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Abstract. About ten years ago, a novel graph edit distance framework
based on bipartite graph matching has been introduced. This particular
framework allows the approximation of graph edit distance in cubic time.
This, in turn, makes the concept of graph edit distance also applicable to
larger graphs. In the last decade the corresponding paper has been cited
more than 360 times. Besides various extensions from the methodological
point of view, we also observe a great variety of applications that make
use of the bipartite graph matching framework. The present paper aims
at giving a first survey on these applications stemming from six differ-
ent categories (which range from document analysis, over biometrics to
malware detection).

Keywords: Applications of bipartite graph matching · Graph-based
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1 Introduction

Most pattern recognition applications are either based on statistical (i.e. vec-
torial) or structural data structures (i.e. strings, trees, or graphs). Graphs, in
contrast to feature vectors, are able to represent both entities and binary relation-
ships that might exist between subparts of these entities. Moreover, graphs can
adapt their size and complexity to the size and complexity of the actual pattern
to be modelled. Due to their representational power and flexibility, graphs have
found widespread application in pattern recognition and related fields. Promi-
nent examples of classes of patterns, which can be formally represented in a more
suitable and natural way by means of graphs rather than with feature vectors,
are chemical compounds [1], documents [2], proteins [3], and networks [4] (see [5]
for an early survey on applications of graphs in pattern recognition).
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The availability of a dissimilarity or similarity measure is a basic require-
ment for pattern recognition and analysis. For graph dissimilarity computation,
commonly solved via a particular graph matching algorithm, no standard model
has been established to date. For an excellent and exhaustive review on graph
matching methods emerged during the last forty years, the reader is referred
to [6,7].

The present paper is concerned with the graph matching paradigm of graph
edit distance [8,9]. In fact, the concept of graph edit distance is considered as one
of the most flexible and versatile graph matching models available. Yet, the major
drawback of graph edit distance is its computational complexity that restricts
its applicability to graphs of rather small size. Graph edit distance belongs to
the family of Quadratic Assignment Problems (QAPs), which in turn belong to
the class of NP-complete problems. That is, an exact and efficient algorithm for
the graph edit distance problem can not be developed unless P = NP.

About ten years ago, an algorithmic framework, which allows the approxi-
mate computation of graph edit distance in a substantially faster way than tra-
ditional methods on general graphs, has been introduced [10,11]. The basic idea
of this approach, termed Bipartite Graph Edit Distance (BP), is to reduce the
difficult QAP of graph edit distance computation to a Linear Sum Assignment
Problem (LSAP). LSAPs basically constitute the problem of finding an optimal
assignment between two independent sets of entities. For LSAPs quite an arsenal
of efficient (i.e. polynomial) algorithms exist (see [12] for an exhaustive survey
on LSAP algorithms).

The graph dissimilarity framework BP presented in [10,11] resolves several
major issues that appear when graph edit distance is reformulated to an instance
of an LSAP. In a first step the graphs to be matched are subdivided into individ-
ual nodes including local structural information. Next, in step 2, an algorithm
solving the LSAP is employed in order to find an optimal assignment of the nodes
(plus local structures) of both graphs. Finally, in step 3, an approximate graph
edit distance, which is globally consistent with the underlying edge structures of
both graphs, is derived from the assignment of step 2.

The time complexity of this matching framework is cubic with respect to the
number of nodes of the involved graphs. Hence, BP is also applicable to larger
graphs. Due to this benefit, the underlying methodology has been employed in
a great variety of applications. The contribution of the present paper is to give
a first survey on these application fields and the corresponding methods that
actually use the BP framework.

2 Applications

In the last decade, the original paper (that describes BP for the first time) [10] as
well as its extended version [11] have been cited more than 360 times. Regarding
these citing papers we observe two main categories. The first category is con-
cerned with methodological extensions of BP. There are, for instance, papers that
use another basic cost model than proposed in the original framework [13,14],
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or works that aim at making the approximation faster [15,16], or more accu-
rate [17,18]. The second category of citing papers is concerned with differ-
ent applications of the approximate graph matching framework BP. The main
focus of the present paper is to review and categorise the papers of this second
category.

A taxonomy of the application fields and the corresponding papers (reviewed
in the following subsections) is given in Fig. 1. In all of these applications, graphs
are used to represent real-word (or abstract) objects or patterns, such as for
instance images, proteins, or business processes (to mention just a few examples).
Eventually, the BP framework is used to measure the (dis)similarity between
pairs of graph-based representations.

Applications of the Bipartite Graph Edit Distance (BP)

Image Analysis [19–24]

Handwritten Document Analysis [25–33]

Biometrics [34–40]

Bio- and Chemoinformatics [41–46]

Knowledge and Process Management [47–50]

Malware Detection [51–54]

Other Applications [55–58]

Fig. 1. Taxonomy of the reviewed application fields and papers that use the framework
for Bipartite Graph Edit Distance (BP).

2.1 Image Analysis

Image analysis is often based on measuring the similarity of objects represented
by 2D- or 3D-images. In the present scenario, graphs are used to represent these
images, while the dissimilarity between pairs of images is measured by BP. In
fact, many of the reviewed application fields presented below can be seen as
special case of image analysis. In the present section, however, we present appli-
cations that are not part of any of the following subsections.

In [19], for instance, graphs are used to represent envelope images. That is,
segmented regions are represented by nodes, while edges are inserted between
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specific pairs of nodes. The dissimilarities returned by BP are finally used to build
a retrieval system. Another image analysis application is presented in [20]. In
this case lunar surface images are formalised with graphs, where nodes represent
SIFT-keypoints, while edges represent a Delaunay triangulation of the nodes.
The BP distances are eventually used for localisation tasks. In [21] graphs are
used to represent thinned images of archaeological structures (so called Kites) in
order to find similar structures in large aerial image databases. Finally, in [22] the
BP framework has been employed for shoe print classification, while in [23] the
BP algorithm is used for the computation of similarities between petroglyphs.

Graphs are also used for 3D-images analysis. In [24], for instance, graphs
are used to represent topological building structures by a so called Room Con-
nectivity Graph. To this end, nodes represent rooms and are labelled by three-
dimensional characteristics of the room. The edges are used to represent the
connectivity between rooms labelled by two-dimensional features (i.e. width and
height). BP is then employed in a retrieval scenario.

2.2 Handwritten Document Analysis

In recent years, handwritten (historical) documents have become increasingly
digital available. However, the accessibility to these digitised documents with
respect to browsing and searching is often limited. A first approach to bridge
this gap is presented in [25], which aims at the recognition of unconstrained
handwriting images. In this approach, nodes represent keypoints on the skele-
tonised word images, while edges represent strokes between keypoints. The BP
framework (which has been extended in this particular case) is eventually used
to define graph similarity features.

Keyword spotting allows to retrieve arbitrary keywords in handwritten doc-
uments. In case of graph-based keyword spotting, graphs commonly repre-
sent (parts of) segmented word images. The nodes of these graphs are, for
instance, based on keypoints [26–29] or prototype strokes [30,31], while edges
are commonly used to represent the connectivity between pairs of keypoints or
prototype strokes. The actual spotting for certain words in a document is then
based on dissimilarity computations between the query graph and document
graphs using BP.

The BP dissimilarity framework has not only been applied for spotting key-
words in historical documents, but also for clustering ancient ornamental ini-
tials (so called lettrines) [32]. In this particular case, each lettrine is represented
by a Region Adjacency Graph (RAG), where nodes are used to represent homoge-
nous regions. Finally, edges are inserted based on the adjacency of regions.

In [33] a graph database for ancient handwritten documents is proposed and
evaluated by means of a word classification experiment using BP. In particular,
on the basis of segmented word images, six different graph representation for-
malisms are proposed and compared with each other using the BP dissimilarity
model.
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2.3 Biometrics

Biometrics are often used to verify or identify an individual based on certain
biometrical characteristics (e.g. iris, fingerprint, or signature). In [34,35], retina
vessels are used as a biometric trait for user verification. Formally, nodes are
used to represent keypoints in skeletonised vessel images, while edges represent
the vessels between selected keypoints. Finally, BP is used to match the retina
vessel graphs [34] or to derive different graph similarity measures for building a
multiple classifier system [35]. In [36,37] a very similar approach is applied on
palm veins rather than retina vessels.

Moreover, graphs are also used to for fingerprint identification as introduced
in [38]. In particular, fingerprint images are segmented into core areas (i.e. areas
with same ridge direction), which are in turn represented by nodes, while edges
are inserted between adjacent areas. The resulting fingerprint graphs are then
classified using the distances derived from the BP framework.

In recent years, a trend towards high coverage of video surveillance can be
observed. Thus, person re-identification over serval camera scenes evolved to a
crucial task. In [39] a graph-based approach is presented for this task. To this
end, segmented camera images are represented by means of a RAG [32]. The
BP framework is then used in conjunction with a Laplacian-kernel in order to
re-identify persons.

Last but not least, BP is also used for on-line signature verification [40]. First,
the signatures are divided into segments which are in turn represented by graphs.
That is, nodes represent the sample points of a segment, while edges are inserted
between specific pairs of nodes. Finally, two signatures are compared with each
other by measuring a sum of BP dissimilarities between pairs of graphs.

2.4 Bio- and Chemoinformatics

Bio- and chemoinformatics combine approaches and techniques of a broad field
to analyse and interpret biological (i.e. DNA, protein sequences) or chemical
structures (i.e. molecules), respectively. An important application in the field
of bioinformatics is the analysis of deviations in biological structures to detect
cancer. In [41], for instance, graphs are used to represent tissue image of biolog-
ical cells. In this case nodes are used to represent tissue components, while their
spatial relationship is represented by edges. Subsequently, the BP framework is
used to classify graphs representing normal, low-grade and high-grade cancerous
tissue images. In [42], a similar approach is introduced to detect irregularities in
blood vessels rather than biological cells.

Chemoinformatics has become a well established field of research. Chemoin-
formatics is mainly concerned with the prediction of molecular properties by
means of informational techniques. The assumption that two similar molecules
should have similar activities and properties, is one of the major principles in
this particular field. Clearly, molecules can be readily described with labelled
graphs, where atoms are represented by nodes, while bonds between atoms (e.g.
single, double, triple, or aromatic) are represented by edges.
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In [43,44] the approximation of graph edit distance by means of BP is used
to build a novel graph kernel for activity predictions of molecular compounds.
In [45] various graph embeddings methods and graph kernels, which are in part
built upon the BP framework, are evaluated in diverse chemoinformatics appli-
cations. Finally, in [46] an algorithm to compute single summary graphs from a
collection of molecule graphs has been proposed. The formulation of the cost of
a matching, which is actually used in this methodology, is based on BP.

2.5 Knowledge and Process Management

In the last decades, a trend towards digitalisation of business models can
be observed throughout most industries. Knowledge and process management
ensures a thorough information flow, which is actually needed to manage both
physical and intellectual resources. Nowadays, business processes are often
supported (or completely created) by means of web services. Thus, the re-
discoverability of composite web services (described by means of an OWL-S
process) is of high relevance and issued in [47]. To this end, a graph is used to
represent a composite process. Nodes represent process states and atomic ser-
vices, while directed edges are used to represent the control flow. By a similar
principle, business (sub)-processes rather than web services are retrieved in [48].
In particular, business process activities represent nodes, while directed edges
are used to represent the business process flow. Finally, the BP framework is
used to find similarities between business (sub)-processes.

Another application in this field is presented in [49], where semantical
enriched documents (so called Resource Description Framework (RDF) ontolo-
gies) are represented by graphs. To this end, document key concepts (e.g.
db:Bob Dylan, db:Folk Music) are represented by nodes, while directed edges
are used to represent semantic relations (e.g. dbp:genre) and labelled by their
importance. Finally, the similarity of documents is computed by an adapted BP
matching framework.

Based on (similar) RDF ontologies, an approach to estimate the execution
time of SPARQL (the RDF query language) queries is presented in [50]. In this
scenario the BP distances of an unknown query to a set of training queries are
used as query features.

2.6 Malware Detection

Anti-virus companies receive huge amounts of samples of potentially harmful
executables. This growing amount of data makes robust and automatic detection
of malware necessary.

The differentiation between malicious and original binary executables is actu-
ally another field where the framework BP has been extensively used. In [51–53],
for instance, malware detection based on comparisons of call graphs has been
proposed. In particular, the authors propose to represent malware samples as
call graphs such that certain variations of the malware can be generalised. This
approach enables the detection of structural similarities between samples in a
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robust way. For pairwise comparisons of these call graphs the approximation of
BP is employed.

In [54] a similar approach has been pursued for the detection of malware
by using weighted contextual API dependency graphs in conjunction with an
extended version of BP for graph comparison. Finally, in [51] BP has been
employed for the development of a polynomial time algorithm for calculating
the differences between two binaries.

2.7 Other Applications

A further application where the BP matching algorithm has been applied, is for
instance, the retrieval of stories (for storytelling) [55]. In this scenario, nodes
represent goals and actions, while edges represent time and order. Thus, similar
stories can be retrieved by means of the BP framework. In [56] a similar approach
is introduced to retrieve sketches used to define the building behaviour of non-
player characters in computer games. Finally, the BP framework is also used to
detect plagiarism. In particular, [57] and [58] BP is used to detect plagiarism in
Haskell programs and in textual documents, respectively.

3 Conclusion

In this paper we have reviewed about 40 different papers applying the BP match-
ing framework. The reviewed applications stem from different fields like image
analysis, handwritten document analysis, biometrics, bio- and chemoinformatics,
knowledge and process management, malware detection, and others. In future
work, we plan to extend this survey by integrating not only applications, but
also methodological extensions of the BP matching algorithm.
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42. Núñez, J.M., Bernal, J., Ferrer, M., Vilariño, F.: Impact of keypoint detection on
graph-based characterization of blood vessels in colonoscopy videos. In: Luo, X.,
Reichl, T., Mirota, D., Soper, T. (eds.) CARE 2014. LNCS, vol. 8899, pp. 22–33.
Springer, Cham (2014). doi:10.1007/978-3-319-13410-9 3

43. Brun, L., Conte, D., Foggia, P., Vento, M., Villemin, D.: Symbolic learning vs.
graph kernels: an experimental comparison in a chemical application. In: East-
European Conference on Advances in Databases and Information Systems (2010)
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