no crossings,
cannot be 3-colored. Hence the trefoil knot is knotted.

1
2

XX

Figure 9

This 3-colorability is, however, not a complete invariant. We now give an example of
a complete invariant from geometry. In the early nineteenth century, F. Bolyai and a less
well-known mathematician Gerwin proved that given two polygons of equal area, the first can
be dissected by finitely many straight cuts and then assembled to produce the second polygon.
In his list of 23 problems presented to the International Congress of Mathematicians, D. Hilbert
listed as number 3 the question whether the same property remains true for solid polyhedra
of the same volume, and if not, what would the obstruction be.

The problem was solved by M. Dehn, a student of Hilbert. Dehn defined an invariant that
associates to a finite disjoint union of polyhedra P the sum 7/ (P) of all their dihedral angles
reduced modulo rational multiples of 7 (viewed as an element in R/7 Q). He showed that
two polyhedra P; and P, having the same volume can be transformed into one another if and
only if I (Py) = I (P,), i.e., if and only if the sums of their dihedral angles differ by a rational
multiple of .

It is good to know that the quest for invariants dominated twentieth-century geometry.
That being said, let us return to the realm of elementary mathematics with a short list problem
from the 46th International Mathematical Olympiad.

Example. There are n markers, each with one side white and the other side black, aligned in
a row with their white sides up. At each step, if possible, we choose a marker with the white
side up (but not one of the outermost markers), remove it, and reverse the two neighboring
markers. Prove that one can reach a configuration with only two markers left if and only if
n — 1 is not divisible by 3.

Solution. We refer to a marker by the color of its visible face. Note that the parity of the
number of black markers remains unchanged during the game. Hence if only two markers
are left, they must have the same color.

We define an invariant as follows. To a white marker with # black markers to its left we
assign the number (—1)’. Only white markers have numbers assigned to them. The invariant
S is the residue class modulo 3 of the sum of all numbers assigned to the white markers.

It is easy to check that S is invariant under the operation defined in the statement. For
instance, if a white marker with ¢ black markers on the left and whose neighbors are both
black is removed, then S increases by —(—1)" + (=1)'""! + (=1)"~! = 3(—1)"""!, which is
zero modulo 3. The other three cases are analogous.

If the game ends with two black markers then S is zero; if it ends with two white markers,
then S is 2. This proves that n — 1 is not divisible by 3.
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Conversely, if we start with n > 5 white markers, n = 0 or 2 modulo 3, then by removing
in three consecutive moves the leftmost allowed white markers, we obtain a row of n — 3
white markers. Working backward, we can reach either 2 white markers or 3 white markers.
In the latter case, with one more move we reach 2 black markers as desired. OJ

Now try to find the invariants that lead to the solutions of the following problems.

72.

73.

74.

75.

76.

77.
78.

79.

An ordered triple of numbers is given. Itis permitted to perform the following operation
on the triple: to change two of them, say a and b, to (a + b)/~/2 and (a — b)/~/2. Is it
possible to obtain the triple (1, /2, 1 4 +/2) from the triple (2, +/2, 1/+/2) using this
operation?

There are 2000 white balls in a box. There are also unlimited supplies of white, green,
and red balls, initially outside the box. During each turn, we can replace two balls in
the box with one or two balls as follows: two whites with a green, two reds with a
green, two greens with a white and red, a white and a green with a red, or a green and
red with a white.

(a) After finitely many of the above operations there are three balls left in the box.
Prove that at least one of them is green.
(b) Is it possible that after finitely many operations only one ball is left in the box?

There is a heap of 1001 stones on a table. You are allowed to perform the following
operation: you choose one of the heaps containing more than one stone, throw away a
stone from the heap, then divide it into two smaller (not necessarily equal) heaps. Is it
possible to reach a situation in which all the heaps on the table contain exactly 3 stones
by performing the operation finitely many times?

Starting with an ordered quadruple of positive integers, a generalized Euclidean algo-
rithm is applied successively as follows: if the numbers are x, y, u, v and x > y, then
the quadruple is replaced by x — y, y, u + v, v. Otherwise, it is replaced by x, y — x,
u, v+ u. The algorithm stops when the numbers in the first pair become equal (in
which case they are equal to the greatest common divisor of x and y). Assume that we
start with m, n, m, n. Prove that when the algorithm ends, the arithmetic mean of the
numbers in the second pair equals the least common multiple of m and n.

On an arbitrarily large chessboard consider a generalized knight that can jump p squares
in one direction and ¢ in the other, p, g > 0. Show that such a knight can return to its
initial position only after an even number of jumps.

Prove that the figure eight knot described in Figure 10 is knotted.

In the squares of a 3 x 3 chessboard are written the signs + and — as described in
Figure 11(a). Consider the operations in which one is allowed to simultaneously
change all signs in some row or column. Can one change the given configuration to
the one in Figure 11(b) by applying such operations finitely many times?

The number 99...99 (having 1997 nines) is written on a blackboard. Each minute,
one number written on the blackboard is factored into two factors and erased, each
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factor is (independently) increased or decreased by 2, and the resulting two numbers
are written. Is it possible that at some point all of the numbers on the blackboard are
equal to 9?7

80. Four congruent right triangles are given. One can cut one of them along the altitude
and repeat the operation several times with the newly obtained triangles. Prove that no
matter how we perform the cuts, we can always find among the triangles two that are
congruent.

81. For an integer n > 4, consider an n-gon inscribed in a circle. Dissect the n-gon into
n — 2 triangles by nonintersecting diagonals. Prove that the sum of the radii of the
incircles of these n — 2 triangles does not depend on the dissection.

Figure 10

(a) (b)

+
+
I
I
I
+

Figure 11

In some cases a semi-invariant will do. A semi-invariant (also known as monovariant)
is a quantity that, although not constant under a specific transformation, keeps increasing (or
decreasing). As such it provides a unidirectional obstruction.

For his solution to the following problem from the 27th International Mathematical
Olympiad, J. Keane, then a member of the US team, was awarded a special prize.

Example. Toeach vertex of aregular pentagon an integer is assigned in such a way that the sum
of all of the five numbers is positive. If three consecutive vertices are assigned the numbers
x,V, z, respectively, and y < 0, then the following operation is allowed: the numbers x, y, z
are replaced by x + y, —y, z + y, respectively. Such an operation is performed repeatedly
as long as at least one of the five numbers is negative. Determine whether this procedure
necessarily comes to an end after a finite number of steps.

Solution. The answer is yes. The key idea of the proof is to construct an integer-valued semi-
invariant whose value decreases when the operation is performed. The existence of such a
semi-invariant will guarantee that the operation can be performed only finitely many times.
Notice that the sum of the five numbers on the pentagon is preserved by the operation, so
it is natural to look at the sum of the absolute values of the five numbers. When the operation
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is performed this quantity decreases by |x| 4+ |z| — |x + y| — |y 4+ z|. Although this expression
is not always positive, it suggests a new choice. The desired semi-invariant should include the
absolute values of pairwise sums as well. Upon testing the new expression and continuing this
idea, we discover in turn that the desired semi-invariant should also include absolute values
of sums of triples and foursomes. At last, with a pentagon numbered v, w, x, y, z and the
semi-invariant defined by

SW,w,x,y,2) = v+ [wl + x| + |yl +z] + [v+w| + |w+x[+ [x + y]
+ly+zl+lz+vi+lv+wtx[+w+x+yl+x+y+2z]
+ly+z+vi+lz+v+wl+v+wtx+yl+Iwt+x+y 42z
+Ix+y+tz+vi+ly+z+v+wl+lz+v+wtx]

we find that the operation reduces the value of S by the simple expression
lz+v+w+x|—lz+v+wH+x+2y|=[s —y|—[s + ¥l

wheres =v+w+x+y+z. Sinces >0andy < 0,weseethat|s —y|—|s+y| > 0,508
has the required property. It follows that the operation can be performed only finitely many
times. (|

Using the semi-invariant we produced a proof based on Fermat’s infinite descent method.
This method will be explained in the Number Theory chapter of this book. Here the emphasis
was on the guess of the semi-invariant. And now some problems.

82. A real number is written in each square of an n x n chessboard. We can perform the
operation of changing all signs of the numbers in a row or a column. Prove that by
performing this operation a finite number of times we can produce a new table for
which the sum of each row or column is positive.

83. Starting with an ordered quadruple of integers, perform repeatedly the operation
@,b,c,d) —> (la—=bl,|b—cl, |c = d|, |d — al).

Prove that after finitely many steps, the quadruple becomes (0, 0, 0, 0).

84. Several positive integers are written on a blackboard. One can erase any two distinct
integers and write their greatest common divisor and least common multiple instead.
Prove that eventually the numbers will stop changing.

85. Consider the integer lattice in the plane, with one pebble placed at the origin. We play
a game in which at each step one pebble is removed from a node of the lattice and
two new pebbles are placed at two neighboring nodes, provided that those nodes are
unoccupied. Prove that at any time there will be a pebble at distance at most 5 from
the origin.
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It is now time to split mathematics into branches. First, algebra. A section on algebraic
identities hones computational skills. It is followed naturally by inequalities. In general, any
inequality can be reduced to the question of finding the minimum of a function. But this is a
highly nontrivial matter, and that makes the subject exciting. We discuss the fact that squares
are nonnegative, the Cauchy-Schwarz inequality, the triangle inequality, the arithmetic mean-
geometric mean inequality, and also Sturm’s method for proving inequalities.

Our treatment of algebra continues with polynomials. We focus on quadratic polynomials,
the relations between zeros and coefficients, the properties of the derivative of a polynomial,
problems about the location of the zeros in the complex plane or on the real axis, and methods
for proving irreducibility of polynomials (such as the Eisenstein criterion). From all special
polynomials we present the most important, the Chebyshev polynomials.

Linear algebra comes next. The first three sections, about operations with matrices,
determinants, and the inverse of a matrix, insist on both the array structure of a matrix and
the ring structure of the set of matrices. They are more elementary, as is the section on
linear systems. The last three sections, about vector spaces and linear transformations, are
more advanced, covering among other things the Cayley-Hamilton Theorem and the Perron-
Frobenius Theorem.

The chapter concludes with a brief incursion into abstract algebra: binary operations,
groups, and rings, really no further than the definition of a group or a ring.

2.1 Identities and Inequalities

2.1.1 Algebraic Identities

The scope of this section is to train algebraic skills. Our idea is to hide behind each problem an
important algebraic identity. We commence with three examples, the first and the last written
by the second author of the book, and the second given at a Soviet Union college entrance
exam and suggested to us by A. Soifer.
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Example. Solve in real numbers the system of equations

Bx +y)(x + 3y)./xy = 14,
(x 4+ y)(x2 + 14xy + y?) = 36.

Solution. By substituting \/x = u, ,/y = v, we obtain the equivalent form
wvBu* + 10uv? 4+ 3v*) = 14,
u® + 15u*v? + 14u’v* +1° = 36.

Here we should recognize elements of the binomial expansion with exponent equal to 6. Based
on this observation we find that

36 +2- 14 = u® + 6udv + 15y 4+ 206V + 15u®v* + 6wy’ +1°

and
36 —2- 14 = ub — 6u’v + 15" — 200>V + 15u>v* — 61 +1°.

Therefore, (u + v)® = 64 and (u — v)® = 8, which implies u +v =2 andu — v = +/2

(recall that u and v have to be positive). Sou =1 + 4 andv=1—Loru=1- */TE

5 and

v=1+ */75 The solutions to the system are

3 3 3 3

o =(>++v2,2=v2) and (x,y)=(=>-v2, = +2). O

2 2 2 2
Example. Given two segments of lengths a and b, construct with a straightedge and a compass
a segment of length v/a* + b*.
Solution. The solution is based on the following version of the Sophie Germain identity:

a* 4+ b* = (a® + V2ab + b*)(a> — N 2ab + b?).

Write

\4/a4+b4=\/\/az-l—«/iab—i-bz-\/az—«/iab—l-bz.

Applying the law of cosines, we can construct segments of lengths Va? £ V2ab + b? using
triangles of sides a and b with the angle between them 135°, respectively, 45°.

On the other hand, given two segments of lengths x, respectively y, we can construct a
segment of length ,/xy (their geometric mean) as the altitude AD in a right triangle ABC
(LA = 90°) with BD = x and CD = y. These two steps combined give the method for
constructing va* + b*. O
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Example. Let x, y, z be distinct real numbers. Prove that

Jx—y+Jy—z+Jz—x #0.

Solution. The solution is based on the identity
a®+ b+ —3abc = (a+ b+ c)(a* + b* + ¢* —ab — be — ca).

This identity arises from computing the circulant determinant

o
I
SR
SIS
SIS

in two ways: first by expanding with Sarrus’ rule, and second by adding up all columns to
the first, factoring (a + b + ¢), and then expanding the remaining determinant. Note that this
identity can also be written as

1
a4+ b+ 3 = 3abe = E(a+b+c)[(a — b2+ b -0+ (c—a)l.

Returning to the problem, let us assume the contrary, and set /x —y = a, J/y —z = b,
7z — x = c. By assumption, a + b + ¢ = 0, and so a® + b> + ¢*> = 3abc. But this implies

O=@—-—N+0—-2+@—x)=3Jx—yJy—zvz—x #0,
since the numbers are distinct. The contradiction we have reached proves that our assumption

is false, and so the sum is nonzero. U

And now the problems.

86. Show that for no positive integer n can both n + 3 and n” + 3n + 3 be perfect cubes.

87. Let A and B be two n x n matrices that commute and such that for some positive
integers p and g, A? =7, and B? = O,. Prove that A + B is invertible, and find its
inverse.

88. Prove that any polynomial with real coefficients that takes only nonnegative values can
be written as the sum of the squares of two polynomials.

5/1+1

89. Prove that for any nonnegative integer n, the number 55 4 5°" + 1 is not prime.

90. Show that for an odd integer n > 5,

(0 ()

is not a prime number.

91. Factor 5'°% — 1 into a product of three integers, each of which is greater than 5'%°.
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92.

93.

9.
9s.

96.

97.

98.

99.

100.

2 Algebra

125 _ 1
Prove that the number ——— is not prime.

55 —1
Let a and b be coprime integers greater than 1. Prove that for n > 0 is a®" + b*"
divisible by a + b.

Prove that any integer can be written as the sum of five perfect cubes.
Prove that
31 1 SREL
< -+ k— 15,
; (k — D5 —k*5 + (k — D% 2 ;( )
Solve in real numbers the equation

Vx—14+Ix+vx+1=0.

Find all triples (x, y, z) of positive integers such that
X +y 420 =3xyz=p,

where p is a prime number greater than 3.

Let a, b, c be distinct positive integers such that ab + bc 4 ca > 3k*> — 1, where k is a
positive integer. Prove that

a4+ b+ > 3(abe + 3k).
Show that the expression
(2 —y2)? + (° — 20 + (7 — y2)’ =37 — y2) (v — zx) (2% — xY)

is a perfect square.

Find all triples (m, n, p) of positive integers such that m 4+ n + p = 2002 and the
system of equations

X b4 Z

——f—Z:m, X—|——=n, ——|——=p

y X zZ 0y X

has at least one solution in nonzero real numbers.

212 x2>0

We now turn to inequalities. The simplest inequality in algebra says that the square of any real
number is nonnegative, and it is equal to zero if and only if the number is zero. We illustrate
how this inequality can be used with an example by the second author of the book.

Example. Find the minimum of the function f : (0, 00)* — R,

fx,y,2) = x5+ y* — (xy)¥*.
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Solution. Rewrite the function as

2
Flroy.2) = @2 =y 42 [(mz/“ - ﬂ -3

1
8>

1
) — ) 71 a 1, ’
(x,v,2) (a a,log 16)

where a € (0, 1) U (1, 00). ]

We now see that the minimum is —3, achieved if and only if

We continue with a problem from the 2001 USA team selection test proposed also by the
second author of the book.

Example. Let (a,),>0 be a sequence of real numbers such that
, 1
any1 > a, + 3 foralln > 0.

Prove that \/a, 5 > a,%_S, foralln > 5.

Solution. 1t suffices to prove that a,s > a2, for all n > 0. Let us write the inequality for five

consecutive indices:
, 1
Ap+1 > an + >
5
1

2
ant2 = Ay g + g,

5 1
ap+3 = an+2 + ga
5 1
An+4 = an_;,_3 + -,
1

5
a >a’, ,+ -
n+5 = Uy4q 5

If we add these up, we obtain

1
2 2 2 2 2
apys — a, = (Cln+1 +a,,+a,.;+ an+4) — (@nt1 + api2 + anpz +ansa) +5- g

1 2 1 2 1 2 1 2
= (an—H - 5) + (an+2 - 5) + (an+3 - 5) + (an+4 — 5) > 0.

The conclusion follows. U

And finally a more challenging problem from the 64th W.L. Putnam Mathematics Com-
petition.
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Example. Let f be a continuous function on the unit square. Prove that

1 1 2 1 1 2
/(/ f(x,y)dx) dx+/ (/ f(x,y)dy) dx
0 0 0 0
1,1 2 1,1
5(/ / f(x,y)dxdy) 4 / / F(x, y)dxdy.
0 0 0 0

Solution. To make this problem as simple as possible, we prove the inequality for a Riemann
sum, and then pass to the limit. Divide the unit square into n> equal squares, then pick a point
(xi, y;) in each such square and define a;; = f(x;, y;),i,j = 1,2,...,n. Written for the
Riemann sum, the inequality becomes

2 2 2
(X ) H(Za) )2 (Ze) (2
nd & — — /! nt | &~ n? |\ &Y
i J J 17 tj

Multiply this by n*, then move everything to one side. After cancellations, the inequality
becomes

(n=1>D a5+ D ajau—m—1) D (aijai+ajia) > 0.
ij ik, j#1 ijk, j £k
Here we have a quadratic function in the g;;’s that should always be nonnegative. In general,
such a quadratic function can be expressed as an algebraic sum of squares, and it is nonnegative
precisely when all squares appear with a positive sign. We are left with the problem of
representing our expression as a sum of squares. To boost your intuition, look at the following

tableau:
(25 B I /A 1)

Apl v vv vve vie v v Uyp
The expression
(aij + an — ai — ai;)’
when expanded gives rise to the following terms:

22 2 2
ai; +ag +a; + ai; + 2aiai + 2aia; — 2aai — 2a;5ak — 2anai — 2aax; -

For a fixed pair (i, j), the term a;; appears in (n — 1)? such expressions. The products 2a;;ay
and 2a;;ay; appear just once, while the products 2a;;a,;, 2a;axj, 2axair, 2ay,axj appear (n —1)
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times (once for each square of the form (i, j), (i, [), (k, j), (k, [)). It follows that the expression
that we are trying to prove is nonnegative is nothing but

2
Z(aij +aw — ai — ag;)”,

ijkl

which is of course nonnegative. This proves the inequality for all Riemann sums of the
function f, and hence for f itself. ([l

101.

102.

103.

104.

10s.

106.

107.

108.

Find min max(a® + b, b*> + a).
a,beR
Prove that for all real numbers x,
2Y 4+ 3 —4 "+ 6 —9F < 1.
Find all positive integers n for which the equation
nx*+4x +3=0

has a real root.

Find all triples (x, y, z) of real numbers that are solutions to the system of equations
4x? _
i1 0
4y?
=2,
4y 4+ 1
4z*
—_— =X
422+ 1

Find the minimum of

1 1 1
o8 ( ) z) Hloes ( ) z) Frotloss ( ) z) |

overall xi, xp, ..., x, € (3. 1).
Let a and b be real numbers such that

9a* 4 8ab + 7b* < 6.
Prove that 7a + 5b + 12ab < 9.

Letay, as, ..., a, an be real numbers such that a; +a, + - - - +a, > n> andalz—i—a%—i—
---+arzl <n?+4 1. Prove thatn — 1 < a; < n + 1 for all k.

Find all pairs (x, y) of real numbers that are solutions to the system

1
x4+2x3—y=—z+«/§,

1
y4+2y3—x=—z—«/§.
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109. Let n be an even positive integer. Prove that for any real number x there are at least
2"/2 choices of the signs + and — such that

1
X" 4+ x < 5

2.1.3 The Cauchy-Schwarz Inequality

A direct application of the discussion in the previous section is the proof of the Cauchy-
Schwarz (or Cauchy-Bunyakovski-Schwarz) inequality

n n n 2
S @S 8 (z b) |
k=1 k=1 k=1

where the equality holds if and only if the a;’s and the b;’s are proportional. The expression

n n n 2
Z a,f Z b/% — (Z akbk)
k=1 k=1 k=1

is a quadratic function in the @;’s and b;’s. For it to have only nonnegative values, it should
be a sum of squares. And this is true by the Lagrange identity

n n n 2
> D b - (Z akbk) = > (aiby — axb;)’.
k=1 k=1 k=1 i<k

Sadly, this proof works only in the finite-dimensional case, while the Cauchy-Schwarz
inequality is true in far more generality, such as for square integrable functions. Its cor-
rect framework is that of a real or complex vector space, which could be finite or infinite
dimensional, endowed with an inner product (-, -).

By definition, an inner product is subject to the following conditions:

@) (x, x) > 0, with equality if and only if x = 0,

@ii) (x, y) = (y, x), for any vectors x, y (here the bar stands for complex conjugation if
the vector space is complex),

@i1) (Ax1 + Azxz, ¥) = A{x1, ¥) + Ao(x2, y), for any vectors x1, xo, y and scalars X
and A,.

The quantity ||x|| = +/(x, x) is called the norm of x. Examples of inner product spaces
are R” with the usual dot product, C" with the inner product

(21,22, oy Z0), W1, Wa, oo, W) = ZiWT + 202 + ...+ 2, W,

but also the space of square integrable functions on an interval [a, ] with the inner product
b —
fo)= [ rogwar
a

The Cauchy-Schwarz inequality. Let x, y be two vectors. Then

Xl Iyl = 1{x, vl

with equality if and only if the vectors x and y are parallel and point in the same direction.
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Proof. We have

0 < (lyllx = llxlly, Iyle = llxllyy = 20221y 1% = Il - 1y ICx, p) + (s x0),

hence 2||x|| - [yl = ({x,y) + (y,x)). Yet another trick: rotate y by (x, y)/|(x, y)|. The
left-hand side does not change, but because of property (ii) the right-hand side becomes
\(x_1y)|(<x’ y){x, ¥) + (x, y){x, ¥)), which is the same as 2|(x, y)|. It follows that

el Iyl = 1{x, ),

which is the Cauchy-Schwarz inequality in its full generality. In our sequence of deductions,
the only inequality that showed up holds with equality precisely when the vectors are parallel
and point in the same direction. t

As an example, if f and g are two complex-valued continuous functions on the interval
[a, b], or more generally two square integrable functions, then

b b
/ FOPd / g(t)dt =

Let us turn to more elementary problems.

2

b
/ ftgndt

Example. Find the maximum of the function f(x, y, z) = 5x — 6y + 7z on the ellipsoid
2x2 4+ 3y* +472 = 1.

Solution. For a point (x, y, z) on the ellipsoid,

2
(f(x»)’»Z))2=(5X—6y+7Z)2= \/E —iﬁy+222)

(G v o

< ((%)2 + (—%)2 + (;)z) ((\/Ex)2 + (V32 + (2z)2)

147 b 147
=—(2 +3y* +47%) = —.

4
Hence the maximum of f is +/147/2, reached at the point (x, y, z) on the ellipsoid for which
xz>0y<0andxyz—%:—7§.2. O

The next problem was on the short list of the 1993 International Mathematical Olympiad,
being proposed by the second author of the book.

Example. Prove that

a b c d 2
+ + + > =,
b+2c+3d c¢c+2d+3a b+2a+3b a+2b+3c " 3

foralla,b,c,d > 0.
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Solution. Denote by E the expression on the left. Then

4(ab+ ac +ad + bc + bd + cd)E
= (a(b+2c+3d)+b(c+2d+3a)+ c(d+2a+3b)+d(a+2b+ 3c))

a b c d
X + + +
(b+2c+3s c+2d+3a  b+2a+3b a+2b+3c)

>(a+b+c+d)>

where the last inequality is a well-disguised Cauchy-Schwarz. Finally,
3(a+b+c+d)? > 8ab+ac+ad+ bc +bd + cd),
because it reduces to
(@=b>+@—c’+@-d?+0-0+0b-d’+(—d)’=0.

Combining these two and cancelling the factor ab + ac + ad + bc 4 bd + cd, we obtain the
inequality from the statement. (|

And now a list of problems, all of which are to be solved using the Cauchy-Schwarz
inequality.

110. If a, b, c are positive numbers, prove that

9a’b*c* < (a*b + b*c + c2a)(ab® + be* + ca?).
111. Ifa; +ay + --- +a, = n prove thataf + a3 + --- +a* > n.
112. Letay, as, ..., a, be distinct real numbers. Find the maximum of

105 () + A2050) + - -+ + Aplsn)

over all permutations of the set {1, 2, ..., n}.
113. Let fi, f>,..., f, be positive real numbers. Prove that for any real numbers
X1, X2, ..., Xy, the quantity

B (fixi + fraxa + -+ fuxn)?

fixt + x5+ + fux;
TR fit ot L

is nonnegative.
114. Find all positive integers n, k1, ..., k, such that k; + --- + k, = 5n — 4 and

L
kl kn_‘
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115. Prove that the finite sequence ay, ay, . . ., a, of positive real numbers is a geometric
progression if and only if

(apar +ayay + -+ ap_ya,)* = (@} +al +---+a>_ )@l +a;+---+ad).

116. Let P(x) be a polynomial with positive real coefficients. Prove that

VP(@)P(b) > P(Vab),

for all positive real numbers a and b.
117. Consider the real numbers xy > x; > xo > --- > x,. Prove that

1 1 1
X0 + = +"'+—an+2n-
X0 — X1 X1 — X2 Xn—1 — Xp

When does equality hold?

118. Prove that

sina cos’a

. > sec(a — b),
sin b cosb

foralla,b € (0, %)

119. Prove that

1 N 1 N 1 N 1 >(a+b+c+€/abc)2
a+b b+c c+a 2¥abc ~ (@+b)(b+c)c+a)

forall a, b, c > 0.

2.1.4 The Triangle Inequality

In its most general form, the triangle inequality states that in a metric space X the distance
function § satisfies

d(x,y) <dé(x,z)+68(z,y), forany x, y, z € X.

An equivalent form is
16(x, y) = (v, )| = 8(x, 2).

Here are some familiar examples of distance functions: the distance between two real or
complex numbers as the absolute value of their difference, the distance between two vectors
in n-dimensional Euclidean space as the length of their difference ||v — w||, the distance
between two matrices as the norm of their difference, the distance between two continuous
functions on the same interval as the supremum of the absolute value of their difference. In
all these cases the triangle inequality holds.

Let us see how the triangle inequality can be used to solve a problem from T.B. Soulami’s
book Les olympiades de mathématiques: Réflexes et stratégies (Ellipses, 1999).
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Example. For positive numbers a, b, ¢ prove the inequality

Va? —ab+ b2+ b2 —be+ 2 > a2 +ac+ 2.

Solution. The inequality suggests the following geometric construction. With the same
origin O, draw segments O A, OB, and OC of lengths a, b, respectively ¢, such that OB
makes 60° angles with O A and OC (see Figure 12).

The law of cosines in the triangles OAB, OBC, and OAC gives AB?> = a*> — ab + b?,
BC? = b> — bc + ¢?, and AC? = a? + ac + ¢*. Plugging these formulas into the triangle

inequality AB + BC > AC produces the inequality from the statement. g
C \\\\ - B
c VAR R R
b - N
60° Tl \\ N
60° N
0 LA
a
Figure 12

Example. Let P(x) be a polynomial whose coefficients lie in the interval [1, 2], and let Q(x)
and R(x) be two nonconstant polynomials such that P(x) = Q(x)R(x), with Q(x) having
the dominant coefficient equal to 1. Prove that |Q(3)| > 1.

Solution. Let P(x) = a,x" +a,_1x"~' +--- 4+ ay. We claim that the zeros of P (x) lie in the
union of the half-plane Re z = 0 and the disk |z| < 2.

Indeed, suppose that P(x) has a zero z such that Re, z > 0 and |z| = 2. From P(z) =0,
we deduce that

1 3

_ ) _
an?" + ap17" = —a,27" " —a, 37" — - —ay.

Dividing through by z”, which is not equal to 0, we obtain

Note that Re z > 0 implies that Re % > (. Hence

a1 a,_2 a,_3 ap
l1<a, <Rela,+—= —Re | — "2 — ”3 ...
z z Z "

ap—2 ap—3 aop
oz Iz |z
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where for the last inequality we used the triangle inequality. Because the ¢;’s are in the interval
[1, 2], this is strictly less than

20z|7?

20 2A 4 el T F 2 A ) =
1 — |z

The last quantity must therefore be greater than 1. But this cannot happen if |z| > 2, because

the inequality reduces to (l 1) (L + 1) > 0, impossible. This proves the claim.

lzl Iz
Returning to the problem, Q(x) = (x —z)(x —z2) - - - (x — 2¢), where 7y, 2o, ..., Z are
some of the zeros of P(x). Then

10 =13—z1]-13—22] -3 — zl.

If Rez; < 0, then |3 — z;| > 0. On the other hand, if |z;|] < 2, then by the triangle
inequality |3 — z;| > 3 — |z;| > 1. Hence |Q(3)| is a product of terms greater than 1, and the
conclusion follows. H

More applications follow.

120. Let a, b, ¢ be the side lengths of a triangle with the property that for any positive
integer n, the numbers a”, b", ¢" can also be the side lengths of a triangle. Prove that
the triangle is necessarily isosceles.

121. Given the vectors 7, Z), 7 in the plane, show that
— — — —
IGIN+Nb1+ICI+I1d+b+TCI=Ilad+bl+Iad+TClI+Ib+7I

122. Let P(z) be a polynomial with real coefficients whose roots can be covered by a disk of
radius R. Prove that for any real number k, the roots of the polynomial n P (z) —k P’ (z)
can be covered by a disk of radius R + |k|, where n is the degree of P(z), and P'(z) is
the derivative.

123. Prove that the positive real numbers a, b, ¢ are the side lengths of a triangle if and only
if

a>+b*+ % < 2\/a2b2 + b2¢c? + 242,
124. Let ABCD be a convex cyclic quadrilateral. Prove that

|AB — CD| +|AD — BC| > 2|AC — BD|.

125. Let Vi, Vo, ..., V,, and Wy, W,, ..., W, be isometries of R" (m, n positive integers).
Assume that for all x with ||x|| <1, ||[Vix — Wix|| < 1,i = 1,2,..., m. Prove that

(1) (1)

=m,

for all x with ||x|| < 1.
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126. Given an equilateral triangle ABC and a point P that does not lie on the circumcircle
of ABC, show that one can construct a triangle with sides the segments P A, P B, and
PC. If P lies on the circumcircle, show that one of these segments is equal to the sum
of the other two.

127. Let M be a point in the plane of the triangle A BC whose centroid is G. Prove that

MA>. BC+MB> - AC+MC?-AB >3MG -AB-BC-CA.

2.1.5 The Arithmetic Mean-Geometric Mean Inequality

Jensen’s inequality, which will be discussed in the section about convex functions, states that
if f is a real-valued concave function, then

Suxy +Aoxy + -+ Ax,) = A f () A2 f(x2) + -+ A f (X),

for any xi, x3, ..., X, in the domain of f and for any positive weights Ay, A2, ..., A, with
A+ A2+ -+ &, = 1. Moreover, if the function is nowhere linear (that is, if it is strictly
concave) and the numbers A, Ay, ..., A, are nonzero, then equality holds if and only if
X1 = Xp =+ = Xy,.

Applying this to the concave function f(x) = Inx, the positive numbers x;, xo, ..., X,
and the weights A} = Ay =--- =, = %, we obtain

X1+x4+ -4+ x, - Inx; +Inx, +---+1Inx,

In

n n
Exponentiation yields the following inequality.

The arithmetic mean-geometric mean inequality. Let xi, x5, ..., x, be nonnegative real

numbers. Then
X1 +X2+"'+Xn

n

= X1X2 Xy,

with equality if and only if all numbers are equal.

Proof. We will call this inequality AM-GM for short. We give it an alternative proof using
derivatives, a proof by induction on n. For n = 2 the inequality is equivalent to the obvious
(Var — /az)* > 0. Next, assume that the inequality holds for any n — 1 positive numbers,
meaning that

Xp+ X2+ X

n—1

> "YXix e Xpy,

with equality only when x; = x, = - - - = x,,_;. To show that the same is true for n numbers,
consider the function f : (0, c0) — R,

Xi+xX2+- 0+ X+ x

fx) = — /X1X2 X1 X

n

To find the minimum of this function we need the critical points. The derivative of f is

1_
XXy Xt 1, x|

1
f/(x):r—l——xn :—(xl_%— ”/xlx2"'xn—l)-

n n
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Setting this equal to zero, we find the unique critical point x = "J/xx; - - - X, since in this
1 . _1.. .
case x' 7 = »/x1x2---%x,_1. Moreover, the function x'~ is increasing on (0, co); hence

f'(x) <Oforx < »Y/x1x3---x,_1,and f'(x) > 0 forx > "V/x;x;---x,_;. We find that
f has a global minimum at x = ")/x1x; - - - x,_1, where it takes the value

[ xx X)) = e e e B AL R
n

—n _xl_xZ .. ._xn71 . "(”*l)/_xl_xZ .. .xn71
X1+ X2+ F X+ Y XXX

n
— "VX1Xy X
X+ X2+ X — (= 1) XX X

n

By the induction hypothesis, this minimum is nonnegative, and is equal to O if and only if

X1 = X, = --- = x,_1. We conclude that f(x,) > 0 with equality if and only if x; = x, =
<o =x,_1 and x, = "J/x1x3 - x,_1 = x1. This completes the induction. O

We apply the AM-GM inequality to solve two problems composed by the second author
of the book.

Example. Find the global minimum of the function f : R> — R,

o) =30 @ 43T -,

Solution. The expression
3f(x,y) + 1 =324 3% 1 3.3

is of the form a® + b* + ¢* — 3abc, where a = /3217, b = +/3*+2 and ¢ = 1, all of which
are positive. By the AM-GM inequality, this expression is nonnegative. It is equal to zero
only when a = b = ¢, that is, when 2x 4+ y = x + 2y = 0. We conclude that the minimum
of fis f(0,0) = —3. O

Example. Leta, b, c, d be positive real numbers with abcd = 1. Prove that

a b c d
+ + + > 1
b+c+d+1 c+d+a—+1 d4+a+b+1 a+b+c+1

Solution. A first idea is to homogenize this inequality, and for that we replace the 1 in each
denominator by ~/abcd, transforming the inequality into

a b c
+ +
b+c+d+~Jabed c¢+d+a+ Jabed d+a+ b+ Jabed
d

+ ; > 1.
a+b+c+ ~abced
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Then we apply the AM-GM inequality to the last term in each denominator to obtain the
stronger inequality
4a 4b 4c 4d
+ + + > 1,
a+5b+c+d) b+5(c+d+a) c+5(d+a+b) d+5a+b+c)
which we proceed to prove.

In order to simplify computations, it is better to denote the four denominators by 16x,
16y, 16z, 16w, respectively. Thena +b+c+d = x +y 4+ z+ w, and so 4a + 16x =
4b + 16y = 4c 4+ 16z = 4d + 16w = 5(x + y + z + w). The inequality becomes

—1llx+5(+z+w) —1lly+5cC+w+x) —llz4+5w+x+y)
+ +
16x 16y 16z
—1Iw+5x+y+2) 1
16w -

or

Wz W X W X X z
—4-11+5(X+—+—+—+—+—+—+—+X+—+Z+—) > 16.
X X x y y y z z Z w w w
And this follows by applying the AM-GM inequality to the twelve summands in the paren-
theses. g

We continue with a third example, which is an problem of A. Basyoni that was given
in 2015 at a preliminary selection test for the team that represented the United States at the
International Mathematical Olympiad in 2016.

Example. Let x, y, z be real numbers satisfying x* + y* + z* 4+ xyz = 4. Show that
y+z

2—x> .
2

Solution. We have selected the problem for the book because of this elegant solution based
on the AM-GM inequality found by the member of the Canadian team Zh.Q. (Alex) Song. It

suffices to show that

x> y+z

This inequality and the fact that the square root is well defined follow simultaneously if we
prove that

4 4 4 1 2
ot ot 1 w2
8 8 8 8 2
x4+z4+z4 +1>xz2
8 8 8 8§~ 2
3x* 3 3x2

|
T
v
|
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Then apply the power-mean inequality:

4 4 4
y'+z - y+z ’
2 - 2

to write

4 4 4
Wt 3(yen)t
4 4 —2 2

Now add the four inequalities and use the relation from the statement to obtain

=3 k)]

Finally, noticing that the AM-GM inequality implies

S (e T) =00

we obtain

and the conclusion follows. O

For completeness let us prove this particular case of the power mean inequality:

4 4 2 2\ 2 272 4
yi+z - y +z - y+z _ y+z .
2 - 2 - 2 2

It becomes clear after expanding the square that the first inequality is a consequence of the
AM-GM inequality. Taking the square root of the second inequality, we recognize that it is
of the same type. So we are done.
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Try your hand at the following problems.

128.
129.

130.

131.

132.

133.

134.

13s.

136.

Show that all real roots of the polynomial P(x) = x> — 10x + 35 are negative.

Find all real numbers that satisfy

L1
X254 —.2F = 4.
X

Letay, ay, ..., a, and by, by, ..., b, be nonnegative numbers. Show that
(@az -~ @)™ + (biby -+ b)'" < (@1 + b)) (az +by) - (ay + b)) "
Let a, b, ¢ be the side lengths of a triangle with semiperimeter 1. Prove that
28
1 b+b —abc < —.
<ab—+bc+ca—a c_27

Which number is larger,

On a sphere of radius 1 are given four points A, B, C, D such that
29
AB‘AC-AD-BC-BD-CD=§.

Prove that the tetrahedron ABC D is regular.

Prove that

2 2

2 _ 2 2 _ 2
2x2 41 2y2+1 27241

for all real numbers x, y, z.

Let a, a, ..., a, be positive real numbers such that a; +a, + --- + a, < 1. Prove
that
ajay---a,(1 — (a1 +ax +---+ay)) - 1
(a+a+-+a)l—a)d—a)---(1—a,) ~— "+t
Consider the positive real numbers x1, xa, ..., x, with x;x; - - - x, = 1. Prove that

1 1 1

+ +-- 4+ — <1
n—14+x n—14x n—1+x,
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2.1.6 Sturm’s Principle

In this section we present a method for proving inequalities that is based on real analysis. It
is based on a principle attributed to R. Sturm, phrased as follows.

Sturm’s principle. Given a function f defined on a set M and a point xy € M, if
(i) f has a maximum (minimum) on M, and

(ii) if no other point x in M is a maximum (minimum) of f,

then xg is the maximum (minimum) of f.

But how to decide whether the function f has a maximum or a minimum? Two results
from real analysis come in handy.

Theorem. A continuous function on a compact set always attains its extrema.

Theorem. A closed and bounded subset of R" is compact.

Let us see how Sturm’s principle can be applied to a problem from the first Balkan
Mathematical Olympiad in 1984.

Example. Letay, oy, ..., a, be positive real numbers, n > 2, such that o) + o+ - -+, = 1.
Prove that
o o oy, n
+ +- 4+ > .
l+a+-+a, l+o+---+a, l+ai+-+a, — 2n—1

Solution. Rewrite the inequality as

(03] i (0%) n i (67 . n
2—o; 2—o 2—a, 2n—-1’

and then define the function

o (0%) oy

flo, 00, ...,0p) = 2w +2—a2 +---+2_an.
As said in the statement, this function is defined on the subset of R” consisting of points whose
coordinates are positive and add up to 1. We would like to show that on this set f is greater
than or equal to 3" .

Does f have a minimum? The domain of f is bounded but is not closed, being the interior
of a tetrahedron. We can enlarge it, though, by adding the boundary, to the set

M= {(a1,02,...,0,) |y +ar+--+a,=1, 0, >0, i=1,2,...,n}.

We now know that f has a minimum on M.

A look at the original inequality suggests that the minimum is attained when all the «;’s
are equal. So let us choose a point («y, s, ..., ) for which «; # o for some indices i, j.
Assume that «; < o and let us see what happens if we substitute «; + x for o; and or; — x
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for aj, with 0 < x < «; — o;. In the defining expression of f, only the ith and jth terms
change. Moreover,

o o; o +x aj —X

2—ozi+2—ozj 2—a;i—x 2—aj+x

. 2x(aj —a; —x)(4 —a; —aj) -
C-a)2—-ap)@2—ao; —x)2—a; —x)

so on moving the numbers closer, the value of f decreases. It follows that the point that we

picked was not a minimum. Hence the only possible minimum is (1 | 1), in which

Z, ;, c e ey E
case the value of f is 5. This proves the inequality. g

0,

However, in most situations, as is the case with this problem, we can bypass the use of
real analysis and argue as follows. If the a;’s were not all equal, then one of them must be
less than % and one of them must be greater. Take these two numbers and move them closer
until one of them reaches % Then stop and choose another pair. Continue the algorithm until
all numbers become % At this very moment, the value of the expression is

1 1\ n
—(2-- ‘n = .
n n 2n —1

Since during the process the value of the expression kept decreasing, initially it must have
been greater than or equal to 5. This proves the inequality.

Letus summarize the lastidea. We want to maximize (or minimize) an n-variable function,
and we have a candidate for the extremum. If we can move the variables one by one toward
the maximum without decreasing (respectively, increasing) the value of the function, than the
candidate is indeed the desired extremum. This approach is more elementary but can be more
time consuming than the application of the principle itself.

Let us revisit the AM-GM inequality with a proof using Sturm’s principle.

The arithmetic mean-geometric mean inequality. Let x;, x5, ..., x, be nonnegative real
numbers. Then

Xi+x2+ -+ xy,
n

> YxX1X2 0t Xy
with equality if and only if x; = xp = --- = x,,.

Proof. The inequality is homogeneous in the variables, so the general case follows if we check
the inequality for a fixed value of the sum of the numbers, say x; + x, + --- + x, = 1. This
amounts to checking that /xx; - X, < % if x; +x, +--- 4+ x, = 1 with equality only
when x; = x, = --- = x,,, and this is equivalent to checking x;x, - - - x,, < % with equality
as specified.

The set

K={(x,x,....,x) CR"|[x; >0, x; +x2+---+x, =1}

contains all its limit points, so it is closed. It also lies in the hypercube [0, 1]" so it is bounded,
thus it is compact. The function

K —>R, f(x,x2,...,%,) =X1X2-Xy,
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is continuous, being a polynomial, so it attains its maximum. This maximum is not attained
at a point where not all x; are equal, because if x; < x; and we replace x; by x; + ¢ and x;

by x; — &, where ¢ = xkng , then the value of f increases to

H xi(xj +8)()Ck —8) = H xi(xjxk +8(Xk —Xj) +82)

i#j.k i#j.k
= HXi(Xij+82)=f(XI,x2,"',.xn)+82H.xl'.
i#j.k i#j.k
Thus the only candidate for the maximum is (%, %, cee %) and in this case the inequality
holds with equality. U]

You can find more applications of Sturm’s principle below.

137. Leta, b, ¢ be nonnegative real numbers such that a + b + ¢ = 1. Prove that
4(ab + bc + ac) — 9abc < 1.
138. Let x1, x2, ..., x,, n > 2, be positive numbers such that

Xi+ x4t x, =1L

1 1 1
(1+—) (1+—)-.-(1+—) > (n+ D™
X1 X2 Xn

139. Prove that a necessary and sufficient condition that a triangle inscribed in an ellipse
have maximum area is that its centroid coincide with the center of the ellipse.

Prove that

140. Letn > 2 be an integer. A convex n-gon of area 1 is inscribed in a circle. What is the
minimum that the radius of the circle can be?

141. Leta,b,c > 0,a + b + ¢ = 1. Prove that
7
0 <ab+ bc+ ac —2abc < >

142. Let xy, x2, ..., x, be n real numbers such that 0 < x; < %, for 1 < j < n. Prove the
inequality

Hx.,' H(l — x.,')
j=1 j=1

n n-

> x; > a—x)
j=1 j=1
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143. Leta, b, c, and d be nonnegative numbers such thata < 1,a+b <5,a+b+c < 14,
a—+ b+ c+d < 30. Prove that

Va + b+ Jc++d < 10.

144. What is the maximal value of the expression E x;x;jif xi, x5, ..., x, are nonnegative
i<j

integers whose sum is equal to m?

145. Given the n x n array (a;;);; with a;; = i + j — 1, what is the smallest product of n
elements of the array provided that no two lie on the same row or column?

146. Given a positive integer n, find the minimum value of

R
Xt+x+---+x,

subject to the condition that xy, x5, ..., x, be distinct positive integers.

2.1.7 Other Inequalities

We conclude with a section for the inequalities aficionado. Behind each problem hides a
famous inequality.

147. If x and y are positive real numbers, show that x¥ + y* > 1.

148. Prove that for all a, b, ¢ > 0,
@ —a?>+3)B° =b*+3) S =*+3)>(a+b+c).

149. Assume that all the zeros of the polynomial P(x) = x" + ax"' 4+ ... 4 a, are real
and positive. Show that if there exist | < m < p < n such thata,, = (—1)" (;’1 ) and
a, = (—I)P(Z), then P(x) = (x — )".

150. Letn > 2 be an integer, and let xq, x5, . . ., X, be positive numbers with the sum equal
to 1. Prove that
. 1 (n—x;
1+—) > .
H( +Xi)_H(1—Xi)
i=1 i=1
151. Letay, as, ..., a,, by, b, ..., b, be real numbers such that

(al+a3+---+a>—1)BS +b5+---+b>— 1) > (a1b) + azhy + - - - + a,b, — )%
Prove thata + a3+ ---+a2 > land b} + b3 + -+ + b2 > 1.
152. Leta, b, ¢, d be positive numbers such that abc = 1. Prove that

1 1 1
a’(b+c) + b3(c +a) + c3(a +b)

3
> .
-2
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2.2 Polynomials

2.2.1 A Warmup in One-Variable Polynomials

A polynomial is a sum of the form
P(x) = apx" 4 ap_1x" ' 4+ - + ay,

where x is the variable, and a,, a,_1, ..., ap are constant coefficients. If a, # 0, the num-
ber n is called the degree, denoted by deg(P(x)). If a, = 1, the polynomial is called
monic. The sets, which, in fact, are rings, of polynomials with integer, rational, real, or
complex coefficients are denoted, respectively, by Z[x], Q[x], R[x], and C[x]. A number r
such that P(r) = 0 is called a zero of P(x), or a root of the equation P(x) = 0. By the
Gauss-d’ Alembert theorem, also called the fundamental theorem of algebra, every noncon-
stant polynomial with complex coefficients has at least one complex zero. Consequently, the
number of zeros of a polynomial equals the degree, multiplicities counted. For a number «,
P(a) = a0 + a,_ 12"~ + - - 4 ag is called the value of the polynomial at o.

We begin the section on polynomials with an old problem from the 1943 competition of
the Mathematics Gazette, Bucharest, proposed by Gh. Buicliu.

Example. Verify the equality

J20 4 14v2 420 - 14v2 = 4.

Solution. Apparently, this problem has nothing to do with polynomials. But let us denote the
complicated irrational expression by x and analyze its properties. Because of the cube roots,
it becomes natural to raise x to the third power:

x> =20+ 14v2 420 — 142
3 3 3
+ 3\/(20 + 144/2)(20 — 144/2) (\/20 + 1442 + \/20 ~ 14&)
= 40 + 3x+/400 — 392 = 40 + 6x.

And now we see that x satisfies the polynomial equation
x? —6x —40 = 0.

We have already been told that 4 is a root of this equation. The other two roots are complex,
and hence x can only equal 4, the desired answer. g

Of course, one can also recognize the quantities under the cube roots to be the cubes of
2+ «/5 and 2 — \/5, but that is just a lucky strike.

The second example is a problem from the Russian Journal Kvant (Quantum), proposed
by A. Alexeev.
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Example. Prove that for every odd positive integer 7, there is a constant ¢, such that

tanx + tan (x + Z) + - + tan (x T (n—nl)n)

:Cn,

T (n—m
tanx tan (x 4+ X) - - tan (x + T)
for all x for which the denominator is nonzero. Find the value of ¢,,.

Solution. Since the tangent function is periodic with period 7, it suffices to look at x € [0, ].
Consider the function f : [0, 7] — R,

tanx + tan (x +Z) + - + tan (x i (n—nl)n)

fx) =
tanx tan (x 4+ ) - - tan (x + @)
Denote tanx = & and tan ]% =,k =0,1,...n — 1. Then the numerator and the
denominator are of the form
P +1 +1,_
1(§)=$+§ 1+__'+5 1
o) 1 —&n =&,
P (&) _t. E+n 4t
o) 1 —&n 1 =&,

where Py (§), P2(§), Q(&) are polynomials, and Q(§) = (1 —&§1)(1 —&8) --- (1 = &2,1).
The polynomials P;(§), P»(§) have nth degree. Because of the fact that n is odd, and of
the trigonometric identity tan(;wr — x) = — tan x, the roots of P;(§) mustbe 0, ¢, t5, ..., t,_1.
Of course these are also the roots of P,(&). It follows that one of the polynomials is a constant
multiple of the other. This proves the existence of the constant c,,.
To find c,, note that it is equal to the ratio of the dominant coefficient of the polynomials
P1(€) and P,(&). In the case of the first polynomial, this coefficient is

b4 2 - D n=
tan — tan — - - - tan u = (—I)Tln (See Problem 207).
n n
For the second polynomial this number is equal to 1. Hence ¢, = (—1) . U

And now the problems.

153. Find all solutions to the equation
(x + D(x +2)(x +3)*(x +4)(x +5) = 360.
154. Solve the polynomial equation

- T+2V)x+V5+1=0.



155.

156.

157.

158.

159.

160.

161.
162.

163.

164.
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Let a, b, ¢ be real numbers. Prove that three roots of the equation

b+c¢c c¢c+a a+b
+ + =3
x—a x—b x-—c

are real.

Find all polynomials satisfying the functional equation

xx+DHPx)=x—-10)P(x +1).

Letn > 1 be an integer and x, ay, a,, . . ., a, be distinct real numbers. Show that
(x —a)(x —az) -+ (x —ay) (x —a))(x —az)---(x —ay,)
(a1 —a)(ar —az) -+ (a1 —ay) (a2 —a))(ax—az) - (a2 — ay)
x—a)x—a) - (x —a,_
T ( 1)( 2) o ( 1) _ L
(an —a)(ap —az) -+ - (an — an—1)
Let P(x) be a polynomial of odd degree with real coefficients. Show that the equation

P(P(x)) = Ohas at least as many real roots as the equation P (x) = 0, counted without
multiplicities.

Let P(x) = x> 4+ 2007x + 1. Prove that for every positive integer n, P (x) = 0 has
at least one real root, where P denotes P composed with itself n times.

Determine all polynomials P (x) with real coefficients for which there exists a positive
integer n such that for all x,

P(x—i—l)—i-P( —l)=2P(x).
n n

Find a polynomial with integer coefficients that has the zero +/2 4 v/3.
Let P(x) be a polynomial with real coefficients that satisfies the functional equation
x—DPx+2)=x+1)P(x—1)+2, forallx € R.

Compute P (—1989).

Consider the polynomial with real coefficients P (x) = x% + ax’ 4+ bx* 4+ cx + bx*> +
ax + 1, and let xq, x,, ..., xg be its zeros. Prove that

6
[[ai+1D=@a-0o’
k=1

Let P(z) = (z—z1)(z —22) - - (z — z,) with |z;] > 1,i = 1,2, ..., n. Prove that if
0 < r < 1, then for any z, with |z] = 1,

7eal < (55)
“\1+4+r)

P(rz)
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165. Let P(x) = x* + ax® 4+ bx?* + cx +d and Q(x) = x> + px + g be two polynomials
with real coefficients. Suppose that there exists an interval (r, s) of length greater than
2 such that both P(x) and Q(x) are negative for x € (r, s) and both are positive for
Xx < rorx > s. Show that there is a real number x( such that P(xy) < Q(xy).

166. Let P(x) be a polynomial of degree n. Knowing that

k
Pk)=——,%k=0,1,...,n,
k+1

find P(m) form > n.

167. Consider the polynomials with complex coefficients
Px)=x"4+ax"""+-- +a,
with zeros x1, x», ..., x, and

Q(x) =x"+bx"'+...+b,

with zeros xlz, x22, AU x,%. Prove thatifa; + a3 +as+--- anda, + a4 +ag + - - - are
both real numbers, then sois b; + b, +---+ b,,.

168. Let P(x) be a polynomial with complex coefficients. Prove that P (x) is an even func-
tion if and only if there exists a polynomial Q(x) with complex coefficients satisfying

P(x) = Q(x)Q(=x).

2.2.2 Polynomials in Several Variables

Let us switched to polynomials in several variables. The first example was published by the
first author in Mathematical Reflections.

Example. Given that the real numbers x, y, z satisfy x + y + z = 0 and

¥4 v 7

2x2+yz+2y2+xz+2z2+xy -

determine, with proof, all possible values of x* 4+ y* 4 z*.

Solution. First note that x, y, z have to be distinct, or else one of the denominators will be
zero. We have

24 yz=x2 4 x4 yz=x -G+ Dx+yz=(x—y)(x —2).
Similarly 2y? + xz = (y — z)(y — x) and 2z> + xy = (z — x)(z — y). Hence the second
equation from the statement can be written as
et 4 4
+ + =
x=e=—x) G=yO-2 C=-x)(y—-2)

’
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which gives the following equality
Hy-+ye-n+da -y =@ -0 -9E-x).

Viewing the left-hand side as a polynomial in x, the zeros of the polynomial are y and z, and
its coefficients are divisible by y — z. Hence there is a quadratic homogeneous symmetric
polynomial Q(x, y, z) such that

Hy-)+Hy -0+ -y == - 2DE -0, Y, 2).

Write Q(x, y,2) = a(x? + y*> + z%) + B(xy + xz + yz). Equating the coefficients of x* on
both sides gives @ = —1. Equating the coefficients of x*y? on both sides gives 0 = —1 — 8,
hence B = —1. We conclude that Q(x, y, z) = —(x> + y> + 2> + xy + xz + yz). Hence

(=Y = D@ =0+ ¥ +a +xy +az+y7) =~ =N - D@ - ).
Given that (x + y + z)> = 0, we have x? + y? + 72 = —2xy — 2xz — 2yz, and we obtain
xy+xz+yz=-—1,

or
2y 42 =2.
Then
1= (xy +xz+y2)° =x>y" +x°2° + y°2> + 2xyz(x + y + 2) = x°y* + x°2> + y*2%,
and hence
A A = P+ D) =20+ 2P D) =4 -2 =2,
We conclude that the answer to the question is 2. O
We continue with problems left to the reader.

169. Given the polynomial P(x, y, z) prove that the polynomial

Ox,y,2)=Px,y,2) +P(y,z,x)+ P(z,x,y)
_P(X9Z’y)_P(y’xaz)_P(Z9y9x)

is divisible by (x — y)(y — z)(z — x).
170. Let x, y, z be positive integers greater than 1. Prove that the expression
x+y+2’ —(—x+y+2’-@-y+2 -G +y-2°

is the product of seven (not necessarily distinct) integers each of which is greater than
one.
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171.

172.

173.

174.

175.

176.

177.

2 Algebra

Factor completely the expression
C+y+2 = (x+y+2’ - —y+2° = (x+y—2)°.
Factor the expression
E=a’(b—c)+b*(c—a)+ca—-b).

What conditions should the real numbers a, b, c, d satisfy in order for the equation

x—-Dbx—-c)x—d) kx—-—ax-cx—-d) (x—a)(x—->b)(x—4d)

(a—b)la—c)la—d) b—a)b—c)(b—4d) (c—a)(c—=b)(c—4d)
(x —a)(x —b)(x —¢)
(d—a)(d—b)(d —c)

= abcd

to admit real solutions.

Is there a polynomial P(x, y, z) with integer coefficients such that P(x, y, z) and
X+ «3/5)1 + f/gz have the same sign for all integers x, y, z?

Let f(x,y,2) = x> + y> + 2 + xyz. Let p(x, y, 2). ¢(x, y, 2), 7 (x, y, 2) be polyno-
mials with real coefficients satisfying

fp(x,y,2),qx,y,2),r(x,y,2)) = f(x,y,2).

Prove or disprove the assertion that the sequence p, g, r consists of some permutation
of +x, =y, &z where the number of minus signs is O or 2.

Find all positive integers p, g, with p > 2g, and real numbers a such that the two-
variable polynomial

xP 4 axP™4y? 4 axP T2y 4 P
is divisible by (x + y)2.
Find all polynomials of two variables satisfying
P(a,b)P(c,d) = P(ac + bd, ad + bc)

for all real numbers a, b, ¢, d.

2.2.3 Quadratic Polynomials

We continue our discussion of polynomials with the case of polynomials of second degree.
We start with the following problem due to I. Cucurezeanu, whose solution is based just on
the formula for the roots of a quadratic equation.

Example. Let a, b, c be integer numbers that are the sides of a triangle. Show that if the
equation

4@+ Dx+b—c=0

has integer roots, then the triangle is isosceles.
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Solution. The quadratic equation has solutions

—(a+D+Ja+1)2—40b—c)
> .

For it to admit integer roots, it is necessary that the discriminant is a rational number. But
then the discriminant has to be an integer number. If » > c then (a + 1)> —4(b —¢) is a
perfect square < (a + 1)? and of the same parity with this number. Hence

(a+1D>—4b—-c)<(a—-1)>

We conclude that a + ¢ < b, which contradicts the triangle inequality. The case b < c is
similar. So the only possibility is b = c; the triangle is isosceles. g

Here is a problem that uses the sign of a quadratic function. Recall that a quadratic
function changes sign only if it has two distinct real zeros, and in that case it has the sign of
the dominant coefficient outside of the interval formed by the zeros and opposite sign between
the zero. If it has a double zero, or complex zeros, than it always has the sign of the dominant
coefficient.

Example. Let a, b, c be distinct real numbers. Show that there is a real number x such that
x>+ 2(a+b+c)x +3(@ab + be + ac)
is negative.
Solution. We compute the discriminant
A=4@®+b*+c*—ab—bc—ac) =2[(a—b)?>+ b —c)*+(c—a)?>0.

Hence the quadratic function has two distinct real zeros. Between the zeros this function is
negative. O

From the equality
(x —x1)(x —x2) = x> +ax + b,
we see that the for the quadratic equation x? + ax + b the sum of the roots is —a and the

product of the roots is b. This is a particular case of Viete’s relations, which will be studied
in general in the next section. Here is a problem.

Example. Find all positive integers a, b, ¢ such that the equations
x>—ax+b=0, x>’—bx+c=0, x*>’—cx+a=0

have integer roots.
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Solution. The roots must also be positive. Write x| + xp = a = xsx¢, X3 + X4 = b = x1x2,
Xs + x¢ = ¢ = x3x4. Adding we obtain

X1+ X2 + X3+ X4 + X5 + Xg = X1X2 + X3X4 + X5X6.
This is equivalent to
(= D02 =D+ (3 =Dy — 1D + (xs — Dixe — 1) = 3.

On the left there are only non-negative integers, so they can only be (0, 0, 3), (0, 1, 2), or
(1,1, 1). In the first case, if say the third term is 3 then {xs, x¢} = {4,2},s0a = 8, ¢c = 6.
Alsooneof xy, x,1is 1, sothe otherisa—1 = 7, and thus b = 7. We obtain (a, b, ¢) = (8,7, 6)
and its circular permutations.

If, say, the second term is 1 and the third term is 2, then on the one hand x3 = x4 = 2,
so b = ¢ = 4, and on the other hand {xs, x¢} = {2, 3} and so ¢ = 5, impossible. A similar
argument rules out the case where the second term is 1 and the first term is 2.

Finally, if each term is 1, then x; = 2,i = 1, 2, 3, and so we obtain the triple (a, b, ¢) =
4,4,4). O

178. Let a > 2 be a real number. Solve the equation
x?—2ax* 4+ (@* + Dx +2 —2a = 0.
179. Does there exist a positive integer n such that the quadratic equation
W=n+Dx’—@ —n+Dx—0n' —n+1)=0
has rational solutions?

180. Assume that the quadratic function f(x) = x? + ax + b has integer zeros, and has
the property that there is an integer number n such that f(n) = 13. Prove that either
fm+1)or f(n—1)isequal to 28.

181. Let a, b, ¢ be integer numbers that are the sides of a triangle.
(a) Show that if the equation

x>+ Qab+ Dx +a*> +b*> = ¢?

has integer roots, the the triangle is right.
(b) Show that if the equation

4+ @+ 4+ +Dx+ab+bc+ac=0
has integer roots, then the triangle is equilateral.
182. Leta < b < ¢ < d be nonzero real numbers. Show that the equations

ax*+ (b +dx+c=0
bx>’+(c+d)x+a=0
cx’+@+dx+b=0

have a common root if and only ifa + b+ c +d = 0.
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184.

185.

186.

187.

188.
189.

190.

191.

192.
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Find all real numbers a such that for all x, y € R one has
2a(x* 4+ y*) 4+ 4axy — y*> —2xy —2x + 1 > 0.

Show that if the equation x> + ax + b = 0 has real roots, then so does the equation
x2— (@ -2b+Dx+a*+b>*+1=0.

Prove that
log, 3 + log; 4 + log, 5 + logs 6 > 5.

Let a, b be integer numbers. Decide when the equation
(ax —b)* + (bx —a)*> =x
has an integer solution.
Prove that if the real numbers py, p», g1, g» satisfy
(g1 —42)* + (P1 = p2)(P1g2 — paq1) <O,
then the quadratic equations
x2+p1x+q1 =0andx2+p2x+qz =0

have real roots and between the roots of one there is a root of the other.
Prove that if the inequality a® + ab + ac < 0 holds, then so does b* — dac > 0.

Let a and b be positive integers such that a> + b? is a prime number. Prove that the
equation x? 4+ ax + b + 1 = 0 does not have integer roots.

Find all positive integers a, b, ¢ such that the equations
x>—ax+b=0, x>’—bx+c=0, x>’—cx+a=0

have integer roots.

Let ABC be a triangle. Show that there exists a point D inside the segment BC such
that AD* = BD - DC if and onlyifb+c < V2a.

Leta; <ay <---<a,and b; > b, > --- > b, be real numbers such that

> (n—i)aib; and D" (j — Da;b;
i=1 j=1

are both positive. Prove the inequality
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193. Leta,ay,as,...,ax, b, by, ..., by, bereal numbers such that

2 2, 2 2 2, 2 2
a >2max(a1 +a3—{—---—I—az,lfl,az+a4+---+a2n).

Show that (ab — a1by — asby — - - - azyboy)? is greater than or equal to the smaller of
the quantities (a* — 2a7 — 2a3 — - -+ — 2a3,_|)(b* — 2b7 — 2b3 — --- —2b3, ) and
(a* — 2a§ — 2a£ — = 2a§n)(b2 — 2b§ — 2b£ — = 2b§n).

194. A sphere is inscribed in a regular cone. Around the sphere a cylinder is circumscribed
so that its base is in the same plane as the base of the cone. Let V; be the volume of
the cone, and V, the volume of the cylinder.

(a) Prove that V| cannot equal V.
(b) Find the smallest positive number k such that V|, = kV;.

2.2.4 Viete’s Relations
From the Gauss-d’ Alembert fundamental theorem of algebra it follows that a polynomial
P(x) = ax" +a,1x" '+ +ag
can be factored over the complex numbers as
P(x) = ay(x —x)(x —x2) - (x — xp).

Equating the coefficients of x in the two expressions, we obtain

ap—1
XpHx by =
ail
ap—2
X1X2 + X1X3 + -+ -+ Xp_1 X, = s
an

¥xa Xy = (— 1),
an
These relations carry the name of the French mathematician F. Viete. They combine two ways
of looking at a polynomial: as a sum of monomials and as a product of linear factors. As a first
application of these relations, we have selected a problem from a 1957 Chinese mathematical
competition.

Example. 1If x + y + z = 0, prove that

4y 4t 4y 42 x4y 47
2 5 B 7 '

Solution. Consider the polynomial P(X) = X> + pX + ¢, whose zeros are x, y, z. Then

Y+ =+y+2? =20y +xz+ yz) = —2p.
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Adding the relations x* = —px —¢q, y?> = —py — ¢, and 7> = — pz — ¢, which hold because

X, y, z are zeros of P(X), we obtain
Py 4+ =-3q.

Similarly,
Myttt = —pat Y ) — g +y 4+ 2) =2p7,

and therefore

X4y +0=—p+y +2) — g+ v +2%) =5pq,
X +y 4+ =—p(X+ Y +20) —qxt + vy + 2 = —5p°q — 2p*q = —Tp°q.

The relation from the statement reduces to the obvious

—2p Spq _ —Tr’q
2 s 7

O

Viete’s relations can be used to solve, or analyze, the roots of a polynomial equation when
additional information about the roots is given, as the following problem of B. Enescu shows.

Example. Let P(x) = x>+4ax?+bx +c be a polynomial with rational coefficients, having the
roots xp, x2, x3. Show that if f(—; is a rational number different from O and —1, then x;, x2, x3
are all rational.

Solution. Set % = t. Let us observe that if either x; or x; is rational, so is the other, and by
Viete’s relations x3 is rational as well. Also, if x5 is rational, then x; + x5 = x,(1 + %‘) is
rational, so x is rational, and x; is rational as well. Hence it suffices to show that P(x) has a
rational root.

Substituting x; = tx; in Viete’s relations we obtain

(t+ Dxy+x3=—a
Xa2[tx, + (t + 1)x3] = b.

Substituting x3 from the first equation we obtain the quadratic equation in x»,
(t* +t+ 1)x3 + (t + Daxy +b =0.

Thus x; is a zero of the quadratic polynomial with rational coefficients Q(x) = (t> 4+t +
1)x% 4 (t + Dax + b. We deduce that the greatest common divisor of P(x) and Q(x) is a
non-constant polynomial. Moreover, because both P (x) and Q(x) have rational coefficients
their greatest common divisor must have rational coefficients as well. So P (x) can be written
as a product of two polynomials with rational coefficients. One of the factors must be a linear
polynomial, showing that P (x) has a rational zero. Hence the conclusion. O

Next, a problem from the short list of the 2005 Ibero-American Mathematical Olympiad.
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Example. Find the largest real number k with the property that for all fourth-degree polyno-
mials P(x) = x* 4+ ax?® + bx? + cx + d whose zeros are all real and positive, one has

(b—a—c)>kd,

and determine when equality holds.

Solution. Let ry, ry, r3, r4 be the zeros of P(x). Viete’s relations read

a=—(ri+r+r;+ry),
b =riry+rirs +rira + rars + rara + rira,
¢ = —(rirar3 +rirars + rir3ry + rarsry),

d = r\rrirs.
From here we obtain

b—a—c= (r1r2+r1r3+r1r4+r2r3+r2r4+r3r4)+(r1 +r2—|—r3+r4)

+ (rirars 4 rirars 4+ rirsry + rarsry).

By the AM-GM inequality this is greater than or equal to

14V (r1rar3ry)T = 14V4d.

Since equality can hold in the AM-GM inequality, we conclude that k = 196 is the answer
to the problem. Moreover, equality holds exactly when r} = rp, = r; = ry = 1, that is, when
P(x) = x* —4x3 + 6x% —4x + 1. O

And now a challenging problem from A. Krechmar’s Problem Book in Algebra (Mir
Publishers, 1974).

Example. Prove that

5 2 \3/ 47 \3/ 8 \3/1 3
— 4+ — 4+ — =,/=06-3V7).
\/ cos 7 cos 7 cos 7 2( \/_)

Solution. We would like to find a polynomial whose zeros are the three terms on the left.

Let us simplify the problem and forget the cube roots for a moment. In this case we have

to find a polynomial whose zeros are cos 27” cos 47”, cos 87” The seventh roots of unity

come in handy. Except for x = 1, which we ignore, these are also roots of the equation
x04+x%+xt+x3+x?+x+1=0,andare cos %% +isin &% k =1,2,...,6. We see that
the numbers 2 cos 27”, 2 cos 47”, and 2 cos 87” are of the form x + %, with x one of these roots.

If we define y = x + 1, then x> + & = y* — 2 and x* + & = y* — 3y. Dividing the
equation x° 4 x> + x* 4+ x3 + x% +x + 1 = 0 through by x> and substituting y in it, we obtain
the cubic equation

Y4y —2y—1=0.
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The numbers 2 cos 27”, 2cos T, and 2 cos ¥ are the three roots of this equation. The

7 7
simpler task is fulfilled.
But the problem asks us to find the sum of the cube roots of these numbers. Looking at
symmetric polynomials, we have

X+ Y34+ 22 -3XYZ=X4+Y+2)°-3X+Y+2)XY+YZ+ ZX)
and
XV’ +Y 22+ 2°X -3XY2) = (XY +YZ+XZ)
—3XYZX+Y+2)XY +YZ+ ZX).
Because X3, Y3, Z3 are the roots of the equation y3 + y2 — 2y — 1 =0, by Viete’s relations,
X3Y3Z3 =1,50XYZ = /1 = l,andalso X*+ Y3+ 273 = —1and X3Y3 + X323+ V373 =
—2. In the above two equalities we now know the left-hand sides. The equalities become a
system of two equations in the unknowns u = X +Y + Z andv = XY + Y Z 4 Z X, namely
uw —3uy = —4,
v —3uv = —5.
Writing the two equations as u> = 3uv — 4 and v} = 3uv — 5 and multiplying them, we

obtain (uv)® = 9(uv)> — 27uv + 20. With the substitution m = uv this becomes m> =
9m? + 27m — 20 or (m — 3)> 4+ 7 = 0. This equation has the unique solution m = 3 — v/7.

Hence u = /3m — 4 = \3/ 5— 3\3/7 . We conclude that

2 4 8 1 /1
\3/cos7n+\3/cos7n+\3/0057n=X+Y—|—Z=%u= 35(5—3&77),

as desired. O

All problems below can be solved using Viete’s relations.
195. Find the zeros of the polynomial
P(x) = x* — 6x + 18x% — 30x + 25

knowing that the sum of two of them is 4.

196. Let a, b, ¢ be real numbers. Show that a > 0, b > 0, and ¢ > 0 if and only if
a+b+c>0,ab+bc—+ca>0,and abc > 0.

197. Solve the system

x+y+z=1,
xyz =1,

knowing that x, y, z are complex numbers of absolute value equal to 1.
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198.

199.

200.

201.

202.

203.

204.

205.

206.

207.

208.

2 Algebra

Let x;, x5, x3 be the roots of the equation

x*—x?—2x+4=0,
with |x;| > |x;| > |x3]. Find a polynomial with integer coefficients of minimal degree
that has the root x7 + x3 + x3.

Find all real numbers r for which there is at least one triple (x, y, z) of nonzero real
numbers such that

X2y + vy 4+ 22x = xy? 4+ y22 + x? = rxyz.
Let a, b, ¢, d be real numbers with a + b + ¢ + d = 0. Prove that
a>+ b+ +d° =3(abe + bed + cda + dab)
Given the real numbers x, y, z, ¢ such that
x+y+z+t=x"+y +7 4+t =0,
prove that
x(x +y)(x+2)x +1)=0.

For five integers a, b, c, d, e we know that the sums a + b + ¢ +d + e and a® + b* +
c? 4 d? 4 €? are divisible by an odd number 7. Prove that the number @’ + b> 4 ¢ +
d’ + ¢> — Sabcde is also divisible by n.

Find all polynomials whose coefficients are equal either to 1 or —1 and whose zeros
are all real.

Let P(z) = az* + bz + ¢z +dz+e = a(z — r1)(z — 1) (z — r3)(z — r4), where
a,b,c,d,e are integers, a # 0. Show that if r; 4+ r, is a rational number, and if
ry + rp # r3 + ry4, then ryr; is a rational number.

Let P(x) = x> 4 ax? + bx + ¢ be a polynomial with rational coefficients, having the
roots xi, x2, x3. Show that if ;‘—; is a rational number different from O and —1, then
X1, X2, x3 are all rational.

The zeros of the polynomial P(x) = x> — 10x + 11 are u, v, and w. Determine the
value of arctan u + arctan v 4 arctan w.

Prove that for every positive integer n,

2
ta id a id --ta nr =+/2n+ 1.

n tan . n
2n +1 2n + 1 2n + 1

Let P(x) = x" +a,_1x"~' +- -+ ag be a polynomial of degree n > 3. Knowing that

an—1 = —(}), an—> = (5), and that all roots are real, find the remaining coefficients.
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209. Determine the maximum value of A such that whenever P(x) = x> + ax? + bx + c is
a cubic polynomial with all zeros real and nonnegative, then

P(x) > Ax —a)?

for all x > 0. Find the equality condition.

210. Prove that there are unique positive integers a, n such that

a"t'— (a + 1" =2001.

2.2.5 The Derivative of a Polynomial

This section adds some elements of real analysis. We remind the reader that the derivative of
a polynomial

P(x) = apx" + ay1x" '+ -+ ax +ag
is the polynomial

P'(x) = nax" '+ (n — Day_1x" 2+ -+ +a.

We also recall the product rule: (P(x)Q(x)) = P'(x)Q(x) + P(x)Q'(x). If x1,x2, ..., x,
are the zeros of P (x), then by using the product rule we obtain
P'(x) 1 1 1

P(x) X—X X—X X — X,

If a zero of P (x) has multiplicity greater than 1, then itis also a zero of P’(x), and the converse
is also true. By Rolle’s theorem, if all zeros of P (x) are real, then so are those of P’(x). Let
us discuss in detail two problems, the first of which belonging to the second author of the
book, and the second to R. Gologan.

Example. Let P(x) be a polynomial with real zeros and let a < b be two real numbers that
are smaller than any of the zeros of P(x). Prove that

" P"(x)P(x) P(a)’P'(b)’
eXp(/a Px) dx)< Py P (b)Y

Solution. Differentiate the identity

to obtain

P'(x)P(x) — P'(x)? < 1
P(x)? B
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Differentiate one more time and obtain
(P"(x)P(x) — P"(x)P'(x))P(x)* — (P"(x)P(x) — P'(x)*)2P(x) P'(x)
(P(x))*

- 2
N kzz; (=20
Notice that the right-hand side is negative fora < x < b < min(xy, ..., x,). Hence
P"(x)P(x)> — P"(x)P'(x)P(x)®> —2P"(x)P'(x) P(x)> + 2P’ (x)*P(x) < 0,
that is
P"(x)P(x)} =3P"(x)P'(x)P(x)* + 2P’ (x)*P(x) < 0.
Dividing by P(x)?P’(x)?, we obtain

P"(x)P(x) 3P"(x) B 2P’ (x)
P Pl Pk

Integrating we obtain

/b P"(x)P(x)

e dx <3In|P'(b)| — In|P'(a)| — 2In|P(b)| — In|P(a)|
X

‘ P(a)’P'(b)’
= n|—-:
P'(a)}P(b)?

After exponentiation we obtain the inequality from the statement. O

Example. Let P(x) € Z|x] be a polynomial with n distinct integer zeros. Prove that the
polynomial (P (x))? + 1 has a factor of degree at least 2 L%J that is irreducible over Z[x].
Solution. The statement apparently offers no clue about derivatives. The standard approach
is to assume that

(P())* + 1= Pi(x) P2(x) - Pi(x)

is a decomposition into factors that are irreducible over Z[x]. Letting xi, x, ..., x, be the
integer zeros of P (x), we find that

Pl(xj)Pz(xj)---Pk(xj) =1, forj = 1,2,...,7’1.

Hence P;(x;) = &1, which then implies 7~ = P(x)).i = 1,2,....k, j=1,2,....n.
Now let us see how derivatives come into play. The key observation is that the zeros x;
of (P(x))? appear with multiplicity greater than 1, and so they are zeros of the derivative.

Differentiating with the product rule, we obtain

k
D PiGj) - Pl(xy) - Pelxp) =0, for j=1,2,...,n.
i=1
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This sum can be simplified by taking into account that P;(x;)P>(x;)--- Pr(x;) = 1 and

1

Pi(xj)

= Pl-(xj) as

k
> Plx)Pi(xp) =0, forj=12....n.
i=1

It follows that x; is a zero of the polynomial

k k !
D 2P/(x)Pi(x) = (Z Pf(x)) :
i=1

i=1

k
Let us remember that P;(x;) = =1, which then implies Z Pf(x j)—n = 0for j =

1,2,.

i=1

k

..,n. The numbers x;, j = 1,2,...,n, are zeros of both ZPiz(x) — n and its

i=1

derivative, so they are zeros of order at least 2 of this polynomial. Therefore,

k
D P =(r —x)*x —x2)7 - (x = x5,)°Q(x) + 1,
i=1

for some polynomial Q(x) with integer coefficients. We deduce that there exists an index i
such that the degree of P, (x) is greater than or equal to n. For n even, n = 2 L%J, and
we are done. For n odd, since (P (x))? + 1 does not have real zeros, neither does P (x), so
this polynomial has even degree. Thus the degree of Py (x) is at least n + 1 = 2 | %1 |. This
completes the solution. ([l

211.

212.

213.

214.

215.

Find all polynomials P (x) with integer coefficients satisfying P(P’(x)) = P'(P(x))
for all x € R.

Determine all polynomials P (x) with real coefficients satisfying (P (x))" = P (x") for
all x € R, where n > 1 is a fixed integer.

Let P(x) and Q(x) be polynomials with complex coefficients and let a be a nonzero
complex number. Prove that if

Px) = Q(x)*+a,

for all x € C, then P(x) and Q(x) are constant polynomials.

Let P(z) and Q(z) be polynomials with complex coefficients of degree greater than or
equal to 1 with the property that P(z) = 0 if and only if Q(z) = 0 and P(z) = 1 if
and only if Q(z) = 1. Prove that the polynomials are equal.

Let P(x) be a polynomial with all zeros real and distinct and such that none of its zeros
is equal to 0. Prove that the polynomial x2P”(x) + 3x P'(x) + P(x) also has all roots
real and distinct.
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216. Let P(x) be a polynomial of degree 5, with real coefficients, all of whose zeros are
real. Prove that for each real number a that is not a zero of P(x) or P’(x), there is a
real number b such that

b*P(a) +4bP'(a) + 5P"(a) = 0.

217. Let P,(x) = (x" — )(x"' = 1)---(x — 1), n > 1. Prove that for n > 2, P/(x) is
divisible by Py, /> in the ring of polynomials with integer coefficients.

218. The zeros of the nth-degree polynomial P(x) are all real and distinct. Prove that the
zeros of the polynomial G(x) = nP(x)P"(x) — (n — 1)(P'(x))? are all complex.

219. Let P(x) be a polynomial of degree n > 3 whose zeros x| < xp < X3 < -+ < X1 <
x, are real. Prove that

p’ (xl ;‘XZ) . p’ (xn—12+ xn) £0.

220. A polynomial P(x) with real coefficients is called a mirror polynomial if |P(a)| =
| P(—a)| for all real numbers a. Let F(x) be a polynomial with real coefficients, and
consider polynomials with real coefficients P(x) and Q(x) such that P(x) — P'(x) =
F(x) and Q(x) + Q'(x) = F(x). Prove that P(x) + Q(x) is a mirror polynomial if
and only if F(x) is a mirror polynomial.

2.2.6 The Location of the Zeros of a Polynomial

Since not all polynomial equations can be solved by radicals, methods of approximation are
necessary. Results that allow you to localize the roots in certain regions of the real axis or
complex plane are therefore useful.

The qualitative study of the position of the zeros of a polynomial has far-reaching applica-
tions. For example, the solutions of a homogeneous ordinary linear differential equation with
constant coefficients are stable (under errors of measuring the coefficients) if and only if the
roots of the characteristic equation lie in the open left half-plane (i.e., have negative real part).
Stability is, in fact, an essential question in control theory, where one is usually interested in
whether the zeros of a particular polynomial lie in the open left half-plane (Hurwitz stability)
or in the open unit disk (Schur stability). Here is a famous result.

Lucas’ theorem. The zeros of the derivative P'(z) of a polynomial P(z) lie in the convex
hull of the zeros of P(2).

Proof. Because any convex domain can be obtained as the intersection of half-planes, it
suffices to show that if the zeros of P(z) lie in an open half-plane, then the zeros of P’(z) lie
in that half-plane as well. Moreover, by rotating and translating the variable z we can further
reduce the problem to the case in which the zeros of P(z) lie in the upper half-plane Im z > 0.
Here Im z denotes the imaginary part.
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So let z3, 22, . . ., z, be the (not necessarily distinct) zeros of P(z), which by hypothesis
have positive imaginary part. If Imw < 0, then Im w+2k > 0,fork =1, ..., n, and therefore

P (w)
P(W) Z

—Zk

This shows that w is not a zero of P’(z) and so all zeros of P’(z) lie in the upper half-plane.
The theorem is proved. O

221.

222,

223.

224.

225.

226.

227.

228.

229.

Letay, ay, ..., a, be positive real numbers. Prove that the polynomial

P(x)=x"—aix" ' —apx"?—... —q,

has a unique positive zero.

Prove that the zeros of the polynomial
Px)=z2" +7z +4z+1

lie inside the disk of radius 2 centered at the origin.

Prove that if the complex coefficients p, ¢ of the quadratic equation x> + px +g =0
satisfy | p| + |g| < 1, then the roots of this equation lie in the interior of the unit disk.

Let P(x) be a polynomial with integer coefficients all of whose roots are real and lie
in the interval (0, 3). Prove that the roots of this polynomial lie in the set

345 3+J§}

1’27 b
2 2

For a # 0 a real number and n > 2 an integer, prove that every nonreal root z of the
polynomial equation x" + ax + 1 = 0 satisfies the inequality |z| > anl

Leta € C and n > 2. Prove that the polynomial equation ax” + x + 1 = 0 has a root
of absolute value less than or equal to 2.

Let P(z) be a polynomial of degree n, all of whose zeros have absolute value 1 in the

complex plane. Set g(z) = f ,f/zz). Show that all roots of the equation g’'(z) = 0 have

absolute value 1.

The polynomial x* — 2x? 4 ax + b has four distinct real zeros. Show that the absolute
value of each zero is smaller than /3.

Let P,(z), n > 1, be a sequence of monic kth-degree polynomials whose coefficients
converge to the coefficients of a monic kth-degree polynomial P(z). Prove that for any
& > O thereis ng such thatifn > ng then |z;(n) — z;| < ¢,i =1, 2, ..., k, where z;(n)
are the zeros of P,(z) and z; are the zeros of P(z), taken in the appropriate order.
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230. Let P(x) = a,x" + a,_1x"~! + - -- 4+ ao be a polynomial with complex coefficients,
with ap # 0, and with the property that there exists an m such that

()

Prove that P (x) has a zero of absolute value less than 1.

Am

ap

231. For a polynomial P(x) = (x — x1)(x — x3)---(x — x,), with distinct real zeros
X] < X < --- < X, we set §(P(x)) = min;(x;1; — x;). Prove that for any real
number £,

8(P'(x) —kP(x)) > 8(P(x)),
where P’(x) is the derivative of P(x). In particular, §(P'(x)) > §(P(x)).

2.2.7 Irreducible Polynomials

A polynomial is irreducible if it cannot be written as a product of two polynomials in a
nontrivial manner. The question of irreducibility depends on the ring of coefficients. When the
coefficients are complex numbers, only linear polynomials are irreducible. For real numbers
some quadratic polynomials are irreducible as well. Both these cases are rather dull. The
interesting situations occur when the coefficients are rational or integer, in which case there is
an interplay between polynomials and arithmetic. The cases of rational and integer coefficients
are more or less equivalent, with minor differences such as the fact that 2x + 2 is irreducible
over Q[x] but reducible over Z[x]. For matters of elegance we focus on polynomials with
integer coefficients. We will assume implicitly from now on that for any polynomial with
integer coefficients, the greatest common divisor of its coefficients is 1.

Definition. A polynomial P(x) € Z[x] is called irreducible over Z[x] if there do not exist
polynomials Q(x), R(x) € Z[x] different from +1 such that P(x) = Q(x)R(x). Otherwise,
P (x) is called reducible.

We commence with an easy problem.

Example. Let P(x) be an nth-degree polynomial with integer coefficients with the property
that | P(x)| is a prime number for 2n + 1 distinct integer values of the variable x. Prove that
P (x) is irreducible over Z[x].

Solution. Assume the contrary and let P(x) = Q(x)R(x) with Q(x), R(x) € Z[x], Q(x),
R(x) # £1. Let k = deg(Q(x)). Then Q(x) = 1 at most k times and Q(x) = —1 at most

n—ktimes. Also, R(x) = 1 atmostn—k times and R(x) = —1 atmost k times. Consequently,
the product |Q(x)R(x)| is composite except for at most k + (n — k) + (n — k) + k = 2n
values of x. This contradicts the hypothesis. Hence P(x) is irreducible. g

The bound is sharp. For example, P(x) = (x + 1)(x + 5) has |P(—2)| = |P(—4)| = 3,
P@0)=5,and |P(—6)| =T7.

Probably the most beautiful criterion of irreducibility of polynomials is that discovered
independently by F.G.M. Eisenstein in 1850 and T. Schénemann in 1846. We present it below.
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Eisenstein-Schonemann theorem. Given a polynomial P(x) = a,x" +a,_1x" ' +---+ay
with integer coefficients, suppose that there exists a prime number p such that a,, is not divisible
by p, ay is divisible by p fork = 0,1, ..., n — 1, and ay is not divisible by p*>. Then P(x) is
irreducible over Z[x].

Proof. We argue by contradiction. Suppose that P(x) = Q(x)R(x), with Q(x) and R(x) not
identically equal to £1. Let

0(x) = byx* + b1 x* ' + - + by,

—k —k—1
R(x) = cppX" ™" 4+ cpg—1 X" + -+ 0.

Let us look closely at the equalities

i
E bjC,'_j = da;, i:O,l,...,n,
Jj=0

obtained by identifying the coefficients in the equality P(x) = Q(x)R(x). From the first of
them, bocy = ayp, and because qy is divisible by p but not by p? it follows that exactly one
of by and ¢y is divisible by p. Assume that by is divisible by p and take the next equality
boci + bicop = a;. The right-hand side is divisible by p, and the first term on the left is also
divisible by p. Hence b;cy is divisible by p, and since ¢y is not, b; must be divisible by p.

This reasoning can be repeated to prove that all the b;’s are divisible by p. It is important
that both QO (x) and R(x) have degrees greater than or equal to 1, for the fact that b, is divisible
by p follows from

brco + by—1c1 + - - = ay,

where ay, is divisible by p for k < n. The contradiction arises in the equality a, = byc,,—,
since the right-hand side is divisible by p, while the left-hand side is not. This proves the
theorem.

The first three problems listed below use this result, while the others apply similar ideas.

232. Prove that the polynomial
P(x) = x"" 4+ 101x'° + 102

is irreducible over Z[x].

233. Prove that for every prime number p, the polynomial
Px)=x"""4+x"2 4. fx+1

is irreducible over Z[x].

234. Prove that for every positive integer n, the polynomial P(x) = x?' + 1 is irreducible
over Z[x].
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235. Prove that for any distinct integers ay, a, . . ., a, the polynomial
Px)=G&—a)x—ax)---(x —a,) — 1
cannot be written as a product of two nonconstant polynomials with integer coefficients.

236. Prove that for any distinct integers ay, a,, . . ., a, the polynomial
P(x)=(x—a)’x —a)’-- (x —a,)’ +1
cannot be written as a product of two nonconstant polynomials with integer coefficients.

237. Associate to a prime the polynomial whose coefficients are the decimal digits of the
prime (for example, for the prime 7043 the polynomial is P(z) = 7x> +4x 4 3). Prove
that this polynomial is always irreducible over Z[x].

238. Let p be a prime number of the form 4k + 3, k an integer. Prove that for any positive
integer n, the polynomial (x> + 1)" 4 p is irreducible in the ring Z[x].

239. Let p be a prime number. Prove that the polynomial
P(x)=x"""+2xP 2 43P ... 4 (p—Dx+p
is irreducible in Z[x].

240. Let P(x) be a monic polynomial in Z[x], irreducible over this ring, and such that
|P(0)| is not the square of an integer. Prove that the polynomial Q(x) defined by
O(x) = P(x?) is also irreducible over Z[x].

2.2.8 Chebyshev Polynomials

The nth Chebyshev polynomial 7,,(x) expresses cos n6 as a polynomial in cos 6. This means
that 7,,(x) = cos(n arccos x), for n > 0. These polynomials satisfy the recurrence

To(x) =1, Ti(x) = x, Thy1(x) = 2xT,(x) = T—1(x), forn > 1.

For example, T (x) = 2x? — 1, T3(x) = 4x36 — 3x, T4(x) = 8x* — 8x% + 1.
One usually calls these the Chebyshev polynomials of the first kind, to distinguish them
from the Chebyshev polynomials of the second kind U, (x) defined by

Up(x) =1, Ui(x) =2x, Upp1(x) =2xU,(x) — U,_1(x), forn > 1

(same recurrence relation but different initial condition). Alternatively, U, (x) can be defined
by the equality
sin(n + 1)0

U,(cosf) = o

Chebyshev’s theorem. Forfixed n > 1, the polynomial 27" T,,(x) s the unique monic nth-
degree polynomial satisfying

max_ 27T (x)] < max [P (x)],

—l=x<

for any other monic nth-degree polynomial P (x).
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One says that among all monic nth-degree polynomials, 27"*!7,,(x) has the smallest
variation away from zero on [—1, 1]. This variation is 2,11—,1 Let us see how Chebyshev’s
theorem applies to a problem from Challenging Mathematical Problems with Elementary
Solutions by A.M. Yaglom and .M. Yaglom.

Example. Let Ay, A, ..., A, be points in the plane. Prove that on any segment of length [
there is a point M such that

l n
MA1~MA2-~-MA,122(Z) .

Solution. Rescaling, we can assume that [ = 2. Associate complex coordinates to points in
such a way that the segment coincides with the interval [—1, 1]. Then

MA;-MA;---MA, =|z—2z1] |z — 22|+ |z — 24| = |P(2)],

where P (z) is a monic polynomial with complex coefficients, and z € [—1, 1]. Write P(z) =
R(z) +i0(z), where R(z) is the real part and Q(z) is the imaginary part of the polynomial.
Since z is real, we have |P(z)| > |R(z)|. The polynomial R(z) is monic, so on the interval
[—1, 1] it varies away from zero at least as much as the Chebyshev polynomial. Thus we can

find z in this interval such that |R(z)| > 2,11—_1 This implies | P(z)| > 2- 2%,, and rescaling back
we deduce the existence in the general case of a point M satisfying the inequality from the
statement. U

Stepping aside from the classical picture, let us also consider the families of polynomials
7,(x) and U, (x) defined by 7o(x) = 2, T1(x) = x, T,11(x) = xT,(x) — T,_1(x), and
Uy(x) =1, Uy (x) = x, U1 (x) = xU,(x) —U,—1(x). These polynomials are determined by
the equalities

1 1 1 1 1
’E(z—l——):z”+—n and Z/ln(z+—):(z"“—n—+l)/(z——).
z z z b4 z

Also, T,,(x) = %7:1(2)6) and U, (x) = U, (2x). Here is a quickie that uses 7, (x).

Example. Let a be a real number such that @ 4+ a~! is an integer. Prove that for any n > 1,
the number a” + a™" is an integer.

Solution. An inductive argument based on the recurrence relation shows that 7,,(x) is a poly-
nomial with integer coefficients. And since a" + a™" = T,(a + a™ '), it follows that this
number is an integer. ]

241. Prove that forn > 1,

Tn+1(-x) = -XTn(-x) - (1 - xz)Un—l(-x)’
Uiy(x) =xU,_1(x) + T, (x).
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242,

243.

244.

245.

246.

247.

248.

2 Algebra
Compute the n x n determinants
x 1 0 0 ... O 2x 1.0 0 ... O
1 2x 1 0 ... O 1 2x 1 0 0
0 1 2x 1 ... 0 0 1 2x 1 0
and .
0 0 0 0 ... 1 0 0 0 0 ... 1
0 0 0 0 ... 2x 0 0 0 0 ... 2x

Prove Chebyshev’s theorem for n = 4: namely, show that for any monic fourth-degree
polynomial P (x),

max |P(x)| = max [27T4(x)],
with equality if and only if P(x) = 273T4(x).

Let r be a positive real number such that &/r + SLE = 6. Find the maximum value of
G

Leta = 27” Prove that the matrix
1 1 .. 1
cos o cos 2« . cos no
cos 2u cos 4o . cos 2no
cos(n — a cos2(n — Da ... cos(n — na

is invertible.
Find all quintuples (x, y, z, v, w) with x, y, z, v, w € [—2, 2] satisfying the system of
equations
x+y+z4+v+w=0,
Y+ vV +w =0,
X+ ¥y +22 4V +w = —10.

Let x{, x2, ..., x,, n > 2, be distinct real numbers in the interval [—1, 1]. Prove that
1 1 1
—t — e — > 22
5] 153 y

where tp = [ [ Ix; —xl. k= 1.2.....n.
J#k
Let n > 3 be an odd integer. Evaluate

1

e
2 2k
sec —.

n

»
Il
-
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249. For n > 1, prove the following identities:
Lix) (=D" d"
JT—x2 1:3.5-.-2n—1)dx"

3
— =D'(n+1) 4" N
— x2 = _ n+s
Un(X)v1=x _1-3-5---(2n+1)dx"(1 xR

(1—x?)"2,

2.3 Linear Algebra

2.3.1 Operations with Matrices

Anm x n matrix is an array with m rows and n columns. The standard notationis A = (a;;); ;,
where q;; is the entry (element) in the ith row and jth column. We denote by 7, the n x n
identity matrix (for which a;; = 1ifi = j, and 0 otherwise) and by O, the n x n zero matrix
(for which a;; = 0 for all i, j).

Given the matrix A = (a;;); j, A" denotes the transpose of A, in which the i, j entry is
aj;, and A denotes the complex conjugate, whose entries are the complex conjugates of the
entries of A. Also, tr A is the trace of A, namely the sum of the elements on the main diagonal:
ayp +axp+ -+ a,.

We illustrate how matrix multiplication can be used to prove an identity satisfied by the
Fibonacci sequence (Fp = 0, Fy = 1, F,.1 = F, + F,_1, n > 1). The identity we have in
mind has already been discussed in the introductory chapter in the solution to Problem 27;
we put it here in a new perspective.

Example. Prove that
Fm+n+1 = Fm+1Fn+l + Fan, for m,n = 0.

Solution. Consider the matrix

An easy induction shows that forn > 1,
n __ Fn+1 Fn
M= ( F, F. ) .

The equality M™*" = M™ M" written in explicit form is

Fm+n+1 Fm+n — Fm+1 Fm Fn+1 Fn
Fm+n Fm+n71 Fm mel Fn anl )
We obtain the identity by setting the upper left corners of both sides equal. g

Here are some problems for the reader.

250. Let M be an n x n complex matrix. Prove that there exist Hermitian matrices A and
B such that M = A + i B. (A matrix X is called Hermitian if X’ = X).
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251. Do there exist n x n matrices A and B such that AB — BA =1,?

252. Let A and B be 2 x 2 matrices with real entries satisfying (AB — BA)" = Z, for some
positive integer n. Prove that n is even and (AB — BA)* = T,.

253. Let A and B be two n x n matrices that do not commute and for which there exist
nonzero real numbers p, ¢, r such that pAB + gBA = 7, and A?> = r B. Prove that

pP=9q.
254. Leta, b, c, d be real numbers such that ¢ # 0 and ad — bc = 1. Prove that there exist

u and v such that
a b (1 —u 1 0 1 —v
cd] \0 1 c 1 0o 1/

255. Compute the nth power of the m x m matrix

A1 0 0

Orx1 ...0

00 xr ... 0
Jn)=\|. . . . .|, reC

000 ...1

000 ... &

256. Let A and B be n x n matrices with real entries satisfying
tr(AA" + BB') = tr(AB + A'B").

Prove that A = B’.

2.3.2 Determinants

The determinant of an n x n matrix A = (a;;); ;, denoted by det A or |a;|, is the volume taken
with sign of the n-dimensional parallelepiped determined by the row (or column) vectors
of A. Formally, the determinant can be introduced as follows. Let e; = (1,0,...,0),
e =1(0,1,...,0),...,e, =(0,0,...,1) be the canonical basis of R". The exterior algebra
of R" is the vector space spanned by products of the form e;, A e;, A ... A ¢, where the
multiplication A is distributive with respect to sums and is subject to the noncommutativity
rulee; Aej = —e; Ae; foralli, j (which then implies e; Ae; = 0, for all 7). If the row vectors
of the matrix A are r1, 1, ..., r, then the determinant is defined by the equality

FIA A AF, = (detA)ey Aes A+ Ae,.

The explicit formula is

det A =" sign(0)a1o(1@20 ) *** Ao
o

with the sum taken over all permutations o of {1, 2, ..., n}.
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To compute the determinant of a matrix, one applies repeatedly the row operation that
adds to one row a multiple of another until the matrix either becomes diagonal or has a row
of zeros. In the first case this transforms the parallelepiped determined by the row vectors
into a right parallelepiped in standard position without changing its volume, as suggested in

Figure 13.

Figure 13

But it is not our purpose to teach the basics. We insist only on nonstandard tricks and
methods. A famous example is the computation of the Vandermonde determinant.

Example. Let x1, x3, . .., x, be arbitrary numbers (n > 1). Compute the determinant
1 1 1
X1 X2 Xn
x| ! xé’fl x,’l’_1

Solution. The key idea is to view x,, as a variable and think of the determinant as an (n — 1)st-
degree polynomial in x,,. The leading coefficient is itself a Vandermonde determinant of order

n — 1, while the n — 1 roots are obviously x5, x3, ..., x,_;. The determinant is therefore equal
to
1 1 1
X] X2 X

(Xn —x1)(y —x2) -+ (X — Xp—1).

Now we can induct on n to prove that the Vandermonde determinant is equal to
H(Xi — Xj).
i>j

This determinant is equal to zero if and only if two of the x;’s are equal. O
We continue with a problem of D. Andrica.

Example. (a) Consider the real numbers a;;,i =1,2,...,n—2,j=1,2,...,n,n > 3,and
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the determinants

1 ... 1 1 U |
ayg ... 4gk-1 alk+1 --- Aln
A = . ) . . .. k=1L
ap—2,1 -+ Qp2k—1 An-2,k+1 +-- Ap—2.n
Prove that
A+ A3+ As+--=Ar+ Ay + Ag+ - -
(b) Define
n—(k+1) k—1
=[] Guoi—x0. q=]]Gx—x.
i=0 i=1
where x;,i =1, 2, ..., n, are some distinct real numbers. Prove that
n
—1k
D" _ 0.
=1 P4k

(c) Prove that for any positive integer n > 3 the following identity holds:

n (_1)kk2 B
Z n—k)!n+k!

k=1
Solution. We have
1 1 ... 1 1
1 1 ... 1 1
apy aip ... A4pap—1 Aain 0
azy ay ... dyp—1 Qg -
ap—21 ap—272 «.. Ap_2n—1 Ap-2n

Expanding by the first row, we obtain
Al —Ay+ A3 — Ay +---=0.

This implies
Al + A3+ As+--=Ar+ A+ Ag+ -+,

and (a) is proved. .
For (b), we substitute a;; = x/,i =1,2,...,n—2, j =1,2,...,n. Then

1 1 1 1
X1 Xk—1 Xk+1 Xn

Ap = . ,
n—2 n—2 _n—2 n—2
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which is a Vandermonde determinant. Its value is equal to

i>'(x' —X;)
H (xj —x;) = L
Yy Prqk

i, j#k

The equality proved in (a) becomes, in this particular case,

n _1 k
GRIY
=1 Prdk
as desired.
Finally, if in this we let x; = k2, then we obtain the identity from part (c), and the problem
is solved. U

And here comes a set of problems for the reader.

257.

258.

259.

260.

261.

262.

Prove that
>+ 12 (xy+1D? (xz+1)°
(y + D> 0P+ D2 0z +D? | =20 = 2° @ =0« = »)°.
(xz+D? z+1D? @ +1)°

Let (F,), be the Fibonacci sequence. Using determinants, prove the identity

Fyi1Fyooy — F> = (=1)", foralln > 1.

Let p < m be two positive integers. Prove that

G) () - ()
(") (") ()

=1.
("s") ("77) - (1)
Given distinct integers xi, Xx»,..., X,, prove that H(xi — x;) is divisible by
1m0 (n— 1 -
Find all numbers in the interval [—2015, 2015] that can be equal to the determinant of

an 11 x 11 matrix with entries equal to 1 or —1.

Prove the formula for the determinant of a circulant matrix
X1 X2 X3 ... Xp
Xn X1 X2 .0 Xp—1 n—1 n
S ="' (Z gkak),
X3 X4 X5 ... X2 J=0 \k=1
X2 X3 X4 ... Xq
2ni/n'

where ¢ = e
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263. Let a and b be integers such that a 4+ b = 2014. Prove that the determinant

a’ b 3ab —1
—1 a*> b* 2ab
2b —1 a*> —b?
0 b -1 a

is a multiple of 61.

264. Compute the determinant of the n x n matrix A = (a;;);;, where

)il if i £
ai,-={( DTG £

2 if i = j.
265. Prove that for any integers x1, X, . .., X, and positive integers k1, ky, . . ., k,,, the deter-
minant
xkl xkl xk'
2 2 ko
X5 Xy ..o X,
k k k
X" X" Xy
is divisible by n!.

266. Let A and B be 3 x 3 matrices with real elements such that
det A =det B = det(A + B) =det(A— B) =0.
Prove that det(x A + yB) = 0 for any real numbers x and y.

Sometimes it is more convenient to work with blocks instead of entries. For that we recall
the rule of Laplace, which is the direct generalization of the row or column expansion. The
determinant is computed by expanding over all k£ x k minors of some k rows or columns.

Explicitly, given A = (a;;); ;_;, when expanding by the rows i, is, ..., ix, the determinant
is given by
det A = Z (_1)i1+---+ik+j1+-"+jk Mka,
Ji<jp<-<jk
where M| is the determinant of the k x k matrix whose entries are a;;, withi € {iy, is, ..., ir}
and j € {ji, jo, - - -, jk}, while N; is the determinant of the (n — k) x (n — k) matrix whose
entries are a;; withi ¢ {iy, i, ..., ix} and j & {ji, jo, ..., ji}. We exemplify this rule with

a problem from the 4th International Competition in Mathematics for University Students
(1997).

Example. Let M be an invertible 2n x 2n matrix, represented in block form as

_(AB 4 _(EF
M_(CD) and M _(GH)'

Show that det M - det H = det A.
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Solution. The idea of the solution is that the relation between determinants should come from
a relation between matrices. To this end, we would like to find three matrices X, Y, Z such
that XY = Z, while det X = det M, detY = det H, and det Z = det A. Since among M, H,
and A, the matrix M has the largest dimension, we might try to set X = M and find 2n x 2n
matrices ¥ and Z. The equality M - M~! = T,, yields two relations involving H, namely
AF + BH =0and CF + DH =1,. This suggests that we should use both F' and H in the
definition of Y. So we need an equality of the form

(¢5)(2a)=(2)
(5 E).

The latter has determinant equal to det H, as desired. Also,
A0
2-(20).

According to the rule of Laplace, the determinant of Z can be computed by expanding along
the n x n minors from the top n rows, and all of them are zero except for the first. Hence

We can try

det Z = det A - detZ, = det A, and so the matrices X, Y, Z solve the problem. OJ
267. Show that if
_lab nd ¥ — a b
T=lea| MEX= vl
then
ab’ cb' ba' da’'
n2 _ |ad cd" bc' dc
(xx)” = bb' db' ad’ ca’
bd' dd' ac’ cc

268. Let A, B, C, D be n x n matrices such that AC = CA. Prove that

A B
det (C D) =det(AD — CB).

269. Let X and Y be n x n matrices. Prove that
det(Z, — XY) =det(Z, — Y X).

A property exploited often in Romanian mathematics competitions states that for any n x n
matrix A with real entries,

det(Z, + A*) > 0.

The proof is straightforward:



78 2 Algebra

det(Z, + A%) = det((Z, + iA)(Z, — i A)) = det(Z, + i A) det(Z, — i A)
=det(Z, +iA)det(Z, +iA) =det(Z, +iA)det(Z, +iA).

In this computation the bar denotes the complex conjugate, and the last equality follows from
the fact that the determinant is a polynomial in the entries. The final expression is nonnegative,
being equal to | det(Z, + i A)|>.

Use this property to solve the following problems, while assuming that all matrices have
real entries.

270. Let A and B be n x n matrices that commute. Prove that if det(A + B) = 0, then
det(A* + B¥) > O forall k > 1.

271. Let A be an n x n matrix such that A + A’ = O,,. Prove that
det(Z, + 1A% >0,

forall A € R.

272. Let P(t) be a polynomial of even degree with real coefficients. Prove that the function
f(X) = P(X) defined on the set of n x n matrices is not onto.

273. Let n be an odd positive integer and A an n x n matrix with the property that A> = O,
or A> = 7,. Prove that det(A + Z,) > det(A — Z,).

2.3.3 The Inverse of a Matrix

An n x n matrix A is called invertible if there exists an n x n matrix A~! such that AA~" =
A~'A = T,. The inverse of a matrix can be found either by using the adjoint matrix, which
amounts to computing several determinants, or by performing row and column operations.
We illustrate how the latter method can be applied to a problem from the first International
Competition in Mathematics for University Students (1994).

Example. (a) Let A be an n x n symmetric invertible matrix with positive real entries, n > 2.
Show that A~! has at most n> — 2n entries equal to zero.
(b) How many entries are equal to zero in the inverse of the n x n matrix

1111...1
1222...2
1211...1

A=l1212...2|
1212...1



2.3 Linear Algebra 79

Solution. Denote by a;; and b;; the entries of A, respectively, A~!. Then we have Z?:o Qi
b, = 1, sofor fixed m not all the b;,,,’s are equal to zero. For k # m we have Z?:o agibim =0,
and from the positivity of the a;;’s we conclude that at least one b;,, is negative, and at least
one is positive. Hence every column of A~! contains at least two nonzero elements. This
proves part (a).

To compute the inverse of the matrix in part (b), we consider the extended matrix (AZ,),
and using row operations we transform it into the matrix (Z,A~'). We start with

1111... 1 1000...0
1222...20100...0
1211... 10010...0
1212...20001...0

1212...... 0000...1

Subtracting the first row from each of the others, then the second row from the first, we obtain

1000... 0 2 -100...0
o0111...1 -1100...0
0100... 0 -1 0 10...0
0101...1 -1 001...0
0101...... -1 0 00...1

We continue as follows. First, we subtract the second row from the third, fourth, and so on.
Then we add the third row to the second. Finally, we multiply all rows, beginning with the
third, by —1. This way we obtain

1000... 0 2 =10 0 ... 0
0100...0 -1 0 1 0 ...0
oort1...1. 0 1 -10 ...0
0010...0 0 1 0 —-1...0
0010...... 1 0 0 0 ...-1

Now the inductive pattern is clear. At each step we subtract the kth row from the rows
below, then subtract the (k 4 1)st from the kth, and finally multiply all rows starting with
the (k + 1)st by —1. In the end we find that the entries of A" are b1 =2,b,, =",
biiv1 =biy1i = (—1), and b;jj = 0, for |i — j| > 2. This example shows that equality can

hold in part (a). ]
274. For distinct numbers x1, x5, . .., x,, consider the matrix
1 I ... 1
X1 X2 Xn
A= .



80 2 Algebra

It is known that det A is the Vandermonde determinant
Ay, xg,ooxn) = [ G = xp).
i>j
Prove that the inverse of A is B = (b)) 1<k.m<n> Where

k -1
bkm = (_1) +mA(xl7x27 . ,xn) A('xlv . ’xk—lvxk—f—l’ ... 7xn)

X S 1 (X1 ey X1y Xk 1y - -+ Xn).
Here S,_; denotes the (n — 1)st symmetric polynomial in n — 1 variables.

275. Let A and B be 2 x 2 matrices with integer entries such that A, A+ B, A+2B, A+ 3B,
and A + 4B are all invertible matrices whose inverses have integer entries. Prove that
A + 5B is invertible and that its inverse has integer entries.

276. Determine the matrix A knowing that its adjoint matrix (the one used in the computation
of the inverse) is

m>—11—m 1l—m
A= 1-mm>—11—m |, m#1,=2.
l—-m 1—m m?>—1
277. Let A = (a;))ij beannXnmatrixsuchthatZ|a,~j| < lforeachi. ProvethatZ, — A

j=1
is invertible.

278. Let o = -Z-, n > 2. Prove that the n x n matrix

n+1°?
sina sin2« ... sinn«a
sin2« sinda ... sin2na
. . . 2
sinna sin2na ... sSinn-o

is invertible.

279. Assume that A and B are invertible complex n x n matrices such that i (ATB — BT A)
is positive semidefinite, where X' = Yt, the transpose conjugate of X. Prove that
A +iB is invertible. (A matrix T is positive semidefinite if (7v, v) > 0 for all vectors
v, where (v, w) = v'w the complex inner product.)

We continue with problems that exploit the ring structure of the set of n x n matrices.
There are some special properties of matrices that do not hold in arbitrary rings. For example,
an n X n matrix A is either a zero divisor (there exist nonzero matrices B and C such that
AB = CA = O,), or itis invertible. Also, if a matrix has a left (or right) inverse, then the
matrix is invertible, which means that if AB = 7, then also BA = I,,.

A good example is a problem of I.V. Maftei that appeared in the 1982 Romanian Mathe-
matical Olympiad.
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Example. Let A, B, C be n x n matrices, n > 1, satisfying
ABC+ AB+BC+AC+A+B+C=0,.
Prove that A and B 4 C commute if and only if A and BC commute.

Solution. If we add 7, to the left-hand side of the identity from the statement, we recognize
this expression to be the polynomial P(X) = (X + A)(X + B)(X + C) evaluated at the
identity matrix. This means that

Z,+AZ,+B)Z,+C)=1,.
This shows that Z, + A is invertible, and its inverse is (Z,, + B)(Z, + C). It follows that
&+ B)Z,+ )Ly + A) =1,

or
BCA+BC+BA+CA+A+B+C=0,.

Subtracting this relation from the one in the statement and grouping the terms appropriately,
we obtain

ABC — BCA=(B+C)A—A(B+0O).
The conclusion follows. OJ

Here are other examples.

280. Let A be an n x n matrix such that there exists a positive integer k for which
kA* = (k + 1) AX.

Prove that the matrix A — Z,, is invertible and find its inverse.

281. Let A be an invertible n x n matrix, and let B = XY, where X and Y are 1 x n,
respectively, n x 1 matrices. Prove that the matrix A 4+ B is invertible if and only if
a = YA™'X # —1, and in this case its inverse is given by

-1 -1 1 —1p a1
+ - .
(A+ B) A AT 'BA
oa+1

282. Given two n x n matrices A and B for which there exist nonzero real numbers a and
b such that AB = aA + bB, prove that A and B commute.

283. Let A and B be n x n matrices, n > 1, satisfying AB — B?’A*=7,and A’+ B3 =0,.
Prove that BA — A’B? = T,.
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2.3.4 Systems of Linear Equations

A system of m linear equations with n unknowns can be written as
Ax = b,

where A 1s an m X n matrix called the coefficient matrix, and b is an m-dimensional vector.
If m = n, the system has a unique solution if and only if the coefficient matrix A is invertible.
If A is not invertible, the system can have either infinitely many solutions or none at all. If
additionally b = 0, then the system does have infinitely many solutions and the codimension
of the space of solutions is equal to the rank of A.

We illustrate this section with two problems that apparently have nothing to do with the
topic. The first was published in Mathematics Gazette, Bucharest, by L. Pirsan.

Example. Consider the matrices
ax ba ay by
_fab [« B | aB bB as b
A_(cd)’ B_(y 8)’ €= ca da cy dy |’
cB dB cé db

where a, b, ¢, d, a, B, v, § are real numbers. Prove that if A and B are invertible, then C is
invertible as well.

Solution. Let us consider the matrix equation AX B = D, where

X:(xz) and D:(mn)‘
yi P q

Solving it for X gives X = A~'DB~!, and so X is uniquely determined by A, B, and D.
Multiplying out the matrices in this equation,

EDGCHED=0n)

aox +bay +ayz+byt afx +bBy +adz +bst\ _(mn
cax +day +cyz+dyt cBx+dBy +csz+dst ) \pq)’

we obtain

This is a system in the unknowns x, y, z, ¢:

aax + bay +ayz + byt =m,
aBx + bpy + adz + bét = n,
cax +day +cyz+dyt = p,
cBx 4+ dBy + cdéz + dét = q.

We saw above that this system has a unique solution, which implies that its coefficient matrix
is invertible. This coefficient matrix is C. U
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The second problem we found in an old textbook on differential and integral calculus.

Example. Given the distinct real numbers a;, as, as, let x;, x», x3 be the three roots of the

equation
Ui Uz us

+ + =1,
ap +t a +t asz +t

where u, uy, us are real parameters. Prove that u;, u,, us are smooth functions of x;, x;, x3

and that
det (%) _ G — ) —xs) (g — x1)
ax; (a1 — @) (ar — a3) (a3 — ar)’

Solution. After eliminating the denominators, the equation from the statement becomes a
cubic equation in #, so xi, xp, x3 are well defined. The parameters u;, u,, us satisfy the
system of equations

1 1 1
—u + u + uz =1,
a) + x; ar + x1 asz + X

1 1 1
—u+ u + us =1,
ap + x; a + x; as + x;

1 1 1
—u; + uy + us = 1.
a; + x3 ap + x3 as + x3

When solving this system, we might end up entangled in algebraic computations. Thus it is
better instead to take a look at the two-variable situation. Solving the system

1 1
u + u, =1,
ap + x; a + x;
1 1
u + u, =1,
a; + x; a + x;

with Cramer’s rule we obtain

(a1 + x1)(ar + x2) (a2 + x1)(az + x2)
= and u, = .
(a; — @) (ar —ay)

up

Now we can extrapolate to the three-dimensional situation and guess that

3
[ @ +x0

U= o, i =1,2,3.
[ @ — a0
ki

It is not hard to check that these satisfy the system of equations. Observe that

H(ai + Xi)

ou;  k£j ou; 1 .
—_— = =, and so —_— = —U;, l,_]=1,2,3.
an H(al. _ aj) 3Xj a; +)Cj

J#
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The determinant in question looks again difficult to compute. Some tricks simplify the task.
An observation is that the sum of the columns is 1. Indeed, these sums are

ou; dur Jduz .
—+—+—,i=123,

Bxi 8x,~ 3)(?,‘

which we should recognize as the left-hand sides of the linear system. So the determinant
becomes much simpler if we add the first and second rows to the last. Another observation
is that the determinant is a 3-variable polynomial in x;, x;, x3. Its total degree is 3, and it
becomes zero if x; = x; for some i # j. Consequently, the determinant is a number not
depending on xy, x,, x3 times (x; — x3) (x> — x3)(x3 — x1). This number can be determined
by looking just at the coefficient of x3x3. And an easy computation shows that this coefficient
is equal to ! U

(a1—az)(ax—a3)(az—ay) *

From the very many practical applications of the theory of systems of linear equations,
let us mention the Global Positioning System (GPS). The principle behind the GPS is the
measurement of the distances between the receiver and 24 satellites (in practice some of these
satellites might have to be ignored in order to avoid errors due to atmospheric phenomena).
This yields 24 quadratic equations d(P, S;)> = r?, i = 1,2,...,24, in the three spatial
coordinates of the receiver. Subtracting the first of the equations from the others cancels the
quadratic terms and gives rise to an overdetermined system of 23 linear equations in three
unknowns. Determining the location of the receiver is therefore a linear algebra problem.

284. Solve the system of linear equations
X +x2+x3 =0,
X2+ x34+x4 =0,
X99 + X100 + X1 = 0,
X100 + X1 +x2 = 0.
285. Find the solutions x, x;, x3, X4, X5 to the system of equations
X5+ X2 = yX1, X1 +X3=YX2, X2+ X4=YyX3,

X3+ X5 = yXi, X4+ X1 = yxs,
where y is a parameter.

286. Leta, b, c, d be positive numbers different from 1, and x, y, z, ¢ real numbers satisfying
a* = bed, b¥ = cda, ¢* = dab,d" = abc. Prove that

—x 1 1 1
1 —y 1 1
1 1 —z 1| 0.
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288.

289.

290.

291.

292,

293.
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Given the system of linear equations

anxi +apxy +apx; =0,
ag1x) + axnxy + axnxz =0,
az1xi +azxy +azx; =0,

whose coefficients satisfy the conditions

(1) an, an, ass are positive,
(ii) all other coefficients are negative,
(iii) in each equation, the sum of the coefficients is positive,

prove that the system has the unique solution x; = x, = x3 = 0.

Let P(x) = x" +x"~! 4+ ... + x + 1. Find the remainder obtained when P (x"*!) is
divided by P (x).

Find all functions f : R\ {—1, 1} — R satisfying

-3 3
f - +f SEx = x forall x # +1.
x+1 1—x

Find all positive integer solutions (x, y, z, ) to the Diophantine equation
x+»O+)(@+x)=txyz

such that ged(x, y) = ged(y, z) = ged(z, x) = 1.

We have n coins of unknown masses and a balance. We are allowed to place some of the
coins on one side of the balance and an equal number of coins on the other side. After
thus distributing the coins, the balance gives a comparison of the total mass of each
side, either by indicating that the two masses are equal or by indicating that a particular
side is the more massive of the two. Show that at least n — 1 such comparisons are
required to determine whether all of the coins are of equal mass.

Letay =0, ay,...,a,, a,+1 = 0be a sequence of real numbers that satisfy
ar—1 —2ap +ag| < lfork=1,2,...,n—1.
Prove that K k4 D)
’/l —
lag] < ffork: 1,2,...,n—1.

Prove that the Hilbert matrix

1 L1 1

R A

2 3 4 n+1

R

non+l nd2 " 2Zn—1

is invertible. Prove also that the sum of the entries of the inverse matrix is n2.
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2.3.5 Vector Spaces, Linear Combinations of Vectors, Bases

In general, a vector space V over a field of scalars (which in our book will be only C, R, or Q)
is a set endowed with a commutative addition and a scalar multiplication that have the same
properties as those for vectors in Euclidean space.

A linear combination of the vectors vy, vo, ..., V,, 1S a sum cjvy + ¢ovo + -+« + CpyVim
with scalar coefficients. The vectors are called linearly independent if a combination of these
vectors is equal to zero only when all coefficients are zero. Otherwise, the vectors are called
linearly dependent. If vy, v,, ..., v, are linearly independent and if every vector in V is a
linear combination of these vectors, then vy, vo, ..., v, is called a basis of V. The number
of elements of a basis of a vector space depends only on the vector space, and is called the
dimension of the vector space. We will be concerned only with finite-dimensional vector
spaces. We also point out that if in a vector space there are given more vectors than the
dimension, then these vectors must be linearly dependent.

The rank of a matrix is the dimension of its row vectors, which is the same as the dimension
of the column vectors. A square matrix is invertible if and only if its rank equals its size.

Let us see some examples. The first appeared in the Soviet University Student Mathemat-
ical Competition in 1977.

Example. Let X and By be n x n matrices, n > 1. Define B; = B;_1X — XB;_y, fori > 1.
Prove that if X = B,2, then X = O,,.

Solution. Because the space of n x n matrices is n>-dimensional, By, By, ..., B,2 must be
linearly dependent, so there exist scalars ¢y, ¢y, ..., ¢,2 such that

2
coBo+ciB +---+ anBn = On.
Let k be the smallest index for which ¢; #% 0. Then

By =a1Biy1 + @ Biyr + -+ ap i By,

Cktj

where a; = — o Computing Byy1 = By X — X By, we obtain

Bii1 = a1Biya + a2 Biys + -+ ae i By,
and inductively
Bitj = a1Bitj+1 + @2Biijo+ -+ ap By, for j > 1.

In particular,

B:=a1Bpy +aBy+ -4 a2 ;1 By
But B>, = B,»X — XB,» = X* — X*> = O,, and hence B2y j = Oy, for j > 1. It follows
that X, which is a linear combination of B,2, B,2,5, ..., B2, is the zero matrix. And we
are done. U

The second example was given at the 67th W.L. Putnam Mathematical Competition in
2006, and the solution that we present was posted by C. Zara on the Internet.
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Example. Let Z denote the set of points in R” whose coordinates are O or 1. (Thus Z has 2"
elements, which are the vertices of a unit hypercube in R”.) Let k be given, 0 < k < n. Find
the maximum, over all vector subspaces V C R” of dimension k, of the number of points in
ZNV.

Solution. Let us consider the matrix whose rows are the elements of V N Z. By construction
it has row rank at most k. It thus also has column rank at most k; in particular, there are
k columns such that any other column is a linear combination of these k. It means that the
coordinates of each point of V N Z are determined by the k coordinates that lie in these k
columns. Since each such coordinate can have only two values, V N Z can have at most 2%
elements.

This upper bound is reached for the vectors that have all possible choices of 0 and 1 for
the first k entries, and O for the remaining entries. ([l

294. Prove that every odd polynomial function of degree equal to 2m — 1 can be written as

P(x) = X . x +1 4 x+2 4 n x+m—1
X) =1C] 1 (65 3 C3 5 Cm m— 1 ,

(x) xx—=1D--(x—m+1)
where = .

m n!

295. Letn beapositive integer and P (x) an nth-degree polynomial with complex coefficients
such that P(0), P(1), ..., P(n) are all integers. Prove that the polynomial n! P (x) has
integer coefficients.

296. Let A be the n x n matrix whose i, j entry isi + j foralli, j = 1,2, ..., n. What is
the rank of A?

297. For integers n > 2 and 0 < k < n — 2, compute the determinant

1k 2k 3k gk
2k 3k 4 m+ D

3k 4k 5 . m+2)F

n‘k (n%l)k (n4;2)k (2n'— 1)k

298. Let V be a vector space and let f, f1, f2, ..., f, be linear maps from V to R. Suppose
that f(x) = 0 whenever fi(x) = fo(x) =--- = f,(x) = 0. Prove that f is a linear
combination of fi, f>, ..., fu.

299. Given a set S of 2n — 1 different irrational numbers, n > 1, prove that there exist

n distinct elements xy, x3, ..., x, € S such that for all nonnegative rational numbers
ai, az,...,a, witha; +a» +--- 4+ a, > 0, the number a;x; + arxy + -+ - + a,x, 18
irrational.

300. There are given 2n + 1 real numbers, n > 1, with the property that whenever one of
them is removed, the remaining 2n can be split into two sets of n elements that have
the same sum of elements. Prove that all the numbers are equal.
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301. Let V be an infinite set of vectors in R” containing » linearly independent vectors. A
finite subset S C V is called crucial if the set V'\ S contains no » linearly independent
vectors, but every set V\T, with T a subset of S does. Prove there are only finitely
many crucial subsets of V.

2.3.6 Linear Transformations, Eigenvalues, Eigenvectors

A linear transformation between vector spaces isamap 7 : V — W that satisfies 7' (ov; +
arvy) = a1 T (vy) + o T (1) for any scalars oy, ap and vectors vy, v,. A matrix A defines a
linear transformation by v — Av, and any linear transformation between finite-dimensional
vector spaces with specified bases is of this form. An eigenvalue of a matrix A is a zero of
the characteristic polynomial P4(A) = det(AZ,, — A). Alternatively, it is a scalar A for which
the equation Av = Av has a nontrivial solution v. In this case v is called an eigenvector of the

eigenvalue L. If 1, Ao, ..., A, are distinct eigenvalues and vy, vy, ..., v, are corresponding
eigenvectors, then vy, v, ..., v, are linearly independent. Moreover, if the matrix A is
Hermitian, meaning that A is equal to its transpose conjugate, then vy, v,, ..., v, may be

chosen to be pairwise orthogonal.

The set of eigenvalues of a matrix is called its spectrum. The reason for this name is
that in quantum mechanics observable quantities are modelled by matrices. Physical spectra,
such as the emission spectrum of the hydrogen atom, become spectra of matrices. Among
all results in spectral theory we stopped at the spectral mapping theorem, mainly because we
want to bring to your attention the method used in the proof.

The spectral mapping theorem. Let A be an n x n matrix with not necessarily distinct
eigenvalues Ly, Ay, ..., Ay, and let P(x) be a polynomial. Then the eigenvalues of the matrix
P(A) are P(A), P(X2), ..., P(A)).

Proof. To prove this result we will apply a widely used idea (see for example the splitting
principle in algebraic topology). We will first assume that the eigenvalues of A are all distinct.
Then A can be diagonalized by eigenvectors as

A 0...0
0A... 0
0 0 ...A,

and in the basis formed by the eigenvectors of A, the matrix P(A) assumes the form

Px) O ... O
0 P ... O
0 0 .. PG

The conclusion is now straightforward. In general, the characteristic polynomial of a matrix
depends continuously on the entries. Problem 229 in Section 2.2.6 proved that the roots of
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a polynomial depend continuously on the coefficients. Hence the eigenvalues of a matrix
depend continuously on the entries.

The set of matrices with distinct eigenvalues is dense in the set of all matrices. To prove
this claim we need the notion of the discriminant of a polynomial. By definition, if the zeros
of a polynomial are xi, x5, ..., X, the discriminant is H(x,» — xj)z. It is equal to zero if

1<
and only if the polynomial has multiple zeros. Being a synjlmetric polynomial in the x;’s, the
discriminant is a polynomial in the coefficients. Therefore, the condition that the eigenvalues
of a matrix be not all distinct can be expressed as a polynomial equation in the entries. By
slightly varying the entries, we can violate this condition. Therefore, arbitrarily close to any
matrix there are matrices with distinct eigenvalues.

The conclusion of the spectral mapping theorem for an arbitrary matrix now follows by a
limiting argument. O

We continue with two more elementary examples.

Example. LetA:V — Wand B : W — V be linear maps between finite-dimensional vector
spaces. Prove that the linear maps AB and BA have the same set of nonzero eigenvalues,
counted with multiplicities.

Solution. Choose a basis that identifies V with R” and W with R". Associate to A and B
their matrices, denoted by the same letters. The problem is solved if we prove the equality

det(\Z, — AB) = Afdet(\Z,, — BA),

where k is of course n — m. The relation being symmetric, we may assume that n > m.
In this case, complete the two matrices with zeros to obtain two n x n matrices A’ and B’.
Because det(AZ, — A’B’) = det(\Z, — AB) and det(AZ, — B'A’) = A"~ det(AZ, — BA),
the problem reduces to proving that det(AZ, — A’B’) = det(AZ, — B’A’). And this is true for
arbitrary n x n matrices A’ and B’. For a proof of this fact we refer the reader to problem 269
in Section 2.3.2. ([l

If B = A", the transpose conjugate of A, then this example shows that AAT and AT A have
the same nonzero eigenvalues. The square roots of these eigenvalues are called the singular
values of A. The second example comes from the first International Mathematics Competition
(for university students), 1994.

Example. Let o be a nonzero real number and n a positive integer. Suppose that F and G are
linear maps from R” into R” satisfying F o G — G o F = «F.

(a) Show that for all k > 1 one has F¥ o G — G o F¥ = ak F*.
(b) Show that there exists k > 1 such that F¥ = O,.

Here F o G denotes F composed with G, and F* denotes F composed with itself k times.
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Solution. Expand F¥ o G — G o F* using a telescopic sum as follows:

k
FkoG—GoFk:Z(F’H“ 0GoF'l — FFioGoF)
i=1
k
:ZFk—io(FoG—GoF)oFf—‘
i=1
k
=> FoaFoF'™! = akF*.
i=l1

This proves (a). For (b), consider the linear map L(F) = F o G — G o F actingon alln x n
matrices F. Assuming F* # O, for all k, we deduce from (a) that ok is an eigenvalue of L
for all k. This is impossible since the linear map L acts on an n*-dimensional space, so it can
have at most n? eigenvalues. This contradiction proves (b). O

302.

303.

304.

30S.

306.

307.

308.
309.

310.

Let A be a 2 x 2 matrix with complex entries and let C(A) denote the set of 2 x 2
matrices that commute with A. Prove that | det(A 4+ B)| > |det B| for all B € C(A)
if and only if A2 = O,.

Let A, B be 2 x 2 matrices with integer entries, such that AB = BA and det B = 1.
Prove that if det(A® + B?) = 1, then A% = O,.

Consider the n x n matrix A = (a;;) witha;; = 1if j —i =1 (mod n) and a;; =0
otherwise. For real numbers a and b find the eigenvalues of aA + bA’.

Let A be an n x n matrix such that det A = 1 and A’A = Z,. Show that 1 is an
eigenvalue of A.

Let A be an n x n matrix that has zeros on the main diagonal and all other entries from
the set {—1, 1}. Is it possible that det A = 0 for n = 2007? What about for n = 2008?

Let A be an n x n skew-symmetric matrix (meaning that for all 7, j, a;; = —aj;) with
real entries. Prove that

det(A + xZ,) - det(A + yZ,) > det(A + /xyZ,)>,

for all x, y € [0, c0).
Let A be an n x n matrix. Prove that there exists an n x n matrix B suchthat ABA = A.

Consider the angle formed by two half-lines in three-dimensional space. Prove that
the average of the measure of the projection of the angle onto all possible planes in the
space is equal to the angle.

A linear map A on the n-dimensional vector space V is called an involution if A% = Z.

(a) Prove that for every involution A on V there exists a basis of V consisting of
eigenvectors of A.
(b) Find the maximal number of distinct pairwise commuting involutions.
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311. Let A be a 3 x 3 real matrix such that the vectors Au and u are orthogonal for each
column vector u € R?. Prove that

(a) A" = —A, where A’ denotes the transpose of the matrix A;
(b) there exists a vector v € R3 such that Au = v x u for every u € R

312. Denote by M, (R) the set of n x n matrices with real entries and let f : M,(R) — R
be a linear function. Prove that there exists a unique matrix C € M, (R) such that
f(A) =tr(AC) for all A € M, (R). In addition, if f(AB) = f(BA) for all matrices
A and B, prove that there exists A € R such that f(A) = AtrA for any matrix A.

313. Let U and V be isometric linear transformations of R”, n > 1, with the property that
|Ux — x| < % and ||[Vx — x|| < % for all x € R” with ||x|| = 1. Prove that

1

nUVU4v”x—xH5§,

for all x € R" with ||x|| = 1.

314. For an n x n matrix A denote by ¢, (A) the symmetric polynomial in the eigenvalues
)\.1, )»2, e »)\n OfA,

$(A) = D Ak k=120

i102...0k
For example, ¢, (A) is the trace and ¢, (A) is the determinant. Prove that for twon x n

matrices A and B, ¢y (AB) = ¢ (BA) forallk =1,2,...,n.

2.3.7 The Cayley-Hamilton and Perron-Frobenius Theorems

We devote this section to two more advanced results, which seem to be relevant to mathematics
competitions. All matrices below are assumed to have complex entries.

The Cayley-Hamilton Theorem. Any n x n matrix A satisfies its characteristic equation,
which means that if P4(A) = det(AZ, — A), then Po(A) = O,,.

Proof. Let Po(A) = A" 4a,_1 A"+ -4ay. Denote by (AZ, — A)* the adjoint of (AZ,, — A)
(the one used in the computation of the inverse). Then

(AL, — AY(\T, — A)* = det(AZ, — A)Z,.

The entries of the adjoint matrix (AZ, — A)* are polynomials in A of degree at most n — 1.
Splitting the matrix by the powers of A, we can write

(M, — A)* = By_1A" '+ B, oA 2+ ... + B,.
Equating the coefficients of A on both sides of

(AL, — A)(By A"+ By oA 2 4 -+ By) = det(MT, — A)Z,,
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we obtain the equations

anl = In’
_ABn—l + Bn—2 = an—lInv
_ABn72 + Bn73 = aanZn»

—AB() = aol—n.

Multiply the first equation by A", the second by A"~!, the third by A”~2, and so on, then add
the n 4+ 1 equations to obtain

O, =A"+a, A" +a, A"+ -+ ayT,.

This equality is just the desired P4(A) = O,. U

As a corollary we prove the trace identity for SL (2, C) matrices. This identity is important
in the study of characters of group representations.

Example. Let A and B be 2 x 2 matrices with determinant equal to 1. Prove that

tr(AB) — (trA)(trB) + tr(AB~!) = 0.

Solution. By the Cayley-Hamilton Theorem,
B> — (tB)B +1, = O,.
Multiply on the left by AB~! to obtain
AB — (rB)A+ AB™' = O,
and then take the trace to obtain the identity from the statement. ([l
Five more examples are left to the reader.

315. Let A be a 2 x 2 matrix. Show that if for some complex numbers # and v the matrix
uZ, 4+ vA is invertible, then its inverse is of the form u’Z, + v'A for some complex
numbers u’ and V.

316. Find the 2 x 2 matrices X with real entries that satisfy the equation

—2 -2
3 ay2
X3 -3x _(_2_2).

317. Let A, B, C, D be 2 x 2 matrices. Prove that the matrix [A, B]-[C, D]+[C, D]-[A, B]
is a multiple of the identity matrix (here [A, B] = AB — BA, the commutator of
A and B).
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318. Let A and B be two 2 x 2 matrices that do not commute. Assume that there is
a nonconstant polynomial P(x) with real coefficients such that P(AB) = P(BA).
Prove that there exists a real number a such that P(AB) = aZ,.

319. Let A and B be 3 x 3 matrices. Prove that

tr((AB — BA)?)
3 .

det(AB — BA) =

320. Show that there do not exist real 2 x 2 matrices A and B such that their commutator is
nonzero and commutes with both A and B.

Here is the simplest version of the other result that we had in mind.

The Perron-Frobenius theorem. Anysquare matrixwith positive entries has a unique eigen-
vector with positive entries (up to a multiplication by a positive scalar), and the corresponding
eigenvalue has multiplicity one and is strictly greater than the absolute value of any other
eigenvalue.

Proof. The proof uses real analysis. Let A = (a;;); ;_;, n = 1. We want to show that there
is a unique v € [0, 00)", v # 0, such that Av = Av for some A. Of course, since A has
positive entries and v has positive coordinates, A has to be a positive number. Denote by K the
intersection of [0, 00)" with the n — 1-dimensional unit sphere. Reformulating the problem,
we want to show that the function f : K — K, f(v) = ”f‘—in has a fixed point.

Now, there is a rather general result that states that a contractive function on a compact
metric space has a unique fixed point (see Section 3.2.3). Recall that a metric space is a set

X endowed with a function § : X x X — [0, co) satisfying
(1) §(x,y) =0ifand only if x =y,

(i) 6(x,y) =68(y,x) forallx,y € X,

(i) §(x,y) +8(y,z) =d8(x,z) forall x, y,z € X.

We use the property in the case of a compact set in R”, where compact sets are characterized
by being closed and bounded. A function f : X — X is contractive if

§(f(x), f(y)) <d(x,y), forevery x # y.

With this in mind, we want to find a distance on the set K that makes the function f
defined above contractive. This is the Hilbert metric defined by the formula

(v, w) =In (max [i} / min {i}) :
14 Wl i Wl

forv = (vi,va,...,vy) and w = (Wi, wp,...,w,) € K. That this satisfies the triangle
inequality §(u, w) 4+ 8(w, u) > §(v, w) is a consequence of the inequalities

Vi Wi Vi
max y— ¢ -maxjy—gr¢ =>maxy,—ry,
i Wi i I/ti i Wl'
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. Vi . Wi . Vi
mmi —y-mmij{—;y=>miniy,—ry .
i wi i u; i wi

Let us show that f is contractive. If v = (v{, vo,...,v,) and w = (W, wa, ..., w,) arein K,
vZw,andifo; > 0,i =1,2,...,n,then

. Vi apvy +avy 4+ -+ oy, Vi
min { — < <max{—f.

l Wi owy +aowy + - -+ Wy l Wi

Indeed, to prove the first inequality, add the obvious inequalities

. Vi .
ajw; min {—l] <ajvj, j=12,...,n.

1 Wl'
Because v # w and both vectors are on the unit sphere, at least one inequality is strict. The
second inequality follows from

Vi .
a;jw;j max <—} >avj, j=1,2,...,n,

1 wi

where again at least one inequality is strict.
Using this fact, we obtain for all j,1 < j <mn,

ajivi+ -+ ajppve ajivy+ -+ ajppve
ajiwy + -+ ajpwy ajiwy + -+ ajpwy
J j 1< Y J

max {§ % min { %
i Wi i Wi

ajivi+---+ajpvy . ajivi+ -+ ajpy
max min
ajwy+ -+ ajpwy i lajwr+ -+ apwy

<
max{ﬁ} min{ﬁ}
i Wi i Wi

It follows that forv,w € K, v £ w, 5(f(v), f(w)) < §(v, w).

Now, K is closed and but is not bounded in the Hilbert metric; some points are infinitely
far apart. But even if K is not bounded in the Hilbert metric, f(K) is (prove it!). If we denote
by K the closure of f(K) in the Hilbert metric, then this space is closed and bounded. On
Ko, f is contractive, and so it has a unique fixed point. Note that all fixed points of f are
necessarily in K (because if f(v) =v,thenv = f(v) € f(K)).

We are done with the first half of the proof. Now let us show that the eigenvalue of this
positive vector is larger than the absolute value of any other eigenvalue. Let r(A) be the largest
of the absolute values of the eigenvalues of A and let A be an eigenvalue with |A| = r(A). In
general, for a vector v we denote by |v| the vector whose coordinates are the absolute values
of the coordinates of v. Also, for two vectors v, w we write v > w if each coordinate of v is
greater than the corresponding coordinate of w. If v is an eigenvector of A corresponding to
the eigenvalue A, then |Av| = |A|-|v|. The triangle inequality implies A|v| > |Av| = r(A)|v|.
It follows that the set

Therefore,

J

Ki={llvl=1 v=0, Av=r(A)yv},
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is nonempty. Because A has positive entries, A(Av — r(A)v) > 0 forv € K. So A(Av) >
r(A)(Av), forv € K, proving that f(K;) C K;. Again K is closed and f(K) is bounded,
so we can reason as above to prove that f restricted to K; has a fixed point, and because
K| C K, this is the fixed point that we detected before. Thus r(A) is the unique positive
eigenvalue.

There cannot exist another eigenvalue A with |A| = r(A), for otherwise, for a small ¢ > 0
the matrix A — eZ,, would still have positive entries, but its positive eigenvalue r(A) — & would
be smaller than the absolute value of the other eigenvalue contradicting what we just proved.
This concludes the proof of the theorem. (|

Nowhere in the book are more appropriate the words of Sir Arthur Eddington: “Proof is
an idol before which the mathematician tortures himself.”

The conclusion of the theorem still holds in the more general setting of irreducible matri-
ces with nonnegative entries (irreducible means that there is no reordering of the rows and
columns that makes it block upper triangular). This more general form of the Perron-Frobenius
Theorem is currently used by the Internet browser Google to sort the entries of a search. The
idea is the following: Write the adjacency matrix of the Internet with a link highlighted if it
is related to the subject. Then multiply each nonzero entry by a larger or smaller number that
takes into account how important the subject is in that page. The Perron-Frobenius vector of
this new matrix assigns a positive weight to each site on the Internet. The Internet browser
then lists the sites in decreasing order of their weights.

We now challenge you with some problems.

321. Let A be a square matrix whose off-diagonal entries are positive. Prove that the right-
most eigenvalue of A in the complex plane is real and all other eigenvalues are strictly
to its left in the complex plane.

322. Leta;j, i, j = 1,2, 3, be real numbers such that a;; is positive for i = j and negative
for i # j. Prove that there exist positive real numbers c1, ¢;, ¢3 such that the numbers

ajicy + apcy +agzcs, Azl + apcy + axcs,  ascp + az;pcy + asscs

are all negative, all positive, or all zero.

323. Let x1, x2, ..., x, be differentiable (real-valued) functions of a single variable ¢ that
satisfy
dx1
— =anXx; +apxy + -+ apxy,
dt
dXQ
— =ayx; +axx; + -+ ayxy,
dt
dx,
W = Ay X1 + X2 + - -+ Aup Xy,

for some constants a;; > 0. Suppose that for all i, x;(r) — 0 ast — o0o. Are the
functions x1, x», ..., x, necessarily linearly independent?
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324. For a positive integer n and any real number ¢, define (x)x>o recursively by xo = 0,
x; =1, and for k > 0,
X1 — (n— k)xy
k+1

Fix n and then take c to be the largest value for which x,,.; = 0. Find x; in terms of n
andk, 1 <k <n.

Xk+2 =

2.4 Abstract Algebra

2.4.1 Binary Operations

A binary operation x on a set S associates to each pair (a, b) € S x S anelementaxb € S. The
operation is called associative if a x (b xc¢) = (a xb) xc forall a, b, ¢ € S, and commutative
ifaxb=>bxaforalla,b e S. If there exists an element e such that a x ¢ = ¢ x a = a for
all a € S, then e is called an identity element. If an identity exists, it is unique. In this case,
if for an element a € S there exists b € S such thata x b = b % a = e, then b is called the
inverse of @ and is denoted by a~!. If an element has an inverse, the inverse is unique.

Just as a warmup, we present a problem from the 62nd W.L. Putnam Competition, 2001.

Example. Consider a set S and a binary operation * on S. Assume that (a % b) xa = b for all

a,b € S. Provethata % (b xa) = bforalla,b € S.

Solution. Substituting b * a for a, we obtain
((b*xa)xb)*x(b*a)=D>b.
The expression in the first set of parentheses is a. Therefore,
ax((bxa)=0>b,

as desired. O

Often, problems about binary operations look like innocent puzzles, yet they can have
profound implications. This is the case with the following example.

Example. For three-dimensional vectors X = (p,q,t) and Y = (p/, ¢’, t') define the oper-
ations (p,q,1) = (p',q'.t") = (0,0, pq’ —gp’),and X oY = X + Y + 1X % Y, where +
denotes the addition in R>.

(a) Prove that (R, o) is a group.

(b) Leta : (R?, 0) — (R?, o) be a continuous map satisfying «(X oY) = a(X) o a(Y) for
all X, Y (which means that o is a homomorphism). Prove that

(X +Y)=aX)4+ oY) and a(X *xY) =a(X) xa(Y).



2.4 Abstract Algebra 97

Solution. (a) Associativity can be verified easily, the identity element is (0, 0, 0), and the
inverse of (p, q,t)is (—p, —q, —t).

(b) First, note that X « ¥ = —Y % X. Therefore, if X is a scalar multiple of Y, then
XxY=Y*X=0.Ingeneral,if X *Y =0,then X oY = X +Y =Y o X. Hence in this
case,

o X+Y)=aXoY)=aX)oa(Y) =a(X)+a¥) + %a(X) *xa(Y)

on the one hand, and
o X+Y)=a( oX)=a¥)oa(X) =a¥) +a(X) + %a(Y) *o(X).

Because a(X) xa(Y) = —a(Y) *a(X), this implies that o (X) *«(Y) = 0. and consequently
a(X+Y) = a(X)+a(Y). Inparticular, « is additive on every one-dimensional space, whence
a(rX) = ra(X), for every rational number r. But « is continuous, so ¢(sX) = sa(X) for
every real number s. Applying this property we find that for any X, Y € R3 and s € R,

so (X +Y+ %SX * Y) =« (sX +sY + %szX * Y) =a((sX) o (sY))
=a(sX)oa(sY) = (sa(X)) o (sa(Y))
=sa(X) +sa(Y) + %sza(X) xa(Y).

Dividing both sides by s, we obtain
1 1
o (X +Y+ ESX * Y) =a(X) 4+ oY)+ Esa(X) *xa(Y).

In this equality if we let s — 0, we obtain (X + Y) = a(X) + a(Y). Also,if welets =1
and use the additivity we just proved, we obtain a(X * ¥) = a(X) * a(Y). The problem is
solved. ]

Traditionally, X * Y is denoted by [X, Y] and R endowed with this operation is called
the Heisenberg Lie algebra. Also, R? endowed with o is called the Heisenberg group. And
we just proved a famous theorem showing that a continuous automorphism of the Heisenberg
group is also an automorphism of the Heisenberg Lie algebra. The Heisenberg group and
algebra are fundamental concepts of quantum mechanics.

325. With the aid of a calculator that can add, subtract, and determine the inverse of a nonzero
number, find the product of two nonzero numbers using at most 20 operations.

326. Invent a binary operation from which +, —, x, and / can be derived.

327. A finite set S with at least four elements is endowed with an associative binary operation
* that satisfies
(axa)xb=bx(axa)=>bforalla,b e S.

Prove that the set of all elements of the form a * (b * ¢) with a, b, ¢ distinct elements
of S coincides with S.
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Let S be the smallest set of rational functions containing f(x, y) = x and g(x,y) =y
and closed under subtraction and taking reciprocals. Show that S does not contain the
nonzero constant functions.

Let * and o be two binary operations on the set M, with identity elements e, respectively,
¢’, and with the property that for every x, y, u,v € M,

(xxy)o(ux*xv)=(xou)*(yov).
Prove that
(@) e=e';

(b) xxy=xoy,foreveryx,y € M;
(c) xxy=y=xx,forevery x,y € M.

Consider a set S and a binary operation * on S such that x *x (y * x) = y for all x, y in
S. Prove that each of the equations a * x = b and x xa = b has a unique solution in S.

On a set M an operation * is given satisfying the properties

(1) there exists an element e € M such that x x e = x forall x € M;
(1) (x*xy)xz=(z*xx)xyforallx,y, ze M.

Prove that the operation * is both associative and commutative.

Prove or disprove the following statement: If F is a finite set with two or more elements,
then there exists a binary operation * on F such that for all x, y,z € F,

(1) x %z = y x z implies x = y (right cancellation holds), and
(i1) x * (y *z) # (x % y) * z (no case of associativity holds).

Let % be an associative binary operation on a set S satisfying a x b = b x a only if
a =>b. Provethata x (b xc) =axcforalla, b,c € S. Give an example of such an
operation.

Let S be a set and * a binary operation on S satisfying the laws
(i) x*(x=*xy)=yforallx,yes,

(i) (yxx)xx =yforallx,y e S.

Show that * is commutative but not necessarily associative.

Let * be a binary operation on the set (Q of rational numbers that is associative and
commutative and satisfies 0«0 = Oand (a+c¢)* (b+c) = axb+cforalla, b, c € Q.
Prove that either a * b = max(a, b) for all a,b € Q, or a * b = min(a, b) for all
a,beQ.

2.4.2 Groups

Definition. A group is a set of transformations (of some space) that contains the identity
transformation and is closed under composition and under the operation of taking the inverse.



2.4 Abstract Algebra 99

The isometries of the plane, the permutations of a set, the continuous bijections on a closed
bounded interval all form groups.

There is a more abstract, and apparently more general definition, which calls a group a set
G endowed with a binary operation - that satisfies

(1) (associativity) x(yz) = (xy)z forall x, y,z € S;
(ii) (identity element) there is ¢ € G such that for any x € G, ex = xe = x;

(iii) (existence of the inverse) for every x € G there is x~! € G such that

But Cayley observed the following fact.

Theorem. Any group is a group of transformations.

Proof. Indeed, any group G acts on itself on the left. Specifically, x € G acts as a transfor-
mation of G by y - xy,y € G. O

A group G is called Abelian (after N. Abel) if the operation is commutative, that is, if
xy = yxforallx, y € G. Anexample of an Abelian group is the Klein four-group, introduced
abstractly as K = {a, b, c, e | a’>=b>=c>=e, ab=uac, ac=>b, bc =a}, or concretely
as the group of the symmetries of a rectangle (depicted in Figure 14).

>

Figure 14

A group is called cyclic if it is generated by a single element, that is, if it consists of the
identity element and the powers of some element.

Letus turn to problems and start with one published by L. Daia in the Mathematics Gazette,
Bucharest.

Example. A certain multiplicative operation on a nonempty set G is associative and allows
cancellations on the left, and there exists a € G such that x> = axa for all x € G. Prove that
G endowed with this operation is an Abelian group.

Solution. Replacing x by ax in the given relation, we obtain axaxax = a’*xa. Cancelling
a on the left, we obtain x(axa)x = axa. Because axa = x73, it follows that x> = x>, and
cancelling an x2, we obtain

x> =xforall x € G.
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3

In particular, a®> = a, and hence a*>x = ax for all x € G. Cancel a on the left to find that

a’x = xforallx € G.

Substituting x by xa, we obtain a’xa = xa, or ax® = xa, and since x> = x, it follows that a

commutes with all elements in G. We can therefore write

a’x = a(ax) = a(xa) = (xa)a = xa>,

whence xa?> = a’x = x. This shows that a” is the identity element of the multiplicative

operation; we denote it by e. The relation from the statement implies x> = axa = xa* = xe;
cancelling x, we obtain x> = e; hence for all x € G, x~! = x. It follows that G is a group.

It is Abelian by the well-known computation
_ -1 _ -1 -1 _
xy=(xy)" =y x =yx. U
Here are more examples of the kind.

336. Prove that in order for a set G endowed with an associative operation to be a group, it
suffices for it to have a left identity, and for each element to have a left inverse. This
means that there should exist ¢ € G such that ex = x for all x € G, and for each
x € G, there should exist x’ € G such that x’x = e. The same conclusion holds if
“left” is replaced by “right”.

337. Let (G, 1) and (G, *) be two group structures defined on the same set G. Assume that
the two groups have the same identity element and that their binary operations satisfy

axb=(aLla)l (a Lb)),
forall a, b € G. Prove that the binary operations coincide and the group they define is
Abelian.

338. Letr, s, t be positive integers that are pairwise relatively prime. If the elements a and
b of an Abelian group with identity element e satisfy a” = b* = (ab)' = e, prove that
a = b = e. Does the same conclusion hold if @ and b are elements of an arbitrary
nonAbelian group?

339. A is asubset of a finite group G which contains more than one half of the elements of
G. Prove that every element of G is the product of two elements of A.

340. On the set M = R\ {3} the following binary operation is defined:
x %y =73(xy—3x—3y)+m,

where m € R. Find all possible values of m for which (M, ) is a group.

341. Assume that ¢ and b are elements of a group with identity element e satisfying
(aba=")" = e for some positive integer n. Prove that " = e.
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342. Let G be a group with the following properties:
(i) G has no element of order 2,
(i) (xy)? = (yx)%, forallx,y € G.
Prove that G is Abelian.

343. A multiplicative operation on a set M satisfies
(i) a* = b2, (ii) ab® = a, (iii) a*(bc) = cb, (iv) (ac)(bc) = ab, foralla, b, c € M.
Define on M the operation
axb=a(b’b).

Prove that (M, %) is a group.

We would like to point out the following property of the set of real numbers.

Kronecker’s theorem. A nontrivial subgroup of the additive group of real numbers is either
cyclic or it is dense in the set of real numbers.

Proof. Denote the group by G. It is either discrete, or it has an accumulation point on the
real axis. If it is discrete, let a be its smallest positive element. Then any other element is of
the form b = ka + o with O < a < a. But b and ka are both in G; hence « is in G as well.
By the minimality of a, « can only be equal to 0, and hence the group is cyclic.

If there is a nonconstant sequence (x,), in G converging to some real number, then
+(x, — x,,) approaches zero as n, m — o0o. Choosing the indices m and n appropriately,
we can find a sequence of positive elements in G that converges to 0. Thus for any ¢ > 0
there is an element ¢ € G with 0 < ¢ < ¢. For some integer k, the distance between kc and
(k + D)c is less than ¢; hence any interval of length & contains some multiple of ¢. Varying ¢,
we conclude that G is dense in the real axis. U

Try to use this result to solve the following problems.
344. Let f : R — R be a continuous function satisfying
F) + f(x ++2) = f(x ++/3) forall x.

Prove that f is constant.
345. Prove that the sequence (sinn),>; is dense in the interval [—1, 1].
346. Show that infinitely many powers of 2 start with the digit 7.

347. Given arectangle, we are allowed to fold it in two or in three, parallel to one side or the
other, in order to form a smaller rectangle. Prove that for any ¢ > O there are finitely
many such operations that produce a rectangle with the ratio of the sides lying in the
interval (1 — &, 1 4 ¢) (which means that we can get arbitrarily close to a square).

348. A set of points in the plane is invariant under the reflections across the sides of some
given regular pentagon. Prove that the set is dense in the plane.

We continue with problems about groups of matrices.
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Prove that the group of invertible 4 x 4 matrices with rational entries has no elements
of order 7.

Given I' a finite multiplicative group of invertible matrices with complex entries, denote
by M the sum of the matrices in I". Prove that det M and tr M are integers.

Let n be a positive integer. What is the size of the largest multiplicative group of
invertible n x n matrices with integer entries such that for every matrix A in the group
all the entries of A — I, are even?

For an n x n matrix with complex entries, A, we define its norm to be
[All = sup [[Ax]],
llxll=1

where ||x || denotes the usual norm on C” (the square root of the sum of the squares of
the absolute values of the coordinates). Let a < 2, and let G be a multiplicative group
of invertible n x n matrices such that

IA—7T,| <aforall A eG.

Prove that G is finite.

“There is no certainty in sciences where one of the mathematical sciences cannot be
applied, or which are not in relation with this mathematics.” This thought of Leonardo da
Vinci motivated us to include an example of how groups show up in natural sciences.

The groups of symmetries of three-dimensional space play an important role in chemistry
and crystallography. In chemistry, the symmetries of molecules give rise to physical properties
such as optical activity. The point groups of symmetries of molecules were classified by A.
Schonflies as follows:

Cy: areflection with respect to a plane, isomorphic to Z,,
C;: areflection with respect to a point, isomorphic to Z,,
C,: the rotations by multiples of 2’7” about an axis, isomorphic to Z,,

C,,: generated by a C,, and a C; with the reflection plane containing the axis of rotation;
in mathematics this is called the dihedral group,

C,;,: generated by a C,, and a C; with the reflection plane perpendicular to the axis of
rotation, isomorphic to C,, x C»,

D,: generated by a C,, and a C,, with the rotation axes perpendicular to each other,
isomorphic to the dihedral group,

D,q: generated by a C,, and a C,, together with a reflection across a plane that divides
the angle between the two rotation axes,

D,;: generated by a C,, and a C, with perpendicular rotation axes, together with a
reflection with respect to a plane perpendicular to the first rotation axis,
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e S,: improper rotations by multiples of 2,—1”, i.e., the group generated by the element
that is the composition of the rotation by 27” and the reflection with respect to a plane
perpendicular to the rotation axis,

e Special point groups: Coo,’s and Doop,’s (same as C,, and D, but with all rotations
about the axis allowed), together with the symmetry groups of the five Platonic solids.

When drawing a molecule, we use the convention that all segments represent bonds in
the plane of the paper, all bold arrows represent bonds with the tip of the arrow below the
tail of the arrow. The molecules from Figure 15 have respective symmetry point groups the
octahedral group and C3;.

F H
|
Pl T 0.0,
7T F ‘
F H”

Figure 15

353. Find the symmetry groups of the molecules depicted in Figure 16.

H H H H H H
N7 H A /
AN G G

c” c WO N H H
Figure 16

2.4.3 Rings

Rings mimic in the abstract setting the properties of the sets of integers, polynomials, or
matrices.

Definition. A ringisaset R endowed with two operations + and - (addition and multiplication)
such that (R, +) is an Abelian group with identity element O and the multiplication satisfies

(1) (associativity) x(yz) = (xy)z forall x, y,z € R, and
(i1) (distributivity) x(y +z) = xy +xzand (x + y)z =xz + yzforall x, y,z € R.

A ring is called commutative if the multiplication is commutative. It is said to have identity
if there exists 1 € Rsuchthat 1 -x =x -1 = x forall x € R. Anelement x € R is called
invertible if there exists x ™! € R such that xx~! = x'x = 1.

We consider two examples, the second of which appeared many years ago in the Balkan
Mathematics Competition for university students.
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Example. Let x and y be elements in a ring with identity. Prove that if 1 — xy is invertible,
then sois 1 — yx.

Solution. If we naively use the expansion (1 — x)™! =14 x + x>+ x> + - to write
(I —xy)"" =1+ xy + xyxy + xyxyxy + -
(1 —yx)™' =1+ yx + yxyx + yxyxyx +-- -,
we can rearrange the second as
(1= yx)™ =14 y(1 +xy + xyxy + xyxyxy +---)x

So we can gess that if v be the inverse of 1 — xy then 1 4 yvx is the inverse of 1 — yx. We
have v(1 — xy) = (1 — xy)v = 1; hence vxy = xyv = v — 1. We compute

d4+yv)d —yx)=1—yx+yvx —yvxyx=1—yx+yvx —y(v—Dx = 1.
A similar verification shows that (1 — yx)(1 + yvx) = 1. It follows that 1 — yx is invertible

and its inverse is 1 + yvx. O

Example. Prove that if in a ring R (not necessarily with identity element) x> = x for all
X € R, then the ring is commutative.

Solution. For x,y € R, we have
xy? = Pyt = 0y = y2ay?)’ = xpteytxy? — xyPxy?yiay? — xyyiaytey?
22?0y 4 22yt xy? + 22y Py ay?
3 2y2 2092202 4 2y 2y yiay.
Using the fact that y* = y?, we see that this is equal to zero, and hence xy?> — y?xy? = 0,
that is, xy? = y?xy®. A similar argument shows that y?>x = y?xy?, and so xy? = y%x for all

X,y € R.
Using this we obtain

xy =xyxyxy = xy(xy)> = x(xy)’y = x’yxy* = y’x’ = yx.
This proves that the ring is commutative, as desired. (|

We remark that both this and the third problem below are particular cases of the following
result by N. Jacobson:

Jacobson theorem. If aring (with orwithout identity) has the property that for every element
x there exists an integer n(x) > 1 such that x"¥) = x, then the ring is commutative.

Try your hand at the following problems.

354. Leta, b, c be elements of a ring with identity.
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(a) Show that if I, — abc is invertible, then I,, — cab is invertible.
(b) Can it happen that I, — abc is invertible but I, — cba is not?

Let R be a nontrivial ring with identity, and M = {x € R | x = x?} the set of its
idempotents. Prove that if M is finite, then it has an even number of elements.

Let R be a ring with identity such that x® = x for all x € R. Prove that x> = x for all
x € R. Prove that any such ring is commutative.

Let R be a ring with identity with the property that (xy)?> = x?y? for all x, y € R.
Show that R is commutative.

Let R be a finite ring with unit, having n elements and such that the equation x" = 1
has the unique solution x = 1 in R. Prove that

(a) O is the unique nilpotent element of R;
(b) there is a positive integer k > 2 such that the equation x* has n solutions in R.

(x € R is called nilpotent if there is a positive integer m such that x™ = 0.)

Let R be a finite ring such that 1 + 1 = 0. Prove that the number of solutions to the
equation x> = 0 is equal to the number of solutions to the equation x> = 1.

Let x and y be elements in a ring with identity and n a positive integer. Prove that if
1 — (xy)" is invertible, then so is 1 — (yx)".

Let R be a ring with the property that if x € R and x?> = 0, then x = 0.

(a) Prove thatif x, z € R and z> = z, then zxz — xz = 0.
(b) Prove that any idempotent of R belongs to the center of R (the center of a ring
consists of those elements that commute with all elements of the ring).

Show that if a ring R with identity has three elements «, b, ¢ such that

(1) ab = ba, bc = cb;
(ii) for any x, y € R, bx = by implies x = y;
(iii)) ca = b butac # b,

then the ring cannot be finite.
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Real Analysis

The chapter on real analysis groups material covering differential and integral calculus,
ordinary differential equations, and also a rigorous introduction to real analysis with ¢ — §
proofs.

We found it natural, and also friendly, to begin with sequences. As you will discover,
the theory of linear recurrences parallels that of linear ordinary differential equations. The
theory of limits is well expanded, covering for example Cauchy’s criterion for convergence, the
convergence of bounded monotone sequences, the Cesaro-Stolz theorem, and Cantor’s nested
intervals theorem. It is followed by some problems about series, with particular attention
given to the telescopic method for computing sums and products.

A long discussion is devoted to one-variable functions. You might find the sections on
limits, continuity, and the intermediate value property rather theoretical. Next, you will be
required to apply derivatives and their properties to a wide range of examples. Then come
integrals, with emphasis placed on computations and inequalities. One-variable real analysis
ends with Taylor and Fourier series.

From multivariable differential and integral calculus we cover partial derivatives and
their applications, computations of integrals, focusing on change of variables and on Fubini’s
theorem, all followed by a section of geometric flavor devoted to Green’s theorem, the Kelvin-
Stokes theorem, and the Gauss-Ostrogradsky (divergence) theorem.

The chapter concludes with functional equations, among which will be found Cauchy’s
equation, and with ordinary differential and integral equations.

This is a long chapter, with many challenging problems. Now, as you start it, think of
T. Edison’s words: “Opportunity is missed by many people because it is dressed in overalls
and looks like work.”

© Springer International Publishing AG 2017 107
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3.1 Sequences and Series

3.1.1 Search for a Pattern

In this section we train guessing. In each problem you should try particular cases until you
guess either the general term of a sequence, a relation that the terms satisfy, or an appropriate
construction. The idea to write such a section came to us when we saw the following Putnam
problem.

Example. Consider the sequence (u,), defined by ugp = u; = up, =1, and

Up43 Upy2
det( nt ”+)=n!,n20.

Upy1 Uy

Prove that u, is an integer for all n.

Solution. The recurrence relation of the sequence is

Up2Upt1 n!
[ + J—

Up43 = .
Uy, Uy
Examining some terms:
l‘l_i_l_2
BETTTITS
2-1+1_3
wETTTITS
2242 40
LETT T TS
230 434132503
Ug — _— . . = -3,
° 2 2
5-3-4.2 4.3.2
u; = 3 + 3 =5-4.24+4-2=6-4-2,
6-4.2.5-3 5.4.3.2
= =6-5- .3=7.5.3,
ug ) + 12 6-5-3+5-3 5-3

we conjecture that
u,=m—1Hmn—-3)y(n—=5)---.

This formula can be proved by induction. Assuming the formula true for u,, 4,11, and u,,,
we obtain

Unpotppr + 08 (n+ D -—Dn—=3)---n(n=2)(n—4)--- +n!

s = Uy (n—Dn—3) (-5
_ (n+1)-n'+n! _ (n+2)n!
=D =3Hn-5- @m—-DHn-3)n-"5) -

=m+2nn-2)n—4)---

This completes the induction, and the problem is solved. U
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Find a formula for the general term of the sequence
1,2,2,3,3,3,4,4,4,4,5,/5,5,/5,5,...

Find a formula in compact form for the general term of the sequence defined recursively
byx; =1,x, =x,-1 +nifnisodd, and x,, = x,_; + n — 1 if nis even.

Define the sequence (a,),>0 by ap = 0,a; =1, a, =2, a3 = 6, and
Anya = 20513 + Any2 — 20,11 — ay, forn > 0.

Prove that n divides a,, for all n > 1.

Let n > 1 be an integer. Find, with proof, all sequences x; < x, < -+ < x,_1 of
positive integers with the following two properties:

(1) x;,+x,;, =2nforali=1,2,...,n—1;
(ii) for every not necessarily distinct indices i and j for which x; +x; < 2n, there is an
index k such that x; + x; = x;.

The sequence ay, ai, . .., az, ... satisfies

1
Am+n + apn = E(a2m + aZn)a

for all nonnegative integers m and n with m > n. If a; = 1, determine a,,.

Consider the sequences (ay,),, (b,),, defined by

ap = 0’ ay = 2’ apt1 = 4an +an—19 n Z Oa
by =0, by =1, bn+1 =a,—b,+b,_1,n>0.

Prove that (a,)> = bs, for all n.
A sequence u,, is defined by
up =2, up = g Upy) = u,,(uﬁ_1 —2)—uy, forn > 1.
Prove that for all positive integers n,
L, | = 2¢"=CDM/3,

where | -] denotes the greatest integer function.

Consider the sequences (a,), and (b,), defined by a; = 3, by = 100, a,; = 3%,
bnt1 = 100", Find the smallest number m for which b,, > a;go.
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3.1.2 Linear Recursive Sequences

In this section we give an overview of the theory of linear recurrence relations with constant
coefficients. You should notice the analogy with the theory of ordinary differential equa-
tions. This is not an accident, since linear recurrence relations are discrete approximations of
differential equations.

A kth-order linear recurrence relation with constant coefficients is a relation of the form

Xn = A1Xp—1 + Q2Xp—2 + - -+ + GXpy—g, N =Kk,

satisfied by a sequence (x,),>0-

The sequence (x,), is completely determined by xp, x1, ..., x;—; (the initial condition).
To find the formula for the general term, we introduce the vector-valued first-order linear
recursive sequence v, = (v,l, vﬁ, ey vﬁ) defined by v,l = Xpth—1, vi = Xph—2s - - v’n‘ = Xp.
This new sequence satisfies the recurrence relation v,; = Av,, n > 0, where

ay a az ... dip—1 dg
1 00... 0O
010... 00
A=l001... 0 0
00O0... 1 O

It follows that v,, = A"v(, and the problem reduces to the computation of the nth power of A.
A standard method employs the Jordan canonical form.
First, we determine the eigenvalues of A. The characteristic polynomial is

A — ay —ay —asz ... —ag—1 —dag
-1 2 0 ... O 0
0O -1 x» ... 0 0
PAM=1 "9 0 -1... 0 o0
0 0O 0 ... =1 A
When expanding by the first row it is easy to remark that all minors are triangular, so the
determinant is equal to A¥ — a;AfF=! — g,A%=2 — ... — g;. The equation
PiM) =k —a -t —adk 2 — g =0

is called the characteristic equation of the recursive sequence.

Let Ay, A2, ..., A be the roots of the characteristic equation, which are, in fact, the eigen-
values of A. If these roots are all distinct, the situation encountered most often, then A is
diagonalizable. There exists an invertible matrix S such that A = SDS~!, where D is diagonal
with diagonal entries equal to the eigenvalues of A. From the equality

v, = SD"S vy,
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we conclude that the entries of v, are linear combinations of A, A, ..., A}. In particular, for
X,, which is the first coordinate of v,,, there exist constants oy, o>, ..., @ such that

Xp = 1A} + o) + -+ oAy, forn > 0.
The numbers oy, ay, . . ., o are found from the initial condition, by solving the linear system

o+ oy + -+ o = X,
)»]Ot] +)»2062+"'+)Lk06k = X1,
May + 1300 + -+ Aoy = xa,

k—1 k—1 k—1
A ag A Olz-l—--'-l-)uk o = Xp_|.-

Note that the determinant of the coefficient matrix is Vandermonde, so the system has a unique
solution!

If the roots of the characteristic equation have multiplicities greater than 1, it might happen
that A is not diagonalizable. The Jordan canonical form of A has blocks of the form

A1 0...0
OAx1...0
Jn(Ai) = 002...0
000...A

1

An exercise in Section 2.3.1 shows that for j > i, the entry of J,,(A;)" is (jfi)}»fl+i_j . We

conclude that if the roots of the characteristic equations are Ay, Ao, ..., A; and my, mo, ..., m;
their respective multiplicities, then there exist constants o, i = 1,2, ...,£,j=0,1,...,m;—
1, such that

ZZ&,, ) A" forn > 0.

i=1 j=0
It might be more useful to write this as

t

X, = Z iﬁijnhk?_j, forn > 0.

i=1 j=0

As is the case with differential equations, to find the general term of an inhomogeneous linear
recurrence relation

Xy = a1Xp_1 + apXp_p+ -+ Xy +f(0), n>1,

one has to find a particular solution to the recurrence, then add to it the general term of the
associated homogeneous recurrence relation.


http://dx.doi.org/10.1007/978-3-319-58988-6_2

112 3 Real Analysis

Putting these ideas together, let us compute the general-term formula of the Fibonacci
sequence. Therecurrencerelation F, . = F,,+F,_ has characteristic equation A—Ar—1=0,
with roots A; = l%ﬁ and A, = ”Tﬁ Writing F,, = a; A 4+ a2A} and solving the system

o1+ oy =Fy =0,
aiAr +a2hy = Fp =1,

. 1 . .
we obtain oy = —ap = ———. We rediscover the well-known Binet formula

V5

() ()

In the same vein, let us solve a problem published in the American Mathematical Monthly by
I. Tomescu.

Example. In how many ways can one tile a 2n x 3 rectangle with 2 x 1 tiles?

Solution. Denote by u, the number of such tilings. Start tiling the rectangle from the short
side of length 3, as shown in Figure 17.

Figure 17

In the last two cases from the figure, an uncovered 1 x 1 square can be covered in a single
way: by the shaded rectangle. We thus obtain

Upt1 = 3u, + 2v,,

where v, is the number of tilings of a (2n — 1) x 3 rectangle with a 1 x 1 square missing in
one corner, like the one in Figure 18. That figure shows how to continue tiling this kind of
rectangle, giving rise to the recurrence

Vntl = Up + V.
Combining the two, we obtain the (vector-valued) recurrence relation
() =) ()
ver1 ) \ 11 v, ]~
The characteristic equation, of the coefficient matrix but also of the sequences u,, and v,, is

‘,\—3 -2

— 2 _ —
. )\—1‘_)\ 4% +1=0.
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Itsrootsare A; , =2+ V3. We compute easily u; = 3andv; = 1,s0u, =3-3+2-1=11.
The desired general-term formula is then

w= = ((v341) (24 V3) + (v3-1) (2-V3)). O

24/3

Figure 18

Below are listed more problems of this kind.

371.

372.

373.

374.

375.

376.

Let p(x) = x> —3x+2. Show that for any positive integer n there exist unique numbers
a, and b, such that the polynomial g, (x) = x" — a,x — b, is divisible by p(x).

Find the general term of the sequence given by xo = 3, x; = 4, and
m+1Dn+2)x,=4n+1)(n+3)x,.1 —4n+2)(n+ 3)x,_0, n > 2.

Let (x,)n>0 be defined by the recurrence relation x,; = ax, + bx,_;, with xo = 0.
Show that the expression x> — x,,_1x,; depends only on b and x;, but not on a.

Define the sequence (a,), recursively by a; = 1 and
I +4a, + /1 + 24a,
Ay = T , forn > 1.

Find an explicit formula for g, in terms of n.

Let a = 4k — 1, where k is an integer. Prove that for any positive integer n the number
n n n
1— 2 _ 3.
() ()= ()

Let A and E be opposite vertices of a regular octagon. A frog starts jumping at vertex
A. From any vertex of the octagon except E, it may jump to either of the two adjacent
vertices. When it reaches vertex E, the frog stops and stays there. Let a, be the number
of distinct paths of exactly n jumps ending at E. Prove that a;,_; = 0 and

is divisible by 27!,

_ 1 n—1 _ . n—1 _
a, = —(x YV, n=1,2,3,...

/2

where x =2 ++/2and y = 2 — /2.
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377. Find all functions f : N — N satistying
FEF ) + 6f (n) = 3f(f(n)) + 4n + 2001, foralln € N.

378. The sequence (x,), is defined by x; = 4, x, = 19, and for n > 2,

X,
Xn+l = )
Xn—1

x,
Xn—1"

the smallest integer greater than or equal to
of 3.

Prove that x,, — 1 is always a multiple

379. Consider the sequences given by

3a, + /542 — 4
a0=1, apy1 = ) , B>

by =0, b,,+1:an—bn, n>1.

9

Prove that (a,)*> = by, for all n.

3.1.3 Limits of Sequences

There are three methods for determining the limit of a sequence. The first of them is based
on the following definition.

Cauchy’s definition. (a) A sequence (x,), converges to a finite limit L if and only if for every
& > 0 there exists n(e) such that for every n > n(¢e), |x, — L| < e.

(b) A sequence (x,), tends to infinity if for every ¢ > 0 there exists n(e) such that for
n > n(e), x, > €.

The definition of convergence is extended to R”, and in general to any metric space, by
replacing the absolute value with the distance. The second method for finding the limit is
called the squeezing principle.

The squeezing principle. (a) Ifa, < b, < ¢, for all n, and if (a,), and (c,), converge to the
finite limit L, then (b,), also converges to L.
(b) If a, < b, for all n and if (a,), tends to infinity, then (b,), also tends to infinity.

Finally, the third method reduces the problem via algebraic operations to sequences whose
limits are known. We illustrate each method with an example. The first is from P.N. de Souza,
J.N. Silva, Berkeley Problems in Mathematics (Springer, 2004).

Example. Let (x,), be a sequence of real numbers such that
lim (2x,41 — x,) = L.
n—odo

Prove that the sequence (x,), converges and its limit is L.
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Solution. By hypothesis, for every ¢ there is n(e) such that if n > n(e), then
L—&<2x,41 —x, <L+e.
For such n and some k > 0O let us add the inequalities

L—&<2x,1 —x, <L+e¢,
2(L — &) < 4xy00 — 2xp01 < 2(L + &),

25N —e) < 2% — 28 s < 28N+ 6).
‘We obtain
A4+2+4-+2HL —e) < 2% —xp < 1424 -+ 2L + o),

which after division by 2* becomes

1 1 1
(1—?)@—8) <xn+k—§xn< (1—?)(L—|—8).

Now choose k such that }zikxn| < ¢ and }zlk(L + 8)| < ¢. Then form > n + k,
L —3e <x, <L+ 3¢,

and since ¢ was arbitrary, this implies that (x,), converges to L. ([l

Example. Prove that lim /n = 1.

n—oo

Solution. The sequence x, = /n — 1 is clearly positive, so we only need to bound it from
above by a sequence converging to 0. For that we employ the binomial expansion

n n ny o n n—1 n
n=0+x)"=1+ X, + X, 4+ X, +x,.
1 2 n—1

Forgetting all terms but the third in this expansion, we can write

n> (n)xﬁ,
2

which translates to x, < ﬁ, for n > 2. The sequence ,/ ﬁ, n > 2, converges to 0, and

hence by the squeezing principle, (x,), itself converges to 0, as desired. ([l

The third example was published by the Romanian mathematician T. Lalescu in 1901 in
the Mathematics Gazette, Bucharest.

Example. Prove that the sequence a, = "/(n + 1)! — Jn! ,n > 1, is convergent and find its
limit.
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Solution. The solution we present belongs to M. Tena. It uses Stirling’s formula
nt=~2mn (2) - eth, with0 <6, <1,
e

which will be proved in Section 3.2.12. Taking the nth root and passing to the limit, we obtain

. n
lim — =e.
n—oo n!
We also deduce that
. on+1 n+1 n
lim - = lim —=e
n— 00 I’l' n— 00 n l’l'

Therefore,

n n n
lim m — lim n(n+1) M ~ lim nnt 1) (n+ 1)"
n— 00 n I’l' - n—00 (n!)”+1 - > 00 —n'
1 ! 1\ w1
:hm(n+1/”+ ) — lim (n—l— )
n—o0 n I’l,! N> 00 n n’

1. n—+ 1 limy— 00 Fnl
= m = é.
n—oo J/nl

Taking the nth root and passing to the limit, we obtain

) n+l/(n+ l)'
lim ——— =1,

n—00 ¢ n!

and hence
.Gy . "W+ D!
lim =lim ———1=0.
n—00 /pnl n—00 Jn!

Thus, if we set

bn:(1+ an) ,
Vn!

then lim b, = e. From the equality

n— o0

n ’

( n+1/(n + 1)!) B ban%

n!

we obtain

n+1/(n+ 1)’ n . n -1

ap=In| ————) (nb,) .
</ n! vn!

The right-hand side is a product of three sequences that converge, respectively, to 1 = Ine,

1 =1Ine, and é Therefore, the sequence (a,), converges to the limit % ]

Apply these methods to the problems below.



380.
381.

382.

383.

384.

38s.

386.

387.

388.

389.

390.
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Find the limit of the sequence xo = 0, x; = 1, x,,11 = %(xn + x,1).
Compute

lim |sin (J'r\/n2 +n+ 1)‘ .

n—0oQ

Compute lim,_, o{(+v/2 + 1)*"} where {a} denotes the fractional part of a, i.e. {a} =
a — |a] (for example the fractional part of 1.32 is 0.32).

Let k be a positive integer and p a positive real number. Prove that
k

AW m\"—k Iz
lim (—) (l — —) = .
n—o00 k n n et . k'

Let (x,), be a sequence of positive integers such that x,, = n* for all n > 1. Itis true

that lim x,, = 00?
n—oo

Let a and b be integers such that a - 2" + b is a perfect square for all positive integers
n. Prove that a = 0.

Let a, b, ¢ be integers with a # 0 such that
an* 4+ bn + ¢

is a perfect square for any positive integer n. Prove that there exist integers x and y

such that a = x2, b = 2xy, ¢ = yz.

Let (a,), be a sequence of real numbers with the property that for any n > 2 there
exists an integer k, 2 < k < n, such that a, = “7" Prove that lim a, = 0.

n—oo
Given two natural numbers k and m letay, as, ..., ay, by, by, . . ., b, be positive num-

bers such that

Jar + iz + -+ Ya = b + by + -+ Vb,

for all positive integers n. Prove that k = m and aya, - - - ap = b1by - - - by,.

Prove that
lim n? [ x*dx =
n— 00 0
Let a be a positive real number and (x,),>; a sequence of real numbers such thatx; = a

and
n—1

Xpr1 = (n 4 2)x, — kak, foralln > 1.
k=1

Find the limit of the sequence.
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391. Let (x,),>1 be a sequence of real numbers satisfying
xn+n1 E Xn +xma n,m 2 1
Show that lim 22 exists and is equal to inf 2.
n—oo n>1 "

392. Compute
"o\t
i > (%)
k=1
393. Let b be an integer greater than 5. For each positive integer n, consider the number

X, =11...122...25,
—

n—1 n

written in base b. Prove that the following condition holds if and only if b = 10:

There exists a positive integer M such that for any integer n greater than M, the number
X, is a perfect square.

We exhibit two criteria for proving that a sequence is convergent without actually com-
puting the limit. The first is due to K. Weierstrass.

Weierstrass’ theorem. A monotonic bounded sequence of real numbers is convergent.

Below are some instances in which this theorem is used.

394. Prove that the sequence (a,),>; defined by

1 1 1
ap=14—-+-4--4+——In(n+1), n>1,
2 3 n

is convergent.

395. Prove that the sequence

an:\/1+\/2+\/3+-~+\/ﬁ, n>1,

is convergent.

396. Let (a,), be a sequence of real numbers that satisfies the recurrence relation

ant1 = /a2 +a, — 1, forn > 1.

Prove thata; ¢ (=2, 1).

397. Using the Weierstrass theorem, prove that any bounded sequence of real numbers has
a convergent subsequence.

Widely used in higher mathematics is the following convergence test.
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Cauchy’s criterion for convergence. A sequence (x,), of points in R" (or, in general, in a
complete metric space) is convergent if and only if for any € > 0 there is a positive integer n,
such that whenever n,m > ng, ||x, — x,,|| < €.

A sequence satisfying this property is called Cauchy, and it is the completeness of the
space (the fact that it has no gaps) that forces a Cauchy sequence to be convergent. This
property is what essentially distinguishes the set of real numbers from the rationals. In fact,
the set of real numbers can be defined as the set of Cauchy sequences of rational numbers,
with two such sequences identified if the sequence formed from alternating terms of the two
sequences is also Cauchy.

398. Let (a,).>1 be a decreasing sequence of positive numbers converging to 0. Prove that
the series S = a; —a, + a3 —as + - - - is convergent.

399. Let ay, by, co be real numbers. Define the sequences (a,),, (b)), (¢,), recursively by

an-"_bn _ bn-"_cn _ cn-"_an
2 3 n+1 — 2 ) CI’H-I — 2

api] = , n>0.

Prove that the sequences are convergent and find their limits.

400. Show that if the series Zan converges, where (a,), is a decreasing sequence, then

lim na, = 0.
n—00

The following fixed point theorem is a direct application of Cauchy’s criterion for con-
vergence.

Theorem. Ler X be a closed subset of R" (or in general of a complete metric space) and
f : X — X a function with the property that ||f (x) — fO)|| < cllx — y|| for any x,y € X,
where 0 < ¢ < 1 is a constant. Then f has a unique fixed point in X.

Such a function is called contractive. Recall that a set is closed if it contains all its limit
points.

Proof. Let xo € X. Recursively define the sequence x,, = f (x,—1), n > 1. Then
%01 = Xall < cllxXy — Xl < - < "l = xoll.-
Applying the triangle inequality, we obtain

“xn-i-p =Xl = ||xn+p — Xntp—1 Il + ||xn+p—1 - xn+p—2|| + o X — xall

< (P TP M Xy — x|

n

n p—1 ¢
=c"l+c+---+c )lel—xolls1 llx1 — xoll.

—C

This shows that the sequence (x,), is Cauchy. Its limit x* satisfies f(x*) = lim f(x,) =
n—odo

lim x, = x*;itisafixed pointof f. A second fixed point y* would give rise to the contradiction

n—oo

Ix* —y*| = If &™) —fFO)] < cllx* — y*||. Therefore, the fixed point is unique. ]
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Use this theorem to solve the next three problems.

401. Two maps of the same region drawn to different scales are superimposed so that the
smaller map lies entirely inside the larger. Prove that there is precisely one point on
the small map that lies directly over a point on the large map that represents the same
place of the region.

402. Let ¢ and ¢ be real numbers with |¢| < 1. Prove that the equation x — ¢ sinx = ¢ has a
unique real solution.

403. Let c and xq be fixed positive numbers. Define the sequence

1 c
xnz—(x,,_l—i- ),fornzl.
2 Xn—1

Prove that the sequence converges and that its limit is /c.

3.1.4 More About Limits of Sequences

We continue our discussion about limits of sequences with three more topics: the method of
passing to the limit in a recurrence relation, the Cesaro-Stolz theorem, and Cantor’s nested
intervals theorem. We illustrate the first with the continued fraction expansion of the golden
ratio.

Example. Prove that

1+

[

Solution. A close look at the right-hand side shows that it is the limit of a sequence (x,),
subject to the recurrence relation x; = 1, x,.1 = 1 + xin If this sequence has a finite limit L,
then passing to the limit on both sides of the recurrence relation yields L = 1 + % Because
L can only be positive, it must be equal to the golden ratio.

But does the limit exist? Investigating the first terms of the sequence we see that

14+4/5

X < X3 < < Xy < Xp,
and we expect the general situation to be
1+4/5
X < X3 < - <Xy <0< < e < X < Xy < e < X,

2

This can be proved by induction. Firstly, if x5, < # then

2 V5—1 1+45

> 14+ =1+ ,
Xon+1 1+4/5 2 2

Xopn42 = 1+
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1+/5 1+/5

and by a similar computation, if x,12 > =32, then 5,13 < =5~ Secondly,
) 1
Xpt2 = 2 — ,
n—+ X, +1

and the inequality x,4» > X, is equivalent to x> — x, — 1 < 0, which holds if and only

if x, < %g Now an inductive argument shows that (x;,1), is increasing and (x2,12), iS
decreasing. Being bounded, both sequences are convergent by the Weierstrass theorem. Their

limits are positive, and both should satisfy the equation L = 2 — ﬁ The unique positive
solution to this equation is the golden ratio, which is therefore the limit of both sequences,
and consequently the limit of the sequence (x,,),. O

Next, we present a famous identity of S.A. Ramanujan.

Example. Prove that

\/1+2\/1+3\/1+4\/1+...:3.

Solution. We approach the problem in more generality by introducing the function f :
[1,00) = R,

f(x):\/1+x\/1+(x+1)\/1+(X+2)m.

Is this function well defined? Truncating to n square roots, we obtain an increasing sequence.
All we need to show is that this sequence is bounded from above. And it is, because

f) = \/(x+ 1)\/(x+2)m

k. 1 11,1, 1,11
P SO < 22tatatatgtgts

x = 2x.

This shows, moreover, that f(x) < 2x, for x > 1. Note also that

FxX) > /x/xJx- - =x.

For reasons that will become apparent, we weaken this inequality to f(x) > %(x + 1). We
then square the defining relation and obtain the functional equation

F))? =xf(x+ 1)+ 1.
Combining this with
1
SE+2) <fa+ 1) =206 +2),

we obtain
x4+ 2 )
1< () <2x(x+2)+1,

X -



122

3 Real Analysis

which yields the sharper double inequality

1

ﬁ(x+ D <f@x) <~2(x+1).

Repeating successively the argument, we find that

27T+ 1) < f(x) <27 (x+ 1), forn> 1.

If in this double inequality we let n — o0, we obtain x + 1 < f(x) < x + 1, and hence
f(x) = x + 1. The particular case x = 2 yields Ramanujan’s formula

\/1+2\/1+3\/1+4«/1+---:3,

and we are done. OJ

Here are some problems of this kind.

404.

405.

406.

407.

408.

409.

Compute
\/1+\/1+\/1+«/T+---
Let a and b be real numbers. Prove that the recurrence sequence (x,), defined by x; > 0

and x,.; = +/a + bx,, n > 1, is convergent, and find its limit.
Let 0 < a < b be two real numbers. Define the sequences (a,), and (b,), by ay = a,

by = b, and
/ w + by
a1 = anbnv bn+1 = : ; , n>0.

Prove that the two sequences are convergent and have the same limit.

Prove that for n > 2, the equation x* 4 x — 1 = 0 has a unique root in the interval
[0, 1]. If x,, denotes this root, prove that the sequence (x,), is convergent and find its
limit.

Compute up to two decimal places the number

1+2\/1+2/1+~--+2\/1+2\/1969,

where the expression contains 1969 square roots.

Find the positive real solutions to the equation

\/x+2\/x+-~+2\/x+2\/§:x.
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410. Show that the sequence

converges, and evaluate its limit.

411. (a) What is

A
Wk

V4 ?
(b) What is

.
Wk

V2 ?

(c) For what numbers a > 1 is

o
a?

a

a finite number? (In this problem we are evaluating the limit of (x,), defined recursively
byx; =a,x,41 =a",n>1.)

There is a vocabulary for translating the language of derivatives to the discrete framework
of sequences. The first derivative of a sequence (x,),, usually called the first difference, is the
sequence (Ax,), defined by Ax, = x,+1 — x,. The second derivative, or second difference,
is A%x, = A(AX,) = Xpo — 2Xpp1 + X, A sequence is increasing if the first derivative is
positive; it is convex if the second derivative is positive. The Cesaro-Stolz theorem, which
we discuss below, is the discrete version of L’Hdpital’s theorem.

The Cesaro-Stolz theorem. Let (x,,), and (y,), be two sequences of real numbers with (y,),
strictly positive, increasing, and unbounded. If
Xptl — X,
lim 2L "2
then the limit
. Xn
lim —
n—o0 yn

exists and is equal to L.

Proof. We apply the same ¢ — § argument as for L’Hdpital’s theorem. We do the proof only
for L finite, the cases L = 300 being left to the reader.

Fix ¢ > 0. There exists ngy such that for n > ny,

& Xn+1 — Xn

&
L——-< <L+ —.
2 Yn+1 — Yn 2
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Because y,+1 — y, > 0, this is equivalent to

e &
(L - 5) (yn-i-l - yn) < Xptl — Xp < (L + 5) (_)/n-i-l - yn)-

We sum all these inequalities for n ranging between ny and m — 1, for some m. After cancelling
terms in the telescopic sums that arise, we obtain

(L=3) G =3m) <50 =y < (L43) G = 3.

We divide by y,, and write the answer as

L_£+(_ )ﬁ+f.)ﬂ+@)<@<L+§+(_)ﬂ_f.)ﬂ_,_@)_
2 Ym 2 Ym o Im Ym 2 Yo 2 Ym  Im

Because y, — o00. there exists n; > ng such that for m > n;, the absolute values of the terms
in the parentheses are less than % Hence for m > ny,

m

X
L—e<—<L+e.
Ym

. . . X
Since ¢ was arbitrary, this proves that the sequence (—") converges to L. O
n

n
We continue this discussion with an application to Cesaro means. By definition, the Cesaro
means of a sequence (a,),> are

art+a+---+a
, =
n

Sp =

Theorem. If (a,),>1 converges to L, then (s,),>1 also converges to L.

Proof. Apply the Cesaro-Stolz theorem to the sequences x, = a; +ax+---+a,and y, = n,
n>1. U

The Cesaro-Stolz theorem can be used to solve the following problems.

Up+1

412. If (u,), is a sequence of positive real numbers and if lim = u > 0, then
n—>oo Y,
lim %u, = u.
n—oQ

413. Let p be a real number, p # —1. Compute

1P 420 4ol
m
n— 00 np+l

414. Let 0 < xp < 1 and x4 = x, — x2 for n > 0. Compute lim nx,.
n— o0

415. Letxy € [—1, 1] and x4 = x, — arcsin(sin® x,,) for n > 0. Compute lim 4/nx,.
n—0o0



3.1 Sequences and Series 125

416. For an arbitrary number xy € (0, ) define recursively the sequence (x,), by
Xpe1 = sinx,, n > 0.
Compute lim /nx,.
n—odo

417. Letf : R — R be a continuous function such that the sequence (a,),>o defined by

1
a, =/ f(n+x)dx
0

is convergent. Prove that the sequence (b,),>0, with

1
b, =/ f(nx)dx
0
is also convergent.
418. Consider the polynomial
Px)=apx" + ap X" '+ +ay, a;>0,i=0,1,...,m.

Denote by A,, and G, the arithmetic and, respectively, geometric means of the numbers
P(1),P(2),...,P(n). Prove that

419. Let k be an integer greater than 1. Suppose ay > 0, and define

1
Apy1 =a,,+k—forn > 0.

ail
Evaluate
) aﬁ-&-l
lim 22—
n—»oo n

We conclude the discussion about limits of sequences with a theorem of G. Cantor.
Cantor’s nested intervals theorem. Given a decreasing sequence of closed intervals I} D
o

Iy D - DI, D--- withlengths converging to zero, the intersection ﬂ I, consists of exactly

. n=1
one point.

This theorem is true in general if the intervals are replaced by closed and bounded subsets
of R" with diameters converging to zero. As an application of this theorem we prove the
compactness of a closed bounded interval. A set of real numbers is called compact if from
every family of open intervals that cover the set one can choose finitely many that still cover
it.
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The Heine-Borel theorem. A closed and bounded interval of real numbers is compact.

Proof. Let the interval be [a, b] and assume that for some family of open intervals (/) that
covers [a, b] one cannot choose finitely many that still cover it. We apply the dichotomic
(division into two parts) method. Cut the interval [a, b] in half. One of the two intervals thus
obtained cannot be covered by finitely many /,’s. Call this interval J;. Cut J; in half. One
of the newly obtained intervals will again not be covered by finitely many [,’a. Call it J5.
Repeat the construction to obtain a decreasing sequence of intervals J; D J, D J3 D - - -, with
the length of J; equal to bz;k“ and such that none of these intervals can be covered by finitely
many /,’s. By Cantor’s nested intervals theorem, the intersection of the intervals Jy, k > 1,
is some point x. This point belongs to an open interval I, and so an entire e-neighborhood
of x is in I,,. But then J;, C I, for k large enough, a contradiction. Hence our assumption
was false, and a finite subcover always exists. ([l

Recall that the same dichotomic method can be applied to show that any sequence in a
closed and bounded interval (and more generally in a compact metric space) has a convergent
subsequence. And if you find the following problems demanding, remember Charlie Chaplin’s
words: “Failure is unimportant. It takes courage to make a fool of yourself.”

420. Letf : [a, b] — [a, b] be an increasing function. Show that there exists £ € [a, b]
such that f(§) = &.

421. For every real number x; construct the sequence xi, x,, X3, . . . by setting
1
Xpp1 = Xy | X, + — ) foreachn > 1.
n

Prove that there exists exactly one value of x; for which 0 < x,, < x,1; < 1 forevery n.

422. Given a sequence (a,), such that for any y > 1 the subsequence (aLV" ] ) converges
to zero, does it follow that the sequence (a,), itself converges to zero?

423. Letf : (0,00) — R be a continuous function with the property that for any x > 0,
lim f(nx) = 0.
n— oo

Prove that lim f(x) = 0.
X—> 00

3.1.5 Series

A series is a sum
o0
E an:al+a2+...+an+...
n=1

The first question asked about a series is whether it converges. Convergence can be decided
using Cauchy’s ¢ — § criterion, or by comparing it with another series. For comparison, two
families of series are most useful:
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(i) geometric series
IThx+x> 4 +x" 4o,

which converge if |x| < 1 and diverge otherwise, and

(i1) p-series
: 1 1 1
HE TR I

which converge if p > 1 and diverge otherwise.

The p-series corresponding to p = 1 is the harmonic series. Its truncation to the nth term
approximates In n. Let us use the harmonic series to answer the following question.

| sin n|

oo
Example. Does the series Z converge?

n=1

8

denotes the fractional part of x (that is x — |x]). Because 1 < —, it follows that for any n,

V2 =42 "

. . . . 2-2 . 1 X 7
Solution. The inequality | sin x| > — holds if and only if 3 < {—} < —, where {x}
b4

either | sinn| or | sin(n + 1)| is greater than — Therefore
|sinn|+|sin(n+l)| . V2=42 1
n n+1 — 2 n+1

Adding up these inequalities for all odd numbers n, we obtain

o | sinn| 2-V2 K 1 2-V2 1
P M e
n 2 2n 4 n
n=1 n=1 n=1
Hence the series diverges. O

In fact, the so-called equidistribution criterion implies that if f : R — R is a continuous

n
periodic function with irrational period and if Z LAQ < 00, then f is identically zero.
n

[e¢)
The comparison with a geometric series gives rise to d’Alembert’s ratio test: Za,,
n=0

Aan+1

n

converges if lim sup |“
n

Erdo6s from the American Mathematical Monthly that applies this test among other things.

> 1. Here is a problem of P.

< 1 and diverges if lim inf
n

Example. Let (ny)r>1 be a strictly increasing sequence of positive integers with the property

that
. Ny
lim —— = o0.
k—oco nny « - - N

: 1. : o
Prove that the series E — is convergent and that its sum is an irrational number.
T
k=1
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Solution. The relation from the statement implies in particular that n; 41 > 3ny for k > 3. By

the ratio test the series E — is convergent, since the ratio of two consecutive terms is less
PR
1
than or equal to 3.

By way of contradiction, suppose that the sum of the series is a rational number IZ. Using

the hypothesis we can find k > 3 such that

DL > 3. i) > k.
nnp---n;

Let us start with the obvious equality
— 1
ninH---n — n P —
plrny - -nm) = q(nny - - - ny) ,-E_l ”

From it we derive

qgniny - gniny - - - ng
p(niny - - ng) — Z => —.
Jj=1 j>k
Clearly, the left-hand side of this equality is an integer. For the right-hand side, we have
gning N qung N QRN - - Ny 1 1 1 1
0< < + +r Szttt =t ==
%{: n; - Ni41 3I’Lk+1 -3 9 27 2
mny -1 . .
Here we used the fact that ——————— < — and that n;; > 3n;, for j > k and k sufficiently
N1 q
large. This shows that the right-hand side cannot be an integer, a contradiction. It follows
that the sum of the series is irrational. ]

We conclude our list of examples with a combinatorial proof of the fact that the harmonic
series diverges. The lemma below, and the observation that it can be used to check the
divergence of the harmonic series, have appeared in the Russian journal Kvant (Quantum).

Example. 1f ay, ay, as, ..., is a sequence of positive numbers such that for every n, a, <
an+1 + a2, then D> a, diverges. Consequently, the harmonic series

IS
27374

diverges.
Solution. We rely on the following result.

Lemma. A triangular tableau is constructed as follows: the top row contains a natural
number n. We pass from one row to the next by writing below a number k the numbers k* to
the left and k + 1 to the right. Then the numbers on every row are distinct.
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Proof. Assume that the mth row is the first for which two numbers are equal. Let p and g be
the two numbers that are equal. Because the previous row contains no equal numbers, p and
g were obtained from the previous row by different procedures, say p = r*> and ¢ = s + 1.
Then s = r2 — 1, with r, s in the m — 1st row. Let us examine how s was obtained from 7.
Assume somewhere we performed a squaring of a number, and let k£ be the last number for
which this happened. Because s < PP—1,k<r—1.Buts—k*>s—(r—1)72>2r—2.
Hence after &k we had to add 2r — 2 units or more, so s was obtained from » in 2r — 1 steps.
Consequently, m — 2 > 2r — 1. But the numbers in the mth row are greater than or equal to
n+ m — 1, hence r > n + 2r, which is a contradiction. It follows that to get s no squarings
were performed. The same is true for ¢ = s + 1, so ¢ is the left-most number of its row. But
this is makes the equality p = ¢ impossible. U

With the lemma at hand, let ay, as, as, .. ., be a sequence of positive numbers such that
for every n, a, < a,+1 + a,2. In the sum ZnN:1 a, we can replace each a, by a larger number
of the form ) a, over the elements p in the mth row of the above tableau. By spreading m’s
apart, we can make sure that there are no overlaps between the terms used for a, and those
for a,,. We can also choose m’s to exceed N. Consequently

N 00
z an S z an ’
n=1 n=N+1

which implies that the series diverges. And because

[
n n+1 n?
the harmonic series diverges. U
424. Show that the series
1 2 4 2"

tx T Tge TTq4e T T
converges when |x| > 1, and in this case find its sum.

425. For what positive x does the series
C=D+WE=D+x=D++ D+

converge?
oo

426. Letay, ay, ..., a,, ...be nonnegative numbers. Prove that Z a, < oo implies

n=1

o0
E Vap1a, < 00.
n=1



130

427

428

429

430

431.

432.

433.

434.
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Let S = {x;,x2, ..., Xy, ...} be the set of all positive integers that do not contain the
digit 9 in their decimal representation. Prove that

oo

1
E — < &0.
n=1 Xn

Suppose that (x,), is a sequence of real numbers satisfying

1
Xngl < X0+ —, foralln > 1.
n

Prove that lim x, exists.
n—o0

oo
Does the series E sinw+/n? + 1 converge?

n=1

o0 o0
(a) Does there exist a pair of divergent series E a,, E b,,witha; >a, > a3 > --- >
n=1 n=1

0and by > by > b3 > --- > 0, such that the series Zmin(an, b,) is convergent?
n
(b) Does the answer to this question change if we assume additionally that

1
by=—-,n=172,...7
n

Given a sequence (x,,), with x; € (0, 1) and x,,.1 = x,, — nxﬁ for n > 1, prove that the
o0

series E X, is convergent.

n=1

Is the number
o0
> o
n2
n=1 2

rational?

Let (a,),>0 be a strictly decreasing sequence of positive numbers, and let z be a complex
number of absolute value less than 1. Prove that the sum

ap+aiz+az +- -+ a4

is not equal to zero.

Let w be an irrational number with 0 < w < 1. Prove that w has a unique convergent
expansion of the form

1 1 1 1
w=—— + —
Po  PoP1  PoPiP2  PoPip2p3

where pg, p1, p2, ... areintegers, | <pg <p; <pr <---.
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435. The number g ranges over all possible powers with both the base and the exponent
positive integers greater than 1, assuming each such value only once. Prove that

1
— =1

q q_l

436. Prove that for any n > 2,

Z 1 > Inlnn— 1.

p=<n, p prime p

Conclude that the sum of the reciprocals of all prime numbers is infinite.

3.1.6 Telescopic Series and Products

We mentioned earlier the idea of translating notions from differential and integral calculus to
sequences. For example, the derivative of (x,), is the sequence whose terms are x,+; — X;,
n > 1, while the definite integral is the sum x| +x,+x3+- - - The Leibniz-Newton fundamental
theorem of calculus

b
/ f(t)dt = F(b) — F(a), where F'(t) = f (1),

becomes the telescopic method for summing a series

Zak = bn+1 — by, where ay = bk+1 —bk, k>1.
k=1

As in the case of integrals, when applying the telescopic method to a series, the struggle is
to find the “antiderivative” of the general term. But compared to the case of integrals, here
we lack an algorithmic way. This is what makes such problems attractive for mathematics
competitions. A simple example that comes to mind is the following.

Example. Find the sum

1 1 1
NN, V. SV OV

Solution. The “antiderivative” of the general term of the sum is found by rationalizing the

denominator:
1 VTV
VEk+Vk+1 k+1—k
The sum is therefore equal to

V2= VD + W3-V 4+ Wt l—yny=Vn+1-1. =

Not all problems are so simple, as the next two examples show.

=Vk+1— k.
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ai—i—l

,n > 1. Prove that

Example. Letag = 1,a; =3, a,41 =

1 n 1 N n 1 n 1
ap+1  a+1 a,+1 a1 —1

=1, foralln > 1.

Solution. We have
2 _ 1
ay

2 ’

a1 — 1=

SO
11

= — , fork > 1.
a1 —1  a—1 a+1

This allows us to express the terms of the sum from the statement as “derivatives”:

1 1 1
= — , fork > 1.
ak—l-l ak—l Ag+1 —
Summing up these equalities fork =1, 2, ..., n yields
1 P 11 1 n 1 1
a+1 an+1 a—=1 a—-1 a—-1 a-—1

1 1 1 1

+ - == -

a, — 1 any1 — 1 2 an+l_1‘

1 1
Finally, add + to both sides to obtain the identity from the statement.

ap+1  ap—1
Example. Express

Zm*

as a + b~/2 for some integers a and b.

Solution. We have
1 1 1

NN = (\/n+1+\/n_1)2 \/n-;1+\/n;1

2

\/n—l—l \/n—l
2 2 _\/n—f—l \/n—l
n+1 n-—1 N )

2 2

Hence the sum from the statement telescopes to

49 + 1 \/48+1 \/T 71
\/ 2 2 2 V22

O
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Apply the telescopic method to the following problems.

437.

438.

439.

440.

441.

442.

443.

444.

Prove the identity

Z(k2 + Dk! = n(n + 1)!
k=1

Let ¢ be a root of unity. Prove that
o0
(=" =00 =) (1=,
n=0
with the convention that the Oth term of the series is 1.

For a nonnegative integer k, define Sy (n) = 1*¥ + 2% 4+ ... + n*. Prove that

r—1
12 (,Z)Skm) =(n+1)"
k=0

Let
_ An+ a2 -1
NG S NG

Prove that a; + a, + - - - 4 a4 is a positive integer.

a, forn > 1.

Prove that
Z”: (_1)k+l B n
= 1222432 — o (=DM p4 1
Prove that
9999
> 1 -9
= WntVn+ D+ Vn+ 1)
1\’ 1\>
Leta, = 1+(1+—) + 1+(1——),nzl.Provethat
n n
1 1 1
a  a axo

is a positive integer.

Evaluate in closed form

133
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445. Leta, = 3n+ +/n? — 1 and b, = 2(v/n? — n+ +/n® +n), n > 1. Show that

Var—bi+Vay —by+ -+ aw — bi = A+ B2,

for some integers A and B.

446. Evaluate in closed form

D =D =B+ k)
k=0

2

447. Let ayp = 1994 and a1 = a_’;_ 1 for each nonnegative integer n. Prove that for
a

0 < n <998, the number 1994 " nis the greatest integer less than or equal to a,.

448. Fix k a positive integer and define the sequence

an=L(k+\/k2+1)”+(%) J n>0.

Prove that

The telescopic method can be applied to products as well. Within the first, relatively easy,
problem, the reader will recognize in disguise the Fermat numbers 2>° 4+ 1, n > 1.

Example. Define the sequence (a,), by ap = 3, and a,,+ = apa; ---a, + 2, n > 0. Prove
that

it = 2(ao — D(a; — 1) -+~ (@, — 1) + 1, foralln > 0.

Solution. The recurrence relation gives apa . ..ay—; = ap — 2, k > 1. Substitute this in the
formula for a;.; to obtain a;41 = (ay —2)a, +2, which can be written as ;11 — 1 = (ax — 1)%.
And so

ag+1 — 1
— =a; — 1.
ay — 1
Multiplying these relations for k = 0, 1, ..., n, we obtain
an—H_I an_l (11—1

. = (@, — D(ay_i —1)---(ap — 1).
o1 a1 a_1 (a a1 —1)---(ap—1)

Since the left-hand side telescopes, we obtain

—1
Dl = (o — D@ — 1) - (ay — 1),
ap —1

and the identity follows. U

A more difficult problem is the following.
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Example. Compute the product

where F, is the nth Fibonacci number.
Solution. Recall that the Fibonacci numbers satisfy the Cassini identity
FuFyy — Fy = (=D,

Hence

00 N N
G DA WA o L S
(1 5) = dm [T = i [T

FoFyiq

) . Fnp
= lim = lim .
N—oo F]FN N—oo FN

Because of the Binet formula

n+l1 n+1
1 1+v5Y" [(1=v5)\"
F,=— — , forn >0,
N 2

the above limit is equal to

449. Compute the product

604

450. Let x be a positive number less than 1. Compute the product

o0
[Ta+x".
n=0

135

451. Let x be a real number. Define the sequence (x,),>; recursively by x; = 1 and x,,41 =

x" + na, for n > 1. Prove that
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3.2 Continuity, Derivatives, and Integrals

3.2.1 Functions

Before starting our discussion on differentiation and integration, let us warm ourselves up
with some general problems about functions. We begin with an example given at a Romanian
Team Selection Test for the International Mathematical Olympiad in 1982, proposed by S.
Radulescu and I. Tomescu.

Example. Letf : R — R, a function with the property that

x9

FE@) = @+ DA+ x4+2x2+1)°

for all x € R. Show that there is a unique point a such that f (@) = a.

Solution. If a € R is such that f(a) = a, then f(f(a)) = f(a) = a, so

a@

@+ DO +d+222+1) ¢

This can be rewritten as a° = a° + 2a’ + 3a® + 3a® + a, which is equivalent to
a(2a® + 3a* +3a*> +1) = 0.

The second factor is strictly positive, so this implies @ = 0. Let us show that 0 is indeed a
fixed point of f. Let f(0) = b. Then f(b) = f(f(0)) = 0. It follows that f (f (b)) = f(0) = b.
But the above argument showed that f(f (x)) has a unique fixed point, namely x = 0. Hence
b = 0, and we are done. O

Here is a second example.

Example. Solve in real numbers the system

3a=(b+c+d)>
3b = (c+d+a)’
3c=(d+a+b)’
3d =(a+b+c).

Solution. Taking the cube root of each equation, we deduce that
a+3a=b+V3b=c+V3c=d+V3d=a+b+c+d.

Define the function f(x) = x + ~/3x. This function is increasing, in particular injective.
Hence a = b = ¢ = d. From 3a = (3a)* we obtaina =0 ora = :l:%. ]

452. Let a, b, ¢ be positive real numbers. Solve the equation

Va+bx+ b+ cx + e+ ax = Vb —ax + Ve —bx + a—cx



453.

454.

455.

456.

457.

458.

459.

460.

461.

462.
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Prove that for all positive integers n,
V34T > Va5

Does there exist a function f : R — R such that the equation f(f (x)) = x has exactly
5102 solutions and the equation f(x) = x has exactly 2015 solutions?

Give an example of a function f : R — R whose graph is invariant under a 90° rotation
about the origin.

Does there exist a function f : R — R such that

(fofof)x) =x>and (fofofofof)(x)=x,

for every x € R?

Find all real numbers x and y that are solutions to the system of equations
-3 =2
9 -6 =19.

Given a real number a € (0, 1) find all positive real solutions to the equation

Find all positive real solutions to the system of equations
=8, y=81, =16
Let n be an odd integer greater than 1. Find the real solutions to the equation
S I+ — @+ 1) =1.

Leta, b, c be real numbers that satisfy 4ac < (b — 1)2, and let f : R — Rbe afunction
that satisfies

f(ax2 +bx—+c)= a(f(x))2 + bf (x) 4+ ¢, forall x € R.

Prove that the equation f (f (x)) = x has at least one solution.

Let ABC be a triangle with side-lengths a, b, c. Show that if a* = b* + ¢* then the
measure of the angle ZA is greater than 72°.
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3.2.2 Limits of Functions
Among the various ways to find the limit of a function, the most basic is the definition itself.

Definition. For x; an accumulation point of the domain of a function f, we say that lim

X—> X0

f(x) = L if for every neighborhood V of L, there is a neighborhood U of x; such that
FU\{x}) C V.

This definition is, however, seldom used in applications. Instead, it is more customary
to use operations with limits, the squeezing principle (if f(x) < g(x) < h(x) for all x and
lim f(x) = lim hA(x) = L, then lim g(x) = L), continuity, or L’Hdpital’s theorem, to be
X—> X0 X—> X0 X—>XQ

discussed later.

Example. Compute
hm(J;+Mx+J_—¢g.

Solution. The usual algorithm is to multiply and divide by the conjugate to obtain

lim (/X X+ /x—+/x) = lim X+ Vx+x—x

Vx+ Jx . 1+¢E 1

= lim = lim = R 0
X—> 00 X—> 00
VXV + VX 1 1
L+, -+ = +1
X X
And now an example of type 1°°.
Example. Letay, ay, ..., a, be positive real numbers. Prove that

lim

x—0

ay+ay+---+a,
n

1
X
) = Jaay---ay,.

Solution. First, note that

oat—1
lim
x—0 X

=Ina.

Indeed, the left-hand side can be recognized as the derivative of the exponential at 0. Or to
avoid a logical vicious circle, we can argue as follows: let a* = 1 + ¢, with t — 0. Then

In(1+1)
X=—"-"

, and the limit becomes
Ina

tlna . Ina Ina
m = lim = — =Ina.
—0In(1+1) —oln(1+6)Y" Ine
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Let us return to the problem. Because the limit is of the form 1°°, it is standard to write it

as
a)l(+a)2(+--‘+a£ —n

n
ay +ay + o a, - n\araietan
1+
n

lim
x—0

Using the fact that lirr(l)(l +1)!/! = e, we find this to be equal to
—

& +as++al - 1 -1 a—1 X
exp[lim( 17% L n)} :exp[f lim( 1 +a2 +~-~+a" )]
X

x—0 nx X X

1
= exp [;(lnal +Inay +---+ lnan):| =Ya1ay ...ay,

the desired answer. O

We continue with a problem of theoretical flavor that requires ¢ — § argument. Written
by M. Becheanu it was given at a Romanian competition in 2004.

Example. Leta € (0, 1) bearealnumber andf : R — R a function that satisfies the following
conditions:

® lim f(x) =0;

(i) lim f@ =flan _,
xX—00 X
Show that lim f(_x) =0.

xX—>00 X
Solution. The second condition reads: for any ¢ > 0, there exists 6 > 0 such that if x €

(=36, 98) then |[f(x) — f(ax)| < e|x|. Applying the triangle inequality, we find that for all
positive integers n and all x € (=4, §),

f(0) = f(@0)] < [f () = f(@x)] + f (@x) = f(@)] + - + [ (@"'x) = f(@"x)]

n

<ex|l+a+a*+--+d"H=¢ <
1—a 1—

Taking the limit as n — oo, we obtain

&

Fol <

X|.
T

Since ¢ > 0 was arbitrary, this proves that lim @ =0. t
x—>o0 X

463. Find the real parameters m and n such that the graph of the function f : R — R,

f(x) = v/8x3 + mx? — nx

has the horizontal asymptote y = 1.
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464.

465.

466.

467.

468.
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Does lim (sin.x)zoss exist?
x—>1/2
For two positive integers m and n, compute
T A/COSX — 4/COSX
im .

x—0 x2

Does there exist a nonconstant function f : (1, oo) — R satisfying the relation

241

f) =f( ) forall x > 1

and such that lim f(x) exists?
X—> 00

Letf : (0, 00) — (0, 00) be an increasing function with 11rn Cf(zt')) = 1. Prove that
l'mm = 1 for any m > 0.
t—00 f()

Letf(x) = > aysinkx, withay, ay, ..., a, € R, n > 1. Prove that if f(x) < |sinx|
k=1
for all x € R, then

<1

Zn: kak
k=1

3.2.3 Continuous Functions

A function f is continuous at xy if it has limit at xy and this limit is equal to f(xp). A function
that is continuous at every point of its domain is simply called continuous.

Example. Find all continuous functions f : R — R satisfying f(0) = 1 and

fQ2x) —f(x) = x, forall x € R.

Solution. Write the functional equation as

fo—£(3) =

N =

then iterate
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Summing up, we obtain

jo-s()=s(}e i d)

which, when n tends to infinity, becomes f(x) — 1 = x. Hence f(x) = x + 1 is the (unique)
solution. (]

We will now present the spectacular example of a continuous curve that covers a square
completely. A planar curve ¢ () = (x(¢), y(¢)) is called continuous if both coordinate func-
tions x(¢) and y(¢) depend continuously on the parameter ¢.

Peano’s theorem. There exists a continuous surjection ¢ : [0, 1] — [0, 1] x [0, 1].

Proof. G. Peano found an example of such a function in the early twentieth century. The
curve presented below was constructed later by H. Lebesgue.

The construction of this “Peano curve” uses the Cantor set. This is the set C of all numbers
in the interval [0, 1] that can be written in base 3 with only the digits O and 2. For example,
0.1 is in C because it can also be written as 0.0222..., but 0.101 is not. The Cantor set is
obtained by removing from [0, 1] the interval (%, %), then (é, %) and (%, g), then successively
from each newly formed closed interval an open interval centered at its midpoint and % of its
size (Figure 19). The Cantor set is a fractal: each time we cut a piece of it and magnify it, the

piece resembles the original set.
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Figure 19

Next, we define a function ¢ : C — [0, 1] x [0, 1] in the following manner. For a number
writteninbase 3as0.a1a; . . . a, . . . with only the digits 0 and 2 (hence in the Cantor set), divide
the digits by 2, then separate the ones in even positions from those in odd positions. Explicitly,
if b, = ”7", n > 1, construct the pair (0.b1b3bs . .., 0.byb4bg . ..). This should be interpreted
as a point in [0, 1] x [0, 1] with coordinates written in base 2. Then ¢ (0.ajaxazas...) =
(0.b1b3...,0.byby . ..). The function ¢ is clearly onto. Is it continuous?

First, what does continuity mean in this case? It means that whenever a sequence (x,), in
C converges to a point x € C, the sequence (¢ (x,)), should converge to ¢ (x). Note that since
the complement of C is a union of open intervals, C contains all its limit points. Moreover,
the Cantor set has the very important property that a sequence (x;,), of points in it converges
tox € C if and only if the base-3 digits of x,, successively become equal to the digits of x. Itis
essential that the base-3 digits of a number in C can equal only O or 2, so that the ambiguity of
the ternary expansion is eliminated. This fundamental property of the Cantor set guarantees
the continuity of ¢.

The function ¢ is extended linearly over each open interval that was removed in the
process of constructing C, to obtain a continuous surjection ¢ : [0, 1] — [0, 1] x [0, 1]. This
concludes the proof of the theorem. U
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To visualize this Peano curve, consider the “truncations” of the Cantor set

,E5E5§a§’ﬁ,Eygag’ﬁ’§7§9ﬁvﬁv
C{1212781219207252612
Y =

{1212781219782526]

55 56 19 20 61 62 7 8 73 74 25 26 79 80
81781727°27°81°81°9797 81781727 27" 81" 81’ }

and define ¢, : C,, — [0, 1] x [0, 1], n > 1, as above, and then extend linearly. This gives

rise to the curves from Figure 20. The curve ¢ is their limit. It is a fractal: if we cut the

unit square into four equal squares, the curve restricted to each of these squares resembles the

original curve.

n=1 n=2 n=3 n=4

Figure 20

Here is an easy application of continuity.

Example. Let K be a closed, bounded set in R (or more generally, a compact set in some
metric space). If f : K — K has the property that |f (x) — f(y)| < |x — y| for all x # y, then
f has a unique fixed point.

Solution. Itisnothard to see thatf is continuous. Let g(x) = |f(x) —x|. Then g is continuous,
so g has a minimum a on K. Assume that a # 0. Then, if xy € K is such that g(xp) = a, we
have

g(f(x0)) = f (f (x0)) — f(x0)| < |f (x0) — xol = g(x0),

which contradicts minimality. Thus the minimum of g is 0, showing that f has a fixed point.
The fixed point is unique since f (x) = x and f(y) = yyields [x —y| = |[f(x) —f ()| < |x — |,
impossible. ([l

469. Letf : R — R be a continuous function satisfying f (x) = f(x?) for all x € R. Prove
that f is constant.

470. Does there exist a continuous function f : [0, 1] — R that assumes every element of
its range an even (finite) number of times?

471. Letf(x) be a continuous function defined on [0, 1] such that
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@ fO)=f1)=0;

2
(i) 20 () +£ () = 3f ( rry

T) for all x, y € [0, 1].

Prove that f(x) = O for all x € [0, 1].

472. Letf : R — R be a continuous function with the property that

. f&+2h) —f(x+h)
lim

=0, forallx € R.
h—0+ h

Prove that f is constant.

473. Let a and b be real numbers in the interval (0, %) and let f be a continuous real-valued
function such that
f(f(x)) = af (x) + bx, forall x € R.

Prove that f(0) = 0.

f&") .
— s

o0
474. Let f : [0,1] — R be a continuous function. Prove that the series Z >

n=1

convergent for every x € [0, 1]. Find a function f satisfying

fx) = Zf(;n), for all x € [0, 1].
n=1

475. Prove that there exists a continuous surjective function ¢ : [0, 1] — [0, 1] x [0, 1]
that takes each value infinitely many times.

476. Give an example of a continuous function on an interval that is nowhere differentiable.

3.2.4 The Intermediate Value Property

A real-valued function f defined on an interval is said to have the intermediate value property
(also known as the Darboux property) if for every a < b in the interval and for every A between
f(a) and f (b), there exists ¢ between a and b such that f(c) = A. Equivalently, a real-valued
function has the intermediate property if it maps intervals to intervals. The higher-dimensional
analogue requires the function to map connected sets to connected sets. Continuous functions
and derivatives of functions are known to have this property, although the class of functions
with the intermediate value property is considerably larger.

Here is a problem from the 1982 Romanian Mathematical Olympiad, proposed by M.
Chirita.

Example. Letf : [0, 1] — R be a continuous function with the property that

1

b4

dx = —.

/O feydx = 7
Prove that there exists xo € (0, 1) such that

1 1
1+ o %0 <fxo) < 2_xo
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Solution. Note that

1
1
/ dx:z.
0 1+X2 4

1
Consequently, the integral of the function g(x) = f(x) — T

5 on the interval [0, 1] is
X
equal to 0. If g(x) is identically 0, choose x( to be any number between 0 and 1. Otherwise,
g(x) assumes both positive and negative values on this interval. Being continuous, g has the
intermediate value property, so there is some xy € (0, 1) for which g(xp) = 0. We have thus

found xy € (0, 1) such that f(xg) = 1+;2 The double inequality from the statement follows
X0

from 2xy < 1 + x% < 1 + xg, which clearly holds since on the one hand, xé —2x+ 1 =
(xo — 1) > 0, and on the other, x(z) < Xp. O

Example. Prove that every continuous mapping of a circle into a line carries some pair of
diametrically opposite points to the same point.

Solution. Yes, this problem uses the intermediate value property, or rather the more general
property that the image through a continuous map of a connected set is connected. The circle
is connected, so its image must be an interval. This follows from a more elementary argument,
if we think of the circle as the gluing of two intervals along their endpoints. The image of
each interval is another interval, and the two images overlap, forming an interval.

Identify the circle with the set S' = {z € C | |z| = 1}. Iff : S' — R is the continuous
mapping from the statement, then ¥ : S' — R, ¥/ (z) = f(z) — f(—z) is also continuous (—z
is diametrically opposite to z).

Pick zg € S'. If ¥ (xy) = 0, then zy and —z, map to the same point on the line. Otherwise,

Y (—20) =f(—20) —f(2) = =¥ (20).

Hence 1 takes a positive and a negative value, and by the intermediate value property it must
have a zero. The property is proved. A more difficult theorem of Borsuk and Ulam states that
any continuous map of the sphere into the plane sends two antipodal points on the sphere to
the same point in the plane. A nice interpretation of this fact is that at any time there are two
antipodal points on earth with the same temperature and barometric pressure.

We conclude our list of examples with a surprising fact discovered by Lebesgue.

Theorem. There exists afunctionf : [0, 1] — [0, 1] that has the intermediate value property
and is discontinuous at every point.

Proof. Lebesgue’s function acts like an automaton. The value at a certain point is produced
from information read from the digital expansion of the variable.

The automaton starts acting once it detects that all even-order digits have become 0. More
precisely, if x = 0.apaa; ..., the automaton starts acting once ap; = 0 for all & > n. It
then reads the odd-order digits and produces the value f(x) = 0.a2,4102,+3020+5 - . . If the
even-order digits do not eventually become zero, the automaton remains inactive, producing
the value 0. Because only the rightmost digits of the numbers count, for any value of y and
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any interval / C [0, 1], one can find a number x € I such that f(x) = y. Hence the function f
maps any subinterval of [0, 1] onto [0, 1]. It satisfies the intermediate value property trivially.
And because any neighborhood of a point is mapped to the entire interval [0, 1], the function
is discontinuous everywhere. g

As the poet Paul Valéry said: “a dangerous state is to think that you understand.” To make
sure that you do understand the intermediate value property, solve the following problems.

4717.
478.

479.

480.

481.

482.

483.

484.

48s.

486.

Letf : [a, b] — la, b] be a continuous function. Prove that f has a fixed point.

One day, a Buddhist monk climbed from the valley to the temple up on the mountain.
The next day, the monk came down, on the same trail and during the same time interval.
Prove that there is a point on the trail that the monk reached at precisely the same moment
of time on the two days.

Letf : R — R be a continuous decreasing function. Prove that the system
x=f),
y=f@),
z=f)

has a unique solution.

Let f : R — R be a continuous function such that |f(x) — f(y)| > |x — y| for all
x,y € R. Prove that the range of f is all of R.

A cross-country runner runs a six-mile course in 30 minutes. Prove that somewhere
along the course the runner ran a mile in exactly 5 minutes.

Let A and B be two cities connected by two different roads. Suppose that two cars can
travel from A to B on different roads keeping a distance that does not exceed one mile
between them. Is it possible for the cars to travel the first one from A to B and the
second one from B to A in such a way that the distance between them is always greater
than one mile?

Let . .
_ k _ Ak
Px) = Zakx and Q(x) = Z w1 1x ,
k=1 k=1
where ay, as, . .., a, are real numbers, n > 1. Show that if 1 and 2"*! are zeros of the

polynomial Q(x), then P(x) has a positive zero less than 2".

Prove that any convex polygonal surface can be divided by two perpendicular lines into
four regions of equal area.

Letf : I — R be a function defined on an interval. Show that if f has the intermediate
value property and for any y € R the set f~!(y) is closed, then f is continuous.
Show that the function {
cos — for x 20
X

a for x =0,

fa(x) = [
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has the intermediate value property if a € [—1, 1] but is the derivative of a function
only if a = 0.

3.2.5 Derivatives and Their Applications

A function f defined in an open interval containing the point x is called differentiable at xg if

. Sfxo +h) — f(xo)
im
h—0 h

exists. In this case, the limit is called the derivative of f at xy and is denoted by f’(xy) or
%(xo). If the derivative is defined at every point of the domain of f, then f is simply called
differentiable.

The derivative is the instantaneous rate of change. Geometrically, it is the slope of the
tangent to the graph of the function. Because of this, where the derivative is positive the
function is increasing, where the derivative is negative the function is decreasing, and on
intervals where the derivative is zero the function is constant. Moreover, the maxima and
minima of a differentiable function show up at points where the derivative is zero, the so-
called critical points.

Let us present some applications of derivatives. We begin with an observation made by
F. Pop during the grading of USA Mathematical Olympiad 1997 about a student’s solution.
The student reduced one of the problems to a certain inequality, and the question was whether
this inequality is easy or difficult to prove. Here is the inequality and Pop’s argument.

Example. Let a, b, c be positive real numbers such that abc = 1. Prove that
@+ +F<d+b+c
where equality holds if and only ifa =b =c = 1.

Solution. If a = b = ¢ =1 there is nothing to check. So let us assume that at least one of
a, b, c is not 1. We prove that the function

f@O) =d+b+c
is strictly increasing for ¢ > 0. Its first derivative is
f(t)=dIna+b'Inb+c'Inc,

for which we can tell only that f'(0) = Inabc = In 1 = 0. However, the second derivative is
f"(t) = a'(Ina)® + b'(Inb)> + ¢'(In ), which is clearly positive. We thus deduce that f” is
strictly increasing, and so f'(f) > f'(0) = 0 for r > 0. Therefore f itself is strictly increasing
for t > 0, and the conclusion follows. OJ

And now an exciting example found in D. Busneag, 1. Maftei, Themes for Mathematics
Circles and Contests (Scrisul Roméanesc, Craiova).
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Example. Prove that

1+a1 1 1
. ) ) =aay-ap\1+—+—+---+—1].
: : IR a @ an
1 1 ...1+a,

Solution. In general, if the entries of a matrix depend in a differentiable manner on a parameter
X,

aii(a) app(x) ... ap(x)
ari(a) an(x) ... axy(x)
anl(a) an2(x) ce ann(x)

then the determinant is a differentiable function of x, and its derivative is equal to

aj (a) aj,(x) ... ap,x) ai(a) ap(x) ... apx)
@1(@) a2() - @) | (@ da) ) |
an1 (@) ap(x) ... ap(x) an1 (@) ap(x) ... ap(x)
aji(a) ap(x) ... ajp(x)
azi(a) an(x) ... axy(x)
+
a,(a) a,x) ...a,(x)

This follows by applying the product rule to the formula of the determinant. For our problem,
consider the function

X+ ay X ... X
X x4a... x
fx) =
X X ...x+4a,
Its first derivative is
1 1 o1 X+a x... Xx
) xXx+a ... Xx 1 1... 1
SO=|. . . . + . . + -
X X ...x+a, X Xx...x4+a,
X+ a X ... X
X x+a...x
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Proceeding one step further, we see that the second derivative of f consists of two types
of determinants: some that have a row of 0’s, and others that have two rows of 1’s. In both
cases the determinants are equal to zero, showing that /' (x) = 0. It follows that f itself must
be a linear function,

f@) =f0) +f(0)x.

One finds immediately that f(0) = a,a; - - - a,. To compute

11...1 a0...0 a 0...0
a) ... ay ...
) 0 0 11 1 0 0
fO=j. .. |+ .. |t
00 ...a, 00...a, 1 1...1

expand each determinant along the row of 1’s. The answer is

fO)=amas---a,+aa3---a,+---+aay---a, 1,

whence . | .
f(x):ala2"'an|:l+(_+_+"'+—)Xi|.
a ay a,
Substituting x = 1, we obtain the formula from the statement. O

487. Find all positive real solutions to the equation 2* = x.

488. Letf : R — R be given by
fO=G—-—a)x—a)+&x—a)x—a3)+ (x —az)(x —ay)

with a1, a,, as real numbers. Prove that f(x) > 0 for all real numbers x if and only if
a) = dp = as.

489. Let a and b be positive real numbers. Show that for all positive integers ,
(n—Dad" +b" > na" b,
with equality if and only if a = b.

490. Determine max |z° —z+2|.
zeC, |z|=1

491. Find the minimum of the function f : R — R,

@—=x+1)3
x0—x341°

flo) =

492. How many real solutions does the equation
e X
sin(sin(sin(sin(sinx)))) = 3

have?
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493. Let (a,), be asequence of real numbers satisfying e +na, = 2, foralln > 1. Evaluate

lim n(1 — na,).
n— oo

494. Let n be an even integer greater than 2 and x, y real numbers such that

X+ y" > pand y' 4 X" > a

Show thatx +y > 1.
495. Find all functions f : R — R, satisfying

f () —fOI < lx =y
forall x,y € R.

496. Letf : R — R be a differentiable function. Show that if lim,_, o (f (x) + f'(x)) = 0,
then lim,_, oo f(x) = lim,_, . f'(x) = 0.

497. Letf : R — R be a continuous function. For x € R we define

200 = F(®) /O Fayd.

Show that if g is a nonincreasing function, then f is identically equal to zero.

498. Let f be a function having a continuous derivative on [0, 1] and with the property that
0 < f'(x) < 1. Also, suppose that f(0) = 0. Prove that

1 2 1
[/ f(X)dx] Z/ [f (x)Pdx.
0 0

Give an example in which equality occurs.

499. Find all functions f : [0, c0) — [0, co) differentiable at x = 1 and satisfying
FOO) +f0P) +fx) =x> +x* +xforall x > 0.

500. Let x, y, z be nonnegative real numbers. Prove that
@ (@ +y + 2™ < (0 )T+ D 4 0T
(b) (x +y+ Z)(x+y+z)2xx2yyzzz2 > (x + y)(x+y)2(y + Z)(y+z)2 (Z + x)(z+x)2.

Derivatives have an important application to the computation of limits.

I’Hopital’s rule. Foran open interval I, if the functions f and g are differentiable on I \ {xy},
gx) # 0 forx € I, x # xy, and either lim f(x) = lim g(x) = 0 or lim |[f(x)| =
X—>X0 X—>X( X—>X0

L9 ovists, then lim L2 exists and
g'(x) x> &€&

lim |g(x)| = oo, and if additionally lim
X—> X0 X—>X0

I Sx) . f')
im —— = lim .
=0 () xn g'()
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Let us see how L"Hopital’s rule is applied.

Example. Prove thatif f : R — R is a differentiable function with the property that lim f(x)
X— X0

exists and is finite, and if lim xf’(x) exists, then this limit is equal to zero.
X—> X0

Solution. If the limit lim xf’(x) exists, then so does lim (xf(x))’, and the latter is equal to
X—> X0

X—>X0

lim f(x) 4+ lim xf’(x). Applying L’Hopital’s rule yields
X—> X0 X—>X(

lim of @) == lim L fim T i ).
X—X0 X—X0 x x—=x0 X X—X0
Therefore,
lim f(x) = lim f(x) + lim xf'(x),
X—> X0 X— X0 X—>X0
and it follows that lim xf’(x) = 0, as desired. ]

X—> X0

More problems follow.

501. Let f and g be n-times continuously differentiable functions in a neighborhood of a
point a, such that f(a) = g(a) = «, f'(a) = g'(a), ..., f" V() = g" V(a), and
f™(a) # g™ (a). Find, in terms of o,

O _ g8

lim ————.
r=a fx) — gx)

502. For any real number A > 1, denote by f(1) the real solution to the equation

x(1+1Inx) =A.
Prove that
_fG)
o = b
InA

503. Let fo(x) = x, go(x) = x and for n > 0,
for1 () = 1In[1 +3(£,(x))*],  gut1(x) = In[1 + 5(g,(x))*].

Prove that the limit

5 Sfro14(x)
im—————~

=0 g2014(x)

exists and compute it.
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3.2.6 The Mean Value Theorem

In the old days, when mathematicians were searching for methods to solve polynomial equa-
tions, an essential tool was Rolle’s theorem.

Rolle’s theorem. If f : [a,b] — R is continuous on la, b], differentiable on (a, b), and
satisfies f (a) = f (D), then there exists ¢ € (a, b) such that f'(c) = 0.

Its standard use was on problems like the following.
Example. Prove that the Legendre polynomial

n

d
Py(x) =

2_111
dx”(x )

has n distinct zeros in the interval (—1, 1).

Solution. Consider the polynomial function Q,(x) = (x> — 1)". Its zerosx = 1 and x = —1
have multiplicity n. Therefore, for every k < n, the kth derivative Qfl") (x) has 1 and —1 as
zeros. We prove by induction on k that for 1 < k < n, Q,(f) (x) has k distinct zeros in (—1, 1).

By Rolle’s theorem this is true for k = 1. Assume that the property is true for k < n, and

let us prove it for k + 1. The polynomial Q) (x) has k +2 zeros xo = —1 < x; < -+ < x; <
xr+1 = 1. By Rolle’s theorem, between any two consecutive zeros of the function there is a

zero of the derivative Qflk“)(x). Hence Q,(lk“)(x) has k 4 1 distinct zeros between —1 and 1.
This completes the induction.

In particular, Q,S”) (x) = P, (x) has n distinct zeros between —1 and 1, as desired. O
Rolle’s theorem applied to the function ¢ : [a, b] — R,
Fx) g 1

¢(x) =|f(a) gla) 1],
f(b) gd) 1

yields the following theorem.

Cauchy’s theorem. Iff, g : [a, b] — R are two functions, continuous on |a, b] and differ-
entiable on (a, b), then there exists a point ¢ € (a, b) such that

Fb) —f@)g'(c) = (gb) — g@)f (o).

In the particular case g(x) = x, we have the following.

The mean value theorem (Lagrange). Iff : [a, b] — R is a function that is continuous on
la, b] and differentiable on (a, b), then there exists ¢ € (a, b) such that

_J®) @

flo ===
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It should be noted that the mean value theorem was already used, implicitly, in the previous
section; the monotonicity test and I’Hospital’s theorem both rely on it, but in this section we
make explicit use of it, such as in solving the following problem of D. Andrica.

Example. Letf : R — R be a twice-differentiable function, with positive second derivative.
Prove that

fa+f @) = f),

for any real number x.

Solution. If x is such that f’(x) = 0, then the relation holds with equality. If for a certain x,
f'(x) < 0, then the mean value theorem applied on the interval [x 4+ f’(x), x] yields

f&) = fx+f'0)) =f () (=f' %),

for some ¢ with x +f’(x) < ¢ < x. Because the second derivative is positive, f” is increasing;
hence f'(c) < f'(x) < 0. Therefore, f(x) — f(x + f'(x)) < 0, which yields the required
inequality.

In the case f/(x) > 0, by the same argument f (x +f'(x)) —f (x) = f'(x)f’(c) for ¢ between
xand x 4+ f'(x), and f'(c) > f'(x) > 0. We obtain again f(x) — f(x + f’(x)) < 0, as desired.
O

Example. Find all real solutions to the equation

4467 =5 457,

Solution. This problem was given at the 1984 Romanian Mathematical Olympiad, being
proposed by M. Chirita. The solution runs as follows.

Note that x = 0 and x = 1 satisfy the equation from the statement. Are there other
solutions? The answer is no, but to prove it we use the amazing idea of treating the numbers
4,5, 6 as variables and the presumably new solution x as a constant.

Thus let us consider the function f (¢) = < +(10—1)*. The fact that x satisfies the equation
from the statement translates to f(5) = f(6). By Rolle’s theorem there exists ¢ € (5, 6), such
that f'(¢) = 0. This means that

e S x(10— ¢ ' =0, or xc" = (10— )L

Because exponentials are positive, this implies that x is positive.

If x > 1, then xS Pl s el s (10 — ¢)*~', which is impossible since the first
and the last terms in this chain of inequalities are equal. Here we used the fact that ¢ > 5.

If0 < x < 1, then x¢~! < xc*~!. Let us prove that xc*~! < (10 — ¢)*~!'. With the
substitution y = x — 1, y € (—1, 0), the inequality can be rewrittenas y + 1 < (L;‘)) The
exponential has base less than 1, so it is decreasing, while the linear function on the left is
increasing. The two meet at y = 0. The inequality follows. Using it we conclude again
that xc* ~! cannot be equal to (10 — ¢)*~!. This shows that a third solution to the equation
from the statement does not exist. So the only solutions to the given equation are x = 0 and
x=1. O
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Below you will find a variety of problems based on the above-mentioned theorems (Rolle,
Lagrange, Cauchy). Try to solve them, remembering that “good judgment comes from expe-
rience, and experience comes from bad judgment” (Barry LePatner).

504.

50S.

506.

507.

508.

509.

510.

511.

512.

513.

Prove that not all zeros of the polynomial P(x) = x* — v/7x® + 4x% — /22x + 15 are
real.

Let f : [a,b] — R be a function, continuous on [a, b] and differentiable on (a, b).
Prove that if there exists ¢ € (a, b) such that

fO 1@ _,
fO—f@ =

then there exists & € (a, b) such that f'(§) = 0.

For x > 2 prove the inequality

(x+ 1) cos

T T
—xcos— > 1.
x+1 X

Let n > 1 be an integer, and let f : [a, /] — R be a continuous function, n-times
differentiable on (a, b), with the property that the graph of f has n + 1 collinear points.
Prove that there exists a point ¢ € (a, b) with the property that f* (c) = 0.

Letf : [a, b] — R be a function, continuous on [a, b] and differentiable on (a, b). Let
M («, B) be a point on the line passing through the points (a, f (a)) and (b, f (b)) with
o ¢ [a, b]. Prove that there exists a line passing through M that is tangent to the graph

of f.

Letf : [a, b] — Rbe afunction, continuous on [a, b] and twice differentiable on (a, b).
If f(a) = f(b) and f'(a) = f'(b), prove that for every real number A the equation

@) = Af'(x)* =0
has at least one solution in the interval (a, b).
Prove that there are no positive numbers x and y such that
X2V 427 =x+y.

Let o be a real number such that n* is an integer for every positive integer n. Prove
that « is a nonnegative integer.

Find all real solutions to the equation
6"+ 1 =28 —27""

Let P(x) be a polynomial with real coefficients such that for every positive integer n,
the equation P(x) = n has at least one rational root. Prove that P(x) = ax 4+ b with a
and b rational numbers.
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3.2.7 Convex Functions

A function is called convex if any segment with endpoints on its graph lies above the graph
itself. The picture you should have in mind is Figure 21. Formally, if D is an interval of the
real axis, or more generally a convex subset of a vector space, then a function f : D — R is
called convex if

fOx+ (A —=2)y) <A )+ A —=1f(@), forallx,y € D, » € (0, 1).

Here we should remember that a set D is called convex if for any x,y € D and A € (0, 1)
the point Ax + (1 — X)y is also in D, which geometrically means that D is an intersection of
half-spaces.

A function f is called concave if —f is convex. If f is both convex and concave, then f is
linear, i.e., f (x) = ax 4+ b for some constants a and b.

Proposition. A rwice-differentiable function on an interval is convex if and only if its second
derivative is nonnegative.

In general, a twice-differentiable function defined on a convex domain in R” is convex if
at any point its Hessian matrix is semipositive definite. This is a way of saying that modulo
a local change of coordinates, around each point the function f is of the form

f(xlvx2"'~7x}’l) =¢(x19x25-~-axn)+-x%+x§+”’+x]%’

Mx)+(1=Mf(y)

JOx+(1-N)y)

Figure 21

where k < n and ¢ (x1, x, ..., x,) is linear.
As an application, we use convexity to prove Holder’s inequality.

Holder’s inequality. If xi, x2, ..., Xy, Y1, Y2, . .., Yn, p and q are positive numbers with 117 +

é =1, then
n n 1/p n 1/q
inyi = (fo) (Z)’?) )
i=1 i=1 i=1
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with equality if and only if the two vectors (x1, X2, . .., X,) and (y1, Y2, - . ., Yn) are parallel.

Proof. The second derivative of f : (0,00) — R, f(x) = Inx, is f/(x) = —é, which is

. . L . 1 .
negative. So this function is concave. Setting A = —, we obtain

1 1 1 1
Inx'Pyla = —lnX—i——lanln(—X—i——Y), forall X,Y > O;
p q p q

hence
xiryva < Ly + Ly,
B q

Using this fact, if we let X = fo and Y = Z y!, then

1 n n xf; 1/p qu n 1 Xf) 1 y?
Xl/pyl/qizzlxiyi:;(f) (7) 5;(_ X 57)
(+3)
= -4+ — =
P g

n n p s n 1/q
in)’i < x'ryVt = (fo) (Z)’lq) ;

i=1

Hence

and the inequality is proved. U

By analogy, a sequence (a,),> is called convex if
An+1 + an—1
ay < ——
2
and concave if (—a,), is convex. Equivalently, a sequence is convex if its second difference

(derivative) is nonnegative, and concave if its second difference is nonpositive. The following
example motivates why convex sequences and functions should be studied together.

, foralln > 1,

Example. Let (a,), be a bounded convex sequence. Prove that

lim (a,41 — a,) = 0.
n—o0

Solution. A bounded convex function on (0, co) has a horizontal asymptote, so its derivative
tends to zero at infinity. Our problem is the discrete version of this result. The first derivative
of the sequence is b, = a,y; — a,, n > 1. The convexity condition can be written as
apy1 — @y > a, — a,—1, which shows that (b,), is increasing. Since (a,), is bounded, (b,), is
bounded too, and being monotonic, by the Weierstrass theorem it converges at a finite limit
L. If L > 0, then b, eventually becomes positive, so a, becomes increasing because it has a
positive derivative. Again by the Weierstrass theorem, a, converges to some limit /, and then
L =1—1=0,acontradiction. A similar argument rules out the case L < 0. We are left with
the only possibility L = 0. l
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And now some problems.

514. Prove that

3+ 54+3- 93 <23
515. Letxy, x2, ..., x, bereal numbers. Find the real numbers a that minimize the expression
la— x|+ |la—x|+ -+ |a— x,]|.

516. Leta, b > 0 and x, ¢ > 1. Prove that

c c c/2
x4 x0T > 2x@?

517. Prove that

)sin X )cosx

(sinx < (cosx
forallx € (0, 7).

518. Atriangle hassidelengthsa > b > c and vertices of measures A, B, and C, respectively.
Prove that
Ab + Bc + Ca > Ac + Ba + Cb.

a® — b? 2> /a2+b2_a+b
2 - 2 2

520. Show that if a function f : [a, b] — R is convex, then it is continuous on (a, b).

519. Prove that fora, b > %,

521. Prove that a continuous function defined on a convex domain (for example, on an
interval of the real axis) is convex if and only if

f(x+y) Sf(x) +/ )
2 2

, forall x,y € D.

522. Call a real-valued function very convex if

f@ erf(y) s (J?) ey

holds for all real numbers x and y. Prove that no very convex function exists.

523. Letf : [a, b] — R be a convex function. Prove that
smrens (52 () (5 ()]

forall x,y, z € [a, b].
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524. Prove that if a sequence of positive real numbers (b,), has the property that (a"b,,), is
a convex sequence for all real numbers a, then the sequence (In b,,), is also convex.

525. Find the largest constant C such that for every n > 3 and every positive concave
sequence (ax);_,,

n 2 n
(Zak) > C(n— 1)Za,§.
k=1 k=1

A convex function on a closed interval attains its maximum at an endpoint of the interval.
We illustrate how this fact can be useful with a problem from 7imisoara Mathematics Gazette,
proposed by V. Cartoaje and M. Lascu.

Example. Leta, b, c,d € [1, 3]. Prove that

(@+b+c+d)?>3d>+b*++d°).

Solution. Divide by 2 and move everything to one side to obtain the equivalent inequality
a> +b* + ¢ +d* — 2ab — 2ac — 2ad — 2bc — 2bd — 2cd < 0.

Now we recognize the expression on the left to be a convex function in each variable. So the
maximum is attained for some choice of a, b, ¢, d = 1 or 3. If k of these numbers are equal to
3,and 4 — k are equal to 1, where k could be 1, 2, 3, or 4, then the original inequality becomes

Gk+4—k)?=30Ok+4—k).

Dividing by 3, we obtain k* + 4k +3 > 6k + 3, or (k — 1)?> > 0, which is clearly true. The
inequality is proved. Equality occurs when one of the numbers a, b, ¢, d is equal to 3 and the
other three are equal to 1. U

Here are additional problems of this kind.

526. Let o, § and y be three fixed positive numbers and [a, b] a given interval. Find x, y, z
in [a, b] for which the expression

Ex,y,2) =ax—y)*+B0 -2 +yz—x)?

has maximal value.

527. Let0 <a <bandt; >0,i =1,2,...,n. Prove that for any xi, x», ..., x, € [a, b],

n n l’l ( + b)2 n 2
(; tm) (; ;1) = a4ab (; ti) .

528. Prove that for any natural number n > 2 and any |x| < 1,

A+x0"+0—-x)" <2
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529. Prove that for any positive real numbers a, b, ¢ the following inequality holds

a+b+c

3 — Jabe < max{(va — Vb)%, (Vb — ), (Ve — Ja)?).

530. Let f be a real-valued continuous function on R satisfying

1 x+h
fx) < %/ f(dy, forallx e Rand & > 0.
Prove that (a) the maximum of f on any closed interval is assumed at one of the
endpoints, and (b) the function f is convex.

An important property of convex (respectively, concave) functions is known as Jensen’s
inequality.

Jensen’s inequality. For a convex functionf let x1, x2, . .., X, be points in its domain and let
A, A2, ..., Ay be positive numbers with Ay + Xy + - - -+ A, = 1. Then

SOaxr +Aaxy + -+ Aux) < Af(x) + Aaf (x2) + -+ - + A f ().

Iff is nowhere linear and the x;’s are not all equal, then the inequality is strict. The inequality
is reversed for a concave function.

Proof. The proof is by induction on n. The base case is the definition of convexity. Let us
assume that the inequality is true for any n — 1 points x; and any n — 1 weights ;. Consider
n points and weights, and let A = Ay + ...+ A,_1. Note that A + A, = 1 and

Al An—1

T+T+m+x

= 1.

Using the base case and the inductive hypothesis we can write
Al An—1
SOaxi ot Aoy Akn) =LA 0t T | At

A A
<A (—x1 Ry St 1) + Anf (xn)

_x(ffuo+-~+ )+AJ@»
= Mif(x) + - A At f (1) + Anf (Xn),
as desired. For the case of concave functions, reverse the inequalities. O
As an application, we prove the following.

The generalized mean inequality. Given the positive numbers xi, x,, . . ., x, and the posi-
tive weights Ay, Ay, ..., Ay With Ay + Ay + - - - + X, = 1, the following inequality holds:

SRS X
AX] F Aoxp + oo+ Ay = XXy X
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Solution. Simply write Jensen’s inequality for the concave function f(x) = Inx, then expo-
nentiate. O

1
For A; = A = --- = A, = — one obtains the AM-GM inequality. The Cauchy-Schwarz

n
inequality is also a direct consequence of Jensen’s inequality.

Cauchy-Schwarz inequality. Ifa,a;,...,a, and by, by, ..., b, are real numbers, then
@+ a3+ +d YD+ D3+ -+ b2) > (a1by + azby + - - - + ayb,)*.

2

Proof. We will apply Jensen’s inequality to the convex function f(x) = x“. In this case,

Jensen’s inequality reads
MXT 4 A3 - A > (X Aoy 4 Ax)?,

for all nonnegative A; with the property that Ay + Ay + -+ + A, = 1.
Rewrite the Cauchy-Schwarz inequality as

ai(bi + b3+ -+ b)) + by + by + -+ b)) + - +an(by + by + -+ b))’
> (arby + ayby + - - - + ayby)’,

or

1 2 n
Zk_l bt +b5+---+b2 b}

" b? ’
k ) 2 2

This is Jensen’s inequality with

ai
Xizg(b%+b§+"‘+bi)

i b2
BT

i

fori=1,2,...,n. O

All inequalities below are supposed to be proved using Jensen’s inequality. One of these
problems has appeared also in Section 2.1.6 where you were supposed to solve it using a
different method.

531. Show that if A, B, C are the angles of a triangle, then

33

sinA + sinB + sin C > —
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532. Leta;, i = 1,2, ..., n be nonnegative numbers with Zai =1,andlet0 < x; < 1,

i=1
i=1,2,...,n. Prove that

n

1

ai
= ay _ar an *
I+xi = T4+x'x" o xn

i=1
533. Prove that for any three positive real numbers a, a,, as,
2 2 2 3 3 3

aj+a; + a3 - a; +a; +az

a+a+ay " al+a3+a3

xi+x+
534. LetO <x; <m,i=1,2,...,n,and set x = : 2 ' Prove that
n

n . . n
sin x; sin x
[1 < :
o1 \ M X

535. Letn > 1 and xy, x5, ..., x, > 0 be such that x; + x, + - - - + x, = 1. Prove that

X1 X5 N X >J)71+JJ72+---+JJT”

+ 4.
J1=x1 J1—x V1 —=x, n—1

536. Provethatifa,b,c,d >0anda < l,a+b <5,a+b+c<14,a+b+c+d < 30,
then

Va+ b+ e+ d < 10.

3.2.8 Indefinite Integrals

“Anyone who stops learning is old, whether at twenty or eighty. Anyone who keeps learning
stays young. The greatest thing in life is to keep your mind young.” Following this advice of
Henry Ford, let us teach you some clever tricks for computing indefinite integrals.

We begin by recalling the basic facts about indefinite integrals. Integration is the inverse
operation to differentiation. The fundamental methods for computing integrals are the back-
ward application of the chain rule, which takes the form

/ £ (x)dx = / Fu)du

and shows up in the guise of the first and second substitutions, and integration by parts

/udv:uv—/vdu,

which comes from the product rule for derivatives. Otherwise, there is Jacobi’s partial fraction
decomposition method for computing integrals of rational functions, as well as standard
substitutions such as the trigonometric and Euler’s substitutions.

Now let us turn to our nonstandard examples.
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Example. Compute

sin x COS X
I :/.—dx and 12:/_—dx
SIn X + COS x SIn X + COSx

X

Solution. The well-known approach is to use the substitution tan 3

to write the system

sinx + cos x
11+12=/_—dx=/1dx=x+C1,
sInx + cosx

= t. Butitis much simpler

cosx — sinx .
-+, = ————dx =In|sinx + cosx| + C5,
sinx 4+ cosx

and then solve to obtain

1 1 1 1
Il — 5x_Elnlsinx_|_cosxl-i—C'i and 12: §x+§1n|SiHX+COSX|+Cé.

We continue with a more difficult computation based on a substitution.

Example. For a > 0 compute the integral

dx, x > 0.

1
/ xa/x2 4+ xt + 1

Solution. Factor an x> under the square root to transform the integral into

/ 1 J / 1 1 d
X = . X.
1 1 1 1 3 xa—i—l

2
a+1 1 _ _
X +xa+x2a (;4‘5) +Z

1 1
With the substitution u = — + 3 the integral becomes

X
1 1 1 3

——/—du:——ln u+Jut+=>1+C
a 2+3 a 4

Ve TG

1 1 1 1 1 O
=——In{ —+-++-+1)+C
a x4 2 x%a - xe

537. Compute the integral

/(1 + 2x2)ex2dx.
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538. Compute

dx.

X +sinx —cosx — 1
X+ e¥ +sinx

539. Find

/(x6 + x3)V/x3 + 2dx.

540. Compute the integral

241
/de
xt—x24+1

e —1
/,/ dx, x > 0.
e+ 1

541. Compute

542. Evaluate
1 2]
/ + x“In xdx
x+x2Inx

543. Find the antiderivatives of the function f : [0, 2] — R,

fx) :\/x3—|—2—2\/x3+1+ B +10—-6vVx3 + 1.

544. For a positive integer n, compute the integral

xn

| x2 x"
+x+5+---+a

dx.

545. Compute the integral

/ dx
(1 —x)y2x2 =1

S|
/x + dx.
x04+1

P(x)

()

546. Compute

Give the answer in the form « arctan 4+ C,a € Q,and P(x), Q(x) € Z[x].
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3.2.9 Definite Integrals
Next, definite integrals. Here the limits of integration also play a role.

Example. Letf : [0, 1] — R be a continuous function. Prove that
™ bl
/ xf(sinx)dx = 71/ f(sinx)dx.
0 0

Solution. We have

/ﬂ xf(sinx)dx = /2 xf (sinx)dx + /ﬂ xf (sinx)dx.
0 0 T

2

We would like to transform both integrals on the right into the same integral, and for that
we need a substitution in the second integral that changes the limits of integration. This
substitution should leave f(sinx) invariant, so it is natural to try t = w — x. The integral
becomes

/2(71 — H)f (sint)dt.
0

%
Adding the two, we obtain / f(sinx)dx, as desired. ]
0

547. Compute the integral

1 3
/ X dx.
—1 «3/1—)6—{—\3/14-)6

T xsinx
—'2dx.
o 14+sin“x

Vi
/ smxdx-l—/
0 —

550. Let a and b be positive real numbers. Compute
b5 b
/ ¢ ¢ dx.
a X

1
I=/ J2x3 — 3x2 — x + ldx.
0

548. Compute

549. Compute

x? cos x*dx.

551. Compute the integral
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552.

553.

554.

555.

556.

557.

558.

559.

3 Real Analysis

Compute the integral

a dx
———(a > 0).
/o x +ar —x2
Compute the integral

T
/ In(1 4+ tan x)dx.
0

/1 In(1 4+ x)
——dx.
o 1 + x2

/°° Inx 4
—_— x’
0o XxX+a?

Find
Compute

where a is a positive constant.

Compute the integral
T xcosx — sinx
/ —— dx.
o  x2+sin“x

Let o be a real number. Compute the integral

1 sin adx
I(a) = /

1 1 —2xcosa +x2

Give an example of a function f : (2, o0) — (0, co) with the property that
o
/ JP(x)dx
2

Letf : [— 7 5] — (=1, 1) be a differentiable function whose derivative is continuous

and nonnegative. Prove that there is xo € [—%, %] such that

is finite if and only if p € [2, 00).

(f(x0))* + (f (xo))* < 1.

There are special types of integrals that are computed recursively. We illustrate this with
a proof of the Leibniz formula.

The Leibniz formula.
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Proof. To prove the formula we start by computing recursively the integral

s

T
I, =/ tan”" xdx, n > 1.
0
We have
¥ 2 ¥ 2n-2 2
I, =/ tan”" xdx =/ tan”""“ x tan” xdx
0 0
i -2 2 g 2n-2
=/ tan”""~ x(1 + tan x)dx—/ tan”" " xdx
0 0
i -2 2
= tan”""“ xsec” xdx — I,_,.
0

The remaining integral can be computed using the substitution tanx = ¢. In the end, we
obtain the recurrence

1
I, = _n—lanzl-
2n —1
So forn > 1,
1 Lo +(—1)"‘2+( 1y
"T -1 2n-3 3 b
with

T I T o T
I =/ tan2xdx=/ seczxdx—/ ldx =tanx| — —=1——.

We find that

1 1 N +(—1)"—2
S 2n—1 2n-3 3

n—1 nn
I, + D+ (=1 T

Because tan®’x — 0 as n — oo uniformly on any interval of the form [0, a), a < %, it
follows that lim 7, = 0. The Leibniz formula follows. ]

n—o0

Below are more examples of this kind.

560. Let P(x) be a polynomial with real coefficients. Prove that
o
/ e *P(x)dx = P(0) + P'(0) + P"(0) + - - -
0

561. Let n > 0 be an integer. Compute the integral

T 1 —cosnx
/ 1=cosmy,
o 1 —cosx
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562. Compute the integral

T

2
I, = / sin” xdx.
0

Use the answer to prove the Wallis formula

lim
n—0o0

[ 2.4.6---2n T 1

— =7Tr.
1-3-5---2n—-1) n

563. Compute

T sin nx

————dx, n>0.
_r (I +2%sinx

3.2.10 Riemann Sums

The definite integral of a function is the area under the graph of the function. In approximating
the area under the graph by a family of rectangles, the sum of the areas of the rectangles,
called a Riemann sum, approximates the integral. When these rectangles have equal width,
the approximation of the integral by Riemann sums reads

n b
lim %%jf@,-) _ / Fds,

where each &; is a number in the interval [a + %(b —a),a—+ ;i(b — a)].

Since the Riemann sum depends on the positive integer n, it can be thought of as the term
of a sequence. Sometimes the terms of a sequence can be recognized as the Riemann sums of
a function, and this can prove helpful for finding the limit of the sequence. Let us show how
this works, following Hilbert’s advice: “always start with an easy example.”

Example. Compute the limit

1 1 1
lim =)
niw(n+l+n+2+ +2n)

Solution. If we rewrite as

11 1 1
- et —— o —— |,
n1+1 142 1+

we recognize the Riemann sum of the function f : [0, 1] — R, f(x) = :

Tx
subdivision xg = 0 < x| = % < X = % < e <X, = ﬁ = 1, with the intermediate points

i

& = * € [x;, xip1]. It follows that

n
li : + : + 4—1 /11 1(1+)1 In2
m — | = = In X =1In2,
nsoo\n+1 n+2 2n o 1+x 0

and the problem is solved. O

associated to the
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We continue with a beautiful example from the book of G. Pélya, G. Szego, Aufgaben und
Lehrsatze aus der Analysis (Springer-Verlag, 1964).

Example. Denote by G, the geometric mean of the binomial coefficients

()} () C)

lim /G, = +/e.
n— o0

Prove that

Solution. We have

n\ (n ny - n! _ (n)"+!
(O)(l)(n) B gk!(n—k)! (112! nl)?
n n n+1-2k
_ | — k)ynHi=2k — ”+1_k) '
g(n—l- k) H( o

k=1

The last equality is explained by Z(n + 1 — 2k) = 0, which shows that the denominator is
k=1
just (n + 1) = 1. Therefore,

=) ()-110- )

Taking the natural logarithm, we obtain

1 1 < 2k k
-InG, = - 1-— In{1- .
nn nz( n—i—l)n( n+1)

k=1

This is just a Riemann sum of the function (1 — 2x) In(1 — x) over the interval [0, 1]. Passing
to the limit, we obtain

1 1
lim ~InG, :/ (1 —2x) In(1 — x)dx.
0

n—oo n

The integral is computed by parts as follows:
1 1 1
/ (1 —-2x)In(1 —x)dx = 2/ (1 —x)In(1 —x)dx —/ In(1 — x)dx
0 0 0
(1 —x)?
2 1—x

1
— —(1-x)2In( —x))l —2/ dx + (1 — x)In(1 —x)‘l —f—x‘l
0 0 0 0
! 1
— [ d—ndx+1=-.
/0( X)dx >

Exponentiating back, we obtain lim /G, = /e. U
n— oo
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564.

565.

566.

567.

568.

569.

570.

3 Real Analysis

Compute
T [ 1 n 1 P 1 :|
im AT
n—00 | \f4n2 — 12 /4n2 — 22 4n2 — n2
Prove that for every positive integer n,

0.785n> —n < Vn2 — 12+ /n2 =22+ ... +/n2 — (n — 1) < 0.79n>.
Define the sequence

- k
X, = — n>1
n Z n2 + 2k2 =
k=1
Prove that the sequence x, converges and find its limit.

Prove that forn > 1,

1 1 1 1
+ + 4+ -+ ——— <V Tn—+/5n.
V2451 JA4+5n J64+5n V2n 4+ 5n

Compute
2]/" 22/” 2n/n
lim +— 4+ ok

Compute the integral

T
/ In(1 — 2acosx + a®)dx.
0

Find all continuous functions f : R — [1, oo) for which there exist a € R and k a
positive integer such that

fOOf2x) -+ f(nx) < an’,

for every real number x and positive integer n.

3.2.11 Inequalities for Integrals

A very simple inequality states that if f : [a, b] — R is a nonnegative continuous function,

then

b
/ f(x)dx > 0,

with equality if and only if f is identically equal to zero. Easy as this inequality looks,
its applications are often tricky. This is the case with a problem from the 1982 Romanian
Mathematical Olympiad, proposed by the second author of the book.

Example. Find all continuous functions f : [0, 1] — R satisfying

1 1 1
/fma=—+/fwﬂm
0 3 0
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Solution. First, we would like the functions in both integrals to have the same variable. A

1
substitution in the first integral changes it to / f(x*)2xdx. Next, we would like to express
0

1 . . ! .
the number 3 as an integral, and it is natural to choose / x*dx. The condition from the
0

1 1 1
/ 2xf (x?)dx =/ x? —|—/ F(x?)%dx.
0 0 0

1
/ [f(xz)2 - ZXf(xz) +x%]dx = 0.
0

statement becomes

This is the same as

Note that the function under the integral, f(x*)?> — 2xf (x?) + x> = (f(x?) — x)?, is a perfect
square, so it is nonnegative. Therefore, its integral on [0, 1] is nonnegative, and it can equal
zero only if the function itself is identically zero. We find that f(x*) = x. So f(x) = /x is
the unique function satisfying the condition from the statement. U

571. Determine the continuous functions f : [0, 1] — R that satisfy

! 1
/O FO0G — fedr = =

572. Letn be an odd integer greater than 1. Determine all continuous functions f : [0, 1] —
R such that

! Lisn—k k
fF&x))" " dx=—, k=1,2,...,n— 1.
0 n

573. Letf : [0, 1] — R be a continuous function such that

! !
/ fx)dx =/ xf(x)dx = 1.
0 0

1
/ fx)%dx > 4.
0

Prove that

574. For each continuous function f : [0, 1] — R, we define

1 1
I(f) = / ¥*f(x)dx and J(f) = / x(f (x))%dx.
0 0

Find the maximum value of I(f) — J(f) over all such functions f.

575. Letay, as, . .., a, be positive real numbers and let x1, x3, . . ., x, be real numbers such
that a;x; + ax, + - - - + a,x, = 0. Prove that

inxj|ai — Clj| <0.
ij

Moreover, prove that equality holds if and only if there exists a partition of the set
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{1,2, ..., n}into the disjoint sets A, A,, ..., A; such that if i and j are in the same set,
then qg; :ajandaISOij =0fori=1,2,...,k.
JEA;

We now list some fundamental inequalities. We will be imprecise as to the classes of
functions to which they apply, because we want to avoid the subtleties of Lebesgue’s theory
of integration. The novice mathematician should think of piecewise continuous, real-valued
functions on some domain D that is an interval of the real axis or some region in R”.

The Cauchy-Schwarz inequality. Let f and g be square integrable functions. Then

2
d 2d)( 2d).
(/Df(x)g(x) x) < (/Df(x) x /Dg(x) x

Minkowski’s inequality. Ifp > 1, then

( / lf(x)+g(x)|”dx)p < ( / lf(X)I”dx)p + ( / Ig(x)lpdx)p.
D D D

1 1
Holder’s inequality. If p, g > 1 such that — + — = 1, then
2

/ F@)g00ldx < ( / lf(x)l”dX)p ( / |g<x>|qu)".
D D D

As an instructive example we present in detail the proof of another famous inequality.

Chebyshev’s inequality. Let f and g be two increasing functions on R. Then for any real

numbers a < b,
b b b
b - a) / Fg(dx > ( / f(x)dx) ( / g(x)dx).

Proof. Because f and g are both increasing,

(F(x) =fON(Ex) —g(») = 0.

Integrating this inequality over [a, b] x [a, b], we obtain

b rb
/ / (F ) =fON(g(x) — g(y))dxdy = 0.
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Expanding, we obtain

b b b b b b
/ / F0g)dxdy + / / F)g O dxdy — / / g () dxdy

b b
- / / f(gx)dxdy = 0.

By eventually renaming the integration variables, we see that this is equivalent to

b b b
b —a) / Fg00dx — ( / f(x)dx) ( / g(x)dx) >0,

and the inequality is proved. O

576.

577.

578.

579.

580.

581.

Letf : [0, 1] — R be a continuous function. Prove that

1 2 1
d 2dr.
(/0 £0) r) f/of(t) r

Find the maximal value of the ratio

3 3 3
( / f(x)dx) / / Fod,
0 0

as f ranges over all positive continuous functions on [0, 1].

Letf : [0, 00) — [0, 00) be a continuous, strictly increasing function with f(0) = 0.
Prove that

a b
/f@a+/flwaw
0 0

for all positive numbers a and b, with equality if and only if b = f (a). Here f~! denotes
the inverse of the function f.

Prove that for any positive real numbers x, y and any positive integers m, n,

(n— D(m — D" +y"™) + (m+n = DE"Y" +x"y")

m+n—1 m+n—1x).

> mn(x y+y

Let f be a nonincreasing function on the interval [0, 1]. Prove that for any @ € (0, 1),

1 o
oz/ f)dx 5/ fo)dx.
0 0

Letf : [0, 1] — [0, c0) be a differentiable function with decreasing first derivative,
and such that £(0) = 0 and f'(1) > 0. Prove that

/1 dac _f()
o FO2+1 7 ()

Can equality hold?
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582. Prove that any continuously differentiable function f : [a, b] — R for which f(a) = 0
satisfies the inequality

b b
/ f@)*dx < (b— a)z/ f(x)%dx.

583. Let f(x) be a continuous real-valued function defined on the interval [0, 1]. Show that

1 1 1
/0 /0 F) +FO)ldxdy = /0 () ldx.

584. Letf : [a, b] — R be a continuous convex function. Prove that

3b+a

b =
/ Fodx > 2ﬂ " s = b - a)f (“ : b) .

2

3.2.12 Taylor and Fourier Series

Some functions, called analytic, can be expanded around each point of their domain in a
Taylor series

10 =@+ L% LD D

")
!

n

If a = 0, the expansion is also known as the Maclaurin series. Rational functions, trigonomet-
ric functions, the exponential and the natural logarithm are examples of analytic functions. A
particular example of a Taylor series expansion is

Newton’s binomial formula. For all real numbers a and |x| < 1, one has

x+ D= Z (Z)x” = Z a@—1)- "'1'(61 —n+ l)xn’
n=0 .

n=0

Here we make the usual convention that () = 1.
We begin our series of examples with a widely circulated problem.

Example. Compute the integral

1
/ InxIn(1 — x)dx.
0

Solution. Because

IimInxIn(l —x) = lirr} InxIn(l —x) =0,

x—0

this is, in fact, a definite integral.



3.2 Continuity, Derivatives, and Integrals 173

We will expand one of the logarithms in Taylor series. Recall the Taylor series expansion

X n

In(l — x) = —Zx—, forx € (—1, ).
n

n=1

It follows that on the interval (0, 1), the antiderivative of the function f(x) = Inx In(1 — x) is

o0 o0
" 1
/ln(l —x) Inxdx = —/ E x—lnxdx: - E —/x"lnxdx.
n n
n=1 n=1

Integrating by parts, we find this is to be equal to

S 1 xn+1 xn—H
—Z-( Inx — 2) +C.
“~'n n—+1 (n+1)

Taking the definite integral over an interval [¢, 1 — €], then letting ¢ — 0, we obtain

1 00 1
InxIn(l — x)dx = _
AR W

Using a telescopic sum and the well-known formula for the sum of the inverses of squares of
positive integers, we compute this as follows:

oo o0

00 1 1 1 o0 1 1 1
Zn(n+1)2:Z(n(n+1)_(n+1)2):;(;_n+1)_z,§

n=1 n=1 n=2

7'[2 7T2
=1-(=-1)=2-=—,
6 6

which is the answer to the problem. Note that in the above computation all series are absolutely
convergent, so they can be reordered. ([l

Next, a problem that we found in S. Radulescu, M. Radulescu, Theorems and Problems
in Mathematical Analysis (Editura Didactica si Pedagogica, Bucharest, 1982).

Example. Prove that for |x| < 1,

o
(arcsin x)? = Z %2%—1 2%
= ()

Solution. The functiong : (—1, 1) — R, g(x) = (arcsin x)? satisfies the initial value problem
(1 —=x%)y" —xy' =2=0, y(0) =y'(0) =0.
o
Looking for a solution of the form y(x) = Z a;x*, we obtain the recurrence relation
k=0

(k+ 1)k 4+ 2)agsr — k*ay =0, k> 1.



174 3 Real Analysis

It is not hard to see that @; = 0; hence az; = 0 for all k. Also, ap = 0, a; = 1, and
inductively we obtain
ay = 12k 2 k> 1.
k()
The series
o0

1
92k—1,2k
kZ:: (%)
oo

is dominated by the geometric series Zx”‘ , S0 it converges absolutely for |x| < 1. Its term-

k=1
by-term derivatives of first and second order also converge absolutely. We deduce that the

series defines a solution to the differential equation. The uniqueness of the solution for the
initial value problem implies that this function must equal g. U

We conclude the list of examples with the proof of Stirling’s formula.

Stirling’s formula.

n\" o
nl =+2nn (—) -enn, for some 0 < x, < 1.
e

Proof. We begin with the Taylor series expansions

2 x3 x4 xS

by
In(l£x)=¢x——+———+ —+---, f -1, 1).
n(l £ x) X 5 3 ) 5+ , forx e (—1,1)

Combining these two, we obtain the Taylor series expansion

1+x 2.4 2 2 )
=2 zZ zZ e P
—x x—|—3x +5x+ +2m+1x +

In

again for x € (—1, 1). In particular, for x =

e where 7 is a positive integer, we have
n

n—l—l_ 2 2 2

1 =
N T sl 3@t Tsantiy

which can be written as

T P S

n+ —)In =

2 n 32n+ 12 52n+ 1)*

The right-hand side is greater than 1. It can be bounded from above by a geometric series as
follows:

oo

T Z
32n+1)2  5Q2n 4+ 1)* 3 & (2n+ 1)2k
s 1 1
2 1
1

+ 12n(n+1)
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So using Taylor series we have obtained the double inequality

1 n+1 1
1<{n+=])In <l4+—
2 n 12n(n+1)

This transforms by exponentiating and dividing through by e into

1
L (n+1\"
1 < — < elZn(n+1) .
e n

To bring this closer to Stirling’s formula, note that the term in the middle is equal to

e+ D"+ DY) FT xy
e (n) T R

. b .
where x, = e"n"(n!)~'\/n, a number that we want to prove is equal to +/2me” i with
0 < 6, < 1. In order to prove this, we write the above double inequality as
e
X e
1< 2 < _
Xn+1 e 12(n+1)

We deduce that the sequence x, is positive and decreasing, while the sequence e‘ﬁxn is
increasing. Because e~ converges to 1, and because (x,), converges by the Weierstrass
criterion, both x, and e‘ﬁxn must converge to the same limit L. We claim that L = V2.
Before proving this, note that
e‘ﬁxn <L < x,,

so by the intermediate value property there exists 6, € (0, 1) such that L = e_leT"nxn, ie.
X, = e%L.

The only thing left is the computation of the limit L. For this we employ the Wallis formula

lim
n— oo

- =,
n

2.4.6...2n 7*1
1-3-5...2n— 1)

proved in problem 562 from Section 3.2.9 (the one on definite integrals). We rewrite this limit
as

27?1

lim —= =4/

n—oo  (2n)!  /n VT

Substituting n! and (2n)! by the formula found above gives

2n
nl? (E) 6%22"
. e ) 1 lim L LeL"szz” =J7
— 2n T s - ’
! oo«/2nL(2_n) e Vo2
e

Hence L = +/2m, and Stirling’s formula is proved. U
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Try your hand at the following problems.

585. Prove that for any real number x, the series

| 4 8 2
PRI T TR
is convergent and find its limit.
586. Compute the ratio
T R
+ 3! + 9! i 13! +
1 7t % g

R TI TR T
587. Compute

1 11 11 1
NG

For a > 0, prove that

1
—_ +_ —_ _|_
3ﬁ3 5@5 7ﬁ7

588.

o0
_2 2
/ e cosaxdx = /me /4.
—0oQ

589. Find a quadratic polynomial P(x) with real coefficients such that

1
‘P(x) + —4‘ < 0.01, forallx e [—1, 1].
x_

590. Without using a calculator, find the solution to the equation

) .1
x“sin — = 2x — 1997
X

with an error less than 0.01.

591. Compute to three decimal places
1
/ cos A/xdx.
0
592. Prove that for |x| < 1,
o
s 1 2k\ k41
) (k) |

593. (a) Prove that for |x| < 2,

x4 " X (4 arcsin (g) + xv/4 — x2)
—X o
N (4 =) VA =2
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(b) Prove the identity
2k T
() 27

i 1 273436
k=1

In a different perspective, we have the Fourier series expansions. The Fourier series allows
us to write an arbitrary oscillation as a superposition of sinusoidal oscillations. Mathemat-
ically, a function f : R — R that is continuous and periodic of period T admits a Fourier
series expansion

- 2n7w > 2nw
f(&x)=ao+ ;an Cos Tx + ;bn sin Tx.

This expansion is unique, and

1 T
ag = E/o f()dx,

1 /7 2

a, = —/ f(x) cos ﬂxdx,
T Jo T
1 [T 2

by = — / £ sin 2 xdx.
T Jo T

Of course, we can require f to be defined only on an interval of length 7', and then extend
it periodically, but if the values of f at the endpoints of the interval differ, then the convergence
of the series is guaranteed only in the interior of the interval.

Let us discuss a problem from the Soviet Union University Student Contest.

Example. Compute the sum

o0
Z cosn
1 +n2

n=1

Solution. The sum looks like a Fourier series evaluated at 1. For this reason we concentrate

on the general series
o

1
Z COS nX.
n?4+1

n=0

The coefficients nzlﬁ should remind us of the integration formulas

1 .
" cos nxdx = ¢*(cos nx + nsin nx),
n?+1

. n .
e* sinnxdx = e*(sin nx + n cos nx).
n?+1

These give rise to the Fourier series expansion

o0 o0

1 1 1 1
&F=—(E"—1)+ ;(62” — l)z o cos nx + ;(62” — l)z n2’:l|_ 1 sin nx,

2

n=1 n=1
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which holds true for x € (0, 2). Similarly, for e™ and x € (0, 2), we have

et = L(1 — &)+ l(1 —e ) i ! cos nx — l(1 —e ) i " sin nx
2 T p— n?+1 T p— n?+1 '
Let
> 1 > n
C,(x) = n; g oS and S,(x) = Z_:‘ o sin nx.
They satisfy
1 we
5 + Cn(x) +Sn(x) = 2T _ IR
LG — 8,00 = 1
D) n(X n(X _1—6_2”‘
Solving this linear system, we obtain
() 1 me* n we !
LX) = = —1].
21e2m —1 1 —e 27
The sum from the statement is C(1). The answer to the problem is therefore
o) = 1 |: e n el 1:|
- 5 2 _ ] 1 — 27 - :
e e 0

We find even more exciting a fundamental result of ergodic theory that proves that for an
irrational number «, the fractional parts of no, n > 1, are uniformly distributed in [0, 1]. For
example, when o = log,, 2, we obtain as a corollary that on average, the first digit of a power
of 2 happens to be 7 as often as it happens to be 1. Do you know a power of 2 whose first
digit is 7?

Theorem. Let f : R — R be a continuous function of period 1 and let a be an irrational
number. Then

1
lim %(f(a) +/Qa) +-- -+ f(na)) =/ J(x)dx.
n—oo 0
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Proof. If we approximate f by a trigonometric polynomial with error less than &, then both
1

%0‘ () +fQRa) + ...+ f(nw)) and / f(x)dx are evaluated with error less than . Hence it

0
suffices to check the equality term by term for the Fourier series of f. For the constant term
the equality is obvious. To check that it holds for f (x) = cos 2w mx or f(x) = sin 2w mx, with
m > 1, combine these two using Euler’s formula into

2T — cos 2 mx + i sin 27 mx.

We then have

1

2rio (2w inmo
. 4 e (e )
_(eana + eZmZmot co eZmnm(x)

n(eZTrimot _ 1) ’

which converges to 0 as n — co. And for the right-hand side,

1 1 1
/ emexdx — : e2mmx —=0.
0 2mwim 0

Therefore, equality holds term by term for the Fourier series. The theorem is proved. O

If after this example you don’t love Fourier series, you never will. Below are listed more
applications of the Fourier series expansion.

594. Prove that for every 0 < x < 27 the following formula is valid:

7 —x sinx sin2x  sin3x

> T 1 T2 T3
Derive the formula
i sin(2k — x e 0.7
, ,TT).
2k — 1
k=1
595. Use the Fourier series of the function of period 1 defined by f (x) = 5 —x forO0<x <1

to prove Euler’s formula

LA S S

6 22 32 4
596. Prove that

L S S

8 32052072

597. For a positive integer n find the Fourier series of the function

sin® nx

f) =

SN~ x

598. Letf : [0, 7] — R be a C*™ functions such that (—1)"f?"(x) > 0 for any x € [0, 7]
and f®"(0) = f®" () = 0 for any n > 0. Show that f (x) = a sinx for some a > 0.



180 3 Real Analysis

3.3 Multivariable Differential and Integral Calculus

3.3.1 Partial Derivatives and Their Applications

This section and the two that follow it cover differential and integral calculus in two and three
dimensions. Most of the ideas generalize easily to n-dimensions. All functions below are
assumed to be differentiable. For a two-variable function this means that its graph (which is
a surface in R?) admits a tangent plane at each point. For a three-variable function, the graph
is a three-dimensional manifold in a four-dimensional space, and differentiability means that
at each point the graph admits a three-dimensional tangent hyperplane.

The tilting of the tangent (hyper)plane is determined by the slopes in the directions of the
coordinate axes, and these slopes are the partial derivatives of the function. We denote the
partial derivatives of f by o 3’; , ‘Zf They are computed by differentiating with respect to the
one variable while keeping the others fixed. This being said, let us start with an example.
Euler’s theorem. A function z(x, y) is called n-homogeneous if z(tx, ty) = t"z(x,y) for all
X,y € Randt > 0. Assume that z(x,y) is n-homogeneous with n an integer. Then for all
k<n+1,

k k
> (f)xfyk_’#;kj =nn—1)---(n—k+ 1z

j=1

Proof. We first prove the case k = 1. Differentiating the relation z(¢x, ty) = #"z(x,y) with
respect to y, we obtain

0z 202
t_(txa ty) =t _(X,y)’
dy dy

0
which shows that 8_Z is (n — 1)-homogeneous.
y

Replace x by 1, y by )XC, and ¢ by x in the homogeneity condition, to obtain z(x,y) =
x"z (1, f—c) Differentiating this with respect to x yields

9z _1 ( y 202 y
=m0 00 0.2) ()
ox (ry) = etz x ey Iy \x x2

Because % 3 £ is (n — 1)-homogeneous, the last term is just —Xa—z(x, y). Moving it to the right

and multiplying through by x gives the desired

8z+ 0z
dx yay_ e

Now we prove the general case by induction on k, with k = 1 the base case. To simplify the
notation, set (f) = 0ifj < 0 orj > k. The induction hypothesis is
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for some k < n. Apply the operator xaa—x + y§—y to both sides. The left-hand side becomes

> KY (o2 oy 2 g0
X— — | X e
- j ox yay Y dx/ dyk—i

k1,
8 Jay —J xj+lay —J
B +1

+Z(k ‘])(,) e xjay —j Z(])xj B} xJay —j+1

=k k k Jok+1—j 8k+IZ
Z x18y 5 Z j—1 \;)) 0/ 9ykt1-J
j

k 1 ) ) 8k+1
=k-nn—1)---n—k+ 1)z +Z( t )Jyk+1—1.—z.,

ax]yk+1—j

where for the last step we used the induction hypothesis. The base case k = 1 implies that
the right side equals n - n(n — 1) - - - (n — k 4 1)z. Equating the two, we obtain

k 1 ) ) ak+1
Z( * )xfy"“f.—z.:n(n—l)---(n—k+1)(n—k)z,
J

‘ axjykJrl -j
J

completing the induction. This proves the formula. O
599. Prove that if the function u(x, ) satisfies the equation

u 9%u

E = ﬁv (-xa t) ERZ?

then so does the function

1 _2
vix,t) = ﬁe_ﬂu(xt_l, —tH, xeR, t>0.

600. Assume that a nonidentically zero harmonic function u(x, y) is n-homogeneous for
some real number n. Prove that n is necessarily an integer. (The function u is called
2
harmonic if - 2y 7+ 9u o = =0).

601. Let P(x,y) be a harmonic polynomial divisible by x> + y>. Prove that P(x, y) is
identically equal to zero.

602. Let f : R> — RR? be a differentiable function with continuous partial derivatives and
with £(0,0) = 0. Prove that there exist continuous functions g, g» : R> — R such
that

f,y) =xgi1(x,y) +yg(x,y).
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If a differentiable multivariable function has a global extremum, then this extremum is
found either among the critical points or on the boundary of the domain. We recall that a point
is critical if the (hyper)plane tangent to the graph is horizontal, which is equivalent to the fact
that all partial derivatives are equal to zero. Because any continuous function on a compact
domain attains its extrema, the global maximum and minimum exist whenever the domain is
closed and bounded. Let us apply these considerations to the following problems.

Example. Find the triangles inscribed in the unit circle that have maximal perimeter.
Solution. Without loss of generality, we may assume that the vertices of the triangle have the

coordinates (1, 0), (cos s, sins), (cost, sint),0 < s <t < 2mw. We are supposed to maximize
the function

f(s,1) =/ (coss — 1)2 + (sins)2 + /(1 — cos )2 + (sin 7)2
+ /(cost — cos s)2 + (sint — sin 5)2

:\/5(«/1—coss+\/1—Cost+\/1—cos(t—s))

. S Lt . t—3s
=2(sm—+s1n—+s1n )

2 2 2

over the domain 0 < s < ¢ < 2m. To this end, we first find the critical points of f in the
interior of the domain. The equation

) s t—s
—f(s, t) = cos — — cos

=0
as 2 2

=S

iV 2 = ;, 1 2 - W s 1 W == ==,
€s cos 5 = CO8 tzs and since both 5 and d 5+ are between 0 and 7, it follows that 5

The equation

af . 1) t n t—s 0

—(s,1) =cos = +cos — =

ot 2 2
implies additionally that cos s = — cos 7, and hence s = 27” Consequently, t = %”, showing
that the unique critical point is the equilateral triangle, with the corresponding value of the

perimeter 3+/3.

On the boundary of the domain of f two of the three points coincide, and in that case the
maximum is achieved when two sides of the triangle become diameters. The value of this
maximum is 4, which is smaller than 3+/3. We conclude that equilateral triangles maximize
the perimeter. ([l

603. Find the global minimum of the function f : R* — R,

9 7
flx,y) = x4 6x2y2 +y4 — Zx — Zy.



3.3 Multivariable Differential and Integral Calculus 183

604. Find the range of the function
=L 1 x[-L11=>R, f(x,y) =x*—+6x3 +y* + 8xy.

605. Find the equation of the smallest sphere that is tangent to both of the lines

Q) x=t+1,y=2t+4,z=-3t+5,and
) x=4t—12,y=—t+8,z=t+17.

606. Determine the maximum and the minimum of cos A 4+ cos B + cos C when A, B and C
are the angles of a triangle.

607. Prove that fora, 8,y € [O, %),
tano +tan B + tany < 2 B
an o + tan any < —seca sec Bsecy.
V3

608. Given n points in the plane, suppose there is a unique line that minimizes the sum of
the distances from the points to the line. Prove that the line passes through two of the
points.

To find the maximum of a function subject to a constraint one can employ the following
tool.

The Lagrange multipliers theorem. If a function f(x,y,z) subject to the constraint
g(x,y,z) = C has a maximum or a minimum, then this maximum or minimum occurs at
a point (x, y, z) of the set g(x,y, z) = C for which the gradients of f and g are parallel.

So in order to find the maximum of f we have to solve the system of equations Vf = AVg
and g(x,y,z) = C. The number A is called the Lagrange multiplier; to understand its
significance, imagine that f is the profit and g is the constraint on resources. Then A is the
rate of change of the profit as the constraint is relaxed (economists call this the shadow price).

As an application of the method of Lagrange multipliers, we will prove the law of reflection.

Example. For a light ray reflected off a mirror, the angle of incidence equals the angle of
reflection.

Solution. Our argument relies on the fundamental principle of optics, which states that light
travels always on the fastest path. This is known in physics as Fermat’s principle of least
time. We consider a light ray that travels from point A to point B reflecting off a horizontal
mirror represented schematically in Figure 22. Denote by C and D the projections of A and B
onto the mirror, and by P the point where the ray hits the mirror. The angles of incidence and
reflection are, respectively, the angles formed by AP and BP with the normal to the mirror. To
prove that they are equal it suffices to show that ZAPC = ZBPD. Letx = CP and y = DP.
We have to minimize f(x, y) = AP + BP with the constraint g(x,y) = x +y = CD.
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cC x P y D

Figure 22

Using the Pythagorean theorem we find that

fx,y) =+/x2+AC? + /y> + BD?.

The method of Lagrange multipliers yields the system of equations
Y
N Yo R
G

x+y=CD.

From the first two equations, we obtain

X Yy
JETACT 21 BD®

ie., % = %. This shows that the right triangles CAP and DBP are similar, so ZAPC =

/BPD as desired. g
The following example was proposed by C. Niculescu for Mathematics Magazine.
Example. Find the smallest constant k£ > 0 such that

ab bc n ca <kt bio)
= a C
a-+b+2c b+c+2a c+a+2b—

for every a, b, c > 0.

Solution. We will show that the best choice for k is zlL- To prove this fact, note that the

inequality remains unchanged on replacing a, b, c by ta, tb, tc with t > 0. Consequently, the
smallest value of k is the supremum of

ab bc ca

’b’ =
f@b,c) a+b+26+b+c+2a+c+a+2b

over the domain A = {(a, b, c) |a,b,c > 0, a+ b + ¢ = 1}. Note that on A,

ab 4 be 4 ca
+c 14a 140b

f(a,b,c) = 1
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To find the maximum of this function on A, we will apply the method of Lagrange multipliers
with the constraint g(a, b, ¢) = a + b + ¢ = 1. This yields the system of equations

b n c bc .
l+¢ 14+b A+a? 7
c a ca
+ - = A,
l+a 14+c¢ (1+b)?
a b ab
+ - == A,
I1+b 14+a (1+c¢)?
at+b+c=1.

Subtracting the first two equations, we obtain

b—a+ c - a c 1+ b —0
l4+¢c 1+4+b 1+b l+a l+al

which after some algebraic manipulations transforms into

(b—a)[ 1 c(a+b+1)(a+b+2)i|=0.

+¢ ' Uta2(+02

The second factor is positive, so this equality can hold only if @ = b. Similarly, we prove that
b = c. So the only extremum of f when restricted to the planea + b 4+ c = 1 is

7 111y 1
3'3'3) 4
But is this a maximum? Let us examine the behavior of f on the boundary of A (to which it
can be extended). If say ¢ = 0, then f(a, b, 0) = ab. When a + b = 1, the maximum of this

expression is again }‘. We conclude that the maximum on A is indeed 4—1“ which is the desired
constant. O

609. Using the method of Lagrange multipliers prove Snell’s law of optics: If a light ray
passes between two media separated by a planar surface, then

sin 91 Vi

’

sin 92 V2

where 0, and 6, are, respectively, the angle of incidence and the angle of refraction,
and v; and v, are the speeds of light in the first and second media, respectively.

610. Let ABC be a triangle such that

tA2+2th+3tC2 65\
cot — cot — cot—) =(—1) ,
2 2 2 Tr

where s and r denote its semiperimeter and its inradius, respectively. Prove that triangle
ABC is similar to a triangle 7 whose side lengths are all positive integers with no
common divisors and determine these integers.
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611. The angles of a certain triangle are measured in radians and the product of these
measures is equal to 772 /30. Prove that the triangle is acute.

612. Prove that of all quadrilaterals that can be formed from four given sides, the one that
is cyclic has the greatest area.

613. Of all triangles circumscribed about a given circle, find the one with the smallest area.
614. Prove that for non-negative x, y, z such that x + y 4+ z = 1, the following inequality
holds
7
0<xy+yz+xz—2xyz < 7

615. Let a, b, c, d be four nonnegative numbers satisfying a + b + ¢ + d = 1. Prove the
inequality

1 176
b bcd d. dab < — + —abcd.
ac+c+ca+a_27-|—27ac

616. Given two triangles with angles «, 8, y, respectively, o1, B1, y1, prove that

cosa; cosfP;  cosy
+ +

- - - < cota + cot B + coty,
sin o sin B sin y

with equality if and only if & = oy, 8 = B1, ¥ = y1.

3.3.2 Multivariable Integrals
For multivariable integrals, the true story starts with a change of coordinates.

Theorem. Letf : D C R" — R be an integrable function. Let also x(u) = (xi(u,))ﬁjzl

be a change of coordinates, viewed as a map from some domain D* to D, with Jacobian

ox __ x;

0x
/f(X)dx = | fx@) ‘a—‘ du.
D D* u
There are three special situations worth mentioning:

e The change in two dimensions from Cartesian to polar coordinates x = rcosf, y =

r sin 0, with the Jacobian ggx_y) =r.
r,0)

e The change in three dimensions from Cartesian to cylindrical coordinates x = 7 cos 9,

y = rsinf, z = z, with the Jacobian —jg’r‘gg =r.

e The change in three dimensions from Cartesian to spherical coordinates x = p sin ¢
cosf,y = psingsind, z = p cos ¢, with the Jacobian % = p?sin ¢.
As an illustration, we show how multivariable integrals can be used for calculating the
Fresnel integrals. These integrals arise in the theory of diffraction of light.
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Example. Compute the Fresnel integrals

o0 o0
1 :/ cosx’dx and J :/ sin x%dx.
0 0

Solution. For the computation of the first integral, we consider the surface 7 = ¢ cosx? and
determine the volume of the solid that lies below this surface in the octant x, y, z > 0. This
will be done in both Cartesian and polar coordinates. We will also make use of the Gaussian

integral
/00 e Cdt = ﬂ,
0 2

which is the subject of one of the exercises that follow.
In Cartesian coordinates,

/ / e cosx dydx—/ (/ eyzdy) cos x>dx
0

JE

= -— cos dx = Y.
0 2 2

In polar coordinates,

T o[oo .
= / / P sin®6 cos(p? cos® 0) pdpdd
o Jo

LA B 71 tan” 6
:/ / e 0 cos dud =/ 4 -do,
o cos2d J, o cos?f 1+tan*6

where we made the substitution u = u(p) = p?cos’ 6. If in this last integral we substitute

tan @ = ¢, we obtain
1 [>® £
V= dt
2 /0 41

A routine but lengthy computation using Jacobi’s method of partial fraction decomposition

2
shows that the antiderivative of 4—+1 is

1 x2— 1 2 xJ/2+1
arctan nx 2+ + C,

272 x«/— 42 xr4xv2+1
3 S

- Equating the two values for V, we obtain / = *7*. A similar argument
yields J = g. g

whence V =
The solutions to all but last problems below are based on appropriate changes of coordi-
nates.

617. Compute the integral / / xdxdy, where
D

<

:{(x,y)eR2|xZO, | <xy<2, 15-52}.

=
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618. Find the integral of the function

Sy D = G

over the unit ball B = {(x, y,2) | x> +y*> + 2> < 1}.

// dxdy
p (% +y2)?

where D is the domain bounded by the circles

619. Compute the integral

x2+y2—2x=O, x2+y2—4x=0,
24y —=2y=0, x> +y>—6y=0.

620. Compute the integral
1=/ |lxyldxdy,
D

where

) ) y22 2 y2
=1,y eR x>0, (E+ﬁ) 5;—; , a,b>0.

621. Prove the Gaussian integral formula

/ e dx = JT.

o0

1 1 1
/ / / (1 +u? +v* + wH) 2dudvdw.
0 0 0

623. Let D = {(x,y) e R> | 0 < x <y < m}. Prove that

622. Evaluate

w2
// In |sin(x — y)|dxdy = —— In 2.
D 2

Our next topic is the continuous analogue of the change of the order of summation in a
double sum.

Fubini’s theorem. Letf : R? — R be a piecewise continuous function such that

d b
//[f(x,y)|dxdy<oo.
d b b pd
//f(x,y)dxdy=/ /f(x,y)dydx.

Then
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The matter of convergence can be bypassed for positive functions, in which case we have
the following result.

Tonelli’s theorem. Letf : R?> — R be a positive piecewise continuous function. Then

b d d b
/ / £, y)dudy = / / £, y)dydr,

The limits of integration can be finite or infinite. In the particular case that f(x,y) is
constant on the squares of an integer lattice, we recover the discrete version of Fubini’s
theorem, the change of order of summation in a double sum

DD fmmy =" > fm,n).

m=0 n=0 n=0 m=0

A slightly more general situation occurs when f is a step function in one of the variables. In
this case we recover the formula for commuting the sum with the integral:

b X o b
D= / fn.x).
n=0 n=0 "4

Here we are allowed to commute the sum and the integral if either f is a positive function, or if

b © 0
/ Z |f (n, x)| (or equivalently Z / |f (n, x)|) is finite. It is now time for an application.
4 p=0 n=0"4

a

Example. Compute the integral
o0
1
I = / —e Vdx.
0 VX

Solution. We will replace \/% by a Gaussian integral. Note that for x > 0,

o 2 o 2 1 o0 2 T
/ e dt :/ e~ WA g — —/ e du= |—.
—00 —00 \/} —00 X

Returning to the problem, we are integrating the positive function \/L}e—x, which is integrable
over the positive semiaxis because in a neighborhood of zero it is bounded from above by JLE

and in a neighborhood of infinity it is bounded from above by e*/2.

Let us consider the two-variable function f(x, y) = e*’“Qe*x, which is positive and inte-
grable over R x (0, 0o). Using the above considerations and Tonelli’s theorem, we can write

1 :/ —e Ydx = —/ / e e dtdx = —/ / e~ DX dxdy
0 \/)_C ﬁ 0 —00 ﬁ —o0 J0

1/°° 1 " T N
= — —_— = — = I .
VT ) o ?+1 JT

Hence the value of the integral in question is I = /7. U
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More applications are given below.

624. Leta; < ap < --- < a, = m be positive integers. Denote by b; the number of those
a; for which a; > k. Prove that

ay+ay+---+a,=b+by+---+ by

625. Show that for s > O,

o
/ e *x~!sin xdx = arctan(s™).
0

626. Show that for a, b > 0,

627. Let |x| < 1. Prove that
) X
S = —/ L inat = pyar
=1 I’l2 o 0 t )

o0 l 00
628. Let F(x) = ; T e R. Compute /0 F(r)dt.
3.3.3 The Many Versions of Stokes’ Theorem

We advise you that this is probably the most difficult section of the book. Yet Stokes’ theorem
plays such an important role in mathematics that it deserves an extensive treatment. As an
encouragement, we offer you a quote by Marie Curie: “Nothing in life is to be feared. It is
only to be understood.”

In its general form, Stokes’ theorem because is known as

/da):/ w,
M M

where o is a “form”, dw its differential, and M a domain with boundary dM. The one-
dimensional case is the most familiar; it is the Leibniz-Newton formula

b
/ f'®dt =fb) —f(a).

Three versions of this result are of interest to us.

Green’s theorem. Let D be a domain in the plane with boundary C oriented such that D is
— — —
to the left. If the vector field F (x,y) = P(x,y) i + Q(x,y) j is continuously differentiable

on D, then
0 oP
?{de-l— Qdy = // (—Q — —) dxdy.
C D ax 8))
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The Kelvin-Stokes (curl) theorem. Let S be an oriented surface with normal vector i,
bounded by a closed, piecewise smooth curve C that is oriented such that if one travels on

%
C with the upward direction 7, the surface is on the left. If F is a vector field that is
continuously differentiable on S, then

. — -
F -dR = (curl F - n)dS,
c s

where dS is the area element on the surface.

The Gauss-Ostrogradsky (divergence) theorem. LetS be a smooth, orientable surface that
encloses a solid region V in space. If F is a continuously differentiable vector field on V,

then
//7-7015:// divEdV.
S %4

where 1 is the outward unit normal vector to the surface S, dS is the area element on the
surface, and dV is the volume element inside of V.

We recall that for a vector field 77) = (Fy, F», F3), the divergence is

oF oF F
divF =v. F =122 P73
ox ay 0z
while the curl is

- = —
i j k
curl?:Vx?: ii i
ox 0y 0z
F, F, F;

8F3 8F2 - 8F1 aFg —> 8F2 8F1 -
=\—)i+t\—— )+ |\—————) k.
ay 9z 0z ax ax ay
. -2 . —
The quantity F - 1 dS is called the flux of F' across the surface S.

s
Let us illustrate the use of these theorems with some examples. We start with an encour-
aging problem whose solution is based on the Kelvin-Stokes theorem.

Example. Compute
j{ vdx + zdy + xdz,
c

where C is the circle x* + y> + z2 = 1, x + y + z = 1, oriented counterclockwise when seen
from the positive side of the x-axis.

Solution. By the Kelvin-Stokes theorem,

% %
vdx 4 zdy + xdz = curl F - 7 dS,
c s
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17 _17 _1)’

where S is the disk that the circle bounds. It is straightforward that curl? = (—
L L
7 f) Therefore,

while 77, the normal vector to the plane x +y +z = 1, is equal to (%

j{ ydx + zdy + xdz = —A~/3,
c

where A is the area of the disk bounded by C. Observe that C is the circumcircle of the

triangle with vertices (1, 0, 0), (0, 1, 0), and (0, 0, 1). The circumradius of this triangle is ?,

SOA = %7(. The answer to the problem is therefore —Q”Tﬁ. O

Example. Orthogonal to each face of a polyhedron construct an outward vector with length
numerically equal to the area of the face. Prove that the sum of all these vectors is equal to
ZEeTO0.

Solution. We exhibit first an elementary solution based on vector operations. Consider the
. e s e Sl R
particular case of a tetrahedron ABCD. The four vectors are 7BC xBA, 3BAXBD, 5BD x BC,
— =
and %DA x DC. Indeed, the lengths of these vectors are numerically equal to the areas of

the corresponding faces, and the cross-product of two vectors is perpendicular to the plane
determined by the vectors, and it points outward because of the right-hand rule. We have

—> —> =

CXBA+BA><B + BD x C+DAXDC

e T T T = "

= BC x BA+ BA x BD + BD x BC+(BA BD)X(BC BD)

- = = = = —> — —
:BCXBA-i—BAxBD—I—BDxBC—I—BCxBA BAXBD BDXBC—l—O 0.

This proves that the four vectors add up to zero.

In the general case, dissect the polyhedron into tetrahedra cutting the faces into triangles
by diagonals and then joining the centroid of the polyhedron with the vertices. Sum up all
vectors perpendicular to the faces of these tetrahedra, and note that the vectors corresponding
to internal walls cancel out.

The elegant solution uses integrals. Let S be the polyhedron and assume that its interior
V is filled with gas at a (not necessarily constant) pressure p. The force that the gas exerts on

S is / / p T A, where 7 is the outward normal vector to the surface of the polyhedron and

s
dA is the area element. The divergence theorem implies that

//SpﬁdAz///VVpdV.

Here Vp denotes the gradient of p. If the pressure p is constant, then the right-hand side is
equal to zero. This is the case with our polyhedron, where p = 1. The double integral is
exactly the sum of the vectors under discussion, these vectors being the forces exerted by
pressure on the faces. g

As acorollary, we obtain the well-known fact that a container filled with gas under pressure
is at equilibrium; a balloon will never move as a result of internal pressure.

We conclude our series of examples with an application of Green’s theorem: the proof
given by D. Pompeiu to Cauchy’s formula for holomorphic functions. First, let us introduce
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some notation for functions of a complex variable f(z) = f(x + iy) = u(x, y) + iv(x, y). If u
and v are continuously differentiable, define

of L[aF ] L[(ou v\ . (du v
FE [ax“a_y]_z[(ax ay)+’(ay+ax)]

f

The function f is called holomorphic if i 0. Examples are polynomials in z and any
z

absolutely convergent power series in z. Also, let dz = dx + idy.

Cauchy’s theorem. Let I be an oriented curve that bounds a region A on its left, and let
ae A Iff(z) =f(x+iy) = ulx,y) + iv(x, y) is a holomorphic function on A such that u
and v are continuous on A U I and continuously differentiable on A, then

1
f()—2 %f(z)dz
i r<—a

Proof. Pompeiu’s proof is based on Green’s formula, applied on the domain A, obtained from
A by removing a disk of radius ¢ around a as described in Figure 23 to P = F and Q = iF
where F is a holomorphic function to be specified later. Note that the boundary of the domain
consists of two curves, I' and I',.

Figure 23

Green’s formula reads

dez—f Fdz :y{Fdx—i-ide—j{ Fdx + iFdy
r S Ie
// (— + l—) dxdy = 21/ —dxdy = 0.
Ag

7{F(Z)dz :f F(2)dz.
r e

f@ (b, y) +ivix,y)(x —iy+a —if)
z—a @ +a)?++p)?
where a = o + i8. It is routine to check that F' is holomorphic. We thus have

f@ de — f(z)d

rz—a r,Z—a

Therefore,

We apply this to

F(z) =

’
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The change of variable z = a + ga™ on the right-hand side yields
f@ / f(a + Sa”)

rgz—a

eelldr = / f(a+ ee")dr.

When ¢ — 0 this tends to 27 if (a), and we obtain
/(@)

r, < —

d = 2mif (a).

Hence the desired formula. O

629. Assume that a curve (x(¢), y(¢)) runs counterclockwise around a region D. Prove that
the area of D is given by the formula

_ 1 ’ ’
A=— (xy" — yx')dt.
2 Jop

630. There is given an n-gon in the plane, whose vertices have integer coordinates and whose
sides, all of odd lengths, are parallel to the coordinate axes.

(a) Show that n is a multiple of 4.
(b) Show that if n = 100, then the area of this polygon is odd.

631. Compute the flux of the vector field
Fry2) =xe -7 +y@—e") ] +2e -9k
across the upper hemisphere of the unit sphere.
632. Compute
fcyzdx + Z2dy + x*dz,

where C is the Viviani curve, defined as the intersection of the sphere x> 4 y? + 7> = a®

with the cylinder x> + y* = ax.

633. Leto(x,y, z) and ¥ (x, y, z) be twice continuously differentiable functions in the region

{0, y,2) | 3 < /X2 +)2+ 272 < 2}. Prove that
/ (Vo x V) - 1 dS =0,
S

where S is the unit sphere centered at the origm s the normal unit vector to this
sphere, and V¢ denotes the gradient ‘;f i —I— ] + - ""’ k.

634. Let f, g : R® — R be twice continuously differentiable functions that are constant
along the lines that pass through the origin. Prove that on the unit ball B = {(x, y, z) |

X4y 2 <1y,
// fVigdVv =/// gV3fdv.
B

Here V? = 3;2 + e + a = is the Laplacian.
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635. Prove Gauss’ law, which states that the total flux of the gravitational field through a
closed surface equals —47 G times the mass enclosed by the surface, where G is the
constant of gravitation. The mathematical formulation of the law is

//? SR dS = —4xMG.
S

G(x,y) - * 0
'x? = ) b .
g X2 44y x2 + 4y?

636. Let

—
Prove or disprove that there is a vector field F : R? — R3,

—
Fx,y,2) = (M(x,y,2),N(x,y,2), P(x,,2)),
with the following properties:

(i) M, N, P have continuous partial derivatives for all (x, y, z) # (0, 0, 0);
- =
(i) curl F = 0, forall (x,y,z) # (0,0, 0);
(i) F(x,y,0) = G (x,y).

637. Let F :R? — R2, F (x,y) = (Fi(x, y), Fa(x, y)) be a vector field, and let G : R? —
R be a smooth function whose first two variables are x and y, and the third is ¢, the
time. Assume that for any rectangular surface D bounded by the curve C,

d
—// G(x,y, t)dxdy = —f F -d7€>.

G n oF, n oF,
ot 0x ay

Prove that
=0.

638. For two disjoint oriented curves C; and C; in three-dimensional space, parametrized
by v 1(s) and _v)z(t), define the linking number

K(Cy. Cy) 17{7£ V=7, dv, d7v, i
, = — . X S.
DY T an Jo Je, IV = Valr \ds T dr

Prove that if the oriented curves C; and —C} bound an oriented surface S such that S
is to the left of each curve, and if the curve C; is disjoint from S, then 1k(Cy, ;) =
1k(C;, Cy).

3.4 Equations with Functions as Unknowns

3.4.1 Functional Equations

We will now look at equations whose unknowns are functions. Here is a standard example that
we found in B.J. Venkatachala, Functional Equations: A Problem Solving Approach (Prism
Books PVT Ltd., 2002).
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Example. Find all functions f : R — R satisfying the functional equation

f(x =) =) = 2xf () + )

Solution. For y = 0, we obtain

fOP) = f(x)* = 2xf(0),

and for x = 0, we obtain
O =10+
Setting y = 0 in the second equation, we find that f(0) = 0 or £(0) = 1. On the other hand,

combining the two equalities, we obtain

[0)? = 2xf(0) = £(0)* + 2%,

that is,
f0)? = (x +£(0))*.

Substituting this in the original equation yields

2 N2 2 02 — (x — v)2 — £(0)2 2
P i (G i e A (O e i (R

Thus the functional equation has two solutions: f(x) = x and f(x) = x + 1. O

But we like more the nonstandard functional equations. Here is one, which is a simplified
version of a short-listed problem from the 42nd International Mathematical Olympiad. We
liked about it the fact that the auxiliary function 4 from the solution mimics, in a discrete
situation, harmonicity — a fundamental concept in mathematics. The solution applies the
maximum modulus principle, which states thatif /2 is a harmonic function then the maximum of
|h| is attained on the boundary of the domain of definition. Harmonic functions, characterized
by the fact that the value at one point is the average of the values in a neighborhood of the
point, play a fundamental role in geometry. For example, they encode geometric properties
of their domain, a fact made explicit in Hodge theory.

Example. Find all functions f : {0, 1,2,...,} x {0, 1,2, ...} — R satisfying

1 .
|3+ lLg—D+fp—1,q+ 1)+ 1if pg#0,
fp.q) = {8 if pg =0,

Solution. We see that f(1, 1) = 1. The defining relation gives f(1,2) = 1 4+ f(2, 1)/2 and
f2,1) =1+f(,2)/2, and hence f(2,1) = f(1,2) = 2. Thenf(3,1) = 1 +£(2,2)/2,
f2,2)=1+f3, 1D/2+f(1,3)/2,f(1,3) =1+f(2,2)/2. Sof(2,2) =4,f3,1) =3,
f(1,3) = 3. Repeating such computations, we eventually guess the explicit formulaf(p, g) =
Pq, p,q > 0. And indeed, this function satisfies the condition from the statement. Are there
other solutions to the problem? The answer is no, but we need to prove it.
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Assume that f] and f, are both solutions to the functional equation. Let &z = fj — f>. Then

h satisfies
hp.q) — | 2P +1.a=D+h(p =1+ 1) if pg 0,
R if pg = 0.

Fix a line p 4+ ¢ = n, and on this line pick (pg, qo) the point that maximizes the value of A.
Because

1
h(po, qo) = E(h(l?o +1,90— 1) +h(po—1,g0+ 1)),

it follows that h(pg + 1, g0 — 1) = h(po — 1, g0 + 1) = h(po, qo). Shifting the point, we
eventually conclude that £ is constant on the line p+¢ = n, and its value is equal to i(n, 0) = 0.
Since n was arbitrary, we see that 4 is identically equal to 0. Therefore, f; = f, the problem
has a unique solution, and this solution is f (p, ¢) = pq, p, q > 0. ]

And now an example of a problem about a multivariable function, from the same short
list, submitted by B. Enescu (Romania).

Example. Let x1, x,, ..., x, be arbitrary real numbers. Prove the inequality
X1 X2 Xn
+ + 4+ < 4/n.
L+x7 1+ +x3 1+x}+--+x2 Vn

Solution. We introduce the function

Il )= — 4 o
n(X1, X2, ..., X,) = .
X 1+27 143423 [ r—
If we set r = m’ then
X1 X2 x
f;'l('xla-xz,-..,xn) et —+ n

r2 r2+x§ r2+x%+...+x3

X1 1(
=—2+— _
r r\1+

x I
r + o+ r .
(2)° T+ (2) +- 4 (’%)2)

We obtain the functional equation

X 1 Xy X3 Xy
fn(XI,XZ,...,Xn):l 2+ f;_1(7,7,...,7).
T J1+x3
Writing M,, = supf,(x1, x2, .. ., X,), we observe that the functional equation gives rise to the
recurrence relation
X M,_;

M, = sup +
X1 1+x% /1+x12

We will now prove by induction that M,, < /n. For n = 1, this follows from 1fxf < % < 1.

Assume that the property is true for k and let us prove it for k 4+ 1. From the induction
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hypothesis, we obtain

k
M < sup all vk

+
X1 1+X% /1+x%

We need to show that the right-hand side of the inequality is less than or equal to +/k + 1.

Rewrite the desired inequality as

X
1+ x2

+VEk < VEk+ 2+ 1422

Increase the left-hand side to x 4+ v/k; then square both sides. We obtain

k4 2xVk <k +kd + 1+ 22,

which reduces to 0 < (xﬁ — 1)?, and this is obvious. The induction is now complete.

639. Find all functions f : R — R satistying
fO? =) = @ =NE@ +£ ).

640. Find all complex-valued functions of a complex variable satisfying
f@Q+z7f(1—z2)=1+z, forallz.

641. Find all functions f : R\ {1} — R, continuous at 0, that satisfy

Jfx) :f(lex)’ forx e R\ {1}.

0

642. Find all increasing bijections f : (0, co) — (0, co) satisfying the functional equation

JU@) =3f(x)+2x=0

for which there exists xo > 0 such that f(xp) = 2xo.

643. Find all functions f : R — R that satisfy the inequality
S+ +fO+2) +fz+x) = 3f(x+2y+32)

forall x,y,z € R.

644. Does there exist a functionf : R — R such that f(f(x)) = x> —2 for all real numbers x?

645. Find all functions f : R — R satistying

Jx+y) =fxf (y) —csinxsiny,

for all real numbers x and y, where c is a constant greater than 1.
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646. Let f and g be real-valued functions defined for all real numbers and satisfying the
functional equation

S+y) +fx—y) =2f(x)g(y)

for all x and y. Prove that if f (x) is not identically zero, and if |f(x)| < 1 for all x, then
lg(y)| < 1 forally.

647. Find all continuous functions f : R — R that satisfy the relation
3f(2x + 1) = f(x) + 5x, for all x.

648. Find all functions f : (0, 00) — (0, 00) subject to the conditions
Q) F(F(f(x)) + 2x = f(3x), for all x > 0;
(i) lim (f(x) — x) = 0.

649. Suppose that f, g : R — R satisfy the functional equation

gx —y) =g@)g) +f(f ()

for x and y in R, and that f(#) = 1 and g(¢) = O for some ¢ = 0. Prove that f and g
satisfy

glx+y) =gx)g(y) —f)f (»)
and

fxxy) =fxglh) £ g)f ()

for all real x and y.

A famous functional equation, which carries the name of Cauchy, is

fa+y) =fx)+f0).

We are looking for solutions f : R — R.
It is straightforward that ' (2x) = 2f(x), and inductively f (nx) = nf(x). Setting y = nx,

we obtain f (%y) = 1f(y). In general, if m, n are positive integers, then

)= (}) =20

On the other hand, f(0) = f(0) + f(0) implies f(0) = 0, and 0 = f(0) = f(x) + f(—x)
implies f(—x) = —f(x). We conclude that for any rational number x, f(x) = f(1)x.
If f is continuous, then the linear functions of the form

f(x) =cx,

where ¢ € R, are the only solutions. That is because a solution is linear when restricted to
rational numbers and therefore must be linear on the whole real axis. Even if we assume the
solution f to be continuous at just one point, it still is linear. Indeed, because f(x + y) is the
translate of f(x) by f(y), f must be continuous everywhere.
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But if we do not assume continuity, the situation is more complicated. In set theory there
is an independent statement called the Axiom of choice, which postulates that given a family
of nonempty sets (A;);cs, there is a function f : I — U;A; with f (i) € A;. In other words, it is
possible to select one element from each set.

Real numbers form an infinite-dimensional vector space over the rational numbers (vectors
are real numbers, scalars are rational numbers). A corollary of the axiom of choice, Zorn’s
lemma, implies the existence of a basis for this vector space. If (e;);¢; this basis, then any real
number x can be expressed uniquely as

X =rie +rep + -+ e,

where 11, 13, . .., I, are nonzero rational numbers. To obtain a solution to Cauchy’s equation,
make any choice for f(e;), i € I, and then extend f to all reals in such a way that it is linear
over the rationals. Most of these functions are discontinuous. As an example, for a basis that
contains the real number 1, set f(1) = 1 and f(e;) = O for all other basis elements. Then this
function is not continuous.

The problems below are all about Cauchy’s equation for continuous functions.

650. Letf : R — R be a continuous nonzero function, satisfying the equation

fx+y) =f)f (), forallx,y € R.
Prove that there exists ¢ > 0 such that f(x) = ¢* for all x € R.
651. Find all continuous functions f : R — R satisfying
Fa+y) =) +f0) +f(0)f (), forallx,y € R.

652. Determine all continuous functions f : R — R satisfying

J)+fO)
L+ ff ()

653. Find all continuous functions f : R — R satisfying the condition

Joy) =xf () +yf(x), forallx,y e R.

fx+y) = forall x,y € R.

654. Find the continuous functions ¢, f, g, h : R — R satisfying

¢x+y+z2)=fx)+g0 +h),

for all real numbers x, y, z.

655. Given a positive integer n > 2, find the continuous functions f : R — R, property that
for any real numbers x1, xp, . . ., Xy,

D) =D i+ x) A D f O+ x) A

i<j i<j<k

+(=D" o x4+ - 4x,) = 0.
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We conclude our discussion about functional equations with another instance in which
continuity is important. The intermediate value property implies that a one-to-one continuous
function is automatically monotonic. So if we can read from a functional equation that
a function, which is assumed to be continuous, is also one-to-one, then we know that the
function is monotonic, a much more powerful property to be used in the solution.

Example. Find all continuous functions f : R — R satisfying (f of of)(x) = x forall x € R.

Solution. For any x € R, the image of f (f (x)) through f is x. This shows that f is onto. Also,
if f(x1) = f(xp) then x; = f(f(f(x1))) =f(f(f(x2))) = x», which shows that f is one-to-one.
Therefore, f is a continuous bijection, so it must be strictly monotonic. If f is decreasing,
then f o f is increasing and f o f o f is decreasing, contradicting the hypothesis. Therefore, f
is strictly increasing.

Fix x and let us compare f(x) and x. There are three possibilities. First, we could
have f(x) > x. Monotonicity implies f(f(x)) > f(x) > x, and applying f again, we have
x=fffx)) > f(fx)) > f(x) > x, impossible. Or we could have f(x) < x, which then
implies f(f(x)) < f(x) < x, and x = f(f(f(x))) < f(f(x)) < f(x) < x, which again is
impossible. Therefore, f(x) = x. Since x was arbitrary, this shows that the unique solution
to the functional equation is the identity function f(x) = x. g

656. Do there exist continuous functions f, g : R — Rsuchthatf(g(x)) = x> and g(f (x)) =
x> for all x € R?

657. Find all continuous functions f : R — R with the property that

FFx) —2f(x) +x =0, forallx,y € R.

3.4.2 Ordinary Differential Equations of the First Order

Of far greater importance than functional equations are the differential equations, because
practically every evolutionary phenomenon of the real world can be modeled by a differential
equation. This section is about first-order ordinary differential equations, namely equations
expressed in terms of an unknown one-variable function, its derivative, and the variable. In
their most general form, they are written as F(x,y,y’) = 0, but we will be concerned with
only two classes of such equations: separable and exact.

An equation is called separable if it is of the form % +f(x)g(y). In this case we formally

separate the variables and write
d
/ o / F(0)dx.
gy

After integration, we obtain the solution in implicit form, as an algebraic relation between x
and y. Here is a problem of I.V. Maftei from the 1971 Romanian Mathematical Olympiad
that applies this method.

Example. Find all continuous functions f : R — R satisfying the equation

~ ) 10
f(X)—A(l+x)[1+ 0 1+t2dt:|’
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for all x € R. Here A is a fixed real number.

Solution. Because f is continuous, the right-hand side of the functional equation is a differ-
entiable function; hence f itself is differentiable. Rewrite the equation as

o 10
—1+x2_/\[1+/0 _thdt],

and then differentiate with respect to x to obtain

F O +x%) —f0)2x Pt
(1 +x2)? IS

We can separate the variables to obtain

e 2x
o ttire

which, by integration, yields
Inf(x) = Ax + In(1 + x%) + c.

Hence f(x) = a(l + x*)e** for some constant a. Substituting in the original relation, we
obtain @ = A. Therefore, the equation from the statement has the unique solution

Fx) = A(1 4+ x?)e™. =

A first-order differential equation can be written formally as

p(x, y)dx + q(x, y)dy = 0.

Physicists think of the expression on the left as the potential of a two-dimensional force field,
with p and ¢ the x and y components of the potential. Mathematicians call this expression a
1-form. The force field is called conservative if no energy is wasted in moving an object along
any closed path. In this case the differential equation is called exact. For functions defined
on the entire 2-dimensional plane, as a consequence of Green’s theorem one can deduce that
the field is conservative precisely when the exterior derivative

a d
dx  dy

is equal to zero. This means that there exists a scalar function u(x, y) whose differential is the
field, i.e.,

ou ou

—— =p,y) and — =gq(x,y).

0x ay
If the domain has “holes”, then there is an obstruction in de Rham cohomology for some equa-
tions to admit a potential. For a conservative field, the scalar potential solves the differential
equation, giving the solution in implicit form as u(x, y) = C, with C a constant. Let us apply
this method to a problem by the first author of the book.
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Example. Does there exist a differentiable function y defined on the entire real axis that
satisfies the differential equation

Qx+y—e)dx+ (x+2y — e )dy = 07
Solution. Let us assume that such a y does exist. Because
ad 2 d 2
—(+2y—eV)=—Qx+y—e),
dax ay

and because 2x 4+ y — e and x + 2y — ¢’ are defined everywhere, the equation can be
integrated. The potential function is

x y
u(x,y) = x> +xy+y*> — / e ds — / e dt.
0 0

The differential equation translates into the algebraic equation

1\* 3 r o S
X+ =y +—y2=/e_sds+/ e "dt+C
2 4 0 0

for some real constant C. The right-hand side is bounded from above by /87 + C (note the
Gaussian integrals). This means that both squares on the left must be bounded. In particular,
y is bounded, but then x + %y is unbounded, a contradiction. Hence the answer to the question
is no; a solution can exist only on a bounded interval. O

Sometimes the field is not conservative but becomes conservative after the differential
equation is multiplied by a function. This function is called an integrating factor. There is
a standard method for finding integrating factors, which can be found in any textbook. In
particular, any first-order linear equation

Y 4+ px)y = qx)

can be integrated after it is multiplied by the integrating factor exp ( / p(x)dx).

It is now time for problems. In the problems below, we denote by f2 the product f - f (not
the composition of f with itself).

658. A not uncommon mistake is to believe that the product rule for derivatives says that
Ffo)=f'g. Iffx) = ¢*, determine whether there exists an open interval (a, b) and
a nonzero function g defined on (a, b) such that this wrong product rule is true for f
and g on (a, b).

659. Find the functions f, g : R — R with continuous derivatives satisfying
f2+g2:f/2+g/2’ f+g:g/_f/,

and such that the equation f = g has two real solutions, the smaller of them being zero.
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660. Let f and g be differentiable functions on the real line satisfying the equation
2+ + (fo)g = 0.
Prove that f is bounded.
661. LetA, B, C, D, m, nbereal numbers withAD—BC # 0. Solve the differential equation

y(B + Cx"y")dx + x(A + Dx"'y")dy = 0.

662. Find all continuously differentiable functions y : (0, oc0) — (0, co) that are solutions
to the initial value problem

yy/ =x, y(l)=1.

663. Find all differentiable functions f : (0, co) — (0, co) for which there is a positive real

number a such that
a X

(3 =
for all x > O.

664. Prove that if the function f(x, y) is continuously differentiable on the whole xy-plane
and satisfies the equation

of | of
b 2 —o,
dax +f8y

then f (x, y) is constant.

3.4.3 Ordinary Differential Equations of Higher Order

The field of higher-order ordinary differential equations is vast, and we assume that you are
familiar at least with some of its techniques. In particular, we assume you are familiar with
the theory of linear equations with fixed coefficients, from which we recall some basic facts.
A linear equation with fixed coefficients has the general form

dny 2y dy
ap— + -+ a—— +a— +ay =f(x).
n dxn 2 dx2 1 dx 0 f ( )
If f is zero, the equation is called homogeneous. Otherwise, the equation is called inhomo-
geneous. In this case the general solution is found using the characteristic equation

a\" + ap AN 4 ay = 0.

If A1, X2, ..., A, are the distinct roots, real or complex, of this equation, then the general
solution to the homogeneous differential equation is of the form

() = L) + Py)e™ + -+ Pr(x)e™,

where P;(x) is a polynomial of degree one less than the multiplicity of A;, i = 1,2,...,r.
If the exponents are complex, the exponentials are changed into (damped) oscillations using
Euler’s formula (e = cos x + i sinx).
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The general solution depends on n parameters (the coefficients of the polynomials), so the
space of solutions is an n-dimensional vector space V. For an inhomogeneous equation, the
space of solutions is the affine space yo + V obtained by adding a particular solution. This
particular solution is found usually by the method of the variation of the coefficients.

We start with an example that exploits an idea that appeared once on a Putnam exam.

Example. Solve the system of differential equations
x// _ y/ +x= 0,
y// + x/ + y — O
in real-valued functions x(¢) and y(z).

Solution. Multiply the second equation by i then add it to the first to obtain
4+ ") +iCx +iy) + (x +iy) = 0.

With the substitution z = x4-iy this becomes the second-order homogeneous linear differential
equation z” + iz’ + z = 0. The characteristic equation is A> + iA + 1 = 0, with solutions

—1+45.
2

i. We find the general solution to the equation

z(t) = (a + ib) exp(_l+ﬁit) + (c +id) exp (_l%ﬁit) ,

1,2 =

for arbitrary real numbers a, b, ¢, d. Since x and y are, respectively, the real and complex
parts of the solution, they have the general form

“l+V5 L 1S —1-+/5 —1-+/5

x(t) = acos b sin t + ccos Tr —dsin Tt,
-1 5 -1 5 —1—=4/5 —1—-4/5
y(t) = asin it + bcos it + csin —ft + d cos —\/_t.
2 2 2 2
The problem is solved. U

Our second example is an equation published by M. Ghermdnescu in the Mathematics
Gazette, Bucharest. Its solution combines several useful techniques.

Example. Solve the differential equation
2(_)/)3 - yy/y// . yzy/// =0.

Solution. In a situation like this, where the variable x does not appear explicitly, one can
reduce the order of the equation by taking y as the variable and p = y’ as the function. The
higher-order derivatives of y” are
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V' = iy’ = ip@ =pp
dx dy" dx '
d d dy
y'=—y"=\—pp = (@) +pr")p.
dx dy

We end up with a second-order differential equation
2p° —yp’p = y’pp" = p()* =0.

A family of solutions is p = 0, that is, y’ = 0. This family consists of the constant functions
y = C. Dividing the equation by —p, we obtain

yp" +y* () + ypp’ — 2p* = 0.

The distribution of the powers of y reminds us of the Euler-Cauchy equation, while the last
terms suggests the substitution u = p>. And indeed, we obtain the Euler-Cauchy equation

Vu" 4+ yu' —4u =0,
with general solution u = C,y* 4+ C,y~2. Remember that u = p*> = (y')?, from which we

obtain the first-order differential equation

y =+£JCiy? + Cay

— Ciy*+ G
y

This we solve by separation of variables

ydy

VOt + G ’

dx =+

which after integration gives

ydy 1 dz
x=% | ——=4+- | —.
VOt + G 2) Jai2+ G
This last integral is standard; it is equal to T In ‘y +Vy:+ Cz/Cl) if C; > 0 and to
3 \W arcsin ('Cc‘zb ) if C; < 0 and C; > 0. We obtain two other families of solutions given
in implicit form by

1 e IC y
x== In |y + +—+C and x =+ arcsin + Cs,
2JC, y y? C 3 2J/—C, 3
that is,
x=Aln|y++y*+B|+C and x = EarcsinFy+ G. O

Here are more problems.
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665. Solve the differential equation
xy" +2y +xy=0.

666. Find all twice-differentiable functions defined on the entire real axis that satisfy
f')f"(x) = 0 for all x.

667. Find all continuous functions f : R — R that satisfy
fx) —i—/ (x—=0f(@®dt =1, forall x € R.
0

668. Solve the differential equation
(x — Dy + (4x — 5)y + (4x — 6)y = xe =,
669. Let n be a positive integer. Show that the equation
A=x>)y" —xy +n*y=0
admits as a particular solution an nth-degree polynomial.
670. Find the one-to-one, twice-differentiable solutions y to the equation

d’y  d*x

FERP

671. Show that all solutions to the differential equation y” 4+ €'y = 0 remain bounded as
X — Q.

3.4.4 Problems Solved with Techniques of Differential Equations

In this section we illustrate how tricks of differential equations can offer inspiration when one
is tackling problems from outside this field.

Example. Let f : [0,00) — R be a twice-differentiable function satisfying f(0) > 0 and
f'(x) > f(x) for all x > 0. Prove that f(x) > 0 for all x > 0.

Solution. To solve this problem we use an integrating factor. The inequality

[ —fx) >0

can be “integrated” after multiplying it by e~*. It simply says that the derivative of the function
e *f (x) is strictly positive on (0, co). This function is therefore strictly increasing on [0, c0).
So for x > 0 we have e*f(x) > e ’f(0) = f(0) > 0, which then implies f(x) > 0, as
desired. U
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Example. Compute the integral

2

X ep X
X) = e "% cos —dt.
y(x) /O e

Solution. We will show that the function y(x) satisfies the ordinary differential equation
i’ +y = 0. To this end, we compute

00 . x2 —x 00 ) u2
y(x) = / e~/ sin o5y dt = —/ e 12 sin ~du
0 2t t 0 2
and
e8] ) u2 —x o) ] x2
Y'(x) = —/ eI Gin =y = / e sin ~—dr.
0 2 u? 0 212

Iterating, we eventually obtain
o) 2
N —2/2 X
X) = — e cos —dt = —y(x),
Y (@) /0 - y@)

which proves that indeed y satisfies the differential equation y"* +y = 0. The general solution
to this differential equation is

o x X _x X X
(x) =ev2 (C cos — + C sin—)—l—e ﬁ(C cos — + C sin—).
y 1 /2 2 /2 3 /2 4 /2

To find which particular solution is the integral in question, we look at boundary values. To
compute these boundary values we refer to Section 3.3.2, the one on multivariable integral

o
calculus. We recognize that y(0) = / ¢~""12dt is a Gaussian integral equal to \/i .V (0) =
oo M2 0 [e’e] u2
— / sin Edu is a Fresnel integral equal to —‘/T;, vy’ (0) = 0, while y”(0) = / cos Edu
0 0

is yet another Fresnel integral equal to */7; We find that C; = C;, = C4 =0 and C3 = \/§ .
The value of the integral from the statement is therefore

b S X O
X) = ./ —e v2CcoS——.
y(x) ,/2 NG

We leave the following examples to the reader.

672. Show that both functions

W= [ S ww= [
X) = an X) =
Y1 y 142 Y2 . I+x

1
satisfy the differential equation y” + y = —. Prove that these two functions are equal.
X
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Let f be a real-valued continuous nonnegative function on [0, 1] such that

f@OP<1+2 / f(s)ds, forallt e [0, 1].
0

Show that f () < 1 4 ¢ for every ¢ € [0, 1].

Let f : [0, 1] — R be a continuous function with f (0) = f(1) = 0. Assume that f”
exists on (0, 1) and f”(x) + 2f'(x) +f(x) > 0 for all x € (0, 1). Prove that f(x) <0
for all x € [0, 1].

Does there exist a continuously differentiable function f : R — R satisfying f(x) > 0
and f'(x) = f(f (x)) for every x € R?

Determine all nth-degree polynomials P(x), with real zeros, for which the equality

n
1 n?

Z Px) —x; - xP’(x)

i=1

holds for all nonzero real numbers x for which P’(x) # 0, where x;, i = 1,2,...,n,
are the zeros of P(x).

Let C be the class of all real-valued continuously differentiable functions f on the
interval [0, 1] with £(0) = 0 and f(1) = 1. Determine

1
u= inf /0 /() — F(0)ldx.

Letf : R — R be an infinitely differentiable function with the property that there are
distinct positive real numbers a, b, ¢ such that the function

g(x) = f(ax) + f (bx) + f(cx)

is a polynomial. Show that f is a polynomial function as well.
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Geometry and Trigonometry

Geometry is the oldest of the mathematical sciences. Its age-old theorems and the sharp logic
of its proofs make you think of the words of Andrew Wiles, “Mathematics seems to have a
permanence that nothing else has”.

This chapter is bound to take you away from the geometry of the ancients, with figures
and pictorial intuition, and bring you to the science of numbers and equations that geometry
has become today. In a dense exposition we have packed vectors and their applications,
analytical geometry in the plane and in space, some applications of integral calculus to
geometry, followed by a list of problems with Euclidean flavor but based on algebraic and
combinatorial ideas. Special attention is given to conics, cubics, and quadrics, for their study
already contains the germs of differential and algebraic geometry.

Four subsections are devoted to geometry’s little sister, trigonometry. We insist on trigono-
metric identities, repeated in subsequent sections from different perspectives: Euler’s formula,
trigonometric substitutions, and telescopic summation and multiplication.

Since geometry lies at the foundation of mathematics, its presence could already be felt
in the sections on linear algebra and multivariable calculus. It will resurface again in the
chapter on combinatorics.

4.1 Geometry

4.1.1 Vectors

This section is about vectors in two and three dimensions. Vectors are oriented segments
identified under translation.

There are four operations defined for vectors: scalar multiplication « v , addition V4w,
dot product v - W, and cross-product v x W , the last being defined only in three dimensions.
Scalar multiplication dilates or contracts a vector by a scalar. The sum of two vectors is
computed with the parallelogram rule; it is the resultant of the vectors acting as forces on an
object. The dot product of two vectors is a number equal to the product of the magnitudes
of the vectors and the cosine of the angle between them. A dot product equal to zero tells us

© Springer International Publishing AG 2017 211
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that the vectors are orthogonal. The cross-product of two vectors is a vector orthogonal to
the two vectors and of magnitude equal to the area of the parallelogram they generate. The
orientation of the cross-product is determined by the right-hand rule: place your hand so that
you can bend your palm from the first vector to the second, and your thumb will point in
the direction of the cross-product. A cross-product equal to zero tells us that the vectors are
parallel (although they might point in opposite directions).

The dot and cross-products are distributive with respect to sum; the dot product is com-
mutative, while the cross-product is not. For the three-dimensional vectors _u>, _v), TV), the
number % - (V x W) is the volume taken with sign of the parallelepiped constructed with
the vectors as edges. The sign is positive if the three vectors determine a frame that is oriented
the same way as the orthogonal frame of the three coordinate axes, and negative otherwise.
Equivalently, 7 - (V x W) is the determinant with the coordinates of the three vectors as
rOwS.

A useful computational tool is the formula for the triple cross product:

Zx (b x3)=(ad -2)b —(d-b)7,

7)) =

—
also known as the BAC-CAB formula (because it is also written as @ x (b x
-7 = = - = 7
b(d-¢)— ¢(d - b)). R
The quickest way to prove it is to check it for @, b, ¢ chosen among the three unit
- — —
vectors parallel to the coordinate axes i, j , and k , and then use the distributivity of the

cross-product with respect to addition. Here is an easy application of this identity.

— —
Example. Prove that for any vectors @, b, ¢, d ,

(B xb)x(Cxd) =@ - (bxd)e—(@-(b x)Hd.

Solution. We have

(G x B)x(Cxd)=(d - (G xBNE —(CT- (@ xDbnd
—(@-bxdne—(a-(bxnd
In the computation we used the equality 7 - (V x W) = W - (& x V), which is straight-
forward if we write these as determinants. ]

Let us briefly point out a fundamental algebraic property of the cross-product. Denote
by so(3) the set of 3 x 3 matrices A satisfying A + A’ = O3 endowed with the operation
[A, B] = AB — BA.

Theorem. The map

0 —a|; —ay
(a1,a,a3) - | ar 0 —a3
ay as 0

establishes an isomorphism between (R*, x) and (so(3), [-, -]).
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Proof. The proof is straightforward if we write the cross-product in coordinates. The result
shows that the cross-product defines a Lie algebra structure on the set of three-dimensional
vectors. Note that the isomorphism maps the sum of vectors to the sum of matrices, and the
dot product of two vectors to the negative of half the trace of the product of the corresponding
matrices. O

It is worth mentioning that so(3) is the Lie algebra of the Lie group SO(3) of rotations of
R? about the origin. And now the problems.

679. For any three-dimensional vectors i, Vv, W, prove the identity
—
_u)x(_v)xW))—i—_v)x(Tv)x_u))—i—Tv)x(_u)x_v)): 0.

—
680. Given three vectors 7, b, _c), define

% =0 -)d - - )b,
Y =3 - )b —-(a D)T.
W= -7 —-(Db-)a.

%
Prove that if 7, b, < form a triangle, then 7, _v), W also form a triangle, and this

triangle is similar to the first.

— — —
681. Let @, b, ¢ be vectors such that b and ¢ are perpendicular, but @ and b are
not. Let m be a real number. Solve the system

-> -
X - d =m,
- 7 _ =
X X b =¢.

—
682. Consider three linearly independent vectors @, b, 7Cin space, having the same origin.

Prove that the plane determined by the endpoints of the vectors is perpendicular to the
—

—
— = S
vector d X b + b x ¢ + ¢ x d.

—
683. The vectors 7, b,and ¢ satisfy

- =
— - =
d x b b ¢

Prove that @ + Z) +7 = _0>
684. Find the vector-valued functions % (7) satisfying the differential equation

e T
U X ' = v,

where ¥V = 7 (¢) is a twice-differentiable vector-valued function such that both
and V' are never zero or parallel.

685. Doesthere existabijectionf of (a) a plane with itself or (b) three-dimensional space with
itself such that for any distinct points A, B the lines AB and f (A)f (B) are perpendicular?
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686. On so(3) we define the operation * such that if A and B are matrices corresponding to

—
the vectors @ = (ay, ar, az) and b = (by, by, b3), then the ij entry of A % B is equal
to (—1)"ay_;bs_;. Prove the identity

CBA—BCA=AxC)B—(AxB)C.

687. Prove that there is a bijection f from R? to the set su(2) of 2 x 2 matrices with complex
entries that are skew symmetric and have trace equal to zero such that

FOV x W) =[OV, fF(W)I.

(Here [A, B] = AB — BA; the commutant.)

688. We are given 2015 unit vectors starting at the origin, with the property that every line
passing through the origin has at least 515 vectors on each side. Show that the length
of the sum of the vectors does not exceed 1015.

We present two applications of vector calculus to geometry, one with the dot product, one
with the cross-product.

Example. Given two triangles ABC and A’B’C’ such that the perpendiculars from A, B, C onto
B'C', C’A’, A'B' intersect, show that the perpendiculars from A’, B’, C’ onto BC, CA, AB also
intersect.

Solution. This is the property of orthological triangles. Denote by O the intersection of the
first set of three perpendiculars, and by O’ the intersection of perpendiculars from A’ and B'.

— —
Note that if the vector XY is orthogonal to a vector ZW, then for any point P in the plane,

(PX — PY)-ZW = XY - ZW

W =0;

hence PX - ZW = PY - ZW. Using this fact we can write
—> —_ > — — > — — > — —> — — —
OC -OB=0A"-0B=0A"-0C=0B-0C=0B-0A=07C-O0A.

— = = = . . .
Therefore, O'C’ - (OB — OA) = O'C’ - AB = 0, which shows that O'C" is perpendicular to
AB. This proves that the second family of perpendiculars are concurrent. O

Example. Let ABCD be a convex quadrilateral, M, N on side AB and P, Q on side CD. Show
that if AM = NB and CP = QD, and if the quadrilaterals AMQD and BNPC have the same
area, then AB is parallel to CD.

Solution. Throughout the solution we refer to Figure24. We decompose the quadrilaterals
into triangles, and then use the formula for the area in terms of the cross-product.
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Figure 24

In general, the triangle determined by 7V | and 7 , has area equal to half the magnitude
of ¥ x V,. Note also that V| x ¥ is perpendicular to the plane of the triangle, so for a
problem in plane geometry there is no danger in identifying the areas with the cross-products,
provided that we keep track of the orientation. The hypothesis of the problem implies that

] - = — — ] - = = —
E(DA X DO 4+ AM x AQ) = E(CP X CB + BP x BN).

Hence
—

— — = — = —
X (AD 4+ DQ) = CP x CB+ (BC + CP) x BN.

= —DQ, this equality can be rewritten as

—
x DQ +
— —

Because BN = —AM and

S|
| Qg

— — = —  —
+DQ) x (AD + CB) = 2DQ x AM.

— = —> ) T T
CB = AB + CD (which follows from AB + BC + CD + DA
—

=
<

. — —
Using the fact that AD + =0

we obtain

),

— — —  —>

AM x CD+ DQ x AB =2DQ x AM.
From here we deduce that AM x QC = DQ x MB. These two cross-products point in opposite
directions, so equality can hold only if both are equal to zero, i.e., if AB is parallel to CD.

More applications of the dot and cross-products to geometry can be found below.

689. Giventwo triangles ABC and A'B’'C’ with the same centroid, prove that one can construct
a triangle with sides equal to the segments AA’, BB', and CC’.

690. Given a quadrilateral ABCD, consider the points A’, B', C’, D’ on the half-lines (i.e.,
rays) |AB, |BC, |CD, and | DA, respectively, suchthat AB = BA’, BC = CB’,CD = DC’,
DA = AD'. Suppose now that we start with the quadrilateral A’B'C’'D’. Using a
straightedge and a compass only, reconstruct the quadrilateral ABCD.

691. On the sides of the triangle ABC construct in the exterior the rectangles ABBA,,
BCCB,, CAA|C,. Prove that the perpendicular bisectors of A1A,, B1B,, and C;C,
intersect at one point.

692. Let ABCD be a convex quadrilateral. The lines parallel to AD and CD through the
orthocenter H of triangle ABC intersect AB and BC, respectively, at P and . Prove
that the perpendicular through H to the line PQ passes through the orthocenter of
triangle ACD.
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693. Prove that if the four lines through the centroids of the four faces of a tetrahedron
perpendicular to those faces are concurrent, then the four altitudes of the tetrahedron
are also concurrent. Prove that the converse is also true.

694. Let ABCD be a convex quadrilateral, M, N € AB such that AM = MN = NB, and
P, Q € CD suchthat CP = PQ = QD. Let O be the intersection of AC and BD. Prove
that the triangles MOP and NOQ have the same area.

695. Let ABC be a triangle, with D and E on the respective sides AC and AB. If M and N
are the midpoints of BD and CE, prove that the area of the quadrilateral BCDE is four
times the area of the triangle AMN.

4.1.2 The Coordinate Geometry of Lines and Circles

Coordinate geometry was constructed by Descartes to translate Euclid’s geometry into the
language of algebra. In two dimensions one starts by fixing two intersecting coordinate axes
and a unit on each of them. If the axes are perpendicular and the units are equal, the coordinates
are called Cartesian (in the honor of Descartes); otherwise, they are called affine. A general
affine change of coordinates has the form

(;:) = (Ccl fl) (;C) + (;), with (Z Z) invertible.

If the change is between Cartesian systems of coordinates, a so-called Euclidean change of
coordinates, it is required additionally that the matrix

ab
(42)
be orthogonal, meaning that its inverse is equal to the transpose.

Properties that can be formulated in the language of lines and ratios are invariant under
affine changes of coordinates. Such are the properties of two lines being parallel or of a point
to divide a segment in half. All geometric properties are invariant under Euclidean changes
of coordinates. Therefore, problems about distances, circles, and angles should be modeled
with Cartesian coordinates.

In this section we grouped problems that require only the knowledge of the theory of
lines and circles. Recall that the general equation of a line (whether in a Cartesian or affine
coordinate system) is ax + by 4+ ¢ = 0. That of a circle (in a Cartesian coordinate system)
is (x — h)> + (y — k)?> = r?, where (h, k) is the center and r is the radius. Let us see two
examples, one in affine and one in Cartesian coordinates. But before we do that let us recall
that a complete quadrilateral is a quadrilateral in which the pairs of opposite sides have been
extended until they meet. For that reason, a complete quadrilateral has six vertices and three
diagonals.

Example. Prove that the midpoints of the three diagonals of a complete quadrilateral are
collinear.
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Solution. As said, we will work in affine coordinates. Choose the coordinate axes to be sides
of the quadrilateral, as shown in Figure 25.

(0,d)

(0,c

(a,0) (b,0)

Figure 25

Five of the vertices have coordinates (0, 0), (a, 0), (b, 0), (0, ¢), and (0, d), while the
sixth is found as the intersection of the lines through (a, 0) and (0, d), respectively, (0, ¢) and
(b, 0). For these two lines we know the x— and y— intercepts, so their equations are

! + ! 1 d ! + ! 1
—x+—-y=1 and —-x+-y=1.
a dy b cy

The sixth vertex of the complete quadrilateral has therefore the coordinates

(ab(c—d) cd(a—b))
ac—bd " ac—bd ]’

We find that the midpoints of the diagonals are

(c_z E) (13 g) (ab(c—d) cd(a—b))
2°2)° 2°2)° 2(ac — bd)’ 2(ac — bd) )’

The condition that these three points be collinear translates to

a c
- — 1
2 2
b d : 0
2 2 o
ab(c —d) cd(a—D>b)
2(ac — bd) 2(ac — bd)
which is equivalent to
a c 1
b d 1 =0.

ab(c —d) cd(a — b) ac — bd

This is verified by direct computation. O
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Example. In a circle are inscribed a trapezoid with one side as diameter and a triangle with
sides parallel to the sides of the trapezoid. Prove that the two have the same area.

Solution. We refer everything to Figure26. Assume that the circle has radius 1, and the
trapezoid has vertices (1, 0), (a, b), (—a, b) and (—1, 0).

(0,1)
(a.b)
/ \ »
(a,-b)
Figure 26

The triangle is isosceles and has one vertex at (0, 1). We need to determine the coordinates
of the other two vertices. One of them lies where the parallel through (0, 1) to the line
determined by (1, 0) and (a, b) intersects the circle. The equation of the line is

y= x4+ 1.

a—1
The relation a® 4+ b* = 1 yields b = (1 — a)(1 + a), or ;&= = 144 So the equation of the

line can be rewritten as
1+a

y=— x+ 1.

Now it is easy to guess that the intersection of this line with the circle is (b, —a) (note that
this point satisfies the equation of the circle). The other vertex of the triangle is (—b, —a) so
the area is %(21?)(1 + a) = b+ ab. And the area of the trapezoid is %(Za +2)b = b+ ab, the
same number. O]

696. Prove that the midpoints of the sides of a quadrilateral form a parallelogram.

697. Let M be a point in the plane of triangle ABC. Prove that the centroids of the triangles
MAB, MAC, and MCB form a triangle similar to triangle ABC.

698. Find the locus of points P in the interior of a triangle ABC such that the distances from
P to the lines AB, BC, and CA are the side lengths of some triangle.

699. LetA,, A, ..., A, bedistinct points in the plane, and let m be the number of midpoints
of all the segments they determine. What is the smallest value that m can have?

700. Given an acute-angled triangle ABC with altitude AD, choose any point M on AD, and
then draw BM and extend until it intersects AC in E, and draw CM and extend until it
intersects AB in F'. Prove that ZADE = ZADF.
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701. Inaplanar Cartesian system of coordinates consider a fixed point P(a, b) and a variable
line through P. Let A be the intersection of the line with the x-axis. Connect A with
the midpoint B of the segment OP (O being the origin), and through C, which is the
point of intersection of this line with the y-axis, take the parallel to OP. This parallel
intersects PA at M. Find the locus of M as the line varies.

702. Let ABCD be a parallelogram with unequal sides. Let E be the foot of the perpendicular
from B to AC. The perpendicular through E to BD intersects BC in F and AB in G.
Show that EF = EG if and only if ABCD is a rectangle.

703. Let ABC be a triangle with incircle I', and let D, E, F be the tangency points of I" with
sides BC, CA, AB, respectively. Furthermore, let K be the orthocenter of triangle DEF .
Prove that KB*> — KC? = BE*> — CF?.

704. Find all pairs of real numbers (p, ¢) such that the inequality

21
W1—x*—px—gq| =< 2

2

holds for every x € [0, 1].

705. On the hyperbola xy = 1 consider four points whose x-coordinates are x;, x,, x3 and
Xx4. Show that if these points lie on a circle, then x1x,x3x4 = 1.

706. Let ABC and DAB be right isosceles triangles such that /A = ZD = 90°, AB = 1,
and C and D are separated by the line AB. Let M be a point on the segment AC, N the
intersection of DM with BC and P the intersection of BM with AN. Show that when
M varies on the side AC then P describes a smooth curve, and find the length of this
curve.

The points of the plane can be represented as complex numbers. There are two instances
in which complex coordinates come in handy: in problems involving “nice” angles (such as
T %» 5), and in problems about regular polygons.

In complex coordinates the line passing through the points z; and z, has the parametric
equation z = 1z + (1 — )22, t € R. Also, the angle between the line passing through z; and z,
and the line passing through z3 and z4 is the argument of the complex number % The length
of the segment determined by the points z; and 2, is |71 —2z2|. The vertices of a regular n-gon can

be chosen, up to a scaling factor, as 1, &, &2, ..., &""!, where ¢ = ¢*™//" = cos 27” + isin 27”

Example. Let ABC and BCD be two equilateral triangles sharing one side. A line passing
through D intersects AC at M and AB at N. Prove that the angle between the lines BM and
CNis Z.

3

Solution. In the complex plane, let B have the coordinate 0, and C the coordinate 1. Then A
and D have the coordinates ¢™/3 and e~"/3, respectively, and N has the coordinate te”™/3 for
some real number f.

The parametric equations of ND and AC are, respectively,

z=ate™? + (1 —a)e ™3 and z= B+ (1 —pB), a,B €R.
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To find their intersection we need to determine the real numbers « and 8 such that
ate™? + (1 —a)e ™3 = B + (1 — B).
Explicitly, this equation is

1+2iﬁ+(l_a)1—2iﬁ:ﬂ1+2iﬁ

ot

+ 1 = B).
Setting the real and imaginary parts equal, we obtain the system

at+ (1 —a)=pp4+2(1 -7,
at — (1 —a) = B.

By adding the two equations, we obtain o = % So the complex coordinate of M is /3 +
(1= eimn,
The angle between the lines BM and CN is the argument of the complex number
ein/3 4 (1 _ %) e—iﬂ/3 _ (ein/3 4 e—in/?y) _ %e—in/?y _ 1= %e—in/?y _ le_m/3
te"/3 — 1 te"/3 — 1 te™/3—1 1 '

The angle is therefore %, as claimed.

During the Mathematical Olympiad Summer Program of 2006, J. Bland discovered the
following simpler solution:

Place the figure in the complex plane so that the coordinates of A, B, C, D are, respectively,
i~3,—1, 1, and —ix/3. Let MC have length 2¢, where ¢ is a real parameter (positive if C is
between A and M and negative otherwise). The triangles MCD and NBD have parallel sides,
so they are similar. It follows that BN = % (positive if B is between A and N and negative

otherwise). The coordinates of M and N are
1 1, .
m=— 1+; — i 3 and n=(t+1) —tiv/3.

We compute

c—n 2t +1+iv3 ;
= —te'3.

b—m  —t—241tiJ/3

It follows that the two lines form an angle of Z, as desired. g

The second example comes from the 15th W.L. Putnam Mathematical Competition, 1955.

Example. Let AjA»A; ... A, be a regular polygon inscribed in the circle of center O and
radius r. On the half-line |OA; choose the point P such that A; is between O and P. Prove
that

ﬁPAizPO"—r".

i=1
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Solution. Place the vertices in the complex plane such that A; = ret, 1 <i < n, where ¢ is a
primitive nth root of unity. The coordinate of P is a real number rx, with x > 1. We have

n n n n
HPAi = H [rx — re'| = r"H x —¢&'l=7r" H(x —é&')
i=1 i=1 i=1 i=1

=7r"x"—1)=(x)"—r"=PO" —r".

The identity is proved. ]

707.

708.

709.

710.

711.

712.

713.

Let ABCDEF be a hexagon inscribed in a circle of radius r. Show that if AB = CD =
EF = r, then the midpoints of BC, DE, and FA are the vertices of an equilateral triangle.

Prove that in a triangle the orthocenter H, centroid G, and circumcenter O are collinear.

Moreover, G lies between H and O, and g—g = %

On the sides of a convex quadrilateral ABCD one draws outside the equilateral triangles
ABM and CDP and inside the equilateral triangles BCN and ADQ. Describe the shape
of the quadrilateral MNPQ.

Let ABC be a triangle. The triangles PAB and QAC are constructed outside of the
triangle ABC such that AP = AB, AQ = AC, and ZBAP = ZCAQ = «. The segments
BQ and CP meet at R. Let O be the circumcenter of the triangle BCR. Prove that AO
and PQ are orthogonal.

LetAA; ... A, be aregular polygon with circumradius equal to 1. Find the maximum

value of H PA; as P ranges over the circumcircle.
k=1

LetAp, Ay, ..., A, be the vertices of a regular n-gon inscribed in the unit circle. Prove
that

AOA1 -AOA2 B -A()An_l = n.

Show that a positive integer p is prime if and only if every equiangular p-gon with
rational side-lengths is regular.

4.1.3 Quadratic and Cubic Curves in the Plane

In what follows we introduce the reader to curves of degree two (other than the circle)
and three, with some incursions into algebraic geometry.
The general equation of a quadratic curve is

ax® 4+ by* + cxy +dx + ey +f = 0.

Such a curve is called a conic because (except for the degenerate case of two parallel lines) it
can be obtained by sectioning a circular cone by a plane.
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The degenerate conics are pairs of (not necessarily distinct) lines, single points, the entire
plane, and the empty set. We ignore them. There are three types of nondegenerate conics,
which up to a change of Cartesian coordinates are described in Figure 27.

109

y2:4px a2+ 2—1 Zfz—*_
parabola ellipse hyperbola
Figure 27

The parabola is the locus of the points at equal distance from the point (p, 0) (focus) and
the line x = —p (directrix). The ellipse is the locus of the points with the sum of distances
to the foci (¢, 0) and (—c, 0) constant, where ¢ = +/|a? — b?|. The hyperbola is the locus of
the points with the difference of the distances to the foci (¢, 0) and (—c, 0) constant, where
c=+a*+ b

Up to an affine change of coordinates, the equations of the parabola, ellipse, and hyperbola
are, respectively, y* = x, x> + y* = 1, and x> — y> = 1. Sometimes it is more convenient to
bring the hyperbola into the form xy = 1 by choosing its asymptotes as the coordinate axes.

As conic sections, these curves are obtained by sectioning the circular cone 7> = x* + y?
by the planes z —x = 1 (parabola), z = 1 (ellipse), and y = 1 (hyperbola). The vertex of the
cone can be thought of as the viewpoint of a person. The projections through this viewpoint of
one plane to another are called projective transformations. Up to a projective transformation
there is only one nondegenerate conic — the circle. Any projectively invariant property that can
be proved for the circle is true for any conic (and by passing to the limit, even for degenerate
conics). Such is the case with Pascal’s theorem: The opposite sides of a hexagon inscribed in
a conic meet at three collinear points. Note that when the conic degenerates into two parallel
lines, this becomes Pappus’ theorem.

To conclude our discussion, let us recall that the equation of the tangent line to a conic at
a point (xo, yo) is obtained by replacing in the general equation of the conic x*> and y? by xx,
respectively yyo, xy by 22*¢ and x and y in the linear terms by £, respectively, *5.

We now proceed with an example from A. Myller’s Analytical Geometry (3rd ed., Edltura
Didactica si Pedagogicd, Bucharest, 1972).

Example. Find the locus of the centers of the equilateral triangles inscribed in the parabola
2
y- = 4px.

Solution. Let us determine first some algebraic conditions that the coordinates (x;, y;), i =
1, 2, 3, of the vertices of a triangle should satisfy in order for the triangle to be equilateral.
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The equation of the median from (x3, y3) is

x—y3  yi+y2—2y
X—x3 xi+x—2x3

Requiring the median to be orthogonal to the side yields

yity2—2y3 y2—yi
X1 +x—2x3 X —x

=1,

or
(1 —x2)(x1 +x2 — 2x3) + (1 —y2) (1 +y2 — 2y3) =0.

So this relation along with the two obtained by circular permutations of the indices are neces-
sary and sufficient conditions for the triangle to be equilateral. Of course, the third condition

2
is redundant. In the case of three points on the parabola, namely (Z—’p y,~), i =1,2,3, after
dividing by y; — y», respectively, by y» — y3 (which are both nonzero), we obtain

01 +y2)OF +¥5 —2y3) + 16p* (31 +y2 — 2y3) =0,

(2 +¥3) 0% + 2 — 22) + 16p> (y2 + y3 — 2y1) = 0.

Subtracting the two gives
Yi =24 01— y3) (5 — 2y1y3) + 4807 (v — y3) =0.
Divide this by y; — y3 # 0 to transform it into
Vi35 423 + 30152+ yays + yavn) +48p7 = 0.

This is the condition satisfied by the y-coordinates of the vertices of the triangle. Keeping in
mind that the coordinates of the center of the triangle are

_NENAY o ntwdys
12p 3 '

we rewrite the relation as
1o, 2, 2,3 2 2
—501 +y; +y3) + E(Yl +y2+y3)” +48p° =0,
then substitute 12px = y? + y35 +y3 and 3y = y; + ¥, + y3 to obtain the equation of the locus
27
—@m+~5f+4&2=Q

or 4
fzf@—&)

This is a parabola with vertex at (8p, 0) and focus at ((3 + 8) , p, 0). O



224 4 Geometry and Trigonometry

The second problem was given at the 1977 Soviet Union University Student Mathematical
Olympiad.

Example. Let P be a point on the hyperbola xy = 4, and Q a point on the ellipse x> +4y?> = 4.
Prove that the distance from P to Q is greater than 1.

Solution. We will separate the conics by two parallel lines at a distance greater than 1. For
symmetry reasons, it is natural to try the tangent to the hyperbola at the point (2, 2). This line
has the equationy = 4 — x.

Let us determine the point in the first quadrant where the tangent to the ellipse has slope
—1. If (x0, yo) is a point on the ellipse, then the equation of the tangent at x is xxg + 4yyy = 4.
Its slope is —xo/4yo. Setting —xo/4yo = —1 and x2 + 4y? = 4, we obtain xo = 4/+/5 and
yo = 1/4/5. Consequently, the tangent to the ellipse is y = +/5 — x.

The distance between the lines y = 4 —x and y = +/5 — x is equal to (4 — +/5)/+/2, which
is greater than 1. Hence the distance between the arbitrary points P and Q is also greater than
1, and we are done. O

714. Consider a circle of diameter AB and center O, and the tangent ¢ at B. A variable tang-
ent to the circle with contact point M intersects ¢ at P. Find the locus of the point Q
where the line OM intersects the parallel through P to the line AB.

715. On the axis of a parabola consider two fixed points at equal distance from the focus.
Prove that the difference of the squares of the distances from these points to an arbitrary
tangent to the parabola is constant.

716. With the chord PQ of a hyperbola as diagonal, construct a parallelogram whose sides
are parallel to the asymptotes. Prove that the other diagonal of the parallelogram passes
through the center of the hyperbola.

717. A straight line cuts the asymptotes of a hyperbola in points A and B and the hyperbola
itself in P and Q. Prove that AP = BQ.

718. Consider the parabola y> = 4px. Find the locus of the points such that the tangents to
the parabola from those points make a constant angle ¢.

719. Let Ty, T>, T5 be points on a parabola, and ¢, f,, t3 the tangents to the parabola at these
points. Compute the ratio of the area of triangle 77,75 to the area of the triangle
determined by the tangents.

720. Three points A, B, C are considered on a parabola. The tangents to the parabola at
these points form a triangle MNP (NP being tangent at A, PM at B, and MN at C). The
parallel through B to the symmetry axis of the parabola intersects AC at L.

(a) Show that LMNP is a parallelogram.

(b) Show that the circumcircle of triangle MNP passes through the focus F' of the
parabola.

(c) Assuming that L is also on this circle, prove that N is on the directrix of the
parabola.
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(d) Find the locus of the points L if AC varies in such a way that it passes through F
and is perpendicular to BF'.

721. Find all regular polygons that can be inscribed in an ellipse with unequal semiaxes.

722. We are given the parabola y> = 2px with focus F. For an integer n > 3 consider a
regular polygon A A, ... A, whose center is F' and such that none of its vertices is on
the x-axis. The half-lines |FA|, |FA,, ..., |FA, intersect the parabola at By, B», ..., B,.
Prove that

FB, + FB, + --- + FB, > np.

723. A cevian of a triangle is a line segment that joins a vertex to the line containing the
opposite side. An equicevian point of atriangle ABC is a point P (not necessarily inside
the triangle) such that the cevians on the lines AP, BP, and CP have equal lengths. Let
SBC be an equilateral triangle, and let A be chosen in the interior of SBC, on the altitude
dropped from S.

(a) Show that ABC has two equicevian points.

(b) Show that the common length of the cevians through either of the equicevian points
is constant, independent of the choice of A.

(c) Show that the equicevian points divide the cevian through A in a constant ratio,
which is independent of the choice of A.

(d) Find the locus of the equicevian points as A varies.

(e) Let S’ be the reflection of S in the line BC. Show that (a), (b), and (c) hold if A
varies on any ellipse with S and S’ as its foci. Find the locus of the equicevian
points as A varies on the ellipse.

A planar curve is called rational if it can be parametrized as (x(¢), y(¢)) with x(¢) and y(t)
rational functions of the real variable ¢. Here we have to pass to the closed real line, so ¢ is
allowed to be infinite, while the plane is understood as the projective plane, zero denominators
giving rise to points on the line at infinity.

Theorem. All conics are rational curves.

Proof. The case of degenerate conics (i.e., pairs of lines) is trivial. The parabola y* = 4px is

. t? Cooxr Y 1—1¢? 2t
parametrized by e 1), theellipse — + - = 1 by b , and the hyperbola
p a

b? Tre 1y e
22 t+tt -t -
i 1by({a B b 5 . The general case follows from the fact that coordinate
a
changes are rational (in fact, linear) transformations. O

Compare the standard parametrization of the circle (cos x, sin x) to the rational parame-

2 L . . : o
}+_i2’ ]i—’tz . This gives rise to the trigonometric substitution tan 3 = ¢ and

explains why integrals of the form

trization ds (

/ R(cos x, sinx)dx,
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with R a two-variable rational function, can be reduced to integrals of rational functions.
Let us change slightly our point of view and take a look at the conic

v =ax® + bx +c.

If we fix a point (xg, yo) on this conic, the line y — yp = #(x — xp) intersects the conic in exactly
one more point (x, y). Writing the conditions that this point is both on the line and on the
conic and eliminating y, we obtain the equation

[yo + t(x — x0)]* = ax® + bx + c.
A few algebraic computations yield
2yot + 2 (x — x9) = alx + xo) + b.

This shows that x is a rational function of the slope t. The same is true for y. As ¢ varies,
(x, y) describes the whole conic. This is a rational parametrization of the conic, giving rise to
Euler’s substitutions. In their most general form, Euler’s substitutions are

ax?® + bx + ¢ — yp = t(x — xp).

They are used for rationalizing integrals of the form

/R(x, vax? + bx + ¢)dx,

where R is a two-variable rational function.

724. Compute the integral

/ dx
a+bcosx +csinx’
where a, b, c are real numbers, not all equal to zero.

725. Consider the system
xX+y=z+u,

2xy = zu.

Find the greatest value of the real constant m such that m < 7 for any positive integer
solution (x, y, z, u) of the system, with x > y. )

We conclude this unit with problems about cubic curves, some of which, surprisingly,
made the object of high school mathematical Olympiads despite their far reaching scope.

The first example is a problem from the 2014 USA Mathematical Olympiad, being pro-
posed by S. Vandervelde.

Example. Prove that there is an infinite number of points
wP_3, P, P_1, Py, P, Py, P3, ...

in the plane with the following property: for every three distinct integer numbers a, b, c, the
points P,, Py, P, are collinear if and only if

a+b—+c=2014.
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Solution. Translating the indices as

2014 2014 2014
ar—)a—T, bl—)b—T, cH—c——,

3

the condition for the collinearity of the points P,, Pj, P, transforms into
a+b+c=0.

This condition can be related to a fundamental property of one family of cubic curves, the
elliptic curves.
An elliptic curve is defined by an equation of the form

fx,y)=0

where f(x, y) is a polynomial of degree 3 in the variables x, y with the property that for no
point (xg, yo) on the curve one has

of of

—— (X0, y0) = —=(x0, y0) = 0.

ox ay

Such a curve is nonsingular in the sense that its graph has no cusps and no intersections. By
a change of coordinates, the curve can be changed into

y2=x3+ax+b, a, b eR.

It is elliptic precisely when its discriminant A = —16(4a® 4+ 27b?) is nonzero. Depending on
whether the equation x* + ax + b = 0 has one or three real roots, the elliptic curve has one or
two components. The two cases are described in Figure 28. This curve admits the structure
of an Abelian group, as we will now explain.

Figure 28



228 4 Geometry and Trigonometry

To define the sum of the points P and Q on this curve, consider the line that passes through
P and Q, and let ax 4 By +y = 0 be its equation. The intersections of this line with the curve
can be obtained by solving the system

V=x4+ax+b
ax+ By +y =0.

Substituting y = —(ax + y)/B in the first equation we obtain a cubic equation in x. This
equation has two real solutions (the coordinates of P and Q), and hence has a third real solution,
which gives us the third intersection point of the line with the curve. Call this point R.

Note that this construction works well for 8 £ 0, but if 8 = 0 we obtain the equation of
the vertical line x = —y /. This only crosses the elliptic curve in two points, with coordinates

and these are points P and Q.

This situation can be resolved by adding to the elliptic curve the point at infinity. We do this
by passing to the projective plane, which is the extension (correctly called compactification)
of the Euclidean plane in which any two lines intersect at one point. In the projective plane,
every line has one point at infinity, and all the points at infinity are on the line at infinity. Two
lines intersect at finite points when they are not parallel, when they are parallel they intersect
at a point at infinity. The point at infinity of the elliptic curve (in the standard coordinates
described above) is specified by the vertical direction. So in the case where PQ is vertical,
we can define R to be the point at infinity of this line.

For reasons of algebra this definition also works when P = Q, that is when the line is
tangent to the curve. Also if P or Q is at infinity, then PQ is vertical, so it intersect the elliptic
curve one more time. Finally, if both P and Q are at infinity, we let R be the point at infinity.

Now we can define the group structure. Choose a point O on the elliptic curve (O is
usually chosen as the point at infinity). This is the identity of the group. To define P + Q,
choose R as the third intersection of the line PQ with the curve as explained above. Repeat
the procedure with the pair (O, R). The result is P + Q (when O is the point at infinity and
the curve is in its standard form, then P 4 Q is the reflection of R over the x-axis). In short,
you obtain P 4 Q by intersection PQ with the elliptic curve, taking R as the intersection point,
and intersecting the elliptic curve again with OR (Figure 29).

One can check geometrically the following properties:

e P+Q)+S=P+(Q+09),

e P+O=0+P=P,
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P+Q

Figure 29

e P+ (—P) = O, where —P is the intersection of OP with the elliptic curve,
o P+ Q = Q + P.

Note that three points P, Q, R are collinear if and only if
P+Q+R=0.

To solve the Olympiad problem we have to show that the elliptic curve has a subgroup that is
isomorphic to Z. Here is one possible argument. After adding the point at infinity, the curve
has either one or two closed components, which modulo a deformation are circles. Actually
the point at infinity closes the unbounded component: one arrives at this point by following
either the lower branch or the upper branch.

The operation of addition is a continuous two variable map with values in the curve, as
it is not hard to verify geometrically that if P — P and Q' — Q,then P + Q' — P + Q.
Also, the function that associates to a point its inverse, P — —P is continuous. We are in the
presence of an Abelian Lie group of dimension 1, that is to say a curve with an Abelian group
structure in which addition and taking the negative are continuous. Such groups are classified.
If the group has one component, then it is the group of complex numbers of absolute value 1:

Ul)={zeC|lz| =1}
and if it has two components, then it is
U(l) x Zs,

(where Z, is the group whose elements are the two residue classes modulo 2). Here the
addition is defined separately in each coordinate. In both cases the group contains a copy of
U (1), whose subgroup
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Gy = {cosnf +isinnf |n € Z}

with 6 /m irrational is isomorphic to Z. In this case if P, is associated to cosnf + isinnf,
then Py + P, + P, =0ifand only if k +m +n = 0.

To avoid using the classification of compact 1-dimensional Lie groups, we can argue as
follows. Choose a curve defined by an equation with integer coefficients. Then nP = 0
translates into an algebraic equation in the coordinates of P. If we begin with a point P whose
x-coordinate is transcendental (and then so is its y-coordinate), then nP = 0 can only happen
if the coordinates of P cancel out. But then the same equation holds for all points. Now notice
that P’ — 2P’ maps a small arc around P to an arc around 2P, and repeating, we see that
P’ +— nP’ maps a small arc around P to a nondegenerate small arc around nP. So we cannot
have nP’ = 0 for all P’. Hence the existence of a point P that generates an infinite group. The
problem is solved. O

We leave the following problems about cubic curves to the reader.

726. A cubic sequence is a sequence of integers given by a, = n® + bn®> + cn + d, where
b, ¢, d are integer constants and n ranges over all integers, including negative integers.
(a) Show that there exists a cubic sequence such that the only terms of the sequence
which are squares of integers are a5 and a,o6.

(b) Determine the possible values of a5 - @16 for a cubic sequence satisfying the
condition in part (a).

727. Solve in integers the equation

x+y :
X taxy 4y = (T+l) :
728. Prove that the locus described by the equation x*43xy+y* = 1 contains precisely three

noncollinear points A, B, C, equidistant to one another, and find the area of triangle
ABC.

729. Prove that, for any integers a, b, c, there exists a positive integer n such that
/n3 + an? 4 bn + c is not an integer.

4.1.4 Some Famous Curves in the Plane

We conclude our incursion into two-dimensional geometry with an overview of various planar
curves that captured the imagination of mathematicians. The first answers a question of G.W.
Leibniz.

Example. What is the path of an object dragged by a string of constant length when the end
of the string not joined to the object moves along a straight line?
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Solution. Assume that the object is dragged by a string of length 1, that its initial coordinates
are (0, 1), and that it is dragged by a vehicle moving along the x-axis in the positive direction.
Observe that the slope of the tangent to the curve at a point (x, y) points toward the vehicle,
while the distance to the vehicle is always equal to 1. These two facts can be combined in the
differential equation

dy — y

dx_ 1—y2

Separate the variables
V1 —=y?
dx = ———dy,
y

and then integrate to obtain

x=—y/1—=y>—Iny—In(1++1-y?)+C.

The initial condition gives C = 0. The answer to the problem is therefore the curve

x=—y1—=y?—Iny—In(1+1—y?),

depicted in Figure 30. O

0.5
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Figure 30

This curve is called a fractrix, a name given by Ch. Huygens. Clearly, it has the x-axis
as an asymptote. E. Beltrami has shown that the surface of revolution of the tractrix around
its asymptote provides a partial model for the hyperbolic plane of Lobachevskian geometry.
This surface has been used in recent years for the shape of loudspeakers.

A variety of other curves show up in the problems below. In some of the solutions, polar
coordinates might be useful. Recall the formulas for changing between Cartesian and polar
coordinates: x = rcosf,y = rsin6.

730. Find the points where the tangent to the cardioid r = 1 + cos 6 is vertical.
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Given a circle of diameter AB, a variable secant through A intersects the circle at C
and the tangent through B at D. On the half-line AC a point M is chosen such that
AM = CD. Find the locus of M.

Find the locus of the projection of a fixed point on a circle onto the tangents to the
circle.

On a circle of center O consider a fixed point A and a variable point M. The circle of
center A and radius AM intersects the line OM at L. Find the locus of L as M varies on
the circle.

The endpoints of a variable segment AB lie on two perpendicular lines that intersect
at 0. Find the locus of the projection of O onto AB, provided that the segment AB
maintains a constant length.

From the center of a rectangular hyperbola a perpendicular is dropped to a variable
tangent. Find the locus in polar coordinates of the foot of the perpendicular. (A
hyperbola is called rectangular if its asymptotes are perpendicular.)

Find a transformation of the plane that maps the unit circle x> +y*> = 1 into a cardioid.
(Recall that the general equation of a cardioid is » = 2a(1 4 cos 8).)

For n and p two positive integers consider the curve described by the parametric equa-
tions
x=at" + b1’ + ¢y,

y = ayt" + byt + ¢z,
z=a3t" + b3t’ + cs,
where ¢ is a parameter. Prove that the curve is planar.

What is the equation that describes the shape of a hanging flexible chain with ends
supported at the same height and acted on by its own weight?

4.1.5 Coordinate Geometry in Three and More Dimensions

In this section we emphasize quadrics. A quadric is a surface in space determined by a
quadratic equation. The degenerate quadrics — linear varieties, cones, or cylinders over conics
— add little to the picture from their two-dimensional counterparts, so we skip them. The
nondegenerate quadrics are classified, up to an affine change of coordinates, as

x> 432 4+ 72 = 1, ellipsoid;

x? 4+ y? — 22 = 1, hyperboloid of one sheet;
x? —y* — 72 = 1, hyperboloid of two sheets;
x? 4+ y? = z, elliptic paraboloid;

x? — y* = z, hyperbolic paraboloid.

In Cartesian coordinates, in these formulas there is a scaling factor in front of each term.
For example, the standard form of an ellipsoid in Cartesian coordinates is

2 2 2
X y Z
Stnt5=1
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As in the case of conics, the equation of the tangent plane toa quadric at a point (xo, Yo, 20)
is obtained by replacing in the equation of the quadric x?, y?, and z?, respectively, by xxo, yyo,
and zzo; xy, xz, and yz, respectively, by = °+y 0 xz";zx‘) and yz"ﬂ} 0.
terms, respectively, by 5%, 2220 “and ““’

Our first example comes from the 6th W.L. Putnam Mathematical Competition.

; and x, y, and z in the linear

Example. Find the smallest volume bounded by the coordinate planes and by a tangent plane

to the ellipsoid

2 2 2
x y Z
Stpta=L

Solution. The tangent plane to the ellipsoid at (xg, yo, zo) has the equation

Xxo Yo ZZo

— + ﬁ + — =1.
Its x, y, and z intercepts are, respectively, %, if—;, and g The volume of the solid cut off by
the tangent plane and the coordinate planes is therefore
a’b*c?
V =

1
6 | x0Y020
We want to minimize this with the constraint that (xo, o, zo) lie on the ellipsoid. This amounts
to maximizing the function f (x, y, z) = xyz with the constraint
2 2 2
X y Z

g(x,y,z)=;+ﬁ+§ =1
Because the ellipsoid is a closed bounded set, f has a maximum and a minimum on it. The
maximum is positive, and the minimum is negative. The method of Lagrange multipliers
yields the following system of equations in the unknowns x, y, z, and A:

X
vz = 2)»;,
Xz = 2)»%,
b4
vz = 2)\§,
2 2 2
X b4
+L 4L o

Multiplying the first equation by x, the second by y, and the third by z, then summing up the

three equations gives
2 2 2
X y <
3xyz:2k(a—2+ﬁ+§) =2\.
Hence A = %xyz. Then multiplying the first three equations of the system together, we obtain

xyz - 27(xyz)
a’b’c?  a?b2e?

(xyz)? = 817
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The solution xyz = 0 we exclude, since it does not yield a maximum or a minimum. Otherwise,
xXyz = :I:%. The equality with the plus sign is the maximum of f’; the other is the minimum.

Substituting in the formula for the volume, we find that the smallest volume is @abc. ([l

Example. Find the nature of the surface defined as the locus of the lines parallel to a given
plane and intersecting two given skew lines, neither of which is parallel to the plane.

Solution. We will work in affine coordinates. Call the plane 7 and the two skew lines /; and
. The x- and y-axes lie in 7w and the z-axis is /;. The x-axis passes through I, N . The
y-axis is chosen to make /, parallel to the yz-plane. Finally, the orientation and the units are
such that [, is given by x = 1, y = z (see Figure 31).

Figure 31

A line parallel to 7 and intersecting /; and /, passes through (1, s, s) and (0, 0, 5), where
s is some real parameter playing the role of the “height”. Thus the locus consists of all points
of the form 7(1, s, s) + (1 — £)(0, 0, 5), where s and ¢ are real parameters. The coordinates
(X, Y,Z) of such a point satisfy X = ¢, Y = ts5, Z = 5. By elimination we obtain the equation
X7 =Y, which is a hyperbolic paraboloid like the one from Figure 32. We stress once more
that the type of a quadric is invariant under affine transformations. g

A surface generated by a moving line is called a ruled surface. Ruled surfaces are easy to
build in real life. This together with its structural resistance makes the hyperbolic paraboloid
popular as a roof in modern architecture (see for example Felix Candela’s roof of the 1968
Olympic stadium in Mexico City). There is one more nondegenerate ruled quadric, which
makes the object of one of the problems below. And if you find some of the problems below
too difficult, remember Winston Churchill’s words: “Success consists of going from failure
to failure without loss of enthusiasm”.

739. A cube is rotated about the main diagonal. What kind of surfaces do the edges describe?
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740. Prove that the plane

741.

742.

743.

TR A |
a b ¢
is tangent to the hyperboloid of one sheet
2 2 2
22
a  br ?
Through a point M on the ellipsoid
2 2 2
x* oy oz
2 ptas

take planes perpendicular to the axes Ox, Oy, Oz. Let the areas of the planar sections
thus obtained be S, Sy, respectively, S.. Prove that the sum

aSy + bS, + cS.

is independent of M.
Determine the radius of the largest circle that can lie on the ellipsoid

2 2 2
X y Z
;+ﬁ+§=1(a>b>c).

Let a, b, ¢ be distinct positive numbers. Prove that through each point of the three-
dimensional space pass three surfaces described by equations of the form

2 2 2

+ + = 1.
at—Ar bE—r c2—aA

Determine the nature of these surfaces and prove that they are pairwise orthogonal
along their curves of intersection.
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744. Show that the equations

X=u-+v+w,
y=ur+ v +w

z=ud + +w,

where the parameters u, v, w are subject to the constraint uvw = 1, define a cubic
surface.

We conclude our discussion of coordinate geometry with some problems in n dimensions.

Example. Through a fixed point inside an n-dimensional sphere, n mutually perpendicular
chords are drawn. Prove that the sum of the squares of the lengths of the chords does not
depend on their directions.

Solution. We want to prove that the sum in question depends only on the radius of the sphere
and the distance from the fixed point to the center of the sphere. Choose a coordinate system
in which the chords are the n orthogonal axes and the radius of the sphere is R > 0. The
fixed point, which we call P, becomes the origin. The endpoints of each chord have only one
nonzero coordinate, and in the appropriate ordering, the kth coordinates of the endpoints Xj
and Y} of the kth chord are the nonzero numbers x; and y;, kK = 1, 2, ..., n. The center of the
sphere is then

0— Xr+yr 2+ Xn + Yn
Ty )

The conditions that the points X; and Y} lie on the sphere can be written as

2 2
Xk + Z Xj + Y
(Xk_ k2yk) " (JZyJ) =R

J#k

2 2
Xk + Yk Xj +yj 2
_ ) :R’
(y" 2 )+Z( 2

J#k

with k =1, 2, ..., n. This implies

x =\ +v\
_ p2 § ] J _
( > ) =R — (T) ,k—l,2,...,n.

J#k

The term on the left is one-fourth of the square of the length of X, Y;. Multiplying by 4 and
summing up all these relations, we obtain

n n 2 n 2

X+ Xr + Vi
2 X, Y, 2_—4nR2—4§ z (—J ~’) = 4nR?> —4(n—1 z ( )
2 (1 X5 Yl > ( )k:1 5

k=1 j#k
= 4nR?> — 4(n — 1)||PO|>.

Hence the conclusion. U
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745. Let n be a positive integer. Prove that if the vertices of a (2n + 1)-dimensional cube
have integer coordinates, then the length of the edge of the cube is an integer.

746. For a positive integer n denote by 7 the permutation cycle (n, ..., 2, 1). Consider the

locus of points in R” defined by the equation

Z SIgN(0)Xo () Xe(0 () = Xt (g (m) = 0,
o

where the sum is over all possible permutations of {1, 2, ..., n}. Prove that this locus
contains a hperplane.

747. Prove that the intersection of an n-dimensional cube centered at the origin and with
edges parallel to the coordinate axes with the plane determined by the vectors

— 2 4 2nm — . 2m . 4Am . 2nm
d = (cos—,cos—,...,cos — and b ={sin—,sin—,...,sin —
n n n n n n

is a regular 2n-gon.

748. Find the maximal number of edges of an n-dimensional cube that are cut by a hyper-
plane. (By cut we mean intersected in exactly one point).

749. Find the maximum number of points on a sphere of radius 1 in R” such that the distance
between any two is strictly greater than /2.

4.1.6 Integrals in Geometry

We now present various applications of integral calculus to geometry problems. Here is a
classic.

Example. A disk of radius R is covered by m rectangular strips of width 2. Prove that m > R.

Solution. Since the strips have different areas, depending on the distance to the center of the
disk, a proof using areas will not work. However, if we move to three dimensions the problem
becomes easy. The argument is based on the following property of the sphere.

Lemma. The area of the surface cut from a sphere of radius R by two parallel planes at
distance d from each other is equal to 2 Rd.

Proof. To prove this result, let us assume that the sphere is centered at the origin and the
planes are perpendicular to the x-axis. The surface is obtained by rotating the graph of the
function f : [a, b] — R, f(x) = +/R? — x? about the x-axis, where [a, b] is an interval of
length d. The area of the surface is given by

b b
o [ sV Gr s a=2n [V K
b

= 27-[/ Rdx =27 Rd,

and the lemma is proved. U]
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Returning to the problem, the sphere has area 47 R and is covered by m surfaces, each
having area 47 R. The inequality 4rmR > 47 R* implies that m > R, as desired. g

The second example, suggested to us by Zh. Wang, is even more famous. We present the
proof from H. Solomon, Geometric Probability (SIAM 1978).

Crofton’s theorem. Let D be a bounded convex domain in the plane. Through each point
P(x,y) outside D there pass two tangents to D. Let t|, and t, be the lengths of the segments
determined by P and the tangency points, and let a be the angle between the tangents, all
viewed as functions of (x, y).! Then

sin o ’
dxdy = 2m~.
p¢p b2

Proof. The proof becomes transparent once we examine the particular case in which D is the
unit disk x> + y> < 1. Each point outside the unit disk can be parametrized by the pair of
angles (¢, ¢») where the tangents meet the unit circle S'. Since there is an ambiguity in
which tangent is considered first, the outside of the disk is in 1-to-2 correspondence with the
set S' x S!. It so happens, and we will prove it in general, that on changing coordinates from

(x,y) to (¢1, ¢>) the integral from the statement becomes / / d¢1d ¢, (divided by 2 to take

the ambiguity into account). The result follows.

In the general case we mimic the same argument, boosting your intuition with Figure 33.
Fix a Cartesian coordinate system with the origin O inside D. For a point (x, y) denote by
(¢1, ¢2) the angles formed by the perpendiculars from O onto the tangents with the positive
semiaxis. This is another parametrization of the exterior of D, again with the ambiguity of
which tangent is considered first. Let A;(g;, n;), i = 1, 2, tangency points.

P

\61 91+TC/2

Figure 33

11 If the boundary of D has some edges, then there are points P for which 7] and 1, are not well defined, but
the area of the set of these points is zero, so they can be neglected in the integral below.
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The main goal is to understand the change of coordinates (x, y) — (¢1, ¢») and in partic-
ular to write the Jacobian of this transformation. Writing the condition that the slope of the
line AP is tan (¢1 ) we obtain

(x —ey)cospy + (y — ny)sing; = 0.
Taking the differential yields

cos ¢1dx — cos pide; — (x — 1) sin g dp; + sin ¢ 1dy — sin ¢p1dn;
+ (y —m)cos¢idg = 0.

d771

This expression can be simplified if we note that . is the slope of the tangent, namely

tan (¢; + %). Then cos ¢ de; + sin¢ydn; = 0, so

cos prdx + singdy = [(x — &1) sing; — (y — 1) cos ¢ 1d .

And now a little Euclidean geometry. Consider the right triangle O;A P with legs parallel to
the axes. The altitude from O; determines on A; P two segments of lengths (x — &1) sin ¢; and
—(y — n1) cos ¢; (you can see by examining the picture that the signs are right). This allows
us to further transform the identity obtained above into

cos ¢1dx + sinpydy = t1d¢p,.
The same argument shows that
cos ¢rdx + sin prdy = trdes.

The Jacobian of the transformation is therefore the absolute value of

1 1
t—t(cos ¢18in ¢y — sin ¢y COs ) = — sin(¢1 — ¢2).

162 162

And ¢ — ¢, is, up to a sign, the supplement of &. We obtain

2 2
/ / dpde, = // SmadXd)’
r¢p Nz

The theorem is proved. ]

750. A ring of height 4 is obtained by digging a cylindrical hole through the center of a
sphere. Prove that the volume of the ring depends only on / and not on the radius of
the sphere.

751. A polyhedron is circumscribed about a sphere. We call a face big if the projection of
the sphere onto the plane of the face lies entirely within the face. Show that there are
at most six big faces.

752. Let A and B be two finite sets of segments in three-dimensional space such that the sum
of the lengths of the segments in A is larger than the sum of the lengths of the segments
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in B. Prove that there is a line in space with the property that the sum of the lengths of
the projections of the segments in A onto that line is greater than the sum of the lengths
of the projections of the segments in B.

Two convex polygons are placed one inside the other. Prove that the perimeter of the
polygon that lies inside is smaller.

There are n line segments in the plane with the sum of the lengths equal to 1. Prove
that there exists a straight line such that the sum of the lengths of the projections of the
segments onto the line is equal to %

In a triangle ABC for a variable point P on BC with PB = x let #(x) be the measure of

ZPAB. Compute
/ cos t(x)dx
0

in terms of the sides and angles of triangle ABC.

Letf : [0, a] — R be a continuous and increasing function such that f(0) = 0. Define
by R the region bounded by f (x) and the lines x = a and y = 0. Now consider the solid
of revolution obtained when R is rotated around the y-axis as a sort of dish. Determine
f such that the volume of water the dish can hold is equal to the volume of the dish
itself, this happening for all a.

Consider a unit vector starting at the origin and pointing in the direction of the tangent
vector to a continuously differentiable curve in three-dimensional space. The endpoint
of the vector describes the spherical image of the curve (on the unit sphere). Show that
if the curve is closed, then its spherical image intersects every great circle of the unit
sphere.

With the hypothesis of the previous problem, if the curve is twice differentiable, then
the length of the spherical image of the curve is called the total curvature. Prove that
the total curvature of a closed curve is at least 2.

A rectangle R is tiled by finitely many rectangles each of which has at least one side
of integral length. Prove that R has at least one side of integral length.

Show that if the distance between any two vertices of a polygon is less than or equal
to 1, then the area of the polygon is less than 7 /4.

4.1.7 Other Geometry Problems

We conclude with problems from elementary geometry. They are less in the spirit of Euclid,
being based on algebraic or combinatorial considerations. Here “imagination is more impor-
tant than knowledge” (A. Einstein).
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Example. Find the maximal number of triangles of area 1 with disjoint interiors that can be
included in a disk of radius 1. Describe all such configurations.

Solution. Let us first solve the following easier problem:

Alternative problem. Find all triangles of area 1 that can be placed inside a half-disk of
radius 1.

We will show that the only possible configuration is that in Figure 34. Consider a triangle
that maximizes the area (such a triangle exists since the vertices vary on compact sets and the
area depends continuously on the vertices). The vertices of this triangle must lie on the half-
circle. If B lies between A and C, then A and C must be the endpoints of the diameter. Indeed,
if say C is not an endpoint, then by moving it toward the closer endpoint of the diameter
we increase both AC and the angle Z/BAC; hence we increase the area. Finally, among all

triangles inscribed in a semicircle AC, the isosceles right triangle has maximal altitude, hence
also maximal area. This triangle has area 1, and the claim is proved.

B

Figure 34

Returning to the problem, let us note that since the two triangles in question are convex
sets, they can be separated by a line. That line cuts the disk into two regions, and one of them,
containing one of the triangles, is included in a half-disk. By what we just proved, this region
must itself be a half-disk. The only possible configuration consists of two isosceles triangles
sharing the hypotenuse. g

The next problem was published by the first author in the Mathematics Magazine.

Example. Let ABC be a right triangle (LA = 90°). On the hypotenuse BC construct in the
exterior the equilateral triangle BCD. Prove that the lengths of the segments AB, AC, and AD
cannot all be rational.

Solution. We will find a relation between AB, AC, and AD by placing them in a triangle and
using the law of cosines.s For this, construct the equilateral triangle ACE in the exterior of
ABC (Figure35). We claim that BE = AD. This is a corollary of Napoleon’s theorem, and
can be proved in the following way. Let M be the intersection of the circumcircles of BCD
and ACE. Then ZAMC = 120° and ZDMC = 60°; hence M € AD. Similarly, M € BE.
Ptolemy’s theorem applied to quadrilaterals AMCE and BMCD shows that ME = AM + CM
and MD = BM + CM; hence AD = AM + BM + CM = BE.
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.

‘

\
VD

Figure 35

Applying the law of cosines in triangle ABE, we obtain BE> = AB> + AE*> + AB - AE/3,

and since BE = AD and AE = AC, it follows that
AD? = AB®> + AC? + AB - ACV/3.

If all three segments AB, AC, and AD had rational lengths, this relation would imply that
\/5 is rational, which is not true. Hence at least one of these lengths is irrational. O

761. Three lines passing through an interior point of a triangle and parallel to its sides
determine three parallelograms and three triangles. If S is the area of the initial triangle
and S, S, and S5 are the areas of the newly formed triangles, prove that S} 4S,+S3 > %S .

762. Someone has drawn two squares of side 0.9 inside a disk of radius 1. Prove that the

squares overlap.

763. A surface is generated by a segment whose midpoint rotates along the unit circle in the
xy-plane such that for each 0 < o < 2, at the point of coordinates (cos «, sin«) on
the circle the segment is in the same plane with the z-axis and makes with it an angle of

5. This surface, called a Mobius band, is depicted in Figure 36. What is the maximal

length the segment can have so that the surface does not cross itself?

=
NN
—

Figure 36

764. Let ABCD be a convex quadrilateral and let O be the intersection of its diagonals.
Given that the triangles OAB, OBC, OCD, and ODA have the same perimeter, prove
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that the quadrilateral is a rhombus. Does the property hold if O is some other point in
the interior of the quadrilateral?

765. Prove that the plane cannot be covered by the interiors of finitely many parabolas.

766. Let ABC be a triangle with the largest angle at A. On line AB consider the point D such
that A lies between B and D, and AD = AB?/AC?. Prove that CD < +/3BC3/AC?.

767. Show that if all angles of an octagon are equal and all its sides have rational length,
then the octagon has a center of symmetry.

768. Show that if each of the three main diagonals of a hexagon divides the hexagon into
two parts with equal areas, then the three diagonals are concurrent.
769. Centered at every point with integer coordinates in the plane there is a disk with radius

L
1000

(a) Prove that there exists an equilateral triangle whose vertices lie in different disks.

(b) Prove that every equilateral triangle with vertices in different disks has side length
greater than 96.

770. On a cylindrical surface of radius r, unbounded in both directions, consider n points
and a surface S of area strictly less than 1. Prove that by rotating around the axis of the
cylinder and then translating in the direction of the axis by at most ;- units one can
transform S into a surface that does not contain any of the n points.

4.2 Trigonometry

4.2.1 Trigonometric Identities

The beauty of trigonometry lies in its identities. There are two fundamental identities,

2

sinx +cos’x =1 and cos(x —y) = cosxcosy — sinxsiny,

both with geometric origins, from which all the others can be derived. Our problems will
make use of addition and subtraction formulas for two, three, even four angles, double-
and triple-angle formulas, and product-to-sum formulas. While these identities are seen as
very elementary today, we should remember that the quest to find their analogues led to the
development of the theory of elliptic functions.

Example. Find all acute angles x satisfying the equation

2 sinx cos 40° = sin(x 4 20°).
Solution. Trying particular values we see that x = 30° is a solution. Are there other solutions?
Use the addition formula for sine to rewrite the equation as
sin 20°
2 cos 40° — cos 20°°

The tangent function is one-to-one on the interval (0, 90°), which implies that the solution to
the original equation is unique. U

tanx =
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Example. (a) Prove that if cosma = % then « is an irrational number.
(b) Prove that a regular tetrahedron cannot be dissected into finitely many regular
tetrahedra.

Solution. (a) Assume that a is rational, @ = #. Then cosnar = *1. We will prove by
induction that for all k > 0, cos kar = % with my, an integer that is not divisible by 3. This
will then contradict the initial assumption.

The property is true for k = 0 and 1. The product-to-sum formula for cosines gives rise
to the recurrence

m
n

cos(k + 1)amr = 2 cosam coskarwr — cos(k — 1)am, k > 1.

Using the induction hypothesis, we obtain cos(k 4+ 1)ar = ’;’,fj} , with myy = 2my — 3my_ .
Since my is not divisible by 3, neither is m; 1, and the claim is proved.

Part (b) is just a consequence of (a). To see this, let us compute the cosine of the dihedral
angle of two faces of a regular tetrahedron ABCD. If AH is an altitude of the tetrahedron and
AE is an altitude of the face ABC, then ZAEH is the dihedral angle of the faces ABC and BCD

(see Figure 37). In the right triangle HAE, cosAEH = 2 = 1.

A

Figure 37

Now assume that there exists a dissection of a regular tetrahedron into regular tetrahedra.
Several of these tetrahedra meet along a segment included in one of the faces of the initial
tetrahedron. Their dihedral angles must add up to 7r, which implies that the dihedral angle of
a regular tetrahedron is of the form 7, for some integer n. This was shown above to be false.
Hence no dissection of a regular tetrahedron into regular tetrahedra exists. O

Remark. 1t is interesting to know that Leonardo da Vinci’s manuscripts contain drawings
of such decompositions. Later, however, Leonardo himself realized that the decompositions
were impossible, and the drawings were mere optical illusions. Note also that Dehn’s invariant
mentioned in the first chapter provides an obstruction to the decomposition.

We conclude the introduction with a problem by the second author of the book.

Example. Letay = V2 + /3 + /6 and let apy1 = % for n > 0. Prove that

2n73
an=cot( 3n)—2foralln.
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Solution. We have

cosl 2cos2£ 1-|—cosl 1+ cos (z—z)
ti _ 24 24 _ 12 3 4
co M- . W ..« T = . w®™ - /T 7
sin — 2 sin — cos — sin — sin (— — —)
24 24 24 12 3 4

Using the subtraction formulas for sine and cosine we find that this is equal to

V2 6
T T 4464+v2  46+2) + (V6 + V2
NI R B

4 4

=4(“/6+ﬁ)+8+4“/§:2+\/§+«/§+\/6

n =agy + 2.

213y

Hence the equality a, = cot ( 3 ) — 2 1s true at least for n = 0.

. o . . n—3
To verify it in general, it suffices to prove that b, = cot (2 3 ), where b, = a, + 2,

n > 1. The recurrence relation becomes

(by—2)* =5
bpp1 —2 = —-—"—,
+1 25,
or by, = 17’221771. Assuming inductively that by = cot ¢;, where ¢, = @, and using the
double-angle formula, we obtain
cot’ ¢y — 1
by = e cot(2c) = cot ¢ 1.
2 cot ¢y
This completes the proof. ]

771. Prove that

3
$in 70° cos 50° + sin 260° cos 280° = %.

772. Show that the trigonometric equation
sin(cos x) = cos(sin x)

has no solutions.

773. Show that if the angles a and b satisfy
tan’ atan’ b = 1 + tan® a + tan’ b,

then
sinasinb = £ sin45°.
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774.
775.

776.

7717.

778.

779.

780.
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Find the range of the function f : R — R, f(x) = (sinx + 1)(cosx + 1).

Prove that
sec” x + csc¥ x > 2

for all integers n > 0, and for all x € (0, %).

/,/l_xd c(=1.1)
x, x € (—1,1).
14+ x

Find all integers k for which the two-variable function f(x, y) = cos(19x 4+ 99y) can
be written as a polynomial in cos x, cos y, cos(x + ky).

Compute the integral

Leta, b, c,d € [0, 7] be such that
2cosa+6¢cosb+T7cosc+9cosd =0

and
2sina — 6sinb + 7sinc — 9sind = 0.

Prove that 3 cos(a + d) = 7cos(b + ¢).

Let a be a real number. Prove that
5(sin® a 4 cos® a) 4+ 3sinacosa = 0.04

if and only if
5(sina + cosa) + 2sinacosa = 0.04.

Letag, ai, .. ., a, be numbers from the interval (0, %) such that

b4 b4 T
tan(ao—Z)+tan(alz)+---+tan(an—z) >n—1.

Prove that

tanagtanay - - - tana, > n"*'.

4.2.2 Euler’s Formula

For a complex number z,

ez:1+£+z_2+...+z_n+...
2! n!

In particular, for an angle x,

x? ¥ xt x> xd x’

—1+l—‘—2—!—l§+ +5——5—l?+
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The real part of ™ is

x2 xt xS
1 - 51 + e o
while the imaginary part is
x x X X

ST TR TR T
These are the Taylor series of cos x and sin x. We obtain Euler’s formula

e = cosx +isinx.

Euler’s formula gives rise to one of the most beautiful identities in mathematics:

which relates the number e from real analysis, the imaginary unit i from algebra, and 7 from
geometry.

The equality "™ = (€%)" holds at least for z a real number. Two power series are equal for
all real numbers if and only if they are equal coefficient by coefficient (since coefficients are
computed using the derivatives at 0). So equality for real numbers means equality for complex
numbers. In particular, "™ = (¢*)", from which we deduce the de Moivre’s formula

cosnx + isinnx = (cosx + isinx)".

We present an application of the de Moivre formula that we found in Exercises and
Problems in Algebraby C. Nastdsescu, C. Nitd, M. Brandiburu, and D. Joita (Editura Didactica
si Pedagogicd, Bucharest, 1983).

Example. Prove the identity

(-0-) it

Solution. Let &1, &, ..., & be the kth roots of unity, that is, &; = cos ’” + isin 2’”,] =
1,2,..., k. The sum

el t+e+--+e

is equal to k if k divides s, and to O if £ does not divide s. We have

]Z:(l + )" ZZ(;(Z) ,-Z:S; —kZ(/ )

Since ' _ .
l+¢ = 2cos]% (COS]% + isin%) ,
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it follows from the de Moivre formula that

Z(l +¢&)' = 22”005 — (cos%-l—zsin%).

Therefore,

n n n _2 n] nkm . E
(O)+<k)+<2k) Zcos ( 0s — X + isin X )

The left-hand side is real, so we can ignore the imaginary part and obtain the identity from
the statement. O

And now a problem given at an Indian Team Selection Test for the International Mathe-
matical Olympiad in 2005, proposed by the first author of the book.

Example. For real numbers a, b, ¢, d not all equal to zero, letf : R — R,
f(x) =a—+ bcos2x + csinSx + d cos 8x.

Suppose that f(t) = 4a for some real number 7. Prove that there exists a real number s such
that f(s) < 0.

Solution. Let g(x) = be*™ — ice®™ 4 de®™. Then f(x) = a + Re g(x). Note that

27 4 ) )
g0 +¢ (x * ?) +8 (x - ?) = g()(1 + & 4 M%) =

Therefore,
2 4
f(x)+f(x+?) +f(x+?) = 3a.

If a < 0, then s = ¢ would work. If a = 0, then for some x one of the terms of the above sum
is negative. This is because f(x) is not identically zero, since its Fourier series is not trivial.
If a > 0, substituting x = ¢ in the identity deduced above and using the fact that f(¢) = 4a,

we obtain
2 4
f(l+—) +f(t+?)=—a<0.

Hence either f (1 + Z£) or f (¢ + %) is negative. The problem is solved. O

781. Prove the identity

1+itant ”_ 1 4+ itannt
l—itant) 1 —itannt’

782. Prove the identity



783.

784.

78S.

786.

787.
788.

789.
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Compute the sum

n n n
CcoS X + cos2x + -+ COS nX.
()eor+(3) (-)

Find the Taylor series expansion at O of the function
f(x) = " cos(xsin6),

where 6 is a parameter.

Let 71, 22, z3 be complex numbers of the same absolute value, none of which is real and
all distinct. Prove that if z; + 2023, 20 + 2321 and z3 + 7127 are all real, then z;20z3 = 1.

Let n be an odd positive integer and let 6 be a real number such that % is irrational. Set
a; = tan (9 + ]%), k=1,2,...,n. Prove that

at+a+---+ay
aap - --dy

is an integer and determine its value.

Find (cos ) (cos 2a) (cos 3&) - - - (cos 999«) with o = %.

For positive integers n define F(n) = x" sin(nA) + y" sin(nB) + 7" sin(nC), where x,
v, z, A, B, C are real numbers and A + B 4+ C = km for some integer k. Prove that if
F(1) = F(2) =0, then F(n) = 0 for all positive integers n.

The continuous real-valued function ¢ (¢) is defined for + > 0 and is absolutely inte-
grable on every bounded interval. Define

(0.¢] oo
P= / e~ gs and Q = / e AHIO O gy,
0 0

Prove that
|4P* — 20| < 3,

with equality if and only if ¢ (¢) is constant.

4.2.3 Trigonometric Substitutions

The fact that the circle x?+y? = 1 can be parametrized by trigonometric functions as x = cos ¢
and y = sin ¢ gives rise to the standard substitution x = a cos ¢ (or x = a sin ¢) in expressions of
the form v/a? — x2. Our purpose is to emphasize less standard substitutions, usually suggested
by the similarity between an algebraic expression and a trigonometric formula. Such is the
case with the following problem from the 61st W.L. Putnam Mathematical Competition, 2000.

Example. Letf : [—1, 1] — R be a continuous function such that f(2x> — 1) = 2xf(x) for
all x € [—1, 1]. Show that f is identically equal to zero.
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Solution. Here the expression 2x> — 1 should remind us of the trigonometric formula 2 cos? t —
1 = cos 2t, suggesting the substitution x = cost, ¢ € [0, w]. The functional equation from
the statement becomes f (cos 2¢) = 2 cos tf (cost).

First, note that setting x = 0 and x = 1, we obtain f (1) = f(—1) = 0. Now let us define
g:R—->R, g(r) = fleost) “Then for any ¢ not a multiple of =,

sint

fQcos’t—1)  2costf(cost)  f(cost)
sin(2t) ~ 2sinfcost  sint

g2 = g().

Also, g(t + 2m) = g(¢). In particular, for any integers »n and k,
niw
g (1 * ?) = g2 +2nm) = g @) = g (D).
Because f is continuous, g is continuous everywhere except at multiples of 7. The set

{1 + ';—’k’ | n,k € Z} is dense on the real axis, and so g must be constant on its domain.

Then f(cos?) = csint for some constant ¢ and ¢ in (0, ), i.e., f(x) = c+/1 — x? for all
x € (—1, 1). It follows that f is an even function. But then in the equation from the statement
f(2x? — 1) = 2xf (x) the left-hand side is an even function while the right-hand side is an odd
function. This can happen only if both sides are identically zero. Therefore, f(x) = O for
x € [—1, 1] is the only solution to the functional equation. O

We continue with a problem that was proposed by Belgium for the 26th International
Mathematical Olympiad in 1985.

Example. Let x,y, z be real numbers such that x + y 4+ z = xyz. Prove that
x(1=y)(1 =22 +y(1 =21 —x%) + z2(1 — x> (1 — y?) = 4xyz.

Solution. The conclusion is immediate if xyz = 0, so we may assume that x,y,z # 0.
Dividing through by 4xyz we transform the desired equality into

This, along with the condition from the statement, makes us think about the substitutions
x = tanA, y = tanB, z = tan C, where A, B, C are the angles of a triangle. Using the
double-angle formula

1 —tan’u 1

= = cot2u
2tanu tan 2u

we further transform the equality into
cot2Bcot 2C 4 cot 2C cot 2A + cot2Acot 2B = 1.
But this is equivalent to
tan 2A + tan 2B + tan 2C = tan 2A tan 2B tan 2C,

which follows from tan(2A + 2B 4+ 2C) = tan 2w = 0. ]
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And now the problems.

790.

791.
792.

793.

794.

795.

796.

797.

798.

Leta, b, c € [0, 1]. Prove that

Vabe +/ (1 —a)1 —b)(1 —c¢) < 1.

Solve the equation x*> — 3x = +/x + 2 in real numbers.
Find the maximum value of

S=1—x)T—y)+ 1A =-x)(—y)
if x? 4+ x3 = y? + y3 = ¢?, where c is some positive number.
Prove for all real numbers a, b, ¢ the inequality

la — b| - la — c| |b — c|
VI+aV1+02 ~ J1T+3V1+3 JT+02/1+

Let a, b, c be real numbers. Prove that
(ab + be + ca—1)? < (@ + D(B* + D (S + 1).

Prove that

X 343
PR S L
VI+x2 J1+yr JT+27 2

if the positive real numbers x, y, z satisfy x + y + z = xyz.

Prove that
X y z 3 ﬁ

= >
1—)62—+_1—y2 1—-z227 2
if0<x,y,z<landxy+yz+xz=1.

Solve the system of equations

(o)

Xy +yz+zx =
Solve the following system of equations in real numbers:
3x —
X=y _ 2
x — 3y
3y—z —
y—3z
3z—x

=z
z—3x

251
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799.

800.

801.

802.

803.
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Let ag = /2, by = 2, and

2b,
)
2+ 4+ 12

(a) Prove that the sequences (a,), and (b,), are decreasing and converge to zero.

(b) Prove that the sequence (2"a,), is increasing, the sequence (2"b,), is decreasing,
and these two sequences converge to the same limit.

(c) Prove there is a positive constant C such that one has 0 < b, — a, < 8% for all n.

py =2 — /4 — a2

n’

bn+1 =

Let o be the greatest positive root of the equation
¥ =3x*+1=0.
Show that both [a'7® | and |a!%%®] are divisible by 17.
Two real sequences xi, x2, . .., and y, y», ... are defined in the following way:

Yn

Y+l = T 7——>
T+

.X1=y1=\/§, Xpp1 = Xp + l+-x%a forn > 1.

Prove that 2 < x,,y, < 3 foralln > 1.

1
Leta, b, c be real numbers different from j:%. Prove that the equality abc = a+b+c
holds only if
3a—a® 3b—-0b 3c-¢? . 3a —a’ +3b—b3 n 3c—¢?
3:2—1 32—1 3c2—1 3a®2—1 302—1 3c2-1

Leta, b, ¢ > 0. Find all triples (x, y, z) of positive real numbers such that

xX+y+tz=a+b+c
a’x + b*y + ¢z + dabce = 4xyz.

The parametrization of the hyperbola x> — y*> = 1 by x = cosh ¢, y = sinh ¢ gives rise to
the hyperbolic substitution x = a cosh 7 in expressions containing ~/a> — 1. We illustrate this
with an example by the second author.

Example. Leta, = a, = 97 and

i1 = Gyt /(@ — D@, — 1), forn > L.

Prove that

(a) 2+ 2a, is a perfect square;
(b) 2+ /2 + 2a, is a perfect square.
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Solution. We are led to the substitution @, = cosht, for some number ¢, (which for the
moment might be complex). The recurrence relation becomes

cosht,,1 = a,+1 = cosht,cosht,_; + sinht, sinht, | = cosh(t, + 1,_1).

We deduce that the numbers ¢, satisfy ¢y = ¢, and t,.1 = t, + t,_; (in particular they
are all real). And so t, = F,ty, where (F),), is the Fibonacci sequence. Consequently,
a, = cosh(F,ty),n > 1.

Using the identity 2(cosh #)?> — 1 = cosh 2, we obtain

2
1
24 2a, = (ZCosthEO) .

The recurrence relation
2 cosh(k + 1)t = (2cosht)(2 cosh kt) — 2 cosh(k — 1)t

allows us to prove inductively that 2 cosh k%o is an integer once we show that 2 cosh ’70 is an
integer. It would then follow that 2 cosh F n%" is an integer as well. And indeed 2 cosh %0 =
V2 + 2a, = 14. This completes the proof of part (a).

To prove (b), we obtain in the same manner

2
11
242+ 2a, = (2 costhZO) ,

and again we have to prove that ZCOSh%O is an integer. We compute 2<:osh%0 =

V1 + 42+ 2a, = +/2 + 14 = 4. The conclusion follows. O

804. Compute the integral

/ dx
X+ =1

805. Letn > 1 be an integer. Prove that there is no irrational number a such that the number

\y/a—i-\/az—l—k\’/a—\/az—l

is rational.

4.2.4 Telescopic Sums and Products in Trigonometry

The philosophy of telescopic sums and products in trigonometry is the same as in the general
case, just that here we have more identities at hand. Let us take a look at a slightly modified
version of an identity of C.A. Laisant.

Example. Prove that



254 4 Geometry and Trigonometry

Solution. From the identity cos 3x = 4 cos’ x — 3 cosx, we obtain

1
cos’ x = Z(COS 3x 4+ 3 cosx).

Then

For a = 37"m, we obtain the identity from the statement.
Test your skills against the following problems.
806. Prove that
27sin” 9° 4 9sin® 27° + 3sin’ 81° + sin’ 243° = 20sin 9°.

807. Prove that
1 3 9

cot9° — 2tan9° + cot27° — 3tan27° + cot81° — 3tan 81°
27
= 10tan9°.
+ cot 243° — 3tan 243° an
808. Prove that
1 1 1 1

sind5°sind6e | sma7osindse T Sin133°sin134°  simle

809. Obtain explicit values for the following series:

o0
(a) Zarctan T
nO:ol 8n
b arctan
®) ; 4—2n2+5
810. Forn > 0 let
o oAn+1—4n
U, = arcsin —————.
Jn+29n+ 1

Prove that the series
S=uy+u+u+---4+u,+ ...

is convergent and find its limit.
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Now we turn to telescopic products.

Example. Prove that

o0

1
[[——— =t
1 —tan“ 2"

n=1

Solution. The solution is based on the identity

2tanx
tan 2x = —
1 —tan“x

Using it we can write

N n
1 tan 2" t! 2—N
| | —— = | | = tan 1.
1 —tan?2—™" 2tan 2" tan2—N

n=1 n=1

tan x

Since lim == 1, when letting N — oo this become tan 1, as desired. O

811.

812.

813.

814.

815.

816.

x—0

In a circle of radius 1 a square is inscribed. A circle is inscribed in the square and
then a regular octagon in the circle. The procedure continues, doubling each time the
number of sides of the polygon. Find the limit of the lengths of the radii of the circles.

1 cos61° | cos 62° 1 cos 119° _1
cos 1° cos 2° cos59 )

Evaluate the product

Prove that

(1 —cot1°)(1 —cot2°)--- (1 — cotd4®).
Compute the product
(v/3 + tan 1°)(+v/3 + tan 2°) - - - (+/3 + tan 29°).

Prove the identities

1 T 1 3n 1 O 1

@ (z—cos=)J{z—cos—)|z—cos— ) =—=
2 7 2 7 2 7 8

) 1 n T 1 n 3n 1 n O 1 n 2T 1
~4cos —)|z+cos—)|z+cos—)|z+cos—)=—.
2 20) \2 20) \2 20) \2 *720 16

Prove the identities
24
(@) []sec@)® = —-2*tan2°,
n=1
25
(b) H(z cos(2")° — sec(2")°) = —1.

n=2
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Number Theory

This chapter on number theory is truly elementary, although its problems are far from easy.
(In fact, here, as elsewhere in the book, we tried to follow Felix Klein’s advice: “Don’t ever
be absolutely boring”." We restricted ourselves to some basic facts about residue classes and
divisibility: Fermat’s little theorem and its generalization due to Euler, Wilson’s theorem, the
Chinese remainder theorem, and Polignac’s formula, with just a short incursion into algebraic
number theory. From all Diophantine equations we discuss linear equations in two variables
and two types of quadratic equations: the Pythagorean equation and Pell’s equation.

But first, three sections for which not much background is necessary.

5.1 Integer-Valued Sequences and Functions

5.1.1 Some General Problems

Here are some problems, not necessarily straightforward, that use only the basic properties of
integers.
Example. Find all functions f : {0, 1,2,...} — {0, 1,2, ...} with the property that for every
m,n >0,
2f(m* +n) = (f(m)* + (f(m)*.
Solution. The substitution m = n = 0 yields
2£(0°+0%) = (£(0))* + (f(0))*,
and this gives f(0)?> = f(0), hence f(0) = 0or f(0) = 1.
We pursue the track of f(0) = 0 first. We have
2117 +0%) = (fF(1))* + (F(0),
so02f(1) = f(1)? and hence f(1) = 0 or f(1) = 2. Let us see what happens if f(1) = 2,
since this is the most interesting situation. We find immediately

2fQ) =2f12+ 1) = (f())* + (f(1))* =8,

I'Seien Sie niemals absolut langweilig.
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so f(2) =4, and then
2f@) =2f(2°+0%) = (f(2)* + (f(0)* = 16,

2f(5) =22 +1%) = (f2)* + (f(1)* =20,
2£(8) =2 (22 +2%) = (f(2))* + (f(2))* = 32.
So f(4) =8, f(5) =10, f(8) = 16. In fact, f(n) = 2n for n < 10, but as we will see

below, the proof is more involved. Indeed,

100 = (F(5)* + (f(0)> =2f(5) =2f3* +4) = (f3)* + (f¥)*
= (f(3))* + 64,

hence f(3) = 6. Then immediately
2£(9) =2£(3*+0%) = (f(3)* + (f(0)* = 36,

27(10) = 2 (3% + 13) = (f(3)* + (f(1))> = 40,
so f(9) =18, f(10) = 20.

Applying an idea used before, we have

400 = (f(10))* + (f(0))* = 2£(10%) =2 (6> + 8%) = (f(6))> + (f(8))*
= (f(6))* + 256,

from which we obtain f(6) = 12. For f(7) we use the fact that 72 + 1> = 5% 4 5% and the
equality
(F(D)>+ (f(1))* = (f5)* + (f(6))

to obtain f(7) = 14.
We want to prove that f(n) = 2n for n > 10 using strong induction. The argument is
based on the identities

(5k + 1)2 4+ 2% = 4k + 2)> + 3k — 1)?,

(5k +2)> + 12 = (4k + 1)* + 3k +2)°,
(5k 4 3)> + 1> = (dk +3)* + 3k + 1),
(5k 4+ 4)> + 2% = (dk +2)> + 3k + 4)?,
(5k 4 5)% + 0> = (4k +4)* + (3k + 3).

Note that if £ > 2, then the first term on the left is strictly greater then any of the two terms
on the right, and this makes the induction possible. Assume that f(m) = 2m for m < n and
let us prove f(n) = 2n. Letn = 5k + j, 1 < j <5, and use the corresponding identity to
write n” + m% = m% + m%, where m, m,, ms are positive integers less than n. We then have

(f))* + (f(m)> =2f (> +m7) =2f(m3 +m3) = (f(m2)*> + (f(m3))*.
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This then gives
(f () = 2m2)* + 2m3)* — (2m)* = 4(m5 +m3 — m7) = 4n*.

Hence f(n) = 2n, completing the inductive argument. And indeed, this function satisfies the
equation from the statement.

If we start with the assumption f(1) = 0, the exact same reasoning applied mutatis
mutandis shows that f(n) = 0, n > 0. And the story repeats if f(0) = 1, giving f(n) = 1,
n > 0. Thus the functional equation has three solutions: f(n) = 2n, n > 0, and the constant
solutions f(n) =0,n > 0,and f(n) =1,n > 0. ]

With the additional hypothesis f(m?) > f(n?) if m > n, this problem appeared at the
1998 Korean Mathematical Olympiad. The solution presented above was communicated to
us by B.J. Venkatachala.

817. Let k be a positive integer. The sequence (a,,), is defined by a; = 1, and forn > 2, a,
is the nth positive integer greater than a,_; that is congruent to n modulo k. Find a, in
closed form.

818. Three infinite arithmetic progressions are given, whose terms are positive integers.
Assuming that each of the numbers 1, 2, 3, 4, 5, 6, 7, 8 occurs in at least one of these
progressions, show that 1980 necessarily occurs in one of them.

819. Find all functions f : N — N satisfying
fm)+2f(f(n))=3n+5, foralln € N.
820. Find all functions f : Z — Z with the property that
2f(f(x)) —3f(x)+x=0, forallx € Z.
821. Prove that there exists no bijection f : N — N such that
f(mn) = f(m) + f(n) 43 f(m)f(n),

forall m,n > 1.

822. Show that there does not exist a sequence (a,),>; of positive integers such that
an—1 < (aps+1 — a,)’* < a,, foralln > 2.

823. Determine all functions f : Z — Z satisfying

[+ +2) = (f@) + () + (f()°, forallx, y, z € Z.
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5.1.2 Fermat’s Infinite Descent Principle

Fermat’s infinite descent principle states that there are no strictly decreasing infinite sequences
of positive integers. Alternatively, any decreasing sequence of positive integers becomes
stationary. This is a corollary of the fundamental property of the set of positive integers that
every subset has a smallest element. To better understand this principle, let us apply it to an
easy example.

Example. Ateach point of integer coordinates in the plane is written a positive integer number
such that each of these numbers is the arithmetic mean of its four neighbors. Prove that all
the numbers are equal.

Solution. The solution is an application of the maximum modulus principle. For n > 1,
consider the square of side 2n centered at the origin. Among the numbers covered by it, the
smallest must lie on its perimeter. Let this minimum be m(n). If it is also attained in the
interior of the square, then the four neighbors of that interior point must be equal, and step by
step we show that all numbers inside that square are equal. Hence there are two possibilities.

Either m(1) > m(2) > m(3) > --- or m(n) = m(n + 1) for infinitely many n. The former
case is impossible, since the m(n)’s are positive integers; the latter case implies that all the
numbers are equal. O]

We find even more spectacular this problem from the 2004 USA Mathematical Olympiad.

Example. Suppose that ay, ..., a, are integers whose greatest common divisor is 1. Let S be
a set of integers with the following properties:

(1) Fori =1,...,n,a; € S.
(ii) Fori, j =1, ..., n (not necessarily distinct), a; —a; € S.

(iii) For any integers x,y € S,ifx +y € S,thenx —y € S.

Prove that S must equal the set of all integers.

Solution. This problem was submitted by K. Kedlaya and L. Ng. The solution below was
discovered by M. Ince and earned him the Clay prize.

First thing, note that if by, by, ..., b, are some integers that generate S and satisfy the
three conditions from the statement, then b; — 2b; and 2b; — b; are also in S for any indices i
and j. Indeed, since b;, b;, and b; — b; are in S, by (iii) we have that b; —2b; € §. Moreover,
fori = j in (ii) we find that 0 = b; — b; € S. Hence applying (iii) to x € S and O we have
that —x € § as well, and in particular 2b; — b; € S.

An n-tuple (by, by, ..., b,) as above can be substituted by (by, b, — by, ..., b, — by),
which again generates S and, by what we just proved, satisfies (i), (ii), and (iii). Applying
this step to (|ai|, |az|, ..., |a,|) and assuming that |a,| is the smallest of these numbers, we
obtain another n-tuple the sum of whose entries is smaller. Because we cannot have an infinite
descent, we eventually reach an n-tuple with the first entry equal to 0. In the process we did
not change the greatest common divisor of the entries. Ignoring the zero entries, we can repeat
the procedure until there is only one nonzero number left. This number must be 1.

From the fact that 0, 1 € S and then also —1 € §, by applying (iii)tox =1,y = —1 we
find that 2 € S, and inductively we find that all positive, and also all negative, integers are
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in S. We conclude that S = Z. As . Kaplansky said, “An elegant proof hits you between
your eyes with joy”. g

824. Show that no positive integers x, y, z can satisfy the equation
x? 4+ 10y? = 322
825. Prove that the system of equations
x2 4 5y% =22,

Syt =12
does not admit nontrivial integer solutions.

826. Show that the equation
x2—y*=2xyz

has no solutions x, y, z in the set of positive integers.
827. Prove that there is no infinite arithmetic progression whose terms are all perfect squares.

828. Let f be a bijection of the set of positive integers. Prove that there exist positive
integers a < a +d < a + 2d such that f(a) < f(a+d) < f(a+ 2d).

829. Prove that for no integer n > 1 does n divide 2" — 1.

830. Find all pairs of positive integers (a, b) with the property that ab 4+ a + b divides
a’*+b*+1.

831. Letx, y, z be positive integers such that xy —z> = 1. Prove that there exist nonnegative
integers a, b, c, d such that

x =a’+b>, y:c2+d2, z=ac+bd.

5.1.3 The Greatest Integer Function

The greatest integer function associates to a number x the greatest integer less than or equal
to x. The standard notation is | x]. Thus [2] = 2, [3.2] = 3, |—2.1] = —3. This being said,
let us start with the examples.

Beatty’s theorem. Let o and B be two positive irrational numbers satisfying é + % = 1.
Then the sequences |an| and | Bn] are strictly increasing and determine a partition of the
set of positive integers into two disjoint sets.

Proof. In other words, each positive integer shows up in exactly one of the two sequences.
Let us first prove the following result.

Lemma. If x,,n > 1, is an increasing sequence of positive integers with the property that for
every n, the number of indices m such that x,, < n is equal ton — 1, then x,, = n for all n.
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Proof. We do the proof by induction. The base case is obvious: because the sequence is
increasing, the only n for which x,, < 2isn = 1. Now letus assume thatx; = 1, x, =2, ...,
Xn—1 = n — 1. From the hypothesis it also follows that there are no other indices m for which
Xm < n. And because there is exactly one more term of the sequence that is less than n + 1,
this term must be x,, and it is equal to n. O

Returning to the problem, let us write all numbers of the form |an] and [Bn] in an
increasing sequence y,. For every n there are exactly L(%J numbers of the form |k« |, and

L%J numbers of the form kB that are strictly less than n (here we used the fact that o and

B are irrational). We have
] n+n 1<LnJ+ n n+n
n—1l=|—-—+—-1|- — — | <—-—+—-=n.
a B T La B oa B

Hence LgJ + L%J = n — 1, which shows that the sequence y, satisfies the condition of

the lemma. It follows that this sequence consists of all positive integers written in strictly
increasing order. Hence the conclusion. U

Our second example is a general identity discovered by the second author and D. Andrica.
Note the similarity with Young’s inequality for integrals (problem 578).

Theorem. Let a < b and ¢ < d be positive real numbers and let [ : [a,b] — [c,d] be a
continuous, bijective, and increasing function. Then

DRI+ DL R —n(Gy) = |b]1d] — a@)a(c),

a<k<b c<k<d

where k is an integer, n(G y) is the number of points with integer coordinates on the graph of
f,and a : R — R is defined by

x| ifxeR\Z,
a(x) =10 if x =0,
x—1if x € Z\ {0}

Proof. The proof is by counting. For aregion M of the plane, we denote by n (M) the number
of points with nonnegative integer coordinates in M. For our theorem, consider the sets

My={(x,y) eR*|a<x=<b 0<y=<f(x)
My={x,y)eR’|c<y=<d 0<x=< [
Ms;={(x,y)eR*|0<x<b, 0<y<d),
My={(x,y)eR*|0<x<a, 0<y<c}

Then
nM) = D LfK)], n(My) = D> Lf K],

a<k<b c<k<d

n(Msz) = |b]ld], n(My) = aa)a(c).
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By the inclusion-exclusion principle,
n(M1 0] M2) = I’l(M]) + I’l(Mz) - n(M1 N Mz).
Note that n(M; N M,) = n(G ) and N(M; U M>) = n(M3) — n(M,). The identity follows.

832. For a positive integer n and a real number x, prove the identity
1 1
x]+|x+—-|+ -+ |x+—| = |nx].
n n—1

833. For a positive integer n and a real number x, compute the sum

217

0<i<j<n J

834. Find all pairs of real numbers x, y that satisfy
2] (Lx] + D(xlx +3)(Lx] +4) = [y

835. Prove that for every positive integer n,

Lﬁj:{ﬁ+ﬁ+i/mj'

836. For what real numbers x > 1 is it true that

1|

837. Express Z L\/EJ in terms of n and a = | /n|.
k=1

838. Prove the identity

n(n+1)
ZZ: L—1+«/1+8kJ nn+2)
= ,n=
2 3

k=1

839. Find all pairs of real numbers (a, b) such that a|bn] = blan] for all positive
integers .

840. Show thatif x > 1 and x ¢ Z, then

1 1 7
m+m>§,

where {x} is the fractional part of x ({x} = x — |x]).
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841. For p and g coprime positive integers prove the reciprocity law

LT [ B ) 55

842. Prove that for any real number x and for any positive integer n,

), l2x)  Bx) )

> = - -
lnxlz ==+ = 3 n

843. Does there exist a strictly increasing function f : N — N such that f(1) = 2 and
f(f(n)) = f(n) +n for all n?

844. Suppose that the strictly increasing functions f, g : N — oo partition N into two
disjoint sets and satisfy

g(n) = f(f(kn)) +1, foralln > 1,

for some fixed positive integer k. Prove that f and g are unique with this property and
find explicit formulas for them.

5.2 Arithmetic

5.2.1 Factorization and Divisibility

There isn’t much to say here. An integer d divides another integer n if there is an integer
d’ such that n = dd’. In this case d is called a divisor of n. We denote by gcd(a, b) the
greatest common divisor of a and b. For any positive integers a and b, Euclid’s algorithm
yields integers x and y such that ax — by = gcd(a, b). Two numbers are called coprime, or
relatively prime, if their greatest common divisor is 1. For coprime numbers a and b there
exist integers x and y such that ax — by = 1.

We begin with a problem from the Soviet Union Mathematical Olympiad for University
Students in 1976.

Example. Prove that there is no polynomial with integer coefficients P (x) with the property
that P(7) = 5 and P(15) =9.

Solution. Assume that such a polynomial P(x) = a,x" + a,_ x4+ g does exist.
Then P(7) = a,7" + @, 7' + -+ + ap and P(15) = a,15" + a,_115""! + --- + ay.
Subtracting, we obtain

4=P15 - PT)=a,(15" =7 +a, (15" = 7" D+ 4 a;(15=17).
Since for any k, 15 — 7* is divisible by 15 — 7 = 8, it follows that P(15) — P(7) = 4 itself

is divisible by 8, a contradiction. Hence such a polynomial does not exist. U
The second problem was given at the Asia-Pacific Mathematical Olympiad in 1998.
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Example. Show that for any positive integers a and b, the product (36a + b)(a + 36b) cannot
be a power of 2.

Solution. Assume that (36a + b)(a + 36b) is a power of 2 for some integers a and b. Without
loss of generality, we may assume that a and b are coprime and a < b. Let 36a + b = 2™ and
a + 36b = 2". Adding and subtracting, we obtain 37(a + b) = 2" (2" 4 1), respectively
35(a —b) =2"(2""™ —1). It follows that both a + b and a — b are divisible by 2m. This can
happen only if both a and b are divisible by 2”~!. Our assumption that @ and b are coprime
implies that m = 1. But then 36a + b = 2, which is impossible. Hence the conclusion. []

845. Find the integers n for which (n? — 3n? +4)/(2n — 1) is an integer.

846. Prove that in the product P = 1!-2!-3!...100! one of the factors can be erased so
that the remaining product is a perfect square.

847. The sequence ay, ay, as, ... of positive integers satisfies gcd(a;, aj) = ged(i, j) for
i # j. Prove that q; =i for alli.

848. Let n, a, b be positive integers. Prove that
ged(n® — 1, nb — 1) = peed@b) _q,

849. Let a and b be positive integers. Prove that the greatest common divisor of 2 + 1 and
20 + 1 divides 28¢d@b) 4 1,

850. Fix a positive integer k and define the sequence (a,), by a; = k + 1 and a,1; =
a? — ka, + k for n > 1. Prove that for any distinct positive integers m and n the
numbers a,, and a, are coprime.

851. Leta, b, c,d, e, and f be positive integers. Suppose that S =a+b+c+d+e+ f
divides both abc +def and ab + bc + ca —de — ef — fd. Prove that S is composite.

852. Let n be an integer greater than 2. Prove that n(n — 1)* + 1 is the product of two
integers greater than 1.
853. Determine the functions f : {0,1,2,...} — {0, 1,2, ...} satisfying

(i) (f2n+1))> = (f(2n))* = 6f(n) + 1 and
(i) f(2n) = f(n) foralln > 0.

5.2.2 Prime Numbers

An integer greater than 1 is called prime if it has no other divisors than 1 and the number
itself. Equivalently, a number is prime if whenever it divides a product it divides one of the
factors. Any integer greater than 1 can be written as a product of primes in a unique way up
to a permutation of the factors. This is known as the Fundamental theorem of arithmetic.

Euclid’s theorem. There are infinitely many prime numbers.

Proof. From the more than one hundred proofs of this theorem we selected the fascinating
topological proof given in 1955 by H. Furstenberg. It uses the concept of topology, which is
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an abstraction, in the spirit of Bourbaki, of the properties of open sets (i.e. unions of open
intervals) on the real axis. By definition, a topology on a set X is a collection 7 of sets
satisfying
(i) 9, XeT;
(ii) for any family (U;);¢; of sets from 7, the union U;¢; U; is also in 7
(iii) for any Uy, U, ..., U, in 7, the intersection Uy N U, N ... N U, isin 7.
The elements of 7 are called open sets; their complements are called closed sets.
Furstenberg’s idea was to introduce a topology on Z, namely the smallest topology in
which any set consisting of all terms of a nonconstant arithmetic progression is open. As an
example, in this topology both the set of odd integers and the set of even integers are open.
Because the intersection of two arithmetic progressions is an arithmetic progression, the open
sets of 7 are precisely the unions of arithmetic progressions. In particular, any open set is

either infinite or empty.
If we define

Agg=1{..,a—2d,a—d,a,a+d,a+2d,...}, acZ,d >0,

then A, 4 is open by hypothesis, but it is also closed because it is the complement of the open
set Agr1.aUAsi24U---UAi1q-14. Hence Z \ A, 4 is open.
Now let us assume that only finitely many primes exist, say pi, p2, ..., pn. Then

A()’pl U AO,PZ U e U AO,pn = Z \ {_1, 1}.
This union of open sets is the complement of the open set
(Z\ Ao,p) N(ZN Ag,p) M-+ V(LN Ao,p,);

hence it is closed. The complement of this closed set, namely {—1, 1}, must therefore be

open. We have reached a contradiction because this set is neither empty nor infinite. Hence

our assumption was false, and so there are infinitely many primes. U
Let us continue with the examples.

Example. Prove that for all positive integers n, the number
33 4+ 1

is the product of at least 2n 4 1 not necessarily distinct primes.

Solution. We induct on n. The statement is clearly true if n = 1. Because
33n+l + 1 — (3371 + 1)(32.371 _ 33)1 + 1)’

it suffices to prove that 3*3" — 3% 4 1 is composite for all n > 1. But this follows from the
fact that

n n n n n ~n 2
2 3 11 =3 +1)2-3.3" = (3 +1)2—(3%)
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is the product of two integers greater than 1, namely,

341

3 4 1-3"" and 3¥ 4+1-3"7",

This completes the induction. O
We proceed with a problem from the 35th International Mathematical Olympiad, 1994,
followed by several others that are left to the reader.

Example. Prove that there exists a set A of positive integers with the property that for any
infinite set S of primes, there exist two positive integers m € A and n ¢ A each of which is a
product of k distinct elements of S for some k > 2.

Solution. The proof is constructive. Let p; < p, < --- < p, < --- be the increasing
sequence of all prime numbers. Define A to be the set of numbers of the form p;, p;, - - - pi,,
where i; < i, <--- <iyand k = p;,. Forexample,3-5-7€ Aand5-7-11-13-17 € A,
but5-7 ¢ A.

Let us show that A satisfies the desired condition. Consider an infinite set of prime
numbers, say g1 < g < --- < ¢, < --- Takem = qoq3---q,, and n = g3q4 - - - q4,+1. Then
m € A, while n ¢ A because g, > 3 and so ¢» + 1 # gs. O

854. Prove that there are infinitely many prime numbers of the form 4m + 3, where m > 0
is an integer.

855. Let k be a positive integer such that the number p = 3k + 1 is prime and let
1 n 1 P 1 m
1.2 3.4 k—12k n
for some coprime positive integers m and n. Prove that p divides m.

856. Solve in positive integers the equation

xx+y — yy—x .

857. Show that each positive integer can be written as the difference of two positive integers
having the same number of prime factors.

858. Find all composite positive integers n for which it is possible to arrange all divisors
of n that are greater than 1 in a circle such that no two adjacent divisors are relatively
prime.

859. Is it possible to place 1995 different positive integers around a circle so that for any
two adjacent numbers, the ratio of the greater to the smaller is a prime?

860. Let p be a prime number. Prove that there are infinitely many multiples of p whose
last ten digits are all distinct.

861. Let A be the set of positive integers representable in the form a? + 2b? for integers a, b
with b # 0. Show that if p> € A for a prime p, then p € A.
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862. The positive divisors of an integern > lare 1 = d; < dy, < --- < dy = n. Let
s = didy, + drdsy + - - - + dj_1dy. Prove that s < n? and find all n for which s divides

2

n-.

863. Prove that there exist functions f, g : {0,1,2,...} x {0,1,2,...} — {0,1,2,...}
with the property that an odd number n > 1 is prime if and only if there do not exist
nonnegative integers a and b such thatn = f(a, b) — g(a, b).

864. Letn > 2 be an integer. Prove that if K+k+nisa prime number for all 0 < k < \/? s
thenk?+k+nisa prime number forall 0 < k <n — 2.

The following formula is sometimes attributed to Legendre.

Polignac’s formula. If p is a prime number and n a positive integer, then the exponent of p

in n! is given by
n n n
HRENEI
p p p

Proof. Each multiple of p between 1 and n contributes a factor of p to n!. There are [n/p]
such factors. But the multiples of p? contribute yet another factor of p, so one should add
|n/p?|. And then come the multiples of p* and so on. O

Example. Let m be an integer greater than 1. Prove that the product of m consecutive terms
in an arithmetic progression is divisible by m! if the ratio of the progression is coprime to .

Solution. Let p be a prime that divides n!. The exponent of p in n! is given by Polignac’s

formula. On the other hand, in the product a(a+r)(a+2r) - - - (a4 (m —1)r) of m consecutive

terms in a progression of ratio r, with gcd(r, m) = 1, at least terms are divisible by p’. It

follows that the power of p in this product is greater than or equal to the power of p in m!.

Because this holds true for any prime factor in m!, the conclusion follows. g
All problems below are based on Polignac’s formula.

865. Find all positive integers n such that n! ends in exactly 1000 zeros.
866. Prove that n! is not divisible by 2" for any positive integer n.

867. Show that for each positive integer n,

n! = Hlom(l, 2,...,n/il),
i=1

where Icm denotes the least common multiple.

ged(m, n) (n)
n m

is an integer for all pairs of integers n > m > 1.

868. Prove that the expression

869. Let k and n be integers with 0 < k < n?/4. Assume that k has no prime divisor greater
than n. Prove that n! is divisible by k.
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5.2.3 Modular Arithmetic

A positive integer n partitions the set of integers Z into n equivalence classes by the remainders
obtained on dividing by n. The remainders are called residues modulo n. We denote by Z,, =
{0,1,...,n — 1} the set of equivalence classes, indexed by their residues. Two numbers a
and b are said to be congruent modulo 7, which is written @ = b (mod n), if they give the
same remainder when divided by n, that is, if @ — b is divisible by n.

The ring structure of Z induces a ring structure on Z,,. The latter ring is more interesting,
since it has zero divisors whenever n is composite, and it has other invertible elements besides
+1. To make this precise, for any divisor d of n the product of d and n/d is zero. On the
other hand, the fundamental theorem of arithmetic, which states that whenever m and n are
coprime there exist integers a and b such that am — bn = 1, implies that any number coprime
to n has a multiplicative inverse modulo n. For a prime p, every nonzero element in Z, has
an inverse modulo p. This means that Z,, is a field. We also point out that the set of invertible
elements in Z,, is closed under multiplication; it is an Abelian group.

A well-known property that will be used in some of the problems below is that modulo 9,
a number is congruent to the sum of its digits. This is because the difference of the number
and the sum of its digits is equal to 9 times the tens digit plus 99 times the hundreds digit plus
999 times the thousands digit, and so on. Here is an elementary application of this fact.

Example. The number 2%° has 9 distinct digits. Without using a calculator, tell which digit is
missing.

Solution. As we have just observed, a number is congruent to the sum of its digits modulo 9.
Note that 0 + 1 +2 + - - - + 9 = 45, which is divisible by 9. On the other hand,

22 =23(—1)’ = -4 (mod 9).

So 2% is off by 4 from a multiple of 9. The missing digit is 4. t
We continue with a property of the harmonic series discovered by C. Pinzka.

Example. Let p > 3 be a prime number, and let

AL
ps 2 3 p’

the sum of the first p terms of the harmonic series. Prove that p? divides r — s.

Solution. The sum of the first p terms of the harmonic series can be written as

pt P p!
1 2 p
p! '
Because the denominator is p! and the numerator is not divisible by p, any common prime
divisor of the numerator and the denominator is less than p. Thus it suffices to prove the

pl P! p!
property for r = T 4+ —+---4+ —ands = (p — 1)!. Note that
p

2

(=D (p—D! (p—D!
}’—S—p( 1 + > +"'+ﬁ).
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We are left with showing that

(p—D!  (p—D! (p—D!
T A

is divisible by p?. This sum is equal to

Z (p— D _ < -1 Dt
k+p—k)——

So let us show that
p—

z (p—1)!
k(p —k)

M-

is an integer divisible by p. Note that if k~! denotes the inverse of k modulo p, then p — k!
is the inverse of p — k modulo p. Hence the residue classes of [k(p — k)]~! represent just a

permutation of the residue classes of k(p — k), k =1,2, ..., ”T_l Using this fact, we have
p-! p=l p=l
) (p 2 |
—1 k(p —K)] =(p -1 k(p—k
Zk( )kz (p—b1"'=( >kz_;(p )
Pt p—1 p+1
2 B e —— p
=—(p-DD K =—(p—1—2 2 =0 (mod p).
k—1 6
This completes the proof. U

We left the better problems as exercises.

870. Prove that among any three distinct integers we can find two, say a and b, such that the
number a*b — ab? is a multiple of 10.

871. Show that the number 20022°°? can be written as the sum of four perfect cubes, but not
as the sum of three perfect cubes.

872. The last four digits of a perfect square are equal. Prove that they are all equal to zero.

873. Solve in positive integers the equation
203 =145
874. Define the sequence (a,), recursively by a; = 2, a, = 5, and
a1 =2 — n®a, + 2+ n*)a,_; forn > 2.

Do there exist indices p, g, r such thata, - a, = a,?



875.

876.

877.

878.

879.

880.

5.2 Arithmetic 271

For some integer £ > 0, assume that an arithmetic progression an + b, n > 1, with a
and b positive integers, contains the kth power of an integer. Prove that for any integer
m > 0 there exist an infinite number of values of n for which an + b is the sum of m
kth powers of nonzero integers.

Given a positive integer n > 1000, add the residues of 2" modulo each of the numbers
1,2, 3,...,n. Prove that this sum is greater than 2n.

Prove that if n > 3 prime numbers form an arithmetic progression, then the common
difference of the progression is divisible by any prime number p < n.

Let P(x) = apx" 4@y 1x" " +---+ag and Q(x) = byx" + b, 1x" ' 4+ b be
two polynomials with each coefficient a; and b; equal to either 1 or 2002. Assuming
that P(x) divides Q(x), show that m + 1 is a divisor of n + 1.

Prove that if n is a positive integer that is divisible by at least two primes, then there
exists an n-gon with all angles equal and with side lengths the numbers 1,2, ...,n in
some order.

Find all prime numbers p having the property that when divided by every prime number
q < p yield a remainder that is a square-free integer.

5.2.4 Fermat’s Little Theorem

A useful tool for solving problems about prime numbers is a theorem due to P. Fermat.

Fermat’s little theorem. Let p be a prime number, and n a positive integer. Then

n” —n=0 (mod p).

Proof. We give a geometric proof discovered by J. Pedersen. Consider the set M of all
possible colorings of the vertices of a regular p-gon by n colors (see Figure 38). This set has
np elements. The group Z, acts on this set by rotations of angles 2"7”, k=0,1,...,p—1.

b

Figure 38

Consider the quotient space M /7, obtained by identifying colorings that become the same
through a rotation. We want to count the number of elements of M /Z,. For that we need to
understand the orbits of the action of the group, i.e., the equivalence classes of rotations under
this identification.
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The orbit of a monochromatic coloring has just one element: the coloring itself. There
are n such orbits.

What if the coloring is not monochromatic? We claim that in this case its orbit has exactly
p elements. Here is the place where the fact that p is prime comes into play. The additive
group Z, of residues modulo p is generated by any of its nonzero elements. Hence if the
coloring coincided with itself under a rotation of angle 2km/p for some 0 < k < p, then it
would coincide with itself under multiples of this rotation, hence under all rotations in Z,,.
But this is not possible, unless the coloring is monochromatic. This proves that rotations
produce distinct colorings, so the orbit has p elements. We deduce that the remaining n” — n
elements of M are grouped in (disjoint) equivalence classes each containing p elements. The

counting of orbits gives
n? —n

\M/Zp| =n+ ;
p

which shows that (n” — n)/p must be an integer. The theorem is proved. U
In particular, if n and p are coprime, then n”~! — 1 is divisible by p. However, this result
alone cannot be used as a primality test for p. For exam