Some Semi-Direct Products with Free Algebras of Symmetric Invariants

Oksana Yakimova

Abstract Let \mathfrak{g} be a complex reductive Lie algebra and V the underlying vector space of a finite-dimensional representation of \mathfrak{g} . Then one can consider a new Lie algebra $\mathfrak{q} = \mathfrak{g} \ltimes V$, which is a semi-direct product of \mathfrak{g} and an Abelian ideal V. We outline several results on the algebra $\mathbb{C}[\mathfrak{q}^*]^\mathfrak{q}$ of symmetric invariants of \mathfrak{q} and describe all semi-direct products related to the defining representation of \mathfrak{sl}_n with $\mathbb{C}[\mathfrak{q}^*]^\mathfrak{q}$ being a free algebra.

Keywords Coadjoint representation • Non-reductive Lie algebras • Polynomial rings • Regular invariants

1 Introduction

Let *Q* be a connected complex algebraic group. Set $\mathfrak{q} = \text{Lie } Q$. Then $S(\mathfrak{q}) = \mathbb{C}[\mathfrak{q}^*]$ and $S(\mathfrak{q})^{\mathfrak{q}} = \mathbb{C}[\mathfrak{q}^*]^{\mathfrak{q}} = \mathbb{C}[\mathfrak{q}^*]^{\mathfrak{Q}}$. We will call the latter object the *algebra of* symmetric invariants of \mathfrak{q} . An important property of $S(\mathfrak{q})^{\mathfrak{q}}$ is that it is isomorphic to $ZU(\mathfrak{q})$ as an algebra by a classical result of M. Duflo (here $ZU(\mathfrak{q})$ is the centre of the universal enveloping algebra of \mathfrak{q}).

Let \mathfrak{g} be a reductive Lie algebra. Then by the Chevalley restriction theorem $S(\mathfrak{g})^{\mathfrak{g}} = \mathbb{C}[H_1, \ldots, H_{\mathrm{rk}\mathfrak{g}}]$ is a polynomial ring (in rk \mathfrak{g} variables). A quest for non-reductive Lie algebras with a similar property has recently become a trend in invariant theory. Here we consider finite-dimensional representations $\rho : \mathfrak{g} \to \mathfrak{gl}(V)$ of \mathfrak{g} and the corresponding semi-direct products $\mathfrak{q} = \mathfrak{g} \ltimes V$. The Lie bracket on \mathfrak{q} is defined by

$$[\xi + v, \eta + u] = [\xi, \eta] + \rho(\xi)u - \rho(\eta)v$$
(1)

for all $\xi, \eta \in \mathfrak{g}, v, u \in V$. Let G be a connected simply connected Lie group with Lie $G = \mathfrak{g}$. Then $\mathfrak{q} = \text{Lie } Q$ with $Q = G \ltimes \exp(V)$.

It is easy to see that $\mathbb{C}[V^*]^G \subset \mathbb{C}[\mathfrak{q}^*]^\mathfrak{q}$ and therefore $\mathbb{C}[V^*]^G$ must be a polynomial ring if $\mathbb{C}[\mathfrak{q}^*]^\mathfrak{q}$ is, see [10, Section 3]. Classification of the representations

O. Yakimova (⊠)

Institut für Mathematik, Friedrich-Schiller-Universität Jena, 07737 Jena, Germany e-mail: oksana.yakimova@uni-jena.de

[©] Springer International Publishing AG 2017

F. Callegaro et al. (eds.), Perspectives in Lie Theory,

Springer INdAM Series 19, DOI 10.1007/978-3-319-58971-8_6

of complex simple algebraic groups with free algebras of invariants was carried out by Schwarz [7] and independently by Adamovich and Golovina [1]. One such representation is the spin-representation of Spin₇, which leads to $Q = \text{Spin}_7 \ltimes \mathbb{C}^8$. Here $\mathbb{C}[\mathfrak{q}^*]^\mathfrak{q}$ is a polynomial ring in three variables generated by invariants of bidegrees (0, 2), (2, 2), (6, 4) with respect to the decomposition $\mathfrak{q} = \mathfrak{so}_7 \oplus \mathbb{C}^8$, see [10, Proposition 3.10].

In this paper, we treat another example, $G = SL_n$, $V = m(\mathbb{C}^n)^* \oplus k\mathbb{C}^n$ with $n \ge 2$, $m \ge 1$, $m \ge k$. Here $\mathbb{C}[q^*]^q$ is a polynomial ring in exactly the following three cases:

- $k = 0, m \le n + 1$, and $n \equiv t \pmod{m}$ with $t \in \{-1, 0, 1\}$;
- $m = k, k \in \{n 2, n 1\};$
- $n \ge m > k > 0$ and m k divides n m.

We also briefly discuss semi-direct products arising as \mathbb{Z}_2 -contractions of reductive Lie algebras.

2 Symmetric Invariants and Generic Stabilisers

Let q = Lie Q be an algebraic Lie algebra, Q a connected algebraic group. The index of q is defined as

$$\operatorname{ind} \mathfrak{q} = \min_{\gamma \in \mathfrak{q}^*} \dim \mathfrak{q}_{\gamma},$$

where \mathfrak{q}_{γ} is the stabiliser of γ in \mathfrak{q} . In view of Rosenlicht's theorem, $\operatorname{ind}\mathfrak{q} = \operatorname{tr.deg} \mathbb{C}(\mathfrak{q}^*)^Q$. In case $\operatorname{ind}\mathfrak{q} = 0$, we have $\mathbb{C}[\mathfrak{q}^*]^q = \mathbb{C}$. For a reductive \mathfrak{g} , $\operatorname{ind}\mathfrak{g} = \operatorname{rk}\mathfrak{g}$. Recall that $(\dim \mathfrak{g} + \operatorname{rk}\mathfrak{g})/2$ is the dimension of a Borel subalgebra of \mathfrak{g} . For \mathfrak{q} , set $\mathbf{b}(\mathfrak{q}) := (\operatorname{ind}\mathfrak{q} + \dim \mathfrak{q})/2$.

Let $\{\xi_i\}$ be a basis of q and $\mathcal{M}(q) = ([\xi_i, \xi_j])$ the structural matrix with entries in q. This is a skew-symmetric matrix of rank dim q – ind q. Let us take Pfaffians of the principal minors of $\mathcal{M}(q)$ of size rk $\mathcal{M}(q)$ and let $\mathbf{p} = \mathbf{p}_q$ be their greatest common divisor. Then **p** is called the *fundamental semi-invariant* of q. The zero set of **p** is the maximal divisor in the so called *singular set*

$$\mathfrak{q}_{\operatorname{sing}}^* = \{ \gamma \in \mathfrak{q}^* \mid \dim \mathfrak{q}_{\gamma} > \operatorname{ind} \mathfrak{q} \}$$

of \mathfrak{q} . Since \mathfrak{q}_{sing}^* is clearly a *Q*-stable subset, **p** is indeed a semi-invariant, $Q \cdot \mathbf{p} \subset \mathbb{C}\mathbf{p}$. One says that \mathfrak{q} has the "codim-2" property (satisfies the "codim-2" condition), if dim $\mathfrak{q}_{sing}^* \leq \dim \mathfrak{q} - 2$ or equivalently if $\mathbf{p} = 1$.

Suppose that $F_1, \ldots, F_r \in S(\mathfrak{q})$ are homogenous algebraically independent polynomials. The *Jacobian locus* $\mathcal{J}(F_1, \ldots, F_r)$ of these polynomials consists of all $\gamma \in \mathfrak{q}^*$ such that the differentials $d_{\gamma}F_1, \ldots, d_{\gamma}F_r$ are linearly dependent. In other words, $\gamma \in \mathcal{J}(F_1, \ldots, F_r)$ if and only if $(dF_1 \wedge \ldots \wedge dF_r)_{\gamma} = 0$. The set $\mathcal{J}(F_1, \ldots, F_r)$ is a proper Zariski closed subset of \mathfrak{q}^* . Suppose that $\mathcal{J}(F_1, \ldots, F_r)$ does not contain divisors. Then by the characteristic zero version of a result of Skryabin, see [5, Theorem 1.1], $\mathbb{C}[F_1, \ldots, F_r]$ is an algebraically closed subalgebra of $S(\mathfrak{q})$, each $H \in S(\mathfrak{q})$ that is algebraic over $\mathbb{C}(F_1, \ldots, F_r)$ is contained in $\mathbb{C}[F_1, \ldots, F_r]$.

Theorem 1 (cf. [3, Section 5.8]) Suppose that $\mathbf{p}_q = 1$ and suppose that $H_1, \ldots, H_r \in S(q)^q$ are homogeneous algebraically independent polynomials such that r = ind q and $\sum_{i=1}^r \text{deg} H_i = \mathbf{b}(q)$. Then $S(q)^q = \mathbb{C}[H_1, \ldots, H_r]$ is a polynomial ring in r generators.

Proof Under our assumptions $\mathcal{J}(H_1, \ldots, H_r) = \mathfrak{q}_{sing}^*$, see [5, Theorem 1.2] and [9, Section 2]. Therefore $\mathbb{C}[H_1, \ldots, H_r]$ is an algebraically closed subalgebra of $\mathcal{S}(\mathfrak{q})$ by [5, Theorem 1.1]. Since tr.deg $\mathcal{S}(\mathfrak{q})^{\mathfrak{q}} \leq r$, each symmetric \mathfrak{q} -invariant is algebraic over $\mathbb{C}[H_1, \ldots, H_r]$ and hence is contained in it. \Box

For semi-direct products, we have some specific approaches to the symmetric invariants. Suppose now that $\mathfrak{g} = \text{Lie } G$ is a reductive Lie algebra, no non-zero ideal of \mathfrak{g} acts on V trivially, G is connected, and $\mathfrak{q} = \mathfrak{g} \ltimes V$, where V is a finite-dimensional G-module.

The vector space decomposition $\mathfrak{q} = \mathfrak{g} \oplus V$ leads to $\mathfrak{q}^* = \mathfrak{g} \oplus V^*$, where we identify \mathfrak{g} with \mathfrak{g}^* . Each element $x \in V^*$ is considered as a point of \mathfrak{q}^* that is zero on \mathfrak{g} . We have $\exp(V) \cdot x = \operatorname{ad}^*(V) \cdot x + x$, where each element of $\operatorname{ad}^*(V) \cdot x$ is zero on V. Note that $\operatorname{ad}^*(V) \cdot x \subset \operatorname{Ann}(\mathfrak{g}_x) \subset \mathfrak{g}$ and $\operatorname{dim}(\operatorname{ad}^*(V) \cdot x)$ is equal to $\operatorname{dim}(\operatorname{ad}^*(\mathfrak{g}) \cdot x) = \operatorname{dim} \mathfrak{g} - \operatorname{dim} \mathfrak{g}_x$. Therefore $\operatorname{ad}^*(V) \cdot x = \operatorname{Ann}(\mathfrak{g}_x)$.

The decomposition $q = g \oplus V$ defines also a bi-grading on S(q) and clearly $S(q)^q$ is a bi-homogeneous subalgebra, cf. [10, Lemma 2.12].

A statement is true for a "generic x" if and only if this statement is true for all points of a non-empty open subset.

Lemma 1 A function $F \in \mathbb{C}[\mathfrak{q}^*]$ is a V-invariant if and only if $F(\xi + \mathrm{ad}^*(V) \cdot x, x) = F(\xi, x)$ for generic $x \in V^*$ and any $\xi \in \mathfrak{g}$.

Proof Condition of the lemma guaranties that for each $v \in V$, $\exp(v) \cdot F = F$ on a non-empty open subset of q^* . Hence *F* is a *V*-invariant.

For $x \in V^*$, let $\varphi_x : \mathbb{C}[\mathfrak{q}^*]^Q \to \mathbb{C}[\mathfrak{g} + x]^{G_x \ltimes \exp(V)}$ be the restriction map. By [10, Lemma 2.5] $\mathbb{C}[\mathfrak{g} + x]^{G_x \ltimes \exp(V)} \cong S(\mathfrak{g}_x)^{G_x}$. Moreover, if we identify $\mathfrak{g} + x$ with \mathfrak{g} choosing x as the origin, then $\varphi_x(F) \in S(\mathfrak{g}_x)$ for any \mathfrak{q} -invariant F [10, Section 2]. Under certain assumptions on G and V the restriction map φ_x is surjective, more details will be given shortly.

There is a non-empty open subset $U \subset V^*$ such that the stabilisers G_x and G_y are conjugate in *G* for any pair of points $x, y \in U$ see e.g. [8, Theorem 7.2]. Any representative of the conjugacy class $\{hG_xh^{-1} \mid h \in G, x \in U\}$ is said to be a *a* generic stabiliser of the *G*-action on V^* .

There is one easy to handle case, $\mathfrak{g}_x = 0$ for a generic $x \in V^*$. Here $\mathbb{C}[\mathfrak{q}^*]^Q = \mathbb{C}[V^*]^G$, see e.g. [10, Example 3.1], and $\xi + y \in \mathfrak{q}^*_{sing}$ only if $\mathfrak{g}_y \neq 0$, where $\xi \in \mathfrak{g}$, $y \in V^*$. The case ind $\mathfrak{g}_x = 1$ is more involved.

Lemma 2 Assume that G has no proper semi-invariants in $\mathbb{C}[V^*]$. Suppose that ind $\mathfrak{g}_x = 1$, $S(\mathfrak{g}_x)^{\mathfrak{g}_x} \neq \mathbb{C}$, and the map φ_x is surjective for generic $x \in V^*$. Then

 $\mathbb{C}[\mathfrak{q}^*]^\mathfrak{q} = \mathbb{C}[V^*]^G[F]$, where F is a bi-homogeneous preimage of a generator of $\mathcal{S}(\mathfrak{g}_x)^{G_x}$ that is not divisible by any non-constant G-invariant in $\mathbb{C}[V^*]$.

Proof If we have a Lie algebra of index 1, in our case \mathfrak{g}_x , then the algebra of its symmetric invariants is a polynomial ring. There are many possible explanations of this fact. One of them is the following. Suppose that two non-zero homogeneous polynomials f_1, f_2 are algebraically dependent. Then $f_1^a = cf_2^b$ for some coprime integers a, b > 0 and some $c \in \mathbb{C}^{\times}$. If f_1 is an invariant, then so is a polynomial function $\sqrt[b]{f_1} = \sqrt[ab]{c}\sqrt[a]{f_2}$.

Since $S(\mathfrak{g}_x)^{\mathfrak{g}_x} \neq \mathbb{C}$, it is generated by some homogeneous f. The group G_x has finitely many connected components, hence $S(\mathfrak{g}_x)^{G_x}$ is generated by a suitable power of f, say $\mathbf{f} = f^d$.

Let $F \in \mathbb{C}[q^*]^Q$ be a preimage of **f**. Each its bi-homogeneous component is again a q-invariant. Without loss of generality we may assume that *F* is bi-homogenous. Also if *F* is divisible by some non-scalar $H \in \mathbb{C}[V^*]^G$, then we replace *F* with *F*/*H* and repeat the process as long as possible.

Whenever G_y (with $y \in V^*$) is conjugate to G_x and $\varphi_y(F) \neq 0$, $\varphi_y(F)$ is a G_y invariant of the same degree as **f** and therefore is a generator of $S(\mathfrak{g}_y)^{G_y}$. Clearly $\mathbb{C}(V^*)^G[F] \subset \mathbb{C}[\mathfrak{q}^*]^Q \otimes_{\mathbb{C}[V^*]^G} \mathbb{C}(V^*)^G =: \mathcal{A}$ and $\mathcal{A} \subset S(\mathfrak{g}) \otimes \mathbb{C}(V^*)^G$. If \mathcal{A} contains a homogeneous in \mathfrak{g} polynomial T that is not proportional (over $\mathbb{C}(V^*)^G$) to a power of F, then $\varphi_u(T)$ is not proportional to a power of $\varphi_u(F)$ for generic $u \in V^*$. But $\varphi_u(T) \in S(\mathfrak{g}_u)^{G_u}$. This implies that $\mathcal{A} = \mathbb{C}(V^*)^G[F]$. It remains to notice that $\mathbb{C}(V^*)^G = \operatorname{Quot} \mathbb{C}[V^*]^G$, since G has no proper semi-invariants in $\mathbb{C}[V^*]$, and by the same reason $\mathbb{C}(V^*)^G[F] \cap \mathbb{C}[\mathfrak{q}] = \mathbb{C}[V^*]^G[F]$ in case F is not divisible by any non-constant G-invariant in $\mathbb{C}[V^*]$. \Box

It is time to recall the Raïs' formula [6] for the index of a semi-direct product:

$$\operatorname{ind} \mathfrak{q} = \dim V - (\dim \mathfrak{g} - \dim \mathfrak{g}_x) + \operatorname{ind} \mathfrak{g}_x \text{ with } x \in V^* \text{ generic.}$$
 (2)

Lemma 3 Suppose that $H_1, \ldots, H_r \in S(\mathfrak{q})^Q$ are homogenous polynomials such that $\varphi_x(H_i)$ with $i \leq \operatorname{ind} \mathfrak{g}_x$ freely generate $S(\mathfrak{g}_x)^{G_x} = S(\mathfrak{g}_x)^{\mathfrak{g}_x}$ for generic $x \in V^*$ and $H_j \in \mathbb{C}[V^*]^G$ for $j > \operatorname{ind} \mathfrak{g}_x$; and suppose that $\sum_{i=1}^{\operatorname{ind} \mathfrak{g}_x} \deg_{\mathfrak{g}} H_i = \mathbf{b}(\mathfrak{g}_x)$. Then $\sum_{i=1}^r \deg_{i} H_i = \mathbf{b}(\mathfrak{q})$ if and only if $\sum_{i=1}^r \deg_{V} H_i = \dim V$.

Proof In view of the assumptions, we have $\sum_{i=1}^{r} \deg H_i = \mathbf{b}(\mathfrak{g}_x) + \sum_{i=1}^{r} \deg_V H_i$. Further, by Eq. (2)

$$\mathbf{b}(\mathbf{q}) = (\dim \mathbf{q} + \dim V - (\dim \mathbf{g} - \dim \mathbf{g}_x) + \inf \mathbf{g}_x)/2 = \\ = \dim V + (\dim \mathbf{g}_x + \inf \mathbf{g}_x)/2 = \mathbf{b}(\mathbf{g}_x) + \dim V.$$

The result follows.

From now on suppose that *G* is semisimple. Then both *G* and *Q* have only trivial characters and hence cannot have proper semi-invariants. In particular, the fundamental semi-invariant is an invariant. We also have tr.deg $S(q)^q = indq$. Set r = indq and let $x \in V^*$ be generic. If $\mathbb{C}[q^*]^Q$ is a polynomial ring, then there are bi-homogenous generators H_1, \ldots, H_r such that H_i with $i > indg_x$ freely generate $\mathbb{C}[V^*]^G$ and the invariants H_i with $i \leq indg_x$ are *mixed*, they have positive degrees in g and V.

Theorem 2 ([3, Theorem 5.7] and [10, Proposition 3.11]) Suppose that G is semisimple and $\mathbb{C}[q^*]^q$ is a polynomial ring with homogeneous generators H_1, \ldots, H_r . Then

- (i) $\sum_{i=1}^{r} \deg H_i = \mathbf{b}(\mathbf{q}) + \deg \mathbf{p}_{\mathbf{q}};$
- (ii) for generic $x \in V^*$, the restriction map $\varphi_x : \mathbb{C}[\mathfrak{q}^*]^Q \to \mathbb{C}[\mathfrak{g}+x]^{G_x \ltimes V} \cong \mathcal{S}(\mathfrak{g}_x)^{G_x}$ is surjective, $\mathcal{S}(\mathfrak{g}_x)^{G_x} = \mathcal{S}(\mathfrak{g}_x)^{\mathfrak{g}_x}$, and $\mathcal{S}(\mathfrak{g}_x)^{G_x}$ is a polynomial ring in $\operatorname{ind} \mathfrak{g}_x$ variables.

It is worth mentioning that φ_x is also surjective for stable actions. An action of *G* on *V* is called *stable* if generic *G*-orbits in *V* are closed, for more details see [8, Sections 2.4 and 7.5]. By [10, Theorem 2.8] φ_x is surjective for generic $x \in V^*$ if the *G*-action on V^* is stable.

3 $\mathbb{Z}/2\mathbb{Z}$ -contractions

The initial motivation for studying symmetric invariants of semi-direct products was related to a conjecture of D. Panyushev on \mathbb{Z}_2 -contractions of reductive Lie algebras. The results of [10], briefly outlined in Sect. 2, have settled the problem.

Let $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$ be a symmetric decomposition, i.e., a $\mathbb{Z}/2\mathbb{Z}$ -grading of \mathfrak{g} . A semi-direct product, $\tilde{\mathfrak{g}} = \mathfrak{g}_0 \ltimes \mathfrak{g}_1$, where \mathfrak{g}_1 is an Abelian ideal, can be seen as a *contraction*, in this case a \mathbb{Z}_2 -contraction, of \mathfrak{g} . For example, starting with a symmetric pair $(\mathfrak{so}_{n+1}, \mathfrak{so}_n)$, one arrives at $\tilde{\mathfrak{g}} = \mathfrak{so}_n \ltimes \mathbb{C}^n$. In [4], it was conjectured that $\mathcal{S}(\tilde{\mathfrak{g}})^{\tilde{\mathfrak{g}}}$ is a polynomial ring (in rk \mathfrak{g} variables).

Theorem 3 ([4, 9, 10]) Let $\tilde{\mathfrak{g}}$ be a \mathbb{Z}_2 -contraction of a reductive Lie algebra \mathfrak{g} . Then $S(\tilde{\mathfrak{g}})^{\tilde{\mathfrak{g}}}$ is a polynomial ring (in $\mathfrak{rk}\mathfrak{g}$ variables) if and only if the restriction homomorphism $\mathbb{C}[\mathfrak{g}]^{\mathfrak{g}} \to \mathbb{C}[\mathfrak{g}_1]^{\mathfrak{g}_0}$ is surjective.

If we are in one of the "surjective" cases, then one can describe the generators of $S(\tilde{\mathfrak{g}})^{\tilde{\mathfrak{g}}}$. Let H_1, \ldots, H_r be suitably chosen homogeneous generators of $S(\mathfrak{g})^{\mathfrak{g}}$ and let H_i^{\bullet} be the bi-homogeneous (w.r.t. $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$) component of H_i of the highest \mathfrak{g}_1 -degree. Then $S(\tilde{\mathfrak{g}})^{\tilde{\mathfrak{g}}}$ is freely generated by the polynomials H_i^{\bullet} (of course, providing the restriction homomorphism $\mathbb{C}[\mathfrak{g}]^{\mathfrak{g}} \to \mathbb{C}[\mathfrak{g}_1]^{\mathfrak{g}_0}$ is surjective) [4, 9].

Unfortunately, this construction of generators cannot work if the restriction homomorphism is not surjective, see [4, Remark 4.3]. As was found out by Helgason [2], there are four "non-surjective" irreducible symmetric pairs, namely, (E_6, F_4) ,

 $(E_7, E_6 \oplus \mathbb{C})$, $(E_8, E_7 \oplus \mathfrak{sl}_2)$, and $(E_6, \mathfrak{so}_{10} \oplus \mathfrak{so}_2)$. The approach to semi-direct products developed in [10] showed that Panyushev's conjecture does not hold for them. Next we outline some ideas of the proof.

Let $G_0 \subset G$ be a connected subgroup with Lie $G_0 = \mathfrak{g}_0$. Then G_0 is reductive, it acts on $\mathfrak{g}_1 \cong \mathfrak{g}_1^*$, and this action is stable. Let $x \in \mathfrak{g}_1$ be a generic element and $G_{0,x}$ be its stabiliser in G_0 . The groups $G_{0,x}$ are reductive and they are known for all symmetric pairs. In particular, $S(\mathfrak{g}_{0,x})^{G_{0,x}}$ is a polynomial ring. It is also known that $\mathbb{C}[\mathfrak{g}_1]^{G_0}$ is a polynomial ring. By [4] $\tilde{\mathfrak{g}}$ has the "codim-2" property and ind $\tilde{\mathfrak{g}} = \operatorname{rk} \mathfrak{g}$.

Making use of the surjectivity of φ_x one can show that if $\mathbb{C}[\tilde{\mathfrak{g}}^*]^{\tilde{\mathfrak{g}}}$ is freely generated by some H_1, \ldots, H_r , then necessary $\sum_{i=1}^r \deg H_i > \mathbf{b}(\tilde{\mathfrak{g}})$ for $\tilde{\mathfrak{g}}$ coming from one of the "non-surjective" pairs [10]. In view of some results from [3] this leads to a contradiction.

Note that in case of $(\mathfrak{g}, \mathfrak{g}_0) = (E_6, F_4)$, $\mathfrak{g}_0 = F_4$ is simple and $\tilde{\mathfrak{g}}$ is a semi-direct product of F_4 and \mathbb{C}^{26} , which, of course, comes from one of the representations in Schwarz's list [7].

4 Examples Related to the Defining Representation of \mathfrak{sl}_n

Form now assume that $\mathfrak{g} = \mathfrak{sl}_n$ and $V = m(\mathbb{C}^n)^* \oplus k\mathbb{C}^n$ with $n \ge 2$, $m \ge 1$, $m \ge k$. According to [7] $\mathbb{C}[V]^G$ is a polynomial ring if either k = 0 and $m \le n + 1$ or $m \le n$, $k \le n-1$. One finds also the description of the generators of $\mathbb{C}[V^*]^G$ and their degrees in [7]. In this section, we classify all cases, where $\mathbb{C}[\mathfrak{q}^*]^q$ is a polynomial ring and for each of them give the fundamental semi-invariant.

Example 1 Suppose that either $m \ge n$ or m = k = n - 1. Then $\mathfrak{g}_x = 0$ for generic $x \in V^*$ and therefore $\mathbb{C}[\mathfrak{q}^*]^Q = \mathbb{C}[V^*]^G$, i.e., $\mathbb{C}[\mathfrak{q}^*]^Q$ is a polynomial ring if and only if $\mathbb{C}[V^*]^G$ is. The latter takes place for (m, k) = (n + 1, 0), for m = n and any k < n, as well as for m = k = n - 1. Non-scalar fundamental semi-invariants appear here only for

- m = n, where **p** is given by det $(v)^{n-1-k}$ with $v \in n\mathbb{C}^n$;
- m = k = n 1, where **p** is the sum of the principal $2k \times 2k$ -minors of

$$\left(\frac{0|v}{w|0}\right) \text{ with } v \in k\mathbb{C}^n, w \in k(\mathbb{C}^n)^*.$$

In the rest of the section, we assume that $g_x \neq 0$ for generic $x \in V^*$.

4.1 The Case k = 0

Here the ring of G-invariants on V^* is generated by

$$\{\Delta_I \mid I \subset \{1, \dots, m\}, |I| = n\}$$
 [8, Section 9],

where each $\Delta_I(v)$ is the determinant of the corresponding submatrix of $v \in V^*$. The generators are algebraically independent if and only if $m \le n + 1$, see also [7].

We are interested only in *m* that are smaller than *n*. Let n = qm + r, where $0 < r \le m$, and let $I \subset \{1, ..., m\}$ be a subset of cardinality *r*. By choosing the corresponding *r* columns of *v* we get a matrix $w = v_I$. Set

$$F_I(A, v) := \det\left(v|Av|\dots|A^{q-1}v|A^qw\right), \text{ where } A \in \mathfrak{g}, v \in V^*.$$
(3)

Clearly each F_I is an SL_n -invariant. Below we will see that they are also V-invariants. If r = m, then there is just one invariant, $F = F_{\{1,...,m\}}$. If r is either 1 or m - 1, we get m invariants.

Lemma 4 Each F_I defined by Eq. (3) is a V-invariant.

Proof According to Lemma 1 we have to show that $F_I(\xi + ad^*(V) \cdot x, x) = F(\xi, x)$ for generic $x \in V^*$ and any $\xi \in \mathfrak{sl}_n$. Since m < n, there is an open SL_n -orbit in V^* and we can take x as E_m . Let $\mathfrak{p} \subset \mathfrak{gl}_n$ be the standard parabolic subalgebra corresponding to the composition (m, n - m) and let \mathfrak{n}_- be the nilpotent radical of the opposite parabolic. Each element (matrix) $\xi \in \mathfrak{gl}_n$ is a sum $\xi = \xi_- + \xi_p$ with $\xi_- \in \mathfrak{n}_-, \xi_p \in \mathfrak{p}$. In this notation $F_I(A, E_m) = \det (A_- |(A^2)_-| \dots |(A^{q-1})_-|(A^q)_{-1})$.

Let $\alpha = \alpha_A$ and $\beta = \beta_A$ be $m \times m$ and $(n - m) \times (n - m)$ -submatrices of A standing in the upper left and lower right corner, respectively. Then $(A^{s+1})_{-} = \sum_{t=0}^{s} \beta^t A_{-} \alpha^{s-t}$. Each column of $A_{-} \alpha$ is a linear combination of columns of A_{-} and each column of $\beta^t A_{-} \alpha^{j+1}$ is a linear combination of columns of $\beta^t A_{-} \alpha^{j}$. Therefore

$$F_{I}(A, E_{m}) = \det \left(A_{-} | \dots | (A^{q-1})_{-} | (A^{q})_{-,I} \right) =$$

= det $\left(A_{-} | \beta A_{-} | \dots | \beta^{q-2} A_{-} | \beta^{q-1} A_{-,I} \right).$ (4)

Notice that $\mathfrak{g}_x \subset \mathfrak{p}$ and the nilpotent radical of \mathfrak{p} is contained in \mathfrak{g}_x (with $x = E_m$). Since $\operatorname{ad}^*(V) \cdot x = \operatorname{Ann}(\mathfrak{g}_x) = \mathfrak{g}_x^{\perp} \subset \mathfrak{g}$ (after the identification $\mathfrak{g} \cong \mathfrak{g}^*$), $A_- = 0$ for any $A \in \mathfrak{g}_x^{\perp}$; and we have $\beta_A = cE_{n-m}$ with $c \in \mathbb{C}$ for this A. An easy observation is that

$$\det \left(\xi_{-} | (\beta_{\xi} + cE_{n-m})\xi_{-} | \dots | (\beta_{\xi} + cE_{n-m})^{q-1}\xi_{-,I} \right) = \\ = \det \left(\xi_{-} | \beta_{\xi}\xi_{-} | \dots | \beta_{\xi}^{q-1}\xi_{-,I} \right).$$

Hence $F_I(\xi + A, E_m) = F_I(\xi, E_m)$ for all $A \in ad^*(V) \cdot E_m$ and all $\xi \in \mathfrak{sl}_n$.

Theorem 4 Suppose that $q = \mathfrak{sl}_n \ltimes m(\mathbb{C}^n)^*$. Then $\mathbb{C}[q^*]^Q$ is a polynomial ring if and only if $m \le n + 1$ and m divides either n - 1, n or n + 1. Under these assumptions on m, $\mathbf{p}_q = 1$ exactly then, when m divides either n - 1 or n + 1.

Proof Note that the statement is true for $m \ge n$ by Example 1. Assume that $m \le n-1$. Suppose that n = mq + r as above. A generic stabiliser in g is $g_x = \mathfrak{sl}_{n-m} \ltimes m\mathbb{C}^{n-m}$. On the group level it is connected. Notice that $\operatorname{ind} g_x = \operatorname{tr.deg} S(g_x)^{G_x}$, since G_x has no non-trivial characters. Note also that $\mathbb{C}[V^*]^G = \mathbb{C}$, since m < n. If $\mathbb{C}[\mathfrak{q}^*]^Q$ is a polynomial ring, then so is $\mathbb{C}[\mathfrak{g}_x^*]^{G_x}$ by Theorem 2(ii) and either n - m = 1 or, arguing by induction, $n - m \equiv t \pmod{m}$ with $t \in \{-1, 0, 1\}$.

Next we show that the ring of symmetric invariants is freely generated by the polynomials F_I for the indicated m. Each element $\gamma \in \mathfrak{g}_x^*$ can be presented as $\gamma = \beta_0 + A_-$, where $\beta_0 \in \mathfrak{sl}_{n-m}$. Each restriction $\varphi_x(F_I)$ can be regarded as an element of $S(\mathfrak{g}_x)$. Equation (4) combined with Lemma 4 and the observation that $\mathfrak{g}_x^* \cong \mathfrak{g}/\operatorname{Ann}(\mathfrak{g}_x)$ shows that $\varphi_x(F_I)$ is either Δ_I of \mathfrak{g}_x (in case q = 1, where $F_I(A, E_m) = \det A_{-,I}$) or F_I of \mathfrak{g}_x . Arguing by induction on n, we prove that the restrictions $\varphi_x(F_I)$ freely generate $S(\mathfrak{g}_x)^{\mathfrak{g}_x}$ for $x = E_m$ (i.e., for a generic point in V^*). Notice that n - m = (q - 1)m + r.

The group SL_n acts on V^* with an open orbit $SL_n \cdot E_m$. Therefore the restriction map φ_x is injective. By the inductive hypothesis it is also surjective and therefore is an isomorphism. This proves that the polynomials F_I freely generate $\mathbb{C}[\mathfrak{q}^*]^Q$.

If *m* divides *n*, then $\mathbb{C}[q^*]^Q = \mathbb{C}[F]$ and the fundamental semi-invariant is a power of *F*. As follows from the equality in Theorem 2(i), $\mathbf{p} = F^{m-1}$.

Suppose that *m* divides either n - 1 or n + 1. Then we have *m* different invariants F_I . By induction on n, \mathfrak{g}_x has the "codim-2" property, therefore the sum of deg $\varphi_x(F_I)$ is equal to $\mathbf{b}(\mathfrak{g}_x)$ by Theorem 2(i). The sum of *V*-degrees is $m \times n = \dim V$ and hence by Lemma 3 $\sum \deg F_I = \mathbf{b}(\mathfrak{q})$. Thus, \mathfrak{q} has the "codim-2" property.

Remark 1 Using induction on *n* one can show that the restriction map φ_x is an isomorphism for all m < n. Therefore the polynomials F_I generate $\mathbb{C}[q^*]^Q$ for all m < n.

4.2 The Case m = k

Here $\mathbb{C}[V^*]^G$ is a polynomial ring if and only if $k \le n-1$; a generic stabiliser is \mathfrak{sl}_{n-k} , and the *G*-action on $V \cong V^*$ is stable. We assume that $\mathfrak{g}_x \neq 0$ for generic $x \in V^*$ and therefore $k \le n-2$.

For an $N \times N$ -matrix C, let $\Delta_i(C)$ with $1 \le i \le N$ be coefficients of its characteristic polynomial, each Δ_i being a homogeneous polynomial of degree i. Let $\gamma = A + v + w \in \mathfrak{q}^*$ with $A \in \mathfrak{g}, v \in k\mathbb{C}^n, w \in k(\mathbb{C}^n)^*$. Having these objects we form an $(n + k) \times (n + k)$ -matrix

$$Y_{\gamma} := \left(\frac{A \mid v}{w \mid 0}\right)$$

and set $F_i(\gamma) = \Delta_i(Y_{\gamma})$ for each $i \in \{2k + 1, 2k + 2, 2k + 3, ..., n + k\}$. Each F_i is an SL_n×GL_k-invariant. Unfortunately, these polynomials are not V-invariants.

Remark 2 If we repeat the same construction for $\tilde{\mathfrak{q}} = \mathfrak{gl}_n \ltimes V$ with $k \leq n-1$, then $\mathbb{C}[\tilde{\mathfrak{q}}^*]^{\tilde{Q}} = \mathbb{C}[V^*]^{\mathrm{GL}_n}[\{F_i \mid 2k+1 \leq i \leq n+k\}]$ and it is a polynomial ring in $\mathrm{ind}\,\tilde{\mathfrak{q}} = n-k+k^2$ generators.

Theorem 5 Suppose that $m = k \le n - 1$. Then $\mathbb{C}[q^*]^q$ is a polynomial ring if and only if $k \in \{n-2, n-1\}$. In case k = n - 2, q has the "codim-2" property.

Proof Suppose that k = n - 2. Then a generic stabiliser $\mathfrak{g}_x = \mathfrak{sl}_2$ is of index 1 and since the *G*-action on *V* is stable, $\mathbb{C}[\mathfrak{q}^*]^\mathfrak{q}$ has to be a polynomial ring by [10, Example 3.6]. One can show that the unique mixed generator is of the form $F_{2k+2}H_{2k} - F_{2k+1}^2$, where H_{2k} is a certain $SL_n \times GL_k$ -invariant on *V* of degree 2k and then see that the sum of degrees is $\mathbf{b}(\mathfrak{q})$.

More generally, q has the "codim-2" property for all $k \le n - 2$. Here each *G*-invariant divisor in V^* contains a *G*-orbit of maximal dimension, say *Gy*. Set u = n - k - 1. If G_y is not SL_{n-k} , then $\mathfrak{g}_y = \mathfrak{sl}_u \ltimes (\mathbb{C}^u \oplus (\mathbb{C}^u)^* \oplus \mathbb{C})$ is a semi-direct product with a Heisenberg Lie algebra. Following the proof of [4, Theorem 3.3], one has to show that $\operatorname{ind} \mathfrak{g}_y = u$ in order to prove that q has the "codim-2" property. This is indeed the case, $\operatorname{ind} \mathfrak{g}_y = 1 + \operatorname{ind} \mathfrak{sl}_u$.

Suppose that 0 < k < n-2 and assume that $S(\mathfrak{q})^{\mathfrak{q}}$ is a polynomial ring. Then there are bi-homogeneous generators $\mathbf{h}_2, \ldots, \mathbf{h}_{n-k}$ of $\mathbb{C}[\mathfrak{q}^*]^Q$ over $\mathbb{C}[V^*]^G$ such that their restrictions to $\mathfrak{g} + x$ form a generating set of $S(\mathfrak{g}_x)^{\mathfrak{g}_x}$ for a generic x (with $\mathfrak{g}_x \cong \mathfrak{sl}_{n-k}$), see Theorem 2(ii). In particular, deg $_{\mathfrak{g}}\mathbf{h}_t = t$.

Take $\tilde{\mathfrak{g}} = (\mathfrak{sl}_n \oplus \mathfrak{gl}_k) \ltimes V$, which is a \mathbb{Z}_2 -contraction of \mathfrak{sl}_{n+k} . Then \mathfrak{q} is a Lie subalgebra of $\tilde{\mathfrak{g}}$. Note that GL_k acts on \mathfrak{q} via automorphisms and therefore we may assume that the \mathbb{C} -linear span of $\{\mathbf{h}_t\}$ is GL_k -stable. By degree considerations, each \mathbf{h}_t is an SL_k -invariant as well. The Weyl involution of SL_n acts on V and has to preserve each line $\mathbb{C}\mathbf{h}_t$. Since this involution interchanges \mathbb{C}^n and $(\mathbb{C}^n)^*$, each \mathbf{h}_t is also a GL_k -invariant. Thus,

$$\mathcal{S}(\mathfrak{q})^{\mathfrak{q}} = \mathcal{S}(\mathfrak{q})^{\tilde{\mathfrak{g}}} = \mathcal{S}(\mathfrak{q}) \cap \mathcal{S}(\tilde{\mathfrak{g}})^{\tilde{\mathfrak{g}}}.$$

Since $\tilde{\mathfrak{g}}$ is a "surjective" \mathbb{Z}_2 -contraction, its symmetric invariants are known [4, Theorem 4.5]. The generators of $S(\tilde{\mathfrak{g}})^{\tilde{\mathfrak{g}}}$ are Δ_j^{\bullet} with $2 \leq j \leq n + k$. Here deg $\Delta_j^{\bullet} = j$ and the generators of $(\mathfrak{sl}_n \oplus \mathfrak{gl}_k)$ -degrees 2, 3, ..., n-k are $\Delta_{2k+2}^{\bullet}, \Delta_{2k+3}^{\bullet}, \ldots, \Delta_{n+k}^{\bullet}$. As the restriction to $\mathfrak{sl}_n \oplus \mathfrak{gl}_k + x$ shows, none of the generators Δ_j^{\bullet} with $j \geq 2k + 2$ lies in $S(\mathfrak{q})$. This means that \mathbf{h}_t cannot be equal or even proportional over $\mathbb{C}[V^*]^G$ to Δ_{2k+t}^{\bullet} and hence has a more complicated expression. More precisely, a product $\Delta_{2k+t}^{\bullet}\Delta_{2k+t-1}^{\bullet}$ necessary appears in \mathbf{h}_t with a non-zero coefficient from $\mathbb{C}[V^*]^G$ for $t \geq 2$. Since deg $_V \Delta_{2k+1}^{\bullet} = 2k$, we have deg $_V \mathbf{h}_t \geq 4k$ for every $t \geq 2$. The ring $\mathbb{C}[V^*]^G$ is freely generated by k^2 polynomials of degree two. Therefore, the total sum of degrees over all generators of $\mathcal{S}(\mathfrak{q})^{\mathfrak{q}}$ is greater than or equal to

$$\mathbf{b}(\mathfrak{sl}_{n-k}) + 4k(n-k-1) + 2k^2 = \mathbf{b}(\mathfrak{q}) + 2k(n-k-2).$$

This contradicts Theorem 2(i) in view of the fact that $\mathbf{p}_q = 1$.

4.3 The Case 0 < k < m

Here $\mathbb{C}[V^*]^G$ is a polynomial ring if and only if $m \le n$, [7]. If n = m, then $\mathfrak{g}_x = 0$ for generic $x \in V^*$. For m < n, our construction of invariants is rather intricate.

Let π_1, \ldots, π_{n-1} be the fundamental weights of \mathfrak{sl}_n . We use the standard convention, $\pi_i = \varepsilon_1 + \ldots + \varepsilon_i$, $\varepsilon_n = -\sum_{i=1}^{n-1} \varepsilon_i$. Recall that for any $t, 1 \leq t < n$, $\Lambda^t \mathbb{C}^n$ is irreducible with the highest weight π_t . Let $\{e_1, \ldots, e_n\}$ be a basis of \mathbb{C}^n such that each e_i is a weight vector and $\ell_t := e_1 \land \ldots \land e_t$ is a highest weight vector of $\Lambda^t \mathbb{C}^n$. Clearly $\Lambda^t \mathbb{C}^n \subset S^t(t\mathbb{C}^n)$. Write n-k = d(m-k) + r with $0 < r \leq (m-k)$. Let $\varphi : m\mathbb{C}^n \to \Lambda^m\mathbb{C}^n$ be a non-zero *m*-linear *G*-equivariant map. Such a map is unique up to a scalar and one can take φ with $\varphi(v_1 + \ldots + v_m) = v_1 \land \ldots \land v_m$. In case $r \neq m - k$, for any subset $I \subset \{1, \ldots, m\}$ with |I| = k + r, let $\varphi_I : m\mathbb{C}^n \to (k+r)\mathbb{C}^n \to \Lambda^{k+r}\mathbb{C}^n$ be the corresponding (almost) canonical map. By the same principle we construct $\tilde{\varphi} : k(\mathbb{C}^n)^* \to \Lambda^k(\mathbb{C}^n)^*$.

Let us consider the tensor product $\mathbb{W} := (\Lambda^m \mathbb{C}^n)^{\otimes d} \otimes \Lambda^{k+r} \mathbb{C}^n$ and its weight subspace $\mathbb{W}_{d\pi_k}$. One can easily see that $\mathbb{W}_{d\pi_k}$ contains a unique up to a scalar non-zero highest weight vector, namely

$$w_{d\pi_k} = \sum_{\sigma \in S_{n-k}} \operatorname{sgn}(\sigma)(\ell_k \wedge e_{\sigma(k+1)} \wedge \ldots \wedge e_{\sigma(m)}) \otimes \ldots \otimes (\ell_k \wedge e_{\sigma(n-r+1)} \ldots \wedge e_{\sigma(n)}).$$

This means that \mathbb{W} contains a unique copy of $V_{d\pi_k}$, where $V_{d\pi_k}$ is an irreducible \mathfrak{sl}_n module with the highest weight $d\pi_k$. We let ρ denote the representation of \mathfrak{gl}_n on $\Lambda^m \mathbb{C}^n$ and ρ_r the representation of \mathfrak{gl}_n on $\Lambda^{k+r} \mathbb{C}^n$. Let $\xi = A + v + w$ be a point in \mathfrak{q}^* . (It is assumed that $A \in \mathfrak{sl}_n$.) Finally let (,) denote a non-zero \mathfrak{sl}_n -invariant scalar product between \mathbb{W} and $S^d(\Lambda^k(\mathbb{C}^n)^*)$ that is zero on the \mathfrak{sl}_n -invariant complement of $V_{d\pi_k}$ in \mathbb{W} . Depending on r, set

$$\mathbf{F}(\xi) := (\varphi(v) \otimes \rho(A)^{m-k} \varphi(v) \otimes \rho(A^2)^{m-k} \varphi(v) \otimes \dots \otimes \rho(A^d)^{m-k} \varphi(v), \tilde{\varphi}(w)^d)$$

for $r = m - k$;
$$\mathbf{F}_I(\xi) := (\varphi(v) \otimes \rho(A)^{m-k} \varphi(v) \otimes \dots \otimes \rho(A^{d-1})^{m-k} \varphi(v) \otimes \rho_r(A^d)^r \varphi_I(v), \tilde{\varphi}(w)^d)$$

for each *I* as above in case r < m - k. By the constructions the polynomials **F** and **F**_{*I*} are SL_{*n*}-invariants.

Lemma 5 The polynomials \mathbf{F} and \mathbf{F}_{I} are V-invariants.

Proof We restrict \mathbf{F} and \mathbf{F}_I to $\mathfrak{g}^* + x$ with $x \in V^*$ generic. Changing a basis in V if necessary, we may assume that $x = E_m + E_k$. If r < m - k, some of the invariants \mathbf{F}_I may become linear combinations of such polynomials under the change of basis, but this does not interfere with V-invariance. Now $\varphi(v)$ is a vector of weight π_m

and $\tilde{\varphi}(w)^d$ of weight $-d\pi_k$. Notice that dm + (k + r) = n + kd. If $\sum_{i=1}^{n+kd} \lambda_i =$

 $d\sum_{i=1}^{k} \varepsilon_i$ and each λ_i is one of the ε_j , $1 \le j \le n$, then in the sequence $(\lambda_1, \ldots, \lambda_{n+kd})$ we must have exactly one ε_j for each $k < j \le n$ and d + 1 copies of each ε_i with $1 \le i \le k$. Hence the only summand of $\rho(A^s)^{m-k}\varphi(E_m)$ that plays any rôle in **F** or **F**_I is $\ell_k \land A^s e_{k+1} \land \ldots \land A^s e_m$. Moreover, in $A^s e_{k+1} \land \ldots \land A^s e_m$ we are interested only in vectors lying in Λ^{m-k} span (e_{k+1}, \ldots, e_n) .

Let us choose blocks α , U, β of A as shown in Fig. 1. Then up to a non-zero scalar $\mathbf{F}(A, E_m + E_k)$ is the determinant of

$$(U|\beta U + U\alpha|P_2(\alpha, U, \beta)| \dots |P_{d-1}(\alpha, U, \beta)),$$

where $P_s(\alpha, U, \beta) = \sum_{t=0}^{s} \beta^t U \alpha^{s-t}.$

Each column of $U\alpha$ is a linear combination of the columns of U, a similar relation exists between $\beta^t U\alpha^{s+1}$ and $\beta^t U\alpha^s$. Therefore

$$\mathbf{F}(A, E_m + E_k) = \det\left(U|\beta U|\beta^2 U|\dots|\beta^{d-1}U\right).$$
(5)

We have to check that $\mathbf{F}(\xi + A, x) = \mathbf{F}(\xi, x)$ for any $A \in \mathrm{ad}^*(V) \cdot x$ and any $\xi \in \mathfrak{g}$, see Lemma 1. Recall that $\mathrm{ad}^*(V) \cdot x = \mathrm{Ann}(\mathfrak{g}_x) = \mathfrak{g}_x^{\perp} \subset \mathfrak{g}$. In case $x = E_m + E_k$, Uis zero in each $A \in \mathfrak{g}_x^{\perp}$ and β corresponding to such A is a scalar matrix. Therefore $\mathbf{F}(\xi + \mathrm{ad}^*(V) \cdot x, x) = \mathbf{F}(\xi, x)$.

The case r < m-k is more complicated. If $\{1, \ldots, k\} \subset I$, then $I = \tilde{I} \sqcup \{1, \ldots, k\}$. Let $U_{\tilde{I}}$ be the corresponding submatrix of U and $\alpha_{\tilde{I} \times \tilde{I}}$ of α . One just has to replace

Fig. 1 Submatrices of $A \in \mathfrak{sl}_n$

U by $U_{\tilde{I}}$ and α by $\alpha_{\tilde{I} \times \tilde{I}}$ in the last polynomial $P_{d-1}(\alpha, U, \beta)$ obtaining

$$\mathbf{F}_{I}(A, x) = \det \left(U|\beta U|\beta^{2} U| \dots |\beta^{d-2} U|\beta^{d-1} U_{\tilde{I}} \right).$$

These are $\binom{m-k}{r}$ linearly independent invariants in $\mathcal{S}(\mathfrak{g}_x)$.

Suppose that $\{1, ..., k\} \not\subset I$. Then $\rho_I(A^d)^r$ has to move more than r vectors e_i with $k + 1 \leq i \leq m$, which is impossible. Thus, $\mathbf{F}_I(A, x) = 0$ for such I.

Theorem 6 Suppose that 0 < k < m < n and m - k divides n - m, then $\operatorname{ind} \mathfrak{g}_x = 1$ for generic $x \in V^*$ and $\mathbb{C}[\mathfrak{q}^*]^Q = \mathbb{C}[V^*]^G[\mathbf{F}]$ is a polynomial ring, the fundamental semi-invariant is equal to \mathbf{F}^{m-k-1} .

Proof A generic stabiliser \mathfrak{g}_x is $\mathfrak{sl}_{n-m} \ltimes (m-k) \mathbb{C}^{n-m}$. Its ring of symmetric invariants is generated by $F = \varphi_x(\mathbf{F})$, see Theorem 4 and Eq. (5). We also have $\operatorname{ind} \mathfrak{g}_x = 1$. It remains to see that \mathbf{F} is not divisible by a non-constant *G*-invariant polynomial on V^* . By the construction, \mathbf{F} is also invariant with respect to the action of $\operatorname{SL}_m \times \operatorname{SL}_k$. The group $L = \operatorname{SL}_n \times \operatorname{SL}_k \times \operatorname{SL}_k$ act on V^* with an open orbit. As long as $\operatorname{rk} w = k$, $\operatorname{rk} v = m$, the *L*-orbit of y = v + w contains a point $v' + E_k$, where also $\operatorname{rk} v' = m$. If in addition the upper $k \times m$ -part of v has rank k, then *L*·y contains $x = E_m + E_k$. Here \mathbf{F} is non-zero on $\mathfrak{g} + y$. Since the group L is semisimple, the complement of $L \cdot (E_m + E_k)$ contains no divisors and \mathbf{F} is not divisible by any non-constant *G*-invariant in $\mathbb{C}[V^*]$. This is enough to conclude that $\mathbb{C}[\mathfrak{q}^*]^Q = \mathbb{C}[V^*]^G[\mathbf{F}]$, see Theorem 2.

The singular set q_{sing}^* is *L*-stable. And therefore \mathbf{p}_q is also an $SL_m \times SL_k$ -invariant. Hence \mathbf{p} is a power of \mathbf{F} . In view of Theorem 2(i), $\mathbf{p} = \mathbf{F}^{m-k-1}$.

Theorem 7 Suppose that 0 < k < m < n and m - k does not divide n - m, then $\mathbb{C}[q^*]^Q$ is not a polynomial ring.

Proof The reason for this misfortune is that $\binom{m}{k+r} > \binom{m-k}{r}$ for r < m-k. One could prove that each \mathbf{F}_I must be in the set of generators and thereby show that $\mathbb{C}[q^*]^Q$ is not a polynomial ring. But we present a different argument.

Assume that the ring of symmetric invariants is polynomial. It is bi-graded and SL_m acts on it preserving the bi-grading. Since SL_m is reductive, we can assume that there is a set $\{H_1, \ldots, H_s\}$ of bi-homogeneous mixed generators such that $S(q)^q = \mathbb{C}[V^*]^G[H_1, \ldots, H_s]$ and the \mathbb{C} -linear span $\mathcal{H} := \operatorname{span}(H_1, \ldots, H_s)$ is SL_m -stable. The polynomiality implies that a generic stabiliser $\mathfrak{g}_x = \mathfrak{sl}_{n-m} \ltimes (m-k) \mathbb{C}^{n-m}$ has a free algebra of symmetric invariants, see Theorem 2(ii), and by the same statement φ_x is surjective. This means that r is either 1 or m-k-1, see Theorem 4, s = m-k, and φ_x is injective on \mathcal{H} . Taking our favourite (generic) $x = E_m + E_k$, we see that there is SL_{m-k} embedded diagonally into $G \times SL_m$, which acts on $\varphi_x(\mathcal{H})$ as on $\Lambda^r \mathbb{C}^{m-k}$. The group SL_{m-k} acts on \mathcal{H} in the same way. Since m-k does not divide n-m, we have $m-k \ge 2$. The group SL_m cannot act on an irreducible module $\Lambda^r \mathbb{C}^{m-k}$ of its non-trivial subgroup SL_m-k , this is especially obvious in our two cases of interest, r = 1 and r = m-k-1. A contradiction.

Conjecture 1 It is very probable that $\mathbb{C}[\mathfrak{q}^*]^\mathfrak{q} = \mathbb{C}[V^*]^G[\{\mathbf{F}_I\}]$ for all $n > m > k \ge 1$.

Acknowledgements I would like to thank the organisers of the intensive period on "Perspectives in Lie theory", especially Giovanna Carnovale and Martina Lanini, for the invitation to Pisa and a very warm welcome.

This work is partially supported by the DFG priority programme SPP 1388 "Darstellungstheorie" and by the Graduiertenkolleg GRK 1523 "Quanten- und Gravitationsfelder".

References

- O.M. Adamovich, E.O. Golovina, Simple linear Lie groups having a free algebra of invariants. Sel. Math. Sov. 3, 183–220 (1984); originally published in Voprosy teorii grupp i gomologicheskoi algebry, Yaroslavl, 1979, 3–41 (in Russian)
- S. Helgason, Some results on invariant differential operators on symmetric spaces. Amer. J. Math. 114(4), 789–811 (1992)
- A. Joseph, D. Shafrir, Polynomiality of invariants, unimodularity and adapted pairs. Transformation Groups 15(4), 851–882 (2010)
- 4. D. Panyushev, On the coadjoint representation of \mathbb{Z}_2 -contractions of reductive Lie algebras. Adv. Math. **213**(1), 380–404 (2007)
- D. Panyushev, A. Premet, O. Yakimova, On symmetric invariants of centralisers in reductive Lie algebras. J. Algebra 313, 343–391 (2007)
- M. Raïs, L'indice des produits semi-directs E×ρ g, C. R. Acad. Sci. Paris Ser. A, 287, 195–197 (1978)
- G.W. Schwarz, Representations of simple Lie groups with regular rings of invariants. Invent. Math. 49, 167–191 (1978)
- E.B. Vinberg, V.L. Popov, Invariant theory, in *Algebraic Geometry IV*, (Itogi Nauki i Tekhniki, Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1989), pp. 137–314; English translation: Encyclopaedia Math. Sci., vol. 55, Springer, Berlin, 1994
- O. Yakimova, One-parameter contractions of Lie-Poisson brackets. J. Eur. Math. Soc. 16, 387– 407 (2014)
- O. Yakimova, Symmetric invariants of Z₂-contractions and other semi-direct products. Int. Math. Res. Not. 2017(6), 1674–1716 (2017).