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Abstract Let g be a complex reductive Lie algebra and V the underlying vector
space of a finite-dimensional representation of g. Then one can consider a new Lie
algebra q D gËV , which is a semi-direct product of g and an Abelian ideal V .
We outline several results on the algebra CŒq��q of symmetric invariants of q and
describe all semi-direct products related to the defining representation of sln with
CŒq��q being a free algebra.
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1 Introduction

Let Q be a connected complex algebraic group. Set q D LieQ. Then S.q/ D CŒq��

and S.q/q D CŒq��q D CŒq��Q. We will call the latter object the algebra of
symmetric invariants of q. An important property of S.q/q is that it is isomorphic
to ZU.q/ as an algebra by a classical result of M.Duflo (here ZU.q/ is the centre of
the universal enveloping algebra of q).

Let g be a reductive Lie algebra. Then by the Chevalley restriction theorem
S.g/g D CŒH1; : : : ;Hrkg� is a polynomial ring (in rk g variables). A quest for
non-reductive Lie algebras with a similar property has recently become a trend in
invariant theory. Here we consider finite-dimensional representations � W g ! gl.V/

of g and the corresponding semi-direct products q D gËV . The Lie bracket on q is
defined by

Œ� C v; � C u� D Œ�; �� C �.�/u � �.�/v (1)

for all �; � 2 g, v; u 2 V . Let G be a connected simply connected Lie group with
LieG D g. Then q D LieQ with Q D GË exp.V/.

It is easy to see that CŒV��G � CŒq��q and therefore CŒV��G must be a
polynomial ring ifCŒq��q is, see [10, Section 3]. Classification of the representations
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of complex simple algebraic groups with free algebras of invariants was carried
out by Schwarz [7] and independently by Adamovich and Golovina [1]. One such
representation is the spin-representation of Spin7, which leads to Q D Spin7 ËC8.
Here CŒq��q is a polynomial ring in three variables generated by invariants of bi-
degrees .0; 2/, .2; 2/, .6; 4/ with respect to the decomposition q D so7˚C8, see
[10, Proposition 3.10].

In this paper, we treat another example, G D SLn, V D m.Cn/�˚kCn with
n > 2, m > 1, m > k. Here CŒq��q is a polynomial ring in exactly the following
three cases:

• k D 0, m6n C 1, and n � t .mod m/ with t 2 f�1; 0; 1g;
• m D k, k 2 fn � 2; n � 1g;
• n > m > k > 0 and m � k divides n � m.

We also briefly discuss semi-direct products arising as Z2-contractions of
reductive Lie algebras.

2 Symmetric Invariants and Generic Stabilisers

Let q D LieQ be an algebraic Lie algebra, Q a connected algebraic group. The
index of q is defined as

indq D min
�2q�

dimq� ;

where q� is the stabiliser of � in q. In view of Rosenlicht’s theorem, indq D
tr:degC.q�/Q. In case indq D 0, we have CŒq��q D C. For a reductive g,
indg D rk g. Recall that .dimg C rk g/=2 is the dimension of a Borel subalgebra of
g. For q, set b.q/ WD .indq C dimq/=2.

Let f�ig be a basis of q andM.q/ D .Œ�i; �j�/ the structural matrix with entries in
q. This is a skew-symmetric matrix of rank dimq� indq. Let us take Pfaffians of the
principal minors ofM.q/ of size rkM.q/ and let p D pq be their greatest common
divisor. Then p is called the fundamental semi-invariant of q. The zero set of p is
the maximal divisor in the so called singular set

q�
sing D f� 2 q� j dimq� > indqg

of q. Since q�
sing is clearly a Q-stable subset, p is indeed a semi-invariant,Q�p � Cp.

One says that q has the “codim-2” property (satisfies the “codim-2” condition), if
dimq�

sing6dimq � 2 or equivalently if p D 1.
Suppose that F1; : : : ;Fr 2 S.q/ are homogenous algebraically independent

polynomials. The Jacobian locus J.F1; : : : ;Fr/ of these polynomials consists of
all � 2 q� such that the differentials d�F1; : : : ; d�Fr are linearly dependent. In
other words, � 2 J.F1; : : : ;Fr/ if and only if .dF1 ^ : : : ^ dFr/� D 0. The set
J.F1; : : : ;Fr/ is a proper Zariski closed subset of q�. Suppose that J.F1; : : : ;Fr/

does not contain divisors. Then by the characteristic zero version of a result of
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Skryabin, see [5, Theorem 1.1], CŒF1; : : : ;Fr� is an algebraically closed subalgebra
of S.q/, each H 2 S.q/ that is algebraic over C.F1; : : : ;Fr/ is contained in
CŒF1; : : : ;Fr�.

Theorem 1 (cf. [3, Section 5.8]) Suppose that pq D 1 and suppose that
H1; : : : ;Hr 2 S.q/q are homogeneous algebraically independent polynomials such
that r D indq and

Pr
iD1 degHi D b.q/. Then S.q/q D CŒH1; : : : ;Hr� is a

polynomial ring in r generators.

Proof Under our assumptions J.H1; : : : ;Hr/ D q�
sing, see [5, Theorem 1.2] and [9,

Section 2]. Therefore CŒH1; : : : ;Hr� is an algebraically closed subalgebra of S.q/

by [5, Theorem 1.1]. Since tr:degS.q/q6r, each symmetric q-invariant is algebraic
over CŒH1; : : : ;Hr� and hence is contained in it. ut

For semi-direct products, we have some specific approaches to the symmetric
invariants. Suppose now that g D LieG is a reductive Lie algebra, no non-zero
ideal of g acts on V trivially, G is connected, and q D gËV , where V is a finite-
dimensionalG-module.

The vector space decomposition q D g˚V leads to q� D g˚V�, where we
identify g with g�. Each element x 2 V� is considered as a point of q� that is
zero on g. We have exp.V/�x D ad�.V/�x C x, where each element of ad�.V/�x
is zero on V . Note that ad�.V/�x � Ann.gx/ � g and dim .ad�.V/�x/ is equal to
dim .ad�.g/�x/ D dimg � dimgx. Therefore ad�.V/�x D Ann.gx/.

The decomposition q D g˚V defines also a bi-grading onS.q/ and clearlyS.q/q

is a bi-homogeneous subalgebra, cf. [10, Lemma 2.12].
A statement is true for a “generic x” if and only if this statement is true for all

points of a non-empty open subset.

Lemma 1 A function F 2 CŒq�� is a V-invariant if and only if F.�Cad�.V/�x; x/ D
F.�; x/ for generic x 2 V� and any � 2 g.

Proof Condition of the lemma guaranties that for each v 2 V , exp.v/�F D F on a
non-empty open subset of q�. Hence F is a V-invariant. ut

For x 2 V�, let 'x W CŒq��Q ! CŒg C x�GxË exp.V/ be the restriction map. By [10,
Lemma 2.5] CŒg C x�GxË exp.V/ Š S.gx/

Gx . Moreover, if we identify g C x with g
choosing x as the origin, then 'x.F/ 2 S.gx/ for any q-invariant F [10, Section 2].
Under certain assumptions on G and V the restriction map 'x is surjective, more
details will be given shortly.

There is a non-empty open subset U � V� such that the stabilisers Gx and Gy

are conjugate in G for any pair of points x; y 2 U see e.g. [8, Theorem 7.2]. Any
representative of the conjugacy class fhGxh�1 j h 2 G; x 2 Ug is said to be a a
generic stabiliser of the G-action on V�.

There is one easy to handle case, gx D 0 for a generic x 2 V�. Here CŒq��Q D
CŒV��G, see e.g. [10, Example 3.1], and � C y 2 q�

sing only if gy ¤ 0, where � 2 g,
y 2 V�. The case indgx D 1 is more involved.

Lemma 2 Assume that G has no proper semi-invariants in CŒV��. Suppose that
indgx D 1, S.gx/

gx ¤ C, and the map 'x is surjective for generic x 2 V�. Then
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CŒq��q D CŒV��GŒF�, where F is a bi-homogeneous preimage of a generator of
S.gx/

Gx that is not divisible by any non-constant G-invariant in CŒV��.

Proof If we have a Lie algebra of index 1, in our case gx, then the algebra of its
symmetric invariants is a polynomial ring. There are many possible explanations of
this fact. One of them is the following. Suppose that two non-zero homogeneous
polynomials f1; f2 are algebraically dependent. Then f a1 D cf b2 for some coprime
integers a; b > 0 and some c 2 C

�

. If f1 is an invariant, then so is a polynomial
function b

p
f1 D ab

p
c a
p
f2.

Since S.gx/
gx ¤ C, it is generated by some homogeneous f . The group Gx

has finitely many connected components, hence S.gx/
Gx is generated by a suitable

power of f , say f D f d.
Let F 2 CŒq��Q be a preimage of f. Each its bi-homogeneous component is again

a q-invariant. Without loss of generality we may assume that F is bi-homogenous.
Also if F is divisible by some non-scalar H 2 CŒV��G, then we replace F with F=H
and repeat the process as long as possible.

Whenever Gy (with y 2 V�) is conjugate to Gx and 'y.F/ ¤ 0, 'y.F/ is a Gy-
invariant of the same degree as f and therefore is a generator of S.gy/

Gy . Clearly
C.V�/GŒF� � CŒq��Q˝CŒV��GC.V�/G DW A andA � S.g/˝C.V�/G. IfA contains
a homogeneous in g polynomial T that is not proportional (overC.V�/G) to a power
of F, then 'u.T/ is not proportional to a power of 'u.F/ for generic u 2 V�. But
'u.T/ 2 S.gu/

Gu . This implies that A D C.V�/GŒF�. It remains to notice that
C.V�/G D QuotCŒV��G, since G has no proper semi-invariants in CŒV��, and by
the same reason C.V�/GŒF� \ CŒq� D CŒV��GŒF� in case F is not divisible by any
non-constantG-invariant in CŒV��. ut

It is time to recall the Raïs’ formula [6] for the index of a semi-direct product:

indq D dimV � .dimg � dimgx/ C indgx with x 2 V� generic. (2)

Lemma 3 Suppose that H1; : : : ;Hr 2 S.q/Q are homogenous polynomials such
that 'x.Hi/ with i6indgx freely generate S.gx/

Gx D S.gx/
gx for generic x 2 V�

and Hj 2 CŒV��G for j > indgx; and suppose that
indgxP

iD1

deggHi D b.gx/. Then

rP

iD1

degHi D b.q/ if and only if
rP

iD1

degVHi D dimV.

Proof In view of the assumptions, we have
rP

iD1

degHi D b.gx/ C
rP

iD1

degVHi.

Further, by Eq. (2)

b.q/ D .dimq C dimV � .dimg � dimgx/ C indgx/=2 D
D dimV C .dimgx C indgx/=2 D b.gx/ C dimV:

The result follows. ut
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From now on suppose that G is semisimple. Then both G and Q have only
trivial characters and hence cannot have proper semi-invariants. In particular, the
fundamental semi-invariant is an invariant. We also have tr:degS.q/q D indq. Set
r D indq and let x 2 V� be generic. If CŒq��Q is a polynomial ring, then there are
bi-homogenous generators H1; : : : ;Hr such that Hi with i > indgx freely generate
CŒV��G and the invariants Hi with i6indgx are mixed, they have positive degrees in
g and V .

Theorem 2 ([3, Theorem 5.7] and [10, Proposition 3.11]) Suppose that G
is semisimple and CŒq��q is a polynomial ring with homogeneous generators
H1; : : : ;Hr. Then

(i)
Pr

iD1 degHi D b.q/ C degpq;
(ii) for generic x 2 V�, the restriction map 'x W CŒq��Q ! CŒgCx�GxËV Š S.gx/

Gx

is surjective, S.gx/
Gx D S.gx/

gx , and S.gx/
Gx is a polynomial ring in indgx

variables.

It is worth mentioning that 'x is also surjective for stable actions. An action of
G on V is called stable if generic G-orbits in V are closed, for more details see [8,
Sections 2.4 and 7.5]. By [10, Theorem 2.8] 'x is surjective for generic x 2 V� if
the G-action on V� is stable.

3 Z=2Z-contractions

The initial motivation for studying symmetric invariants of semi-direct products was
related to a conjecture of D. Panyushev onZ2-contractions of reductive Lie algebras.
The results of [10], briefly outlined in Sect. 2, have settled the problem.

Let g D g0˚g1 be a symmetric decomposition, i.e., a Z=2Z-grading of g.
A semi-direct product, Qg D g0Ëg1, where g1 is an Abelian ideal, can be seen
as a contraction, in this case a Z2-contraction, of g. For example, starting with a
symmetric pair .sonC1; son/, one arrives at Qg D sonËCn. In [4], it was conjectured
that S.Qg/Qg is a polynomial ring (in rk g variables).

Theorem 3 ([4, 9, 10]) Let Qg be a Z2-contraction of a reductive Lie algebra g.
Then S.Qg/Qg is a polynomial ring (in rk g variables) if and only if the restriction
homomorphism CŒg�g ! CŒg1�

g0 is surjective.
If we are in one of the “surjective” cases, then one can describe the generators

of S.Qg/Qg. Let H1; : : : ;Hr be suitably chosen homogeneous generators of S.g/g

and let H�
i be the bi-homogeneous (w.r.t. g D g0˚g1) component of Hi of the

highest g1-degree. Then S.Qg/Qg is freely generated by the polynomials H�
i (of

course, providing the restriction homomorphism CŒg�g ! CŒg1�g0 is surjective)
[4, 9].

Unfortunately, this construction of generators cannot work if the restriction
homomorphism is not surjective, see [4, Remark 4.3]. As was found out by Helgason
[2], there are four “non-surjective” irreducible symmetric pairs, namely, .E6;F4/,
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.E7;E6˚C/, .E8;E7˚sl2/, and .E6; so10˚so2/. The approach to semi-direct
products developed in [10] showed that Panyushev’s conjecture does not hold
for them. Next we outline some ideas of the proof.

Let G0 � G be a connected subgroup with LieG0 D g0. Then G0 is reductive,
it acts on g1 Š g�

1 , and this action is stable. Let x 2 g1 be a generic element
and G0;x be its stabiliser in G0. The groups G0;x are reductive and they are known
for all symmetric pairs. In particular, S.g0;x/

G0;x is a polynomial ring. It is also
known that CŒg1�G0 is a polynomial ring. By [4] Qg has the “codim-2” property and
ind Qg D rk g.

Making use of the surjectivity of 'x one can show that if CŒQg��Qg is freely

generated by some H1; : : : ;Hr, then necessary
rP

iD1

degHi > b.Qg/ for Qg coming from

one of the “non-surjective” pairs [10]. In view of some results from [3] this leads to
a contradiction.

Note that in case of .g; g0/ D .E6;F4/, g0 D F4 is simple and Qg is a semi-direct
product of F4 and C26, which, of course, comes from one of the representations in
Schwarz’s list [7].

4 Examples Related to the Defining Representation of sln

Form now assume that g D sln and V D m.Cn/�˚kCn with n > 2, m > 1, m > k.
According to [7] CŒV�G is a polynomial ring if either k D 0 and m6n C 1 or m6n,
k6n�1. One finds also the description of the generators ofCŒV��G and their degrees
in [7]. In this section, we classify all cases, where CŒq��q is a polynomial ring and
for each of them give the fundamental semi-invariant.

Example 1 Suppose that either m > n or m D k D n � 1. Then gx D 0 for generic
x 2 V� and therefore CŒq��Q D CŒV��G, i.e., CŒq��Q is a polynomial ring if and
only if CŒV��G is. The latter takes place for .m; k/ D .n C 1; 0/, for m D n and any
k < n, as well as form D k D n�1. Non-scalar fundamental semi-invariants appear
here only for

• m D n, where p is given by det .v/n�1�k with v 2 nCn;
• m D k D n � 1, where p is the sum of the principal 2k�2k-minors of

 
0 v

w 0

!

with v 2 kCn;w 2 k.Cn/�:

In the rest of the section, we assume that gx ¤ 0 for generic x 2 V�.
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4.1 The Case k D 0

Here the ring of G-invariants on V� is generated by

f�I j I � f1; : : : ;mg; jIj D ng [8, Section 9];

where each �I.v/ is the determinant of the corresponding submatrix of v 2 V�. The
generators are algebraically independent if and only if m6n C 1, see also [7].

We are interested only in m that are smaller than n. Let n D qm C r, where
0 < r6m, and let I � f1; : : : ;mg be a subset of cardinality r. By choosing the
corresponding r columns of v we get a matrix w D vI . Set

FI.A; v/ WD det
�
vjAvj : : : jAq�1vjAqw

�
; where A 2 g; v 2 V�: (3)

Clearly each FI is an SLn-invariant. Below we will see that they are also V-
invariants. If r D m, then there is just one invariant, F D Ff1;:::;mg. If r is either
1 or m � 1, we get m invariants.

Lemma 4 Each FI defined by Eq. (3) is a V-invariant.

Proof According to Lemma 1 we have to show that FI.� C ad�.V/�x; x/ D F.�; x/
for generic x 2 V� and any � 2 sln. Since m < n, there is an open SLn-orbit in
V� and we can take x as Em. Let p � gln be the standard parabolic subalgebra
corresponding to the composition .m; n � m/ and let n� be the nilpotent radical of
the opposite parabolic. Each element (matrix) � 2 gln is a sum � D �� C �p with
�� 2 n�, �p 2 p. In this notation FI.A;Em/ D det

�
A�j.A2/�j : : : j.Aq�1/�j.Aq/�;I

�
.

Let ˛ D ˛A and ˇ D ˇA be m�m and .n � m/�.n � m/-submatrices of A
standing in the upper left and lower right corner, respectively. Then .AsC1/� DPs

tD0 ˇtA�˛s�t. Each column of A�˛ is a linear combination of columns of A� and
each column of ˇtA�˛jC1 is a linear combination of columns of ˇtA�˛j. Therefore

FI.A;Em/ D det
�
A�j : : : j.Aq�1/�j.Aq/�;I

� D
D det

�
A�jˇA�j : : : jˇq�2A�jˇq�1A�;I

�
: (4)

Notice that gx � p and the nilpotent radical of p is contained in gx (with x D Em).
Since ad�.V/�x D Ann.gx/ D g?

x � g (after the identification g Š g�), A� D 0 for
any A 2 g?

x ; and we have ˇA D cEn�m with c 2 C for this A. An easy observation
is that

det
�
��j.ˇ� C cEn�m/��j : : : j.ˇ� C cEn�m/q�1��;I

� D
D det

�
��jˇ���j : : : jˇq�1

� ��;I

�
:

Hence FI.� C A;Em/ D FI.�;Em/ for all A 2 ad�.V/�Em and all � 2 sln. ut
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Theorem 4 Suppose that q D slnËm.Cn/�. Then CŒq��Q is a polynomial ring if
and only if m6nC1 and m divides either n�1, n or nC1. Under these assumptions
on m, pq D 1 exactly then, when m divides either n � 1 or n C 1.

Proof Note that the statement is true form > n by Example 1. Assume thatm6n�1.
Suppose that n D mq C r as above. A generic stabiliser in g is gx D sln�mËmCn�m.
On the group level it is connected. Notice that indgx D tr:degS.gx/

Gx , since Gx has
no non-trivial characters. Note also that CŒV��G D C, since m < n. If CŒq��Q is
a polynomial ring, then so is CŒg�

x �Gx by Theorem 2(ii) and either n � m D 1 or,
arguing by induction, n � m � t .mod m/ with t 2 f�1; 0; 1g.

Next we show that the ring of symmetric invariants is freely generated by the
polynomials FI for the indicated m. Each element � 2 g�

x can be presented as � D
ˇ0 C A�, where ˇ0 2 sln�m. Each restriction 'x.FI/ can be regarded as an element
of S.gx/. Equation (4) combined with Lemma 4 and the observation that g�

x Š
g=Ann.gx/ shows that 'x.FI/ is either �I of gx (in case q D 1, where FI.A;Em/ D
detA�;I) or FI of gx. Arguing by induction on n, we prove that the restrictions 'x.FI/

freely generate S.gx/
gx for x D Em (i.e., for a generic point in V�). Notice that

n � m D .q � 1/m C r.
The group SLn acts on V� with an open orbit SLn�Em. Therefore the restriction

map 'x is injective. By the inductive hypothesis it is also surjective and therefore is
an isomorphism. This proves that the polynomials FI freely generate CŒq��Q.

If m divides n, then CŒq��Q D CŒF� and the fundamental semi-invariant is a
power of F. As follows from the equality in Theorem 2(i), p D Fm�1.

Suppose that m divides either n� 1 or nC 1. Then we have m different invariants
FI . By induction on n, gx has the “codim-2” property, therefore the sum of deg'x.FI/

is equal to b.gx/ by Theorem 2(i). The sum of V-degrees ism�n D dimV and hence
by Lemma 3

P
degFI D b.q/. Thus, q has the “codim-2” property. ut

Remark 1 Using induction on n one can show that the restriction map 'x is an
isomorphism for all m < n. Therefore the polynomials FI generate CŒq��Q for all
m < n.

4.2 The Case m D k

HereCŒV��G is a polynomial ring if and only if k6n�1; a generic stabiliser is sln�k,
and the G-action on V Š V� is stable. We assume that gx ¤ 0 for generic x 2 V�
and therefore k6n � 2.

For an N�N-matrix C, let �i.C/ with 16i6N be coefficients of its characteristic
polynomial, each �i being a homogeneous polynomial of degree i. Let � D A C
v C w 2 q� with A 2 g, v 2 kCn, w 2 k.Cn/�. Having these objects we form an
.n C k/�.n C k/-matrix

Y� WD
 
A v

w 0

!
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and set Fi.�/ D �i.Y� / for each i 2 f2k C 1; 2kC 2; 2k C 3; : : : ; nC kg. Each Fi is
an SLn�GLk-invariant. Unfortunately, these polynomials are not V-invariants.

Remark 2 If we repeat the same construction for Qq D glnËV with k6n � 1, then
CŒQq��

QQ D CŒV��GLn ŒfFi j 2k C 16i6n C kg� and it is a polynomial ring in ind Qq D
n � k C k2 generators.

Theorem 5 Suppose that m D k6n � 1. Then CŒq��q is a polynomial ring if and
only if k 2 fn � 2; n � 1g. In case k D n � 2, q has the “codim-2” property.

Proof Suppose that k D n � 2. Then a generic stabiliser gx D sl2 is of index
1 and since the G-action on V is stable, CŒq��q has to be a polynomial ring by
[10, Example 3.6]. One can show that the unique mixed generator is of the form
F2kC2H2k �F2

2kC1, whereH2k is a certain SLn�GLk-invariant on V of degree 2k and
then see that the sum of degrees is b.q/.

More generally, q has the “codim-2” property for all k6n � 2. Here each G-
invariant divisor in V� contains a G-orbit of maximal dimension, say Gy. Set u D
n � k � 1. If Gy is not SLn�k, then gy D slu Ë .Cu˚.Cu/� ˚ C/ is a semi-direct
product with a Heisenberg Lie algebra. Following the proof of [4, Theorem 3.3],
one has to show that indgy D u in order to prove that q has the “codim-2” property.
This is indeed the case, indgy D 1 C indslu.

Suppose that 0 < k < n � 2 and assume that S.q/q is a polynomial ring. Then
there are bi-homogeneous generators h2; : : : ;hn�k of CŒq��Q over CŒV��G such that
their restrictions to g C x form a generating set of S.gx/

gx for a generic x (with
gx Š sln�k), see Theorem 2(ii). In particular, degght D t.

Take Qg D .sln˚glk/ Ë V , which is a Z2-contraction of slnCk. Then q is a Lie
subalgebra of Qg. Note that GLk acts on q via automorphisms and therefore we may
assume that the C-linear span of fhtg is GLk-stable. By degree considerations, each
ht is an SLk-invariant as well. The Weyl involution of SLn acts on V and has to
preserve each line Cht. Since this involution interchanges Cn and .Cn/�, each ht is
also a GLk-invariant. Thus,

S.q/q D S.q/Qg D S.q/ \ S.Qg/Qg:

Since Qg is a “surjective” Z2-contraction, its symmetric invariants are known [4,
Theorem 4.5]. The generators of S.Qg/Qg are ��

j with 26j6n C k. Here deg��
j D j

and the generators of (sln˚glk)-degrees 2; 3; : : : ; n�k are ��
2kC2; ��

2kC3; : : : ; ��
nCk.

As the restriction to sln˚glk C x shows, none of the generators ��
j with j > 2k C 2

lies in S.q/. This means that ht cannot be equal or even proportional over CŒV��G

to ��
2kCt and hence has a more complicated expression. More precisely, a product

��
2kC1�

�
2kCt�1 necessary appears in ht with a non-zero coefficient from CŒV��G

for t > 2. Since degV��
2kC1 D 2k, we have degVht > 4k for every t > 2.

The ring CŒV��G is freely generated by k2 polynomials of degree two. Therefore,
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the total sum of degrees over all generators of S.q/q is greater than or equal
to

b.sln�k/ C 4k.n � k � 1/ C 2k2 D b.q/ C 2k.n � k � 2/:

This contradicts Theorem 2(i) in view of the fact that pq D 1.
ut

4.3 The Case 0 < k < m

Here CŒV��G is a polynomial ring if and only if m6n, [7]. If n D m, then gx D 0 for
generic x 2 V�. For m < n, our construction of invariants is rather intricate.

Let �1; : : : ; �n�1 be the fundamental weights of sln. We use the standard

convention, �i D "1 C : : : C "i, "n D �
n�1P

iD1

"i. Recall that for any t, 16t < n,

	tCn is irreducible with the highest weight �t. Let fe1; : : : ; eng be a basis of Cn

such that each ei is a weight vector and `t WD e1 ^ : : : ^ et is a highest weight vector
of 	tCn. Clearly 	tCn � St.tCn/. Write n� k D d.m� k/ C r with 0 < r6.m� k/.
Let ' W mCn ! 	mCn be a non-zero m-linear G-equivariant map. Such a map is
unique up to a scalar and one can take ' with '.v1 C : : : C vm/ D v1 ^ : : : ^ vm.
In case r ¤ m � k, for any subset I � f1; : : : ;mg with jIj D k C r, let
'I W mCn ! .k C r/Cn ! 	kCrCn be the corresponding (almost) canonical map.
By the same principle we construct Q' W k.Cn/� ! 	k.Cn/�.

Let us consider the tensor product W WD .	mCn/˝d˝	kCrCn and its weight
subspace Wd�k . One can easily see that Wd�k contains a unique up to a scalar non-
zero highest weight vector, namely

wd�k D
X


2Sn�k

sgn.
/.`k ^ e
.kC1/ ^ : : : ^ e
.m// ˝ : : : ˝ .`k ^ e
.n�rC1/ : : : ^ e
.n//:

This means thatW contains a unique copy of Vd�k , where Vd�k is an irreducible sln-
module with the highest weight d�k. We let � denote the representation of gln on
	mCn and �r the representation of gln on 	kCrCn. Let � D A C v C w be a point in
q�. (It is assumed thatA 2 sln.) Finally let . ; / denote a non-zero sln-invariant scalar
product between W and Sd.	k.Cn/�/ that is zero on the sln-invariant complement
of Vd�k in W. Depending on r, set

F.�/ WD .'.v/˝�.A/m�k'.v/˝�.A2/m�k'.v/˝ : : : ˝�.Ad/m�k'.v/; Q'.w/d/

for r D m � kI
FI.�/ WD .'.v/˝�.A/m�k'.v/˝ : : : ˝�.Ad�1/m�k'.v/˝�r.A

d/r'I.v/; Q'.w/d/
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for each I as above in case r < m � k. By the constructions the polynomials F and
FI are SLn-invariants.

Lemma 5 The polynomials F and FI are V-invariants.

Proof We restrict F and FI to g� C x with x 2 V� generic. Changing a basis in V if
necessary, we may assume that x D Em C Ek. If r < m � k, some of the invariants
FI may become linear combinations of such polynomials under the change of basis,
but this does not interfere with V-invariance. Now '.v/ is a vector of weight �m

and Q'.w/d of weight �d�k. Notice that dm C .k C r/ D n C kd. If
nCkdP

iD1

�i D

d
kP

iD1

"i and each �i is one of the "j, 16j6n, then in the sequence .�1; : : : ; �nCkd/

we must have exactly one "j for each k < j6n and d C 1 copies of each "i with
16i6k. Hence the only summand of �.As/m�k'.Em/ that plays any rôle in F or FI

is `k^AsekC1^ : : : ^Asem. Moreover, in AsekC1^ : : : ^Asem we are interested only in
vectors lying in 	m�kspan.ekC1; : : : ; en/.

Let us choose blocks ˛;U; ˇ of A as shown in Fig. 1. Then up to a non-zero scalar
F.A;Em C Ek/ is the determinant of

.UjˇU C U˛jP2.˛;U; ˇ/j : : : jPd�1.˛;U; ˇ// ;

where Ps.˛;U; ˇ/ D
sX

tD0

ˇtU˛s�t:

Each column of U˛ is a linear combination of the columns of U, a similar relation
exists between ˇtU˛sC1 and ˇtU˛s. Therefore

F.A;Em C Ek/ D det
�
UjˇUjˇ2Uj : : : jˇd�1U

�
: (5)

We have to check that F.� C A; x/ D F.�; x/ for any A 2 ad�.V/�x and any � 2 g,
see Lemma 1. Recall that ad�.V/�x D Ann.gx/ D g?

x � g. In case x D Em C Ek, U
is zero in each A 2 g?

x and ˇ corresponding to such A is a scalar matrix. Therefore
F.� C ad�.V/�x; x/ D F.�; x/.

The case r < m�k is more complicated. If f1; : : : ; kg � I, then I D QItf1; : : : ; kg.
Let UQI be the corresponding submatrix of U and ˛QI�QI of ˛. One just has to replace

Fig. 1 Submatrices of
A 2 sln
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U by UQI and ˛ by ˛QI�QI in the last polynomial Pd�1.˛;U; ˇ/ obtaining

FI.A; x/ D det
�
UjˇUjˇ2Uj : : : jˇd�2Ujˇd�1UQI

�
:

These are
�m�k

r

�
linearly independent invariants in S.gx/.

Suppose that f1; : : : ; kg 6� I. Then �I.Ad/r has to move more than r vectors ei
with k C 16i6m, which is impossible. Thus, FI.A; x/ D 0 for such I. ut
Theorem 6 Suppose that 0 < k < m < n and m � k divides n � m, then indgx D 1

for generic x 2 V� and CŒq��Q D CŒV��GŒF� is a polynomial ring, the fundamental
semi-invariant is equal to Fm�k�1.

Proof A generic stabiliser gx is sln�mË.m�k/Cn�m. Its ring of symmetric invariants
is generated by F D 'x.F/, see Theorem 4 and Eq. (5). We also have indgx D 1. It
remains to see that F is not divisible by a non-constant G-invariant polynomial on
V�. By the construction, F is also invariant with respect to the action of SLm�SLk.
The group L D SLn�SLm�SLk act on V� with an open orbit. As long as rkw D k,
rk v D m, the L-orbit of y D v C w contains a point v0 C Ek, where also rk v0 D m.
If in addition the upper k�m-part of v has rank k, then L�y contains x D Em C Ek.
Here F is non-zero on g C y. Since the group L is semisimple, the complement
of L�.Em C Ek/ contains no divisors and F is not divisible by any non-constant
G-invariant in CŒV��. This is enough to conclude that CŒq��Q D CŒV��GŒF�, see
Theorem 2.

The singular set q�
sing is L-stable. And therefore pq is also an SLm�SLk-invariant.

Hence p is a power of F. In view of Theorem 2(i), p D Fm�k�1. ut
Theorem 7 Suppose that 0 < k < m < n and m � k does not divide n � m, then
CŒq��Q is not a polynomial ring.

Proof The reason for this misfortune is that
� m
kCr

�
>
�m�k

r

�
for r < m� k. One could

prove that each FI must be in the set of generators and thereby show that CŒq��Q is
not a polynomial ring. But we present a different argument.

Assume that the ring of symmetric invariants is polynomial. It is bi-graded and
SLm acts on it preserving the bi-grading. Since SLm is reductive, we can assume that
there is a set fH1; : : : ;Hsg of bi-homogeneous mixed generators such that S.q/q D
CŒV��GŒH1; : : : ;Hs� and the C-linear span H WD span.H1; : : : ;Hs/ is SLm-stable.
The polynomiality implies that a generic stabiliser gx D sln�mË.m � k/Cn�m has a
free algebra of symmetric invariants, see Theorem 2(ii), and by the same statement
'x is surjective. This means that r is either 1 orm�k�1, see Theorem 4, s D m�k,
and 'x is injective on H . Taking our favourite (generic) x D Em C Ek, we see
that there is SLm�k embedded diagonally into G�SLm, which acts on 'x.H/ as on
	rCm�k. The group SLm�k acts onH in the same way. Since m � k does not divide
n � m, we have m � k > 2. The group SLm cannot act on an irreducible module
	rCm�k of its non-trivial subgroup SLm�k, this is especially obvious in our two
cases of interest, r D 1 and r D m � k � 1. A contradiction. ut
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Conjecture 1 It is very probable that CŒq��q D CŒV��GŒfFIg� for all n > m >

k > 1.

Acknowledgements I would like to thank the organisers of the intensive period on “Perspectives
in Lie theory”, especially Giovanna Carnovale and Martina Lanini, for the invitation to Pisa and a
very warm welcome.

This work is partially supported by the DFG priority programme SPP 1388 “Darstellungstheo-
rie” and by the Graduiertenkolleg GRK 1523 “Quanten- und Gravitationsfelder”.

References

1. O.M. Adamovich, E.O. Golovina, Simple linear Lie groups having a free algebra of invariants.
Sel. Math. Sov. 3, 183–220 (1984); originally published in Voprosy teorii grupp i gomologich-
eskoi algebry, Yaroslavl, 1979, 3–41 (in Russian)

2. S.Helgason, Some results on invariant differential operators on symmetric spaces. Amer. J.
Math. 114(4), 789–811 (1992)

3. A. Joseph, D. Shafrir, Polynomiality of invariants, unimodularity and adapted pairs. Transfor-
mation Groups 15(4), 851–882 (2010)

4. D. Panyushev, On the coadjoint representation of Z2-contractions of reductive Lie algebras.
Adv. Math. 213(1), 380–404 (2007)

5. D. Panyushev, A. Premet, O. Yakimova, On symmetric invariants of centralisers in reductive
Lie algebras. J. Algebra 313, 343–391 (2007)

6. M. Raïs, L’indice des produits semi-directs E�� g, C. R. Acad. Sci. Paris Ser. A, 287, 195–197
(1978)

7. G.W. Schwarz, Representations of simple Lie groups with regular rings of invariants. Invent.
Math. 49, 167–191 (1978)

8. E.B. Vinberg, V.L. Popov, Invariant theory, in Algebraic Geometry IV, (Itogi Nauki i Tekhniki,
Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1989), pp. 137–314;
English translation: Encyclopaedia Math. Sci., vol. 55, Springer, Berlin, 1994

9. O. Yakimova, One-parameter contractions of Lie-Poisson brackets. J. Eur. Math. Soc. 16, 387–
407 (2014)

10. O. Yakimova, Symmetric invariants of Z2-contractions and other semi-direct products. Int.
Math. Res. Not. 2017(6), 1674–1716 (2017).


	Some Semi-Direct Products with Free Algebras of SymmetricInvariants
	1 Introduction
	2 Symmetric Invariants and Generic Stabilisers
	3 Z/2Z-contractions
	4 Examples Related to the Defining Representation of sln
	4.1 The Case k=0
	4.2 The Case m=k
	4.3 The Case 0<k<m

	References


