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Abstract This article is an introduction to Dirac cohomology for reductive Lie
groups, reductive Lie algebras and rational Cherednik algebras. We also survey
recent results focusing particularly on Dirac cohomology of unitary representations
and its connection with Lie algebra cohomology.
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1 Introduction

Consider a possibly indefinite inner product hx; yi D P
i �ixiyi; for x; y 2 R

n with
n>2 and �i D ˙1. Let � D P

i �i@
2
i be the corresponding Laplace operator. We look

for a first order differential operator D such that D2 D �. If we write D D P
i ei@i

for some scalars ei, then D2 D P
i e2

i @2
i C P

i<j.eiej C ejei/@i@j. It leads to require
the relations

e2
i D �i and eiej C ejei D 0 for i ¤ j:

This is clearly impossible for real or complex scalars ei’s. Nevertheless, we can
consider an algebra generated by e1; : : : ; en, satisfying the same relations. If we
allow ei’s to be in the Clifford algebra, then we do get a Dirac operator D which
squares to �.

In representation theory Dirac operators were employed in 1970s by
Parthasarathy [50] and Atiyah-Schmid [5] for purpose of constructing the discrete
series representations [20]. It turns out that they can be constructed as kernels of
Dirac operators acting on certain spin bundles on the symmetric space G=K. In
1990s, Vogan made a conjecture on the property of the Dirac operator in the setting
of a reductive Lie algebra and its associated Clifford algebra [53]. This property
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implies that the standard parameter of the infinitesimal character of a Harish-
Chandra module X and the infinitesimal character of its Dirac cohomology HD.X/

are conjugate under the Weyl group. Vogan’s conjecture was consequently verified
in [26], and it has been playing a key role in the theory of Dirac cohomology.
Dirac cohomology offers new perspectives for understanding irreducible unitary
representations and proofs of some classical theorems. It is a basic invariant related
to .g; K/-cohomology, u-cohomology, the K-characters and the global characters.
It has interesting applications in harmonic analysis such as branching laws and
endoscopy. We summarize some recent results here.

1. Dirac cohomology provides a new point of view for understanding classic theory.
The geometric construction of discrete series representations initially did not use
Dirac cohomology and Vogan’s conjecture, but using Dirac cohomology makes
some of the proofs easier [28]. Dirac cohomology is further used for geometric
quantization [11, 22]. Simpler proofs of the generalized Weyl character formula
[39] and generalized Bott-Borel-Weil theorem [40] are given in [28]. Moreover,
Dirac cohomology is used to extend the Langlands formula on dimensions of
automorphic forms [45] to a slightly more general setting [28].

2. The Dirac cohomology of several families of Harish-Chandra modules has been
determined. These modules include finite-dimensional modules and irreducible
unitary Aq.�/-modules [25]. It was proved that if X is a unitary Harish-Chandra
module, then

H�.g; KI X ˝ F�/ Š Hom.HD.F/; HD.X//

for any irreducible finite-dimensional module F. More precisely, Dirac cohomol-
ogy determines the .g; K/-cohomology when the latter exists, and can be thought
of as a generalization of .g; K/ cohomology when the latter no longer exists. It is
evident that unitary representations with nonzero Dirac cohomology are closely
related to automorphic representations [54].

3. Another aspect of Dirac cohomology is its connection with u-cohomology.
Kostant has extended Vogan’s conjecture to the setting of the cubic Dirac
operator and proved a nonvanishing result on Dirac cohomology for highest
weight modules in the most general setting [41]. He also determined the
Dirac cohomology of finite-dimensional modules in the equal rank case. The
Dirac cohomology for all irreducible highest weight modules was determined
in [34] in terms of coefficients of Kazhdan–Lusztig polynomials. It is proved
Dirac cohomology and u-cohomology are isomorphic up to a one-dimensional
character for irreducible highest weight modules [34].

4. Dirac cohomology, or rather its Euler characteristic, or the Dirac index, gives
the K-characters of representations. It leads to a generalization of certain
classical branching formulas due to Littlewood [32] which describe how a
finite dimensional representation of GL.n;C/ decomposes under orthogonal or
symplectic subgroups. We also generalize some of the other classical branching
rules in [23]. When G is Hermitian symmetric and u is unipotent radical of
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a parabolic subalgebra with Levi subgroup K, [30] showed that for a unitary
representation its Dirac cohomology is isomorphic to its u-cohomology up to a
twist of a one-dimensional character. In particular, Enright’s calculation of u-
cohomology [16] gives the Dirac cohomology of the irreducible unitary highest
weight modules. The Dirac cohomology of unitary lowest weight modules of
scalar type is calculated more explicitly in [31]. Dirac cohomology of more
families of unitary representation are determined in [6, 7] and [48].

5. Dirac index and the K-character are intimately related to the global characters
on the set of elliptic elements. Dirac cohomology is employed as a tool to
study a class of irreducible unitary representations, called elliptic representations
[24]. More precisely, Harish-Chandra showed that the characters of irreducible
or more generally admissible representations are locally integrable functions
and smooth on the open dense subset of regular elements [19]. An elliptic
representation has a global character that does not vanish on the elliptic elements
in the set of regular elements. It is proved that an irreducible admissible (not
necessarily unitary) representation is elliptic if and only if its Dirac index
is nonzero [24, Theorem 8.3]. Dirac index is nonzero implies that Dirac
cohomology is nonzero. Note that under the condition of regular infinitesimal
character, the Dirac index is zero if and only if the Dirac cohomology is zero [24,
Theorem 10.1]. This equivalence is conjectured to hold in general without the
regularity condition [24, Conjecture 10.3]. In particular, an irreducible tempered
elliptic representation has nonzero Dirac cohomology, and therefore it is a
discrete series or a limit of discrete series representation [15, Theorem 7.5]. The
characters of the irreducible tempered elliptic representations are associated in a
natural way to the supertempered distributions defined by Harish-Chandra [21].

6. Better understanding of the endoscopic transfer factor for real groups [47] is
the first of the ‘problems for real groups’ raised by Arthur [4]. It is observed
[24] there is a connection between Labesse’s calculation [44] of the endoscopic
transfer of pseudo-coefficients of discrete series [43] and the calculation of the
characters of the Dirac index of discrete series. This offers a new point of view
for understanding the endoscopic transfer in the framework of Dirac cohomology
and the Dirac index.

7. Vogan’s conjecture has been extended to several other settings by many authors
as follows:

(i) Kostant considered the case when the subalgebra k of g is replaced by any
reductive subalgebra r such that the form B remains nondegenerate when
restricted to r. The appropriate analogue of D is then Kostant’s cubic Dirac
operator. He generalized Vogan’s conjecture to this setting of the cubic
Dirac operator [41].

(ii) Alekseev and Meinrenken proved a version of Vogan’s conjecture in their
study of Lie theory and the Chern–Weil homomorphism [2].

(iii) Kumar proved a similar version of Vogan’s conjecture in Induction functor
in non-commutative equivariant cohomology and Dirac cohomology [42].
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(iv) Pandžić and I defined an analogue of D and prove an analogue of Vogan’s
conjecture in case when g D g0 ˚ g1 is a basic classical Lie superalgebra.
We extended Vogan’s conjecture to the symplectic Dirac operator in Lie
superalgebras [27].

(v) Kac, Möseneder Frajria and Papi extended Vogan’s conjecture to the affine
cubic Dirac operator in affine Lie algebras [37].

(vi) Barbasch, Ciubotaru and Trapa extended Vogan’s conjecture to the setting
of Luszting’s graded affine Hecke algebras [8]. They also found applica-
tions of Dirac cohomology to unitary representations of p-adic groups.

(vii) Ciubotaru and Trapa proved a version of Vogan’s conjecture for studying
Weyl group representations in connection with Springer theory [13].

Mostly recently, Ciubotaru extended the definition of Dirac operator and Vogan’s
conjecture to the setting of Drinfeld’s graded Hecke algebras including symplectic
reflection algebras [17] and particularly rational Cherednik algebras [12]. Many
results on Dirac cohomology and Lie algebra cohomology for Hermitian symmetric
Lie groups have analogues for rational Cherednik algebras [33].

2 Dirac Cohomology of Harish-Chandra Modules

A complex Lie algebra g is called reductive if its adjoint representation is completely
reducible [35]. A Lie group G is called reductive if the complexification of the
Lie algebra of G is reductive. Typical examples of reductive Lie groups include
various matrix groups, i.e., closed subgroups of the general linear group GL.n;C/,
for instance, GL.n;R/, SL.n;R/, U. p; q/, O. p; q/, Sp. p; q/ and Sp.2n;R/. Each
reductive Lie group G comes with a Cartan involution �. In the above matrix
examples, one can take � to be the transpose inverse of the complex conjugate
matrix, i.e., �.g/ D .Ng�1/t. In what follows we assume that the group K D G�

of fixed points of � is a maximal compact subgroup of G. The involution �

induces a decomposition of the complexified Lie algebra of G, called the Cartan
decomposition:

g D k ˚ p; (1)

where k is the complexified Lie algebra of K, and p is the .�1/-eigenspace for the
differential of �.

A topological vector space H over C is a representation of G if there is a
continuous action of G on H by linear operators. Assume now that G is reductive
with Cartan involution � and maximal compact subgroup K D G� . Then we can
consider the subspace HK of the representation space H consisting of K-finite
vectors, i.e., vectors h 2 H such that the subspace of H spanned by K � h is
finite-dimensional. One can show that the G-action on H induces an action of
the Lie algebra g on HK . Thus HK becomes an example of a Harish-Chandra
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module for the pair .g; K/, which is by definition a vector space with a Lie algebra
action of g and a finite action of the group K, with certain natural compatibility
conditions. The space HK can be decomposed into a direct sum of irreducible
(finite-dimensional) representations of K, each appearing with certain multiplicity.
If all these multiplicities are finite, then HK and H are called admissible. An
important special class of representations of G consists of unitary representations,
for which the space H is a Hilbert space, and G acts on H by unitary operators.
Harish-Chandra showed that irreducible unitary representations are automatically
admissible. Irreducible admissible representations were classified by Langlands
[46]. We refer to [52] and [38] for the theory of representations of real reductive
Lie groups.

Let B be a nondegenerate invariant symmetric bilinear form on g, which restricts
to the Killing form on the semisimple part Œg; g� of g. Let U.g/ be the universal
enveloping algebra of g and C.p/ the Clifford algebra of p with respect to B. Then
one can consider the following version of the Dirac operator:

D D
nX

iD1

Zi ˝ Zi 2 U.g/ ˝ C.p/I

here Z1; : : : ; Zn is an orthonormal basis of p with respect to the symmetric bilinear
form B. It follows that D is independent of the choice of the orthonomal basis
Z1; : : : ; Zn and it is invariant under the diagonal adjoint action of K.

The Dirac operator D is a square root of the Laplace operator associated to the
symmetric pair .g; k/. To explain this, we start with a Lie algebra map

˛ W k ! C.p/;

which is defined by the adjoint map ad W k ! so.p/ composed with the embedding
of so.p/ into C.p/ using the identification so.p/ ' V2 p. The explicit formula for ˛

is (see [28, §2.3.3])

˛.X/ D �1

4

X

j

ŒX; Zj�Zj: (2)

Using ˛ we can embed the Lie algebra k diagonally into U.g/ ˝ C.p/, by

X 7! X� D X ˝ 1 C 1 ˝ ˛.X/:

This embedding extends to U.k/. We denote the image of k by k�, and then the
image of U.k/ is the enveloping algebra U.k�/ of k�.

Let ˝g be the Casimir operator for g, given by ˝g D P
Z2

i � P
W2

j , where Wj

is an orthonormal basis for k0 with respect to the inner product �B, where B is the
Killing form. Let ˝k D � P

W2
j be the Casimir operator for k. The image of ˝k

under � is denoted by ˝k� . Fix a positive root system �C.g/ for t in g. Here t is
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a Cartan subalgebra of k. Write � D �.�C.g//, �c D �.�C.k// and �n D � � �c.
Then

D2 D �˝g ˝ 1 C ˝k� C .jj�cjj2 � jj�jj2/1 ˝ 1: (3)

The Parthasarathy’s Dirac inequality for unitary Harish-Chandra modules is an
important criteria for irreducible unitary representations of reductive Lie groups. Let
X be an irreducible Harish-Chandra module with infinitesimal character �. Consider
the action of the Dirac operator D on X ˝ S, with S the spinor module for the
Clifford algebra C.p/. If X is unitary, then D is self-adjoint with respect to a natural
Hermitian inner product on X ˝ S. Let E	 be any eK-module occurring in X ˝ S with
a highest weight 	 2 t�, then

h	 C �c; 	 C �ci>h�; �i:

The Dirac cohomology are defined to be those E	 so that the equality holds, namely
HD.X/ D Ker D D Ker D2.

For better understanding these E	 in Ker D, Vogan formulated a conjecture
saying that every element z ˝ 1 of Z.g/ ˝ 1 � U.g/ ˝ C.p/ can be written as


.z/ C Da C bD

where 
.z/ is in Z.k�/, and a; b 2 U.g/ ˝ C.p/. Vogan’s conjecture implies a
refinement of Parthasarathy’s Dirac inequality, namely the equality holds if and only
if conjugate of � is equal to 	 C �c.

A main result in [26] is introducing a differential d on the K-invariants in
U.g/ ˝ C.p/ defined by a super bracket with D, and determining the cohomology
of this differential complex. As a consequence, Pandžić and I proved the following
theorem. In the following we denote by h a Cartan subalgebra of g containing a
Cartan subalgebra t of k so that t� is embedded into h�, and by W and WK the Weyl
groups of .g; h/ and .k; t/ respectively.

Theorem 1 ([26]) Let 
 W Z.g/ ! Z.k/ Š Z.k�/ be the algebra homomorphism
that is determined by the following commutative diagram:

where P denotes the polynomial algebra, and vertical maps � and �k are Harish-
Chandra isomorphisms. Then for each z 2 Z.g/ one has

z ˝ 1 � 
.z/ D Da C aD; for some a 2 U.g/ ˝ C.p/:
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The Dirac cohomology is defined as follows:

HD.X/W D Ker D= Im D \ Ker D:

It follows from the identity (3) that HD.X/ is a finite-dimensional module for the
spin double cover eK of K. As a consequence of the above theorem, we have that
HD.X/, if nonzero, determines the infinitesimal character of X.

Theorem 2 ([26]) Let X be an admissible .g; K/-module with standard infinitesi-
mal character parameter � 2 h�. Suppose that HD.X/ contains a representation of
eK with infinitesimal character �. Then � and � 2 t� � h� are conjugate under W.

The above theorem is proved in [26] for a connected semisimple Lie group G.
It is straightforward to extend the result to a possibly disconnected reductive Lie
group in Harish-Chandra’s class [15].

Let G be a connected reductive algebraic group over a local field F of character-
istic 0. Arthur [3] studied a subset …temp, ell.G.F// of tempered representations of
G.F/, namely elliptic tempered representations. The set of tempered representations
…temp.G.F// includes the discrete series and in general the irreducible constituents
of representations induced from the discrete series. These are exactly the represen-
tations which occur in the Plancherel formula for G.F/.

In Harish-Chandra’s theory, the character of an infinite-dimensional representa-
tion � is defined as a distribution

�.�; f / D tr
�

Z

G.F/

f .x/�.x/dx
�
; f 2 C1

c .G.F//;

which can be identified with a function on G.F/. In other words,

�.�; f / D
Z

G.F/

f .x/�.�; x/dx; f 2 C1
c .G.F//;

where �.�; x/ is a locally integrable function on G.F/ that is smooth on the open
dense subset Greg.F/ of regular elements. A representation � is called elliptic
if �.�; x/ does not vanish on the set of elliptic elements in Greg.F/. Elliptic
representations are precisely those representations with nonzero Dirac index (see
5. in Sect. 1).

We note that a real reductive group G.R/ has elliptic elements if and only if
it is of equal rank with K.R/. We also assume this equal rank condition. Induced
representations from proper parabolic subgroups are not elliptic. Consider the
quotient of the Grothendieck group of the category of finite length Harish-Chandra
modules by the subspace generated by induced representations. Let us call this
quotient group the elliptic Grothendieck group. Arthur [3] found an orthonormal
basis of this elliptic Grothendieck group in terms of elliptic tempered (possibly
virtual) characters. Those characters are the supertempered distributions defined by
Harish-Chandra [21].
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For a real reductive algebraic group G.R/, the Harish-Chandra modules of
irreducible elliptic unitary representations with regular infinitesimal characters are
showed to be strongly regular (in the sense of [51]) and hence they are Aq.�/-
modules.

An irreducible tempered representation is either elliptic or induced from an
elliptic tempered representation by parabolic induction. If G.R/ is not of equal
rank, then there is no elliptic representation for G.R/. Still, we know that G.R/

has representations with nonzero Dirac cohomology.

Conjecture 1 ([24]) A unitary representation either has nonzero Dirac cohomology
or is induced from a unitary representation with nonzero Dirac cohomology by
parabolic induction (including complement series).
This conjecture holds for GL.n;K/ with K D R;C;H and the twofolds covering
group of GL.n;R/. A recent preprint of Adams–van Leeuwen–Trapa–Vogan [1]
gives an algorithm to determine the irreducible unitary representations. The above
conjecture means that one may regard unitary representations with nonzero Dirac
cohomology as ‘cuspidal’ ones. Classification of irreducible unitary representations
with nonzero Dirac cohomology remains to be an open problem.

3 Dirac Cohomology in Category O

Let g be a complex reductive Lie algebra. Fix a Cartan subalgebra h in a Borel
subalgebra b of g. The category O introduced by Bernstein, et al. [9, 36] is
the category of all g-modules, which are finitely generated, locally b-finite and
semisimple under the h-action. Kostant proved a nonvanishing result on Dirac
cohomology for highest weight modules in the most general setting. His theorem
implies that for the equal rank case all highest weight modules have nonzero
Dirac cohomology. He also determined the Dirac cohomology of finite-dimensional
modules in this case. The connection of Dirac cohomology of .g; K/-modules and
that of highest weight modules was studied in [14] using the Jacquet functor. In [34]
we determined the Dirac cohomology of all irreducible highest weight modules in
terms of Kazhdan–Lusztig polynomials.

We first recall the definition of Kostant’s cubic Dirac operator and the basic
properties of the corresponding Dirac cohomology. Let g be a semisimple complex
Lie algebra with Killing form B. Let r � g be a reductive Lie subalgebra such that
Bjr�r is nondegenerate. Let g D r˚s be the orthogonal decomposition with respect
to B. Then the restriction Bjs is also nondegenerate. Denote by C.s/ the Clifford
algebra of s with

uu0 C u0u D �2B.u; u0/

for all u; u0 2 s. The above choice of sign is the same as in [28], but different from
the definition in [39], as well as in [30]. The two different choices of signs make no
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essential difference since the two bilinear forms are equivalent over C. Now fix an
orthonormal basis Z1; : : : ; Zm of s. Kostant [39] defines the cubic Dirac operator D
by

D D
mX

iD1

Zi ˝ Zi C 1 ˝ v 2 U.g/ ˝ C.s/:

Here v 2 C.s/ is the image of the fundamental 3-form w 2 V3
.s�/,

w.X; Y; Z/ D 1

2
B.X; ŒY; Z�/;

under the Chevalley map
V

.s�/ ! C.s/ and the identification of s� with s by the
Killing form B. Explicitly,

v D 1

2

X

16i<j<k6m

B.ŒZi; Zj�; Zk/ZiZjZk:

The cubic Dirac operator has a good square in analogy with the Dirac operator
associated with the symmetric pair .g; k/ in Sect. 2. We have a similar Lie algebra
map

˛ W r ! C.s/

which is defined by the adjoint map ad W r ! so.s/ composed with the embedding
of so.s/ into C.s/ using the identification so.s/ ' V2 s. The explicit formula for ˛

is (see [28, §2.3.3])

˛.X/ D �1

4

X

j

ŒX; Zj�Zj; X 2 r: (4)

Using ˛ we can embed the Lie algebra r diagonally into U.g/ ˝ C.s/, by

X 7! X� D X ˝ 1 C 1 ˝ ˛.X/:

This embedding extends to U.r/. We denote the image of r by r�, and then the
image of U.r/ is the enveloping algebra U.r�/ of r�. Let ˝g (resp. ˝r) be the
Casimir elements for g (resp. r). The image of ˝r under � is denoted by ˝r� .

Let hr be a Cartan subalgebra of r which is contained in h. It follows from
Kostant’s calculation ([39, Theorem 2.16]) that

D2 D �˝g ˝ 1 C ˝r� � .k�k2 � k�rk2/1 ˝ 1; (5)
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where �r denotes the half sum of positive roots for .r; hr/. We also note the
sign difference with Kostant’s formula due to our choice of bilinear form for the
definition of the Clifford algebra C.s/.

We denote by W the Weyl group associated to the root system �.g; h/ and Wr

the Weyl group associated to the root system �.r; hr/. The following theorem due
to Kostant is an extension of Vogan’s conjecture on the symmetric pair case which
is proved in [26]. (See also [41, Theorems 4.1 and 4.2] or [28, Theorem 4.1.4]).

Theorem 3 There is an algebra homomorphism 
 W Z.g/ ! Z.r/ Š Z.r�/ such
that for any z 2 Z.g/ one has

z ˝ 1 � 
.z/ D Da C aD for some a 2 U.g/ ˝ C.s/:

Moreover, 
 is determined by the following commutative diagram:

Here the vertical maps � and �r are Harish-Chandra isomorphisms.
Let S be a spin module of C.s/. Consider the action of D on V ˝ S

D W V ˝ S ! V ˝ S (6)

with g acting on V and C.s/ on S. The Dirac cohomology of V is defined to be the
r-module

HD.V/ WD Ker D= Ker D \ Im D:

The following theorem is a consequence of the above theorem.

Theorem 4 ([28, 41]) Let V be a g-module with Z.g/ infinitesimal character �.
Suppose that an r-module N is contained in the Dirac cohomology HD.V/ and has
Z.r/ infinitesimal character � . Then � D w� for some w 2 W.

Suppose that V� is a finite-dimensional representation with highest weight � 2
h�. Kostant [40] calculated the Dirac cohomology of V� with respect to any equal
rank quadratic subalgebra r of g. Assume that h � r � g is the Cartan subalgebra for
both r and g. Define W.g; h/1 to be the subset of the Weyl group W.g; h/ defined by

W.g; h/1 D fw 2 W.g; h/ jw.�/ is �C.r; h/-dominantg:
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This is the same as the subset of elements w 2 W.g; h/ that map the positive Weyl
g-chamber into the positive r-chamber. There is a bijection

W.r; h/ � W.g; h/1 ! W.g; h/

given by .w; �/ 7! w� . Kostant proved [40] that

HD.V�/ D
M

w2W.g;h/1

Ew.�C�/��r :

This result has been extended to the unequal rank case by Mehdi and Zierau [49].
Dirac cohomology of a simple highest weight module of possibly infinite dimension
and its relation with nilpotent Lie algebra cohomology are determined in [34].

4 Rational Cherednik Algebras

Ciubotaru has extended Dirac cohomology and Vogan’s conjecture to very gen-
eral setting for Drinfeld’s graded Hecke algebras including symplectic reflection
algebras [17] and particularly rational Cherednik algebras [12]. The case for
rational Cherednik algebras is particularly interesting to us, since it has Lie algebra
cohomology defined by half Dirac operators [33].

Let W be a finite complex reflection group acting on a complex vector space h,
i.e., W is a finite group generated by the pseudo-reflections s 2 R fixing a hyperplane
Hs 2 h. Let ˛s 2 h� be a non-zero vector so that the W-invariant symmetric pairing
h ; i between h and h� gives hy; ˛si D 0 for all y 2 Hs. Similarly, we define ˛_

s 2 h
corresponding to the action of s on h�. Set V D h ˚ h�.

The rational Cherednik algebra Ht;c associated to h, W, with parameters t 2 C

and W-invariant functions c W R ! C is defined as the quotient of S.V/ Ì CŒW� by
the relation

Œ y; x� D thy; xi �
X

s2R
c.s/

hy; ˛sih˛_
s ; xi

h˛_
s ; ˛si s

for all y 2 h and x 2 h�.
Let fy1; : : : ; yng be a basis of h, and fx1; : : : ; xng be the corresponding dual basis

of h�. Set

h WD
X

i

.xiyi C yixi/ D 2
X

i

xiyi C nt �
X

s2R
c.s/s 2 HW

t;c;
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where HW
t;c denotes the W-invariants in Ht;c. Clearly, h does not depend on choice of

bases. Denote by

˝Ht;c WD h �
X

s2R
c.s/

1 C �s

1 � �s
s D 2

X

i

xiyi C nt �
X

s2R

2c.s/

1 � �s
s;

where �s D deth.s/ 2 C. Then ˝Ht;c is in HW
t;c and it satisfies (see [12] (4.12))

Œ˝Ht;c ; x� D 2tx; Œ˝Ht;c ; y� D �2ty; 8x 2 h�; y 2 h:

Let h ; i be a W-invariant bilinear product on V given by hxi; xji D hyi; yji D 0,
hxi; yji D ıij. The Clifford algebra C.V/ with respect to h ; i is the tensor algebra of
V subject to the relations

xixj C xjxi D yiyj C yjyi D 0; xiyj C yjxi D �2ıij:

The spinor module S corresponding to the Clifford algebra C.V/ can be realized
as S Š ^�h as vector spaces. The C.V/ action on S is defined by

x. yi1 ^ � � � ^ yip / D 2
X

j

.�1/ jhx; yijiyi1 ^ � � � ^ byij ^ � � � ^ yip ; x 2 h�I

y. yi1 ^ � � � ^ yip / D y ^ yi1 ^ � � � ^ yip ; y 2 h:

We denote by O.V/ D O.V; h ; i/ the complex orthogonal group preserving the
symmetric form h ; i. Let eW be the twofolds cover of W defined by the pull back of
the covering map p W Pin.V/ ! O.V/ via W ,! O.V/. Then one has

eW ,! Pin.V/ ,! C.V/�:

We note that the covering map p W eW ! W factors through

W < GL.h/ ,! O.V/ and W < GL.h�/ ,! O.V/:

There is a well-defined genuine character

W eW ! C; such that 2. Qw/ D deth�. p. Qw//:

We have the eW-module isomorphism

S Š ^�h ˝ ;

where eW-action on ^�h factors through the natural action of W on h.
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We define the half Dirac operators Dx, Dy and the Dirac operator D by

Dx D
X

i

xi ˝ yi; Dy D
X

i

yi ˝ xi and D D Dx C Dy 2 Ht;c ˝ C.V/:

Clearly, these definitions are independent of the choice of bases.

Proposition 1 (Proposition 4.9 [12]) We have

(i) Let � W CŒeW� ! Ht;c ˝ C.V/ be the diagonal embedding ew 7! p.ew/ ˝ ew.
Then D, Dx and Dy commute with �.CŒeW�/.

(ii) D2
x D D2

y D 0.

(iii) Let ˝eW;c 2 CŒeW� be the Casimir element of CŒeW� defined by (2.3.12) in [12].

Then �.˝eW;c/ 2 .Ht;c ˝ C.V//eW , and

D2 D e̋Ht;c � �.˝eW;c/;

where e̋Ht;c D �˝Ht;c ˝ 1 C 1 ˝ t
2
.
P

i xiyi C n/ 2 .Ht;c ˝ C.V//eW.
For a Ht;c-module M, the action of D (and Dx and Dy) on M ˝ S is given by

D.m ˝ s/.D Dx.m ˝ s/ C Dy.m ˝ s// D
X

i

xi � m ˝ yis C
X

j

yj � m ˝ xjs:

The Dirac cohomology HD.M/ of M is defined by

HD.M/ D ker D=.ker D \ imD/:

Regarding h and h� as Abelian Lie algebras, one can define the h�-cohomology
H�.h�; M/ and h-homology H�.h; M/ as W-modules [33]. By the above identifi-
cation S D ^�h ˝  and the differentials with the action of Dx and Dy on the
complexes, we have eW-module isomorphisms:

ker Dx=im Dx Š H�.h�; M/ ˝  and ker Dy=im Dy Š H�.h; M/ ˝ :

A Ht;c-module M is said to be ˝Ht;c-admissible if M can be decomposed into a direct
sum of generalized ˝Ht;c-eigenspaces, i.e.

M D
M

�

M�; M� D fm 2 Mj .˝Ht;c � �/nm D 0g

with each generalized ˝Ht;c-eigenspace M� being finite-dimensional. Let M be a
Ht;c-module that is ˝Ht;c-admissible. Then the Dirac cohomology HD.M/ is a finite-
dimensional eW-module (see Lemma 3.13 of [12]).
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Etingof and Stoica [18] define and study unitary Ht;c-modules with respect to a
star operation �. Let M be such a unitary module. It follows that we have on M ˝ S

D�
x D �Dy; D�

y D �Dx and D� D �D:

The following theorem is the analogue of the Hodge decomposition theorem for
Dirac cohomology of unitary representations of a reductive Lie group of Hermitian
symmetric type [30]. We do not assume that M is ˝Ht;c-admissible in the following
theorem.

Theorem 5 ([33]) Let M be a unitary Ht;c-module. Then

(i) HD.M/ D ker D D ker D2.
(ii) M ˝ S D ker D ˚ im Dx ˚ im Dy.

(iii) ker Dx D ker D ˚ im Dx, ker Dy D ker D ˚ im Dy. Consequently,

HD.M/ Š H�.h�; M/ ˝  Š H�.h; M/ ˝ :

We note that for t ¤ 0 the center of Ht;c consists of scalar C only. One can however
consider a larger commutative subalgebra B � Ht;c ˝ C.V/ (see sect. 5.5 [12]) for
the extension of Vogan’s conjecture in this case. We also refer to Theorem 5.8 [12]
for the case Ht;c with t D 0. An extension of Vogan’s conjecture to more general
setting of Drinfeld’s Hecke algebras is proved in Theorem 3.5 and Theorem 3.14
[12].

An analogue of the Casselman-Osborne Lemma [10] is proved by generalizing
Vogan’s conjecture to the setting of half Dirac operators Dx and Dy [33]. This is
based on the ideas for the similar results for reductive Lie algebras in [29].
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25. J.-S. Huang, Y.-F. Kang, P. Pandžić, Dirac cohomology of some Harish-Chandra modules.
Transform. Groups 14(1), 163–173 (2009)
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