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Notation

• UŒz�: polynomials with coefficients in a vector space U.
• UŒz; z�1�: Laurent polynomials.
• UŒŒz��: formal power series.
• U..z//: formal Laurent series.
• UŒŒz; z�1��: bilateral series.
• ZC D f0; 1; 2; : : :g.
• F: the base field, a field of characteristic 0. All vector spaces are considered over

F.

About the LaTeX’ing of These Notes

These lecture notes were typeset by Vidas Regelskis (Lectures 1 and 6), Tamás F.
Görbe (2), Xiao He (3), Biswajit Ransingh (4) and Laura Fedele (5 and 6).

The author would like to thank all the above mentioned scribes for their work,
especially Laura Fedele and Vidas Regelskis for many corrections to the edited
manuscript.

1 Lecture 1 (December 9, 2014)

In the first lecture we give the definition of a vertex algebra and explain calculus
of formal distributions. We end the lecture by giving two examples of non-
commutative vertex algebras: the free boson and the free fermion.

1.1 Definition of a Vertex Algebra

From a physicist’s point of view, a vertex algebra can be understood as an algebra
of chiral fields of a 2-dimensional conformal field theory. This point of view is
explained in my book [17].
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From a mathematician’s point of view a vertex algebra can be understood as a
natural “infinite” analogue of a unital commutative associative differential algebra.
Recall that a differential algebra is an algebra V with a derivation T. A simple, but
important remark is that a unital algebra V is commutative and associative if and
only if

OaOb D ObOa; a; b 2 V; (1)

where Oa denotes the operator of left multiplication by a 2 V .

Exercise 1 Prove this remark.
A vertex algebra is roughly a unital differential algebra with a product, depending

on a parameter z; satisfying a locality axiom, similar to (1). To be more precise, let
me first introduce the notion of a z-algebra. (Sorry for the awkward name, but I was
unable to find a better one.)

Definition 1 A z-algebra is a vector space V endowed with a bilinear (over F)
product, valued in V..z//; a ˝ b 7! a.z/b; endowed with a derivation T of this
product:

(i) T.a.z/b/ D .Ta/.z/b C a.z/Tb;

such that the following consistency property holds:
(ii) .Ta/.z/ D @za.z/:

Here and further on we denote by a.z/ the operator of left multiplication by a 2 V
in the z-algebra V: Using the standard notation

a.z/b D
X

n2Z
.a.n/b/z�n�1; (2)

we can write

a.z/ D
X

n2Z
a.n/z

�n�1; where a.n/ 2 EndV: (3)

The bilinear (over F) product a.n/b is called the nth product. Note that a.z/ is an
EndV-valued distribution, i.e., an element of .EndV/ŒŒz; z�1��. Moreover, a.z/ is a
quantum field, i.e., a.n/b D 0 for b 2 V and sufficiently large n (depending on b).

Remark 1 Axioms (i) and (ii) of a z-algebra imply the following translation
covariance property of a.z/ W

ŒT; a.z/� D @za.z/; i.e., ŒT; a.n/� D �na.n�1/; 8n 2 Z: (4)

Moreover, the translation covariance of a.z/ and either of the axioms (i) or (ii) in
Definition 1 imply the other axiom.

Next, we define a unital z-algebra.
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Definition 2 A unit element of a z-algebra V is a non-zero vector 1 2 V , such that

1.z/a D a; and a.z/1 D a mod zVŒŒz��:

Lemma 1 Let V be a vector space, let 1 2 V and T 2 EndV be such that T1 D 0.
Then

(a) For any translation covariant (with respect to T) quantum field a.z/, we have
a.z/1 2 VŒŒz��.

(b)

a.z/1 D ezTa .D
1X

nD0

zn

nŠ
Tn.a//; where a D a.�1/1: (5)

Proof For (a) we have to prove that a.n/1 D 0 for all n 2 ZC. Since a.z/ is
a quantum field, a.n/1 D 0 for n>N with some N 2 ZC. Also by translation
covariance we have ŒT; a.n/� D �na.n�1/ for all n 2 Z. Apply both sides of the
last equality to 1:

ŒT; a.n/�1 D Ta.n/1 � a.n/T1 D Ta.n/1 D �na.n�1/1: (6)

Therefore a.n/1 D 0 for n > 0 implies a.n�1/1 D 0. Hence a.n/1 D 0 for all n 2 ZC
and a.z/1 2 VŒŒz��.

Now we prove (b). By (a), the LHS of (5) lies in VŒŒz��: Both sides are solutions
of the differential equation

df

dz
D Tf .z/; f .z/ 2 VŒŒz��: (7)

For the RHS it is obvious, and for the LHS it follows from (4) and T1 D 0:

@za.z/1 D Ta.z/1 � a.z/T1 D Ta.z/1: (8)

Both sides obviously satisfy the same initial condition f .0/ D a; hence they are
equal. ut

Since, 1.�1/1 D 1 and T is a derivation of nth products, we have in a unital
z-algebra:

T1 D 0: (9)

Note that Lemma 1(a) implies that a.z/1 2 VŒŒz��; and by Lemma 1(b) one actually
has (5). Lemma 1(b) implies that

Ta D a.�2/1; (10)

so that the derivation T is “built in” the product of a unital z-algebra.
Now we can define a vertex algebra.
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Definition 3

(a) A z-algebra is called local if

.z � w/Naba.z/b.w/

D .z � w/Nabb.w/a.z/; for some Nab 2 ZC.depending on a; b 2 V/: (11)

(b) A vertex algebra is a local unital z-algebra.

A frequently asked question is: why one cannot cancel .z � w/Nab on both sides
of (11)? As we will see in a moment, the answer is: due to the existence of the
delta function. In fact, the case Nab D 0 for all a; b 2 V is not very interesting,
since all such vertex algebras correspond bijectively to unital commutative associate
differential algebras, as Exercise 2 below demonstrates.

Example 1 A commutative vertex algebra, i.e., Œa.z/; b.w/� D 0 for all a; b 2 V , can
be constructed as follows. Take V to be a unital commutative associative algebra
with a derivation T. Then V is a commutative vertex algebra with the product
a.z/b D .ezTa/b.

Exercise 2 Check that the above example is indeed a commutative vertex algebra.
Using Lemma 1, prove that all commutative vertex algebras are of the form given in
Example 1.

Remark 2 A unital z-algebra V is a vector space with unit element 1 and bilinear
products a.n/b, n 2 Z. (Recall that T is obtained by (10).) Through these bilinear
products we can naturally define z-algebra homomorphisms/isomorphisms, and
subalgebras/ideals. Namely, a homomorphism between two z-algebras V and V 0
is a linear map f such that f .1/ D 1 and f .a/.n/f .b/ D f .a.n/b/; 8a; b 2 V and
8n 2 Z. It is an isomorphism if it is a homomorphism of z-algebras and also an
isomorphism as vector spaces. A subalgebra is a subspace W of V which contains
1, such that a.n/b 2 W; 8a; b 2 W and 8n 2 Z. And an ideal is a subspace I such
that a.n/b; b.n/a 2 I; 8a 2 V; 8b 2 I and 8n 2 Z. Note that both a subalgebra and
an ideal are T-invariant due to (9), and if an ideal I contains 1, then it must be the
whole vertex algebra V .

Now I will give another definition of a vertex algebra, in the spirit of quantum
field theory, using language closer to physics: a unit element is called a vacuum
vector, element of a vector space is called a state, etc.

Definition 4 A vertex algebra is a vector space V (the space of states) with a non-
zero vector j0i (the vacuum vector) and a linear map from V to the space of EndV-
valued quantum fields (the state-field correspondence) a 7! a.z/; satisfying the
following axioms:

vacuum axiom: j0i.z/ D IV ; a.z/j0i D a C .Ta/z C : : : ; where T 2 EndV;
translation covariance axiom (4);
locality axiom (11).
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Remark 1 demonstrates that a vertex algebra defined in the spirit of differential
algebra is a vertex algebra defined in the spirit of quantum field theory. However, in
order to prove the converse, one has to show that axiom (ii) of Definition 1 holds.
This will follow from the proof of the Extension theorem in Lecture 3.

Definition 5 Given a vertex algebra V , the map of the space of its quantum fields
to V , defined by

fsW a.z/ 7! a.z/j0izD0 D a.�1/j0i D a; (12)

is called the field-state correspondence. This map is obviously surjective. If this map
is also injective, then the inverse map

sf W a 7! a.z/ (13)

is called the state-field correspondence.
The first fundamental theorem, which allows one to construct non-commutative

vertex algebras, is the so-called Extension theorem.

Theorem 1 (Extension Theorem) Let V be a vector space, j0i 2 V a non-zero
vector, T 2 EndV and

F D
�
a j.z/ D

X

n2Z
a j

.n/z
�n�1

�

j2J
(14)

a collection of EndV-valued quantum fields indexed by a set J. Suppose that the
following properties hold:

(i) (vacuum axiom) Tj0i D 0,
(ii) (translation covariance) ŒT; a j.z/� D @za j.z/ for all j 2 J,
(iii) (locality) .z � w/Nij Œai.z/; a j.w/� D 0 for all i; j 2 J with some Nij 2 ZC,
(iv) (completeness) spanfaj1.n1/ � � � ajs.ns/j0i j ji 2 J; ni 2 Z; s 2 ZCg D V.

Let Fmax denote the set of all translation covariant quantum fields a.z/ such that
a.z/, a j.z/ is a local pair for all j 2 J. Then the map

fsWFmax ! V; a.z/ 7! a.z/j0izD0 (15)

is bijective and the inverse map sf WV ! Fmax endows V with a structure of a
vertex algebra (in the sense of Definition 4) with vacuum vector j0i and translation
operator T.

Remark 3 By conditions (ii) and (iii) we haveF � Fmax, hence the name Extension
theorem.

Some historical remarks:

• Vertex algebras first appeared implicitly in the paper of Belavin et al. [4] in 1984.
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• The first definition of vertex algebras was given by Borcherds [5] in 1986.
• The Extension Theorem was proved in [6]. In [17] a weaker version was given.
• Connection to physics (Wightman axioms of a quantum field theory [20] in the

1950s) is discussed e.g. in [17].

Remark 4 (Super Version) A vertex superalgebra V is a local unital z-superalgebra
V , cf. Definition 3. Namely V is a vector superspace

V D VN0 ˚ VN1; fN0; N1g D Z=2Z; (16)

a.z/b 2 V˛Cˇ..z// if a 2 V˛; b 2 Vˇ, and TV˛ � V˛ , ˛; ˇ 2 Z=2Z. An element
a 2 V has parity p.a/ D ˛ if a 2 V˛. Finally, the locality axiom (11) is written
as .z � w/Nab Œa.z/; b.w/� D 0, where the commutator is understood in the “super”
sense, i.e.

Œa.z/; b.w/� D a.z/b.w/ � .�1/p.a/p.b/b.w/a.z/:

All the identities in the “super” case are obtained from the respective identities in
the purely even case by the Koszul-Quillen rule: there is a sign change if the order
of two odd elements is reversed; no change otherwise. It is a general convention to
drop the adjective “super” in the case of vertex superalgebras.

1.2 Calculus of Formal Distributions

Definition 6 Let U be a vector space. A U-valued formal distribution a.z/ is an
element of UŒŒz; z�1��:

a.z/ D
X

n2Z
anz

n; an 2 U: (17)

The residue of a.z/ is

Res a.z/dz D a�1: (18)

Most often one uses a different indexing of coefficients:

a.z/ D
X

n2Z
a.n/z

�n�1; so that a.n/ D Res a.z/zndz: (19)

Note that a.z/ is a linear function on the space of test functions FŒz; z�1�:

ha.z/; '.z/i D Res a.z/'.z/dz 2 U; 8'.z/ 2 FŒz; z�1�; (20)

and it is easy to see that one thus gets all linear functions on FŒz; z�1�.
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A formal distribution in two variables z and w is an element a.z;w/ 2
UŒŒz; z�1;w;w�1��.

Definition 7 A formal distribution a.z;w/ is called local if .z�w/Na.z;w/ D 0 for
some N 2 ZC.

Example 2 The formal delta function ı.z;w/, defined by

ı.z;w/ D
X

n2Z
z�n�1wn; (21)

is an example of an F-valued formal distribution in two variables. It is local since
.z � w/ı.z;w/ D 0. In fact, one can write ı.z;w/ as

ı.z;w/ D iz;w
1

z � w
� iw;z

1

z � w
; (22)

where iz;w denotes the expansion in the domain jzj > jwj and iw;z denotes the
expansion in the domain jzj < jwj, i.e.

iz;w
1

z � w
D z�1 1

1 � w

z

D
X

n>0

z�n�1wn; and

iw;z
1

z � w
D �w�1 1

1 � z

w

D �
X

n<0

z�n�1wn: (23)

The following formula, which is derived by differentiating (21) and (22) n 2 ZC
times, will be useful:

@nwı.z;w/

nŠ
D iz;w

1

.z � w/nC1
� iw;z

1

.z � w/nC1
D
X

j2Z

 
j

n

!
wj�nz�j�1: (24)

Let us list some properties of the formal delta function, which are straightforward
by (24):

1. .z � w/m
@nwı.z;w/

nŠ
D
8
<

:

@n�m
w ı.z;w/

.n � m/Š
if n>m>0;

0; if m > n;

2. ı.z;w/ D ı.w; z/,
3. @zı.z;w/ D �@wı.z;w/,
4. a.z/ı.z;w/ D a.w/ı.z;w/, where a.z/ is any formal distribution,
5. Res a.z/ı.z;w/dz D a.w/.

Theorem 2 (Decomposition Theorem) Any local formal distribution a.z;w/ can
be uniquely decomposed as a finite sum of derivatives of the formal delta function
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with formal distributions in w as coefficients:

a.z;w/ D
X

j>0

c j.w/
@jwı.z;w/

jŠ
: (25)

Moreover

c j.w/ D Res a.z;w/.z � w/ jdz: (26)

Proof Multiply both sides of (25) by .z�w/ j and take residues. Using properties of
the delta function listed above we obtain (26). To show (25) we set

b.z;w/ D a.z;w/ �
X

j>0

c j.w/
@jwı.z;w/

jŠ
(27)

with c j.w/ given by (26). It is immediate that

Res b.z;w/.z � w/ jdz D 0 for all j 2 ZC; (28)

hence

b.z;w/ D
X

n>0

bn.w/zn: (29)

By definition b.z;w/ is local, therefore (29) implies that b.z;w/ D 0. ut
Remark 5 If we have a local pair a.z/; b.z/ 2 gŒŒz; z�1��, where g is a Lie
(super)algebra (i.e. Œa.z/; b.w/� is a local formal distribution in z and w), then, by
the Decomposition theorem, we have:

Œa.z/; b.w/� D
X

j>0

.a.w/. j/b.w//
@jwı.z;w/

jŠ
; (30)

where the sum over j is finite, and

gŒŒw;w�1��a.w/. j/b.w/ WD Res.z � w/ jŒa.z/; b.w/�dz .D c j.w//: (31)

Using (24) and comparing the coefficients of zmwn on both sides of (30), we find

Œa.m/; b.n/� D
X

j>0

 
m

j

!
.a. j/b/.mCn�j/; 8m; n 2 Z: (32)
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1.3 Free Boson and Free Fermion Vertex Algebras

Example 3 (Free Boson) Let B D FŒx1; x2; : : :�, j0i D 1, T D P
j>2 jxj

@
@xj�1

and

F D
�
a.z/ D

X

n2Z
a.n/z

�n�1

�
; where a.n/ D

8
ˆ̂̂
<

ˆ̂̂
:

@

@xn
; if n > 0;

�nx�n; if n < 0;

0; if n D 0;

(33)

so that

Œa.m/; a.n/� D mım;�n; 8m; n 2 Z: (34)

The quantum field a.z/ is called the free boson field. Since (34) is equivalent to

Œa.z/; a.w/� D @wı.z;w/; (35)

we have

.z � w/2Œa.z/; a.w/� D 0; (36)

i.e., a.z/ is local with itself.
The translation covariance of the free boson field a.z/, that is ŒT; a.n/� D

�na.n�1/, 8n 2 Z, can be verified directly. Vacuum axiom and completeness are
obviously satisfied. Locality is (36). So, by the Extension theorem,B carries a vertex
algebra structure.

Example 4 (Free Fermion) Let F D �Œ�1; �2; : : :� be a Grassmann superalgebra,
i.e.,

�i�j D ��j�i; p.�i/ D N1 :

Let j0i D 1 and T D P
j>1 j�jC1

@
@�j

, where @
@�j

is an odd derivation of the

superalgebra F (i.e. @.ab/

@�j
D @a

@�j
b C .�1/p.a/ @b

@�j
), such that

@

@�j
�i D ıij: (37)

Set

F D
�

'.z/ D
X

n2Z
'.n/z

�n�1

�
; where '.n/ D

8
<

:

@

@�nC1

; if n>0;

��n; if n < 0;

(38)
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then

Œ'.m/; '.n/� D ım;�n�1; 8m; n 2 Z: (39)

The odd quantum field '.z/ is called the free fermion field. Since (39) is equivalent
to

Œ'.z/; '.w/� D
X

n2Z
z�n�1wn D ı.z;w/; (40)

'.z/ is local to itself. As in Example 3, the vacuum axiom and completeness are
immediate. Translation covariance follows from the exercise below.

Exercise 3 Show that the free fermion field is translation covariant, i.e.,

ŒT; '.n/� D �n'.n�1/; 8n 2 Z: (41)

2 Lecture 2 (December 11, 2014)

In the first lecture we discussed the two simplest examples of non-commutative
vertex algebras (see Examples 3 and 4). In this lecture we will consider further
important examples, among them a generalization of those two mentioned previ-
ously. First, we need to introduce the necessary notions.

2.1 Formal Distribution Lie Algebras and Their Universal
Vertex Algebras

Definition 8 A formal distribution Lie (super)algebra is a pair .g;F /, where g
is a Lie (super)algebra and F is a collection of pairwise local g-valued formal
distributions a j.z/ D P

n2Z a
j
.n/z

�n�1, j 2 J, such that the coefficients fa j
.n/ j

j 2 J; n 2 Zg span g. A formal distribution Lie (super)algebra .g;F / is called
regular if:

(i) the FŒ@z�-span of F is closed under all nth products for n 2 ZC,

a.z/.n/b.z/ WD Res.w � z/nŒa.w/; b.z/�dw; (42)

i.e., if a.z/ and b.z/ are elements of the form
P

j2J fj.@z/a j.z/, where fj.@z/ 2
FŒ@z�, and only finitely many fj.@z/ ¤ 0, then their nth product for n 2 ZC is
still an element of the same form.
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(ii) there exists a derivation T 2 Der g such that

T.a j.z// D @za
j.z/; i.e.; T.a j

.n// D �na j
.n�1/ 8j 2 J: (43)

The annihilation subalgebra of g is g� D spanfa j
.n/ j j 2 J; n 2 ZCg.

Exercise 4 Show that g� is a T-invariant subalgebra of g. (Hint: use the commuta-
tion formulas (32) and (43).)

The following theorem allows one to construct vertex algebras via the Extension
theorem. Let U.g/ denote the universal enveloping algebra of g.

Theorem 3 Let .g;F0/ be a regular formal distribution Lie algebra, and let g� be
the annihilation subalgebra. Let V D U.g/=U.g/g� (also known as the induced
g-module Indgg

�

.F/) and let � be the representation of g in V induced via the
left multiplication. Let j0i D N1 be the image of 1 in V and T 2 EndV be the
endomorphism of V induced by the derivation of g. Let F be the collection of EndV-
valued formal distributions

F D
�

�
�
a j.z/

� D
X

n2Z
�
�
a j

.n/

�
z�n�1

ˇ̌
ˇ̌a j.z/ 2 F0; j 2 J

�
: (44)

Then F consists of quantum fields and .V; j0i;T;F / satisfies the conditions of the
Extension theorem, hence V is a vertex algebra, which we denote by V.g;F0/.

Proof The only non-obvious part is to check that all �
�
a j.z/

�
are quantum fields,

i.e., �
�
a j.z/

�
v 2 V..z// for each v 2 V . Due to the PBW theorem, it is sufficient to

check it for vectors of the following form (we use the same notation for elements in
U.g/ and their images in V):

v D aj1.n1/ � � � ajs.ns/j0i; where j1; : : : ; js 2 J: (45)

We argue by induction on s. For s D 0 we have v D j0i, hence

�
�
a j.z/

�j0i D
X

n2Z
�
�
a j

.n/

�
z�n�1j0i D

X

n<0

�
�
a j

.n/

�
z�n�1 2 VŒŒz��: (46)

The last equality follows from the fact that a j
.n/j0i D 0 for n>0. We proceed by

proving the induction step:

�
�
a j.z/

�
aj1.n1/ � � � ajs.ns/j0i D Œa j.z/; aj1.n1/�a

j2
.n2/ � � � ajs.ns/j0i C aj1.n1/a

j.z/aj2.n2/ � � � ajs.ns/j0i:
(47)

By assumption of induction, the second term in the right-hand side is in V..z//,
so we only need to show that the first term is also in V..z//. Now recall the
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commutation formula (32). We have

Œa j.z/; aj1.n1/� D
X

m2Z

X

k>0

 
m

k

!
.a j

.k/a
j1 /.mCn1�k/z

�m�1; (48)

where .a j
.k/a

j1 /.mCn1�k/ is the Fourier coefficient of the formal distribution

a j.z/.k/aj1 .z/. By the regularity property, we know that a j.z/.k/aj1 .z/ is contained in
the FŒ@z�-span of F , thus we can assume that

a j.z/.k/a
j1 .z/ D

X

l2J
f kl .@z/a

l.z/: (49)

Since a j.z/; aj1 .z/ is a local pair, we know that there exists an integer N 2 ZC such
that a j.z/.k/aj1 .z/ D 0 for k>N. This allows us to rewrite formula (48) as follows,

Œa j.z/; aj1.n1/� D
X

06k6N

X

m2Z

 
m

k

!
�X

l2J
f kl .@z/a

l.z/
�

.mCn1�k/
z�m�1: (50)

By assumption of induction, for each k,

X

m2Z

�X

l2J
f kl .@z/a

l.z/
�

.mCn1�k/
z�m�1aj2.n2/ � � � ajs.ns/j0i 2 V..z// (51)

thus the first term in the right-hand side of (47) is also in V..z//. ut
Remark 6 Recall that by the Decomposition theorem for any local pair a.z/; b.w/

we have

Œa.z/; b.w/� D
X

j>0

.a.w/. j/b.w//
@jwı.z;w/

jŠ
; (52)

which is equivalent to the commutator formula

Œa.m/; b.n/� D
X

j>0

 
m

j

!
.a. j/b/.mCn�j/; 8m; n 2 Z; (53)

where .a. j/b/.w/ D a.w/. j/b.w/ is given by (31). This, along with the obvious
formula

�
@wa.w/

�
.n/

D �na.w/.n�1/; (54)

allows us to convert the commutator formula into the decomposition formula,
thereby establishing locality.
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Let us now discuss the next important example of a non-commutative vertex
algebra.

Example 5 Let g D Vir be the Virasoro algebra with commutation relations

ŒLm;Ln� D .m � n/LmCn C ım;�n
m3 � m

12
C; ŒC;Lm� D 0; 8m; n 2 Z: (55)

Consider the formal distribution

L.z/ D
X

n2Z
Lnz

�n�2; (56)

so that L.n/ D Ln�1. Then the commutation relations (55) can be written in the
equivalent form

ŒL.z/;L.w/� D @wL.w/ı.z;w/ C 2L.w/@wı.z;w/ C C

2
@3
wı.z;w/: (57)

Indeed, by (57) we have: L.0/L D @L; L.1/L D 2L; L.3/L D C
2
; and L. j/L D 0

for all other j>0: Hence by (53) and (54), (57) is equivalent to (55). It follows that
L.z/ is local with itself, hence .Vir; fL.z/;Cg/ is a formal distribution Lie algebra.
Furthermore, it is regular. There are two conditions (1) and (2) we need to check:
(1) is obvious, for (2) take T D adL�1, then ŒL�1;Ln� D .�1 � n/Ln�1, which
gives (43). The annihilation subalgebra is

Vir� D
X

n>�1

FLn: (58)

So, by Theorem 3 and the Extension theorem, we get the associated vertex algebra

V.Vir; fL.z/;Cg/; (59)

called the universal Virasoro vertex algebra. One can make it slightly smaller by
taking c 2 F and factorizing by the ideal generated by .C � c/. Let Vc stand for the
corresponding factor vertex algebra, which is called the universal Virasoro vertex
algebra with central charge c.

Remark 7 Vc can be non-simple for certain values of c. Namely, Vc is non-simple
if and only if [16]

c D 1 � 6. p � q/2

pq
; with p; q 2 Z>2 coprime: (60)

Exercise 5 The vertex algebra Vc has a unique maximal ideal Jc.
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Let Vc D Vc=Jc. Since c in (60) is symmetric in p and q we may assume that p < q.
The smallest example p D 2, q D 3 gives c D 0; V0 is the one-dimensional vertex
algebra. The next example is p D 3, q D 4 when c D 1=2; the vertex algebra V 1

2
is

related to the Ising model. The simple vertex algebras Vc with c of the form (60) are
called discrete series vertex algebras. They play a fundamental role in conformal
field theory [4].

Example 6 Let g be a finite dimensional Lie algebra with a non-degenerate
symmetric invariant bilinear form .:j:/. Letbg D gŒt; t�1� C FK be the associated
Kac-Moody affinization, with commutation relations

Œatm; btn� D Œa; b�tmCn C mım;�n.ajb/K; ŒK; atm� D 0; (61)

where a; b 2 g, m; n 2 Z. Let a.z/ D P
n2Z.atn/z�n�1 and F D fa.z/ga2g [ fKg be

an (infinite) collection of formal distributions. The commutation relations (61) are
equivalent to

Œa.z/; b.w/� D Œa; b�.w/ı.z;w/ C .ajb/@wı.z;w/K; ŒK; a.z/� D 0: (62)

Hence F is a local family. So .bg;F / is a formal distribution Lie algebra. The
annihilation subalgebra isbg� D gŒt�.

Exercise 6 Show that the formal distribution Lie algebra .bg;F / defined above is
regular with T D �@t.
The associated vertex algebra V.bg;F / is called the universal affine vertex algebra
associated to

�
g; .:j:/�. Again, it can be made a little smaller by taking k 2 F and

considering

Vk.g/ D V.bg;F /=.K � k/V.bg;F /; (63)

which is called the universal affine vertex algebra of level k. There are certain values
of k for which Vk.g/ is non-simple (it is a known set of rational numbers [16]).

Example 7 Let A be a finite dimensional vector superspace with a non-degenerate
skewsymmetric bilinear form h:j:i:

hajbi D �.�1/p.a/p.b/hbjai; a; b 2 A: (64)

Take the associated Clifford affinization

OA D AŒt; t�1� C FK; (65)

with commutation relations

Œatm; btn� D ım;�n�1hajbiK; ŒK; atm� D 0; a; b 2 A: (66)
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Consider the formal distributions

a.z/ D
X

n2Z
.atn/z�n�1; a 2 A; (67)

and define F to be

F D fa.z/ga2A [ fKg: (68)

Then the commutation relations (66) are equivalent to

Œa.z/; b.w/� D hajbiı.z;w/K; ŒK; a.z/� D 0: (69)

Hence F is a local family, and . OA;F / is a formal distribution Lie superalgebra. Its
annihilation subalgebra is OA� D AŒt�. Furthermore, . OA;F / is regular with T D �@t
and

F.A/ D V. OA;F /=.K � 1/V. OA;F / (70)

is the associated vertex algebra called the vertex algebra of free superfermions.

Exercise 7

(1) If A is a 1-dimensional odd superspace we get the free fermion vertex algebra
F D F.A/.

(2) If g is the 1-dimensional Lie algebra F, with bilinear form .ajb/ D ab and level
k D 1, then we get the free boson vertex algebra B D V1.F/.

Exercise 8 Show that the vertex algebra F.A/ is always simple.

2.2 Formal Cauchy Formulas and Normally Ordered Product

We proceed by proving some statements which are analogous to the Cauchy formula
and are true for any formal distribution. Let U be a vector space and a.z/ DP

n2Z a.n/z�n�1 be a U-valued formal distribution. We call

a.z/C D
X

n<0

a.n/z
�n�1 (71)

the creation part or “positive” part of a.z/ and

a.z/� D
X

n>0

a.n/z
�n�1 (72)

the annihilation part or “negative” part of a.z/. Note that @z
�
a.z/˙

� D �
@za.z/

�
˙.
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Proposition 1 Formal Cauchy formulas can be written as follows:

(a) For the “positive” and “negative” parts of a.z/ we have

a.w/C D Res a.z/iz;w
1

z � w
dz; �a.w/� D Res a.z/iw;z

1

z � w
dz: (73)

(b) For the derivatives of a.z/˙ we have

1

nŠ
@nwa.w/C D Res a.z/iz;w

1

.z � w/nC1
dz;

� 1

nŠ
@nwa.w/� D Res a.z/iw;z

1

.z � w/nC1
dz: (74)

Proof Use property (5) of the delta function and (22) to get

a.w/ D Res a.z/ı.z;w/dz D Res a.z/

�
iz;w

1

z � w
� iw;z

1

z � w

�
dz: (75)

Collect the (non-negative) powers of w on both sides to get (a). Differentiating (a)
by w n times gives (b). ut

Multiplying two quantum fields naïvely would lead to divergences. The next
definition is introduced to circumvent this problem.

Definition 9 The normally ordered product of EndV-valued quantum fields a.z/
and b.z/ is defined by

W a.z/b.z/ W D a.z/Cb.z/ C .�1/p.a/p.b/b.z/a.z/�: (76)

It must be proved that W a.z/b.z/ W is an “honest” quantum field, i.e., all the
divergences are removed.

Proposition 2 If a.z/ and b.z/ are quantum fields then so is W a.z/b.z/ W.
Proof Apply W a.z/b.z/ W, defined by (76), to any vector v 2 V:

W a.z/b.z/ W v D a.z/Cb.z/v C .�1/p.a/p.b/b.z/a.z/�v: (77)

Since b.z/ is assumed to be a quantum field, b.z/v in the first term of the right-
hand side of (77) is a Laurent series by definition. The creation part a.z/C has only
non-negative powers of z, therefore a.z/Cb.z/v is still a Laurent series. In the second
term a.z/�v consists of finitely many terms with negative powers, i.e., it is a Laurent
polynomial. Now b.z/a.z/�v is a Laurent series multiplied by a Laurent polynomial
which is still a Laurent series. Hence we proved that W a.z/b.z/ W is a sum (or a
difference) of two Laurent series, thus it is a Laurent series. ut
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Exercise 9 Let a.z/ and b.z/ be quantum fields. Show that their nth product
a.z/.n/b.z/, n 2 ZC and derivatives @za.z/; @zb.z/ are also quantum fields.

On the space of quantum fields we have defined a.w/.n/b.w/ for n>0. Introduce

a.w/.�n�1/b.w/ D 1

nŠ
W @nwa.w/b.w/ W; (78)

so that a.w/.�1/b.w/ D W a.w/b.w/ W. Thus for each n 2 Z we have the nth product
a.w/.n/b.w/. Using the formal Cauchy formulas above, we get the unified formulas
for all nth products of quantum fields

a.w/.n/b.w/ D Res
�
a.z/b.w/iz;w.z�w/n � .�1/p.a/p.b/b.w/a.z/iw;z.z�w/n

�
dz; n 2 Z:

(79)

Remark 8 For a local pair of quantum fields physicists write

a.z/b.w/ D
X

n2Z

a.w/.n/b.w/

.z � w/nC1
: (80)

This way of writing is useful but might be confusing, since different parts of it are
expanded in different domains. Therefore it is worth giving a rigorous interpretation
of (80) by writing

a.z/b.w/ D
X

n>0

a.w/.n/b.w/ iz;w
1

.z � w/nC1
C W a.z/b.w/ W (81)

and

.�1/p.a/p.b/b.w/a.z/ D
X

n>0

a.w/.n/b.w/ iw;z
1

.z � w/nC1
C W a.z/b.w/ W (82)

By taking the difference (81)–(82) we get

Œa.z/; b.w/� D
X

j2Z
C

�
a.w/. j/b.w/

�@ j
wı.z;w/

jŠ
: (83)

Conversely, by separating the negative (resp. non-negative) powers of z in (83) we
get (81) [resp. (82)]. We still need to explain (80) for negative n. By Taylor’s formula
in the domain jz � wj < jwj ([17], (2.4.3)), we have

W a.z/b.w/ W D
X

n>0

W @nwa.w/b.w/ W .z � w/n

nŠ
D
X

n>0

�
a.w/.�n�1/b.w/

�
.z � w/n;

(84)

i.e., the nth products for negative n are “contained” in the normally ordered product.
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2.3 Bakalov’s Formula and Dong’s Lemma

Locality of the pair a.z/; b.z/ of EndV-valued quantum fields means that

.z � w/Na.z/b.w/ D .�1/p.a/p.b/.z � w/Nb.w/a.z/ for some N 2 ZC: (85)

Denote either side of this equality by F.z;w/. Then for each k 2 ZC we have

ResF.z;w/
@kwı.z;w/

kŠ
dz D ResF.z;w/ iz;w

1

.z � w/kC1
dz

� ResF.z;w/ iw;z
1

.z � w/kC1
dz: (86)

The first term of the left-hand side of (86) is

Res a.z/b.w/ iz;w.z � w/N�k�1dz; (87)

while the second term of the right-hand side of (86) is

� Res a.z/b.w/ iw;z.z � w/N�k�1dz: (88)

Applying the unified formula (79) the sum of (87) and (88) can be written as

a.w/.N�k�1/b.w/: (89)

Hence we obtain Bakalov’s formula

a.w/.N�k�1/b.w/ D ResF.z;w/
@kwı.z;w/

kŠ
dz D 1

kŠ
.@kzF.z;w//jzDw; (90)

which holds for each non-negative integer k and sufficiently large positive integer
N. The second equality follows from the first one by properties (3) and (5) of the
formal delta function.

Remark 9 Since a.z/ and b.z/ are quantum fields, it follows from (85) that F.z;w/v

lies in the space VŒŒz;w��Œz�1 ;w�1� for each v 2 V . Hence (90) makes sense.

Remark 10 It follows from (85) that if we replace a.z/ in this equation by @kza.z/
for some positive integer k, then it still holds with N replaced by N C k.

Lemma 2 (Dong) If a.z/, b.z/ and c.z/ are pairwise mutually local quantum fields,
then a.z/.n/b.z/, c.z/ is a local pair for any n 2 Z.

Proof [1] It suffices to prove that for N and k as in (90) we have for some M 2 ZC W

.z2 � z3/M.a.z2/.N�k�1/b.z2//c.z3/ D ˙.z2 � z3/Mc.z3/a.z2/.N�k�1/b.z2/; (91)
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where ˙ is the Koszul-Quillen sign, if (85) holds for all three pairs .a; b/; .a; c/ and
.b; c/. We let M D 2N C k: By Bakalov’s formula (90), the left-hand side of (91) is
equal to

1

kŠ
.z2 � z3/

2NCk
�
@kz1 ..z1 � z2/Na.z1/b.z2/c.z3//

� ˇ̌ˇ̌
z1Dz2

D.z2 � z3/
2NCk

kX

iD0

 
N

i

!
.z1 � z2/N�i.

@k�i
z1

.k � i/Š
a.z1//b.z2/c.z3/

ˇ̌
ˇ̌
z1Dz2

D
kX

iD0

 
N

i

!
.z2 � z3/N.z1 � z3/

NCk.z1 � z2/N�i.
@k�i
z1

.k � i/Š
a.z1//b.z2/c.z3/

ˇ̌
ˇ̌
z1Dz2

:

Due to (85) for the pair .b; c/, we can permute c.z3/ with b.z2/ (up to the Koszul-
Quillen sign), and after that similarly permute c.z3/ and the .k � i/th derivative of
a.z1/; using Remark 10. We thus obtain the right-hand side of (91). ut

3 Lecture 3 (December 16, 2014)

In this lecture, we will prove the Extension theorem, the Borcherds identity and the
skewsymmetry. We will also introduce the concepts of conformal vector, conformal
weight and Hamiltonion operators. In the end, we give some properties of the
Formal Fourier Transform.

3.1 Proof of the Extension Theorem

First of all, let us give a name for the data which appeared in the Extension theorem.

Definition 10 A pre-vertex algebra is a quadruple fV; j0i;T;F D fa j.z/ DP
n2Z a

j
.n/z

�n�1gj2Jg, where V is a vector space with a non-zero element j0i, T 2
EndV and F is a collection of quantum fields with values in EndV satisfying the
following conditions:

(i) (vacuum axiom) Tj0i D 0,
(ii) (translation covariance) ŒT; a j.z/� D @za j.z/ for all j 2 J,

(iii) (locality) .z � w/Nij Œai.z/; a j.w/� D 0 for all i; j 2 J with some Nij 2 ZC,
(iv) (completeness) spanfaj1.n1/ � � � ajs.ns/j0i j ji 2 J; ni 2 Z; s 2 ZCg D V .
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Let fV; j0i;T;F g be a pre-vertex algebra. Define

Fmin D span

��
aj1 .z/.n1/

�
aj2 .z/.n2/ � � � �ajs.z/.ns/IV

� � � � � j ni 2 Z; ji 2 J; s 2 ZC
�

;

(92)

where IV is the constant field equal to the identity operator IV on V . Let, as in
Lecture 1, Fmax be the set of all translation covariant quantum fields a.z/, such that
a.z/; a j.z/ is a local pair for all j 2 J. The following is a more precise version of the
Extension theorem, stated in Lecture 1.

Theorem 4 (Extension Theorem) For a pre-vertex algebra fV; j0i;T;F g, let
Fmin;Fmax be defined as above, then we have,

(a) Fmin D Fmax,
(b) The map

fs W Fmax �! V; a.z/ 7�! a.z/j0iˇ̌zD0
(93)

is well-defined and bijective. Denote by sf the inverse map.
(c) The z-product a.z/b WD sf .a/b endows V with a vertex algebra structure, which

extends the pre-vertex algebra structure.

Remark 11

(1) The map fs is called the field-state correspondence since it sends a field to a
vector in V , called a “state” in physics. Its inverse map, called the state-field
correspondence, is denoted by

sf W V ! Fmax; a 7! a.z/: (94)

(2) Denote by Ftc D fa.z/ j ŒT; a.z/� D @za.z/g the space of translation covariant
quantum fields. By Lemma 1, a.z/j0i 2 VŒŒz�� for a.z/ 2 Ftc, hence fs.a.z// 2 V
is well-defined.

Lemma 3 Ftc contains IV , it is @z-invariant and is closed under all nth product, i.e.,
a.z/.n/b.z/ 2 Ftc for any n 2 Z if a.z/; b.z/ 2 Ftc.

Proof Since ŒT; IV � D 0 D @zIV , we have IV 2 Ftc. Now if a.z/ is translation
covariant, we need to show that ŒT; @za.z/� D @z@za.z/ and so @za.z/ is also
translation covariant. But

ŒT; @za.z/� D ŒT;
X

n2Z
.�n � 1/a.n/z

�n�2� D
X

n2Z
.�n � 1/ŒT; a.n/�z

�n�2

D
X

n2Z
.�n � 1/.�n/a.n�1/z

�n�2
(95)
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and

@z@za.z/ D @z.
X

n2Z
.�n � 1/a.n/z

�n�2/ D
X

n2Z
.�n � 1/.�n � 2/a.n/z

�n�3

D
X

n2Z
.�n � 1/.�n/a.n�1/z

�n�2:
(96)

For the last part of this lemma, let us recall the definition of the nth product,

a.w/.n/b.w/ D Res
�
a.z/b.w/iz;w.z � w/n � b.w/a.z/iw;z.z � w/n

�
dz; n 2 Z:

(97)

We want to prove ŒT; a.w/.n/b.w/� D @w.a.w/.n/b.w//. Both T and @w commute
with Res, moreover, @w commutes with iz;w and iw;z. So we have

@w.a.w/.n/b.w// D Res
�
@w.a.z/b.w/iz;w.z � w/n/ � @w.b.w/a.z/iw;z.z � w/n/

�
dz

D Res
�
a.z/.@wb.w//iz;w.z � w/n � .@wb.w//a.z/iw;z.z � w/n

�
dz

C Res
�
a.z/b.w/iz;w.@w.z � w/n/ � b.w/a.z/iw;z.@w.z � w/n/

�
dz:
(98)

Note that @w.z � w/n D �@z.z � w/n and � Res a.z/iw;z@z.z � w/ndz D
Res.@za.z//iw;z.z � w/ndz. So

@w.a.w/.n/b.w// D a.w/.n/@wb.w/ C .@wa.w//.n/b.w/: (99)

This shows that @w is a derivation for the nth product. Now

ŒT; a.w/.n/b.w/� D Res
�
Ta.z/b.w/iz;w.z � w/n � a.z/b.w/Tiz;w.z � w/n

� Tb.w/a.z/iw;z.z � w/n C b.w/a.z/Tiw;z.z � w/n
�
dz

D Res
�
Ta.z/b.w/iz;w.z � w/n � a.z/Tb.w/iz;w.z � w/n

C a.z/Tb.w/iz;w.z � w/n � a.z/b.w/Tiz;w.z � w/n (100)

� Tb.w/a.z/iw;z.z � w/n C b.w/Ta.z/iw;z.z � w/n
�
dz

� b.w/Ta.z/iw;z.z � w/n C b.w/a.z/Tiw;z.z � w/n
�
dz

D Res
�
ŒT; a.z/�b.w/iz;w.z � w/n � b.w/ŒT; a.z/�iw;z.z � w/n

C Res
�
a.z/ŒT; b.w/�iz;w.z � w/n � ŒT; b.w/�a.z/iw;z.z � w/n:

Since both a.z/; b.z/ are translation covariant, we have

ŒT; a.w/.n/b.w/� D a.w/.n/@wb.w/ C .@wa.w//.n/b.w/: (101)

This completes the proof. ut
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We have inclusions

F � Fmin � Fmax � Ftc: (102)

The first inclusion is because for any a.z/ 2 F , we have a.z/.�1/IV D a.z/ 2
Fmin. The second inclusion is by Lemma 3 and Dong’s Lemma (locality). The last
inclusion is by definition.

Exercise 10 Show that the constant field T is translation covariant, but is not local
to any non-constant field.

Lemma 4 Let a.z/; b.z/ 2 Ftc, and a D fs.a.z//; b D fs.b.z//. Then:

(a) fs.IV/ D j0i,
(b) fs.@za.z// D Ta,
(c) fs.a.z/.n/b.z// D a.n/b. Here we write a.z/ D P

n2Z a.n/z�n�1.

Proof .a/ is obvious. For .b/, since a.z/j0i D ezTa D aC .Ta/zC T2a
2
z2 C o.z2/ we

have @za.z/j0i D Ta C T2az C o.z/, so fs.@za.z// D @za.z/j0izD0 D Ta. For .c/, by
definition, we have

fs.a.z/.n/b.z// D a.z/.n/b.z/j0iˇ̌
zD0

; (103)

and the right hand side, by definition of the nth product, is equal to

Res
�
a.w/b.z/iw;z.w � z/nj0i � b.z/a.w/iz;w.w � z/nj0idw�ˇ̌

zD0
: (104)

Now, since a.w/j0i 2 VŒŒw�� and iz;w.w � z/n has only non-negative powers of w,
we have

Res b.z/a.w/iz;w.w � z/ndwj0i D 0:

For the first term, since b.z/j0i 2 VŒŒz��, we can let z D 0 before we calculate the
residue, which gives

Res a.w/b.z/iw;z.w � z/nj0i/dwˇ̌zD0
D Res a.w/bwndw D a.n/b: (105)

This completes the proof. ut
Lemma 5 Let a.z/ 2 Ftc. Then ewTa.z/e�wT D iz;wa.z C w/.

Proof Both sides are in .EndV/ŒŒz; z�1��ŒŒw��, and both satisfy the differential
equation df .w/

dw D .adT/f .w/ with the initial condition f .0/ D a.z/. ut
Lemma 6 (Uniqueness Lemma) Let F 0 � Ftc and let a.z/ be some quantum field
in Ftc. Assume that

(i) fs.a.z// D 0,
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(ii) a.z/ is local with any element in F 0,
(iii) fs.F 0/ D V.

Then a.z/ D 0.

Proof Let b.z/ 2 F 0. By the locality of a.z/ and b.z/, we have .z �
w/N Œa.z/; b.w/� D 0 for some N 2 ZC. Apply both sides to j0i. We get

.z � w/Na.z/b.w/j0i D ˙.z � w/Nb.w/a.z/j0i: (106)

By the property (i) we have a.�1/j0i D 0 and a.z/ is translation covariant, hence by
Lemma 1(b), a.z/j0i D 0. Now, by Lemma 1(a), b.w/j0i 2 VŒŒw��, so we can let
w D 0 and get zNa.z/b D 0, which means a.n/b D 0 for any n 2 Z. This is true for
any b 2 V by the property (iii). So in fact, we have a.z/ D 0. ut
Proof of the Extension Theorem We have the following two properties of the
map fs:

(i) the map fs W Fmin ! V defined by fs.a.z// D a.z/j0iˇ̌zD0
is given by

.aj1 .z/.n1/.a
j2 .z/.n2/ � � � .ajs.z/.ns/IV/ � � � / 7! aj1.n1/a

j2
.n2/ � � � ajs.ns/j0i; (107)

and it is surjective, by (a), (c) of Lemma 4 and the completeness axiom;
(ii) fs W Fmax ! V is injective using the Uniqueness Lemma with F 0 D Fmin.

Recall the inclusion Fmin � Fmax. We now have that fsWFmin ! V is surjective and
fsWFmax ! V is injective, so we can conclude that it is in fact bijective and Fmin D
Fmax. This proves (a) and (b) in the Extension Theorem. For (c), we need to show
that a.z/ is translation covariant 8a 2 V and that each pair a.z/; b.w/ 8a; b 2 V is a
local pair. But translation covariance comes from Lemma 3 and locality comes from
Dong’s lemma. ut
Corollary 1 (of the Proof)

(a) sf .aj1.n1/a
j2
.n2/ � � � ajs.ns/j0i/ D .aj1 .z/.n1/.aj2.z/.n2/ � � � .ajs.z/.ns/IV/ � � � /.

(b) .Ta/.z/ D @za.z/.
(c) .a.n/b/.z/ D a.z/.n/b.z/, which is called the nth product identity.

Proof (a) is by definition since sf is the inverse of fs, while fs is given by (107).
Letting s D 1, n1 D �2 in (a) we get (b). Letting s D 2; n1 D n, n2 D �1 in (a) we
get (c). ut
Remark 12 Due to Corollary 1(b) and Remark 1, the Definitions 3 and 5 of a vertex
algebra are equivalent.

Remark 13 (Special Case of (a) in the Corollary) For n1; : : : ; ns 2 ZC, we have,

sf .aj1.�n1�1/a
j2
.�n2�1/ � � � ajs.�ns�1/j0i/ D W @n1

z aj1 .z/@n2
z aj2 .z/ � � � @nsz ajs.z/ W

n1Šn2Š � � � nsŠ : (108)
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Corollary 2 (of the Proof) LieV WD spanfa.n/j a 2 V; n 2 Zg � EndV is a
subalgebra of the Lie superalgebra EndV with the commutator formula

Œa.z/; b.w/� D
X

j>0

.a.w/. j/b.w//
@ j
wı.z;w/

jŠ
; (109)

which is equivalent to each of the following two expressions

Œa.m/; b.z/� D
X

j>0

 
m

j

!
.a. j/b/.z/zm�j; (110)

Œa.m/; b.n/� D
X

j>0

 
m

j

!
.a. j/b/.mCn�j/: (111)

Moreover, LieV is a regular formal distribution Lie algebra with the data
.LieV ;F D fa.z/ga2V ; adT/.

3.2 Borcherds Identity and Some Other Properties

Proposition 3 (Borcherds Identity) For n 2 Z, a; b 2 V, where V is a vertex
algebra, we have

a.z/b.w/iz;w.z�w/n�.�1/p.a/p.b/b.w/a.z/iw;z.z�w/n D
X

j2Z
C

.a.nCj/b/.w/
@ j
wı.z;w/

jŠ
:

(112)

Proof The left hand side of (112) is a local formal distribution in z and w. Apply to
it the Decomposition theorem to get that it is equal to

X

j2Z
C

c j.w/@ j
wı.z;w/=jŠ ; (113)

where

c j.w/ D Res
�
a.z/b.w/iz;w.z � w/n � .�1/p.a/p.b/b.w/a.z/iw;z.z � w/n

�
.z � w/ jdz

D Res
�
a.z/b.w/iz;w.z � w/nCj � .�1/p.a/p.b/b.w/a.z/iw;z.z � w/nCj

�
dz

D a.w/.nCj/b.w/

D .a.nCj/b/.w/:
(114)
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The last equality follows from the nth product formula, all other equalities are just
by definition. ut
Exercise 11 Prove that a unital z-algebra satisfying the Borcherds identity is a
vertex algebra.

Proposition 4 (Skewsymmetry) For a; b 2 V, where V is a vertex algebra, we
have:

a.z/b D .�1/p.a/p.b/ezTb.�z/a: (115)

Proof By locality, we know that, there exists N 2 Z, such that

.z � w/Na.z/b.w/ D .�1/p.a/p.b/.z � w/Nb.w/a.z/:

Apply both sides to j0i; by Lemma 1(b) we get

.z � w/Na.z/ewTb D .�1/p.a/p.b/.z � w/Nb.w/ezTa: (116)

Now use Lemma 5:

RHS D .�1/p.a/p.b/.z�w/NezTe�zTb.w/ezTa D .�1/p.a/p.b/.z�w/NezTiw;zb.w� z/a:

(117)

For N � 0, this is a formal power series in .z � w/, so we can set w D 0 and get

LHS D zNa.z/b D .�1/p.a/p.b/ezTzNb.�z/a D RHS; (118)

which proves the proposition. ut
Proposition 5 T is a derivation for all nth products, i.e.,

T.a.n/b/ D .Ta/.n/b C a.n/.Tb/; 8n 2 Z: (119)

Proof It follows from Remark 12. ut
In view of the nth product identity, we let W ab WD a.�1/b and call this the normally

ordered product of two elements of a vertex algebra.

Proposition 6 The nth products for negative n are expressed via the normally
ordered product: a.�n�1/b D W Tna

nŠ
b W .

Proof We have .a.�n�1/b/.z/ D a.z/.�n�1/b.z/ D W @nz a.z/
nŠ

b.z/ W , where the first
equality is the nth product identity and the second equality is (78). But we also
have T.a/.z/ D @za.z/, hence by induction we have W @nz a.z/

nŠ
b.z/ W D W .Tna/.z/

nŠ
b.z/ W

D .
.Tna/

nŠ .�1/
b/.z/, and by the bijection of the state-field correspondence, we have

a.�n�1/b D .Tna/

nŠ .�1/
b D W Tna

nŠ
b W . ut
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Now we take care of the nth products a.n/b for n 2 ZC. For this we define the
�-bracket

Œa�b� D
X

j>0

�j

jŠ
.a. j/b/ 2 VŒ��; for a; b 2 V: (120)

Thus we get a quadruple .V;T; W ab W; Œa�b�/, which will be shown in the next lecture
to have a very similar structure to a Poisson Vertex Algebra (PVA).

3.3 Conformal Vector and Conformal Weight, Hamiltonian
Operator

Definition 11 A vector L of a vertex algebra V is called a conformal vector if

(i) L.z/ D P
n2Z Lnz�n�2, such that,

ŒLm;Ln� D .m � n/LmCn C ım;�n
m3 � m

12
cIV (121)

for some c 2 F, which is called the central charge,
(ii) L�1 D T,

(iii) L0 acts diagonalizably on V , its eigenvalues are called conformal weights.

Since Ln�1 D L.n/, using the commutator formula (109), we get

ŒL.z/; a.w/� D
X

j>0

.Lj�1a/.w/@ j
wı.z;w/=jŠ; (122)

which is equivalent to [cf. (111)]

ŒL.m/; a.n/� D
X

j>0

 
m

j

!
.Lj�1a/.mCn�j/: (123)

So we have

ŒL�a� D
X

j>0

�j

jŠ
Lj�1a D Ta C ��aa C o.�/: (124)

Here we assume that a is an eigenvector of L0 with the eigenvalue �a. We call L0

the energy operator. It is a Hamiltonian operator by the definition below and (123)
for m D 0.
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Definition 12 A diagonalizable operator H is called a Hamiltonian operator if it
satisfies the equation

ŒH; a.z/� D .z@z C �a/a.z/ ” ŒH; a.n/� D .�a � n � 1/a.n/ (125)

for any eigenvector a of H with eigenvalue �a.
If we write a.z/ D P

n2��aCZ
anz�n��a , then due to the equality a.n/ D an��aC1,

we have:

ŒH; an� D �nan: (126)

This is an equivalent definition of a Hamiltonian operator.

Proposition 7 If H is a Hamiltonian operator, then we have:

(a) �j0i D 0,
(b) �Ta D �a C 1,
(c) �a.n/b D �a C �b � n � 1.

Proof To prove (a), we just need to know that j0i.z/ D IV , and we use (125) with
a D j0i. Since Ta D a.�2/j0i, (b) follows from .a/ and .c/ with b D j0i, n D �2.
For .c/, we have

H.a.n/b/ D ŒH; a.n/�b C a.n/Hb

D .�a � n � 1/a.n/b C �ba.n/b

D .�a C �b � n � 1/a.n/b:

(127)

ut
Remark 14

(a) For a conformal vector L, we have ŒL�L� D .T C 2�/LC �3

2
cj0i, which implies

�L D 2. That is why we write L.z/ in the form L.z/ D P
n2Z Lnz�n�2.

(b) Conformal weight is a good “book-keeping device”, if we let �� D �T D 1.
Then all summands in the �-bracket Œa�b� D P

j>0
�j

jŠ .a. j/b/ have the same
conformal weight �a C �b � 1.

Remark 15 The translation covariance (4) of the quantum field a.z/ is equivalent to
the following “global” translation covariance:

e�Ta.z/e��T D iz;�a.z C �/:

Likewise, the property (125) of a.z/ is equivalent to the following “global” scale
covariance:

	Ha.z/	�H D .	�aa/.	z/; where Ha D �aa:

The more general property (122) is called the conformal invariance. It is the basic
symmetry of conformal field theory.
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3.4 Formal Fourier Transform

Definition 13 The Formal Fourier Transform is the map F�
z WUŒŒz; z�1�� 7! UŒŒ���

defined by

F�
z a.z/ D Res e�za.z/dz: (128)

Proposition 8

(a) F�
z @za.z/ D ��F�

z a.z/,
(b) F�

z @kwı.z;w/ D e�w�k,
(c) F�

z a.�z/ D �F��
z a.z/,

(d) F�
z .ezTa.z// D F�CT

z a.z/, where T 2 EndU, provided that a.z/ 2 U..z//.

Proof

(a) Assume a.z/ D P
n2Z a.n/z�n�1, then @za.z/ D P

n2Z.�n � 1/a.n/z�n�2. Now

F�
z a.z/ D Res e�za.z/dz

D Res.
X

i2Z
C

�izi

iŠ
/.
X

n2Z
a.n/z

�n�1/dz

D
X

n2Z
C

�n

nŠ
a.n/; (129)

F�
z @za.z/ D

X

n2Z
C

�n

nŠ
.�n/a.n�1/

D ��
X

n2Z
C

�n

nŠ
a.n/:

(b) Recall that @kwı.z;w/

kŠ D P
j2Z
� j
k

�
wj�kz�j�1, so

F�
z @kwı.z;w/ D Res e�zkŠ

X

j2Z
C

 
j

k

!
wj�kz�j�1dz

D
X

j2Z
C

�j

jŠ
kŠ

jŠ

kŠ. j � k/Š
wj�k

D �k
X

j�k2Z
C

�j�k

. j � k/Š
wj�k

D e�w�k:

(130)
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(c) By definition

F�
z a.�z/ D Res.

X

i2Z
C

�izi

iŠ
/.
X

n2Z
a.n/.�z/�n�1/dz

D
X

n2Z
C

�n

nŠ
.�1/nC1a.n/

D �
X

n2Z
C

.��/n

nŠ
a.n/

D �F��
z a.z/:

(131)

(d) Since a.z/ 2 U..z//, ezTa.z/ 2 U..z// is well defined. Now

F�
z .ezTa.z// D Res e�zezTa.z/dz

D Res e.�CT/za.z/dz

D F�CT
z a.z/:

(132)

ut
Similarly, we can define the Formal Fourier Transform in two variables.

Definition 14 The Formal Fourier Transform in two variables is the map

F�
z;w W UŒŒz; z�1;w;w�1�� ! UŒŒw;w�1��ŒŒ���; (133)

defined by

F�
z;wa.z;w/ D Res e�.z�w/a.z;w/dz D e��wF�

z a.z;w/: (134)

Proposition 9

(˛) F�
z;w@za.z;w/ D ��F�

z;wa.z;w/ D Œ@w;F�
z;w�a.z;w/,

(ˇ) F�
z;w@kwı.z;w/ D �k,

(	 ) F�
z;wa.w; z/ D F���@w

z;w a.z;w/ provided that a.z;w/ is local,

(ı) F�
z;wF



x;w D F�C


x;w F�
z;x.

Proof Since F�
z;w D e��wF�

z , .˛/ and .ˇ/ follow from the properties .a/ and .b/ in
Proposition 8. .ı/ holds since

Res Res e�.z�w/C
.z�w/a.z;w; x/dxdz D Res Res e�.z�x/e.�C
/.x�w/a.z;w; x/dxdz
(135)
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Finally, due to the Decomposition theorem, it suffices to check (	 ) (interpretation as
before) for a.z;w/ D c.w/@kw ı.z;w/ W

LHS D Res e�.z�w/c.z/@kz ı.w; z/dz D .�1/k Res e�.z�w/c.z/@w ı.w; z/dz

D .�1/ke��w@kw Res e�zc.z/ı.z;w/dz D .�1/ke��w @kwe
�wc.w/

D .�� � @w/k c.w/;

using the properties (3) and (5) of the delta function. ut

4 Lecture 4 (December 18, 2014)

The Formal Fourier Transform F�
z is very important for us, since the �-bracket (120)

is Œa�b� D F�
z a.z/b, i.e., the Fourier transform of the z-product is the �-bracket.

We also note that W ab W .D a.�1/b/ D Res
a.z/b

z
dz. These observations will be

important for studying properties of the normally ordered product W W and the �-
bracket. For simplicity we will further consider vertex algebras V of purely even
parity only. The general case follows by the Koszul-Quillen rule.

4.1 Quasicommutativity, Quasiassociativity
and the Noncommutative Wick’s Formula

Lemma 7 (Newton-Leibniz (NL) Lemma) For any a.z/ 2 UŒŒz��, we have

F�
z

a.z/

z
D Res a.z/

dz

z
C
Z �

0

F

z a.z/d
: (136)

Proof Both sides are formal power series in �, they are equal at � D 0, and their
derivatives by � are also equal, so they are equal. ut
Proposition 10 (Quasicommutativity of : :) The commutator for the normally
ordered product and �-bracket are related as follows

W ab W � W ba WD
Z 0

�T
Œa�b�d�: (137)

Proof Apply F�
z to both sides of skewsymmetry, divided by z, and set � D 0. We

get

F�
z

a.z/b

z

ˇ̌
ˇ̌
�D0

D F�
z

ezTb.�z/a

z

ˇ̌
ˇ̌
�D0

: (138)
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By definition

LHS D W ab W D a.�1/b: (139)

Next, using property .d/ of the FFT in Proposition 8, we have

RHS D F�CT
z

b.�z/a

z

ˇ̌
ˇ̌
�D0

.by NL Lemma/ D Resz
b.�z/a

z
C
Z �CT

0

F

z b.�z/a d


ˇ̌
ˇ̌
�D0

.by property .c/ of FFT in Prop 8/ D W ba W �
Z T

0

F�

z b.z/a d


D W ba W �
Z T

0

Œb
�
a� d


.by skewsymmetry of the �-bracket/ D W ba W C
Z T

0

Œa
CTb� d


D W ba W C
Z 0

�T
Œa
b� d
:

(140)
ut

Next we derive the following important identity.

Proposition 11 For a; b; c in a vertex algebra V, we have the following identity in
VŒŒ�;w;w�1��

Œa�b.w/c� D ew�Œa�b�.w/c C b.w/Œa�c�: (141)

Proof The following identity in VŒŒz˙1;w˙1�� is obvious:

a.z/b.w/c D Œa.z/; b.w/�c C b.w/a.z/c: (142)

Applying to both sides F�
z D ew�F�

z;w, we get

Œa�b.w/c� D ew�F�
z;wŒa.z/; b.w/�c C b.w/F�

z a.z/c D ew�Œa�b�.w/c C b.w/Œa�c�;
(143)

where we have used the nth product formula a.w/.n/b.w/ D .a.n/b/.w/; n 2 ZC.
ut

We have the following two important properties of a vertex algebra.
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Proposition 12 Assume a; b; c in a vertex algebra V. Then we have

(a) Quasiassociativity formula

WW ab W c W � W a W bc WWDW
�Z T

0

d�a

�
Œb�c� W C W

�Z T

0

d�b

�
Œa�c� W : (144)

(b) Non-commutative Wick’s formula

Œa� W bc W� DW Œa�b�c W C W bŒa�c� W C
Z �

0

ŒŒa�b�
c�d
: (145)

Proof

(1) Apply Res 1
z dz to the -1st product identity:

W ab W .z/c DW a.z/b.z/ W c D a.z/Cb.z/c C b.z/a.z/�c; (146)

and use that

Res
1

z
.W ab W .z/c/dz D .W ab W/.�1/c DWW ab W c W ;

Res
1

z
.a.z/Cb.z/c/dz DW a W bc WW C

X

j2Z
C

a.�j�2/b. j/c

DW a W bc WW C W .

Z T

0

d�a/Œb�c� W ; (147)

Res
1

z
.b.z/a.z/�c/dz D

X

j2Z
C

b.�j�2/a. j/c

DW .

Z T

0

d�b/Œa�c� W :

(2) Take Res 1
wdw of both sides of formula (141):

Res
1

w
Œa�b.w/c�dw D Res

1

w
.ew�Œa�b�.w/c C b.w/Œa�c�/dw: (148)

Since Res b.w/c
w dw D b.�1/c DW bc W, we have

Res
1

w
Œa�b.w/c�dw D Œa� W bc W�: (149)
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For the second term of the right-hand side of (148),

Res
1

w
b.w/Œa�c�dw DW bŒa�c� W : (150)

Using the NL Lemma 7 for the first term in the right hand side of (148), we
have

Res ew� Œa�b�.w/c

w
dw D F�

w

Œa�b�.w/c

w

D Res
Œa�b�.w/c

w
dw C

Z �

0

F

w Œa�b�.w/cd


DW Œa�b�c W C
Z �

0

ŒŒa�b�
c�d
:

(151)

ut
Remark 16 The expression W .

R T
0
d�a/Œb�c� W should be understood in the following

way. We know that Œb�c� D P
j2Z

C

b. j/c
�j

jŠ
, so W aŒb�c� WD P

j2Z
C

a.�1/b. j/c
�j

jŠ
. We

have
R T

0

�j

jŠ
d� D TjC1

. j C 1/Š
; letting

TjC1

. j C 1/Š
act just on a we get

�
TjC1a

. j C 1/Š

�

.�1/

D
a.�j�2/, so W .

R T
0
d�a/Œb�c� WD P

j2Z
C

a.�j�2/b. j/c.

4.2 Lie Conformal Algebras vs Vertex Algebras

Let g be a Lie algebra, and let gŒŒw;w�1�� be the space of all g-valued formal
distributions. This space is an FŒ@�-module by defining

@a.w/ WD @wa.w/: (152)

It is closed under the following (formal) �-bracket: for a D a.w/; b D b.w/ 2
gŒŒw;w�1��. Let

Œa�b�.w/ WD F�
z;wŒa.z/; b.w/�: (153)

Indeed, by definition of F�
z;w and its property .ˇ/, we have:

Œa�b�.w/ D Res e�.z�w/Œa.z/; b.w/�dz

D P
j2Z

C

�j

jŠ Res.z � w/ jŒa.z/; b.w/�dz

D P
j2Z

C

�j

jŠ .a. j/b/.w/ 2 gŒŒw;w�1��ŒŒ���:

(154)



Introduction to Vertex Algebras and Integrable Hamiltonian PDE 37

Thus Œa�b�.w/ is a generating series for jth products of a.w/ and b.w/. It is a
formal power series in � in general, but if the pair .a.w/; b.w// is local, Œa�b� 2
gŒŒw;w�1��Œ�� is polynomial in �.

Proposition 13 Assume a.w/; b.w/; c.w/ 2 gŒŒw;w�1�� for some Lie algebra g with
@ D @w defined as above. Denote a D a.w/; b D b.w/; c D c.w/. Then the �-bracket
defined as above satisfies the following properties:

(sesquilinearity) Œ@a�b� D ��Œa�b�; Œa�@b� D .� C @/Œa�b�;

(skewsymmetry) Œb�a� D �Œa���@b� if a; b is a local pair;
(Jacobi identiy) Œa�Œb
c�� D ŒŒa�b��C
c� C Œb
Œa�c��:

(155)

Proof The sesquilinearity comes from .˛/ and the skewsymmetry comes from .	/

in Proposition 9 about properties of formal Fourier transform in two variables. For
the Jacobi identity we have:

Œa�Œb
c��.w/ WD F�
z;wŒa.z/;F


x;wŒb.x/; c.w/��

D F�
z;wF



x;wŒa.z/; Œb.x/; c.w/��

D F�
z;wF



x;wŒŒa.z/; b.x/�; c.w/�� C F�

z;wF


x;wŒb.x/; Œa.z/; c.w/��:

(156)

The last equality comes from the Jacobi identity in the Lie algebra g. By property
.ı/ of the formal Fourier transform in Proposition 9, we have:

F�
z;wF



x;wŒŒa.z/; b.x/�; c.w/�� D F�C


x;w F�
z;xŒŒa.z/; b.x/�; c.w/�

D F�C

x;w ŒF�

z;xŒŒa.z/; b.x/�; c.w/��

D ŒŒa�b��C
c�.w/;

(157)

while F�
z;wF



x;wŒb.x/; Œa.z/; c.w/�� D Œb
Œa�c��.w/ is just by definition. ut

Definition 15 A Lie conformal algebra (LCA) is an FŒ@�-module R endowed with
an F-bilinear �-bracket Œa�b� 2 RŒ�� for a; b 2 R, which satisfies the axioms of
sesquilinearity, skewsymmetry and the Jacobi identity.

Example 8 The Virasoro formal distribution Lie algebra from Example 5 gives rise,
by Proposition 13, to the Virasoro Lie conformal algebra

Vir D FŒ@�L ˚ FC (158)

with �-bracket

ŒL�L� D .@ C 2�/L C �3

12
C; ŒC�Vir� D 0 :
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Replacing L by L� 1
2
˛C; where ˛ 2 F; we obtain a �-bracket with a trivial cocycle

added:

ŒL�L� D .@ C 2�/L C ˛�C C �3

12
C; ŒC�Vir� D 0: (159)

Example 9 The Kac-Moody formal distribution Lie algebra from Example 6 gives
rise to the Kac-Moody Lie conformal algebra

Cur g D FŒ@� ˝ g C FK (160)

with �-bracket .a; b 2 g/ W

Œa�b� D Œa; b� C �.ajb/K; ŒK�Cur g� D 0:

Fix s 2 gI replacing a by a � .ajs/K; we obtain a �-bracket with a trivial cocycle
added:

Œa�b� D Œa; b� C �.ajb/K C .sjŒa; b�/K; ŒK�Cur g� D 0: (161)

Of course, adding a trivial cocycle doesn’t change the Lie conformal algebra.
However this will become crucial in the proof of the integrability of the associated
integrable systems.

Due to the nth product identity in a vertex algebra [Corollary 1(c)], we derive
from the last proposition the following.

Proposition 14 A vertex algebra V is a Lie conformal algebra with @ D T, the
translation operator, and �-bracket

Œa�b� D
X

n>0

�n

nŠ
a.n/b; a; b 2 V: (162)

Proof The �-bracket defined by (162) is the formal Fourier transform of the z-
product in V . V is obviously an FŒT�-module. Moreover, the Fourier coefficients of
the formal distributions fa.w/ja 2 Vg � EndVŒŒw;w�1�� span a Lie subalgebra of
LieV of End V (Corollary 2), and they are pairwise local, hence the skewsymmetry is
always satisfied. Thus, .LieV ; fa.w/ga2V/ is a formal distribution Lie algebra. Hence,
by Proposition 13, the formal distributions fa.w/ga2V satisfy all axioms of a Lie
conformal algebra. Due to the nth product identity, Proposition 14 follows. ut

We thus obtain the following

Theorem 5 Let V be a vertex algebra. Then the quintuple .V; j0i;T; WW; Œ:� :�/

satisfies the following properties of a “quantum Poisson vertex algebra”.

(a) .V;T; Œ����/ is a Lie conformal algebra.
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(b) .V; j0i;T; WW/ is a quasicommutative, quasiassociative unital differential alge-
bra.

(c) The normally order product :: and the �-bracket Œ���� are related by the
noncommutative Wick formula (145).

Remark 17 In fact, properties (a), (b), (c) of Theorem 5 characterize a vertex
algebra structure, i.e., a quintuple .V; j0i;T; WW; Œ����/ satisfying the above “quantum
Poisson vertex algebra” properties, is a vertex algebra. This is proved in [2].

Example 10 (Computation with the non-commutative Wick’s formula) The sim-
plest example is a free boson. Recall Example 3 in Lecture 1. For a free boson field
a.z/, we have

Œa.z/; a.w/� D @wı.z;w/: (163)

In the language of �-brackets this means for a D fs.a.z// W
Œa�a� D �j0i; (164)

i.e., a.1/a D 1 and a.n/a D 0 for n D 0 or n>2.
Now let L WD 1

2
W aa W, then

ŒL�a� D .T C �/a; ŒL�L� D .T C 2�/L C �3

12
j0i: (165)

Indeed,

2Œa�L� D Œa� W aa W� DW Œa�a�a W C W aŒa�a� W C
Z �

0

ŒŒa�a�
a�d
:

Using (164), we obtain Œa�L� D �a (since Œj0i�a� D 0). By the skewsymmetry of
the �-bracket, the first equation in (165) follows.

Next we have:

ŒL�L� D 1

2
ŒL� W aa W�

D 1

2
W ŒL�a�a W C1

2
W aŒL�a� W C

Z �

0

ŒŒL�a�
a� d


D 1

2
W ..T C �/a/a W C1

2
W a.T C �/a W C

Z �

0

Œ.T C �/a
a� d


D 1

2
T.W aa W/ C � W aa W C

Z �

0

.� � 
/
 d
 j0i

D .T C 2�/L C �3

12
j0i;

proving the second equation in (165).
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Of course, there is a simpler way of manipulating with free quantum fields, see
Theorem 3.3 in [17]. However, exactly the same method as above works well for
arbitrary quantum fields (like currents, discussed below).

The following proposition tells us how to prove that a vector L is a conformal
vector, hence how to construct a Hamiltonian operator H D L0.

Proposition 15 Let .V; j0i;T;F / be a pre-vertex algebra and let L 2 V be such
that for a.z/ 2 F ,

(i) ŒL�a� D .T C 4a�/a C o.�/

(ii) L.z/ satisfies the Virasoro relation: ŒL�L� D .T C 2�/L C �3

12
cj0i.

Then L is a conformal vector of the corresponding (by the Extension theorem) vertex
algebra.

Proof L.z/ is already a Virasoro field, so we only need to prove that L�1 D T and
that L0 acts diagonalizably on V . By completeness, V is spanned by aj1.k1/ � � � ajs.ks/j0i,
where aji.z/ 2 F . Furthermore, property .i/ tells us

ŒL�1; a.n/� D �na.n�1/ and ŒL0; a.n/� D .�a � n � 1/a.n/: (166)

Moreover, letting a D j0i in .i/, we get

L�1j0i D 0 and L0j0i D 0: (167)

Remember that T also satisfies the first equation in (166), so ŒL�1 � T; a.k/� D 0 for
all k 2 Z. Moreover .L�1 � T/j0i D 0, so L�1 � T, being a derivation of all nth
products, is zero, i.e., L�1 D T. L0 is diagonizable by (166). ut

It follows from Proposition 15 and (165) that L is a conformal vector for the free
boson vertex algebra, the free boson a being primary of conformal weight 1. Exactly
the same method works for the affine vertex algebras.

Exercise 12 Let Vk.g/ be the universal affine vertex algebra of level k associated to
a simple Lie algebra g. Let ai; bi be dual bases of g, i.e., .bijaj/ D ıij with respect to
the Killing form. Assume that k ¤ �h_; where 2h_ is the eigenvalue of the Casimir
element of U.g/ in the adjoint representation (h_ is called the dual Coxeter number).
Let L D 1

2.kCh_/

P
i W aibi W (the so called Sugawara construction). Show that L is

a conformal vector with central charge c D kdim g
2.kCh_/

, all a 2 g being primary of
conformal weight 1.

4.3 Quasiclassical Limit of Vertex Algebras

Suppose we have a family of vertex algebras, i.e. a vertex algebra .V„;T„; j0i„; WW„;

Œ����„/ over FŒŒ„��, such that

(i) for v 2 V„, „v D 0 only if v D 0 (e.g. if V„ is a free FŒŒ„��-module),
(ii) Œa�b�„ 2 „V„ for a; b 2 V„.
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Given a vertex algebra .V„;T„; j0i„; WW„; Œ��„/ over FŒŒ„��, satisfying the above
two conditions, let V WD V„=„V„. This is a vector space over F: Denote by 1 the
image of j0i„ 2 V„ in V and by @ the operator on V; induced by T 2 End V„ („V„
is obviously T-invariant). The subspace (over F) „V„ is obviously an ideal for the
product W v W„; hence we have the induced product � on V; which is bilinear over F:

Finally, define a �-bracket fa�bg on V as follows. Let Qa and Qb be preimages in V„
of a and bI then we have

ŒQa�
Qb�„ D „ŒQa�

Qb�0

where ŒQa�
Qb�0 is uniquely defined due to (i) and (ii). We let

fa�bg D image of ŒQa�
Qb�0 in V:

Obviously this �-bracket is independent of the choices of the preimages of a and b:

Definition 16 The quasiclassical limit of the family of vertex algebras V„ is the
quintuple .V; 1; @; �; f���g/:
Definition 17 A Poisson vertex algebra is a quintuple .V; j0i; @; �; f���g/ which
satisfies the following axioms,

(A) .V; @; f�g/ is a Lie conformal algebra,
(B) .V; 1; @; �/ is a commutative associative unital differential algebra,
(C) fa�bcg D fa�bgc C bfa�cg for all a; b; c 2 V (left Leibniz rule).

Theorem 6 The quasiclassical limit V of the family of vertex algebras V„ is a
Poisson vertex algebra.

Proof Since V„ is a vertex algebra over FŒŒ„��, due to Theorem 5 we have the qua-
sicommutativity formula, the quasiassociativity formula and the non-commutative
Wick formula for representatives in V„ of elements of V. After taking the images
of these formulas in V, the “quantum corrections” disappear, hence V satisfies
properties (B) and (C) of a PVA. Property (C) is satisfied as well since the axioms
of a Lie conformal algebra are homogeneous in its elements. ut
Exercise 13 Deduce from the left Leibniz rule and the skewcommutativity of the
�-bracket of a Poisson vertex algebra, the right Leibniz rule:

fab�cg D fb�C@cg!a C fa�C@cg!b:

Given a Lie algebra g, we can associate to it two structures: the universal
enveloping algebra U.g/ and the Poisson algebra S.g/. The Poisson bracket on S.g/

is the extension of fa; bg D Œa; b� for all a; b 2 g by left and right Leibneiz rules. In
fact, S.g/ is the quasiclassical limit of U.g„/, where g„ is the Lie algebra FŒŒ„�� ˝ g
over FŒŒ„�� with bracket Œa; b�„ D „Œa; b� for a; b 2 g. Indeed it is easy to see that
the ordered monomials in a basis of g form a basis of U.g„/ over FŒŒ„��. Hence
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U.g„/=„U.g„/ D S.g/ as associative algebras, and fa; bg D ŒQa; Qb�„
„

ˇ̌
ˇ̌
„D0

D Œa; b�

for all a; b 2 g defines the Poisson structure on S.g/.
Similar picture holds if in place of a Lie algebra g we take a Lie conformal

algebra R, and in place of U.g/ we take V.R/; its universal enveloping vertex
algebra. Recall its construction. We have the “maximal” formal distribution Lie
algebra .LieR;R/, associated to R; which is regular (see [17], Chap. 2). Then
V.R/ D V.LieR;R/ (for another construction, entirely in terms of R; see [6]).

Consider the vertex algebra V.R„/ over FŒŒ„��, where R„ D RŒŒ„�� for the Lie
conformal algebra R over F, with �-bracket defined by Œa�b�„ D „Œa�b� for a; b 2 R.
In the same way as in the Lie algebra case, the quasiclassical limit is the Poisson
vertex algebra, which, as a differential algebra, is S.R/ (the symmetric algebra of
the F-vector space R) with @; extended as its derivation, endowed with the �-bracket
fa�bg D Œa�b� on R; which is extended to S.R/ by the left and right Leibniz rules.

4.4 Representations of Vertex Algebras and Zhu Algebra

We have the following diagram

VAPVA

AAPA

q.lim

Zhu

q.lim

Zhu

In the diagram, AA means associative algebras, PA means Poisson algebras, VA
means vertex algebras and PVA means Poisson vertex algebras; q.lim means the
quasiclassical limit and Zhu means a functor from vertex algebras to associative
algebras (resp. from Poisson vertex algebras to Poisson algebras), explained below.

Let V be a vertex algebra with a Hamiltonian operatorH. Throughout this section
we will assume (for simplicity) that all eigenvalues of H are integers. Recall the
Borcherds identity from Sect. 3.2. For a and b 2 V with eigenvalues of H equal �a

and �b respectively, we write

a.z/ D
X

n2Z
anz

�n��a ; b.z/ D
X

a2Z
bnz

�n��b :

Then, comparing the coefficients of monomials in z and w in the Borcherds identity
we have, for m; n; k 2 Z:

X

j>0

 
k

j

!
.�1/j.amCk�jbnCj�.�1/nbnCk�jamCj/ D

X

j>0

 
m C 4a � 1

j

!
.a.kCj/b/mCnCk :

(168)
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Definition 18 A representation of the vertex algebra V in a vector space M is a
linear map

V �! .EndM/ŒŒz; z�1��; a 7�! aM.z/ D
X

n2Z
aMn z

�n�4a ; (169)

defined for eigenvectors of H and then extended linearly to V , such that,

(i) aM.z/ is an EndM-valued quantum field for all a 2 V (i.e., given m 2 M,
aM.n/m D 0 for n � 0),

(ii) j0iM.z/ D IM ,
(iii) Borcherds identity holds, i.e., for a; b 2 V; c 2 M; m; n; k 2 Z we have

[cf. (168)]:

X

j>0

 
k

j

!
.�1/j.aMmCk�jb

M
nCjc � .�1/nbMnCk�ja

M
mCjc/

D
X

j>0

 
m C 4a � 1

j

!
.a.kCj/b/MmCnCkc : (170)

Remark 18 Note that .Ta/n D .�n��a/an andHa D �aa, hence, ..TCH/a/0 D 0:

Now assume that our vertex algebra V contains a conformal vector L of central
charge c 2 F (see Definition 11), so that L�1 D T and L0 D H is a Hamiltonian
operator. Then we have LM.z/ D P

n2Z LMn z�n�2, and ŒLMm ;LMn � D .m � n/LMmCn C
ım;�n

m3�m
12

cIM .

Definition 19 A positive energy representation M of V is a representation with LM0
acting diagonalizably on M with spectrum bounded below, i.e., M D ˚j>hMj for
some h, where Mj D fm 2 MjLM0 m D jmg.

By (126) (which follows from the Borcherds identity) we have

aMn Mh D 0 for n > 0; aM0 Mh � Mh : (171)

So we have a linear map with .H C T/V contained in the kernel (by Remark 18):

�M W V �! EndMh; a 7�! aM0 jMh : (172)

Taking m D 1; k D �1; n D 0 in Borcherds identity (170) for c 2 Mh, we get,
by (171),

�M.a/�M.b/c D �M.a � b/c; for a; b 2 V;
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where

a � b WD
X

j>0

 
�a

j

!
a. j�1/b : (173)

Thus we get a representation of the algebra .V; �/ in the vector space Mh. The
multiplication � on V is not associative. However, we have the following remarkable
theorem.

Theorem 7 ([21])

(a) J.V/ WD ..T C H/V/ � V is a two-sided ideal of the algebra .V; �/.
(b) ZhuV WD .V=J.V/; �/ is a unital associative algebra with 1 being the image of

j0i.
(c) The map M ! Mh induces a map from the equivalence classes of positive

energy V-modules to the equivalence classes of ZhuV-modules, which is
bijective on irreducible modules.

Proof We refer for the proof to the original paper [21] or to [6] for a simpler proof
of a similar result without the assumption that the eigenvalues of H are integers. ut
Exercise 14 Prove the commutator formula in Zhu algebra:

Œa; b� WD a � b � b � a D
X

j>0

 
�a � 1

j

!
a. j/b (174)

Exercise 15 Let V be a Poisson vertex algebra and let H be a diagonalizable
operator on V, such that

�a.n/b D �a C �b � n � 1; �@a D �a C 1; �ab D �a C �b;

where �a is the eigenvalue of a; and

fa�bg D
X

n2Z
C

�n

nŠ
a.n/b:

Show that ZhuV WD V=..@ C H/V/V is a unital commutative associative algebra
with the well defined Poisson bracket (cf. Exercise 14)

fa; bg D
X

j>0

�
�a � 1

j

�
a. j/b: (175)

Exercise 16 Let V (resp. V) be a vertex algebra (resp. Poisson vertex algebra).
Then J DW .TV/V W (resp. J D .@V/ � V) is a two-sided ideal of the algebra .V; WW/
(resp. .V; �/), and V=J (resp. V=J) is a Poisson algebra with the product, induced by
WW (resp �), and the well defined bracket, induced by the 0th product of the �-bracket.
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Of course, Zhu’s theorem is just the beginning of the representation theory of vertex
algebras, which has been a rapidly developing field in the past twenty years. Some
of the most remarkable results of this theory are presented in the beautiful lecture
course by T. Arakawa in this school.

5 Lecture 5 (January 14, 2015)

Given a vertex algebra V , one can construct its quasiclassical limit. As a result we
get a Poisson vertex algebra (PVA). This can be done both considering a filtration
of the vertex algebra V or by constructing a one parameter family of vertex algebras
V„, as previously done in Lecture 4. This construction resembles the way a Poisson
algebra arises as a quasiclassical limit of a family of associative algebras, hence the
name “Poisson” vertex algebra. The reason we are interested in such structures is
that the theory of Poisson vertex algebras has important relation with the theory of
integrable systems of PDE’s. This relation is parallel to (but a bit different from) the
relation of Poisson algebras with the theory of integrable systems of ODE’s.

5.1 From Finite-Dimensional to Infinite-Dimensional Poisson
Structures

Let us start by recalling the definition of a Poisson vertex algebra:

Definition 20 A PVA is a quintuple .V ; @; 1; � ; f���g/ such that:

1. .V ; @; 1; � / is a differential algebra;
2. .V ; @; f���g/ is a Lie conformal algebra, whose �-bracket satisfies the following

axioms:

(i) (sesquilinearity) f@a�bg D ��fa�bg, fa�@bg D .@ C �/fa�bg;
(ii) (skewsymmetry) fb�ag D �fa�@��bg;

(iii) (Jacobi identity) fa�fb
cgg � fb
fa�cgg D ffa�bg�C
cg;

3. f���g and � are related by the following Leibniz rules:

(i) (left Leibniz rule) fa�bcg D fa�bgc C bfa�cg;
(ii) (right Leibniz rule) fab�cg D fa�C@cg!b C fb�C@cg!a.

Remark 19 We use the following notation: if fa�bg D P
n2Z

C

�n

nŠ
a.n/b, then when a

right arrow appears it means that � C @ has to be moved to the right: fa�C@bg!c DP
n2Z

C

a.n/b
nŠ

.� C @/nc. However, if no arrow appears we just have fa�@��bg D
P

n2Z
C

.���@/n

nŠ
a.n/b.
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In the theory of Hamiltonian ODEs the key role is played by the Poisson bracket
on the space of smooth functions F on a manifold. Choosing local coordinates
u1; : : : ; u` on the manifold, we can endow F with a structure of Poisson algebra,
letting

fuj; uig D Hij 2 F : (176)

By the Leibniz rule this extends to polynomials in the variables ui as follows:

f f ; gg D @g

@u
� H @f

@u
; (177)

where @f
@u D

0
BB@

@f
@u1

:::
@f
@u`

1
CCA, u D

0

B@
u1

:::

u`

1

CA, H D .Hij/
`
i;jD1 is an ` � ` matrix with

coefficients in F , and � is the usual dot product of vectors from F ` with values
in F : Formula (177) extends to arbitrary functions f ; g 2 F . This bracket obviously
satisfies the Leibniz rule, but it is not necessarily skewsymmetric, neither it satisfies
the Jacobi identity. If the matrix H is skewsymmetric (i.e. HT D �H), then the
bracket (177) is skewsymmetric. If, in addition, it satisfies the Jacobi identity (which
happens iff ŒH;H� D 0, where Œ�; �� is the Schouten bracket), then the matrix H is
called a Poisson structure on F .

Definition 21 The Hamiltonian ODE associated with this Poisson structure is

du

dt
D fh; ug D H

@h

@u
; (178)

where the second equality follows from (177). The function h 2 F is called the
Hamiltonian of this equation.
This is a special case of what is called an evolution ODE, that is

du

dt
D F.u/; for some F 2 F `:

In the theory of Hamiltonian PDEs a similar role is played by PVAs. Let us now
see how to construct a similar machinery.

First of all we need to define which kind of differential algebra V we want for
our PVA. The basic example is the algebra of differential polynomials in ` variables
P` D FŒu.n/

i j i 2 I D f1; : : : ; `g; n 2 ZC�, which is a differential algebra with

derivation @, called the total derivative, such that @u.n/
i D u.nC1/

i .

Definition 22 An algebra of differential functions in ` variables V is a differential
algebra with a derivation @, which is an extension of the algebra of differential
polynomials P`, endowed with linear maps @

@u
.n/
i

W V ! V for all i 2 I, n 2 ZC,
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which are commuting derivations of V , extending the usual partial derivatives in
P`, and satisfying the following axioms:

(i) given f 2 V , @f

@u
.n/
i

D 0 for all but finitely many pairs .i; n/ 2 I � ZC;

(ii) Œ @

@u
.n/
i

; @� D @

@u
.n�1/
i

(where the RHS is considered to be zero if n D 0).

Which differential algebras are algebras of differential functions? The algebra
of differential polynomials P` itself clearly satisfies these axioms (it suffices to
check (ii) on the generators u.n/

i ). One can as well consider the corresponding field

of fractions Q` D F.u.n/
i j i 2 I; n 2 ZC/, or any algebraic extension of P` or Q`,

obtained by adding a solution of a polynomial equation. However, if we want both
axioms to hold, we can not add a solution of an arbitrary differential equation: for
example, we can add eu, solution of f 0 D fu0, but we can not add a non-zero solution
of f 0 D fu.

Exercise 17 Let V D P1Œv� with the derivation @, extended from P1 by @v D vu1

or by @v D u1. Show that the structure of an algebra of differential functions cannot
be extended from P1 to V .
The reasons why we want both properties (i) and (ii) to hold will soon be clear.

We also want an analogue of the bracket given by (177) and to understand what
a Poisson structure is in the infinite-dimensional case. Recall the following (non-
rigorous) formula which appears in any textbook on integrable Hamiltonian PDE,
cf. [19], but not [12]. It defines the Poisson bracket on generators (i; j 2 I) as

fui.x/; uj.y/g D Hji.u.y/; u0.y/; : : : ; u.n/.y/I @

@y
/ı.x � y/; (179)

where H D .Hji/
`
i;jD1 is an ` � ` matrix differential operator on V `, the ui’s are

viewed as functions in x on a one-dimensional manifold, and ı.x � y/ is the usual
delta function.

Example 11 The first example is given by the Gardner-Faddeev-Zakharov (GFZ)
bracket, for V D P1, and it goes back to 1971:

fu.x/; u.y/g D @

@y
ı.x � y/: (180)

As in the ODE case, we can extend the bracket defined in (179) by the Leibniz
rule. Then, for arbitrary f ; g 2 V we have

f f .x/; g.y/g D
X

i;j2I; p;q2Z
C

@f

@u. p/
i

@g

@u.q/
j

@px@
q
yfui.x/; uj.y/g: (181)



48 V. Kac

The basic idea is to introduce the �-bracket by application of the Fourier transform

F.x; y/ 7!
Z

e�.x�y/F.x; y/ dx (182)

to both sides of (181):

f f�gg WD
Z

e�.x�y/f f .x/; g.y/gdx: (183)

Thus, for arbitrary f ; g 2 V , we get a rigorous formula, called the Master Formula:

f f�gg D
X

i;j2I; p;q2Z
C

@g

@u.q/
j

.@ C �/qfui @C�ujg!.�@ � �/p
@f

@u. p/
i

: (MF)

Here, fuj @C�uig D Hij.@ C �/, where H.@/ D .Hij.@//i;j2I is a matrix differential
operator with coefficients in V for which the �-bracket is its symbol.

Exercise 18 Derive (MF) from (181).
Note that (MF) is similar to the formula for the Poisson bracket defined by

Eq. (177). In fact, to go from the former to the latter we just put � and @ equal
to 0.

Theorem 8 ([3]) Let V be an algebra of differential functions in the variables
fuigi2I . For each pair i; j 2 I choose fui�ujg D Hji.�/ 2 V Œ��. Then

1. The Master Formula (MF) defines a �-bracket on V which satisfies sesquilin-
earity, the left and right Leibniz rules, and extends the given �-bracket on
the variables ui’s. Consequently, any �-bracket on the algebra of differential
polynomials, satisfying these properties, is given by the Master Formula.

2. This �-bracket is skewsymmetric provided skewsymmetry holds for every pair of
variables:

fui�ujg D �fuj���@uig; 8 i; j 2 I: (184)

3. If this �-bracket is skewsymmetric, then it satisfies the Jacobi identity, provided
Jacobi identity holds for every triple of variables:

fui�fuj
ukgg � fuj
fui�ukgg D ffui�ukg�C
ujg; 8 i; j; k 2 I: (185)

It follows from Theorem 8 that, if the corresponding conditions on the variables
ui’s hold, the �-bracket defined by the Master Formula (MF) endows V with a
structure of PVA. As in the finite-dimensional case, this structure is completely
defined by H.�/ D .Hij.�// 2 Mat`�`V Œ��.
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Definition 23 We say that the matrix differential operatorH.@/ 2 Mat`�`V Œ@� with
the symbolH.�/ is a Poisson structure if the corresponding �-bracket defines a PVA
structure on V .

Exercise 19 The �-bracket, given by the Master Formula, is skewsymmetric if and
only if the matrix differential operator H.@/ is skewadjoint.

Example 12 Let V D P1 D FŒu; u0; u00; : : :�. From the GFZ bracket defined in
Example 11 we get the following �-bracket: fu�ug D �. The skewsymmetry and
the Jacobi identity for the �-bracket, given by the Master Formula, are immediate
by Theorem 8. The associated Poisson structure is H.@/ D @. This PVA is the quasi-
classical limit of the family of free boson vertex algebras B„.

Example 13 Let V D P1 D FŒu; u0; u00; : : :�. The Magri-Virasoro PVA with central
charge c 2 F is defined by the following �-bracket:

fu�ug D .@ C 2�/u C c�3 C ˛�: (186)

Of course, it is straightforward to check that the pair u; u satisfies (184) and the
triple u; u; u satisfies (185), hence, by Theorem 8, we get a PVA. It is instructive,
however, to give a more conceptual proof. Consider the Lie conformal algebra Vir
from Example 8. Then by Theorem 8, S.Vir/ is a PVA, hence its quotient Vc by the
ideal, generated by C � c; is a PVA, which is obviously isomorphic to the Magri-
Virasoro PVA. The corresponding family of Poisson structures is

H.@/ D u0 C 2u@ C c@3 C ˛@: (187)

These Poisson structures were discovered by Magri; the name is due to its
connection to the Virasoro algebra. Note that Vc is the quasiclassical limit of the
family of universal Virasoro vertex algebras V12c

„ :

The following exercise shows that the discrete series vertex algebras Vc with c given
by (60) is a purely quantum effect.

Exercise 20 Show that the PVA Vc is simple if c ¤ 0.

Example 14 Given a vector space U; denote by P.U/ D S.FŒ@� ˝ U/ the algebra
of differential polynomials over U: Let g; .: j :/ be as in Example 6, let k 2 F; and
fix s 2 g: Then the associated affine PVA Vk.g; s/ is defined as the algebra of
differential polynomials P.g/, endowed with the �-brackets .a; b 2 g/ W

fa�bg D Œa; b� C �.ajb/k C .sjŒa; b�/1: (188)

The two proofs from Example 13 apply to show that Vk.g; s/ is a PVA. Of course,
up to isomorphism, it is independent of s; but the trivial cocycle is important for
the associated integrable system, since we get a multiparameter family of Poisson
structures. Note that Vk.g; s/ is the quasiclassical limit of Vk

„.g/:
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Now we recall how one passes from the definition of a Hamiltonian ODE to
that of a Hamiltonian PDE. The following idea goes back to the 1970s: in order to
get an “honest” Lie algebra bracket, we should not consider the whole algebra of
differential functions V , but its quotient V =@V , which is not an algebra anymore,
just a vector space. Denote by

R
the quotient map

R W V ! V =@V . The
corresponding bracket is defined by

fs f ; s gg D
Z

ıg

ıu
� H.@/

ıf

ıu
; (189)

where ıf
ıu is the vector of variational derivatives of f :

ıf

ıui
D
X

n2Z
C

.�@/n
@f

@u.n/
i

:

Elements s f 2 V =@V are called local functionals.
Equation (189) is analogous to Eq. (177), with variational derivatives instead of

partial derivatives, and a matrix differential operator H.@/ instead of a matrix of
functions. It is rather difficult to prove directly that (189) is a Lie algebra bracket on
V =@V . The connection to the PVA theory, explained further on, makes it very easy.

The following exercise shows that (189) is well defined.

Exercise 21 The variational derivative ıf
ıu depends only on the image of f 2 V in

the quotient space V =@V , since ı
ıu ı @ D 0. Deduce the latter fact from axiom (ii)

in the Definition 22 of an algebra of differential functions.
Given a local functional s h, in analogy with (178), one defines the associated
Hamiltonian PDE as the following evolution PDE:

du

dt
D H.@/

ı s h

ıu
: (190)

The local functional s h is called the Hamiltonian of this equation.
We shall explain further on how these classical definitions fit nicely in the

framework of Poisson vertex algebras.

5.2 Basic Notions of the Theory of Integrable Equations

An evolution equation in the infinite-dimensional case is quite the same as in the
finite-dimensional case, except it is a partial differential equation.
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Definition 24 Let V be an algebra of differential functions in ` variables u1; : : : ; u`.
An evolution PDE is

du

dt
D F.u; u0; : : : ; u.n//; (191)

where u D

0
B@
u1

:::

u`

1
CA and F D

0
B@
F1

:::

F`

1
CA 2 V `. Here, ui D ui.x; t/ is a function in one

independent variable x, and the parameter t is called time.
Given an arbitrary differential function f 2 V , by the chain rule we have

df

dt
D

X

i2I; n2Z
C

d.u.n/
i /

dt

@f

@u.n/
i

: (192)

Since, by (191), we have d.u
.n/
i /

dt D @nFi, the function f evolves in virtue of Eq. (191)
as

df

dt
D XFf ;

where

XF D
X

i2I; n2Z
C

.@nFi/
@

@u.n/
i

(193)

is a derivation of the algebra V , called the evolutionary vector field with character-
istic F 2 V `. It is now clear why Axiom (i) in Definition 22 is important: otherwise,
the evolutionary vector field would give a divergent sum when applied to arbitrary
functions f 2 V .

An important notion in the theory of integrable systems is compatibility of
evolution equations:

Definition 25 Equation (191) is called compatible with the evolution PDE

du

d�
D G.u; u0; : : : ; u.m// 2 V ` (194)

where, as before, u D

0

B@
u1

:::

u`

1

CA and G D

0

B@
G1

:::

G`

1

CA 2 V `, if the corresponding flows

commute, that is if d
dt

d
d�
f D d

d�
d
dt f holds for every function f 2 V .
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By the above discussion, the compatibility of evolution equations (191) and (194)
is equivalent to the property that the corresponding evolutionary vector fields
commute: ŒXF;XG� D 0, which is a purely Lie algebraic condition. In fact, we
can easily see that the commutator of two evolutionary vector fields is again an
evolutionary vector field. This follows from the next exercise.

Exercise 22 Prove that ŒXF;XG� D XŒF;G�, where ŒF;G� WD XFG � XGF.
Thus, the bracket ŒF;G� D XFG � XGF endows V ` with a Lie algebra structure,
called the Lie algebra of evolutionary vector fields.

If two evolutionary vector fields commute, then each of them is called a symmetry
of the other. So if ŒXF;XG� D 0, F is a symmetry ofG andG is a symmetry of F. Note
that every evolutionary vector field commutes with @ D Xu0 D P

i2I; n2Z
C

u.nC1/
i

@

@u
.n/
i

.

Let us now introduce the notion of integrability for an evolution equation.

Definition 26 Equation (191) is called Lie integrable if XF is contained in an
infinite-dimensional abelian subalgebra of the Lie algebra V `.

Remark 20 Informally, one says that Eq. (191) is Lie integrable if it admits
infinitely many commuting symmetries.

Example 15 The linear equations over P1:

ut D u.n/; n 2 ZC;

are Lie integrable. Indeed, Xu.m/ .u.n// D u.mCn/ is symmetric in m and n; hence the
corresponding evolutionary vector fields commute.

Example 16 The dispersionless equations over P1:

ut D f .u/u0; f .u/ 2 P1;

are Lie integrable, since

X f .u/u0.g.u/u0/ D @

@u
. f .u/g.u//u02 C f .u/g.u/u00

is symmetric in f and g; hence the corresponding evolutionary vector fields
commute.

The motivation for the definition of Lie integrability of PDE’s comes from a
theorem of Lie in the theory of ODE’s, saying that if the evolution ODE in `

variables du
dt D F.u/ possesses ` commuting symmetries with a non-degenerate

Jacobian, then it can be solved in quadratures. Of course, in the PDE case the
number of coordinates is infinite, therefore we need to require infinitely many
commuting symmetries.

There has been a lot of work trying to establish integrability of various partial
differential equations. One well-known method of constructing symmetries of an
evolution equation is called recursion operator; however, in all examples the
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recursion operator is actually a pseudodifferential operator (which is an element of
V ..@�1//), hence it can not be applied to functions, as Exercise 17 demonstrates. We
will discuss a different approach, the Hamiltonian approach, which is completely
rigorous.

We shall deduce Lie integrability from the stronger Liouville integrability of
Hamiltonian PDE, which, analogously to the definition for ODEs, requires the
existence of infinitely many integrals of motion in involution.

5.3 Poisson Vertex Algebras and Hamiltonian PDE

In order to translate the traditional language of Hamiltonian PDE’s, discussed above,
to the language of PVA’s, and also, to connect the two notions of integrability, the
following simple lemma is crucial.

Lemma 8 (Basic Lemma) Let V be a PVA. Let NV WD V =@V and let
R W V !

NV be the corresponding quotient map. Then we have the following well-defined
brackets:

(i) NV � NV �! NV ; fR a;
R
bg WD R fa�bg�D0,

(ii) NV � V �! V ; fR a; bg WD fa�bg�D0.

Moreover, (i) defines a Lie algebra bracket on NV , and (ii) defines a representation
of the Lie algebra NV on V by derivations of the product and the �-bracket of V ,
commuting with @.

Proof It all follows directly when we put � D 0 in the axioms for the �-bracket f���g
of a PVA. First, both brackets are well defined since sesquilinearity holds for f���g:
for every a; b 2 V we have f@a; bg D ��fa�bg�D0 D 0 and fa; @bg D fa�@bg�D0 D
@fa�bg 2 @V .

Let us now verify the Lie algebra axioms for the first bracket: note thatR fb���@ag�D0 D R fb�ag�D0 since only the coefficients of the 0th power of �� � @

and � respectively survive in NV , and they obviously coincide. By skewsymmetry of
f���g we have

fs a; s bg D s fa�bg�D0 D � s fb���@ag�D0 D � s fb�ag�D0 D �fs b; s ag:
(195)

Hence, skewsymmetry holds for (i). Similarly, the Jacobi identity for f���g provides
that the Jacobi identity holds for this bracket as well, just putting � D 
 D 0 in the
corresponding definitions:

fs a; fs b; s cgg D fs b; fs a; s cgg C ffs a; s bg; s cg: (196)

Therefore, NV is endowed with a Lie algebra structure with the Lie bracket defined
by (i).
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Next, we have to check that (ii) is a representation of NV on V , i.e., that

ffs f ; s gg; ag D fs f ; fs g; agg � fs g; fs f ; agg (197)

holds for all
R
f ;
R
g 2 NV , a 2 V . Again, this is due to the Jacobi identity. Then

we have to check that NV acts on V as derivations of the product. For a; b 2 V andR
h 2 NV we have, by the left Leibniz rule:

fs h; abg D fh�abg�D0 D .fh�agb/�D0 C .fh�bga/�D0 D
D fh�ag�D0 b C fh�bg�D0 a D fs h; agb C fs h; bga:

(198)

Similarly, by the Jacobi identity, we check that it acts by derivations of the �-bracket.
Finally, we have to check that the derivations fR h; � g commute with @. For every
a 2 V we have

.fs h; � g ı @/a D fs h; @ag D fh�@ag�D0 D ..� C @/fh�ag/�D0 D @fh�ag�D0

D .@ ı fs h; � g/a (199)

due to the sesquilinearity of f���g. ut
Definition 27 Given a PVA V and a local functional s h 2 NV , the associated
Hamiltonian PDE is

du

dt
D fs h; ug: (200)

The local functional
R
h is called the Hamiltonian of this equation.

In the case when the PVA V is an algebra of differential functions in the variables
fuigi2I and the �-bracket is given by the Master Formula (MF), we reproduce the
traditional definitions:

(i) Hamiltonian PDE: du
dt D fR h; ug D H ı

R
h

ıu ;

(ii) Poisson bracket on NV : fR f ;
R
gg D R

ıg
ıu � H ıf

ıu .

The first claim is obvious, and the second is obtained by integration by parts.
It follows that in this case NV acts onV by evolutionary vector fields:

R
f 7! X

H ıf
ıu

,

and that the following holds.

Corollary 3 We have a Lie algebra homomorphism NV ! V `,
R
f 7! X

H ıf
ıu
.

Thus, in the case when V is an algebra of differential functions with the Poisson
�-bracket given by the Master formula, the Hamiltonian equation is a special case of

the evolution equation with RHS H ı
R
h

ıu and the corresponding evolutionary vector
field is XH ıh

ıu
.



Introduction to Vertex Algebras and Integrable Hamiltonian PDE 55

Definition 28 A local functional
R
f 2 NV is called an integral of motion of the

evolution equation (191) and f is called a conserved density, if
R df

dt D 0, or,
equivalently, if

R
XFf D 0. Integrating by parts, this, in turn, is equivalent to

Z
ıf

ıu
� F D 0: (201)

Hence,
R
f is an integral of motion of the Hamiltonian equation (200) if and only if

f and h are in involution, that is if fR f ;
R
hg D 0.

So, we have completely translated the language of Hamiltonian PDEs into the
language of PVAs.

Definition 29 The Hamiltonian PDE (200) is called Liouville integrable if
R
h is

contained in an infinite-dimensional abelian subalgebra of the Lie algebra NV . That
is, if there exists an infinite sequence of linearly independent local functionals

R
hn,

such that
R
h0 D R

h and fR hn;
R
hmg D 0 for all n;m 2 ZC.

By Corollary 3, integrals of motion in involution go to commuting evolutionary
vector fields X

H
ı
R
h

ıu
. Hence Liouville integrability usually implies Lie integrability

(provided we make some weak assumption on H.@/, such as H.@/ is non-
degenerate). In fact, in order to check that the local functionals are linearly
independent, it is usually easier to check that the corresponding evolutionary vector
fields are linearly independent.

Exercise 23 Show that the equation du
dt D u00 is Lie integrable, but has no non-

trivial integrals of motion, hence is not Hamiltonian. On the other hand the equation
du
dt D u000 is Hamiltonian with H D @, h D � 1

2
.u0/2, and it is both Lie and Liouville

integrable.

Remark 21 Let F;G; : : : be a sequence of elements of V `, such that the correspond-
ing evolutionary vector fields commute, i.e. the corresponding evolution equations
are compatible. Then we have a hierarchy of evolution equations

du

dt0
D F;

du

dt1
D G; : : : ; (202)

so that the solution of this hierarchy depends now on x and on infinitely many times:
u D u.x; t0; t1; t2; : : :/.

5.4 The Lenard-Magri Scheme of Integrability

There is a very simple scheme to prove integrability, called the Lenard-Magri
scheme. Although it is not a theorem, it always works in practice.
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Let V be an algebra of differential functions in ` variables u1; : : : ; u`. First of all,
introduce the following symmetric bilinear forms on V `:

.�j�/ W V ` � V ` �! NV ; .FjG/ D s F � G: (203)

Given a matrix differential operator H.@/ 2 Mat`�`V Œ@�

h�; �iH W V ` � V ` �! NV ; hF;GiH D .H.@/FjG/: (204)

Note that .H.@/FjG/ D .FjH�.@/G/, where H�.@/ is the adjoint differential
operator of H.@/. Indeed, defining � on V Œ@� as an anti-involution such that �. f / D
f and �.@/ D �@, we get .@f jg/ D �. f j@g/ because .@f jg/C. f j@g/ D R

@. fg/ D 0

in NV . Hence, if H.@/ is skewadjoint, then the bilinear form (204) is skewsymmetric.
Proof of Liouville integrability is based on the following result.

Lemma 9 (Lenard Lemma) Let H.@/ and K.@/ be skewadjoint differential
operators on V `. Suppose elements �0; : : : ; �N 2 V ` satisfy the following Lenard-
Magri relation:

K.@/�nC1 D H.@/�n; n D 0; : : : ;N � 1: (205)

Then, the h�m; �ni D 0 for all m; n D 0; : : : ;N, whenever we consider it with respect
to H or K: h�m; �niH;K D 0.

Proof Proceed by induction on i D jm � nj. If i D 0, then m D n and we get
h�n; �niH;K D �h�n; �niH;K because the form is skewsymmetric, therefore it is equal
to zero. Now let i > 0; by skewsymmetry we may assume m > n. We have

h�m; �niH D .H.@/�mj�n/ D �.�mjH.@/�n/ D �.�mjK.@/�nC1/ D .K.@/�mj�nC1/

D h�m; �nC1iK; (206)

and, by the induction hypothesis, the RHS is zero, since jm � .n C 1/j < jm � nj.
Similarly we have, assuming n > m:

h�m; �niK D .K.@/�mj�n/ D �.�mjK.@/�n/ D �.�mjH.@/�n�1/ D .H.@/�mj�n�1/

D h�m; �n�1iH (207)

and again, by induction hypothesis the RHS is zero since jn� 1 �mj < jn�mj. ut
This lemma is important since, if we can prove that the elements �m 2 V ` are

variational derivatives, i.e. �m D ı
R
hm

ıu for some local functionals
R
hm, it guarantees

that
R
hm and

R
hn are in involution with respect to both brackets on NV . Indeed, we

know that the bracket on NV for the Poisson structure H is given by

fs f ; s ggH D
Z

ıg

ıu
� H.@/

ıf

ıu
D
�

ıg

ıu
jH.@/

ıf

ıu

�
D
�

ıf

ıu
;

ıg

ıu

	

H

; (208)
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therefore, if �n; �m are variational derivatives, then by Lemma 9 we get

fs hm; s hngH D
�
ı
R
hm

ıu
;

ı
R
hn

ıu

	

H

D h�m; �niH D 0; (209)

and the same holds for K. In other words, we have the following corollary of
Lenard’s lemma.

Corollary 4 Let H.@/ and K.@/ be skewadjoint differential operators on V `.
Suppose that the local functionals s h0; : : : ; s hN satisfy the following relation:

K.@/
ı s hnC1

ıu
D H.@/

ı s hn
ıu

; n D 0; : : : ;N � 1: (210)

Then all these local functionals are in involution with respect to both brackets f:; :gH
and f:; :gK on NV .
In the case when (210) holds, and K;H are Poisson structures, one says that the
evolution equations

du

dtn
D K.@/

ı s hnC1

ıu
D H.@/

ı s hn
ıu

form a hierarchy of bi-Hamiltonian equations. Note that if the right-hand sides of
these equations span an infinite-dimensional subspace in the space of evolutionary
vector fields, then all of these equations are both Lie and Liouville integrable.

We now must address two issues:

1. How can we construct vectors �n’s satisfying Eq. (205)?
2. How can we prove that such �n’s are variational derivatives?

Although the second issue has been completely solved considering some reduced
de Rham complex, called the variational complex, discussed in the next lecture, the
first and basic issue is far from being resolved, though there are some partial results.

We will now see how to construct a sequence of vectors �n’s satisfying the
Lenard-Magri relation.

Lemma 10 (Extension Lemma) [3] Suppose that, in addition to the hypothesis
of Lemma 9, we also have the following orthogonality condition: assume to have
vectors �0; : : : ; �N 2 V `, satisfying the Lenard-Magri relation (205), such that

Spanf�0; : : : ; �Ng? � ImK.@/;

where Spanf�0; : : : ; �Ng? is the orthogonal complement with respect to the sym-
metric bilinear form (203). Then we can extend the given sequence to an infinite
sequence of vectors satisfying the Lenard-Magri relation (205) for any n 2 ZC.

Proof It suffices to construct �NC1 such that Eq. (205) holds for n D N. In fact,
the orthogonal complement to Spanf�0; : : : ; �NC1g is contained in the orthogonal
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complement to Spanf�0; : : : ; �Ng, hence the orthogonality condition would hold for
the extended sequence. By Lemma 9, H.@/�N ? �n for every n D 0; : : : ;N. Hence,
by the orthogonality condition, H.@/�N � ImK.@/. Therefore, H.@/�N D K.@/�NC1

for some element �NC1 2 V `. We can now iterate this procedure to construct an
infinite sequence of vectors. ut

Now, let us address the question why the �n’s, satisfying Eq. (205), are variational
derivatives. Note that so far we only have used the fact that H and K are skewadjoint,
but none of their other properties as Poisson structures. However, we will need these
properties in order to prove that the �n’s are variational derivatives. Moreover, we
will need the notion of compatibility of Poisson structures:

Definition 30 (Magri Compatibility) Given two Poisson structures H and K, they
(and the corresponding �-brackets) are compatible if any their linear combination
˛H C ˇK is again a Poisson structure.
Examples 13 and 14 provide multiparameter families of compatible Poisson struc-
tures.

The importance of compatibility of Poisson structures is revealed by the follow-
ing theorem.

Theorem 9 (see [18], Lemma 7.25) Suppose that H; K 2 Mat`�`V Œ@� are
compatible Poisson structures, with K non-degenerate (i.e. KM D 0 implies M D 0

for any differential operator M 2 Mat`�`V Œ@�). Suppose, moreover, that the Lenard-
Magri relation K.@/�nC1 D H.@/�n holds for n D 0; 1, and that �0; �1 are

variational derivatives: �0 D ı
R
h0

ıu , �1 D ı
R
h1

ıu for some
R
h0;
R
h1 2 NV . Then

�2 is closed in the variational complex (discussed in the next lecture).
Theorem 9 allows us to construct an infinite series of integrals of motion in

involution. In fact, if we are given a pair of compatible Poisson structures H;K with
K non-degenerate and we know that the first two vectors �0 and �1, satisfying the
Lenard-Magri relation, are exact in the variational complex (i.e. they are variational
derivatives), it would follow that, whenever we can construct an extending sequence
of �n’s, then all of them would be closed, and hence exact in some extension eV of
the algebra of differential functions V (i.e. �n D ıhn

ıu for some hn 2 eV ). This is a
consequence of the theory of the variational complex, discussed in the next lecture.
Note, however, that �n 2 V ` for all n.

Remark 22 Let ��1 D 0 D ı
ıu1. If K.@/�0 D 0, then for Theorem 9 to hold it

suffices to have only �1 such that K.@/�1 D H.@/�0, since the first step is trivial.

Proposition 16 Suppose we have two compatible Poisson structures H and K on
V , with K non-degenerate, and consider a basis �1

0 ; : : : ; �s0 of KerK (it is finite
dimensional since K is non-degenerate). Suppose that each � i0 can be extended to
infinity so that Eq. (205) holds for all n 2 ZC, and hence we have � in for all n 2 ZC.

Assume moreover that all vectors � i0 are exact: � i0 D ı
R
hi0

ıu for some local functionalR
hi0. Then all the h

i
n

0
s are in involution. Hence, we have constructed canonically an

abelian subalgebra of the Lie algebra NV , corresponding to the pair of compatible
Poisson structures.
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This proposition holds by the following result.

Lemma 11 (Compatibility Lemma) Let H.@/ and K.@/ be skewadjoint differen-
tial operators. Suppose we have vectors �0; : : : ; �N 2 V ` such that K.@/�0 D 0 and
Eq. (205) holds for n D 0; : : : ;N. Suppose moreover to have an infinite sequence
of vectors � 0

0; : : : ; � 0
M; : : : satisfying Eq. (205). Then all �i’s are in involution with all

� 0
j ’s with respect to both Poisson structures H and K.

Proof Proceed by induction on i. The induction basis follows by the fact that for
i D 0 we have K.@/�0 D 0:

h�0; � 0
j iK D .K.@/�0j� 0

j / D .0j� 0
j / D 0 (211)

and

h�0; � 0
j iH D .H.@/�0j� 0

j / D .�0jH�.@/� 0
j / D �.�0jH.@/� 0

j /

D �.�0jK.@/� 0
jC1/ D .K.@/�0j� 0

jC1/ D .0j� 0
jC1/ D 0: (212)

Now let N > i > 0 and suppose h�h; � 0
j iH;K D 0 for all h6i. We want to prove that

h�iC1; � 0
j iH;K D 0. We have

h�iC1; � 0
j iK D .K.@/�iC1j� 0

j / D .H.@/�ij� 0
j / D h�i; � 0

j iH D 0 (213)

and

h�iC1; � 0
j iH D .H.@/�iC1j� 0

j / D �.�iC1jH.@/� 0
j / D �.�iC1jK.@/� 0

jC1/

D .K.@/�iC1j� 0
jC1/ D .H.@/�ij� 0

jC1/ D h�i; � 0
jC1iH D 0; (214)

where in both cases the last equality is given by the induction hypothesis. Hence
h�i; � 0

j iH;K D 0 for all i; j in question. ut
In the next lecture we will demonstrate the Lenard-Magri method on the example

of the KdV hierarchy, hence establishing its integrability.

6 Lecture 6 (January 15, 2015)

6.1 An Example: The KdV Hierarchy

We begin this lecture with an example.
Consider the PVA P1 D FŒu; u0; u00; : : :� with two compatible �-brackets: one is

the Gardner-Faddeev-Zakharov (GFZ) �-bracket fu�ugK D �, and the other one is
the Magri-Virasoro (MV) �-bracket fu�ugH D .@ C 2�/u C c�3 for some c 2 F.
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The corresponding compatible Poisson structures are K.@/ D @ and H.@/ D u0 C
2u@ C c@3 respectively (see Example 13). Note that Ker @ D F.

We shall use the Lenard-Magri scheme discussed in the previous lecture to
construct an infinite hierarchy of integrable Hamiltonian equations: we want to
construct an infinite sequence of vectors �n 2 P1, such that K.@/�nC1 D H.@/�n,
n 2 ZC, and �0 2 KerK.@/. We also want to compute the conserved densities hn,
such that �n D ıhn

ıu .
We can take �0 D 1 and, consequently, h0 D u. Taking ��1 D 0, h�1 D 0, we

can apply Theorem 9 to establish by induction on n that all the �n’s, satisfying the
Lenard-Magri relation, are closed in the variational complex. Since, by Corollary 5
from the next section, every closed 1-form is exact over the algebra of differential
polynomials, we conclude that there exist hn 2 P1, such that �n D ıhn

ıu .
The first step of the Lenard-Magri scheme:

H.@/�0 D K.@/�1 H) u0 D � 0
1 H) �1 D u H) h1 D 1

2
u2: (215)

The second step of the Lenard-Magri scheme:

H.@/�1 D K.@/�2 H) 3uu0 C cu000 D � 0
2 H) �2 D 3

2
u2 C cu00 H) �2

D ı

ıu
h2; h2 D 1

2
.u3 C cuu00/: (216)

And so on.

Remark 23 All �n’s are defined up to adding an element of KerK.@/, hence, in this
case, up to adding a constant.

The corresponding KdV hierarchy of Hamiltonian equations is given by
du

dtn
D

K.@/�nC1 D @�nC1, namely:

du

dt0
D u0;

du

dt1
D 3uu0 C cu000; : : : : (217)

Note that for n D 1 we get the classical KdV equation, which is the simplest
dispersive equation (cf. Example 16).

The hierarchy can be extended to infinity because the orthogonality condition
.�0/

? � ImK.@/ holds (see the Extension Lemma 10): since �0 D 1 and 1? D
@P1 D ImK.@/ (equivalently, if P 2 .�0/? then

R
1 �P D 0 , P 2 @P1, therefore

P 2 ImK.@/). It is easy to show by induction that the differential order of K.@/�n is
2n C 1 (if c ¤ 0), hence they are linearly independent, and we consequently have
Lie integrability. Then automatically all the s hn’s are linearly independent, and we
have Liouville integrability as well. Therefore the KdV equation is integrable, as are

all the other equations
du

dtn
D K.@/�nC1 D H.@/�n.
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Exercise 24 Show that the next equation of the KdV hierarchy is

du

dt2
D @�3 D 15

2
u2u0 C 10cu0u00 C 5cuu000 C c2u.5/;

and the next conserved density is

h3 D 5

8
u4 C 5

3
cu2u00 C 5

6
cuu02 C 1

2
c2uu.4/:

6.2 The Variational Complex

As professor S. S. Chern used to say, “In life both men and women are important;
likewise, in geometry both vector fields and differential forms are important”. In
our theory vector fields are evolutionary vector fields over an algebra of differential
functions V :

XP D
X

iD1;:::;`
n2Z

C

@nPi
@

@u.n/
i

; P 2 V `; (218)

and, as we have already seen in Lecture 5, they commute with @ D Xu0 . Differential
forms in our theory are “variational differential forms” which are obtained by the
reduction of the de Rham complex over V by the image of @.

Let J D f1; : : : ;Ng, where N can be infinite. Given a unital commutative
associative algebra A, containing the algebra of polynomials FŒxjj j 2 J� and

endowed with N commuting derivations
@

@xj
, extending those on the subalgebra

of polynomials, the de Rham complex e̋.A/ over A consists of finite linear
combinations of the form

X

i1<���<ik

fi1;:::;ik dxi1 ^ : : : ^ dxik 2 e̋k.A/; fi1;:::;ik 2 A; (219)

so that we have the decomposition

e̋.A/ D
M

k2Z
C

e̋k.A/:

Moreover, e̋.A/ is a ZC-graded associative commutative superalgebra with parity
given by p.A/ D N0 and p.dxi/ D N1. This is a complex with the usual de Rham
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differential, namely an odd derivation d W e̋k.A/ �! e̋kC1.A/ of e̋.A/ such that

d.dxi/ D 0I df D
X

j2J

@f

@xj
dxj for f 2 A: (220)

It is easily checked that d is a differential, namely that d2 D 0. We will denote this
complex by .e̋.A/; d/.

Let us define now an increasing filtration on A by subalgebras:

Aj D fa 2 A j @a

@xi
D 0; 8 i>jg: (221)

We call A1 the subalgebra of quasiconstants. If
@

@xj
Aj D Aj for all j 2 J, we call A

normal. Obviously, the algebra of polynomials in any (including infinite) number of
variables is normal.

Lemma 12 (Algebraic Poincaré Lemma) Let A be a normal commutative asso-
ciative algebra as above, and let .e̋.A/; d/ be its de Rham complex. Then

Hk.e̋.A/; d/ D 0; k > 0I H0.e̋.A/; d/ D A0: (222)

Proof Extend the filtration of A to e̋.A/ by letting e̋ j.A/ be the subalgebra,
generated by Aj and dx1; : : : ; dxj. Introduce “local” homotopy operators Km W
e̋k

m.A/ ! e̋k�1
m .A/ by

Km. f dxi1 ^ � � � ^ dxis ^ dxm/ D
(

.�1/s.
R
f dxm/ dxi1 ^ � � � ^ dxis

0; if dxm does not occur
(223)

where i1 < : : : < is < m. Here the integral
R
f dxm is a preimage in Am of f 2 Am

under the map @
@xm

, which exists by normality of A.

Let ! 2 e̋k
m.A/. Then it is straightforward to check that

Kmd! C dKm! � ! 2 e̋k
m�1.A/; for m>1: (224)

Hence, if ! 2 e̋k
m.A/ is closed, then

d.Km!/ � ! 2 e̋k
m�1.A/: (225)

Equivalently ! 2 e̋k
m�1.A/ C d e̋.A/, i.e. we may assume that ! 2 e̋k

m�1.A/

modulo adding an exact tail. Repeating the same argument we proceed downward
in the filtration, and after a finite number of steps we get 0, hence ! 2 d e̋.A/. ut

Let V be an algebra of differential functions. Consider the lexicographic order
on pairs .m; i/ 2 ZC � I, and consider the corresponding filtration by subalgebras
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as above:

Vm;i D ff 2 V j @f

@u.n/
j

D 0; 8 .n; j/>.m; i/g: (226)

Hence we can define normality of V as above.

Example 17 The algebra of differential polynomials in ` variables P` is normal.
The derivation @ of V extends to an even derivation of the superalgebra e̋.V /

by letting @.du.n/
i / D du.nC1/

i .

Exercise 25 Show that d@ D @d. (Hint: use Axiom .ii/ in Definition 22.)
Due to this exercise, we may consider the reduced complex

.˝.V /; d/ D .e̋.V /=@e̋.V /; d/;

called the variational complex over the algebra of differential functions V .

Exercise 26 Show that @ is injective on e̋k.V / for k>1.

Theorem 10 ([3]) Let V be a normal algebra of differential functions. Then

Hk.˝.V /; d/ D 0; k > 0I H0.˝.V /; d/ D F =@F ; (227)

where F � V is the subalgebra of quasiconstants.

Proof We have a short exact sequence of complexes

0 �! @e̋.V / �! e̋.V / �! ˝.V / �! 0; (228)

which induces a long exact sequence in cohomology:

H0.@e̋.V // �! H0.e̋.V // �! H0.˝.V // �! H1.@e̋.V // �! H1.e̋.V //

�! H1˝.V // �! : : : : (229)

Since V is normal, by Lemma 12 we get

Hk.e̋.V // D 0 for k > 0:

Now note that Hk.@e̋.V /; d/ D 0 for k > 0. Indeed, take Q! 2 e̋k.V / with k>0.
If d.@ Q!/ D 0, then @.d Q!/ D 0 since d and @ commute. So, thanks to Exercise 26,
we have d Q! D 0. By Lemma 12, since Q! is closed, it is exact: Q! D d Q� for some
Q� 2 e̋.V /, hence @ Q! D @.d Q�/ D d.@ Q�/, and

Hk.@e̋.V // D 0 for k > 0:
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Therefore the long cohomology exact sequence (229) becomes

: : : �! H0.˝.V // �! 0 �! 0 �! H1.˝.V // �! 0 �! 0 �! H2.˝.V //

�! 0 �! 0 : : : ; (230)

so Hk.˝.V /; d/ D 0 for k > 0. When k D 0 we obviously get H0.˝.V // Š
H0.e̋.V //=H0.@e̋.V // D F =@F . ut

Let us study the variational complex more closely. We can write down explicitly
the first terms of the complex ˝.V /:

• ˝0.V / D V =@V ;
• ˝1.V / D V `;
• ˝2.V / D fskewadjoint ` � ` matrix differential operators over V g.

The corresponding maps are

˝0.V /
d�! ˝1.V /

d�! ˝2.V / �! : : : I
Z

f
d7! ı

ıu

Z
f ;F

d7! 1

2
.DF�D�

F/; : : : ;

(231)

where f 2 V ;F 2 V `, and .DF/ij D P
n2Z

C

@Fj

@u
.n/
i

@n; i; j 2 I.

The first identification is clear since e̋.V / D V . Let us explain how to obtain
the identification ˝1.V / D V `. We have

˝1.V / D
� X

i2I;n2Z
C

fi;ndu
.n/
i

�
=@e̋1.V / D

� Z X

i2I;n2Z
C

fi;ndu
.n/
i

�

D
� Z X

i2I;n2Z
C

fi;n@
ndui

�
; (232)

where last equality is due to the fact that d and @ commute. Integrating by parts, we
get

Z X

i2I;n2Z
C

fi;n@
ndui D

X̀

iD1

0

@
Z X

n2Z
C

.�@/nfi;n

1

A dui: (233)

Thus the identification ˝1.V /
��! V ` is given by

Z X

i2I;n2Z
C

fi;ndu
.n/
i 7!

0

@
X

n2Z
C

.�@/nfi;n

1

A

i2I
(234)
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and this is an isomorphism of vector spaces. In particular, we conclude that if we
take df D P

i2I;n2Z
C

@f

@u
.n/
i

du.n/
i (in this case fi;n D @f

@u
.n/
i

), then the RHS of (234) becomes

exactly the vector of variational derivative of f . It also explains the action of the first
differential d W ˝0.V / �! ˝1.V /. Moreover, it is clear that a 1-form � 2 V ` is
exact iff � D ıf

ıu , and it is closed iff D� is self-adjoint.

Exercise 27 Show that the algebra of differential functions P1Œu�1; log u� is
normal. Show that any algebra of differential functions V can be included in a
normal one.

Since the algebra of differential polynomials P` is normal, we obtain the
following corollary of Theorem 10.

Corollary 5 Let V D P` be an algebra of differential polynomials. Then

(a) Ker ı
ıu D F C Im @ :

(b) Im ı
ıu D fF 2 V` j DF is selfadjointg:

(c) ! 2 ˝k.V/; k>1; is closed if and only if it is exact.

Claim (a) is usually attributed to a paper by Gelfand-Manin-Shubin from the 1970s,
though it is certainly much older. Claim (b) is called the Helmholtz criterion, and
apparently, it was first proved by Volterra in the first half of the twentieth century.

If we know that � 2 V ` is a variational derivative: � D ıh
ıu for some h 2 V

(which is not unique since we can add to h elements from @V ), there is a simple
formula to find one of such h W
Exercise 28 Let

� D
X

i2I;n2Z
C

u.n/
i

@

@u.n/
i

be the degree evolutionary vector field, and suppose that � 2 V ` is such that �.u �
�/ ¤ 0. Let h 2 ��1.u � �/: Show that

ıh

ıui
� �i 2 Ker.� C 1/ for all i 2 I:

Consequently, if Ker.� C 1/ D 0; then ıh
ıu D �.

6.3 Homogeneous Drinfeld-Sokolov Hierarchy
and the Classical Affine Hamiltonian Reduction

The method of constructing solutions of the Lenard-Magri relation, described in
Sect. 5.4, uses Theorem 9, which assumes that K is non-degenerate. In this section
I will describe the direct method of Drinfeld and Sokolov on the example of the so
called homogeneous hierarchy, which avoids the use of Theorem 9.
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Consider the affine PVA V D V 1.g; s/; where g is a reductive Lie algebra
with a non-degenerate invariant symmetric bilinear form .: j :/ and s is a semisimple
element of g; with compatible Poisson �-brackets .a; b 2 g/ W

fa�bgH D Œa; b� C .ajb/�; fa�bgK D .sjŒa; b�/; (235)

see Example 14. Note that the Poisson structure K is degenerate, as s is a central
element of the corresponding �-bracket.

The Lenard-Magri relation (210) for infinite N can be rewritten as follows:

fs hn; ugH D fs hnC1; ugK; n 2 ZC; u 2 g: (236)

The Drinfeld-Sokolov method of constructing solutions to this equation is as
follows, see [14] and [8]. Choosing dual bases fuigi2I and fuigi2I of g, let

L.z/ D @ C
X

i2I
ui ˝ ui � z.s ˝ 1/ 2 F@ Ë .g ˝ V /Œz� :

The first step consists of finding a solution F.z/ D P
n>0 Fnz�n 2 .g˝V /ŒŒz�1�� of

the following equations in F@ Ë .g ˝ V /..z�1// W

ŒL.z/;F.z/� D 0; Œs ˝ 1;F0� D 0 : (237)

Theorem 11 Assume that the element s is semisimple, and let h be the centralizer
of s in g, so that g D h ˚ h?. Then

(a) There exist unique U.z/ 2 z�1.h? ˝ V /ŒŒz�1�� and f .z/ 2 .h ˝ V /ŒŒz�1��, such
that

ead U.z/L.z/ D @ C f .z/ � z.s ˝ 1/:

The coefficients of U.z/ and f .z/ can be recursively computed.
(b) Let a be a central element of h. Then Fa.z/ D e�ad U.z/.a˝1/ satisfies Eq. (237).

Define the variational derivative of s f 2 V =@V in invariant form:

ı s f

ıu
D
X

i2I
ui ˝ ı s f

ıui
:

The second step is given by the following.

Theorem 12 Let f .z/; a and Fa.z/ be as in Theorem 11. Let ha.z/ D .a ˝ 1jf .z//:
Then

(a) Fa.z/ D ı s ha.z/
ıu :
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(b) The coefficients of ha.z/ D P
n>0 s hanz

�n satisfy the Lenard-Magri rela-
tion (236).

(c) All the elements
R
han 2 V =@V , where n 2 ZC and a is a central element of h,

are in involution with respect to both Poisson structures H and K:

For proofs of these theorems we refer to [8]. Note that the claim (c) of Theorem 12
follows from claim (b) and Lemma 11.

Example 18 Let s be a regular semisimple element of g; so that h is a Cartan
subalgebra, and let a 2 h. Then the above procedure gives the following sequence
of densities of local functionals in involution, satisfying the Lenard-Magri relation:

h�1 D 0; h0 D a; h1 D 1

2

X

˛2�

˛.a/

˛.s/
e�˛e˛;

h2 D 1

2

X

˛2�

˛.a/

˛.s/
e�˛e

0̨ C 1

2

X

˛2�

˛.a/

˛.s/2
e�˛e˛Œe�˛; e˛�

C 1

3

X

˛;ˇ2�
˛¤ˇ

˛.a/

˛.s/ˇ.s/
e�ˇe˛Œe�˛; eˇ�; : : : ;

where � is the set of roots of g and the root vectors e˛ are chosen such that
.e˛je�˛/ D 1:

The corresponding Hamiltonian equations are:

db

dtn
D 0 for b 2 h; n 2 ZC;

de˛

dt0
D ˛.a/e˛; (238)

de˛

dt1
D ˛.a/

˛.s/
e0̨ C

X

ˇ2�

ˇ.a/

ˇ.s/
e�ˇŒeˇ; e˛�: (239)

The next equation is more complicated, so we give it only for g D s`2; a D
s; ˛.s/ D 1 W

de˛

dt2
D e00̨ � .2e0̨ ˛ C e˛˛0/ � .˛j˛/e2

˛e�˛ : (240)

Note that the elements of h do not evolve since they are central for the Poisson
structure K:

In order to construct new PVAs from existing ones, we can use the classical affine
Hamiltonian reduction of a PVA V .

The classical affine Hamiltonian reduction of a PVA V , associated to a triple
.V0; I0; '/, where V0 is a PVA, I0 � V0 is a PVA ideal and ' W V0 ! V is a PVA
homomorphism, is

W D W .V ;V0; I0; '/ D .V =V '.I0//
ad�'.V0/; (241)
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where ad�'.V0/ means that we are taking the adjoint action of V '.I0/ on V with
respect to the �-bracket.

Remark 24 V =V '.I0/ is a differential algebra, but the �-bracket is not well defined
on this quotient. However, the �-bracket is well defined on the subspace of invariants
.V =V '.I0//ad�'.V0/.

Theorem 13 The �-bracket onW given by

f f C V '.I0/� g C V '.I0/g D f f �gg C V '.I0/ (242)

is well defined and it endows the differential algebraW with a structure of a PVA.

Proof Let fW D f f 2 V j f'.V0/�f g � V Œ��'.I0/g, so that W D fW =V '.I0/. It is
a subalgebra of the differential algebra V , and V '.I0/ is its differential ideal.

Check that fW is closed under the �-bracket of V (i.e. fW is a PVA subalgebra):
let h 2 I0, f ; g 2 fW , then by the Jacobi identity

fh�ff
ggg D ffh� f g�C
gg C ff
fh�ggg � fV Œ��'.I0/�C
gg C f f
V Œ��'.I0/g �
� fV Œ��'.V0/�C
gg C f f
V Œ��'.V0/g � V Œ�; 
�'.I0/: (243)

Finally, by the right Leibniz rule, V '.I0/ is a Poisson ideal of fW : for f 2 fW we
have

f f�V '.I0/g � V f f�'.I0/gCf f�V g'.I0/ � V f f�'.V0/gCV Œ��'.I0/ � V Œ��'.I0/:

(244)

ut
The main example of this construction is the classical affine W-algebra.

Example 19 Consider the affine PVA V D V 1.g; s/ with compatible �-
brackets (235). Let f be a nilpotent element of g and let ff ; h; eg be an s`2-triple,
containing f : Let

g D
M

j2 1
2Z

gj

be the 1
2
ad h eigenspace decomposition (so that f 2 g�1). Assume that s 2 gd;

where d D maxfjjgj ¤ 0g: Let V D P.g>0/; let ' W V0 ! V be the inclusion
homomorphism, and let I0 � V0 be the differential ideal, generated by the set

M D fm � . f jm/jm 2 g>1g:

It is easily checked that I0 is a PVA ideal of V0 with respect to both �-brackets (235).
Then the classical affine W-algebra is the corresponding classical Hamiltonian
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reduction for both �-brackets:

W .g; f ; s/ D W .V ;V0; I0; '/:

Remark 25 The same construction does not work for vertex algebras because of
the presence of quantum corrections. However, for the usual associative algebras
it actually works. The quantum (finite) Hamiltonian reduction of an associative
algebra A is W D W.A;A0; I0; '/ constructed as above, where A0 is an associative
algebra, ' W A0 ,! A is a homomorphism of associative algebras and I0 � A0 is a
two-sided ideal. Thus, taking A D U.g/, A0 D U.g>0/ and I0 the two-sided ideal
generated by the above set M, we get the quantum finite W-algebra

W.g; f / D W.A;A0; I0; '/: (245)

Theorem 14 ([8]) As a differential algebra, the W-algebra W .g; f ; s/ is isomor-
phic to the algebra of differential polynomials on gf , the centralizer of f in g.
In particular, for f principal nilpotent we get the classical Drinfeld-Sokolov
reduction.

The problem is, for which nilpotent elements f can one construct the associated
with W .g; f ; s/ integrable hierarchy of Hamiltonian PDE’s? Drinfeld and Sokolov
constructed such hierarchy in [14] for the principal nilpotent f . (For g D s`n it
coincides with the Gelfand-Dickey nth KdV hierarchy, n D 2 being the KdV
hierarchy.) Their method is similar to that in the homogeneous case. The same
method can be extended, but unfortunately not for all nilpotent elements.

Definition 31 A nilpotent element f 2 g is called of semisimple type if f C s is a
semisimple element of g for some s 2 gd.
These elements are classified for all simple Lie algebras g [15]. For example,
principal, subprincipal and minimal nilpotent elements are of semisimple type.
In exceptional Lie algebras about one third of the nilpotent elements are of
the semisimple type. In s`N only those elements corresponding to partitions
.n; : : : ; n; 1; : : : ; 1/ of N are of semisimple type.

Theorem 15 ([8]) Let g be a simple Lie algebra. If f 2 g is a nilpotent element,
such that f Cs is semisimple for s 2 gd, then there exists a bi-Hamiltonian hierarchy
associated to W .g; f ; s/, which is both Lie and Liouville is integrable.

Remark 26 In the recent paper [11] for any nilpotent element f of g`N and non-zero
s 2 gd an integrable hierarchy associated to W.g`N ; f ; s/ is constructed.

6.4 Non-local Poisson Structures and the Dirac Reduction

Unfortunately in many important examples the PVA structure is not enough to deal
with integrable systems, as it is in the case of the KdV equation, since in practice
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most of the Poisson structures are non-local. Thus we need to consider non-local
PVAs, for which the �-bracket takes value in V ..��1//. Equivalently, the associated
operator H.@/ 2 Mat`�`V ..@�1// is now a matrix pseudodifferential operator.

Still, we can work with these structures, but we have to check that the axioms
for a PVA bracket still make sense when the �-bracket is a map f���g W V ˝
V ! V ..��1//. Sesquilinearity and the left and right Leibniz rules are clear. For
skewsymmetry we have to make sense of .�C@/�1: write .�C@/�1 D ��1.1C @

�
/�1

and then expand in the geometric progression, so we get a Laurent series in �. More
generally, for an n 2 Z we let

.� C @/n D
X

k2Z
C

 
n

k

!
�n�k@k: (246)

We only have problems with the Jacobi identity, and in order for it to make sense
we need the �-bracket to satisfy an additional property, called admissibility:

ffa�bg
cg � V ŒŒ��1; 
�1; .� � 
/�1��Œ�; 
�: (247)

The fact is that when we consider a term like fa�fb
cgg we have to take Laurent
series in � and then Laurent series in 
 and these can not be interchanged, since what
we get are completely different spaces. So, two different terms of the Jacobi identity
cannot a priori be compared, and we need this admissibility property in order to do
so. If H.@/ D A.@/ ı B.@/�1 is a rational matrix pseudodifferential operator (that is,
both A.@/, B.@/ are ` � ` matrix differential operators and B.@/ is non-degenerate),
then the �-bracket defined by the Master Formula (MF) is admissible.

Example 20 For V D P1 D FŒu; u0; u00; : : :� examples of non-local Poisson
structures are:

• H.@/ D @�1 (Toda)
• H.@/ D u0@�1u0 (Sokolov).

More information about non-local PVA can be found in [7]. In particular, it is
shown there that the Lenard-Magri scheme can be applied if both K.@/ and H.@/

are rational pseudodifferential operators. One of the most important examples is
the following pair of compatible non-local Poisson structures on the algebra of
differential polynomials in u and v, where  2 F:

K D
�

0 �1

1 0

�
; H D

�
0 @

@ 0

�
C 2

�
u@�1 ı u �u@�1 ı v

�v@�1 ı u v@�1 ı v

�
; (248)

which produces the non-linear Schrödinger (NLS) equation:

du

dt
D u00 C u2v

dv

dt
D �v00 � uv2:

(249)
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An important construction, leading to non-local PVA’s, is the Dirac reduction for
PVA’s, introduced in [9], which generalizes the classical Dirac reduction for Poisson
algebras [13].

Theorem 16 ([9]) Let .V ; f:�:g; �/ be a (possibly non-local) PVA. Let �1; : : : ; �m 2
V be some elements (constraints) such that

C.@/ D ..f�ˇ @ �˛g/m˛;ˇD1/!

is a non-degenerate matrix pseudodifferential operator. For f ; g 2 V let

f f�ggD D f f�gg �
mX

˛;ˇD1

f�ˇ �C@ gg! .C�1/ˇ˛.� C @/f f��˛g : (250)

Then this modified �-bracket provides V with a structure of a non-local PVA, such
that all elements �˛ are central. Consequently, the differential ideal of the PVA
V D D .V ; f:�:gD; �/; generated by the �˛’s is a PVA ideal, so that the quotient
of V D by this ideal is a non-local PVA.

Proof Formula (250) defines the only �-bracket, which satisfies sesquilinearity and
skewsymmetry, and for which all the �i are central. The proof of Jacobi identity is a
long, but straightforward, calculation. ut
Example 21 Consider the affine PVA V D V 1.s`2; s/ with the two compatible
Poisson �-brackets f:�:gH and f:�:gK , given by (235). As in Example 18, choose a
basis e˛; e�˛; s of s`2; such that

Œe˛; e�˛� D s; Œs; e˙˛� D ˙e˙˛;

and the invariant bilinear form, such that .e˛je�˛/ D 1; .˛j˛/ D �:

Consider the constraint � D s (=a multiple of ˛). This constraint is central
with respect to the �-bracket f:�:gK : The quotient of V by the differential ideal,
generated by � , is the algebra of differential polynomials P2 in the indeterminates
u D e˛; v D e�˛: The induced on P2 �-bracket by f:�:gK is given by the matrix
K in (248), and the Dirac reduced �-bracket f:�:gH on P2 is given by the matrix
H in (248). The reduced by the constraint � evolution equation (240) is the NLS
equation (249).
This approach establishes integrability of the NLS equation, see [10] for details. For
other approaches see [19] and [7].

Exercise 29 Dirac reduction of the affine PVA V 1.g; s/ by a basis of h, applied to
Eq. (239), gives an integrable Hamiltonian equation on root vectors of the reductive
Lie algebra g:

de˛

dt
D ˛.a/

˛.s/
e0̨ C

X

ˇ2�;ˇ¤�˛

ˇ.a/

ˇ.s/
e�ˇŒeˇ; e˛�;
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where a and s are some fixed elements of h, s being regular. Find its Poisson
structures.
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