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1 Introduction

About two decades ago, M. Broué, G. Malle and R. Rouquier published a program-
matic paper [14] entitled Complex reflection groups, Braid groups, Hecke algebras
(see also [13]). Motivated by earlier prospections on generalizations of reductive
groups, they managed to associate to every complex reflection group two objects
which were classically associated to real reflexion groups (a.k.a. finite Coxeter
groups): a generalized braid group and a Iwahori-Hecke algebra. Moreover, they
put forward good reasons to believe that the nice properties of these objects in the
classical case could be extended to the general one. This paper was followed by a
couple of others (most notably [15]) adding precisions on what could be expected.
The present paper aims at reporting on the progression of this program. However,
it is not possible to explore, in a short text like this one, all the ramifications of the
program, because it is connected to a whole area in representation theory (Cherednik
algebras and related topics). Therefore, one has to make a choice in order to provide
a potentially useful review of it.

In this paper, we made the following choice. We decided to focus on what we
regard as the most fundamental properties of the objects at the core of [14], that is
braid groups and Hecke algebras, disregarding the context in which these objects
have been first introduced (an attempt to generalize reductive groups and related
objects), and disregarding as well specific properties that might be of use for specific
representation-theoretic problems.
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This focus implies that we are going to emphasize what is now actually proven
of the ‘main’ (in the above sense) conjectures concerning the objects appearing in
[14], and that we shall try to provide a hopefully handy text for people interested in
these objects, who would probably appreciate pointers to the literature concerning
practical aspects (homology groups, matrix models for representations, etc.).

After reading this text, one impression could be that the progresses have not been
that spectacular in the past twenty years. After all, among the exceptional complex
reflection groups, the smaller one (G4) is the only one for which all the natural
questions mentioned below are settled by now ! Moreover, all the results below,
when they are proved for every reflection group, need to use the classification of the
complex reflection groups in their proof. One should keep in mind however that all
these exceptional complex reflection groups are the fundamental symmetric groups
arising in low-dimensional phenomena, and therefore, although one might spend
time dreaming at a ‘general, conceptual proof’ (if it exists), ad-hoc proofs should
not be regarded as a waste of time. Not only do they provide the basis for applying
the conjectures to the particular phenomenon controlled by a given reflection group,
but they usually provide additional results on the specific group that are sometimes
crucial for applications.

As an example of the first aspect, we mention that the case of the Hecke algebra
of the smallest reflection group G4 itself was successfully applied in studying a
potentially new invariant of knots [29], improving our understanding of the Links-
Gould invariant and of the Birman-Wenzl-Murakami algebra [42, 43]. Similarly, the
cases of G4 and G5 were used in [39] and [37] to identify up to isomorphism two
different constructions of the same representations of the usual braid groups, while
the cases of G8 and G16 are used in [18] to recover and explain a classification due
to Tuba-Wenzl of small-dimensional irreducible representations of the braid groups.

This text is an expanded version of a talk I gave in Pisa in February 2015, during
the intensive research period ‘Perspectives in Lie theory’, more precisely during
the session on ‘Algebraic topology, geometric and combinatorial group theory’ at
Centro de Giorgi. I am very grateful to the organizers of this research period for this
opportunity.

2 Complex Reflection Groups

Recall that a complex reflection group is a finite subgroup of some general linear
group over the complex numbers GLr.C/, which has the property of being generated
by (pseudo)-reflections, namely endomorphisms whose invariant subspace is an
hyperplane. If W is such a group, we denote by R � W the set of all pseudo-
reflections belonging to W, and call r the rank of W. A recent reference on
such objects is [31]. It is convenient to introduce a subset R� � R of so-called
distinguished reflections. If s 2 R, the set of elements in W fixing Ker.s � 1/ is
a cyclic group of some order m, and there is only one element in this set with
eigenvalue exp.�2�i=m/. This is the distinguished pseudo-reflection attached to
Ker.s � 1/, and R� is the collection of all such elements.
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A basic property of a complex reflection group is that it can be canonically
decomposed as a direct product of irreducible ones—meaning that W � GLr.C/

acts irreducibly onCr. By Schur’s lemma, such groups have cyclic center. Moreover,
by a change of basis one can always assume W � GLr.K/, where K is the subfield
of C generated by the traces of elements of W. Finally, a fundamental result of
Steinberg says that, if S is any subspace of Cr, then the subgroup WS of W made
of all the elements fixing S is a reflection subgroup, generated by R \ WS. Such
subgroups are called parabolic subgroups.

Completing a quest of several decades, irreducible complex reflection groups
were classified by Shephard and Todd, in [47]. They either belong to an infinite
series G.de; e; r/ < GLr.C/ of groups of monomial matrices, or to a finite set of
34 exceptions. These 34 exceptions were labelled G4;G5; : : : up to G37. Using this
classification, a general result due to M. Benard (see [5]) is that all the irreducible
representations of W can be defined over K.

Inside this list of exceptions, some of the groups can be realized as real reflection
groups. Since they are the geometric realization of finite Coxeter groups, they are
pretty well understood. In the Coxeter-Dynkin classification, the correspondance is
G23 D H3, G28 D F4, G30 D H4, G35 D E6, G36 D E7, G37 D E8. In this case,
the rank of W is equal to the minimum number of reflections which are necessary
to generate the group. In the general case, it can be shown that this number is either
r or r C 1, where r is the rank of W. In the former case W is called well-generated,
in the latter badly generated. Among the (exceptional) groups of rank at least 3,
only G31 is badly generated. We denote n.W/ 2 fr; r C 1g the minimal number of
reflections needed to generate W.

Since most of the conjectures that we are interested in have been proven early
enough for the general series of the G.de; e; r/ (see Ariki-Koike [3], Broué-Malle
[12], Ariki [2], Bremke-Malle [10]) we will concentrate on the exceptional groups.
While the details of the classification are cumbersome, its general scheme is clear
enough. We recall it because the proof of many results on the BMR conjectures uses
separation of cases in families that originate from the proof of the classification. It
proceeds as follows:

1. If the action of the group on Cr is imprimitive, one proves that W has to belong
to the infinite series of the G.de; e; r/

2. If it is primitive of rank 2, then W=Z.W/ can be identified through the
isomorphism PSU2 ' SO3.Rred/ with the group of rotations of the tetrahedron,
of the octahedron or of the icosaedron, thus splitting this case in three families.
All such W are then obtained as a cyclic central extension of such a group.

3. If it is primitive of higher rank, then a theorem of Blichtfeld asserts that the
pseudo-reflections of W can have order only 2 or 3. The rest of the proof is based
on this result, and needs a lot of careful analysis to be completed. Actually it
turns out that only three groups, G25, G26 and G32 admits pseudo-reflections of
order 3. Moreover, only one of these groups (G31) is badly generated.

A convenient software for dealing with these exceptional groups is the (devel-
opment version of the) CHEVIE package for GAP3 (see [20, 44]). In particular it
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contains an increasing number of matrix models for irreducible representations of
the Hecke algebras (an therefore of the associated braid group).

3 Braid Groups

A crucial consequence of Steinberg’s theorem is that the action of W on the
complement Cr nSA of the attached reflection arrangementA D fKer.s� 1/I s 2
Rg is free. Broué, Malle and Rouquier defined a (generalized) braid group attached
to W � GLr.C/ as B D �1.X=W/. It fits into a short exact sequence 1 ! P !
B ! W ! 1, where P D �1.X/ is the fundamental group of the hyperplane
complement. They defined (conjugacy) classes of distinguished generators for B,
called braided reflections, which map onto (pseudo-)reflections, and which generate
the group. More generally, they proved that every parabolic subgroup WS of W can
be lifted to a ‘parabolic’ subgroup BS of B, isomorphic to the braid group of WS, in
a way which is well-defined up to P-conjugacy.

When W is a real reflection group, there are distinguished ‘base-points’, namely
the (contractible) components of the real hyperplane complement, and distinguished
generators attached to a choice of such a component (so-called Weyl chamber),
namely the straight loops around the walls of the Weyl chamber inside the orbit
space X=W (see [11]). The corresponding braid group is known as an Artin
group of finite Coxeter type, and these groups are well-understood: there is a nice
presentation mimicking the Coxeter presentation for W, and all the conjectures that
we are exploring in this paper are known for them. Therefore, the list of exceptional
groups which need to be taken care of actually ends at G34.

One thing which is useful to keep in mind when studyingB is that, up to (abstract)
group isomorphisms, the correspondence W 7! B is not 1–1. Actually, every B can
be obtained by only considering the 2-reflections groups (that is, complex reflection
groups whose pseudo-reflections all have order 2). Therefore, when proving purely
group-theoretic properties of B (not of P !), one can assume that W is a 2-reflections
group.

3.1 Center

The center of P obviously contains the homotopy class � of the loop t 7! e2� itx0,

where x0 2 X is the chosen base-point. Since e
2�i

jZ.W/j is a generator of the cyclic group
Z.W/, Broué, Malle and Rouquier defined a central element ˇ of B as the homotopy

class of the loop t 7! W:.e
2�it

jZ.W/j x0/. They conjectured

1. Z.P/ is infinite cyclic, generated by �.
2. Z.B/ is infinite cyclic, generated by ˇ.
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3. The exact sequence 1 ! P ! B ! W ! 1 induces a short exact sequence
1 ! Z.P/ ! Z.B/ ! Z.W/ ! 1.

Item (ii) was proven by Bessis in [7]. Items (i) and (iii) were proven by Digne, Marin
and Michel in [26].

3.2 Presentations

It was conjectured in [14] that there exists ‘nice’ finite presentations, similar to the
Artin presentations in the Coxeter case, and in particular satisfying the following
requirements:

• the generators are n.W/ braided reflexions, where n.W/ is the minimal number
of reflections needed to generated W

• the relations are homogeneous and positive.

A theorem of Bessis states that such a presentation exists as soon as the highest
degree of W is regular in the sense of Springer (see [6]). This applies to all
exceptional reflection groups except G15, for which such a presentation was already
known (see [14]). The case of the general series had also been established in [14],
and therefore the result is known in all cases.

For practical purposes however, one needs more precise results, specific to
each of the exceptional cases. To this end, Bessis and Michel manufactured a
GAP3 package, additional to CHEVIE, called VKCURVE (see [8]). This software
computes presentations for complements of algebraic curves and can be useful also
in other contexts. Experimental presentations for all the exceptional groups were
presented in [8], their rigorousness were subsequently justified in [7], and additional
presentations are given in [35].

3.3 Additional Properties

We gather here a few results obtained on these generalized braid groups since [14].

3.3.1 Word Problem, Conjugacy Problem

It is known how to solve the word problem and the conjugacy problem for these
groups. One major tool for this is the construction by Bessis in [7] of so-called
Garside monoids, as introduced in [23], for all well-generated groups. This proves
that the corresponding braid groups are the groups of fractions of such a monoid,
and therefore are torsion-free, and have decidable word and conjugacy problem.
For the general series, these consequences were clear from the description of B in
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[14], while for the exceptional groups of rank 2 they can be easily deduced from the
description in [4] of the braid group (see also e.g. [26, 46] for some Garside monoids
aspects in these cases, too). In the case of G31, one needs more involved tools: the
group B, viewed as groupoid, is equivalent to a Garside groupoid in the sense of
[24] (see again [7]) and therefore has a solvable word and conjugacy problem, too.

3.3.2 Homology

It was known earlier that, for the general series (see [45]), the Coxeter groups and
the groups of rank 2, the spaces X and X=W are K.�; 1/. It was proved by Bessis
in [7], that this result is also true for all exceptional groups. This reproves that B is
always torsion-free, and also provides a way to compute the homology of B from
X=W. The introduction of Garside monoids in [7] also provides, using the work of
Dehornoy-Lafont in [22], several complexes from which the homology of B can be
in principle computed. From this, the homology of B for all exceptional groups but
the higher homology groups of G34 was computed in [16]. The integral homology
for the general series still remains a bit mysterious (see [16] for partial results).

3.3.3 Linearity?

The proof of the linearity of the usual braid group [9, 30], and its subsequent
extension to the Artin groups of finite Coxeter type [21, 25], has been a major
breakthrough. It was achieved using a linear representation that we will call the
Krammer representation. A detailed study of this representation provided additional
properties of the group: that they can be seen as Zariski-dense subgroups of the
general linear group (and therefore essentially cannot be decomposed as direct
products), and that the pure braid groups are residually torsion-free nilpotent
[36, 37].

A natural question is then whether the similar properties hold in the general case.
This was conjectured in [39], where a generalization of the Krammer representation
has been constructed. It is shown there that the faithfulness of this representation
would have the same consequences on the structure of the group as in the real case.
The construction of [39] focus on 2-reflection groups. It has been generalized by
Chen in [19] to arbitrary reflection groups.

4 Hecke Algebras

One can attach to W a Laurent polynomial ring R D ZŒui̇;c�, where c runs among
the conjugacy classes of distinguished pseudo-reflections, and 06i < ec where ec
is the order of an arbitrary pseudo-reflection inside the conjugacy class c. There is
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a natural specialization morphism � W R ! K, uj;c 7! exp.�2�ij=ec/, and a useful
ring automorphism of R induced by ui;c 7! u�1

i;c , that we denote z 7! Nz.
The Hecke algebra associated to W is defined as the quotient of the group algebra

RB of B by the relations
Q

06i<ec
.� � ui;c/ D 0, where c runs among the conjugacy

classes of pseudo-reflections, and � runs among the braid reflections mapping to
a pseudo-reflection in c under the natural mapping B ! W. Since two braided
reflections mapping to the same pseudo-reflection are conjugated, it is enough to
impose only one relation per conjugacy class. We have a natural isomorphism H˝�

K ' KW, and therefore H can be seen as a deformation of KW.
The automorphism z 7! Nz of R can be extended to an anti-automorphism of RB by

putting Nb D b�1 for all b 2 B, and this induces an anti-automorphism of H, since the
defining ideal of H is easily checked to be invariant under this anti-automorphism.

4.1 Freeness Conjecture

The basic conjecture about H is that it should be a free module over R, of rank jWj.
It has been proven in [14] that it is enough to show that H is spanned over R by jWj
elements. A weak version of this conjecture states, as an important first step, that H
should be at least finitely generated as a R-module. By general arguments based on
Tits’ deformation theorem, this weak version is strong enough to imply that, after
extension of scalars to an algebraic closure F of the field of fractions of R, there
exists an isomorphism H ˝R F ' FW (see e.g. [40]). A more difficult result due to
Losev (see [32]) states that it also implies that every specialization ' W R ! C of H
to the complex numbers has the same dimension: dimH ˝' C D jWj. An account
on the earlier works on this conjecture can be found in the introduction of [40]. We
just recall from there that the case of the general series (strong version) is proved
in [1, 3, 12]. We focus here on the most recent and inclusive results on exceptional
groups.

The weak version is now known for every group, thanks to results of
Etingof-Rains ([27]; see also [40]) for the groups of rank 2 (from G4 to G22),
Marin [38, 40] for the groups G25, G26, G32, and Marin-Pfeiffer (see [41]) for the
remaining groups G24;G27;G29;G31;G33;G34.

The full version is, for now, known for all the groups of rank at least 3 [38, 40, 41],
and all the groups belonging to the first two families of groups of rank 2 (from G4

to G15) by work of E. Chavli (in the course of writing, see [17]) plus the groups G16

(Chavli, see [18]) and G22 (Marin-Pfeiffer, see [41]). The remaining groups are G17,
G18, G19, G20, G21. For these five groups, the freeness conjecture is still open, but
seems now to be within reach. In all the cases for which this version is proved, one
can actually find a basis originating from the braid group itself, as expected in [15,
1.17].
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4.2 Trace Conjecture(s)

It is conjectured that H admits the structure of a symmetric algebra over R. This
means that there should exist a symetrizing trace t W H ! R, that is a R-linear
form satisfying t.ab/ D t.ba/, such that the associated map H ! HomR.H;R/,
x 7! .y 7! t.xy// is an isomorphism. It was proved in [10] that H satisfies this
conjecture for the general series.

This property is important in particular in order to understand the possible
specializations. A computational understanding of such a trace is related to the
knowledge of the so-called Schur elements associated to it. These elements are
essentially (the inverse of) the coefficients of the decomposition of such a trace as a
linear combination of the matrix traces associated to the irreductible representations
of H ˝R F, here assumed by the freeness conjecture to be isomorphic to FW.

It was proved in [15] that, if the freeness conjecture is true, then there exists at
most one trace satisfying the following properties.

1. t is a symmetrizing trace
2. t0 D � ˝ t W KW ' H ˝� K ! R ˝� K ' K is the usual symmetrizing trace on

KW, defined by t0.w/ D 0 if w 2 W n f1g, t0.1/ D 1.
3. for all b 2 B, we have t.�/t.b�1/ D t.b�/.

If there is such a trace, these conditions define a canonical trace on H. However,
the fact that the trace constructed in [10] for the general series satisfies this
condition is apparently still conjectural and this is an exception to the usual motto
that ‘everything is known for the infinite series’. So far, the only (non-Coxeter)
exceptional groups for which this conjecture has been proved are G4, G12, G22

and G24, in [35] (the case of G4 was later independently checked by the author in
[43]), under the freeness assumption. Moreover, in these three cases, the trace used
satisfies the characterization above. Since the freeness conjecture is now known to
hold for these three groups, this solves the trace conjectures for these cases.

We also mention that, under the validity of the freeness conjecture, Malle
constructed the Schur elements associated to a potential trace satisfying similarly
nice properties, for every exceptional complex reflection groups in [33, 34].

4.3 Additional (Conjectural) Properties

In the case of Coxeter groups, much more structural properties of the Hecke algebras
are known. A natural and widely unanswered question is whether these properties
can be extended to the general case. Among these, two probably deserve a natural
interest. Before stating them, we recall that, as a corollary of the lifting of parabolic
subgroups to the braid group, the choice of a parabolic subgroup W0 of W endows
H with the structure of a H0-module, where H0 denotes the Hecke algebra. This
structure is well-defined up to P-conjugacy.
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The two properties in question, for Coxeter groups, are the following ones:

1. if W0 is a parabolic subgroup of W, then H is a free H0-module of rank jWj=jW0j
2. if S is an R-algebra, then the center of S ˝R H is a free S-module.

Among the exceptional groups, the first property has been proved only for a couple
of inclusions .W;W0/, in the course of proving the freeness conjecture. These are:
.G32;G25/, .G25;G4/, .G4;Z3/, .G25;Z3 � Z3/, .G26;G4/ (see [38, 40]), .G8;Z4/,
.G16;Z5/ (see [18]), .G12;Z2/, .G22;Z2/, .G24;B2/, .G27;B2/, .G29;B3/, .G31;A3/,
.G33;A4/, .G33;D4/ .G34;G33/ (see [41]). Concerning the second property, it has
been proven for S D R by Francis [28] for the groups G4 and G.4; 1; 2/. We are not
aware of any other result in this direction.
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