
Superconformal Vertex Algebras
and Jacobi Forms

Jethro van Ekeren

Abstract We discuss the appearance of Jacobi automorphic forms in the theory of
superconformal vertex algebras, explaining it by way of supercurves and formal
geometry. We touch on some related topics such as Ramanujan’s differential
equations for Eisenstein series.
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1 Introduction

This paper is about the link between automorphic forms and infinite dimensional
algebras. It is primarily an exposition of joint work [13] of the author with R.
Heluani, which specifically relates certain automorphic forms on the group SL2.Z/Ë
Z

2 called Jacobi forms to vertex algebras equipped with an N D 2 structure.
In the broad sense this theory goes back to Kac and Peterson [16], who used the

Weyl-Kac character formula to express characters of integrable modules over affine
Kac-Moody algebras in terms of theta functions. Another perspective was adopted
by Zhu [27], who proved that characters of suitable conformal vertex algebras
are classical modular forms on the group SL2.Z/. Zhu proceeded by analysing
D-modules associated with the vertex algebra over families of elliptic curves,
establishing in particular a certain SL2.Z/-equivariance. We study vertex algebras
which admit the richer structure of N D 2 superconformal symmetry. These give
rise to D-modules over families of elliptic supercurves, and we show these to be
equivariant under a certain SL2.Z/ Ë Z

2-action.
The N D 2 superconformal symmetry algebra, which arose in theoretical

physics, is the Lie superalgebra bW1j1 with explicit basis and relations as in
Sect. 5. There is an associated family L.bW1j1/c of simple vertex algebras (see
Example 1) depending on an auxiliary parameter c called the central charge. For
generic c the representation theory of L.bW1j1/c is rather complicated. However
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for c.u/ D 3 � 6=u, where u 2 Z>2, it turns out that L.bW1j1/c.u/ has precisely
u.u � 1/=2 irreducible modules Lu. j; k/ which are parameterised by the set of pairs
. j; k/ 2 Z

2 where j>0, k>1 and j C k < u. There is an explicit formula for the
graded superdimensions of these modules too [17, 21], viz.

STrLu. j;k/ q
L0yJ0 D q

jk
u y

j�kC1
u P.u/

j;k =P.2/

1=2;1=2; (1)

where

P.u/
j;k D

1
Y

nD1

.1 � qu.n�1/CjCk/.1 � qun�j�k/.1 � qun/2

.1 � qun�jy/.1 � qu.n�1/Cjy�1/.1 � qun�ky�1/.1 � qu.n�1/Cky/
:

Now the normalised functions yc.u/=6 STrLu. j;k/ qL0yJ0 span a vector space which
turns out to be invariant under an action of the group SL2.Z/ Ë Z

2 (specifically the
weight 0 index c=6 Jacobi action (11)). In other words the span of the normalised
graded superdimensions is a vector valued Jacobi form. The question is to explain
this fact conceptually.

In [13] we showed that the picture outlined above is an instance a general
phenomenon. More precisely, for any vertex algebra equipped with an ‘N D 2

superconformal structure’ (of which L.bW1j1/c above is an example) the normalised
graded superdimensions satisfy SL2.Z/ Ë Z

2-invariant differential equations. The
key observations are the following:

1. Jacobi forms are essentially sections of vector bundles over the moduli space of
pairs .E;L/ where E is an elliptic curve and L a holomorphic line bundle over E.

2. Such pairs can be reinterpreted as certain special 1j1-dimensional supercurves.
3. A vertex algebra V equipped with a suitable N D 2 superconformal structure

‘localises’ nicely to give a D-module C on the moduli space of such supercurves.
4. If V is well-behaved, the normalised graded superdimensions of V-modules

(generalising the left of (1)) converge in the analytic topology and yield
horizontal sections of C.

The issue of convergence is technical. In the appendix to [13] we establish the
convergence subject to the well known (to vertex algebraists) condition of C2-
cofiniteness. The proof involves analysis of the coefficients of the differential
equations corresponding to C. The key points are to show that these coefficients lie
in a certain ring of quasi-Jacobi forms, and to establish that this ring is Noetherian.

For careful statements of results and complete proofs we refer the reader to
[13]. In this note we have taken the opportunity to adopt a more discursive
style. In particular we digress to discuss an interpretation (Sect. 7) of Ramanujan’s
differential equations as an expression of the ‘Virasoro uniformisation’ of the
moduli space of elliptic curves.
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2 Notation

Aside from standard symbols such as C, ZC D f0; 1; 2; : : :g, @z D @
@z , etc., we

shall use the following notation without further comment: O D CŒŒz�� the ring of
formal power series in one variable, m D zCŒŒz�� its maximal ideal, and K D C..z//
the ring of Laurent series. The supercommutative algebra O1j1 is by definition O ˝
V

Œ��, i.e., is obtained by adjoining to O a single odd variable � satisfying �2 D 0.
Similarly we have m1j1 D m ˝ V

Œ�� and K1j1 D K ˝ V

Œ��. The structure sheaf,
tangent sheaf, cotangent sheaf, and sheaf of differential operators of a (super)scheme
X are denoted OX , �X , ˝X , and DX , respectively.

3 Superschemes and Elliptic Supercurves

The picture to keep in mind of a complex supermanifold (of dimension mjn) is that
of a space on which the Taylor expansion of a function in terms of local coordinates
z1; : : : ; zm, �1; : : : ; �n lies in the supercommutative ring CŒŒzi��˝V

Œ�j�. We refer the
reader to [20] for background on superalgebra and supergeometry. A superscheme
is formally defined [20, Chapt. 4] to be a topological space Xtop together with a
sheaf OX of supercommutative local rings such that the even part .Xtop;OX;0/ is a
scheme. Morphisms are required to be Z2-graded. The bulk Xrd of a superscheme X
is the scheme .Xtop;OX=J/ where J D OX;1 C O2

X;1. A (complex) supercurve is a
smooth superscheme over SpecC of dimension 1jn. In this article we shall concern
ourselves with 1j1-dimensional complex supercurves, and we shall generally work
in the analytic topology.

Let X0 be a smooth curve and L a holomorphic line bundle over X0. We may
construct a 1j1-dimensional supercurve X from this data by putting

OX D
^

LŒ�1� D OX0 ˚ L;

with Z=2Z-grading induced by cohomological degree.
In fact any even family of 1j1-dimensional complex supercurves is of the above

form. Indeed, for a 1j1-dimensional supercurve defined over a base superscheme
SpecR, transformations between coordinate charts take the general form

z0 D f11.z/ C f12.z/�;

� 0 D f21.z/ C f22.z/�;
(2)

where f11, f22 are power series whose coefficients are even elements of R, and f12,
f21 are power series whose coefficients are odd elements of R. If the base ring R
contains no odd elements then f12 and f21 vanish, (2) is linear in � and comprises the
Čech cocycle description of a line bundle L, and the supercurve is consequently of
the form

VLŒ�1�.
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Recall the set Pic.X/ of isomorphism classes of holomorphic line bundles over
a smooth curve X, and its subset Pic0.X/ of line bundles of degree 0. As is well
known [10, Appendix B.5] there is a natural bijection Pic.X/ Š H1.X;O�

X/, and the
exponential exact sequence

0 ! Z ! OX ! O�
X ! 0

yields the following morphisms in cohomology

H1.X;Z/ ! H1.X;OX/ ! H1.X;O�
X/ ! H2.X;Z/:

The last map here assigns a line bundle its degree, and the kernel Pic0.X/ is
identified with the quotient

H1.X;OX/=H1.X;Z/

which is a complex torus of dimension g, where g is the genus of X.
An elliptic curve is a smooth complex curve of genus 1, together with a marked

point. We shall define an elliptic supercurve to be a supercurve X of dimension 1j1
whose bulk Xrd has genus 1, together with a marked point.

Let H denote the complex upper half plane, and let z be the standard coordinate
on C which we fix once and for all. The trivial family H�C ! H carries the action
.m; n/ W .z; �/ 7! .zCm� C n; �/ of Z2 and the quotient together with marked point
z D 0 is a family of elliptic curves, which we denote E ! H .

Quite generally [23, Appendix to §2], for X a topological space with a free
discontinuous action of a discrete group G, and F a sheaf on the quotient space
X=G (and with � W X ! X=G the quotient), there is a natural map

H�.G; � .X; ��F // ! H�.X=G;F /;

from group cohomology to sheaf cohomology. In case X is a fibre C� of the trivial
family above, this map is an isomorphism. An element ˛ 2 C defines a group 1-
cocycle c˛ W Z2 ! � .C� ;O�/ by .m; n/ 7! e2� im˛. We denote by L˛ 2 Pic0.E� /

the corresponding line bundle on E� . Let Sı D H � C. We denote by Eı ! Sı the
family whose fibre over .�; ˛/ is the elliptic supercurve corresponding to .E� ;L˛/.

The group SL2.Z/ acts on E ! H in such a way as to identify fibres isomorphic
as elliptic curves. We now have the following 1j1-dimensional analogue.

Proposition 1 The formulas

A W .t; �; �; ˛/ 7!
�

t

c� C d
; e�2� it c˛

c�Cd �;
a� C b

c� C d
;

˛

c� C d

�

.m; n/ W .t; �; �; ˛/ 7! .t; e2� imt�; �; ˛ C m� C n/;
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where A 2 SL2.Z/ and m; n 2 Z, extend to a left action on Eı ! Sı of the semidirect
product group

SL2.Z/ Ë Z
2 where .A; x/ � .A0; x0/ D .AA0; xA0 C x0/:

The restriction of the action of g 2 SL2.Z/ ËZ
2 to the fibre E.�;˛/ is an isomorphism

E.�;˛/ Š Eg�.�;˛/ of supercurves.
Following the comments above, every elliptic supercurve over C appears as a fibre
of Eı ! Sı. However Eı ! Sı is not a universal family in the sense that it does not
‘see’ families over odd base schemes.

We denote by A
1j1 the superscheme whose set of R-points is SpecRŒz; ��. In fact

we distort convention a little by fixing a choice z; � of coordinates, in particular our
A

1j1 has a distinguished origin, and we denote by .A1j1/� the subscheme with origin
removed. We then have the algebraic supergroup GL.1j1/ of linear automorphisms
acting on .A1j1/�. The trivial family .A1j1/��GL.1j1/ ! GL.1j1/ carries the action
n W .x;q/ 7! .qnx;q/ of Z. We restrict to the subscheme S� � GL.1j1/ consisting
of automorphisms with nonzero even reduction, then the quotient by Z is a family
E� ! S� of elliptic supercurves. The distinguished point is .z; �/ D .1; 0/.

We introduce the morphism sexp W Eı ! E�.C/ of C-schemes defined by

.t; �; �; ˛/ 7!
�

e2� it; e2� it�;
�

q 0
0 qy

��

: (3)

The notation q D e2� i� , y D e2� i˛ used here will be in force throughout the paper.

Remark 1 There is a quite distinct notion of supercurve, which we recall here for
the sake of avoiding confusion. A SUSYn curve [19, Chapt. 2, Definition 1.10]
consists of a 1jn-dimensional supercurve X together with the extra data of a rank
0jn subbundle T � �X such that the alternating form

' W T ˝ T
Œ�;����! �X � �X=T

is nondegenerate and split. There is a forgetful functor from the category of SUSYn

curves to that of 1jn-dimensional supercurves. On the other hand, there turns out to
be a nontrivial equivalence (due to Deligne [19, pp. 47]) between the category of all
1j1-dimensional supercurves, and the category of ‘orientable’ SUSY2 curves. We
describe the correspondence briefly.

Let X;T be a SUSY2 curve. Locally there is a splitting of T as a direct sum of rank
0j1-subbundles, each isotropic with respect to '. If this can be extended to a global
splitting, then we say X;T is orientable. Suppose this is the case, and let T1 � T be
an isotropic subbundle. Set X to be the superscheme .Xtop;OX=T1 � OX). Then X is a
1j1-dimensional supermanifold, and X can be recovered uniquely from X.

Much of the theory discussed below extends straightforwardly to 1jn-
dimensional supercurves, and to SUSYn curves.
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4 The Bundle of Coordinates

In this section and the two subsequent ones we outline the basics of ‘formal geome-
try’. This theory, which goes back to [9], provides a bridge between representation
theory of infinite dimensional algebras and geometry of algebraic varieties. The
book [8] contains a good introduction for the case of curves. We focus on the case
of 1j1-dimensional supercurves.

The basic object of formal geometry is the ‘set of all coordinates’ on a variety
X, denoted here by CoordX . It may be defined precisely either as the subscheme of
the jet scheme [7] consisting of jets with nonzero differential, or as the fibre bundle
with fibre at x 2 X the set of choices of generator of mx (where mx is the unique
maximal ideal of the local ring Ox at x).

For the case of X a supercurve of dimension 1j1 we have the noncanonical
isomorphism Ox Š O1j1 at each point x 2 X. Each fibre therefore carries a
simply transitive action of the supergroup AutO1j1 by changes of coordinates, in
other words CoordX is a principal AutO1j1-bundle. This supergroup consists of
transformations

z 7! a0;1� C a1;0z C a1;1z� C a2;0z
2 C a2;1z

2� C � � � ;

� 7! b0;1� C b1;0z C b1;1z� C b2;0z
2 C b2;1z

2� C � � �

where
� a0;1 a1;0

b0;1 b1;0

� 2 GL.1j1/. As such the corresponding Lie superalgebra Der0 O1j1

of derivations preserving m1j1 has basis

Ln D �znC1@z � .n C 1/zn�@� ; Jn D �zn�@� ;

Qn D �znC1@� ; Hn D zn�@� ;
(4)

where n 2 ZC. The Lie bracket is the usual bracket of vector fields [11].

5 Superconformal Algebras and SUSY Vertex Algebras

The Lie superalgebra Der0 O1j1 embeds naturally into DerK1j1 by extending the
basis (4) to n 2 Z. This algebra admits a central extension

0 ! CC ! bW1j1 ! DerK1j1 ! 0;
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which splits over Der0 O1j1. Explicit relations in bW1j1 are as follows [12, (2.5.1c)]:

ŒLm;Ln� D .m � n/LmCn; ŒLm; Jn� D �nJmCn C ım;�n
m2 C m

6
C;

ŒLm;Hn� D �nHmCn; ŒLm;Qn� D .m � n/QmCn;

ŒJm; Jn� D ım;�n
m

3
C; ŒJm;Qn� D QmCn;

ŒJm;Hn� D �HmCn; ŒHm;Qn� D LmCn � mJmCn C ım;�n
m2 � m

6
C:

Remark 2 In the 1j0-dimensional setting we have analogously the Virasoro
extension

0 ! CC ! Vir ! DerK ! 0;

which is conventionally given by

ŒLm;Ln� D .m � n/LmCn C ım;�n
m3 � m

12
C:

There is an embedding Vir ,! bW1j1 via the map Ln 7! Ln � 1
2
.nC 1/Jn and C 7! C.

Though we will not be using vertex algebras until Sect. 8, this is a convenient
place to give their definition. To avoid clutter we present only the definition of
‘NW D 1 SUSY vertex algebra’, which is the relevant variant for us. See [15] and
[12] for the general picture.

Definition 1 A SUSY vertex algebra is a vector superspace V , a vector j0i 2 V ,
linear operators S;T W V ! V , and an even linear map V ˝ V ! Vb˝K1j1 which is
denoted

a ˝ b 7! Y.a;Z/b D Y.a; z; �/b:

These structures are to satisfy the following axioms.

1. Y.j0i;Z/ D IdV , and Y.a;Z/j0i D a mod .Vb˝m1j1/.
2. The series Y.a;Z/Y.b;W/c, .�1/p.a/p.b/Y.b;W/Y.a;Z/c and Y.Y.a;Z �

W/b;W/c are expansions of a single element of Vb˝K1j1 ˝CŒz;w� CŒ.z � w/�1�.
3. ŒT;Y.a;Z/� D @zY.a;Z/ and ŒS;Y.a;Z/� D @�Y.a;Z/.

The notion of conformal structure (i.e., compatible Vir-action) on a vertex algebra
permits connection with the geometry of algebraic curves via formal geometry [8,
Chapt. 6]. Similarly important in the context of 1j1-dimensional supercurves is the
notion of superconformal structure on a SUSY vertex algebra [11].
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Definition 2 ([12]) A superconformal structure on the SUSY vertex algebra V
is a pair of vectors j and h (even and odd respectively) such that the following
associations furnish V with a bW1j1-module structure:

Y. j;Z/ D J.z/ � �Q.z/; Y.h;Z/ D H.z/ C �ŒL.z/ C @zJ.z/�;

and

J.z/ D
X

n2Z
Jnz

�n�1; Q.z/ D
X

n2Z
Qnz

�n�2;

H.z/ D
X

n2Z
Hnz

�n�1; L.z/ D
X

n2Z
Lnz

�n�2:

Furthermore it is required that T D L�1, S D Q�1, and that V be graded by finite
dimensional eigenspaces of L0; J0, with integral eigenvalues bounded below. Let
b 2 V such that L0b D 	b. We write o.b/ 2 EndV for the z�	� coefficient of
Y.b; z; �/.
There is a natural notion of module over a SUSY vertex algebra. In the super-
conformal case we shall include in the definition the L0; J0-grading conditions of
Definition 2.

Example 1 Let M.h;m; c/ denote the Verma module U.bW1j1/ ˝
U.bW1j1

C

/
Cv, where

the action on v is by C D c, L0 D h, J0 D m, Q0 D 0, and all positive modes
acting by 0. Let L.h;m; c/ denote the unique irreducible quotient of M.h;m; c/. Then
M.0; 0; c/ and L.bW1j1/c D L.0; 0; c/ have unique superconformal vertex algebra
structures such that v D j0i, j D J�1v, h D H�1v.

6 Harish-Chandra Localisation

Let K be a Lie group, Z a principal K-bundle over a smooth manifold S, and V a left
K-module. The familiar associated bundle construction produces a vector bundle
V D Z �K V over S (recall by definition Z �K V is Z � V modulo the relation
.zg; v/ D .z; gv/). If dimS D n then S carries a canonical GL.n/-bundle, namely
the frame bundle whose fibre at s 2 S if the set of all bases of the tangent space TsS.
Associated with the defining GL.n/-moduleRred

n is the tangent bundle �S, and with
its dual the cotangent bundle ˝S.

The functor of Harish-Chandra localisation extends the associated bundle con-
struction, enabling the construction of vector bundles with connection (more
properly D-modules) from K-modules with the action of an additional Lie algebra.
See [8, Chapt. 17] and [4, Sect. 1.2] for the general theory.

Definition 3 A Harish-Chandra pair .g;K/ consists of a Lie algebra g, a Lie group
K, an action Ad of K on g, and a Lie algebra embedding LieK ,! g compatible
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with Ad. A .g;K/-module is a vector space with compatible left g- and K-module
structures. A .g;K/-structure on a space S is a principal K-bundle Z ! S together
with a transitive action g ! �Z satisfying certain compatibilities.
Let Z ! S be a .g;K/-structure, and V a .g;K/-module. The fibre Vs of
the associated bundle V D Z �K V over the point s 2 S carries an action of the
Lie algebra gs D Zs �K g. Inside gs we have the pointwise stabiliser g0

s of Zs. We
denote by 	.V/ the sheaf whose fibre over s is the space of coinvariants Vs=g

0
s � Vs.

The g-action on V translates into a flat connection (more precisely a left DS-module
structure) on 	.V/.

Now let bg be a central extension of g split over LieK � g. If V is a bg-module
then a variation on the construction above yields 	.V/ a twisted DS-module. That
is to say, there is a certain sheaf F on S (which depends on the central extension)
such that 	.V/ is a module over DF the sheaf of differential operators on F .

The Harish-Chandra pairs of particular importance in our context are .Vir; AutO/

and .bW1j1; AutO1j1/. Their relevance stems from the fact that moduli spaces of
curves and 1j1-dimensional supercurves carry natural .g;K/-structures for these
respective pairs [2, 5] (see also [8, Chapt. 17] for an overview). This fact frequently
goes by the name ‘Virasoro Uniformisation’.

Let cM denote the moduli space of triples .X; x; t/ consisting of a smooth
algebraic curveX (of genus g>1), a point x 2 X, and a local coordinate t 2 CoordX;x,
and let M denote the moduli space of pairs .X; x/. Let � W bX ! cM be the universal
curve, and Y � bX the section of points .X; x; tI x/.

Let � W X ! S be a morphism of schemes. In the sequence

0 ! �X=S ! �X ! ���S ! 0

(which defines the relative tangent bundle �X=S in fact), we denote by �� the
preimage of ��1�S in �X . Intuitively �� consists of vector fields on X of the shape
f .s/@s C g.s; x/@x.

The following theorem can be viewed as a refinement of the Kodaira-Spencer
isomorphism.

Theorem 1 ([5, Lemma 4.1.1]) There is a canonical .DerK ; AutO/-structure on
cM ! M induced by the isomorphism

��.bXnY/ ! O
bM ˝ DerK

ofO
bM-modules, which sends a vector field to the expansion of its vertical component

at x in powers of t.
The 1j1-dimensional analogue (along with other cases) is [25, Theorem 6.1]. It
follows that any .Vir; AutO/-module gives rise to a twisted D-module on M (or
on any family of smooth curves). Similarly any .bW1j1; AutO1j1/-module gives rise
to a twisted D-module on any family of smooth 1j1-dimensional supercurves.
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7 Elliptic Curves and Ramanujan Differential Equations

It is instructive to flesh out this construction a little for the case of elliptic curves.
Let E ! H be the family of elliptic curves introduced in Sect. 3, and let V be a
.DerK ; AutO/-module, so that we obtain a D-module 	.V/ over H .

Recall the Weierstrass (quasi)elliptic functions

�.z/ D �1

2�i

2

4z�1 �
X

k2Z>0

z2k�1G2k

3

5 and }.z; �/ D z�2 C
X

k2Z>0

.2k � 1/z2k�2G2k

where the Eisenstein series G2k is defined by

G2k D .�1/kC1B2k

.2k/Š
.2�/2kE2k; where E2k D 1 � 4k

B2k

1
X

nD1

n2k�1qn

1 � qn
;

and x=.ex � 1/ D P1
nD1 Bnxn=nŠ defines the Bernoulli numbers Bn [1]. The

nonstandard normalisation � is chosen so that

�.z C 1/ D �.z/ and �.z C �/ D �.z/ C 1: (5)

We now have:

Lemma 1 Flat sections s of 	.V/ satisfy the differential equation

@s

@�
C

�

Rest �.t/L.t/dt
�

� s D 0:

Proof The proof is an exercise in unwinding the definitions of the previous section.
All that needs to be checked is that the vector field @� C �.z/@z is well defined on E
(being a priori well defined only on the universal cover, since � is not elliptic).

Under the transformation .z0; � 0/ D .zC�; �/ we have @� 0 D @� �@z and @z0 D @z.
This together with (5) shows that @� C �.z/@z is well defined. The same check on
the transformation .z; �/ 7! .z C 1; �/ is immediate.
Another incarnation of Lemma 1 is the following PDE satisfied by the Weierstrass
function }.

Proposition 2 The Weierstrass functions satisfy

@

@�
} C �

@

@z
} D 1

2�i
.2}2 � 2G2} � 20G4/: (6)

Proof Differentiating

}.z C �; �/ � }.z; �/ D 0
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with respect to � yields

P}.z C �; �/ � P}.z; �/ D �} 0.z C �; �/

(where } 0 and P} are the derivatives with respect to the first and second entries).
Similarly P}.z C 1; �/ � P}.z; �/ D 0. It is clear then that P} C �} 0 is an elliptic
function with pole of order 4 at z D 0, hence a polynomial in }. Comparing leading
coefficients yields the result.
Equating coefficients of (6) yields an infinite list of differential equations on
Eisenstein series. The first few of these

q@E2=@q D .E2
2 � E4/=12;

q@E4=@q D .E2E4 � E6/=3;

q@E6=@q D .E2E6 � E2
4/=2;

were discovered by Ramanujan [24] (see also [26] and [22]).

8 Conformal Blocks and Trace Functions

A conformal vertex algebra carries a .Vir; AutO/-module structure, so the machin-
ery of Sect. 6 can be applied. Let V be a conformal vertex algebra and X a smooth
algebraic curve. Let A D V ˝ ˝X be the dual of V D CoordX �AutO V . Then
A acquires the following extra structure deriving from the vertex operation: an
action 
 of the space of sections � .D�

x ;A/ on the fibre Ax, for each x 2 X (here
D�

x D SpecKx is the punctured infinitesimal disc at x). In fact this structure makes
A into a chiral algebra over X [3] [8, Theorem 19.3.3]. Underlying this construction
is the following formula due to Huang [14]

R.�/Y.a; z/R.�/�1 D Y.R.�z/a; �.z//; (7)

valid for all � 2 AutO. Here by definition �z 2 AutO is the automorphism defined
by �z.t/ D �.z C t/ � �.t/, and R.�/ is the action of � on the conformal vertex
algebra V (obtained by exponentiating Der0 O � Vir).

Applying the Harish-Chandra formalism to V and a family X; x of pointed curves
over base S yields the DS-module 	.V/, with fibres

Ax

� .Xnx;A/ � Ax
:

The dual of this vector space is called the space of conformal blocks associated with
X; x;V , and is denoted C.X; x;V/.
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A superconformal SUSY vertex algebra carries a .bW1j1; AutO1j1/-module struc-
ture, and can therefore be similarly localised on 1j1-dimensional supercurves. These
sheaves are again chiral algebras, using [11, Theorem 3.4] which is a general SUSY
analogue of (7) above.

The theorems of this section and the next concern construction of horizontal
sections of the conformal blocks bundle C for elliptic supercurves, and the modular
properties of these sections. They are super-analogues of fundamental results of
Zhu [27].

Theorem 2 ([13, Proposition 7.10]) Let V be a superconformal vertex algebra
and M its module. Let X D .A1j1/�=q be an elliptic supercurve with marked point
x D .z; �/ D .1; 0/ as in Sect. 3. Then the element of V� defined by

'M W b 7! STrM o.b/R.q/

is a conformal block, i.e., 'M 2 C.X; x;V/.

Proof (Sketch) Let a; b be sections of a chiral algebra A; 
 over .A1j1/�. Huang’s
formula (7) can be written schematically as

�
.a/��1 D 
.� � a/:

Item (2) of Definition 1 may be reformulated [12, Theorem 3.3.17] as the following
relation (again expressed only schematically here):


.a/
.b/ � 
.b/
.a/ D 
.
.a/b/:

Let q 2 GL.1j1/, and suppose a is q-equivariant. Then (super)symmetry of the
(super)trace, equivariance of a, and the relations above combine to yield

tr
.
.a/b/q D tr Œ
.a/
.b/ � 
.b/
.a/�q

D tr Œ
.a/
.b/q � 
.b/q
.q � a/�

D tr Œ
.a/
.b/q � 
.b/q
.a/�

D tr Œ
.a/
.b/q � 
.a/
.b/q�

D 0:

(8)

In other words b 7! STr 
.b/q annihilates the action of global q-equivariant
sections, and hence is a conformal block on .A1j1/�=q. This sketch can be made
precise either in the language of chiral algebras or of vertex algebras (and is done
so in [13] Sects. 7.10 and 7.11, respectively).
In [27] the convergence in the analytic topology of the series defining 'M is
important, and is derived from a finiteness condition on V called C2-cofiniteness.
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The superconformal analogue is proved in [13, Appendix A], also using C2-
cofiniteness.

We may now regard the element 'M 2 C.E�.q/;V/ as a section of the sheaf C of
conformal blocks over S�. As we have seen this sheaf is a twisted D-module. The
'M are flat sections of C, as we shall see in the next theorem via a variation on the
proof of Theorem 2. Though the argument applies generally, we restrict attention to

even q D
�

q 0
0 qy

�

for the sake of clarity. In this case the operator R.q/ on V is simply

qL0yJ0 and we recover the supercharacter

'M.b/ D STrM o.b/qL0yJ0 : (9)

Expressed in terms of x D e2� it we have the following expression for the
Weierstrass function

�.t/ D �.x/ D 1

2
C 1

x � 1
C

X

n2Zn0

�

1

qnx � 1
� 1

qn � 1

�

: (10)

We remark that the relation �.qx/ D �.x/ C 1 is easily deduced from (10) via a
telescoping sum argument.

Theorem 3 ([13, Theorem 8.15]) The function 'M satisfies the following (in
general infinite) system of PDEs:

q
@

@q
'M.b/ D 'M.ResxD1 x�.x/L.x � 1/b/;

y
@

@y
'M.b/ D 'M.ResxD1 �.x/J.x � 1/b/:

Proof (Sketch) As in Theorem 2 we work on .A1j1/� with coordinates .z; �/ fixed.
We repeat the calculation (8) with the section a of A no longer q-equivariant, but
satisfying instead q � a D a� s, where s will be one of the explicit sections hz or j� .
We obtain

STr 
.
.a/b/q D STr 
.b/q
.s/

in general.
The function � may be used to construct the appropriate section a because of

the key relation �.qx/ D �.x/ C 1. A precise calculation (in, for instance, the case
s D hz) yields

'M.ResxD1 x�.x/L.x � 1/b/ D STrM o.b/qL0yJ0L0 D q
@

@q
'M.b/:

The other relation derives in the same way from s D j� .
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Remark 3 By the same reasoning as in Lemma 1, we see that the differential
equations of Theorem 3 are essentially the explicit expressions of the canonical
Harish-Chandra connection.

9 Jacobi Modular Invariance

We now study the pullbacks of the sections 'M via the morphism sexp defined by
formula (3). We show that (after a normalisation) they are horizontal with respect to
a certain SL2.Z/ Ë Z

2-equivariant connection. Explicitly:

Theorem 4 ([13, Theorem 9.10]) The normalised section

e'M D e2� i˛�.C=6/ sexp�.'M/

is flat with respect to the connection

r D d C
�

Rest �.t/J.t/dt
�

d˛ C 1

2�i

�

Resz �.z/ ŒL.z/ C @zJ.z/�
�

d�:

Furthermore r is equivariant with respect to the SL2.Z/ Ë Z
2-action on Eı ! Sı

of Proposition 1.
This theorem is proved by analysing the behaviour of the PDEs of Theorem 3 under
SL2.Z/ Ë Z

2 transformations, which is an explicit computation.
It is possible to write the (projective) SL2.Z/ Ë Z

2-action on flat sections e' of C
explicitly [13, Theorem 1.2 (c)]. The specialisation to b D j0i is

Œe' � .m; n/�.j0i; �; ˛/ D exp 2�i
C

6

�

m2� C 2m˛ C 2n
	

e'.j0i; �; ˛ C m� C n/

Œe' � �

a b
c d

�

�.j0i; �; ˛/ D exp 2�i
C

6


 �c˛2

c� C d

�

e'

�

j0i; a� C b

c� C d
;

˛

c� C d

�

:

(11)

This recovers the well known transformation law [6, Theorem 1.4] for Jacobi forms
of weight 0 and index C=6. Evaluation at other elements b 2 V yields Jacobi forms
of higher weight, as well as more complicated ‘quasi-Jacobi’ forms.

In order to deduce Jacobi invariance of the (normalised) supercharacters (9)
it suffices to show that they span the fibre of C. This can presumably be done
following the method of Zhu [27, Sect. 5], assuming V is a rational vertex algebra.
Alternatively Jacobi invariance can be proved by an extension of [18] to the
supersymmetric case.
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