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Abstract Abstract In these notes we give an introduction to representation theory
of simple finite-dimensional Lie superalgebras. We concentrate on so called basic
superalgebras. Those are superalgebras which have even reductive part and admit an
invariant form. We start with structure theory of basic superalgebras emphasizing
abstract properties of roots and then proceed to representations, trying to demon-
strate the variety of methods: Harish-Chandra homomorphism, support variety,
translation functors, Borel-Weil-Bott theory and localization.
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1 Introduction

In these notes we give an introduction to representation theory of simple finite-
dimensional Lie superalgebras. We concentrate on so called basic superalgebras.
Those are superalgebras which have even reductive part and admit an invariant
form. Representation theory of these superalgebras was initiated in 1978 by V. Kac,
see [23]. It turned out that finite-dimensional representations of basic superalgebras
are not easy to describe completely and questions which arise in this theory are
analogous to similar questions in positive characteristic.

We start with structure theory of basic superalgebras emphasizing abstract
properties of roots and then proceed to representations, trying to demonstrate the
variety of methods: Harish-Chandra homomorphism, support variety, translation
functors, Borel-Weil-Bott theory and localization.

We assume from the reader the thorough knowledge of representation theory
of reductive Lie algebras (in characteristic zero) and rudimentary knowledge of
algebraic geometry.
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Let me mention several monographs related to the topic of these lectures: [32]
and [4] on Lie superalgebras and [3] on supermanifolds. The reader can find some
details in these books.

2 Preliminaries

2.1 Superalgebras in General

In supermathematics we study Z2-graded objects. The word super means simply
“Z2-graded”, whenever it is used (superalgebra, superspace etc.).

We denote by k the ground field and assume that char.k/ ¤ 2.

Definition 1 An associative superalgebra is a Z2 graded algebra A D A0 ˚ A1. If
a 2 Ai is a homogeneous element, then Na will denote the parity of a, that is Na D 0 if
a 2 A0 or Na D 1 if a 2 A1.

All modules over an associative superalgebra A are also supposed to be Z2-
graded. Thus, an A-moduleM has a gradingM D M0 ˚ M1 such that AiMj � MiCj.

In particular, a vector superspace is a Z2-graded vector space. The associative
algebra Endk.V/ of all k-linear transformation of a vector superspace V has a natural
structure of a superalgebra with the Z2-grading given by:

Endk.V/0 D f� j�.Vi/ � Vig; Endk.V/1 D f� j�.Vi/ � ViC1g;

If e1; : : : ; em is a basis of V0 and emC1; : : : ; emCn is a basis of V1, then we can identify

Endk.V/ with block matrices

�
A B
C D

�
and

Endk.V/0 D
��

A 0

0 D

��
; Endk.V/1 D

��
0 B
C 0

��
:

All formulas are written for homogeneous elements only and then extended to
all objects by linearity. Every term has a sign coefficient, which is determined by
following the sign rule:

If one term is obtained from another by swapping adjacent symbols x and y we
put the coefficient .�1/NxNy.

Example 1 Consider the commutator Œx; y�. In the classical world it is defined by
Œx; y� D xy � yx. In superworld we write instead:

Œx; y� D xy � .�1/NxNyyx:
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The sign rule has its roots in the tensor category theory. More precisely, the
category SVect of supervector spaces is an abelian rigid symmetric tensor category
with brading s W V ˝ W ! W ˝ V given by the sign rule

s.v ˝ w/ D .�1/ Nv Nww ˝ v:

All objects, which can be defined in context of tensor category: affine schemes,
algebraic groups etc. can be generalized to superschemes, supergroups etc. if we
work in the category SVect instead of the category Vect of vector spaces. We refer
the reader to [9] for details in this approach. We will follow the sign rule naively
and see that it always gives the correct answer.

Definition 2 We say that a superalgebra A is supercommutative if

xy D .�1/NxNyyx

for all homogeneous x; y 2 A.

Exercise Show that a free supercommutative algebra with odd generators �1; : : : ; �n
is the exterior (Grassmann) algebra �.�1; : : : �n/.

All the morphisms between superalgebras, modules etc. have to preserve parity.
In this way if A is a superalgebra then the category of A-modules is an abelian
category. This category is equipped with the parity change functor˘ . IfM D M0˚
M1 is an A-module we set ˘M WD M with new grading .˘M/0 D M1; .˘M/1 D
M0 and the obviuos A-action. It is clear that ˘ is an autoequivalence of the abelian
category of A-modules.

Exercise Let V be a finite dimensional vector superspace and V� be the dual vector
space with Z2-grading defined in the obvious way. Consider a linear operator X W
V �! V . We would like to define the adjoint operator X� W V� �! V� following
the sign rule. For � 2 V� and v 2 V we set

< X��; v >D< �; .�1/ NX N�Xv >;

where < �; � >W V� ˝ V ! k is the natural pairing. Let feig, i D 1; : : : ;m C n be a
homogeneous basis of V as above and f fig be the dual basis of V� in the sense that

< fj; ei >D ıi;j. Show that if the matrix of X in the basis feig is

�
A B
C D

�
, then the

matrix of X� in the basis f fig equals Xst D
�
At �Ct

Bt Dt

�
. The operation X 7! Xst is

called the supertransposition and it satisfies the identity

.XY/st D .�1/ NX NYYstXst:
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Our next example is the supertrace. To define it we use the canonical identifica-
tion V ˝ V� Š Endk.V/ given by

v ˝ �.w/ D< �;w > v for all v;w 2 V; � 2 V�:

The supertrace str W Endk.V/ ! k is the composition

str W V ˝ V� s�! V� ˝ V
<�;�>���! k:

Exercise Prove that if X D
�
A B
C D

�
then

(a) str.X/ D tr .A/� trD,
(b) str.ŒX;Y�/ D 0.

The superdimension sdimV of a superspace V is by definition the supertrace
of the identity operator in V . It follows from the above exercise that sdimV D
dimV0�dimV1. It is important sometimes to remember both even and odd dimension
of V . So we set dimV D .dimV0jdimV1/ D .mjn/ be an element m C n" in the ring
Z."/=."2 � 1/.

Exercise Show that

(a) sdim.V ˚ W/ D sdimV C sdimW and dim.V ˚ W/ D dimV C dimW,
(b) sdim.V ˝ W/ D sdimV sdimW and dim.V ˝ W/ D dimVdimW,
(c) sdim.˘V/ D � sdimV and dim.˘V/ D "dimV .

2.2 Lie Superalgebras

Definition 3 A Lie superalgebra g is a vector superspace with a bilinear even map
Œ�; �� W g � g �! g such that:

1. Œx; y� D �.�1/NxNyŒy; x�,
2. Œx; Œy; z�� D ŒŒx; y�; z� C .�1/NxNyŒy; Œx; z��.

Example 2 If A is an associative superalgebra, one can make it into a Lie superal-
gebra Lie.A/ by defining the bracket:

Œa; b� D ab � .�1/NaNbba:

For example if A D End.V/, dim.V/ D .mjn/, then Lie.A/ is the Lie superalgebra
which we denote by gl.mjn/.
Definition 4 If A is an associative superalgebra, d W A �! A is a derivation of A if:

d.ab/ D d.a/b C .�1/NdNaad.b/:
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Exercise

(a) Check that the space Der.A/ of all derivations of A with bracket given by the
supercommutator is a Lie superalgebra.

(b) Consider A D �.�1; : : : �n/. Then Der.A/ is a finite-dimensional superalgebra
denoted byW.0jn/. Show that its dimension is .2n�1nj2n�1n/.

Exercise Show that g D g0 ˚ g1 with bracket Œ�; �� is a Lie superalgebra if and only
if

1. g0 is a Lie algebra;
2. Œ�; �� W g0 ˝ g1 ! g1 equips g1 with the structure of a g0-module;
3. Œ; � W S2g1 �! g0 is a homomorphism of g0-modules;
4. for all x 2 g1, Œx; Œx; x�� D 0.

Example 3 Let us introduce the “smallest” simple Lie superalgebra g D osp.1j2/
of dimension .3j2/. Take g0 D sl.2/ and g1 D V , where V is the two dimensional
irreducible representation of sl.2/. The isomorphims S2V ' sl.2/ of sl.2/-modules
defines the bracket S2g1 �! g0. One can easily check that Œx; Œx; x�� D 0 for all
x 2 g1 and hence by the previous exercise these data define a Lie superalgebra
structure.

Example 4 (Bernstein) Consider a symplectic manifold M, with symplectic form
! 2 ˝2M. Consider the following operators acting on the de Rham complex
˝.M/:

• ! W ˝ i.M/ �! ˝ iC2.M/, given by ^!,
• i! W ˝ i.M/ �! ˝ i�2.M/, given by contraction with bivector !�,
• grading operator h W ˝ i.M/ �! ˝ i.M/.

It is a well known fact that !; h; i! form an sl.2/-triple.
Assume now that L is a line bundle on M with a connection r. Assume

further that the curvature of r equals t! for some non-zero t. Recall that r is an
operator of degree 1 on the sheaf L ˝˝.M/ of differential forms with coefficients
in L

r W L ˝˝ i �! L ˝˝ iC1:

On the other hand, !; h; i! act on L ˝ ˝ in the same manner as before. Set
r� WD Œr; i!�. One can check that r, r�, together with !; h; i! span the
superalgebra isomorphic to osp.1j2/.

The universal enveloping algebra U.g/ is the associative superalgebra
which satisfies the natural universality property in the category of superal-
gebras. It can be defined as the quotient of the tensor superalgebra T.g/
by the ideal generated by XY � .�1/ NX NYYX � ŒX;Y� for all homogeneous
X;Y 2 g. The PBW theorem holds in the supercase, i.e. GrU.g/ D S.g/.
However, S.g/ is a free commutative superalgebra. From the point of view
of the usual tensor algebra we have an isomorphism S.g/ ' S.g0/ ˝
�.g1/.
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3 Basic Lie Superalgebras

3.1 Simple Lie Superalgebras

A Lie superalgebra is simple if it does not have proper non-trivial ideals (ideals are
of course Z2-graded).

Exercise Prove that if a Lie superalgebra g is simple, then Œg0; g1� D g1 and
Œg1; g1� D g0.

In 1977 Kac classified simple Lie superalgebras over an algebraically closed
field k of characteristic zero, [22]. He divided simple Lie superalgebras into three
groups:

• basic: classical and exceptional,
• strange: P.n/, Q.n/,
• Cartan type: W.0jn/ D Der�.�1; : : : �n/ and some subalgebras of it.

Basic and strange Lie superalgebras have a reductive even part. Cartan type
superalgebras have a non-reductive g0.

Definition 5 A simple Lie superalgebra g is basic if g0 is reductive and if g admits a
non-zero invariant even symmetric form .�; �/, i. e. the form satisfying the condition

.Œx; y�; z/C .�1/NxNy.y; Œx; z�/ D 0; for all x; y; z 2 g;

or, equivalently,

.Œx; y�; z/ D .x; Œy; z�/:

and .x; y/ ¤ 0 implies Nx D Ny.
Exercise 1 Let V be a finite-dimensional g-module. Then the form

.x; y/ WD strV.yx/

is an invariant even symmetric form.
In this section we describe the basic Lie superalgebras. We start with classical Lie
superalgebras. The invariant symmetric form is given by the supertrace in the natural
module V .

Special linear Lie Superalgebra sl.mjn/ is the subalgebra of gl.mjn/ of matrices
with supertrace zero. It is not hard to verify that sl.mjn/ is simple if m ¤ n and
m C n>2. What happens when m D n? In this case the supertrace of the identity
matrix is zero and therefore sl.njn/ has a one-dimensional center z consisting of all
scalar matrices. We define psl.njn/ WD sl.njn/=z.
Exercise Check that psl.njn/ is simple if n>2.
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Look at the case n D 1. Then sl.1j1/ D< x; y; z >, where

x D
�
0 1

0 0

�
; y D

�
0 0

1 0

�
; z D

�
1 0

0 1

�
:

Then the commutators are:

Œx; z� D Œy; z� D 0; Œx; y� D z;

and we see that sl.1j1/ is a nilpotent .1j2/-dimensional Lie superalgebra, which is
the superanalogue of the Heisenberg algebra. Furthermore, psl.1j1/ is an abelian
.0j2/-dimensional superalgebra.

We have sl.mjn/0 D
��

A 0

0 D

�
j tr .A/ D tr .D/

�
. Hence

sl.mjn/0 Š sl.m/˚ sl.n/˚ k:

Note also that g D sl.mjn/ has a compatible Z-grading1:

g D g.�1/˚ g.0/˚ g.1/

with g0 D g.0/ and

g.1/ D V0 ˝ V�
1 ; g.�1/ D V�

0 ˝ V1:

The Orthosymplectic Lie Superalgebra osp.mjn/ is also a subalgebra of gl.mjn/.
Let V be a vector superspace of dimension .mjn/ equipped with an even non-
degenerate bilinear symmetric form .�; �/, i.e. for all homogeneous v;w 2 V we
have

.v;w/ D .�1/ Nv Nw.w; v/; .v;w/ ¤ 0 H) Nv D Nw:

Note that .�; �/ is symmetric on V0 and symplectic on V1. Hence the dimension of V1
must be even, n D 2l. We define:

osp.mjn/ WD fX 2 gl.mjn/ j .Xv;w/C .�1/ NX Nv.v;Xw/ D 0g:

It is easy to see that g0 D so.m/˚ sp.2l/. So the two classical series, orthogonal
and symplectic, come together in the superalgebra theory. One can see also that g1 is
isomorphic to V0˝V1 as a g0-module. Furthermore it is easy to check that osp.mj2l/
is simple for all m; l > 0.

1A grading g D ˚i2Zg.i/ is compatible if g.2j/ � g0 and g.2j C 1/ � g1.
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Lemma 1 Let g be a simple finite-dimensional Lie superalgebra over an alge-
braically closed field k. Then the center of g0 is at most one dimensional.

Proof Assume the opposite. Let z1; z2 be two linearly independent elements in the
center of g0. For all a; b 2 k set

g.a; b/ D fx 2 g1 j .ad z1 � a/dim g1x D 0; .ad z2 � b/dim g1x D 0g:

Then we have

1. g1 D L
g.a; b/;

2. Œg0; g.a; b/� � g.a; b/;
3. Œg.a; b/; g.c; d/� ¤ 0 implies a D �c; b D �d.

These conditions imply that Œg.a; b/; g.�a;�b/� C g.a; b/ C g.�a;�b/ is an ideal
in g. Therefore by simplicity of g we obtain that for some a; b 2 k, g D
Œg.a; b/; g.�a;�b/�C g.a; b/C g.�a;�b/. Set z D bz1 � az2 if a ¤ 0 and z D z1 if
a D 0. Then ad z acts nilpotently on g1. But g0 ˚ Œz; g1� is an ideal in g. Hence z D 0

and we obtain a contradiction.

Lemma 2 Let g be a basic Lie superalgebra and g1 ¤ 0. Then one of the following
holds.

1. There is a Z-grading g D g.�1/˚ g.0/˚ g.1/, such that g.0/ D g0 and g.˙1/
are irreducible g0-modules.

2. The even part g0 is semisimple and g1 is an irreducible g0-module.

Proof Consider the restriction of the invariant form .�; �/ on g1. Let M;N � g1 be
two g0 submodules such that .M;N/ D 0. Then by invariance of the form we have
.ŒM;N�; g0/ D .M; Œg0;N�/ D 0. Hence ŒM;N� D 0. In particular, let M � g1 be an
irreducible g0 submodule. Then the restriction of .�; �/ onM is either non-degenerate
or zero.

In the first case, letN D M? and I D M˚ŒM;M�. Then ŒN; I� D 0 and Œg0; I� � I.
Hence I is an ideal of g, which implies N D 0, M D g1 and g satisfies 2. It follows
from the proof of Lemma 1 that g0 has trivial center.

In the second case there exists an irreducible isotropic submoduleM0 � g1 such
that .�; �/ defines a g0-invariant non-degenerate pairing M � M0 ! k. By the same
argument as in the previous case we have g1 D M ˚ M0, ŒM;M� D ŒM0;M0� D 0.
Thus, we can set

g.1/ D M; g.�1/ D M0; g.0/ D g0:

Hence g satisfies 1.
We say that a basic g is of type 1 (resp. of type 2) if it satisfies 1 (resp. 2). Note

that if g is of type 1, then g.1/ and g.�1/ are dual g0-modules.

Exercise Check that sl.mjn/, psl.mjm/ and osp.2j2n/ are of type 1, and osp.mj2n/
is of type 2 if m ¤ 2.
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In contrast with simple Lie algebras, simple Lie superalgebras can have non-
trivial central extensions, derivations and deformations. Besides, finite-dimensional
representations of simple Lie superalgebras are not completely reducible.

Example 5 Consider the short exact sequence of Lie superalgebras:

0 �! k �! sl.2j2/ �! psl.2j2/ �! 0:

One can see that this sequence does not split. In other words, a simple Lie
superalgebra psl.2j2/ has a non-trivial central extension. The dual of this example
implies that a finite-dimensional representation of a simple Lie algebra may be not
completely reducible, just look at the representation of psl.2j2/ in pgl.2j2/ and the
exact sequence

0 �! psl.2j2/ �! pgl.2j2/ �! k �! 0:

The next example will show that sometimes simple Lie superalgebras have non-
trivial deformations.

Example 6 Let g D osp.4j2/. We have

g0 D so.4/˚ sl.2/ D sl.2/˚ sl.2/˚ sl.2/:

In fact, this is the only example of a classical Lie superalgebra whose even
part has more then two simple ideals. If V denotes the irreducible 2-dimensional
representation of sl.2/, then g1 is isomorphic to V � V � V as a g0-module.

We will construct a one parameter deformation of this superalgebra by deforming
the bracket S2g1 ! g0. Let  W S2V ! sl.2/ and ! W �2V ! sl.2/ be non-trivial
sl.2/-equivariantmaps. Define the bracket between two odd elements by the formula

Œv1 ˝ v2 ˝ v3;w1 ˝ w2 ˝ w3�

D .t1!.v2;w2/!.v3;w3/ .v1;w1/; t2!.v1;w1/!.v3;w3/ .v2;w2/;

t3!.v1;w1/!.v2;w2/ .v3;w3//

for some t1; t2; t3 2 k.

Exercise The Jacobi identity holds if and only if t1 C t2 C t3 D 0.
When t1Ct2Ct3 D 0we obtain a new Lie superalgebra structure on g: we denote

the corresponding Lie superalgebra by D.2; 1jt1; t2; t3/. We see immediately that

D.2; 1jt1; t2; t3/ Š D.2; 1jts.1/; ts.2/; ts.3// Š D.2; 1jct1; ct2; ct3/

for all c 2 k� and s 2 S3. One can check that D.2; 1j1; 1;�2/ Š osp.4j2/ and
that D.2; 1jt1; t2; t3/ is simple whenever t1t2t3 ¤ 0. By setting a D t2

t1
one obtains a
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one-parameter family D.2; 1; a/ of Lie superalgebras. One can consider a as a local
coordinate in P1 n f0;�1;1g.
Exercise Prove that, if a D 0, then D.2; 1; a/ has the ideal J isomorphic to
psl.2j2/ with the quotient D.2; 1; a/=J isomorphic to sl.2/. Use this to prove that
the superalgebra of derivations of psl.2j2/ is isomorphic to D.2; 1; 0/.

Consider now the following general construction of a basic Lie superalgebra of
type 2. Let

g0 D l1 ˚ l2; g1 D M ˝ N

where l1 and l2 are simple Lie algebras, M is a simple l1-module and N a simple
l2-module. Assume in addition that M has an l1-invariant skewsymmetric form
!, while N has an l2-invariant symmetric form � . Then we have isomorphisms
S2M ' sp.M/ and �2N ' so.N/. Hence l1 is a submodule in S2M and l2 is a
submodule in �2N. Let � W S2M �! l1,  W ^2N �! l2 denote the projections on
the corresponding submodules. For some t 2 k and all x; x0 2 M, y; y0 2 N we set

Œx ˝ y; x0 ˝ y0� WD !.x; x0/ .y ^ y0/C t�.y; y0/�.x � x0/

If for a suitable t 2 k we have ŒX; ŒX;X�� D 0 for all X 2 g1, then g is a
Lie superalgebra. For instance, this construction works for osp.mj2n/ with l1 D
sp.2n/; l2 D so.m/ andM;N being the standard modules.

This construction also works for exceptional Lie superalgebras: G3 and F4 (in
Kac’s notation). We prefer to use the notation AG2 and AB3 to avoid confusion with
Lie algebras.

• g D AG2 with l1 D sl.2/, l2 D G2, M is the 2-dimensional irreducible sl.2/-
module and N is the smallest irreducible G2-module of dimension 7. One can
easily see that dimAG2 D .17j14/.

• g D AB3 with l1 D sl.2/, l2 D so.7/, M is again the 2-dimensional irreducible
sl.2/-module, N is the spinor representation of so.7/. Clearly, dimAB3 D
.24j16/.

Theorem 1 (Kac, [22]) Let k be an algebraically closed field of characteristic zero
and g be a basic Lie superalgebra over k with nontrivial g1. Then g is isomorphic to
one of the following superalgebras:

• sl.mjn/, 1 6 m < n;
• psl.njn/, n>2;
• osp.mj2n/, m; n>1, .m; n/ ¤ .2; 1/; .4; 1/;
• D.2; 1; a/, a 2 .P1 n f0;�1;1g/=S3;
• AB3;
• AG2.

For the proof of Theorem 1 we refer the reader to the original paper of Kac. Some
hints can be also found in the next Section.
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Exercise Show that sl.1j2/ and osp.2j2/ are isomorphic Lie superalgebras. Check
that the list in Theorem 1 does not contain isomorphic superalgebras.

3.2 Roots Decompositions of Basic Lie Superalgebras

From now on we will always assume that k is algebraically closed of characteristic
zero.

Let g be a basic Lie superalgebra, h0 be a Cartan subalgebra of g0 and W denote
the Weyl group of g0. If g is of type 1 but g0 is semisimple it will be convenient
to consider a bigger superalgebra Qg by adding to g the grading element z (if g D
psl.njn/, then Qg D pgl.njn/). In this case we set Qh0 WD h0 C kz, otherwise Qh0 WD h0.
Let h be the centralizer of Qh0 in g.
Lemma 3 We have h D h0and Qh D Qh0.
Proof If g is of type 1, the statement is trivial. If g is of type 2, then g1 is
an irreducible g0-module which admits invariant symplectic form. Then such
representation does not have zero weight, see [34, Chap. 4.3, Exercise 13].

Lemma 3 implies that Qh acts semisimply on g. Hence we have a root decomposi-
tion

g D h ˚
X
˛2�

g˛; where g˛ D fx 2 g j Œh; x� D ˛.h/x; for all h 2 Qhg:

Here� is a finite subset of non-zero vectors in Qh�, whose elements are called roots.
The subalgebra h is called a Cartan subalgebra of g.

The following conditions are straightforward

• Œg˛; gˇ� � g˛Cˇ if ˛ C ˇ ¤ 0 and Œg˛; g�˛� � h.
• The invariant form .�; �/ defines a non-degenerate pairings g˛ � g�˛ ! k for all
˛ 2 � and h � h ! k.

• h˛ WD Œg˛; g�˛� is a one-dimensional subspace in h. That follows from the first
two properties and the identity .Œx; y�; h/ D ˛.h/.x; y/ for x 2 g˛; y 2 g�˛; h 2 h0.

We can define the non-degenerate symmetric form on .�j�/ on Qh� as the pull back

of .�; �/ with respect to Qh� p�! h� s�! h, where p is the canonical projection and
s W h� ! h is an isomorphism induced by .�; �/. For any two roots ˛; ˇ 2 �

ˇ.h˛/ D 0 if and only if .˛; ˇ/ D 0: (1)

Lemma 4 Let ˛ 2 � be a root.

1. dim.g˛/0 6 1;
2. If .g˛/0 ¤ 0, then .g˛/1 D 0.
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Proof Since g0 is reductive 1 is trivial. To prove 2 consider the root sl.2/-subalgebra
fx˛; h˛; y˛g � g0. Let x 2 .g˛/1 and x ¤ 0. Then from representation theory of sl.2/
we know that Œy˛; x� ¤ 0. But Œy˛; x� 2 h1 D 0. Contradiction.

We call ˛ 2 � even (resp. odd) if .g˛/1 D 0, (resp. .g˛/0 D 0). We denote by�0

(resp. �1) the set of even (resp. odd roots). The preceding lemma implies that � is
the disjoint union of �0 and �1.

Lemma 5

1. If ˛ 2 �0, then .˛j˛/ ¤ 0.
2. If ˛ 2 �1 and .˛j˛/ ¤ 0, then for any non-zero x 2 g˛, Œx; x� ¤ 0. Hence
2˛ 2 �0.

3. If ˛ 2 �1 and .˛j˛/ ¤ 0, then 2.˛jˇ/
.ˇjˇ/ 2 f�1; 0; 1g for any ˇ 2 �0.

4. If ˛ 2 �1 and .˛j˛/ D 0, then 2.˛jˇ/
.ˇjˇ/ 2 f�2;�1; 0; 1; 2g for any ˇ 2 �0.

Proof 1 is the property of root decomposition of reductive Lie algebras. To show 2
let y 2 g�˛ be such that .x; y/ ¤ 0. Then h D Œy; x� ¤ 0 and by (1) we obtain

Œy; Œx; x�� D 2Œh; x� D 2˛.h/x ¤ 0:

To prove the last two statements we consider the root sl.2/-triple fxˇ; hˇ; yˇg.
Then from the representation theory of sl.2/ we obtain that 2.˛jˇ/

.ˇjˇ/ D ˛.hˇ/ must be
an integer.

To show 3 we use the fact that 2˛ is an even root. We know from the structure
theory of reductive Lie algebras that

2.2˛jˇ/
.ˇ; ˇ/

2 f�3;�2� 1; 0; 1; 2; 3g:

Taking into account that 2.˛jˇ/
.ˇjˇ/ 2 Z, we obtain the assertion.

Finally, let us prove 4. Without loss of generality we may assume that k D
˛.hˇ/ > 1. Then we claim that yˇ.g˛/ ¤ 0, hence ˛ � ˇ is a root. Moreover

.˛ � ˇj˛ � ˇ/ D .ˇjˇ/.1 � k/ ¤ 0:

Therefore � WD 2.˛ � ˇ/ is an even root and we have

2.ˇj�/
.� j�/ D k=2 � 1

1 � k
2 Z;

which implies k D 2.

Exercise An odd root ˛ is called isotropic if .˛j˛/ D 0. Show that if g is of type 1,
then all odd roots are isotropic.

It is clear that W acts on � and preserves the parity and the scalar products
between roots.
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Lemma 6

(a) If g is of type 1 then W has two orbits in �1, the roots of g.1/ and the roots of
g.�1/.

(b) If g is of type 2, then W acts transitively on the set of isotropic and the set of
non-isotropic odd roots.

Proof If all roots of g are isotropic, then it follows from the proof of Lemma 5 (4)
that ˛.hˇ/ D ˙1 or 0 for any odd root ˛ and even root ˇ. In particular, if we fix
positive roots in�0 and consider a highest weight ˛ in g1 (or g.˙1/ in type 1 case),
the above condition implies that g1 (resp. g.˙1/) is a minuscule representation of g0.

If g is of type 2 and the highest weight ˛ is isotropic, then we have ˛.hˇ/ D
˙1;˙2 or 0 for any positive ˇ. That implies the existence of two orbits. Finally
if ˛ is not isotropic, then g1 is minuscule, hence there is one W-orbit consisting of
non-isotropic roots.

Corollary 1 For any root ˛ 2 � the root space g˛ has dimension .1j0/ or .0j1/.
Proof We need to prove the statement only for odd ˛. If g is of type 1 or of type
2 with only isotropic or only non-isotropic odd roots, then the statement follows
from Lemma 6 since the multiplicity of the highest weight is 1. If g contains both
isotropic and non-isotropic roots, we have to show only that dimg˛ D .0j1/ for a
non-isotropic odd root ˛, which easily follows from Lemma 5 (2).

Remark 1 Note that if we do not extend psl.2j2/ to pgl.2j2/, then Corollary 1 does
not hold since the dimension of g˛ equals .0j2/ for any odd ˛.
Example 7 Let g D sl.mjn/. We take as our Cartan subalgebra h the subalge-
bra of diagonal matrices. Let us denote by �1; : : : �m; ı1; : : : ın the roots in h�
(�i.diag.a1; : : : am// D ai and similarly for ıj). We have:

�0 D f�i � �j; 1 6 i ¤ j 6 mg [ fıi � ıj; 16i ¤ j 6 ng; �1 D f˙.�i � ıj/g:

The invariant form is:

.�i; �j/ D ıij; .�i; ıj/ D 0; .ıi; ıj/ D �ıij;

All odd roots are isotropic.

Example 8 Let g D osp.1j2n/. g0 D sp.2n/.

�0 D f˙.�i ˙ �j/; ˙2�i j i; j D 1 : : : n; i ¤ jg; �1 D f˙�i j i D 1 : : : ng:

This is the only example of a basic superalgebra such that all odd roots are non-
isotropic.

The above implies that we have in general three types of roots:

1. ˛ 2 �0. In this case the root spaces g˙˛ generate a sl.2/ subalgebra (white node
in a Dynkin diagram).
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2. ˛ 2 �1, .˛; ˛/ ¤ 0. Then the root spaces g˙˛ generate a subalgebra isomorphic
to osp.1j2/ (black node in a Dynkin diagram).

3. ˛ 2 �1, .˛; ˛/ D 0. The roots spaces g˙˛ generate a subalgebra isomorphic to
sl.1j1/ (grey node in a Dynkin diagram).

Definition 6 Let E be a vector space (over k) equipped with non-degenerate scalar
product .�j�/. A finite subset � � E n f0g is called a generalized root system if the
following conditions hold:

• if ˛ 2 �, then �˛ 2 �;
• if ˛; ˇ 2 � and .˛j˛/ ¤ 0, then k˛;ˇ D 2.˛jˇ/

.˛j˛/ is an integer and ˇ � k˛;ˇ˛ 2 �;
• if ˛ 2 � and .˛j˛/ D 0, then there exists an invertible map r˛ W � ! � such

that

r˛.ˇ/ D
(
ˇ if .˛jˇ/ D 0

ˇ ˙ ˛ if .˛jˇ/ ¤ 0
:

Exercise Check that if g is a basic Lie superalgebra, then the set of roots � is a
generalized root system.

Indecomposable generalized root systems are classified in [39]. In fact, they
coincide with root systems of basic Lie superalgebras. That gives an approach to
the proof of Theorem 1.

Exercise LetQ0 be the lattice generated by�0 and Q be the lattice generated by Q.
Check that

• If g is of type 1, then Q0 is a sublattice of corank 1 in Q.
• If g is of type 2, then Q0 is a finite index subgroup in Q.

3.3 Bases and Odd Reflections

As in the case of simple Lie algebras we can represent � as a disjoint union
�C Q �� of positive and negative roots (by dividing Qh� in two half-spaces).

We are going to use the triangular decomposition:

g D n� ˚ h ˚ nC; where n˙ D
M
˛2�˙

g˛;

The subalgebra b D h ˚ nC is called a Borel subalgebra of g.
We call ˛ 2 �C indecomposable if it is not a sum of two positive roots. We call

the set of indecomposable roots ˛1; : : : ˛n 2 �C simple roots or a base as in the Lie
algebra case. Clearly,W action on� permutes bases. However, not all bases can be
obtained from one by the action ofW.
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Example 9 The Weyl group of gl.2j2/ is isomorphic to S2 � S2. One can see that
the following two bases are not conjugate by the action of W: ˘ D f�1 � �2; �2 �
ı1; ı1 � ı2g,˘ 0 D f�1 � ı1; ı1 � �2, �2 � ı2g.

Since W does not act transitively on the set of bases, more than one Dynkin
diagram may be associated to the same Lie superalgebra. The existence of several
Dynkin diagrams implies existence of several non conjugate Borel subalgebras,
which in turn implies that there are several non isomorphic flag supervarieties.

To every base ˘ we associate the Cartan matrix in the following way. Take
Xi 2 g˛i , Yi 2 g�˛i , and set Hi WD ŒXi;Yi� and aij WD ˛j.Hi/. In the classical theory of
Kac-Moody algebras Cartan matrices are normalized so that the diagonal entries are
equal to 2. In the supercase we can do the same for non-isotropic simple roots. It is
not difficult to see that Hi;Xi;Yi for i D 1; : : : ; n generate g and satisfy the relations

ŒHi;Xj� D aijXj; ŒHi;Yj� D �aijYj; ŒXi;Yj� D ıijHi; ŒHi;Hj� D 0:

Let Ng be the free Lie superalgebra with above generators and relations. We define
the Kac-Moody superalgebra g.A/ as the quotient of Ng by the maximal ideal
which intersects trivially the Cartan subalgebra. In this way we recover basic finite
dimensional Lie superalgebras. In contrast with Lie algebra case we may get a
finite-dimensional Kac-Moody superalgebra even if det.A/ D 0, for example,
g.A/ D gl.njn/. Note that in this case g.A/ is not simple but a non-trivial central
extension of the corresponding simple superalgebra. In many applications, it is
better to consider g.A/ instead of the corresponding quotient, which essentially
means that in what follows we rather discuss representations and structure theory
of gl.njn/ instead of psl.njn/.

Definition 7 Let ˘ be a base (set of simple roots) and let ˛ 2 ˘ be an isotropic
odd root. We define an odd reflection r˛ W ˘ ! ˘ 0 by

r˛.ˇ/ D

8̂̂
<
ˆ̂:
ˇ C ˛ if .˛jˇ/ ¤ 0

ˇ if .˛jˇ/ D 0; ˇ ¤ ˛

�˛ ifˇ D ˛

Exercise Check that ˘ 0 D r˛.˘/ is a base.
Notice that if .˛j˛/ ¤ 0 we can define the usual reflection r˛.x/ WD x � 2.xj˛/

.˛j˛/ ˛,
which is an orthogonal linear transformation of h�. In fact, since r˛ D r2˛ , one
can see that these reflections generate W. Though the odd reflections are defined
on simple roots only, one can show that they may be extended (uniquely) to
permutations of all roots. However, in most cases such extension can not be further
extended to a linear map of the root lattice.
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Proposition 1 Let g be a basic Lie superalgebra.

1. If ˘ and ˘ 0 are two bases, then ˘ 0 can be obtained from ˘ by application of
odd and even reflections.

2. If˘ and˘ 0 are bases such that�C\�0 D .�0/C\�0, then˘ 0 can be obtained
from ˘ by application of odd reflections.

Go back to the example of gl.2j2/. The Cartan matrix associated with ˘ is

0
@ 2 �1 0

�1 0 1

0 �1 2

1
A :

The odd reflection r˛ associated with the root ˛ D �2 � ı1 2 ˘ maps ˘ to ˘ 0.
Indeed, we have:

r˛.�1 � �2/ D �1 � ı1 D .�1 � �2 C �2 � ı1/
r˛.�2 � �1/ D ı1 � �2
r˛.ı1 � ı2/ D �2 � ı2 D .�2 � ı1 C ı1 � ı2/:

The Cartan matrix associated with ˘ 0 is
0
@0 �1 0

1 0 �1
0 �1 0

1
A :

Exercise Use odd reflections to get all bases of AG2.

Remark 2 Let g be of type 1 and let us fix a Borel subalgebra b0 � g0. We have two
especially convenient Borel subalgebras:

bd D b0 ˚ g.1/; bad D b0 ˚ g.�1/:

We call them distinguished and antidistinguished, respectively.

4 Representations of Basic Superalgebras

4.1 Highest Weight Theory

We assume in this section that g is a basic superalgebra or its Kac Moody extension
(in the case of gl.njn/). Let us fix a triangular decomposition: g D nC ˚ h˚ n� and
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the Borel subalgebra b D h ˚ nC. Define the Verma module:

Mb.	/ WD U.g/˝U.b/ C	;

where C	 is the one-dimensional b-module with trivial action of nC and weight 	.
One can prove exactly as in the Lie algebra case that Mb.	/ has a unique simple
quotient which we denote by Lb.	/.

We say that 	 is integral dominant if Lb.	/ is finite dimensional.

Exercise Prove that if 	 is integral dominant, then Mb.	/ has the unique maximal
finite dimensional quotientKb.	/. If g is of type 1 and b is distinguished, then Kb.	/

is isomorphic to the induced module U.g/ ˝U.g0˚g.1// Lb0 .	/, where Lb0 .	/ is the
simple g0-module with trivial action of g.1/. In this case it is called a Kac module.

Proposition 2 Any finite-dimensional simple g-module is isomorphic to Lb.	/ for
some integral dominant 	.

Proof Any finite dimensional simple moduleM is semisimple over h and hence has
a finite number of weights. Let 	 be a weight such that 	C ˛ is not a weight for all
positive roots ˛. Then, by Frobenius reciprocity,M is a quotient ofMb.	/.

Remark 3 Let O be the category of finitely generated h-semisimple g-modules with
locally nilpotent action of nC. Note that this definition depends on the choice of
a Borel subalgebra b. In fact, it depends only on the choice of b0, since the local
nilpotency of nC

0 implies the local nilpotency of nC.
How do we check whether 	 is dominant integral with respect to a particular

Borel subalgebra b? If g is of type 1 and b is distinguished or antidistinguished, it is
sufficient to check that 	 is integral dominant with respect to b0, i.e. 	.h˛/ 2 N for
all simple even roots ˛. In general, the condition of dominance is more complicated.

Exercise

(a) If b and b0 are two Borel subalgebras of g with the same even part, then we must
have an isomorphism Lb.	/ ' Lb0.	0/ for some weights 	 and 	0. Let b0 be
obtained from b by an odd reflection r˛. Check that

	0 D
(
	 � ˛ if .	; ˛/ ¤ 0

	 if .	; ˛/ D 0:
(2)

(b) Fix a base˘ and the corresponding Borel subalgebra b. Let˘0 denote the base
of �C

0 . Prove that Lb.	/ is finite-dimensional if and only if for any ˇ 2 ˘0 and
a base ˘ 0 obtained from ˘ by odd reflections such that ˇ 2 ˘ 0 or ˇ

2
2 ˘ 0

we have 2.	jˇ/
.ˇjˇ/ 2 N. (Hint: you just have to check that yˇ 2 g�ˇ acts locally

nilpotently on Lb.	/.)
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4.2 Typicality

We define theWeyl vector 
b 2 h� by:


b WD 1

2

X
˛2�C

0

˛ � 1

2

X
˛2�C

1

˛:

If b is fixed and clear we simplify notation by setting 
 D 
b.

Exercise Let˘ be the base corresponding to b. Show that

.
j˛/ D
(
1
2
.˛j˛/ if ˛ 2 ˘ \�0

.˛j˛/ if ˛ 2 ˘ \�1

:

Definition 8 A weight 	 is called typical if .	 C 
; ˛/ ¤ 0 for all isotropic roots
˛ 2 �.
Exercise Check that the definition of typicality does not depend on the choice of
b. To show this assume that b0 is obtained from b by an odd reflection r˛ and 	 is
typical. Then 
0

b D 
b C ˛ and Lb.	/ D L0
b.	

0/, where 	C 
b D 	0 C 
b0 .

4.3 Characters of Simple Finite-Dimensional Modules

If M is in the category O, then, by definition, M is h-semisimple, and therefore has
weight decompositionM D

M
�2h�

M�. The character chM is the generating function

chM WD
X

sdim.M�/e
�:

Exercise Show, using Corollary 1, that if M is generated by one weight vector, in
particular, ifM is simple then every weight spaceM� is either purely even or purely
odd.

Theorem 2 ([23]) If 	 is a typical integral dominant weight then

ch Lb.	/ D D1
D0

X
w2W

sgn.w/ew.	C
b/; (3)

where W is the Weyl group of the even part g0 and

D1 D
Y
˛2�C

1

.e˛=2 � e�˛=2/; D0 D
Y
˛2�C

0

.e˛=2 � e�˛=2/:
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Exercise Using the isomorphism of h-modulesU.n�/ ' S.n�/ show that

chU.n�/ D
Y
˛2�1

.1 � e�˛/=
Y
˛2�0

.1 � e�˛/;

and

chMb.	// D e	C
D1
D0
:

Remark 4

• If g D g0 then we get the usual Weyl character formula.
• The formula (3) is invariant with respect to the change of Borel subalgebra.
• The formula (3) can be rewritten in the form

chLb.	/ D
X
w2W

sgn.w/ chMb.w � 	/;

where w � 	 WD w.	C 
/� 
 is the shifted action.

Proof of Theorem 2 We will give the proof for type 1 superalgebras, i.e. assuming a
compatible grading g D g.�1/C g.0/C g.1/. By Remark 4 it suffices to prove the
formula for the distinguished b D bd.

Note that the Kac module Kb.	/ is isomorphic to

U.g.�1//˝ Lb0 .	/ D �.g.�1//˝ Lb0 .	/

as a g0 C g.�1/-module. Therefore

chKb.	/ D ch�.g.�1// chLb0 .	/ D
Y
˛2�C

1

.1 � e�˛/ chLb0 .	/:

Furthermore, if 
i D 1
2

P
˛2�i

˛, for i D 0; 1, then

Y
˛2�C

1

.1 � e�˛/ D e
1D1; chLb0 .	/ D 1

D0

X
w2W

sgn.w/ew.	C
0/:

Note also that w.
1/ D 
1 for all w 2 W. Therefore chKb.	/ is given by (3). Thus,
it remains to show that Kb.	/ D Lb.	/.

One can see easily that any submodule of Kb.	/ contains a simple g0-submodule

�top.g.�1//˝ Lb0 .	/:

Hence Kb.	/ has a unique simple submodule isomorphic to Lb.�/ for some �.
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Next we observe that

	0 WD 	 �
X
˛2�C

1

˛

is the highest weight of Lb.�/ with respect to the anti-distinguished Borel bad, since
	0 is the b0-highest weight in �top.g.�1//˝ Lb0 .	/ and

g.�1/�top.g.�1// D 0:

Therefore we have

Lb.�/ D Lbad .	
0/:

Applying (2) several times to move from b to bad and using the typicality of 	 we
obtain 	 D �. Hence Kb.	/ D Lb.	/.

4.4 The Center ofU.g/

LetZ.g/ denote the center of the universal enveloping algebraU.g/. In the superset-
ting the Duflo theorem states that there exists an isomorphism of supercommutative
rings

S.g/g ' Z.g/:

For the proof in the supercase see [26].
Recall that if g is a reductive Lie algebra thenZ.g/ is a polynomial ring, see, for

example, [10]. This fact follows from so called Harish-Chandra homomorphism.
One can generalize the Harish-Chandra homomorphism for basic superalgebras,
however, as we will see,Z.g/ is not Noetherian.

Choose a triangular decomposition g D n� ˚ h ˚ nC, then by PBW theorem we
have the decomposition

U.g/ D U.n�/˝ U.h/˝ U.nC/:

The Harish-Chandra map

HC W U.g/ �! U.h/ D S.h/ D kŒh��

is the projection with kernel n�U.g/C U.g/nC. The restriction

HC W Z.g/ �! S.h/ D kŒh��

is a homomorphism of rings.
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For any w 2 W and 	 2 h� we set w � 	 WD w.	C 
/� 
.

Theorem 3 The homomorphism HC W Z.g/ �! S.h/ is injective and f 2 kŒh��
belongs to HC.Z.g// if and only if
• f .w � 	/ D f .	/, for any 	 2 h�;w 2 W;
• if .	C 
j˛/ D 0 for some isotropic root ˛ then f .	C t˛/ D f .	/ for all t 2 k.

The proof of this Theorem can be found in [24, 45] or [16]. One of the consequences
of the above theorem is that the supercommutative ringZ.g/ has trivial odd part and
hence is in fact a usual commutative ring.

The proof in [45] makes use of the superanalogue of the Chevalley restriction
theorem. Since g is basic, then the adjoint representation is self-dual. Thus, we can
identify the invariant polynomials on g and g�:

kŒg�g ' kŒg��g:

If F W kŒg�g ! kŒh� denotes the restrictionmap induced by the embedding h � g, then
the image of F consists of W-invariant polynomials on h satisfying the additional
condition:

if .	j˛/ D 0 for some isotropic root ˛ then f .	C t˛/ D f .	/ for all t 2 k.

Example 10 Let g D gl.mjn/. The ring S.g�/g is generated by str.Xs/ s D
1; 2; 3 : : : . After restriction to the diagonal subalgebra they become polynomials
in P1;P2; � � � 2 kŒx1; : : : ; xm; y1; : : : ; yn� given by the formula Set

Ps WD xs1 C : : : xsm � ys1 � � � � � ysn:

One can see that the subring in kŒx1; : : : ; xm; y1; : : : ; yn� generated by Ps is not a
Noetherian ring.

If Specm stands for the spectrum of maximal ideals, then HC induces the map
� W Specm.kŒh��/ D h� �! Specm.Z.g//. In other words we associate with every
weight 	 2 h� the central character 
	 W Z.g/ ! k by setting 
	.z/ WD HC.z/.	/.
We would like to describe the fibers of � . The following corollary implies that every
fiber is a union of finitely many affine subspaces of the same dimension.

Corollary 2 Let 	 2 h� and let f˛1; : : : ; ˛kg be a maximal set of mutually
orthogonal linearly independent isotropic roots such that .	C
j˛i/ D 0. If 
 D 
	,
then

��1.
/ D
[
w2W

w � .	C
kX

iD1
k˛i/:

Example 11 If g D sl.1j2/, then dimh D 2 and the image of the Harish Chandra
homomorphism in kŒx; y� consists of polynomials kŒx; y2� which are constant on the
cross y D ˙x.
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Corollary 3 If 	 is typical then .�/�1.
	/ D W � 	.
Corollary 4 If 	 is dominant integral and typical, then Ext1.Lb.	/;Lb.�// D 0

for any integral dominant � ¤ 	. Hence Lb.	/ is projective in the category F of
finite-dimensional g-modules semisimple over g0.

Proof If 	 is dominant integral and typical, then W � 	 does not contain any
other integral dominant weight. Therefore Lb.	/ and Lb.�/ admit different central
characters. Hence Ext1.Lb.	/;Lb.�// D 0. Semisimplicity over g0 ensures that
Ext1F .Lb.	/;Lb.	// D 0.

Remark 5 If g is of type 2, then any finite-dimensional g-module is semisimple over
g0. In type 1 case, Lb.	/ is not projective in the category of all finite-dimensional
g-modules since it has non-trivial self-extension.

Definition 9 (Kac–Wakimoto) The dimension of ��1.
/ is called the atypicality
degree of 
. We will denote it by at.
/. It follows from Corollary 2 that if 
	 D

, then at.
/ is the maximal number of mutually orthogonal linearly independent
isotropic roots ˛ such that .	C 
j˛/ D 0. We also use the notation at.	/ D at.
	/.
The central character 
 is typical (resp. atypical) if at.
/ D 0 (resp. f .
/ > 0).

The defect def g of g is the maximal number of mutually orthogonal linearly
independent isotropic roots, i.e. the maximal dimension of the fiber of � .

Exercise Show that

def gl.mjn/ D def osp.2mj2n/ D def osp.2m C 1j2n/ D min.m; n/:

Check that the defect of the exceptional superalgebras AG2, AB3 and D.1; 2I a/ is 1.
Note that osp.1j2n/ is the only basic superalgebra with defect zero. Hence we

have the following proposition.

Proposition 3 All finite-dimensional representations of osp.1j2n/ are completely
reducible and the character of any irreducible finite-dimensional representation of
osp.1j2n/ is given by (3).

Finally, let us formulate without proof the following general result which
allows to reduce many questions about typical representations (finite or infinite-
dimensional) to the same questions for the even part g0.

Theorem 4 ([15, 36]) Suppose that 
 D 
	 is a typical central character such that
.	 C 
jˇ/ ¤ 0 for any non-isotropic root ˇ. Let U
.g/ WD U.g/=.Ann.
//. Then
there exists a central character 
0 ofZ.g0/ such thatU
.g/ is Morita equivalent to
U
0 .g0/ WD U.g0/=.Ann.
0//.
Remark 6 If g is of type 1, then U
.g/ is isomorphic to the matrix algebra over
U
0 .g0/.
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5 Associated Variety

5.1 Self-Commuting Cone

Let g D g0 ˚ g1 be a finite-dimensional Lie superalgebra. The self-commuting cone
X is the subvariety of g1 defined by

X D fx 2 g1 j Œx; x� D 0g

This cone was studied first in [17] for applications to Lie superalgebras cohomology.

Example 12 Let g D gl.mjn/. Then

X D
��
0 A
B 0

�
jAB D 0 D BA

�
:

We discuss geometry of X for basic classical g. Let G0 be a connected, reductive
algebraic group such that Lie.G0/ D g0 and let B0 be a Borel subgroup of G0. It is
clear that X is G0-stable with respect to the adjoint action of G0 on g1. Denote by
X=B0 (resp. X=G0) the set of B0 (resp. G0)-orbits in X. We will see that both sets are
finite.

Denote by Sp the set of all p-tuples of linearly independent and mutually
orthogonal isotropic roots and set

S WD
def g

Y
pD0

Sp; where S0 D f;g:

Let u D f˛1; : : : ; ˛pg 2 Sp, choose non-zero xi 2 g˛i and set

xu WD x1 C � � � C xp:

Then xu 2 X and it is not hard to see that a different choice of the xi-s produces an
element in the same H-orbit, where H is the maximal torus in G0 with Lie algebra
h. Therefore we have a well-defined map

˚ W S ! X=B0:

Furthermore, the Weyl groupW acts on S and clearly xw.u/ and xu belong to the same
G0-orbit. Therefore we also have a map

� W S=W ! X=G0:

Theorem 5 Both maps ˚ and � are bijections.
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The proof that � is a bijection can be found in [11] and it is done by case by case
inspection. It would be interesting to find a conceptual proof, using for example only
properties of the root decomposition. For the proof that ˚ is a bijection we refer the
reader to [7]. It uses the result about � and the Bruhat decomposition of G0. It is
possible that a conceptual proof of Theorem 5 is related to the following analogue
of the Jacobson–Morozov theorem.

Theorem 6 Let g be a basic classical Lie superalgebra and x 2 g1 be an odd
element such that Œx; x� is nilpotent. Then

1. If Œx; x� D 0, then x can be embedded into an sl.1j1/-subalgebra of g.
2. If Œx; x� ¤ 0 then x can be embedded into an osp.1j2/-subalgebra of g.

As a consequence of Theorem 5 we know that every x 2 X is G0-conjugate to
xu for u 2 Sp. We call the number p the rank of x. If g D gl.mjn/, then the rank
coincides with the usual rank of the matrix. We denote by Xp the set of all elements
in X of rank p. In this way we define the stratification

X D
def g

Y
pD0

Xp;

where X0 D f0g. Clearly, the Zariski closure of Xp is the disjoint union of Xq for all
q 6 p.

Proposition 4 The closure of every stratum Xp is an equidimensional variety or,
equivalently, if x; y 2 X have the same rank, then dimG0x D dimG0y. Furthermore,
if u D f˛1; : : : ; ˛pg 2 Sp and

u? WD fˇ 2 �1 j .ˇj˛i/ D 0; i D 1; : : : ; pg;

then

dimG0xu D 1

2
j�1 n u?j C p:

Proof We start with proving the second assertion. For any x 2 g1 consider the odd
analogue of the Kostant-Kirillov form:

!.y; z/ D .x; Œy; z�/:

This is an odd skew-symmetric form. It is easy to see that ker.!/ D ker.adx/. Using
the isomorphism Œx; g� ' g= ker.adx/ we can push forward ! to Œx; g�, where it
becomes non-degenerate. Since ! is odd, we obtain

dimG0x D dim Œx; g0� D dim Œx; g1� D 1

2
dim Œx; g�:
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We compute dim Œx; g�. Let x D xu D x1 C � � � C xp. Fix some yi 2 g�˛ and let
hi WD Œx; yi� 2 h˛i . Consider a generic linear combination y D c1y1 C � � � C cpyp and
set h D Œx; y�. Then x; h; y span an sl.1j1/-subalgebra l. Let g0 be the direct sum of
all eigenspaces of adh with non-zero eigenvalue and gh denote the centralizer of h.
Clearly, g0 and gh are l-stable. Furthermore, it is easy to see that

sdim g0 D 0; Œx; g0� D g0 \ ker adx hence dim Œx; g0� D 1

2
dimg0 D dimg0

1:

For generic c1; : : : ; cp we have

g0
1 D

M
ˇ2�1nu?

gˇ:

Therefore we obtain

dim Œx; g0� D j�1 n u?j:

On the other hand, a simple calculation shows that

Œgh; x� D Œl; x�˚ Œh; x� D
M
i6p

.kxi ˚ khi/:

Therefore dim Œgh; x� D 2p.

dimG0x D 1

2
.dim Œx; g0�C dim Œx; gh�/ D 1

2
j�1 n u?j C p:

The first assertion follows from the fact that for any two u; u0 2 Sp there exists
w 2 W such that wu0 � u [ �u. This fact is established by case by case inspection.

Corollary 5 X is an equidimensional variety.

5.2 Functor Fx

Let g be an arbitrary superalgebra and x 2 g1 satisfy Œx; x� D 2x2 D 0. For any
g-moduleM we have x2M D 0 and therefore can define the cohomology

Mx WD ker x=xM:

Lemma 7

1. .M ˚ N/x D Mx ˚ Nx.
2. sdim.Mx/ D sdim.M/ (superdimension).
3. M�

x ' .Mx/
�.

4. We have a canonical isomorphism .M ˝ N/x ' Mx ˝ Nx.
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Proof 1, 2 and 3 are straightforward. To prove 4 considerM as a kŒx�=.x2/-module.
We have the obvious map Mx ˝ Nx ! .M ˝ N/x. On the other hand, we have
decompositionsM D Mx ˚ F and N D Nx ˚ F0, where F and F0 are free kŒx�=.x2/-
modules.

M � N ' Mx ˝ Nx ˚ .F ˝ N ˚ M ˝ F0/:

Since a tensor product of any kŒx�=.x2/-module with a free kŒx�=.x2/-module is free
we obtain the isomorphism .M ˝ N/x ' Mx ˝ Nx.

Applying the above construction to the adjoint representations we get

gx D ker.adx/=Œx; g� D gx=Œx; g�:

Exercise Check that Œx; g� is an ideal in gx. Hence gx is a Lie superalgebra.
Let M be a g-module. Then we have a canonical gx-module structure on Mx.

Indeed, it is easy to check that both ker x and xM are gx-stable, For any y 2 g we
have Œx; y�m D xym 2 Œg; x�m. Therefore Œg; x� ker x � xM and the induced action of
Œg; x� onMx is trivial. Thus, we obtain the following proposition.

Proposition 5 Let g be a superalgebra and x be an odd self-commuting element.
The assignmentM ! Mx induces a tensor functor Fx from the category of g-modules
to the category of gx-modules.

Remark 7 Fx is neither left nor right exact.
Note that if x; y lie in the same orbit of G0 then gx and gy are isomorphic Lie
superalgebras. Moreover, if g is basic, then gx is constant on each stratum Xp � X.

Lemma 8 Let g be a basic Lie superalgebra, then gx ' gy if x; y 2 Xp.

Proof Let x D xu D x1 C � � �C xp, yi and hi be as in the proof of Proposition 4. Let k
be the subalgebra generated by xi; yi; hi for all i 6 p. Then it follows from the proof
of Proposition 4 that gx is the quotient of the centralizer of k by the center of k. Note
that by the last remark in the same proof we know that y is G0-conjugate to xv for
some v 2 u [ �u. It follows that gxu D gxv . Hence the statement.

Exercise Let g be one of the basic superalgebras and x 2 Xp, check that gx is the
following:

• g D gl.mjn/, gx D gl.m � pjn � p/;
• g D osp.mj2n/, gx D osp.m � 2pj2n � 2p/;
• g D AG2, p D 1, gx D sl2;
• g D AB3, p D 1, gx D sl3;
• g D D.2; 1I a/, p D 1, gx D sl2.

Consider U.g/ as the adjoint g-module. Then it is not difficult to see that
.U.g//x ' U.gx/, hence we have a projection fx W U.g/ad.x/ �! U.gx/. Note
that Z.g/ � U.g/ad.x/ and the restriction of fx to Z.g/ defines a homomorphism
�x W Z.g/ ! Z.gx/.
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We are interested in the dual map.

L�x W Hom.Z.gx/; k/ �! Hom.Z.g/; k/:

Theorem 7 Let  2 Hom.Z.gx/; k/, x 2 Xp, then

1. at. L�x. // D p C at. /.
2. The image of L�x consists of all central characters of atypicality degree greater or

equal than p.
3. If at.
/>p, then the fiber L��1

x .
/ consists of one or two points.

Proof Let x D xu where u D f˛1; : : : ; ˛pg. It is always possible to find a
triangular decomposition such that ˛1; : : : ; ˛p are simple roots. We consider the
Harish-Chandra map HC W Z.g/ �! S.h/ related to this particular triangular
decomposition and the analogous map HCx W Z.gx/ �! S.hx/ with dual map
denoted by �x. Let

hu WD
p\

iD1
ker˛i;

from the proof of Lemma 8 we have

hx D hu= spanfh1; : : : ; hpg:

Let ix W h�
x ! h�

u be the map dual to the natural projection. We claim the existence
of the following commutative diagram

Indeed, for any � 2 h�
x let 	 D ix.�/ and M D Lb.	/ be the irreducible module

with highest weight 	 (may be infinite-dimensional). The highest weight vector of
this module belongs to Mx and thereforeMx contains a gx-submodule which admits
central character 
� whileM admit central character 
	. That implies L�x.
�/ D 
	.

2 is a direct consequence of 1 and 3 is obtained by case by case inspection using
Corollary 2.

Exercise If a g-moduleM admits central character 
, thenMx is a sum of modules
which admit central characters in L��1

x .
/.

Corollary 6 Assume thatM admits central character
 with atypicality degree p.

(a) Fx.M/ D 0 for any x 2 Xq such that q > p. In particular, if 
 is typical, then
Fx.M/ D 0 for any x ¤ 0.
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(b) If x 2 Xp, then Fx.M/ is a direct sum of gx-modules with typical central
character.

Conjecture 1 Let g be a basic Lie superalgebra. If M is a finite dimensional simple
g-module, thenMx is a semisimple gx-module.
By Corollary 6 Conjecture 1 is true when the rank of x equals the atypicality degree
of M. In particular, it holds if the rank of x equals the defect of g. In this case
gx is either a Lie algebra or osp.1j2k/. For general x the conjecture is proven for
g D gl.mjn/ in [21].

5.3 Associated Variety

Definition 10 Let g be a Lie superalgebra, X self-commuting cone and M a g-
module. The associated variety ofM is

XM D fx 2 X jMx ¤ 0g:

Exercise In general XM may be not closed, see [7]. Prove that if M is finite
dimensional then XM is a closed G0 invariant subvariety of X. If M is an object
of the category O, then XM is B0-invariant.

The following properties of XM follow immediately from the corresponding
properties of Fx

1. XM˚N D XM [ XN .
2. XM˝N D XM \ XN .
3. XM� D XM .

Note also that Corollary 6 implies the following:

Proposition 6 Let g be a basic superalgebra. If M admits a central character 
 of
atypicality degree p, then XM belongs to the Zariski closure of Xp.

The following result has a rather complicated proof which can be found in [42]
for classical superalgebras and in [14, 29] for exceptional.

Theorem 8 Let g be a classical Lie superalgebra and L be a finite dimensional
simple g-module of atypicality degree p. Then the associated variety XL coincides
with the Zariski closure of Xp.

Finally, let us mention that to every g-module M integrable over G0 we can
associate a G0-equivariant coherent sheaf M on X in the following way. Let kŒX�
denote the ring of regular functions on X and kŒX� ˝ M be a free kŒX�-module.
Define @ W kŒX�˝ M ! kŒX�˝ M by setting

@f .x/ D xf .x/ for every x 2 X:
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Then @2 D 0 and the cohomology of @ is a kŒX�-moduleM. It is clear that suppM �
XM and it is proven in [11] that suppM D X if XM D X.

Conjecture 2 suppM D X.

5.4 Some Applications

Conjecture 3 (Kac–Wakimoto,[25]) Let g be a basic Lie superalgebra and L be a
simple finite-dimensional g-module. Then sdim L ¤ 0 if and only the degree of
atypicality of L equals the defect of g.

Kac-Wakimoto conjecture was verified for classical superalgebras in [42] and
for exceptional in [29]. Here we can give a simple proof in one direction. Since Fx

preserves superdimension, Corollary 6 (a) implies the following statement.

Corollary 7 Let M be a finite-dimensional g-module which admits central charac-
ter 
. If at.
/ < def g then sdimM D 0.

Let k D C, M be a finite dimensional g-module, h � g a Cartan subalgebra.
Define a function pM on h by setting

pM.h/ D strM.e
h/:

It is clear that pM is analytic. Consider the Taylor series for pM at h D 0

pM.h/ D
1X
iD0

pi.h/;

where pi is a homogeneous polynomial of degree i. The order of zero is the minimal
i such that pi ¤ 0.

The following result can be considered as a generalization of the Kac-Wakimoto
conjecture.

Theorem 9 ([11]) Assume that g does not have non-isotropic odd roots and let M
be simple. Then the order of pM.h/ equals the codimension of XM in X.

6 Classification of Blocks

6.1 General Results

Let g be a finite-dimensional Lie superalgebra. Recall that we denote by F the
category of finite-dimensional g-modules semisimple over g0.
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Lemma 9 Let g0 be reductive and g1 be a semisimple g-module. Then the category
F has enough projective and injective objects. Moreover, F is a Frobenius category,
i.e. every projective module is injective and vice versa.

Proof To prove the first assertion note that if M is a simple g0-module, then by
Frobenius reciprocity the induced moduleU.g/˝U.g0/M is projective in F and the
coinduced module HomU.g0/.U.g/;M/ is injective. For the second assertion use the
following.

Exercise Show the isomorphism of g-modules

U.g/˝U.g0/ M ' HomU.g0/.U.g/;M ˝�topg1/:

From now on we assume that g is basic. For a central character 
 W Z.g/ ! k let
F
 be the subcategory of F consisting of modules which admit generalized central
character 
.

Lemma 10

(a) We have a decomposition of F into a direct sum of subcategories

F D
M



F
:

(b) For every 
 with non-empty F
 we have a decomposition

F
 D F C

 ˚ F �




such that F �

 D ˘F C


 . (Recall that˘ is the change of parity functor.)

Proof

(a) If M is finite-dimensional, then Z.g/ acts locally finitely on M, so M decom-
poses into the direct sum of generalized weight spaces ofZ.g/.

(b) Every module M 2 F is h-semisimple. Thus, M has a weight decomposition
M D ˚M�. One can define a function p W h� ! Z2 such that p.	C ˛/ D p.	/
for any even root ˛ and p.	C ˛/ D p.	/C 1 for any odd root ˛. Set

MC
� WD

(
.M�/0 if p.�/ D 0

.M�/1 if p.�/ D 1
; M�

� WD
(
.M�/1 if p.�/ D 1

.M�/1 if p.�/ D 0
;

and let M˙ WD ˚M�̇ . Then M˙ are submodules of M and M is the direct sum
MC ˚M�. Therefore we can defineF
̇ as the full subcategory of F
 consisting
of modulesM such thatM� D 0.

We call principal block the subcategory F C

0

which contains the trivial module.
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Theorem 10

1. The subcategories F
̇ are indecomposable.

2. If g D gl.mjn/ (resp. osp.2mC1j2n/), and p D at
, then F
̇ is equivalent to the
principal block of gl. pjp/ (resp. osp.2p C 1j2p/).

3. If g D osp.2mj2n/ then F
̇ is equivalent to the principal block of osp.2pj2p/ or
osp.2p C 2j2p/.

4. For exceptional superalgebras D.2; 1; a/ AG2 or AB3 F
̇ with atypical 
 is
equivalent to the principal block of gl.1j1/ or osp.3j2/.

In these notes we give the proof for g D gl.mjn/. One can find the proof for all
classical superalgebras in [19] and for exceptional in [14] and [29].

Remark 8 If 
 is typical, then F
̇ is semisimple and has one up to isomorphism
simple object.

Remark 9 The problem of classifying blocks in the category O is still open. In
contrast with F , there are infinitely many non-equivalent blocks of given atypicality
degree, [7].

6.2 Tame Blocks

Using general approach, see [12], every block is equivalent to the category
of finite-dimensional representations of a certain quiver with relations. This
approach for Lie superalgebras was initiated by J. Germoni, [13]. In this
method an important role is played by the dichotomy: wild vs tame categories.
Roughly speaking, in tame categories, we can describe indecomposable
modules by a finite number of parameters, while in wild categories it is
impossible.

The following statement was originally conjectured by Germoni and now follows
from Theorem 10 and results in [14, 18, 29] and [33].

Proposition 7 A block F
̇ is tame if and only if at.
/ 6 1. An atypical tame
block is equivalent to the category of finite-dimensional representations of one of
the following two quivers:
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with relations ba D cd, ac D 0 D db for any subquiver isomorphic to:

Remark 10 It follows from Corollary 6 that for any x 2 X the functor Fx maps a
block F
̇ to

M
�2 L��1

x

F� :

There is some evidence that a more subtle relation is true, namely

Fx.F
̇ / D
M
�2 L��1

x

F�̇ :

In the case of the most atypical block it is possible to show that the superdimension
is constant on a Zariski open subset of simple modules in the block.

6.3 Proof of Theorem 10 for gl.mjn/

In this subsection g D gl.mjn/, b D bd is the distinguished Borel, and we skip
the low index in the notation for simple, Kac and projective modules. For instance
L.	/ WD Lb.	/. The weight

	 D c1�1 C � � � C cm�m C d1ı1 C � � � C dnın D .c1; : : : ; cm j d1; : : : ; dn/

is integral dominant if and only if ci � ciC1 2 ZC, dj � djC1 2 ZC for all i 6 m� 1,
j 6 n � 1. We assume in addition that ci; dj 2 Z.2

For the Weyl vector we use


 D .m � 1; : : : ; 1; 0 j 0;�1; : : : ;�n/:

In [2] Brundan and Stroppel introduced an extremely useful way to represent
weights by the so called weight diagrams.

Let 	 be a dominant integral weight, and

	C 
 D .a1; : : : ; am j b1; : : : ; bn/; ai > aiC1; bj > bjC1:

2This assumption is not essential and can be dropped. It is here only for convenience of notations.
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The weight diagram f	 is the map Z ! fı; >;<;�g defined as follows

f	.t/ D

8̂̂
ˆ̂<
ˆ̂̂̂
:

ı if ai ¤ t; bj ¤ �t for all i D 1; : : : ;m; j D 1; : : : nI
> if ai D t for some i; bj ¤ �t for all j D 1; : : : ; nI
< if bi D �t for some i; aj ¤ t for all j D 1; : : : ;mI
� if ai D t; bj D �t for some i; j:

We represent f	 by a picture on the number line with position t 2
f0;˙1;˙2;˙3; : : : g filled with f	.t/. We consider ı as a placeholder for an empty
position. The core diagram Nf	 is obtained from f	 by removing all �. We call > and
< core symbols.

Example 13 Take the adjoint representation of gl.2j3/. Then

	 D .1; 0 j 0; 0;�1/; 	C 
 D .2; 0 j 0;�1;�3/

and f	 can be represented by the picture
where all negative positions and all positions t > 3 are empty. The core diagram is

Exercise Check that

• The degree of atypicality of 	 equals the number of �-s in the weight diagram f	.
• Core diagrams parametrize blocks, namely, 
	 D 
� if and only if Nf	 D Nf�.

The above exercise implies that blocks F C

 can be parametrized by weight

diagrams without �-s. We use the notation f
 WD Nf	 for any 	 such that 
 D 
	.

Definition 11 We define the following operations on a weight diagram:

• Left simple move: Move > one position to the right or move < one position to
the left.

• Right simple move: Move > one position to the left or move < one position to
the right.

In this definition we assume that � is the union ><, and we can split it or join ><
into �.
Example 14 Let f be as in the previous example:

Then the following are possible right simple moves

1. Moving the rightmost < one position right:
2. Moving the leftmost < one position right (new � in position 2 appears):

3. Moving > one position left (new � in position 1 appears):
4. Splitting �. Here we can not move< to the right since it does not produce a valid

diagram. But we can move > to the left.
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Let V and V� denote the natural and conatural representations respectively.

Lemma 11 If K.	/ is the Kac module with highest weight 	, then K.	/˝ V (resp.
K.	/ ˝ V�) has a filtration by Kac modules K.�/ for all f� obtained from f	 by a
left (resp. right) simple move.

Proof Recall that K.	/ D U.g/˝U.g0˚g.1// Lb0 .	/. Hence

K.	/˝ V ' U.g/˝U.g0˚g.1// .Lb0 .	/˝ V/:

Since the weights of V are f�1; : : : ; �m; ı1; : : : ; ıng, then K.	/ ˝ V has a filtration
by K.�/ for all dominant � in f	 C �1; : : : ; 	 C �m; 	 C ı1; : : : ; 	 C ıng. The
corresponding weight diagrams are exactly those obtained from f	 by a right simple
move. The case of K.	/˝ V� is similar.

Next step is to define translation functors inspired by translation functors in
classical category O. For every M in F we denote by .M/� the projection on the
block F C

� . Then the translation functors between F C

 and F C

� are defined by

T
;� W F C

 �! F C

� ; M 7! .M ˝ V/�

T�
�;
 W F C

� �! F C

 ; M 7! .M ˝ V�/


Exercise Show that:

1. The functors T
;� , T�
�;
 are exact.

2. T�
�;
 is left and right adjoint to T
;� .

3. T
;� , T�
�;
 map projective modules to projective modules.

4. Assume that T
;� and T�
�;
 establish a bijection between simple modules in both

blocks, then they establish an equivalence F C

 Š F C

� of abelian categories.
5. If T
;� and T�

�;
 establish a bijection between Kac modules in both blocks, they
also establish a bijection between simple modules.

Proposition 8 Assume that at.
/ D at.�/ and f� is obtained from f
 by a left (resp.
right) simple move, then T
;� W F
 ! F� (resp. T�


;� W F
 ! F� ) is an equivalence
of abelian categories.

Proof Without loss of generality we do the proof in the case of a left move. Using
Lemma 11 one can easily check that T
;� and T�

�;
 provide a bijection between Kac
modules in both blocks. Hence the statement follows from the preceding exercise.

Definition 12 A weight 	 is stable if all �-s in the weight diagram f	 stay to the
left of < and >.

Introduce an order on the set of weights in the same block by setting � 6 � if
� � � is a sum of positive roots. One can easily see that � < � if � is obtained
from � by moving some � to the left. Therefore if � is stable and � < �, then � is
also stable. We denote by F �


 the full subcategory of F C

 whose simple constituents

L.	/ satisfy 	 6 �. We call F �

 a truncated block.
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Proposition 9 Let � be a stable weight of atypicality degree p, 
 D 
�. Let s 2 Z
be minimal such that f
.s/ ¤ ı. Let � be the weight of the principal block of gl. pjp/
with weight diagram

f� D
(

� if s � p 6 t 6 s � 1

ı otherwise
:

Then F �

 is equivalent to the truncation F �

0 of the principal block of gl. pjp/.
Proof (Sketch) We just explain how to define the functors establishing the equiva-
lence. Let� D .c1; : : : ; cm j d1; : : : ; dn/. Start with defining the parabolic subalgebra

p D h ˚
M
˛2�0

g˛;

where

�0 D�C [ f�i � �j jm � p < j < i 6 mg [ fıi � ıj j 1 6 j < i 6 pg
[ fıi � �j j 1 6 i 6 p; m � p < j 6 mg:

in other words p consists of block matrices of the form

0
BB@

� � � �
0 � � �
0 � � �
0 0 0 �

1
CCA ;

where the middle square block has size pjp. Set

l WD

8̂̂
<
ˆ̂:

0
BB@

� 0 0 0
0 � � 0
0 � � 0
0 0 0 �

1
CCA

9>>=
>>;
; m WD

8̂̂
<
ˆ̂:

0
BB@
0 � � �
0 0 0 �
0 0 0 �
0 0 0 0

1
CCA

9>>=
>>;
:

Clearly, p is a semi-direct product of the subalgebra l ' gl. pjp/˚ kmCn�2p and the
nilpotent ideal m. Consider the functor R W F �


 ! F �
0 defined by R.M/ D Mm.

Then its left adjoint I W F �
0 ! F �


 maps a gl. pjp/-module N to the maximal finite-
dimensional quotient of the parabolically induced module

U.g/˝U.p/ .N � C�/;

where C� is the one-dimensional representation of kmCn�2p with weight

� WD .c1; : : : ; cm�p j dpC1; : : : ; dn/:
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It suffices to show that R and I are exact and establish the bijection between
simple modules. Indeed, the exactness of R can be proven by noticing that R picks up
the eigenspace of kmCn�2p with weight �. Furthermore, if L.	/ is a simple module
in F �


 , then

	 D .c1; : : : ; cm�p; t1; : : : ; tp j � tp; : : : ;�t1; dpC1; : : : ; dn/

for some t1; : : : ; tp. It is easy to see that R.L.	// D L.	0/, where 	0 D .t1; : : : ; tp j �
tp; : : : ;�t1/ and that I.L.	0// D L.	/. The exactness of I can be now proven by
induction on the length of a module.

The following combinatorial lemma is straightforward.

Lemma 12 For any weight diagram f� there exists a stable weight diagram f�0

obtained from f� by a sequence of simple moves which do not change the degree of
atypicality.

Now we are ready to prove Theorem 10. Indeed, let F C

 be a block with

atypicality degree p. Lemma 12 and Proposition 8 imply that any truncated block
F �

 is equivalent to a stable truncated block of the same atypicality. Hence by

Proposition 9 F �

 is equivalent to some truncation of a principal block of gl. pjp/.

Taking the direct limit of F �

 we obtain equivalence between F C


 and the principal
block of gl. pjp/.

It remains to prove the indecomposability of the principal block of gl. pjp/. Note
that f�0 is obtained from f� by moving a � one position left, then ŒK.�/ W L.�0/� D 1.
Since K.�/ is indecomposable, L.�/ lies in the indecomposable block containing
L.�0/. Since any diagram in the principal block can be obtained from the fixed one
by repeatedly moving �-s one position left or right, the statement follows.

6.4 Calculating the Kazhdan-Lusztig Multiplicities

We would like to mention without proof other applications of weight diagrams and
translation functors. We still assume that g D gl.mjn/. Then the category F is a
highest weight category, [47], where standard objects are Kacmodules. In particular,
we have BGG reciprocity for the multiplicities:

ŒK.	/ W L.�/� D ŒP.�/ W K.	/�;

where P.�/ denotes the projective cover of L.�/. It is useful to compute these
multiplicities. It was done in [40] and in [1] by different methods. The answer is
very easy to formulate in terms of weight diagrams.

Let f be some weight diagram. We decorate it with caps by the following rule:

• Every cap has left end at � and right end at ı.
• Every � is engaged in some cap, so the number of caps equals the number of

crosses.
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• There are no ı under a cap.
• Caps do not cross.

We say that f 0 is adjacent to f if f 0 is obtained from f by moving one � from the
left end of its cap to the right end. We say that f 0 is adjoint to f if f 0 is obtained from
f by moving several � from the left end of its cap to the right end. We assume that
f is adjoint to itself. If f has p �-s, then it has exactly p adjacent diagrams and 2p

adjoint diagrams

Theorem 11 ([1, 33])

Ext1F .L.	/;L.�// D
(
k if f	 is adjacent to f� or f� is adjacent to f	

0 otherwise:

Theorem 12 ([1])

ŒP.	/ W K.�/� D
(
1 if f� is adjoint to f	

0 otherwise:

7 Supergeometry and Borel–Weil–Bott Theorem

7.1 Supermanifolds

The notion of supermanifold exists in three flavors: smooth, analytic and algebraic.
We concentrate here on the algebraic version. The main idea is the same: we define
first superdomains and then glue them together.

By a superdomainwe understand a pair .U0;OU/, whereU0 is an affine manifold
and OU is the sheaf of superalgebras isomorphic to

�.�1; : : : ; �n/˝ OU0 ;

OU0 denotes the structure sheaf on U0. The dimension of U is .mjn/ where m D
dimU0.

For example, the affine superspace Amjn is a pair .Am;O
Amjn/. The ring of global

sections of O.Amjn/ is a free supercommutative ring kŒx1 : : : xm; �1; : : : �n�. If we
work in local coordinates, then we use roman letters for even variables, greek letters
for odd ones.

Definition 13 A supermanifold is a pair .X0;OX/ where X0 is a manifold and OX

is a sheaf locally isomorphic to .U0;OU/ for a superdomain U. The manifold X0 is
called the underlying manifold of X and OX is called the structure sheaf.

One way to define a supermanifold is by introducing local charts Ui and then
gluing them together.
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Example 15 Consider two copies ofA1j2 with coordinates .x; �1; �2/ and .y; �1; �2/.
We give the gluing by setting:

y D x�1 C �1�2; �1 D x�1�1; �2 D �2:

Example 16 Let X0 be a manifold,V be a vector bundle on X0 and OX is the sheaf
of sections of the exterior algebra bundle �.V/. In particular, X0 with the sheaf of
forms˝X0 is a supermanifold.

Given the supermanifold X, we have the canonical embedding X0 ! X and the
corresponding morphism of structure sheaves OX ! OX0 . Denote by IX0 the kernel
of this map. It is not difficult to see that IX0 is the nilpotent ideal generated by all
odd sections of OX . Consider the filtration

OX � IX0 � I2X0 � : : : :

Then Gr.X/ WD .X0;GrOX/ is again a supermanifold. One can identify Gr.X/ with
.X0; � .�.N�

X0
X//, where N�

X0
X denotes the conormal bundle for X0 � X.

A supermanifold X is called split if it is isomorphic to Gr.X/. In the category of
smooth supermanifolds all supermanifolds are split but this is not true for algebraic
supermanifolds.

Exercise Show that any supermanifold of dimension .mj1/ is split. Is the super-
manifold defined in Example 15 split?

Another way to define a supermanifold is to use the functor of points, which is
a functor from the category .Salg/ of commutative superalgebras to the category
.Sets/. For general definitions see [3]. Let us illustrate this approach with the
following example.

Example 17 We define the projective superspace X D P1j1 as follows. For a
commutative superalgebra A the set of A-points is the set of all submodules
A1j0 � A2j1. This is the set of all triples .z1; z2; �/with z1; z2 2 A0 and � 2 A1, such
that at least one of z1; z2 is invertible, modulo rescaling by an invertible element of
A0. This supermanifold has two affine charts f.1; x; �/g and f.y; 1; �/g with gluing
functions � D x�1�, y D x�1.

Exercise Check that in Example 17 X0 D P1 and OX ' O ˚˘O.�1/.

8 Algebraic Supergroups

An affine supermanifold G equipped with morphisms m W G � G ! G, i W D ! G
and e W fpointg ! G satisfying usual group axioms is called an affine algebraic
supergroup.We skip the word “affine” in what follows.

The ring O.G/ of global sections of OG has a structure of Hopf superalgebra.
In fact, one can start with a Hopf superalgebra O.G/ and define a supergroup as a
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functor:

G W .Salg/ �! fGroupsg; G.A/ D Hom.O.G/;A/:

Properties of Hopf algebras allow one to define the group structure on G.A/.
The ideal I generated by the odd elements in O.G/ is an Hopf ideal. The quotient

Hopf algebra O.G/=I is the Hopf algebra of regular functions on the underlying
algebraic group G0.

Exercise GL.mjn/.

GL.mjn/.A/ D
�
Y D

�
A B
C D

��

satisfying the following conditions

• the entries on A and D are even elements in A, while the the entries of B and C
are odd;

• Y is invertible.

Show that GL.mjn/ is representable and construct the corresponding Hopf superal-
gebra.

Example 18 (Exercise) Consider the functor

Ber W GL.mjn/ �! GL.1/; Ber

�
A B
C D

�
D det .A � BDC/=det.D/:

Check that Ber is a homomorphism. Hint: Write

�
A B
C D

�
D

�
1 Y
0 1

� �
A0 0
0 D0

� �
1 0

X 1

�
:

We define SL.mjn/ by imposing the condition Ber D 1.
Show that GL.mjn/0 D GL.m/ � GL.n/ and

SL.mjn/0 D f.A;D/ 2 GL.m/ � GL.n/ j detA D detDg :

Definition 14 Lie.G/ is the Lie superalgebra of left invariant derivations of O.G/
and can be identified with Te.G/.

Exercise Lie.GL.mjn// D gl.mjn/, Lie.SL.mjn// D sl.mjn/.
A useful approach to algebraic supergroups is via the so called Harish-Chandra

pairs. In the case of Lie groups it is due to Koszul and Kostant, [27, 28], for complex
analytic category it is done in [46], for algebraic groups see [31].
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We call an HC pair the following data

• a finite-dimensional Lie superalgebra g D g0 ˚ g1;
• an algebraic group G0 such that Lie.G0/ D g0;
• a G0-module structure on g1 with differential equal to the superbracket

g0 ˝ g1 ! g1.

Theorem 13 The category of HC pairs is equivalent to the category of algebraic
supergroups.

Let us comment on the proof. It is clear that every supergroupG defines uniquely
a HC pair .g;G0/. The difficult part is to go back: given an HC pair .g;G0/, define a
Hopf superalgebra O.G/. One way to approach this problem is to set

R D O.G/ WD HomU.g0/.U.g/;O.G0//:

Define a multiplication map m W R ˝ R ! R by

m. f1; f2/.X/ WD m0.. f1 ˝ f2/.�U.X///;

where m0 is the multiplication in O.G0/ and �U is the comultiplication inU.g/:

�u.x/ D x ˝ 1C 1˝ x; x 2 g:

It is easy to see that R is a commutative superalgebra isomorphic to S.g�
1 /˝O.G0/,

[28]. In particular, this implies that an algebraic group is a split supermanifold.
Next define the comultiplication� W R ! R ˝ R. For g; h 2 G0 and x; y 2 U.g/

we set

�f .x; y/g;h D f .Ad.h�1/.x/y/gh:

The counit map � W R ! k is defined by

�f WD �0 ı f .1/;

where �0 is the counit in O.G0/. Finally, define the antipode s W R ! R by setting
for all g 2 G0, x 2 U.g/

sf .X/g D f .Ad.g/sU.X//g�1 ;

where sU is the antipode inU.g/.
Theorem 14 ([31]) The category of representations of G is equivalent to the
category of .g;G0/-modules.
We now concentrate on the case of reductive G0. By the above Theorem the
category Rep.G/ of finite-dimensional representations of G is a full subcategory
of F . Therefore we immediately obtain the following.
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Corollary 8 Let G0 be reductive.

• Then Rep.G/ has enough projective and injective objects.
• Every injective G-module is projective.

Exercise Assume that G0 is reductive. Check that

O.G/ ' HomU.g0/.U.g/;O.G0//

is an isomorphism of .g;G0/-modules and use it prove that

O.G/ D ˚P.L/dim.L0/

where L runs the set of irreducible representations of G and P.L/ is the projective
cover of L. Hint: Use Frobenius reciprocity and the structure of O.G0/ as a G0-
module.

9 Geometric Induction

9.1 General Construction

Let H � G be a subsupergroup. It is possible to show that G=H is a supermanifold,
see [30]. The space of global sections of the structure sheaf is given by

O.G=H/ WD O.G/H ;

where H-invariants are defined with respect to the right action of H on G.
Furthermore, if M is a representation of H, then G �H M is a G-equivariant vector
bundle on G=H. We define:

O.G=H;M/ D .O.G/˝ M/H D f f W G ! M j f .gh/ D h�1f .g/; h 2 Hg:

Thus, we associated in functorial way to every representation of H a representation
of G, namely, the space of global sections of G �H M. The corresponding functor
� W Rep.H/ �! Rep.G/ is left exact. The right derived functor is given by the
cohomology

Ri� .M/ D Hi.G=H;G �H M/:

It is a little bit more convenient to us to work with dual functors �i.G=H; �/
defined by

�i.G=H;M/ WD Hi.G=H;G �H M�/�:
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The following statement is the Frobenius reciprocity for geometric induction and
the proof is the same as for algebraic groups.

Proposition 10 For any H-module M and G-module N we have a canonical
isomorphism

HomG.�0.G=H;M/;N/ ' HomH.M;N/:

Exercise If G D G0, then �i.M/ D 0 for i > 0 and �0.M/ D U.g/˝U.g0/ M.

9.2 The Borel-Weil-Bott Theorem

Let G be an algebraic supergroup with basic Lie superalgebra g. Fix a Cartan
subalgebra h and a Borel subalgebra b � h and denote by B � G and H � B the
corresponding subgroups. The supermanifold G=B is called a flag supermanifold.
Its underlying manifold G0=B0 is a classical flag manifold.

Recall that in the Lie algebra case flag manifolds play a crucial role in the
representation theory of g. In particular, all the irreducible representations of a
reductive algebraic group can be realized as global sections of line bundles on
the flag variety by the Borel–Weil–Bott theorem. Let us see what happens in the
supercase.

Consider the H-weight lattice � in h�. Every 	 2 � defines a unique one-
dimensional representation of B which we denote by c	. We are interested in
computing �i.G=B; c	/ D 0. The Frobenius reciprocity (Proposition 10) implies
the following

Corollary 9 �i.G=B; c	/ is isomorphic to the maximal finite-dimensional quotient
Kb.	/ of the Verma module Mb.	/.

Lemma 13 Assume that the defect of g is positive. Then the flag supervariety G=B
is split if and only if g is type 1 and b is distinguished or antidistinguished.

Proof First, let us assume that G=B is split. Then we have a projection � W G=B !
G0=B0 and the pull back map

�� W G0 �B0 c�	 ! G �B c�	

which induces the embedding

H0.G0=B0;G0 �B0 c�	/ ! H0.G=B;G �B c�	/:

After dualizing we obtain a surjection

�0.G=B; c	/ ! �0.G0=B0; c	/:
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If 	 is a G0-dominant weight, then �0.G0=B0; c	/ D Lb0 .	/ ¤ 0. By Corollary 9
Kb.	/ ¤ 0. Hence 	 isG-dominant. Thus, every dominantG0-weight isG dominant
and this is possible only for distinguished Borel or for osp.1j2n/.

Now let b D b0˚g.˙1/ be a distinguished or antidistinguished Borel subalgebra.
Then it is easy to see that

OG=B D OG0=B0 ˝�.g.˙1/�/:

The following result is a generalization of Borel–Weil–Bott theorem in the case
of typical 	. We call a weight � regular (resp. singular) if it has trivial (resp. non-
trivial) stabilizer in W. We denote by �C � � the set of all � 2 � such that
2.�j˛/
.˛j˛/ 2 ZC for all even positive roots ˛. It follows from Sect. 4.1 that a typical 	 is

dominant if and only if 	C 
 2 �C.

Theorem 15 ([35]) Let 	 2 � be typical.

1. If 	C 
 is singular then �i.G=B; c	/ D 0 for all i.
2. If 	C 
 is regular there exists a unique w 2 W such that w.	C 
/ 2 �C. Let l

be the length of w. Then

�i.G=B; c	/ D
(
0 if i ¤ l;

L.w � 	/; if i D l:

Proof We give here just the outline, see details in [35]. First, if 	 is dominant then
by Corollary 9 �0.G=B; c	/ D Kb.	/ and by typicality of 	we haveKb.	/ D Lb.	/.

If ˛ or 1
2
˛ is a simple root of B, then one can show using the original Demazure

argument, that

�i.G=B; c�/ ' �iC1.G=B; cr˛ ��/; (4)

if 2.�j˛/
.˛j˛/ > 0. Furthermore, if 2.�j˛/

.˛j˛/ D 0, then

�i.G=B; c�/ D 0 (5)

for all i.
However, not every simple root of b0 is a simple root of b and therefore we need

to involve odd reflections and change of Borel subalgebras.
Let ˛ be an isotropic simple root and b0 be obtained from b by the odd reflection

r˛ . Then we claim that

�i.G=B; c	/ ' �i.G=B
0; c	0/; (6)
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where 	C
 D 	0C
0. To show this we consider the parabolic subalgebra p D bCb0.
Then we have two projections

p W G=B ! G=P; p0 W G=B0 ! G=P;

the fiber of both projections is a .0j1/-dimensional affine space and we have

p�.G �B c�	/ D p0�.G �B0 c�	0/ D G �P V	;

where V	 is the two-dimensional simple P-module with weights �	 and �	0. Note
that here we use that .	C 
; ˛/ ¤ 0 by the typicality of 	. This implies

Hi.G=B;G �B c�	/ ' Hi.G=P;G �P V	/ ' Hi.G=B0;G �B0 c0�	/:

After dualization we obtain (6).
Let us assume again that 	 is dominant and consider the Borel subalgebra b0

opposite to b. Combining (4) and (6) we obtain

�i.G=B; c	/ D �iCd.G=B
0; cw0�	/;

where w0 is the longest element of W and its length d equals dimG0=B0. That
implies the second statement of the theorem for dominant 	. Using (4) and (6) we
can reduce the case of arbitrary regular 	C 
 to the dominant case.

If 	C 
 is singular, then there is a simple root ˛ of b0 such that .	C 
; ˛/ D 0.
Using odd reflections and (6) we can change the Borel subgroupB to B0 and 	 so that
˛ or 1

2
˛ is a simple root of B0. Then the vanishing of cohomology follows from (5).

Computing �i.G=B; c	/ for atypical 	 is an open question. The main reason why
the proof in this case does not work is the absence of (6). It is known from examples
that �i.G=B; c	/ may not vanish for several i.

Finally let us formulate the following analogue of Bott’s reciprocity relating �i

with Lie superalgebra cohomology. The proof is straightforward using the definition
of the derived functor (see [20]).

Proposition 11 For any finite-dimensional B-module M and any dominant weight
	, we have

�
Hi.G=B;G �B M/ W Lb.	/

� D dim ExtiB.Pb.	/;M/ D dimHi.nC;P�
b .	/˝ M/h;

where Pb.	/ denotes the projective cover of Lb.	/.
After dualizing and settingM D c�� we obtain the following

Corollary 10

Œ�i.G=B; c�/ W Lb.	/� D dim Homh

�
c�;H

i.nC;Pb.	//
	
:
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9.3 Application to Characters

Although we do not know �i.G=B; c	/ for atypical 	, we can calculate the character
of the Euler characteristic.

Theorem 16 The character of the Euler characteristic is given by the typical
character formula, i.e.

dim .G0=B0/X
iD1

.�1/i ch�i.G=B; c	/ D D1
D0

X
w2W

sgn.w/ew.	C
/:

Proof Consider the associated split manifold Gr.G=B/ and the associated graded
L D Gr.� / of the sheaf � of sections of G �B c�	. Since Euler characteristic is
preserved after going to the associated graded sheaf we have

dim .G0=B0/X
iD1

.�1/i chHi.G=B;G �B c�	/ D
dim .G0=B0/X

iD1
.�1/i chHi.Gr.G=B/;L/:

Note that L is a G0-equivariant vector bundle on G0=B0, and the classical Borel–
Weil–Bott theorem allows us to calculate the right hand side of the above equality.
Indeed, if N denotes the conormal bundle to G0=B0, then

L ' �.N/˝ .G0 �B0 c�	/ D G0 �B0

�
c�	 ˝��.g1=b1/

	
;

and

dim .G0=B0/X
iD1

.�1/i chHi.G=B;L/ D 1

D0

X
w2W

sgn.w/w.e	C
0 Y
˛2�C

1

.1 � e�˛//;

which is equivalent to the typical character formula.
Note that Theorems 16 and 15 imply Theorem 2.

Definition 15 Let 	 be a weight of atypicality degree p. It is called tame with
respect to the Borel subalgebra b if there exists isotropic mutually orthogonal simple
roots ˛1; : : : ; ˛p such that

.	C 
j˛1/ D � � � D .	C 
j˛p/ D 0:

Conjecture 4 (Kac–Wakimoto, [25]) If 	 is dominant and tame with respect to b,
then

chLb.	/ D D1
D0

X
w2W

sgn.w/w

�
e	C
Qp

iD1.1 � e�˛i/

�
: (7)
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The right hand side of formula (7) is the character of the Euler characteristic

dim .G0=B0/X
iD1

.�1/i ch�i.G=Q; c	/;

where Q is the parabolic subgroup with Lie superalgebra

q WD b ˚ g�˛1 ˚ � � � ˚ g�˛p :

Hence one way to prove Conjecture 4 is to prove the following

Conjecture 5 If 	 is tame with respect to b, then �i.G=Q; c	/ D 0 if i > 0 and
�0.G=Q; c	/ D Lb.	/.
For classical Lie superalgebras Conjecture 5 is proven in [5].

9.4 Weak BGG Reciprocity

Let K.G/ denote the Grothendieck group of the category Rep.G/ and ŒM� denote
the class of a G-module M. Clearly ŒLb.	/�, for all dominant 	 2 �, is a basis of
K.G/. Set

ŒEb.	/� D
X
i

.�1/iŒ�i.G=B; c	/�:

As we already mentioned in Sect. 6.4, if g is of type 1 then Rep.G/ is a highest
weight category. For type 2 superalgebras this is not true. Nevertheless one can
use virtual modules Eb.	/ instead of Kb.	/ and obtain the following weak BGG
reciprocity.

Theorem 17 ([20]) Let 	 2 � be dominant and � 2 � be such that �C 
 2 �C.
There exists unique a	;� 2 Z such that

ŒEb.�/� D
X

a	;�ŒLb.	/�

and

ŒPb.	/� D
X

a	;�ŒEb.�/�:

9.5 D-Modules

In this subsection we discuss briefly possible generalizations of the Beilinson-
Bernstein localization theorem for basic classical Lie superalgebras. The basics on
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D-modules on supermanifold can be found in [36]. The main result there is that if X
is a supermanifold with underlying manifold X0 then Kashiwara extension functor
provides the equivalence between categories ofDX0-modules andDX-modules.

This fact is easy to explain in the case when X is a superdomain. Indeed, in this
case

O.X/ D O.X0/˝�.�1; : : : ; �n/;

and this implies an isomorphism

D.X/ D D.X0/˝ D.�.�1; : : : ; �n//;

where D.�.�1; : : : ; �n/ is the superalgebra of the differential operators
on .0jn/-dimensional supermanifold A

.0jn/. Since �.�1; : : : ; �n/ is finite-
dimensional, the superalgebra D.�.�1; : : : ; �n// coincides with the superalgebra
Endk.�.�1; : : : ; �n//. This immediately implies the Morita equivalence of D.X/
andD.X0/.

Let 	 be a weight of g and X D G=B be a flag supermanifold. As in the usual
case one can define the sheaf of twisted differential operatorsD	X . LetU	.g/ denote
the quotient of U.g/ by the ideal generated by the kernel of the central character

	 W Z.g/ ! k. The embedding of the Lie superalgebra g to the Lie superalgebra of
vector fields on X induces the homomorphism of superalgebras

p	 W U	.g/ ! D	.X/:

Recall that it is an isomorphism if g is a reductive Lie algebra. Moreover, for
dominant 	 the localization functor provides equivalence of categories of U	.g/-
modules and D	

X-modules. In the supercase, the similar result is true for generic
typical 	, see [36].

Theorem 18 Let 	 be a generic typical weight such that 2.	j˛/
.˛j˛/ … Z<0 for all even

positive roots ˛. Then the functors of localization and global sections establish
equivalence of categories ofU	.g/-modules andD	

X-modules.
Note that essentially this theorem is equivalent to Theorem 4. In fact Theorem 18

was used by Penkov for the proof of Theorem 4. If 	 is not typical, then the
homomorphism p	 is neither surjective nor injective. On the other hand, it is not
difficult to see that for atypical 	 the superalgebraU	.g/ has a non-trivial Jacobson
radical, see [41]. There is an evidence that the following conjecture may hold.

Conjecture 6 Let 	 be a regular weight, tamewith respect to b, and let NU	.g/ denote
the quotient of U	.g/ by the Jacobson radical. Let Z denote the center of NU	.g/.
Let Q � B be the maximal parabolic subgroup of G such that its Lie superalgebra q
admits one-dimensional representation c	. Finally let Y WD G=Q.

If � W Z ! k is a generic central character and NU	
� .g/ is the quotient of NU	.g/

by the ideal .ker �/, then the categories of NU	
� .g/-modules and D	

Y -modules are
equivalent.
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10 Direct Limits of Lie Algebras and Superalgebras

The goal of this section is to say few words about representations of direct limits of
classical Lie superalgebras.We will discuss here only the case of gl.1j1/ and refer
to [43] for the case of osp.1j1/. Surprisingly, for some class of representations
the difference between the Lie superalgebra gl.1j1/ and the Lie algebra gl.1/

disappears.

10.1 Category of Tensor Modules

Let V;W be countable-dimensional vector spaces (resp. superspaces) with non-
degenerate even pairing h�; �i W W � V ! k. It is known that one can choose a
pair of dual bases in V and W. The tensor product V ˝ W is a Lie algebra (resp.
superalgebra) g with the following bracket:

Œv1 ˝ w1; v2 ˝ w2� D hw1; v2iv1 ˝ w2 � .�1/. Nv1C Nw1/. Nv2C Nw2/hw2; v1iv2 ˝ w1:

We denote this (super)algebra gl.1/ in the even case and gl.1j1/ in the supercase.
Note that both V and W are g-modules and g acts on V and W by linear operators
of finite rank. It is not difficult to see that g can be identified with infinite matrices
with finitely many non-zero entries and hence

gl.1/ D lim! gl.n/; gl.1j1/ D lim! gl.mjn/:

Let Tp;q D V˝p ˝ W˝q. We would like to understand the structure of g-module
on Tp;q. It is clear that the product of symmetric groups Sp � Sq acts on Tp;q and
this action commutes with the action of g. Irreducible representations of Sp � Sq are
parametrized by bipartitions .	; �/ such that j	j D p; j�j D q. The following result
is a classical Schur–Weyl duality. In the supercase its proof is due to Sergeev, [44].

Theorem 19 Let g D gl.1/ or gl.1j1/. Then we have the following decomposi-
tion

Tp;q D
M

j	jDp;j�jDq

S	.V/˝ S�.W/˝ Y	;�;

where S	.V/ and S�.W/ are simple g-modules and Y	;� is the irreducible represen-
tation of Sp � Sq associated with a bipartition .	; �/.

Let g D gl.1/. It is proven in [37] that S	.V/ ˝ S�.W/ is an indecomposable
g-module of finite length with simple socle V.	; �/. Denote by Trepg the abelian
category of g-modules generated by finite direct sums of Tp;q and all their subquo-
tients. This is a symmetric monoidal category which in the case of g D gl.1/ was
studied in [8] and [38].
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Theorem 20 ([8]) Let g D gl.1/. Any simple object of Trepg is isomorphic to
V.	; �/ for some bipartition .	; �/ and S	.V/ ˝ S�.W/ is the injective hull of
V.	; �/. In particular, the category Trepg has enough injective objects. Moreover,
any object in Trepg has a finite injective resolution.

It is also proven in [8] that Trepg is a Koszul self-dual category.
Let us consider the case g D gl.1j1/. We start by constructing two functors Fl

and Fr from the category Trepg to the category Trepgl.1/. Observe that the even
part gl.1j1/0 is a direct sum gl ˚ gr with both gl D V0 ˝ W0 and gr D V1 ˝ W1

isomorphic to gl.1/. For anyM 2 Trepg we set

Fl.M/ WD Mgr ; Fr.M/ WD Mgl :

Theorem 21 ([43]) Let g D gl.1j1/.

(a) Fl and Fr are exact tensor functors, i.e. Fl.M ˝ N/ D Fl.M/˝ Fl.N/ and the
same for Fr.

(b) Fl and Fr have left adjoint functors which we denote by Rl and Rr respectively.
(c) Fl and Rl (resp. Fr and Rr) are mutually inverse equivalences of tensor

categories Trepg and Trepgl (resp. Trepgr).

Remark 11 The compositions Fr ı Rl and Fl ı Rr provide an autoequivalence of
Trepgl.1/ which sends a simple module V.	; �/ to the simple module V.	0; �0/,
where �0 stands for the partition conjugate to �.

Remark 12 The corresponding construction works as well for the Lie superalgebra
g D osp.1j1/. Here gl D so.1/ and gr D sp.1/. In particular, we establish
equivalence of tensor categories Trepso.1/ and Trepsp.1/.

Remark 13 The category Trepg contains a semisimple subcategory TrepCg consist-
ing of modules appearing in Tp;0, p 2 N.

10.2 Equivalences for Parabolic Category O

In this subsection we will show how functors Fr and Fl help to prove equivalence of
certain parabolic categoryO for gl.mj1/ and gl.1/. This result is originally proven
in [6] by using infinite chain of odd reflections.

Let g0 D gl.1/, g00 D gl.mj1/ and g D gl.1j1/. We fix the embeddings g0 and
g00 into g in the following way. Realize g as matrices with finitely many non-zero
entries written in the block form

0
@A1;1 A1;2 A1;3
A2;1 A2;2 A2;3
A3;1 A3;2 A3;3

1
A ;
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where A1;1 has size m � m, A1;2 and A1;3 have size m � 1, A2;1 and A3;1 have size
1 �m and A2;2 and A3;3 have size 1 � 1. The even part g0 consists of matrices of
the form

0
@A1;1 A1;2 0

A2;1 A2;2 0

0 0 A3;3

1
A ;

and the odd part g1 of matrices of the form

0
@ 0 0 A1;3
0 0 A2;3

A3;1 A3;2 0

1
A :

Then g0 consists of matrices
0
@A1;1 A1;2 0
A2;1 A2;2 0
0 0 0

1
A ;

and g00 of matrices

0
@A1;1 0 A1;3
0 0 0

A3;1 0 A3;3

1
A :

Let k0 and k00 be subalgebras of matrices of the form

0
@0 0 0

0 0 0

0 0 A3;3

1
A and

0
@0 0 0

0 A2;2 0
0 0 0

1
A ;

respectively. Then it is not hard to see that g0 is the centralizer of k0 and g00 is the
centralizer of g00.

Next we consider the parabolic subalgebra p � g consisting of matrices

0
@A1;1 A1;2 A1;3
0 A2;2 A2;3
0 A3;2 A3;3

1
A ;

with abelian ideal m

0
@0 A1;2 A1;3
0 0 0

0 0 0

1
A ;
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and the Levi subalgebra l

0
@A1;1 0 0

0 A2;2 A2;3
0 A3;2 A3;3

1
A ;

isomorphic to gl.m/˚ gl.1j1/.
Finally we set p0 WD p \ g0 and p00 WD p \ g00. Note that p0 � g0 and p00 � g00

are parabolic subalgebras. Now we consider the category O.g; p/ consisting of all
g-modulesM satisfying the following conditions

• M is finitely generated;
• M is semisimple over the diagonal subalgebra of g with integral weights;
• M is an integrable p-module and the restriction to the subalgebra gl.1j1/ � p

belongs to the inductive completion of TrepCgl.1j1/.

In a similar way we define the categories O.g0; p0/ and O.g00; p00/ for algebras g0 and
g00 respectively. As in the previous subsection we define the functors

F0 W O.g; p/ ! O.g0; p0/; F00 W O.g; p/ ! O.g00; p00/

by setting

F0.M/ D Mk0 ; F00.M/ D Mk00 :

Then we have the following analogue of Theorem 21.

Theorem 22

(a) F0 and F00 have left adjoint functors which we denote by R0 and R00 respectively.
(b) F0 and R0 (resp. F00 and R00) are mutually inverse equivalences of abelian

categories O.g; p/ and O.g0; p0/ (resp. O.g00; p00/).
(c) The composite functors F00 ı R0 and F0 ı R00 are mutually inverse equivalences

of abelian categories O.g0; p0/ and O.g00; p00/.
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