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Abstract. The graph edit distance is a well-established and widely
used distance measure for labelled, undirected graphs. However, since
its exact computation is NP-hard, research has mainly focused on devis-
ing approximative heuristics and only few exact algorithms have been
proposed. The standard approach A�-GED, a node-based best-first search
that works for both uniform and non-uniform metric edit costs, suffers
from huge runtime and memory requirements. Recently, two better per-
forming algorithms have been proposed: DF-GED, a node-based depth-first
search that works for uniform and non-uniform metric edit costs, and
CSI GED, an edge-based depth-first search that works only for uniform
edit costs. Our paper contains two contributions: First, we propose a
speed-up DF-GEDu of DF-GED for uniform edit costs. Second, we develop a
generalisation CSI GEDnu of CSI GED that also covers non-uniform metric
edit cost. We empirically evaluate the proposed algorithms. The experi-
ments show, i.a., that our speed-up DF-GEDu clearly outperforms DF-GED
and that our generalisation CSI GEDnu is the most versatile algorithm.

Keywords: Graph matching · Graph similarity · Graph edit distance ·
Branch and bound

1 Introduction

Labelled, undirected graphs can be used for modelling various kinds of objects,
such as social networks, molecular structures, and many more. Because of this,
labelled graphs have received increasing attention over the past years. One task
researchers have focused on is the following: Given a database G that contains
labelled graphs, find all graphs G ∈ G that are sufficiently similar to a query
graph H or to find the k graphs from G that are most similar to H. For approach-
ing this task, a distance measure between undirected, labelled graphs G and H
has to be defined. One of the most commonly used measures is the graph edit dis-
tance. Formally, a labelled, undirected graph G is a 4-tuple G = 〈V G, EG, �G

V , �G
E〉,

where V G is a set of nodes, EG is a set of undirected edges, and �G
V : V G → ΣV

and �G
E : EG → ΣE are labelling functions that assign nodes an edges to labels

from alphabets ΣV and ΣE . Both ΣV and ΣE contain a special label ε reserved
for dummy nodes and dummy edges. The graph edit distance λ(G,H) between
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graphs G and H on common label alphabets ΣV and ΣE is defined as the mini-
mum cost of an edit path between G and H. An edit path is a sequence of labelled
graphs starting with G and ending at a graph that is isomorphic to H. Each
graph along the path can be obtained from its predecessor by applying one of
the following edit operations: Deleting or inserting an α-labelled edge, deleting
or inserting an isolated α-labelled node, changing a node’s or an edge’s label
from α to β �= α. Edit operations on nodes and edges come with associated edit
costs cV : ΣV × ΣV → IR and cE : ΣE × ΣE → IR, respectively. The cost of an
edit path is defined as the sum of the costs of its edit operations. If the cost of
each edit operation equals 1, we say that the edit costs are uniform. In many
scenarios, it is natural to consider non-uniform metric edit costs. For instance, if
the graphs model spacial objects and the node labels are Euclidean coordinates,
the cost cV (α, β) one has to pay for changing a node’s label from α to β should
probably be defined as the Euclidean distance between α and β.

It has been shown that, even for uniform edit costs, it is NP -hard to exactly
compute the graph edit distance [14]. Exact algorithms that, if applied to large
graphs, terminate within an acceptable amount of time are hence out of reach.
Consequently, a substantial part of research on both uniform [14–16] and non-
uniform [2–4,6,10,12,13] graph edit distance has focused on the task of devising
heuristics that compute lower and/or upper bounds for λ(G,H). Nonetheless,
efficient exact algorithms are still important. This is because some of the objects
that are readily modelled by labelled, undirected graphs — for instance, some
molecular compounds — induce graphs with very few nodes [9]. For these graphs,
queries of the kind “find all G ∈ G with λ(G,H) ≤ τ” can in principle be
answered. Of course, one would first use efficiently computable upper and lower
bounds in order to filter out candidates from G. However, for the surviving
candidates, λ(G,H) ≤ τ has to be verified by means of an exact algorithm.

The standard approach A�-GED [11] for exactly computing λ(G,H) carries
out a node-based best-first search in order to find the optimal edit path. It is
very slow and has huge memory requirements. Recently, three better performing
algorithms BLP-GED [8], DF-GED [1], and CSI GED [5] have been proposed. BLP-GED
formulates the problem of computing λ(G,H) as a binary linear program which
is solved by calling the commercial solver CPLEX. It has been found to be faster
and more memory-efficient than A�-GED. DF-GED carries out a node-based depth-
first search for finding the cheapest edit path. It has been found to be much more
memory-efficient and slightly faster than A�-GED. In contrast, CSI GED carries out
an edge-based depth-first search. It also has been found to be both faster and
much more memory-efficient than A�-GED. While A�-GED, BLP-GED, and DF-GED
cover non-uniform metric edit costs, CSI GED only works for uniform edit costs.
A direct comparison between BLP-GED, DF-GED, and CSI GED is lacking.

Our paper contains the following contributions: In Sect. 2, we present a speed-
up DF-GEDu of DF-GEDfor uniform edit costs. DF-GEDu exploits the fact that, in the
uniform case, a subroutine that DF-GED employs at each node of its search tree
can be implemented to run in linear rather than cubic time. In Sect. 3, we pro-
pose a generalisation CSI GEDnu of CSI GED that also covers non-uniform metric
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edit costs. This generalisation comes at the price of a slightly increased run-
time. However, this increase is very moderate, as the computational complexity
is increased only at the initialisation of CSI GEDnu and at the leafs of its search
tree. In Sect. 4, we experimentally evaluate the performance of the newly pro-
posed algorithms. The experiments show that, for uniform edit costs, our speed-
up DF-GEDu clearly outperforms DF-GED, while CSI GED and our generalisation
CSI GEDnu perform similarly. They also indicate that, neither for uniform nor for
non-uniform edit costs, there is a clear winner between DF-GEDu and DF-GED, on
the one side, and CSI GED and CSI GEDnu, on the other side. Finally, the exper-
iments suggest that CSI GEDnu is the most versatile algorithm: It covers both
uniform and non-uniform edit costs and runs very stable even on datasets where
other algorithms perform better. Section 5 concludes the paper.

2 DF-GEDu: Fast DF-GED for Uniform Edit Costs

In this section, we show how to speed-up the node-based depth-first search
DF-GED for uniform edit costs. We first summarise DF-GED and then describe
our speed-up DF-GEDu.

The Baseline Approach. DF-GED builds upon the following observation: If edit
costs are metric, then λ(G,H) can be defined equivalently as the minimum cost
of an edit path that is induced by a node map [6]. Let V G+|H| and V G+|H| be
the sets that are obtained from V G and V H by adding |V H | respectively |V G|
isolated dummy nodes. A node map is an injective partial function π : V G+|H| →
V H+|G|, whose domain contains V G and whose image contains V H . For a given
node map π, its induced edit path is defined as follows: If π maps a real node
i ∈ V G to a dummy node jε, i is deleted. Conversely, if a dummy node iε is
mapped to a real node k ∈ V H , k is inserted. If a real node i ∈ V G is mapped
to a real node k ∈ V H , i’s label is changed from �G

V (i) to �H
V (k). If ij ∈ EG but

π(i)π(j) /∈ EH , the edge ij is deleted. If kl ∈ EH but π−1(k)π−1(l) /∈ EG, the
edge kl is inserted. Finally, if an edge ij ∈ EG is mapped to an edge kl ∈ EH ,
ij’s label is changed from �G

E(ij) to �H
E (kl). The cost of the edit path induced by

π is denoted by g(π).
DF-GED performs a depth-first search on the set of all partial node maps

between V G+|H| and V H+|G| starting with the empty node map. The tree’s leafs
correspond to complete node maps and its inner nodes correspond to incomplete
node maps. DF-GED starts with sorting the nodes of V G such that evident nodes
will be processed first [3]. It also initialises an upper bound UB for λ(G,H),
using a fast sub-optimal heuristic [10]. For each visited node π of the search
tree, values g(π) and h(π) are maintained. The value g(π) denotes the cost of
the corresponding incomplete induced edit path, and h(π) is a lower bound for
the cost from π to a leaf, i.e., complete node map, in π’s down-shadow. Assume
that all nodes in V G up to node i have already been assigned by π. If i is the
last node in V G, π is extended to a complete node map by assigning a dummy
node to each of the yet unassigned nodes j ∈ V G, and UB is updated to g(π) if
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g(π) < UB . Otherwise, π’s children π′ ∈ {π ∪ (i + 1, j) : j ∈ V H unassigned by
π} ∪ {π ∪ (i + 1, jε)} are considered in order of non-decreasing g(π′) + h(π′). If
g(π′) + h(π′) < UB , π is updated to π′ and the process iterates. Otherwise, the
branch rooted at π′ is pruned. At termination, UB is returned.

Note that, for each visited partial node map π, the lower bound h(π) has to
be recomputed. DF-GED computes h(π) as follows: For a given partial node map
π, let V G+|H|−π and V H+|G|−π be the sets of unassigned nodes and EG−π and
EH−π be the sets of unassigned edges filled up with dummy edges to ensure
|EG−π| = |EH−π|. Furthermore, let �G

V (V G+|H|−π), �H
V (V H+|G|−π), �G

E(EG−π),
and �H

E (EH−π) denote the multisets of labels of the unassigned nodes or edges
contained in these sets. Then h(π) is defined as h(π) = hV (π) + hE(π), where
hV (π) is the minimum cost of a linear assignment between �G

V (V G+|H|−π) and
�H
V (V H+|G|−π) with assignment costs cV , and hE(π) is the minimum cost of a

linear assignment between �G
E(EG−π) and �H

E (EH−π) with assignment costs cE .
Since a minimum linear assignment can be computed in cubic time, e.g., by using
the Hungarian Algorithm [7], the runtime complexity of computing h(π) is thus
cubic in n and m, where n = |V G| + |V H | and m = max{|EG|, |EH |}.

Our Speed-Up for Uniform Edit Costs. Our speed-up DF-GEDu builds upon
the observation that, for uniform edit cost, h(π) can be computed in linear time.
For showing this, we need the following lemma:

Lemma 1. Let A and B be two equally sized multisets and c : A × B → IR be
uniform in the sense that c(a, b) equals 1 if a �= b and 0 otherwise. Then the
cost of a minimum linear assignment between A and B for the assignment cost
c equals |A| − |A ∩ B|.

Proof. Let (ai)
|A|
i=1 and (bi)

|B|
i=1 be orderings of A and B such that, for all i ≤

|A ∩ B|, it holds that ai = bi. Note that this implies ai �= bi for all i > |A ∩ B|.
We define f : A → B as f(ai) = bi. It is easy to see that f is a minimum
linear assignment between A and B for the uniform assignment cost c. Its cost
is

∑
a∈A c(a, f(a)) =

∑|A∩B|
i=1 c(ai, bi) +

∑|A|
i=|A∩B|+1 c(ai, bi) = |A| − |A ∩ B|. 
�

It has been shown that, if A and B are sorted multisets, the size of their
intersection can be computed in linear time [14]. Together with Lemma 1, this
immediately implies that, if cV and cE are uniform, hV (π) and hE(π) can be
computed in O(n log n) and O(m log m) time, respectively: We first sort the
labels of the nodes and the edges that have not been assigned by π in O(n log n)
and O(m log m) time, respectively. Then, we compute the intersection sizes of the
resulting sorted multisets in linear time. In order to further reduce the complexity
of the computation of hV (π) and hE(π), we proceed as follows. When initialising
DF-GED, we once sort �G

V (V G+|H|), �H
V (V H+|G|), �G

E(EG), and �H
E (EH), i.e., the

multisets containing the labels of all nodes and edges. For each L of the resulting
sorted multisets and each partial node map π, we maintain a boolean vector that
indicates if the node or edge with label Li is still unassigned by π. This vector
can be updated in constant additional time when updating the cost g(π) of the
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partial edit path induced by π. For each partial node map π, hV (π) and hE(π)
can then be computed in linear time by using a variation of the algorithm for
multiset intersection presented in [14].

3 CSI GEDnu: CSI GED for Non-uniform Metric Edit Costs

In this section, we show how to generalise the edge-based depth-first search
CSI GED to non-uniform metric edit costs. We first summarise CSI GED and then
describe our generalisation CSI GEDnu.

The Baseline Approach. While DF-GED enumerates the space of all node maps,
CSI GED considers valid edge maps φ :

−→
EG → ←→

EH ∪{eε}. The set
−→
EG contains one

arbitrarily oriented edge (i, j) for each undirected edge ij ∈ EG,
←→
EH contains

two directed edges (k, l) and (l, k) for each kl ∈ EH , and eε denotes a dummy
edge. An edge map φ induces a relation πφ on V G × V H : If φ(i, j) = (k, l), then
(i, k) ∈ πφ and (j, l) ∈ πφ. Since nodes cannot be assigned twice, φ is called valid
if and only if πφ is a partial injective function. A valid edge map φ also induces a
partial edit path between G and H: If φ(i, j) = (k, l), ij’s label is changed from
�G
E(ij) to �H

E (kl). If φ(i, j) = eε, the edge ij is deleted. If φ−1[{(k, l), (l, k)}] = ∅
holds for an edge kl ∈ EH , kl is inserted. And if πφ(i) = k, i’s label is changed
from �G

V (i) to �H
V (k). The cost of the partial edit path induced by φ is denoted by

g(φ). In general, φ’s induced edit path is incomplete, since the sets V G−πφ ⊆ V G

and V H−πφ ⊆ V H containing the nodes that are left unassigned by πφ are in
general non-empty. The following theorem constitutes the backbone of CSI GED:

Theorem 1 (Cf. Theorem 1 in [5]). If the edit costs cV and cE are uni-
form, then, for each node map π : V G+|H| → V H+|G|, there is a valid edge
map φ :

−→
EG → ←→

EH ∪ {eε} with g(π) ≥ g(φ) + Γ (V G−πφ , V H−πφ), where
Γ (V G−πφ , V H−πφ) = max{|V G−πφ |, |V H−πφ |} − |�G

V (V G−πφ) ∩ �H
V (V H−πφ)|.

Moreover, g(φ)+Γ (V G−πφ , V H−πφ) ≥ λ(G,H) holds for each valid each map φ.

Theorem 1 implies that, for uniform edit costs, one can compute the graph
edit distance by enumerating the space of all valid edge maps. To this purpose,
CSI GED carries out a depth-first search on the set of all valid partial edge maps
starting with the empty edge map. CSI GED maintains an upper bound for the
graph edit distance, which is initialised as UB = ∞, and considers the edges
er ∈ −→

EG in an arbitrary but fixed order. For each visited incomplete edge map
φ, the current induced cost g(φ) and a lower bound g′(φ) for the induced cost of
a complete edge map in φ’s down-shadow are maintained. Assume that all edges
in

−→
EG up to er have already been assigned by φ. If er is the last edge in

−→
EG, φ

is a complete valid edge map, and UB is updated to g(φ) + Γ (V G−πφ , V H−πφ)
if g(φ) + Γ (V G−πφ , V H−πφ) < UB . Otherwise, φ’s children φ′ ∈ {φ ∪ (er+1, e) :

e ∈ ←→
EH unassigned by φ and φ∪ (er+1, e) valid}∪{φ∪ (er+1, eε)} are considered

in order of non-decreasing C(er+1, e). C(er+1, e) is an estimate of the graph edit
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distance under the constraint that the edge er+1 is mapped to e. Note that
the estimated cost matrix C only has to be computed once at initialisation. If
g′(φ′) < UB , φ is updated to φ′ and the process iterates. Otherwise, the branch
rooted at φ′ is pruned. At termination, UB is returned.

Our Generalisation to Non-uniform Metric Edit Costs. The key-
ingredient of our extension CSI GEDnu is the following generalised version of
Theorem 1:

Theorem 2. If the edit costs cV and cE are metric, then, for each node map
π : V G+|H| → V H+|G|, there is a valid edge map φ :

−→
EG → ←→

EH∪{eε} with g(π) ≥
g(φ)+Γ nu(V G−πφ , V H−πφ), where Γ nu(V G−πφ , V H−πφ) is defined as the cost of
a minimum linear assignment between �G

V (V G+|H|−πφ) and �H
V (V H+|G|−πφ) for

the assignment cost cV . Moreover, g(φ) + Γ nu(V G−πφ , V H−πφ) ≥ λ(G,H) holds
for each valid edge map φ.

Proof. Given a node map π, we construct a valid edge map φ as follows: Let
(i, j) ∈ −→

EG. If the corresponding undirected edge ij is preserved under π, i.e., if
π(i)π(j) ∈ EH , we define φ(i, j) = (π(i), π(j)). Otherwise, we set φ(i, j) = eε.
By construction, πφ equals the restriction of π to those real nodes i ∈ V G

that are incident with an edge that is preserved under π. This implies that
φ is valid. Next, we compare the complete edit path Pπ that is induced by π
and the partial edit path Pφ that is induced by φ. We observe that Pφ con-
tains all edge-deletions, -insertions, and -relabelings that appear in Pπ, as well
as all relabelings of nodes that are incident with a preserved edge. Apart from
these edit operations, Pπ also contains deletions and relabelings of nodes that
are not incident with a preserved edge, as well as node-insertions. These latter
operations can be viewed as a linear assignment between �G

V (V G+|H|−πφ) and
�H
V (V H+|G|−πφ) for the assignment cost cV , which, together with the observa-

tion above, implies g(π) ≥ g(φ) + Γ nu(V G−πφ , V H−πφ). For showing the second
part of the theorem, we fix a valid edge map φ. Let π′

φ be a minimum lin-
ear assignment between �G

V (V G+|H|−πφ) and �H
V (V H+|G|−πφ) for the assignment

cost cV . Then π = πφ ∪ π′
φ is a complete node map. By construction, we have

g(φ) + Γ nu(V G−πφ , V H−πφ) ≥ g(π) ≥ λ(G,H), where the last inequality follows
from the fact that, for metric edit costs, the graph edit distance can be defined
as the minimum cost of an edit path that is induced by a node map. 
�

Theorem 2 indicates how to extend CSI GED to non-uniform metric edit costs:
We just have to replace all occurrences of Γ by Γ nu. As presented above, during
the depth-first search carried out by CSI GED, Γ has to be computed at the leafs
of the search tree. At initialisation, further computations of Γ are required for
computing the estimated cost matrix C and a constant that is required for the
computation of g′ (cf. [5] for these details of CSI GED). Note that computing
Γ requires linear time, whereas computing Γ nu needs cubic time (cf. Sect. 2).
This implies that our generalisation leads to an increased runtime of CSI GED.
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However, the increase is very moderate, as Γ nu does not need to be computed
at the inner nodes of the (exponentially large) search tree.

4 Empirical Evaluation

The aim of our experiments is to compare the performance of the algorithms
CSI GED, CSI GEDnu, DF-GED, and DF-GEDu for both uniform and non-uniform met-
ric edit costs. We implemented all algorithms in C++ making them employ the
same data structures and subroutines. All tests were carried out on a machine
with two Intel Xeon E5-2667 v3 processors with 8 cores each and 98 GB of main
memory running GNU/Linux. We conducted tests on the datasets Aids and Fin-
gerprints [9], which are widely used in the research community [5,10–16]. Both
datasets contain graphs with both node and edge labels for which non-uniform
metric relabelling costs cV and cE are naturally induced by the domain [10].
For defining non-uniform metric edit costs, we thus only had to specify the dele-
tion/insertion costs cV (α, ε) and cE(α, ε). This was done by setting cV (α, ε) =
max{cV (β, γ) | β, γ ∈ ΣV } for all α ∈ ΣV � {ε}, and cE(α, ε) = max{cE(β, γ) |
β, γ ∈ ΣE} for all α ∈ ΣE � {ε}, i.e., deleting and inserting nodes and edges
was defined to be as expensive as the most expensive relabelling operations. Since
both DF-GED and CSI GED fail to compute the exact graph edit distance for graphs
with more than 25 nodes within reasonable time [1,5], we excluded larger graphs
from Aids. Fingerprints only contains small graphs, anyway. We then used
the experimental setup suggested in [5]: For both considered datasets D and all
i ∈ {3, 6, . . . ,maxG∈D |G|}, we defined a size-constrained test-group Gi that con-
tains four randomly selected graphs G ∈ D satisfying |V G| = i ± 1. For each
tested algorithm ALGand each test-group Gi, all six pairwise comparisons between
graphs contained in Gi were carried out. We set a time limit of 1000 s and recorded
the metrics timeouts, t , and dev . Since pretesting showed that the main memory
demand of all tested algorithms is negligible, we did not record memory usage.

– timeouts(ALG, i): The number of timeouts on Gi, i.e., of pairwise comparisons
between graphs in Gi where ALGdid not finish within 1000 s.

– t(ALG, i): ALG’s average runtime across all six pairwise comparisons between
graphs in Gi.

– dev(ALG, i): ALG’s average percentual deviation from the best tested algorithm
as introduced in [1], i.e., the average of 100 · [UB(ALG)−UB�]/UB� across all
six pairwise comparisons between graphs in Gi. UB(ALG) denotes the value
of the upper bound UB maintained by ALGafter 1000 s and UB� is defined as
UB� = min{UB(ALG′) | ALG′ is tested algorithm}.

Figure 1 shows the outcomes of our experiments for uniform edit costs. We
observe that, on both datasets, our speed-up DF-GEDu outperforms DF-GED in
terms of all recorded metrics, while CSI GED and our generalisation CSI GEDnu

perform similarly. For instance, on Fingerprints, DF-GEDu is on average 4.75
times faster than DF-GED, while avgi t(CSI GEDnu, i)/t(CSI GED, i) ≈ 1.32. On
Aids, we have avgi t(DF-GED, i)/t(DF-GEDu, i) ≈ 2.05 and avgi t(CSI GEDnu, i)/
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t(CSI GED, i) ≈ 1.31. These results are readily explained by the fact that DF-GED
has to carry out the cubic computation of the lower bound h at each node of
its search tree, whereas CSI GEDnu has to carry out the cubic computation of
Γ nu only at the leafs and at initialisation. Secondly, we see that, on Finger-
prints (cf. Fig. 1a), the node-based approaches DF-GEDu and DF-GED outperform
the edge-based algorithms CSI GED and CSI GEDnu, while, on Aids (cf. Fig. 1b),
the opposite is the case. Finally, we note that the edge-based algorithms are more
stable: While their deviation never exceeds 2%, the node-based approaches’ devi-
ation explodes on comparisons between large graphs contained in Aids.
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(b) Results for the dataset Aids.

Fig. 1. Results for uniform edit costs.

The results for non-uniform edit metric costs are displayed in Fig. 2. Note
that the algorithms DF-GEDu and CSI GED do not appear in the evaluation,
as they are designed only for uniform edit costs. The first observation is
that, just like for uniform edit costs, the node-based approach DF-GED per-
forms better on Fingerprints (cf. Fig. 2a), while our edge-based generalisa-
tion CSI GEDnu performs better on Aids (cf. Fig. 2b). Secondly, we again note
that the edge-based algorithm runs much more stable than the node-based app-
roach: On Fingerprints, i.e., the dataset where DF-GED performs better, we
have maxi dev(CSI GEDnu, i) ≈ 1.48; whereas on Aids, i.e., the dataset where
CSI GEDnu performs better, we observe maxi dev(DF-GED, i) ≈ 47.97.
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Fig. 2. Results for non-uniform metric edit costs.

5 Conclusions and Future Work

Our experiments show that, for uniform edit costs, our speed-up DF-GEDu always
outperforms DF-GED, while CSI GED and our generalisation CSI GEDnu perform
similarly. We also observed that, neither for uniform nor for non-uniform metric
edit costs, there is a clear winner between the node-based approaches DF-GEDu

and DF-GED, on the one side, and the edge-based algorithms CSI GED and
CSI GEDnu, on the other side. On Fingerprints, the former two algorithms
outperformed the latter in terms of runtime and timeouts, while on Aids, the
opposite outcome was observed. However, CSI GEDnu and CSI GED turned out
to be more stable than DF-GED and DF-GEDu: While CSI GEDnu’s and CSI GED’s
deviation is small across all test-runs, DF-GED’s and DF-GEDu’s deviation explodes
for comparisons between large graphs contained in the Aids dataset. A global
assessment of these observations indicates that, if there is no prior knowledge
about the dataset and the graph edit distance has to be computed for both
uniform and non-uniform metric edit costs, our generalisation CSI GEDnu is the
algorithm of choice. For future research, it might be interesting to individuate
graph-properties that indicate if the node-based approaches DF-GEDu and DF-GED
or the edge-based algorithms CSI GED and CSI GEDnu perform better. A meta-
algorithm could then first compute these properties and select node-based or
edge-based algorithms accordingly.
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