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Abstract Let g be a finite-dimensional simple Lie algebra of rank ` over an
algebraically closed field k of characteristic zero. This note is a survey on several
results, obtained jointly with Jean-Yves Charbonnel, concerning the centralizer ge of
a nilpotent element e of g. First, we take interest in a famous conjecture by Elashvili
on the index of ge. Second, we study the question of whether the algebra S.ge/g

e
of

symmetric invariants of ge is a polynomial algebra. Our main result stipulates that
if for some homogeneous generators of S.g/g, the initial homogeneous components
of their restrictions to e C gf are algebraically independent, with .e; h; f / an sl2-
triple of g, then S.ge/g

e
is a polynomial algebra. As applications, we pursue the

investigations of Panyushev et al. (J Algebra 313:343–391, 2007) and produce new
examples of nilpotent elements that verify the above polynomiality condition.

We also present a recent result of Arakawa-Premet related to the above problems.

Keywords Centralizer • Elashvili conjecture • Slodowy grading • Symmetric
invariant

This note is a survey on several results, obtained jointly with Jean-Yves Charbonnel,
on centralizers of elements in a reductive Lie algebra. These results are mostly based
on the articles [5, 6].

1 Elashvili’s Conjecture and Consequences

Let g be a finite-dimensional Lie algebra over an algebraically closed field k of
characteristic zero. The index of g, denoted by ind g, is the minimal dimension of
the stabilizers of linear forms on g for the coadjoint representation, [11]:

ind g WD minfdimg� I � 2 g�g
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where g� D fx 2 g I �.Œx; g�/ D 0g. The notion of the index is important in
representation theory and invariant theory. By Rosenlicht [28], if g is algebraic,
i.e., g is the Lie algebra of some algebraic linear group G, then the index of g is
the transcendence degree of the field of G-invariant rational functions on g�. The
index of a reductive algebra is equal to its rank. In general, computing the index
of an arbitrary Lie algebra is a wild problem. However, there are a large number
of interesting results for several classes of non-reductive subalgebras of reductive
Lie algebras. For example, the centralizers of elements form an interesting class
of subalgebras (cf. e.g.,[13, 22, 32]). This topic is closely related to the theory of
integrable Hamiltonian systems [2, 3]. Let us make this link precise.

The symmetric algebra S.g/ carries a natural Poisson structure. Let � 2 g� and
consider the Mishchenko-Fomenko subalgebraA� of S.g/ Š kŒg��, constructed by
the so-called argument shift method, [20]. It is generated by the �-shifts of p for
p in the algebra S.g/g of g-invariants of S.g/, that is, A� is generated by all the
derivativesDi

� . p/ for p 2 S.g/g and i 2 f0; : : : ; degp � 1g, where

Di
�. p/.x/ WD di

dt
p.x C t�/jtD0; x 2 g�:

It is well-known thatA� is a Poisson-commutative subalgebra of S.g/.
Let g�

sing be the set of nonregular linear forms x 2 g�, i.e.,

g�
sing WD fx 2 g� j dimgx > ind gg:

If g�
sing has codimension at least 2 in g�, we say that g is nonsingular.

Theorem 1 (Bolsinov, [3, Theorem 2.1 and 3.2]) Assume that g is nonsingular,
and let x 2 g�. For some � 2 g�, there is a Mishchenko-Fomenko subalgebra A�

in S.g/ Š kŒg�� such that its restriction to Gx contains 1
2
dim .Gx/ algebraically

independent functions if and only if indgx D indg.
If g is reductive, then g and g� are isomorphic as Lie algebras and its index indg

is equal to its rank, denoted by `. The stabilizer of an element x 2 g� identifies
with the centralizer gx of x viewed as an element of g through this isomorphism.
Motivated by the preceding result of Bolsinov, Elashvili formulated a conjecture:

Conjecture 1 Assume that g is reductive. Then the index of gx is equal to indg D `

for any x 2 g.
Elashvili’s conjecture has attracted the interest of many invariant theorists

(e.g. [10, 22, 26, 32]). Thanks to Jordan decomposition, the conjecture reduces to
the case where x 2 g is a nilpotent element. Also, it reduces to the case where g
is simple. Then the conjecture was proven by Yakimova for g a simple Lie algebra
of classical type, [32], and checked by a computer program by De Graaf for g a
simple Lie algebra of exceptional type, [10]. Before that, the result was established
for some particular classes of nilpotent elements by Panyushev, [22, 23].
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In a joint work with Jean-Yves Charbonnel, [5], we gave an almost case-
free proof of Elashvili’s conjecture using Bolsinov’s criterion (cf. Theorem 1).
Our approach was totally different from the previous ones. In more detail, this
criterion is used to reduce the conjecture to the case of rigid nilpotent elements,
that is those whose nilpotent G-orbit cannot be properly induced in the sense of
Lusztig-Spaltenstein, [18]. For the rigid nilpotent elements, we have developed other
methods that cover all cases except one case in type E7 and six cases in type E8.
These remaining cases have been dealt with the computer program GAP4.

To summarize, we can state:

Theorem 2 ([5, Theorem 1.2]) Assume that g is reductive. Then the index of gx is
equal to indg D ` for any x 2 g.

Assume from now on that g is simple of rank `. Denote by G its adjoint group
and by h: ; :i the Killing form of g.

Elashvili’s conjecture also appears in invariant theory through the following
interesting question, first raised by Premet:

Question 1 Let x 2 g. Is S.gx/g
x
a polynomial algebra in ` variables?

In order to answer this question, we can assume that x is nilpotent. Besides, if
S.gx/g

x
is polynomial for some x 2 g, then it is so for any element in the adjoint

orbit Gx of x. If x D 0, it is well-known since Chevalley that S.gx/g
x D S.g/g is

polynomial in ` variables. At the extreme opposite, if x is a regular nilpotent element
of g, then gx is abelian of dimension `, [12], and S.gx/g

x D S.gx/ is polynomial in
` variables too.

A positive answer to Question 1 was suggested in [26, Conjecture 0.1] for any
simple g and any x 2 g. Yakimova has since discovered a counter-example in
type E8, [33], disconfirming the conjecture. More precisely, the elements of the
minimal nilpotent orbit in E8 do not satisfy the polynomiality condition. The present
note contains another counter-example in type D7 (cf. Example 6). Question 1
still remains interesting and has a positive answer for a large number of nilpotent
elements e 2 g as it is explained below.

Elashvili’s conjecture (cf. Theorem 2) is deeply related to Question 1. First of all,
it implies that if S.ge/g

e
is polynomial, it is so in ` variables. Further, according to

Theorem 2, the main results of [26], that we summarize below, can be applied (see
Theorem 3).

Let e be a nilpotent element of g. By the Jacobson-Morosov Theorem, e is
embedded into an sl2-triple .e; h; f / of g. Denote by Se WD e C gf the Slodowy
slice associated with e. Identify g� with g, and .ge/� with gf , through the Killing
form h: ; :i. For p in S.g/ ' kŒg�� ' kŒg�, denote by ep the initial homogenous
component of its restriction to Se. According to [26, Proposition 0.1], if p is in
S.g/g, then ep is in S.ge/g

e
.
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Theorem 3 (Panyushev-Premet-Yakimova, [26, Theorem 0.3]) Suppose that
the following two conditions are satisfied:

(1) for some homogenous generators q1; : : : ; q` of S.g/g, the polynomial functions
eq1; : : : ; eq` are algebraically independent,

(2) ge is nonsingular.

Then S.ge/g
e
is a polynomial algebra with generators eq1; : : : ; eq`.

As a consequence of Theorem 3, if g is simple of type A` or C`, then all nilpotent
elements of g verify the polynomiality condition, cf. [26, Theorem 4.2 and 4.4]. The
result for the type A` was independently obtained by Brown and Brundan, [4]. In
[26], the authors also provide some examples of nilpotent elements satisfying the
polynomiality condition in the simple Lie algebras of types B` and D`, and a few
ones in the simple exceptional Lie algebras. At last, note that the analogue question
to Question 1 for the positive characteristic was dealt with by Topley for the simple
Lie algebras of types A` and C`, [31].

2 Characterization of Good Elements

We now summarize the main result of [6], which continues the investigations of
[26]. The following definition will be central:

Definition 1 An element x 2 g is called a good element of g if for some
graded sequence .p1; : : : ; p`/ in S.gx/g

x
, the nullvariety of p1; : : : ; p` in .gx/� has

codimension ` in .gx/�.
For example, regular nilpotent elements are good. Indeed, for e in the regular
nilpotent orbit of g and .q1; : : : q`/ a homogenous generating family of S.g/g, it
is well-known that eqi D deqi for i D 1; : : : ; ` and that .deq1; : : : ; deq`/ forms a
basis of ge, [17]. Hence e is good.

Also, by Panyushev et al. [26, Theorem 5.4], all nilpotent elements of a simple
Lie algebra of type A` are good. Moreover, according to [34, Corollary 8.2], even1

nilpotent elements without odd (respectively even) Jordan blocks of g are good if g
is of type C` (respectively B` or D`). We generalize these results (cf. Proposition 3).

Our first result is the following:

Proposition 1 ([6]) Let x be a good element of g. Then S.gx/g
x
is a polynomial

algebra and S.gx/ is a free extension of S.gx/g
x
.

Furthermore, we show that x is good if and only if so is its nilpotent component
in the Jordan decomposition. As a consequence, we can restrict the study to the case
of nilpotent elements.

1i.e., this means that the Dynkin grading of g associated with the nilpotent element has no odd
term.
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Our main result is the following theorem whose proof is outlined in Sect. 3:

Theorem 4 ([6]) Suppose that for some homogeneous generators q1; : : : ; q` of
S.g/g, the polynomial functions eq1; : : : ; eq` are algebraically independent. Then
e is a good element of g. In particular, S.ge/g

e
is a polynomial algebra and S.ge/ is

a free extension of S.ge/g
e
. Moreover, . eq1; : : : ; eq`/ is a regular sequence in S.ge/.

In other words, Theorem 4 says that Condition (1) of Theorem 3 is sufficient to
ensure the polynomiality of S.ge/g

e
. However, if only Condition (1) of Theorem 3

is satisfied, the (polynomial) algebra S.ge/g
e
is not necessarily generated by the

polynomial functions eq1; : : : ; eq`. As a matter of fact, there are nilpotent elements e
satisfying Condition (1) and for which S.ge/g

e
is not generated by some eq1; : : : ; eq`,

for any choice of homogenous generators q1; : : : ;q` of S.g/g (cf. Remark 1).
Theorem 4 can be applied to a great number of nilpotent orbits in the simple

classical Lie algebras (cf. Sect. 4), and for some nilpotent orbits in the exceptional
Lie algebras (cf. Sect. 5). For example, according to [25, Proposition 6.3] and
Theorem 4, the elements of the subregular nilpotent orbit of g are good.

All examples of good elements we encounter satisfy the hypothesis of Theo-
rem 4. In fact, we have recently proven that the converse of Theorem 4 is true
(see [7]).

Theorem 5 Let e be a nilpotent of g. If e is good then for some graded generating
sequence .q1; : : : ; q`/ in S.g/g, eq1; : : : ; eq` are algebraically independent over k.
In other words, the converse implication of Theorem 4 holds.

Notice that it may happen that for some r1; : : : ; r` in S.g/g, the elements
er1; : : : ; er` are algebraically independent over k, but e is not good. This is the
case for instance for the nilpotent elements in so12.k/ associated with the partition
.5; 3; 22/, see Example 5.

In fact, according to [26, Corollary 2.3], for any nilpotent e of g, there exist
r1; : : : ; r` in S.g/g such that er1; : : : ; er` are algebraically independent over k.

3 Outline of the Proof of Theorem 4

Let q1; : : : ; q` be homogeneous generators of S.g/g of degrees d1; : : : ; d` respec-
tively. The sequence .q1; : : : ;q`/ is ordered so that d1 6 � � � 6 d`. Assume that the
polynomial functions eq1; : : : ; eq` are algebraically independent.

According to Proposition 1, it suffices to show that e is good, and so it suffices to
show that the nullvariety of eq1; : : : ; eq` in gf has codimension ` since eq1; : : : ; eq`

are invariant homogeneous polynomials. To this end, it suffices to prove that

S WD S.ge/
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is a free extension of the k-algebra generated by eq1; : : : ; eq`. We are led to find a
subspace V0 of S such that the linear map

V0 ˝k kŒ eq1; : : : ; eq`� �! S; v˝a 7�! va

is a linear isomorphism. We explain below the construction of the subspace V0.
Let x1; : : : ; xr be a basis of ge such that for i D 1; : : : ; r, Œh; xi� D nixi for some

nonnegative integer ni. For j D .j1; : : : ; jr/ in Nr, set:

jjj WD j1C � � � C jr; jjje WD j1n1 C � � � C jrnr C 2jjj; xj D xj11 � � �xjrr :

The algebra S has two gradations: the standard one and the Slodowy gradation. For
all j in N

r, xj is homogeneous with respect to these two gradations. It has standard
degree jjj and, by definition, it has Slodowy degree jjje. For m nonnegative integer,
denote by SŒm� the subspace of S of Slodowy degree m.

For any subspace V of S, set:

VŒt� WD kŒt� ˝k V; VŒŒt�� WD kŒŒt�� ˝k V; V..t// WD k..t// ˝k V:

For V a subspace of SŒŒt��, denote by V.0/ the image of V by the quotient morphism

SŒŒt�� �! S; a.t/ 7�! a.0/:

The Slodowy grading of S induces a grading of the algebra S..t// with t having
degree 0. Let � be the morphism of algebras

S �! SŒt�; xi 7! txi; i D 1; : : : ; r:

Themorphism � is a morphismof graded algebras. Denote by ı1; : : : ; ı` the standard
degrees of eq1; : : : ; eq` respectively, and set for i D 1; : : : ; `:

Qi WD t�ıi�.�.qi// with �.qi/.x/ WD qi.e C x/; 8 x 2 gf :

Let A be the subalgebra of SŒt� generated byQ1; : : : ;Q`. Then A.0/ is the subalgebra
of S generated by eq1; : : : ; eq`. For .j1; : : : ; j`/ in N

`, �.qj11 /� � ��.qj`` / and eqj11 � � � eqj``
are Slodowy homogenous of Slodowy degree 2d1j1 C � � � C 2d`j` (cf. e.g [26, 27]).
Hence, A and A.0/ are graded subalgebras of SŒt� and S respectively. Denote by
A.0/C the augmentation ideal of A.0/, and let V0 be a graded complement to SA.0/C
in S. The main properties of our data A and A.0/ are the following ones:

(1) A is a graded polynomial algebra,
(2) the canonical morphism A ! A.0/ is a homogenous isomorphism,
(3) the algebra SŒt; t�1� is a free extension of A,
(4) the ideal SŒt; t�1�AC of SŒt; t�1� is radical.
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With these properties we first obtain that SŒŒt�� is a free extension of A and that SŒŒt��
is a free extension of the subalgebra QA of SŒŒt�� generated by kŒŒt�� and A. From these
results, we deduce that the linear map

V0 ˝k A.0/ �! S; v˝a 7�! va

is a linear isomorphism, as expected.

4 Consequences of Theorem 4 for the Simple Classical Lie
Algebras

By Panyushev et al. [26, Theorem 4.2 and 4.4], the first consequence of Proposi-
tion 1 and Theorem 4 is the following.

Proposition 2 Assume that g is simple of type A` or C`. Then all the elements of g
are good.

To state our results for the simple Lie algebras of types B` andD`, let us introduce
some more notations. Assume that g D so.V/ � gl.V/ for some vector space
V of dimension n D 2` C 1 or n D 2`. For an endomorphism x of V and for
i 2 f1; : : : ; ng, denote by Qi.x/ the coefficient of degree n � i of the characteristic
polynomial of x. Then for any x in g, Qi.x/ D 0 whenever i is odd. Define a
generating family q1; : : : ; q` of the algebra S.g/g as follows. For i D 1; : : : ; ` � 1,
set qi WD Q2i. If n D 2` C 1, set q` WD Q2`, and if n D 2`, let q` be the Pfaffian that
is a homogenous element of degree ` of S.g/g such that Q2` D q2

`.
Following the notations of Sects. 2 and 3, denote by eqi the initial homogeneous

component of the restriction to gf of the polynomial function x 7! qi.eC x/, and by
ıi the degree of eqi.

2 According to [26, Theorem 2.1], eq1; : : : ; eq` are algebraically
independent if and only if

dimge C ` � 2.ı1C � � � C ı`/ D 0:

In that event, by Theorem 4, e is good and we say that e is very good.
The very good nilpotent elements of g can be characterized in term of their asso-

ciated partitions of n as follows. Assume that � D .�1; : : : ; �k/, with �1> � � �>�k,
is the partition of n associated with the nilpotent orbit Ge. Then the even integers of
� have an even multiplicity, [9, §5.1]. Thus k and n have the same parity. Consider
the following conditions on a sequence � D .�1; : : : ; �j/ with �1> � � �>�j:

1) �j�1 and �j are odd,
2) �j�1 and �j are even,
3) j > 3, �1 and �j are odd and �i is even for any i 2 f2; : : : ; j � 1g.

2The sequence of the degrees .ı1; : : : ; ı`/ is described by [26, Remark 4.2].
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Lemma 1

(i) If n is odd, then � is very good if and only if �1 is odd and if .�2; : : : ; �k/ is a
concatenation of sequences verifying Conditions (1) or (2) with j D 2.

(ii) If n is even, then � is very good if and only if � is a concatenation of sequences
verifying Condition (3) or Condition (1) with j D 2.

For example, the partitions .5; 32; 22/ and .7; 52; 42; 3; 12/ of 15 and 30 respec-
tively are very good. In particular, by Lemma 1, all even nilpotent elements in type
B`, or in type D` with odd rank `, correspond to very good partitions and so are
good.

Theorem 4 also allows to obtain examples of good, but not very good, nilpotent
elements of g. For them, there are a few more work to do. Let us state one result as
an illustration:

Proposition 3 ([6])

(i) Assume that for some k0 2 f2; : : : ; kg, �i is even for all i6 k0, that
.�k0C1; : : : ; �k/ is very good and that �1 D � � � D �k0 . Then � is not very
good, but e is good.

(ii) Assume that k D 4 and that �1; �2; �3; �4 are even. Then e is good.

For example, .64; 5; 3/ satisfies the hypothesis of (i), and .62; 42/ satisfies the
hypothesis of (ii).

There are also examples of elements that verify the polynomiality condition
but that are not good; see Examples 4 and 5. To deal with them, we use different
techniques, more similar to those used in [26] and that we present in Sect. 6.

As a result of all this, we observe for example that all nilpotent elements of
so.kn/, with n68, are good, and that all nilpotent elements of so.kn/, with n6 13,
verify the polynomiality condition.

Our results do not cover all nilpotent orbits in type B` and D` for larger `

(cf. Example 6).

Remark 1 Assume that g D so.V/, with dimV D 12, and that � D .52; 12/.
Then the degrees of eq1;

eq2;
eq3;

eq4;
eq5;

eq6 are 1; 1; 2; 2; 2; 2 respectively. Since
10 D 1 C 1 C 2 C 2 C 2 C 2 D .dimge C `/=2, the polynomial functions
eq1;

eq2;
eq3;

eq4;
eq5;

eq6 are algebraically independent, and by Theorem 4, S.ge/g
e

is polynomial. One can verify that eq5 D z2 for some z in the center z.ge/ of ge. Since
z.ge/ has dimension 3, for any other choice of homogenous generators q1; : : : ; q`

of S.g/g, S.ge/g
e
cannot be generated by the elements eq1;

eq2;
eq3;

eq4;
eq5;

eq6 for
degree reasons.

This shows that Condition (2) of Theorem 3 cannot be removed to ensure that
S.ge/g

e
is a polynomial algebra in the variables eq1;

eq2;
eq3;

eq4;
eq5;

eq6. However
one can sometimes, as in this example, provide explicit generators.
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5 Examples in Simple Exceptional Lie Algebras

We give in this section examples of good nilpotent elements in simple exceptional
Lie algebras of type E6, F4 or G2 which are not covered by Panyushev et al. [26].
These examples are all obtained through Theorem 4.

According to [26, Theorem 0.4] and Theorem 4, the elements of the minimal
nilpotent orbit of g, for g not of type E8, are good. In addition, as it is explained in
Sect. 2, the elements of the regular, or subregular, nilpotent orbit of g are good. So
we do not consider here these cases.

Example 1 Suppose that g has type E6. Let V be the module of highest weight
the fundamental weight $1 in the notation of Bourbaki. It has dimension 27 and
g identifies with a subalgebra of sl27.k/. For x in sl27.k/ and for i D 2; : : : ; 27,
let pi.x/ be the coefficient of T27�i in det .T � x/ and denote by qi the restriction
of pi to g. Then .q2; q5; q6; q8; q9; q12/ is a generating family of S.g/g, [19]. Note
that .e; h; f / is an sl2-triple of sl27.k/. We denote by epi the initial homogeneous
component of the restriction to eC Qgf of pi where Qgf is the centralizer of f in sl27.k/.
For i D 2; 5; 6; 8; 9; 12,

deg epi 6 deg eqi:

On the other hand,

deg eq2 C deg eq5 C deg eq6 C deg eq8 C deg eq9 C deg eq12 6
1

2
.dimge C 6/;

with equality if and only if eq2;
eq5; eq6;

eq8;
eq9;

eq12 are algebraically independent.
So if the sum

˙ WD deg ep2 C deg ep5 C deg ep6 C deg ep8 C deg ep9 C deg ep12

is equal to

˙ 0 WD 1

2
.dimge C 6/;

then we can directly conclude that e is good. Otherwise, from the knowledge of
the maximal eigenvalue �max of the restriction of adh to g and the adh-weight of
epi, it is sometimes possible to deduce that deg epi < deg eqi and that e is good.
We list in Table 1 the cases where we able to conclude in this way. The details
are omitted. In Table 1, the fourth column gives the partition of 27 corresponding
to the nilpotent element e of sl27.k/, and the sixth one gives the adh-weights of
ep2;

ep5;
ep6;

ep8;
ep9; ep12.

In conclusion, there remain nine unsolved nilpotent orbits in type E6.

Example 2 Suppose that g is simple of type F4. Let V be the module of highest
weight the fundamental weight $4 in the notation of Bourbaki. Then V has
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Table 1 Data for E6

Label dimge Partition deg epi Weights �max ˙ ˙ 0

D5 2 0 2 0 2

2

10 (11,9,5,1,1) 1,1,1,1,1,1 2,8,10,14,16,22 14 6 8

E6.a3/ 2 0 2 0 2

0

12 .9; 7; 52; 1/ 1,1,1,1,1,2 2,8,10,14,16,20 10 7 9

D5.a1/ 1 1 0 1 1

2

14 (8,7,6,3,2,1) 1,1,1,1,2,2 2,8,10,14,14,20 10 8 10

A5 2 1 0 1 2

1

14 .9; 62; 5; 1/ 1,1,1,1,1,2 2,8,10,14,16,20 10 7 10

A4 C A1 1 1 0 1 1

1

16 .7; 6; 5; 4; 3; 2/ 1,1,1,2,2,2 2,8,10,12,14,20 8 9 11

D4 0 0 2 0 0

2

18 .73; 16/ 1,1,1,2,2,2 2,8,10,12,14,20 10 9 12

D4.a1/ 0 0 2 0 0

0

20 .53; 33; 13/ 1,1,2,2,2,3 2,8,8,12,14,18 6 11 13

2A2 C A1 1 0 1 0 1

0

24 .5; 42; 33; 22; 1/ 1,1,2,2,2,3 2,8,8,12,14,18 5 11 15

Table 2 Data for F4

Label > dimge Partition deg epi Weights �max ˙ ˙ 0

F4.a2/ 0 2 0 2 8 .9; 7; 52/ 1,1,1,2 2,10,14,20 10 5 6

C3 1 0 1 2 10 .9; 62; 5/ 1,1,1,2 2,10,14,20 10 5 7

B3 2 2 0 0 10 .73; 15/ 1,1,2,2 2,10,12,20 10 6 7

F4.a3/ 0 2 0 0 12 .53; 33; 12/ 1,2,2,3 2,8,12,18 6 8 8

C3.a1/ 1 0 1 0 14 .52; 42; 3; 22; 1/ 1,2,2,3 2,8,12,18 6 8 9
QA2 C A1 0 1 0 1 16 .5; 42; 33; 22/ 1,2,2,3 2,8,12,18 5 8 10

dimension 26 and g identifies with a subalgebra of sl26.k/. For x in sl26.k/ and
for i D 2; : : : ; 26, let pi.x/ be the coefficient of T26�i in det.T � x/ and denote by qi
the restriction of pi to g. Then .q2; q6; q8; q12/ is a generating family of S.g/g, [19].
As in Example 1, in some cases, it is possible to prove that e is good. These cases
are listed in Table 2, indexed as in Example 1.

In conclusion, there remain six unsolved nilpotent orbits in type F4.

Example 3 Suppose that g is simple of type G2. Let V be the module of highest
weight the fundamental weight $1 in the notation of Bourbaki. Then V has
dimension 7 and g identifies with a subalgebra of sl7.k/. For x in sl7.k/ and for
i D 2; : : : ; 7, let pi.x/ be the coefficient of T7�i in det.T � x/ and denote by qi the
restriction of pi to g. Then q2; q6 is a generating family of S.g/g, [19]. There is only
one nonzero nilpotent orbit which is neither regular, subregular or minimal. For e in
it, we can show that e is good from Table 3, indexed as in Example 1.

In conclusion, all elements are good in type G2.
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Table 3 Data for G2

Label < dimge Partition deg epi Weights �max ˙ ˙ 0

QA1 1 0 6 (3; 22) 1,3 2,6 3 4 4

6 A Result of Joseph-Shafrir and Applications

In this section, we provide, in a different way, examples of nilpotent elements which
verify the polynomiality condition but that are not good, using techniques developed
by Joseph-Shafrir, [16]. We also obtain an example of nilpotent element in type D7

which does not verify the polynomiality condition.
Let 	0 2 ge ˝k

V
2gf be the bivector defining the Poisson bracket on S.ge/

induced from the Lie bracket. According to the main theorem of [27], S.ge/ is the
graded algebra relative to the Kazhdan filtration of the finite W-algebra associated
with e so that S.ge/ inherits another Poisson structure. The graded algebra structure
so-obtained is the Slodowy graded algebra structure. Let 	 2 S.ge/ ˝k

V
2gf be

the bivector defining this other Poisson structure. According to [27, Prop. 6.3] (see
also [26, §2.4]), 	0 is the initial homogeneous component of 	. Denote by r the
dimension of ge and set:

! WD 	.r�`/=2 2 S.ge/ ˝k

V
r�`gf ; !0 WD 	

.r�`/=2
0 2 S.ge/ ˝k

V
r�`gf :

Then !0 is the initial homogeneous component of !. This fact is the key point in
the proof of the results we state now.

Theorem 6 ([6]) Let q1; : : : ; q` be some homogeneous generators of S.g/g, and
let r1; : : : ; r` be algebraically independent homogeneous elements of S.g/g such
that er1; : : : ; er` are algebraically independent.

(i) For some homogeneous element p of S.g/g,

dr1^ � � � ^ dr` D p dq1^ � � � ^ dq`

and we have,

X̀

iD1

deg eri D deg ep C 1

2
.dimge C `/:

(ii) If ep is a greatest divisor of d er1^ � � � ^ d er` in S.ge/ ˝k

V
`ge, then ge is

nonsingular.
(iii) Assume that for some homogeneous polynomials p1; : : : ; p` in S.ge/g

e
,

er1; : : : ; er` are in kŒp1; : : : ;p`� and that

degp1C � � � C degp` D d C 1

2
.dimge C `/
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where d is the degree of a greatest divisor of dp1^ � � � ^dp` in S.ge/. Then ge

is nonsingular.

The following proposition is a particular case of [16, §5.7].

Proposition 4 (Joseph-Shafrir, [16]) Suppose that ge is nonsingular.

(i) If there exist algebraically independent homogeneous polynomials p1; : : : ; p` in
S.ge/g

e
such that

degp1C � � � Cdegp` D 1

2
.dimge C `/;

then S.ge/g
e
is a polynomial algebra generated by p1; : : : ; p`.

(ii) Suppose that the semiinvariant elements of S.ge/ are invariant. If S.ge/g
e

is a polynomial algebra, then it is generated by homogeneous polynomials
p1; : : : ;p` such that

degp1C � � � C degp` D 1

2
.dimge C `/:

To produce new examples, our general strategy is the following: We first
apply Theorem 6,(ii), in order to prove that ge is nonsingular. Next, we search
for independent homogeneous polynomials p1; : : : ;p` in S.ge/g

e
satisfying the

conditions of Theorem 6,(iii), with d D 0. Then we can apply Proposition 4,(i).
Proposition 4,(ii), is useful to construct counter-examples (cf. Example 6).

Example 4 Let e be a nilpotent element of so10.k/ associated with the partition
.32; 22/. Then S.ge/g

e
is a polynomial algebra but e is not good as explained

below. Let q1; : : : ;q5 be as in Sect. 4. The degrees of eq1; : : : ; eq5 are 1; 2; 2; 3; 2

respectively. Using the computer programMaple, we get the algebraic relation:

eq2
4 � 4 eq3

eq2
5 D 0:

Set:

ri WD
�

qi if i D 1; 2; 3; 5

q2
4 � 4q3q2

5 if i D 4:

The polynomials r1; : : : ; r5 are algebraically independent over k and

dr1^ � � � ^ dr5 D 2 q4 dq1^ � � � ^ dq5

Moreover, er4 has degree at least 7, er1; : : : ; er5 are algebraically independent, and
er4 has degree 7.

A precise computation shows that er3 D p2
3 for some p3 in the center of ge, and

that er4 D p4
er5 for some polynomial p4 of degree 5 in S.ge/g

e
. Setting pi WD eri for
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i D 1; 2; 5, the polynomials p1; : : : ;p5 are algebraically independent homogeneous
polynomials of degree 1; 2; 1; 5; 2 respectively. Furthermore, the greatest divisors of
dp1^ � � � ^ dp5 in S.ge/ have degree 0, and p4 is in the ideal of S.ge/ generated by p3

and p5. So, by Theorem 6,(iii), ge is nonsingular, and by Proposition 4,(i), S.ge/g
e

is a polynomial algebra generated by p1; : : : ;p5.
At last, e is not good since the nullvariety of p1; : : : ; p5 in .ge/� has codimension

at most 4.

Example 5 In the same way, for the nilpotent element e of so11.k/ associated with
the partition .32; 22; 1/, we can prove that S.ge/g

e
is a polynomial algebra generated

by polynomials of degree 1; 1; 2; 2; 7, ge is nonsingular but e is not good.

Remark 2 Assume that g D so.V/ for some vector space V of dimension 2` C 1

or 2` and let e 2 g be a nilpotent element of g. Our results imply that if `6 6,
then either e is good, or e is not good but S.ge/g

e
is a polynomial algebra and ge is

nonsingular.
In particular, there are good nilpotent elements for which the codimension of

.ge/�
sing in .ge/� is 1. Indeed, by Panyushev et al. [26, §3.9], for some nilpotent

element e0 in B3, the codimension of .ge
0

/�
sing in .ge

0

/� is one but, in B3, all nilpotent
elements are good. For such nilpotent elements, note that [26, Theorem 0.3]
(cf. Theorem 3) cannot be applied.

Example 6 From the rank 7, there are elements that do no satisfy the polynomiality
condition. Let e be a nilpotent element of so14.k/ associated with the partition
.32; 24/. Then ` D 7 and the degrees of eq1; : : : ; eq7 are 1; 2; 2; 3; 4; 5; 3 respec-
tively, with q1; : : : ;q7 as in Sect. 4. Using Proposition 4,(ii), we can prove that e
does not satisfy the polynomiality condition.

7 A Result of Arakawa-Premet

Let us mention a recent result of Arakawa and Premet, [1], which is related to the
problems addressed in the previous sections.

We assume in this section that k is the field of complex numbersC. Let � 2 .ge/�
and denote by Ae;� be the Mishchenko-Fomenko subalgebra of S.ge/ generated by
the derivatives Di

�.
ep/ for p 2 S.g/g and i 2 f0; : : : ; deg ep � 1g.

Theorem 7 (Panyushev-Yakimova, [24]) Suppose that the conditions (1) and (2)
of Theorem 3 are satisfied and that .ge/�

sing has codimension >3 in .ge/�. Then for

a regular element � 2 .ge/�, Ae;� is a polynomial algebra in the variables Dj
�.

eqi/,
for i 2 f1; : : : ; `g and j 2 f0; : : : ; deg eqi�1g. Moreover,Ae;� is a maximal Poisson-
commutative subalgebra of S.ge/.

Arakawa and Premet proved the following.

Theorem 8 (Arakawa-Premet, [1]) Under the assumption of Theorem 7, there
exists a maximal commutative subalgebra OAe;� of U.g/ such that gr OAe;� Š Ae;� .
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Theorem 8 was known in the case where e D 0. It has been proven by Tarasov
[30], and independently by Cherednik, for g D sln.C/, by Nazarov-Olshanski [21]
for classical g, and by Rybnikov [29], Chervov-Falqui-Rybnikov [8] and Feigin-
Frenkel-Toledano-Laredo [15] for an arbitrary g.

The main step to prove Theorem 8 is to establish a chiralization of Theorem 3.
Namely, Arakawa and Premet proved the following.

Let Oge be the affine Kac-Moody algebra associated with ge and a certain invariant
bilinear form h� ; �ie on ge, that is Oge is the central extension of the Lie algebra
ge..t// D ge˝C..t// by the one-dimensional centerC1 with commutation relations:

Œx.m/; y.n/� D Œx; y�.m C n/ C mhx; yieımCn;01;

where x.m/ D x ˝ tm for m 2 Z. For k 2 C, set

Vk.ge/ WD U.Oge/ ˝U.geŒt�˚C1/ Ck;

where Ck is the one-dimensional representation of geŒt� ˚ C1 on which geŒt� acts
trivially and 1 acts as multiplication by k. The space Vk.ge/ is naturally a vertex
algebra, and it is called the universal affine vertex algebra associated with ge at
level k. By the PBW theorem, Vk.ge/ Š U.geŒt�1�t�1/ as C-vector spaces and
there is a natural filtration on Vk.ge/ such that grVk.ge/ D S.geŒt�1�t�1/. For
a 2 Vk.ge/, denote by 
.a/ 2 S.geŒt�1�t�1/ its symbol.We regard S.ge/ as a subring
of S.geŒt�1�t�1/ via the embedding defined by x 7! x ˝ t�1, x 2 ge. The translation
operator T on the Vertex Poisson algebra S.geŒt�1�t�1/ is the derivation of the ring
S.geŒt�1�t�1/ defined by

Tx.�m/ D mx.�m � 1/; T1 D 0:

Assume from now that k D cri is the critical level cri, and let Z.Vcri.ge// be the
center of Vcri.ge/.

Theorem 9 (Arakawa-Premet, [1]) Assume that Conditions (1) et (2) of The-
orem 3 are satisfied. Then there exist homogeneous elements eOq1; : : : ; eOq` in
Z.Vcri.ge// such that 
.Oqi/ D eqi 2 S.ge/ � S.geŒt�1�t�1/. Moreover, Z.Vcri.ge// is
a polynomial algebra in the variables Tj. eOqi/ with j 2 f1; : : : ; `g and j 2 f0; 1; : : :g.

The particular case where e D 0 is an old result of Feigin-Frenkel, [14]. Arakawa
and Premet have used affine W-algebras to prove the general case.

Remark 3 It would be interesting to extend the results of Arakawa and Premet to
the setting of Theorem 4, that is to the case where only Condition (1) of Theorem 3
is satisfied. We can hope such a generalization at least in the case where we have
explicit generators of S.g/g

e
, not necessarily of the form eq1; : : : ; eq` for some

generators q1; : : : ; q` of S.g/g, as in Remark 1.

Acknowledgements The author thanks Tomoyuki Arakawa for his explanations concerning the
results of Sect. 7.
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