Some Semi-Direct Products with Free Algebras
of Symmetric Invariants

Oksana Yakimova

Abstract Let g be a complex reductive Lie algebra and V the underlying vector
space of a finite-dimensional representation of g. Then one can consider a new Lie
algebra q = gxV, which is a semi-direct product of g and an Abelian ideal V.
We outline several results on the algebra C[q*]9 of symmetric invariants of ¢ and
describe all semi-direct products related to the defining representation of sl, with
Clg*]® being a free algebra.
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1 Introduction

Let Q be a connected complex algebraic group. Set ¢ = Lie Q. Then S(q) = C[q*]
and S(q)7 = C[g*]? = C[q*]2. We will call the latter object the algebra of
symmetric invariants of q. An important property of S(q)? is that it is isomorphic
to ZU(q) as an algebra by a classical result of M. Duflo (here ZU(q) is the centre of
the universal enveloping algebra of q).

Let g be a reductive Lie algebra. Then by the Chevalley restriction theorem
S(g)® = C[H,,...,Hyg] is a polynomial ring (in rk g variables). A quest for
non-reductive Lie algebras with a similar property has recently become a trend in
invariant theory. Here we consider finite-dimensional representations p : g — gl(V)
of g and the corresponding semi-direct products ¢ = gx V. The Lie bracket on q is
defined by

€ +v,n+ul =[E 0]+ pE)u—p(nv 1)

forall £,n € g, v,u € V. Let G be a connected simply connected Lie group with
Lie G = g. Then q = Lie Q with Q = Gx exp(V).

It is easy to see that C[V*]® < C[q*] and therefore C[V*]° must be a
polynomial ring if C[q*]9 is, see [10, Section 3]. Classification of the representations

0. Yakimova (<)
Institut fiir Mathematik, Friedrich-Schiller-Universitét Jena, 07737 Jena, Germany
e-mail: oksana.yakimova@uni-jena.de

© Springer International Publishing AG 2017 267
F. Callegaro et al. (eds.), Perspectives in Lie Theory,
Springer INAAM Series 19, DOI 10.1007/978-3-319-58971-8_6


mailto:oksana.yakimova@uni-jena.de

268 0. Yakimova

of complex simple algebraic groups with free algebras of invariants was carried
out by Schwarz [7] and independently by Adamovich and Golovina [1]. One such
representation is the spin-representation of Spin,, which leads to Q = Spin, xC8,
Here C[q*]9 is a polynomial ring in three variables generated by invariants of bi-
degrees (0,2), (2,2), (6,4) with respect to the decomposition q = 507®C8, see
[10, Proposition 3.10].

In this paper, we treat another example, G = SL,, V = m(C")*®kC" with
n=2mz=1,m= k. Here C[q*]? is a polynomial ring in exactly the following
three cases:

e k=0,m<n+ l,andn =t (mod m) with t € {—1,0,1};
e m=kke{n—2,n—1};
e n=m>k>0andm — k divides n — m.

We also briefly discuss semi-direct products arising as Zp-contractions of
reductive Lie algebras.

2 Symmetric Invariants and Generic Stabilisers

Let ¢ = LieQ be an algebraic Lie algebra, O a connected algebraic group. The
index of q is defined as

indg = min dimg,,
yeq*
where ¢, is the stabiliser of y in q. In view of Rosenlicht’s theorem, indgq =
tr.deg C(q*)?. In case indq = 0, we have C[q*]" = C. For a reductive g,
indg = rk g. Recall that (dimg + rk g)/2 is the dimension of a Borel subalgebra of
g. For q, set b(q) := (indq + dimq)/2.

Let {&;} be a basis of q and M(q) = ([§;, §]) the structural matrix with entries in
g. This is a skew-symmetric matrix of rank dim q —ind gq. Let us take Pfaffians of the
principal minors of M(q) of size rk M(q) and let p = p, be their greatest common
divisor. Then p is called the fundamental semi-invariant of q. The zero set of p is
the maximal divisor in the so called singular set

QGng = 1y € q™ | dimq, > indq}
of g. Since q:‘mg is clearly a Q-stable subset, p is indeed a semi-invariant, Q-p C Cp.
One says that ¢ has the “codim-2” property (satisfies the “codim-2” condition), if
dimq,,<dimg — 2 or equivalently if p = 1.

Suppose that Fy,...,F, € S(q) are homogenous algebraically independent
polynomials. The Jacobian locus J (Fy, ..., F,) of these polynomials consists of
all y € g* such that the differentials d, F,...,d,F, are linearly dependent. In
other words, y € J(Fy,...,F,) if and only if (dF\ A ... A dF,), = 0. The set
J(F1,...,F,) is a proper Zariski closed subset of q*. Suppose that J (F1, ..., F;)
does not contain divisors. Then by the characteristic zero version of a result of
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Skryabin, see [5, Theorem 1.1], C[Fy, ..., F,] is an algebraically closed subalgebra
of S(q), each H € S(q) that is algebraic over C(Fy,...,F,) is contained in
ClFy,...,F}].

Theorem 1 (cf. [3, Section 5.8]) Suppose that p;, = 1 and suppose that
Hy,...,H, € S(q)% are homogeneous algebraically independent polynomials such
that r = indq and Y ._ degH; = b(q). Then S(q)% = C[H,,....H,] is a
polynomial ring in r generators.

Proof Under our assumptions J (Hy, ..., H,) = qs*ing, see [5, Theorem 1.2] and [9,
Section 2]. Therefore C[H,, ..., H,] is an algebraically closed subalgebra of S(q)
by [5, Theorem 1.1]. Since tr.deg S(q)9<r, each symmetric g-invariant is algebraic
over C[Hy, ..., H,] and hence is contained in it. O

For semi-direct products, we have some specific approaches to the symmetric
invariants. Suppose now that g = Lie G is a reductive Lie algebra, no non-zero
ideal of g acts on V trivially, G is connected, and q = gxV, where V is a finite-
dimensional G-module.

The vector space decomposition q = gV leads to q* = g®V*, where we
identify g with g*. Each element x € V* is considered as a point of q* that is
zero on g. We have exp(V)-x = ad*(V)-x + x, where each element of ad*(V)-x
is zero on V. Note that ad*(V)-x C Ann(g,) C g and dim (ad*(V)-x) is equal to
dim (ad *(g)-x) = dimg — dim g,. Therefore ad*(V)-x = Ann(g,).

The decomposition g = gV defines also a bi-grading on S(q) and clearly S(¢)“
is a bi-homogeneous subalgebra, cf. [10, Lemma 2.12].

A statement is true for a “generic x” if and only if this statement is true for all
points of a non-empty open subset.

Lemma 1 A function F € C[q*] is a V-invariant if and only if F(§ +ad*(V)-x, x) =
F(&,x) for generic x € V* and any £ € g.

Proof Condition of the lemma guaranties that for each v € V, exp(v)-F = Fona
non-empty open subset of q*. Hence F is a V-invariant. O

For x € V*, let ¢, : C[q*]2 — C[g + x]%* P be the restriction map. By [10,
Lemma 2.5] C[g + x]%*®P(") =~ S(g,)%. Moreover, if we identify g + x with g
choosing x as the origin, then ¢,(F) € S(g,) for any g-invariant F [10, Section 2].
Under certain assumptions on G and V the restriction map ¢, is surjective, more
details will be given shortly.

There is a non-empty open subset U C V* such that the stabilisers G, and G,
are conjugate in G for any pair of points x, y € U see e.g. [8, Theorem 7.2]. Any
representative of the conjugacy class {hG.h~! | h € G,x € U} is said to be a a
generic stabiliser of the G-action on V*.

There is one easy to handle case, g, = 0 for a generic x € V*. Here C[q*]¢ =
C[V*19, see e.g. [10, Example 3.1], and £ + y € Gging Only if gy # 0, where § € g,
y € V*. The case indg, = 1 is more involved.

Lemma 2 Assume that G has no proper semi-invariants in C[V*]. Suppose that
indg, = 1, S(g,)% # C, and the map ¢, is surjective for generic x € V*. Then
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C[q*]% = C[V*]°[F], where F is a bi-homogeneous preimage of a generator of
S(g,)C* that is not divisible by any non-constant G-invariant in C[V*].

Proof If we have a Lie algebra of index 1, in our case gy, then the algebra of its
symmetric invariants is a polynomial ring. There are many possible explanations of
this fact. One of them is the following. Suppose that two non-zero homogeneous
polynomials fi, f> are algebraically dependent. Then f{' = szb for some coprime
integers a, b > 0 and some ¢ € C”™.If f; is an invariant, then so is a polynomial
function J/f; = ¥/c/f.

Since S(g.)% # C, it is generated by some homogeneous f. The group G,
has finitely many connected components, hence S(g,)“" is generated by a suitable
power of f, say f = f<.

Let F € C[q*]¢ be a preimage of f. Each its bi-homogeneous component is again
a g-invariant. Without loss of generality we may assume that F is bi-homogenous.
Also if F is divisible by some non-scalar H € C[V*]°, then we replace F with F/H
and repeat the process as long as possible.

Whenever G, (with y € V*) is conjugate to Gy and ¢, (F) # 0, ¢,(F) is a Gy-
invariant of the same degree as f and therefore is a generator of S(g,)%. Clearly
C(V*)CIF] C Clg*]2Q@cpy+cC(V*)¢ =: Aand A C S(g)@C(V*)“. If A contains
a homogeneous in g polynomial 7 that is not proportional (over C(V*)%) to a power
of F, then ¢, (T) is not proportional to a power of ¢,(F) for generic u € V*. But
©.(T) € S(g,)%. This implies that A = C(V*)C[F]. It remains to notice that
C(V*)S = Quot C[V*]Y, since G has no proper semi-invariants in C[V*], and by
the same reason C(V*)C[F] N C[q] = C[V*][F] in case F is not divisible by any
non-constant G-invariant in C[V*]. O

It is time to recall the Rais’ formula [6] for the index of a semi-direct product:

indqg = dimV — (dimg — dimg,) + indg, with x € V* generic. 2)
Lemma 3 Suppose that Hy, ..., H, € S(q)¢ are homogenous polynomials such
that .(H;) with i<indg, freely generate S(g,)% = S(g,)% for generic x € V*

ind gy

and H; € C[V*]® for j > indg,; and suppose that Y deg H; = b(gx). Then
i=1

> degH; = b(q) ifand only if Y _ deg H; = dimV.

i=1 i=1

Proof In view of the assumptions, we have Y degH; = b(gy) + Y deg,H..
i=1 i=1

Further, by Eq. (2)

b(q) = (dimq + dimV — (dimg — dimg,) + indg,)/2 =
= dimV + (dimg, + indg,)/2 = b(g,) + dim V.

The result follows. O



Semi-Direct Products with Free Algebras of Invariants 271

From now on suppose that G is semisimple. Then both G and Q have only
trivial characters and hence cannot have proper semi-invariants. In particular, the
fundamental semi-invariant is an invariant. We also have tr.deg S(q)? = indq. Set
r = indq and let x € V* be generic. If C[q*]¢ is a polynomial ring, then there are
bi-homogenous generators H, ..., H, such that H; with i > indg, freely generate
C[V*]¢ and the invariants H; with i<indg, are mixed, they have positive degrees in
gand V.

Theorem 2 ([3, Theorem 5.7] and [10, Proposition 3.11]) Suppose that G
is semisimple and C[q*]9 is a polynomial ring with homogeneous generators
Hi,...,H,. Then

(i) Yi—; degH; = b(q) + degpy;

(ii) for generic x € V*, the restriction map ¢,: C[q*]¢ — C[g+x]°"V = S(g,)%
is surjective, S(g,)% = S(g.)%, and S(g,)% is a polynomial ring in indg,
variables.

It is worth mentioning that ¢, is also surjective for stable actions. An action of
G on V is called stable if generic G-orbits in V are closed, for more details see [8,
Sections 2.4 and 7.5]. By [10, Theorem 2.8] ¢, is surjective for generic x € V* if
the G-action on V* is stable.

3 7Z/2Z-contractions

The initial motivation for studying symmetric invariants of semi-direct products was
related to a conjecture of D. Panyushev on Z,-contractions of reductive Lie algebras.
The results of [10], briefly outlined in Sect. 2, have settled the problem.

Let g = go®g; be a symmetric decomposition, i.e., a 7/27-grading of g.
A semi-direct product, § = goxg;, where g; is an Abelian ideal, can be seen
as a contraction, in this case a Zy-contraction, of g. For example, starting with a
symmetric pair (50,41, $0,), one arrives at § = s0,xXC". In [4], it was conjectured
that S(§)9 is a polynomial ring (in rk g variables).

Theorem 3 ([4, 9, 10]) Let g be a Z,-contraction of a reductive Lie algebra g.
Then S(§)% is a polynomial ring (in 1k g variables) if and only if the restriction
homomorphism C[g]® — C|g;]9° is surjective.

If we are in one of the “surjective” cases, then one can describe the generators
of S(§)9. Let H,...,H, be suitably chosen homogeneous generators of S(g)?
and let H® be the bi-homogeneous (w.r.t. g = go@gi) component of H; of the
highest g;-degree. Then S(§)? is freely generated by the polynomials H? (of
course, providing the restriction homomorphism C[g]® — C[g;]% is surjective)
[4,9].

Unfortunately, this construction of generators cannot work if the restriction
homomorphism is not surjective, see [4, Remark 4.3]. As was found out by Helgason
[2], there are four “non-surjective” irreducible symmetric pairs, namely, (E¢, Fy4),
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(E7,E¢®C), (Es,E;®sl), and (Eg, 5010Ps02). The approach to semi-direct
products developed in [10] showed that Panyushev’s conjecture does not hold
for them. Next we outline some ideas of the proof.

Let Go C G be a connected subgroup with Lie Gy = go. Then Gy is reductive,
it acts on g; = gj, and this action is stable. Let x € g; be a generic element
and Gy, be its stabiliser in Gy. The groups Gy, are reductive and they are known
for all symmetric pairs. In particular, S(go,)*+ is a polynomial ring. It is also
known that C[g;]% is a polynomial ring. By [4] § has the “codim-2” property and
indg = rk g.

Making use of the surjectivity of ¢, one can show that if C[§*]? is freely
generated by some Hj, ..., H,, then necessary Y  degH; > b(g) for § coming from
one of the “non-surjective” pairs [10]. In view é)f 1some results from [3] this leads to
a contradiction.

Note that in case of (g, go) = (E¢, F4), go = F4 is simple and g is a semi-direct
product of F, and C?¢, which, of course, comes from one of the representations in
Schwarz’s list [7].

4 Examples Related to the Defining Representation of sl,,

Form now assume that g = sl, and V = m(C")*@kC" withn =2, m = 1, m = k.
According to [7] C[V]€ is a polynomial ring if either k = 0 and m<n + 1 or m<n,
k<n—1. One finds also the description of the generators of C[V*]% and their degrees
in [7]. In this section, we classify all cases, where C[q*]? is a polynomial ring and
for each of them give the fundamental semi-invariant.

Example 1 Suppose that either m = norm = k = n — 1. Then g, = 0 for generic
x € V* and therefore C[q*]¢ = C[V*]9, i.e., C[q*]¢ is a polynomial ring if and
only if C[V*]¢ is. The latter takes place for (m, k) = (n + 1,0), for m = n and any
k < n,as well as for m = k = n— 1. Non-scalar fundamental semi-invariants appear
here only for

s m = n, where p is given by det (v)"~'* with v € nC";
e m =k = n— 1, where p is the sum of the principal 2kx2k-minors of

(0|”) with v € KC", w € k(C")*,
w|0

In the rest of the section, we assume that g, # 0 for generic x € V*.
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4.1 The Casek =0

Here the ring of G-invariants on V* is generated by
{Ar T C{l,...,m},|I| =n} [8, Section 9],

where each A;(v) is the determinant of the corresponding submatrix of v € V*. The
generators are algebraically independent if and only if m<n + 1, see also [7].

We are interested only in m that are smaller than n. Let n = gm + r, where
0 < r<m, and let I C {1,...,m} be a subset of cardinality r. By choosing the
corresponding r columns of v we get a matrix w = v;. Set

Fi(A,v) := det (v|Av]...|A7 "v|A%W), where A € g,v € V*. 3)

Clearly each F; is an SL,-invariant. Below we will see that they are also V-
invariants. If » = m, then there is just one invariant, F' = Fy . If r is either
1 or m — 1, we get m invariants.

Lemma 4 Each Fy defined by Eq. (3) is a V-invariant.

Proof According to Lemma 1 we have to show that F;(§ + ad*(V)-x,x) = F(§,x)
for generic x € V* and any & € sl,. Since m < n, there is an open SL,-orbit in
V* and we can take x as E,,. Let p C gl, be the standard parabolic subalgebra
corresponding to the composition (m, n — m) and let n_ be the nilpotent radical of
the opposite parabolic. Each element (matrix) § € gl, isasum § = § 4+ §, with
£_ €n_, &, € p. Inthis notation Fy(A, E,;) = det (A—|(A})—|...[(AT")_|(AT)—)).

Let « = a4 and B = B4 be mxm and (n — m)x(n — m)-submatrices of A
standing in the upper left and lower right corner, respectively. Then (A°t!)_ =
> =0 B'A—a’™". Each column of A_« is a linear combination of columns of A_ and
each column of B’A_a/™! is a linear combination of columns of 8’A_co/. Therefore

Fi(A.Ey) = det (A ... [(A"™)_|(AD)—)) =

=det (A_|BA_|...|BT*A_|1B7A_)). (@
Notice that g, C p and the nilpotent radical of p is contained in g, (with x = E,,)).
Since ad*(V)-x = Ann(g,) = g C g (after the identification g = g*), A_ = 0 for

any A € gj‘; and we have 84 = cE,—,, with ¢ € C for this A. An easy observation
is that

det (E—l(ﬂf + CEn—Wl)E—l s |(,B$ + CEn—m)q_lg—,I) =
= det (E-1BeE- |- 1B "60).

Hence F;(§ + A,E,) = F;(§,E,) forall A € ad*(V)-E,, and all £ € sl,,. |
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Theorem 4 Suppose that ¢ = sl,xm(C")*. Then C[q*]? is a polynomial ring if
and only if m<n+ 1 and m divides either n— 1, n or n + 1. Under these assumptions
onm, pq = 1 exactly then, when m divides eithern — 1 orn + 1.

Proof Note that the statement is true for m = n by Example 1. Assume that m<n—1.
Suppose that n = mq + r as above. A generic stabiliser in g is g, = sl,—,,xmC"™".
On the group level it is connected. Notice that indg, = tr.deg S(g,)%*, since G, has
no non-trivial characters. Note also that C[V*]¢ = C, since m < n. If C[q*] is
a polynomial ring, then so is C[g¥]% by Theorem 2(ii) and either n — m = 1 or,
arguing by induction, n —m = ¢ (mod m) with ¢t € {—1,0, 1}.

Next we show that the ring of symmetric invariants is freely generated by the
polynomials F; for the indicated m. Each element y € g} can be presented as y =
Bo + A_, where By € sl,—,,. Each restriction ¢,(F;) can be regarded as an element
of S(gx). Equation (4) combined with Lemma 4 and the observation that g =~
g/Ann(g,) shows that ¢, (Fy) is either A of g, (in case ¢ = 1, where Fj(A, E,,) =
detA_ ) or Fj of g,. Arguing by induction on n, we prove that the restrictions @, (Fy)
freely generate S(g,)% for x = E,, (i.e., for a generic point in V*). Notice that
n—m= (qg—1)m+r.

The group SL, acts on V* with an open orbit SL,-E,,. Therefore the restriction
map ¢y is injective. By the inductive hypothesis it is also surjective and therefore is
an isomorphism. This proves that the polynomials F; freely generate C[q*]?.

If m divides n, then C[q*]¢ = C[F] and the fundamental semi-invariant is a
power of F. As follows from the equality in Theorem 2(i), p = F""~'.

Suppose that m divides either n — 1 or n 4+ 1. Then we have m different invariants
F;. By induction on n, g, has the “codim-2" property, therefore the sum of deg ¢, (F;)
is equal to b(g,) by Theorem 2(i). The sum of V-degrees is mxn = dim V and hence
by Lemma 3 Y degF; = b(q). Thus, ¢ has the “codim-2” property. O

Remark 1 Using induction on n one can show that the restriction map ¢, is an
isomorphism for all m < n. Therefore the polynomials F; generate C[q*]< for all
m <n.

4.2 The Casem =k

Here C[V*]9 is a polynomial ring if and only if k<n— 1; a generic stabiliser is 5[,—¢,
and the G-action on V = V* is stable. We assume that g, # 0 for generic x € V*
and therefore k<n — 2.

For an NxN-matrix C, let A;(C) with 1<i<N be coefficients of its characteristic
polynomial, each A; being a homogeneous polynomial of degree i. Let y = A +
v+we q*withA € g, v € kC", w € k(C")*. Having these objects we form an

(n + k)x(n + k)-matrix
A | v
Y, =
' (W | 0)
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and set F;(y) = A;(Y,) foreachi € {2k + 1,2k +2,2k+3,...,n+ k}. Each F; is
an SL, x GLj-invariant. Unfortunately, these polynomials are not V-invariants.

Remark 2 1f we repeat the same construction for q = gl,xV with k<n — 1, then
C[q*]¢ = C[V*|S“[{F; | 2k + 1<i<n + k}] and it is a polynomial ring in indq =
n — k + k? generators.

Theorem 5 Suppose that m = k<n — 1. Then C[q*]% is a polynomial ring if and
only ifk € {n—2,n—1}. In case k = n — 2, q has the “codim-2” property.

Proof Suppose that k = n — 2. Then a generic stabiliser g, = sl, is of index
1 and since the G-action on V is stable, C[q*]? has to be a polynomial ring by
[10, Example 3.6]. One can show that the unique mixed generator is of the form
ForyoHy —F %k 41> Where Hy is a certain SL, x GL-invariant on V of degree 2k and
then see that the sum of degrees is b(q).

More generally, q has the “codim-2" property for all k<n — 2. Here each G-
invariant divisor in V* contains a G-orbit of maximal dimension, say Gy. Set u =
n—k— 1. If Gy is not SL,—, then g, = sl, x (C*"®(C")* & C) is a semi-direct
product with a Heisenberg Lie algebra. Following the proof of [4, Theorem 3.3],
one has to show that indg, = u in order to prove that q has the “codim-2" property.
This is indeed the case, indg, = 1 + indsl,.

Suppose that 0 < k < n — 2 and assume that S(q)9 is a polynomial ring. Then
there are bi-homogeneous generators h,, . .., h,—; of C[q*]¢ over C[V*]° such that
their restrictions to g + x form a generating set of S(g,)% for a generic x (with
gx = sl,—¢), see Theorem 2(ii). In particular, deg gh, =1

Take g = (sl,Pgl;) x V, which is a Z,-contraction of sl,,+. Then q is a Lie
subalgebra of g. Note that GL;, acts on q via automorphisms and therefore we may
assume that the C-linear span of {h,} is GL,-stable. By degree considerations, each
h; is an SL;-invariant as well. The Weyl involution of SL, acts on V and has to
preserve each line Ch,. Since this involution interchanges C" and (C")*, each h, is
also a GL-invariant. Thus,

S@)7 =S = S@) N S@)*.

Since g is a “surjective” Z,-contraction, its symmetric invariants are known [4,
Theorem 4.5]. The generators of S(§)? are A? with 25j<n + k. Here deg A? = j
and the generators of (sl,®gly)-degrees 2,3,...,n—kare A5 ,, A% 5,..., A7 .
As the restriction to s[,@®gl; + x shows, none of the generators A? with j = 2k + 2
lies in S(q). This means that h, cannot be equal or even proportional over C[V*]¢
to A3, and hence has a more complicated expression. More precisely, a product
A% 1A%, necessary appears in h, with a non-zero coefficient from C[v*|¢
for t = 2. Since degy A3, = 2k, we have degyh, > 4k for every t > 2.
The ring C[V*]€ is freely generated by k> polynomials of degree two. Therefore,
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the total sum of degrees over all generators of S(q)7 is greater than or equal
to

b(sl,_x) + 4k(n — k — 1) 4+ 2k* = b(q) + 2k(n — k — 2).

This contradicts Theorem 2(i) in view of the fact that p; = 1.

4.3 TheCase0 <k <m

Here C[V*]¢ is a polynomial ring if and only if m<n, [7]. If n = m, then g, = O for
generic x € V*. For m < n, our construction of invariants is rather intricate.
Let my,...,m,—1 be the fundamental weights of sl,. We use the standard

n—1
convention, 7; = & + ... + &, & = — »_ &. Recall that for any ¢, 1<r < n,
i=1
A'C" is irreducible with the highest weight ;. Let {ey,...,e,} be a basis of C"
such that each ¢; is a weight vector and £, := e¢] A ... A ¢, is a highest weight vector
of A'C". Clearly A'C" C S'(tC"). Write n—k = d(m—k) +r with 0 < r<(m—k).
Let ¢ : mC" — A™C" be a non-zero m-linear G-equivariant map. Such a map is
unique up to a scalar and one can take ¢ with @(v] + ... + Vy) = VI A ... A Uy
In case r # m — k, for any subset I C {1,...,m} with |I| = k + r, let
@r: mC" — (k + r)C" — AMC" be the corresponding (almost) canonical map.
By the same principle we construct ¢: k(C")* — A¥(C")*.
Let us consider the tensor product W := (A”C")®?® A**"C" and its weight
subspace Wy, . One can easily see that W, contains a unique up to a scalar non-
zero highest weight vector, namely

Win, = Z sgn(0) Uk A egany Ae o  Aegmy) Q... Q@ (i Aegnert) - - - Aegm)-

0ES —k

This means that W contains a unique copy of Vy,, where V4, is an irreducible sl,-
module with the highest weight dm;. We let p denote the representation of gl, on
A™C" and p, the representation of gl, on A¥T"C". Let £ = A + v + w be a point in
q*. (Itis assumed that A € sl,,.) Finally let (, ) denote a non-zero sl,-invariant scalar
product between W and S?(A*(C")*) that is zero on the sl,-invariant complement
of Vyr, in W. Depending on r, set

F(£) := (9()®p(A)" o) ®p(A*)"p(v)® ... ®p(A) " p(v), p(w))

forr =m—k;

Fi(§) == (p(0)®p(A)"“p()® ... ®p(A™)"Fp(v)®p,(AY) ¢1(v). G ()"
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for each [ as above in case r < m — k. By the constructions the polynomials F and
F; are SL,,-invariants.

Lemma 5 The polynomials ¥ and ¥; are V-invariants.

Proof We restrict F and F; to g* + x with x € V* generic. Changing a basis in V if
necessary, we may assume that x = E,, + E;. If r < m — k, some of the invariants
F; may become linear combinations of such polynomials under the change of basis,

but this does not interfere with V-invariance. Now ¢(v) is a vector of weight 7,
n+kd
and @(w)? of weight —dm;. Notice that dm + (k +7) = n +kd. If Y A =

i=1

k
d ) & and each A; is one of the g;, 1<j<n, then in the sequence (A1,..., Ayykq)
i=1

we must have exactly one ¢; for each k < j<n and d + 1 copies of each & with
1<i<k. Hence the only summand of p(A*)" *¢(E,,) that plays any rdle in F or F;
iS LynASer 1 A ... AA%ey,. Moreover, in A*egq A . .. AA¥e,, we are interested only in
vectors lying in A" *span(ei+1. ... .ep).

Let us choose blocks «, U, B of A as shown in Fig. 1. Then up to a non-zero scalar
F(A, E, + E}) is the determinant of

(UIBU + Ua|Py(a. U, B)| ... |Pg—1(e, U. B)).,

where Ps(a, U, B) = Z BUa.
=0

Each column of U is a linear combination of the columns of U, a similar relation
exists between B'Ua’T! and B'Ua’. Therefore

F(A,E,, + Ex) = det (U|BU|B*U|...|B*'U). (5)

We have to check that F(§ + A,x) = F(&,x) forany A € ad*(V)-x and any & € g,
see Lemma 1. Recall that ad*(V)-x = Ann(g,) = g C g.Incase x = E,, + Et, U
is zero in each A € gi‘ and B corresponding to such A is a scalar matrix. Therefore
F(& + ad*(V)-x,x) = F(§,x).

The case r < m—k is more complicated. If {1, ...k} C I,thenl = IL{1, ... k}.
Let U; be the corresponding submatrix of U and «j,; of . One just has to replace

Fig. 1 Submatrices of k {
A € sl,

a }m—k




278 0. Yakimova

U by Uy and « by o, in the last polynomial P, (e, U, B) obtaining
F/(A,x) = det (U|BU|B*U|...|B*2U|B*'U5) .

These are (%) linearly independent invariants in S(g).
Suppose that {1,...,k} ¢ I. Then p;(A?)" has to move more than r vectors e;
with k 4+ 1<i<m, which is impossible. Thus, F;(A, x) = 0 for such I. O

Theorem 6 Suppose that 0 < k < m < n and m — k divides n —m, then indg, = 1
for generic x € V* and C[q*]¢ = C[V*|C[F] is a polynomial ring, the fundamental
semi-invariant is equal to F" %=1,

Proof A generic stabiliser g, is sl,,—,,x (m—k)C"~". Its ring of symmetric invariants
is generated by F = ¢,(F), see Theorem 4 and Eq. (5). We also have indg, = 1. It
remains to see that F is not divisible by a non-constant G-invariant polynomial on
V*. By the construction, F is also invariant with respect to the action of SL,,xSLy.
The group L = SL,,xSL,,xSL; act on V* with an open orbit. As long as tkw = &,
rk v = m, the L-orbit of y = v + w contains a point v’ + Ej, where also tk v/ = m.
If in addition the upper kxm-part of v has rank k, then L-y contains x = E,, + E;.
Here F is non-zero on g + y. Since the group L is semisimple, the complement
of L-(E,, + Ei) contains no divisors and F is not divisible by any non-constant
G-invariant in C[V*]. This is enough to conclude that C[q*]¢ = C[V*]°[F], see
Theorem 2.

The singular set q3,, is L-stable. And therefore pg is also an SL,, X SLi-invariant.

Hence p is a power of F. In view of Theorem 2(i), p = F" %1, O

Theorem 7 Suppose that 0 < k < m < n and m — k does not divide n — m, then
C[q*]€ is not a polynomial ring.

Proof The reason for this misfortune is that (,} ) > (") for r < m— k. One could
prove that each F; must be in the set of generators and thereby show that C[q*]< is
not a polynomial ring. But we present a different argument.

Assume that the ring of symmetric invariants is polynomial. It is bi-graded and
SL,, acts on it preserving the bi-grading. Since SL,, is reductive, we can assume that
there is a set {H}, ..., H,} of bi-homogeneous mixed generators such that S(q)9 =
C[V*]C[H,, ..., H,] and the C-linear span H := span(H,, ..., H;) is SL,,-stable.
The polynomiality implies that a generic stabiliser g, = s[,—,,x(m — k)C"™" has a
free algebra of symmetric invariants, see Theorem 2(ii), and by the same statement
@, 1s surjective. This means that r is either 1 or m —k—1, see Theorem 4, s = m —k,
and ¢, is injective on H. Taking our favourite (generic) x = E, + E;, we see
that there is SL,,—; embedded diagonally into GxSL,,, which acts on ¢, () as on
A"C"*, The group SL,,— acts on  in the same way. Since m — k does not divide
n —m, we have m — k = 2. The group SL,, cannot act on an irreducible module
A"C"* of its non-trivial subgroup SL,,—, this is especially obvious in our two
cases of interest, r = 1 and r = m — k — 1. A contradiction. O
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Conjecture 1 1Tt is very probable that C[q*]% = C[V*]S[{F;}] forall n > m >
k= 1.
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