Some Semi-Direct Products with Free Algebras of Symmetric Invariants

Oksana Yakimova

Abstract Let g be a complex reductive Lie algebra and *^V* the underlying vector space of a finite-dimensional representation of g. Then one can consider a new Lie algebra $q = g \kappa V$, which is a semi-direct product of g and an Abelian ideal *V*. We outline several results on the algebra $\mathbb{C}[\mathfrak{q}^*]^q$ of symmetric invariants of q and describe all semi-direct products related to the defining representation of \mathfrak{sl}_q with describe all semi-direct products related to the defining representation of sl*ⁿ* with $\mathbb{C}[q^*]$ ^q being a free algebra.

Keywords Coadjoint representation • Non-reductive Lie algebras • Polynomial rings • Regular invariants

1 Introduction

Let *Q* be a connected complex algebraic group. Set $q = Lie Q$. Then $S(q) = \mathbb{C}[q^*]$
and $S(q)^q = \mathbb{C}[q^*] = \mathbb{C}[q^*]Q$. We will call the latter object the *algebra* of and $S(q)^q = \mathbb{C}[q^*]$
symmetric invariants $\mathcal{P} = \mathbb{C}[\mathfrak{q}^*]^\mathcal{Q}$. We will call the latter object the *algebra of* of a An important property of $S(\mathfrak{q})^\mathfrak{q}$ is that it is isomorphic *symmetric invariants* of q. An important property of $S(q)^q$ is that it is isomorphic to $ZU(q)$ as an algebra by a classical result of M. Duflo (here $ZU(q)$) is the centre of the universal enveloping algebra of q).

Let g be a reductive Lie algebra. Then by the Chevalley restriction theorem $S(\mathfrak{g})^{\mathfrak{g}} = \mathbb{C}[H_1,\ldots,H_{\mathrm{rk},\mathfrak{g}}]$ is a polynomial ring (in rk \mathfrak{g} variables). A quest for non-reductive Lie algebras with a similar property has recently become a trend in non-reductive Lie algebras with a similar property has recently become a trend in invariant theory. Here we consider finite-dimensional representations $\rho : \mathfrak{g} \to \mathfrak{gl}(V)$ of g and the corresponding semi-direct products $q = g \ltimes V$. The Lie bracket on q is defined by

$$
[\xi + v, \eta + u] = [\xi, \eta] + \rho(\xi)u - \rho(\eta)v
$$
 (1)

for all $\xi, \eta \in \mathfrak{g}, v, u \in V$. Let G be a connected simply connected Lie group with Lie *G* = \mathfrak{g} . Then $\mathfrak{q} = \text{Lie } Q$ with $Q = G \ltimes \exp(V)$.

It is easy to see that $\mathbb{C}[V^*]^G \subset \mathbb{C}[\mathfrak{q}^*]^q$ and therefore $\mathbb{C}[V^*]^G$ must be a
vnomial ring if $\mathbb{C}[\mathfrak{a}^*]^q$ is see 110 Section 31 Classification of the representations polynomial ring if $\mathbb{C}[q^*]^q$ is, see [\[10,](#page-12-0) Section 3]. Classification of the representations

O. Yakimova (⊠)

Institut für Mathematik, Friedrich-Schiller-Universität Jena, 07737 Jena, Germany e-mail: oksana.yakimova@uni-jena.de

[©] Springer International Publishing AG 2017

F. Callegaro et al. (eds.), *Perspectives in Lie Theory*,

Springer INdAM Series 19, DOI 10.1007/978-3-319-58971-8_6

of complex simple algebraic groups with free algebras of invariants was carried out by Schwarz [\[7\]](#page-12-1) and independently by Adamovich and Golovina [\[1\]](#page-12-2). One such representation is the spin-representation of Spin₇, which leads to $O = \text{Spin}_7 \ltimes \mathbb{C}^8$. Here $\mathbb{C}[\mathfrak{q}^*]^q$ is a polynomial ring in three variables generated by invariants of bi-
degrees (0, 2), (2, 2), (6, 4), with respect to the decomposition $\mathfrak{q} = \mathfrak{so}_7 \oplus \mathbb{C}^8$ see degrees $(0, 2)$, $(2, 2)$, $(6, 4)$ with respect to the decomposition $q = \mathfrak{so}_7 \oplus \mathbb{C}^8$, see [\[10,](#page-12-0) Proposition 3.10].

In this paper, we treat another example, $G = SL_n$, $V = m(\mathbb{C}^n)^* \oplus k\mathbb{C}^n$ with $\geq 2, m \geq 1, m \geq k$. Here $\mathbb{C}[\mathfrak{a}^*]^q$ is a nolynomial ring in exactly the following $n \ge 2$, $m \ge 1$, $m \ge k$. Here $\mathbb{C}[q^*]^q$ is a polynomial ring in exactly the following three cases: three cases:

- $k = 0, m \le n + 1, \text{ and } n \equiv t \pmod{m} \text{ with } t \in \{-1, 0, 1\};$
• $m k, k \in \{n 2, n 1\}.$
- $m = k, k \in \{n-2, n-1\};$
• $n \ge m \ge k > 0$ and $m k$
- $n \ge m > k > 0$ and $m k$ divides $n m$.

We also briefly discuss semi-direct products arising as \mathbb{Z}_2 -contractions of reductive Lie algebras.

2 Symmetric Invariants and Generic Stabilisers

Let $q = \text{Lie } Q$ be an algebraic Lie algebra, Q a connected algebraic group. The index of q is defined as

$$
\mathrm{ind}\mathfrak{q}=\min_{\gamma\in\mathfrak{q}^*}\mathrm{dim}\,\mathfrak{q}_{\gamma},
$$

where q_{γ} is the stabiliser of γ in q. In view of Rosenlicht's theorem, indq = tr.deg $\mathbb{C}(q^*)^{\mathcal{Q}}$. In case ind $q = 0$, we have $\mathbb{C}[q^*]$
ind $q = \text{rk } q$. Recall that $(\dim q + \text{rk } q)/2$ is the dimen- $\mathbf{q} = \mathbb{C}$. For a reductive g,
nsion of a Borel subalgebra of ind $\mathfrak{g} = \mathfrak{rk} \mathfrak{g}$. Recall that $(\dim \mathfrak{g} + \mathfrak{rk} \mathfrak{g})/2$ is the dimension of a Borel subalgebra of g. For q, set $\mathbf{b}(q) := (\text{ind } q + \text{dim } q)/2$.

Let $\{\xi_i\}$ be a basis of q and $\mathcal{M}(\mathfrak{q}) = (\{\xi_i, \xi_j\})$ the structural matrix with entries in
This is a skew-symmetric matrix of rank dim \mathfrak{q} – ind \mathfrak{q} . Let us take Pfaffians of the q. This is a skew-symmetric matrix of rank dim $q - \text{ind } q$. Let us take Pfaffians of the principal minors of $M(q)$ of size rk $M(q)$ and let $p - p$ be their greatest common principal minors of $\mathcal{M}(q)$ of size rk $\mathcal{M}(q)$ and let $\mathbf{p} = \mathbf{p}_q$ be their greatest common divisor. Then **^p** is called the *fundamental semi-invariant* of q. The zero set of **^p** is the maximal divisor in the so called *singular set*

$$
\mathfrak{q}^*_{\text{sing}} = \{ \gamma \in \mathfrak{q}^* \mid \dim \mathfrak{q}_\gamma > \text{ind } \mathfrak{q} \}
$$

of q. Since q_{sing}^* is clearly a *Q*-stable subset, **p** is indeed a semi-invariant, $Q \cdot \mathbf{p} \subset \mathbb{C}\mathbf{p}$.
One save that g has the "codim-2" property (satisfies the "codim-2" condition) if One says that q has the "codim-2" property (satisfies the "codim-2" condition), if $\dim \mathfrak{q}_{sing}^* \leq \dim \mathfrak{q} - 2$ or equivalently if $\mathfrak{p} = 1$.
Suppose that F , $F \in S(\mathfrak{q})$ are be

Suppose that $F_1, \ldots, F_r \in S(q)$ are homogenous algebraically independent polynomials. The *Jacobian locus* $\mathcal{J}(F_1,\ldots,F_r)$ of these polynomials consists of all $\gamma \in \mathfrak{q}^*$ such that the differentials $d_{\gamma}F_1,\ldots,d_{\gamma}F_r$ are linearly dependent. In other words $\gamma \in \mathcal{T}(F, F)$ if and only if $(dF, \wedge \cdots \wedge dF) = 0$. The set other words, $\gamma \in \mathcal{J}(F_1,\ldots,F_r)$ if and only if $(dF_1 \wedge \ldots \wedge dF_r)_{\gamma} = 0$. The set $\mathcal{J}(F_1,\ldots,F_r)$ is a proper Zariski closed subset of \mathfrak{q}^* . Suppose that $\mathcal{J}(F_1,\ldots,F_r)$ does not contain divisors. Then by the characteristic zero version of a result of does not contain divisors. Then by the characteristic zero version of a result of Skryabin, see [\[5,](#page-12-3) Theorem 1.1], $\mathbb{C}[F_1,\ldots,F_r]$ is an algebraically closed subalgebra of $S(q)$, each $H \in S(q)$ that is algebraic over $\mathbb{C}(F_1,\ldots,F_r)$ is contained in $\mathbb{C}[F_1,\ldots,F_r].$

Theorem 1 (cf. [\[3,](#page-12-4) Section 5.8]) Suppose that $p_q = 1$ and suppose that $H_1,\ldots,H_r \in \mathcal{S}(\mathfrak{q})^{\mathfrak{q}}$ *are homogeneous algebraically independent polynomials such that* $r = \text{ind } q$ *and* $\sum_{i=1}^{r} \deg H_i = \mathbf{b}(q)$ *. Then* $S(q)^q = \mathbb{C}[H_1, \ldots, H_r]$ *is a polynomial ring in r generators polynomial ring in r generators.*

Proof Under our assumptions $\mathcal{J}(H_1, \ldots, H_r) = \mathfrak{q}^*_{\text{sing}}$, see [\[5,](#page-12-3) Theorem 1.2] and [\[9,](#page-12-5) Section 21 Therefore $\mathbb{C}[H_1, \ldots, H_r]$ is an algebraically closed subalgebra of $S(\mathfrak{a})$ Section 2]. Therefore $\mathbb{C}[H_1,\ldots,H_r]$ is an algebraically closed subalgebra of $S(q)$
by [5] Theorem 1.11. Since trideg $S(q)^q \leq r$ each symmetric *q*-invariant is algebraic by [\[5,](#page-12-3) Theorem 1.1]. Since tr.deg $S(q)^q \le r$, each symmetric q-invariant is algebraic over $\mathbb{C}[H_1, \ldots, H_r]$ and hence is contained in it. over $\mathbb{C}[H_1,\ldots,H_r]$ and hence is contained in it.

er $\mathbb{C}[H_1, \ldots, H_r]$ and hence is contained in it. \Box
For semi-direct products, we have some specific approaches to the symmetric invariants. Suppose now that $g = \text{Lie } G$ is a reductive Lie algebra, no non-zero ideal of g acts on *V* trivially, G is connected, and $q = g \kappa V$, where *V* is a finitedimensional *G*-module.

The vector space decomposition $q = g \oplus V$ leads to $q^* = g \oplus V^*$, where we
ntify q with q^* Each element $r \in V^*$ is considered as a point of q^* that is identify g with g^* . Each element $x \in V^*$ is considered as a point of g^* that is
zero on g. We have $exp(V)(x) = ad^*(V)(x) + x$, where each element of $ad^*(V)(x)$ zero on g. We have $exp(V) \cdot x = ad^*(V) \cdot x + x$, where each element of $ad^*(V) \cdot x$
is zero on V. Note that $ad^*(V) \cdot x \subset Ann(a) \subset a$ and dim $(ad^*(V) \cdot x)$ is equal to is zero on *V*. Note that $ad^*(V) \cdot x \subset Ann(g_x) \subset g$ and $dim(ad^*(V) \cdot x)$ is equal to $dim(ad^*(a) \cdot x) = dim \mathfrak{a} - dim \mathfrak{a}$. Therefore $ad^*(V) \cdot x = Ann(\mathfrak{a})$. $dim (ad^*(g) \cdot x) = dim g - dim g_x.$ The decomposition $g = g \oplus V$ defines also a bi-grading on $S(g)$.

The decomposition $q = g \oplus V$ defines also a bi-grading on $S(q)$ and clearly $S(q)^q$ is a bi-homogeneous subalgebra, cf. [\[10,](#page-12-0) Lemma 2.12].

A statement is true for a "generic x" if and only if this statement is true for all points of a non-empty open subset.

Lemma 1 *A function* $F \in \mathbb{C}[\mathfrak{q}^*]$ *is a V-invariant if and only if* $F(\xi + ad^*(V) \cdot x, x) =$
 $F(\xi, x)$ for generic $x \in V^*$ and any $\xi \in \mathfrak{q}$. $F(\xi, x)$ *for generic* $x \in V^*$ *and any* $\xi \in \mathfrak{g}$ *.*

Proof Condition of the lemma guaranties that for each $v \in V$, $exp(v) \cdot F = F$ on a non-empty open subset of \mathfrak{a}^* . Hence *F* is a *V*-invariant. non-empty open subset of q^* . Hence F is a V-invariant. . Hence *F* is a *V*-invariant. \Box
 $Q \rightarrow \mathbb{C}[\mathfrak{a} + r]^{G_x \times \exp(V)}$ be the restriction man By [10]

For $x \in V^*$, let $\varphi_x : \mathbb{C}[\mathfrak{q}^*] \mathcal{Q} \to \mathbb{C}[\mathfrak{g} + x]$
mma 2.51 $\mathbb{C}[\mathfrak{a} + x]^{G_x \ltimes \exp(V)} \simeq S(\mathfrak{a})^{G_x}$ $G_x \ltimes \exp(V)$ be the restriction map. By [\[10,](#page-12-0) Lemma 2.5] $\mathbb{C}[\mathfrak{g} + x]$
choosing *x* as the orig $\int G_x \kappa \exp(V) \simeq S(g_x)^{G_x}$. Moreover, if we identify $g + x$ with g
in then $g(F) \in S(g_x)$ for any g-invariant $F(10)$ Section 21 choosing *x* as the origin, then $\varphi_x(F) \in S(\mathfrak{g}_x)$ for any q-invariant *F* [\[10,](#page-12-0) Section 2]. Under certain assumptions on *G* and *V* the restriction map φ_x is surjective, more details will be given shortly.

There is a non-empty open subset $U \subset V^*$ such that the stabilisers G_x and G_y
conjugate in G for any pair of points $x, y \in U$ see e.g. [8] Theorem 7.21. Any are conjugate in *G* for any pair of points *x*, $y \in U$ see e.g. [\[8,](#page-12-6) Theorem 7.2]. Any representative of the conjugacy class $\{hG_xh^{-1} \mid h \in G, x \in U\}$ is said to be a *a generic stabiliser* of the *G*-action on *V*-.

There is one easy to handle case, $g_x = 0$ for a generic $x \in V^*$. Here $\mathbb{C}[\mathfrak{q}^*]^{\mathcal{Q}}$
 V^* ^{1*G*} see e.g. 110 Fxample 3.11 and $\xi + y \in \mathfrak{q}^*$ only if $\mathfrak{q} \neq 0$ where $\xi \in \mathfrak{q}$ $\mathbb{C}[V^*]^G$, see e.g. [10, Example 3.1], and $\xi + y \in \mathfrak{q}_{sing}^*$ only if $\mathfrak{g}_y \neq 0$, where $\xi \in \mathfrak{g}$, *G*, see e.g. [\[10,](#page-12-0) Example 3.1], and $\xi + y \in \mathfrak{q}_{sing}^*$ only if $\mathfrak{g}_y \neq 0$, where $\xi \in \mathfrak{g}$, $*$ The case ind $\mathfrak{g}_z - 1$ is more involved $y \in V^*$. The case ind $\mathfrak{g}_x = 1$ is more involved.

Lemma 2 Assume that G has no proper semi-invariants in $\mathbb{C}[V^*]$. Suppose that $\text{ind } \mathfrak{g}_x = 1, S(\mathfrak{g}_x)^{\mathfrak{g}_x} \neq \mathbb{C}, \text{ and the map } \varphi_x \text{ is surjective for generic } x \in V^*. \text{ Then}$ $\mathbb{C}[q^*]$
S(n) ^q = $\mathbb{C}[V^*]^G[F]$, where *F* is a bi-homogeneous preimage of a generator of G_x that is not divisible by any non-constant G-invariant in $\mathbb{C}[V^*]$ $\mathcal{S}(\mathfrak{g}_x)^{G_x}$ *that is not divisible by any non-constant G-invariant in* $\mathbb{C}[V^*].$

Proof If we have a Lie algebra of index 1, in our case g_x , then the algebra of its symmetric invariants is a polynomial ring. There are many possible explanations of this fact. One of them is the following. Suppose that two non-zero homogeneous polynomials f_1, f_2 are algebraically dependent. Then $f_1^a = cf_2^b$ for some coprime
integers $a, b > 0$ and some $c \in \mathbb{C}^\times$. If f, is an invariant, then so is a nolynomial integers $a, b > 0$ and some $c \in \mathbb{C}^{\times}$. If f_1 is an invariant, then so is a polynomial function $\sqrt[b]{f_2} = \sqrt[[b]{c} \sqrt[b]{f_2}$ function $\sqrt[b]{f_1} = \sqrt[ab]c \sqrt[a]{f_2}$.
Since $S(a_1)^{a_x} \neq \mathbb{C}$

Since $S(g_x)^{g_x} \neq \mathbb{C}$, it is generated by some homogeneous *f*. The group G_x has finitely many connected components, hence $\mathcal{S}(\mathfrak{g}_x)^{G_x}$ is generated by a suitable power of *f*, say $f = f^d$.

Let $F \in \mathbb{C}[\mathfrak{q}^*]^\mathcal{Q}$ be a preimage of **f**. Each its bi-homogeneous component is again invariant Without loss of generality we may assume that F is bi-homogenous ^a q-invariant. Without loss of generality we may assume that *^F* is bi-homogenous. Also if *F* is divisible by some non-scalar $H \in \mathbb{C}[V^*]^G$, then we replace *F* with F/H and repeat the process as long as possible and repeat the process as long as possible.

Whenever G_y (with $y \in V^*$) is conjugate to G_x and $\varphi_y(F) \neq 0$, $\varphi_y(F)$ is a G_y -
ariant of the same degree as **f** and therefore is a generator of $S(g_1)G_y$ Clearly invariant of the same degree as **f** and therefore is a generator of $S(g_y)^{G_y}$. Clearly $\mathbb{C}(V^*)^G[F] \subset \mathbb{C}[\mathfrak{q}^*]^G \otimes_{\mathbb{C}[V^*]^G} \mathbb{C}(V^*)^G =: \mathcal{A} \text{ and } \mathcal{A} \subset \mathcal{S}(\mathfrak{g}) \otimes \mathbb{C}(V^*)^G.$ If $\mathcal{A} \text{ contains a homogeneous in } \mathfrak{q} \text{ polynomial } T$ that is not proportional (over $\mathbb{C}(V^*)^G$) to a nower $\mathbb{C}(V^*)^{\circ}[F] \subset \mathbb{C}[\mathfrak{q}^*]^{\mathcal{Q}} \otimes_{\mathbb{C}[V^*]^G} (\mathbb{C}(V^*)^{\circ} =: \mathcal{A} \text{ and } \mathcal{A} \subset \mathcal{S}(\mathfrak{g}) \otimes \mathbb{C}(V^*)^{\circ}.$ If $\mathcal{A} \text{ contains a homogeneous in } \mathfrak{g}$ polynomial *T* that is not proportional (over $\mathbb{C}(V^*)^G$) to a power o of *F*, then $\varphi_u(T)$ is not proportional to a power of $\varphi_u(F)$ for generic $u \in V^*$. But $\varphi_u(T) \in S(\mathfrak{a})^{G_u}$ This implies that $\mathcal{A} = \mathbb{C}(V^*)^G[F]$ It remains to notice that $\varphi_u(T) \in S(\mathfrak{g}_u)^{G_u}$. This implies that $\mathcal{A} = \mathbb{C}(V^*)^G[F]$. It remains to notice that $\mathbb{C}(V^*)^G = \text{Out } \mathbb{C}[V^*]^G$ since G has no proper semi-invariants in $\mathbb{C}[V^*]$ and by $\mathbb{C}(V^*)^G = \text{Quot } \mathbb{C}[V^*]^G$, since *G* has no proper semi-invariants in $\mathbb{C}[V^*]$, and by the same reason $\mathbb{C}(V^*)^G[F] \cap \mathbb{C}[a] = \mathbb{C}[V^*]^G[F]$ in case *F* is not divisible by any the same reason $\mathbb{C}(V^*)^G[F] \cap \mathbb{C}[q] = \mathbb{C}[V^*]^G[F]$ in case *F* is not divisible by any
non-constant *G*-invariant in $\mathbb{C}[V^*]$ non-constant *G*-invariant in $\mathbb{C}[V^*]$ 1-constant *G*-invariant in $\mathbb{C}[V^*]$.
It is time to recall the Raïs' formula [\[6\]](#page-12-7) for the index of a semi-direct product:

$$
ind \mathfrak{q} = dim V - (dim \mathfrak{g} - dim \mathfrak{g}_x) + ind \mathfrak{g}_x with x \in V^* \text{ generic.}
$$
 (2)

Lemma 3 *Suppose that* $H_1, \ldots, H_r \in S(\mathfrak{q})^Q$ *are homogenous polynomials such that* $\varphi_x(H_i)$ *with* $i \leq \text{ind } \mathfrak{g}_x$ *freely generate* $\mathcal{S}(\mathfrak{g}_x)^{G_x} = \mathcal{S}(\mathfrak{g}_x)^{\mathfrak{g}_x}$ *for generic* $x \in V^*$ *and* $H_j \in \mathbb{C}[V^*]$ *G for j* > ind g_x ; and suppose that $\sum_{i=1}^{ind} g_x$ $i=1$ $\deg_{\mathfrak{g}} H_i = \mathbf{b}(\mathfrak{g}_x)$ *. Then* \sum ^{*r*} $\sum_{i=1}^{r} \deg H_i = \mathbf{b}(\mathfrak{q})$ *if and only if* $\sum_{i=1}^{r} \deg V_i H_i = \dim V$.

Proof In view of the assumptions, we have $\sum_{r=1}^{r}$ $\sum_{i=1}^{r} \deg H_i = \mathbf{b}(\mathfrak{g}_x) + \sum_{i=1}^{r}$ $\deg_{V}H_i$. Further, by Eq. [\(2\)](#page-3-0)

$$
\mathbf{b}(\mathfrak{q}) = (\dim \mathfrak{q} + \dim V - (\dim \mathfrak{g} - \dim \mathfrak{g}_x) + \mathrm{ind} \mathfrak{g}_x)/2 =
$$

=
$$
\dim V + (\dim \mathfrak{g}_x + \mathrm{ind} \mathfrak{g}_x)/2 = \mathbf{b}(\mathfrak{g}_x) + \dim V.
$$

The result follows. \Box

From now on suppose that *G* is semisimple. Then both *G* and *Q* have only trivial characters and hence cannot have proper semi-invariants. In particular, the fundamental semi-invariant is an invariant. We also have tr.deg $S(\mathfrak{g})^q = \text{ind}\,\mathfrak{g}$. Set *r* = indq and let $x \in V^*$ be generic. If $\mathbb{C}[\mathfrak{q}^*]^{\mathcal{Q}}$ is a polynomial ring, then there are bi-homogenous generators *H*, *H*, such that *H*, with *i* > indq, freely generate bi-homogenous generators H_1, \ldots, H_r such that H_i with $i > \text{ind } \mathfrak{g}_r$ freely generate $\mathbb{C}[V^*]$ *G* and the invariants H_i with $i \leq \text{ind } \mathfrak{g}_x$ are *mixed*, they have positive degrees in V g and *^V*.

Theorem 2 ([\[3,](#page-12-4) Theorem 5.7] and [\[10,](#page-12-0) Proposition 3.11]) *Suppose that G* is semisimple and $\mathbb{C}[q^*]^q$ is a polynomial ring with homogeneous generators
H. **H. Then** H_1,\ldots,H_r . *Then*

- *(i)* $\sum_{i=1}^r \deg H_i = \mathbf{b}(\mathfrak{q}) + \deg \mathbf{p}_{\mathfrak{q}}$; $\sum_{i=1}^{r} \deg H_i = \mathbf{b}(\mathfrak{q}) + \deg \mathbf{p}_{\mathfrak{q}};$
coneric $x \in V^*$, the restriction
- (*ii*) for generic $x \in V^*$, the restriction map $\varphi_x : \mathbb{C}[\mathfrak{q}^*]^Q \to \mathbb{C}[\mathfrak{g} + x]$
is surjective $S(\mathfrak{q})^{G_x} = S(\mathfrak{q})^{g_x}$ and $S(\mathfrak{q})^{G_x}$ is a notwnomi $G_x^G \times V \cong \mathcal{S}(\mathfrak{g}_x)^{G_x}$
ial ring in ind a is surjective, $S(g_x)^{G_x} = S(g_x)^{g_x}$, and $S(g_x)^{G_x}$ *is a polynomial ring in* $\text{ind } g_x$
variables *variables.*

It is worth mentioning that φ_x is also surjective for stable actions. An action of *G* on *V* is called *stable* if generic *G*-orbits in *V* are closed, for more details see [\[8,](#page-12-6) Sections 2.4 and 7.5]. By [\[10,](#page-12-0) Theorem 2.8] φ_x is surjective for generic $x \in V^*$ if
the *G*-action on V^* is stable the *G*-action on V^* is stable.

3 $\mathbb{Z}/2\mathbb{Z}$ -contractions

The initial motivation for studying symmetric invariants of semi-direct products was related to a conjecture of D. Panyushev on \mathbb{Z}_2 -contractions of reductive Lie algebras. The results of [\[10\]](#page-12-0), briefly outlined in Sect. [2,](#page-1-0) have settled the problem.

Let $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$ be a *symmetric decomposition*, i.e., a $\mathbb{Z}/2\mathbb{Z}$ -grading of g. A semi-direct product, $\tilde{g} = g_0 \times g_1$, where g_1 is an Abelian ideal, can be seen as a *contraction*, in this case a \mathbb{Z}_2 -*contraction*, of g. For example, starting with a symmetric pair $(\mathfrak{so}_{n+1}, \mathfrak{so}_n)$, one arrives at $\tilde{\mathfrak{g}} = \mathfrak{so}_n \ltimes \mathbb{C}^n$. In [\[4\]](#page-12-8), it was conjectured that $S(\tilde{g})^{\mathfrak{g}}$ is a polynomial ring (in rk $\mathfrak g$ variables).

Theorem 3 ($[4, 9, 10]$ $[4, 9, 10]$ $[4, 9, 10]$ $[4, 9, 10]$ $[4, 9, 10]$) *Let* \tilde{g} *be a* \mathbb{Z}_2 -contraction of a reductive Lie algebra g . *Then* $S(\tilde{g})^{\tilde{g}}$ *is a polynomial ring (in* rkg *variables) if and only if the restriction homomorphism* $\mathbb{C}[\mathfrak{g}]$
If we are in one of $\begin{align} \mathfrak{g} &\rightarrow \mathbb{C}[\mathfrak{g}_1] \ \mathfrak{g}_1^{\mathfrak{f}} &\text{then } \text{``sur'} \end{align}$ ^g⁰ *is surjective.*

If we are in one of the "surjective" cases, then one can describe the generators of $S(\tilde{\mathfrak{g}})^{\tilde{\mathfrak{g}}}$. Let H_1,\ldots,H_r be suitably chosen homogeneous generators of $S(\mathfrak{g})^{\mathfrak{g}}$ and let H_i^{\bullet} be the bi-homogeneous (w.r.t. $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$) component of H_i of the bi-homogeneous (w.r.t. $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$) component of H_i of the bi-homogeneous $\mathfrak{g} \oplus \mathfrak{g}_1$ highest g_1 -degree. Then $S(\tilde{g})^g$ is freely generated by the polynomials H_i^{\bullet} (of course providing the restriction homomorphism $\mathbb{C}[g]_g \to \mathbb{C}[g_1]_g$ is surjective) course, providing the restriction homomorphism $\mathbb{C}[\mathfrak{g}]$
 $[A \ 9]$ $\mathfrak{g} \rightarrow \mathbb{C}[\mathfrak{g}_1]$]^{g₀} is surjective) [\[4,](#page-12-8) [9\]](#page-12-5).

Unfortunately, this construction of generators cannot work if the restriction homomorphism is not surjective, see [\[4,](#page-12-8) Remark 4.3]. As was found out by Helgason [\[2\]](#page-12-9), there are four "non-surjective" irreducible symmetric pairs, namely, (E_6, F_4) ,

 $(E_7, E_6 \oplus \mathbb{C})$, $(E_8, E_7 \oplus \mathfrak{sl}_2)$, and $(E_6, \mathfrak{so}_{10} \oplus \mathfrak{so}_2)$. The approach to semi-direct products developed in [\[10\]](#page-12-0) showed that Panyushev's conjecture does not hold for them. Next we outline some ideas of the proof.

Let $G_0 \subset G$ be a connected subgroup with Lie $G_0 = \mathfrak{g}_0$. Then G_0 is reductive, it acts on $\mathfrak{g}_1 \cong \mathfrak{g}_1^*$, and this action is stable. Let $x \in \mathfrak{g}_1$ be a generic element
and G_2 , be its stabiliser in G_2 . The groups G_2 , are reductive and they are known and $G_{0,x}$ be its stabiliser in G_0 . The groups $G_{0,x}$ are reductive and they are known for all symmetric pairs. In particular, $S(g_{0,x})^{G_{0,x}}$ is a polynomial ring. It is also known that $\mathbb{C}[\mathfrak{g}_1]$
ind $\tilde{\mathfrak{g}} = \mathfrak{r}$ k \mathfrak{g} G_0 is a polynomial ring. By [\[4\]](#page-12-8) \tilde{g} has the "codim-2" property and $ind \tilde{a} = rk a$.

Making use of the surjectivity of φ_x one can show that if $\mathbb{C}[\tilde{\mathfrak{g}}^*]^{\tilde{\mathfrak{g}}}$ is freely generated by some H_1 , ..., *H_r*, then necessary $\sum r^r$ $\sum_{i=1}$ deg*H_i* > **b**(\tilde{g}) for \tilde{g} coming from
of some results from [3] this leads to one of the "non-surjective" pairs [\[10\]](#page-12-0). In view of some results from [\[3\]](#page-12-4) this leads to a contradiction.

Note that in case of $(g, g_0) = (E_6, F_4)$, $g_0 = F_4$ is simple and \tilde{g} is a semi-direct product of F_4 and \mathbb{C}^{26} , which, of course, comes from one of the representations in Schwarz's list [\[7\]](#page-12-1).

4 Examples Related to the Defining Representation of sl*ⁿ*

Form now assume that $g = sf_n$ and $V = m(\mathbb{C}^n)^* \oplus k\mathbb{C}^n$ with $n \ge 2$, $m \ge 1$, $m \ge k$.
According to [7] $\mathbb{C}[V]^G$ is a polynomial ring if either $k - 0$ and $m \le n + 1$ or $m \le n$. According to $[7]$ $\mathbb{C}[V]$ *G* is a polynomial ring if either $k = 0$ and $m \le n + 1$ or $m \le n$, the description of the generators of $\mathbb{C}[V^*]^G$ and their degrees $k \le n-1$. One finds also the description of the generators of $\mathbb{C}[V^*]^G$ and their degrees
in [7] In this section, we classify all cases, where $\mathbb{C}[a^*]$ ¹⁹ is a polynomial ring and in [\[7\]](#page-12-1). In this section, we classify all cases, where $\mathbb{C}[q^*]^q$ is a polynomial ring and for each of them give the fundamental semi-invariant for each of them give the fundamental semi-invariant.

Example 1 Suppose that either $m \ge n$ or $m = k = n - 1$. Then $g_x = 0$ for generic $x \in V^*$ and therefore $\mathbb{C}[a^*]\mathcal{Q} = \mathbb{C}[V^*]\mathcal{G}$ i.e. $\mathbb{C}[a^*]\mathcal{Q}$ is a polynomial ring if and $x \in V^*$ and therefore $\mathbb{C}[q^*]$ ^Q = $\mathbb{C}[V^*]$
only if $\mathbb{C}[V^*]^G$ is The latter takes place *G*, i.e., $\mathbb{C}[q^*]^{\mathcal{Q}}$ is a polynomial ring if and
for $(m, k) = (n + 1, 0)$ for $m = n$ and any only if $\mathbb{C}[V^*]$ *G* is. The latter takes place for $(m, k) = (n + 1, 0)$, for $m = n$ and any las for $m = k = n - 1$. Non-scalar fundamental semi-invariants appear $k < n$, as well as for $m = k = n - 1$. Non-scalar fundamental semi-invariants appear here only for

- $m = n$, where **p** is given by det $(v)^{n-1-k}$ with $v \in n\mathbb{C}^n$;
- $m = k = n 1$, where **p** is the sum of the principal 2*k*×2*k*-minors of

$$
\left(\frac{0|v}{w|0}\right) \text{ with } v \in k\mathbb{C}^n, w \in k(\mathbb{C}^n)^*.
$$

In the rest of the section, we assume that $g_x \neq 0$ for generic $x \in V^*$.

4.1 The Case k = 0

Here the ring of G -invariants on V^* is generated by

$$
\{\Delta_I \mid I \subset \{1, \ldots, m\}, |I| = n\} \; [8, \text{Section 9}],
$$

where each $\Delta_I(v)$ is the determinant of the corresponding submatrix of $v \in V^*$. The generators are algebraically independent if and only if $m \le n + 1$ see also [7] generators are algebraically independent if and only if $m \le n + 1$, see also [\[7\]](#page-12-1).

We are interested only in *m* that are smaller than *n*. Let $n = am + r$, where $0 < r \leq m$, and let $I \subset \{1, ..., m\}$ be a subset of cardinality *r*. By choosing the corresponding *r* columns of *v* we get a matrix $w = v_I$. Set

$$
F_I(A, v) := \det \left(v|Av| \dots |A^{q-1}v|A^q w \right), \text{ where } A \in \mathfrak{g}, v \in V^*.
$$
 (3)

Clearly each F_I is an SL_n -invariant. Below we will see that they are also *V*invariants. If $r = m$, then there is just one invariant, $F = F_{\{1,...,m\}}$. If *r* is either 1 or $m-1$, we get *m* invariants.

Lemma 4 *Each F_I defined by Eq.* [\(3\)](#page-6-0) *is a V-invariant.*

Proof According to Lemma [1](#page-2-0) we have to show that $F_I(\xi + ad^*(V) \cdot x, x) = F(\xi, x)$
for generic $x \in V^*$ and any $\xi \in \xi I$. Since $m < n$ there is an open SL, -orbit in for generic $x \in V^*$ and any $\xi \in \mathfrak{sl}_n$. Since $m < n$, there is an open SL_n -orbit in V^* and we can take x as F_n . Let $n \subset \mathfrak{sl}$ be the standard parabolic subalgebra V^* and we can take *x* as E_m . Let $p \subset \mathfrak{gl}_n$ be the standard parabolic subalgebra
corresponding to the composition $(m, n-m)$ and let n_n be the nilpotent radical of corresponding to the composition $(m, n - m)$ and let $n =$ be the nilpotent radical of the opposite parabolic Each element (matrix) $\xi \in \mathfrak{a}$ is a sum $\xi = \xi + \xi$ with the opposite parabolic. Each element (matrix) $\xi \in \mathfrak{gl}_n$ is a sum $\xi = \xi_- + \xi_p$ with
 $\xi \in \mathfrak{n}$ $\xi \in \mathfrak{p}$. In this notation $F_t(A, F_{-}) = \det(A_1(A^2) + (A^{q-1})_1(A^q) - A^q)$ $\xi = \epsilon n$, $\xi_p \in \mathfrak{p}$. In this notation $F_I(A, E_m) = \det (A - |(A^2) - | \dots |(A^{q-1}) - |(A^q) - I)$.

Let $\alpha = \alpha$, and $\beta = \beta$, be $m \times m$ and $(n - m) \times (n - m)$ -submatrices of A

Let $\alpha = \alpha_A$ and $\beta = \beta_A$ be $m \times m$ and $(n - m) \times (n - m)$ -submatrices of *A* and in the upper left and lower right corper respectively. Then (A^{s+1}) – standing in the upper left and lower right corner, respectively. Then (A^{s+1}) = $\sum_{\alpha}^{s} B^{t} A_{\alpha} \alpha^{s-t}$ Each column of A α is a linear combination of columns of A and $\sum_{t=0}^{s} \beta^{t} A_{-\alpha} \alpha^{s-t}$. Each column of $A_{-\alpha}$ is a linear combination of columns of A_{-} and $A_{-\alpha}$ and A_{α} and B_{+} each column of $\beta^t A_-\alpha^{j+1}$ is a linear combination of columns of $\beta^t A_-\alpha^j$. Therefore

$$
F_I(A, E_m) = \det (A_- | \dots | (A^{q-1})_- | (A^q)_{-,I}) =
$$

= det $(A_- | \beta A_- | \dots | \beta^{q-2} A_- | \beta^{q-1} A_{-,I}).$ (4)

Notice that $\mathfrak{g}_x \subset \mathfrak{p}$ and the nilpotent radical of \mathfrak{p} is contained in \mathfrak{g}_x (with $x = E_m$). Since ad^{*}(*V*)·*x* = Ann(\mathfrak{g}_x) = $\mathfrak{g}_x^{\perp} \subset \mathfrak{g}$ (after the identification $\mathfrak{g} \cong \mathfrak{g}^*$), *A*₋ = 0 for any $A \in \mathfrak{g}_x^{\perp}$; and we have $\beta_A = cE_{n-m}$ with $c \in \mathbb{C}$ for this *A*. An easy observation is that

$$
\det (\xi_- | (\beta_{\xi} + cE_{n-m})\xi_- | \dots | (\beta_{\xi} + cE_{n-m})^{q-1}\xi_{-,l}) =
$$

= det $(\xi_- | \beta_{\xi}\xi_- | \dots | \beta_{\xi}^{q-1}\xi_{-,l}).$

Hence $F_I(\xi + A, E_m) = F_I(\xi, E_m)$ for all $A \in \text{ad}^*(V) \cdot E_m$ and all $\xi \in \mathfrak{sl}_n$.

Theorem 4 *Suppose that* $q = \frac{\epsilon I_n \times m(\mathbb{C}^n)^*}{\epsilon I_n}$. Then $\mathbb{C}[q^*]^Q$ is a polynomial ring if and only if $m \leq n+1$ and m divides either $n-1$, n or $n+1$. Under these assumptions and *only if* $m \le n + 1$ *and m divides either* $n - 1$ *, n or* $n + 1$ *. Under these assumptions*
on $m_n = 1$ *exactly then, when m divides either* $n - 1$ *or* $n + 1$ *on m,* $\mathbf{p}_{q} = 1$ *exactly then, when m divides either n* – 1 *or n* + 1*.*

Proof Note that the statement is true for $m \ge n$ by Example [1.](#page-5-0) Assume that $m \le n-$
Suppose that $n = ma + r$ as above A generic stabiliser in g is $g_n = g[$ with m^{n-1} *Proof* Note that the statement is true for $m \ge n$ by Example 1. Assume that $m \le n-1$. Suppose that $n = mq + r$ as above. A generic stabiliser in g is $g_x = sf_{n-m} \times m\mathbb{C}^{n-m}$.
On the group level it is connected. Notice that ind $g_x = \text{tr} \text{deg } S(g_x)$ ^{G_x} since G_p has On the group level it is connected. Notice that $\text{ind} g_x = \text{tr.deg} G(g_x)^{G_x}$, since G_x has no non-trivial characters. Note also that $\mathbb{C}[V^*]^G = \mathbb{C}$ since $m < n$. If $\mathbb{C}[a^*]^Q$ is no non-trivial characters. Note also that $\mathbb{C}[V^*]^G = \mathbb{C}$, since $m < n$. If $\mathbb{C}[q^*]^G$ is
a polynomial ring, then so is $\mathbb{C}[q^*]^G$ by Theorem 2(ii) and either $n - m = 1$ or a polynomial ring, then so is $\mathbb{C}[\mathfrak{g}_x^*]$
arouting by induction $n - m \equiv t$ (m G_x by Theorem [2\(](#page-4-0)ii) and either $n - m = 1$ or,
nod *m*) with $t \in \{-1, 0, 1\}$ arguing by induction, $n - m \equiv t \pmod{m}$ with $t \in \{-1, 0, 1\}$.
Next we show that the ring of symmetric invariants is free

Next we show that the ring of symmetric invariants is freely generated by the polynomials F_I for the indicated *m*. Each element $\gamma \in \mathfrak{g}_x^*$ can be presented as $\gamma =$
 $\beta_0 + A$ where $\beta_0 \in \mathfrak{g}_x$. Each restriction φ (F_I) can be regarded as an element $\beta_0 + A_$, where $\beta_0 \in \mathfrak{sl}_{n-m}$. Each restriction $\varphi_x(F_I)$ can be regarded as an element of $S(g_x)$. Equation [\(4\)](#page-6-1) combined with Lemma [4](#page-6-2) and the observation that g_x^*
 $g/\text{Ann}(g_x)$ shows that $g_g(F_t)$ is either A_t of g_y (in case $g = 1$) where $F_t(A, F_y)$ $\mathcal{L}(\mathbf{g}_x)$. Equation (*+)* combined with Echina 4 and the observation that $\mathcal{L}_x \equiv \mathfrak{g}/\text{Ann}(\mathfrak{g}_x)$ shows that $\varphi_x(F_I)$ is either Δ_I of \mathfrak{g}_x (in case $q = 1$, where $F_I(A, E_m) =$
det *A* \rightarrow or *F_I* $\det A_{-I}$) or F_I of g_x . Arguing by induction on *n*, we prove that the restrictions $\varphi_x(F_I)$ freely generate $S(g_x)^{g_x}$ for $x = E_m$ (i.e., for a generic point in V^*). Notice that $n - m = (a - 1)m + r$ $n - m = (q - 1)m + r.$
The group SL, acts

The group SL_n acts on V^* with an open orbit $SL_n \tcdot E_m$. Therefore the restriction $p \varphi$ is injective By the inductive hypothesis it is also surjective and therefore is map φ_x is injective. By the inductive hypothesis it is also surjective and therefore is an isomorphism. This proves that the polynomials F_I freely generate $\mathbb{C}[q^*]^Q$.
If m divides *n* then $\mathbb{C}[q^*]^Q = \mathbb{C}[F]$ and the fundamental semi-invaria

If *m* divides *n*, then $\mathbb{C}[q^*]^{\mathcal{Q}} = \mathbb{C}[F]$ and the fundamental semi-invariant is a
wer of *E* As follows from the equality in Theorem 2(i) $\mathbf{n} = F^{m-1}$ power of *F*. As follows from the equality in Theorem [2\(](#page-4-0)i), $\mathbf{p} = F^{m-1}$.

Suppose that *m* divides either $n-1$ or $n+1$. Then we have *m* different invariants
By induction on *n*, a, has the "codim-2" property, therefore the sum of deg $\omega(F)$ *F_I*. By induction on *n*, \mathfrak{g}_x has the "codim-2" property, therefore the sum of deg $\varphi_x(F_I)$ is equal to $\mathbf{b}(\mathfrak{g}_x)$ by Theorem [2\(](#page-4-0)i). The sum of *V*-degrees is $m \times n = \dim V$ and hence by Lemma 3 $\sum \deg F_i = \mathbf{b}(\mathfrak{g})$. Thus, \mathfrak{g} has the "codim-2" property. by Lemma $3 \sum \deg F_I = \mathbf{b}(\mathbf{q})$ $3 \sum \deg F_I = \mathbf{b}(\mathbf{q})$. Thus, q has the "codim-2" property. \Box

Remark 1 Using induction on *n* one can show that the restriction map φ_x is an isomorphism for all $m < n$. Therefore the polynomials F_I generate $\mathbb{C}[q^*]^{\mathcal{Q}}$ for all $m < n$ *m* < *n*.

4.2 The Case m = k

Here $\mathbb{C}[V^*]$ *G* is a polynomial ring if and only if $k \le n-1$; a generic stabiliser is \mathfrak{sl}_{n-k} , action on $V \simeq V^*$ is stable. We assume that $\mathfrak{a} \neq 0$ for generic $x \in V^*$. and the *G*-action on $V \cong V^*$ is stable. We assume that $\mathfrak{g}_x \neq 0$ for generic $x \in V^*$
and therefore $k \le n - 2$ and therefore $k \le n - 2$.
For an $N \times N$ -matrix

For an *N*×*N*-matrix *C*, let Δ_i (*C*) with $1 \le i \le N$ be coefficients of its characteristic polynomial, each Δ_i being a homogeneous polynomial of degree *i*. Let $\gamma = A +$ $v + w \in q^*$ with $A \in \mathfrak{g}, v \in k\mathbb{C}^n, w \in k(\mathbb{C}^n)^*$. Having these objects we form an $(n + k) \times (n + k)$ -matrix $(n + k) \times (n + k)$ -matrix

$$
Y_{\gamma} := \left(\begin{array}{c|c} A & v \\ \hline w & 0 \end{array}\right)
$$

and set $F_i(y) = \Delta_i(Y_y)$ for each $i \in \{2k + 1, 2k + 2, 2k + 3, \ldots, n + k\}$. Each F_i is an $SL_n \times GL_k$ -invariant. Unfortunately, these polynomials are not *V*-invariants.

Remark 2 If we repeat the same construction for $\tilde{q} = g\int_{R}K V$ with $k \le n - 1$, then $C[\tilde{\alpha}^*] \tilde{\alpha} = C[V^*]GL_1(F, \{2k+1\}; \{2k+1\}; \{k\}]$ and it is a notworping in $\tilde{\alpha} =$ $\mathbb{C}[\tilde{\mathfrak{q}}^*]$
n — k $Q = \mathbb{C}[V^*]$
+ k^2 gener $GL_n[\{F_i \mid 2k+1 \le i \le n+k\}]$ and it is a polynomial ring in ind $\tilde{\mathfrak{q}} =$ $n - k + k^2$ generators.

Theorem 5 *Suppose that* $m = k \leq n - 1$ *. Then* $\mathbb{C}[q^*]^q$ *is a polynomial ring if and* only if $k \in \{n - 2, n - 1\}$, In case $k = n - 2$, a has the "codim-2" property *only if* $k \in \{n-2, n-1\}$. In case $k = n-2$, q has the "codim-2" property.

Proof Suppose that $k = n - 2$. Then a generic stabiliser $g_x = g_2$ is of index 1 and since the G-action on V is stable $\int [a^*]$ ¹⁹ has to be a polynomial ring by 1 and since the *G*-action on *V* is stable, $\mathbb{C}[q^*]^q$ has to be a polynomial ring by $[10]$ Example 3.61. One can show that the unique mixed generator is of the form [\[10,](#page-12-0) Example 3.6]. One can show that the unique mixed generator is of the form $F_{2k+2}H_{2k}-F_{2k+1}^2$, where H_{2k} is a certain $SL_n \times GL_k$ -invariant on *V* of degree 2*k* and then see that the sum of degrees is $h(a)$ then see that the sum of degrees is $\mathbf{b}(q)$.

More generally, q has the "codim-2" property for all $k \le n - 2$. Here each *G*-
ariant divisor in V^* contains a *G*-orbit of maximal dimension, say *Gy*. Set u invariant divisor in V^* contains a *G*-orbit of maximal dimension, say *Gy*. Set $u = n - k - 1$ If *G* is not SI then $g = \epsilon I \times (\mathbb{C}^u \oplus (\mathbb{C}^u)^* \oplus \mathbb{C})$ is a semi-direct $n - k - 1$. If G_y is not SL_{n-k} , then $g_y = \mathfrak{sl}_u \ltimes (\mathbb{C}^u \oplus (\mathbb{C}^u)^* \oplus \mathbb{C})$ is a semi-direct product with a Heisenberg Lie algebra. Following the proof of [4. Theorem 3.3] product with a Heisenberg Lie algebra. Following the proof of [\[4,](#page-12-8) Theorem 3.3], one has to show that $\text{ind } \mathfrak{g}_v = u$ in order to prove that q has the "codim-2" property. This is indeed the case, $\text{ind } \mathfrak{g}_v = 1 + \text{ind } \mathfrak{sl}_u$.

Suppose that $0 < k < n-2$ and assume that $S(q)^q$ is a polynomial ring. Then $r e$ are bi-homogeneous generators **h**₂ of $\mathbb{C}[\mathfrak{a}^*]^Q$ over $\mathbb{C}[V^*]^G$ such that there are bi-homogeneous generators $\mathbf{h}_2, \ldots, \mathbf{h}_{n-k}$ of $\mathbb{C}[\mathfrak{q}^*]^Q$ over $\mathbb{C}[V^*]^G$ such that their restrictions to $\mathfrak{q} + x$ form a generating set of $\mathcal{S}(\mathfrak{q})^{\mathfrak{g}_x}$ for a generic x (with their restrictions to $g + x$ form a generating set of $S(g_x)^{g_x}$ for a generic *x* (with $\mathfrak{g}_x \cong \mathfrak{sl}_{n-k}$, see Theorem [2\(](#page-4-0)ii). In particular, deg $\mathfrak{g}_n \mathbf{h}_t = t$.

Take $\tilde{\mathfrak{g}} = (\mathfrak{sl}_n \oplus \mathfrak{gl}_k) \ltimes V$, which is a \mathbb{Z}_2 -contraction of \mathfrak{sl}_{n+k} . Then q is a Lie subalgebra of \tilde{g} . Note that GL_k acts on q via automorphisms and therefore we may assume that the \mathbb{C} -linear span of $\{h_t\}$ is GL_k -stable. By degree considerations, each h_t is an SL_k -invariant as well. The Weyl involution of SL_n acts on *V* and has to preserve each line $\mathbb{C}\mathbf{h}_t$. Since this involution interchanges \mathbb{C}^n and $(\mathbb{C}^n)^*$, each \mathbf{h}_t is also a GL*k*-invariant. Thus,

$$
\mathcal{S}(\mathfrak{q})^{\mathfrak{q}}=\mathcal{S}(\mathfrak{q})^{\widetilde{\mathfrak{g}}}=\mathcal{S}(\mathfrak{q})\cap\mathcal{S}(\widetilde{\mathfrak{g}})^{\widetilde{\mathfrak{g}}}.
$$

Since \tilde{g} is a "surjective" \mathbb{Z}_2 -contraction, its symmetric invariants are known [\[4,](#page-12-8) Theorem 4.5]. The generators of $S(\tilde{g})^g$ are Δ^{\bullet} with $2 \le j \le n + k$. Here $\deg \Delta^{\bullet} = j$
and the generators of $(\epsilon | \log l)$. degrees 2, 3, $n - k$ are Δ^{\bullet} and the generators of $(\mathfrak{sl}_n \oplus \mathfrak{gl}_k)$ -degrees 2, 3, ..., $n-k$ are $\Delta_{2k+2}^{\bullet}, \Delta_{2k+3}^{\bullet}, \ldots, \Delta_{n+k}^{\bullet}$.
As the restriction to $\mathfrak{sl}_n \oplus \mathfrak{sl}_n + x$ shows none of the generators Δ_{n}^{\bullet} with $i > 2k + 2$ As the restriction to $\mathfrak{sl}_n \oplus \mathfrak{gl}_k + x$ shows, none of the generators Δ_j^{\bullet} with $j \geq 2k + 2$
lies in $S(\mathfrak{sl})$. This means that **h**, cannot be equal or aven proportional sympathial lies in $S(q)$. This means that \mathbf{h}_t cannot be equal or even proportional over $\mathbb{C}[V^*]^G$
to A^* and hence has a more complicated expression. More precisely a product to Δ_{2k+t}^{\bullet} and hence has a more complicated expression. More precisely, a product Δ^{\bullet} and precessary appears in **h**, with a non-zero coefficient from $\mathbb{C}[V^*]^G$ $\Delta_{2k+1}^{\bullet} \Delta_{2k+t-1}^{\bullet}$ necessary appears in **h**_{*t*} with a non-zero coefficient from $\mathbb{C}[V^*]^G$
for $t > 2$. Since $\deg A^{\bullet} = 2k$, we have $\deg A^* > 4k$ for every $t > 2$. for $t \ge 2$. Since $\deg V \Delta_{2k+1}^{\bullet} = 2k$, we have $\deg V h_t \ge 4k$ for every $t \ge 2$.
The ring $\text{C}[V^*]^G$ is freely generated by k^2 polynomials of degree two. Therefore The ring $\mathbb{C}[V^*]^G$ is freely generated by k^2 polynomials of degree two. Therefore,

the total sum of degrees over all generators of $S(q)^q$ is greater than or equal to

$$
\mathbf{b}(\mathfrak{sl}_{n-k}) + 4k(n-k-1) + 2k^2 = \mathbf{b}(\mathfrak{q}) + 2k(n-k-2).
$$

This contradicts Theorem [2\(](#page-4-0)i) in view of the fact that $\mathbf{p}_q = 1$.

4.3 The Case 0 < *k* < *m*

Here $\mathbb{C}[V^*]^G$ is a polynomial ring if and only if $m \le n$, [\[7\]](#page-12-1). If $n = m$, then $\mathfrak{g}_x = 0$ for generic $x \in V^*$. For $m \le n$, our construction of invariants is rather intricate generic $x \in V^*$. For $m < n$, our construction of invariants is rather intricate.
Let π_1 , be the fundamental weights of ϵ . We use the s

Let π_1 ,..., π_{n-1} be the fundamental weights of \mathfrak{sl}_n . We use the standard convention, $\pi_i = \varepsilon_1 + \ldots + \varepsilon_i$, $\varepsilon_n = -\sum_{i=1}^{n-1} \varepsilon_i$. Recall that for any *t*, $1 \le t < n$, $A^t\mathbb{C}^n$ is irreducible with the highest weight π_t . Let $\{e_1, \ldots, e_n\}$ be a basis of \mathbb{C}^n
such that each *e* is a weight vector and $\ell_i := e_1 \wedge \ldots \wedge e_i$ is a highest weight vector such that each e_i is a weight vector and $\ell_t := e_1 \wedge \ldots \wedge e_t$ is a highest weight vector of $\Lambda^t \mathbb{C}^n$. Clearly $\Lambda^t \mathbb{C}^n \subset \mathcal{S}^t(t\mathbb{C}^n)$. Write $n-k = d(m-k) + r$ with $0 < r \leq (m-k)$.
Let $\omega : m\mathbb{C}^n \to \Lambda^m \mathbb{C}^n$ be a non-zero *m*-linear *G*-equivariant man. Such a man is Let $\varphi : m\mathbb{C}^n \to \Lambda^m\mathbb{C}^n$ be a non-zero *m*-linear *G*-equivariant map. Such a map is unique up to a scalar and one can take φ with $\varphi(v_1 + \ldots + v_m) = v_1 \wedge \ldots \wedge v_m$. In case $r \neq m - k$, for any subset $I \subset \{1, ..., m\}$ with $|I| = k + r$, let $\omega : m\mathbb{C}^n \to (k + r)\mathbb{C}^n \to \Lambda^{k+r}\mathbb{C}^n$ be the corresponding (almost) canonical man $\varphi_I : m\mathbb{C}^n \to (k+r)\mathbb{C}^n \to \Lambda^{k+r}\mathbb{C}^n$ be the corresponding (almost) canonical map.
By the same principle we construct $\tilde{\varphi}: k(\mathbb{C}^n)^* \to \Lambda^k(\mathbb{C}^n)^*$ By the same principle we construct $\tilde{\varphi}: k(\mathbb{C}^n)^* \to \Lambda^k(\mathbb{C}^n)^*$.

I et us consider the tensor product $\mathbb{W} := (\Lambda^m \mathbb{C}^n)^{\otimes d} \otimes$

Let us consider the tensor product $W := (A^m \mathbb{C}^n)^{\otimes d} \otimes A^{k+r} \mathbb{C}^n$ and its weight pop-
papace W_{λ} . One can easily see that W_{λ} , contains a unique up to a scalar popsubspace $\mathbb{W}_{d\pi_k}$. One can easily see that $\mathbb{W}_{d\pi_k}$ contains a unique up to a scalar nonzero highest weight vector, namely

$$
w_{d\pi_k} = \sum_{\sigma \in S_{n-k}} \operatorname{sgn}(\sigma)(\ell_k \wedge e_{\sigma(k+1)} \wedge \ldots \wedge e_{\sigma(m)}) \otimes \ldots \otimes (\ell_k \wedge e_{\sigma(n-r+1)} \ldots \wedge e_{\sigma(n)}).
$$

This means that W contains a unique copy of $V_{d\pi_k}$, where $V_{d\pi_k}$ is an irreducible \mathfrak{sl}_n module with the highest weight $d\pi_k$. We let ρ denote the representation of \mathfrak{gl}_n on $\Lambda^m \mathbb{C}^n$ and ρ_r the representation of \mathfrak{gl}_n on $\Lambda^{k+r} \mathbb{C}^n$. Let $\xi = A + v + w$ be a point in \mathfrak{a}^* . (It is assumed that $A \in \mathfrak{a}(\Lambda)$ Finally let (Λ) denote a non-zero $\mathfrak{a}(\Lambda)$ -invariant scal q. (it is assumed that $A \in \mathfrak{sl}_n$.) Finally let (c,) denote a non-zero \mathfrak{sl}_n -invariant scalar
product between W and $\mathcal{S}^d(\Lambda^k(\mathbb{C}^n)^*)$ that is zero on the \mathfrak{sl}_n -invariant complement
of V , in W. Depen \mathfrak{q}^* . (It is assumed that $A \in \mathfrak{sl}_n$.) Finally let $($, $)$ denote a non-zero \mathfrak{sl}_n -invariant scalar of $V_{d\pi_k}$ in W. Depending on *r*, set

$$
\mathbf{F}(\xi) := (\varphi(v) \otimes \rho(A)^{m-k} \varphi(v) \otimes \rho(A^2)^{m-k} \varphi(v) \otimes \dots \otimes \rho(A^d)^{m-k} \varphi(v), \tilde{\varphi}(w)^d)
$$

for $r = m - k$;

$$
\mathbf{F}_I(\xi) := (\varphi(v) \otimes \rho(A)^{m-k} \varphi(v) \otimes \dots \otimes \rho(A^{d-1})^{m-k} \varphi(v) \otimes \rho_r(A^d)^r \varphi_I(v), \tilde{\varphi}(w)^d)
$$

 \Box

for each *I* as above in case $r < m - k$. By the constructions the polynomials **F** and **F**_{*i*} are SI_{*i*}-invariants \mathbf{F}_I are SL_n-invariants.

Lemma 5 *The polynomials* **F** *and* **F***^I are V-invariants.*

Proof We restrict **F** and \mathbf{F}_I to $g^* + x$ with $x \in V^*$ generic. Changing a basis in *V* if necessary we may assume that $x = F_x + F_y$ If $r < m - k$ some of the invariants necessary, we may assume that $x = E_m + E_k$. If $r < m - k$, some of the invariants \mathbf{F}_k , may become linear combinations of such polynomials under the change of basis \mathbf{F}_I may become linear combinations of such polynomials under the change of basis, but this does not interfere with *V*-invariance. Now $\varphi(v)$ is a vector of weight π_m and $\tilde{\varphi}(w)^d$ of weight $-d\pi_k$. Notice that $dm + (k + r) = n + kd$. If $\sum_{i=1}^{n+kd} \lambda_i =$

 $i=1$ $d \sum_{i=1}^{k} \varepsilon_i$ and each λ_i is one of the ε_j , $1 \leq j \leq n$, then in the sequence $(\lambda_1, \ldots, \lambda_{n+kd})$ we must have exactly one ε_j for each $k < j \le n$ and $d + 1$ copies of each ε_i with $1 \le i \le k$. Hence the only summand of $\rho(A^s)^{m-k} \rho(F_n)$ that plays any rôle in **F** or **F**_i $1 \le i \le k$. Hence the only summand of $\rho(A^s)^{m-k} \varphi(E_m)$ that plays any rôle in **F** or **F**_{*I*} is $\ell_k \wedge A^s e_{k+1} \wedge \ldots \wedge A^s e_m$. Moreover, in $A^s e_{k+1} \wedge \ldots \wedge A^s e_m$ we are interested only in vectors lying in A^{m-k} span (e_{k+1}, e_k) vectors lying in Λ^{m-k} span $(e_{k+1},...,e_n)$.

Let us choose blocks α , *U*, β of *A* as shown in Fig. [1.](#page-10-0) Then up to a non-zero scalar $F(A, E_m + E_k)$ is the determinant of

$$
(U|\beta U + U\alpha |P_2(\alpha, U, \beta)| \dots |P_{d-1}(\alpha, U, \beta)),
$$

where $P_s(\alpha, U, \beta) = \sum_{t=0}^s \beta^t U\alpha^{s-t}$.

Each column of $U\alpha$ is a linear combination of the columns of U , a similar relation exists between $\beta^{t}U\alpha^{s+1}$ and $\beta^{t}U\alpha^{s}$. Therefore

$$
\mathbf{F}(A, E_m + E_k) = \det \left(U|\beta U|\beta^2 U|\dots|\beta^{d-1} U \right). \tag{5}
$$

We have to check that $\mathbf{F}(\xi + A, x) = \mathbf{F}(\xi, x)$ for any $A \in \text{ad}^*(V) \cdot x$ and any $\xi \in \mathfrak{g}$,
see Lemma 1. Recall that $\text{ad}^*(V) \cdot x = \text{Ann}(\mathfrak{g}) = \mathfrak{g}^{\perp} \subset \mathfrak{g}$. In case $x = E + E$, *Il* see Lemma [1.](#page-2-0) Recall that ad^{*}(V) $x = \text{Ann}(g_x) = g_x^{\perp} \subset g$. In case $x = E_m + E_k$, *U* is zero in each $A \in g_{\perp}^{\perp}$ and *B* corresponding to such *A* is a scalar matrix. Therefore is zero in each $A \in \mathfrak{g}_x^{\perp}$ and β corresponding to such *A* is a scalar matrix. Therefore $\mathbf{F}(\xi + ad^*(V)\cdot x, y) = \mathbf{F}(\xi, y)$ $\mathbf{F}(\xi + \mathrm{ad}^*(V)\cdot x, x) = \mathbf{F}(\xi, x).$
The case $r < m-k$ is more

The case $r < m-k$ is more complicated. If $\{1, \ldots, k\} \subset I$, then $I = I \sqcup \{1, \ldots, k\}$.
*LI*_c be the corresponding submatrix of *II* and $\alpha_{\tilde{c}} > \alpha$ for One just has to replace Let $U_{\tilde{I}}$ be the corresponding submatrix of *U* and $\alpha_{\tilde{I} \times \tilde{I}}$ of α . One just has to replace

Fig. 1 Submatrices of $A \in \mathfrak{sl}_n$

U by $U_{\tilde{I}}$ and α by $\alpha_{\tilde{I} \times \tilde{I}}$ in the last polynomial $P_{d-1}(\alpha, U, \beta)$ obtaining

$$
\mathbf{F}_I(A,x) = \det \left(U|\beta U|\beta^2 U|\dots|\beta^{d-2} U|\beta^{d-1} U_{\tilde{I}} \right).
$$

These are $\binom{m-k}{r}$ linearly independent invariants in $S(g_x)$.
Suppose that $\{1, k\} \notin I$ Then $\omega(A^d)$ ^r has to me

Suppose that $\{1, \ldots, k\} \not\subset I$. Then $\rho_I(A^d)^r$ has to move more than *r* vectors e_i with $k + 1 \le i \le m$, which is impossible. Thus, $\mathbf{F}_I(A, x) = 0$ for such *I*.

Theorem 6 Suppose that $0 < k < m < n$ and $m - k$ divides $n - m$, then $\text{ind}\, \mathfrak{g}_x = 1$ for generic $x \in V^*$ and $\mathbb{C}[\mathfrak{a}^*] = \mathbb{C}[V^*]^G$ **Fi** is a polynomial ring the fundamental for generic $x \in V^*$ and $\mathbb{C}[q^*]^{\mathcal{Q}} = \mathbb{C}[V^*]^G[\mathbf{F}]$ is a polynomial ring, the fundamental semi-invariant is equal to \mathbf{F}^{m-k-1} *semi-invariant is equal to* \mathbf{F}^{m-k-1} .

Proof A generic stabiliser g_x is $\mathfrak{sl}_{n-m} \ltimes (m-k) \mathbb{C}^{n-m}$. Its ring of symmetric invariants is generated by $F = \omega$. (F) see Theorem 4 and Eq. (5). We also have indeed $n = 1$ It is generated by $F = \varphi_x(\mathbf{F})$, see Theorem [4](#page-7-0) and Eq. [\(5\)](#page-10-1). We also have ind $\mathfrak{g}_x = 1$. It remains to see that **F** is not divisible by a non-constant *G*-invariant polynomial on *V*^{*}. By the construction, **F** is also invariant with respect to the action of $SL_m \times SL_k$.
The group $L = SL \times SL_{\infty} \times SL_{\infty}$ act on *V*^{*} with an open orbit. As long as rk $w = k$. The group $L = SL_n \times SL_m \times SL_k$ act on V^* with an open orbit. As long as rk $w = k$,
 $\mathbf{r} \cdot \mathbf{k} \cdot \mathbf{v} = m$ the *L*-orbit of $\mathbf{v} = v + w$ contains a point $v' + F$, where also $\mathbf{r} \cdot \mathbf{v}' = m$ rk $v = m$, the *L*-orbit of $y = v + w$ contains a point $v' + E_k$, where also rk $v' = m$. If in addition the upper $k \times m$ -part of v has rank k, then L·y contains $x = E_m + E_k$. Here **F** is non-zero on $g + y$. Since the group *L* is semisimple, the complement of $L(E_m + E_k)$ contains no divisors and **F** is not divisible by any non-constant *G*-invariant in $\mathbb{C}[V^*]$. This is enough to conclude that $\mathbb{C}[q^*]^{\mathcal{Q}} = \mathbb{C}[V^*]^G[\mathbf{F}]$, see Theorem 2 Theorem [2.](#page-2-1)

The singular set q_{sing}^* is *L*-stable. And therefore p_q is also an $SL_m \times SL_k$ -invariant. Hence **p** is a power of **F**. In view of Theorem [2\(](#page-4-0)i), $\mathbf{p} = \mathbf{F}^{m-k-1}$.

Theorem 7 *Suppose that* $0 < k < m < n$ *and* $m - k$ *does not divide* $n - m$ *, then* $\mathbb{C}[\mathfrak{a}^*]$ *is not a polynomial ring* $\mathbb{C}[{\mathfrak{q}}^*]^{\mathcal{Q}}$ is not a polynomial ring.

Proof The reason for this misfortune is that $\binom{m}{r} > \binom{m-k}{r}$ for $r < m-k$. One could prove that each **F**_{*I*} must be in the set of generators and thereby show that $\mathbb{C}[q^*]$ ^{*Q*} is not a polynomial ring. But we present a different aroument not a polynomial ring. But we present a different argument.

Assume that the ring of symmetric invariants is polynomial. It is bi-graded and SL*^m* acts on it preserving the bi-grading. Since SL*^m* is reductive, we can assume that there is a set $\{H_1,\ldots,H_s\}$ of bi-homogeneous mixed generators such that $\mathcal{S}(\mathfrak{q})^{\mathfrak{q}} =$ $\mathbb{C}[V^*]^G[H_1,\ldots,H_s]$ and the C-linear span $\mathcal{H} := \text{span}(H_1,\ldots,H_s)$ is SL_m -stable.
The polynomiality implies that a generic stabiliser $g = g\left(\frac{\mathcal{H}(m-k)\mathbb{C}^{n-m}}{\mathcal{H}(m-k)\mathbb{C}^{n-m}} \right)$ The polynomiality implies that a generic stabiliser $g_x = \frac{\epsilon}{h_n} \kappa (m - k) \frac{C^{n-m}}{n}$ has a free algebra of symmetric invariants, see Theorem 2(ii), and by the same statement free algebra of symmetric invariants, see Theorem $2(i)$ $2(i)$, and by the same statement φ_x is surjective. This means that *r* is either 1 or $m - k - 1$, see Theorem [4,](#page-7-0) $s = m - k$,
and φ_0 is injective on \mathcal{H} . Taking our favourite (generic) $x - F_{n+1} + F_n$, we see and φ_x is injective on *H*. Taking our favourite (generic) $x = E_m + E_k$, we see that there is SL_{m-k} embedded diagonally into $G \times SL_m$, which acts on $\varphi_x(\mathcal{H})$ as on $A^r \mathbb{C}^{m-k}$. The group SL_{m-k} acts on H in the same way. Since $m - k$ does not divide
 $m - m$ we have $m - k > 2$. The group SI cannot act on an irreducible module *n* - *m*, we have $m - k \ge 2$. The group SL_m cannot act on an irreducible module $\Lambda^r C^{m-k}$ of its non-trivial subgroup SL_{n-k} this is especially obvious in our two $A^r \mathbb{C}^{m-k}$ of its non-trivial subgroup SL_{m-k} , this is especially obvious in our two cases of interest, $r = 1$ and $r = m - k - 1$. A contradiction.

Conjecture 1 It is very probable that $\mathbb{C}[q^*]$
 $k \ge 1$ $q = \mathbb{C}[V^*]$ $G[\{\mathbf{F}_I\}]$ for all $n > m >$ $k \geq 1$.

Acknowledgements I would like to thank the organisers of the intensive period on "Perspectives in Lie theory", especially Giovanna Carnovale and Martina Lanini, for the invitation to Pisa and a very warm welcome.

This work is partially supported by the DFG priority programme SPP 1388 "Darstellungstheorie" and by the Graduiertenkolleg GRK 1523 "Quanten- und Gravitationsfelder".

References

- 1. O.M. Adamovich, E.O. Golovina, Simple linear Lie groups having a free algebra of invariants. Sel. Math. Sov. **3**, 183–220 (1984); originally published in Voprosy teorii grupp i gomologicheskoi algebry, Yaroslavl, 1979, 3–41 (in Russian)
- 2. S. Helgason, Some results on invariant differential operators on symmetric spaces. Amer. J. Math. **114**(4), 789–811 (1992)
- 3. A. Joseph, D. Shafrir, Polynomiality of invariants, unimodularity and adapted pairs. Transformation Groups **15**(4), 851–882 (2010)
- 4. D. Panyushev, On the coadjoint representation of \mathbb{Z}_2 -contractions of reductive Lie algebras. Adv. Math. **213**(1), 380–404 (2007)
- 5. D. Panyushev, A. Premet, O. Yakimova, On symmetric invariants of centralisers in reductive Lie algebras. J. Algebra **313**, 343–391 (2007)
- 6. M. Raïs, L'indice des produits semi-directs $E \times_{\rho} g$, C. R. Acad. Sci. Paris Ser. A, 287, 195–197 (1978)
- 7. G.W. Schwarz, Representations of simple Lie groups with regular rings of invariants. Invent. Math. **49**, 167–191 (1978)
- 8. E.B. Vinberg, V.L. Popov, Invariant theory, in *Algebraic Geometry IV*, (Itogi Nauki i Tekhniki, Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1989), pp. 137–314; English translation: Encyclopaedia Math. Sci., vol. 55, Springer, Berlin, 1994
- 9. O. Yakimova, One-parameter contractions of Lie-Poisson brackets. J. Eur. Math. Soc. **16**, 387– 407 (2014)
- 10. O. Yakimova, Symmetric invariants of \mathbb{Z}_2 -contractions and other semi-direct products. Int. Math. Res. Not. **2017**(6), 1674–1716 (2017).