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Preface

The present volume contains contributions related to the INdJAM intensive research
period which took place in the Centro De Giorgi in Pisa in the period December
2014—February 2015.

The volume is divided in two parts. Part I contains the lectures notes of the four
minicourses delivered during the trimester. Part II contains papers contributed by
participants.

Here is a brief description of the contents of the lecture notes. The first one by
Victor Kac is devoted to giving an introduction to the theory of vertex algebras
and Poisson vertex algebras. After a quick review of the basic notions related to
vertex algebras, the notes give special emphasis to their classical limit, Poisson
vertex algebras, and their applications to the classification of integrable Hamiltonian
PDE’s and their conservation laws. This starts with the famous paper of Drinfeld and
Sokolov from 1985 and the notes contain an up to date report of the state of the art
in this subject illustrating results by Kac himself, De Sole and others.

The second set of notes, due to Fyodor Malikov, gives an introduction to the
theory of chiral differential operators. In the notes one starts with the, by now
classical, localization result of Beilinson and Bernstein which is illustrated in the
case of the group SL,. Inspired by this, via the notion of Chiral Algebroid, the author
gives the general notion of algebra of chiral differential operators and illustrates it
with a wealth of interesting examples.

The third set of notes is by Vera Serganova. It gives a comprehensive introduc-
tion, with plenty of examples, of the theory of finite dimensional representations
of basic Lie superalgebras. The notion of a basic Lie superalgebras is recalled
and, among other things the author introduces analogues of many of the typical
constructions which one performs in the finite dimensional representation theory of
semisimple Lie algebras.

Finally, the last set of notes is by Tomoyuki Arakawa. The notes give an
introduction to the theory of finite and affine W-algebras and their representation
theory. In particular, they provide an outline of the proof of the conjecture of
Frenkel, Kac and Wakimoto on the existence and construction of the so called
minimal models of W-algebras, which gives rise to rational conformal field theories
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as in the case of the integrable representations of affine Kac-Moody algebras and
the minimal models of the Virasoro algebra.

PartII contains 13 papers which cover a variety of subjects. Some of them
are related to the theory of Lie algebras and their representations, affine algebras
and vertex algebras. Others relate to the study of braid groups, the topology of
hyperplane arrangements, and various applications.

The INdAM intensive period has been organized with the contribution of
INdAM, Sapienza Universita di Roma, CRM “Ennio de Giorgi”, Foundation Com-
positio Mathematica, Universita di Pisa, Universita di Bologna, FIRB “Perspectives
in Lie Theory”, PRIN “Spazi di Moduli e Teoria di Lie” Dipartimento di Matematica
di Roma Tor Vergata, Universita di Padova, NSF, EMS.

The organizers acknowledge the generous support of INAAM and warmly thanks
the CRM De Giorgi for their hospitality.

Pisa, Italy Filippo Callegaro
Padova, Italy Giovanna Carnovale
Bologna, Italy Fabrizio Caselli
Roma, Italy Corrado De Concini
Roma, Italy Alberto De Sole

February 2017
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Algebras, and Integrable Hamiltonian PDE

Victor Kac
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Notation

* Ulz]: polynomials with coefficients in a vector space U.

* Ulz,z"']: Laurent polynomials.

* UJ[z]]: formal power series.

¢ U((z)): formal Laurent series.

» Ul[z,z~"]]: bilateral series.

e Z+ ={0,1,2,...}.

» [F: the base field, a field of characteristic 0. All vector spaces are considered over
F.

About the LaTeX’ing of These Notes

These lecture notes were typeset by Vidas Regelskis (Lectures 1 and 6), Tamas F.
Gorbe (2), Xiao He (3), Biswajit Ransingh (4) and Laura Fedele (5 and 6).

The author would like to thank all the above mentioned scribes for their work,
especially Laura Fedele and Vidas Regelskis for many corrections to the edited
manuscript.

1 Lecture 1 (December 9, 2014)

In the first lecture we give the definition of a vertex algebra and explain calculus
of formal distributions. We end the lecture by giving two examples of non-
commutative vertex algebras: the free boson and the free fermion.

1.1 Definition of a Vertex Algebra

From a physicist’s point of view, a vertex algebra can be understood as an algebra
of chiral fields of a 2-dimensional conformal field theory. This point of view is
explained in my book [17].
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From a mathematician’s point of view a vertex algebra can be understood as a
natural “infinite” analogue of a unital commutative associative differential algebra.
Recall that a differential algebra is an algebra V with a derivation 7. A simple, but
important remark is that a unital algebra V is commutative and associative if and
only if

ab=ba, abeV, 1)

where a denotes the operator of left multiplication by a € V.

Exercise 1 Prove this remark.

A vertex algebra is roughly a unital differential algebra with a product, depending
on a parameter z, satisfying a locality axiom, similar to (1). To be more precise, let
me first introduce the notion of a z-algebra. (Sorry for the awkward name, but I was
unable to find a better one.)

Definition 1 A z-algebra is a vector space V endowed with a bilinear (over )
product, valued in V((z)),a ® b +— a(z)b, endowed with a derivation T of this
product:

(i) T(a(z)b) = (Ta)(2)b + a(2)Th,
such that the following consistency property holds:
(i) (Ta)(z) = d,a(z).

Here and further on we denote by a(z) the operator of left multiplicationby a € V
in the z-algebra V. Using the standard notation

a@)b =Y (amb)z"", 2)
n€Z
we can write
a(z) = Za(n)z_”_l, where a(,) € End V. (3)
n€7Z

The bilinear (over F) product a,b is called the nth product. Note that a(z) is an
End V-valued distribution, i.e., an element of (End V)[[z, z~']]. Moreover, a(z) is a
quantum field, i.e., aib = 0 for b € V and sufficiently large n (depending on b).

Remark 1 Axioms (i) and (ii) of a z-algebra imply the following translation
covariance property of a(z) :

[T.a(2)] = 0,a(z), ie., [T.aw)] = —nam—1), VYnelZl. “)

Moreover, the translation covariance of a(z) and either of the axioms (i) or (ii) in
Definition 1 imply the other axiom.
Next, we define a unital z-algebra.
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Definition 2 A unit element of a z-algebra V is a non-zero vector 1 € V, such that
1(z)a = a, and a(z)1 = a mod zV|[[7]].

Lemma 1 Let V be a vector space, let 1 € Vand T € EndV be such that T1 = 0.
Then

(a) For any translation covariant (with respect to T) quantum field a(z), we have
a(z)1 € V[[z]].
(b)

X . n
a()l =e¢a (= Z ¢ T"(a)), where a = a(y)l. (5)
—n!

Proof For (a) we have to prove that a1 = 0 for all n € Z. Since a(z) is
a quantum field, a1 = O for n=N with some N € Z,. Also by translation
covariance we have [T, a] = —nag—1) for all n € Z. Apply both sides of the
last equality to 1:

[T, a(n)]l = Ta(n)l — a(,,)Tl = Ta(,,)l = —na(n_l)l. (6)

Therefore a1 = 0 for n > 0 implies a,—1)1 = 0. Hence a(,)1 = O foralln € Z
and a(z)1 € V[[Z]].

Now we prove (b). By (a), the LHS of (5) lies in V[[z]]. Both sides are solutions
of the differential equation

df

=@, @) e VI ™

For the RHS it is obvious, and for the LHS it follows from (4) and 71 = 0:
d.a(z)1 = Ta(z)1 —a(@)T1 = Ta(z)1. (8)
Both sides obviously satisfy the same initial condition f(0) = a, hence they are
equal. O
Since, 1(—1)l = 1 and T is a derivation of nth products, we have in a unital

z-algebra:

T1=0. )

Note that Lemma 1(a) implies that a(z)1 € V([[z]], and by Lemma 1(b) one actually
has (5). Lemma 1(b) implies that

Ta = a(_z)l, (10)

so that the derivation T is “built in” the product of a unital z-algebra.
Now we can define a vertex algebra.
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Definition 3

(a) A z-algebrais called local if

(z—w)*a(z)b(w)
= (z—w)"®b(w)a(z), for some N, € Z (dependingona,b € V). (11)

(b) A vertex algebra is a local unital z-algebra.

A frequently asked question is: why one cannot cancel (z — w)V® on both sides
of (11)? As we will see in a moment, the answer is: due to the existence of the
delta function. In fact, the case N, = O for all a,b € V is not very interesting,
since all such vertex algebras correspond bijectively to unital commutative associate
differential algebras, as Exercise 2 below demonstrates.

Example 1 A commutative vertex algebra, i.e., [a(z), b(w)] = O foralla,b € V, can
be constructed as follows. Take V to be a unital commutative associative algebra
with a derivation 7. Then V is a commutative vertex algebra with the product
a(2)b = (¢7Ta)b.

Exercise 2 Check that the above example is indeed a commutative vertex algebra.
Using Lemma 1, prove that all commutative vertex algebras are of the form given in
Example 1.

Remark 2 A unital z-algebra V is a vector space with unit element 1 and bilinear
products a,)b, n € Z. (Recall that T is obtained by (10).) Through these bilinear
products we can naturally define z-algebra homomorphisms/isomorphisms, and
subalgebras/ideals. Namely, a homomorphism between two z-algebras V and V'
is a linear map f such that f(1) = 1 and f(a)wf(b) = flawb), Ya,b € V and
Vn € Z. It is an isomorphism if it is a homomorphism of z-algebras and also an
isomorphism as vector spaces. A subalgebra is a subspace W of V which contains
1, such that a,)b € W, Ya,b € W and Vn € Z. And an ideal is a subspace I such
that agyb, bpya € I, Ya € V, ¥b € I and Vn € Z. Note that both a subalgebra and
an ideal are T-invariant due to (9), and if an ideal / contains 1, then it must be the
whole vertex algebra V.

Now I will give another definition of a vertex algebra, in the spirit of quantum
field theory, using language closer to physics: a unit element is called a vacuum
vector, element of a vector space is called a state, etc.

Definition 4 A vertex algebra is a vector space V (the space of states) with a non-
zero vector |0) (the vacuum vector) and a linear map from V to the space of End V-
valued quantum fields (the state-field correspondence) a +— a(z), satisfying the
following axioms:

vacuum axiom: |0)(z) = Iy, a(z)|0) = a+ (Ta)z + ..., where T € End V;
translation covariance axiom (4);
locality axiom (11).
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Remark 1 demonstrates that a vertex algebra defined in the spirit of differential
algebra is a vertex algebra defined in the spirit of quantum field theory. However, in
order to prove the converse, one has to show that axiom (ii) of Definition 1 holds.
This will follow from the proof of the Extension theorem in Lecture 3.

Definition 5 Given a vertex algebra V, the map of the space of its quantum fields
to V, defined by

fsra(z) = a(2)|0).—y = a1)|0) = a, (12)

is called the field-state correspondence. This map is obviously surjective. If this map
is also injective, then the inverse map

sfra a(z) (13)

is called the state-field correspondence.
The first fundamental theorem, which allows one to construct non-commutative
vertex algebras, is the so-called Extension theorem.

Theorem 1 (Extension Theorem) Letr V be a vector space, |0) € V a non-zero
vector, T € EndV and

F = {w@ _ Za{n)z—"—l} 3 (14)
JE

ne€z

a collection of End V-valued quantum fields indexed by a set J. Suppose that the
following properties hold:

(i) (vacuum axiom) T|0) = 0,
(ii) (translation covariance) [T, a’(z)] = 0,a’(z) forall j € J,
(iii) (locality) (z — w)Vi[d'(z), a’(w)] = O for all i,j € J with some N;; € Z.,
(iv) (completeness) span{a’('zl) . --a’&x)|0) ljieJ, ni€Z, secZy}=V.
Let Frax denote the set of all translation covariant quantum fields a(z) such that
a(z), a’(z) is a local pair for all j € J. Then the map

fS:TmaX -V, CZ(Z) = d(Z)lO)Z:() (15)

is bijective and the inverse map sf:V — Fmax endows V with a structure of a
vertex algebra (in the sense of Definition 4) with vacuum vector |0) and translation
operator T.

Remark 3 By conditions (ii) and (iii) we have ¥ C % pax, hence the name Extension
theorem.
Some historical remarks:

* Vertex algebras first appeared implicitly in the paper of Belavin et al. [4] in 1984.
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* The first definition of vertex algebras was given by Borcherds [5] in 1986.

* The Extension Theorem was proved in [6]. In [17] a weaker version was given.

* Connection to physics (Wightman axioms of a quantum field theory [20] in the
1950s) is discussed e.g. in [17].

Remark 4 (Super Version) A vertex superalgebra V is a local unital z-superalgebra
V, cf. Definition 3. Namely V is a vector superspace

V=V;®V; {0,1} = Z/2Z, (16)

a(z)b € Vyqp((2)) ifa € Vou,b € Vg, and TV, C V,, o, B € Z/27Z. An element
a € V has parity p(a) = « if a € V,. Finally, the locality axiom (11) is written
as (z — w)M@[a(z), b(w)] = 0, where the commutator is understood in the “super”
sense, i.e.

[a(2), bW)] = a(@b(w) — (=1 Pb(w)a(z).

All the identities in the “super” case are obtained from the respective identities in
the purely even case by the Koszul-Quillen rule: there is a sign change if the order
of two odd elements is reversed; no change otherwise. It is a general convention to
drop the adjective “super” in the case of vertex superalgebras.

1.2 Calculus of Formal Distributions

Definition 6 Let U be a vector space. A U-valued formal distribution a(z) is an
element of U[[z,z7']]:

a@) =Y a'. ayeU. (17)
n€z
The residue of a(z) is
Resa(z)dz = a—;. (13)

Most often one uses a different indexing of coefficients:

a(z) = Za(n)z_"_l, so that am) = Res a(z)7"dz. (19)

nez
Note that a(z) is a linear function on the space of test functions F[z, z7']:
(a(z), ¢(2)) = Resa(2)p(z)dz € U, Yo(z) € Flz,z7']. (20)

and it is easy to see that one thus gets all linear functions on F[z, z7!].
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A formal distribution in two variables z and w is an element a(z,w) €
Ullz,z7 ' w,w™ ).

Definition 7 A formal distribution a(z, w) is called local if (z—w)"a(z, w) = 0 for
some N € Z.

Example 2 The formal delta function §(z, w), defined by

Sow) =Y "W, 1)

ne€z

is an example of an F-valued formal distribution in two variables. It is local since
(z —w)8(z,w) = 0. In fact, one can write §(z, w) as

1
8(z,w) = izw — s , (22)
Z—w Z—w

where i,,, denotes the expansion in the domain |z| > |w| and i, denotes the
expansion in the domain |z] < |w], i.e.

. 1 -1 —n—1
Iow =z = 7" 'w",  and
“ —w 1— w g
e Lo—oyt oo o (23)
w,Z - - M
=W 11— ¢ n<0

w

The following formula, which is derived by differentiating (21) and (22) n € Z+
times, will be useful:

NSw) 1 , 1 FA Y
= law —lwe = " . 24
n! L. (z — w)rtl tw. (z —w)nt! Z (n)w N (24)

jez

Let us list some properties of the formal delta function, which are straightforward
by (24):

if n=m=>=0,

\ P8 (2 w)
L. z—w)" awgfj’ W _ ) m)!

’ 0, ifm>n,
2. 8(z,w) = 8(w, 2),
3. 0,6(z,w) = —0,,6(z, w),
4. a(z)8(z, w) = a(w)d(z, w), where a(z) is any formal distribution,
5. Resa(z)8(z, w)dz = a(w).

Theorem 2 (Decomposition Theorem) Any local formal distribution a(z, w) can
be uniquely decomposed as a finite sum of derivatives of the formal delta function
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with formal distributions in w as coefficients:

aeow) = 3 el )8”5@’ ") (25)
20
Moreover
c/(w) = Resa(z, w)(z — w)/dz. (26)

Proof Multiply both sides of (25) by (z—w)’ and take residues. Using properties of
the delta function listed above we obtain (26). To show (25) we set

v 5(1, w)

blz,w) = azw) = ) _c/(w) 27)

Jj=0

with ¢/(w) given by (26). It is immediate that
Resb(z, w)(z —w)/dz =0 forall je Zy, (28)

hence
b(z.w) =Y by(w)7". (29)
n=0

By definition b(z, w) is local, therefore (29) implies that b(z, w) = 0. O

Remark 5 If we have a local pair a(z),b(z) € g[[z,z"']], where g is a Lie
(super)algebra (i.e. [a(z), b(w)] is a local formal distribution in z and w), then, by
the Decomposition theorem, we have:

,8(z,
@, 6] = Y@y . (30)
=0
where the sum over j is finite, and
glbw, w™Na(w)(jb(w) := Res(z — w)’[a(z), b(w)ldz (= ¢/ (). 31)

Using (24) and comparing the coefficients of z”w" on both sides of (30), we find

m
[amy- bl =Y <j)(a(j)b)(m+n—j)s Vm,n € Z. (32)

=



12 V. Kac
1.3 Free Boson and Free Fermion Vertex Algebras

Example 3 (Free Boson) LetB = F[x|,x2,...],10) =1,T = X:.>2jxjax‘jj , and
> -

d .
, ifn >0,
| 0x,
F = {H(Z) = Za(n)z_n_ } , where am) = —nx_,, ifn < 0’ (33)
nez
0, ifn=0,
so that

[am)s am) = mép—n, VYm,n € Z. (34)

The quantum field a(z) is called the free boson field. Since (34) is equivalent to
[a(2), a(w)] = 8,8 (z, w), (35)
we have
(z—w)’[az), a(w)] = 0, (36)

i.e., a(z) is local with itself.

The translation covariance of the free boson field a(z), that is [T, a]
—nag—1y, Yn € Z, can be verified directly. Vacuum axiom and completeness are
obviously satisfied. Locality is (36). So, by the Extension theorem, B carries a vertex
algebra structure.

Example 4 (Free Fermion) Let F = A[§),&,,...] be a Grassmann superalgebra,

ie.,

g5 = —§&. p&) =1.

Let |0) = 1land T = Zj>l JEi+1 3%, where 32, is an odd derivation of the
= J J

superalgebra F (i.e. 8(“b) = g‘_b + (=)@ gg), such that
) J

0

9 & = §j. 37

Set

. if n=0,
{(ﬂ(Z) Z PmZ n—l} ,  where ) = 9&n+1 (38)
nez &, ifn <0,
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then
(@), )] = Om—n—1, Ym,n e Z. 39

The odd quantum field ¢(z) is called the free fermion field. Since (39) is equivalent
to

[p(), pwW)] =Y 2" "W = 8(z,w), (40)

ne€z

¢(2) is local to itself. As in Example 3, the vacuum axiom and completeness are
immediate. Translation covariance follows from the exercise below.

Exercise 3 Show that the free fermion field is translation covariant, i.e.,

[T, 90)] = —npu-1), VYneZ. (41)

2 Lecture 2 (December 11, 2014)

In the first lecture we discussed the two simplest examples of non-commutative
vertex algebras (see Examples 3 and 4). In this lecture we will consider further
important examples, among them a generalization of those two mentioned previ-
ously. First, we need to introduce the necessary notions.

2.1 Formal Distribution Lie Algebras and Their Universal
Vertex Algebras

Definition 8 A formal distribution Lie (super)algebra is a pair (g, F), where g
is a Lie (super)algebra and ¥ is a collection of pairwise local g-valued formal
distributions a/(z) = },eza{,z""",j € J, such that the coefficients {a(, |
j € J, n € Z} span g. A formal distribution Lie (super)algebra (g, ) is called
regular if:

(i) the F[d,]-span of F is closed under all nth products forn € Z,
a(@wb(2) = Res(w — 2)"[a(w). b(:)]dw, 42)
i.e., if a(z) and b(z) are elements of the form Zjejfj(az)aj(z), where f;(d;) €

IF[9.], and only finitely many f;j(d,) # 0, then their nth product for n € Z is
still an element of the same form.
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(ii) there exists a derivation 7' € Der g such that

T(a/(2) = 9.a/(2). ie.. T(a},) = —na),_,, Vjel. (43)

The annihilation subalgebra of g is g— = span{a{n) |jedJ, neZi}.

Exercise 4 Show that g_ is a T-invariant subalgebra of g. (Hint: use the commuta-
tion formulas (32) and (43).)

The following theorem allows one to construct vertex algebras via the Extension
theorem. Let U(g) denote the universal enveloping algebra of g.

Theorem 3 Let (g, Fo) be a regular formal distribution Lie algebra, and let g— be
the annihilation subalgebra. Let V.= U(g)/U(g)g— (also known as the induced
g-module Indg_ (F)) and let w be the representation of g in V induced via the
left multiplication. Let |0) = 1 be the image of 1 in V and T € EndV be the
endomorphism of V induced by the derivation of g. Let F be the collection of End V-
valued formal distributions

7= 2@ @) = Lrlal, )

ne€z

aj(z)eTo,jEJ}. (44)

Then ¥ consists of quantum fields and (V, |0), T, F) satisfies the conditions of the
Extension theorem, hence V is a vertex algebra, which we denote by V(g, Fo).

Proof The only non-obvious part is to check that all n(aj (z)) are quantum fields,
i.e., m(a’(z))v € V((2)) for each v € V. Due to the PBW theorem, it is sufficient to
check it for vectors of the following form (we use the same notation for elements in
U(g) and their images in V):

v =d!

o) a’(SnY)|O) where ji,...,js € J. (45)

We argue by induction on s. For s = 0 we have v = |0), hence

#(@)10) = X wlal, ) 0) = Y wla ) < VIEL 40

ne€z n<0

The last equality follows from the fact that a{n)|0) = 0 for n=0. We proceed by
proving the induction step:
n) "

7 (@ (@)dpy,) -, |0) = @) @). dfy, Jal,) -+~ df,,0) + "j;l)“j(z)“iiﬂ"'al(k’“)l%)

By assumption of induction, the second term in the right-hand side is in V((z)),
so we only need to show that the first term is also in V((z)). Now recall the
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commutation formula (32). We have

[a: (Z)s (nl)] ZZ ( )(a{k)ajl)(m+n1—k)z_m_ls (48)

meZ k=0

where (a‘(jk)ai "Ym+m—k) is the Fourier coefficient of the formal distribution
a’(z) @ (z). By the regularity property, we know that a/(z) @ (z) is contained in
the F[d,]-span of F, thus we can assume that

dQwd ) = Y_f(0)d ). (49)

leJ

Since a’(z), @' (z) is a local pair, we know that there exists an integer N € Z4 such
that a/(z) x)@! (z) = 0 for k=N. This allows us to rewrite formula (48) as follows,

[a! (Z)’ (Vll) Z Z (’Z)(Zflk(aZ)al(Z))(m+n1—k)z_m_l' (50)

0<k<N m€Z leJ

By assumption of induction, for each k,

Z (Zflk(aZ)al(Z))(m+m—k)Z_m l 1(312) ’ a](:ls)l()) € V(@) Sy
meZ leJ
thus the first term in the right-hand side of (47) is also in V((z)). O

Remark 6 Recall that by the Decomposition theorem for any local pair a(z), b(w)
we have

o 5(z, w)
[a(2). bw)] = Y _(a(w)(jb(w)) (52)
Jj=0
which is equivalent to the commutator formula
m
[a(m),b(n)] = Z J (a(j)b)(m_w,_j), Vm,n € Z, (53)
20

where (a(jb)(w) = a(w)(b(w) is given by (31). This, along with the obvious
formula

(3wa(w))(n) = —na(w)u-1), (54)

allows us to convert the commutator formula into the decomposition formula,
thereby establishing locality.
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Let us now discuss the next important example of a non-commutative vertex
algebra.

Example 5 Let g = Vir be the Virasoro algebra with commutation relations

3

(Lo L] = (1 — 0) Ly + S 1; e G L) =0, VmneZ. (55

Consider the formal distribution

L@) =Y Lz "2 (56)

nez

so that L,y = L,—;. Then the commutation relations (55) can be written in the
equivalent form

[L(z), Lw)] = 3,,L(W)8(z, w) + 2L(w)d,,8(z, w) + 5335(1, w). (57)

Indeed, by (57) we have: LiL = 0L, Lq)L = 2L, L)L = g, and L(jL = 0
for all other j=0. Hence by (53) and (54), (57) is equivalent to (55). It follows that
L(z) is local with itself, hence (Vir, {L(z), C}) is a formal distribution Lie algebra.
Furthermore, it is regular. There are two conditions (1) and (2) we need to check:
(1) is obvious, for (2) take T = adL_,, then [L_y,L,] = (-1 — n)L,—;, which
gives (43). The annihilation subalgebra is

Vir_ = Y FL,. (58)

n=—1

So, by Theorem 3 and the Extension theorem, we get the associated vertex algebra
V(Vir, {L(z), C}), (59)

called the universal Virasoro vertex algebra. One can make it slightly smaller by
taking ¢ € IF and factorizing by the ideal generated by (C — ¢). Let V¢ stand for the
corresponding factor vertex algebra, which is called the universal Virasoro vertex
algebra with central charge c.

Remark 7 V° can be non-simple for certain values of c. Namely, V¢ is non-simple
if and only if [16]

6 _ 2
=1- (r—a) , with p,q € Zx, coprime. (60)
rq

Exercise 5 The vertex algebra V¢ has a unique maximal ideal J¢.
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Let V. = V¢/J¢. Since c in (60) is symmetric in p and ¢ we may assume that p < q.
The smallest example p = 2, g = 3 gives ¢ = 0; Vj is the one-dimensional vertex
algebra. The next example is p = 3, ¢ = 4 when ¢ = 1/2; the vertex algebra V; is
related to the Ising model. The simple vertex algebras V. with ¢ of the form (60) are
called discrete series vertex algebras. They play a fundamental role in conformal
field theory [4].

Example 6 Let g be a finite dimensional Lie algebra with a non-degenerate
symmetric invariant bilinear form (.|.). Let § = g[t,#~'] + FK be the associated
Kac-Moody affinization, with commutation relations

[at", b1"] = [a.b)" ™" + mb—n(alb)K, [K.at"] =0, (61)
where a,b € g,m,n € Z. Leta(z) = Y, c,(a)z" " and F = {a(z) }ueq U {K} be

an (infinite) collection of formal distributions. The commutation relations (61) are
equivalent to

[a(z). b(W)] = [a. bl(W)8(z. w) + (a|b)d,6(z. WK, [K,a(z)] = 0. (62)

Hence F is a local family. So (g, ¥) is a formal distribution Lie algebra. The
annihilation subalgebra is g— = glt].

Exercise 6 Show that the formal distribution Lie algebra (g, F) defined above is
regular with 7 = —0,.

The associated vertex algebra V(g, ) is called the universal affine vertex algebra
associated to (g, (.].)). Again, it can be made a little smaller by taking k € F and
considering

Vi) = V@.7)/(K — V@ 7). (63)

which is called the universal affine vertex algebra of level k. There are certain values
of k for which V¥(g) is non-simple (it is a known set of rational numbers [16]).

Example 7 Let A be a finite dimensional vector superspace with a non-degenerate
skewsymmetric bilinear form (.|.):

(alb) = —(=1)P PO (pla),  a,b e A. (64)
Take the associated Clifford affinization
A=Al"] +FK, (65)
with commutation relations

[af", bt"] = 8—n—1{a|D)K, [K,at"] =0, a,b € A. (66)
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Consider the formal distributions

a@@) =Y (@', acA, (67)
nez
and define ¥ to be
F = {a(2)}aea U {K}. (68)

Then the commutation relations (66) are equivalent to
[a(z). b(w)] = (alb)8(z. WK, [K.a(z)] = 0. (69)

Hence " is a local family, and (A #) is a formal distribution Lie superalgebra. Its
annihilation subalgebra is A— = A[f]. Furthermore, (A, ) is regular with T = —0,
and

F(A) = VA, F)/(K — DV(A, F) (70)

is the associated vertex algebra called the vertex algebra of free superfermions.
Exercise 7

(1) If A is a 1-dimensional odd superspace we get the free fermion vertex algebra
F =F(A).

(2) If g is the 1-dimensional Lie algebra F, with bilinear form (a|b) = ab and level
k = 1, then we get the free boson vertex algebra B = V! (F).

Exercise 8 Show that the vertex algebra F(A) is always simple.

2.2 Formal Cauchy Formulas and Normally Ordered Product

We proceed by proving some statements which are analogous to the Cauchy formula
and are true for any formal distribution. Let U be a vector space and a(z) =
3 ez amz " be a U-valued formal distribution. We call

a@)+ =Y _amz " (7D)

n<0

the creation part or “positive” part of a(z) and

a(z)- = Za(n)z—n—l (72)

n=0

the annihilation part or “negative” part of a(z). Note that 9, (a(z)i) = (aza(z)) 4
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Proposition 1 Formal Cauchy formulas can be written as follows:

(a) For the “positive” and “negative” parts of a(z) we have
. 1 . 1
a(w)+ = Resa(z)izy dz, —a(w)— = Res a(2)iy, dz. (73)
Z=w Z—=w

(b) For the derivatives of a(z)+ we have

n . 1
! 3" a(w)+ = Resa(z)izw (c— w1 dz,

Lo _ . L A
- n! wCl(W)_ = Res a(z)iy, (z — w1 Z. (74)

Proof Use property (5) of the delta function and (22) to get

a(w) = Res a(z)8(z, w)dz = Resa(z) (iz,w ! — ! )dz. (75)
Z—w w

Collect the (non-negative) powers of w on both sides to get (a). Differentiating (a)
by w n times gives (b). O

Multiplying two quantum fields naively would lead to divergences. The next
definition is introduced to circumvent this problem.

Definition 9 The normally ordered product of End V-valued quantum fields a(z)
and b(z) is defined by

L a(2)b(2) 1 = a(2)+b(2) + (1P Pb(2)a(z)-. (76)

It must be proved that : a(z)b(z) : is an “honest” quantum field, i.e., all the
divergences are removed.

Proposition 2 If a(z) and b(z) are quantum fields then so is : a(z)b(z) :.
Proof Apply : a(z)b(z) :, defined by (76), to any vector v € V:

1a(z2)b(z) 1 v = a(z)+b()v + (—1)”(”)”(”)b(z)a(z)_v. (77)

Since b(z) is assumed to be a quantum field, b(z)v in the first term of the right-
hand side of (77) is a Laurent series by definition. The creation part a(z)+ has only
non-negative powers of z, therefore a(z)+b(z)v is still a Laurent series. In the second
term a(z)—v consists of finitely many terms with negative powers, i.e., it is a Laurent
polynomial. Now b(z)a(z)—v is a Laurent series multiplied by a Laurent polynomial
which is still a Laurent series. Hence we proved that : a(z)b(z) : is a sum (or a
difference) of two Laurent series, thus it is a Laurent series. |
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Exercise 9 Let a(z) and b(z) be quantum fields. Show that their nth product
a(z)mb(2), n € Z4 and derivatives d,a(z), 9,b(z) are also quantum fields.
On the space of quantum fields we have defined a(w),)b(w) for n=0. Introduce

1
a(w)(—n—nb(w) = al s a(w)b(w) o, (78)

so that a(w)—b(w) =: a(w)b(w) :. Thus for each n € Z we have the nth product
a(w))b(w). Using the formal Cauchy formulas above, we get the unified formulas
for all nth products of quantum fields

a(w)mb(w) = Res (a(z)b(w)iz.w (z—w)'— (—1)”(‘l)”(”)b(w)a(z)iW,z (z— w)”)dz, ne€z.

(79)
Remark 8 For a local pair of quantum fields physicists write
a(w)mb(w)
b(w) = . 80
Wb =2 e (80)

This way of writing is useful but might be confusing, since different parts of it are
expanded in different domains. Therefore it is worth giving a rigorous interpretation
of (80) by writing

a(@)b(w) = g AabO) i ey 5 DB (81)
and
(— 1P PO p(w)a(z) = ; AN WbON iz oy +2a@bOD : (82)
By taking the difference (81)-(82) we get
378(z,
@ b0 = 3 (ate)ppm) . )

J€Z+

Conversely, by separating the negative (resp. non-negative) powers of z in (83) we
get (81) [resp. (82)]. We still need to explain (80) for negative n. By Taylor’s formula
in the domain |z — w| < |w| ([17], (2.4.3)), we have

ta@)b(w) 1=y : dha(w)b(w) : (z _n'w) =Y (aw) b))z — w)",

n=0 n=0

(84)

i.e., the nth products for negative n are “contained” in the normally ordered product.
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2.3 Bakalov’s Formula and Dong’s Lemma

Locality of the pair a(z), b(z) of End V-valued quantum fields means that
z—w)Na(z)b(w) = (=1)? PO (z —w)¥b(w)a(z) for some N € Z .
Denote either side of this equality by F(z, w). Then for each k € Z we have

o 8(z, w) . 1
Res F(z, w) K dz = Res F(z,w) i, (z— wyk+! dz

1
(2 — w)kt! dz.

—Res F(z,w) iy

The first term of the left-hand side of (86) is
Resa(z)b(w) iz w(z — w)N_k_1 dz,
while the second term of the right-hand side of (86) is
—Res a(z)b(w) iy..(z — w)N " 1dz.
Applying the unified formula (79) the sum of (87) and (88) can be written as
a(w)w—k—1)b(w).

Hence we obtain Bakalov’s formula

3 8(z. w)

a(w)v—-1b(w) = Res Fz.w) ™

1
dz = 0 (aﬁF(z, W) |z=w,

21

(85)

(86)

(87)

(88)

(89)

(90)

which holds for each non-negative integer k and sufficiently large positive integer
N. The second equality follows from the first one by properties (3) and (5) of the

formal delta function.

Remark 9 Since a(z) and b(z) are quantum fields, it follows from (85) that F(z, w)v

lies in the space V[[z, w]][z~',w™!] for each v € V. Hence (90) makes sense.

Remark 10 1t follows from (85) that if we replace a(z) in this equation by 8’;a(z)

for some positive integer k, then it still holds with N replaced by N + k.

Lemma 2 (Dong) Ifa(z), b(z) and c(z) are pairwise mutually local quantum fields,

then a(z),)b(z), c(z) is a local pair for any n € 7.

Proof [1] It suffices to prove that for N and k as in (90) we have for some M € Z :

(22 — )" (a(z2) (v—k—1)D(22))c(z3) = £(22 — 23)" e(z3)a(22) (W—k—1)D(22).

O
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where =+ is the Koszul-Quillen sign, if (85) holds for all three pairs (a, b), (a, c) and
(b,c). Welet M = 2N + k. By Bakalov’s formula (90), the left-hand side of (91) is
equal to

o = 2 (@~ 2)Va@)blea)e))

1722

1722

k(N ki
=(zp — z3)V Ttk Z (i>(Z1 - Zz)N_l((k o a(z)b(z2)e(z3)

—_ N
i=0 !

a N ) ak—i
- ; (l,)(ZZ - )@ — )" @ - zZ)N—z((k i i)!a(m))b(zz)C(Zs)

1722

Due to (85) for the pair (b, ¢), we can permute c(z3) with b(z2) (up to the Koszul-
Quillen sign), and after that similarly permute c(z3) and the (k — i)th derivative of
a(z1), using Remark 10. We thus obtain the right-hand side of (91). O

3 Lecture 3 (December 16, 2014)

In this lecture, we will prove the Extension theorem, the Borcherds identity and the
skewsymmetry. We will also introduce the concepts of conformal vector, conformal
weight and Hamiltonion operators. In the end, we give some properties of the
Formal Fourier Transform.

3.1 Proof of the Extension Theorem

First of all, let us give a name for the data which appeared in the Extension theorem.

Definition 10 A pre-vertex algebra is a quadruple {V,[|0),T.F = {a/(z) =
> en afn)z_”_l}je 7}, where V is a vector space with a non-zero element |0), T €
EndV and ¥ is a collection of quantum fields with values in End V satisfying the
following conditions:

(i) (vacuum axiom) 7|0) = 0,
(ii) (translation covariance) [T, a’(z)] = 0.a’(z) forallj € J,
(iii) (locality) (z — w)Vi[a'(z), a’(w)] = O for all i,j € J with some N € Z,

(iv) (completeness) span{a’('l --a’('xnj)|0) ljieJ, ni€Z, seZy}=V.

n)
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Let {V,|0), T, ¥} be a pre-vertex algebra. Define

Fanin = span? (@' (2) o) (@@ ny) - (@ @ uplv) ) | i € Z, ji €], s € Z+} ,
92)

where Iy is the constant field equal to the identity operator Iy on V. Let, as in
Lecture 1, Fax be the set of all translation covariant quantum fields a(z), such that
a(z),a’(z) is alocal pair for all j € J. The following is a more precise version of the
Extension theorem, stated in Lecture 1.

Theorem 4 (Extension Theorem) For a pre-vertex algebra {V,|0),T,F}, let
Fmin» Fmax be defined as above, then we have,

(a) Tmin = Tmax;
(b) The map

fs D Fmax — VY, a(Z) — a(z)|0)| ©3

z=0

is well-defined and bijective. Denote by sf the inverse map.
(c) The z-product a(z)b := sf(a)b endows V with a vertex algebra structure, which
extends the pre-vertex algebra structure.

Remark 11

(1) The map fs is called the field-state correspondence since it sends a field to a
vector in V, called a “state” in physics. Its inverse map, called the state-field
correspondence, is denoted by

sf V> Frax,  a>az). (94)

(2) Denote by Fr. = {a(z2) | [T,a(z)] = 0,a(z)} the space of translation covariant
quantum fields. By Lemma 1, a(z)|0) € V[[z]] for a(z) € Fr, hencefs(a(z)) € V
is well-defined.

Lemma 3 ¥ contains Iy, it is 0,-invariant and is closed under all nth product, i.e.,
a(2) ()b (z) € Fic foranyn € Z if a(z), b(2) € Fre.

Proof Since [T,Iy] = 0 = d.Iy, we have Iy € F,.. Now if a(z) is translation
covariant, we need to show that [T, d.a(z)] = 0.0;a(z) and so d.a(z) is also
translation covariant. But

[T, 0,a(z)] = [T, Z(—n — 1)a(n)Z_"_2] — Z(_n — DT, a(n)]z_"_2

ne€z ne€z

= (—n—D(=n)ap-nz""

ne€z

95)
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and

0.0:a(2) = 3:(D_(—n— Dawz ") = Y (—n—1)(=n—amz "
nez nez

(96)
= Z(—n — 1)(—}1)61(”_1)2_”_2.

ne€z

For the last part of this lemma, let us recall the definition of the nth product,

a(w)mb(w) = Res (G(Z)b(W)iz,w(Z —w)" —bw)a(z)iy.(z — w)”)dz, n € Z.
(G

We want to prove [T, a(w)b(w)] = 0y(a(w)ub(w)). Both T and 9,, commute
with Res, moreover, d,, commutes with i,,, and i,, .. So we have

aw(a(w)(n)b(w)) = Res (aw(a(z)b(w)iz,w(z - W)n) - aw(b(w)a(z)iw,z(z - W)n))dz
= Res (a(2) (Bwb(W))izw(z — w)" — (3ub(W))a(2)iy..(z — w)")dz
+ Res (a(2)b(W)iz (3 (z — W)") — b(W)a(2)iy (3, (z — W)"))dz.

(98)

Note that d,,(z — w)" = —0,(z — w)" and —Resa(z)i,0,(z — w)'dz =
Res(0;a(z))iy.(z — w)"dz. So

0w (aW)mbw)) = a(W)mdwb(w) + (dwa(w))mb(w). (99)

This shows that d,, is a derivation for the nth product. Now

[T, a(w)myb(w)] = Res (Ta(z)b(w)izqw(z —w)" —a(x)b(w)Ti,,(z — w)"
— Tb(W)a(2)iw.(z — w)" + bw)a(2)Ti,,.(z — w)")dz
= Res (Ta(2)b(W)izw(z — w)" — a(@)Thb(W)i\(z — w)"
+ a(TbW)iz,w(z — w)" — a()b(W)Tiz,w(z — w)" (100)
— Tb(W)a(2)iy,.(z — w)" + b(W)Ta(2)iy.-(z — w)")dz
— bW)Ta(2)iy.(z — w)" + bw)a(2)Tiy,.(z — w)")dz
= Res ([T a@)]bW)igw(z —w)" — bW)[T, a(2)]i.(z —w)"
+ Res (a(@)[T, bW)]izw (z = w)" = [T, b(W)]a(2)i(z — w)".

Since both a(z), b(z) are translation covariant, we have
[T, a(w)mbW)] = a(w)mdwb(w) + (dwa(w))mb(w). (101

This completes the proof. O
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‘We have inclusions
F C Fmin C Fmax C Frc. (102)

The first inclusion is because for any a(z) € ¥, we have a(z)—nly = a(z) €
Fmin- The second inclusion is by Lemma 3 and Dong’s Lemma (locality). The last
inclusion is by definition.

Exercise 10 Show that the constant field T is translation covariant, but is not local
to any non-constant field.

Lemma 4 Let a(z), b(z) € Fr, and a = fs(a(z)), b = fs(b(z)). Then:

(a) fs(Iy) = 10),
(b) f5(0:a(z)) = Ta,
(c) fs(a(x)b(2)) = amb. Here we write a(z) = Y, ey amz "™

Proof (a) is obvious. For (b), since a(z)|0) = ¢Ta = a+ (Ta)z + T;“ 2 +0(z%) we
have 9,a(z)|0) = Ta + T*az + 0(z), so f5(d,a(z)) = 9.a(z)|0),—, = Ta. For (c), by
definition, we have

fs(a(@)mb(2)) = a@wb(2)|0)| _, (103)
and the right hand side, by definition of the nth product, is equal to

Res (a(W)b ()i, (W — 2)"|0) — b(R)a(w)iz,u(w —2)"|0)dw) | (104)

=0
Now, since a(w)|0) € V[[w]] and i.,,(w — z)" has only non-negative powers of w,
we have

Res b(z)a(w)iz,(w — 2)"dw|0) = 0.

For the first term, since b(z)|0) € V[[z]], we can let z = 0 before we calculate the
residue, which gives

Res a(w)b(2)iy (W — z)"|0))dw\zz0 = Resa(w)bw"dw = apb. (105)

This completes the proof. O
Lemma 5 Leta(z) € Fe. Then ¢"Ta(z)e™" = i, a(z + w).

Proof Both sides are in (EndV)[[z,z !]][[w]], and both satisfy the differential
equation df;(yf) = (adT)f (w) with the initial condition £(0) = a(z). ]

Lemma 6 (Uniqueness Lemma) Let ' C F and let a(z) be some quantum field
in Fi.. Assume that

(i) fs(a(z)) =0,
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(ii) a(z) is local with any element in ¥,
(iii) fs(F)=V
Then a(z) = 0.

Proof Let b(z) € ¥F’. By the locality of a(z) and b(z), we have (z —
w)V[a(z), b(w)] = 0 for some N € Z.. Apply both sides to |0). We get

(z—w)Va(2)b(w)|0) = +(z —w)"b(w)a(z)|0). (106)

By the property (i) we have a(—1)|0) = 0 and a(z) is translation covariant, hence by
Lemma 1(b), a(z)|0) = 0. Now, by Lemma 1(a), b(w)|0) € V[[w]], so we can let
w = 0 and get z¥a(z)b = 0, which means a(,yb = 0 for any n € Z. This is true for
any b € V by the property (iii). So in fact, we have a(z) = 0. O

Proof of the Extension Theorem We have the following two properties of the
map fs:

(1) the map fs : Fmin — V defined by fs(a(z)) = a(z)|0) |z=0 is given by

(@ (@) (@ @)+~ (@ Qg Iv) ) > aly @2 -l 110), (107

and it is surjective, by (a), (c) of Lemma 4 and the completeness axiom;
(i) fs : Fmax — V is injective using the Uniqueness Lemma with F/ = Fpyn.

Recall the inclusion Fpin C Fmax. We now have that fs: ¥, — V is surjective and
fs: Fmax — V is injective, so we can conclude that it is in fact bijective and Fpin =
Fmax. This proves (a) and (b) in the Extension Theorem. For (c), we need to show
that a(z) is translation covariant Va € V and that each pair a(z), b(w) Ya,b € Vis a
local pair. But translation covariance comes from Lemma 3 and locality comes from
Dong’s lemma. O

Corollary 1 (of the Proof)

(@) SF (@)@ Ty 10)) = (@ (D) (@ D) -+ (@ D Iv) -+
(b) (Ta)(z) = 0:a(2).
(c) (amb)(z) = a(2)(nb(2), which is called the nth product identity.

Proof (a) is by definition since sf is the inverse of fs, while fs is given by (107).
Letting s = 1, n; = —2 in (a) we get (b). Letting s = 2, n; = n,n, = —1in (a) we
get (¢). |
Remark 12 Due to Corollary 1(b) and Remark 1, the Definitions 3 and 5 of a vertex
algebra are equivalent.

Remark 13 (Special Case of (a) in the Corollary) For ny,...,ns € Z4, we have,

DM (2)0Mal(z) - M (2)

n1!n2! . I’ly'

@)@y Ty |O)) = (108)
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Corollary 2 (of the Proof) Liey := span{ay)|a € V, n € Z} C EndV is a
subalgebra of the Lie superalgebra End V with the commutator formula

[0, b)) = 3 (@) b)) 8”5(1’ ", (109)
=0
which is equivalent to each of the following two expressions
e b@] =Y (’7) (agyb) ", (110)
=0
[aw bl =) (’7) (@D -+ (111
=0

Moreover, Liey is a regular formal distribution Lie algebra with the data
(Liey, ¥ = {a(z)}sev,adT).

3.2 Borcherds Identity and Some Other Properties

Proposition 3 (Borcherds Identity) Forn € Z, a,b € V, where V is a vertex
algebra, we have

a9z ) (=P PO a i o) = 3 (@i b) () awg(z’ .
o (1 12)

Proof The left hand side of (112) is a local formal distribution in z and w. Apply to
it the Decomposition theorem to get that it is equal to

> W) sGw)/jt . (113)
JEL+
where
¢/ (w) = Res (a(@)b(W)izy(z — w)" — (=1)PPPb(w)a(2)iy.(z — w)") (z — w) dz
= Res (a(2)b(W)iy(z — W) — (=1)PPPDb(w)a(2)iy, . (z — w)"T)dz
= a(W) (u+)b(w)

= (am+)b)(w).
(114)



28 V. Kac

The last equality follows from the nth product formula, all other equalities are just
by definition. O

Exercise 11 Prove that a unital z-algebra satisfying the Borcherds identity is a
vertex algebra.

Proposition 4 (Skewsymmetry) For a,b € V, where V is a vertex algebra, we
have:

a(z)b = (—1)PPO T p(—7)a. (115)
Proof By locality, we know that, there exists N € Z, such that
(z=w)"a@b(w) = (=1 —w)"b(w)a(2).
Apply both sides to |0); by Lemma 1(b) we get
z—w)Na@)e"™b = (—=1)P POz — w)Nb(w)ea. (116)
Now use Lemma 5:

RHS = (1P PO (z )Nl o™ T p(w)eTa = (—=1)P PO (z—w)Ne'Ti,, .b(w—2)a.
(117)

For N > 0, this is a formal power series in (z — w), so we can set w = 0 and get
LHS = Na(z)b = (=1)P PP T Np(—z)a = RHS, (118)

which proves the proposition. O

Proposition 5 T is a derivation for all nth products, i.e.,
T(Cl(n)b) = (Ta)(n)b + a(,,)(Tb), Vn e Z. (119)

Proof 1t follows from Remark 12. O
In view of the nth productidentity, we let : ab := a(—1)b and call this the normally
ordered product of two elements of a vertex algebra.

Proposition 6 The nth products for negative n are expressed via the normally
ordered product: a—,—\b =: T:!“b n

Proof We have (a—n—1)b)(z) = a(z)n—1)b(z) =: a?;’!(Z)b(z) ., where the first
equality is the nth product identity and the second equality is (78). But we also
have T(a)(z) = 0;a(z), hence by induction we have : 31:!(0 b(z) :=: (T”’f!) Dp(z) -
= (T

n! (—=1)

a(—n—1)b = (Tn!a) (_l)b =: 7:!“19 T O

b)(z), and by the bijection of the state-field correspondence, we have
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Now we take care of the nth products a(,b for n € Z . For this we define the
A-bracket

J
lazb] =) %' (ayb) € VIA], for a,beV. (120)
J

j=0 7"

Thus we get a quadruple (V, T, : ab :, [a, b]), which will be shown in the next lecture
to have a very similar structure to a Poisson Vertex Algebra (PVA).

3.3 Conformal Vector and Conformal Weight, Hamiltonian
Operator

Definition 11 A vector L of a vertex algebra V is called a conformal vector if
() L(z) = Y_,cz Laz "2, such that,

3

L. L] = (m = W)L + S b "ely (121)

for some ¢ € F, which is called the central charge,
() L =T,
(iii) Lo acts diagonalizably on V, its eigenvalues are called conformal weights.

Since L,—1 = L), using the commutator formula (109), we get

[L(z),a(w)] = D (Lim1a) (W) 8z w)/ !, (122)

JZ0

which is equivalent to [cf. (111)]

m
[Lm-aw] = (]-)(Lj—la)(m+n—j)~ (123)
Jj=0
So we have
Y
[Laa] = Z i Liya=Ta+ AAsa + o(A). (124)

Jj=0

Here we assume that a is an eigenvector of Ly with the eigenvalue A,. We call L
the energy operator. It is a Hamiltonian operator by the definition below and (123)
form = 0.
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Definition 12 A diagonalizable operator H is called a Hamiltonian operator if it
satisfies the equation

[Hv a(Z)] = (Zaz + Aa)a(z) — [H, a(n)] = (Aa —n— 1)a(n) (125)

for any eigenvector a of H with eigenvalue A,.
If we write a(z) = >, Atz a,z""4a _then due to the equality ag) = dp—a,+1,
we have:

[H,a,] = —na,. (126)

This is an equivalent definition of a Hamiltonian operator.
Proposition 7 If H is a Hamiltonian operator, then we have:

(a) Apy =0,
(b) ATa = Aa + 1,
(c) Aa(,,)b =A;+A,—n—1

Proof To prove (a), we just need to know that |0)(z) = Iy, and we use (125) with
a = 10). Since Ta = a(—»|0), (b) follows from (a) and (c) with b = |0), n = —2.
For (c), we have
H(a(n)b) =[H, a(n)]b + a(,,)Hb
=(A,—n— l)a(n)b + Aha(n)b (127)
= (Aa + Ay —n— l)a(n)b.

Remark 14

(a) For a conformal vector L, we have [L)L] = (T + 2A)L + A; ¢|0), which implies
Ay = 2. That is why we write L(z) in the form L(z) = Y, o, L,z "2

(b) Conformal weight is a good “book-keeping device”, if we let A} = Ar =1
Then all summands in the A-bracket [ayb] = ZjBO ?,/ (a(;b) have the same
conformal weight A, + A, — 1.

Remark 15 The translation covariance (4) of the quantum field a(z) is equivalent to
the following “global” translation covariance:

eTa(z)e™ ! = i;ca(z + €).

Likewise, the property (125) of a(z) is equivalent to the following “global” scale
covariance:

Yla@z)y™ = (y?ea)(yz), where Ha = A,a.

The more general property (122) is called the conformal invariance. It is the basic
symmetry of conformal field theory.
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3.4 Formal Fourier Transform

Definition 13 The Formal Fourier Transform is the map F ZA:

defined by
FA _ Az
~a(z) = Res e™a(z)dz.

Proposition 8

(a) F}d.a(z) = —AFla(z),
(b) FjaﬁS(z, w) = e%\k

(c) Fra(—z) = —F *a(2),

31

Ullz.z7'1 = UI[AL]

(128)

(d) Fj (€a(z)) = F;'”a(z), where T € End U, provided that a(z) € U((z)).

Proof

(a) Assume a(z) = Y, e amz ™ ', then 8,a(z) = Y ,cp(—n —

F?a(z) = Res exza(z)dz

l)a(n)z_"_z. Now

= Res(z )(Z amz " Ndz

i€7 4 ! n€z

A’ﬂ
Z n @

n€Zy

A’n
> Cmaey

n€ly

An
= -2 Z n!a(n).

n€Zi4

Fi‘ d,a(z)

(b) Recall that “8(7 ¥) =Y ez (W7 s0

(129)

F10%8(z. w) = Res e*k! Z ( )w’ 77z

J€Z+

_ Z )U J! ik
! k'(J—k)'

JEZ 4

(130)
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(c) By definition

Xi i
Fra(—z) = Res( Y if )OO ay (=)™ Nz

i€Z4  n€Z

AN
— Z o (_1)n+1a(n)

n€Zy ’

—A)"
- Z (n!) o)

n€Zy

=-F_ *a(z).
(d) Since a(z) € U((z)), eTa(z) € U((z)) is well defined. Now

F*(e7a(z)) = Rese*e a(z)dz
= Res e TDg(z)dz

= FZHTa(Z).

Similarly, we can define the Formal Fourier Transform in two variables.

Definition 14 The Formal Fourier Transform in two variables is the map
Fl o Ullz 27 owow™ ] = Ullw, w IR
defined by
Fiwa(z, w) = Res e’ ™a(z, w)dz = e " F} a(z, w).

Proposition 9

() Fiwaza(z, w) = —AF a(z,w) = [3W,Fiw]a(z, w),

(B) Fr8(zw) = Ak,

LW W

(v) Fiwa(w, 7) = F;vﬁ_awa(z, w) provided that a(z, w) is local,
(8) FAFly = FiF

V. Kac

(131)

(132)

(133)

(134)

Proof Since F},, = ¢™*F}, (&) and () follow from the properties () and (b) in

Proposition 8. (§) holds since

Res Res e* &™) +“(Z_W)a(z, w, x)dxdz = Res Res e A1) (X_W)a(z, w, x)dxdz

(135)
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Finally, due to the Decomposition theorem, it suffices to check (y) (interpretation as
before) for a(z, w) = c(w)d% 8(z, w) :
LHS = Res e*™¢(2)3* 8(w, 2)dz = (=1)* Res '™ ¢(2)d,, 8(w, 2)dz
= (=Dfe ™ Rese*c(z)8(z w)dz = (—1)ke™ 3 M c(w)

= (=X =3, c(w),

using the properties (3) and (5) of the delta function. O

4 Lecture 4 (December 18, 2014)

The Formal Fourier Transform F' j is very important for us, since the A-bracket (120)
is [apb] = F ?a(z)b, i.e., the Fourier transform of the z-product is the A-bracket.

b
We also note that : ab : (= a—b) = Res a() dz. These observations will be

Z
important for studying properties of the normally ordered product : : and the A-
bracket. For simplicity we will further consider vertex algebras V of purely even
parity only. The general case follows by the Koszul-Quillen rule.

4.1 Quasicommutativity, Quasiassociativity
and the Noncommutative Wick’s Formula

Lemma 7 (Newton-Leibniz (NL) Lemma) For any a(z) € U[[z]], we have
d A
P9 _Resa® + / Fla(z)dp. (136)
4 < 0

Proof Both sides are formal power series in A, they are equal at A = 0, and their
derivatives by A are also equal, so they are equal. O

Proposition 10 (Quasicommutativity of : :) The commutator for the normally
ordered product and A-bracket are related as follows

0
cab:—:ba:= / [a)bldA. (137)
-T

Proof Apply F ? to both sides of skewsymmetry, divided by z, and set A = 0. We
get

Fj a(z)b
-z

_p eTh(—2)a

’ (138)
A=0 <

A=0
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By definition
LHS =:ab:= a(_l)b. (139)
Next, using property (d) of the FFT in Proposition 8, we have

b(—z)a

RHS = F*tT
v Z

A=0

b(— A+T
(by NL Lemma) = Res, (=2)a —|—/(; Flb(—z)adp

z A=0

T
(by property (c) of FFT inProp 8) = :ba: —/ F 7 b(2)adp
0

T
= :ba:—/ [b—paldu
0
T

(by skewsymmetry of the A-bracket) tbha: + / lau+rbldu
0

0
= :ba:+ / la,b]dp.
-7
(140)
O
Next we derive the following important identity.

Proposition 11 For a, b, ¢ in a vertex algebra V, we have the following identity in
VA, w,w 1]

[axb(w)c] = e"*ayb](w)e + b(w)[axc]. (141)
Proof The following identity in V[[z%!, w®!]] is obvious:

a()b(w)c = [a(z). b(w)]c + b(w)a(z)c. (142)
Applying to both sides F} = e"*F?  we get

[arb(w)c] = " F2, [a(z), b(w)]c + b(w)Fa(z)e = "*[arb](w)c + b(w)]axc].
(143)

where we have used the nth product formula a(w) ;,)b(w) = (amb)(w),n € Z.
O
We have the following two important properties of a vertex algebra.
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Proposition 12 Assume a, b, c in a vertex algebra V. Then we have

(a) Quasiassociativity formula

wab:c:—:a:bc:i=: (/Td)ka)[blc]:—l—:(/Td/\b)[alc]:.
0 0

(b) Non-commutative Wick’s formula
A
[ay : be:] =: [apb]c : + : blayc] : +/ [[axb]ucldp.
0

Proof
(1) Apply Res ;dz to the -1st product identity:

cab: (2)c =: a(2)b(z) : ¢ = a(z)+b(2)c + b(2)a(z)—c,
and use that

1
Res (tab:(2)c)dz = (tab:)—pnc=:iab:c:,
z

1
Res (a(z)+b(z)c)dz =:a:bc:: + Z a—ji—nb(jc
z
J€Z+

=:a:bc: +: (/Td/\a)[bxc] 5,
0

1
Res (b(z)a(z)_c)dz = Z b(_j_z)a(j)c
. J€Z+

T
=: (/ dAb)axc] : .
0
(2) Take Res vlv dw of both sides of formula (141):

Res vlv[akb(w)c]dw = Res vlv(e‘M [axb](w)c + b(w)[a).c])dw.

Since Res ""“aw = b(_j)c =: bc :, we have

Res vlv[akb(w)c]dw = [a; : bc1].

35

(144)

(145)

(146)

(147)

(148)

(149)
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For the second term of the right-hand side of (148),
1
Res b(w)[aycldw =: blayc] : . (150)
w

Using the NL Lemma 7 for the first term in the right hand side of (148), we
have

Reet [BBI0C s [anblow)e
w

- w

A
— Res [“Abv]v(w)cdw+ / Fllab)wyedp  (151)
0

)
=: [a)b]c: +/0 [[arb]ucldp.
O

Remark 16 The expression : ( fOT dAa)[b)c] : should be understood in the following

N N
way. We know that [brc] = ey b(j)cj! ssotalbue] =) ez, a(_l)b(‘j)cﬂ . We

have [ de v letting . act just t( Tl )
ave . = . ; letiing . act just on a we ge X =
0! (Jj+ D! (+ D! G+DY

a2, 50 (fy dra)lbac) = Yyez, aj-abic.

4.2 Lie Conformal Algebras vs Vertex Algebras

Let g be a Lie algebra, and let g[[w,w™!]] be the space of all g-valued formal
distributions. This space is an F[d]-module by defining

da(w) := dya(w). (152)

It is closed under the following (formal) A-bracket: for a = a(w),b = b(w) €
g[w, w™']]. Let

laxb](w) := FZ,[a(z), bw)]. (153)
Indeed, by definition of F iw and its property (f), we have:

[axb](w) = Res e*“™[a(z), b(w)]dz

= jEXZ:Jr i,] Res(z — w) [a(z), b(w)]dz (154)

= X Hagb)w) € glbw, w ' IIAL).

JE€L+
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Thus [a,b](w) is a generating series for jth products of a(w) and b(w). It is a
formal power series in A in general, but if the pair (a(w), b(w)) is local, [a\b] €
g[[w, w~][A] is polynomial in A.

Proposition 13 Assume a(w), b(w), c(w) € g[[w, w™!]] for some Lie algebra g with
d = 0,, defined as above. Denote a = a(w), b = b(w), ¢ = c(w). Then the A-bracket
defined as above satisfies the following properties:

(sesquilinearity) [0ayb] = —Alapb], [andb] = (A + 0)[arb],
(skewsymmetry) [bya]l = —[a—y—yb] ifa,bis a local pair, (155)
(Jacobi identiy) [ay[buc]] = [[arblrtuc] + [bulaxc]].

Proof The sesquilinearity comes from («) and the skewsymmetry comes from (y)
in Proposition 9 about properties of formal Fourier transform in two variables. For
the Jacobi identity we have:

[ax[b,.cll(w) 1= FL,la(2), F¥,, [b(x). cw)]]
= F* FH [a(z), [b(x),c(w)]]

we xw

= F2, Fi,[[a@), b)), cw)]] + F2 L, b0, [a(z). c(w)]].
(156)

The last equality comes from the Jacobi identity in the Lie algebra g. By property
(8) of the formal Fourier transform in Proposition 9, we have:

FA P [a), b)), cow)]] = For F [[a(2), b)), c(w)]

= Fur"F2 (a2, b)), cw)]] (157
= [[axblr+pcl(w),
while Féw,F)’(fw[b(x), [a(z), cW)]] = [bulaxc]](w) is just by definition. O

Definition 15 A Lie conformal algebra (LCA) is an F[d]-module R endowed with
an [F-bilinear A-bracket [ayb] € R[A] for a,b € R, which satisfies the axioms of
sesquilinearity, skewsymmetry and the Jacobi identity.

Example 8 The Virasoro formal distribution Lie algebra from Example 5 gives rise,
by Proposition 13, to the Virasoro Lie conformal algebra

Vir = F[J]L & FC (158)

with A-bracket

X3
L) = @+ 20L+ | C. [GVi] =0.
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Replacing L by L — éaC , where @ € I, we obtain a A-bracket with a trivial cocycle
added:

A3
[LAL] = (8 4+ 2A)L + aAC + e [C),Vir] = 0. (159)

Example 9 The Kac-Moody formal distribution Lie algebra from Example 6 gives
rise to the Kac-Moody Lie conformal algebra

Curg =F[d] ® g + FK (160)
with A-bracket (a,b € g) :
[axb] = [a,b] + A(a|b)K, [K)Curg] = 0.

Fix s € g; replacing a by a — (a|s)K, we obtain a A-bracket with a trivial cocycle
added:

[a,b] = [a,b] + A(a|b)K + (s|[a,b])K, [K)Curg] = 0. (161)

Of course, adding a trivial cocycle doesn’t change the Lie conformal algebra.
However this will become crucial in the proof of the integrability of the associated
integrable systems.

Due to the nth product identity in a vertex algebra [Corollary 1(c)], we derive
from the last proposition the following.

Proposition 14 A vertex algebra V is a Lie conformal algebra with 0 = T, the
translation operator, and A-bracket

An
[axb] =) Jamb, a,b e V. (162)
n.

n=0

Proof The A-bracket defined by (162) is the formal Fourier transform of the z-
product in V. V is obviously an F[T]-module. Moreover, the Fourier coefficients of
the formal distributions {a(w)|a € V} C End V[[w,w™!]] span a Lie subalgebra of
Liey of End V (Corollary 2), and they are pairwise local, hence the skewsymmetry is
always satisfied. Thus, (Liey, {a(w)},ev) is a formal distribution Lie algebra. Hence,
by Proposition 13, the formal distributions {a(w)}.cy satisfy all axioms of a Lie
conformal algebra. Due to the nth product identity, Proposition 14 follows. O
We thus obtain the following

Theorem 5 Let V be a vertex algebra. Then the quintuple (V,|0),T,:,[...])
satisfies the following properties of a “quantum Poisson vertex algebra”.

(a) (V,T,[a°]) is a Lie conformal algebra.
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(b) (V,]0),T,:) is a quasicommutative, quasiassociative unital differential alge-
bra.

(c) The normally order product :: and the A-bracket [-,-] are related by the
noncommutative Wick formula (145).

Remark 17 In fact, properties (a), (b), (c) of Theorem 5 characterize a vertex
algebra structure, i.e., a quintuple (V, |0), T, ::, [-1-]) satisfying the above “quantum
Poisson vertex algebra” properties, is a vertex algebra. This is proved in [2].

Example 10 (Computation with the non-commutative Wick’s formula) The sim-
plest example is a free boson. Recall Example 3 in Lecture 1. For a free boson field
a(z), we have

la(z), a(w)] = 9,,8(z, w). (163)
In the language of A-brackets this means for a = fs(a(z)) :
[a,a] = A|0), (164)

ie,ama = 1and agya = 0forn = 0 orn=2.
Now let L := ; 1 aa :, then

3
[Lya] = (T + A, quﬁ+nu+$m. (165)

Indeed,

A
2Ma,L] = [ay : aa:] =: [ayala : + : a[aya] : +/0 [[aral,aldpe.

Using (164), we obtain [a; L] = Aa (since [|0),a] = 0). By the skewsymmetry of
the A-bracket, the first equation in (165) follows.
Next we have:

[LhL] = _[Ly :aa’]

N = N =

1 A.
: [Lyrala - +2 1a[Lya] : +/0 [[Lral.al du

1
2

A
T+ D+ ol + D+ [T+ Daddp
2 0

1 A
2T(: aa:)—i—)&:aa:—i—/ A—=pwypdup |0)
0

A3
(T+20)L+ ", 10).

proving the second equation in (165).
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Of course, there is a simpler way of manipulating with free quantum fields, see
Theorem 3.3 in [17]. However, exactly the same method as above works well for
arbitrary quantum fields (like currents, discussed below).

The following proposition tells us how to prove that a vector L is a conformal
vector, hence how to construct a Hamiltonian operator H = Ly.

Proposition 15 Letr (V,|0), T, F) be a pre-vertex algebra and let L € V be such
that for a(z) € F,

(i) [Lra]l = (T + Asd)a + o(A)
(ii) L(z) satisfies the Virasoro relation: [LyL] = (T + 2A)L + ﬁc|0)

Then L is a conformal vector of the corresponding (by the Extension theorem) vertex
algebra.

Proof L(z) is already a Virasoro field, so we only need to prove that L_; = T and

that L acts diagonalizably on V. By completeness, V is spanned by (lkl ) a’bkj) |0),
where @/ (z) € F. Furthermore, property (i) tells us

[L_l, a(,,)] = —ndp-1) and [Lo, a(n)] = (Aa —n— l)a(n). (166)
Moreover, letting a = |0) in (i), we get
L_1|0) =0 and Ly|0) =0. (167)

Remember that T also satisfies the first equation in (166), so [L_; — T, ag)] = 0 for
all k € Z. Moreover (L—; — T)|0) = 0, so L_; — T, being a derivation of all nth
products, is zero, i.e., L_; = T. Ly is diagonizable by (166). O

It follows from Proposition 15 and (165) that L is a conformal vector for the free
boson vertex algebra, the free boson a being primary of conformal weight 1. Exactly
the same method works for the affine vertex algebras.

Exercise 12 Let V*(g) be the universal affine vertex algebra of level k associated to
a simple Lie algebra g. Let @', b’ be dual bases of g, i.e., (b|&) = §; with respect to
the Killing form. Assume that k # —h", where 24" is the eigenvalue of the Casimir
element of U(g) in the adjoint representation (k" is called the dual Coxeter number).
LetL = ,, ihv) Y, @b : (the so called Sugawara construction). Show that L is

a conformal vector with central charge ¢ = 2{‘;‘38) ,all a € g being primary of
conformal weight 1.

4.3 Quasiclassical Limit of Vertex Algebras

Suppose we have a family of vertex algebras, i.e. a vertex algebra (Vi, Ty, |0)3, 15,
['2-]n) over F[[#]], such that

(i) forv € V3, Aiv = O only if v = 0 (e.g. if V} is a free F[[A]]-module),
(i) [apb]s € AV} fora, b € V.
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Given a vertex algebra (V, T, |0), 4, [1]n) over F[[A]], satisfying the above
two conditions, let V' := V3 /hVj. This is a vector space over F. Denote by 1 the
image of |0); € V3 in V and by 9 the operator on V, induced by 7 € End Vi (AVj
is obviously T-invariant). The subspace (over ) 2V}, is obviously an ideal for the
product : v :3, hence we have the induced product - on V, which is bilinear over F.
Finally, define a A-bracket {a;b} on V as follows. Let & and b be preimages in V;,
of a and b; then we have

@bl = hlanb]
where [@; D]’ is uniquely defined due to (i) and (ii). We let
{a;b} = image of [a;b] in V.

Obviously this A-bracket is independent of the choices of the preimages of a and b.

Definition 16 The quasiclassical limit of the family of vertex algebras V} is the
quintuple (V, 1,9, -, {-1-}).

Definition 17 A Poisson vertex algebra is a quintuple (V,|0),0, -, {-1-}) which
satisfies the following axioms,

(A) (V,0,{x}) is a Lie conformal algebra,
(B) (V,1,0,-) is a commutative associative unital differential algebra,
(O) {aibc} = {ab}c + b{axc} for all a, b, c € V (left Leibniz rule).

Theorem 6 The quasiclassical limit V of the family of vertex algebras Vy is a
Poisson vertex algebra.

Proof Since Vj, is a vertex algebra over F[[#]], due to Theorem 5 we have the qua-
sicommutativity formula, the quasiassociativity formula and the non-commutative
Wick formula for representatives in Vj of elements of V. After taking the images
of these formulas in V, the “quantum corrections” disappear, hence V satisfies
properties (B) and (C) of a PVA. Property (C) is satisfied as well since the axioms
of a Lie conformal algebra are homogeneous in its elements. O

Exercise 13 Deduce from the left Leibniz rule and the skewcommutativity of the
A-bracket of a Poisson vertex algebra, the right Leibniz rule:

{abyc} = {by4sc}—a + {ay+yc}—b.

Given a Lie algebra g, we can associate to it two structures: the universal
enveloping algebra U(g) and the Poisson algebra S(g). The Poisson bracket on S(g)
is the extension of {a, b} = [a, b] for all a, b € g by left and right Leibneiz rules. In
fact, S(g) is the quasiclassical limit of U(gs), where gj is the Lie algebra F[[A]] ® g
over [F[[A]] with bracket [a, b]; = h[a, b] for a,b € g. Indeed it is easy to see that
the ordered monomials in a basis of g form a basis of U(gz) over F[[#]]. Hence
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[glv B]h

U(gn)/hU(gr) = S(g) as associative algebras, and {a, b} = 5
h=0

= [a.b]

for all a, b € g defines the Poisson structure on S(g).

Similar picture holds if in place of a Lie algebra g we take a Lie conformal
algebra R, and in place of U(g) we take V(R), its universal enveloping vertex
algebra. Recall its construction. We have the “maximal” formal distribution Lie
algebra (Lie R, R), associated to R, which is regular (see [17], Chap.2). Then
V(R) = V(Lie R, R) (for another construction, entirely in terms of R, see [6]).

Consider the vertex algebra V(Rj) over F[[#]], where Ry = R[[#]] for the Lie
conformal algebra R over IF, with A-bracket defined by [a) b]; = hla)b] fora,b € R.
In the same way as in the Lie algebra case, the quasiclassical limit is the Poisson
vertex algebra, which, as a differential algebra, is S(R) (the symmetric algebra of
the F-vector space R) with 9, extended as its derivation, endowed with the A-bracket
{a,b} = [a,b] on R, which is extended to S(R) by the left and right Leibniz rules.

4.4 Representations of Vertex Algebras and Zhu Algebra

We have the following diagram

q.lim
PV4 — VA

ZhuJ JZhu
q.lim
PA «— AA

In the diagram, AA means associative algebras, PA means Poisson algebras, VA
means vertex algebras and PVA means Poisson vertex algebras; q.lim means the
quasiclassical limit and Zhu means a functor from vertex algebras to associative
algebras (resp. from Poisson vertex algebras to Poisson algebras), explained below.

Let V be a vertex algebra with a Hamiltonian operator H. Throughout this section
we will assume (for simplicity) that all eigenvalues of H are integers. Recall the
Borcherds identity from Sect. 3.2. For @ and b € V with eigenvalues of H equal A,
and A respectively, we write

a@) =Y a Y b)) =Y by
n€z a€’Z

Then, comparing the coefficients of monomials in z and w in the Borcherds identity
we have, form,n, k € 7Z:

k . . m+ AN, —1
Z (j) (_l)j(am—l-k—jbn—l-j_ =1 bn-l—k—jam—l-j) = Z( j )(a(k—i-j)b)m—l—n—l—k .

j=0 j=0

(168)
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Definition 18 A representation of the vertex algebra V in a vector space M is a
linear map

V— EndM)[[z.z7"]. ar—d’(e) =) allz A (169)

nez

defined for eigenvectors of H and then extended linearly to V, such that,

(i) a¥(z) is an End M-valued quantum field for all a € V (i.e., given m € M,
a%m = 0forn > 0),
(i) 10)"(2) = In,
(iii) Borcherds identity holds, i.e., for a,b € V, ¢ € M, m,n,k € 7Z we have
[cf. (168)]:

k .
Z (J) (_1)](a%+kfjb2/l+jc - (—1)"b2/1+k_jafn4+jc)

=0

m+ A, —1
= Z ( j ) (@tp D) i€ - (170)

=0

Remark 18 Note that (Ta), = (—n—A,)a, and Ha = A,a, hence, (T+H)a)y = 0.

Now assume that our vertex algebra V contains a conformal vector L of central
charge ¢ € F (see Definition 11), so that L_; = T and Ly = H is a Hamiltonian
operator. Then we have LY (z) = Y, ., LMz7"7%, and [L) LY] = (m —n)L),, +

n€Z —n
3
m’—m
Sm,—n 12 CIM-

Definition 19 A positive energy representation M of V is a representation with Lé”
acting diagonalizably on M with spectrum bounded below, i.e., M = @;>,M; for
some h, where M; = {m € M|L}'m = jm}.
By (126) (which follows from the Borcherds identity) we have
a"M;, = 0forn >0, ayM, C M. (171)
So we have a linear map with (H + T)V contained in the kernel (by Remark 18):

7y V —> End My, a+—> all |y, . (172)

Taking m = 1,k = —1,n = 0 in Borcherds identity (170) for ¢ € M,, we get,
by (171),

(@) (b)e = my(a * b)e, fora,b € V,
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where

Aa
axb:=) ( j )a(j_l)b . (173)

20

Thus we get a representation of the algebra (V, ) in the vector space M;. The
multiplication * on V is not associative. However, we have the following remarkable
theorem.

Theorem 7 ([21])

(a) J(V):= (T + H)V) % V is a two-sided ideal of the algebra (V, *).

(b) ZhuV := (V/J(V), %) is a unital associative algebra with 1 being the image of
|0).

(c) The map M — My, induces a map from the equivalence classes of positive
energy V-modules to the equivalence classes of ZhuV-modules, which is
bijective on irreducible modules.

Proof We refer for the proof to the original paper [21] or to [6] for a simpler proof
of a similar result without the assumption that the eigenvalues of H are integers. 0O

Exercise 14 Prove the commutator formula in Zhu algebra:

A,—1
[a, b] ;:a*b—b*a=2>0( . )a(j)b (174)
]Z J

Exercise 15 Let V be a Poisson vertex algebra and let H be a diagonalizable
operator on V, such that

Agp = Aa+ Ay —n—1, Aja=A+1, Ay = A+ A,

where A, is the eigenvalue of a, and

An
{aby = Y Ly G-

n€Zy

Show that ZhuV := V/((0 + H)V)V is a unital commutative associative algebra
with the well defined Poisson bracket (cf. Exercise 14)

faby=3" (A“j_ 1) agyb. (175)

=0

Exercise 16 Let V (resp. V) be a vertex algebra (resp. Poisson vertex algebra).
Then J =: (TV)V : (resp. J = (0V) - V) is a two-sided ideal of the algebra (V,::)
(resp. (V,+)), and V/J (resp. V/J) is a Poisson algebra with the product, induced by
:: (resp ), and the well defined bracket, induced by the Oth product of the A-bracket.
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Of course, Zhu’s theorem is just the beginning of the representation theory of vertex
algebras, which has been a rapidly developing field in the past twenty years. Some
of the most remarkable results of this theory are presented in the beautiful lecture
course by T. Arakawa in this school.

S Lecture 5 (January 14, 2015)

Given a vertex algebra V, one can construct its quasiclassical limit. As a result we
get a Poisson vertex algebra (PVA). This can be done both considering a filtration
of the vertex algebra V or by constructing a one parameter family of vertex algebras
V4, as previously done in Lecture 4. This construction resembles the way a Poisson
algebra arises as a quasiclassical limit of a family of associative algebras, hence the
name “Poisson” vertex algebra. The reason we are interested in such structures is
that the theory of Poisson vertex algebras has important relation with the theory of
integrable systems of PDE’s. This relation is parallel to (but a bit different from) the
relation of Poisson algebras with the theory of integrable systems of ODE’s.

5.1 From Finite-Dimensional to Infinite-Dimensional Poisson
Structures

Let us start by recalling the definition of a Poisson vertex algebra:
Definition 20 A PVA is a quintuple (¥, 9, 1, -, {-)-}) such that:

1. (¥, 0, 1, -) is a differential algebra;
2. (¥, 0,{-2-}) is a Lie conformal algebra, whose A-bracket satisfies the following
axioms:

(1) (sesquilinearity) {da b} = —A{a, b}, {ayob} = (0 + M){a,b};
(ii) (skewsymmetry) {bya} = —{a_y_,b};
(iii) (Jacobi identity) {ax{b,c}} — {bu{arc}} = {{arb}ituch;
3. {-1-} and - are related by the following Leibniz rules:

(1) (left Leibniz rule) {aybc} = {a,b}c + bla,c};
(ii) (right Leibniz rule) {ab,c} = {a)tac}—>b + {b)+yc}—a.
Remark 19 We use the following notation: if {a;b} = ir,l ayb, then when a

n€Zy
right arrow appears it means that A + 9 has to be moved to the right: {a;4+sb}—c =

3 “(;,)b()k + 0d)"c. However, if no arrow appears we just have {a_y_;b} =
n€Ziy ’

—A—9)"
> T agb.
n€Ziy
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In the theory of Hamiltonian ODEs the key role is played by the Poisson bracket
on the space of smooth functions ¥ on a manifold. Choosing local coordinates
uy,...,u; on the manifold, we can endow # with a structure of Poisson algebra,
letting

{Ltj, Lt,'} = H,:,' cF. (176)

By the Leibniz rule this extends to polynomials in the variables u; as follows:

dg . of
{fogb=_"-H_ . (177)
du  du
9
aifl Uy
where gi = S u o= S, H = (Hg)fj=1 is an £ x £ matrix with
aif@ e

coefficients in 7, and - is the usual dot product of vectors from #* with values
in . Formula (177) extends to arbitrary functions f, g € . This bracket obviously
satisfies the Leibniz rule, but it is not necessarily skewsymmetric, neither it satisfies
the Jacobi identity. If the matrix H is skewsymmetric (i.e. HY = —H), then the
bracket (177) is skewsymmetric. If, in addition, it satisfies the Jacobi identity (which
happens iff [H, H] = 0, where [-, ] is the Schouten bracket), then the matrix H is
called a Poisson structure on F .

Definition 21 The Hamiltonian ODE associated with this Poisson structure is

du oh
= h’ = H N
dt th,u} ou

(178)
where the second equality follows from (177). The function & € F is called the
Hamiltonian of this equation.

This is a special case of what is called an evolution ODE, that is

d
dL; = F(u), for some F € F*.

In the theory of Hamiltonian PDEs a similar role is played by PVAs. Let us now
see how to construct a similar machinery.

First of all we need to define which kind of differential algebra ¥" we want for
our PVA. The basic example is the algebra of differential polynomials in £ variables
Py =Fu"|i el ={1,... 0 n e Zy], which is a differential algebra with
) _ D)

derivation 0, called the fotal derivative, such that du;
Definition 22 An algebra of differential functions in £ variables ¥ is a differential
algebra with a derivation d, which is an extension of the algebra of differential

polynomials &7, endowed with linear maps ajn) Y — Viforalliel,n e Zy,
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which are commuting derivations of ¥/, extending the usual partial derivatives in
Py, and satisfying the following axioms:

(i) givenf € 7, aaf = 0 for all but finitely many pairs (i,n) € I X Z;

e

(ii) [a % ,0] = ) (f,l) (where the RHS is considered to be zero if n = 0).

Which differential algebras are algebras of differential functions? The algebra
of differential polynomials &7 itself clearly satisfies these axioms (it suffices to
check (ii) on the generators ’41('") ). One can as well consider the corresponding field
of fractions 2, = F(uf") |i € I, n € Z), or any algebraic extension of & or 2y,
obtained by adding a solution of a polynomial equation. However, if we want both
axioms to hold, we can not add a solution of an arbitrary differential equation: for
example, we can add ¢, solution of /' = fu’, but we can not add a non-zero solution

of f/ = fit

Exercise 17 Let ¥ = 2, [v] with the derivation d, extended from £ by dv = vu,;
or by dv = u;. Show that the structure of an algebra of differential functions cannot
be extended from &) to V.
The reasons why we want both properties (i) and (ii) to hold will soon be clear.

We also want an analogue of the bracket given by (177) and to understand what
a Poisson structure is in the infinite-dimensional case. Recall the following (non-
rigorous) formula which appears in any textbook on integrable Hamiltonian PDE,
cf. [19], but not [12]. It defines the Poisson bracket on generators (i,j € I) as

d
(), ()} = Hi(u(), u' O). ... ,u™ (y); ay)S(x - ), (179)

where H = (Hji)f j=1 18 an £ x £ matrix differential operator on ¥*, the u;’s are
viewed as functions in x on a one-dimensional manifold, and §(x — y) is the usual
delta function.

Example 11 The first example is given by the Gardner-Faddeev-Zakharov (GFZ)
bracket, for ¥ = 47|, and it goes back to 1971:

(). uly)}y = aaya(x—y). (180)

As in the ODE case, we can extend the bracket defined in (179) by the Leibniz
rule. Then, for arbitrary f, g € 7" we have

a 9
Goeoh= Y O w0 (s

ijel.p.q€Lly i J
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The basic idea is to introduce the A-bracket by application of the Fourier transform

F(x,y) — /e“x—y)F(x,y) dx (182)

to both sides of (181):

(g} = / FI (). (). (183)

Thus, for arbitrary f, g € ¥, we get a rigorous formula, called the Master Formula:

a )
het= Y " 0+ Do a—2y 7 (MF)
L ) ou'’
ij€l,p.q€Ely ' i

Here, {u;,  ui} = H;(0 + A), where H(d) = (H;j(0))ijes is a matrix differential
operator with coefficients in #” for which the A-bracket is its symbol.

Exercise 18 Derive (MF) from (181).

Note that (MF) is similar to the formula for the Poisson bracket defined by
Eq.(177). In fact, to go from the former to the latter we just put A and 9 equal
to 0.

Theorem 8 ([3]) Let V" be an algebra of differential functions in the variables
{ui}ier. For each pairi,j € I choose {u;,u;y = Hji(A) € V[A]. Then

1. The Master Formula (MF) defines a A-bracket on V" which satisfies sesquilin-
earity, the left and right Leibniz rules, and extends the given A-bracket on
the variables u;’s. Consequently, any A-bracket on the algebra of differential
polynomials, satisfying these properties, is given by the Master Formula.

2. This A-bracket is skewsymmetric provided skewsymmetry holds for every pair of
variables:

{ui)tuj} = —{uj_l_aui}, A4 l,J el (184)

3. If this A-bracket is skewsymmetric, then it satisfies the Jacobi identity, provided
Jacobi identity holds for every triple of variables:

{uipfuj ity — {wj, fuipuyy = Huinuicy iy, Vigj kel (185)

It follows from Theorem 8 that, if the corresponding conditions on the variables
u;’s hold, the A-bracket defined by the Master Formula (MF) endows 7 with a
structure of PVA. As in the finite-dimensional case, this structure is completely
defined by H(A) = (H;;(1)) € Matyx, 7 [A].
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Definition 23 We say that the matrix differential operator H(d) € Matyx,#'[d] with
the symbol H(A) is a Poisson structure if the corresponding A-bracket defines a PVA
structure on 7.

Exercise 19 The A-bracket, given by the Master Formula, is skewsymmetric if and
only if the matrix differential operator H(0) is skewadjoint.

Example 12 Let ¥ = &, = Flu,u/,u”,...]. From the GFZ bracket defined in
Example 11 we get the following A-bracket: {uju} = A. The skewsymmetry and
the Jacobi identity for the A-bracket, given by the Master Formula, are immediate
by Theorem 8. The associated Poisson structure is H(d) = d. This PVA is the quasi-
classical limit of the family of free boson vertex algebras By.

Example 13 Lety = &P = Flu,u',u”, ...]. The Magri-Virasoro PVA with central
charge c € F is defined by the following A-bracket:

{upu} = (0 + 20)u + cA> + al. (186)

Of course, it is straightforward to check that the pair u, u satisfies (184) and the
triple u, u, u satisfies (185), hence, by Theorem 8, we get a PVA. It is instructive,
however, to give a more conceptual proof. Consider the Lie conformal algebra Vir
from Example 8. Then by Theorem 8, S(Vir) is a PVA, hence its quotient V* by the
ideal, generated by C — c, is a PVA, which is obviously isomorphic to the Magri-
Virasoro PVA. The corresponding family of Poisson structures is

H) = u' + 2ud + ¢d® + ad. (187)

These Poisson structures were discovered by Magri; the name is due to its
connection to the Virasoro algebra. Note that V¢ is the quasiclassical limit of the
family of universal Virasoro vertex algebras Villz".

The following exercise shows that the discrete series vertex algebras V. with ¢ given
by (60) is a purely quantum effect.

Exercise 20 Show that the PVA V¢ is simple if ¢ # 0.

Example 14 Given a vector space U, denote by P(U) = S(F[d] ® U) the algebra
of differential polynomials over U. Let g, (.| .) be as in Example 6, let k € F, and
fix s € g. Then the associated affine PVA V¥(g,s) is defined as the algebra of
differential polynomials $(g), endowed with the A-brackets (a,b € g) :

{ayb} = [a, b] + A(alb)k + (s|[a, D])1. (188)

The two proofs from Example 13 apply to show that V*(g, s) is a PVA. Of course,
up to isomorphism, it is independent of s, but the trivial cocycle is important for
the associated integrable system, since we get a multiparameter family of Poisson
structures. Note that V*(g, s) is the quasiclassical limit of V’g (9).
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Now we recall how one passes from the definition of a Hamiltonian ODE to
that of a Hamiltonian PDE. The following idea goes back to the 1970s: in order to
get an “honest” Lie algebra bracket, we should not consider the whole algebra of
differential functions 7, but its quotient ¥'/d%’, which is not an algebra anymore,
just a vector space. Denote by [ the quotient map [ : ¥ — ¥/3%. The
corresponding bracket is defined by

8 8f
urra=[Emo) (189)
Su Su
where gi is the vector of variational derivatives of f:
& _ n
Su; Z (=0) NON

n€Zy

Elements [ f € ¥/ /97 are called local functionals.

Equation (189) is analogous to Eq. (177), with variational derivatives instead of
partial derivatives, and a matrix differential operator H(0) instead of a matrix of
functions. It is rather difficult to prove directly that (189) is a Lie algebra bracket on
¥ /0¥ . The connection to the PVA theory, explained further on, makes it very easy.

The following exercise shows that (189) is well defined.

Exercise 21 The variational derivative gi depends only on the image of f € ¥ in

the quotient space ¥ /97, since 58” 0 d = 0. Deduce the latter fact from axiom (ii)

in the Definition 22 of an algebra of differential functions.
Given a local functional [ &, in analogy with (178), one defines the associated
Hamiltonian PDE as the following evolution PDE:

5/ h

Su (190)

du
dr HE)

The local functional | / is called the Hamiltonian of this equation.
We shall explain further on how these classical definitions fit nicely in the
framework of Poisson vertex algebras.

5.2 Basic Notions of the Theory of Integrable Equations

An evolution equation in the infinite-dimensional case is quite the same as in the
finite-dimensional case, except it is a partial differential equation.
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Definition 24 Let ¥ be an algebra of differential functions in £ variables uj, . . . , ug.
An evolution PDE is
du
=F(u,u',...,.u"), 191
= P ) (1o
751 Fl
where u = i |and F = ; e ¥t Here, u; = u;(x, t) is a function in one
ug Fy

independent variable x, and the parameter ¢ is called time.
Given an arbitrary differential function f € ¥, by the chain rule we have

I_ oy A (192)
dt i€l neZ4 dt a“t('n)
o)
Since, by (191), we have d(';"r ) = d"F;, the function f evolves in virtue of Eq. (191)
as
af
Y x.f,
5 =X
where
Xr = d"F 9 193
F= Z ( i)au(") (193)
i€l,n€Z i

is a derivation of the algebra ¥, called the evolutionary vector field with character-
istic F € 7. Itis now clear why Axiom (i) in Definition 22 is important: otherwise,
the evolutionary vector field would give a divergent sum when applied to arbitrary
functions f € 7.

An important notion in the theory of integrable systems is compatibility of
evolution equations:

Definition 25 Equation (191) is called compatible with the evolution PDE

Z’; = Glu,,...,.u") eyt (194)
uj G

where, as before, u = and G = e ¥4, if the corresponding flows
ug Gy

commute, that is if jr ddr = ;’T jrf holds for every function f € 7.
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By the above discussion, the compatibility of evolution equations (191) and (194)
is equivalent to the property that the corresponding evolutionary vector fields
commute: [Xp, Xg] = 0, which is a purely Lie algebraic condition. In fact, we
can easily see that the commutator of two evolutionary vector fields is again an
evolutionary vector field. This follows from the next exercise.

Exercise 22 Prove that [Xr, Xg| = X|r g}, where [F, G] := XrG — XGF.
Thus, the bracket [F, G] = XpG — XgF endows ¥ ¢ with a Lie algebra structure,
called the Lie algebra of evolutionary vector fields.

If two evolutionary vector fields commute, then each of them is called a symmetry
of the other. So if [XF, Xg] = 0, F is a symmetry of G and G is a symmetry of F. Note

that every evolutionary vector field commutes withd = X,, = ) uf"—H) Zzn) .
i€l,n€Z 4 B
Let us now introduce the notion of integrability for an evolution equation.

Definition 26 Equation (191) is called Lie integrable if Xr is contained in an
infinite-dimensional abelian subalgebra of the Lie algebra 7*.

Remark 20 Informally, one says that Eq.(191) is Lie integrable if it admits
infinitely many commuting symmetries.

Example 15 The linear equations over & :
w=u", nel,,

are Lie integrable. Indeed, X, (u(”)) = ylmtn jg symmetric in m and n, hence the
corresponding evolutionary vector fields commute.

Example 16 The dispersionless equations over Z;:
w =fu', fu) € 2,

are Lie integrable, since

0
X () = o (f ()g()u” + f(u)g

is symmetric in f and g, hence the corresponding evolutionary vector fields
commute.

The motivation for the definition of Lie integrability of PDE’s comes from a
theorem of Lie in the theory of ODE’s, saying that if the evolution ODE in ¢
variables ‘fl’; = F(u) possesses { commuting symmetries with a non-degenerate
Jacobian, then it can be solved in quadratures. Of course, in the PDE case the
number of coordinates is infinite, therefore we need to require infinitely many
commuting symmetries.

There has been a lot of work trying to establish integrability of various partial
differential equations. One well-known method of constructing symmetries of an
evolution equation is called recursion operator; however, in all examples the
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recursion operator is actually a pseudodifferential operator (which is an element of
7 ((7"))), hence it can not be applied to functions, as Exercise 17 demonstrates. We
will discuss a different approach, the Hamiltonian approach, which is completely
rigorous.

We shall deduce Lie integrability from the stronger Liouville integrability of
Hamiltonian PDE, which, analogously to the definition for ODEs, requires the
existence of infinitely many integrals of motion in involution.

5.3 Poisson Vertex Algebras and Hamiltonian PDE

In order to translate the traditional language of Hamiltonian PDE’s, discussed above,
to the language of PVA’s, and also, to connect the two notions of integrability, the
following simple lemma is crucial.

Lemma 8 (Basic Lemma) Let ¥ be a PVA. Let ¥ o= V[0V and let f Y -
YV be the corresponding quotient map. Then we have the following well-defined
brackets:

(i) 72x77—>77, {[a, [b}:= [{arb}r=0,
(ii) V x ¥V — ¥, {[ a,b} :={a,b}i=o.

Moreover, (i) defines a Lie algebra bracket on ¥, and (ii) defines a representation
of the Lie algebra ¥ on V' by derivations of the product and the A-bracket of 7,
commuting with 0.

Proof Tt all follows directly when we put A = 0 in the axioms for the A-bracket {-,-}
of a PVA. First, both brackets are well defined since sesquilinearity holds for {-;-}:
forevery a,b € ¥ wehave {da, b} = —A{a;b})=o = 0 and {a, db} = {a,db} = =
d{a b} € 7.

Let us now verify the Lie algebra axioms for the first bracket: note that
J{b—r—sa}r—o = [{bra}r—o since only the coefficients of the Oth power of —A — 3
and A respectively survive in ¥, and they obviously coincide. By skewsymmetry of
{-2-} we have

U a, [ b= [labh=o = — [{b-s—sa}tr=0 = — [{bralr=0 = —{/ b, [ a}.
(195)

Hence, skewsymmetry holds for (i). Similarly, the Jacobi identity for {-;-} provides
that the Jacobi identity holds for this bracket as well, just putting A = p = 0 in the
corresponding definitions:

Jalfb Sy = bifafcy+{[alfb}[ch (196)

Therefore, ¥ is endowed with a Lie algebra structure with the Lie bracket defined
by (i).
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Next, we have to check that (ii) is a representation of Y on ¥, i.e., that

WrSegha={rgai-1&l/fa} (197)

holds for all [f, [ g 6_77 ,a € V. Again, this is due to the Jacobi identity. Then
we have to check that ¥ acts on ¥ as derivations of the product. For a,b € ¥ and
[ h € ¥ we have, by the left Leibniz rule:

L) h,ab} = {hyab}y=o = ({haa}b)i=o0 + ({hab}a)a=0 =

= {mah=ob + {hib}y=0oa = {[ h,a}b + {J h,b}a.
(198)

Similarly, by the Jacobi identity, we check that it acts by derivations of the A-bracket.
Finally, we have to check that the derivations { [ A, -} commute with 9. For every
a € ¥ we have

(S h.-}od)a={[ h,0a} = {hyda}r=0 = (A + d){ha})r=0 = d{hra}r=o
=(@o{f h,-}a (199)

due to the sesquilinearity of {-3-}. O

Definition 27 Given a PVA 7 and a local functional [ h € v , the associated
Hamiltonian PDE is

du
g {) h,u}. (200)

The local functional | & is called the Hamiltonian of this equation.

In the case when the PVA 7 is an algebra of differential functions in the variables
{u;}ier and the A-bracket is given by the Master Formula (MF), we reproduce the
traditional definitions:

(i) Hamiltonian PDE: % = {[ h,u} = HS‘,{M";
. . _ 5 ]
(ii) Poisson bracket on ¥: {ff, fg} = f 85 'Hsi'

The first claim is obvious, and the second is obtained by integration by parts.
It follows that in this case ¥ acts on ¥ by evolutionary vector fields: [ f > X s
Su

and that the following holds.
Corollary 3 We have a Lie algebra homomorphism ¥ — ¥, Jf—X 1
Su

Thus, in the case when 7 is an algebra of differential functions with the Poisson
A-bracket given by the Master formula, the Hamiltonian equation is a special case of
the evolution equation with RHS H 5 Sfu "
field is X, .

and the corresponding evolutionary vector
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Definition 28 A local functional [f € ¥ is called an integral of motion of the
evolution equation (191) and f is called a conserved density, if f dd]; = 0, or,
equivalently, if f Xrf = 0. Integrating by parts, this, in turn, is equivalent to

F roo. 201)
Su

Hence, [ f is an integral of motion of the Hamiltonian equation (200) if and only if
f and h are in involution, thatis if { [ f, [ h} = 0.

So, we have completely translated the language of Hamiltonian PDEs into the
language of PVAs.

Definition 29 The Hamiltonian PDE (200) is called Liouville integrable if f his
contained in an infinite-dimensional abelian subalgebra of the Lie algebra ¥ . That
is, if there exists an infinite sequence of linearly independent local functionals [ h,,
such that [‘hg = [hand {[ hy, [ hy,} =0foralln,m € Z.

By Corollary 3, integrals of motion in involution go to commuting evolutionary
vector fields XH s Hence Liouville integrability usually implies Lie integrability
(provided we make some weak assumption on H(d), such as H(d) is non-
degenerate). In fact, in order to check that the local functionals are linearly
independent, it is usually easier to check that the corresponding evolutionary vector
fields are linearly independent.

Exercise 23 Show that the equation Z,’; = u” is Lie integrable, but has no non-
trivial integrals of motion, hence is not Hamiltonian. On the other hand the equation
 — " is Hamiltonian with H = 9, h = —} ()2, and it is both Lie and Liouville
integrable.

Remark 21 Let F, G, ...be asequence of elements of ¥, such that the correspond-
ing evolutionary vector fields commute, i.e. the corresponding evolution equations
are compatible. Then we have a hierarchy of evolution equations

d d
“—r Y_g . (202)
dty dn

so that the solution of this hierarchy depends now on x and on infinitely many times:
u= M(X, to, 11, 12, .. )

5.4 The Lenard-Magri Scheme of Integrability

There is a very simple scheme to prove integrability, called the Lenard-Magri
scheme. Although it is not a theorem, it always works in practice.
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Let ¥ be an algebra of differential functions in £ variables uy, . . ., u;. First of all,
introduce the following symmetric bilinear forms on #*:

():¥'xvt— ¥, (FIG)=[F-G. (203)
Given a matrix differential operator H(d) € Matyx¢ ¥ [0]
(. VEx YVt — ', (F.G)y = (HO)F|G). (204)

Note that (H(Q)F|G) = (F|H*(0)G), where H*(d) is the adjoint differential

operator of H(d). Indeed, defining * on #'[d] as an anti-involution such that x(f) =

fand x(3) = —0, we get (3f|g) = —(f|9g) because (3f|g)+(f|dg) = [ 3(fg) =0

in 7. Hence, if H(0) is skewadjoint, then the bilinear form (204) is skewsymmetric.
Proof of Liouville integrability is based on the following result.

Lemma 9 (Lenard Lemma) Let H(d) and K(0) be skewadjoint differential
operators on V. Suppose elements &, ..., Ey € V' satisfy the following Lenard-
Magri relation:

K(0)&+1 =H(0)&, n=0,...,N—1. (205)
Then, the (&, &,) = Oforallm, n =0, ..., N, whenever we consider it with respect
toH orK: (£, &)nk = 0.
Proof Proceed by induction on i = |m — n|. If i = 0, then m = n and we get
(&n, EnYmx = —(&n, E4) 1 x because the form is skewsymmetric, therefore it is equal

to zero. Now let i > 0; by skewsymmetry we may assume m > n. We have

(Ems 6n)n = (H()smln) = —(En|H(0)E,) = —(EnlK(0)Ent1) = (K(3)m|En+1)
= (&ms Ent 1)k, (206)

and, by the induction hypothesis, the RHS is zero, since |m — (n + 1)| < |m — n].
Similarly we have, assuming n > m:

(EmsEn)k = (K(EmlEn) = —(EnlK()En) = —(EnlH(0)En—1) = (H(0)Em|En—1)
= (. En—1)n (207)

and again, by induction hypothesis the RHS is zero since [n— 1 —m| < [n—m|. O
This lemma is important since, if we can prove that the elements £, € #* are
variational derivatives, i.e. &, = M " for some local functionals f hy, it guarantees

that f hy, and [ h, are in 1nV01ut10n with respect to both brackets on ¥ . Indeed, we
know that the bracket on ¥ for the Poisson structure H is given by

H(a)‘Sf (8g|H(a) )=<‘V ,8g>, (208)

Urdgn= [ sl

du
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therefore, if §,, £, are variational derivatives, then by Lemma 9 we get

§ [y [ hy

U s [ ke = < Su ' Su

> = (Em. En) = 0, (209)
H

and the same holds for K. In other words, we have the following corollary of
Lenard’s lemma.

Corollary 4 Let H(3) and K(3) be skewadjoint differential operators on ¥°.
Suppose that the local functionals [ hy, . .., [ hy satisfy the following relation:

5.[ hn+l
Su

=H(8)8fh", n=0,...,.N—1. (210)

k@) Su

Then all these local functionals are in involution with respect to both brackets {., .}u
and{., }x on V.

In the case when (210) holds, and K, H are Poisson structures, one says that the
evolution equations

du thn+l
= K(d
dt, @) Su

— H() 8.J I
Su
form a hierarchy of bi-Hamiltonian equations. Note that if the right-hand sides of
these equations span an infinite-dimensional subspace in the space of evolutionary
vector fields, then all of these equations are both Lie and Liouville integrable.

We now must address two issues:

1. How can we construct vectors §,’s satisfying Eq. (205)?
2. How can we prove that such &,’s are variational derivatives?

Although the second issue has been completely solved considering some reduced
de Rham complex, called the variational complex, discussed in the next lecture, the
first and basic issue is far from being resolved, though there are some partial results.

We will now see how to construct a sequence of vectors &,’s satisfying the
Lenard-Magri relation.

Lemma 10 (Extension Lemma) [3] Suppose that, in addition to the hypothesis
of Lemma 9, we also have the following orthogonality condition: assume to have
vectors &, ..., Ey € V', satisfying the Lenard-Magri relation (205), such that

Span{&o, ..., &y}t € ImK (),

where Span{§. . .., &}  is the orthogonal complement with respect to the sym-
metric bilinear form (203). Then we can extend the given sequence to an infinite
sequence of vectors satisfying the Lenard-Magri relation (205) for any n € Z.4.

Proof 1t suffices to construct £y4+; such that Eq. (205) holds for n = N. In fact,
the orthogonal complement to Span{&,...,&yv+1} is contained in the orthogonal
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complement to Span{£&, ..., v}, hence the orthogonality condition would hold for
the extended sequence. By Lemma 9, H(d)&y L &, foreveryn = 0, ..., N. Hence,
by the orthogonality condition, H(9)éy C Im K(9). Therefore, H(d)éy = K(9)En+1
for some element £y € 7. We can now iterate this procedure to construct an
infinite sequence of vectors. O

Now, let us address the question why the &,’s, satisfying Eq. (205), are variational
derivatives. Note that so far we only have used the fact that H and K are skewadjoint,
but none of their other properties as Poisson structures. However, we will need these
properties in order to prove that the §,’s are variational derivatives. Moreover, we
will need the notion of compatibility of Poisson structures:

Definition 30 (Magri Compatibility) Given two Poisson structures H and K, they
(and the corresponding A-brackets) are compatible if any their linear combination
aH + BK is again a Poisson structure.
Examples 13 and 14 provide multiparameter families of compatible Poisson struc-
tures.

The importance of compatibility of Poisson structures is revealed by the follow-
ing theorem.

Theorem 9 (see [18], Lemma 7.25) Suppose that H, K € Matix, V' [0] are
compatible Poisson structures, with K non-degenerate (i.e. KM = 0 implies M = 0
for any differential operator M € Matx¢?'[0]). Suppose, moreover, that the Lenard-
Magri relation K(0)&,+1 = H(0)&, holds for n = 0, 1, and that &, & are

variational derivatives: & = Sguho, & = s I hl for some [ ho, [ € V. Then
&, is closed in the variational complex ( dzscussed in the next lecture).

Theorem 9 allows us to construct an infinite series of integrals of motion in
involution. In fact, if we are given a pair of compatible Poisson structures H, K with
K non-degenerate and we know that the first two vectors & and &, satisfying the
Lenard-Magri relation, are exact in the variational complex (i.e. they are variational
derivatives), it would follow that, whenever we can construct an extending sequence
of &,’s, then all of them would be closed, and hence exact in some extension ¥ of
the algebra of differential functions ¥ (i.e. &, = h” for some h, € 7). This is a
consequence of the theory of the variational complex discussed in the next lecture.
Note, however, that £, € 7 for all n.

Remark 22 Leté_; = 0 = 8u1 If K(0)& = 0, then for Theorem 9 to hold it
suffices to have only & such that K(d)&; = H(d)&, since the first step is trivial.

Proposition 16 Suppose we have two compatible Poisson structures H and K on
¥, with K non-degenerate, and consider a basis Eé, ..., & of KerK (it is finite
dimensional since K is non-degenerate). Suppose that each | can be extended to
infinity so that Eq. (205) holds for all n € Z+, and hence we have & for alln € Zy.

i i _ 8 h .
Assume moreover that all vectors £ are exact: §) = 'gu O for some local functional

f hé. Then all the hil/s are in involution. Hence, we have constructed canonically an
abelian subalgebra of the Lie algebra V', corresponding to the pair of compatible
Poisson structures.
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This proposition holds by the following result.
Lemma 11 (Compatibility Lemma) Let H(d) and K(0) be skewadjoint differen-

tial operators. Suppose we have vectors &, . .., &y € ¥ such that K(3)& = 0 and
Eq.(205) holds forn = 0,...,N. Suppose moreover to have an infinite sequence
of vectors &, ..., &y, ... satisfying Eq. (205). Then all §;’s are in involution with all

£ j’ ’s with respect to both Poisson structures H and K.

Proof Proceed by induction on i. The induction basis follows by the fact that for
i = 0 we have K(0)&, = 0:

(60, E)x = (K@)ElE) = (0]E) = 0 @11
and
(50, &) = (H(D)&0|E) = (5olH™ (9)E) = —(5|H(I)E))
= —(5lK(9)E;,) = (K(@)élE;,) = (0l&,) = 0. (212)

Now let N > i > 0 and suppose (&, §/)nx = O for all h<i. We want to prove that
(§i+1,&))nx = 0. We have

(€1, 8k = (K(DEi11E) = (HOEIE) = (6. &) =0 (213)

and

(Gir1. 6 = (H()Ei+115) = —(Ei41|H()E) = —(5i+1|K(DE[ )
= (K()&i+1184) = HOEIE ) = (E. & )m =0, (214)

where in both cases the last equality is given by the induction hypothesis. Hence
(6. )ux = O forall i, j in question. O

In the next lecture we will demonstrate the Lenard-Magri method on the example
of the KdV hierarchy, hence establishing its integrability.

6 Lecture 6 (January 15, 2015)

6.1 An Example: The KdV Hierarchy

We begin this lecture with an example.

Consider the PVA 22, = Flu,u’,u”, ...] with two compatible A-brackets: one is
the Gardner-Faddeev-Zakharov (GFZ) A-bracket {uyu}x = A, and the other one is
the Magri-Virasoro (MV) A-bracket {uu}y = (8 + 2A)u + cA? for some ¢ € F.
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The corresponding compatible Poisson structures are K(d) = d and H(d) = v’ +
2ud + cd? respectively (see Example 13). Note that Kerd = F.

We shall use the Lenard-Magri scheme discussed in the previous lecture to
construct an infinite hierarchy of integrable Hamiltonian equations: we want to
construct an infinite sequence of vectors §, € &7, such that K(9)§,+1 = H(0)&,,
n € Z4, and & € Ker K(d). We also want to compute the conserved densities /,,
such that §, = 5;2'.

We can take & = 1 and, consequently, iy = u. Taking &_; = 0, h—; = 0, we
can apply Theorem 9 to establish by induction on #n that all the §,’s, satisfying the
Lenard-Magri relation, are closed in the variational complex. Since, by Corollary 5
from the next section, every closed 1-form is exact over the algebra of differential
polynomials, we conclude that there exist i, € &), such that &, = 5;2'.

The first step of the Lenard-Magri scheme:
1
H@) = K@) = ' =§ = & =u = h = 2142. (215)
The second step of the Lenard-Magri scheme:

3
H0)& = K()s = 3w+ =& — & = 2u2 +a = &

1] 1
= hyh=_ W+ cud). (216)
Su 2

And so on.

Remark 23 All €,’s are defined up to adding an element of Ker K(9), hence, in this

case, up to adding a constant.

d
The corresponding KdV hierarchy of Hamiltonian equations is given by d;l =

K(0)&,4+1 = 0&,41, namely:

du , du
=u, = 3ui/ G 217
dy u i, uu' + cu (217)

Note that for n = 1 we get the classical KdV equation, which is the simplest
dispersive equation (cf. Example 16).

The hierarchy can be extended to infinity because the orthogonality condition
(E0)+ < ImK(d) holds (see the Extension Lemma 10): since & = 1 and 1+ =
02, = ImK(9) (equivalently, if P € (£y)~ then J1-P=0<% PedP, therefore
P € Im K (9)). It is easy to show by induction that the differential order of K(0)&, is
2n + 1 (if ¢ # 0), hence they are linearly independent, and we consequently have
Lie integrability. Then automatically all the f* &,’s are linearly independent, and we
have Liouville integrability as well. Therefore the KdV equation is integrable, as are
all the other equations iu = K(0)&,+1 = H(0)&,.

n
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Exercise 24 Show that the next equation of the KdV hierarchy is

15
=085 = utu' + 10cu'v” + Scuu” + 2u',
dt, 2

and the next conserved density is

5 5 5 1
hy = 8144 + 3cu2u” + 6cuu’2 + 2czuu(4).

6.2 The Variational Complex

As professor S. S. Chern used to say, “In life both men and women are important;
likewise, in geometry both vector fields and differential forms are important”. In
our theory vector fields are evolutionary vector fields over an algebra of differential
functions 7

n d L
Xe= ) &P o PV’ (218)

and, as we have already seen in Lecture 5, they commute with d = X,,. Differential

forms in our theory are “variational differential forms” which are obtained by the

reduction of the de Rham complex over ¥ by the image of 9.

Let /J = {l,...,N}, where N can be infinite. Given a unital commutative

associative algebra A, containing the algebra of polynomials F[x;|j € J] and
ad

endowed with N commuting derivations o’ extending those on the subalgebra
Xj

of polynomials, the de Rham complex §2(A) over A consists of finite linear

combinations of the form

D7 fricdxi A Adxy € 25A). fi i €A (219)

i <<y

so that we have the decomposition

2(A) = @ 24A).

k€Z

Moreover, ﬁ(A) is a Z-graded associative commutative superalgebra with parity
given by p(A) = 0 and p(dx;) = 1. This is a complex with the usual de Rham
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differential, namely an odd derivation d : 2%(A) —> £2%t1(A) of £2(A) such that

d(dx) =0; df =) gf dx;for f € A. (220)

jes Y

It is easily checked that d is a differential, namely that d?> = 0. We will denote this
complex by (£2(A), d).
Let us define now an increasing filtration on A by subalgebras:

Aj={acA| g;’ =0,V iz 221)

l

0
We call A; the subalgebra of quasiconstants. If 3 A =Ajforallj € J, wecall A
X:

i
normal. Obviously, the algebra of polynomials in any (including infinite) number of
variables is normal.

Lemma 12 (Algebraic Poincaré Lemma) Let A be a normal commutative asso-
ciative algebra as above, and let (§2(A), d) be its de Rham complex. Then

H*(R2(A),d) =0, k> 0; H(2(A),d) = A,. (222)

Proof Extend the filtration of A to ﬁ(A) by letting ﬁj(A) be the subalgebra,
enerated by A; and dxi,...,dx;. Introduce “local” homotopy operators Ky,
§2,,(4) — 2,7 (4) by

(_I)Y(If dxm) dxil ARRRIAN dxij

K (f dxiy A+ ANdxi, A dxp) =
‘ 0, if dx,, does not occur

(223)

where i} < ... < iy < m. Here the integral f f dx,, is a preimage in A,, of f € A,
under the map Bim’ which exists by normality of A.
Letw € ﬁfn(A). Then it is straightforward to check that

Kndw + dK,0 —w € 25 (A), for m=1. (224)

Hence, if w € ﬁﬁl(A) is closed, then
d(K,0) —o € 2°_(A). (225)
Equivalently @ € 2% | (A) + d2(A), i.e. we may assume that @ € 2% (A)
modulo adding an exact tail. Repeating the same argument we proceed downward
in the filtration, and after a finite number of steps we get 0, hence w € d§2(A). O

Let ¥ be an algebra of differential functions. Consider the lexicographic order
on pairs (m, i) € Z4+ x I, and consider the corresponding filtration by subalgebras
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as above:

of
(n)

u;

Vi ={f V| ) =0, V(n,j)=(m,i)}. (226)

Hence we can define normality of ¥ as above.

Example 17 The algebra of differential polynomials in £ variables &7 is normal.
The derivation d of ¥ extends to an even derivation of the superalgebra £2(¥")

by letting d(du'™) = du"*".

Exercise 25 Show that dd = dd. (Hint: use Axiom (ii) in Definition 22.)
Due to this exercise, we may consider the reduced complex

(R2¥),d) = (2(¥)/92(¥),d),

called the variational complex over the algebra of differential functions 7.
Exercise 26 Show that 9 is injective on ﬁk(”i/ ) for k=1.

Theorem 10 ([3]) Let ¥ be a normal algebra of differential functions. Then
HYRQ),d) =0, k>0; H(Q).d) =F/IF. (227)

where & C V' is the subalgebra of quasiconstants.

Proof We have a short exact sequence of complexes
00— IQ(Y) — 2(V) — (V) — 0, (228)
which induces a long exact sequence in cohomology:

HY(32(¥)) — HY(2(¥)) — H(2(¥)) — H'(32(¥)) — H(2(V))
— H'Q) — ... (229)
Since ¥ is normal, by Lemma 12 we get
HY(2(¥)) = 0 for k > 0.
Now note that H(d$2(%), d) = 0 for k > 0. Indeed, take @ € £2*(¥) with k=0.
If d(0®) = 0, then d(d®) = O since d and d commute. So, thanks to Exercise 26,
we have do = 0. By Lemma 12, since @ is closed, it is exact: ® = d7 for some

i€ 2(¥), hence 3@ = 3(d7j) = d(7j), and

HY02(¥)) = 0 for k > 0.
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Therefore the long cohomology exact sequence (229) becomes

...— H@Q®) — 0—0— H(2(¥)) — 0 — 0 — HX(R2(¥))
—0—0..., (230)

so HY(2(¥).d) = 0 for k > 0. When k = 0 we obviously get H*(2(7))
H(Q(7))/H (02(¥)) = F/IF.

Let us study the variational complex more closely. We can write down explicitly
the first terms of the complex £2(%):

e 200y =7/07;
- Q') =74
o Q%(V) = {skewadjoint £ x £ matrix differential operators over ¥'}.

o R

The corresponding maps are

1
2°) -5 ') L 20y — ... /fi> 88 /f,Fi> 5 (DF=DJ),...
u
(231)
wheref € ¥, F € ¥%, and (Dp); = Y ;Fj i jel

(n)
n€Zi4 U

The first identification is clear since 2 (7)) = 7. Let us explain how to obtain
the identification 22'(#) = 7*. We have

lez{ ) ﬁ,nduf"’}/aﬁlmz{ [ ¥ fi,ndui")}

iEI,n€Z+ iGI,nEZ+

z{ / )3 fi,nandui}, 232)

i€l,n€Z

where last equality is due to the fact that d and d commute. Integrating by parts, we
get

L
/ Y find'dui =y / Y ) fin | dui (233)
i=1

i€l,n€Z n€Zy

Thus the identification £2!(7) — ylis given by

/ 3 fadu” (Z(—a)"ﬁ,n (234)

i€l,n€’ 4 n€Zy el
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and this is an isomorphism of vector spaces. In particular, we conclude that if we

takedf = Y aa(fw du™ (in this case f;,, = Ba{n) ), then the RHS of (234) becomes
i€lneZy % Ui

exactly the vector of variational derivative of f. It also explains the action of the first
differential d : 2°(*) — 2'(¥). Moreover, it is clear that a 1-form § € ¥ is

exactiff § = gz , and it is closed iff D is self-adjoint.

Exercise 27 Show that the algebra of differential functions Z2;[u~!,logu] is
normal. Show that any algebra of differential functions 7" can be included in a
normal one.

Since the algebra of differential polynomials &7, is normal, we obtain the
following corollary of Theorem 10.

Corollary 5 Let V' = 2 be an algebra of differential polynomials. Then

(a) Kerfu =F+1Imad.
(b) Im) = {F € V' | Dy is selfadjoint}.
(c) w € $24(V), k=1, is closed if and only if it is exact.

Claim (a) is usually attributed to a paper by Gelfand-Manin-Shubin from the 1970s,
though it is certainly much older. Claim (b) is called the Helmholtz criterion, and
apparently, it was first proved by Volterra in the first half of the twentieth century.

If we know that £ € #* is a variational derivative: § = gz for some h € ¥
(which is not unique since we can add to % elements from 9 %), there is a simple
formula to find one of such 4 :

Exercise 28 Let

A= Z u” 9

! (n)
ielneZy du;

be the degree evolutionary vector field, and suppose that £ € #* is such that A(u -
£) #0.Leth € A~'(u-£). Show that

8h
5 —& eKer(A+ 1) foralliel.
Ui

Consequently, if Ker(A + 1) = 0, then gﬁ =&

6.3 Homogeneous Drinfeld-Sokolov Hierarchy
and the Classical Affine Hamiltonian Reduction

The method of constructing solutions of the Lenard-Magri relation, described in
Sect. 5.4, uses Theorem 9, which assumes that K is non-degenerate. In this section
I will describe the direct method of Drinfeld and Sokolov on the example of the so
called homogeneous hierarchy, which avoids the use of Theorem 9.
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Consider the affine PVA ¥ = 7'(g,s), where g is a reductive Lie algebra
with a non-degenerate invariant symmetric bilinear form (. | .) and s is a semisimple
element of g, with compatible Poisson A-brackets (a,b € g) :

{aibin = [a.b] + (alb)A,  {aibik = (s][a. D)), (235)

see Example 14. Note that the Poisson structure K is degenerate, as s is a central
element of the corresponding A-bracket.
The Lenard-Magri relation (210) for infinite N can be rewritten as follows:

{f hnsu}H = {f hn-‘rlvu}Kv ne Z"rv ue g (236)

The Drinfeld-Sokolov method of constructing solutions to this equation is as
follows, see [14] and [8]. Choosing dual bases {u;};e; and {u'};c; of g, let

L(z) = 8+Zui®ui—z(s® )eFax (g® ).
iel
The first step consists of finding a solution F(z) = Yoo Faz " € (g ® ¥)[[z7"]] of
the following equations in Fo x (g ® #)((z™!)) :
L), F(@)] =0, [s®1,F] =0. (237)
Theorem 11 Assume that the element s is semisimple, and let ) be the centralizer
of sin g, so that g = b @ b~. Then
(a) There exist unique U(z) € 77 (h* @ V)[[z7"]] and f(z) € (h ® V)[[z~ "], such
that
VL) =0+ () —z2s @ 1).
The coefficients of U(z) and f(z) can be recursively computed.
(b) Let abe a central element of . Then F*(z) = e V9 (a®1) satisfies Eq. (237).
Define the variational derivative of /' f € #'/07 in invariant form:
§Sf _ i 0
Slxl o Z u ® 8ui ’
i€l
The second step is given by the following.

Theorem 12 Let f(z), a and F°(z) be as in Theorem 11. Let h*(z) = (a ® 1|f(2)).
Then

(a) F“(Z) — Sf;::’(z) .
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(b) The coefficients of h*(z) = ) .50 hiz™" satisfy the Lenard-Magri rela-
tion (236).

(c) All the elements [ h% € V' /Y, where n € Zy and a is a central element of b,
are in involution with respect to both Poisson structures H and K.

For proofs of these theorems we refer to [8]. Note that the claim (c) of Theorem 12
follows from claim (b) and Lemma 11.

Example 18 Let s be a regular semisimple element of g, so that f is a Cartan
subalgebra, and let a € h. Then the above procedure gives the following sequence
of densities of local functionals in involution, satisfying the Lenard-Magri relation:

1 o(a)
hoy =0, hy=a. h = e
1 0 a, ZZ;O[(S)e a€a

1 Ol(a) a(a)
hy = 5 aze: —a€l + Z e_gelyle—y, ey

IO a(s)?
1 a(a)
i aﬂXG:A a(s)B(s) e-peale—u-ep].....
B

where A is the set of roots of g and the root vectors e, are chosen such that
(exle—a) = 1.
The corresponding Hamiltonian equations are:

b
= Oforbeb ne s, dj: = a(a)ea, (238)
dey a(a) ¢ Z B(a)
= e_glep. eq]. (239)
dn fen B(s)
The next equation is more complicated, so we give it only for g = sfy, a =
s,a(s)=1:
dea /] / / 2
P (2e,a + eqa') — (a|a)ee_q . (240)
2

Note that the elements of § do not evolve since they are central for the Poisson
structure K.

In order to construct new PVAs from existing ones, we can use the classical affine
Hamiltonian reduction of a PVA 7.

The classical affine Hamiltonian reduction of a PVA ¥, associated to a triple
(%, 1y, ), where %) is a PVA, Iy C ¥ is a PVA ideal and ¢ : ¥j — ¥ is a PVA
homomorphism, is

W =W Yoo, ) = (V] Vo(Ip))y ¢, (241)
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where ad)¢(%)) means that we are taking the adjoint action of ¥ ¢(ly) on ¥ with
respect to the A-bracket.

Remark 24 V|V ¢(Ip) is a differential algebra, but the A-bracket is not well defined
on this quotient. However, the A-bracket is well defined on the subspace of invariants

OV Iy 5.
Theorem 13 The A-bracket on W given by

U+ Vo), g+ Vel ={fig} + Vel (242)

is well defined and it endows the differential algebra W with a structure of a PVA.

Proof Let # = {f € ¥ | {o(Yo)if} C ¥ [Alo(o)}, so that # = W |V o(ly). It is
a subalgebra of the differential algebra ¥, and ¥ ¢(lp) is its differential ideal.

Check that 7/ is closed under the A-bracket of ¥ (i.e. W is a PVA subalgebra):
lethelyf,ge W, then by the Jacobi identity

{hfuglt = Whafiarugt + Hulhaghd C UV [Melo)r+ugt + {7 [Aleo)} C
C {7V Me(0)i+ugd + U7 [Me(M0)) C VA, ulelo). (243)

Finally, by the right Leibniz rule, # ¢(ly) is a Poisson ideal of W for f e WV we
have

L7 elo)y C V{ifielo) {47 5e(o) C V{fip(P0)i+7 [Ae(lo) C ¥ [Ae(lo).
(244)

0
The main example of this construction is the classical affine W-algebra.

Example 19 Consider the affine PVA 7 = ¥#(g,s) with compatible A-
brackets (235). Let f be a nilpotent element of g and let {f, &, e} be an s{,-triple,
containing f. Let

9= Py

JEYZ
be the ;ad h eigenspace decomposition (so that f € g_;). Assume that s € gy,

where d = max{j|lg; # 0}. Let ¥ = P(g-0). let ¢ : ¥ — ¥ be the inclusion
homomorphism, and let Iy C ¥} be the differential ideal, generated by the set

M = {m— (flm)|m € gz1].

It is easily checked that [ is a PVA ideal of ¥ with respect to both A-brackets (235).
Then the classical affine W-algebra is the corresponding classical Hamiltonian
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reduction for both A-brackets:
W(9.f.8) =WV, Y, 1o, 9).

Remark 25 The same construction does not work for vertex algebras because of
the presence of quantum corrections. However, for the usual associative algebras
it actually works. The quantum (finite) Hamiltonian reduction of an associative
algebra A is W = W(A, Ay, Iy, ¢) constructed as above, where Ay is an associative
algebra, ¢ : Ap < A is a homomorphism of associative algebras and Iy C Ay is a
two-sided ideal. Thus, taking A = U(g), Ao = U(g>o) and [ the two-sided ideal
generated by the above set M, we get the quantum finite W-algebra

W(g.f) = W(A, Ao, Io, ¢). (245)

Theorem 14 ([8]) As a differential algebra, the W-algebra W (g.f,s) is isomor-
phic to the algebra of differential polynomials on ¢, the centralizer of f in g.

In particular, for f principal nilpotent we get the classical Drinfeld-Sokolov
reduction.

The problem is, for which nilpotent elements f can one construct the associated
with # (g,f, s) integrable hierarchy of Hamiltonian PDE’s? Drinfeld and Sokolov
constructed such hierarchy in [14] for the principal nilpotent f. (For g = s¢, it
coincides with the Gelfand-Dickey nth KdV hierarchy, n = 2 being the KdV
hierarchy.) Their method is similar to that in the homogeneous case. The same
method can be extended, but unfortunately not for all nilpotent elements.

Definition 31 A nilpotent element f € g is called of semisimple type if f + s is a
semisimple element of g for some s € g,.

These elements are classified for all simple Lie algebras g [15]. For example,
principal, subprincipal and minimal nilpotent elements are of semisimple type.
In exceptional Lie algebras about one third of the nilpotent elements are of
the semisimple type. In s{y only those elements corresponding to partitions
(n,...,n,1,...,1) of N are of semisimple type.

Theorem 15 ([8]) Let g be a simple Lie algebra. If f € g is a nilpotent element,
such that f + s is semisimple for s € g4, then there exists a bi-Hamiltonian hierarchy
associated to W (g,f, s), which is both Lie and Liouville is integrable.

Remark 26 1n the recent paper [11] for any nilpotent element f of g and non-zero
s € g4 an integrable hierarchy associated to W(g{y, f, s) is constructed.
6.4 Non-local Poisson Structures and the Dirac Reduction

Unfortunately in many important examples the PVA structure is not enough to deal
with integrable systems, as it is in the case of the KdV equation, since in practice
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most of the Poisson structures are non-local. Thus we need to consider non-local
PVAs, for which the A-bracket takes value in ¥ ((A~!)). Equivalently, the associated
operator H(d) € Matyx,# ((07")) is now a matrix pseudodifferential operator.

Still, we can work with these structures, but we have to check that the axioms
for a PVA bracket still make sense when the A-bracket is a map {-;-} : ¥ ®
¥ — ¥ ((A7")). Sesquilinearity and the left and right Leibniz rules are clear. For
skewsymmetry we have to make sense of (A+9)~": write (A+0) ™! = A=1(1+ )"
and then expand in the geometric progression, so we get a Laurent series in A. More
generally, for an n € Z we let

A+oy=Y (Z)x"—kak. (246)

kE€Z

We only have problems with the Jacobi identity, and in order for it to make sense
we need the A-bracket to satisfy an additional property, called admissibility:

Hanbyucy VI 0™ A= w) ™ NIA, . (247)

The fact is that when we consider a term like {a;{b,c}} we have to take Laurent
series in A and then Laurent series in y and these can not be interchanged, since what
we get are completely different spaces. So, two different terms of the Jacobi identity
cannot a priori be compared, and we need this admissibility property in order to do
so. If H(d) = A(d) o B(d)~! is a rational matrix pseudodifferential operator (that is,
both A(d), B(d) are £ x £ matrix differential operators and B(d) is non-degenerate),
then the A-bracket defined by the Master Formula (MF) is admissible.

Example 20 For v = & = Flu,u/,u”,...] examples of non-local Poisson
structures are:

e H(0) = 97! (Toda)
e H(9) = u'0~ '’ (Sokolov).

More information about non-local PVA can be found in [7]. In particular, it is
shown there that the Lenard-Magri scheme can be applied if both K(d) and H(d)
are rational pseudodifferential operators. One of the most important examples is

the following pair of compatible non-local Poisson structures on the algebra of
differential polynomials in « and v, where k € F:

0-—1 00 udlou —udlovw
K_(l O)’ H_(BO) +2K(—v8_lou vB_lov)’ (248)

which produces the non-linear Schrodinger (NLS) equation:

d

dL; =u’ + kv

‘ (249)
Yo o — eun?.

dt
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An important construction, leading to non-local PVA’s, is the Dirac reduction for
PVA’s, introduced in [9], which generalizes the classical Dirac reduction for Poisson
algebras [13].

Theorem 16 ([9]) Let (¥,{.,.},-) be a (possibly non-local) PVA. Let 6., ..., 06, €
V" be some elements (constraints) such that

CO) = (165 9 0! 5

is a non-degenerate matrix pseudodifferential operator. Forf,g € V let

m

(8P =18 — Y {0408l (C)pa(h + D){fil} - (250)

a,f=1

Then this modified A-bracket provides ¥ with a structure of a non-local PVA, such
that all elements 6, are central. Consequently, the differential ideal of the PVA
YP = (¥, {,P,), generated by the 0,’s is a PVA ideal, so that the quotient
of VP by this ideal is a non-local PVA.

Proof Formula (250) defines the only A-bracket, which satisfies sesquilinearity and
skewsymmetry, and for which all the 6; are central. The proof of Jacobi identity is a
long, but straightforward, calculation. O

Example 21 Consider the affine PVA ¥ = ¥!(sl,,s) with the two compatible
Poisson A-brackets {.;.}y and {. .}k, given by (235). As in Example 18, choose a
basis ey, ey, s of s£5, such that

[eas e—a] =3, [S, e:l:ll] = :l:ezl:ou

and the invariant bilinear form, such that (ey|e—y) = 1, (@]a) = —«.

Consider the constraint 6 = s (=a multiple of «). This constraint is central
with respect to the A-bracket {.,.}x. The quotient of ¥" by the differential ideal,
generated by 6, is the algebra of differential polynomials &7, in the indeterminates
U = ey,V = e—y. The induced on &2, A-bracket by {.,.}x is given by the matrix
K in (248), and the Dirac reduced A-bracket {.,.} on Z, is given by the matrix
H in (248). The reduced by the constraint 6 evolution equation (240) is the NLS
equation (249).

This approach establishes integrability of the NLS equation, see [10] for details. For
other approaches see [19] and [7].

Exercise 29 Dirac reduction of the affine PVA #'!(g, s) by a basis of b, applied to
Eq. (239), gives an integrable Hamiltonian equation on root vectors of the reductive
Lie algebra g:

deq _ a(a) , 3 B(a)

b T B(s)

dr — a(s) @ e=plep: €al,

BeA.p#—a
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where a and s are some fixed elements of f, s being regular. Find its Poisson
structures.
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An Introduction to Algebras of Chiral
Differential Operators

Fyodor Malikov

Abstract These notes are an informal introduction to algebras of chiral differential
operators. The language used is one of vertex algebras, otherwise the approach
chosen is that suggested by Beilinson and Drinfeld. The prerequisites are kept to
a minimum, and we even give an informal introduction to the Beilinson-Bernstein
localization theory in the example of the projective line.

Keywords Algebra of chiral differential operators ¢ Algebra of differential opera-
tors ¢ Lie algebra ¢ Vertex algebra

1 Introduction

These lectures are an informal introduction to algebras of chiral differential
operators, the concept that was independently and at about the same time discovered
in [25] and, in a significantly greater generality, in [7]. The key to these algebras is
the notion of a chiral algebroid, which is a vertex algebra analogue of the notion of
a Picard-Lie algebroid. In the context of vertex algebras it was put forward in [17];
in these notes, however, despite the relentless focus on vertex algebras instead of
various pseudo-tensor categories, we shall follow a much more natural approach of
[7]. Under the assumption that the algebras in question are conformally graded, the
results we obtain are the same as in [17].

As a warm-up, we spend considerable time discussing ordinary (and twisted)
algebras of differential operators, going so far as to prove parts of the Bernstein-
Beilinson localization theory in the case of sl,. We hope this will create the
framework within which things vertex will make more sense.

A little Lie and commutative algebra will suffice to understand much of what
follows; dealing with the sheaves will require that the reader is not put off by
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some sheaf-theoretic and algebro-geometric terminology. Formally, no knowledge
of vertex algebras is required, and the main definitions are all recorded, but in
practice, without some such knowledge some of the sections below will be a tough
read. On the other hand, these notes will supply the student studying books such as
[11, 19] with a wealth of “real life examples.” A number of exercise is intended to
enhance the reader’s experience.

The author would like to thank the organizers for the unforgettable fortnight in
Pisa.

2 The Algebra of Differential Operators

For the purposes of these lectures, C is the ground field, A is a finitely generated
commutative C-algebra.

A linear transformation P € End¢(A) is called a differential operator of order k if
k is the least integer s.t. [fi+1,[.-- [/, [f1,P]...] = Oforallfi,...,fit+1 € A. Here
f € A means the operator of multiplication by f and [X,Y] =X oY —Y o X.

Let DX() be the space of all differential operators of order at most k.

Exercise 2.1

(1) The map
A ’

is an algebra isomorphism.
(ii) Let Ty = {P € Endc(A) s.t. P(ab) = P(a)b + aP(b)}. One has Ty C D\".
(iii) Furthermore, there is a split exact sequence

1 —
0—A—D, «—Ty—0, (1)

with D;l) — T4 defined by P +— [P, .], where [P, .] stands for the map A —>
A,a > [P,a]. Hence, D) = A & Ty, canonically.

(iv) DY 0o DY c DY,

W) D9, D] c DIV,

Define Dy = U,-BOZ)X). The assertions of the exercise show that D, is an
associative (unital) filtered algebra; the corresponding graded object, GrD, =
@izoﬂg) / DX_I), is an associative commutative algebra. (Of course, we let Dg_l) =
{0}.) Formula (1) and its various generalization will be the focus of our attention.

Now assume A is “smooth,” which we take to mean that the module of Kéhler
differentials, £2 f{, is a finitely generated free A-module.
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Lemma 2.1 There is an algebra isomorphism
Gr. @A ;) S; TA B

where S3Ty is the symmetric algebra A @ Ty ® Sf\TA ®---.

Proof The fact that there is an isomorphism Ty — o /A, which was discussed
in page 74, furnishes the basis of induction, on the one hand, and gives an algebra
map S3T4 — GrDj,, on the other hand. Let us now define the inverse map. There is
a map
DY — Homc(A, DY), P {a > [P,a]}.
It clearly descends to a map
DV /D" — Home(A, DV /D).

Furthermore, its image actually belongs to the space of derivations, Der

(A, Z)X_l) / Z)X_z)), which is the same as Homy (£24, Z)X_l) / Z)X_z)). Thus we obtain
a map

DY /DY — Homa(24. D" /D).
All of this is valid for any A, but if £2,4 is free, then we have an identification
Hom, (24, D" /D) = Ty ©4 DLV /D).
Using the induction assumption we obtain
DY /DY — Ty @4 OV /D — Ty @4 ST Ta — Si T4
Exercise 2.2 The two maps constructed above,
S3Ty — GrD, and DY /DY) — STy,

are each other’s inverses.O
In particular, Dy is generated by vector fields. This is not true in general.

Exercise 2.3 Let A = Cl[x]/(x"). Verify that D4, which by definition is a
subalgebra of gl(A) = gl,(C), is actually isomorphic to gl,(C). Describe T, and
show it does not generate Dj.

If A is smooth, then for any “point,” i.e. m € Specm(A), there are elements
Xl,...,X, € A s.t. the images of their differentials, dxy,...,dx,, in the fiber
£24/m§2, form a basis. Therefore, {dxi, ..., dx,} is a basis of the localization £24,
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for some f € A. Let {1, ..., d,} be the dual basis of Ty, s.t. dx;(3;) = §;. It follows
that [0;, 0;] = 0. One has GrZ)Af = As[01, ..., 0], and so, locally, each differential
operator can be written in the form familiar to the calculus student.

A Poisson algebra comprises two structures, one of a commutative associative
algebra, another of Lie algebra, that are compatible in the sense that the operator of
the Lie bracket with any fixed element, {a, .}, satisfies the Leibniz identity: {a, bc} =
{a,b}c + a{b,c}.

If A = U;A; is a filtered associative algebra s.t. the graded object, Gt A =

A/ Ai—1, is a commutative algebra, then GrA is naturally a Poisson algebra with
the Lie bracket {@,b} = ab — ba mod Aivj—2, where a (b resp.) is a class of a €
A\ A1 (b € A; \ Aj—y resp.) In such a situation it is common to say that A is a
quantization of GrA.

The commutative associative algebra S374 is naturally a Poisson algebra, the
bracket being the Lie bracket on T4 extended as a derivation to the whole of S37. If
A is smooth, then by Lemma 2.1 §374 = GrD, and as such carries another, a priori
different, Poisson structure. A moment’s thought will show that these two Poisson
structure coincide. Hence Dy is a quantization of S5 7.

Algebras of differential operators localize well.

Lemma 2.2 If §2, is free of finite rank, then Dy, . Ar ®4 Day.

Proof A differential operator over A defines a differential operator over localization
Ay as the following recurrent procedure shows: if P € [}y , write

P(g) = P(f”fi) " P<fn> +[P.f" 1( ).

then solve for P( ), which makes sense, since [P,f"] € D(' Y and so [P.f"1(5) p
may be assumed to be known.

This gives a map Ay ®4 Dy — DAf, which respects the natural filtrations;
hence maps of graded objects (Lemma 2.1): Ay ®4 S’ Ty — S’ TAf, i=1. These
are isomorphisms as follows from an obvious 1nduct1ve argument the basis of
induction, i = 1, being the standard commutative algebra computation:

T,, —> Homy, (24,,Ay) —> Homy, (Ar ®4 24. A7) —> Ay ®, Homy (24.A) —> Ar @4 Ty

O
Smoothness is not essential for this result, finite generation is.

Exercise 2.4

(i) Prove Ay ®4 Dy AN Dy, for any finitely generated algebra A.
(i) Find an example of A s.t. Ta, is not isomorphic to Ay ®4 T4.

It is now clear that each smooth algebraic variety X carries a sheaf of filtered
associative algebras, Dy, s.t. GrDy —> S(')X‘T X-
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A Lie algebra g gives rise to the universal enveloping algebra U(g). A similar
construction reproduces Dy. Namely, Dy is isomorphic to the quotient of U(Ox &
Tx) modulo the 2-sided ideal J generated by the elements 1y — 1o, f * g — fg,
f*0—f0; here 1y € U(Ox & Tx) and lp € Ox are the units in the respective
algebras, f,g € Ox, d € Tx, and * denotes the product in U(Ox @ Tx). Indeed,
the universal property of U(Ox & Tx) gives a morphism U(Ox & Tx) — Dx that
sends J to 0. Both algebras, U(Ox ® Tx)/J and Dy are filtered (use the Poincaré-
Birkhof-Witt filtration on the former), and the morphism preserves the filtrations
giving us the map Gr(U(Ox & Tx)/J) — GrDyx. Lemma 2.1 shows that this map is
an isomorphism.

An obvious analogous construction reproduces Dy if A is the coordinate ring of
a smooth affine variety.

To see what differential operators may be good for, outside PDE, let us consider
the simplest case of the Beilinson-Bernstein localization [5, 6]. The Lie algebra of
the group

SL, = {(‘CIZ) tad—bc=1,a,b,c,d e C}

is

sl, = {(?Z) ta+d=0,a,b,cde C)with [A,B] = AB — BC,

o= 01 h= 10 = 00
00 0-1 10
forming its basis.

The group tautologically operates on C2, hence on CP!, the set of lines in C.
Therefore, there arises a Lie algebra morphism

the elements

sly — I'(CP', T¢pr),
which induces the associative algebra morphism

U(sly) — T'(CP', Dcpr),

Exercise 2.5
(i) Verify that on an appropriate chart C < CP!, this morphism is defined by
ad ad , 0

- ,h— =2 , .

e . — x3x f|—>xax

(ii) Prove that the map U(sly) —> I'(CP!, D¢p1) sends the element ef + fe + h*/2
to 0.
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The element ef + fe + h?/2 is, of course, the generator of the center of U(sl)
(check at least that it is central!). Denote by U(sl,)o the quotient U(sl,)/ (ef + fe +
h?/2)U(sl,). We obtain the morphism

U(sh)o —> I'(CP', Depr).
Lemma 2.3 This morphism is an isomorphism

U(sk)y —> I'(CP', Depi).

Furthermore, H(CP', D¢p1) = 0 if i > 0.

Proof Both algebras at hand are filtered, and the map preserves filtrations; the
passage to the graded object gives

o0
GrU(sh)y — P I'(CcP'. DY),)/r(CP'. D). 2)
i=0

We will prove the following two assertions: there are vector space isomorphisms

P ree'. 08,/ rer'. o) = I(CP'. $*Tep) 3)
(=0
and
GrU(sly)g —> I'(CP!, $*Tcp1). 4)

These assertions mean that (2) is an isomorphism, and the lemma follows.

Proof of (3) is a simple exercise on locally free sheaves over CP!. S"T¢pi is
the Serre twisting sheaf O(2n), and so H'(CP!,$"T¢p1) = 0. The long exact
cohomology sequence attached to the exact sequence

0— Z)g;ll) — Z)g%l — S"Tepp — 0

shows, by an obvious induction on n, that H' (CP!, Dgﬂll) =0 and

HCP'. DY) — @ H"(CP', 0Mm)).
i=0

as desired.

Proof of (4) is, on the other hand, a pleasing exercise on some classic repre-
sentation theory. Both sides of (4) are sl,-modules: the adjoint action of sl on
U(sly) clearly descends to an action on the L.H.S; the action on the R.H.S is
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defined similarly using the morphism sl —> I'(CP!, 7¢p1) and the Lie bracket.
This description shows that map (4) is an sl,-module morphism. Kostant, [23], has
computed the sl-module structure of GrU(g)o for any simple g. In our case, the
result is

GI'U(Slz)() ;> @ Ly, (5)

n=0

which we shall prove a few lines below; here L,, is the unique irreducible (2n +
1)-dimensional sl,-module. Furthermore, L, C GrU(sly)o is generated by e”", the
highest weight vector of highest weight 2n

On the right hand side, some elementary algebraic geometry will show that
dimI"(CP', "7 ¢p1) = 2n + 1 and that (d/dx)" € I'(CP', S"T ¢p1). Since (d/dx)"
is up to sign the image of ¢" (under U(sly) — I'(CP!, D¢p1)), this implies the
desired isomorphism.

It remains to prove (5). It is clear that (ef + fe + h*/2)"e" € S°sl, generates an
Ly, C S°sly. Furthermore, the set {(ef + fe + h?/2)"e" € S°sl,, m,n=0} is linearly
independent. The complete reducibility of sl,-modules implies that

D (Clef +fe + h*/2] ® Loy) < S°sh,.
N=0

Now one can show that both these spaces have the “same size.” To any bi-
graded vectors space, V. = @®,,.,Vimm, we attach the formal character, chV =
> dimV,,x™¢". In our case, the first grading is the canonical grading of the
symmetric algebra (s.t. the degree of x € sl, is 1), the second is given by the
eigenvalues of [A, .]. For example, the reader will readily verify that

1 x2n+l _ x—2n—l
hS°sl, = , ch(1® Ly,) =1"
hSSh = ) _ en = (1 — x2S O L) x—x1
The following exercise will complete the proof of (5), hence of Lemma 2.3.

Exercise 2.6 Prove that

ch(E@D(Clef + fe + 1*/2] ® Lay)) = chS"sh,.
N=0

The very existence of a morphism U(sly)g — I'(CP!, D¢pi) implies there are
two functors

A : U(sh)o-mod «— Depi-mod : I, A(M) = Depi @, M, I'(M) = I'(CP', M).

I'This short-cut was suggested by V. Kac, who was in class.
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The famous theorem of Beilinson-Bernstein [5] asserts that these are quasi-inverses
of each other, Lemma 2.3 being an important step in the proof.

Examples-Exercises 2.7

(i) A(U(sh)o) = Dcp-

(ii) A(C) = Ocp1, where Ocp1 is the structure sheaf=sheaf of regular functions, a
tautological D-module.

(iii) Let t be the vector field that is the image of e € sl under sl —
I'(CP', T¢p1), and let oo € CP' be the (unique) point where tvanishes.
Denote by Ocpi(00) the sheaf of functions that are allowed to have a pole
at 00, i.e., Ocp1 (00)(U) = Ocpi (U \ 00). Then I'(CP', Ocpi (00)) = M, the
contragradient Verma module with highest weight 0, that is, an appropriately
defined dual of the Verma module My = U(sly)/U(sl,){h, e).

(iv) With the notation of (iii), let moo C Ocp be the ideal of oco. Then
T (CPY, Dept / Deproo) is M—y = U(sly)/U(sh) (h+2, ), the Verma module
of highest weight -2. Notice that if y is a local coordinate s.t. My = (y),
then I'(CP!, Depr /Depimeo) = C[3/dy] and is thought of as the space of
distributions supported at oo.

(v) An exact sequence of sheaves

00— OCIF’I —> OCIF’I (OO) —> DCIF’I /Dcplmoo —>0

is transformed by I' into the simplest example of the BGG resolution [18,
Chap. 6]:

0—C—M;,—M_, —0.
At this point an obvious question arises: the L.H.S. of the Beilinson-Bernstein
localization theorem, U(sly)o, is a member of the family of algebras, U(sl,), =

U(sl)/U(sh)(ef + fe + h*/2 = x), x € C.; is there an appropriate D7, ? The
answer is, yes, there is.

3 Algebras of Twisted Differential Operators

We shall begin with a class of examples.
Let X be an algebraic variety, & a rk = 1 locally free sheaf of Ox-modules (= the

sheaf of sections of a rk = 1 complex vector bundle), Endc(E) the sheaf of linear
transformations of &. Define (cf. page 74) D((gk) C Endc(E) s.t.

D) = (P € Endc(E)(U) - [fisr, Ufios [+~ Lfi, Pl---] = 0}
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and call it the sheaf of differential operators of order at most k operating on &.
The reader is invited to verify that our discussion of ordinary differential operators
carries over to this case essentially intact as follows:

1) Dg() o Dg) - Dg+l); furthermore, [D(k) , Dg) ]c Dg+l_l)

(i) DY = Endp(8) = Ox.

(iii) to P € DY assign the derivation o(P) : Ox — Ox, f > [P.f] € DY = Ox.
Thus arising map

o Z)g) — Tx,

is a surjective Lie algebra morphism. It defines an exact sequence

0— Oy — DY) — Tx — 0. (6)
It is fundamentally different from (1) in that it does not split; having a splitting
Tx — Z)g) is equivalent to defining a connection on &.

To summarize, Dg defined to be Ukﬂg‘) is a sheaf of filtered algebras, locally
isomorphic to Dyx; this is because locally & is indistinguishable from Oy. If X is
smooth then GrDg = S(')X‘T x; therefore Dg is a quantization of GrDg = S(')X‘TX
(see page 76), usually not isomorphic to Dy.

Exercise 3.1 If X is smooth, prove Dg is Notherian.
Let us now look at an example.

The routine verifications of all the assertions to follow is left to the reader.

CP! is covered by an atlas consisting of two charts, both C with coordinates x
and y s.t. over the intersection, C*, x = 1/y. Over each chart Serre’s twisting sheaf
O(n), which we have already encountered, is trivialized by sections s and ¢ resp.;
over the intersection s = y".

The trivializations identify Do,y with D¢ over each chart; we shall write V, for
d/0x over the x-chart and V,, for d/dy over the y-chart. Over the intersection one has

9/0x = —y*d/dy but V, = —yZVy + ny. @)

(This illustrates how Dy, is different from Depr and why GrDp(,) = GrOcpi.)
The assignment, cf. Exercise 2.5,

e!—)—ax, h|—>—2xaax+n,f|—>xzaax—nx

extends to morphisms

sl, — I'(CP', DY) ). Ush)uuia2 —> T'(CP', Do)).
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Lemma 3.1 The map U(sh)nn+2)/2 — r(CP', Do) is an isomorphism.
The enthusiastic reader will discover that the proof of the analogous result
Lemma 2.3 carries over to the present case practically word for word for the
reason that once the map has been constructed one only has to analyze its effect on
the corresponding graded spaces, GrU (sl2)n(:+-2)/2 and such, where the twisted map
is indistinguishable from the one in Lemma 2.3.

The pair of functors

—_
A Usl2)y(nt2)/2-mod «— Dopy-mod : I, A(M) = Doy Qsi,M, I'(M) = F((CPI,M).

is defined as before, but they are each other’s inverses only when n=0. (Q: Why?
Hint: consider H'(CP!, O(n)).)

The reader is encouraged to find the analogues of the examples 2.7, and
especially to define an exact sequence

0 — O(n) — O(n)(00) —> Do)/ DomMeo —> 0
and derive from it the BGG resolution

0—L,—M —M_, ,—0.

Let X be a smooth algebraic variety. Guided by the discussion at the beginning
of the present Section, we shall say (following [5, 6]) that a sheaf of associative
algebras A is an algebra of twisted differential operators (TDO for short) if A
carries an increasing filtration {A?, i=0} s.t. GrA is commutative and isomorphic
to S(’)X‘TX as a Poisson algebra.

In a word: a TDO is a quantization of S(')X‘T X-

Of course Dg is a TDO, but it is easy to find TDOs that are not Dg for any &. For
example, although O(1) does not make sense if A € C \ Z, an explicit construction
of Do) as above makes perfect sense for any complex A. More generally, given
ark = 1 locally free sheaf & the family of TDOs Dge., n € Z, allows “analytic
continuation” Dgx, A € C.

By definition, A0 = Oy and AWV fits a familiar by now, cf. (6), exact sequence

0— Ox — AV — 75y — 0. (8)

It is clear that A is generated as an associative algebra by A" and it should
not take much convincing to agree that a classification of TDOs is equivalent to
classifications of exact sequences (8), the task that we shall take up next.

The following is a result of abstracting the properties of (8): we shall try to keep
AW forgetting about the whole of A.

Let us return to a purely local situation working over a finitely generated C-
algebra A. The module of derivations T4 is an A-module and a Lie algebra, but it
is not a Lie algebra over A in that the Lie bracket is not linear. Instead, there is
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a tautological action of T4 on A by derivations, which measures the failure of the
bracket to be A-linear:

[§.at] = al§. 7] + (@)t

This sort of data is called a Lie A-algebroid. More precisely, £ is called a Lie A-
algebroid if it is a Lie algebra, an A-module, and is equipped with anchor, i.e., a Lie
algebra and an A-module map ¢ : £ — T4. These data are compatible in the sense
that the A-module structure map

AL — L ©)

is an £-module morphisms, where £ is regarded as an adjoint module over itself
and A is an £-module via the pull-back w.r.t the anchor £ — T,. Explicitly,

E,at] =0 (E)(@)Tt +alé, 1], ac A, &t € L. (10)

A Picard-Lie A-algebroid is a Lie A-algebroid L s.t. the anchor fits in an exact
sequence

0—A-5r- 510 —0, (11)

where the arrows respect all the structures involved; in particular, A is regarded as an
A-module and an abelian Lie algebra, and ¢ makes it an A-submodule and an abelian
Lie ideal of L.

Morphisms of Picard-Lie A-algebroids are defined in an obvious way to be
morphisms of exact sequences (11) that preserve all the structure involved. More
formally, a morphism is a Lie A-algebroid map f : £, — L, s.t. the following
diagram commutes:

3] o1

0 A L T4 0
| 2
0 A : L i Ty 0

Each such morphism is automatically an isomorphism and we obtain a groupoid

PLy.

Classification of Picard-Lie A-algebroids that split as A-modules is as follows.
We have a canonical such algebroid, A & T4 with bracket

[a+ &b+ 1] =ED) —t(a) + [€, 7]
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By definition, any other bracket must have the form

[S? ‘C]new = [Sv ‘C] + 13(57 t)v ﬂ(és T) € A.

The A-module structure axioms, especially (10), mean that B(.,.) is A-bilinear, the
anticommutativity of [., .],.,, means that f is anticommutative, i.e., B € £23.

Exercise 3.2 Verify that the Jacobi identity

[Sa [777 f]new]new + [Ta [S, n]new]new + [na [fa g]new]new =0

is equivalent to

§B(T.m) —B(&.m) + nB(&. ) — (& 7). ) + B((E. nl. ©) — B([z.n]. §) = 0.

The L.H.S. of the last equation is by definition dprf(&, 7, 1), d being the De
Rham differential. We conclude that 8 € Qﬁ’d.

Denote this Picard-Lie algebroid by T4 (). Clearly, any Picard-Lie A-algebroid
is isomorphic to T4 (B) for some 8 € Qf’”l.

By definition, a morphism T4 () — T4 (y) must have the form § — & + «(§)
for some o € £2}. A quick computation (do it!) will show that

Hom(Tx(B), Ta(y)) = {o € 2, s.t.doa = B —y}.

This can be rephrased as follows—and we will happily omit the technicalities.
Let .(2/5"2> be a category with objects 8 € Qﬁ’d, morphisms Hom(f,y) = {«a €
2} st.da = B —y}. Itis, in fact, an abelian group in categories meaning that the
assignment .Q/[;’b X Q£1'2> — .Q/[;’b, (B1.B2) = B1 + B is naturally a bifunctor
that enjoys a number of properties mimicking the definition of a group.

Next, the assignment .QE‘b XPLs — PLa, (v, Ta(B)) = Ta(B+y) is naturally
a bifunctor that enjoys a number of properties that justify calling it a categorical
action of .QE’b on PLy. In fact, this action makes L, into an Q/[:'b-torsor.
What it means is that the assignment Q£1'2> — PLy, B T4(B) is naturally an
equivalence of categories.

We see that the isomorphism classes of Picard-Lie A-algebroids are in 1-1
correspondence with the De Rham cohomology .Qj’”l /d$2}, and the automorphism
group of an object is £}/,

If X is a smooth algebraic variety, then the above considerations give the category
of Picard-Lie algebroids over X, L. The meaning of our considerations is that it is
a torsor over .Q)[(l > or, if put differently, a gerbe bound by the sheaf complex .Q}( —
52)2("'1. This gerbe has a global section, the standard Ox @ 7x. The isomorphism of
classes of such algebroids are in 1-1 correspondence with the cohomology group
H' (X, 2}, — .Q)z("'l) (£2), being placed in degree 0), and the automorphism group of
an object is HO(X, £2,).
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Let us describe the Cech cocycle representing a Picard-Lie algebroid. Consider
an affine cover {U;} of X. We obtain a bi-complex with terms .Q}((ﬂjU,-j) and

Q)Zf’d(ﬂle;/.) and two differentials, De Rham dpr and Cech d¢. Now use the
classification of Picard-Lie A-algebroids obtained above as follows. The restriction
of a Picard-Lie algebroid L to each U; is identified with Ty;,(B;) for some B; €
Q)Z(’Cl(Ui); on intersections U; N Uj there arise «;; € .Q}((Ui NU) s.t. (Bj—Buiny; =
dproj, which is interpreted as a patching isomorphism ¢; : L|y, (Ui N Uj) =
L|y;(U; N Uj). The transitivity condition, ¢j o ¢;; = ¢y, means the Cech cocycle
condition: dg({ay;}) = 0. Therefore, the pair ({oy;}, {8;}) is a 1-cocycle of the total
complex.

Replacing Ty, (B;) with an isomorphic Ty, (8; + dpryi) results in replacing
({@;}, {Bi}) with a cohomologous cocycle.

If A is a TDO over X, then AV is a Picard-Lie algebroid over X, by definition,
and the assignment A +— AD gives a functor 7DOx — PLx. This functor has a
left adjoint

Uoy(\) : PL— TDOx, L+ Upy(L).

Uo, (L) is called the universal enveloping algebra of L; it is analogous to the
concept of the universal enveloping algebra of a Lie algebra and is different insofar
as it reflects the partially defined associative product on £: (f,t) — f -t forf €
Ox C L, t € L. The definition is made in essentially the same way as for the
ordinary differential operators, page 77, and we leave working out the details to the
interested reader.

The ordinary universal enveloping U(g) carries a filtration s.t. GrU(g) = S°g,
and the same construction applies to Up, (L).

Exercise 3.3 Find a filtration on Up, (£) s.t.

(i) Uo (D)™ = Ox;
(i) Uo (L) = L;
(i) GrlUo, (L) = S5, Tx:
@iv) if A is a TDO and AWM is the corresponding Picard-Lie algebroid, then
Uoy (AN) = A.

This proves that the two functors
Uoy() 1 PLy > TDO : ()V

are each other’s quasi-inverse.
Therefore, the isomorphism classes of TDO’s are in bijection with H' (X, 2}, —
Qz,cl
X )
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Example 3.1 1f X = CP!, then the dimensional argument shows that H' (X, 2} —
27y = H'(CP'. 2L,).

Exercise 3.4 Prove that dimH'(CP!, .Q(l:Pl) = 1 with basis the Cech cocycle dx/x
over C*—we are using the notation introduced in page 81.

This immediately shows that the algebra Dy, introduced in loc. cit. is exactly
the one attached to the indicated cocycle in the classification above: formulas (7)
define a Picard-Lie algebroid/TDO whose restriction to each chart is isomorphic to
the standard O¢p1 @ Tcpt but the gluing over the intersection C* is twisted by an
automorphism 9/dy + /9y — ndy/y(d/dy).

If we replace n with an arbitrary complex number A or, even better, an
indeterminate A and work over C[A], then we obtain a universal family of TDOs
over CP'.

4 CDO: An Example

An algebra of chiral differential operators, the subject of these lectures, is a vertex
(or chiral) algebra analogue of a TDO. As is our wont, we shall begin with an
example.

Let a be an infinite dimensional Lie algebra with basis {x,, d,,, C; n € Z} and the
bracket

[0, %] = 8;:—C, [C,0:] = [C,x;] = [0;,9j] = [xi,x;] = O.

Let at be the subalgebra with basis d;, x;4+1, C, i=0; it is clearly a maximal
commutative subalgebra of a. Let C; stand for its 1-dimensional module, where
d; and x;41, i=0, act trivially, and C acts as multiplication by 1. Let

DYy = Indg, Cy.

Eventually, we shall convince ourselves that this is a reasonable vertex algebra
analogue of Dcy.

Remark The D-module nature of D("Ch[xl can be easily seen as follows. The space
Cllz]] = {3_,50x—s2"} is naturally a scheme, SpecC[xp,x_i,...]. The space of
Laurent series C((z)) = {)_,s_ooX—nZ"} can be represented as the union of
schemes, U,z "C[[z]], and thus given the structure of an ind-scheme. We shall have
no use for the algebro-geometric subtleties involved, but there is no doubt that C((z))
has coordinates, {x,, n € Z}, and vector fields, {d/dx,, n € Z}. With this in
mind, the meaning of Dg’x is clear: it is nothing but an algebraic description of
the module of distributions supported on C[[z]] C C((z)); the simplest possible
example of such construction was encountered in Examples 7(iv), and the reader
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is encouraged to compare the two. One cannot multiply distributions, and so this
space is not an associative algebra in a natural way, but it is a vertex algebra, and
there are geometric reasons for this. Such point of view is developed by Kapranov
and Vasserot, [20, 21].

It is perhaps easiest to define a vertex algebra structure on D(?:h[x] using the strong
reconstruction theorem, [11, 19], or what V.Kac called an extension theorem in his
lectures in this volume. Introduce a_, the subalgebra “opposite” to a4, i.e., the
one generated by {x;, d;—;, i<0}. The PBW theorem identifies Z)g’[x] with U(a-) =
Clx;, 9;—1, i<0], which gives us a basis consisting of monomials and a distinguished
vector, 1, to be regarded as a vacuum vector. Next, we introduce the operator T €
EndCZ)g’ by the formula: T = — ), nx,0—,—. Finally, we have two fields,

+o0 +o0
x@) = Y xz"anddR) = Y 0,z

n=—0oo n=—0o0

Exercise 4.1 Verify the relations
[T,x(2)] = x(z), [T,9(z)] = 3(z), x(2)1 = xo mod z, (z)1 = d_; mod z,

[x(2), x(w)] = [0(2), I(w)] = 0,

and
+o0 o
[0(2), x(W)] = 8(z—w), where §(z —w) = _E 1 (13)

The content of the Reconstruction Theorem in any of its versions is that these
relations imply: Z)g’[x] carries a unique vertex algebra structure s.t. the fields assigned
to xo and d—; are x(z) and d(z) resp. More generally, the field assigned to a monomial
in C[x;, d;—1, i<0] is obtained by the operations of normally ordered product and
differentiation (w.r.t. ); e.g.,

1
Xt > cx(2)™a@)™ - .

nlm

We would like to think of the just now constructed D%h[x] as a vertex algebra
attached to the algebra C[x]. If we are able to suggest a reasonable definition of

“localization,” Dg’[x]f, for any nonzero f € Clx], then the assignment Uy +— Dg’[x]f
will define a sheaf of vertex algebras, Dﬁg‘ over C.

The polynomial nature of Dﬁéh[x] makes it a C[x]-module with x acting as
multiplication by xo. Set D = Clxlr ®cpy D]y In order to define a vertex

algebra structure on this space, one needs a field assigned to 1/f. So, what s f(z)~'?

For example, in the case of Dg‘[x 1) what is x(z)™!?
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Exercise 4.2 (Feigin’s Trick) Define using the sum of geometric series formula
as motivation

XN =

! =xN ! =V "'ZOO N (N Zx_ Y.
(0 + Yo x—n2 0 (Mg Do xS\ G ) =
Verify that this series makes sense as a field, i.e., that x(z) Vv € D(%h[x’x,l]((z)) for
any v € Z)fc”[”_ll, and that

[0(z), x(w) V] = —Nx(w) V'8 (z — w). (14)

The meaning, hence a generalization, of this construction is obvious: we should
think of €(z) = )., .,x—,2" as a small variation of a constant loop; this of
course corresponds with the Kapranov-Vasserot concept of infinitesimal loop, [20].
Therefore, if g € C(x) is any rational function (in fact any function holomorphic on
an open subset of C will do), then we define

+o00

1
ge@) =3 "))

=0

Exercise 4.3 Verify that g(x(z)) is a field on ngh[x]f for any g € Cl[x]; and check the
relations '

g(x(2))1 = g(xo) mod z, [T, g(x(2))] = &'(x(2))x(2) = T(g(x0))().

and

[0(2), g(x(w))] = &' (x(w))S(z — w). (15)

The Reconstruction Theorem allows us to conclude, as at the beginning of
Sect. 5, that D@Eh[x]- carries a unique vertex algebra structure s.t. d—; +— 9(z) and
8(xo) = g(x(2)).

It is obvious that the assignment Uy = {f # 0} — Z)fch[x]f defines a sheaf of
vertex algebras on C; in fact, it coincides with the standard algebraic geometry
localization of D(?:h[x] regarded as a C[x]-module. Denote this sheaf by Z)g’.

Now that we have obtained a reasonable sheaf Dg’ over C, we shall try to glue
two such sheaves into a sheaf on CP'; in other words, we shall play the game similar
to the one described on pages 81-82. Thus we have two charts with coordinates
to be denoted (this time around) x and x. Next, we have a copy of Z)g’ sitting on
each of the charts, and two copies of Dg’* on the intersection, C*, one equal to
ClxF!', x_;, 0, i > 1], another to C[¥F!, ¥, d_;,i > 1]. What we want is a way to
identify these copies.
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A morphism of vertex algebras is a linear map = : V. — W that preserves the
unit, the “product,”i.e., s.t. w(a)(z) (b) = 7 (a(z)b), and the operator T: roT = To
7. We could of course obtain an isomorphism by assigning Xy to xo and d—; to d_j,
but this would be unreasonable: the formulas used before, esp. (15) strongly indicate
that xo has the meaning of the coordinate function and d—; has the meaning of the
derivative d/dxo. Therefore, we stipulate (emulating the case of ordinary differential
operators, see page 81) that 7(xg) = 1/X, and suggest that 7(d—;) = —x30_;. For
this assignment to extend to an isomorphism of vertex algebras several identities
have to be verified; the mildly interesting one,

[7(9)(2), () (W)] = 8(z —w).
is easily checked, but the dull one
[7(9)(2), 7 (8)(w)] = O,
fails miserably; in fact, a quick computation using Wick’s theorem ([19]) will show
[7(9)(z), (@) (W)] = —28(W)*8(z — w) — 2% (W)'Z(W)*8(z — w).
In order to fix this, let us change the transformation law for d_; as follows
m(0-1) = —F0-1 — X1, (16)
or in terms of fields
T(0-1)(2) = — 1 ¥(2)?0(2) : —%(2)', (17)

Exercise 4.4 Use Wick’s theorem (having learnt it ([19]) if need be) to verify the
relations

[7(x0) (), 7 (x0) W)] = [7(9-1)(2), 7(3-1)(W)] = O,
[7(9-1)(2). w(0)(W)] = 8(z—w).  (I8)

Now define a map

Cl! xoy, 0y, > 1] — CERE', %2, 0,0 > 1], (19)

io 01

XX n(xo)iil)n(xo)iiz) . n(a_l){‘_nn(a_l){iz) o1,

where an expression such as a(,) means the Fourier coefficient of the field a(z) s.t.
CZ(Z) = Zn a(n)z_n_l-
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Lemma 4.1 The map (19) is a vertex algebra isomorphism.

Sketch of Proof A little thought shows that this assertion is essentially the Recon-
struction Theorem manifesting itself in the case at hand. First~ of all, relations (18)
can be used to define a vertex algebra structure on (C[)?é“ ,X—i, 0—;, i > 1]—one only
needs to check that the monomials on the right of (19) span (C[Fc(:)tl Xl i > 1],
and this is easy. Then since relations (18) coincide with those of Exercise 4.2,
map (19) is a vertex algebra isomorphism, except that on the right we use the
structure that has just been defined. But relations (18) follow from the original
relations of the vertex algebra (C[fcgtl ,X_;, 0_;, i > 1], hence the uniqueness assertion
of the Reconstruction Theorem will show that the new structure coincides with the
old one, which completes the proof. O

Isomorphism (18) is defined on the space of sections over C*, but it is obviously
compatible with localization (defined in pages 87-88) and so defines a sheaf
isomorphism 7 : Dg‘* — Dg‘*. Since we have only two charts, this concludes
the definition of the sheaf Dg‘Pl over CP'.

Of course, the transition back from (x, 5) to (x, d) is defined to be 77!, but it is
pleasing to notice that the same formulas will work.

Exercise 4.5 Check that 7 = 7! if we define

R B
FR) = . #(0_1) = —x20_; —x_).
X0

: ch * ch ch
What sort of a sheaf is D, ? Over C*, Dipi 1s Z)(C[”,l],

the polynomial ring (C[xgEl ,X_;,0—;; i > 0], and so looks like a C[x, x~!]-module (x
operates as multiplication by xp), and this C[x]-module structure has even been put
to use when the localization was defined; but globally, Dg‘Pl is not an O¢pt-module
in any natural way. The reason for this is as follows: the ordinary multiplication that

suggests itself locally, say,

which is identified with

(g, 0—1) = xp0—1,

is not given by vertex algebra structure and is not preserved upon gluing. To see the
difference, write ab to mean the naive product of a, b € (C[)cgEl ,X—;, 0—;; i > 0] and
a()b for the vertex algebra n-th multiplication, cf. (19).

Exercise 4.6 Verify
2

ox2

(1) f(x0)0—1 = (0—1)(=1)f (xo)butf (x0)0—1 = (f(x0))(=1)0—1 — ,, °, (X0)x—1;
(20)

7 (f (x0))

ax

(iif) 7 (x0) = X', w(f(xo)x—1) = —f(Eg Ty %1 (22)

(i) 7(f(x0)0-1) = 7(f(x0))7w (1) — 2X0X - 2y



An Introduction to Algebras of Chiral Differential Operators 91

(Hints: Apart from the definition of Dgl[x,x_l] and the patching, use the skew
commutativity in vertex algebras: a—nb = b—na — T(bga) + ---, and the
Borcherds identity: (a(1)b)(—1) = a1b1) +a—-2b) +- -+ b-2aq) +---. For
example, the first part of (i) follows from [d—;, xo] = 0, the 2nd follows from the
first and skew-commutativity; (ii) follows from (i),the definition of the gluing, and
the Borcherds identity.)

The correction terms in these formulas are of the same nature as the “anomalies”
we encountered when defining the sheaf, and they teach us a lesson. We see
that there is a subsheaf whose restriction to C is C[xg], and this subsheaf is the
structure sheaf Ocp1. Similarly, the subsheaf that restricts to C[xp]x—; is isomorphic
to the cotangent sheaf §2¢pi; in fact, x_; has the meaning of dx. These are the
consequences of (22). Thus we obtain a sheaf embedding

Ocpt @ Qcpr = D1 (23)

What (21) says is more interesting: f(xp)d—; is not a vector field, but it is modulo
1-forms. More formally, there is a subsheaf £ C Z)fc”IPI that restricts to Clxp]x—; &
Clx0]0—; and fits in the exact sequence

0 — Qcpt — LM — Tept — 0. (24)

This extension is destined to be the focus of our attention, and will be understood as
a vertex algebra version of the Picard-Lie algebroid, see (11). At the moment, let us
point out that although an extension of an O¢pi-module by another Ocpi-module,
L is not an O¢p1-module, but merely a sheaf of vector spaces.

Now, a moment’s thought will show that this process can be iterated so as to find a

filtration on the whole of Dgpl with quotients that are sheaves of O¢pi-modules. The
simplest (and somewhat crude) such filtration can be defined simply by counting the
number of letters d_,, n > 0. More precisely, define Dg;f" to be the subsheaf s.t.
its restriction to C C CP! equals the subspace of Z)fc”[x] that is linearly spanned by
polynomials of degree at most n in {d—;, i > 0}.
Exercise 4.7 Prove that @ngoi)g’ﬁ” /Dg’[i("_l) is naturally a locally free Og¢pi-
module. Furthermore, Dg;;o is essentially the structure sheaf of the jet scheme
JooCP!. (More precisely, it is the push-forward of O joocp! W.IL. the projection
JooCP! — CP')

This filtration is analogous to the one inherent in a TDO (see page 82), and will
be essential for us later. It works best if combined with the fact that Dg‘Pl is graded.

Denote by Z)(CC"IF,1 [n], n=0, the subsheaf that is locally the C-linear spane of the
monomials f(xo){x—jx—y, - -+ 0_j,0—j, -+ }, With ie,je > 0 and }_ iy + Y, j» = n.

It is rather clear from the transformation formulas that then

o

Dgwl = @Dgpl [n].
n=0
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Furthermore, this grading is compatible with the filtration: if we let DCh’s’"[n] =

CP!
Dg’ﬁm N Z)(CC"IF,l [n], then we obtain a finite filtration of each homogeneous piece:

DL € D[] € -+ € D[] = Dl
An obvious application of the long cohomology sequence (and the fact that the
cohomology of coherent sheaves over CP! is finite dimensional) will then show that

dimH' (CP', D&,)[n] < oo. (25)
We shall soon be able to compute this dimension.

Let us push these ideas a little further so as to be able to compute the Euler
character of Dgpl. Recall that for a sheaf & over CP! with finite dimensional
cohomology the Euler characteristic is defined by

Eu(&) = dimH°(CP!, &) — dimH' (CP', &).

For example, Eu(O(r)) = r + 1. (Verify this!)
In view of (25) this makes sense for Z)fc”IPI [n], but surely not for the entire Z)fchpl,
where the appropriate notion is one of the Euler character, which is nothing but the

generating function of the Euler characteristics defined as follows:
o0
Euy (D) = ) Eu(D, [n))g".
n=0

Lemma 4.2

> 1

E"‘q(DgLﬂl’l) = l_[ (1- qn)Z'

n=1

Proof What makes the computation of the Euler characteristic simpler than that of
the cohomology is the fact that the Euler characteristic is additive w.r.t. filtrations:
if we have &' = {0} c &' C --- C &V, then

N N
Eu(| J&") =) EuE'/&.
n=0 n=0

The key to the proof is a filtration of Dgpl that is a refinement of the one considered
above. Notice that the set of monomials {x_; x_;, - -+ 0, 0—j, -+, ie,je > 0} can be
ordered by stipulating that xs < de, that a_; < a_; if i < j, and extending this to the
monomials lexicographically. Now define F, Nﬂgpl to be subsheaf generated (over
functions of x¢) by the least N such monomials.
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Exercise 4.8 Verify that in the graded object the class of x_;, i > 0, transforms
as dx, the class of d_; as d/dx, and, more generally, the class of the monomial
Xeiy Xy =+ Xy 0—jy 0—jy - -+ 0—j, as (dx)®¢). (Hint: this follows from the formulas
of Exercise 4.6.)

Now recall that (dx)®" is a local section of O(—2r). Therefore, as follows from
the mentioned additivity of the Euler characteristic, the Euler character Eu, (Dg’Pl)
is the following sum extended over the indicated monomials:

Euq(DglPI) = Z Q2@ —s) + 1)q2a fat2pib

{x—iy Xmi X Oy O—jy -0—j }

The assertion of the lemma easily follows from this equality.

Exercise 4.9 Complete the proof. O

ch

The task of computing the cohomology groups H"((C]P’I,D(CIP,1

crucial for accomplishing it is the sho-structure of the sheaf Dg’Pl

As we have seen in page 77, SL; operates on CP!, and so there is a Lie algebra
morphism sl, — I'(CP!, 7¢p1) and an associative algebra morphism U(sh)y —

T (CP', Depr). If Depr is to be replaced with Dgpl , then s/, must be replaced with

the affine sl,. Recall that the latter is defined to be the central extensionsl ((7)) @ CK
with bracket defined by

) is harder, and

[x(), ()] = [x(®), y(0)] + resi=oTrdx())y(NK, [K.x(.)] = 0.

Here is a train of thought that leads to “chiralization” of the formulas from page 77.
A vector field £ on C that moves a point x to a nearby point x + €f(x) defines an
infinite family of vector fields &,, n € Z, on the space of infinitesimal loops C((z)):
&, moves the point x(z) € C((z)) to a nearby point x(z) + €7"f(x(z)). In terms of
coordinates this becomes vaguely familiar:

£, = res,—of (x(2))d(2)dz/z "

In the case of the three vector fields defining an action of sl, on C this gives a Lie
algebra morphism sl,((f)) — T¢(()), slightly informally recorded as follows

e(z) = —0(2), h(z) > —2x(2)3(2), f(z) — x(2)*0(2).

where given x € sh, x(z) = Y5 (x ® )z7""! is simply a generating function of
the family {x ® 7'} C sly((7)).

The term “chiralization” used above means making sense out of such formulas.
The problem here is that the indicated vector fields act on functions, not on a vertex
algebra Z)g:”[x], which is a space of distributions, loc. cit.. A chiralization in the
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case at hand was accomplished by Wakimoto in the celebrated work [27]. In our
terminology his result reads: the assignment

e(z) = —0(2), h(z) = —2:x(2)3(2) : =2, f(2) > x(2)*0(2) : +2x(z)’, K > —2
(26)
defines an sl,-module on Z)fch[x].

Therefore, our DE:h[x] is nothing but what is known as the restricted Wakimoto
module of level -2. The word “restricted” means the following.

Exercise 4.10

(i) Verify that the coefficients of the field : e(2)f (z) +f(2)e(z)+1/ 2h(z)? : commute
with sl,.
(i) As a field acting on D, ¢ e(2)f (2) +f(2)e(z) + 1/2h(z)* 1 is 0.

Of course, this is a pleasing chiralization of the formulas from Exercise 2.5. To
advance further and chiralize Lemma 2.3 a slight change of tack is needed.

Let Cy be a 1-dimensional sh[[7]] & CK-module, where sl,[[]] acts trivially and
K as multiplication by k € C. Consider the induced sl,-module

V(sh), = Indzﬁ[m]@CK(Ck.

Note that as a vector space V(slp), is identified with a polynomial ring
S*(sl[ ).

The foundational result of Frenkel-Zhu [14] is that V(sl,); carries a vertex
algebra structure determined by the requirements that 1 € C; is the vacuum vector
and that (x ® " 1)(z) = Y,z (x ® ")z7""!. Now the vertex algebra content of
formula (26) is clear.

Lemma 4.3 There is a vertex algebra morphism
V(sh)—2 — DYy st 27
e®t ' > —0_, h®@t ' —2x0_,, f® = xga_l + 2x_4.

Exercise 4.11 Use the Reconstruction Theorem to prove the Frenkel-Zhu result
along with Lemma 4.3.

To return to CP'. In this context, morphism (27) is interpreted as a vertex algebra
morphism

V(sh)—2 — D& (C)
for C C CP! a big cell. Of course, there is the restriction map

' (CP', D%)) - D&, (C)
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and the fact that is crucial for what follows is that the former map factors through
the latter. The reason for this is very simple: the correction terms in formulas (16)
and (27) coincide s.t. the image of e_; in terms of coordinates on one chart, becomes
the image of f_; when written in terms of coordinates on another chart; more
formally: w(e—;) = f—1. A companion equality 7(f-;) = e—; can be proved by
a direct computation, which in fact constitutes the content of Exercise 4.5. This
proves

Lemma 4.4 There is a vertex algebra morphism
V(sh)—» — I'(CP', D%,))

that is locally defined by (27).
Therefore, the sheaf Dgpl carries a V(sl)_,-module structure.

Denote by L,,x a unique irreducible highest weight sl,-module with highest
weight m and level k. Furthermore, Ly is a quotient of the vertex algebra V(sha)e),
from which it inherits a vertex algebra structure.

The fact that Dg’Pl carries a V(sly)—»-module structure implies that the coho-

mology groups Hi(CPI,D("C}’PI), i=0, are V(slz)—2-modules. On the other hand,

H°(CP', D)) is a vertex algebra, and H'(CP', D%,,) is an H*(CP', D).
Theorem 4.1
(i) There is a vertex algebra isomorphism Ly _» = HO(CP', Dg‘Pl) andan Ly ;-

module isomorphism Ly — = H'(CP', Dg’Pl). Furthermore,

(ii) H(CP', D%,) =0 ifi> 1.

This is an obvious, and perhaps pleasing, analogue of Lemma 2.3, where the
associative algebra, Dcpr1, is replaced with a vertex algebra, Dgpl. The two results
differ significantly in that the higher cohomology in the latter case does not vanish.
Proof To begin with, item (ii) is nothing but Grothendieck’s vanishing theorem that
applies on the grounds that dimCP' = 1. Alternatively, one can use the filtration
Dg’ﬁ" and the long exact sequence of cohomology groups to reduce to a more
elementary result on the cohomology of the Serre twisting sheaves O(m) over CP'—
arecurrent topic of these notes.

As to (i), notice that the restriction morphism I"(CP', Dg’Pl) — Dg‘Pl (C)is an
injection (by the definition of the sheaf Dg‘Pl or because our sheaf is filtered by
locally free sheaves of Ocpi-modules, for which the restriction morphism is always
injective); therefore I" (CP', D(‘g’Pl) is an Qg-submodule of the Wakimoto module
D, (C). Notice that I'(CP', DY) € D, (C) is nontrivial and proper, because
D, [0] = Ocpr, I'(CP', DL,)[0] = HY(CP', Ocpr) = C, while (D, [0])(C) =
Ocpt)(C) = CJx]. Feigin and Frenkel proved [12] that the Wakimoto module

Dgpl (©) has a unique nontrivial proper submodule, which is isomorphic to Ly —».

This proves the isomorphism Ly, —> H(CP", D).
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The computation of H 1((C]P’l,Z)fc"IF,l) is based on the concept of the Euler
character, see page 92. We introduce the characters

oo
. def . C| n
chyHO(CP', D%) £ dimH"(CP', Dk, [n])g".

n=0

o0
chyH'(CP', D) £ 3 dimH! (CP', DL, [n])g'".

n=0

which makes sense, see (25), and so

Eu, (D) = chyH(CP', D%,,) — chyH' (CP', DX,

We have, Lemma 4.2,

oo

Eu,(D%) =[]

n=1

1
(1—g"?

and, [24],
R 1
chyLo—» = ch,H°(CP', D" ) = )
¢+, q CP! l_qr[[l(l_qn)z

Solving for chyH'(CP', D)) gives

o0
1
nH (CP oty = 1 .
Chg ( CIF"I) 1—ql_[(1—q”)2

n=1

Therefore,

chH'(CP', DY) = q - chH(CP', DX,).
and so the two characters coincide (up to a shift induced by the factor of g.) This
is evidence enough to convince the sensible reader that then the modules are also
isomorphic. One way to proceed would be to use the Cech resolution to compute
H'(CP', DY) as a quotient of D, (C*) (which is allowed thanks to the filtration
by Ocpi-modules) and then use some results of [24]. Here we shall outline a
different approach, more in spirit of these notes.

Exercise 4.12 Do the following:

(i) verify that H'(CP', D, [0]) = {0};
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(i) notice that (24) is equivalent to
0 — 2cpr —> D [1] — Tep —> 0,

and show that in (the segment of) the corresponding long exact sequence of
cohomology

H(CP', D%, [1]) = H(CP', Tp1) — H'(CP', Qcp1) — H'(CP', D, [1])

the leftmost arrow is an isomorphism (this uses (i) of the theorem), and the
rightmost arrow is an isomorphism;

(iii) use (ii) and Exercise 3.4 to show that the class of x_;/xy € (Dg’IFDI [1D(C*)
defines a basis of H'(CP!, Dg‘Pl [1]) and is annihilated by s/[7];

(iv) use (iii) to define a non-trivial Qg-morphism
V(sh)—, — H'(CP', D));

(v) use the above-obtained equality ch,H' (CP', D, ) = q-chyLo —; to prove that

the morphism of (iv) factors through an isomorphism

Lo— — H'(CP',D%,)).0

5 CDO: Definition and Classification

The example just now considered may be inspiring enough to conclude that we are
onto something. Let us begin abstracting the properties of that example by analyzing
a local model.

A higher dimensional generalization of Sect. 4 is immediate and requires nothing
but an introduction of an extra index.

In order to define Dgl[}], where C[X] = Clx,...,xy], introduce a, a Lie algebra
with generators

{Xij, Opn, C; 1<i,m<N,n,j € Z}
and relations
[0, X;j] = SmiSn—;C. C being central.
There is a subalgebra, a4, defined to be the linear span of x;j, 9, j > 0, n=0, and
C. Let C; be an a4-module, where x;j, d,,, act trivially, and C as multiplication

by 1. The induced representation Indg +(C1, which is naturally identified with
Clxy, Omn; j<0,n < 0], is well known to carry a vertex algebra structure; it is often
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referred to as a “fB-y-system.” The shortest way to define this structure is again to
notice that the fields

xXi(2) =) xinz " 0 = ) 9z "

nez n€Z
the vector space Indj +(C1, on which they operate, the choice of a “derivation”
T=—Y nxuin : Ind}, C; — Indg, Cy,
n€Z

and the choice of the vacuum 1 € C; satisfy the conditions of the Reconstruction
Theorem. Denote

DY = Indg, Ci.

Over a ring A equipped with an étale morphism C[x] — A, which in practical
terms means a choice of a “coordinate system,” i.e., a collection of elements x; € A,
0; € Der(A), I<i<N = dimA, s.t. {9;} is an A-basis of Der(A) and 9;(x;) = &, the
construction works along the lines of pages 87-88. We define

Difs = A ®cpy Ind C1.
where C[X] operates on Inngr(Cl by x; = xjo. Of course, as a vector space
D). = Ay, 9y, C; 1<i,m<N, n,j < 0].
The space Z)zh} is clearly an a-module and A-module, with two actions satisfying
[0in,a] = 8,00i(a).

In addition to the fields 0;(z), T and 1 € C;, we define a field a(z), foreacha € A,
as follows

I a

n1!n2! . 'I’lN!

a(z) = Z

ni,n,...

€1(2)"e2(2)" - en(2)™,

which is an obvious extension of the localization construction of Sect. 5; of course,

def _
€(2) = innz "
n#0
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The reader will have no trouble formulating and doing an analogue of Exercise 4.3.
Therefore, Z)Z'f} is a vertex algebra. Note the X in the notation; the dependence on a
choice of a coordinate system is important.

Given an étale morphism C[X] — A, a composition C[x] - A — Ay, f # 0 s
also étale. This gives a natural family 1)2’;’}, f € A\ {0}, hence a sheaf of vertex
algebras over Specm(A). This can be rephrased more geometrically as follows:

for any smooth algebraic variety X and any étale morphism X — CN, the
discussion above defines sheaf of vertex algebras over X, to be denoted D;;f}; X,
the reminder about a fixed morphism, will sometimes be omitted.

What is the meaning of this example? Perhaps the question is: our example is an
example of what? Up to this point we have been able to avoid the issue of defining
a vertex algebra by making use of the Reconstruction Theorem, but not anymore.
We shall nevertheless refrain from making a formal definition, referring the reader
to the books such as [11, 19] or V. Kac’s lecture notes in this volume. Instead, we
shall record the more important structure elements that will be used later.

One of the main features of the “vertex algebra world” is that a vector space
is replaced with a vector space with a “derivation.” The simplest example is the
concept of a unital, commutative, associative algebra with derivation. If we denote
by Comm— Der the category of such algebras and by Comm the category of ordinary
unital, commutative, associative algebras, then there is an obvious forgetful functor

F: Comm — Der —> Comm.
A moment’s thought will show that this functor admits a left adjoint
Joo : Comm —> Comm — Der.

Adjoining a universal derivation to an algebra is easy, as the following example
illustrates.

Example 5.1
JooClx1, ..., xn] = Clxi; 1<i<N, n<0]

with derivation T defined by the condition T'(x; ,+1) = —nx;,, n< — 1.

The adjunction morphism A — F o JooA = JooA makes JoA an A-module. The
submodule generated by TA, i.e., A - TA is canonically identified with the module
of Kéhler differentials, £24. In the above example, we get an identification 24 =
®,Clxy, ..., xy]xi—1, x;— being identified with dx;.

If X is an affine algebraic variety, then we define the corresponding jet-scheme
JooX to be Specm(JooC[X]), where C[X] means the coordinate ring of X. It is not
hard to see that such “local models” can be glued, so as to define, given an algebraic
variety X, the corresponding jet scheme JoX. Note that the adjunction C[X] —
F 0 JooC[X] = JooC[X] induces the projection 7w : Joo X — X.
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We have already encountered such objects without using the term “jet.” Indeed,
part of Z)Cha that does not contain the letters de, that is, A[x;,; 1<i<N,n<0] is
naturally JOOA s.t. T as defined in page 98 coincides with 7 mentioned in the
example a few lines above.

A similarly defined part of the sheaf Z);h} is nothing but the push-forward
T *O JooX ON X. ’

We shall soon see that the entire Z)C’Z is also related to a jet scheme but in a
slightly more comphcated manner: it carrles afiltration s.t. the corresponding graded
object, GrZ);’} is Oy 1*x-

A vertex Lie algebra is a vector space V with an endomorphism 7 € End(V) and
a family of bilinear products

(n)IV(X)V—)VS.t.u(n)U =0ifn>0

forn =0,1,2,.... These data must satisfy the following conditions:
(1) (Tu)(n)v = —nu(n_l)v; (28)
00 .
. 0 =1’
(i) uev = (=1)"*! ZO it Do (29)
=
s n
(i) 1 (VW) = Vi W) = Y (j)(u(j)v)(m+n—j)w- (30)
=0

The structure, if not the details, of this definition is clear: (29), “anticommuta-
tivity,” and (30), “Jacobi,” are analogues of the corresponding ingredients of the
definition of an ordinary Lie algebra; (28) is the compatibility condition.

Exercise 5.1 Verify that T is a derivation of all multiplications, i.e., that
T(u(n)v) = (Tu)(n)v —+ I/l(n)TU.

If g is a Lie algebra, then Jg defined to be C[T]g carries a vertex Lie algebra
structure as follows: let

Byl iftn=0
Y= 0 it nso0
if x,y € g and extend to the whole of Jg by setting recurrently (T’"+1x)(n)y =
—n(T’"x)(n_l)y.
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Given an invariant inner product (.,.) on g, Joog acquires a central extension.
Namely, define Joog = Joog( ) to be Joog @ CK with products defined as above
except that

[x,y] if n=0
Xwy =9 (K if n=1
0 if n>1

plus the requirements x,) K = 0, T(K) = 0. We get an exact sequence of vertex Lie
algebras

0— CK — @(,,,) —> Joog —> 0.

If g acts on A by derivations, then Jg acts on Jo.A by derivations.

The concept of a vertex Poisson algebra is the simplest way to combine an
associative commutative algebra with derivation and a vertex Lie algebra. Namely,
a vertex Poisson algebra is a collection (V, T, 1,—1) ,@) :n € Z4), where the col-
lection (V, T, 1,—1y) is an associative, commutative, unital algebra with derivation
(1 is the unit, () is the product), the collection (V, T, ;n € Z4) is a vertex Lie
algebra, the two structures satisfying the following compatibility condition:

Uy (V—nyw) = (U (V)W + V1) (UEw), (€2))

i.e., the left multiplication by the n-th product (n=0) is a derivation of the associative
product ().
When talking about vertex Poisson algebras, we will usually write uv for u1yv.
Here is the geometric origin of this notion:

Lemma 5.1 [fA is a Poisson algebra with bracket {., .}, then JooA carries a unique
vertex Poisson algebra structure s.t for a,b € A

{a,b} if n=0

nb:
) 0 ifn>0.

We leave it for the reader to try to prove this result as an exercise.

Naturally, given a vertex Lie algebra Jog, the symmetric algebra S*J.g is a
vertex Poisson algebra. This is related to Lemma 5.1 as follows: $°g is a Poisson
algebra equal to C[g*] equipped with Kirillov-Kostant-Duflo bracket; S®Jog is
precisely JooC[g*].

Here is an example essential for our purposes. The commutative algebra S37,
is canonically Poisson, see Sect.2. By the above, JooS374 is vertex Poisson. By
analogy with Example 5.1, if A = Clxq,...,xn], then JooS3T4 is a polyno-
mial ring Clx;,, 0;4—1; 1<i<N, n<0], the adjunction morphisms Clxi,...,xy] —
Clxin, 0in—1; 1<i<N,n<0] being defined by x; — xj, d; — 0;—1; the latter shift
of an index is made merely to conform to some vertex algebra notation. The
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vertex Poisson bracket is reconstructed uniquely from the axioms and assignment
(0i—1) (X = 8ii6n0-

For a more general ring with a coordinate system xi, ..., one similarly obtains
JooS3Ta = AlXin—1,0in—1;1<i<N,n<0] and the defining relation (0;—1)wa =
d;(a)8,0, a € A; this is reminiscent of the formulas at the beginning of Sect. 5—
and there is a reason for this similarity.

We shall often replace a slightly awkward (0; —1) ) with a slightly corrupt (9;) ).

It is easiest for us to define a vertex algebra following Borcherds [3] as follows:
a vertex algebra is a collection (V, 1, ;n € Z), where 1 € V is a distinguished
vector (vacuum), each (,) is a bilinear product s.t. u,v = 0 if n > 0; the following
three identities must be satisfied:

aif n=-1
n 1= 32
e {Oif n=0. 42)
ad n
) (V)W) = V) (W) = ) ( j)(u</>v)<m+n—/>w (33)
=0
U)W = Y () O W) + Y Vit Uy W). (34
j<0 =0

As we have done previously, one often combines various multiplications in a
field:

Vur u(z) = Z u(,,)z_”_l

ne€z

Condition (34) is simply the normal ordering formula,

(u(_l)v)(z) = M(Z)U(Z) 5

which we have already used more than once.

Condition (33) is known as the Borcherds commutator formula; it means, in
particular, that Lie(V) defined to be the linear span of {uy), v € V.n € Z} C
Endc (V) is a Lie algebra—a Lie subalgebra of Endc¢ (V).

Formulas (33) and (30) coincide, except in the latter the indices are only allowed
to be nonnegative. Indeed, the assignment (V, 1,(, ;n € Z) = (V, T, ; n=0), with
T : V — V defined s.t. T(a) = a1, is a forgetful functor from the category
of vertex algebras to the category of vertex Lie algebras: one can verify that thus
defined T satisfies what is expected of it, (Tv)m) = —nvu—1)y = [T,uy)], and
that (29) holds in any vertex algebra, see e.g. [19].

The omission of T from the definition, although legitimate, is misleading. We
shall always regard T just defined as part of the data.
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Exercise 5.2 Go over the construction of pages 97-98 from the point of view of
this definition. In particular, see how T defined there coincides with 7' introduced
here and check that (x;01) ) = Xin—1, (0;=11)(n) = 0in S.t.

(8,-,_1 1)(0)a = a,'(cl) ifa € A. (35)

As above, we shall often write simply (9;)(,) meaning (0;—1 1)) or 0;,

A vertex algebra is called commutative if (,) = 0 for all n=0. Some motivation
for the name lies in (33), because it implies that then [u,), V)] = O forall u, v, m, n.
More importantly, if V is commutative, then (V, 1, T,y ) is a commutative, asso-
ciative, unital algebra. In fact, this assignment sets up an equivalence of the category
of commutative vertex algebras and the category of commutative, associative, unital
algebras with derivation. (Q: Why is in this case () associative? Hint: (34).)

Exercise 5.3 Prove this equivalence (or read either [11] of [19].)

The definition of a vertex Poisson algebra involves a similar amount of data as
that of a vertex algebra; in fact, the latter is to be thought of as a quantization of the
former. One way to explain this is to use the concept of a filtered vertex algebra.

We shall call a vertex algebra V filtered if given a sequence of subspaces {0} =
vicvicvic...cvic.,U,V"=Vst1eVand (V?)(V") C ymtn
for all m,n, i.

If V is filtered then, of course, the graded object GrV = @, V"/V"~! is naturally
a (graded) vertex algebra.

If, in addition, (V") (V™) C V=1 provided i=0, then GrV is commutative,
and so (GrV,T,1,—y)) is an associative, commutative with derivation, but more
than that, GrV carries traces of products (,) with n=0. Namely, define for all
m,n,i=0

0 (Vn/Vn—l) ® (Vm/Vm—l) N Vn+m—l/Vn+m—2 s.t. ’2(1)6 déf U@v.

A moment’s thought will show that this definition makes sense and that thus
defined (GrV,1,T,1).m ;n=0) is a vertex Poisson algebra. This prompts the
following obvious definition: if P is a vertex Poisson algebra and V is a filtered
vertex algebra s.t. GrV is commutative, then provided P and GrV are isomorphic as
vertex Poisson algebras, V is called a quantization of P.

The reader has undoubtedly noticed that this idea of “filtration quantization™ has
been a thread running through these notes starting in Sect. 2.

Our digression on the vertex basics has handed us a key to the understanding
of the vertex algebra Z)Z’f} that appeared at the beginning of Sect. 5. Indeed, define
DX’;k to be A[x; 1, 0in—1, 1 <i<N,n<0]S", meaning the subspace of polynomials
of degree <k in variables d.; of course, this is precisely the filtration we dealt with
in Sect. 4. It is rather clear that this makes DX’} filtered s.t. GIDX’} is commutative—
because any nonnegative product will kill at least one de; e.g., by definition
(0;—11)a = 0i(a) if a € A (cf.(35)). A moment’s thought shows that in fact
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GrDf. is naturally identified with JooS374. While D", was constructed by hand
and, Wthh is worse, the construction involved a choice of a basis, its graded version
is quite canonical, as we have seen, and this is the insight that we needed.

Notice that both vector spaces, GrZ)C't and JooS3 Ty, are graded; the former by
definition, the latter due to the canonical gradlng of the symmetric algebra S5 74 plus
the requirement that the canonical derivation have degree O; e.g. degree 0f d; is 1,
and so is the degree of d;, for all n < 0. Having made this observation, we conclude

that the isomorphism GrDZh; = JooS3 T4 preserves the grading.
Similarly, the sheaf Z);h} is filtered, and GrZ)Z"} is isomorphic to 7.0 7+x as
a graded sheaf, where 7 : JooT*X — X is a canonical projection (or rather a

composite of two canonical projections 77 : JooT*X — T*X — X.)
Here is then the definition we have been looking for:

Definition 5.1 Let X be a smooth algebraic variety. A sheaf of vertex algebras is
called an algebra of chiral differential operators (CDO)if it carries a filtration s.t.
the corresponding graded object is a vertex Poisson algebra that is isomorphic to
w+O0j . r+x as a graded vertex Poisson algebra.

This has an obvious local counterpart: if A is a ring s.t. A = C[X] for some smooth
affine algebraic variety, then a vertex algebra is called a CDO over A provided it
carries a filtration s.t. the corresponding graded object is a vertex Poisson algebra
that is isomorphic to Joo S5 T4.

This definition puts us in a situation analogous to Sect. 3 and we conclude that
the notion of CDO is a jet-scheme version of the notion of TDO (just as the notion of
a vertex Poisson algebra may be thought of as the jet-scheme version of the notion
of Poisson algebra, see page 101.)

It is rather clear what we have to do now: we need to understand what the
analogue of (8) is, and then see how a CDO can be obtained as some sort of universal
enveloping vertex algebra construction.

Let A be a CDO over A. By definition, ASO = J oA, which is a commutative
vertex algebra a.k.a commutative, associative, unital algebra with derivation. The
next component, A<!, by definition fits into an exact sequence as follows:

0 —> JooA — AS' — JooTy —> 0. (36)

Let us discuss this sequence.
The leftmost nontrivial arrow is but the tautological inclusion of a subset
JooA C AS!, the rightmost nontrivial term is, by definition, the degree 1 component

of JooS3Ts. This component has an independent description as follows: as we
discussed above, A — JsoA is a functor Comm — Comm — Der left adjoint to
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the forgetful functor Comm — Der — Comm; similarly to this, the pull-back functor
JooA —mod — A — mod? has a left adjoint

Joo : A —mod —> JooA — mod.

Given an A-module M, the construction of JooM essentially amounts to adjoining a
“universal” derivation, much like JooA was defined. We advise the reader to figure
out the details having scrutinized our main example.

Example 5.2 In the case of Dzh; at the beginning of Sect.5, the above exact
sequence takes the form ’

N —oo
0 —> JooA —> JooA[din: 1<i<N.n < 015" — @D €P JooA 0i —> 0. (37)

i=1 n=—1

In other words, we are dealing with a polynomial ring (over JooA) in variables 9;,,
AS! is the space of polynomials of degree at most 1, finally Jo, T} is the space of
polynomials of degree 1. It is a free JoocA module, but it also carries a derivation
T; this derivation essentially coincides with 7' that was defined in page 98 by the
formula T = Zn —nx;,0; —p—1. We use the term “derivation” because indeed

Ta-§)=T()-E+a-TE)forany a € JooA, & € JooTha.

Notice that in this case the exact sequence splits, but this is only because a choice
of a basis has been made.
What algebraic structure do the terms of our exact system carry?

By construction, the leftmost term, JoA, is closed under all vertex algebra
products and the derivation; furthermore, the restriction of (,), n=0 to JooA is 0, and
s0 JooA is a commutative vertex algebra. In fact, this commutative vertex algebra
structure coincides with the one that is induced under the equivalence of loc. cit.
from the associative, commutative, unital algebra with derivation structure that JoA
carries by definition.

Next, AS! carries two structures. Firstly, it is closed (by definition) under all (,
with n=0, and so is a vertex Lie algebra. Furthermore,

(A () (JooA) C JooA for all n=0.

Hence, JooA C AS! is a vertex Lie algebra ideal. Since JoA is commutative, the
maps

OE AN @ JooA —> JooA, n=0.

2Pull-back w.r.t. the adjunction A — JooA.
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factor through
) ¢ (A JJ0A) ® JooA —> JooA, n=0,

making JooA a vertex Lie algebra module over either AS! or AS!/JA. Either
vertex Lie algebra acts on JooA by derivations, meaning that

g(n)(a(_l)b) = (g(n)a)(_l)b + a(_l)(ég'(n)b); a,be JOOA,g € ﬂsl.

Exercise 5.4 Use the Borcherds identities to verify this formula.

Secondly, although AS! is not closed under negative numbered multiplications,
as in general ﬂfn;ﬂ$l C AS2, it is under all multiplications by elements of JooA:
we have maps

) ¢ JooA ® AS! — AN foralln € Z.

These maps satisfy all the conditions of the Borcherds definition (32)—(34);
technically, what it means is that AS!is a vertex algebra module over JxoA.
These two structures are compatible in the following sense:

o0
n .
Ew (aumn) = amyEmn) + Z (j)(é(j)a)(n+m—j)n ifaeJoA £, e A,
j=0

(38)

Notice that £(j)a € JooA, and so this equality (which is nothing but the Borcherds
commutator formula (33)) is quite analogous to (10).

Let us finally discuss the rightmost term, JooT4. It carries an amount of structure
similar to that of A<!, but it is canonical and simpler; furthermore, it is simpler for
a specific reason. The fact that JoA is a degree 0 and Jo T4 is a degree 1 component
of a vertex Poisson algebra implies that (verify this!):

(i) itis a vertex Lie algebra;
(i) itis a JooA-module;
(iii) it acts on JooA by derivations;
(iv) the vertex Lie algebra multiplications on JoT are not Jo.A-linear, and the
failure to be JoA-linear is measured by the action of Joo T4 on JsoA as follows
(cf. (10) and (38)):

g(n)(a(_l)n) = a(_l)(g(n)n) + (E(n)a)(_l)n ifa e JOOA, g, ne JOOTA. (39)

Define a vertex Lie A-algebroid to be a vector space that satisfies conditions (i)—
(iv); an analogy with the concept of a Lie A-algebroid reviewed in Sect. 3 will justify
the name.
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All of this is quite parallel to the discussion of A<!, but slightly misleadingly so:
JooT4 is a module over JooA as a commutative associative algebra with derivation,
which is a more restrictive condition than being a module over JoA as a vertex
algebra. For example, the operation a(—1), a € JoA is associative on JooTy (i.e.,
(ac-1yb)(=1) = a(-1)b1)), but not on AS'. (Q: why? Hint: (34); cf. Exercise 20.)
Similarly, (38) is different from (39) even if m = 1. Both these shortcomings of
AS! disappear modulo JooA.

Exercise 5.5

(i) Let V be a commutative vertex algebra, M a vertex V-module. Call M central if
ViyM = {0} for all n=0. Prove that the category of central vertex M modules
is equivalent to the category of modules over V as a commutative associative
algebra with derivation.

(ii) Prove that AS!/Jo0A is a vertex Lie A-algebroid.

We see that the rightmost arrow of sequence (36) gives an isomorphism of vertex
Lie algebroids AS! /JooA = JooTy4; in particular, part of the data defining ASL,
namely, the action of AS!' on JooA by derivations, is a pull-back of the canonical
action of Joo T4 on JooA; the latter assertion is true because JooA is an abelian vertex
Lie algebra ideal of AS!.

We shall now postulate these properties of AS!, thus making our 2nd fundamen-
tal definition.

Definition 5.2 A chiral A-algebroid is an exact sequence
0 — JooA —> L Z5 Joo Ty —> 0, (40)

where £ is a vertex Lie algebra and vertex JoA-module s.t. the following
conditions hold:

(i) tis a morphism of vertex modules and vertex Lie algebras (/oA is considered
as a vertex module over itself and an abelian vertex Lie algebra):

(ii) o is also a morphism of vertex JooA-modules and vertex Lie algebras;

(iii) according to (ii), ((JooA) is a vertex Lie algebra ideal, hence a vertex Lie
algebra module over £; we require that this module be isomorphic to the
pull-back of J50A as a JooT4-module w.r.t. 0 : LN — Jo Ty

(iv) the structure of a vertex JooA-module and a vertex Lie algebra on L are
compatible in that (cf. (38))

Ew (@) — apEwn) = ) (7) (@) (D ntm—pn if a € JooA, §,1 € L.
—



108 F. Malikov

A morphism of chiral algebroids is a C-linear map f : Li” — Lg” that preserves
all operations and makes the following diagram commutative (cf.(12)):

4 a1

0 Jood L JooT4 0
|
15 [op)
0 Jood Ly JooTu 0

Our discussion implies that if A is a CDO, then AS! is a chiral algebroid; e.g.
D;h’}sl is a chiral algebroid. We shall now explain how given a chiral algebroid to
construct a CDO thus establishing, in fact, an equivalence of categories.

The meaning of Definition 5.2 is rather clear: we are given some quasiclassical
data, encoded in the direct product JoocA @ Jso T4, and L s its filtration quantization
as GrL" = JooA @ JooTa. The clearest manifestation of the difference comes from
the comparison of (39), which in effect says that

Em> a-n] = Ewa) -1,

and a particular case of (41):

n—1
[Ew (@) = @CEwa) 1 + Y (j) (T(§)(h@) -1 if @ € JooA, £, € L.

j=1

The reader is encouraged to figure out why the “quantum correction” terms,
qu ..., disappear in the quasiclassical limit.

The assignment A +— AS! is a functor from the category of CDO’s to that of
chiral algebroids. It has a left adjoint, called a vertex enveloping algebra of a chiral
algebroid. There is a closely related (and better known [11, 19]) concept of a vertex
enveloping algebra of a vertex Lie algebra. The former is to the latter what the notion
of a universal enveloping algebra of a Picard-Lie algebroid (see Sect.2-3) is to the
notion of a universal enveloping algebra of a Lie algebra. Our aim, therefore, is to
chiralize the construction in Sect. 2-3.

We have seen at the bottom of page 102, that there is a forgetful functor that
makes a vertex algebra into a vertex Lie algebra. This functor admits the left adjoint
called the vertex enveloping algebra. Let us sketch its construction, cf. [11], 16.1.11.

Given a vertex Lie algebra L, define Lie(L) to be a linear span of symbols aj,,
a € L, n € Z modulo the relations

(cra1+c2a2) i = ci(a)p+c2(a2)p, (1a)y = —nap—1, c1,¢c2 € C,a,a1,a; € L.
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Note that the last one mimics (28). Define the bracket, now mimicking (30),

g, V] = ) (j) (u(j) V) pm-+n—)- (43)

J=0

One verifies ([11], 16.1.11 or an exercise) that this makes Lie(L) a Lie algebra. It
follows from the definition that Lie(L) 1 defined to be the linear span of aj,), a € L,
n=0 is a Lie subalgebra. Define U"L to be U(Lie(L))/U(Lie(L)+). Here U(.) is
the ordinary universal enveloping of a Lie algebra.

It is easy to see that the map L — Lie(L), a — a|y}, is injective, and so is the
composition

L —> Lie(L) — U(Lie(L)) — U(Lie(L))/U(Lie(L)+) (44)

For this reason, we shall usually make no distinction between a € L and a[—y)1.

Given a € L, define a field a(z) = Y, apjz "' these fields clearly “generate”
U"(L). The Reconstruction Theorem, [11], 2.3.11 or [19], 4.5, implies that U"(L)
carries a vertex algebra structure. In terms of (,)-products, it is given by a slightly
tautological formula

(a-1)mv = ap) - v;

here aj—j is the image of a[—j under the above composition, and - on the right means
the action of Lie(L) on U(Lie(L))/U(Lie(L)+).

For example, U (Jg), see page 100, is the vertex algebra attached to the affine
Lie algebra at level 0, g((7)), usually denoted by V(g)o. To shift the level one has to
take U" (Jo./ig(w y) and then quotient out (the ideal generated by) the element 1 yu —K;
notation: V(g)..). We encountered one such algebra in Sect. 4, page 94.

The constructed object, U*(L), is related to a whole menagerie of multiplica-
tions, ,; and two copies of (,), one defined on L, another on U"h(L). It is a little
relief to know that at least the latter two coincide when both make sense; namely,

UV = Uy if n=0,u,v € L. 45)

Indeed, we have due to (43), for n=0,

o0

n
v = [y vy |1+ vpnupl =Y (j)(u(j)v)[—l+n—j]l = UGV,
=0

because by definition wy,; 1 = 0 if n=0.

If £ is a chiral A-algebroid, then we can regard it as a vertex Lie algebra and
then define U*(L). This is a vertex algebra, but it is too big to be a CDO s.t.

Uh(L)s! — £.To see more clearly why, recall that the center of a vertex algebra
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V is defined to be Z(V) = {v € Vs.t. vV = {0} for all n=0}. Of course, the
Borcherds commutator formula (33) implies

veZ(V) = [vp), wm] = O0forallw € V,n,m € Z.

Exercise 5.6 Verify that

(i) Z(DP)=C-1,1€4;
(i) the center U*(L) contains a polynomial ring in one variable; (Hint: consider
leJACL)

The issue we are dealing with is the same as the one we dealt with in Sect. 3: the
vertex enveloping algebra U"(£) does not “know” about the the “multiplicative”
structure that £ carries; “multiplicative” in this context means “negative numbered
multiplications.” This leads to the existence of a canonical ideal as follows.

Use (44) to identify £ with its image inside U"(£) and consider the vector
subspace I C U"(L) defined as follows

1'% span of {1a—1yaz), aenb—ain, @ € JooA, £ € L,ané € L)} C UM(L).
The fact that the brackets (41) and (43) coincide (and (45)) implies that
Lyl CI. (46)

Next, set J = U"(L)-1)I. A repeated application of (46) and the normal ordering
axiom (34) gives

U nJ C Jforalln € Z.
ML foralln € Z (47)

A routine verification of these assertions is left to the reader as an exercise.

In other words, J is what is known as a vertex ideal. Denote by Uf‘” (L) the vertex
algebra quotient U"(L)/J" and call it the vertex enveloping algebra of a chiral
algebroid.

Lemma 5.2
(i) If Lis a chiral A-algebroid, then Ugh(L) isa CDO (over A.)
(ii) The functors
ch . T
Uy'(.) : Chir—HAlg «<— CDO : F

are adjoints and inverses of each other.

We shall leave this lemma as an exercise.
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5.1 Classification: Objects

Let us classify chiral A-algebroids; the reader is advised to compare what follows
with a more familiar material of Sect. 3. Since the situation we have in mind is that
of a smooth algebraic variety, we shall always assume that £2, is a free A-module,
and if need be, the existence of a coordinate system {x;, d;}. To make our results
more explicit, we shall make one extra assumption as follows:

Recall that a vertex algebra V is called graded by conformal weight if

V= @ Vn s.t. (Vn)(i)vm C Vn+m—i—17 le VO’ T(Vn) C Vn+1‘

ne€z

(We shall often omit the descriptor “by conformal weight” if this is deemed unlikely
to cause confusion.) The various examples of CDO we have seen, such as D‘ L are

all graded: the degree of x;;, d;; is —j. Thus (Z)C't)o = A and (Z)Cha) | = .QA O Ty,
the two components spanned by x; —; and 9; _;; more naturally, it fits into an exact
sequence

0— 24 — (D)) — Ta — 0. (48)

Notice that the reason £24 has popped up was explained in page 99: this is the A-
submodule of JoA that is spanned by {x; _1}.

The reader may be pleased to realize that the 1st time we encountered this exact
sequence was (24). The familiar relations (9; —1) )Xo = 1, (3;—1))xi—1 = 1, etc.,
are then an illustration of relations (V,,); Vi C Vy4m—i—1 for various n, m, i.

A similar definition applies to a chiral algebroid, and we restrict our task to
classifying graded chiral algebroids.

If A has a coordinate system, then at least one chiral A-algebroid, Z)th\l exists.
How many more are there? Let L be a chiral algebroid. A choice of a lift of an
A-basis of Ty, {0;} C L, gives a splitting of L: the map defined by

JooTa —> L s.t. ZaijTj(ai) = Z(aU)(_l)Tj(ai)

gives a splitting of (40) (Q: why?), hence an identification LD = JooA @ JooTa.
With this identification, one observes that the vertex JooA-module structure of £ is
determined uniquely: it is when restricted to JoA itself, by definition, and on Joo T4
one has using (34)

o0

a1y (b-1d) = (ab)(1)d — (Z (@n-2b@) + bn-2ae)) 3) ;

n=0
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where the “correction terms” enclosed in brackets are predetermined: (iii) of
Definition 5.2. (We omit extraneous indices and restrict ourselves to product (—p);
the reader will see that this can be done without loss of generality.)

Therefore, we have reduced the problem to

L = JooA[din; 1<i<N,n < 0],

cf.(37), and observed that potentially only the vertex Lie algebra structure,
{(n), n=0}, can be deformed. To begin with, notice that all the products involving
JooA, that is,

) JooA ® (JooA @ JooTs) — (oA @ JooTh),
are predetermined by (iii) of Definition 5.2.
Note that none of this requires either grading or commutativity [0;, 9;] = 0.
Focus on the subspace Ty C JooT4 and now use the grading assumption: when
restricted to T}, of all {(,), =0} only two multiplications can be nonzero:
M Ta®Ty — A
and

(O)ITA®TA—>TA@.QA.

As to the former, there is no room for maneuver at all: if we replace

0; with 0; — 1/2 )~ ((0)1)9;) ;.

J

where {w;} C §24 is the basis dual to {d;} C T4, then we obtain (check this!)
(0))(1y0; = O for all 4, ,
a relation we will assume throughout. If so, then an application of (34) will allow
unambiguously to compute (a(—1)0;)1)(b(1)9;).
As to the latter, modulo §24, the indicated product is nothing but the Lie bracket

of vector fields, as follows from (i) of Definition 5.2. We are left, therefore, with the
task of analyzing a map

Ty @ Ty —> $24,

the composition of () with projection on £24.
Let us put it this way: given (o) : Ty ® Ty —> T4 @ 24 define

©per i Ta @ Ty —> Ta @ $24.
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by the formula
oy = §on + (&, 1),
where
o Ty X Ty —> 24

is a function of two variables. What kind of a function is it?
Exercise 5.7

(i) Use (34) to prove that
(a=n&))n = a1)(§w)n) modulo predetermined terms;
(i) Use skew-commutativity (29) to prove that
£0)n = —n)& modulo predetermined terms;

(iii) Derive that « is A-bilinear and anti-symmetric.

In fact, more is true. Dualizing, one obtains that & can be thought of as a function
o Ty xTyxTy — A,

which is anti-symmetric and A-linear in the first two arguments. Notice that as a
function of three variables, &, 1, €, it equals €(1)(§)n).

Exercise 5.8

(i) Use the Borcherds commutator formula (33) to verify that
ey Eon) = na(€©€) modulo predetermined terms.

(ii) Derive that « is totally antisymmetric and A-trilinear.
Therefore, o € £23.
Exercise 5.9

(i) Derive from the definition of a graded chiral algebroid that part of what we
called “predetermined operations,” namely

© Ta ® 24 —> §24 and
)Ty ® 24 — A,

are the classic Lie derivative and contraction (resp.).
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(ii) Use the n = m = 0 case of ((33) , which reads

£0)(n©0€) — 1oy Eoe) = Eon e,

to prove that o must be closed: dprer = 0. (Hint: this is parallel but
more computationally involved than Exercise 3.2; repeatedly use (i) and the
Borcherds commutator formula.)

Therefore, o € .Qj’d. In fact, any closed 3-form « defines a chiral algebroid.

Lemma 5.3 Let A carry a coordinate system {x;,0;} and o € .Qj’d. Then the
assignment

a(0;,0;,.) if n=0
ai n d; = n
@) 0 ifn>0
defines a conformally graded chiral algebroid structure on JooA[0;; 1<i<N,n <
0]S'. Any conformally graded chiral algebroid is isomorphic to an algebroid of this
kind.

Denote the constructed chiral algebroid £().

Proof If @ = 0, then we have our original chiral algebroid Z)Zh’fl. It is a vertex

Lie algebra, and it has a vertex Lie subalgebra JooA & (69,-,,((38,-,,1): It is an extension
of an abelian vertex Lie algebra @;,C0,, by an ideal JooA. The point we are trying
to make is that the prescription of the lemma allows us to deform this vertex Lie
algebra structure. First of all, the prescription of the lemma defines a truncated such
structure on the space JooA® (;C0d; —1). What I mean by this is that we have defined
all products on this space s.t. the Borcherds commutator formula (33) holds true, but
the space has been truncated and so it no longer carries the derivation 7. (Indeed,
expressions such as (0;)wa, amb, a,b € JooA are given to us with agpb = 0,
and (33) must be verified only for u, v, w being various d’s. In this case, the only
nontrivial relation is

£0)(n0y€) — noyEme) = Eon e,

and its validity is the content of Exercise 5.8.

This truncated vertex Lie algebra structure uniquely extends to the whole of
JooA & (®inC0;,): we define T by the old formula T = Zi,n —nX;,0; —p—1, and
then use axiom (28) as motivation to define

(T8 = (~)"m(m— 1)+ (m — 1+ D@ .
Clearly,

ne. _ (—1)”n!(8i)(0) if n=m
(T8 = 0 if n£0"
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and it follows easily that with this definition the axioms of vertex Lie algebra hold
true. (Think about the details!)

Denote the constructed vertex Lie algebra by £ («).

What remains to be done is to extend the structure obtained to the “multiplica-
tively closed” JooA[0;,; 1<i<N,n < 0]S!. To do so, one either defines a1,
to be ad;, € JooA[din: 1<i<N,n < 0]', and then uses Definition 5.2(iv) to
compute the operations, which is computationally laborious, or largely bypasses the
computational hurdles by adjusting the discussion on the vertex enveloping algebra
of a chiral algebroid to the present situation as follows.

First, consider the vertex enveloping algebra U*(L£“*(a)). Next, introduce the
vector subspace

I = span of {14 — lyenpau(q)) and aj—b — a—1yb, a,b € JoA},
where a(—1)b is regarded as ab € J,A. We assert that
U (L (@) C Iif n=0.

Let us prove this focusing on elements of the type aj—11b — a-1)b. We will be
repeatedly using the identification of a € L () with aj—11 yen (panr(yy). We have

Em(a—1b) = Ew(a—1b) = Ewa) b + a1 (Emb),
thanks to (31). Similarly,

(o]

Ema—1b) = (&) a-yDb + a1jEub = > (j) EpD—14n—b + a1y (Emb) =

Jj=0

n—1

Z (j) D) (=14n—j)b + Em@) 110 + a—1)Ewyb) = Ewa)—1))b + a—1)Ew)b),

Jj=0

the terms (&(ja)—1+4+n—jb, 0<j<n — 1 vanishing, because £ja € JooA and
(JooA) () JoA = {0} if i=0. By definition

& (a—1nb) — & (a-nb) €1,

as desired. As in (47), U(L™(a))—1I C UM(L™()) is a vertex ideal. It is
easy to understand (do this!) that the quotient U (L™ (a))/ U (L™ (a)) (1) is
a CDO. The component (U (L% (ct))/ U (L™ (at))(~1)])S" is the desired chiral
algebroid. O
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5.2 Classification: Morphisms

Since by construction each L(«) (i.e., the algebroid constructed in Lemma 5.3)
comes equipped with a splitting, L(o) = JooA @ Joo T4, definition (42) implies that
a graded morphism

foLlay) — L)
is determined by a map
B:Th —> 24
s.t. f(§) = & + B(£). As before, it is convenient to dualize and introduce
B:Ta®@Ty— A

s.t. f(§) = & 4+ B(£,.). The interested reader may be anticipating what is to follow.

Exercise 5.10 Verify that 8 must be A-linear and antisymmetric. (Remark: we have
used normalization (0;)(1)d; = O; this is the reason why 8 must be antisymmetric.)
Therefore, B € 3.

Lemma 5.4
Hom(L(xy, ) ={p € .Qi s.t. dppf = o1 — ap},
where the morphism attached to B is defined by
Ta§ =&+ B, ).
Proof This is in the spirit of Sect.3 and Exercise 5.9, but less laborious, and we

shall go over some details. We need to compare f(£)n) and f(£)0\f (1), £, 17 € Ta.
We have

fCGon) =---a1(&,n,.) + B n]..),

FEof ) = E+BE Do+ M) =+ a€.n.) +EoB0..) + BE. Jon

et n, ) + B0, ) —noBE. ) + dprBE. 1),

where - - - stands for the terms uniquely determined by the axioms. (Note that the
last equality uses the skew-symmetry (29) as follows:

BE. Don = —noBE. ) +ThwpE..)).)
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To compare the two 1-forms we have to evaluate them on an arbitrary { € T4 and
subtract from one another; in vertex algebra terms to evaluate means to apply ).
We have

Loy (fEofm) = LafGon) = aa(6.n.8) —ai(§.n,.0) +
néBMm, ) = SynoBE,.) + aydprBE. ) — EyB(E. nl, )

The R.H.S. must be zero. To evaluate the R.H.S., use the Borcherds commutator
formula, e.g.,

L€ = Eola + Coda) + Cnmé) o).

and then the fact (Exercise 5.9(i)) that §(g is the Lie derivative along § and &) is
the contraction with £. We obtain

al(gv n, C) - 052(2;-7 m, é-) =
§B(.8) —np(E.0) + L& n) — B(E. nl. &) + B(E. Ll.m) — B([n. €], ©).

which by definition is the desired

o1 (Sv UB C) - Olz(é, n, C) = dDRﬂ(és n, C)D

5.3 Classification: Synthesis

All of this is delightfully analogous to Sect. 3—analogous in a nontrivial manner, as
the dimension has gone up by 1. We leave it to the reader to push the analogy a little
further and to define the category .QE’3> with objects {o € .Qj’”l} and morphisms
Hom(a, 0) = {B € 23 s.t. ; —az = dpgrPf}; then verify that Q£2'3> is an abelian
group in categories, and that the category of graded chiral A-algebroids, hence of
CDOs over A, is an .QE’3> -torsor.

What this means geometrically is that on any smooth algebraic variety X there is
a sheaf of groupoids CDO bound by the complex .Q)% — .Q;’d. In particular, given
aCDO D"Uh defined over an open U C X and a closed 3-form o € Q;*CZ(U) we have
a naturally defined CDO D"Uh (o) over U, see the line that follows Lemma. 5.3.

We shift the cohomological degree so as to place .Q)z( in degree 0 and consider
the (hyper)cohomology H®(X, 27 — .Q;(’d). The cohomology groups have usual
interpretations: if the category of globally defined CDOs is nonempty, then the set
of isomorphism classes of such is H'(X, 22 — £2;); H'(X, 2} — 23) is
the group of automorphisms of any CDO if, again, one exists. All of this is not
really different from Sect. 3, but here is the point: CDO is characterized by, well, its
characteristic class y(CDO), which is an element of H*(X, 23 — .Q;*d). This class
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is an obstruction to the existence of a globally defined CDO: if y(CDO) # 0, then
no such CDO exists. The class was computed in [17] to the effect that it equals the
2nd component of the Chern character:

)((CDO) = ;Chz(Tx).

A more general result can be found in [7]. We shall leave this computation out,
referring the reader to loc. cit., but give a bit of an insight here.

First of all, the definition of the characteristic class. Cover X by affine subset
{U.,} along with a choice of coordinate system {x{, ¢}. We have a description of the

category of CDOs over each U,, and we can make a choice of an object; say, DZ‘ a>
ar

) . . h

as in Sect. 4. Over an intersection U, N U, we have two sheaves, Z)Za,}a |v,nu, and

Z)Z’b =+ |u.nu, and we attempt to find an isomorphism

. ch ch
Jab 2 DY zalvanvy, —> DYy wlvanu,-

This isomorphism is not only a vertex algebra morphism, but it must satisfy the
definition of the category of chiral algebroids, (42); namely, the induced maps

ch,<0 ch,<0
Dy, 2 lvanw, — Dy lvanwy

ch,<1 ch,<0 ch, <1 ch,<0
Dy, % lvanu /Dy lvanvy, — Dy % lvanv,/ Dy, 3 lvanuy.»

must be identities, as both of the former spaces are equal to Ox|y,ny, and of the
latter to 7x|y,nv,. The result of implementing this is not quite what we wanted, but
an isomorphism

- yh h
Jav = DY zalvanv, —> Dy wluanu, (@),

for some o, € Q)?}’Cl(Ua N Uy). We shall say a few words on how these o’s are
computed below.

On a triple intersection, U, N U, N U,, an appropriate composition of f,’s gives
an isomorphism

ch ch
DU,,,}“ |UanUl7ﬂUr DU(,,}H |UaﬁU/;ﬂUg (abc — Oge + aab)s
hence, see Lemma 5.4, a form B, € .Q%(Ua NU, NU,) s.t. dprBape = Qpe — Qe +

Aab.
We have thus obtained two sets {a.;} and {Bapc} s.t.

dpr{Babe} = de{ctap}.

It is not hard to see that dx{fa.;} = O—think about it(!) and then recall that
dpr{ctap} = 0. This means that the pair ({otas}, {Basc}) is a cocycle of an obviously
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defined Cech-De Rham bi-complex C*(X, Q2 — Q)?}’Cl). Computing we have made
various choices; other choices will replace the cocycle with a cohomologous one,
hence a well-defined element of H2(X, 23 — £25).

To conclude, a few promised words on the computation of the «’s. We have
two copies of the same vertex algebra attached to various coordinate systems,

DZ: <lv,nu, and Z)Z’h |v,nu,- The desired map must send”

b
ox;

3)(4)(—1)(3?)(_1)1 +eee

() =nl = (

- meaning the terms we have control over. If we let --- = 0, shall we obtain a
morphism? This situation is familiar from as early as Sect.4: compute

b ot
((ai%)<_1)(8f)<—1)1)(1) ((ax;,h—l)(a?)(—l)l)

and if it is nonzero add to the morphism an appropriate 1-form, y;, to ensure that
this product vanishes. Then compute

dx? xb
(vt +n)1) ((( D + yj) 1) .

The result will automatically be o, (97, 8;’ ,.) for some «,,, Sect. 5.1, as desired. We

hope this may serve as a useful guide to [17].

6 Further Examples

This section contains some material that I really did not have time for in class. It is
included for the sake of completeness and regarded as a review, except perhaps for
Sect. 6.1.1, which I hope is a useful illustration of the ideas that appeared above.

6.1 Homogeneous Spaces

6.1.1 CDOonG

This is based on [15]. Let g be a finite dimensional, simple Lie algebra, G the
corresponding algebraic group. G operates on itself by left multiplication, which
gives a Lie algebra morphism

Jjiig— I'(G, 7).

3In the formulas to follow, the summation w.r.t. the repeated indices is assumed.
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The tangent bundle 7G is trivial, and so chy(7¢) = 0 and the category of CDOs
over G is nonempty. Next, G being affine,

H' (G, 2% — Q%% = I'(G, 2> Jdp (G, 2%) —> C,

with basis a G-invariant form o s.t. w(x,y,z) = (x, [y, z]), where x, y, z € ji(g), (...)
a choice of an invariant inner product on g, [., .] the Lie bracket on g.

According to our classification, Sect. 5.3, the isomorphism classes of CDOs over
G form a C-torsor. In fact, it is easy and instructive to construct a universal 1-
dimensional family of these CDOs.

Lemma 5.3 asserts that such quantization is possible if 74 has an abelian basis.
Some further thought shows that the abelian condition is inessential and can be
weakened. To begin with, assume given a Lie algebra morphism

a—> Ty.

This lets a act on A by derivations and we obtain A x a, an extension of a by an
abelian ideal A

This can be chiralized: let Jooa = C[T]a, which is a vertex Lie algebra, see
page 100, for the definition, and then JoA is a Jooa-module. We thus obtain a vertex
Lie algebra JooA X Jsoa, an extension of Jooa by JooA. This gives us a vertex Poisson
algebra JooA ® S*Jsoa (the vertex Poisson algebra S®Ja first appeared in page 101)
along with a vertex Poisson algebra morphism:

JooA ® §*Joott —> S*Jo T4

The domain of this map can be quantized, and this is the point. Namely, consider
U (JooAxJ5a), and then quotient out by the vertex ideal generated by the elements
14— 1yen, a—yb—a—1b, a, b € JooA—exactly as in the proof of Lemma 5.3. Denote
the vertex algebra thus obtained by D',

Z)f"fa is filtered, and its graded object is exactly JooA ® S*Joa.

Now assume that the map A ® a — T4, which is induced by the above a — T4,
is an isomorphism. It follows that the map JooA ® S*Joot —> S*J5oT4 is also an
isomorphism, hence Z)f"fa is a quantization of S*JooTs.

This construction can be deformed. Namely, consider a central extension of
vertex Lie algebras,

0—C-1 — L— Joa—> 0.
This also gives us an extension JoA X L and a vertex Poisson algebra morphism

JooA @ S°L —> S*JooT4.
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Defining as above D", to be U (JxA ® S°L) modulo the ideal generated by 14 —
Lyer, ai-nb — a—nb AND 1, — 1, gives us a quantization of S®JT4—again if
A ® a — T4 is an isomorphism.

This is exactly the set-up of the group G, where a is replaced with g, a — T
with j; : g — I'(G,7¢) and L with the central extension Jxog(.). The result is a
family of CDOs, Z)gf (> along with the tautological embedding

V@) ) — DYy

the vertex algebra V(g)(.,) was defined in Sect. 5.
One remarkable fact about Dg’,(.,.) is that the action by right translations
(discovered in [2])

Jrig—I'(G,T¢)
also chiralizes: there is a diagram of vertex algebra embeddings

Ji V@) — DE )y <= V@ st GIV@ ) m UGV ©@).v) if n=0.

Note that the “right” action requires a change of level from (., .) to the dual (., .)".
The CDO Z)Cc’f « has found nontrivial applications to geometry and representation
theory, [2, 13].

6.1.2 Flag Manifolds and Base Affine Spaces

The CDO on CP! constructed by hand in Sect. 4 owes its existence to the fact that
dimCP! = 1 and so the obstruction, Sect. 5.3, vanishes for the trivial dimensional
reason. Likewise, H!(CP!, 22 — Qél;ll) = 0, and so that sheaf is unique up to
isomorphism.

The dimensional argument does not work for CIP?, and indeed there are no CDOs
on CP” for any n > 1. The appropriate generalization of CPP! for a simple G is the
flag manifold, where there is a unique up to isomorphism CDO D‘g‘/ 5> [15]. A simple
way to construct it is to use the ideas of Hamiltonian reduction.

Consider a chain N C B C G, where N is the maximal unipotent and B the Borel
subgroups.

For any smooth X, T*X is simplectic.

The action of G (by left translations) on 7*G is simplectic; the same applies to
any subgroup of G.

The simplectic manifolds 7*(G/N) and T*(G/B) are, in fact, Hamiltonian
reductions of 7*G w.r.t. N (B resp.)

This has a chiral analogue due to the pioneering work of Feigin [10]. Consider
DE?,(.,.)’ Sect. 6.1.1. Tt carries two actions of the affine Lie algebra g. Pick the one

coming from j and pull it back w.r.t. n((f)) < §. A sheaf version of Feigin’s
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semi-infinite cohomology [10]* will give a sheaf H"(n((1)), D .y on G and
then the push-forward e HOT° (n((7)), DG( ))s Where m © G — G/N. 1t is not
hard to see that {ze H**®(n((1)), Dt ). k € C} is a family of CDOs on the base

affine space G/N, [15]. The passage to the cohomology destroys j", but j J survives
and we obtain a g-structure

V(9)(.) — TeH T (n((1). DY ).

The flag manifold G/B is dealt with similarly, except that in this case the
relevant subgroup B is not contractible, b((z)) undergoes a central extension, and
the cohomology me HOT®(b((2)), 1) G )) does not quite make sense. To straighten
things out, one has to replace the absolute semi-infinite cohomology with the
relative, and specialize the central charge to the critical one, [15]. The result is a
unique CDO on G/B, e H*t(b((1)). b: D! o (.yer)» along with a morphism

V(). yeri —> e H TP (0((1)), 0; D (o)

This is a proper generalization of Sect. 4. The generalization of Theorem 4.1 is the
following result proved in [1]:

H'(G/B, meHT(6((1)), b: DY i) = €D Lo.yerns

wew®

where W is the set of length i elements of the Weyl group W.

Note that if we let U C G/B be the big cell, then e H*T>°(b((1)), b; Dgf(m)c,‘i,)
(U) is, by definition, the Wakimoto module, [12]. In fact, the approach sketched
here is a way to introduce the Wakimoto module independent of [12].

6.2 Chiral De Rham and String Theory

The story told above has a straightforward super-analogue: one should simply deal
with a sheaf of vertex superalgebras over a supervariety. Unfortunately, the only case
that was treated in some detail is that of the supervariety I7 MX, where M — X is
a vector bundle. What this really means is that the structure sheaf in question is the
supercommutative algebra A(')X M*. In this case, [16], the characteristic class of the
arising groupoid of categories over X is chy (7 x)—cha(M). In particular, if M = Tk,
then the characteristic classes vanishes and there arises a category of superCDOs
over any smooth X. What is striking, however, is that amongst those various CDOs

“4The reader will find more information on chiral Hamiltonian reduction in lectures by T. Arakawa
in this volume.
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over various X there is a universal one. More precisely, for each smooth(purely even)
X, there is a doubly graded sheaf of vertex superalgebras over X, to be denoted
[2;’;'. It is universal in that for each étale f : X — Y, there is a vertex superalgebra

morphism f_IQ)C(’f;' — .Qf,’f;' that satisfies an easy to work out cocycle condition.
This sheaf satisfies various other favorable properties; e.g. its degree 0 component
is the usual De Rham £2%; it carries a differential—so to say, a chiral De Rham
differential—s.t. the embedding 23 — .Q;Z“: is a quasiisomorphism. This sheaf
was constructed by hands in [25] and called the chiral De Rham complex; this is
where the CDO story began.

L. Borisov wrote a series of papers, starting with the strikingly original [4],
linking and applying .Q;Z“: to mirror symmetry on toric varieties. A relation of .Q;Z“:
to the concept of elliptic genus is discussed in [8]. Incidentally, an analogue of this
concept to the purely even D;'(h, the Euler character Eu(D;'(h), which appeared in
Sect. 4 in an example, is essentially the Witten genus [9].

We will conclude by mentioning that this theory has been analyzed from various

physics viewpoints by A. Kapustin, N. Nekrasov, and E. Witten in [22, 26, 28].
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Representations of Lie Superalgebras

Vera Serganova

Abstract Abstract In these notes we give an introduction to representation theory
of simple finite-dimensional Lie superalgebras. We concentrate on so called basic
superalgebras. Those are superalgebras which have even reductive part and admit an
invariant form. We start with structure theory of basic superalgebras emphasizing
abstract properties of roots and then proceed to representations, trying to demon-
strate the variety of methods: Harish-Chandra homomorphism, support variety,
translation functors, Borel-Weil-Bott theory and localization.
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1 Introduction

In these notes we give an introduction to representation theory of simple finite-
dimensional Lie superalgebras. We concentrate on so called basic superalgebras.
Those are superalgebras which have even reductive part and admit an invariant
form. Representation theory of these superalgebras was initiated in 1978 by V. Kac,
see [23]. It turned out that finite-dimensional representations of basic superalgebras
are not easy to describe completely and questions which arise in this theory are
analogous to similar questions in positive characteristic.

We start with structure theory of basic superalgebras emphasizing abstract
properties of roots and then proceed to representations, trying to demonstrate the
variety of methods: Harish-Chandra homomorphism, support variety, translation
functors, Borel-Weil-Bott theory and localization.

We assume from the reader the thorough knowledge of representation theory
of reductive Lie algebras (in characteristic zero) and rudimentary knowledge of
algebraic geometry.
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Let me mention several monographs related to the topic of these lectures: [32]
and [4] on Lie superalgebras and [3] on supermanifolds. The reader can find some
details in these books.

2 Preliminaries

2.1 Superalgebras in General

In supermathematics we study Z,-graded objects. The word super means simply
“Z,-graded”, whenever it is used (superalgebra, superspace etc.).
We denote by & the ground field and assume that char(k) # 2.

Definition 1 An associative superalgebra is a Z, graded algebraA = Ap & A;. If
a € A; is ahomogeneous element, then a will denote the parity of a, thatis a = 0 if
ac€Apora=1ifaeA.

All modules over an associative superalgebra A are also supposed to be Z,-
graded. Thus, an A-module M has a grading M = My & M, such that A;M; C M;;.

In particular, a vector superspace is a Z,-graded vector space. The associative
algebra End, (V) of all k-linear transformation of a vector superspace V has a natural
structure of a superalgebra with the Z,-grading given by:

Endy(V)o = {9 |¢(V)) C Vi, Endi(V)1 = {¢| (Vi) C Vi),

Ifey,...,eyis abasis of Vyand ey, ..., €4y 1S a basis of Vi, then we can identify

Endi (V) with block matrices (2 g) and

Endk(V)() = { (ﬁ g)} s Endk(V)l = { (g g)} .

All formulas are written for homogeneous elements only and then extended to
all objects by linearity. Every term has a sign coefficient, which is determined by
following the sign rule:

If one term is obtained from another by swapping adjacent symbols x and y we
put the coefficient (—1)2.

Example 1 Consider the commutator [x, y]. In the classical world it is defined by
[x,¥] = xy — yx. In superworld we write instead:

[x.y] = xy — (=1)"yx.
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The sign rule has its roots in the tensor category theory. More precisely, the
category SVect of supervector spaces is an abelian rigid symmetric tensor category
with brading s : V® W — W ® V given by the sign rule

swew) = (=D)"wQ .

All objects, which can be defined in context of tensor category: affine schemes,
algebraic groups etc. can be generalized to superschemes, supergroups etc. if we
work in the category SVect instead of the category Vect of vector spaces. We refer
the reader to [9] for details in this approach. We will follow the sign rule naively
and see that it always gives the correct answer.

Definition 2 We say that a superalgebra A is supercommutative if
xy = (=1

for all homogeneous x,y € A.

Exercise Show that a free supercommutative algebra with odd generators &y, ... , &,
is the exterior (Grassmann) algebra A(&y,...§,).

All the morphisms between superalgebras, modules etc. have to preserve parity.
In this way if A is a superalgebra then the category of A-modules is an abelian
category. This category is equipped with the parity change functor I1.1f M = My &
M is an A-module we set [IM := M with new grading (ITM)y = My, (I[IM), =
M, and the obviuos A-action. It is clear that [T is an autoequivalence of the abelian
category of A-modules.

Exercise Let V be a finite dimensional vector superspace and V* be the dual vector
space with Z,-grading defined in the obvious way. Consider a linear operator X :
V — V. We would like to define the adjoint operator X* : V* — V* following
the sign rule. For ¢ € V* and v € V we set

<X*¢,v >=< ¢, (1) Xv >,
where < -, >: V* ® V — k is the natural pairing. Let {¢;},i = 1,...,m +nbea

homogeneous basis of V as above and {f;} be the dual basis of V* in the sense that

< fi,e; >= §;;. Show that if the matrix of X in the basis {e;} is (Ié g), then the

t ot
matrix of X* in the basis {f;} equals X*' = (2, D€

called the supertransposition and it satisfies the identity

). The operation X — X* is

(Xy)st — (_I)X?YSTXAT.
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Our next example is the supertrace. To define it we use the canonical identifica-
tion V ® V* =~ End(V) given by

VR p(w) =< ¢p,w>v forall v,w eV, ¢ € V*.

The supertrace str : End; (V) — k is the composition
s VeVESViev =Sk

Exercise Prove thatif X = (A B) then
CD

(a) str(X) =tr(A) —trD,
(b) str([X,Y]) = 0.

The superdimension sdimV of a superspace V is by definition the supertrace
of the identity operator in V. It follows from the above exercise that sdimV =
dimVy—dimV). It is important sometimes to remember both even and odd dimension
of V. So we set dimV = (dimVy|dimV}) = (m|n) be an element m + ne in the ring

Z(g)/(e2 = 1).

Exercise Show that

(a) sdim(V & W) = sdim V + sdim W and dim(V & W) = dimV + dimW,
(b) sdim(V ® W) = sdim V sdim W and dim(V ® W) = dimVdimW,
(¢) sdim(/TV) = —sdimV and dim(/7V) = edimV.

2.2 Lie Superalgebras

Definition 3 A Lie superalgebra g is a vector superspace with a bilinear even map
[.1] : ¢ x g — g such that:

L. [)C, y] = _(_l)is)[ysx]’ _
2. [x. .2l = [xylo2] + (D, [x. 2]l

Example 2 1f A is an associative superalgebra, one can make it into a Lie superal-
gebra Lie(A) by defining the bracket:

[a,b] = ab — (—1)®ba.

For example if A = End(V), dim(V) = (m|n), then Lie(A) is the Lie superalgebra
which we denote by gl(m|n).

Definition 4 If A is an associative superalgebra, d : A —> A is a derivation of A if:

d(ab) = d(a)b + (=1)“ad(b).
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Exercise

(a) Check that the space Der(A) of all derivations of A with bracket given by the
supercommutator is a Lie superalgebra.

(b) Consider A = A(&1,...£,). Then Der(A) is a finite-dimensional superalgebra
denoted by W(0|n). Show that its dimension is (2"~ 'n|2""'n).

Exercise Show that g = gy @ g; with bracket [-, -] is a Lie superalgebra if and only
if

1. go is a Lie algebra;

2. [+] : 60 ® 81 — @1 equips g; with the structure of a go-module;
3. [.] : $?a1 —> g9 is a homomorphism of go-modules;

4. forall x € gy, [x, [x,x]] = 0.

Example 3 Let us introduce the “smallest” simple Lie superalgebra g = osp(1]2)
of dimension (3]2). Take gy = sl(2) and g; = V, where V is the two dimensional
irreducible representation of sl(2). The isomorphims S?V =~ sl(2) of s[(2)-modules
defines the bracket S>3y —> go. One can easily check that [x, [x,x]] = 0 for all
x € g; and hence by the previous exercise these data define a Lie superalgebra
structure.

Example 4 (Bernstein) Consider a symplectic manifold M, with symplectic form
@ € £2?M. Consider the following operators acting on the de Rham complex
2(M):

o w:21(M) — QF2(M), given by Aw,
o i, : /(M) — £2172(M), given by contraction with bivector w*,
« grading operator i : 21(M) — Q1(M).

It is a well known fact that w, 4, i, form an sl(2)-triple.

Assume now that £ is a line bundle on M with a connection V. Assume
further that the curvature of V equals t@w for some non-zero ¢. Recall that V is an
operator of degree 1 on the sheaf £ ® §2(M) of differential forms with coefficients
in L

VLR — Lo

On the other hand, w, h,i, act on £ ® 2 in the same manner as before. Set
V* := [V,i,]. One can check that V, V*, together with w,h,i, span the
superalgebra isomorphic to osp(1]2).

The universal enveloping algebra U(g) is the associative superalgebra
which satisfies the natural universality property in the category of superal-
gebras. It can be defined as the quotient of the tensor superalgebra T(g)
by the ideal generated by XY — (—1)XYYX — [X.,Y] for all homogeneous
X,Y € g. The PBW theorem holds in the supercase, i.e. Gri(g) = S(g).
However, S(g) is a free commutative superalgebra. From the point of view
of the usual tensor algebra we have an isomorphism S(g) =~ S(g) ®

A(g1).



130 V. Serganova

3 Basic Lie Superalgebras

3.1 Simple Lie Superalgebras

A Lie superalgebra is simple if it does not have proper non-trivial ideals (ideals are
of course Z,-graded).

Exercise Prove that if a Lie superalgebra g is simple, then [go,6:] = ¢; and
[31. 1] = go.

In 1977 Kac classified simple Lie superalgebras over an algebraically closed
field k of characteristic zero, [22]. He divided simple Lie superalgebras into three
groups:

* basic: classical and exceptional,
 strange: P(n), Q(n),
e Cartan type: W(0|n) = DerA(&1, . ..§&,) and some subalgebras of it.

Basic and strange Lie superalgebras have a reductive even part. Cartan type
superalgebras have a non-reductive gy.

Definition 5 A simple Lie superalgebra g is basic if g is reductive and if g admits a
non-zero invariant even symmetric form (-, -), i. e. the form satisfying the condition

([, y].2) + (=), [x.2])) =0, forall x,y,z€agq,

or, equivalently,

(3] 2) = (x. [y, 2]).

and (x,y) # 0 implies x = y.

Exercise 1 Let V be a finite-dimensional g-module. Then the form

(x,y) := stry(yx)

is an invariant even symmetric form.

In this section we describe the basic Lie superalgebras. We start with classical Lie
superalgebras. The invariant symmetric form is given by the supertrace in the natural
module V.

Special linear Lie Superalgebra sl(m|n) is the subalgebra of gl(m|n) of matrices
with supertrace zero. It is not hard to verify that sl(m|n) is simple if m # n and
m + n=2. What happens when m = n? In this case the supertrace of the identity
matrix is zero and therefore sl(n|n) has a one-dimensional center 3 consisting of all
scalar matrices. We define psl(n|n) := sl(n|n)/3.

Exercise Check that psl(n|n) is simple if n=>2.
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Look at the case n = 1. Then sl(1]1) =< x,y,z >, where

() 69 =)

Then the commutators are:

[,z =2 =0, [xy] =z

and we see that s[(1]|1) is a nilpotent (1|2)-dimensional Lie superalgebra, which is
the superanalogue of the Heisenberg algebra. Furthermore, psl(1|1) is an abelian
(0]2)-dimensional superalgebra.

We have sl(m|n)y = { (13 g) |[tr(A) = tr (D)} . Hence

sl(m|n)y = sl(m) & sl(n) P k.
Note also that g = sl(m|n) has a compatible Z-grading:
g=g9(=1) ®g(0) ®a(l)
with go = ¢(0) and
g(l) = Vo ® VY, g(=1)=Vy®Vi.
The Orthosymplectic Lie Superalgebra osp(m|n) is also a subalgebra of gl(m|n).
Let V be a vector superspace of dimension (m|n) equipped with an even non-

degenerate bilinear symmetric form (-, -), i.e. for all homogeneous v,w € V we
have

(U’W) = (_l)ﬁw(wv U)s (U,W) 7é 0= v=w.

Note that (-, -) is symmetric on Vj and symplectic on V;. Hence the dimension of V;
must be even, n = 2/. We define:

osp(m|n) 1= {X € gl(m|n) | (Xv,w) + (=1)*" (v, Xw) = 0}.
It is easy to see that gy = so(m) @ sp(2]). So the two classical series, orthogonal
and symplectic, come together in the superalgebra theory. One can see also that g; is

isomorphic to Vo ® V| as a go-module. Furthermore it is easy to check that osp(m|21)
is simple for all m, [ > 0.

A grading g = @;ez0(i) is compatible if g(2j) C g and g(2j + 1) C g;.
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Lemma 1 Let g be a simple finite-dimensional Lie superalgebra over an alge-
braically closed field k. Then the center of g is at most one dimensional.

Proof Assume the opposite. Let z;, 2o be two linearly independent elements in the
center of gg. For all a, b € k set

g(a,b) = {x € a1 | (ad, — a)™%x = 0, (ad,, — b) ™% x = 0}.

Then we have

1- g = @g(ﬂl,b),
2. [80.8(a, b)] C a(a.b);
3. [a(a, b), g(c,d)] # 0 implies a = —c, b = —d.

These conditions imply that [g(a, b), §(—a, —b)] + a(a, b) + g(—a, —b) is an ideal
in g. Therefore by simplicity of g we obtain that for some a,b € k, g =
[a(a, b), a(—a, —b)] + g(a, b) + g(—a, —b). Set 7z = bz; —azz if a # 0 and 7 = z; if
a = 0. Then ad, acts nilpotently on g;. But go @ [z, g1] is an ideal in g. Hence z = 0
and we obtain a contradiction.

Lemma 2 Let g be a basic Lie superalgebra and g, # 0. Then one of the following
holds.

1. There is a Z-grading ¢ = g(—1) & g(0) & g(1), such that (0) = go and g(£1)
are irreducible gy-modules.
2. The even part g is semisimple and g, is an irreducible gy-module.

Proof Consider the restriction of the invariant form (-,-) on g;. Let M, N C g; be
two go submodules such that (M, N) = 0. Then by invariance of the form we have
(IM, N],g0) = (M, [0, N]) = 0. Hence [M, N] = 0. In particular, let M C g; be an
irreducible gy submodule. Then the restriction of (-, -) on M is either non-degenerate
or zero.

In the first case, let N = M+ and I = M@[M, M]. Then [N, I] = O and [go, 1] C 1.
Hence [ is an ideal of g, which implies N = 0, M = g; and g satisfies 2. It follows
from the proof of Lemma 1 that gy has trivial center.

In the second case there exists an irreducible isotropic submodule M’ C g; such
that (-,-) defines a go-invariant non-degenerate pairing M x M’ — k. By the same
argument as in the previous case we have gy = M @ M, [M,M] = [M',M'] = 0.
Thus, we can set

a(1) = M. g(=1) = M'.g(0) = go.

Hence g satisfies 1.
We say that a basic g is of type I (resp. of type 2) if it satisfies 1 (resp. 2). Note
that if g is of type 1, then g(1) and g(—1) are dual go-modules.

Exercise Check that sl(m|n), psl(m|m) and osp(2|2n) are of type 1, and osp(m|2n)
is of type 2 if m # 2.



Representations of Lie Superalgebras 133

In contrast with simple Lie algebras, simple Lie superalgebras can have non-
trivial central extensions, derivations and deformations. Besides, finite-dimensional
representations of simple Lie superalgebras are not completely reducible.

Example 5 Consider the short exact sequence of Lie superalgebras:
0 — k —> sl(2]2) — psl(2]2) — 0.

One can see that this sequence does not split. In other words, a simple Lie
superalgebra psl(2]|2) has a non-trivial central extension. The dual of this example
implies that a finite-dimensional representation of a simple Lie algebra may be not
completely reducible, just look at the representation of psl(2]|2) in pgl(2]2) and the
exact sequence

0 — psl(2|2) — pgl(2|2) — k —> 0.
The next example will show that sometimes simple Lie superalgebras have non-

trivial deformations.

Example 6 Let g = osp(4|2). We have
go = s0(4) & sl(2) = sl(2) & sl(2) & sl(2).

In fact, this is the only example of a classical Lie superalgebra whose even
part has more then two simple ideals. If V denotes the irreducible 2-dimensional
representation of sl(2), then g is isomorphic to VX V X V as a go-module.

We will construct a one parameter deformation of this superalgebra by deforming
the bracket S2g; — go. Let v SV — sl(2) and w : A%V — sl(2) be non-trivial
sl(2)-equivariant maps. Define the bracket between two odd elements by the formula

Vi ® v2 @ V3, W1 ® Wy @ ws]
= (hw2, w2)w(vs, w3) ¥ (v, wi), ho(v, wi)w (s, w3) ¥ (v, wa),
Bw(v, wi)o(vy, w2) ¥ (v3, w3))

for some #, 1, t; € k.

Exercise The Jacobi identity holds if and only if #; + 17, + t3 = 0.
When #; + 1, + 13 = 0 we obtain a new Lie superalgebra structure on g: we denote
the corresponding Lie superalgebra by D(2, 1|11, 1>, t3). We see immediately that

D(zv 1|t17 I, t3) = D(2s llts(l)v ts(z)s ts(3)) = D(2s 1|Ctlv cty, Ct3)

for all ¢ € k* and s € S3. One can check that D(2,1|1,1,—2) = osp(4]|2) and
that D(2, 1]t;, 5, t3) is simple whenever #,1,t3 # 0. By setting a = Z one obtains a
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one-parameter family D(2, 1, a) of Lie superalgebras. One can consider a as a local
coordinate in P! \ {0, —1, co}.

Exercise Prove that, if a = 0, then D(2,1,a) has the ideal J isomorphic to
psl(2|2) with the quotient D(2, 1, a)/J isomorphic to sl(2). Use this to prove that
the superalgebra of derivations of psl(2|2) is isomorphic to D(2, 1, 0).

Consider now the following general construction of a basic Lie superalgebra of
type 2. Let

go=L1L®dhL, g=MQN

where [; and [, are simple Lie algebras, M is a simple [;-module and N a simple
[,-module. Assume in addition that M has an [j-invariant skewsymmetric form
o, while N has an Il -invariant symmetric form y. Then we have isomorphisms
S’M ~ sp(M) and AN =~ so(N). Hence I, is a submodule in $?M and 1, is a
submodule in A%N. Let ¢ : S°M — 1, ¥ : A2’N —> 1, denote the projections on
the corresponding submodules. For some ¢ € k and all x,x’ € M, y,y’ € N we set

@y X ®Y]:=o0xxX)yyAY)+1ry(.y)pw-x)

If for a suitable t+ € k we have [X,[X,X]] = O for all X € gy, then g is a
Lie superalgebra. For instance, this construction works for osp(m|2n) with [} =
sp(2n), I, = so(m) and M, N being the standard modules.

This construction also works for exceptional Lie superalgebras: G; and F4 (in
Kac’s notation). We prefer to use the notation AG, and ABj to avoid confusion with
Lie algebras.

e g = AG, with [ = sl(2), I, = G, M is the 2-dimensional irreducible sl(2)-
module and N is the smallest irreducible G,-module of dimension 7. One can
easily see that dimAG, = (17]14).

e g = AB;3 with [j = sl(2), [, = so(7), M is again the 2-dimensional irreducible
sl(2)-module, N is the spinor representation of so(7). Clearly, dimAB; =
(24/16).

Theorem 1 (Kac, [22]) Let k be an algebraically closed field of characteristic zero
and g be a basic Lie superalgebra over k with nontrivial §1. Then g is isomorphic to
one of the following superalgebras:

e sl(mln), 1 <m < n;

e psl(n|n), n=2;

e osp(m|2n), m,n=1, (m,n) # (2,1), (4,1);
e D(2,1,a),a € (P'\ {0,—1,00})/Ss;

hd AB3,'

° AGz.

For the proof of Theorem 1 we refer the reader to the original paper of Kac. Some
hints can be also found in the next Section.
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Exercise Show that sI(1|2) and osp(2]2) are isomorphic Lie superalgebras. Check
that the list in Theorem 1 does not contain isomorphic superalgebras.

3.2  Roots Decompositions of Basic Lie Superalgebras

From now on we will always assume that & is algebraically closed of characteristic
Zero.

Let g be a basic Lie superalgebra, by be a Cartan subalgebra of gy and W denote
the Weyl group of gy. If g is of type 1 but gy is semisimple it will be convenient
to consider a bigger superalgebra g by adding to g the grading element z (if g =
psl(n|n), then g = pgl(n|n)). In this case we set Bo := by + kz, otherwise b := by.
Let [ be the centralizer of f)o in g.

Lemma 3 We have ) = boandf) = bo.

Proof If g is of type 1, the statement is trivial. If g is of type 2, then g; is
an irreducible gp-module which admits invariant symplectic form. Then such
representation does not have zero weight, see [34, Chap. 4.3, Exercise 13].

Lemma 3 implies that ) acts semisimply on g. Hence we have a root decomposi-
tion

g=bh& Zga, where g, = {x € g|[h,x] = a(h)x,forallh € f)}.

a€A

Here A is a finite subset of non-zero vectors in f)*, whose elements are called roofts.
The subalgebra ) is called a Cartan subalgebra of g.
The following conditions are straightforward

° [gou Qﬂ] C Qo+ ifoa + ,3 ?é 0 and [gaa g—a] C b

¢ The invariant form (-, -) defines a non-degenerate pairings g, X §—, — k for all
o€ Aandhxh — k.

* Dy := [ga,8—¢] is @ one-dimensional subspace in §. That follows from the first
two properties and the identity ([x, y], #) = a(h)(x,y) forx € g4,y € g—4, h € Do.
We can define the non-degenerate symmetric form on (:|-) on b* as the pull back

of (-,-) with respect to h* EN b* > b, where p is the canonical projection and
s :H* — D is an isomorphism induced by (-, -). For any two roots o, § € A

B(y) =0 ifandonlyif («,f)=0. (1)

Lemmad Let o € A be a root.

1. dim(ge)o < I;
2. If(ga)o 7é 0, then (ga)l =0.
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Proof Since g is reductive 1 is trivial. To prove 2 consider the root sl(2)-subalgebra
{Xa» ha, Yo} C 80. Let x € (g4)1 and x # 0. Then from representation theory of sI(2)
we know that [y,,x] # 0. But [y,, x] € h; = 0. Contradiction.

We call @ € A even (resp. odd) if (g,); = 0, (resp. (g4)0 = 0). We denote by A
(resp. A)) the set of even (resp. odd roots). The preceding lemma implies that A is
the disjoint union of Ay and A;.

Lemma 5

1. Ifa € Ao, then (a|a) # 0.
2. Ifa € Ay and (a|a) # O, then for any non-zero x € @4, [x,x] # 0. Hence
20 € A().

3. Ifa € Ay and (a]a) # 0, then 2((;";)) € {—1,0,1} forany g € Ao.

4. Ife € Ay and (aler) = 0, then ) € {~2,-1,0,1,2} for any B € Aq.

Proof 1 is the property of root decomposition of reductive Lie algebras. To show 2
let y € g—, be such that (x,y) # 0. Then & = [y, x] # 0 and by (1) we obtain

[y, [x, x]] = 2[h,x] = 2a(h)x # 0.

To prove the last two statements we consider the root sI(2)-triple {xg, ig,yg}.
2(alp)

Then from the representation theory of sl(2) we obtain that 818

an integer.
To show 3 we use the fact that 2« is an even root. We know from the structure
theory of reductive Lie algebras that

= a(hg) must be

2Q2a|B)

6.8 © {—3,-2-1,0,1,2,3}.

Taking into account that Z(O‘IIﬂ ) ¢ 7., we obtain the assertion.

Finally, let us prove 4. Without loss of generality we may assume that k =
a(hg) > 1. Then we claim that yg(a,) # 0, hence o — B is a root. Moreover

(a = Bla—p) = (BIA)(1 —k) # 0.
Therefore y := 2(a — B) is an even root and we have

2(Bly) _ k/2—1

= eZ,
(vly) 1—k

which implies k = 2.

Exercise An odd root « is called isotropic if («|) = 0. Show that if g is of type 1,
then all odd roots are isotropic.

It is clear that W acts on A and preserves the parity and the scalar products
between roots.
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Lemma 6

(a) If g is of type 1 then W has two orbits in Ay, the roots of §(1) and the roots of
g(=1).

(b) If g is of type 2, then W acts transitively on the set of isotropic and the set of
non-isotropic odd roots.

Proof If all roots of g are isotropic, then it follows from the proof of Lemma 5 (4)
that a(hg) = £1 or 0 for any odd root & and even root 8. In particular, if we fix
positive roots in Ay and consider a highest weight « in g; (or g(£1) in type 1 case),
the above condition implies that g; (resp. g(£1)) is a minuscule representation of gg.

If g is of type 2 and the highest weight « is isotropic, then we have a(hg) =
+1, £2 or 0 for any positive 8. That implies the existence of two orbits. Finally
if « is not isotropic, then g; is minuscule, hence there is one W-orbit consisting of
non-isotropic roots.

Corollary 1 For any root a € A the root space oy has dimension (1|0) or (0]1).

Proof We need to prove the statement only for odd «. If g is of type 1 or of type
2 with only isotropic or only non-isotropic odd roots, then the statement follows
from Lemma 6 since the multiplicity of the highest weight is 1. If g contains both
isotropic and non-isotropic roots, we have to show only that dimg, = (0|1) for a
non-isotropic odd root &, which easily follows from Lemma 5 (2).

Remark I Note that if we do not extend psl(2|2) to pgl(2|2), then Corollary 1 does
not hold since the dimension of g, equals (0|2) for any odd «.

Example 7 Let ¢ = sl(m|n). We take as our Cartan subalgebra §) the subalge-
bra of diagonal matrices. Let us denote by €q,...€,,8;,...6, the roots in h*
(ei(diag(ai, . .. an)) = a; and similarly for §;). We have:

Ay={ei—¢€, 1 <iF#j<mpU{8; -6, 1<i#j<n}, Ay = {£(e—6)}
The invariant form is:
(€i,€) =8, (€,8) =0, (8;,6) = —by,
All odd roots are isotropic.
Example 8 Let g = osp(1]|2n). g9 = sp(2n).
Ay ={£(ei £ ¢), £2¢|i,j=1...n,i#]j}, Ay ={xe|i=1...n}.
This is the only example of a basic superalgebra such that all odd roots are non-

isotropic.
The above implies that we have in general three types of roots:

1. @ € Ay. In this case the root spaces g4, generate a sl(2) subalgebra (white node
in a Dynkin diagram).



138 V. Serganova

2. a € Ay, (o, ) # 0. Then the root spaces g+, generate a subalgebra isomorphic
to osp(1]2) (black node in a Dynkin diagram).

3. o € Ay, (a,a) = 0. The roots spaces g+, generate a subalgebra isomorphic to
sI(1|1) (grey node in a Dynkin diagram).

Definition 6 Let E be a vector space (over k) equipped with non-degenerate scalar
product (-|-). A finite subset A C E \ {0} is called a generalized root system if the
following conditions hold:

e ifa € A, then —a € A;
e ifa,f € Aand (a|o) # 0, then ky g = 2((;‘1)’3) is an integer and B — kg € A;
o ifa € A and (¢|a) = 0, then there exists an invertible map r, : A — A such

that

Bif(a|p) =0

“O 7 b rait@p £0

Exercise Check that if g is a basic Lie superalgebra, then the set of roots A is a
generalized root system.

Indecomposable generalized root systems are classified in [39]. In fact, they

coincide with root systems of basic Lie superalgebras. That gives an approach to
the proof of Theorem 1.

Exercise Let Qy be the lattice generated by A and Q be the lattice generated by Q.
Check that

e Ifgisof type 1, then Qy is a sublattice of corank 1 in Q.
e If gis of type 2, then Qy is a finite index subgroup in Q.

3.3 Bases and Odd Reflections

As in the case of simple Lie algebras we can represent A as a disjoint union
AT ] A~ of positive and negative roots (by dividing h* in two half-spaces).
We are going to use the triangular decomposition:

g:n_EBI)EBn+, where n* = @ Ou»
aeAE

The subalgebrab = b @ n™ is called a Borel subalgebra of g.

We call @ € AT indecomposable if it is not a sum of two positive roots. We call
the set of indecomposable roots ¢, . ..o, € AT simple roots or a base as in the Lie
algebra case. Clearly, W action on A permutes bases. However, not all bases can be
obtained from one by the action of W.
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Example 9 The Weyl group of gl(2|2) is isomorphic to S, x S,. One can see that
the following two bases are not conjugate by the action of W: IT = {€; — €2, €3 —
81,81 — 82}, IT' = {1 — 61,81 — €2, €2 — 82}

Since W does not act transitively on the set of bases, more than one Dynkin
diagram may be associated to the same Lie superalgebra. The existence of several
Dynkin diagrams implies existence of several non conjugate Borel subalgebras,
which in turn implies that there are several non isomorphic flag supervarieties.

To every base IT we associate the Cartan matrix in the following way. Take
Xi € 9, ¥i € 9_,;, and set H; := [X;, ¥;] and a;; := o;(H;). In the classical theory of
Kac-Moody algebras Cartan matrices are normalized so that the diagonal entries are
equal to 2. In the supercase we can do the same for non-isotropic simple roots. It is
not difficult to see that H;, X;, Y; fori = 1,. .., n generate g and satisfy the relations

[Hi, Xj] = a;X;. [H:, Y] = —a;Y;, [Xi, Y] = 6;H,. [H:,Hj] = 0.

Let g be the free Lie superalgebra with above generators and relations. We define
the Kac-Moody superalgebra g(A) as the quotient of g by the maximal ideal
which intersects trivially the Cartan subalgebra. In this way we recover basic finite
dimensional Lie superalgebras. In contrast with Lie algebra case we may get a
finite-dimensional Kac-Moody superalgebra even if det(A) = 0, for example,
g(A) = gl(n|n). Note that in this case g(A) is not simple but a non-trivial central
extension of the corresponding simple superalgebra. In many applications, it is
better to consider g(A) instead of the corresponding quotient, which essentially
means that in what follows we rather discuss representations and structure theory
of gl(n|n) instead of psl(n|n).

Definition 7 Let I be a base (set of simple roots) and let @ € IT be an isotropic
odd root. We define an odd reflection ry, : I1 — I1’ by

B+ aif (x|f) #0
re(B) = {Bif (@) =0, B #«
—xiff =«

Exercise Check that IT' = r,(IT) is a base.

Notice that if (¢|o) # 0 we can define the usual reflection ry(x) 1= x — 2&'5)) a,
which is an orthogonal linear transformation of h*. In fact, since ry, = ryy, One
can see that these reflections generate W. Though the odd reflections are defined
on simple roots only, one can show that they may be extended (uniquely) to
permutations of all roots. However, in most cases such extension can not be further

extended to a linear map of the root lattice.
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Proposition 1 Let g be a basic Lie superalgebra.

1. If IT and I1’ are two bases, then I1' can be obtained from Il by application of
odd and even reflections.

2. If IT and IT' are bases such that AT N Ay = (AT N Ay, then IT' can be obtained
from IT by application of odd reflections.

Go back to the example of gl(2|2). The Cartan matrix associated with I7 is

2 -10
-1 01
0 —-12

The odd reflection r, associated with the root @ = €, — 8, € IT maps IT to IT'.
Indeed, we have:

ro(€1—€) =€ =061 = (61 — €2+ €2 —81)
re(€2—€1) =61 — €&

re(81—8) =€ — 80 = (62— 81 + 81 — 82).

The Cartan matrix associated with IT’ is

0-10
10 -1
0-10

Exercise Use odd reflections to get all bases of AG,.

Remark 2 Let g be of type 1 and let us fix a Borel subalgebra by C go9. We have two
especially convenient Borel subalgebras:

by = by @ g(1), Daa = Do @ a(—1).

We call them distinguished and antidistinguished, respectively.

4 Representations of Basic Superalgebras

4.1 Highest Weight Theory

We assume in this section that g is a basic superalgebra or its Kac Moody extension
(in the case of gl(n|n)). Let us fix a triangular decomposition: g = n* @ h @ n~ and
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the Borel subalgebra b = Iy @ n™. Define the Verma module:
My(A) := UQ) Suw) Chr,

where C; is the one-dimensional b-module with trivial action of n™ and weight A.
One can prove exactly as in the Lie algebra case that My(A) has a unique simple
quotient which we denote by Ly(1).

We say that A is integral dominant if Ly (1) is finite dimensional.

Exercise Prove that if A is integral dominant, then M;(4) has the unique maximal
finite dimensional quotient Ky (1). If g is of type 1 and b is distinguished, then K (1)
is isomorphic to the induced module U(a) ®¢i(go@a(1)) Loy (A), Where Ly, (1) is the
simple go-module with trivial action of g(1). In this case it is called a Kac module.

Proposition 2 Any finite-dimensional simple g-module is isomorphic to Ly(A) for
some integral dominant A.

Proof Any finite dimensional simple module M is semisimple over ) and hence has
a finite number of weights. Let A be a weight such that A + « is not a weight for all
positive roots «. Then, by Frobenius reciprocity, M is a quotient of My(A).

Remark 3 Let O be the category of finitely generated h-semisimple g-modules with
locally nilpotent action of n™. Note that this definition depends on the choice of
a Borel subalgebra b. In fact, it depends only on the choice of by, since the local
nilpotency of ng' implies the local nilpotency of n™.

How do we check whether A is dominant integral with respect to a particular
Borel subalgebra b? If g is of type 1 and b is distinguished or antidistinguished, it is
sufficient to check that A is integral dominant with respect to by, i.e. A(h,) € N for
all simple even roots «. In general, the condition of dominance is more complicated.

Exercise

(a) Ifband b’ are two Borel subalgebras of g with the same even part, then we must
have an isomorphism Ly(A) >~ Ly (A’) for some weights A and A’. Let b’ be
obtained from b by an odd reflection r,. Check that

s A—aif(X,a) #0 @)

Aif(A, ) = 0.

(b) Fix abase IT and the corresponding Borel subalgebra b. Let 1, denote the base

of A(')F . Prove that Ly (1) is finite-dimensional if and only if for any 8 € I1y and

a base [T’ obtained from [T by odd reflections such that 8 € IT" or g e Ir

2(531‘\5)) € N. (Hint: you just have to check that yg € g—g acts locally
nilpotently on Ly(4).)

we have
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4.2 Typicality

We define the Weyl vector py € h* by:

1 1
/01»122 Z Ot—2 Z o.
aeA(')’_ aeA#_

If b is fixed and clear we simplify notation by setting p = py.

Exercise Let IT be the base corresponding to b. Show that

Male)ifa € ITN Ay

o) =
(el (¢|la)ifa e TN A

Definition 8 A weight A is called typical if (A + p, @) # 0 for all isotropic roots
o€ A.

Exercise Check that the definition of typicality does not depend on the choice of
b. To show this assume that b’ is obtained from b by an odd reflection r, and A is
typical. Then p;, = py + o and Ly(A) = L{ (L"), where A 4+ py = A" + py.

4.3 Characters of Simple Finite-Dimensional Modules

If M is in the category O, then, by definition, M is h-semisimple, and therefore has

weight decomposition M = @ M,,. The character ch M is the generating function
HEDH*

chM = Z sdim (M, )e”.

Exercise Show, using Corollary 1, that if M is generated by one weight vector, in
particular, if M is simple then every weight space M, is either purely even or purely
odd.

Theorem 2 ([23]) If A is a typical integral dominant weight then
Dy wh+p1)
chL,(A) = Z sgn(w)e? T 3)
DO wew
where W is the Weyl group of the even part gy and

D, = l_[ (ea/2 _e—a/Z)’ Dy = l—[ (ea/Z _e—a/Z)'
+

aeAI‘_ a€A
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Exercise Using the isomorphism of h-modules U (n™) =~ S(n™) show that

chtun) = [Ja—-e)/ JTa=-e™,

a€A| a€Ap
and
D
chM,(L)) = e+t
Dy
Remark 4

e If g = go then we get the usual Weyl character formula.
* The formula (3) is invariant with respect to the change of Borel subalgebra.
¢ The formula (3) can be rewritten in the form

chLy(X) = ) sgn(w)chMy(w - 1),
wew

where w - A := w(A + p) — p is the shifted action.

Proof of Theorem 2 'We will give the proof for type 1 superalgebras, i.e. assuming a
compatible grading g = g(—1) + g(0) + g(1). By Remark 4 it suffices to prove the
formula for the distinguished b = b.

Note that the Kac module Kj(4) is isomorphic to

U(—1)) ® Ly, (1) = A(a(=1)) ® Ly, (1)
as a gop + g(—1)-module. Therefore

chKy(A) = ch A(a(=1)) ch Ly, (A) = [ (1 —e™) chLy,(A).

aeAT

Furthermore, if p; = ; ZQGA’, o, fori =0, 1, then

1 .
l—[ (1—e%) =¢"Dy, chLy,(}) = D Z sgn(w)e” ).
oceA#_ 0 wew

Note also that w(p;) = p; for all w € W. Therefore ch Ky (1) is given by (3). Thus,
it remains to show that K, (1) = Ly(4).
One can see easily that any submodule of Ky (1) contains a simple go-submodule

A (g(=1)) ® Ly, (2).

Hence K;(A) has a unique simple submodule isomorphic to Ly (w) for some .
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Next we observe that

AMi=A— Za

aeA#_

is the highest weight of Ly (1) with respect to the anti-distinguished Borel b, since
A’ is the by-highest weight in A"P(g(—1)) ® Ly, (1) and

a(=1)A"’(g(-1)) = 0.
Therefore we have
Ly(i) = Ly, (A").

Applying (2) several times to move from b to b,; and using the typicality of A we
obtain A = . Hence Ky(A) = Ly(R).

4.4 The Center of U(g)

Let Z(g) denote the center of the universal enveloping algebra 2(g). In the superset-
ting the Duflo theorem states that there exists an isomorphism of supercommutative
rings

S(9)? >~ Z(9).

For the proof in the supercase see [20].

Recall that if g is a reductive Lie algebra then Z(g) is a polynomial ring, see, for
example, [10]. This fact follows from so called Harish-Chandra homomorphism.
One can generalize the Harish-Chandra homomorphism for basic superalgebras,
however, as we will see, Z(g) is not Noetherian.

Choose a triangular decomposition g = n~ @ h & n™, then by PBW theorem we
have the decomposition

Ug) = UNT) @ UDH) ® UMT).
The Harish-Chandra map
HC : U(g) — UDH) = S(h) = k[H*]
is the projection with kernel n~U(g) + U(g)n™. The restriction
HC : Z(g) — S(b) = k[b"]

is a homomorphism of rings.
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Forany w € Wand A € h* wesetw- A := w(A + p) — p.

Theorem 3 The homomorphism HC : Z(g) —> S() is injective and f € k[bh*]
belongs to HC(Z(9)) if and only if

o f(w-A) =f(A), forany A € b*, w e W;
o if (A + pla) = 0 for some isotropic root o then f(A + ta) = f(A) forallt € k.

The proof of this Theorem can be found in [24, 45] or [16]. One of the consequences
of the above theorem is that the supercommutative ring Z(g) has trivial odd part and
hence is in fact a usual commutative ring.

The proof in [45] makes use of the superanalogue of the Chevalley restriction
theorem. Since g is basic, then the adjoint representation is self-dual. Thus, we can
identify the invariant polynomials on g and g*:

k[a]® ~ k[g*]°.

If F : k[g]® — k[b] denotes the restriction map induced by the embeddingh C g, then
the image of F consists of W-invariant polynomials on b satisfying the additional
condition:

if (A|oe) = 0 for some isotropic root « then f(A + o) = f(A) forall ¢ € k.

Example 10 Let ¢ = gl(m|n). The ring S(g*)? is generated by str(X*) s =
1,2,3.... After restriction to the diagonal subalgebra they become polynomials
in Py, Py, -+ € klxy,..., %, V1,...,Ys] given by the formula Set

Pyoi=x]+...x5, =Y — - — .

One can see that the subring in k[xj,..., X, y1,...,y,] generated by Py is not a
Noetherian ring.

If Specm stands for the spectrum of maximal ideals, then HC induces the map
0 : Specm(k[b*]) = h* —> Specm(Z(g)). In other words we associate with every
weight A € h* the central character y, : Z(g) — k by setting y,(z) := HC(2)(A).
We would like to describe the fibers of 6. The following corollary implies that every
fiber is a union of finitely many affine subspaces of the same dimension.

Corollary2 Let A € bH* and let {ay,...,ar} be a maximal set of mutually
orthogonal linearly independent isotropic roots such that (A +pla) = 0. If y = xa,
then

k

07 G0 = Jw- A+ ke).

wew i=1

Example 11 1f ¢ = sl(1]2), then dimh = 2 and the image of the Harish Chandra
homomorphism in k[x, y] consists of polynomials k[x, y*] which are constant on the
cross y = +ux.
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Corollary 3 If A is typical then ()~ (x;) = W - A.

Corollary 4 If A is dominant integral and typical, then Ext'(Ly(A), Ly(1)) = 0
for any integral dominant i # A. Hence Ly(A) is projective in the category F of
finite-dimensional g-modules semisimple over gy.

Proof If A is dominant integral and typical, then W - A does not contain any
other integral dominant weight. Therefore L,(A) and Ly(u) admit different central
characters. Hence Ext!(Ly(A), Ly(11)) = 0. Semisimplicity over g, ensures that
Exty-(Ly(A), Ly(X)) = 0.

Remark 5 1f g is of type 2, then any finite-dimensional g-module is semisimple over
go. In type 1 case, Ly(A) is not projective in the category of all finite-dimensional
g-modules since it has non-trivial self-extension.

Definition 9 (Kac—Wakimoto) The dimension of 67! () is called the atypicality
degree of y. We will denote it by at(y). It follows from Corollary 2 that if y, =
X, then at(y) is the maximal number of mutually orthogonal linearly independent
isotropic roots « such that (A + p|a) = 0. We also use the notation at(1) = at(y,).
The central character y is typical (resp. atypical) if at(y) = 0 (resp. f(x) > 0).

The defect defg of g is the maximal number of mutually orthogonal linearly
independent isotropic roots, i.e. the maximal dimension of the fiber of 6.

Exercise Show that
def gl(m|n) = def 0sp(2m|2n) = def osp(2m + 1|2n) = min(m, n).

Check that the defect of the exceptional superalgebras AG,, AB3 and D(1,2;a) is 1.
Note that osp(1|2n) is the only basic superalgebra with defect zero. Hence we
have the following proposition.

Proposition 3 All finite-dimensional representations of osp(1|2n) are completely
reducible and the character of any irreducible finite-dimensional representation of
osp(1]2n) is given by (3).

Finally, let us formulate without proof the following general result which
allows to reduce many questions about typical representations (finite or infinite-
dimensional) to the same questions for the even part gy.

Theorem 4 ([15,36]) Suppose that x = x; is a typical central character such that
(A + p|B) # 0 for any non-isotropic root B. Let U,(3) := U(s)/(Ann(x)). Then
there exists a central character Yo of Z(80) such that U, (g) is Morita equivalent to

Uy (80) == U(g0)/ (Ann(x0))-

Remark 6 1f g is of type 1, then U, (g) is isomorphic to the matrix algebra over
(Ll)(o (QO)
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5 Associated Variety

5.1 Self-Commuting Cone

Let g = go @ g; be a finite-dimensional Lie superalgebra. The self-commuting cone
X is the subvariety of g; defined by

X ={xeg|[x.x] =0}

This cone was studied first in [ 17] for applications to Lie superalgebras cohomology.

Example 12 Let g = gl(m|n). Then

x=1(5a) 148 =0=na}.

We discuss geometry of X for basic classical g. Let Gy be a connected, reductive
algebraic group such that Lie(Gy) = go and let By be a Borel subgroup of Gy. It is
clear that X is Gy-stable with respect to the adjoint action of Gy on g;. Denote by
X /By (resp. X/Gy) the set of By (resp. Gp)-orbits in X. We will see that both sets are
finite.

Denote by S, the set of all p-tuples of linearly independent and mutually
orthogonal isotropic roots and set

defg
S = ]_[ S,, where Sy = {0@}.
p=0
Letu = {o,...,a,} € Sp, choose non-zero x; € gy, and set

Xy i =X A+ X,
Then x,, € X and it is not hard to see that a different choice of the x;-s produces an
element in the same H-orbit, where H is the maximal torus in Gy with Lie algebra
b. Therefore we have a well-defined map

@ :S— X/B,.

Furthermore, the Weyl group W acts on S and clearly x,,(,) and x, belong to the same
Go-orbit. Therefore we also have a map

v S/W— X/Gy.

Theorem S Both maps @ and ¥ are bijections.
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The proof that ¥ is a bijection can be found in [11] and it is done by case by case
inspection. It would be interesting to find a conceptual proof, using for example only
properties of the root decomposition. For the proof that @ is a bijection we refer the
reader to [7]. It uses the result about ¥ and the Bruhat decomposition of Gy. It is
possible that a conceptual proof of Theorem 5 is related to the following analogue
of the Jacobson—Morozov theorem.

Theorem 6 Let g be a basic classical Lie superalgebra and x € g; be an odd
element such that [x, x] is nilpotent. Then

1. If [x,x] = 0O, then x can be embedded into an sl(1|1)-subalgebra of g.
2. If [x,x] # O then x can be embedded into an osp(1|2)-subalgebra of g.

As a consequence of Theorem 5 we know that every x € X is Gp-conjugate to
x, for u € S,. We call the number p the rank of x. If g = gl(m|n), then the rank
coincides with the usual rank of the matrix. We denote by X), the set of all elements
in X of rank p. In this way we define the stratification

defg

X = ]_[X,
p=0

where X, = {0}. Clearly, the Zariski closure of X, is the disjoint union of X, for all
q<p

Proposition 4 The closure of every stratum X, is an equidimensional variety or,
equivalently, if x,y € X have the same rank, then dimGox = dimGyy. Furthermore,
ifu={ai,...,ap} €S,and

ut:={feA|Bla)=0.i=1,....p}
then
. 1 L
dim Gox, = 2|A1\u | +p.

Proof We start with proving the second assertion. For any x € g; consider the odd
analogue of the Kostant-Kirillov form:

w(y,2) = (x, [y, 2]).
This is an odd skew-symmetric form. It is easy to see that ker(w) = ker(ad,). Using

the isomorphism [x,g] ~ g/ker(ad,) we can push forward o to [x, g], where it
becomes non-degenerate. Since w is odd, we obtain

. . . L
dim Gox = dim[x, go] = dim|[x, g;] = 2dlrn [x, g].
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We compute dim [x, g]. Let x = x,, = x; + --- + x,. Fix some y; € g_, and let
hi := [x,y] € by,. Consider a generic linear combination y = c1y; + - -+ + ¢,y and
set & = [x,y]. Then x, h, y span an s[(1]1)-subalgebra L. Let ¢’ be the direct sum of
all eigenspaces of ad;, with non-zero eigenvalue and g denote the centralizer of A.
Clearly, g’ and g" are I-stable. Furthermore, it is easy to see that

1
sdimg’ =0, [x,g] =g Nkerad, hence dim[x,¢']= 2dim g’ = dimg;.

For generic ¢y, ..., ¢, we have
D
peA \ut

Therefore we obtain
dim[x, g'] = |A; \ ut].
On the other hand, a simple calculation shows that

6" x] = [1.x] ® [b. 4] = @D (kx: @ khy).

i<p

Therefore dim [¢", x] = 2p.
. . / . h 1 4L
dim Gox = 2(dlrn[x,g] + dim[x, ¢"]) = 2|A1 \u~| +p.

The first assertion follows from the fact that for any two u,u’ € S, there exists
w € W such that wu' C u U —u. This fact is established by case by case inspection.

Corollary 5 X is an equidimensional variety.

5.2 Functor F,

Let g be an arbitrary superalgebra and x € g satisfy [x,x] = 2x*> = 0. For any
g-module M we have x>’M = 0 and therefore can define the cohomology

M, = kerx/xM.

Lemma 7

1. M®N), =M, & N,.

2. sdim(M,) = sdim(M) (superdimension).

3. M; >~ (My)*.

4. We have a canonical isomorphism (M @ N), >~ M, ® N;.
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Proof 1,2 and 3 are straightforward. To prove 4 consider M as a k[x]/(x*)-module.
We have the obvious map M, ® N, — (M ® N),. On the other hand, we have
decompositions M = M, @ F and N = N, @ F’, where F and F’ are free k[x]/(x?)-
modules.

MXN>~M, QN ®FINOMRSF).

Since a tensor product of any k[x]/(x*)-module with a free k[x]/(x?)-module is free
we obtain the isomorphism (M ® N), >~ M, ® N,.
Applying the above construction to the adjoint representations we get

g = ker(ad,)/[x, 8] = g"/[x, g].

Exercise Check that [x, g] is an ideal in g*. Hence g, is a Lie superalgebra.

Let M be a g-module. Then we have a canonical g,-module structure on M,.
Indeed, it is easy to check that both kerx and xM are g*-stable, For any y € g we
have [x, yJm = xym € [g, x]m. Therefore [g, x] ker x C xM and the induced action of
[g, x] on M, is trivial. Thus, we obtain the following proposition.

Proposition 5 Let g be a superalgebra and x be an odd self-commuting element.
The assignment M — M, induces a tensor functor F from the category of g-modules
to the category of g.-modules.

Remark 7 F, is neither left nor right exact.
Note that if x,y lie in the same orbit of Gy then g, and g, are isomorphic Lie
superalgebras. Moreover, if g is basic, then g, is constant on each stratum X, C X.

Lemma 8 Let g be a basic Lie superalgebra, then g, >~ g, if x,y € X,.

Proof Letx = x, = x1 +---+Xx,, y; and h; be as in the proof of Proposition 4. Let
be the subalgebra generated by x;, y;, h; for all i < p. Then it follows from the proof
of Proposition 4 that g, is the quotient of the centralizer of f by the center of . Note
that by the last remark in the same proof we know that y is Gy-conjugate to x, for
some v € u U —u. It follows that g,, = g,,. Hence the statement.

Exercise Let g be one of the basic superalgebras and x € X),, check that g, is the
following:

* g = gl(m|n), g, = gl(m — p|n — p);

e g = osp(m|2n), g, = osp(m — 2p|2n — 2p);
* g=AGy,p=1,g, = sh;

* §=ABs,p=1,0, =53l

e g=D2,1;a),p =1, g, = sh,.

Consider U(g) as the adjoint g-module. Then it is not difficult to see that
(U())x ~ U(gy), hence we have a projection f;, : U(g)™® — U(g,). Note
that Z(g) C U(g)™™ and the restriction of f, to Z(g) defines a homomorphism
¢x 2 Z(3) = Z(a).
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We are interested in the dual map.

v

¢x : Hom(Z(g,). k) — Hom(Z(g). k).

Theorem 7 Let yy € Hom(Z(g,), k), x € X, then
1. at($e(y)) = p + at(y).

2. The image of ¢ consists of all central characters of atypicality degree greater or
equal than p. 5
3. Ifat(x)=p, then the fiber ¢! (x) consists of one or two points.

Proof Let x = x, where u = {ai,...,a,}. It is always possible to find a
triangular decomposition such that «;, ..., a, are simple roots. We consider the
Harish-Chandra map HC : Z(g) —> S(b) related to this particular triangular
decomposition and the analogous map HC, : Z(g,) —> S(b,) with dual map
denoted by 6,. Let

J4
b, = ﬂ kero;,
i=1
from the proof of Lemma § we have

b = b,/ spanihy, ..., h,}.

Let i, : H} — D be the map dual to the natural projection. We claim the existence
of the following commutative diagram

Bx
by ——— SpecmZ(gy)

[

bt —— SpecmZ(gy)

Indeed, for any u € b let A = i,() and M = Ly(A) be the irreducible module
with highest weight A (may be infinite-dimensional). The highest weight vector of
this module belongs to M, and therefore M, contains a g,-submodule which admits
central character y, while M admit central character y,. That implies qvﬁx (tw) = xa-

2 is a direct consequence of 1 and 3 is obtained by case by case inspection using
Corollary 2.

Exercise If a g-module M admits central character y, then M, is a sum of modules
which admit central characters in ¢! ().

Corollary 6 Assume that M admits central character y with atypicality degree p.

(a) Fy(M) = 0 for any x € X, such that q > p. In particular, if y is typical, then
F.(M) = 0 for any x # 0.
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(b) If x € X, then F.(M) is a direct sum of gy,-modules with typical central
character.

Conjecture 1 Let g be a basic Lie superalgebra. If M is a finite dimensional simple
g-module, then M, is a semisimple g,-module.

By Corollary 6 Conjecture 1 is true when the rank of x equals the atypicality degree
of M. In particular, it holds if the rank of x equals the defect of g. In this case
gy 18 either a Lie algebra or osp(1|2k). For general x the conjecture is proven for
g = gl(m|n) in [21].

5.3 Associated Variety

Definition 10 Let g be a Lie superalgebra, X self-commuting cone and M a g-
module. The associated variety of M is

Xy = {x € X| M, # 0}.

Exercise In general Xy may be not closed, see [7]. Prove that if M is finite
dimensional then X); is a closed Gy invariant subvariety of X. If M is an object
of the category O, then X, is Bp-invariant.

The following properties of X;, follow immediately from the corresponding
properties of F,

1. Xyon = Xu U Xy.
2. Xueon = Xu N Xy.
3. Xy = Xu.

Note also that Corollary 6 implies the following:

Proposition 6 Let g be a basic superalgebra. If M admits a central character y of
atypicality degree p, then Xy belongs to the Zariski closure of X,.

The following result has a rather complicated proof which can be found in [42]
for classical superalgebras and in [14, 29] for exceptional.

Theorem 8 Let g be a classical Lie superalgebra and L be a finite dimensional
simple g-module of atypicality degree p. Then the associated variety X; coincides
with the Zariski closure of X,,.

Finally, let us mention that to every g-module M integrable over Gy we can
associate a Go-equivariant coherent sheaf M on X in the following way. Let k[X]
denote the ring of regular functions on X and k[X] ® M be a free k[X]-module.
Define 9 : k[X] ® M — k[X] ® M by setting

df (x) = xf(x) forevery xeX.
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Then 9> = 0 and the cohomology of d is a k[X]-module M. It is clear that suppM C
Xy and it is proven in [11] that suppM = X if Xj, = X.

Conjecture 2 suppM = X.

5.4 Some Applications

Conjecture 3 (Kac—Wakimoto,[25]) Let g be a basic Lie superalgebra and L be a
simple finite-dimensional g-module. Then sdim L # O if and only the degree of
atypicality of L equals the defect of g.

Kac-Wakimoto conjecture was verified for classical superalgebras in [42] and
for exceptional in [29]. Here we can give a simple proof in one direction. Since F,
preserves superdimension, Corollary 6 (a) implies the following statement.

Corollary 7 Let M be a finite-dimensional g-module which admits central charac-
ter y. If at(y) < defg then sdimM = 0.

Let k = C, M be a finite dimensional g-module, [y C g a Cartan subalgebra.
Define a function py, on b by setting

pu(h) = strM(eh).

It is clear that p,, is analytic. Consider the Taylor series for pys at h = 0
o0
pu(h) = pi(h),
i=0

where p; is a homogeneous polynomial of degree i. The order of zero is the minimal
i such that p; # 0.

The following result can be considered as a generalization of the Kac-Wakimoto
conjecture.

Theorem 9 ([11]) Assume that g does not have non-isotropic odd roots and let M
be simple. Then the order of py(h) equals the codimension of Xy in X.

6 Classification of Blocks

6.1 General Results

Let g be a finite-dimensional Lie superalgebra. Recall that we denote by ¥ the
category of finite-dimensional g-modules semisimple over g.
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Lemma 9 Let gy be reductive and ) be a semisimple g-module. Then the category
F has enough projective and injective objects. Moreover, ¥ is a Frobenius category,
i.e. every projective module is injective and vice versa.

Proof To prove the first assertion note that if M is a simple go-module, then by
Frobenius reciprocity the induced module U(g) ®44(qy) M is projective in ¥ and the
coinduced module Homqy(y,) (U(g), M) is injective. For the second assertion use the
following.

Exercise Show the isomorphism of g-modules
‘Ll(q) ®71(!10) M ~ Hom:u(go)(‘l/l(g),M X A”’”gl).

From now on we assume that g is basic. For a central character y : Z(g) — k let
¥ be the subcategory of F consisting of modules which admit generalized central
character y.

Lemma 10

(a) We have a decomposition of F into a direct sum of subcategories
F=P7
X

(b) For every y with non-empty ¥, we have a decomposition
— F+ —
Fr=F,®F,

such that ¥~ = I1 7";'. (Recall that I1 is the change of parity functor.)
Proof

(a) If M is finite-dimensional, then Z(g) acts locally finitely on M, so M decom-
poses into the direct sum of generalized weight spaces of Z(g).

(b) Every module M € ¥ is h-semisimple. Thus, M has a weight decomposition
M = ®M,,. One can define a function p : H* — Z, such that p(A + @) = p(4)
for any even root o and p(A + o) = p(A) + 1 for any odd root «. Set

Mt = (M;A)O ifp(u) =0 M- = (M;A)l ifp(u) =1
Pl M)itp(p) = 1 (Mt =0
and let M* = EBM;E. Then M~ are submodules of M and M is the direct sum

M @M~ . Therefore we can define F. Xi as the full subcategory of 7, consisting
of modules M such that M = 0.

We call principal block the subcategory ¥, ;g which contains the trivial module.
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Theorem 10

1. The subcategories Txi are indecomposable.

2. If g = gl(m|n) (resp. 0sp(2m + 1|2n)), and p = aty, then ?'Xi is equivalent to the
principal block of gl(p|p) (resp. osp(2p + 1|2p)).

3. If g = 0sp(2m|2n) then Txi is equivalent to the principal block of vsp(2p|2p) or
osp(2p + 2|2p).

4. For exceptional superalgebras D(2,1,a) AG, or AB; 77;[ with atypical y is
equivalent to the principal block of g1(1]|1) or 0sp(3]2).

In these notes we give the proof for g = gl(m|n). One can find the proof for all
classical superalgebras in [19] and for exceptional in [14] and [29].

Remark 8 1If y is typical, then ?'Xi is semisimple and has one up to isomorphism
simple object.

Remark 9 The problem of classifying blocks in the category O is still open. In
contrast with 7, there are infinitely many non-equivalent blocks of given atypicality
degree, [7].

6.2 Tame Blocks

Using general approach, see [12], every block is equivalent to the category
of finite-dimensional representations of a certain quiver with relations. This
approach for Lie superalgebras was initiated by J. Germoni, [13]. In this
method an important role is played by the dichotomy: wild vs tame categories.
Roughly speaking, in tame categories, we can describe indecomposable
modules by a finite number of parameters, while in wild categories it is
impossible.

The following statement was originally conjectured by Germoni and now follows
from Theorem 10 and results in [14, 18, 29] and [33].

Proposition 7 A block 77;[ is tame if and only if at(y) < 1. An atypical tame
block is equivalent to the category of finite-dimensional representations of one of
the following two quivers:

A(oco) & ... ° . ° . °

por ool
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with relations ba = cd, ac = 0 = db for any subquiver isomorphic to:

a c

— g ——>
e — oo

b d

Remark 10 1t follows from Corollary 6 that for any x € X the functor Fy maps a
block 7= to

@D 7

et

There is some evidence that a more subtle relation is true, namely

FX(TX:E) = @ 7:r:|:'

reg;!

In the case of the most atypical block it is possible to show that the superdimension
is constant on a Zariski open subset of simple modules in the block.

6.3 Proof of Theorem 10 for gl(m|n)

In this subsection g = gl(m|n), b = b, is the distinguished Borel, and we skip
the low index in the notation for simple, Kac and projective modules. For instance
L(A) := Ly(A). The weight

A=cier+- -+ cpem+didy +---+d,s, = (c1,....cnld1, ..., dy)
is integral dominantif and only if ¢; — ¢;+1 € Zy,dj —djy € Z4 foralli <m—1,

Jj < n—1. We assume in addition that ¢;, d; € Z.?
For the Weyl vector we use

p=m-—1,...,1,0]0,—1,...,—n).
In [2] Brundan and Stroppel introduced an extremely useful way to represent
weights by the so called weight diagrams.

Let A be a dominant integral weight, and

A+,0=(al,...,am|b1,...,bn), ai>ai+1,bj>bj+1.

2This assumption is not essential and can be dropped. It is here only for convenience of notations.
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The weight diagram f) is the map Z — {o, >, <, x} defined as follows

oif aj#t,bj# —t forall i=1,....mj=1,...m

A > if a; =t forsome i, b;j# —t forallj=1,...,n;
)\’ =
< if b= —tforsomei, a;#¢tforallj=1,...,m;
xif a; =t,b; = —t forsome 1i,j.

We represent fi by a picture on the number line with position ¢ €
{0, £1,+£2, £3,...} filled with f; (f). We consider o as a placeholder for an empty
position. The core diagram f; is obtained from f; by removing all x. We call > and
< core symbols.

Example 13 Take the adjoint representation of gl(2|3). Then

A=(1,0[0,0,—1), A+p=(2.,0]0,—1,-3)

and f) can be represented by the picture
where all negative positions and all positions ¢ > 3 are empty. The core diagram is

Exercise Check that

* The degree of atypicality of A equals the number of x-s in the weight diagram f; .
* Core diagrams parametrize blocks, namely, y, = y, if and only if f} = f,,.

The above exercise implies that blocks ?';’ can be parametrized by weight
diagrams without x-s. We use the notation f,, := fi for any A such that y = y;.

Definition 11 We define the following operations on a weight diagram:

* Left simple move: Move > one position to the right or move < one position to
the left.

* Right simple move: Move > one position to the left or move < one position to
the right.

In this definition we assume that x is the union > <, and we can split it or join ><
into X.

Example 14 Let f be as in the previous example:
Then the following are possible right simple moves

1. Moving the rightmost < one position right:
2. Moving the leftmost < one position right (new X in position 2 appears):

W

. Moving > one position left (new x in position 1 appears):
4. Splitting x. Here we can not move < to the right since it does not produce a valid
diagram. But we can move > to the left.
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Let V and V* denote the natural and conatural representations respectively.

Lemma 11 If K(A) is the Kac module with highest weight A, then K(A) ® V (resp.
K(A) ® V*) has a filtration by Kac modules K(u) for all f,, obtained from f), by a
left (resp. right) simple move.

Proof Recall that K(A) = U(g) ®u(g@a(1)) Lu, (A). Hence
K(A) @V > U(8) ®ugeq) (Lyy(4) @ V).

Since the weights of V are {€y,...,€y,681,...,8,}, then K(1) ® V has a filtration
by K(u) for all dominant u in {A + €,...,A + €,,A + 81,..., A + &,}. The
corresponding weight diagrams are exactly those obtained from f; by a right simple
move. The case of K(A) ® V* is similar.

Next step is to define translation functors inspired by translation functors in
classical category O. For every M in ¥ we denote by (M), the projection on the
block 7. Then the translation functors between ¥ " and 7, are defined by

Ty FF — 7., M= M®V),
.+ +
sz.ﬁ — 7, M- M®V*),

Exercise Show that:

. The functors T, ., T;‘i , are exact.
. T7, is left and right adjoint to T} .
Ty T ,, map projective modules to projective modules.

. Assume that T, and T} , establish a bijection between simple modules in both

AW N =

blocks, then they establish an equivalence ?'X+ =~ F of abelian categories.
5. 1Ty, and T} , establish a bijection between Kac modules in both blocks, they
also establish a bijection between simple modules.

Proposition 8 Assume that at(x) = at(t) and f; is obtained from f, by a left (resp.
right) simple move, then T, ; : F,, — T (resp. T;t 1 Fy — ) is an equivalence
of abelian categories.

Proof Without loss of generality we do the proof in the case of a left move. Using
Lemma 11 one can easily check that T, and T7 , provide a bijection between Kac
modules in both blocks. Hence the statement follows from the preceding exercise.

Definition 12 A weight A is stable if all x-s in the weight diagram f; stay to the
left of < and >.

Introduce an order on the set of weights in the same block by setting v < p if
M — v is a sum of positive roots. One can easily see that v < p if v is obtained
from pu by moving some X to the left. Therefore if p is stable and v < u, then v is
also stable. We denote by T;‘ the full subcategory of ?'X"’ whose simple constituents

L(M) satisfy A < p. We call ;' a truncated block.
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Proposition 9 Let u be a stable weight of atypicality degree p, x = x,. Lets € Z
be minimal such that f,(s) # o. Let v be the weight of the principal block of al( p|p)
with weight diagram

Xifs—p<tr<s—1
fv:

o otherwise

Then F' is equivalent to the truncation F of the principal block of g1( p|p).

Proof (Sketch) We just explain how to define the functors establishing the equiva-
lence. Letu = (c1,...,¢cm | dy, ..., d,). Start with defining the parabolic subalgebra

pP=5& P g

Y
where
A =ATUle—¢m—p<j<i<mU{§—§|1<j<i<p}
U{di—¢€|l<i<p m—p<j<mi
in other words p consists of block matrices of the form

* % k%
0 % * %
0 % % %
000 %

where the middle square block has size p|p. Set

*x000 0 % % %

0x%x0 000 %
l:= , M=

0x%x0 000 %

000 % 0000

Clearly, p is a semi-direct product of the subalgebra [ ~ gl( p|p) @ k" +"~% and the
nilpotent ideal m. Consider the functor R : ¥, — ¥ defined by R(M) = M™.
Then its left adjoint / : ) — F,; maps a gl( p|p)-module N to the maximal finite-
dimensional quotient of the parabolically induced module

U(9) Bu(py (NKCp),

where C,, is the one-dimensional representation of k=2 with weight

M= (Cl,...,Cm_I,|dp+1,...,dn).
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It suffices to show that R and [ are exact and establish the bijection between
simple modules. Indeed, the exactness of R can be proven by noticing that R picks up
the eigenspace of K"~ with weight 1. Furthermore, if L(A) is a simple module
in ¥, then

/\:(Cl,...,cm_P,ll,...,lpl —lp,...,—ll,dp+1,...,dn)

forsome ty, ..., 1,. Itis easy to see that R(L(A)) = L(A"), where A" = (f1,....1, | —
ty,...,—t1) and that I(L(A")) = L(A). The exactness of I can be now proven by
induction on the length of a module.

The following combinatorial lemma is straightforward.

Lemma 12 For any weight diagram f,, there exists a stable weight diagram f,
obtained from f,, by a sequence of simple moves which do not change the degree of
atypicality.

Now we are ready to prove Theorem 10. Indeed, let F, x+ be a block with
atypicality degree p. Lemma 12 and Proposition 8 imply that any truncated block
7—‘}‘ is equivalent to a stable truncated block of the same atypicality. Hence by
Proposition 9 Tf is equivalent to some truncation of a principal block of gl( p|p).
Taking the direct limit of ?')é* we obtain equivalence between ?'X+ and the principal
block of gl( p|p).

It remains to prove the indecomposability of the principal block of gl( p|p). Note
that f, is obtained from f, by moving a x one position left, then [K(v) : L(v")] = 1.
Since K(v) is indecomposable, L(v) lies in the indecomposable block containing
L(v’). Since any diagram in the principal block can be obtained from the fixed one
by repeatedly moving x-s one position left or right, the statement follows.

6.4 Calculating the Kazhdan-Lusztig Multiplicities

We would like to mention without proof other applications of weight diagrams and
translation functors. We still assume that ¢ = gl(m|n). Then the category ¥ is a
highest weight category, [47], where standard objects are Kac modules. In particular,
we have BGG reciprocity for the multiplicities:

[K(A) : L(p)] = [P(u) - K(A)],

where P(u) denotes the projective cover of L(u). It is useful to compute these
multiplicities. It was done in [40] and in [1] by different methods. The answer is
very easy to formulate in terms of weight diagrams.

Let f be some weight diagram. We decorate it with caps by the following rule:

* Every cap has left end at x and right end at o.
* Every x is engaged in some cap, so the number of caps equals the number of
crosses.
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* There are no o under a cap.
* Caps do not cross.

We say that f” is adjacent to f if f’ is obtained from f by moving one x from the
left end of its cap to the right end. We say that f” is adjoint to f if /' is obtained from
f by moving several x from the left end of its cap to the right end. We assume that
f is adjoint to itself. If f has p x-s, then it has exactly p adjacent diagrams and 27
adjoint diagrams

Theorem 11 ([1, 33])
k if fi is adjacent to f,, or f, is adjacent to f),

Ext}:(L(A)aL(“)) - {0 otherwise

Theorem 12 ([1])

L if f,, is adjoint to f;

0 otherwise.

[P(A) - K(w)] =

7 Supergeometry and Borel-Weil-Bott Theorem

7.1 Supermanifolds

The notion of supermanifold exists in three flavors: smooth, analytic and algebraic.
We concentrate here on the algebraic version. The main idea is the same: we define
first superdomains and then glue them together.

By a superdomain we understand a pair (Up, Oy ), where Uy is an affine manifold
and Oy is the sheaf of superalgebras isomorphic to

A(E1.....5) ® Oy,

Oy, denotes the structure sheaf on Up. The dimension of U is (m|n) where m =
dimU().

For example, the affine superspace A”!" is a pair (A, O 4min). The ring of global
sections of O(A™") is a free supercommutative ring k[x; ... X, &1, ... &,]. If we
work in local coordinates, then we use roman letters for even variables, greek letters
for odd ones.

Definition 13 A supermanifold is a pair (Xy, Ox) where X is a manifold and Ox
is a sheaf locally isomorphic to (Uy, Oy) for a superdomain U. The manifold X is
called the underlying manifold of X and Oy is called the structure sheaf.

One way to define a supermanifold is by introducing local charts U; and then
gluing them together.
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Example 15 Consider two copies of A1 with coordinates (x, &, £&) and (y, 71, 12).
We give the gluing by setting:

y=x""+&8&, m=x'6, m=£&.

Example 16 Let X be a manifold, V be a vector bundle on X, and Oy is the sheaf
of sections of the exterior algebra bundle A(V). In particular, X, with the sheaf of
forms 2y, is a supermanifold.

Given the supermanifold X, we have the canonical embedding Xy — X and the
corresponding morphism of structure sheaves Ox — Oy,. Denote by Ix, the kernel
of this map. It is not difficult to see that Iy, is the nilpotent ideal generated by all
odd sections of Ox. Consider the filtration

Ox DIy, DIy D....

Then Gr(X) := (Xo, GrOx) is again a supermanifold. One can identify Gr(X) with
(Xo, I'(A( ;OX)), where N;OX denotes the conormal bundle for X, C X.

A supermanifold X is called split if it is isomorphic to Gr(X). In the category of
smooth supermanifolds all supermanifolds are split but this is not true for algebraic
supermanifolds.

Exercise Show that any supermanifold of dimension (m|1) is split. Is the super-
manifold defined in Example 15 split?

Another way to define a supermanifold is to use the functor of points, which is
a functor from the category (Salg) of commutative superalgebras to the category
(Sets). For general definitions see [3]. Let us illustrate this approach with the
following example.

Example 17 We define the projective superspace X = P'I' as follows. For a
commutative superalgebra A the set of A-points is the set of all submodules
A0 A2 This is the set of all triples (z1, 22, ¢) with z1, 25 € Ap and ¢ € Ay, such
that at least one of z;, 2, is invertible, modulo rescaling by an invertible element of
Ap. This supermanifold has two affine charts {(1, x, &)} and {(y, 1, n)} with gluing

functions £ = x5,y = x7\.

Exercise Check that in Example 17 Xo = P! and Ox ~ O @ [1O(-—1).

8 Algebraic Supergroups

An affine supermanifold G equipped with morphismsm : G X G — G,i: D — G
and e : {point} — G satisfying usual group axioms is called an affine algebraic
supergroup. We skip the word “affine” in what follows.

The ring O(G) of global sections of Og has a structure of Hopf superalgebra.
In fact, one can start with a Hopf superalgebra O(G) and define a supergroup as a
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functor:
G : (Salg) — {Groups}, G(A) = Hom(O(G), A).

Properties of Hopf algebras allow one to define the group structure on G(A).

The ideal I generated by the odd elements in O(G) is an Hopf ideal. The quotient
Hopf algebra O(G)/I is the Hopf algebra of regular functions on the underlying
algebraic group Gy.

Exercise GL(m|n).

GL(m|n)(A) = %Y _ (é g)}

satisfying the following conditions

¢ the entries on A and D are even elements in A, while the the entries of B and C
are odd;
e Y isinvertible.

Show that GL(m|n) is representable and construct the corresponding Hopf superal-
gebra.

Example 18 (Exercise) Consider the functor

AB

Ber : GL GL(1), B
er (m|n) — GL(1) er (C D

) = det(A — BDC)/det(D).

Check that Ber is a homomorphism. Hint: Write

ABY (1Y "0 10

cp) \o1J\oD)\x1)"
We define SL(m|n) by imposing the condition Ber = 1.
Show that GL(m|n)o = GL(m) x GL(n) and

SL(m|n)o = {(A, D) € GL(m) x GL(n) | detA = detD}.

Definition 14 Lie(G) is the Lie superalgebra of left invariant derivations of O(G)
and can be identified with 7,(G).

Exercise Lie(GL(m|n)) = gl(m|n), Lie(SL(m|n)) = sl(m|n).

A useful approach to algebraic supergroups is via the so called Harish-Chandra
pairs. In the case of Lie groups it is due to Koszul and Kostant, [27, 28], for complex
analytic category it is done in [46], for algebraic groups see [31].
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We call an HC pair the following data

* afinite-dimensional Lie superalgebra g = go @ g;;

 an algebraic group Gy such that Lie(Gy) = go;

* a Go-module structure on g; with differential equal to the superbracket
8o ® g1 — g1.

Theorem 13 The category of HC pairs is equivalent to the category of algebraic
supergroups.

Let us comment on the proof. It is clear that every supergroup G defines uniquely
a HC pair (g, Gy). The difficult part is to go back: given an HC pair (g, Gy), define a
Hopf superalgebra O(G). One way to approach this problem is to set

R = O(G) = Hom«u(go)(‘LI(g),O(Go)).
Define a multiplication map m : R ® R — R by

m(f1.f2)(X) := mo((fi ® f2)(Au(X))).

where my is the multiplication in O(Gy) and Ay is the comultiplication in U(g):
Ax)=x®1+1Q®x, xeaq.

It is easy to see that R is a commutative superalgebra isomorphic to S(g}) ® O(Go),
[28]. In particular, this implies that an algebraic group is a split supermanifold.

Next define the comultiplication A : R — R ® R. For g,h € Gy and x,y € U(g)
we set

Af(x,Y)gn = F(AAT) (x)Y)gh-

The counit map € : R — k is defined by

ef =€ of(1),

where ¢ is the counit in O(Gy). Finally, define the antipode s : R — R by setting
for all g € Gy, x € U(g)

sf(X)g = f(Ad(Q)su (X))

where sy is the antipode in U(g).

Theorem 14 ([31]) The category of representations of G is equivalent to the
category of (g, Go)-modules.

We now concentrate on the case of reductive Gy. By the above Theorem the
category Rep(G) of finite-dimensional representations of G is a full subcategory
of . Therefore we immediately obtain the following.
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Corollary 8 Ler Gy be reductive.

e Then Rep(G) has enough projective and injective objects.
* Every injective G-module is projective.

Exercise Assume that Gy is reductive. Check that
O(G) =~ Homqy(g,) (U(9). O(Go))
is an isomorphism of (g, Gp)-modules and use it prove that
0(G) = ®P(L)"™ ™
where L runs the set of irreducible representations of G and P(L) is the projective

cover of L. Hint: Use Frobenius reciprocity and the structure of O(Gy) as a Go-
module.

9 Geometric Induction

9.1 General Construction

Let H C G be a subsupergroup. It is possible to show that G/H is a supermanifold,
see [30]. The space of global sections of the structure sheaf is given by

O(G/H) := O(G)",
where H-invariants are defined with respect to the right action of H on G.
Furthermore, if M is a representation of H, then G xy M is a G-equivariant vector
bundle on G/H. We define:

O(G/H,M) = (O(G) @ M) = {f: G — M|f(gh) = h"'f(g), h € H}.
Thus, we associated in functorial way to every representation of H a representation
of G, namely, the space of global sections of G xy M. The corresponding functor
I' : Rep(H) —> Rep(G) is left exact. The right derived functor is given by the
cohomology

R'T'(M) = H(G/H, G xyz M).

It is a little bit more convenient to us to work with dual functors I;(G/H, )
defined by

I(G/H,M) := H(G/H, G xyg M*)*.
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The following statement is the Frobenius reciprocity for geometric induction and
the proof is the same as for algebraic groups.

Proposition 10 For any H-module M and G-module N we have a canonical
isomorphism

Homg(I'0(G/H,M),N) >~ Homg(M, N).

Exercise If G = Gy, then I;(M) = 0 fori > 0 and Io(M) = U(9) Qugy) M.

9.2 The Borel-Weil-Bott Theorem

Let G be an algebraic supergroup with basic Lie superalgebra g. Fix a Cartan
subalgebra ) and a Borel subalgebra b D b and denote by B C G and H C B the
corresponding subgroups. The supermanifold G/B is called a flag supermanifold.
Its underlying manifold Gy /By is a classical flag manifold.

Recall that in the Lie algebra case flag manifolds play a crucial role in the
representation theory of g. In particular, all the irreducible representations of a
reductive algebraic group can be realized as global sections of line bundles on
the flag variety by the Borel-Weil-Bott theorem. Let us see what happens in the
supercase.

Consider the H-weight lattice A in b*. Every A € A defines a unique one-
dimensional representation of B which we denote by c,. We are interested in
computing I;(G/B,c)) = 0. The Frobenius reciprocity (Proposition 10) implies
the following

Corollary 9 I(G/B,cy) is isomorphic to the maximal finite-dimensional quotient
Ky (L) of the Verma module My(A).

Lemma 13 Assume that the defect of g is positive. Then the flag supervariety G/B
is split if and only if g is type 1 and b is distinguished or antidistinguished.

Proof First, let us assume that G/B is split. Then we have a projection = : G/B —
Go/By and the pull back map

¥ 1 Gy Xp, c—x — G Xpc_y
which induces the embedding
H(Go/Bo, Go xp, c—3) — H(G/B, G xp c_;).
After dualizing we obtain a surjection

IV (G/B, cy) — TI(Go/Bo, c3).
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If A is a Go-dominant weight, then I'h(Go/By, c)) = Ly, (A) # 0. By Corollary 9
Ky (A) # 0. Hence A is G-dominant. Thus, every dominant Go-weight is G dominant
and this is possible only for distinguished Borel or for osp(1]2n).

Now let b = by g(£1) be a distinguished or antidistinguished Borel subalgebra.
Then it is easy to see that

OG/B - OG()/B() &® A(g(il)*)

The following result is a generalization of Borel-Weil-Bott theorem in the case
of typical A. We call a weight p regular (resp. singular) if it has trivial (resp. non-
trivial) stabilizer in W. We denote by AT C A the set of all & € A such that
2(%';;) € Z for all even positive roots «. It follows from Sect. 4.1 that a typical A is
dominant if and only if A 4+ p € AT,

Theorem 15 ([35]) Let A € A be typical.

1. If A + p is singular then I;(G/B, cy) = 0 for all i.
2. If A + p is regular there exists a unique w € W such that w(A + p) € A™. Let |
be the length of w. Then

0 ifidl
nG/B.ey=1{" "7
Lw-A), ifi=1L
Proof We give here just the outline, see details in [35]. First, if A is dominant then
by Corollary 9 IH(G/B, c1) = Kp(A) and by typicality of A we have Ky(1) = Ly(1).
If @ or e is a simple root of B, then one can show using the original Demazure

2
argument, that

E(G/B’CM) = E+1(G/Bvcra~u)7 4

if 2(pt|e)

ooy > 0. Furthermore, if 2l _ 0, then

(cfer)

Ii(G/B.c,) =0 &)

for all i.

However, not every simple root of by is a simple root of b and therefore we need
to involve odd reflections and change of Borel subalgebras.

Let « be an isotropic simple root and b’ be obtained from b by the odd reflection
ro. Then we claim that

I'(G/B,c)) ~ I;(G/B ,cy). ©)
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where A+p = A’'+p’. To show this we consider the parabolic subalgebrap = b+b'.
Then we have two projections

p:G/B—G/P, p :G/B — G/P,
the fiber of both projections is a (0|1)-dimensional affine space and we have
p*(G XB C_A) = p;(G Xpr C_)V) =G xp V;,

where V, is the two-dimensional simple P-module with weights —A and —A’. Note
that here we use that (A 4+ p, @) # 0 by the typicality of A. This implies

H'(G/B,G xp c_;) ~ H(G/P,G xp V;) ~ H(G/B',G xp ).

After dualization we obtain (6).
Let us assume again that A is dominant and consider the Borel subalgebra b’
opposite to b. Combining (4) and (6) we obtain

E(G/B, C)k) = n-l—d(G/B/a CW()')L)a

where wy is the longest element of W and its length d equals dimGy/By. That
implies the second statement of the theorem for dominant A. Using (4) and (6) we
can reduce the case of arbitrary regular A + p to the dominant case.

If A + p is singular, then there is a simple root « of by such that (A + p, ) = 0.
Using odd reflections and (6) we can change the Borel subgroup B to B’ and A so that
o or éa is a simple root of B’. Then the vanishing of cohomology follows from (5).

Computing I;(G/B, c,) for atypical A is an open question. The main reason why
the proof in this case does not work is the absence of (6). It is known from examples
that I;(G/B, ¢;) may not vanish for several i.

Finally let us formulate the following analogue of Bott’s reciprocity relating I;
with Lie superalgebra cohomology. The proofis straightforward using the definition

of the derived functor (see [20]).

Proposition 11 For any finite-dimensional B-module M and any dominant weight
A, we have

[H'(G/B.G x3 M) : Ly(A)] = dim Exty(Py(A), M) = dimH'(n", P{ (1) ® M)",

where Py(A) denotes the projective cover of Ly(A).
After dualizing and setting M = c_, we obtain the following

Corollary 10

[[7(G/B.¢,) : Ly(A)] = dim Homy (¢, H'(n*, Py(1))) .
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9.3 Application to Characters

Although we do not know I;(G/B, c,) for atypical A, we can calculate the character
of the Euler characteristic.

Theorem 16 The character of the Euler characteristic is given by the typical
character formula, i.e.

dim (Go/Bo) ' D
Y (=1)chI(G/B.cy) = Dl > sgn(w)er 40,

i=1 wew

Proof Consider the associated split manifold Gr(G/B) and the associated graded
L = Gr(I') of the sheaf I of sections of G xp c—,. Since Euler characteristic is
preserved after going to the associated graded sheaf we have

dim (Go/Bo) dim (Go/Bo)

> (=1)'chH(G/B.Gxgcy)= Y (=1)chH(Gr(G/B). L).

i=1 i=1

Note that L is a Gy-equivariant vector bundle on Gy /By, and the classical Borel—
Weil-Bott theorem allows us to calculate the right hand side of the above equality.
Indeed, if NV denotes the conormal bundle to G/ By, then

L~ AN) ® (Go x5, c-1) = Go Xp, (c—2 ® A*(g1/D1)).

and
dim(Go/Bo) 1
Z (-1 ehH'(G/B.D) = > sgnww(e e T (1—e)).
i=1 wew aEA?_

which is equivalent to the typical character formula.
Note that Theorems 16 and 15 imply Theorem 2.

Definition 15 Let A be a weight of atypicality degree p. It is called fame with
respect to the Borel subalgebra b if there exists isotropic mutually orthogonal simple
roots oy, . .., o, such that

(+ plo) = - = (A + play,) = 0.

Conjecture 4 (Kac—Wakimoto, [25]) If A is dominant and tame with respect to b,
then

A+
chLb(k)zgl ngn(w)w( e ) %)

wew ‘;)=1 (1 - e_ai)
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The right hand side of formula (7) is the character of the Euler characteristic

dim (Go/Bo)

> (=1)chTHG/Q.ch).

i=1
where Q is the parabolic subgroup with Lie superalgebra
q:= b@g—al @"'@g—ap-

Hence one way to prove Conjecture 4 is to prove the following

Conjecture 5 1If A is tame with respect to b, then I';(G/Q,cy) = 0if i > 0 and
Ih(G/Q,c)) = Ly(A).
For classical Lie superalgebras Conjecture 5 is proven in [5].

9.4 Weak BGG Reciprocity

Let K(G) denote the Grothendieck group of the category Rep(G) and [M] denote
the class of a G-module M. Clearly [Ly(A)], for all dominant A € A, is a basis of
K(G). Set

[E(1)] = Y (~1[[I(G/B, ).

As we already mentioned in Sect. 6.4, if g is of type 1 then Rep(G) is a highest
weight category. For type 2 superalgebras this is not true. Nevertheless one can
use virtual modules Ey(A) instead of Ky(A) and obtain the following weak BGG
reciprocity.

Theorem 17 ([20]) Let A € A be dominant and ju € A be such that u +p € A™.
There exists unique aj,_, € Z such that

[E()] = Y ar ulLs(M)]

and

[PeV)] =) aru[& ()]

9.5 D-Modules

In this subsection we discuss briefly possible generalizations of the Beilinson-
Bernstein localization theorem for basic classical Lie superalgebras. The basics on
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PD-modules on supermanifold can be found in [36]. The main result there is that if X
is a supermanifold with underlying manifold X, then Kashiwara extension functor
provides the equivalence between categories of Dy,-modules and Dx-modules.

This fact is easy to explain in the case when X is a superdomain. Indeed, in this
case

0(X) = 0(Xo) ® A1, - ... &)

and this implies an isomorphism
DX) = D(Xop) @ D(A(&1,....8)),

where D(A(&1,...,&,) is the superalgebra of the differential operators
on (0|n)-dimensional supermanifold A©".  Since A(&,...,&,) is finite-
dimensional, the superalgebra D(A(&,...,£&,)) coincides with the superalgebra
Endi(A(&,...,&,)). This immediately implies the Morita equivalence of D(X)
and D(Xy).

Let A be a weight of g and X = G/B be a flag supermanifold. As in the usual
case one can define the sheaf of twisted differential operators D)A(. Let U*(g) denote
the quotient of U(g) by the ideal generated by the kernel of the central character
X1 : Z(g) — k. The embedding of the Lie superalgebra g to the Lie superalgebra of
vector fields on X induces the homomorphism of superalgebras

P UMg) — DM(X).

Recall that it is an isomorphism if g is a reductive Lie algebra. Moreover, for
dominant A the localization functor provides equivalence of categories of U*(g)-
modules and Dﬁ‘(-modules. In the supercase, the similar result is true for generic
typical A, see [36].

Theorem 18 Let A be a generic typical weight such that z(fjllf)) ¢ Zo for all even
positive roots o. Then the functors of localization and global sections establish
equivalence of categories of U*(g)-modules and D)A(-modules.

Note that essentially this theorem is equivalent to Theorem 4. In fact Theorem 18
was used by Penkov for the proof of Theorem 4. If A is not typical, then the
homomorphism p, is neither surjective nor injective. On the other hand, it is not
difficult to see that for atypical A the superalgebra 7/*(g) has a non-trivial Jacobson
radical, see [41]. There is an evidence that the following conjecture may hold.

Conjecture 6 Let A be a regular weight, tame with respect to b, and let T4* () denote
the quotient of U*(g) by the Jacobson radical. Let Z denote the center of U*(g).
Let Q D B be the maximal parabolic subgroup of G such that its Lie superalgebra q
admits one-dimensional representation c;. Finally let Y := G/ Q.

If T : Z — kis a generic central character and ‘L_I? (g) is the quotient of U*(g)
by the ideal (ker t), then the categories of ‘L_I? (9)-modules and D%,-modules are
equivalent.
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10 Direct Limits of Lie Algebras and Superalgebras

The goal of this section is to say few words about representations of direct limits of
classical Lie superalgebras. We will discuss here only the case of gl(co|oco) and refer
to [43] for the case of nsp(oco|oo). Surprisingly, for some class of representations
the difference between the Lie superalgebra gl(co|oo) and the Lie algebra gl(co)
disappears.

10.1 Category of Tensor Modules

Let V, W be countable-dimensional vector spaces (resp. superspaces) with non-
degenerate even pairing (-,-) : W x V — k. It is known that one can choose a
pair of dual bases in V and W. The tensor product V ® W is a Lie algebra (resp.
superalgebra) g with the following bracket:

[V1 @ wi,v2 ® wa] = (Wi, V2)v1 ® wy — (= 1)TTDEH) () 4 Yy @ wy.

We denote this (super)algebra gl(co) in the even case and gl(co|oco) in the supercase.
Note that both V and W are g-modules and g acts on V and W by linear operators
of finite rank. It is not difficult to see that g can be identified with infinite matrices
with finitely many non-zero entries and hence

gl(c0) = limgl(n),  gl(co|oc) = lim gl(m|n).

Let 774 = V® ® W®4. We would like to understand the structure of g-module
on 774 1Tt is clear that the product of symmetric groups S, x S, acts on 779 and
this action commutes with the action of g. Irreducible representations of S, x S, are
parametrized by bipartitions (A, i) such that |A| = p, || = ¢. The following result
is a classical Schur—Weyl duality. In the supercase its proof is due to Sergeev, [44].

Theorem 19 Let g = gl(00) or gl(co|oo). Then we have the following decomposi-
tion

TP — @ Sy (V) ® Su(W) ® Ya
[Al=p.|1l=q

where S, (V) and S,,(W) are simple g-modules and Y , is the irreducible represen-
tation of S, x S, associated with a bipartition (A, ).

Let g = gl(c0). It is proven in [37] that $; (V) ® S, (W) is an indecomposable
g-module of finite length with simple socle V(A, ). Denote by Trepg the abelian
category of g-modules generated by finite direct sums of 777 and all their subquo-
tients. This is a symmetric monoidal category which in the case of g = gl(co) was
studied in [8] and [38].
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Theorem 20 ([8]) Let g = gl(c0). Any simple object of Trepg is isomorphic to
V(A, w) for some bipartition (A, n) and Sy(V) @ S, (W) is the injective hull of
V(A, w). In particular, the category Trepg has enough injective objects. Moreover,
any object in Trepg has a finite injective resolution.

It is also proven in [8] that Trepg is a Koszul self-dual category.

Let us consider the case g = gl(co|oo). We start by constructing two functors F;
and F, from the category Trepg to the category Trepgl(co). Observe that the even
part gl(co|oo) is a direct sum g; @ g, with both g; = V) ® Wy and g, = V; ® W)
isomorphic to gl(oco). For any M € Trepg we set

F/(M) =M%, F.(M):=M".

Theorem 21 ([43]) Let g = gl(co|oo).

(a) F; and F, are exact tensor functors, i.e. F{(M @ N) = F;(M) ® F;(N) and the
same for F,.

(b) Fjand F, have left adjoint functors which we denote by R; and R, respectively.

(c) F; and R; (resp. F, and R,) are mutually inverse equivalences of tensor
categories Trepg and Trepg; (resp. Trepg,).

Remark 11 The compositions F, o R; and F; o R, provide an autoequivalence of
Trepgl(oco) which sends a simple module V(A, 1) to the simple module V(1/, 1),
where 1’ stands for the partition conjugate to v.

Remark 12 The corresponding construction works as well for the Lie superalgebra
g = psp(oco|oo). Here g = so(oo) and g, = sp(oo). In particular, we establish
equivalence of tensor categories Trepso(oco) and Trepsp(co).

Remark 13 The category Trepg contains a semisimple subcategory Trep™ g consist-
ing of modules appearing in 77, p € N.

10.2 Egquivalences for Parabolic Category O

In this subsection we will show how functors F, and F; help to prove equivalence of
certain parabolic category O for gl(m|oco) and gl(co). This result is originally proven
in [6] by using infinite chain of odd reflections.

Let ¢’ = gl(00), ¢” = gl(m|oco) and g = gl(c0|o0). We fix the embeddings ¢’ and
g” into g in the following way. Realize g as matrices with finitely many non-zero
entries written in the block form

A1 A Az
Ay1 Arp Az |,
Azl Azp Az
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where A | has size m x m, A, and A, 3 have size m x 00, A, and A3z have size
oo x m and A, » and A3 3 have size oo x co. The even part gy consists of matrices of
the form

A1 A O
A1 Ay O],
0 0 Ass

and the odd part g; of matrices of the form

0 0 A3
0 0 Ass
A3z1Azp 0

Then ¢ consists of matrices

A1 A2 0
A1 A2 0],
0O 00

and g” of matrices

A1 0A3
000
Az1 0A33

Let ¥’ and t” be subalgebras of matrices of the form

00 O 00O
00 O and 0A4,,0]),
00As3;3 00O

respectively. Then it is not hard to see that ¢ is the centralizer of ¥ and g” is the
centralizer of g”.
Next we consider the parabolic subalgebra p C g consisting of matrices

A1 A Az
0 AyrAszs |,
0 Az As;

with abelian ideal m
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and the Levi subalgebra [

Al 00
0 AyprAxs |,
0 Az As;

isomorphic to gl(m) @ gl(co|oco).

Finally we set p’ := pN g and p” := p N g”. Note that p’ C ¢’ and p” C ¢”
are parabolic subalgebras. Now we consider the category O(g, p) consisting of all
g-modules M satisfying the following conditions

* M is finitely generated;

* M is semisimple over the diagonal subalgebra of g with integral weights;

* M is an integrable p-module and the restriction to the subalgebra gl(co|oco) C p
belongs to the inductive completion of Trep™ gl(co|00).

In a similar way we define the categories O(¢’, p’) and O(g”, p”) for algebras ¢’ and
g” respectively. As in the previous subsection we define the functors

F/ : O(q, p) — O(g/, p/)’ F// . O(g, p) — O(g//, p//)
by setting
FMy=M', F'M)=M".

Then we have the following analogue of Theorem 21.
Theorem 22

(a) F' and F" have left adjoint functors which we denote by R’ and R” respectively.

(b) F' and R’ (resp. F"" and R") are mutually inverse equivalences of abelian
categories O(g, p) and O(g', p') (resp. O(g”, p")).

(c) The composite functors F” o R and F' o R" are mutually inverse equivalences
of abelian categories O(¢', V') and O(g”, p”).
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Abstract These are lecture notes from author’s mini-course on W-algebras during
Session 1: “Vertex algebras, W-algebras, and application” of INJAM Intensive
research period “Perspectives in Lie Theory”, at the Centro di Ricerca Matematica
Ennio De Giorgi, Pisa, Italy. December 9, 2014—February 28, 2015.
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1 Introduction

This note is based on lectures given at the Centro di Ricerca Matematica Ennio
De Giorgi, Pisa, in Winter of 2014-2015. They are aimed as an introduction
to W-algebras and their representation theory. Since W-algebras appear in many
areas of mathematics and physics there are certainly many other important topics
untouched in the note, partly due to the limitation of the space and partly due to the
author’s incapability.

The W-algebras can be regarded as generalizations of affine Kac-Moody algebras
and the Virasoro algebra. They appeared [34, 70, 78] in the study of the classification
of two-dimensional rational conformal field theories. There are several ways
to define W-algebras, but it was Feigin and Frenkel [36] who found the most
conceptual definition of principal W-algebras that uses the quantized Drinfeld-
Sokolov reduction, which is a version of Hamiltonian reduction. There are a lot of
works on W-algebras (see [26] and references therein) mostly by physicists in 1980s
and 1990s, but they were mostly on principal W-algebras, that is, the W-algebras
associated with principal nilpotent elements. It was quite recent that Kac et al.
[60] defined the W-algebra #*(g.f) associated with a simple Lie algebra and its
arbitrary nilpotent element f by generalizing the method of quantized Drinfeld-
Sokolov reduction.

The advantage of the method of quantized Drinfeld-Sokolov reduction is its
functoriality, in the sense that it gives rise to a functor from the category of
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representations of affine Kac-Moody algebras and to the category of representations
of W-algebras. Since it is difficult to study W-algebras directly (as no presentation
by generators and relations (OPE’s) is known for a general W-algebra), in this note
we spend the most of our efforts in understanding this functor.

Although our methods apply to much more general settings [4, 6, 9, 10, 12] we
focus on the W-algebras associated with Lie algebras g of type A and its principal
nilpotent element that were originally defined by Fateev and Lykyanov [34]. They
can be regarded as affinization of the center of the universal enveloping algebra
of g via Konstant’s Whittaker model [65] and Kostant-Sternberg’s description [66]
of Hamiltonian reduction via BRST cohomolgy, as explained in [36]. For this
reason we start with a review of Kostant’s results and proceed to the construction
of BRST complex in the finite-dimensional setting in Sect. 2. W-algebras are not
Lie algebras, not even associated algebras in general, but vertex algebras. In many
cases a vertex algebra can be considered as a quantization of arc spaces of an affine
Poisson scheme. In Sect. 3 we study this view point that is useful in understanding
W-algebras and their representation theory. In Sect. 4 we study Zhu’s algebras
of vertex algebras that connects W-algebras with finite W-algebras [27, 75]. In
Sect. 5 we introduce W-algebras and study their basic properties. In Sect. 6 we start
studying representation theory of W-algebras. In Sect. 7 we quickly review some
fundamental results on irreducible representations of W-algebras obtained in [5].
One of the fundamental problems (at least mathematically) on W-algebras was the
conjecture of Frenkel et al. [44] on the existence and construction of so called the
minimal models of W-algebras, which give rive to rational conformal field theories
as in the case of the integrable representations of affine Kac-Moody algebras and the
minimal models of the Virasoro algebra. In Sect. 8 we give an outline of the proof
[10] of this conjecture.

2 Review of Kostant’s Results

2.1 Companion Matrices and Invariant Polynomials

Let G = GL,(C) be the general linear group, and let g = gl,,(C) be the general
linear Lie algebra consisting of n x n matrices. The group G acts on g by the adjoint
action: x = Ad(g)x = gxg~!, g € G. Let C[g]° be the subring of the ring C[g] of
polynomial functions on g consisting of G-invariant polynomials.

Recall that a matrix

00 - 0 —a
10 -0 —an
A=101 0 —a3 (1)
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is called the companion matrix of the polynomial a; +ast+ a4 ta, 41 e
Clr] since

det(tl —A) = a; + axt + ast 4 -+ a1 2)

Let S be the affine subspace of g consisting of companion matrices of the form (1).
Lemma 1 For A € g the following conditions are equivalent.

1. AeG-S
2. There exists a vector v € C" such that v,Av,A%v, ..., A" v are linearly
independent.

Theorem 1 The restriction map gives the isomorphism

Clgl¢ = C[S].
Proof Let f € C[g] be a G-invariant polynomial such that f|s = 0. Then clearly
fle.s = 0. On the other hand it follows from Lemma 1 that G.S is a Zariski open
subset in g. Therefore f = 0. To see the surjectiveness define p1,. .., p, € C[g]® by

det(tI —A) ="+ p1 (A" ' —--- +p,(4), Acg.

By (2), we have C[S] = Clpi|s, - - -, puls]- This completes the proof.
Put

Note that f is a nilpotent element of g, that is, (adf)” = 0 for a sufficiently large r.
We have

S=f+a,

where

S
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Let b, n be the subalgebras of g defined by

and let N be the unipotent subgroup of G corresponding to n, i.e.,

N={ } “4)
0o .

1

Let (| ) be the invariant inner product of g defined by (x|y) = tr(xy). This gives
a G-equivariant isomorphism g — g*.
Define y € n* by

x(x) = (flx) forx en.

Note that y is a character of n, that is, y([n,n]) = 0. Hence y defines a one-
dimensional representation of N.
Consider the restriction map

wigt—n*
Then
—1 _ 1~
po () =x+n-=f+b.

Here g is identified with g* via (| ). Since u is N-equivariant and y is a one-point
orbit of N, it follows that f 4 b is stable under the action of N.

Theorem 2 (Kostant [65]) The adjoint action gives the isomorphism
NxSSf+b, (g,x)— Ad(g)x

of affine varieties.

Proof Itis not difficult to see that the adjoint action gives the bijection N xS = f+
b. Since it is a morphism of irreducible varieties and f 4 b is normal, the assertion
follows from Zariski’s Main Theorem (see e.g., [76, Corollary 17.4.8]).
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Corollary 1 The restriction map gives the isomorphisms
Clg]® = C[f + b]" = C[S].
Proof By Theorem 2, we have
Clf + b]" = C[N]Y ® C[S] = CIS].

Hence the assertion follows from Theorem 1.

2.2 Transversality of S to G-Orbits

Lemma 2 The affine spaces S and f + b intersect transversely at f to AdG - f.

Proof We need to show that
Tyg = TyS + T;(AdG - f) &)

But Trg = ¢, TrS = a, T;(AdG - f) = [g.f]. The assertion follows since g =

a+ [g.f].
Using the Jacobson-Morozov theorem, we can embed f into an sl,-triple {e, f, i}
in g. Explicitly, we can choose the following elements for e and A:

n—1 n
e = Z l(}’l — i)ei,H_l, h = Z(l’l + 1 - 2i)ei,i, (6)

i=1 i=1

where ¢;; denotes the standard basis element of g = Mat, (C).

The embedding sl, = spanc{e, h,f} — g exponents to a homomorphism SL, —
G. Restricting it to the torus C* consisting of diagonal matrices we obtain a one-
parameter subgroup y : C* — G. Set

p:C* 3t Ady(r) € GL(g). (7)
Then

p((f + Zcijei.j) =f+ Z At ey .

isj isj

Thus it define a C*-action on g that preserves f 4+ b and S. This action on f + b and
S contracts to f, that is, p(f)x — f whent — 0.



184 T. Arakawa

Proposition 1 The affine space f + b (resp. S) intersects AdG - x transversely at
any point x € f + b (resp. x € S).

Proof By Lemma 2 the intersection of f 4 b with AdG-orbits is transversal at each
point in some open neighborhood of f in f + b. By the contracting C*-action p, it
follows that the same is true for all points of f + b.

2.3 The Transversal Slice S as a Reduced Poisson Variety

The affine variety g* is equipped with the Kirillov-Kostant Poisson structure: the
Poisson algebra structure of C[g*] is given by

{x,y} =[x.y] forx,yegc Clg"].

Consider the restriction map p : g* — n*, which is a moment map for the N-
action on g*. That is, u is a regular N-equivariant morphism that gives the following
commutative diagram of Lie algebras:

=
Clg*] —— DerClg*]

Here u* : n — g C C[g*] is the pullback map, the map C[g*] — Der C[g*] is given
by ¢ +— {¢,?}, and n — Der C[g*] is the Lie algebra homomorphism induced by
the coadjoint action of G on g*.

The transversality statement of Proposition 1 for f + b is equivalent to that y is a
regular value of 1. By Theorem 2, the action of N on ' () = y + n' is free and

S=u'(p)/N.

Therefore S has the structure of the reduced Poisson variety, obtained from g* by
the Hamiltonian reduction.
The Poisson structure of S is described as follows. Let

I = Clg*] Y (x— x()).

XEN

so that

Clw™"' (0] = Clg"1/1y.
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Then C[S] can be identified as the subspace of C[g*]/I, consisting of all cosets
¢ + Clg*]I, such that {x, ¢} € C[g*]I, for all x € n. In this realization, the Poisson
structure on C[S] is defined by the formula

{¢ + Clg"|Iy.¢' + Clg*l;} = {¢.¢'} + Clg"]I,
for ¢, ¢’ such that {x, ¢}, {x,¢'} € C[g*]I, forall x € n.

Proposition 2 We have the isomorphism C[g*]® = C[S] as Poisson algebras. In
particular the Poisson structure of S is trivial.

Proof The restriction map C[g*]® — C[S] (see Corollary 1) is obviously a homo-
morphism of Poisson algebras.

In the next subsection we shall describe the above Hamiltonian reduction in
more factorial way, in terms of the BRST cohomology (where BRST refers to the
physicists Becchi, Rouet, Stora and Tyutin) for later purpose.

2.4 BRST Reduction

Let CI be the Clifford algebra associated with the vector space n @ n* and its non-
degenerate bilinear form (-|-) defined by (f + x|g +y) = f(y) + g(x) for f, g €
n*,x,y € n. Namely, Cl is the unital C-superalgebra that is isomorphic to A(n) ®
A(n*) as C-vector spaces, the natural embeddings A(n) < CI, A(n*) — Cl are
homogeneous homomorphism of superalgebras, and

[x.f]=f(x) xencC A(n), f en* C A(nY).

(Note that [x,f] = xf + fx since x, f are odd.)
Let {xy}oea, beabasis of n, {x} }sea, the dual basis of n*, and cgq P the structure

constants of n, that is, [xq,xg] = Y./ P cgﬂx},.

Lemma 3 The following map gives a Lie algebra homomorphism.
p:n— Cl

Y *
Xog /> Z ca’ﬂxyxﬁ.
B.yeAy

We have

[px),y] = [x,y] enC Cl forx,y € n.
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Define an increasing filtration on CI by setting Cl, := AS(n) ® A(n*). We have

0=Cl.,cClycClL---CCly=Cl,

and

where N = dimn = "("2_1),

Cl,-Cl, C Clyyy, [Cly, Cly] C Clyyer. (8)

Let CI be its associated graded algebra:

Cl
Cl:= ngl:@ P

p=0 p—1

By (8), Cl is naturally a graded Poisson superalgebra, called the classical Clifford
algebra.

We have CI = A(n) ® A(n*) as a commutative superalgebra. Its Poisson
(super)bracket is given by

{x.f} =f(x), xencC An), fen* C A(n"),
{x.y} =0, x,yencC A(m), {f.g}=0,f.gen” CAWn").

Lemma 4 We have CI" = A(n), where cl = {we Cl|{x,w}=0,Yx € n}.
The Lie algebra homomorphism p : n — CI; C Cl induces a Lie algebra
homomorphism
p:=0r0p:n— Cl, )
where o is the projection C/; — Cl;/Cly C gr Cl. We have
{p(x),y} = [x,y] forx,yen.
Set

C(e) = Clg*] ® CL.

Since it is a tensor product of Poisson superalgebras, C(g) is naturally a Poisson
superalgebra.

Lemma 5 The following map gives a Lie algebra homomorphism:

éx :n— C(g)
x> (W) — () ® 1+ 1® p(x),

that is, {éx(x), éx(y)} = éx([x, y]) forx,y e n.
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Let C(g) = D,z C"(g) be the Z-grading defined by degp ® 1 = 0 (¢ € C[g*]),
degl ® f =1 (f en*),degl ® x = —1 (x € n). We have

C'(g) = Clg*] ® (EP A'(n) ® A (n*)).

Jj—i=n

Lemma 6 ([20, Lemma 7.13.3]) There exists a unique element Q € C'(g) such
that

{0,1®x} = éx(x) forx €.

We have {Q, Q} = 0.

Proof Existence. It is straightforward to see that the element

= 1
Q=) (u— () ®x; =18, ) ¢ zxxpxy
“« apy

satisfies the condition.

Uniqueness. Suppose that 01, 0, € C'(g) satisfy the condition. Set R = Q; —
0, € C'(g). Then {R,1 ® x} = 0, and so, R € C[g*] ® CI". But by Lemma 4,
cl*ncl' =0. Thus R = 0 as required.

To show that {Q, Q} = 0, observe that

(1x{1®y,{0,0}}} =0, Vx,yen

(note that_Q is odd). Applying Lemma 4 twice, we get that {Q, Q} = 0.
Since Q is odd, Lemma 6 implies that

- - 1 - -
10.1Q.a}} = 0. 0}.a; =0
for any a € C(g). Thatis, adQ := {Q, -} satisfies that

(adQ)* = 0.

Thus, (C‘(g),_ad Q) is a differential graded Poisson superalgebra. Its cohomology
H*(C(g),adQ) = € H'(C(g),ad Q) inherits a graded Poisson superalgebra struc-
i€Z
ture from C(g).
According to Kostant and Sternberg [66] the Poisson structure of C[S] may be
described through the following isomorphism:
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Theorem 3 ([66]) We have H'(C(g),ad Q) = 0 for i # 0 and
H°(C(g).adQ) = C[S]

as Poisson algebras.
Proof Give a bigrading on C := C(g) by setting
CY = Clg*] ® A'(n*) ® A7 (n),
sothat C= @ CW.
i20j<0 .
Observe that ad Q decomposes as adQ = d+ + d— such that
d_(C%) c CYt',  dy(CY)y c CtY. (10)

Explicitly, we have

d- = (n— 1(x) ®adx},

1
dy = Z ady; @xF —1® ) Z cfiix?‘x;‘adxk + Z 1 ® p(x;)adx.

i ik
Since ad 0% = 0, (10) implies that
d* =d} =[d_,dy] = 0.
It follows that there exists a spectral sequence
E, = H*(C(g),adQ)
such that

EY? = H(C(g),d-) = H'(C[g*] ® A(n),d_) ® A*(n%),
)Y = HP(HY(C(g).d-).dy).
Observe that (C(g),d_) is identical to the Koszul complex C[g*] associated with

the sequence x; — y(x1),x — y(x2.)...,xy — x(xy) tensorized with A(n*). Since
Clpe~' (0] = Clg*]/ X Clg*1(xi — x(x:)), we get that

Clu™' (01 ® A(w™), if i=0

H(C(g),d-) =
(¢g).d-) 0, it i#0.
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Next, notice that (H°(C(g),d-).d) is identical to the Chevalley complex for the
Lie algebra cohomology H*(n, C[it~" ())]). Therefore Theorem 2 gives that

ClS], i=0

"(H* ,d-),dy) =
H'(H*(C(g).d-).d+) 0 i %0,

Hence the spectral sequence collapses at E; = Eq, and we get that H'(C(g), ad Q) =
0 for i # 0. Moreover, there is an isomorphism

H’(C(g),adQ) = H(H’(C(g),d-),d+) = C[S], [c] = [c].

This completes the proof.

Theorem 4 The natural map C[g*]® — H°(C(g), ad Q) defined by sending p to
p ® 1 is an isomorphism of Poisson algebras.

Proof 1t is clear that the map is a well-defined homomorphism of Poisson algebras
since C[g*]® is the Poisson center of C[g*]. The assertion follows from the
commutativity of the following diagram.

Clg*1

ClS] «—— HYC(g).adD).

2.5 Quantized Hamiltonian Reduction

We shall now quantize the above construction following [66].

Let {U;(g)} be the PBW filtration of the universal enveloping algebra U(g) of g,
that is, U;(g) is the subspace of U(g) spanned by the products of at most i elements
of g. Then

0=U-1(8) C Up(g) C Us(g) C.... Ulg)=|JUiw).

Ui(g) - Ui(g) C Uitj(9), [Ui(9), Uj(9)] C Uitj—1(9).

The associated graded space gr U(g) = @5 Ui(g)/Ui-1(g) is naturally a Poisson
algebra, and the PBW Theorem states that

grU(g) = Clg”]

as Poisson algebras. Thus, U(g) is a quantization of C[g*].
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Define
C(g) = U(g) ® CL

It is naturally a C-superalgebra, where U(g) is considered as a purely even
subsuperalgebra. The filtration of U(g) and CI induces the filtration of C(g):
Cp(9) = > 4<, Ui(9) ® Clj, and we have

grC(g) = C(g)

as Poisson superalgebras. Therefore, C(g) is a quantization of C(g).
Define the Z-grading C(g) = €D C"(g) by setting deg (u ® 1) = 0 (u € U(g)),

nez

deg(1®f) =1 €n*),deg(l1 ® x) = —1 (x € n). Then

C'(g) = U(g) ® (P A'(n) ® A(n*)).

ji=n
Lemma 7 The following map defines a Lie algebra homomorphism.

0, :n— C(g)
x> (x—x(x) @1+ 1 p(x)

Lemma 8 ([20, Lemma 7.13.7]) There exists a unique element Q € C'(g) such
that

[0.1®x] =6,(x), Vxen.

We have Q% = 0.

Proof The proof is similar to that of Lemma 6. In fact the element Q is explicitly
given by the same formula as Q:

1
Q=) (t— () ®x; —1® ) ) ) pixiyy.
« apy

Since Q is odd, Lemma 8 implies that

(adQ)? = 0.

Thus, (C(g),adQ) is a differential graded algebra, and its cohomology
H*(C(g),ad Q) is a graded superalgebra.

However the operator on gr C(g) = C(g) induced by adQ does not coincide
with ad Q. To remedy this, we introduce the Kazhdan filtration K+C(g) of C(g) as
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follows: Defined a Z-grading on g by
s=Pg. g={ecg: =2
jez

where /1 is defined in (6). Thenn = P, 9; C b = P>, 9j, and

b= g0

is the Cartan subalgebra of g consisting of diagonal matrices. Extend the basis
{Xo}uea, of n to the basis {x,},ea 17 Of b by adding a basis {x;};e of h. Let Cib
denote the structure constant of b with respect to this basis.

Lemma 9 The map p : n — Cl extends to the Lie algebra homomorphism

p:b—>Cl, x,— Z cz’ﬂxyx;.
Byedy

Define the Lie algebra homomorphism
Bp:b6—C(g), x—>x®1+1® p),

and define a Z-grading on C(g) by

Ce) =P c@ll. @] ={ce @ | [boh).c] = 2jx}.

jez
Set

K,C(g) = Y Ci(@)l], where Ci(g)[j] = Ci(g) N C(g)[]-

i—j<p

Then K, C(g) defines an increasing, exhaustive, separated filtration of C(g) such that

K,C(g) - K,C(g9) C K,+,C(9), [K,C(9), K,C(9)] C Kp+4-1C(g), and grg C(g) =
EBP K,C(g)/K,—1C(g) is isomorphic to C(g) as Poisson superalgebras. Moreover,

the complex (gry C(g),adQ) is identical to (C(g), ad Q).
Let Z(g) be the center of U(g).

Theorem 5 ([65]) We have H'(C(g),ad Q) = O for i # 0 and the map Z(g) —>
H°(C(g),ad Q) defined by sending z to [z ® 1] is an isomorphism of algebras. Here
[z ® 1] denotes the cohomology class of z ® 1.

Proof We have the spectral sequence

E, = H"(C(g).adQ)
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such that

Clg*]°, if i=0

E = Hi(gry C(g),ad Q) =~
1 (grg C(g) ) 0. it o,

Therefore the spectral sequence collapses at £} = E, SO wWe get
grH’(C(g), ad Q) = C[g*]°.

Since the homomorphism Z(g) — H°(C(g).adQ), z +— [z ® 1], respects
the filtration Zo(g) and K.H°(C(g),adQ), where Z,(g) = Z(g) N U,(g),
K,H*(C(g),adQ) = Im(H°(K,C(g),adQ) — H’(C(g),adQ)), we get the desired
isomorphism.

Remark 1 (See [5, § 2] for the Details) As in the case of C(g), C(g) is also bigraded,
we can also write adQ = d4 + d_ such that d4 (CY) C CtY d_(CY) c CVT!
and get a spectral sequence
E, = H"(C(g),adQ)
such that
EYY = HP(HY(C(g),d-),d+) = §,0H" (n, U(g) ®um) Cy)
= 8,0840H° (1, U(g) ®u(w) C;) = Endyg)(U(8) ®un) Cp)”.

Where C, is the one-dimensional representation of n defined by the character y.
Thus we get the Whittaker model isomorphism [65]

Z(g) = H°(C(g),ad Q) = Endy(g)(U(g) ®um) Cy)”.

2.6 Classical Miura Map

Let n_ = (P g; be the subalgebra of g consisting of lower triangular matrices, and
Jj<0
set b_ = P g; = n_®h. We have
<0
g=0b_Fn,;. (11

Extend the basis {X,}sea s to the basis {x,}sea uma_ by adding a basis
{Xo}oen_ of n_. Let cZ’b be the structure constant with respect to this basis. Extend
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6y : b — C(g) to the linear map 6, : g — C(g) by setting

o) =x, 1 +1Q® Z cg,ﬂxyxz.
Byedy

We already know that the restriction of 6 to n is a Lie algebra homomorphism and
[o(x),1®y] =1 [x,y] forx,yen.

Although 6, is not a Lie algebra homomorphism, we have the following.

Lemma 10 The restriction of 6y to b_ is a Lie algebra homomorphism. We have
[fo(x),1 ®¥] =1 ® ad™*(x)(y) forx € b_, y € n*, where ad* denote the coadjoint
action and n* is identified with (g/b-)*.

Let C(g)+ denote the subalgebra of C(g) generated by 6y(n) and A(n) C Cl, and
let C(g)— denote the subalgebra generated by 6y(b_) and A(n*) C CL

Lemma 11 The multiplication map gives a linear isomorphism

C(g)- ® C(g)+ — C(9).
Lemma 12 The subspaces C(g)— and C(g)+ are subcomplexes of (C(g),adQ).
Hence C(g) = C(g)- ® C(g)+ as complexes.

Proof The fact that C(g)+ is subcomplex is obvious (see Lemma 8). The fact that
C(g)— is a subcomplex follows from the following formula.

[0.60x)] = Y. o)1 @x)—1® Y ¢, xe)x;
beA_UlaeA ﬂ,yEA+

1 o
Rlexl=-1® ) Y 55
ByeAq

(ae A_Ul a e Ay).
Proposition 3 H*(C(g)—,adQ) = H*(C(g),ad Q).
Proof By Lemma 12 and Kunneth’s Theorem,
HP(C(g).adQ) = €P H'(C(g)-.adQ) ® H'(C(g)+.adQ).
i+j=p

On the other hand we have ad (Q)(1 ® xy) = 0,(xs) = 6o(xa) — x(xe) for o €
A_. Hence C(g)- is isomorphic to the tensor product of complexes of the form
C[0,(xa)] ® A(xy) with the differential 8, (x,) ® x}, where x); denotes the odd
derivation of the exterior algebra A(x,) with one variable x, such that x;(x,) = 1.
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Each of these complexes has one-dimensional zeroth cohomology and zero first
cohomology. Therefore H'(C(g)+,ad Q) = 8;0C. This completes the proof.

Note that the cohomological gradation takes only non-negative values on C(g)—.
Hence by Proposition 3 we may identify Z(g) = H°(C(g),adQ) with the
subalgebra H(C(g)—.ad Q) = {c € C(9)° | adQ(c) = 0} of C(g)-.

Consider the decomposition

C’ =P Ccw",; C@°;=/{ceC@’]|[bh).c]=2jc}

Jj<0
Note that C (g)(i,O is generated by 6y(h) and is isomorphic to U(h). The projection
Co)2 — C(@)% = U(H)
is an algebra homomorphism, and hence, its restriction
T : Z(g) = H'(C(g)-,adQ) — U(h)

is also an algebra homomorphism.

Proposition 4 The map T is an embedding.
Let Ko C(g)+ be the filtration of C(g)+ induced by the Kazhdan filtration of C(g).
We have the isomorphism

C(g) = grg C(g) = grx C(9)- ® grg C(9)+
as complexes. Similarly as above, we have H(grg C(g)+,adQ) = §;0C, and
H'(C(g).adQ) = H'(grg C(g)-ad Q). (12)
Proof (Proof of Proposition 4 ) The filtration K,U(h) of U(h) = C (g)(l’o induced

by the Kazhdan filtration coincides with the usual PBW filtration. By (12) and
Theorem 3, the induced map

H'(grg C(9)-,ad Q) — grg U(h)
can be identified with the restriction map
T : C[S] = C[f + b)Y — C[f + b]. (13)

It is sufficient to show that 7" is injective.
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If ¢ € C[f + b]" is in the kernel, ¢(g.x) = 0 forall g € N and x € f + bh. Hence
it is enough to show that the image of the the action map

Nx(f+bh —=f+0b, (g,x)— Ad(g)x, (14)

is Zariski dense in f + b.
The differential of this morphism at (1,x) € N x (f + b) is given by

nxb—b, (y.2)~[yx]+z

This is an isomorphism if x € f + by, Where bhee = {x € b | n* = 0}. Hence (14)
is a dominant morphism as required, see e.g. [76, Theorem 16.5.7].

Remark 2 The fact that 7 is injective is in fact well-known. Indeed, under the
identifications C[S] = Cl[g]%, C[f + b] = C[b], T is identified with the Chevalley
restriction map C[g]® = C[h]", where W = &,,.

The advantage of the above proof is that it applies to a general finite W-algebra
[71], and also, it generalizes to the affine setting, see Sect. 5.9.

The map 7 is called the classical Miura map.

2.7 Generalization to an Arbitrary Simple Lie Algebra

It is clear that the above argument works if we replace gl,, by sl,,, and a by a N sl,,.

More generally, let g be an arbitrary simple Lie algebra. Let f be a principal
(regular) nilpotent element of g, {e,f, i} an associated sl,-triple. One may assume
that

f=>5

i€l

where f; is a root vector of roots ¢; and {«;};e; is the set of simple roots of g. Define
the Kostant slice S by

S:=f+g¢g Cg=g",
where g is the centralizer of e in g.

Then all the statements in previous subsections that make sense hold by replacing
the set of companion matrices by the Kostant slice [65].
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2.8 Generalization to Finite W-Algebras

In fact, the above argument works in more general setting of Hamiltonian reduction.
In particular for Slodowy slices. Namely, for a non-zero nilpotent element f of
a finite-dimensional semisimple Lie algebra g, we can use Jacobson-Morozov’s
theorem to embed f into an sl,-triple {e,f, h}. The Slodowy slice at f is defined
to be the affine subslace

Sp=f+g¢°

of g.
The Slodowy slice Sy has the following properties.

» S, intersects the G-orbits at any point of Sy, where G is the adjoint group of g.
* Sy admits a C*-action which is contracting to f.

As in the case of the set of companion matrices Sy can be realized by Hamiltonian
reduction. Let g; = {x € g | [h, x] = 2jx}, so that

s=Puy.

el
JELL

Then the subspace gi/> admits a symplectic form defined by (x|y) = (f]|[x,y]).
Choose a Lagrangian subspace [ of gi/, with respect to this form, and set m =
I+ ijl g;. Then m is a nilpotent subalgebra of g and y : m — C, x — (f|x),
defines a character. Let M be the unipotent subgroup of G corresponding to m, that
is, Lie M = m. The adjoint action of M on g is Hamiltonian, so we can consider the
moment map of this action

’u:g*_)m*’

which is just a restriction map. Then we have the following realization of the
Slodowy slice.

-1
w0
Sf =

To obtain the BRST realization of this Hamiltonian reduction we simply replace
the Clifford algebra CI by Cly, i.€., the Clifford algebra associated to m @& m*. Then
we can define the operator ad Q similarly and get a differential cochain complex
(Clg*] ® Cl, ad Q). We have

C[S/] = H'(Clg*] ® Cln,ad Q)

as Poisson algebras.
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As above, this construction has a natural quantization and the quantization
U(g.f) of S thus defined is called the finite W-algebra associated to the pair (g, f)
[75]:

U(g.f) := H(U(g) ® Clwn,ad 0+) = Endy(g) (U(g) ®um) Cy)?,

where C, is the one-dimensional representation of m defined by y (cf. [5, 29]).

3 Arc Spaces, Poisson Vertex Algebras, and Associated
Varieties of Vertex Algebras

3.1 Vertex Algebras

A vertex algebra is a vector space V equipped with |0) € V (the vacuum vector),
T € End V (the translation operator), and a bilinear product

VxV—=>V((2), (ab)r a(2)b,

where a(z) = Y ,cz amz "', aw) € End V, such that

L. (|0)(2) = idy,
2. a(z)|0) € V][z]] and ;1_1)13) a(z)|0) = aforalla eV,

3. (Ta)(z) = 0;a(z) forall a € V, where 0, = d/dz,
4. forany a,b € V, (z—w)Ne*[a(z), b(w)] = 0 for some N, € Zy = {0,1,2,...}.

The last condition is called the locality, which is equivalent to the fact that

Nap—1
(@@ b00] = Y (ab)() | 5~ w), (15)
n=0 ’

where §(z—w) =Y, c, W'z € Cllz,w, 271, w1]].
A consequence of the definition is the following Borcherds identities:

[agmy ) = (r:l) (a@b) mtn—iy. (16)

i=0

(@mb)y = Y (1Y (’7) (@b +j) — (=D "bmtn—pag)- (17)

=0
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We write (15) as
An
[axb] =) - amb € VAL
n=0

and call it the A-bracket of a and b. (We have a(,)b = 0 if (z—w)"[a(z), b(w)] = 0.)
Here are some properties of A-brackets.

[(Ta),b] = —Alaxb],  [ax(Th)] = (A + T)[asb], (18)
[bra] = —[a_s—rb], (19)
[ax[bucl] — [bulaxc]] = [[arblitpcl. (20)

The normally ordered product on V is defied as : ab := a(_1)b. We also write
tab : (2) =: a(z)b(z) :. We have

1 a(2)b(z2) := a(z)+b(z) + b(w)a(z)—,

where a(z)+ = Y, .gamz """, a@)- = Y ,s0amwz "'. We have the following
non-commutative Wick formula.

A
[ay : be:] =: [ayb]c: + : [axc]b : +/O [[axb]).cldp, 2n

A
[ ab 2y ] =: ("% a)[byc] : + : (" b)[asc] : +/0 [bular—pclldp. (22)

3.2 Commutative Vertex Algebras and Differential Algebras

A vertex algebra V is called commutative if
[axb] =0, Va,beV,

or equivalently, a;) = 0 forn = 0 in EndV for all @ € V. This condition is
equivalent to that

[a(m), b(n)] =0 Va, belZ, mnel
by (16).
A commutative vertex algebra has the structure of a unital commutative algebra

by the product

a-b=:ab .= a(_l)b,
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where the unite is given by the vacuum vector |0). The translation operator 7 of V
acts on V as a derivation with respect to this product:

T(a-b) = (Ta) - b+ a- (Tb).

Therefore a commutative vertex algebra has the structure of a differential algebra,
that is, a unital commutative algebra equipped with a derivation. Conversely, there
is a unique vertex algebra structure on a differential algebra R with a derivation T
such that

Y(a,2) = e¢a

for a € R. This correspondence gives the following.

Theorem 6 ([24]) The category of commutative vertex algebras is the same as that
of differential algebras.

3.3 Arc Spaces

Define the (formal) disc as
D = Spec(C[[1]]).

For a scheme X, a homomorphism« : D — X is called an arc of X.

Theorem 7 ([25, 33, 52]) Let X be a scheme of finite type over C, Sch the category
of schemes of finite type over C, Set the category of sets. The contravariant functor

Sch — Set, Y + Homgu,(YXD, X),
is represented by a scheme JX, that is,
Homg;, (Y, JX) = Homge,(YXD, X).
forany Y € Sch. Here YXD is the completion of Y XD with respect to the subscheme

YX{0}.
By definition, the C-points of JX are

Homyg,,(Spec C, JX) = Homg, (D, X),

that is, the set of arcs of X. The reason we need the completion YXD in the definition
is that A ® C[[7]] S A[[1]] = A®C][7]] in general.

The scheme JX is called the arc space, or the infinite jet scheme, of X.

It is easy to describe JX when X is affine:
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First, consider the case X = CV = Spec C[x}, x2,--- , xy]. The C-points of JX
are the arcs Homg., (D, JX), that is, the ring homomorphisms

Y Che,xa, -+, xv] — CI[1]].

Such a map is determined by the image

y(x) = Z Yi=n—nt" (23)

n=0

of each x;, and conversely, the coefficients {y; —,—1)} determines a C-point of JX. If
we choose coordinates x; (—,—1) of JX as x; (—y—1)(¥) = Vi (=n—1), We have

J(CN = Spec(C[xi,(n)U = 1’2’... ’N’n — —1,_2’]

Next, let X = SpecR, with R = C[x1,x2,-+ , xn]/{f1. /2, -+ ,f;). The arcs of X
are

(C[xl’xz’ e ’xn]
Homyin ,Cl[A]) € Homyine (Cx1,x2, - -+, x,], C[[A]]).
= CHD) o(Cler, 0o, 3], CllA))
An element y € Homying (Clx1, x2, -+« , x,], C[[f]]) is an element of this subset if and

only if y(f;) =0fori=1,2,---,r. By writing
_ N im
[, 0), ... @) =Y
m!
m=0
with fi , € C[x; (—n—1)], where x;(1) := > _, = Xi.(—m—1)f", we get that

Clximli = 1,2,+++ ,Nyn = —1,-2,--+]

JX =S
Pee (fim(Xiy), i = 1,2, ,r;m = 0)

Lemma 13 Define the derivation T of Clx;p,)|i = 1,2,--+ ,N;n = —1,-2,---] by
Tx,-(,,) = —hXi(n—1)-

Then f;, = T"f; for n = 0. Here we identify x; with xj—1).

With the above lemma, we conclude that for the affine scheme X = SpecR,
R = Clxy,x2, -+, x0]/{fi, /2, - - - .. fr), its arc space JX is the affine scheme Spec(JR),
where

JR = Cliwli = 1,2, ,Nin = —1,-2,---]
= (Tﬂﬁ,lzl’z”r’nzo)

and 7 is as defined in the lemma.
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The derivation T acts on the above quotient ring JR. Hence for an affine scheme
X = SpecR, the coordinate ring JR = C[JX] of its arc space JX is a differential
algebra, hence is a commutative vertex algebra.

Remark 3 The differential algebra JR has the universal property that
Homdif_alg_(JR,A) = Homﬂng(R,A)

for any differential algebra A, where Homygitr, 210 (/R, A) is the set of homomorphisms
JR — A of differential algebras.

For a general scheme Y of finite type with an affine open covering {U;} ¢, its arc
space JY is obtained by glueing JU; (see [33, 52]). In particular, the structure sheaf
Oyy is a sheaf of commutative vertex algebras.

There is a natural projection 7 : JX — X that corresponds to the embedding
R — JR, x; — xj(—1), in the case X is affine. In terms of arcs, 7o (o) = «(0) for
o € Homyg, (D, X), where 0 is the unique closed point of the disc D.

The map from a scheme to its arc space is functorial. i.e., a scheme homomor-
phism f : X — Y induces a scheme homomorphism Jf : JX — JY that makes the
following diagram commutative:

Jf
JX —— JY
f

X — Y.

In terms of arcs, Jf () = f o o for « € Homg., (D, X).
We also have

JXxY)=JXxJY. 24)
Indeed, for any scheme Z,

Hom(Z,J(X x Y)) = Hom(ZXD, X x Y)
=~ Hom(ZXD, X) x Hom(YXD, Y)
= Hom(Z, JX) x Hom(Y, JY)
~ Hom(Z, JX x JY).
Lemma 14 The natural morphism Xieq — X induces an isomorphism JXeq — JX
of topological spaces, where Xi.q denotes the reduced scheme of X.

Proof We may assume that X = SpecR. An arc o of X corresponds to a ring
homomorphism a* : R — C[[7]]. Since C[[7]] is an integral domain it decomposes
asa* : R — R/~/0 — C[[f]]. Thus, « is an arc of X;eq.
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If X is a point, then JX is also a point, since Hom(D,X) = Hom(C, C[[f]])
consists of only one element. Thus, Lemma 14 implies the following.

Corollary 2 If X is zero-dimensional then JX is also zero-dimensional.
Theorem 8 ([64]) JX is irreducible if X is irreducible.

Lemma 15 Let Y be irreducible, and let f : X — Y be a morphism that restricts to
a bijection between some open subsets U C X and V C Y. Then Jf : JX — JY is
dominant.

Proof Jf restricts to the isomorphism JU — JV, and the open subset JV is dense in
JY since JY is irreducible.

3.4 Arc Space of Poisson Varieties and Poisson Vertex Algebras

Let V be a commutative vertex algebra, or equivalently, a differential algebra. V is
called a Poisson vertex algebras if it is equipped with a bilinear map

An
VxV—VRL (a.b) = {abl=) " awb, aw €EndV,
n:

n=0

also called the A-bracket, satisfying the following axioms:

{(Ta)aby = —Maxb}, {ax(Tb)} = (A + T){axb}, (25)
{bra} = —{a—,—rb}, (26)
{ar{bucyy — {blarcyy = Harbiagpch, (27)

{arx(be)}y = {ab}c + {arc}b, {(ab)ic} = {ar+1c}—>b + {bryrc}a, (28)

where the arrow means that A 4+ T should be moved to the right, that is,
{arsreisb =3 zawe) 7" b.

The first equation in (28) says that a(,), n = 0, is a derivation of the ring V. (Do
not confuse a,) € Der(V), n = 0, with the multiplication a, as a vertex algebra,
which should be zero for a commutative vertex algebra.)

Note that (25), (26), (27) are the same as (18), (19), (20), and (28) is the same
with (21) and (22) without the third terms. In particular, by (27), we have

m
[amy- bl =Y (l) (a@mb)mtn—iy, m.n € ZLy. (29)
i=0

Theorem 9 ([7, Proposition 2.3.1]) Let X be an affine Poisson scheme, that is,
X = SpecR for some Poisson algebra R. Then there is a unique Poisson vertex
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algebra structure on JR = C[JX] such that
{a,b} = {a,b} fora,b e R C JR,

where {a, b} is the Poisson bracket in R.

Proof The uniqueness is clear by (18) since JR is generated by R as a differential
algebra. We leave it to the reader to check the well-definedness.

Remark 4 More generally, let X be a Poisson scheme which is not necessarily
affine. Then the structure sheaf Ojx carries a unique vertex Poisson algebra structure
such that {f; g} = {f, g} forf, g € Ox C Oyyx, see [16, Lemma 2.1.3.1].

Example 1 Let G be an affine algebraic group, g = Lie G. The arc space JG is
naturally a proalgebraic group. Regarding JG as the C[[f]]-points of G, we have
JG = G[[f]]. Similarly, Jg = g[[f]] = Lie(JG).

The affine space g* is a Poisson variety by the Kirillov-Kostant Poisson structure,
see Sect. 2.3. If {x;}is a basis of g, then

Clg™] = Clx1.x2, -+ x].
Thus
Jg* = Spec Clxj—p)|i = 1,2,-+- ,n = 1]. (30)
So we may identify C[/g*] with the symmetric algebra S(g[r~']r™").
Let x = x|0) = (xr7")|0), where we denote by |0) the unite element in

S(g[t~']r""). Then (29) gives that

Xoms Yol = [X. Vontnys X,y € 8, m,n € Zzy. (31
So the Lie algebra Jg = g¢[[f]] acts on C[Jg*]. This action coincides with that
obtained by differentiating the action of JG = G[[]] on Jg* induced by the coadjoint

action of G. In other words, the vertex Poisson algebra structure of C[Jg*] comes
from the JG-action on Jg*.

3.5 Canonical Filtration of Vertex Algebras

Haisheng Li [68] has shown that every vertex algebra is canonically filtered: For a
vertex algebra V, let FPV be the subspace of V spanned by the elements

1 2
Ay —1)F—my—1) "~ A=, —1)|0)
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witha',a?,---, " eV,n;=20,n +nm+---+n, = p. Then
V=FV>Fv>. ..

It is clear that TFPV C FPH1V.,

Set (FPV) ) F4V := spanc{ambla € FPV,b € FiV}.
Lemma 16 We have

FPV = (FV) PP V.
j=0

Proposition 5

(1) (FPV)w(F1V) C Frta=1V. Moreover, if n = 0, we have (FPV)u(FIV) C
F‘D+q_"V.

(2) The filtration F*V is separated, that is, ﬂpZO FPV = {0}, if V is a positive
energy representation over itself.

Proof 1Tt is straightforward to check. [(2) also follows from Lemma 17 below.]
In this note we assume that the filtration F*V is separated.
Set

gV = Frv/rty.

p=0

We denote by o, : FPV +— FPV/FP*1V for p = 0, the canonical quotient map.
Proposition 5 gives the following.

Proposition 6 ([68]) The space gr'V is a Poisson vertex algebra by

op(a) - 04(b) 1= optg(a—1yb),  0,(a)()04(b) = Optg—n(amb)

forae FPV, b e F1V,n = 0.
Set

Ry :=FV/F'V C grV.

Note that F'V = spanc{a2b | a,b € V}.

Proposition 7 ([68,79]) The restriction of the Poisson structure gives Ry a Poisson
algebra structure, that is, Ry is a Poisson algebra by

a- l_) = a(_l)b, {6_1, l_)} = a(o)b,

where a = oy(a).

Proof 1t is straightforward from Proposition 6.
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In the literature F'V is often denoted by C,(V) and the Poisson algebra Ry is called
Zhu’s Cy-algebra.

A vertex algebra V is called finitely strongly generated if Ry is finitely generated
as a ring. If the images of vectors ay,...,ay € V generate Ry, we say that V is
strongly generated by ay, ..., ay.

Below we always assume that a vertex algebra V is finitely strongly generated.

Note that if ¢ : V — W is a homomorphism of vertex algebras, ¢ respects the
canonical filtration, that is, ¢ (FPV) C FPW. Hence it induces the homomorphism
grV — gr W of Poisson vertex algebra homomorphism which we denote by gr ¢.

3.6 Associated Variety and Singular Support of Vertex Algebras

Definition 1 Define the associated scheme 5(‘/ and the associated variety Xy of a
vertex algebra V as

XV := SpecRy, Xy := SpecmRy = (}?V)red.

It was shown in [68, Lemma 4.2] that gr V is generated by the subring Ry as a
differential algebra. Thus, we have a surjection JRy — gr V of differential algebras
by Remark 3. This is in fact a homomorphism of Poisson vertex algebras:

Theorem 10 ([68, Lemma 4.2], [7, Proposition 2.5.1]) The identity map Ry —
Ry induces a surjective Poisson vertex algebra homomorphism

JRy = ClJXy] — grV.

Let a',...,a" be a set of strong generators of V. Since grV = V as C-vector
spaces by the assumption that F*V is separated, it follows from Theorem 10 that V
is spanned by elements

ai‘_nl) . al("‘_nr)|0) withr =0, n; = 1.
Definition 2 Define the singular support of a vertex algebra V as

SS(V) := Spec(grV) C JXy.

Theorem 11 We have dimSS(V) = 0 if and only if dimXy = 0.

Proof The “only if” part is obvious sine 7o (SS(V)) = Xy, where 7oo : JXy — Xy
is the projection. The “if”” part follows from Corollary 2.

Definition 3 We call V lisse (or C,-cofinite) if dimXy = 0.
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Remark 5 Suppose that V is Z -graded, so that V = €., V;, and that V, = C|0).
Then gr V and Ry are equipped with the induced grading:

eV =@ erV). (erV)o=C,
i=0

Ry = @PRy)i. (Rv)o =C.

=0
So the following conditions are equivalent:

1. Vis lisse.

2. Xy = {0}.

3. The image of any vectora € V; fori = 1 in gr V is nilpotent.
4. The image of any vector a € V; fori = 1 in Ry is nilpotent.

Thus, lisse vertex algebras can be regarded as a generalization of finite-dimensional
algebras.

Remark 6 Suppose that the Poisson structure of Ry is trivial. Then the Poisson
vertex algebra structure of JRy is trivial, and so is that of grV by Theorem 10.
This happens if and only if

(F*V)(F1V) C FPTa Yy foralln > 0.

If this is the case, one can give gr V yet another Poisson vertex algebra structure by
setting

O'p(cl)(n)O'q(b) = 0p+q_,,+1(a(,,)b) forn = 0. (32)

(We can repeat this procedure if this Poisson vertex algebra structure is again trivial.)

3.7 Comparison with Weight-Depending Filtration

Let V be a vertex algebra that is Z-graded by some Hamiltonian H:

V= @VA where V4 :={v € V|Hv = Av}.
A€z

Then there is [67] another natural filtration of V defined as follows.
For a homogeneous vector a € V4, A is called the conformal weight of a and is
denote by A,. Let G,V be the subspace of V spanned by the vectors

1 2
Ay —1)F—my—1) "~ H=n,—1)|0)
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with Ay + -+ + A, <p. Then G,V defines an increasing filtration of V:

0=GVCGVC...GVC.... Vv=|]JG,V.
P

Moreover we have

TG,V C G,V,
(Gp) G4V C GpiyV forn e Z,
(Gp) GV C Gpq—1V  forn € Zy,

It follows that gr; V = @ G,V/G,—V is naturally a Poisson vertex algebra.
It is not too difficult to see the following.

Lemma 17 ([7, Proposition 2.6.1]) We have
FPVa = GapVa,
where FPV,y = VA N FPV, G,V4 = VA N G,V. Therefore
grVe=grsV

as Poisson vertex algebras.

3.8 Example: Universal Affine Vertex Algebras

Let a be a Lie algebra with a symmetric invariant bilinear form «. Let
a=aft,r ]@C1
be the Kac-Moody affinization of a. It is a Lie algebra with commutation relations
X", y?"] = [x, )" + mSpanok(x,¥)1, x,y € a, m,n € Z, [1,a] = 0.
Let
V¥(a) = U(a) ®upecy C,
where C is one-dimensional representation of aftf] & C1 on which aff] acts

trivially and 1 acts as the identity. The space V*(a) is naturally graded: V*(a) =
D ez, V< (a)a, where the grading is defined by setting degxt" = —n, deg|0) = 0.
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Here |0) = 1 ® 1. We have V*(a)y = C|0). We identify a with V*(a), via the linear
isomorphism defined by x — x¢~1|0).

There is a unique vertex algebra structure on V*(a) such that |0} is the vacuum
vector and

Y(x,2) = x(2) := Z(xt")z_"_l, X € a.

ne€z

(Sox(y = xt" forx € a = V¥(a), n € Z).

The vertex algebra V¥ (a) is called the universal affine vertex algebra associated
with (a, k).

We have F'V¥(a) = a[r"!]r"2V*(a), and the Poisson algebra isomorphism

Cla*] 3 Ryeq = Vi (@)/gl ™12V  (a)

(33)
X1 x> ()L (g H)|0) (v € a).
Thus
Xye(a) = a*.
We have the isomorphism
ClJa*] = grV*(a) 34)

because the graded dimensions of both sides coincide. Therefore
SS(V¥(a)) = Ja*.
The isomorphism (34) follows also from the fact that
GpV*(a) = Up(alr™']H]0),

where {U,(a[t~!]¢!)} is the PBW filtration of U(a[t']r!).

3.9 Example: Simple Affine Vertex Algebras

For a finite-dimensional simple Lie algebra g and k € C, we denote by V*(g) the
universal affine vertex algebra V*0(g), where « is the normalized invariant inner
product of g, that is,

Ko(@, 9) = 2,
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where 0 is the highest root of g. Denote by V(g) the unique simple graded quotient
of V¥(g). As a g-module, Vi(g) is isomorphic to the irreducible highest weight
representation L(kAg) of g with highest weight KAy, where Ay is the weight of
the basic representation of .

Theorem 12 The vertex algebra Vi(g) is lisse if and only if Vi(g) is integrable as
a g-module, which is true if and only if k € Z.

Lemma 18 Let (R, d) be a differential algebra over Q, I a differential ideal of R,
i.e., I is an ideal of R such that I C I. Then I C /I

Proof Let a € /I, so that a” € I for some m € N = {1,2,...}. Since [ is 0-
invariant, we have 9"a™ € I. But

am= (’?)am—"(aay = m!(da)" (mod V1).

0<ism

Hence (da)™ € /1, and therefore, da € /1.

Proof (Proof of the “if” Part of Theorem 12) Suppose that Vi (g) is integrable. This
condition is equivalent to that k € Z, and the maximal submodule Nj of V*(g) is
generated by the singular vector (egz~!)¥*1|0) [54]. The exact sequence 0 — N; —
Vk(g) — Vi(g) — 0 induces the exact sequence

00— I —> Rvk(g) — Ry — 0,

where I is the image of Ny in Ry« = C[g*], and so, Ry, = C[g*]/Ix. The
image of the singular vector in I is given by e’é‘“. Therefore, ey € +/1. On the other
hand, by Lemma 18, /I, is preserved by the adjoint action of g. Since g is simple,
g C +/I. This proves that Xv,(g) = {0} as required.
The proof of “only if” part follows from [30]. We will give a different proof using
W-algebras in Remark 13.

In view of Theorem 12, one may regard the lisse condition as a generalization of
the integrability condition to an arbitrary vertex algebra.

4 Zhu’s Algebra

In this section we will introduce and study the Zhu’s algebra of a vertex algebra,
which plays an important role in the representation theory.
See [55] in this volume for the definition of modules over vertex algebras.
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4.1 Zhu’s Cy-Algebra and Zhu’s Algebra of a Vertex Algebra

Let V be a Z-graded vertex algebra. Zhu’s algebra ZhuV [43, 79] is defined as
Zhu(V) :=V/VoV

where V o V := span{a o bla,b € V} and

A,
aob:= Z( ; )a(i—Z)b

i=0

for homogeneous elements a, b and extended linearly. It is an associative algebra
with multiplication defined as

Ay
axb:= Z ( i )d(i—l)b

i=0

for homogeneous elements a,b € V.

For a simple positive energy representation M = @, ., + Moin. M;, #£0,A €C,
of V, let My,, be the top degree component M of M. Also, for ahomogeneous vector
a € V,leto(a) = aca,—1), so that o(a) preserves the homogeneous components of
any graded representation of V.

The importance of Zhu’s algebra in vertex algebra theory is the following fact
that was established by Yonchang Zhu.

Theorem 13 ([79]) For any positive energy representation M of V, a — o(a)
defines a well-defined representation of Zhu(V) on M,,p. Moreover, the correspon-
dence M+ M,,, gives a bijection between the set of isomorphism classes of
irreducible positive energy representations of V and that of simple Zhu(V)-modules.
A vertex algebra V is called a chiralization of an algebra A if Zhu(V) = A.

Now we define an increasing filtration of Zhu’s algebra. For this, we assume
that V is Z4-graded: V = @ 15, Va. Then Vg, = @ _, Va gives an increasing
filtration of V. Define

Zhu,(V) := Im(Vg, — Zhu(V)).
Obviously, we have

0 = Zhu_1(V) C Zhug(V) C Zhu (V) C---. and Zhu(V) = |_J Zhu,(V).

p=—1

Also, since a)b € Va,+2,—n—1 fora € Va,, b € V,,, we have
Zhu, (V) * Zhu, (V) C Zhu,44(V). 35)

The following assertion follows from the skew symmetry.
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Lemma 19 We have

As—1
b*aEZ( ; )a(,-_l)b (mod VoV),

i=0

and hence,

Ay—1
a*b—b*aEZ( i )a(i)b (mod V o V).

=0
By Lemma 19, we have
[Zhu,(V), Zhu, (V)] C Zhu,44—1(V). (36)

By (35) and (36), the associated graded grZhu(V) = @p Zhu,(V)/Zhu, (V) is
naturally a graded Poisson algebra.

Note that a o b = a(—b (mod € <4, 44, Va) for homogeneous elements
a,beV.

Lemma 20 (Zhu, See [29, Proposition 2.17(c)], [17, Proposition 3.3]) The
following map defines a well-defined surjective homomorphism of Poisson algebras.

ny : Ry —> grZhu(V)

ar—a (mod VoV + @ Va).
A<A,

Remark 7 The map ny is not an isomorphism in general. For an example, let g be
the simple Lie algebra of type Eg and V = V/(g). Then dimRy > dimZhu(V) = 1.

Corollary 3 If V is lisse then Zhu(V) is finite dimensional. Hence the number of
isomorphic classes of simple positive energy representations of 'V is finite.
In fact the following stronger facts are known.

Theorem 14 ([1]) Let V be lisse. Then any simple V-module is a positive energy
representation. Therefore the number of isomorphic classes of simple V-modules is
Sfinite.

Theorem 15 ([31, 73]) Le V be lisse. Then the abelian category of V-modules is
equivalent to the module category of a finite-dimensional associative algebra.

4.2 Computation of Zhu’s Algebras

We say that a vertex algebra V admits a PBW basis if Ry is a polynomial algebra
and the map C[JXy] —> grV is an isomorphism.
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Theorem 16 If V admits a PBW basis, then ny : Ry —» grZhuV is an
isomorphism.

Proof We have grZhu(V) = V/ gr(VoV), where gr(V o V) is the associated graded
space of V o V with respect to the filtration induced by the filtration V<,. We wish to
show that gr(V o V) = F'V. Since ao b = a_yb (mod F<a,+4,V), it is sufficient
to show that a o b # 0 implies that a_2b # 0.

Suppose that a—zb = (Ta)—1)b = 0. Since V admits a PBW basis, gr V has no
zero divisors. That fact that V admits a PBW basis also shows that 7a = 0 implies
that a = ¢|0) for some constant ¢ € C. Thus, a is a constant multiple of |0), in
which case ao b = 0.

Example 2 (Universal Affine Vertex Algebras) The universal affine vertex algebra
V€(a) (see Sect. 3.8) admits a PBW basis. Therefore

Nve(a) : Ryeq) = Cla*] = grZhuV*(a).
On the other hand, from Lemma 19 one finds that

U(a) — Zhu(V*(a))
(37
ax — X = X(_1)|0)

gives a well-defined algebra homomorphism. This map respects the filtration on
both sides, where the filtration in the left-hand-side is the PBW filtration. Hence it
induces a map between their associated graded algebras, which is identical to Ny« (q).
Therefore (37) is an isomorphism, that is to say, V*(a) is a chiralization of U(a).

Exercise 30 Extend Theorem 16 to the case that a is a Lie superalgebra.

Example 3 (Free Fermions) Let n be a finite-dimensional vector space. The Clif-
ford affinization CI of n is the Clifford algebra associated with n[t, '] @ n*[t, 1]
and its symmetric bilinear form defined by

(" [f") = Smnaf (1), (x™|yr") = 0 = (fi"[gr")

forx,yen,f,gen*, mnecZ. A
Let {xy}oea, be a basis of n, {x}} its dual basis. We write Vg, for xo" € CI
and ¢y, for x;1" € Cl, so that Cl is the associative superalgebra with

e odd generators: Yo m, Vo m e Z,a € Ay.

o,m’

» relations: [V, Vgl = [V V5,0 = 0. [Wam. V5,1 = Sa.pbmno-
Define the charged fermion Fock space associated with n as
wi=Cl/(Y ClYam+ Y Clygy).

m=0 k=1
a€A+ ﬂ€A+
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It is an irreducible C‘l-module, and as C-vector spaces we have
Foz AW ') @ AW[r ).

There is a unique vertex (super)algebra structure on ¥, such that the image of 1
is the vacuum |0) and

Y(Ya-110),2) = Va(@) = Y Yunz",

ne€z

Y(U3010).0) = V2@ = 3 vl

n€Z

We have F!F, = n*[t7 ' 'Fn + n[r ]r2Fy, and it follows that there is an
isomorphism

Cl > Rgs,,
Xo = Yo -10),
Xy = Yyl0)
as Poisson superalgebras. Thus,
X(}"n = T*Hl‘l,

where ITn is the space n considered as a purely odd affine space. The arc space
JT*IIn is also regarded as a purely odd affine space, such that C[JT*[In] =
AW*[t71) ® A(n[t~!]r™"). The map C[JX#,] — grF, is an isomorphism and 7,
admits a PBW basis. Therefore we have the isomorphism

N7, : Ry, = Cl = Zhu(Fy)
by Exercise 30. On the other hand the map

Cl — Zhu(Fy)
Xg > 1,/foz,—l|0)y
Xy B Yaol0)

gives an algebra homomorphism that respects the filtration. Hence we have
Zhu(F,) = CL

That is, ¥, is a chiralization of CI.
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5 W-Algebras

We are now in a position to define W-algebras. We will construct a differential
graded vertex algebra, so that its cohomology algebra is a vertex algebra and that
will be our main object to study.

For simplicity, we let g = gl,, and we only consider the principal nilpotent case.
However the definition works for any simple Lie algebra. The general definition for
an arbitrary nilpotent element will be similar but one does need a new idea (see [60]
for the most general definition).

5.1 The BRST Complex

1
s SO

Let g, n be as in Sect. 2.1. Denote by k4 the Killing form on g and ko = ,

that k¢(6, 0) = 2.

Choose any symmetric invariant bilinear form x on g and let V*(g) be the
universal affine vertex algebra associated with (g, k) (see Sect. 3.8) and let ¥ = ¥,
be the fermion Fock space as in Example 3.

We have the following commutative diagrams:

gr(?) gr(?)
ClJg*] «— V¥(g) CJT*Mn] «— F
Ry Ry
Zhu(?) l / J Zhu(?) Zhu(?) J J Zhu(?)
Clg*] +—— U(g). Cl «—— Cl

gr(?) er(?)
Define
C(9) == V(@) & F.

Since it is a tensor product of two vertex algebras, C“(g) is a vertex algebra. We
have

Rcx(g) = Rye(g) ® Ry = Clg*] ® Cl = C(g),
and
Zhu(C*(g)) = Zhu(V*(g)) ® Zhu(¥) = U(g) ® Cl = C(g).
Thus, C*(g) is a chiralization of C(g) considered in Sect. 2.5. Further we have

grC(g) = grV*(g) ® r ¥ = ClJg*] ® C[JT* ITn].
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So we have the following commutative diagram:

C“(g)

R
/ l Zhu(?)

C(g) +—— C(g)
ar(?)

Define a gradation

F =7 (38)

PEZ

by setting deg ¥y, = —l,degw;’k = 1,Vi,j € I,m,k € Z, deg|0) = 0. This
induces a Z-grading (that is different from the conformal grading) on C*(g):

C(g=V@@IF = @ C“"(g), where C“P(g):=V“(g) ® F7. (39)
PEZ

Let V(n) be the the universal affine vertex algebra associated with n and the zero
bilinear form, which is identified with the vertex subalgebra of V*(g) generated by
Xxg(z) witha € Ay

Lemma 21 The following defines a vertex algebra homomorphism.
p:Vin) —F
@) Y VY, ().

B.yeAy

Remark 8 In the above formula the normally ordered product is not needed because
n is nilpotent.
The map p induces an algebra homomorphism
Zhu(V(n)) = U(n) — Zhu(F) = ClI
and a Poisson algebra homomorphism

RV(n) = (C[I‘l*] - R¢’ =Cl

that are identical to p and p (see Lemma 3 and 9), respectively.
Recall the character y : n — C, x > (f|x).
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Lemma 22 The following defines a vertex algebra homomorphism.

b, :V(n) — C(g)
Xa(2) > (0 (2) + 1 (%)) ® id +id @ p(x4(2)).

The map éx induces an algebra homomorphism
Zhu(V(n)) = U(n) — ZhuC*(g) = C(g)
and a Poisson algebra homomorphism
Ryw) = C[n*] - Ry = C(g)

that are identical to 6, and 6, respectively (see Lemmas 5 and 7).
The proof of the following assertion is similar to that of Lemma 6.

Proposition 8 There exists a unique element 0 e Ck! (g) such that
(031 ®Yo)] = 0y(xa). Ve € Ay,

We have [QAQ] =0.
The field Q(z) is given explicitly as

o 1
0@ = ) (at A @VIQ@ —id® | D Vi@V @Yy Q).

a€At a.Byely
Since Q is odd and [Qk Q] = 0, we have
0 =0.
(Recall that we write 0(2) = Y ,ez Qw2 """ So (C*(g), Q()) is a cochain

complex.

Lemma 23 If it is nonzero, the cohomology H®*(C*(g), Q(O)) inherits the vertex
algebra structure from C*(g).

Proof Set Z := {v € C“(g) | Q(O)v = 0}, B = Q(O)C"(g) C Z, so that
H*(C“(g9), Q()) = Z/B. From the commutator formula (16), we know that

[Q0)- am)] = Q@) Ya € C(g).m € Z.

Thus, if a,b € Z, then Q(O)(a(m)b) = 0, that is, agyb € Z. It follows that Z a
vertex subalgebra of C*(g). Further, if « € Z and b = Q()b’ € B, then agb =
am Qb = Q)(amb) € B. Hence B is an ideal of Z. This completes the proof.
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Definition 4 The W-algebra #*(g) = #*(g.f) associated to (g,f, k) is defined
to be the zero-th cohomology of the cochain complex (C“(g), Q()), that is,

#*(g) := H(C*(9). Q0)-

This definition of #*(g) is due to Feigin and Frenkel [36]. In Sect. 5.9 we show
that the above #*(g) is identical to the original W-algebra defined by Fateev and
Lukyanov [34].

5.2 Cohomology of Associated Graded

We have Q(O)FPC" (g) C FPC(g), so (gr’ C*(g), Q(O)) is also a cochain complex.
The cohomology H*(gr" C*(g), Q(o)) inherits a Poisson vertex algebra structure
from grf’ C*(g).

Theorem 17 We have H'(gr" C*(g). Q()) = 0 fori # 0 and
H'(gr" C*(9), Q) = CIIS]

as Poisson vertex algebras, where S is the slice defined in Sect. 2.

Proof The proof is an arc space analogue of that of Theorem 3.
The moment map u : g* —> n* for the N-action on g induces a JN-equivariant
morphism

Ju o Jg* — Jn*.

The pullback (Ju)* : ClJn*] — C[Jg*] is an embedding of vertex Poisson algebras.

The point y = Jy of Jn* corresponds to the arc ¢ € Hom(D,n*) =
Hom(C[n*], C[[f]]) such that (f) = y(x) forx € n C C[n*].
We have

w0 =J(u" () = x +Jb CJg",
and the adjoint action gives the isomorphism
JN xJS S Ju~ () (40)

by Theorem 2 and (24).
Now put

C:=grC(g) = CUg" 1 @ Al ') ® AW ™)) (41)
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and define a bigrading on C by

C= P Y. where CY=ClUg" @ A7) @AW '), (42

i<0,4/20
As before, we can decompose the operator Q(o) as the sum of two suboperators

such that each of them preserves one grading but increase the other grading by 1.
Namely, we have

Q(O) = 21+ + 3—,
d_:CV— Ct', g, :CY— CTY,
This shows that
(d4)* = (d-)* = [dy.d-] = 0.
Thus we can get a spectral sequence E, =— H*(C, Q(o)) such that
Ey = H*(C,d_), E,=H"(H*(C.d-).d,).
This is a converging spectral sequence since C is a direct sum of subcomplexes

FrCe(g)/Frtice (9), and the associated filtration is regular on each subcomplex.
The complex (C, d—) is the Koszul complex with respect to the sequence

2

Xll_l —)((Xl),...,le_l —)((XN),xll_z,le_ s XNE T X1 X0t 7,
where N = dimn. Hence we have
H(C.d-) = §;Clpn™"' (0] ® Am*[')). (43)

Next, by (43), the complex (H°(C, d_), 34_) is identical to the Chevalley complex
for the Lie algebra cohomology H*(n[t], C[Ju~!(y)]). By (40),

H'(n[1], C/u~" ()] = H'(n[1], CIJN] ® C[JS])
= H‘(n[t],(C[JN]) ® C[JS] = 6,0C[JS].

We conclude that

HI(H/(C,d-),d+) = 6:08;0C[S].
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Thus, the spectral sequence E, collapses at E;, = Es, and we get the desired
isomorphisms.

Theorem 18 ([36,40]) We have H°(C*(g), Q(o)) = 0fori # 0 and
gr 7'M (9) = grH'(C*(9). Q) = H'(gr C*(9), O(0)) = CIS].

In particular, Ry = C[S] = C[g]°, s0 Xyr(g = S, SS(#*(g)) = JS.

The proof of Theorem 18 will be given in Sect. 5.6.

Note that there is a spectral sequence for H*(C*(g), Q(o)) such that E;’q =
H(gr C“(g), Q(o)). Hence Theorem 18 would immediately follow from Theorem 17
if this spectral sequence converges. However, this is not clear at this point because
our algebra is not Noetherian.

Remark 9 The complex (C“(g), Q(O)) is identical to Feigin’s standard complex for
the semi-infinite n[r, 7~']-cohomology H > **(n[t,#~'], V*(g) ®C;) with coefficient
in the g[t, t~']-module V*(g) ® C; [35], where C; is the one-dimensional represen-
tation of n[t, r~'] defined by the character 7 : n[t,r!] — C, xt" > 8, —1 y(x):

H*(C*(g), Q) = H? T*(n[r,1™'], V¥(g) ® Cy). (44)

5.3 W-Algebra Associated with sl,

It is straightforward to generalize the above definition to an arbitrary simple Lie
algebra g. In particular, by replacing V*(gl,) with V¥(sl,), k € C, we define the
W-algebra

W (sl,) = H(CX(sl,). Q) (45)

associated with (sl,, f) at level k.

We have V*(gl,) = m, ® V*(sl,), where k|s,xs1, = kko and 7, is the rank 1
Heisenberg vertex algebra generated by I(z) = Y i, e;i(z) with A-bracket [[,1] =
Kk (I, DA. It follows that C¥(gl,) = m, ® C*(sl,). As easily seen, Q(O)I = 0. Hence
H*(C“(gl,)) = m ® H*(C*(sl,)), so that

W (gl,) = 7K (sl) @ 7,
In particular if we choose the form « to be kky, we find that , belongs to the center

of #*(gl,) as m, belongs to the center of C*(gl,). Thus, #*(sl,) is isomorphic to
the quotient of %% (gl,) by the ideal generated by /(_1)|0).
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5.4 The Grading of #*(g)

The standard conformal grading of C*(g) is given by the Hamiltonian H defined by

H|O) =0, [H,)C(n)] = —NX(n) (x (S g),
[Hs wa,n] = —nVYan, [H, %k,n] =-n z:(,n'

However H is not well-defined in #“(g) since H does not commute with the action
of

Q0= Y, Y C)wVart Y, xCVai— Y. D bV VhVym.

Q€A kEZ €A a,f.y€Ay k+I+m=0

Here and below we omit the tensor product sign.
To remedy this, define the linear operator Hy by

Hyl0) =0, [Hy,(x)wl=-n)m @G€l),
Hy, (x)m] = @(p¥) —n)(x)m (a € A),
Hy , Yan) = @) =) Von, [Hy ¥yl = (—al(p’)—n)¥y, (@A)

Here pV¥ = 1/2h, where h is defined in (6). Set C*(g) A new = {v € C*(g) | Hyc =
Ac}. Then

c* (g) = @ c* (g)A,new- (46)

A€ZL

Since [Q Hy] = 0, C*(g) A.new 1s @ subcomplex of C*(g). We have

H*(C*(9), Q) = @ H*(C“(9), 00)) 4

A€ZL

H.(CK (g)v Q(O))A = H.(CK (g)A,neWs Q(O))

In particular #“(g) = @ sz, #*(9) a. Note that the grading (46) is not bounded
from below.

If k # —n then the action of Hy on the vertex subalgebra #*(sl,) of #*(g) is
inner: Set

L(Z) = Lsug(z) + PV(Z) + Lf(Z) = ZLnZ_n_l,

nez
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where Lg,,(2) is the Sugawara field of Vk(sln):
(2) 2 : (2)x*(2)
Ly, = T xq(2)x ;
sug(Z (k+n) Ea 2)x(z

and

Lr@) = ) (ht(@) : Y@V (2) : +(1 —ht(@)) : 397 DV (2) 2).

a€AL

Here {x,} is a basis of sl, and {x“} is the dual basis of {x,} with respect to (| ).
Then Q)L = 0, and so L defines an element of #*(s,,). It is a conformal vector of
Wk (sl,), that is to say, Lo = Hy and L_; = T and

3

[Lms Ln] = (m - n)Lm+n + "

m8m Vlcs
12 '

where ¢ € C is the central charge of L, which is in this case given by

m—1D(1—=nn+ Dmn+k—1)2/(n+k)).

5.5 Decomposition of BRST Complex

We extend the map in Sect. 2.6 to the linear map @0 s glt.t7'] — C*(g) by setting

00(a@) = 2@ + Y Ly U @QVIE 1

Byedy

Proposition 9

1. The correspondence

Xa(2) > Ja(@) i= G0 (xa(2))  (xq € b)

defines a vertex algebra embedding V*° (b) — C*(g), where ky, is the bilinear
form on b defined by Kk (x,y) = k(x,y) + é/cg(x, y). We have

[Jalw;] = Z Cz,ﬂlﬁ;-

BeA+

2. The correspondence

%0 (2) > Ju(2) = Oo(xa) (X4 € 1)
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defines a vertex algebra embedding V(n) — C“(g). We have

[JaAWﬂ] = Z Cg,ﬂlﬁ;-

peat

Let C*(g)+ denote the subalgebra of C*(g) generated by J,,(z) and v, (z) with
o € A4, and let C*(g)— denote the subalgebra generated by J,(z) and ¥ (z) with
ac A_UlLae AL

The proof of the following assertions are parallel to that of Lemmas 11, 12 and
Proposition 3.

Lemma 24 The multiplication map gives a linear isomorphism
C(9)- ® C“(9)+ — C*(9).

Lemma 25 The subspaces C*(g)— and C*(g)+ are subcomplexes of (C“(g), Q(O)).
Hence C*(g) = C“(g)— ® C“(g)+ as complexes.

Theorem 19 ([28, 40]) We have Hi(C"(g)+,Q(0)) = §,0C. Hence H*(C"(g),

Q) = H*(C*(9)-, Q))- In particular #*(g) = H’(C*(g)-, Q0))-

Since the complex C“(g)— has no positive cohomological degree, its zeroth
cohomology #*(g) = H*(C*(g)—, Q(O)) is a vertex subalgebra of C*(g)—. Observe
also that C*(g)— has no negative degree with respect to the Hamiltonian Hy, and
each homogeneous space is finite-dimensional:

C(@)-= P C@W-anew.  EMC (@) 2 pew < 00. (47)
A€EZ—

Here CK(E)—,A,new =C" (Q)— nce (Q)A,new-

5.6 Proof of Theorem 18

As Q(O)FPCK(g)_ C FPC“(g)—, one can consider a spectral sequence for
H’(C"(g)_,Q(o)) such that the Ej-term is H®(gr C"(g)_,Q(o)). This spectral
sequence clearly converges, since C*(g)— is a direct sum of finite-dimensional
subcomplexes C*(g)—. A new-

We have grC*(g)- =~ SOb_[r']r") @ Am[F ) = ClUu'(n)] ®
A7), and the complex (ng"(g)_,Q(o)) is identical to the Chevalley
complex for the Lie algebra cohomology H® (n[f], C[Ju " (x)]). Therefore

Hi(gr C“(g)—, Q(0)) = 8;0ClJS]. (48)
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Thus the spectral sequence collapses at E; = E,, and we get
g H'(C*(9)-. Q) = H'(gr C*(9)-. Q) = 810CS].

Here gr’ H'(C*(g)—. Q(o)) is the associated graded space with respect to the
filtration G*H'(C*(g)—, Q(O)) induced by the filtration F*C“(g)—, that is,

GPH'(C*(g)—, Q) = Im(H'(F*C*(g)—, Q) — H'(C*(g)-, Q(0)))-

We claim that the filtration G'HO(CK(g)_,Q(O)) coincides with the canonical

filtration of H°(C*(g)_, Q(o)) = #*(g). Indeed, from the definition of the canonical
filtration we have FPW*(g) C GP#*(g) for all p, and hence, there is a Poisson
vertex algebra homomorphism

e (9.f) > @ W (g.f) = CUS)] (49)
that restricts to a surjective homomorphism
W@/ F' W (9) > #*(a)/G'#*(g) = CIS].
Since C[JS] is generated by C[S] as differential algebras it follows that (49) is
surjective. On the other hand the cohomology vanishing and the Euler-Poincaré
principle imply that the graded character of #“(g) and C[JS] are the same.

Therefore (49) is an isomorphism, and thus, G"#*(g) = FP#*(g) for all p.
Finally the embedding gr C*(g)— — gr C*(g) induces an isomorphism

H(gr C(g)-, Q) = H(gr C“(g), Qo))

by Theorem 17 and (48). This completes the proof. O

5.7 Zhu’s Algebra of W-Algebra

Let Zhu,,,,(C*(g)) be Zhu’s algebra of C*(g) with respect to the Hamiltonian Hy,
Zhu,;;(C*(g)) Zhu’s algebra of C*(g) with respect to the standard Hamiltonian H.
We have

Zhu,,e,,(C*(g)) 2 Zhu,,y(C*(g)) = C(g),
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see [10, Proposition 5.1] for the details. Then it is legitimate to write Zhu(C*(g))
for Zhuy,,,(C*(g)) or Zhu,a(C*(g))-
By the commutation formula, we have

00)(C*(g) © C*(g)) C C*(g) o C*(g).

Here the circle o is defined as in the definition of the Zhu algebra (with respect to
the grading Hy). So (Zhu,,,,C*(g), O()) is a differential, graded algebra, which is
identical to (C(g), ad Q).

Theorem 20 ([S]) We have
Zhuy* (g) = HO(ZhunewCK (g)v Q(O)) = Z(g)

Proof By Theorem 18, it follows that %#*(g) admits a PBW basis. Hence ny«(q) :
grZhu#“(g) — Ry, (g) is an isomorphism by Theorem 16. On the other hand we
have a natural algebra homomorphism Zhu#*(g) —> H°(ZhuC*(g), Q(o)) which
makes the following diagram commute.

Twk(gf)

gr Zhuw'* (g) T RWK(g)

l =~ lTheorem 18

orZ(g) —— C[S].

Note that we have the isomorphisms H(Rcx(q), Q(0) = H*(C*(g), ad Q()) == C[S]
and gr H*(Zhu,.,,C*(g), Q(O)) >~ grZ(g) in the diagram. Now the other three
isomorphisms will give the desired isomorphism.

We conclude that we have the following commutative diagram:

gr(?)

ClJS] «—— #*“(9)

R‘7
Zhu(?) l / J Zhu(?)

C[S] «— Z(9).
gr(?)

Remark 10 The same proof applies for an arbitrary simple Lie algebra g. In
particular, we have Zhu(#*(sl,)) = Z(sl,). In fact the same proof applies for the
W-algebra associated with a simple Lie algebra g and an arbitrary nilpotent element
f of g to show its Zhu’s algebra is isomorphic to the finite W-algebra U(g, f) [29].
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5.8 Explicit Generators

It is possible to write down the explicit generators of #*(g) C C*(g)-—.
Recall that the column-determinant of a matrix A = (a;) over an associative
algebra is defined by

cdetA = Z SENO * Ay(1)18(2)2 - - - Ag(nyn-
0ES,

Introduce an extended Lie algebra b[¢~!]¢~! @Ct, where the element T commutes
with 1, and

[‘C,X(_n)] = NX(—p) for xeb,nen,
where x(—,) = xt~". This induces an associative algebra structure on the tensor

product space U(b[r™"]¢") @ Clz].
Consider the matrix

[t + (en) 1) -1 0 0
(e21)(-1 ot +(e22)(-1) —1 0
B =
(en—l l)(—l) (en—12)(—]) Lo 0T + (e,,_l Vl—l)(—l) —1
(en1) (=1 (en2)(-1) T+ (enn)(=1)-]

with entries in U(b[r~!]¢7!]) ® C[r] ® Cla], where « is a parameter.
For its column-determinant! we can write

cdetB ="+ W1 ... 4w
for certain coefficients Wy) which are elements of U(b[t~']r"!]) ® Cla]. Set
WO = W(Szi)|a=k+n—1‘

This is an element of U(b[t~']¢~"), which we identify with V¥t (b) C C*(g)—.
Theorem 21 ([14]) #*(g) is strongly generated by W ... W™,

't is easy to verify that cdet B coincides with the row-determinant of B defined in a similar way.
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5.9 Miura Map

The Cartan subalgebra h of g acts on C“(g)+ by x; = (Ji)w), i € I, see
Proposition 9. Let C* (g)ﬁ_ be the weight space of weight A € h* with respect to
this action. Then

C@+ =P @i @ =V C VD).
A<0

The vertex algebra V*v (h) is the Heisenberg vertex algebra associated with h and
the bilinear form ky 1= Kp|pxp-

The projection C*(g)+ — C* (g)9F = V*b () with respect to this decomposition
is a vertex algebra homomorphism. Therefore it restriction

T W (g) — Vo (b) (50)

is also a vertex algebra homomorphism that is called the Miura map.
Theorem 22 The Miura map is injective for all k € C.

Proof The induced Poisson vertex algebra homomorphism
arT g/ (g) = CUS] > gr v (h) = C7h*] = CU(f + )] (51)

is just a restriction map and coincides with JT', where 7 is defined in (13). Clearly,
it is sufficient to show that J7" is injective.
Recall that the action map gives an isomorphism

NX(f+be) >UCf+b,

where U is some open subset of f 4 b, see the proof of Proposition 4. Therefore, by
Lemma 15, the action map JN xJ(f+H) — J(f+b) is dominant. Thus, the induced
map C[J(f + b)] = C[JN x J(f + b)] is injective, and so is JT : C[J(f + b)]'N —
CUN x J(f + D)™ = CU(f + h)].

Remark 11 Ttis straightforward to generalize Theorem 22 for the W-algebra #*(g)
associated with a general simple Lie algebra g.

Theorem 23 Let x; = E; € h C g = gl,, and J;(2) the corresponding field of
V¥ (). The image T (W9 (z)) of WO (z) by the Miura map is described by

Y T W) @) (@d)" = (2d: + J1()(@d: + () ... (@D + In(2) =,

i=0

wherea = k+n—1, WO () = 1, [0..Ji(2)] = [ Ji(2).
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Proof 1t is straightforward from Theorem 21.

Note that if we choose k to be ki and set va=1 Ji(z) = 0, we obtain the image of
the generators of #%(sl,) by the Miura map T.Fork+n # 0, this expression can be
written in more symmetric manner: Set b;(z) = J/<l+nji(z)’ so that Y 7, bi(z) = 0,
and

(1=hHa ifi=j,

[(bi)ad)] = 1, it

Then we obtain the following original description of the #*(sl,) due to Fateev and
Lukyanov [34].

Corollary 4 Suppose that k+n # 0. Then the image oijk(sln) by the Miura map
is the vertex subalgebra generated by fields W, (z) . .., W, (2) defined by

D Wi)(@00)" ™ =t (@00; + b1(2)) (@00 + b2(2)) - .. (00: + bu(2)) =,
i=0
where g = oy +a_, ay = Jk+n a_ =—1//k+n Woz) =1, Wi(z) = 0.
Corollary 5 Suppose that k + n # 0. We have
P (sl = 7 (6L,

where Lk is defined by (k + n)(*k +n) = 1.

Example 4 Let g = sly, k # —2. Set b(z) = +/2b1(z) = —+/2b1(2), so that
[b2b] = A. Then the right-hand-side of the formula in Corollary 5 becomes

(@b + jzb(z)xaoaz - leb@) :
= ajd? — L(2),
where
_ L 2., %
L(z) = 5 1 b(2)” +J2 9.b(z).

It is well-known and is straightforward to check that the field generates the Virasoro
algebra of central charge 1 —6(k+1)?/(k+2). Thus #*(sl,), k # —2, is isomorphic
to the universal Virasoro vertex algebra of central charge 1 — 6(k + 1)2/(k + 2).
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In the case that k = k. 1= — ;Kg, then it follows from Theorem 22 that %< (gl,,)

is commutative since Vv () is commutative. In fact the following fact is known:
Let Z(V*(g)) = {z € V*(9) | [z, am] = 0}, the center of V*(g).

Theorem 24 ([37]) We have the isomorphism
Z(Ve(g)) = #*(g), zr [z @1].

This is a chiralization of Kostant’s Theorem 5 in the sense that we recover
Theorem 5 from Theorem 24 by considering the induced map between Zhu’s
algebras of both sides. The statement of Theorem 24 holds for any simple Lie
algebra g [37].

Remark 12 For a general simple Lie algebra g, the image of the Miura map for a
generic k is described in terms of screening operators, see [40, 15.4]. Theorem 23
for g = gl,, also follows from this description (the proof reduces to the case g =
sly). An important application of this realization is the Feigin-Frenkel duality which
states

W (g) = 7 (tg),

where g is the Langlands dual Lie algebra of g, r (k+h")(“k+*h") = 1. Here r¥
is the maximal number of the edges of the Dynking diagram of g and “4" is the dual
Coxeter number of “g. In [37, 40] this isomorphism was stated only for a generic
k, but it is not too difficult to see the isomorphism remains valid for an arbitrary k
using the injectivity of the Miura map.

The Miura map is defined [60] for the W-algebra #*(g.f) associated with
an arbitrary f, which is injective as well since the proof of Theorem 22 applies.
Recently Naoki Genra [46] has obtained the description of the image by the Miura
map in terms of screening operators for the W-algebra #*(g, f) associated with an
arbitrary nilpotent element f.

5.10 Classical W-Algebras

Since the Poisson structure of C[S] is trivial, we can give gr #*(g) a Poisson vertex
algebra structure by the formula (32). The Poisson structure of Ryitn) = C[b] is
also trivial, hence gr V¥v (h) = C[Jh*] is equipped with the Poisson vertex algebra
structure by the formula (32) as well. Then the map gr T: gr ¥ (g) — grV« (h)
is a homomorphism of Poisson vertex algebras with respect to these structures. Set
k = kko, k € C, and consider its restriction gr'f' gr #*(sl,) < gr V<o ('), where
b’ is the Cartan subalgebra of sl,,.
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In gr V¥v (') we have
{hlh/} = Kp (hv h/) = (k + n)KO(hs h/)v

and this uniquely determines the A-bracket of gr V*b (’). Hence it is independent
of k provided that k # —n. Since the image of gr #*(sl,) is strongly generated
by elements of C[(h’)*]7, it follows that the Poisson vertex algebra structure of
gr #*(sl,), k # —n, is independent of k. We denote this Poisson vertex algebra by
Wel(sl,).

The Poisson vertex algebra # /(sl,) is called the classical W-algebra associated
with sl,, which appeared in the works of Adler [3], Gelfand-Dickey [45] and
Drinfeld-Sokolov [32]. Thus, the W-algebra #*(sl,), k # —n, is a deformation
of #(sl,).

On the other hand the % -algebra # ~"(sl,) at the critical level can be identified
with the space of the s(,-opers [21] on the disk D. We refer to [39, 40] for more on
this subject.

6 Representations of W-Algebras

From now on we set g = s, and study the representations of #*(g) [see (45)].

6.1 Poisson Modules

Let R be a Poisson algebra. Recall that a Poisson R-module is a R-module M in the
usual associative sense equipped with a bilinear map

RxM — M, (r,m)+— adr(m) = {r,m},
which makes M a Lie algebra module over R satisfying
{ri,rom} = {r;,nim+ r{r,m}, {rir,m} = ri{rn,m}+ rn{r, m

for ri,m» € R,m € M. Let R-PMod be the category of Poisson modules over R.

Lemma 26 A Poisson module over C[g*] is the same as a C|g*]-module M in the
usual associative sense equipped with a Lie algebra module structure g — End M,
x > ad(x), such that

ad (x)(fm) = {x.f}.m + f.ad (x)(m)

forxeg, f € Clg*], me M.
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6.2 Poisson Vertex Modules

Definition 5 A Poisson vertex module over a Poisson vertex algebra V is a V-
module M as a vertex algebra equipped with a linear map

Vis EndM)[Z ' a- Y@ =) ah

n=0
satisfying
agym =0 forn>>0, (52)
(Ta)%) = —na%_l), (53)
a%)(bv) = (amb)v + b(a%)v), (54)
m
[a?fn)v b(Mn)] = Z (l) (a(i)b)%ﬁn—i)’ (55)
i0
o
(ab)fy) = Z(aiw—i—l)bj(zﬂ) + b hagsy) (56)

i=0

foralla,be V,m,n=>0,v e M.
A Poisson vertex algebra R is naturally a Poisson vertex module over itself.

Example 5 Let M be a Poisson vertex module over C[J/g*]. Then by (55), the
assignment

xt" )/(Z) x €gcCClg*] cC[lJg*], n=0,

defines a Jg = g[[f]]-module structure on M. In fact, a Poisson vertex module over
ClJg*] is the same as a C[Jg*]-module M in the usual associative sense equipped
with an action of the Lie algebra Jg such that (xt")m = 0 forn > 0,x € g, m € M,
and

") - (am) = (xaym + a(xt") - m
forxeg,n=0,a € ClJg*],me M.

Below we often write a(,) for afy,.
The proofs of the following assertions are straightforward.
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Lemma 27 Let R be a Poisson algebra, E a Poisson module over R. There is a
unique Poisson vertex JR-module structure on JR Qg E such that

agy(b ® m) = (amb) ® m+ 8,0b ® {a, m}

forn=0,ae€RCJR beJR mcE (Recall that JR = C[J SpecR].)

Lemma 28 Let R be a Poisson algebra, M a Poisson vertex module over JR.
Suppose that there exists a R-submodule E of M (in the usual commutative sense)
such that agE = 0 forn > 0, a € R, and M is generated by E (in the usual
commutative sense). Then there exists a surjective homomorphism

JRRRE—>M

of Poisson vertex modules.

6.3 Canonical Filtration of Modules Over Vertex Algebras

Let V be a vertex algebra graded by a Hamiltonian H. A compatible filtration of a
V-module M is a decreasing filtration

M=Tr’M>r'm>--.
such that

amIM C I'’T""'M  fora € F’V, ¥n € Z,
awmT™™M C I'PT1"M  fora € F'V, n =0,
H.I'’M Cc I'’M forallp =0,

ﬂ I'’M = 0.
P

For a compatible filtration I"*M the associated graded space

g’ M= rem/ret'm

p=0

is naturally a graded vertex Poison module over the graded vertex Poisson algebra
gr’ V, and hence, it is a graded vertex Poison module over JRy = (C[f(v] by
Theorem 10.

The vertex Poisson JRy-module structure of grr M restricts to the Poisson Ry-
module structure of M/I"''M = I'°M/I"''M, and a(,y(M/T''M) = 0 fora € Ry C
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JRy, n > 0. It follows that there is a homomorphism
JRy @, M/T'M) - g M, a®mw— am,

of vertex Poisson modules by Lemma 28.
Suppose that V is positively graded and so is a V-module M. We denote by F*M
the Li filtration [68] of M, which is defined by

FPM = spanc{a(l_nl_l) ey M | adeV,meM, nj+---+n,=p}.

It is a compatible filtration of M, and in fact is the finest compatible filtration of M,
that is, F’M C I'’M for all p for any compatible filtration I"*M of M. The subspace
F'M is spanned by the vectors a(m with a € V, m € M, which is often denoted
by C»(M) in the literature. Set

M = M/F'M(= M/C>(M)), (57)

which is a Poisson module over Ry = V. By [68, Proposition 4.12], the vertex
Poisson module homomorphism

JRy @g, M — gt' M

is surjective.

Let {a';i € I} be elements of V such that their images generate Ry in usual
commutative sense, and let U be a subspace of M such that M = U + F'M. The
surjectivity of the above map is equivalent to that

F'M (58)

_ i i . .
= span(c{a(_nl_l) ceal, _pym |meU, ni=0,n~+---+n.=p,i,...,i, €I}

Lemma 29 Let V be a vertex algebra, M a V-module. The Poisson vertex algebra
module structure of arl’ M restricts to the Poisson module structure of M := M/F'M
over Ry, that is, M is a Poisson Ry-module by

a-m= a—pm, ad(Ez)(ﬁz) = aym.

A V-module M is called finitely strongly generated if M is finitely generated as a
Ry-module in the usual associative sense.
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6.4 Associated Varieties of Modules Over Affine Vertex
Algebras

A g-module M of level k is called smooth if x(z) is a field on M for x € g, that is,
xt"m = 0 forn > 0,x € g, m € M. Any V*(g)-module M is naturally a smooth
‘g-module of level k. Conversely, any smooth g-module of level k can be regarded as
a V*(g)-module. It follows that a V*(g)-module is the same as a smooth g-module
of level k.

For a V = V¥(g)-module M, or equivalently, a smooth g-module of level k, we
have

M = M/g[') M,
and the Poisson C[g*]-module structure is given by
x-m=xt"'m, ad@)m= xm.
For a g-module E let

VE = U@ Quineck) E.

where E is considered as a g[tf]@CK-module on which g[f] acts via the projection
glt] = g and K acts as multiplication by k. Then

Vi Clg ® E,
where the Poisson C[g*]-module structure is given by
f-g®@v=(f2)®v, adx(f®v)={xfi®v+fQx,

forf,g € C[g*],v e V.

Let Oy be the category O of g of level k [53], KL, the full subcategory of Oy
consisting of modules M which are integrable over g. Note that V,’g is a object of
KL; for a finite-dimensional representation E of g. Thus, V¥(g) = Vé‘: and its simple
quotient Vi (g) are also objects of KL.

Both O, and KL can be regarded as full subcategories of the category of V*(g)-
modules.

Lemma 30 For M € KL the following conditions are equivalent.

1. M is finitely strongly generated as a V*(g)-module,
2. M is finitely generated as a g[t~']t~"-module,
3. M is finitely generated as a g-module.
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For a finitely strongly generated V¥(g)-module M define its associated variety
XM by

Xy = suppRv(Il_/I) C Xy,

equipped with a reduced scheme structure.

Example 6 XVII; = g* for a finite-dimensional representation E of g.

6.5 Ginzburg’s Correspondence

Let HC be the full subcategory of the category of Poisson C[g*]-modules on which
the Lie algebra g-action (see Lemma 26) is integrable.

Lemma 31 For M € KLy, the Poisson C[g*]-module M belongs to HC.

By Lemma 31 we have a right exact functor

KL, > HC, M M.

For M € HC, M®Cl is naturally a Poisson module over C(g) = C[g*]®CL. (The
notation of Poisson modules natural extends to the Poisson supralgebras.) Thus,
(M ® Cl,adQ) is a differential graded Poisson module over the differential graded
Poisson module (C(g), adQ). In particular it cohomology H*(M ® CI,adQ) is a
Poisson module over H*(C(g),ad Q) = C[S]. So we get a functor

HC — C[S]-Mod, M+ H°(M) := H* (M ® CI, adQ).

The following assertion is a restatement of a result of Ginzburg [47] (see [10,
Theorem 2.3]).

Theorem 25 Let M € HC. Then H(M) = 0 for i # 0, and we have an
isomorphism

HO(M) = M/ Clg*](xi — x(x:))M)".

In particular if M is finitely generated H°(M) is finitely generated over C[S] and
SuppC[S] HO(M) = (Supp(c[g*] M) n S
Corollary 6 The functor HC — C[S]-Mod, M + H°(M), is exact.

Denote by N the set of nilpotent elements of g, which equals to the zero locus of
the augmentation ideal (C[g*]?r of C[g*]¢ under the identification g = g* via (| ).
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Since the element f (defined in (3)). is regular (or principal), the orbit
Oprin i =Gf Cg=g"
is dense in N:
N = Opyin.
The transversality of S implies that
SNN ={f}.

Theorem 26 ([47]) Let M be a finitely generated object in HC.

1. H*(M) # 0 ifand only if N C SUppeg+ M-

2. H°(M) is nonzero and finite-dimensional if suppggx M = N.

Proof (1) Note that suppgg H°(M) is invariant under the C*-action (7) on
S, which contracts the point {f}. Hence suppgg H' M) = (suppggx M) N'S
is nonempty if and only if f € suppgg H°(M). The assertion follows since
SUpPcis H°(M) is G-invariant and closed. (2) Obvious since the assumption implies

that suppgg; H'(M) = {f}.

6.6 Losev’s Correspondence

Let HC be the category of Harish-Chandra bimodules, that is, the full subcategory
of the category of U(g)-bimodules on which the adjoint action of g is integrable.

Lemma 32 Every finitely generated object M of HC admits a good filtration, that
is, an increasing filtration 0 = FoM C F{M C ... such that M = U F,M,

Up(g) - FgM - U (9) C Fptg+rM.  [Up(9), FpM] C Fpyq—1M.,
and gr M = @p F,M/F, 1M is finitely generated over C[g*].
If M € HC and FoM is a good filtration, then gr” M is naturally a Poisson module
over C[g*]. Therefore, it is an object of HC.
Let M be a finitely generated object in HC. It is known since Bernstein that

Var(M) := suppc[g*](ngM) cg*

in independent of the choice of a good filtration FeM of M.
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For M € HC, M ® Cl is naturally a bimodule over C(g) = U(g) ® Cl. Thus,
(M ® Cl,ad Q) is a differential graded bimodule over C(g), and its cohomology

H*(M) := H*(M ® Cl,ad Q)

is naturally a module over H(C(g), ad Q) that is identified with Z(g) by Theorem 5.
Thus, we have a functor

HC — Z(g) -Mod, M — H°(M). (59)

Let M € HC be finitely generated, FoM a good filtration. Then F,(M ® Cl) :=
> itj=p FiM ® Cl; defines a good filtration of M ® CI, and the associated graded
space gr,(M ® Cl) =) . F,(M ® Cl)/F,—1(M ® Cl) = (grpy M) ® Cl is a Poisson
module over gr C(g) = C(g).

The filtration Fo(M ® CI) induces a filtration Fo.H®*(M) on H*®*(M), and
grr H* (M) = @p F,H*(M)/F,—1H°(M) is a module over gr Z(g) = C[S].

For a finitely generated Z(g)-module M, set Var(M) = suppgg)(gr M), grM is
the associated graded M with respect to a good filtration of M.

The following assertion follows from Theorems 25 and 26.

Theorem 27 ([47, 69])

1. We have H\(M) = 0 for all i # 0, M € HC. Therefore the functor (59) is exact.

2. Let M be a finitely generated object of HC, FeM a good filtration. Then
grp H'(M) =~ H(grp M). In particular H°(M) is finitely generated, FoH(M)
is a good filtration of H*(M).

3. For a finitely generated object M of HC, Var(H°(M)) = Var(M) N S.

6.7 Frenkel-Zhu’s Bimodules

Recall that for a graded vertex algebra V, Zhu’s algebra Zhu(V) = V/V o V is
defined. There is a similar construction for modules due to Frenkel and Zhu [43].
For a V-module M set

ZhuM) =M/V oM,

where V o M is the subspace of M spanned by the vectors

aom= Z (Ala) agi—2m

i=0

fora € Va,, Ay € Z,and m € M.
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Proposition 10 ([43]) Zhu(M) is a bimodule over Zhu(V) by the multiplications
A, A,—1
a*m=2(,)a(i—1)b, m*a=2< . )a(i—l)m
i=0 \ ! =0 !

foraeVa, Ay € Z, andm € M.
Thus, we have a right exact functor

V-Mod — Zhu(V) -biMod, M +— Zhu(M).

Lemma 33 Let M = 69d€h+2+ My, be a positive energy representation of a 7.y -
graded vertex algebra V. Define an increasing filtration {Zhu,(M)} on Zhu(V) by

h+p
Zhu, (M) = Im(EP M, — Zhu(M)).
d=h

1. We have

Zhu, (V) - Zhuy (M) - Zhu,(V) C Zhu, 4 44(M),

[Zhu,(V), Zhu,(M)] C Zhu,y,—1(M).
Therefore grZhu(M) = @p Zhu,(M)/Zhu,_ (M) is a Poisson grZhu(V)-
module, and hence is a Poisson Ry-module through the homomorphism ny :

Ry — grZhu(V).
2. There is a natural surjective homomorphism

nv : M(= M/F'M) — grZhu(M)

of Poisson Ry-modules. This is an isomorphism if V admits a PBW basis and
grM is free over gr'V.

Example 7 Let M = V. Since gr V& is free over C[Jg*], we have the isomorphism
Nyt - VE = E® Clg*] > grZhu(Vy).
On the other hand, there is a U(g)-bimodule homomorphism

E® U(g) — Zhu(Vfg),
(60)
VRx1 ... x> (1®@v)* (ar ) * (ar™!) + Vi(g) o Vi
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which respects the filtration. Here the U(g)-bimodule structure of U(g) ® E is given
by

xXvQ@u) =xV)Qu+vxu, (WAux=vQ (ux),
and the filtration of U(g) ® E is given by {Ui(g) ® E}. Since the induced

homomorphism between associated graded spaces (60) coincides with Myks (60) is
an isomorphism.

Lemma 34 For M € KLy we have Zhu(M) € HC. If M is finitely generated, then
so is Zhu(M).

6.8 Zhu’s Two Functors Commute with BRST Reduction

For a smooth g-module M over level k, C(M) := M ® ¥ is naturally a module over
C*(g) = V¥(g) ® F. Thus, (C(M), Q(0)) is a cochain complex, and its cohomology
H*(M) := H*(C(M), Qo)) is a module over #*(g) = H*(C*(g), Q). Thus we
have a functor

V¥(g) -Mod — #*(g)-Mod, M +— H°(M).

Here V -Mod denotes the category of modules over a vertex algebra V.
Theorem 28
1. [9, 41] We have H'(M) = 0 fori # 0, M € KLy. In particular the functor

KL; — #*(g)-Mod, M — H°(M),

is exact.
2. [9] For a finitely generated object M of KL,

HO(M) =~ H(M)

as Poisson modules over Ry, = C[S]. In particular H°(M) is finitely strongly
generated and

XHO(M) == XM N S
3. [10] For a finitely generated object M of KL,
Zhu(H°(M)) = H°(Zhu(M))

as bimodules over Zhu(#*(g)) = Z(g).
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Let #i(g) denote the unique simple graded quotient of #*(g). Then Xy (g is a
C*-invariant subvariety of S. Therefore X,y «(q) is lisse if and only if Xy (q) = {f}
since the C*-action on S contracts to the point f.

Corollary 7

1. H'(Vi(9)) is a quotient of #*(g) = H*(V¥(g)). In particular #i(g) is a quotient
of H'(Vi(g)) if H(Vi(9)) is nonzero.

2. H(Vi(g)) is nonzero if and only if Xy,(g) D G.f = N.

3. The simple W-algebra Wi(g) is lisse if Xy,(q) = G.f = N.

Proof

1. follows from the exactness statement of Theorem 28.

2. H°(Vi(g)) is nonzero if and only of X, o = Xy NS is non-empty. This happens
if and only if f € X)s since Xpo(y is C*-stable. The assertion follows since Xy
is G-invariant and closed.

3. If Xvyg) = Gf, Xpowg)y = Xu NS = {f}, and thus, H(Vi(g)) is lisse, and
thus, so its quotient 7%, (g).

Remark 13
1. The above results hold for W-algebras associated with any g and any f € N
without any restriction on the level & [9, 10]. In particular we have the vanishing
result
H{(M) =0 fori#0, M €KL, (61)
for the BRST cohomology H}(M) of the quantized Drinfeld-Sokolov reduction

functor associated with f in the coefficient in an object M of KL;. Thus the
functor

KL, — #*(g.f)-Mod, M — H{(M),
is exact, and moreover,
XH})(Vk(g)) = Xy N va
where Sy is the Slodowy slice at f (see Sect. 2.8). In particular
H)(Vi(9)) #0 <= Xy D Gf. (62)

2. In the case that f = fp, a minimal nilpotent element of g, then we also have the
following result [4]:

Vg, fo) ik gLy,

Hp, (Vi(g)) =
(V@) =1 ) ifkeZ,.



240 T. Arakawa

Here #;(g.fs) is the simple quotient of #*(g, fy). Together with (62), this proves
the “only if”” part of Theorem 12. Indeed, if Vi(g) is lisse, then Hy, (Vi(g)) = 0
by (62), and hence, k € Z .

7 Irreducible Representations of W-Algebras

In this section we quickly review results obtained in [5].

Since Zhu(#*(g)) =~ Z(g), by Zhu’s theorem irreducible positive energy
representations of #*(g) are parametrized by central characters of Z(g). For a
central character y : Z(g) — C, let L(y) be the corresponding irreducible positive
energy representations of #%(g). This is a simple quotient of the Verma module
M(y) of #*(g) with highest weight y, which has the character

7(£2)
q 2(k+hV)

chM(y) = try) g% = )
» 1_[,;1(1 —g)*e

in the case that k is non-critical, where £2 is the Casimir element of U(g).

In Theorem 28 we showed that the functor KL, — #*(g) -Mod, M — H°(M),
is exact. However in order to obtain all the irreducible positive energy representation
we need to extend this functor to the whole category Ox. However the functor Oy —
#*(g) -Mod, M > H°(M), is not exact in general except for the case g = sl, [4].
Nevertheless, we can [44] modify the functor to obtain the following result.

Theorem 29 ([S]) There exists an exact functor
O — #*(g) -Mod, M — H° (M)

(called the “—"-reduction functor in [44]), which enjoys the following properties.

1. H (M(})) = M(y;), where M(L) is the Verma module of § with highest weight
A, and y; is the evaluation of Z(g) at the Verma module M (X) of g with highest
weight A

L(y;) if A is anti-dominant (that is, M, (A) is simple),

2. H(L(})) =~
@) 0 otherwise.

Corollary 8 Write chL(A) = }_ cauchM(pn) with ¢, € Z. If A is anti-
dominant, we have

chlL(y;) = ch,u ch M(yp).
n

In the case that k is non-critical, then it is known by Kashiwara and Tanisaki
[62] that the coefficient ¢}, is expressed in terms of Kazhdan-Lusztig polynomials.
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Since any central character of Z(g) can be written as y; with anti-dominant
A, Corollary 8 determines the character of all the irreducible positive energy
representations of %#*(g) for all non-critical k.

On the other hand, in the case that k is critical, all IL(y;) are one-dimensional
since % ~"(g) is commutative. This fact with Theorem 29 can be used in the study
of the critical level representations of g, see [13].

The results in this section hold for arbitrary simple Lie algebra g.

Remark 14 The condition A € h* is anti-dominant does not imply that A € /h\* is
anti-dominant. In fact this condition is satisfied by all non-degenerate admissible
weights A (see below) which are regular dominant.

Remark 15 Theorem 29 has been generalized in [6]. In particular the character
of all the simple ordinary representations (=simple positive energy representations
with finite-dimensional homogeneous spaces) has been determined for W-algebras
associated with all nilpotent elements f in type A.

8 Kac-Wakimoto Admissible Representations
and Frenkel-Kac-Wakimoto Conjecture

We continue to assume that g = sl,,, but the results in this section holds for arbitrary
simple Lie algebra g as well with appropriate modification unless otherwise stated.

8.1 Admissible Affine Vertex Algebras

Let E be the Cartan subalgebra hoCK of §, h = h®CKSCD the extended Cartan
subalgebra, A the set of roots of § g in h* = h*®CArdCS, where Ag(K) = 1 =
§(d), Ao(h + CD) = 8(heCK) = 0, A+ the set of positive roots. A" C A the set
of real roots, A’e AN A+ Let W be the affine Weyl group of g.

Definition 6 ([57]) A weight A /h\* is called admissible it

1. A is regular dominant, that is,
(A+p,av)yg—Z, foralla e Zfﬁ,

2. QAN) = QA”™, where A(A) = {a € A" | (A + p, V) € Z}.

The irreducible highest weight representation L(A) of g with highest weight A €
E* is called admissible if A is admissible. Note that an irreducible integrable
representations of g is admissible.

Clearly, integrable representations of g are admissible.
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For an admissible representation L(1) we have [56]

chL(A) = > (=)™ chM(wo2) (63)

weW(i)

since A is regular dominant, where W()L) is the integral Weyl group [61, 74] of A,
that is, the subgroup of w generated by the reflections s, associated with o € A
and wo A = w(A + p) — p. Further the condition (2) implies that chL(})
is written in terms of certain theta functions. Kac and Wakimoto [57] showed
that admissible representations are modular invariant, that is, the characters of
admissible representations form an SL,(Z) invariant subspace.

Let A, u be distinct admissible weights. Then the condition (1) implies that

Exté\(L()t),L(u)) =0.

Further, the following fact is known by Gorelik and Kac [49].

Theorem 30 ([49]) Let A be admissible. Then Ext/g\(L(/\), L(A)) =0.
Therefore admissible representations form a semisimple fullsubcategory of the
category of g-modules.

Recall that the simple affine vertex algebra V(g) is isomorphic to L(kAy) as an
‘g-module.

Lemma 35 The following conditions are equivalent.

1. kAg is admissible.

2. kA is regular dominant and k € Q.

3 k+h"=p/gp.geN (p.gg=1p=h" =n

If this is the case, the level k is called admissible for g, and Vi(g) is called an
admissible affine vertex algebra.

For an admissible number k let Pr; be the set of admissible weights of g of level
k. (For g = sl,, Pry is the same as the set of principal admissible weights of level k.)

8.2 Feigin-Frenkel Conjecture and Adamovié-Milas
Conjecture

The following fact was conjectured by Feigin and Frenkel and proved for the case
that g = sl, by Feigin and Malikov [38].

Theorem 31 ([9]) The associated variety Xy, g is contained in N if k is admissi-
ble.
In fact the following holds.
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Theorem 32 ([9]) Let k be admissible, and let g € N be the denominator of k, that
is,k+h" =p/q,peN, (p,q) = 1. Then

X = e g| (@0 =0} =0,

where Qy is the nilpotent orbit corresponding to the partition

) ifg>n,
(q’ ‘Lu-,q,s) (Osssn_ 1) lfq < n.

The following fact was conjectured by Adamovi¢ and Milas [2].

Theorem 33 ([11]) Let k be admissible. Then an irreducible highest weight
representation L(A) is a Vi (g)-module if and only if k € Pry. Hence if M is a finitely

generated Vi(g)-module on which Ty acts locally nilpotently and /h\ acts locally
finitely then M is a direct sum of L(A) with A € Pry.

8.3 Outline of Proofs of Theorems 31, 32 and 33

The idea of the proofs of Theorems 31 and 33 is to reduce to the g@-cases.

Let sl,; C g be the copy of sl, spanned by e; := e;;+1, i := e€i; — €i+1.i+1,
fi == eit+1.,and let p; = sl ; + b C g, the associated minimal parabolic subalgebra.
Then

p; = Lidm,,
where [; is the Levi subalgebra sl, ; + b, and m; is the nilradical @  Ce,,.
1<p<gq=<n
(p-q)p#(‘il.i+l)

Consider the semi-infinite cohomology H O204'°(1‘m[t, 1, M). Tt is defined as a
cohomology of Feigin’s complex (C(m;[t, '], M), d) [35]. There is a natural vertex
algebra homomorphism

Vhi(sh) — HZ POyl '], M), (64)

where k; = k + n — 2, see, e.g. [50]. Note that if & is an admissible number for g
then k; is an admissible number for sl,.

Theorem 34 ([8]) Let k be an admissible number. The map (64) factors through
the vertex algebra embedding

Vi(sk) = HZ (il '], Vi(g)).
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Proof (Outline of Proof of Theorem 31) First, consider the case that g = sl,. Let
N; be the maximal submodule of V¥(g), and let I; be the image of Nj in Ryig) =
C[g*], so that Ry,(g) = C[g*]/Ik. It is known by Kac and Wakimoto [56] that Ny is
generated by a singular vector, say v. The projection formula [72] implies that the
image [vx] of vy in I is nonzero. Since [v;] is a singular vector of C[g*] with respect
to the adjoint action of g, Kostant’s Separation Theorem implies that

[Uk] — MmN

for some m, n € N up to constant multiplication, where 2 = ef + fe + éhz. Now
suppose that Xy, () ¢ N and let A € Xy, (g)\N, so that 2(4) # 0. Then e(1) = 0.
Since Xy, (g) is G-invariant this implies that x(A) = 0 for any nilpotent element x of
g. Because any element of g can be written as a sum of nilpotent elements we get
that A = 0. Contradiction.

Next, consider the case that g is general. Note that since Xy, (g is G-invariant and
closed, the condition Xy, () C N is equivalent to that Xy, N h* = {0}. Now the
complex structure of C(m,[t, '], Vi(g)) induces the complex structure on Zhu’s C,-
algebra Rogw,[1.—1],vi(g))- The embedding in Theorem 34 induces a homomorphism

Ry (s12) = H' (R r11.vi(g))> @)

of Poisson algebra. Since §2 is nilpotent in RVk,- (sh)» SO IS its image £2; = eif; +fie; +
V2 in HO(R (i1 vi(a)) - @)- 1t follows that 7Y = 0 (mod nyRy,(g) + n_Ry,(g)
in Ry, (g foralli = 1,...,n — ¢, and we get that Xy,(g) N b* = {0} as required.

Proof (Outline of Proof of Theorem 32) The proof is done by determining the
variety Xy, (g). By Theorem 31, Xy,(y) is a finite union of nilpotent orbits. Thus it
is enough to know which nilpotent element orbits is contained in Xy, (). On the
other hand, (62) says Xy,(g) D G.f if and only H?(Vk(g)) # 0. Thus, it is sufficient
to compute the character of H]? (Vi(g)). This is in fact possible since we know the
explicit formula (63) of the character of Vi (g), thanks to the vanishing theorem (61)
and the Euler-Poincaré principle.

Proof (Outline of Proof of Theorem 33) Let L(A) be a Vi (g)-module. Then, the
space H 2 ti(my[t,r~'], L(A)), i € Z,is naturally a H > ti(m[t,r~'], Vi(g))-module.
By Theorem 34, this means that H2 *(m,[z,7~'], L(1)) is in particular a module
over the admissible affine vertex algebra Vi, (sl,). Therefore Theorem 33 for g = sl
that was established by Adamovi¢ and Milas [2] implies that H > T (m;[r, ~'], L(1))
must be a direct sum of admissible representations of 5’1\[2. This information is
sufficient to conclude that L(A) is admissible.

Conversely, suppose that L(A) is an admissible representation of level k. If L(1)
is integrable over g, then it has been already proved by Frenkel and Malikov [42]
that L(1) is a Vi(g)-module. But then an affine analogue of Duflo-Joseph Lemma
[11, Lemma 2.6] implies that this is true for a general admissible representation as
well.
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8.4 Lisse Property of W-Algebras

An admissible number k is called non-degenerate if Xy, 3 = N. By Theorem 32,
this condition is equivalent to that

k+n=p,p,q€N, (p.q)=1,p=n, qg=n.
q

The following assertion follows immediately from Corollary 7.

Theorem 35 ([9]) Let k be a non-degenerate admissible number. Then the W-
algebra #;(g) is lisse.

8.5 Minimal Models of W-Algebras

A vertex algebra V is called rational if any V-module is completely reducible.
To a lisse and rational conformal vertex algebra V one can associate rational
2d conformal field theory, and in particular, the category V -Mod of V-modules
forms [51] a modular tensor category [19], as in the case of the category of
integrable representation of g at a positive level and the category of minimal series
representations [23] of the Virasoro algebra. B

An admissible weight A is called non-degenerate if A is anti-dominant. Let
Pri”"%8 be the set of non-degenerate admissible weights of level k of . It is known
[44] that Pr{°"** is non-empty if and only if k is non-degenerate.

By Theorem 29, for A € Pr*, H° (L(1)) is a (non-zero) simple #*(g)-module if
and only of A € Pr{”"“% and H® (L(1)) = H° (L(jt)) if and only if u € W o A for
A€ PR,

Let [PrZ”"'deg] = PrZ”"'deg / ~,where A ~ u <= pu € Wo . ltis known [44]
that we have a bijection

(P X P /2y = ) (Gl > = B+ )+ kAol

Here k + n = p/q as before, /15’_1 is the set of integral dominant weights of level k of
9, the cyclic group Z, acts diagonally on ’13’:" X ﬁ‘_f" as the Dynkin automorphism,
and p = ézaemra.

The following assertion was conjectured by Frenkel et al. [44].

Theorem 36 ([10]) Let k be a non-degenerate admissible number. Then the simple
W-algebra W(g) is rational, and {IL.(y;) = HY(L(A) | A € [PrZ"n’deg]}forms the
complete set of isomorphism classes of simple #;(g)-modules.
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In the case that g = sl,, Theorems 35 and 36 have been proved in [22, 77], and the
above representations are exactly the minimal series representations of the Virasoro
algebra.

The representations

(L(y;) | A € [P "]y

are called the minimal series representations of #*(g), and if k+n = p/q,p.q € N,
(p,q) = 1,p, q, = n, then the rational W-algebra %, (g) is called the ( p, q)-minimal
model of #*(g). Note that the (p, g)-minimal model and the (g, p)-minimal model
are isomorphic due to the duality, see Corollary 5.

Proof (Outline of the Proof of Theorem 36) Let k be a non-degenerate admissible
number. We have

H'(Vi(9)) = #i(g)
by [5]. Hence by Theorem 28 (3)
Zhu(#i(g)) = Zhu(H(Vi(g))) = H’(Zhu(Vi(g)).

From this together with Theorem 33, it is not too difficult to obtain the classification
is the simple %, (g)-modules as stated in Theorem 36. One sees that the extensions
between simple modules are trivial using the linkage principle that follows from
Theorem 29.

Remark 16

1. We have #;(g) = L(y—+n),) for a non-degenerate admissible number k. (Note
that kAo & Pri”" "% )
2. Let A € Pri. From Corollary 8 and (63), we get

ch(yy) = Y €(w)chM(y,s,). (65)
weW(i)

This was conjectured by [44].

3. When it is trivial (that is, equals to C), #(g) is obviously lisse and rational. This
happens if and only if #;(g) is the (n,n 4+ 1)-minimal model (=the (n + 1, n)-
minimal model). In this case the character formula (65) for #;(g) = L(y3),
A = —(k + n)p + kA, gives the following denominator formula:

(woA,wod+2p) ol i 1
5 oo = Tla -y
=1

weWh)
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In the case that g = sl,, we get the denominator formula for the Virasoro algebra,
which is identical to Euler’s pentagonal identity.

. As a generalization of the GKO construction [48] it has been conjectured [58]

that the (p,q)-minimal model of #*(g), with p > ¢, is isomorphic to the
commutant of V4 (g) inside V;(g) ® V|(g), where [ +n = q/(p —q). (Note that
Vi(g) and V;4(g) are admissible.) This conjecture has been proved in [18] for
the special case that (p,q) = (n + 1,n).

A similar conjecture exists in the case that g is simply laced.

. The existence of rational and lisse W-algebras has been conjectured for general

W-algebras #*(g.f) by Kac and Wakimoto [59]. This has been proved in [12]
in part including all the cases in type A. See [15, 63] for a recent development in
the classification problem of rational and lisse W-algebras.
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Representations of the Framisation of the
Temperley-Lieb Algebra

Maria Chlouveraki and Guillaume Pouchin

Abstract In this note, we describe the irreducible representations and give a
dimension formula for the Framisation of the Temperley—Lieb algebra.

Keywords Framisation of the temperley-Lieb algebra ¢ Representation theory e
Temperley-Lieb algebra ¢ Yokonuma-Hecke algebra

1 Introduction

The Temperley—Lieb algebra was introduced by Temperley and Lieb in [18] for
its applications in statistical mechanics. It was later shown by Jones [8, 9] that
it can be obtained as a quotient of the Iwahori—Hecke algebra of type A. Both
algebras depend on a parameter g. Jones showed that there exists a unique Markov
trace, called the Ocneanu trace, on the Iwahori—Hecke algebra, which depends on a
parameter z. For a specific value of z, the Ocneanu trace passes to the Temperley—
Lieb algebra. Jones used the Ocneanu trace on the Temperley—Lieb algebra to define
a polynomial knot invariant, the famous Jones polynomial. Using the Ocneanu trace
as defined originally on the Iwahori—-Hecke algebra of type A yields another famous
polynomial invariant, the HOMFLYPT polynomial, which is also known as the 2-
variable Jones polynomial (the two variables being g and z).

Yokonuma-Hecke algebras were introduced by Yokonuma in [22] as generali-
sations of Iwahori—Hecke algebras in the context of finite Chevalley groups. The
Yokonuma-Hecke algebra of type A is the centraliser algebra associated to the
permutation representation of the general linear group over a finite field with respect
to a maximal unipotent subgroup. Juyumaya has given a generic presentation for
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this algebra, depending on a parameter g, and defined a Markov trace on it, the
latter depending on several parameters [10—12]. This trace was subsequently used
by Juyumaya and Lambropoulou for the construction of invariants for framed knots
and links [13, 16]. They later showed that these invariants can be also used for
classical and singular knots and links [14, 15]. The next step was to construct an
analogue of the Temperley—Lieb algebra in this case.

As it is explained in more detail in [17], where the technique of framisation
is thoroughly discussed, three possible candidates arose. The first candidate was
the Yokonuma—Temperley—Lieb algebra, which was defined in [5] as the quotient
of the Yokonuma-Hecke algebra by exactly the same ideal as the one used by
Jones in the classical case. We studied the representation theory of this algebra
and constructed a basis for it in [3]. The values of the parameters for which
Juyumaya’s Markov trace passes to the Yokonuma—Temperley—Lieb algebra are
given in [5]. Unfortunately, for these values, the invariants for classical knots and
links obtained from the Yokonuma-Temperley—Lieb algebra are equivalent to the
Jones polynomial.

A second candidate, which is more interesting topologically, was suggested in
[6]. This is the Framisation of the Temperley—Lieb algebra, whose representation
theory we study in this paper. The Framisation of the Temperley—Lieb algebra
is defined in a subtler way than the Yokonuma-Temperley-Lieb algebra, as the
quotient of the Yokonuma—Hecke algebra by a more elaborate ideal, and it is larger
than the Yokonuma—Temperley—Lieb algebra. The values of the parameters for
which Juyumaya’s Markov trace passes to this quotient are given in [6]. It was
recently shown that the Juyumaya—Lambropoulou invariants for classical links are
stronger than the HOMFLYPT polynomial [1]. It turns out that, in a similar way, the
invariants for classical links obtained from the Framisation of the Temperley—Lieb
algebra are stronger than the Jones polynomial.

The third candidate is the so-called Complex Temperley—Lieb algebra, which is
larger than the Framisation of the Temperley—Lieb algebra, but provides the same
topological information (see [17]).

In this note, we study the representation theory of the Framisation of the
Temperley-Lieb algebra. In Proposition 5 we give a complete description of
its irreducible representations, by showing which irreducible representations of
the Yokonuma—Hecke algebra pass to the quotient. The representations of the
Yokonuma-Hecke algebra of type A were first studied by Thiem [19-21], but here
we use their explicit description given later in [4]. Our result generalises in a natural
way the analogous result in the classical case. We then use the dimensions of the
irreducible representations of the Framisation of the Temperley—Lieb algebra in
order to compute the dimension of the algebra. We deduce a combinatorial formula
involving Catalan numbers, given in Proposition 6.

A reference to the results of this note is included in [6], so we decided to finally
provide them in written form. We also take this opportunity to write down the
relations between three types of generators used in bibliography so far (Remark 2),
and show that the Yokonuma—Hecke algebra is split semisimple over a smaller field
than the one considered in [4] (Corollary 2).
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2 The Temperley-Lieb Algebra

In this section, we recall the definition of the Temperley—Lieb algebra as a quotient
of the Iwahori—-Hecke algebra of type A given by Jones [9], and some classical
results on its representation theory.

2.1 The Iwahori-Hecke Algebra H,(q)

Let n € N and let ¢ be an indeterminate. The Iwahori—Hecke algebra of type A,
denoted by H,,(q), is a C[q, g~ ']-associative algebra generated by the elements

Gi,...,Gu1
subject to the following relations:
GG, = G;G; forallz:,j:1,...,n—1with|i—j|>1, )
GiGi+1G; = Gi4+1GiGiy foralli=1,...,n—2,
together with the quadratic relations:
G’=q+(@—-1G  foralli=1,...,n—1. )

Remark 1 If we specialise g to 1, the defining relations (1)—(2) become the defining
relations for the symmetric group &,,. Thus the algebra H,(q) is a deformation of
the group algebra over C of G,,.

2.2 The Temperley-Lieb Algebra TL,,(q)

Leti=1,...,n—1. We set

Giit1:= 1+ G + Giy1 + GiGiy1 + Gi11G;i + G,Gi11Gi.
We define the Temperley—Lieb algebra TL,(q) to be the quotient H,,(g) /1, where I is
the ideal generated by the element G; . We have G;;+; € [foralli=1,...,n—2,

since

Giis1 = (G1Ga++Gp1) ™' G12(G1 G-+ Gy,
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2.3 Combinatorics of Partitions

Let A |- n be a partition of n, thatis, A = (A1, ..., A¢) is a string of positive integers
suchthat A; = Ay > --- = Ay = land |A| := A 4+ --- + A = n. We shall also say
that A is a partition of size n.

We identify partitions with their Young diagrams: the Young diagram of A is a
left-justified array of k rows such that the jth row contains A; nodes for all j =
1,...,k. We write 6 = (x,y) for the node in row x and column y.

For a node 6 lying in the line x and the column y of A (that is, 6 = (x,y)), we
define c(6) := ¢*~*. The number c(6) is called the (quantum) content of 6.

Now, a tableau of shape A is a bijection between the set {1, ..., n} and the set of
nodes in A. In other words, a tableau of shape A is obtained by placing the numbers
1,...,n in the nodes of A. The size of a tableau of shape A is n, that is, the size of
A. A tableau is standard if its entries increase along any row and down any column
of the diagram of A.

For a tableau 7°, we denote by c¢(7|i) the quantum content of the node with the
number i in it. For example, for the standard tableau7 = 1 2 3 of size 3, we have

(T =1, c«(T|2) =g and c(T|3) = ¢*.

For any tableau 7 of size n and any permutation 0 € &,, we denote by 7 the
tableau obtained from 7~ by applying the permutation o on the numbers contained
in the nodes of 7. We have

c(T°) = C(T|a_1(i)) foralli=1,...,n.

Note that if the tableau 7 is standard, the tableau 7 is not necessarily standard.

2.4 Formulas for the Irreducible Representations of

Cl@)Ha ()

We set C(q)Hu(q) := C(q) ®cjyq—1] Hu(q). Let P(n) be the set of all partitions
of n, and let A € P(n). Let V) be a C(q)-vector space with a basis {v, } indexed
by the standard tableaux of shape A. We set v, := 0 for any non-standard tableau
7 of shape A. We have the following result on the representations of C(g)H,(q),
established in [7]:

Proposition 1 Let T be a standard tableau of shape A € P(n). For brevity, we set
ci :=c(Ti) fori = 1,...,n. The vector space V) is an irreducible representation
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of C(q)H,(q) with the action of the generators on the basis element v, defined as
follows: fori=1,...,n—1,

qCi+1 — Ci+1 qCi+1 — Ci
v, +

Gi(v,) =
" Cit1—C | Cit1—C

Voo s (3)

where s; is the transposition (i,i + 1). Further, the set {V)}yep) is a complete set
of pairwise non-isomorphic irreducible representations of C(q)H,(q).

Corollary 1 The algebra C(q)H,(q) is split semisimple.

2.5 Irreducible Representations of C(q)TL,,(q)

Since the algebra C(q)H,(q) is semisimple, the algebra C(¢)TL,(q) :=
C(q@) ®cpq4—11 TLa(q) is also semisimple. Moreover, the irreducible representations
of C(¢g)TL,(q) are precisely the irreducible representations of C(q)H,,(¢) that pass
to the quotient. That is, V) is an irreducible representation of C(¢)TL,(g) if and
only if Gi»(v,) = 0 for every standard tableau 7 of shape A. It is easy to check
that the latter is equivalent to the trivial representation not being a direct summand
of the restriction Resgf,m(E*), where E* is the irreducible representation of the

symmetric group &, (equivalently, the algebra CH, (1)) labelled by A. We thus
obtain the following description of the irreducible representations of C(¢)TL,(g):

Proposition 2 We have that V), is an irreducible representation of C(q)TL,(q) if
and only if the Young diagram of A has at most two columns.

2.6 The Dimension of C(q)TL,(q)

For n € N, we denote by C,, the nth Catalan number, that is, the number

2

1 (2n 1 &(n
C, = = .
n+1<n) n—i-l;(k)

We have the following standard result on the dimension of C(¢)TL,(gq) (cf. [8, 9]):

Proposition 3 We have

dimc(y) (C(q)TL,(q)) = C,.
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3 The Framisation of the Temperley-Lieb Algebra

In this section, we will look at a generalisation of the Temperley—Lieb algebra,
which is obtained as a quotient of the Yokonuma—Hecke algebra of type A. This
algebra was introduced in [6], where some of its topological properties were studied.
Here we will determine its irreducible representations and calculate its dimension.

3.1 The Yokonuma—Hecke Algebra Y 4,,(q)

Let d, n € N. Let ¢g be an indeterminate. The Yokonuma—Hecke algebra of type A,
denoted by Y,.,,(¢), is a C[g, ¢~ ']-associative algebra generated by the elements

8lse s 8n—15t5 s In

subject to the following relations:

(b)) 8ig& = &&i foralli,j=1,...,n—1with |i—j| > 1,

(by) gigi+18i = gi+18igi+1 foralli=1,...,n—2,

() lit; = tjt; foralli,j=1,...,n, 4
f,) 18 = 8ils(j) foralli=1,...,n—1landj=1,...,n,

£5) =1 forallj=1,...,n,

J

where s; is the transposition (i, i + 1), together with the quadratic relations:

gl.zzq+(q—l)eigi foralli=1,...,n—1, 5)
where
1!
o=, Zt;t;l. (6)
s=0
Note that we have e? = ¢; and ¢;g; = gie; foralli = 1,...,n — 1. Moreover,
we have
tie; = tir1¢; foralli=1,...,n—1. 7

Remark 2 In [4], the first author and Poulain d’ Andecy consider the braid genera-
tors g; := ¢~ '/?g; which satisfy the quadratic relation

Z=14+G"?—qg" e . (8)
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On the other hand, in all the papers [2, 12, 15, 16] prior to [4], the authors consider
the braid generators g; = g; + (¢'/> — 1) ¢;3; (and thus, g; 1= g; + (¢7'/> — 1) €;g))
which satisfy the quadratic relation

G=1+@-De+(g—1eg. )
Note that
= 12 = .
eigi=eg =q'eg foralli=1,...,n—1. (10)

Remark 3 If we specialise g to 1, the defining relations (4)—(5) become the defining
relations for the complex reflection group G(d,1,n) =~ (Z/dZ) : G,. Thus the
algebra Y,;,(q) is a deformation of the group algebra over C of the complex
reflection group G(d, 1,n). Moreover, for d = 1, the Yokonuma—Hecke algebra
Y1..(q) coincides with the Iwahori—Hecke algebra H,,(g) of type A.

Remark 4 The relations (by), (by), (f;) and (f;) are defining relations for the
classical framed braid group ¥, = Z? B,, where B, is the classical braid group
on n strands, with the #;’s being interpreted as the “elementary framings” (framing 1
on the jth strand). The relations tjd = 1 mean that the framing of each braid strand
is regarded modulo d. Thus, the algebra Y, ,(g) arises naturally as a quotient of
the framed braid group algebra over the modular relations (f;) and the quadratic
relations (5). Moreover, relations (4) are defining relations for the modular framed
braid group ¥4, = (Z/dZ)?B,, so the algebra Y, ,(q) can be also seen as a quotient
of the modular framed braid group algebra over the quadratic relations (5).

3.2 The Framisation of the Temperley—Lieb Algebra FTL, ,(q)

Leti=1,...,n—1. We set

gii+1 =1+ g+ giv1 + 8igi+1 + 8i+18i + &igi+18i-

We define the Framisation of the Temperley—Lieb algebra to be the quotient
Y..(q)/1, where I is the ideal generated by the element

€162 81,2-

Note that, due to (7), e;e, commutes with g; and with g,, so it commutes with g; ».
Further, we have e;je;118;+1 € I foralli =1,...,n— 2, since

eieir18iir1 = (8182 gn—1) 'e1e2812(g182 .. gu—1) V.
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Remark 5 In [6], the Framisation of the Temperley—Lieb algebra is defined to be the
quotient Y4 ,(g)/J, where J is the ideal generated by the element e e; g1, where

gr2=1+g +8 + 818 + & + 2188

Due to (10) and the fact that the e;’s are idempotents, we have eje; g1» = eje2 812,
andsol =J.

Remark 6 For d = 1, the Framisation of the Temperley—Lieb algebra FTL; ,(q)
coincides with the classical Temperley—Lieb algebra TL,,(g).

3.3 Combinatorics of d-Partitions

A d-partition A, or a Young d-diagram, of size n is a d-tuple of partitions such that
the total number of nodes in the associated Young diagrams is equal to n. That is,
we have A = (/\(1), .. ,/\(d)) with AV, .., 4@ ysual partitions such that Ik(l)l +
c A [AD| =,

A pair § = (6, k) consisting of a node 6 and an integer k € {1,...,d} is called
a d-node. The integer k is called the position of 6. A d-partition is then a set of d-
nodes such that the subset consisting of the d-nodes having position k forms a usual
partition, for any k € {1,...,d}.

For a d-node 6 lying in the line x and the column y of the kth diagram of A (that
is, & = (x,y,k)), we define p(f) := k and c(f) := ¢°~*. The number p(f) is the
position of # and the number c(0) is called the (quantum) content of 6.

Let A = (A1, ..., A9) be a d-partition of n. A d-tableau of shape A is a
bijection between the set {1,...,n} and the set of d-nodes in A. In other words,
a d-tableau of shape A is obtained by placing the numbers 1, ..., n in the d-nodes
of A. The size of a d-tableau of shape A is n, that is, the size of A. A d-tableau
is standard if its entries increase along any row and down any column of every
diagram in A. For d = 1, a standard 1-tableau is a usual standard tableau.

For a d-tableau 7, we denote respectively by p(7|i) and c(7 i) the position and
the quantum content of the d-node with the number i in it. For example, for the
standard 3-tableau 7= ( 1 3 , @, 2 ) of size 3, we have

p(TID) =1, p(712) =3, p(713) =1 and c(T|) =1, c(T]2) =1, c(T|3) =q.
For any d-tableau 7~ of size n and any permutation o € S,,, we denote by 7° the
d-tableau obtained from 7 by applying the permutation o on the numbers contained
in the d-nodes of 7. We have
p(7T°)i) = p(T|a_l(i)) and c(7°)i) = c(‘T|o_l(i)) foralli=1,...,n.

Note that if the d-tableau 7" is standard, the d-tableau 7 is not necessarily standard.
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3.4 Formulas for the Irreducible Representations of
C@)Yan(q)

The representation theory of Y, (¢) has been first studied by Thiem in [19-21] and
subsequently in [4], where a description of its irreducible representations in terms
of d-partitions and d-tableaux is given.

Let P(d, n) be the set of all d-partitions of n, and let A € P(d, n). Let V; be a
C(g'/*)-vector space with a basis {V,-} indexed by the standard d-tableaux of shape
A. In [4, Proposition 5], the authors describe actions of the generators g;, for i =
l,...,n—1,and ¢, forj = 1,...,n, on {V,}, which make \7;, into a representation
of Y,.,(q) over C(¢'/?). The matrices describing the action of the generators tj have
complex coefficients, while the ones describing the action of the generators g; have
coefficients in C(g'/?). However, the change of basis

v NT /2§

ri=4q T, an
where Ny := #{i € {1,...,n — 1}|p(7T]i)) < p(7T]i + 1)}, and the change of
generators

g =q"% (12)
yield a description of the action of Y4, (¢) on V; which is realised over C(q) (see
proposition below).

Let V) be a C(g)-vector space with a basis {v,} indexed by the standard d-
tableaux of shape A. We set v,. := 0 for any non-standard d-tableau 7~ of shape
A. Let {&, ..., &4} be the set of all dth roots of unity (ordered arbitrarily). We set
C(@)Yan(q) := C(q) ®cjg,4—1) Yan(q)- The following result is [4, Proposition 5] and
[4, Theorem 1], with the change of basis and generators described by (11) and (12).

Proposition 4 Let T be a standard d-tableau of shape A € P(d,n). For brevity,

we set p; := p(7 i) and c; := c(T|i) fori = 1,...,n. The vector space V, is an
irreducible representation of C(q)Y.,(q) with the action of the generators on the
basis element v, defined as follows: forj =1,...,n,

tj(vfr) = %‘pjvfr 5 (13)

fori=1,....,n—1, if pi > pit1 then
gi(V,r) = Vs> (14)
l.fpi < Pi+1 then

8i(Vr) = q Vo (15)
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and if p; = pi+1 then

qCi+1 — Ci+1 qCi+1 — G
gi(vfr) = v, +

r (16)
Ci+1 — G Ci+1 — G

TSP

where s; is the transposition (i, i+ 1). Further, the set {V) }rep.n) is a complete set
of pairwise non-isomorphic irreducible representations of C(q)Y 4..(q)-

Corollary 2 The algebra C(q)Ya.(q) is split semisimple.
Remark 7 Note that

0 ,ifp; # pit+1; a7

ei(vfr) = v, ifpi = Pit1.

3.5 Irreducible Representations of C(q)FTL4,,(q)

Since the algebra C(q)Ys.(q) is semisimple, the algebra C(q)FTL;.(q) :=
C(9) ®cpgq—1] FTLan(g) is also semisimple. Moreover, the irreducible rep-
resentations of C(q)FTL,,(g) are precisely the irreducible representations of
C(g)Ya.n(g) that pass to the quotient. That is, V, is an irreducible representation of
C(g)FTL4.(g) if and only if ejexg1 (v, ) = O for every standard d-tableau 7~ of
shape A.

Proposition 5 We have that V, is an irreducible representation of C(q)FTLy.(q)
if and only if the Young diagram of)c(’) has at most two columns foralli =1,...,d.

Proof Let us assume first that V; is an irreducible representation of C(¢)FTL,,(q)
andleti € {1,...,d}. Set n; := |AD|. If n,<2, then A has at most two columns.
If n; = 3, let us consider all the standard d-tableaux 7 = (71, ..., 7@) of shape
A such that

pl:p2:p3:...:pni:i_

Then, using the notation of Proposition 1 for the Iwahori—Hecke algebra H,,,(¢) and
Eq. (17), we obtain

Gi2(v ) = 812(V7) = gi2e1€2(Vy) = ere2g12(v,) =0

Since 7 runs over all the standard tableaux of shape A0, Proposition 2 yields that
A has at most two columns.

Now assume that the Young diagram of A has at most two columns for all
i=1,....d. Let 7T = (TW,...,7@) be a standard d-tableau of shape A. If
pP1 = p2 = p3 =: p, then, by (17), e1e2812(v,) = gi2e1€2(v,) = g12(v,). In this
case, g1 acts on v, in the same way that Gy, acts on Voo (replacing the entries
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greater than 3 by entries in {4, ...,|A®|}). Following the result on the classical
case, we have g;2(v,) = 0. Otherwise, again by (17), we have eje(v,.) = 0, and
e1e2812(v,) = gizerex(v,) = 0 as desired.

3.6 The Dimension of C(q)FTL,,(q)

We will now use the complete description of the irreducible representations of
C(g)FTL,.,(q) by Proposition 5 to obtain a dimension formula for C(¢)FTL,;,(g).
Set

Kan = {1 koo ... kg) €N |ky + ko + -+ + kg = n}.
Proposition 6 We have

. n! 2
dime (C@FTLu,@) = 3 ( o kd!) CoaCor--C.
(k1 ,k2,..., kd)GWdﬂ

Proof Let us denote by P<2(d, n) the set of d-partitions A of n such that the Young
diagram of 2 has at most two columns foralli = 1,...,d. By Proposition 5, and
since the algebra C(q)FTL,,(g) is semisimple, we have

dimcg) (C(@)FTLau(g)) = Y dimgg(Va)*,
AEPS<2(dn)

where dimc(,)(V2) is the number of standard d-tableaux of shape A.
Fix (ki, ko, ..., kq) € Kyn. We denote by P<2(ky, ks, ..., kq) the set of all d-
partitions A in P<2(d, n) such that [A| = k; foralli = 1,...,d. We have

dimc) (C(@)FTLyu(g) = Y > dimgg(Va)
(k1 k2. kq) EKan AEP=2(ky k,....ka)

Let A € P<*(ky, ko, . .., k;). We have

n n—kl n—kl—/Q n—kl—k2—~~-—kd_1 _ n!
ky ka ks kq C kilka!. k!

ways to choose the numbers in {1,...,n} that will be placed in the nodes of the
Young diagram of A9 foreach i = 1,...,d. We deduce that

d
. n! .
dlm(c(q)(vl) = k1 'kz' kd' l_[dlm(c(q)(vl(i)) s
A
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where V, ( is the irreducible representation of C(q)TLy, (¢) labelled by A® . We thus
obtain that dimeg) (C(¢)FTLy ,(g)) is equal to

n! 2 d .
2 (Iq k.. .kd!) 2. []dimeqvy0)”

(k1.k2.....ka) €Ka.n AEP=2(k| ky,...kq) i=1

‘We now have that

d
Yo [Tdimeg(vie)

AEPsz(kl NI kd) i=1

is equal to

d
> oY [Tdimeg (v

AVeP=2(1k) APeP<2(1 k) A Dep=2(1 k) =1
which in turn is equal to

d

[T XY dimew(vio)

i=1 A(")epﬁ(l,ki)

By Proposition 3, we have that

> dimg(Vy0)? = dimeg)(C(g) TLi(9) = Cy, .
2D eP=<2(1 k;)

foralli =1,...,d. We conclude that

. n! 2
dime (C@FTLu,@) = 3 ( o kd!) CoaCoa--C
(k1 ,k2,..., kd)GWdﬂ
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Some Semi-Direct Products with Free Algebras
of Symmetric Invariants

Oksana Yakimova

Abstract Let g be a complex reductive Lie algebra and V the underlying vector
space of a finite-dimensional representation of g. Then one can consider a new Lie
algebra q = gxV, which is a semi-direct product of g and an Abelian ideal V.
We outline several results on the algebra C[q*]9 of symmetric invariants of ¢ and
describe all semi-direct products related to the defining representation of sl, with
Clg*]® being a free algebra.

Keywords Coadjoint representation ¢ Non-reductive Lie algebras ¢ Polynomial
rings * Regular invariants

1 Introduction

Let Q be a connected complex algebraic group. Set ¢ = Lie Q. Then S(q) = C[q*]
and S(q)7 = C[g*]? = C[q*]2. We will call the latter object the algebra of
symmetric invariants of q. An important property of S(q)? is that it is isomorphic
to ZU(q) as an algebra by a classical result of M. Duflo (here ZU(q) is the centre of
the universal enveloping algebra of q).

Let g be a reductive Lie algebra. Then by the Chevalley restriction theorem
S(g)® = C[H,,...,Hyg] is a polynomial ring (in rk g variables). A quest for
non-reductive Lie algebras with a similar property has recently become a trend in
invariant theory. Here we consider finite-dimensional representations p : g — gl(V)
of g and the corresponding semi-direct products ¢ = gx V. The Lie bracket on q is
defined by

€ +v,n+ul =[E 0]+ pE)u—p(nv 1)

forall £,n € g, v,u € V. Let G be a connected simply connected Lie group with
Lie G = g. Then q = Lie Q with Q = Gx exp(V).

It is easy to see that C[V*]® < C[q*] and therefore C[V*]° must be a
polynomial ring if C[q*]9 is, see [10, Section 3]. Classification of the representations
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of complex simple algebraic groups with free algebras of invariants was carried
out by Schwarz [7] and independently by Adamovich and Golovina [1]. One such
representation is the spin-representation of Spin,, which leads to Q = Spin, xC8,
Here C[q*]9 is a polynomial ring in three variables generated by invariants of bi-
degrees (0,2), (2,2), (6,4) with respect to the decomposition q = 507®C8, see
[10, Proposition 3.10].

In this paper, we treat another example, G = SL,, V = m(C")*®kC" with
n=2mz=1,m= k. Here C[q*]? is a polynomial ring in exactly the following
three cases:

e k=0,m<n+ l,andn =t (mod m) with t € {—1,0,1};
e m=kke{n—2,n—1};
e n=m>k>0andm — k divides n — m.

We also briefly discuss semi-direct products arising as Zj-contractions of
reductive Lie algebras.

2 Symmetric Invariants and Generic Stabilisers

Let ¢ = LieQ be an algebraic Lie algebra, O a connected algebraic group. The
index of q is defined as

indg = min dimg,,
yeq*
where ¢, is the stabiliser of y in q. In view of Rosenlicht’s theorem, indg =
tr.deg C(q*)?. In case indq = 0, we have C[q*]" = C. For a reductive g,
indg = rk g. Recall that (dimg + rk g)/2 is the dimension of a Borel subalgebra of
g. For q, set b(q) := (indq + dimq)/2.

Let {&;} be a basis of q and M(q) = ([§;, §]) the structural matrix with entries in
g. This is a skew-symmetric matrix of rank dim q —ind gq. Let us take Pfaffians of the
principal minors of M(q) of size rk M(q) and let p = p, be their greatest common
divisor. Then p is called the fundamental semi-invariant of q. The zero set of p is
the maximal divisor in the so called singular set

QGng = 1y € q™ | dimq, > indq}
of g. Since q:‘mg is clearly a Q-stable subset, p is indeed a semi-invariant, Q-p C Cp.
One says that ¢ has the “codim-2” property (satisfies the “codim-2” condition), if
dimq,,<dimg — 2 or equivalently if p = 1.

Suppose that Fy,...,F, € S(q) are homogenous algebraically independent
polynomials. The Jacobian locus J (Fy, ..., F,) of these polynomials consists of
all y € g* such that the differentials d, F,...,d,F, are linearly dependent. In
other words, y € J(Fy,...,F,) if and only if (dF\ A ... A dF,), = 0. The set
J(F1,...,F,) is a proper Zariski closed subset of q*. Suppose that J (F1, ..., F;)
does not contain divisors. Then by the characteristic zero version of a result of
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Skryabin, see [5, Theorem 1.1], C[Fy, ..., F,] is an algebraically closed subalgebra
of S(q), each H € S(q) that is algebraic over C(Fy,...,F,) is contained in
ClFy,...,F}].

Theorem 1 (cf. [3, Section 5.8]) Suppose that p;, = 1 and suppose that
Hy,...,H, € S(q)% are homogeneous algebraically independent polynomials such
that r = indq and Yy ._ degH; = b(q). Then S(q)% = C[H,,....H,] is a
polynomial ring in r generators.

Proof Under our assumptions J (Hy, ..., H,) = qs*ing, see [5, Theorem 1.2] and [9,
Section 2]. Therefore C[H|, ..., H,] is an algebraically closed subalgebra of S(q)
by [5, Theorem 1.1]. Since tr.deg S(q)9<r, each symmetric g-invariant is algebraic
over C[Hy, ..., H,] and hence is contained in it. O

For semi-direct products, we have some specific approaches to the symmetric
invariants. Suppose now that g = Lie G is a reductive Lie algebra, no non-zero
ideal of g acts on V trivially, G is connected, and q = gxV, where V is a finite-
dimensional G-module.

The vector space decomposition q = gV leads to q* = g®V*, where we
identify g with g*. Each element x € V* is considered as a point of q* that is
zero on g. We have exp(V)-x = ad*(V)-x + x, where each element of ad*(V)-x
is zero on V. Note that ad*(V)-x C Ann(g,) C g and dim (ad*(V)-x) is equal to
dim (ad *(g)-x) = dimg — dim g,. Therefore ad*(V)-x = Ann(g,).

The decomposition g = gV defines also a bi-grading on S(q) and clearly S(¢)“
is a bi-homogeneous subalgebra, cf. [10, Lemma 2.12].

A statement is true for a “generic x” if and only if this statement is true for all
points of a non-empty open subset.

Lemma 1 A function F € C[q*] is a V-invariant if and only if F(§ +ad*(V)-x, x) =
F(&,x) for generic x € V* and any £ € g.

Proof Condition of the lemma guaranties that for each v € V, exp(v)-F = Fona
non-empty open subset of q*. Hence F is a V-invariant. O

For x € V*, let ¢, : C[q*]2 — C[g + x]%* P be the restriction map. By [10,
Lemma 2.5] C[g + x]%*®P(") =~ S(g,)%. Moreover, if we identify g + x with g
choosing x as the origin, then ¢,(F) € S(g,) for any g-invariant F [10, Section 2].
Under certain assumptions on G and V the restriction map ¢, is surjective, more
details will be given shortly.

There is a non-empty open subset U C V* such that the stabilisers G, and G,
are conjugate in G for any pair of points x, y € U see e.g. [8, Theorem 7.2]. Any
representative of the conjugacy class {hG.h~! | h € G,x € U} is said to be a a
generic stabiliser of the G-action on V*.

There is one easy to handle case, g, = 0 for a generic x € V*. Here C[q*]¢ =
C[V*19, see e.g. [10, Example 3.1], and £ + y € Gging Only if gy # 0, where § € g,
y € V*. The case indg, = 1 is more involved.

Lemma 2 Assume that G has no proper semi-invariants in C[V*]. Suppose that
indg, = 1, S(g,)% # C, and the map ¢, is surjective for generic x € V*. Then
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C[q*]% = C[V*]°[F], where F is a bi-homogeneous preimage of a generator of
S(g,)C* that is not divisible by any non-constant G-invariant in C[V*].

Proof If we have a Lie algebra of index 1, in our case gy, then the algebra of its
symmetric invariants is a polynomial ring. There are many possible explanations of
this fact. One of them is the following. Suppose that two non-zero homogeneous
polynomials fi, f> are algebraically dependent. Then f{' = szb for some coprime
integers a, b > 0 and some ¢ € C”™.If f; is an invariant, then so is a polynomial
function J/f; = ¥/c/f.

Since S(g.)% # C, it is generated by some homogeneous f. The group G,
has finitely many connected components, hence S(g,)“" is generated by a suitable
power of f, say f = f<.

Let F € C[q*]¢ be a preimage of f. Each its bi-homogeneous component is again
a g-invariant. Without loss of generality we may assume that F is bi-homogenous.
Also if F is divisible by some non-scalar H € C[V*]°, then we replace F with F/H
and repeat the process as long as possible.

Whenever G, (with y € V*) is conjugate to Gy and ¢, (F) # 0, ¢,(F) is a Gy-
invariant of the same degree as f and therefore is a generator of S(g,)%. Clearly
C(V*)CIF] C Clg*]2Q@cpy+cC(V*)¢ =: Aand A C S(g)@C(V*)“. If A contains
a homogeneous in g polynomial 7 that is not proportional (over C(V*)%) to a power
of F, then ¢, (T) is not proportional to a power of ¢,(F) for generic u € V*. But
©.(T) € S(g,)%. This implies that A = C(V*)C[F]. It remains to notice that
C(V*)S = Quot C[V*]Y, since G has no proper semi-invariants in C[V*], and by
the same reason C(V*)C[F] N C[q] = C[V*][F] in case F is not divisible by any
non-constant G-invariant in C[V*]. O

It is time to recall the Rais’ formula [6] for the index of a semi-direct product:

indqg = dimV — (dimg — dimg,) + indg, with x € V* generic. 2)
Lemma 3 Suppose that Hy, ..., H, € S(q)¢ are homogenous polynomials such
that .(H;) with i<indg, freely generate S(g,)% = S(g,)% for generic x € V*

ind gy

and H; € C[V*]® for j > indg,; and suppose that Y deg H; = b(gx). Then
i=1

> degH; = b(q) ifand only if Y _ deg H; = dimV.

i=1 i=1

Proof In view of the assumptions, we have Y degH; = b(gy) + Y deg,H..
i=1 i=1

Further, by Eq. (2)

b(q) = (dimq + dimV — (dimg — dimg,) + indg,)/2 =
= dimV + (dimg, + indg,)/2 = b(g,) + dim V.

The result follows. O
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From now on suppose that G is semisimple. Then both G and Q have only
trivial characters and hence cannot have proper semi-invariants. In particular, the
fundamental semi-invariant is an invariant. We also have tr.deg S(q)? = indq. Set
r = indq and let x € V* be generic. If C[q*]¢ is a polynomial ring, then there are
bi-homogenous generators H, ..., H, such that H; with i > indg, freely generate
C[V*]¢ and the invariants H; with i<indg, are mixed, they have positive degrees in
gand V.

Theorem 2 ([3, Theorem 5.7] and [10, Proposition 3.11]) Suppose that G
is semisimple and C[q*]9 is a polynomial ring with homogeneous generators
Hi,...,H,. Then

(i) Yi—; degH; = b(q) + degpy;

(ii) for generic x € V*, the restriction map ¢,: C[q*]¢ — C[g+x]°"V = S(g,)%
is surjective, S(g,)% = S(g.)%, and S(g,)% is a polynomial ring in indg,
variables.

It is worth mentioning that ¢, is also surjective for stable actions. An action of
G on V is called stable if generic G-orbits in V are closed, for more details see [8,
Sections 2.4 and 7.5]. By [10, Theorem 2.8] ¢, is surjective for generic x € V* if
the G-action on V* is stable.

3 7Z/2Z-contractions

The initial motivation for studying symmetric invariants of semi-direct products was
related to a conjecture of D. Panyushev on Z,-contractions of reductive Lie algebras.
The results of [10], briefly outlined in Sect. 2, have settled the problem.

Let g = go®g; be a symmetric decomposition, i.e., a 7/27-grading of g.
A semi-direct product, § = goxg;, where g; is an Abelian ideal, can be seen
as a contraction, in this case a Zy-contraction, of g. For example, starting with a
symmetric pair (50,41, $0,), one arrives at § = s0,xXC". In [4], it was conjectured
that S(§)9 is a polynomial ring (in rk g variables).

Theorem 3 ([4, 9, 10]) Let g be a Z,-contraction of a reductive Lie algebra g.
Then S(§)% is a polynomial ring (in 1k g variables) if and only if the restriction
homomorphism C[g]® — C|g;]9° is surjective.

If we are in one of the “surjective” cases, then one can describe the generators
of S(§)9. Let H,...,H, be suitably chosen homogeneous generators of S(g)?
and let H® be the bi-homogeneous (w.r.t. g = go@gi) component of H; of the
highest g;-degree. Then S(§)? is freely generated by the polynomials H? (of
course, providing the restriction homomorphism C[g]® — C[g;]% is surjective)
[4,9].

Unfortunately, this construction of generators cannot work if the restriction
homomorphism is not surjective, see [4, Remark 4.3]. As was found out by Helgason
[2], there are four “non-surjective” irreducible symmetric pairs, namely, (E¢, Fy4),



272 0. Yakimova

(E7,E¢®C), (Es,E;®sl), and (Eg, 5010Ps02). The approach to semi-direct
products developed in [10] showed that Panyushev’s conjecture does not hold
for them. Next we outline some ideas of the proof.

Let Go C G be a connected subgroup with Lie Gy = go. Then Gy is reductive,
it acts on g; = gj, and this action is stable. Let x € g; be a generic element
and Gy, be its stabiliser in Gy. The groups Gy, are reductive and they are known
for all symmetric pairs. In particular, S(go,)*+ is a polynomial ring. It is also
known that C[g;]% is a polynomial ring. By [4] § has the “codim-2” property and
indg = rk g.

Making use of the surjectivity of ¢, one can show that if C[§*]? is freely
generated by some Hj, ..., H,, then necessary Y  degH; > b(g) for § coming from
one of the “non-surjective” pairs [10]. In view é)f 1some results from [3] this leads to
a contradiction.

Note that in case of (g, go) = (E¢, F4), go = F4 is simple and g is a semi-direct
product of F, and C?¢, which, of course, comes from one of the representations in
Schwarz’s list [7].

4 Examples Related to the Defining Representation of sl,,

Form now assume that g = sl, and V = m(C")*@kC" withn =2, m = 1, m = k.
According to [7] C[V]€ is a polynomial ring if either k = 0 and m<n + 1 or m<n,
k<n—1. One finds also the description of the generators of C[V*]% and their degrees
in [7]. In this section, we classify all cases, where C[q*]? is a polynomial ring and
for each of them give the fundamental semi-invariant.

Example 1 Suppose that either m = norm = k = n — 1. Then g, = 0 for generic
x € V* and therefore C[q*]¢ = C[V*]9, i.e., C[q*]¢ is a polynomial ring if and
only if C[V*]¢ is. The latter takes place for (m, k) = (n + 1,0), for m = n and any
k < n,as well as for m = k = n— 1. Non-scalar fundamental semi-invariants appear
here only for

s m = n, where p is given by det (v)"~'* with v € nC";
e m =k = n— 1, where p is the sum of the principal 2kx2k-minors of

(0 ”) with v € KC", w € k(C")*,
w0

In the rest of the section, we assume that g, # 0 for generic x € V*.
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4.1 The Casek =0

Here the ring of G-invariants on V* is generated by
{Ar T C{l,...,m},|I| =n} [8, Section 9],

where each A;(v) is the determinant of the corresponding submatrix of v € V*. The
generators are algebraically independent if and only if m<n + 1, see also [7].

We are interested only in m that are smaller than n. Let n = gm + r, where
0 < r<m, and let I C {1,...,m} be a subset of cardinality r. By choosing the
corresponding r columns of v we get a matrix w = v;. Set

Fi(A,v) := det (v|Av]...|A7 "v|A%W), where A € g,v € V*. 3)

Clearly each F; is an SL,-invariant. Below we will see that they are also V-
invariants. If » = m, then there is just one invariant, F' = Fy . If  is either
1 or m — 1, we get m invariants.

Lemma 4 Each Fy defined by Eq. (3) is a V-invariant.

Proof According to Lemma 1 we have to show that F;(§ + ad*(V)-x,x) = F(§,x)
for generic x € V* and any & € sl,. Since m < n, there is an open SL,-orbit in
V* and we can take x as E,,. Let p C gl, be the standard parabolic subalgebra
corresponding to the composition (m, n — m) and let n_ be the nilpotent radical of
the opposite parabolic. Each element (matrix) § € gl, isasum § = § 4+ §, with
£_ €n_, &, € p. Inthis notation Fy(A, E,) = det (A—|(A})—|...[(AT")_|(AT)—)).

Let « = a4 and B = B4 be mxm and (n — m)x(n — m)-submatrices of A
standing in the upper left and lower right corner, respectively. Then (At!)_ =
> =0 B'A—a’™". Each column of A_« is a linear combination of columns of A_ and
each column of B’A_a/™! is a linear combination of columns of 8’A_co/. Therefore

Fi(A.Ey) = det (A ... [(A"™)_|(AD)—)) =

=det (A_|BA_|...|BT*A_|1B7A_)). @
Notice that g, C p and the nilpotent radical of p is contained in g, (with x = E,,)).
Since ad*(V)-x = Ann(g,) = g C g (after the identification g = g*), A_ = 0 for

any A € gj‘; and we have 84 = cE,—,, with ¢ € C for this A. An easy observation
is that

det (E—l(ﬂf + CEn—Wl)E—l s |(,B$ + CEn—m)q_lg—,I) =
= det (E-1BeE- |- 1B "60).

Hence F;(§ + A,E,) = F;(§,E,) forall A € ad*(V)-E,, and all £ € sl,,. |
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Theorem 4 Suppose that ¢ = sl,xm(C")*. Then C[q*]? is a polynomial ring if
and only if m<n+ 1 and m divides either n— 1, n or n + 1. Under these assumptions
onm, pq = 1 exactly then, when m divides eithern — 1 orn + 1.

Proof Note that the statement is true for m = n by Example 1. Assume that m<n—1.
Suppose that n = mq + r as above. A generic stabiliser in g is g, = sl,—,,xmC"™".
On the group level it is connected. Notice that indg, = tr.deg S(g,)%*, since G, has
no non-trivial characters. Note also that C[V*]¢ = C, since m < n. If C[q*] is
a polynomial ring, then so is C[g¥]% by Theorem 2(ii) and either n — m = 1 or,
arguing by induction, n —m = ¢ (mod m) with ¢t € {—1,0, 1}.

Next we show that the ring of symmetric invariants is freely generated by the
polynomials F; for the indicated m. Each element y € g} can be presented as y =
Bo + A_, where By € sl,—,,. Each restriction ¢,(F;) can be regarded as an element
of S(gx). Equation (4) combined with Lemma 4 and the observation that g =~
g/Ann(g,) shows that ¢, (Fy) is either A of g, (in case ¢ = 1, where Fj(A, E,,) =
detA_ ) or Fj of g,. Arguing by induction on n, we prove that the restrictions @, (Fy)
freely generate S(g,)% for x = E,, (i.e., for a generic point in V*). Notice that
n—m= (qg—1)m+r.

The group SL, acts on V* with an open orbit SL,-E,,. Therefore the restriction
map ¢y is injective. By the inductive hypothesis it is also surjective and therefore is
an isomorphism. This proves that the polynomials F; freely generate C[q*]?.

If m divides n, then C[q*]¢ = C[F] and the fundamental semi-invariant is a
power of F. As follows from the equality in Theorem 2(i), p = F""~'.

Suppose that m divides either n — 1 or n 4+ 1. Then we have m different invariants
F;. By induction on n, g, has the “codim-2" property, therefore the sum of deg ¢, (F;)
is equal to b(g,) by Theorem 2(i). The sum of V-degrees is mxn = dim V and hence
by Lemma 3 Y degF; = b(q). Thus, ¢ has the “codim-2” property. O

Remark 1 Using induction on n one can show that the restriction map ¢, is an
isomorphism for all m < n. Therefore the polynomials F; generate C[q*]< for all
m <n.

4.2 The Casem =k

Here C[V*]9 is a polynomial ring if and only if k<n— 1; a generic stabiliser is 5[,—¢,
and the G-action on V = V* is stable. We assume that g, # 0 for generic x € V*
and therefore k<n — 2.

For an NxN-matrix C, let A;(C) with 1<i<N be coefficients of its characteristic
polynomial, each A; being a homogeneous polynomial of degree i. Let y = A +
v+we q*withA € g, v € kC", w € k(C")*. Having these objects we form an

(n + k)x(n + k)-matrix
A v
Y, =
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and set F;(y) = A;(Y,) foreachi € {2k + 1,2k +2,2k+3,...,n+ k}. Each F; is
an SL, x GLj-invariant. Unfortunately, these polynomials are not V-invariants.

Remark 2 1f we repeat the same construction for q = gl,xV with k<n — 1, then
C[q*]¢ = C[V*|9“[{F; | 2k + 1<i<n + k}] and it is a polynomial ring in indq =
n — k + k? generators.

Theorem 5 Suppose that m = k<n — 1. Then C[q*]% is a polynomial ring if and
onlyifk € {n—2,n—1}. In case k = n — 2, q has the “codim-2" property.

Proof Suppose that k = n — 2. Then a generic stabiliser g, = sl is of index
1 and since the G-action on V is stable, C[q*]? has to be a polynomial ring by
[10, Example 3.6]. One can show that the unique mixed generator is of the form
ForyoHy —F %k 41> Where Hy is a certain SL, x GLy-invariant on V of degree 2k and
then see that the sum of degrees is b(q).

More generally, q has the “codim-2" property for all k<n — 2. Here each G-
invariant divisor in V* contains a G-orbit of maximal dimension, say Gy. Set u =
n—k— 1. If G, is not SL,—, then g, = sl, x (C*"®(C")* & C) is a semi-direct
product with a Heisenberg Lie algebra. Following the proof of [4, Theorem 3.3],
one has to show that indg, = u in order to prove that q has the “codim-2" property.
This is indeed the case, indg, = 1 + indsl,.

Suppose that 0 < k < n — 2 and assume that S(q)9 is a polynomial ring. Then
there are bi-homogeneous generators h,, . .., h,—; of C[q*]¢ over C[V*]° such that
their restrictions to g + x form a generating set of S(g,)% for a generic x (with
gx = sl,—¢), see Theorem 2(ii). In particular, deg gh, =1

Take g = (sl,Pgl;) x V, which is a Z,-contraction of sl,, 4. Then q is a Lie
subalgebra of g. Note that GL;, acts on q via automorphisms and therefore we may
assume that the C-linear span of {h,} is GL,-stable. By degree considerations, each
h; is an SL;-invariant as well. The Weyl involution of SL, acts on V and has to
preserve each line Ch,. Since this involution interchanges C" and (C")*, each h, is
also a GL-invariant. Thus,

S@)7 =S = S@a) N S@)°.

Since g is a “surjective” Z,-contraction, its symmetric invariants are known [4,
Theorem 4.5]. The generators of S(§)? are A? with 25j<n + k. Here deg A? = j
and the generators of (sl,®gly)-degrees 2,3,...,n—kare A5, ,, A% 5,..., Ay .
As the restriction to s[,@Bgl; + x shows, none of the generators A? with j = 2k + 2
lies in S(q). This means that h, cannot be equal or even proportional over C[V*]¢
to A3, and hence has a more complicated expression. More precisely, a product
A% 1A%, necessary appears in h, with a non-zero coefficient from C[v*]¢
for t = 2. Since degy A3, = 2k, we have degyh, > 4k for every t > 2.
The ring C[V*]€ is freely generated by k> polynomials of degree two. Therefore,
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the total sum of degrees over all generators of S(q)7 is greater than or equal
to

b(sl,_x) + 4k(n — k — 1) 4+ 2k* = b(q) + 2k(n — k — 2).

This contradicts Theorem 2(i) in view of the fact that p; = 1.

4.3 TheCase0 <k <m

Here C[V*]¢ is a polynomial ring if and only if m<n, [7]. If n = m, then g, = 0O for
generic x € V*. For m < n, our construction of invariants is rather intricate.
Let my,...,m,—1 be the fundamental weights of sl,. We use the standard

n—1
convention, 7; = & + ... + &, & = — »_ &. Recall that for any ¢, 1<r < n,
i=1
A'C" is irreducible with the highest weight ;. Let {ey,...,e,} be a basis of C"
such that each ¢; is a weight vector and £, := e¢] A ... A ¢, is a highest weight vector
of A'C". Clearly A'C" C S'(tC"). Write n—k = d(m—k) +r with 0 < r<(m—k).
Let ¢ : mC" — A™C" be a non-zero m-linear G-equivariant map. Such a map is
unique up to a scalar and one can take ¢ with @(v] + ... + Vy) = V1 A ... A Uy
In case r # m — k, for any subset I C {1,...,m} with |I| = k + r, let
@r: mC" — (k + r)C" — AMC" be the corresponding (almost) canonical map.
By the same principle we construct ¢: k(C")* — A¥(C")*.
Let us consider the tensor product W := (A”C")®?® A**"C" and its weight
subspace Wy, . One can easily see that W, contains a unique up to a scalar non-
zero highest weight vector, namely

Win, = Z sgn(0) Uk A egany Ae o  Aegmy) ... Q@ (i Aegnert) - - - Aegm)-

0ES —k

This means that W contains a unique copy of Vy,, where V4, is an irreducible sl,-
module with the highest weight dm;. We let p denote the representation of gl, on
A™C" and p, the representation of gl, on A¥T"C". Let £ = A + v + w be a point in
q*. (Itis assumed that A € sl,,.) Finally let (, ) denote a non-zero sl,-invariant scalar
product between W and S?(A*(C")*) that is zero on the sl,-invariant complement
of Vyr, in W. Depending on r, set

F(£) := (9()®p(A)" o) ®p(A*)"p(v)® ... ®p(A) " p(v), p(w))

forr =m—k;

Fi(§) == (p(0)®p(A)"“p()® ... ®p(A™)"Fp(v)®p,(AY) ¢1(v). G ()"
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for each [ as above in case r < m — k. By the constructions the polynomials F and
F; are SL,,-invariants.

Lemma 5 The polynomials ¥ and ¥; are V-invariants.

Proof We restrict F and F; to g* + x with x € V* generic. Changing a basis in V if
necessary, we may assume that x = E,, + E;. If < m — k, some of the invariants
F; may become linear combinations of such polynomials under the change of basis,

but this does not interfere with V-invariance. Now ¢(v) is a vector of weight 7,
n+kd
and @(w)? of weight —dm;. Notice that dm + (k +7) = n +kd. If Y A =

i=1

k
d ) & and each A; is one of the g;, 1<j<n, then in the sequence (A1,..., Ayykq)
i=1

we must have exactly one ¢; for each k < j<n and d + 1 copies of each & with
1<i<k. Hence the only summand of p(A*)" *¢(E,,) that plays any rdle in F or F;
iS LynASer 1 A ... AA%ey,. Moreover, in A*egq A . .. AA¥e,, we are interested only in
vectors lying in A" *span(ei+1. ... .e,).

Let us choose blocks «, U, B of A as shown in Fig. 1. Then up to a non-zero scalar
F(A, E, + E}) is the determinant of

(UIBU + Ua|Py(a. U, B)| ... |Pg—1(e, U, B))

where Ps(a, U, B) = Z BUa.
=0

Each column of U is a linear combination of the columns of U, a similar relation
exists between B'Ua’T! and B'Ua’. Therefore

F(A,E,, + Ex) = det (U|BU|B*U|...|B*'U). (5)

We have to check that F(§ + A,x) = F(§,x) forany A € ad*(V)-x and any £ € g,
see Lemma 1. Recall that ad*(V)-x = Ann(g,) = g C g.Incase x = E,, + Et, U
is zero in each A € gi‘ and B corresponding to such A is a scalar matrix. Therefore
F(& + ad*(V)-x,x) = F(§,x).

The case r < m—k is more complicated. If {1, ...k} C I,thenl = IL{1, ... k}.
Let U; be the corresponding submatrix of U and «j,; of a. One just has to replace

Fig. 1 Submatrices of k {
A € sl,

a }m—k
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U by Uy and « by o, in the last polynomial P, (e, U, B) obtaining
F/(A,x) = det (U|BU|B*U|...|B*2U|B*'U5) .

These are (%) linearly independent invariants in S(g).
Suppose that {1,...,k} ¢ I. Then p;(A?)" has to move more than r vectors e;
with k 4+ 1<i<m, which is impossible. Thus, F;(A, x) = 0 for such I. O

Theorem 6 Suppose that 0 < k < m < n and m — k divides n —m, then indg, = 1
for generic x € V* and C[q*]¢ = C[V*|C[F] is a polynomial ring, the fundamental
semi-invariant is equal to F" %=1,

Proof A generic stabiliser g, is sl,,—,,x (m—k)C"~". Its ring of symmetric invariants
is generated by F = ¢,(F), see Theorem 4 and Eq. (5). We also have indg, = 1. It
remains to see that F is not divisible by a non-constant G-invariant polynomial on
V*. By the construction, F is also invariant with respect to the action of SL,,xSL.
The group L = SL,,xSL,,xSL; act on V* with an open orbit. As long as tkw = &,
rk v = m, the L-orbit of y = v + w contains a point v’ + Ej, where also tk v/ = m.
If in addition the upper kxm-part of v has rank k, then L-y contains x = E,, + E;.
Here F is non-zero on g + y. Since the group L is semisimple, the complement
of L-(E,, + Ei) contains no divisors and F is not divisible by any non-constant
G-invariant in C[V*]. This is enough to conclude that C[q*]¢ = C[V*]°[F], see
Theorem 2.

The singular set q3,, is L-stable. And therefore pg is also an SL,, X SLi-invariant.

Hence p is a power of F. In view of Theorem 2(i), p = F" %1, O

Theorem 7 Suppose that 0 < k < m < n and m — k does not divide n — m, then
C[q*]€ is not a polynomial ring.

Proof The reason for this misfortune is that (,} ) > (") for < m— k. One could
prove that each F; must be in the set of generators and thereby show that C[q*]< is
not a polynomial ring. But we present a different argument.

Assume that the ring of symmetric invariants is polynomial. It is bi-graded and
SL,, acts on it preserving the bi-grading. Since SL,, is reductive, we can assume that
there is a set {H}, ..., H,} of bi-homogeneous mixed generators such that S(q)9 =
C[V*]C[H,,...,H,] and the C-linear span H := span(H,, ..., H;) is SL,,-stable.
The polynomiality implies that a generic stabiliser g, = s[,—,,x(m — k)C"™" has a
free algebra of symmetric invariants, see Theorem 2(ii), and by the same statement
@, 1s surjective. This means that r is either 1 or m —k—1, see Theorem 4, s = m —k,
and ¢, is injective on H. Taking our favourite (generic) x = E, + Ei, we see
that there is SL,,—; embedded diagonally into GxSL,,, which acts on ¢, () as on
A"C™*, The group SL,,— acts on  in the same way. Since m — k does not divide
n —m, we have m — k = 2. The group SL,, cannot act on an irreducible module
A"C"* of its non-trivial subgroup SL,,—, this is especially obvious in our two
cases of interest, r = 1 and r = m — k — 1. A contradiction. O
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Conjecture 1 1Tt is very probable that C[q*]% = C[V*]S[{F;}] forall n > m >
k= 1.
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On Extensions of Affine Vertex Algebras
at Half-Integer Levels

Drazen Adamovi¢ and Ozren Perse

Abstract We construct certain new extensions of vertex operator algebras by its
simple module. We show that extensions of certain affine vertex operator algebras at
admissible half-integer levels have the structure of simple vertex operator algebras.
We also discuss some methods for determination of simple current modules for
affine vertex algebras.

Keywords Fusion rules ¢ Simple current extension ¢ Vertex operator algebra e
Virasoro algebra

1 Introduction

Extensions of vertex operator algebras are an important tool for constructing new
vertex operator algebras. Many important vertex operator algebras can be con-
structed by using extensions. One of the best-known examples is the Moonshine
module vertex operator algebra, which is an extension of the Z,-orbifold of the
Leech lattice vertex operator algebra by its simple module (cf. [16]). Extensions
of affine vertex operator algebras have mostly been studied in the case of positive
integer levels, and simple current modules (cf. [13]). A connection between simple
current extensions and conformal embeddings have been studied in [26]. In that
case, the associated simple affine vertex operator algebra is rational and C,-cofinite.
Another significant class are affine vertex operator algebras with admissible levels
(cf. [23, 24]), which are connected with the minimal series ‘W-algebras via quantum
Drinfeld-Sokolov reduction (cf. [8, 19]). Although admissible affine vertex operator
algebras are rational in the category O (cf. [2, 9]), they are neither rational (in the
usual sense) nor C,-cofinite.

Some extensions of admissible affine vertex operator algebras can be constructed
using explicit realizations of these vertex operator algebras and their modules.
Recently, some extensions of admissible affine vertex operator algebras have been
constructed using the notion of conformal embedding (see [4, 5]). These extensions
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of affine vertex operator algebras are associated to lowest admissible levels with

given denominator (which is equal to 2 or 3 in all these cases). In the present paper,

we will consider the higher level case. Let us explain our results in more detail.
Denote by Ly(k,0) the simple affine vertex operator algebra associated to

(untwisted) affine Lie algebra §, of level k. We show that the 5A[2-m0du1e
Ly (n—3.0)® Ly, (n—3.2n— 1), (1)
and the Cfil) -module
Le,(n—3.0) ® Le,(n— 3. (2n — Day) 2

have the structure of simple éZ;O-graded vertex operator algebras, for any n € Z..
Note that in the case n = 1, this is in fact a vertex operator algebra associated to the

Weyl algebra. We also show that the Bil) -module
Lp,(n—3.0) & Lp,(n — ;. (2n — D) 3)

has the structure of a vertex operator algebra, for n = 2 and 3. We conjecture that
the claim holds for any n € Z. In the case n = 1, this extension is isomorphic to
affine vertex operator algebra Ly, (— g, 0).

Our method is in some aspect similar to the fusion rules methods developed in the
case of conformal embeddings (cf. [4-6]). We conformally embed a simple affine
vertex algebra V into certain larger vertex algebra S which contains a (conjectural)
simple-current module M. Then the fusion rules analysis gives the fusion

MxM=YV.

So this shows that V @ M is a subalgebra of a larger vertex algebra S, and proves our
extension problem. Such vertex algebra S is usually defined as double commutant.
In particular, in the cases studied in Sect. 6, S is an extension of

Com (Lp,(n— 3, 0))).

7 (Com 7
Lp, (n— 2 ,O)®L34 (Ao) L, (n— 2 .0) ®Lg, (Ao)

A new approach for studying extensions of vertex operator algebras have been
developed in [20] by using a connections between braided tensor categories and
extensions. So far such approach can be applied on rational vertex operator algebras.
New interesting results on the extension problem are also obtained in [36] and [33].

Another obstacle in dealing with extensions of affine vertex algebras at admis-
sible levels is the calculation of fusion rules. In Sect.7, we introduce a new
method for determining some fusion rules (up to a certain conjecture), using semi-
infinite restriction functor from [9]. We notice that all extensions from (2) and (3)
have the form V @ M, where V is a simple affine vertex algebra, and M is a simple
V-module which semi-infinite restriction functor from [9] sends to a simple current
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Ly, (k,0)-module, where k is a certain positive integer. This enables us to show
that the module M has certain simple-current property in a suitable category of
V-modules (for details see Sect. 7). We believe that such approach works for a larger
class of affine vertex algebras and their extensions.

Throughout the paper, we fix the root vectors for simple finite-dimensional
symplectic and orthogonal Lie algebras as in [11, 15] (see also [21] for details on
root systems and weights for simple and affine Lie algebras).

We would like to thank the referee for useful comments and in particular for
bringing articles [36] and [33] to our attention.

2 Preliminaries

In this section we recall the definition of vertex operator (super)algebra. We assume
that the reader is familiar with associated notions of modules and intertwining
operators (cf. [16, 17, 22, 25, 28, 37]).

LetV = VO V1 be any Z,-graded vector space. Then any element u € V0 (resp.
u € V') is said to be even (resp. odd). We define |u| = 0 if u is even and |u| = 1 if
u is odd. Elements in VO or V1 are called homogeneous. Whenever |u| is written, it
is understood that u is homogeneous.

Definition 1 A vertex superalgebra is a quadruple (V,Y,1, D) where V is a Z;-
graded vector space, D is an endomorphism of V, 1 is a specified element called the
vacuum of V, and Y is a linear map

Y(,z): V— (End V)[[z,27']];
arY(@z) =Y a7 """ € EndV)[zz"]

n€zZ

satisfying the following conditions fora,b € V:

(V1) |apb| = |a| + |b].

(V2) a,b = 0 for n sufficiently large.

(V3) [D.Y(a.2)] = Y(D(a).2) = [ Y(a.2).

(V4) Y(1,z) = Iy (the identity operator on V).

(V5) Y(a,z)1 € (EndV)[[z]] and lim,—¢Y(a,2)1 = a.
(V6) The following Jacobi identity holds

1515(21 Z_ ZZ)Y(a, 2)Y(b,22) — (—1)'“"’z0—15(Z2 _ZZl )Y(b,zz)Y(a, z1)
0 —<0

= 12—18(21 Z— ZO)Y(Y(a, 20)b, 22).
2
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A vertex superalgebra V is called a vertex operator superalgebra if there is
a special element w € V (called the Virasoro element, or conformal vector)
whose vertex operator we write in the form Y(w,z) = Y. 0.2 " =
3.z L(n)z7"72, such that
(V7) [L(m), L(n)] = (m — n)L(m + n) + 8upno™ 3" ¢, ¢ =rank V € C.
(V8) L(—-1) =D.

VO V =& 1 Vi is 1 Z-graded so that VO = @,ezV(, V! = @ Vi

1
ne, +7Z

L(0) |yey= nl |v,,, dimV(,) < oo, and V(,) = 0 for n sufficiently small.
Remark 1 If in the definition of vertex (operator) superalgebra the odd subspace

vi= 0, we get the usual definition of vertex (operator) algebra.
We shall also need the concept of ;Z;O-graded vertex operator algebra.

Definition 2 A vertex algebra V is called a ;Z;o-graded vertex operator algebra if
there is a Virasoro element w € V suchthat Y(w,z) = >,z L)z "2, L(-1)=D
and V = EBnEézzo Vi is ;Z;o-graded so that L(0) |ym= nl |y, dimV(, < oo.
Definition 3 Assume that V is a vertex algebra (not necessarily vertex operator
algebra). Let U be a subalgebra of V. The following subalgebra of V

Comy(U) ={veV]|av=0, Vae U, i=0}

is called the commutant (or coset) subalgebra.

Suppose that U and V are vertex operator algebras with conformal vectors ’
and w, respectively, and denote by L' (z) and L(z) the associated Virasoro fields. The
following result is from [27]:

Proposition 1 Let U C V be vertex operator algebras. We have:
Comy(U) = KeryL'(—1).

For a simple Lie algebra g and k € C, k # —h", let Ng(k,0) = Ny(kAo) be the
universal affine vertex operator algebra associated to (untwisted) affine Lie algebra
g, of level k, and let Ly(k,0) = Ly(kAo) be its simple quotient. We will also use
similar notation for modules for affine vertex operator algebras.

3 Virasoro Vertex Operator Algebras

In this section we recall some results on vertex operator algebras associated to
minimal models for Virasoro algebra. Rationality of these vertex operator algebras
was proved by Wang in [34], and regularity by Dong et al. in [14].

Let Vir = @®,czCL(n) ® CC be the Virasoro algebra. For any (c,h) € C? let
LY (c, h) be the irreducible highest weight Vir-module with central charge ¢ and
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highest weight & (cf. [18, 34], [12]). Then L""(c,0) is a simple vertex operator
algebra. Set

(r—q?* .. _ (p—mg)*—(p—q)*
6 ’ kpq - :

dy,=1—
P pq ’ 4pq

Whenever we mention d, , again, we always assume that p and ¢ are relatively prime
positive integers larger than 1. Define

Vir __ m,n
Spg =k, 10 <m<p, 0<n<gqgj.

Theorem 1 ([14, 34]) The vertex operator algebra LV"(d,,,0) is regular, and
the set

(LY (dpg.h) | k€ ST

provides all irreducible L' (d, ;, 0)-modules.
In the case when a vertex operator algebra V contains a subalgebra U = L""(c, 0)
we have the following description of the commutant

Comy (L""(c,0)) = {v € V| L(n)v = 0, Vn=—1}. 4)

4 Extensions of the 5?2-Vertex Operator Algebra Ly, (m, 0)
at Half Integer Levels

We shall now study certain coset constructions for representations of the vertex
operator algebra L(m,0) = L4, (m,0) associated to the affine Kac-Moody Lie

algebra g = sl,.

Definition 4 A rational number m = t/u is called admissible if u € Z., t € Z,
(t,u) = 1 and 2u + t — 2=0.

Letm = t/u € QQ be admissible, and let

P" ={Amin = (m—n+k(m+2)Ao+ (n—k(m+ 2)) Ay,

k,n € Zso, n<2u+t—2, k<u—1}.

The modules L(4), A € P™ are all modular invariant modules for affine Lie algebra
slp of alevel m (cf. [23]). .

When m is admissible, the sl,-module L(mAy) = L(m, 0) carries a structure of a
vertex operator algebra. The classification of irreducible L(m, 0)-modules was given
in [2]. It was proved that the set {L(A) | A € P™} provides all irreducible L(m, 0)-
modules from the category O. So the admissible representations of level m for s,
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can be identified with the irreducible L(m, 0)-modules in the category O. We note
that the generalization of this claim to arbitrary affine Lie algebra g (and associated
vertex algebra) was proved in [9] using the semi-infinite restriction functor, and the
results on 5A[2 from [2]. We will study that functor in Sect. 7 in more detail.

Letm = ! € Qbe admissible. Setp = ¢+ 3u, g =1+ 2u,

Thend,, = d,,.

Theorem 2 ([23]) The §-module L(A;) ® L(Apnx), i = 0,1, is a module for the
vertex operator algebra LV (d,, 4, 0) ® L(m+ 1, 0), and the following decomposition
holds:

LA) @ LOmni) = P L (lpg k") & Lt ri)-

o<’ =p—2
n' =n+imod2

A

Theorem 3 For every n € Z-, the sly-module
Wy =Ln—3.00@Ln—3.2n—1)

has the structure of a éZ;o-graded vertex operator algebra.

Proof We shall prove the theorem by induction. For n = 1, the structure of a éZ;o-
graded vertex operator algebra on W, was explicitly obtained in [35]. W is in fact
the vertex operator algebra associated to the By-system.

Assume now that W, is a ;Z;o-graded vertex operator algebra. Then the vertex
operator algebra L(Ao) ®W, contains a subalgebra isomorphic to LY (d2,+3.20+1. 0).
Applying Theorem 2 we obtain the following relations

L(40) ® L(n — 3.0) = @D LY (dany32011. o 5 g1) ® Lin — 3.2i).
i=0
L(Ao) ® L(n— 3.2n = 1) = @D L (dant3.0041. Koy aamsy) ® L — 5,20 + 1).
i=0

Since k5t 55,1 = Oif and only if i = 0, and k5,35, ,, = O if and only if i = n,
we obtain that the commutant of LY (d2,43.2,+1,0) in

L(Ag) ® W, = L(Ao) ® L(n— 3,0) ® L(Ao) ® L(n — 3,2n— 1)

is exactly L(n — é, 0) @ L(n— ; 2n+ 1) = W,41.So W4 isalso a ;Z;o-graded
vertex operator algebra. This finishes the inductive proof of the Theorem. O
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We shall now see that the vertex operator (super)algebras constructed above
are simple. From the construction easily follows that our extended vertex operator
(super)algebras have the form

v=VgV! )
where
V6 = L(m, 0), VI is a simple L(m, 0)-module, (6)
and
0# V.V CV™H,  foreveryi,je€ Z. (7

(Here V- VI = spanc{u,v |u € Vi, ve V/, n € Z}.)

By using language of [29, 32] one can say that V is a Z,-extension of the vertex
operator algebra L(m, 0). Since V° is a simple vertex operator algebra and V' is its
simple module, we have:

Corollary 1 All extended vertex operator (super)algebras constructed in Theo-
rem 3 are simple.

S The Extension of the Vertex Operator Algebra
LC@ (n - ;7 0)

In this section we shall construct extension of symplectic affine vertex algebra
Le,(n— g, 0) by its simple module L, (n — g, (2n — 1)wy). Our approach is using
results from previous section. It is important to notice the following lemma:

Lemma 1 The vertex operator algebra Ly, (n — Z, 0) is isomorphic to the subalge-
bra of L¢,(n — ;, 0) generated by the vectors X+»¢,(—1)1.

Proof Inthe case n = 1, the proof follows from the explicit realizations of the vertex
operator algebras Ly, (— é ,0)and L¢, (— é , 0) using Weyl vertex operator algebra (or
By-system) (cf. [15, 35]), also called (super)fermions in [22].

Note also that L4, (1, 0) is a subalgebra of L¢,(1,0) generated by the vectors
X42¢,(—1)1. The claim of the lemma now easily follows by induction and the fact
that L¢, (n — é, 0) (resp. La,(n — é, 0) ) is a subalgebra of L¢, (n — g, 0) ® L¢,(1,0)
(resp. La, (n — 3,0) ® Ly, (1,0)).

Theorem 4 For every n € Z~, the Cél)-module
Wae =Le,(n—3.00 @ Le,(n = 3. 2n — D)

has the structure of a ;Z;o-graded vertex operator algebra.
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Proof We shall prove this theorem by induction.

First we notice that in the case n = 1, W, is the Weyl vertex operator algebra
explicitly constructed in [35].

In the inductive proof we shall follow the approach from [1]. Assume now that
Wy is a éZ;o-graded vertex operator algebra. Then the vertex operator algebra

Wit ® Lc, (Ao) contains a subalgebra isomorphic to L, (n — ; 0).Lety =—(n+
1 Ao + (2n— 1) Ay. Then

v =2Xo., (=1)v, @ g, + 2n+ v, @ Xoe, (—1)v 4,

is a singular vector for Czl) in W, ® L¢,(Ay), of weight (2n + 1)w; for C,. Since
W, ®Lc,(Ao) = (Lc,(n— ;, 0)®Lc,(n— g, 2n— l)a)l)) ®Lc, (Ay) is a completely
reducible Czl) -module (cf. [24]), we obtain:

U@@)v = L¢,(n— é, 2n + Dawy).

Note that vector v belongs to a A(ll) -submodule W, | ® L4, (Ap). Then Theorem 3
implies that

viv € Ly, (n—1,0) C Le,(n—},0)  (j € 7).

This easily gives that W, ¢ is a vertex operator algebra.
Similarly as in Corollary 1, we conclude:

Corollary 2 All extended vertex operator (super)algebras constructed in Theo-
rem 4 are simple.

6 Extensions of the Vertex Operator Algebra Lg, (n — ;, 0)

In this section we consider the extension of affine vertex algebra Lg, (n — ;, 0) by
its simple module L, (n — ;, (2n — 1)wy). Our approach is using techniques from
previous sections. We have the following conjecture:

Conjecture 1 For every n € Z, the Bil) -module

Wy = Ly, (n—.0) @ Ly, (n — . (2n — D)

has the structure of a vertex operator algebra.
First we notice that in the case n = 1, W is affine vertex operator algebra Ly, (— ; ,0)
(cf. [31]). In this paper we prove this conjecture for n = 2 and 3.
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We consider the structure of Bil)-module Lg,(n — ;, (2n — 1)ws). Denote by
w=—(n+ g)Ao + (2n — 1) A4 its highest weight and by v, the highest weight
vector of associated generalized Verma module Ng, (n — ; 2n—1)ws).

Lemma 2
(a) We have:
Ng,(n— 7. (2n—1)w,)
Lg,(n—1,2n—1 ~ 2" ,
51— . 2n— Do) o
where

= (n—)Xe (1) + Xey 1 (=1)X—; (0) vy,
+X€1 +e3 (—1)X_53 (O)UIL + X61 +e4 (—1)X_54 (O)UM

is a singular vector for Bil).
(b) Relation

4 4
— (=Y he(=Dvu+ (4 3) Y Xe(—DX_¢(0)v, —2

i=1 i=1
X Z Xe,‘+€_,‘(_1)X—€i—€j(0)vIl = O
1<i<j<4
holds in Lg,(n — ;, 2n—1)ws)

Proof (a) Since p is an admissible weight, it follows from [23] that Lg, (n— ; 2n—
1)wy) is a quotient of Np,(n — ;, (2n — 1)w4) modulo the maximal submodule
generated by a singular vector u of weight u — § + €;. The formula for vector u
follows by direct calculation. Part (b) follows from relation

(X—el (O) + X—€2 (O)X—el +e (0) + X—€3 (O)X—el +e3 (0) + X—e4 (O)X—el +es (O))“ = 07

which holds in Lg,(n — ], (2n — 1)ws) by part (a).
We will also use the following lemma:

Lemma 3 The Bgl)-module Lg,(n— ; , (2n+1)ws) is a submodule of Lg, (n— ; ,(2n—
Dws) ® L, (Ao).
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Proof Denote now by v,, the highest weight vector in Lg, (n — ;, (2n —1)wy). Then

v = Xq—i—ez(_l)vu 2 X53+e4(_l)vAo —Xeite (_1)7);1 ® Xe)tes (_l)vAo
+X€1+E4 (_l)vp. ® X€2+E3 (_1)UA0 + X€2+E3 (—I)UM ® X€1+E4 (_1)UA0
~Xe+es (DU ® Xy 463 (= DV 4y + Xz, (D @ Xy 46, (=1)v4,

2
+(n + g)vﬂ ®X€1+62(_1)X63+64(_1)UA0 + o+ 1X€1+62(_1)X€3+64(_1)vu ® VAo
2 2
_21’1 + 1X51+53 (—1)X€2+€4(—1)Uﬂ ® UV Ay + 2+ 1Xel+e4(_1)Xez—|—e3 (_1)1);1 ® UV Ay

is a singular vector for Bgl) inLg,(n— ; , (2n—1)w4)®Lp,(Ao), of weight (2n+1)wy
for By. Since Lg, (n— ; , (2n—1)w4) ® Lp,(Ao) is a completely reducible Bil) -module
(cf. [24]), we obtain:

U(g)v =~ Lg,(n — ;, 2n + Dws).

Denote by w’ the conformal vector for Lg,(n — ;, 0) obtained from Sugawara
construction, and by w the conformal vector for the vertex operator algebra L, (n —
;, 0) ® Lg,(Ao), which is a sum of two Sugawara conformal vectors. Denote by
L'(z) and L(z) the associated Virasoro fields.

p— 5 1
It follows from [18] that the commutant ComLB4 (n—;,0)®L34 (o) (Lp,(n— 3,0)) is

a vertex operator algebra with the conformal vector w — «’, and that the double
commutant

Co (Lp,(n — 3.0)))

m Com
Ls, (i} 0)®L, (a0 Ly, (1=} 0)®Lg, (Ao)

is a vertex operator algebra with conformal vector ’. Thus, Lg,(n — ;, 0) is
conformally embedded in this double commutant. In what follows, we will consider
the conformal embedding of Lg, (n— ; ,0) into the double commutant of Lg, (n— ; ,0)
in the extension of Lp, (n— ; 0)®Lg,(Ap), for certain n € Z.. This is basically the
same idea as in Theorem 3, where the commutant is Virasoro vertex algebra. But in
this case, the structure of the commutant is more complicated.

Lemma 4 We have:

L(0)v = L' (0)v (®)
L(—1)v = L'(—1)v. ©)]
Proof Formula for the lowest conformal weight of Lg,(n — ;, 0)-module Lg,(n —

; , 2n+1)w,) implies that L' (0)v = (2n+ 1)v. Relation L(0)v = (2n+ 1)v follows
from the formula for v from Lemma 3 by induction. This proves relation (8).
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To prove (9), first note that the explicit formula for Sugawara conformal vector
o' and relation from Lemma 2(b) (in Lg, (n — ;, (2n 4 1)w4)) imply that

! 1 :
(==, ;Xﬁ(—l)X_G,-(O)v. (10)

Denote now by @ the Sugawara conformal vector in Lg,(n — ; 0) and by @ the
Sugawara conformal vector in Lg,(Ao). Then

L) =L ®14+1®L(-1).

Using relations

[L=D.X(=D] = X(=2), [L(=D.X(-D]=X(-2) Xeg)

and
} 1<
L=Dv, = Y X (DX (0)vy.
i=1

and explicit formula for vector v from Lemma 3, one easily obtains the formula for
L(—1)v. One the other hand, relation (10), the explicit formula for vector v, along
with relation from Lemma 2(a) and relations in Lg, (Ao) (using fermionic realization
of Lg,(Ap), for example), give (after lengthy calculations) the formula for L' (—1)v
and that L' (—1)v = L(—1)v. We omit details of these calculations.

Lemma 3 implies that W4 is Bil) -submodule of W, ® Lg,(Ao). Moreover, the

results from [24] imply that W,, ® Lg,(Ao) is a direct sum of Bil) -modules Lg, (n —
5. 14) such that

(1, 20) + 20y + 20y + oy )<2n— 1. (11

Theorem S W, are vertex operator algebras, for n = 2 and 3.

Proof First, we consider the case n = 2. Denote by V the vertex operator algebra
V =W ® Lg,(Ao) = L, (—3.0) ® Lp,(Ao) ® Lg, (=, ws) ® Lp,(Ay).
Let us also denote by S the vertex operator algebra
S = Comy(Comy(Lg,(—3.0))).

It follows from [18] that Lg, (—;, 0) is conformally embedded in S. Furthermore,
Lemma 4 and Proposition 1 imply that v € S, where v is a highest weight vector for
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Lg,(— ;, 3w,), which implies that Lg, (— ;, 0)-module Lz, (— ; 3wy) is a submodule
of S. To prove that

Lg,(—3,0) D L, (=3, 301) (= Wa)

is a vertex subalgebra of S, we use fusion rules and conformal weights arguments as

in [3] and [4]. The only highest weight B4-modules Vg, (1) appearing in the tensor

product decomposition Vg,(3ws) ® Vp,(3ws) satisfying relation (11) are for u =

2wy, w3, w3, w1 and 0, and the lowest conformal weights for the first four modules

are non-integer (f(l), if , i? and 181 , respectively). This immediately implies that
vjv € Lg,(—3,0) (J €2,

which gives that W, is vertex subalgebra of S.

Now, W, ® Lg,(Ao) is a vertex operator algebra and one can give a similar
proof for n = 3. The tensor product decomposition of Vg, (5ws4) ® Vp,(5ws) and
relation (11) give the weights u = w1, @z, 201, 3, 2w, W1 +w2, 01 +w3, 207, W1 +
204, w2 + w3, w2 + 204,203, w3 + 204, 4w4 and O (the corresponding lowest
conformal weights are . 14, 1, 14,20, 2038 e o g s s g
respectively).

Similarly as in Corollary 1, we conclude:

Corollary 3 All extended vertex operator algebras constructed in Theorem 5 are
simple.

Remark 2 In order to prove Theorem 5 for general n € Z.o (i.e. to prove
Conjecture 1) using our methods, one has to understand the fusion rules of certain
Lg,(n — ;, 0)-modules. More precisely, one has to prove certain “simple current
property” for the module Lg,(n — ;, (2n — 1)ws) (see Theorem 7 for the precise
statement, for general simple Lie algebra of type By). In the next section, we propose
a new method for studying these fusion rules.

7 Semi-Infinite Restriction Functor and Fusion Rules

In this section, we recall certain results from [9]. We also use the notation from that
paper. Our goal is to use the semi-infinite restriction functor for determining fusion
rules for certain affine vertex operator algebras.

Let g be a simple Lie algebra, p a parabolic subalgebra of g containing b_, and
let p = [ & m_ be the direct sum decomposition of p with the Levi subalgebra
[ containing b and the nilpotent radical m_. Denote by m the opposite algebra of
m_, so that g = p & m. The claim of following theorem follows directly from the
construction from [9]:
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Theorem 6 Let k be an admissible number for §, and My, M, M3 modules for
Lg(kAy). Then, any intertwining operator I of type (M M ) induces an intertwining

operator H2 T*(Lm,I) of H? t*(Lm, Lg(kAg))-modules of type

2 T*(Lm, M3)
HZ**(Lm, M) HZ**(Lm,M,) )

We have the following conjecture:
Conjecture 2 1f 1 # 0, then H> *(Lm,I) # 0, i.e. themap I — H > T*(Lm, ) is
injective.

Now we consider a special case of the parabolic subalgebra p determined by a
root vector X_,, for a positive root @ of g. Then

[=sL® +p.

Denote by k, the rational number given by the formula

ke +2 = 2 (k+ hY). (12)
(o, )

Since L, L@ (ky Ap) is a vertex subalgebra of HY o (Lm, Lg(kAyp)), we obtain:

Corollary 4 H% T*(Lm,I) induces an intertwining operator of Ly, (ke Ao)-
modules.

The following decomposition follows from [9], Theorem A.2 (see also [7],
Theorem 7.7):

Proposition 2 Let k be an admissible number for §, A € Pr,j' . Then

HY ™ *(Lm, Ly(1)) = EB Li((wo L)) (13)

weWwl (1)

as -modules.

Now, we apply these results to determine certain fusion rules for affine vertex
operator algebra L, (n — £ + ;, 0) =L, (n—L+ ;)Ao) forn € Z-. Recall from
[9, 30] that irreducible (ordmary) modules for that vertex operator algebra are given
by Lg,(A) = Lg,(n — £ + 2,)&) where A = (n— € + 2)Ao + A, such that

(A eY)<2n—1.

Recall also, that for such weight A, the associated set of simple coroots I1,” is
equal to:

my ={6—a).a).ay,....a)}.
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Then, we have:

A4p.a))y=Aa’)+1, fori=1,....¢, (14)
A4p,E—e)Y)=2n—(A,€). (15)

In particular, we are interested in the irreducible Lg, (n—£+ é ,0)-module Lg, (n—
£+ é, (2n — 1)wy). Note that we studied this module in Sect. 6, in the special case
{=4.

To determine the fusion rules, we consider semi-infinite restriction of Lg, (n—£ +
é, 0) associated to the root @ = ¢;, for every i = 1,...£. Let us denote k) = ki,
fori=1,...4.

Relation (12) gives that the level

k(i)=2n+2ﬁ—3

is a positive integer, for every i = 1, ... {. Thus, the rational vertex operator algebra
L, ((2n+2£ —3) Ag) is a vertex subalgebra of HZ T*(Lm®, Ly, (n— £ + 3.0)).
The construction from [13] implies that L, ) ((2n + 2€ —3) A1) is a simple current
module for L_, ) ((2n + 2¢ — 3) Ay). More precisely,

5[2

L. e (kA
dim 1 st (ki Ao) — 1, (16)
Lo (ki A1) Ly en (k@ Ar)
and
L. (A
dim/ st (1) =0, (17)
Ly,eo (k@A) - Ly (ki Ar)

for any other L ¢ (k@) Ap)-module L, L) (A).
Proposition 3 We have:

(a) Module L« ((2n + 2€ — 3)Ay) appears in the decomposition of
HZ T (Lm®, Ly, (n — £ + 1. (2n—1)ay) for everyi=1,...L

(b) If Ly, ((2n+2£—3) Ao) appears in the decomposition of H? T*(Lm®, Ly, (n—
{+ é, X)), for some Lg,(n—4{ + é, 0)-module Lg,(n — £ + ;, X), then there
exists k € {i,..., L} such that

(A &) =2(k—i).

Proof

(a) First, let i = £. By direct calculation, one can easily verify that

(Ser—ee 0 (=€ + ) Ao+ 2n— Dawy). &) =2n+ 20 3.
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Furthermore, s, ¢, (6¢) = &1 € Afﬁ, which implies that 5., —,, € W’(k). Now,

the claim follows from relation (13). Now, leti € {1,...,£ — 1}. Let w €
W(A) be given by relation w = s, 85—,_,. f £ iseven and i = g, we put
Se;—e.—; = 1. Then one easily obtains that

(wo ((n—L+ 1)Ag+ 2n— D). &) =2n+ 20 3.
Since wl(g;) = 28 — e € A’e, we have that w € W'(1), and the claim

follows from relation (13).
If L () ((2n+2£-3)Ao) appears in the decomposition of H T LmD, Ly, (n—

£+ é 1)), relation (13) implies that there exists w € W'(1) such that
(wold,g’) =0, (18)

where A = (n— £+ 1) Ao + . Since w € W'(1), we have that w™'(g;) = B €
Afﬁ, i.e. B is a positive real short root of §. Now, relation (18) implies that

A+p,BY)y=20—2i+ 1.

Relations (14) and (15) imply that we have the following possibilities:

(1) B = &, for some k € {1,...,¢}. This easily implies that k € {i,...,£} and

(A, &)) = 2(k—i).

(ii) In all other cases of positive short real roots B = w™!(g;), for w € W'(1), we

have (A + p,BY) > 20 — 2i + 1.
The claim (b) follows.

Proposition 4 Assume that the Conjecture 2 holds. We have:

, Lg,(n—€+ 1.2
dim/ | | =0,
L (n—L+ 5,2n—Dawy) Lg,(n—L€+ 5, (2n— Dawy)

for any irreducible Lg,(n — € + é, 0)-module Lg,(n — £ + é, X), such that A # 0.

Proof Letus denote

M =Lg(n—€+ ), 2n—1Dawy).

Let I be a non-trivial intertwining operator of type

Ly, (n—L+ 1. 2)
M M
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for some irreducible Lg, ((n — £ + é)Ao)-module Lg,(n—{€ 4+ é, ). Conjecture 2
and Corollary 4 now imply that / induces a non-trivial intertwining operator
HZt*(LmD, 1) of Ly, ((2n + 2€ — 3) Ag)-modules of type

HY**(Lm®, Ly, (n— £ + 1, 1))
HZ T*(Lm® M) HZ T*(Lm® M))’

forevery i = 1,... L. Proposition 3(a) gives that L ) ((2n + 2¢ — 3) Ag)-module
Ly, ((2n 4 2€ — 3) Ay) appears in the decomposition of HZt*(Lm®, M), for
every i = 1,...£. Let v be the highest weight vector of L_ )((2n + 2£ —
3)Ay). Since HZ T*(Lm®, I) is non-trivial, there exists a non-trivial coefficient
in H% **(Lm®, 1)(v, z)v. Relations (16) and (17) now imply that this coefficient
generates a copy of Ly, ((2n +2£ — 3) Ag) in HYH(Lm®, Lp,(n— £+ 1, 1)). 1t
follows from Proposition 3(b) that for every i = 1,... ¢ there exists k € {i,..., £}
such that

5[2

(A ey =2(k—i).

For i = £, we obtain ()_k,e,}’) = 0. Fori = £ — 1, we obtain (/_\,szv_l) = 0 or
(A,€)) = 2.Since (A, ¢&)) = 0, we obtain that necessarily (A, &, ) = 0. Similarly,
fori=4¢—2,...,1, we obtain

foreveryi =1,...£. Thus A = 0, which finishes the proof of proposition.
Proposition 4 and general results on intertwining operators from [17] now imply:

Theorem 7 Assume that the Conjecture 2 holds. We have the following fusion rules
of Lg,(n — € + é, 0)-modules:

. Lg,(n—£+ ,.0)
dim/ | ! =1
L (n—L+5,2n—Dawy) Lg,(n—L€+ 5, (2n— Dawy)

and

. LB[(n_E—Févi)
dim/ | | =0,
L (n—L+ 5,2n—Dawy) Lg,(n—L€+ 5, 2n— Dawy)

for any irreducible (ordinary) Lg,(n — £ + é, 0)-module Lg,(n — £ + é, A), such that
A #0.
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Remark 3 Assuming that the Conjecture 2 holds, Theorem 7 and results from
Sect. 6 imply that Conjecture 1 holds for any n € Z., that is:

Ly, (n—3.0) @ Ly, (n— ]. (2n — Dews)

has the structure of a (simple) vertex operator algebra, for any n € Z..

Remark 4 We were informed by the referee that there is a direct proof that

Ly, (n—3.0) @ Lo, (n— ]. (2n — Dews)

is a vertex operator algebra, which uses the theory of tensor categories, results of
Bantay [10] and methods developed by Yamauchi [36] and van Ekeren et al. [33].
So one can expect that in order to classify all simple current extensions of admissible
vertex operator algebras, one can use restriction functors and show that this functor
sends a module for admissible affine vertex operator algebras to a simple current
module for affine sl, vertex operator algebras. We hope to study this and related
topics in our forthcoming publications.
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Dirac Cohomology in Representation Theory

Jing-Song Huang

Abstract This article is an introduction to Dirac cohomology for reductive Lie
groups, reductive Lie algebras and rational Cherednik algebras. We also survey
recent results focusing particularly on Dirac cohomology of unitary representations
and its connection with Lie algebra cohomology.

Keywords Category O ¢ Dirac cohomology ¢ Harish-Chandra module ¢ Rational
Cherednik algebra ¢ Reductive Lie group and Lie algebra

1 Introduction

Consider a possibly indefinite inner product {(x,y) = >_. €x;y;, for x,y € R”" with
n=2ande; = +1.Let A = ), ¢;0? be the corresponding Laplace operator. We look
for a first order differential operator D such that D? = A.If we write D = > eid;
for some scalars ¢;, then D* = ), ;7 + Y_,_i(eiej + ¢je;);9;. It leads to require
the relations

2 . .
e =€ and eiej+eje; =0 for i#].

This is clearly impossible for real or complex scalars e;’s. Nevertheless, we can
consider an algebra generated by ey, ..., e,, satisfying the same relations. If we
allow ¢;’s to be in the Clifford algebra, then we do get a Dirac operator D which
squares to A.

In representation theory Dirac operators were employed in 1970s by
Parthasarathy [50] and Atiyah-Schmid [5] for purpose of constructing the discrete
series representations [20]. It turns out that they can be constructed as kernels of
Dirac operators acting on certain spin bundles on the symmetric space G/K. In
1990s, Vogan made a conjecture on the property of the Dirac operator in the setting
of a reductive Lie algebra and its associated Clifford algebra [53]. This property
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implies that the standard parameter of the infinitesimal character of a Harish-
Chandra module X and the infinitesimal character of its Dirac cohomology Hp(X)
are conjugate under the Weyl group. Vogan’s conjecture was consequently verified
in [26], and it has been playing a key role in the theory of Dirac cohomology.
Dirac cohomology offers new perspectives for understanding irreducible unitary
representations and proofs of some classical theorems. It is a basic invariant related
to (g, K)-cohomology, u-cohomology, the K-characters and the global characters.
It has interesting applications in harmonic analysis such as branching laws and
endoscopy. We summarize some recent results here.

1. Dirac cohomology provides a new point of view for understanding classic theory.
The geometric construction of discrete series representations initially did not use
Dirac cohomology and Vogan’s conjecture, but using Dirac cohomology makes
some of the proofs easier [28]. Dirac cohomology is further used for geometric
quantization [11, 22]. Simpler proofs of the generalized Weyl character formula
[39] and generalized Bott-Borel-Weil theorem [40] are given in [28]. Moreover,
Dirac cohomology is used to extend the Langlands formula on dimensions of
automorphic forms [45] to a slightly more general setting [28].

2. The Dirac cohomology of several families of Harish-Chandra modules has been
determined. These modules include finite-dimensional modules and irreducible
unitary Aq(A)-modules [25]. It was proved that if X is a unitary Harish-Chandra
module, then

H*(3.K; X ® F*) = Hom(Hp(F), Hp(X))

for any irreducible finite-dimensional module F. More precisely, Dirac cohomol-
ogy determines the (g, K)-cohomology when the latter exists, and can be thought
of as a generalization of (g, K) cohomology when the latter no longer exists. It is
evident that unitary representations with nonzero Dirac cohomology are closely
related to automorphic representations [54].

3. Another aspect of Dirac cohomology is its connection with u-cohomology.
Kostant has extended Vogan’s conjecture to the setting of the cubic Dirac
operator and proved a nonvanishing result on Dirac cohomology for highest
weight modules in the most general setting [41]. He also determined the
Dirac cohomology of finite-dimensional modules in the equal rank case. The
Dirac cohomology for all irreducible highest weight modules was determined
in [34] in terms of coefficients of Kazhdan—Lusztig polynomials. It is proved
Dirac cohomology and u-cohomology are isomorphic up to a one-dimensional
character for irreducible highest weight modules [34].

4. Dirac cohomology, or rather its Euler characteristic, or the Dirac index, gives
the K-characters of representations. It leads to a generalization of certain
classical branching formulas due to Littlewood [32] which describe how a
finite dimensional representation of GL(n, C) decomposes under orthogonal or
symplectic subgroups. We also generalize some of the other classical branching
rules in [23]. When G is Hermitian symmetric and u is unipotent radical of
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a parabolic subalgebra with Levi subgroup K, [30] showed that for a unitary
representation its Dirac cohomology is isomorphic to its u-cohomology up to a
twist of a one-dimensional character. In particular, Enright’s calculation of u-
cohomology [16] gives the Dirac cohomology of the irreducible unitary highest
weight modules. The Dirac cohomology of unitary lowest weight modules of
scalar type is calculated more explicitly in [31]. Dirac cohomology of more
families of unitary representation are determined in [6, 7] and [48].

5. Dirac index and the K-character are intimately related to the global characters
on the set of elliptic elements. Dirac cohomology is employed as a tool to
study a class of irreducible unitary representations, called elliptic representations
[24]. More precisely, Harish-Chandra showed that the characters of irreducible
or more generally admissible representations are locally integrable functions
and smooth on the open dense subset of regular elements [19]. An elliptic
representation has a global character that does not vanish on the elliptic elements
in the set of regular elements. It is proved that an irreducible admissible (not
necessarily unitary) representation is elliptic if and only if its Dirac index
is nonzero [24, Theorem 8.3]. Dirac index is nonzero implies that Dirac
cohomology is nonzero. Note that under the condition of regular infinitesimal
character, the Dirac index is zero if and only if the Dirac cohomology is zero [24,
Theorem 10.1]. This equivalence is conjectured to hold in general without the
regularity condition [24, Conjecture 10.3]. In particular, an irreducible tempered
elliptic representation has nonzero Dirac cohomology, and therefore it is a
discrete series or a limit of discrete series representation [15, Theorem 7.5]. The
characters of the irreducible tempered elliptic representations are associated in a
natural way to the supertempered distributions defined by Harish-Chandra [21].

6. Better understanding of the endoscopic transfer factor for real groups [47] is
the first of the ‘problems for real groups’ raised by Arthur [4]. It is observed
[24] there is a connection between Labesse’s calculation [44] of the endoscopic
transfer of pseudo-coefficients of discrete series [43] and the calculation of the
characters of the Dirac index of discrete series. This offers a new point of view
for understanding the endoscopic transfer in the framework of Dirac cohomology
and the Dirac index.

7. Vogan’s conjecture has been extended to several other settings by many authors
as follows:

(i) Kostant considered the case when the subalgebra ¢ of g is replaced by any
reductive subalgebra t such that the form B remains nondegenerate when
restricted to v. The appropriate analogue of D is then Kostant’s cubic Dirac
operator. He generalized Vogan’s conjecture to this setting of the cubic
Dirac operator [41].

(i) Alekseev and Meinrenken proved a version of Vogan’s conjecture in their
study of Lie theory and the Chern—Weil homomorphism [2].

(iii)) Kumar proved a similar version of Vogan’s conjecture in Induction functor
in non-commutative equivariant cohomology and Dirac cohomology [42].
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(iv) Pandzi¢ and I defined an analogue of D and prove an analogue of Vogan’s
conjecture in case when g = go @ g; is a basic classical Lie superalgebra.
We extended Vogan’s conjecture to the symplectic Dirac operator in Lie
superalgebras [27].

(v) Kac, Moseneder Frajria and Papi extended Vogan’s conjecture to the affine
cubic Dirac operator in affine Lie algebras [37].

(vi) Barbasch, Ciubotaru and Trapa extended Vogan’s conjecture to the setting
of Luszting’s graded affine Hecke algebras [8]. They also found applica-
tions of Dirac cohomology to unitary representations of p-adic groups.

(vii) Ciubotaru and Trapa proved a version of Vogan’s conjecture for studying
Weyl group representations in connection with Springer theory [13].

Mostly recently, Ciubotaru extended the definition of Dirac operator and Vogan’s
conjecture to the setting of Drinfeld’s graded Hecke algebras including symplectic
reflection algebras [17] and particularly rational Cherednik algebras [12]. Many
results on Dirac cohomology and Lie algebra cohom