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Abstract. In recent years, the increasing availability of data describing
the dynamics of real-world systems led to a surge of interest in the com-
plex networks of interactions that emerge from such systems. Several
measures have been introduced to analyse these networks, and among
them one of the most fundamental ones is vertex centrality, which quan-
tifies the importance of a vertex within a graph. In this paper, we pro-
pose a novel vertex centrality measure based on the quantum information
theoretical concept of Holevo quantity. More specifically, we measure the
importance of a vertex in terms of the variation in graph entropy before
and after its removal from the graph. More specifically, we find that the
centrality of a vertex v can be broken down in two parts: (1) one which is
negatively correlated with the degree centrality of v, and (2) one which
depends on the emergence of non-trivial structures in the graph when v
is disconnected from the rest of the graph. Finally, we evaluate our cen-
trality measure on a number of real-world as well as synthetic networks,
and we compare it against a set of commonly used alternative measures.

Keywords: Complex networks - Vertex centrality - Quantum
information

1 Introduction

A large number of real-world systems can be modelled and analysed by looking
at the structure that emerges from the interaction between their components [5].
The resulting graph is called a complex network, and provides a powerful way to
study the static and dynamic aspects of the underlying system. Typical examples
of systems that are studied in network science include metabolic pathways [9],
protein interactions [8], brain regions interactions [20] and scientific collabora~
tions [13]. Complex networks often display non-trivial structural properties that
distinguish them from Erdés-Rényi random graphs [4], such as small-worldness
and a power-law distribution of vertex degrees [5].

In these large networks one of the key problems is that of identifying the
set of most relevant nodes, also called central nodes. A number of centrality
measure have been introduced in the literature [3,5-7,12,17], each of them cap-
turing different but equally significant aspects of vertex importance. Commonly
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encountered examples include the degree centrality [7], the closeness central-
ity [21], and the betweenness centrality [7]. Let G be a graph with n nodes. In
the degree centrality [7] the normalised (degree) is taken as the centrality value
of a vertex, i.e.,

dy
2=t
where d, denotes the degree of the vertex v. In other words, the number of
edges incident on a vertex is interpreted as a measure of its “popularity”, or,
alternatively, as the risk of a node being infected in an epidemiological scenario.
The closeness centrality [21] links the importance of a vertex to its proximity to
the remaining vertices of the graph. More specifically, the closeness centrality is
defined as the inverse of the sum of the distance of a vertex v to the remaining
nodes of the graph, i.e.,

DC(v) =

n—1
D1 5p(w,v)

where sp(u, v) denotes the shortest path distance between nodes u and v. Finally,
the betweenness centrality [7] measures the extent to which a given vertex lies
on the (shortest) paths between the remaining vertices, i.e.,

CCv) =

BC(v) = Z o(s,t|v)

s,teV U(S’t) 7

where V is the set of nodes, o(s,t) and o(s,t|v) denote the number of shortest
paths between s and t and the number of shortest paths between s and t that
pass through v.

Recently, there has been an increasing interest in using concepts from quan-
tum mechanics and quantum information theory to probe the structure of
graphs [11,18,19]. In [11], Lockhart et al. introduced an edge centrality index
based on quantum information theory, where the importance of an edge is mea-
sured in terms of its contribution to the Von Neumann entropy of the net-
work [16]. This in turn relies on decomposing the edge set of a graph as follows.
Given an edge u, the original graph is decomposed into two graphs over the same
vertex set, but with different number of edges: (1) a graph where only the edge
e is present, and (2) a graph where all the original edges except e are present.
With this decomposition to hand, the centrality of e is measured as the Holevo
quantity of the associated decomposition [11].

In this paper, we show that a similar approach can be taken to measure the
centrality of a vertex. Given a vertex v, we propose to decompose the graph
into two graphs over the same vertex set but with edge sets as follows: (1) one
graph where only the edges incident to v are present, and (2) one graph where
all the original edges except those incident to v are present. Then, the centrality
of v is the Holevo quantity associated to the resulting graph ensemble. We show
that the centrality of a vertex v can be broken down in two parts: (1) one part
that is negatively correlated with the degree centrality of v, and (2) one part
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that depends on the emergence of non-trivial structures in the graph when v
is disconnected from the rest of the graph by removing all edges incident to
it. Finally, we perform a series of experiments to evaluate the proposed edge
centrality measure on real-world as well as synthetic graphs, and we compare it
against a number of commonly used alternative measures.

The remainder of this paper is organised as follows: Sect. 2 reviews the neces-
sary quantum mechanical background and the quantum information theoretical
concepts that underpin our approach. Section 3 introduces the proposed vertex
centrality measure, which is then analysed and compared to alternative measures
in Sect. 4. Finally, Sect.5 concludes the paper.

2  Quantum Information Theoretical Background

2.1 Quantum States and von Neumann Entropy

In quantum mechanics, a system can be either in a pure state or a mixed state.
Using the Dirac notation, a pure state is represented as a column vector |1;).
A mized state, on the other hand, is an ensemble of pure quantum states |1);),
each with probability p;. The density operator of such a system is a positive
unit-trace matrix defined as

p= Zpi i) (il - (1)

The von Neumann entropy [14] S of a mixed state is defined in terms of the
trace and logarithm of the density operator p

S(p) =—Tr(plnp) = Z)\ln (2)

where A1,...,\, are the eigenvalues of p. If (¢;|p|¢;) = 1, i.e., the quantum
system is a pure state |1¢;) with probability p; = 1, then the Von Neumann
entropy S(p) = —Tr(plnp) is zero. On other hand, a mixed state always has a
non-zero Von Neumann entropy associated with it.

2.2 A Mixed State from the Graph Laplacian

Let G = (V,E) be a simple graph with n vertices and m edges. We assign
the vertices of G to the elements of the standard basis of an Hilbert space Hg,
{11),]2),...,|n)}. Here |) denotes a column vector where 1 is at the i-th position.
The graph Laplacian of G is the matrix L = D — A, where A is the adjacency
matrix of G and D is the diagonal matrix with elements d(u) = Y _, A(u,v).
For each edge e; j, we define a pure state

lei.g) = —=(Ii) = 15))- 3)

S
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Then we can define the mixed state {--,|e; ;)} with density matrix

§G) == 3 Jeas) leis] = 5-L(G). (4)

{i.j}eE 2m

Let us define the Hilbert spaces Hy = CY, with orthonormal basis a,, where
v €V, and Hg = C¥, with orthonormal basis b, ,, where {u,v} € E. It can
be shown that the graph Laplacian corresponds to the partial trace of a rank-
1 operator on Hy ® Hg which is determined by the graph structure [2]. As a
consequence, the Von Neumann entropy of p(G) can be interpreted as a measure
of the amount of entanglement between a system corresponding to the vertices
and a system corresponding to the edges of the graph [2].

2.3 Holevo Quantity of a Graph Decomposition

Given a graph G, we can define an ensemble in terms of its subgraphs. Recall that
a decomposition of a graph G is a set of subgraphs H;, Hs, ..., Hj that partition
the edges of G, i.e., for all 4, j, Ule H; = G and E(H;)NE(H;) = 0, where E(G)
denotes the edge set of G. Notice that isolated vertices do not contribute to a
decomposition, so each H; can always be seen a subgraph that contains all the
vertices. If we let p(Hy), p(Hz2), ..., p(Hy) be the mixed states of the subgraphs,
the probability of H; in the mixture p(G) is given by |E(H;)|/|E(G)|. Thus, we
can generalise Eq. 4 and write

k
EEDS “f;égﬂ' o). (5)

Consider a graph G and its decomposition Hy, Ho, ..., H; with corresponding
states p(H1), p(H2), ..., p(Hy). Let us assign p(H1), p(Ha), ..., p(Hi) to the ele-
ments of an alphabet {a1, ag, ..., ax }. In quantum information theory, the classical
concepts of uncertainty and entropy are extended to deal with quantum states,
where uncertainty about the state of a quantum system can be expressed using
the density matrix formalism. Assume a source emits letters from the alpha-
bet and that the letter a; is emitted with probability p; = |E(H,)|/|E(G)|. An
upper bound to the accessible information is given by the Holevo quantity of the
ensemble {p;, p(H;)}:

k k
x({pi, p(H;)}) = S (me(&)) - ZpiS(p(Hi)) (6)

3 The Holevo Vertex Centrality

Given a graph G = (V,E) and a vertex v € V, we propose to measure the
centrality of v as follows. Let G, = (V| E,) denote the subgraph with vertex set
V and edge set E, = {(u,v) € Elu € V}, and G5 = (V, E5) be the subgraph
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with vertex set V and edge set E, = {(u,v) € E|(u,v) ¢ E,}. In other words,
E =FE,UE; and E, N Ey = (. Hence, from Eq.5, we can show that

| E| L2
|E] |E|

With this decomposition to hand, we define the Holevo vertex centrality of v as

ot~ ({(5a). (e}

— 5(p(C)) - ('f;'wmcv» i 'ﬁ;| S(p(Gv») . ®)

Given a graph G = (V, E) and a vertex v € V, the first term in Eq.8 (i.e.,
S (p(@))) does not depend on the choice of v, and thus can be ignored when
ranking the nodes of G according to their Holevo centrality. Moreover, note that
we only need to compute the spectrum of p(G%), as the spectrum of p(G,) can be
easily determined analytically. Recall that the star graph on n vertices Kj ,—1
has Laplacian spectrum

p(Gi) +

(Go) = p(G). (7)

{n[l}7 12 0[1]}’
i.e., it has three eigenvalues n, 1, and 0 with multiplicity 1, n — 2, and 1, respec-
tively. This in turn implies that the spectrum of the density matrix p(K ,—1) is
n 1 2

{Qn -2 "2n-—2

as shown in [10]. Since adding disconnected vertices to a graph does not change
its Von Neumann entropy [16], we have that the entropy of p(G,) is

dy +1 dy+1\ dp—1 1
S(p(Gy)) = — 1 — 1
(p(G2)) 2d, ° ( 2d, ) 2d, ° (2@)

d, +1 2d, \ dy—1
_ 1 log (2d,
2d, % (dv n 1) + g, loe(2d)

L0,

s (20108 (24,) = (dy + 1 log(d, + 1) (9)
where d,, denotes the degree of v. In other words, the entropy of p(G,) is com-
pletely determined by the degree of v. As a result, the computational complexity
of computing the Holevo centrality of v is dominated by the cost of computing
the eigendecomposition of p(Gz).

Finally note that the Von Neumann entropy of a star graph is 0 when d,, = 1,
and it grows logarithmically as a function of d,. This in turn suggests that the
Holevo centrality given by Eq. 8 could be negatively correlated with the degree
centrality, however proving this would require finding general analytical form of
the spectrum of p(Gz). Moreover, it should be noted that the Von Neumann
entropy of p(G%) depends on the presence of several non-trivial structural pat-
terns, including paths, cliques, and connected components. Therefore the Holevo
vertex centrality measures the importance of a vertex as a combination of its
degree as well as the structural patterns that emerge after its removal.
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4 Experimental Evaluation

We perform our experiments on two well known real-world networks, the Floren-
tine families graph [15] and the Karate club network [22], as well as a number of
synthetic graphs. We compare the proposed similarity measure the three com-
monly used alternative measures: (1) the degree centrality [7], (2) the closeness
centrality [21], and (3) the betweenness centrality [7].

4.1 Synthetic Networks

Wheel Graph. The Wheel graph W,, on n nodes is the graph obtained by
taking a cycle C),—1 on n — 1 nodes and connecting each of the nodes of C,,_; to
another node, i.e., the hub. Figure 1 shows 3 wheel graphs of increasing number
of nodes n and the corresponding value of the Holevo centrality. Note that for
small values of n the hub is the least central node. However as n grows the
centrality of the hub remains constant while the centrality of the other nodes
decreases, until the hub becomes the most central node.

Indeed, our centrality measure seems to capture the increasing redundancy
of the nodes along the cycle C},_; as n grows. Note that this implies that our
measure is negatively correlated with the degree centrality for small values of
n, but positively correlated for large values of n. While this may seem surpris-
ing given the negative correlation highlighted in Eq.9, the observed behaviour
is likely due to the other component in Eq.8, i.e., S(p(Gy)), as well as their
respective weights.

Lollipop Graph. The (m,n)-lollipop graph on m + n nodes is the graph
obtained by joining the clique K,, on m nodes with the path graph P, on n
nodes. Figure2 shows the value of the Holevo centrality for increasing size of
the clique, while keeping the size of the path fixed. For small clique sizes, the
most central node is the central node on the path. However, as the size of the
clique increases, the centrality of the path node decreases, while the clique nodes
become increasingly important. We observe a similar behaviour when the length
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Fig. 1. Holevo centrality for the nodes of the Wheel graph on 6 (a) and 15 (b) nodes.
The radius of each node is proportional to their Holevo centrality. In (c¢) we show a line
plot of the Holevo centrality for increasing graph size. Here 0 denotes the hub node.
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@m=4n=2 b)ym=6,n=2 c)ym=8n=2

Fig. 2. Holevo centrality for the nodes of the (m, n)-lollipop graph for (a) m = 4,n = 2,
(b) m = 6,n = 2, and (¢) m = 8,n = 2. The radius of each node is proportional to
their Holevo centrality.

of the path is increased, with the nodes belonging to it being the most central
ones for small values of n. However, as we increase n, the most central node in
the graph becomes the node the shared node between the clique and the path.

Similarly to the Wheel graph, the Holevo centrality measure seems to capture
the importance of the nodes belonging to the path when the total number of
nodes in the graph is small. However, as m+n grows, our measure places most of
the importance on the tightly connected nodes of the clique, while the centrality
of the path is “diluted” as its length increases.

Barbell Graph. The Barbell graph is the graph obtained by joining two cliques
K,, through a path P, (i.e., a bridge between the two cliques). Note that when
m = 2 the corresponding Barbell graph is the path graph P, 2,,. Figure 3 shows
three Barbell graphs with n constant (i.e., the length of the bridge is 3 in all the
graphs) and m equal to 2, 3, and 4, respectively. When m = 2 the graph is a path
over 7 nodes. In this case, our centrality measures assigns the largest weight to
the two nodes that connect the two ends of the path to the rest of the nodes. As
the m increases, the weight of the cliques shifts the importance from the bridge
to the cliques, with the node connecting the cliques to the path becoming then
most central ones. If we increase the path length, we observe that the junctions

@m=2n=3 b)ym=3,n=3 cym=4n=3

Fig. 3. Holevo centrality for the nodes of the Barbell graph joining two cliques K,,
through a path P,, for (a) m =2,n =3, (b) m =3,n =3, and (¢) m = 4,n = 3. The
radius of each node is proportional to their Holevo centrality.
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Fig. 4. Average correlation with the degree centrality for different realisation of the
Barabdsi-Albert preferential attachment model [1]. Here we varied the number of nodes
of the generated graph, as well as the number of edges k that are created from a new
node to existing nodes.

between the cliques and the path remain the most central nodes. However we
start to discriminate between the nodes along the bridge, with the nodes closer
to the center of the bridge being assigned a higher centrality. Note that this is
contrast with the degree centrality, which would assign the same weight to all
the nodes on the bridge (since they all have the same degree).

Scale-Free Graph. Finally, we consider a set of scale-free graphs generated by
the Barabdsi-Albert preferential attachment model [1]. Starting from an empty
graph, we iteratively add nodes to it until a user-defined size n is reached. At
each iteration, the new node is connected to at most m nodes chosen according
to their degree, i.e., nodes with a higher degree are more likely to be selected.
We let m and n vary between 1 and 3, and 10 and 20, respectively, and for each
pair of parameters we generated 100 graphs.

We are interested in measuring the correlation between the Holevo vertex
centrality and the degree centrality. In the previous subsections we have observed
that the correlation with the degree centrality seems to increase as the size of
the graph increases. Figure 4 confirms that this is the case. The figure also shows
that the correlation increases as we increase the number of connections added
per iteration. Note that when m = 1 the resulting graph is guaranteed to be
a tree. Indeed, Fig. 4 seems to suggest that the correlation is particularly high
on trees, however further investigation is needed to understand if the observed
effect is instead due to the particular degree distribution of scale-free graphs or
to the presence of high degree nodes.

4.2 Real-World Networks

We conclude our experimental evaluation by measuring the centrality of two
well-known networks, the Florentine families graph [15] and the Karate club
network [22]. Figures5(a) and (b) show the two networks, where the radius of
the nodes is proportional to their Holevo centrality. We also compute the degree
(DC), closeness (CC), and betweenness (BC) centralities over these networks
and we show the corresponding correlation matrices in Figs. 5(c) and (d).
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(b) Florentine families (network)
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Fig. 5. The Karate network (a) and the Florentine families network (b). (c¢) and (d)
show the correlation matrices between the Holevo (HC), degree (DC), closeness (CC),
and betweenness (BC) centrality measures on the Karate and Florentine families net-
works, respectively. Each node of (b) is labeled with the index associated to the corre-
sponding family in Table 1.

In these networks, the Holevo centrality measure shows a large positive cor-
relation with all the other measure, in particular the degree centrality. However,
if we look at the ranking induced by our measure there are some important
differences. Table 1 shows the ranking given by the Holevo centrality, as well as
the degree of each family in the network. Clearly, the degree centrality cannot
distinguish between those families that have the same degree, while the Holevo
centrality allows to define a more fine-grained ranking. For example, the Salviati

Table 1. The Holevo and the degree (in bold) centrality of the families of Florentine
families network. The number next to the name of each family is the index of the
corresponding node in Fig. 5(b).

Family Centrality Family Centrality Family Centrality

Medici (2) 0.6582 (0.150) | Peruzzi (9) 0.4409 (0.075) | Barbadori (14) 0.3586 (0.050)
Guadagni (13) | 0.5728 (0.100) | Bischeri (8) 0.4403 (0.075) | Pazzi (6) 0.2615 (0.025)
Strozzi (0) 0.5057 (0.100) | Ridolfi (5) 0.4259 (0.075) | Ginori (4) 0.2501 (0.025)

Albizzi (3)

0.4834 (0.075)

Tornabuoni (1)

0.4242 (0.075)

Lamberteschi (12)

0.2424 (0.025)

Castellani (11)

0.4615 (0.075)

Salviati (10)

0.4075 (0.050)

Acciaiuoli (7)

0.2305 (0.025)
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family (node 10) is ranked higher than the Barbadori family (node 14), although
both families have degree two. However the Salviati family is the only node con-
necting the Pazzi family (node 6) to the Medici family (node 2) and the rest of
the graph, and therefore its importance is higher.

5 Conclusion

In this paper we have proposed a novel vertex centrality measure based on the
quantum information theoretical notion of Holevo quantity. The idea underpin-
ning our approach is that the importance of a vertex is proportional to the
variation in the information content of the network before and after its removal.
We have shown that the centrality of a vertex v can be broken down in two
parts, one which is negatively correlated with the degree centrality of v, and one
which depends on the emergence of non-trivial structures in the graph when v is
disconnected from the rest of the graph. Finally, we have evaluated the Holevo
centrality measure on a number of synthetic as well as real-world networks, and
we have compared it against commonly used alternative measures. Future work
will be aimed at investigating further the structural pattern that influence this
centrality measure.
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