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Abstract. The present paper is concerned with a graph-based system
for Keyword Spotting (KWS) in historical documents. This particular
system operates on segmented words that are in turn represented as
graphs. The basic KWS process employs the cubic-time bipartite match-
ing algorithm (BP). Yet, even though this graph matching procedure is
relatively efficient, the computation time is a limiting factor for process-
ing large volumes of historical manuscripts. In order to speed up our
framework, we propose a novel fast rejection heuristic. This heuristic
compares the node distribution of the query graph and the document
graph in a polar coordinate system. This comparison can be accom-
plished in linear time. If the node distributions are similar enough, the
BP matching is actually carried out (otherwise the document graph is
rejected). In an experimental evaluation on two benchmark datasets we
show that about 50% or more of the matchings can be omitted with this
procedure while the KWS accuracy is not negatively affected.

Keywords: Handwritten keyword spotting · Bipartite graph matching ·
Fast rejection · Filtering graph matching

1 Introduction

An automatic full transcriptions of historical handwritten documents is often
negatively affected by both the degenerative conservation state of scanned doc-
uments and different writing styles. Thus, Keyword Spotting (KWS) as a more
error-tolerant, flexible, and suitable approach has been proposed [1–4]. KWS
refers to the task of retrieving any instance of a given query word in a docu-
ment. This task is of high relevance due to a global trend towards digitalisation
of paper-based archives and libraries. Similar to handwriting recognition, tex-
tual KWS can be divided into two different approaches online and offline KWS,
respectively. The former has access to temporal information, while the latter is
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limited to spatial information only. The focus of this paper is on historical docu-
ments, and thus, offline KWS, referred to as KWS from now on, can be applied
only.

KWS approaches can be divided into template-based or learning-based algo-
rithms. Template-based matching algorithms such as for example Dynamic Time
Warping (DTW) [2,5,6] directly match sample images of the keyword with doc-
ument images. Learning-based algorithms [3,4,7], on the other hand, derive char-
acter or word models from learning samples. The latter typically achieve higher
accuracies than template-based approaches but are limited by the need for a con-
siderable amount of learning samples. Template-based approaches, in contrast,
require only one or a few keyword instances and are thus more flexible. In this
paper, we focus on template-based KWS using different graph representations
of handwritten words.

Even though graphs gained noticeable attention in diverse applications [8,9],
we observe only limited attempts where graphs are used to represent handwriting
for KWS [10–14]. This is particularly interesting as graphs are, in contrast with
feature vectors, flexible enough to adapt their size to the size and complexity of
the underlying handwriting. Moreover, graphs are capable to represent binary
relationships in the handwriting (e.g. strokes between two keypoints). Overall,
graphs offer a more natural and comprehensive way to represent handwritten
characters or words when compared to feature vectors. Additionally, various
procedure for efficiently evaluating the dissimilarity of graphs, commonly known
as graph matching, have been proposed in the last decade [9].

Yet, in the case of searching n keywords in a certain document (represented
by a set of graphs G), we need to match n × |G| pairs of graphs. Even when
a fast graph matching procedure is employed, this large amount of matchings
can substantially slow down the complete KWS process. To speed up the KWS
procedure the number of graph matchings actually carried out, can be reduced
by efficiently filtering graphs from G with a low similarity to the current query
graph q. This approach is known as fast rejection [3,5,7] and the focus of the
present paper. That is, we introduce a novel heuristic for fast and accurate
filtering of irrelevant document graphs given a certain query graph.

The remainder of this paper is organised as follows. In Sect. 2, the pro-
posed fast rejection approach to speed up graph-based KWS is introduced. The
datasets employed as well as the different graph representations are reviewed
in Sect. 3. An experimental evaluation and comparison with the original frame-
work is given in Sect. 4. Finally, Sect. 5 concludes the paper and outlines possible
future research activities.

2 Fast Rejection of Document Graphs

Given a set of document graphs G = {g1, . . . , gN} as well as query graph q (used to
represent a certain keyword), the process of KWS performs a matching of q with all
graphs from G. We employ the Bipartite Graph Edit Distance (BP) [15], and thus
observe cubic time complexity for these pairwise dissimilarity computations. The
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present paper introduces a fast rejection approach in order to substantially reduce
the number of document graphs needed to be matched with q. The motivation is to
filter document graphs without relevance to the given keyword and thus speeding
up the KWS procedure without negatively affecting the retrieval accuracy.

The basic idea of our approach is as follows. Before actually carrying out the
graph matching, we first measure the dissimilarity between histograms based on
a specific segmentation of the graphs by means of a polar coordinate system.
We denote this fast graph dissimilarity computation by Polar Graph Dissimilar-
ity (PGD) from now on. If the PGD is below a certain threshold D for a pair of
graphs (q, gi), we carry out the computationally more expensive BP matching
procedure [13]. Otherwise, we define the distance between q and gi to be ∞.
Formally,

d(q, gi)

{
∞, if PGD(q, gi) > D

BP (q, gi), otherwise
, (1)

where q and gi denotes the query and document graph, respectively. Increas-
ing the threshold D generally reduces the number of filtered document graphs.
Likewise, the number of filtered graphs is increased when D is decreased. The
overall aim is to find a good tradeoff between low matching time (due to many
filterings) and high KWS accuracy.

Our novel dissimilarity model PGD has been inspired by the scale-invariant
shape descriptor Contour Points Distribution Histogram (CPDH) for 2D-shape
matching [16]. The basic idea behind this shape descriptor is to segment equidis-
tant contour points by a specific polar coordinate system. A given shape image is
formally described by a histogram CPDH = {h1, . . . , hi, . . . , hn} where hi basi-
cally consists of the number of contour points ni in the corresponding segment.

We adopt this procedure in order to measure the dissimilarity between graphs
in linear time. Rather than contour points, however, we make use of nodes as
shown in Fig. 1. For all of our graphs that represent segmented words, nodes
are labelled with two-dimensional numerical labels, while edges remain unla-
belled (see Sect. 3 for details).

To create a histogram for a given graph g, we first calculate the centre of
mass (xm, ym) of g and then transform the (x, y)-coordinates of each node label
μ(v) = (x, y) ∈ R

2 into polar coordinates (see Fig. 1a)1. Formally,

ρ =
√

(x − xm)2 + (y − ym)2 and θi = atan2((y − ym)/(x − xm)),

where ρ denotes the radius from the centre of g to the node position and −π ≤
θi < π refers to the angle from the x-axis to the node position (computed via
arctangent function with two arguments in order to return the correct quadrant).
Next, we define a bounding circle C given by the maximum radius ρmax that
surrounds all nodes of graph g. We segment C based on the number of different

1 Node coordinates are a priori denormalised by the standard deviation of all node
coordinates, for further details we refer to [13].
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Fig. 1. Construction of the polar graph dissimilarity.

radii umax and angles vmax into umax × vmax bins (in Fig. 1b umax = 3 and
vmax = 8 resulting in 24 bins). Every bin bi is defined by two radii ρimin and ρimax ,
and two angles θimin and θimax , and thus every node v ∈ V with coordinates (ρ, θ)
can be assigned to the corresponding bin bi with ρimin ≤ ρ < ρimax and θimin ≤
θ < θimax . Finally, we count the number of nodes of g in each bin and build a
corresponding histogram H = {h1, . . . , hn} for graph g (see Fig. 1c). To measure
the dissimilarity between two histograms H1 and H2, an arsenal of different
distance measures have been proposed [17]. In the present paper, we make use
of the χ2 distance.

We further refine the computation of our fast graph dissimilarity computation
by implementing a recursive quadtree segmentation. The idea is formalised in
Algorithm 1. First, the procedure is initialised by an external call with l =
1 (i.e. PGD(1, g1, g2)). On the basis of two graphs g1 and g2, the histograms H1

and H2 are created with respect to umax and vmax (see line 2 of Algorithm 1)2.
Next, the χ2-distance between the two histograms is measured (see line 2). If the
current recursion level l is equal to the maximal recursion depth r, the distance
is returned (see lines 4 and 5). Otherwise, both graphs g1 and g2 are segmented
into four independent subgraphs. Each of these subgraphs represent the nodes
and edges in one of the four quadrants in circle C (see line 6). Eventually, for each
subgraph pair, the PGD is measured by means of a recursive function call (see
line 7). This procedure is repeated until the current recursion level l is equal to
the user-defined maximum depth r.

3 Handwriting Graphs

Our novel algorithm for fast rejection is evaluated in the context of KWS on
two different manuscripts. First, the George Washington (GW) letters that are

2 Note that umax and vmax can be defined for every recursion level separately.
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Algorithm 1. Polar Graph Dissimilarity (PGD)
Input: Graphs g1 and g2, number of radii and segments umax and vmax, recursion depth r
Output: Polar graph dissimilarity between graph g1 and g2
1: function PGD(l, g1, g2)
2: Create H1 based on g1, umax, vmax, and H2 based on g2, umax, vmax
3: Calculate χ2-distance d(H1, H2)
4: if l equal r then
5: return d
6: Segment g1 and g2 based on quadtree to g11 , g12 , g13 , g14 and g21 , g22 , g23 , g24

7: return (
4∑

i=1
PGD(l + 1, g1i , g2i )) + d

written in English and consist of twenty pages with a total of 4,894 words stem-
ming from handwritten letters with only minor writing variations and signs of
degradation3. Second, the Parzival (PAR) manuscript that is written in Mid-
dle High German and consists of 45 pages with a total of 23,478 words stem-
ming from handwritten letters with low writing variations but markable signs of
degradation4.

We extract graphs from segmented words of both documents by means of
the following four graph extraction algorithms (originally presented in [14]).

– Keypoint: The first graph extraction algorithm makes use of keypoints in the
word images such as start, end, and junction points. These keypoints are rep-
resented as nodes that are labelled with the corresponding (x, y)-coordinates.
Between pairs of keypoints further intermediate points are converted to nodes
and added to the graph in equidistant intervals. Finally, undirected edges are
inserted into the graph for each pair of nodes that is directly connected by a
stroke.

– Grid: The second graph extraction algorithm is based on a grid-wise segmen-
tation of the word images. For every segment, a node is inserted into the graph
and labelled by the (x, y)-coordinates of the centre of mass of this segment.
Undirected edges are inserted between two neighbouring segments that are
actually represented by a node. Eventually, the inserted edges are reduced by
means of a Minimal Spanning Tree algorithm.

– Projection: The next graph extraction algorithm works very similar to Grid.
However, this methods is based on an adaptive segmentation of word images by
means of projection profiles (using horizontal and vertical projection profiles).

– Split: The last graph extraction algorithm is based on an iterative segmen-
tation of word images. Segments are iteratively split into smaller subsegments
until the width and height of all segments is below a certain threshold.

3 George Washington Papers at the Library of Congress, 1741–1799: Series 2, Letter-
book 1, pp. 270–279 & 300–309, http://memory.loc.gov/ammem/gwhtml/gwseries2.
html.

4 Parzival at IAM historical document database, http://www.fki.inf.unibe.ch/
databases/iam-historical-document-database/parzival-database.

http://memory.loc.gov/ammem/gwhtml/gwseries2.html
http://memory.loc.gov/ammem/gwhtml/gwseries2.html
http://www.fki.inf.unibe.ch/databases/iam-historical-document-database/parzival-database
http://www.fki.inf.unibe.ch/databases/iam-historical-document-database/parzival-database
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The dynamic range of the (x, y)-coordinates of each node label μ(v) is nor-
malised with a z-score. Formally,

x̂ =
x − μx

σx
and ŷ =

y − μy

σy
, (2)

where (μx, μy) and (σx, σy) represent the mean and standard deviation of all
(x, y)-coordinates in the graph under consideration.

On the resulting sets of word graphs, ten different keywords are manually
selected on both datasets to optimise several system parameters (see Sect. 4.2).
For validation these keywords are matched against a validation set that consists
of 1,000 different random words including at least 10 instances of all 10 keywords.
The optimised systems are eventually evaluated on the same training and test
sets as used in [4]. All templates of a keyword present in the training set are
used for KWS. In Table 1 a summary of the datasets is given.

Table 1. The number of keywords as well as the size of the training and test sets for
both documents.

Dataset Keywords Train Test

GW 105 2,447 1,224

PAR 1,217 11,468 6,869

4 Experimental Evaluation

4.1 Basic KWS Systems

For evaluating our proposed fast rejection heuristic, we consider the graph-
based KWS system introduced in [13] and the four types of handwriting graphs
described in Sect. 3. The original KWS system [13] is termed BP from now on,
while our extended model with fast rejection is termed BP-FR.

To evaluate the KWS performance, two different metrics are used for global
and local thresholds. In the case of global thresholds, the Average Precision (AP)
is measured, which is the area under the Recall-Precision curve for all keywords
given a single (global) threshold. In the case of local thresholds, we compute the
Mean Average Precision (MAP), that is the mean of all APs for each individual
keyword query. To measure the effects of our fast rejection filter, we compute the
relative amount of pairwise matchings that is filtered by BP-FR (termed Filter
Rate (FR) from now on).

4.2 Optimisation of the Parameters

For the basic KWS system BP and the four graph representations, we adopt
parameters from previous work [13,14]. For our extension BP-FR the following
parameters are additionally optimised on the validation set.
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First, the parameters of PGD are optimised with respect to MAP. That is,
we employ PGD (rather than BP) as basic matching procedure in our KWS
framework. On the validation set different polar segmentations (defined via
umax and vmax) are tested for two recursion levels (i.e. we define the maxi-
mal recursion depth to r = 2). For l = 1, the parameter combinations umax =
{1, 2, 3, 4, 5, 6} × vmax = {4, 8, 12, 16, 20, 24, 28, 32, 36, 40} are evaluated, while
for l = 2 the parameter combinations umax = {1, 2, 3, 4} × vmax = {2, 4, 6, 8, 10}
are tested. Hence, we evaluate 6 × 10 × 4 × 5 = 1, 200 parameter combinations
for every graph extraction method. In Table 2 the best performing parameters
are presented for every graph extraction method and both datasets.

Table 2. Optimal umax and vmax for PGD on both recursion levels l.

Method GW PAR

l = 1 l = 2 l = 1 l = 2

umax vmax umax vmax umax vmax umax vmax

Keypoint 4 12 1 6 3 20 2 6

Grid 5 24 1 4 4 20 1 6

Projection 5 16 1 4 3 36 3 4

Split 4 20 1 4 3 40 2 6

For fast rejection in our extension BP-FR we evaluate different thresholds
D = {5, 10, . . . , 195, 200}. In Fig. 2, the MAP and FR are shown for every tested
threshold D. By increasing D we observe that the KWS performance is improved
in general. Simultaneously, the number of filtered graphs is decreasing (making
the KWS process slower in general). Threshold D is finally determined such that
the MAP is maximal (or not further improved, when D is increased). In Table 3
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Fig. 2. Mean average precision (MAP) and filter rate (FR) as function of the thresh-
old D.
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Table 3. Optimal D for BP-FR and corresponding filter rate (FR).

Method GW PAR

D MAP FR D MAP FR

Keypoint 100 82.8 61.1 95 91.7 71.5

Grid 165 75.6 46.0 70 86.5 85.6

Projection 115 80.7 56.9 130 92.2 70.9

Split 155 76.4 44.6 145 90.9 57.5

the selected threshold D is given for each graph extraction method and both
datasets.

4.3 Results and Discussion

We compare the optimised system BP-FR on the independent test sets with the
original KWS framework BP [13] (without fast rejection). In Table 4 the mean
average precision (MAP) for local thresholds, the average precision (AP) for
global thresholds, as well as the filter rate (FR) is given for both BP and BP-
FR. On the GW dataset we observe a filter rate between 50% and 70% (i.e. only
50% to 30% of all comparisons have to be carried out by the bipartite match-
ing algorithm). Due to this filtering, we decrease the computation time of the
complete KWS experiment by about 80 to 150 h on the different graph repre-
sentations. Similar (or even better) filter rates can be observed on the second
dataset5.

Regarding the effects of our fast filtering on the KWS performance, we
observe that the MAP is not negatively affected on both datasets. On the con-
trary, the filtering of irrelevant documents via PGD actually improves the MAP
by about 5% and 10% on the GW and PAR dataset, respectively.

Regarding the AP (employed for global rather than local thresholds), we
observe both deteriorations and improvements of BP-FR when compared with
the original framework. Yet, most of the deviations are negligible. In particular
on the GW dataset only small differences are observed on the resulting APs.
On PAR we observe two substantial deteriorations of the AP. Yet, in these two
cases we observe very high filter rates of about 60% and 70%.

Regarding the results in Table 4 the question arises whether the novel graph
dissimilarity PGD would be able to achieve a competitive KWS accuracy. In
order to answer this question, we employ the optimised PGD (rather than the
bipartite matching) in the original KWS framework. In Table 5, the MAP and
AP of this particular KWS system is shown on the Keypoint graphs (for the

5 Actually, we carry out our experiment on a high performance computing cluster
with dozens of CPU nodes. Hence, these readings are approximated by means of the
average matching time per keyword measured on the validation set in a sequential
scenario.
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Table 4. Mean average precision (MAP) using local thresholds, average precision (AP)
using a global threshold, and filter rate (FR) for KWS using the original bipartite graph
matching without rejection (BP) and with the proposed fast rejection (BP-FR). With ±
we indicate the relative percental gain or loss in the accuracy of BP-FR when compared
with BP.

Method GW PAR

MAP ± AP ± FR MAP ± AP ± FR

BP Keypoint 66.08 54.99 0.00 62.04 60.74 0.00

Grid 60.02 46.44 0.00 56.50 44.08 0.00

Projection 61.43 48.69 0.00 66.23 60.61 0.00

Split 60.23 47.96 0.00 59.44 55.46 0.00

BP-FR Keypoint 68.81 +4.12 55.68 +1.25 69.04 67.70 +9.12 58.03 −4.46 58.72

Grid 62.59 +4.27 47.48 +2.23 54.65 63.41 +12.23 38.59 −12.45 78.71

Projection 64.65 +5.25 50.41 +3.53 61.04 72.02 +8.74 55.83 −7.89 58.10

Split 63.49 +5.41 46.95 −2.11 47.70 65.65 +10.45 56.97 +2.72 39.24

Table 5. Mean average precision (MAP) using local thresholds, average precision (AP)
using a global threshold for KWS using the original bipartite graph matching (BP),
and the polar graph dissimilarity (PGD) on the Keypoint graphs.

GW PAR

MAP AP MAP AP

BP 66.08 54.99 62.04 60.74

PGD 58.54 44.77 42.65 31.63

other graphs similar results are obtained). We observe that this system achieves
worse results than BP on both datasets (regarding both MAP and AP). Hence,
we conclude that PGD itself is not powerful enough to serve as basic dissimilarity
model for graph-based KWS. Yet, as seen in the previous evaluation in Table 4,
the PGD as fast rejection criterion in conjunction with BP is clearly beneficial.

5 Conclusion and Outlook

In the present paper a fast rejection approach for graph-based KWS is intro-
duced. The rejection is based on a novel graph dissimilarity model, which com-
pares the histograms of the node distributions in a polar coordinate system.

We compare our extended model with the original KWS framework without
rejection ability on two benchmark datasets. We observe that our novel rejec-
tion approach reduces the amount of graph matchings by 50% or more on both
datasets (in fact, filter rates of up to 80% are observed). Our rejection crite-
rion is computed in linear time, while the actual graph matching needs cubic
time. Hence, a dramatic speed up of the complete KWS process is achieved.
Moreover, we can conclude that our novel extension for speeding up the existing
KWS framework does not negatively influence the spotting accuracy.
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In future work we aim at extending our novel graph dissimilarity model. For
instance, we could consider not only nodes but also edges in the histograms.
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3. Rodŕıguez-Serrano, J.A., Perronnin, F.: Handwritten word-spotting using hidden
Markov models and universal vocabularies. Pattern Recogn. 42(9), 2106–2116
(2009)

4. Fischer, A., Keller, A., Frinken, V., Bunke, H.: Lexicon-free handwritten word
spotting using character HMMs. Pattern Recogn. Lett. 33(7), 934–942 (2012)

5. Rodriguez, J.A., Perronnin, F.: Local gradient histogram features for word spotting
in unconstrained handwritten documents. In: International Conference on Frontiers
in Handwriting Recognition, pp. 7–12 (2008)
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