
A Hungarian Algorithm for Error-Correcting
Graph Matching

Sébastien Bougleux1(B), Benoit Gaüzère2, and Luc Brun1

1 Normandie Univ, CNRS - ENSICAEN - UNICAEN, Caen, France
bougleux@unicaen.fr

2 Normandie Univ, INSA de Rouen, Rouen, France

Abstract. Bipartite graph matching algorithms become more and more
popular to solve error-correcting graph matching problems and to
approximate the graph edit distance of two graphs. However, the mem-
ory requirements and execution times of this method are respectively
proportional to (n + m)2 and (n + m)3 where n and m are the order of
the graphs. Subsequent developments reduced these complexities. How-
ever, these improvements are valid only under some constraints on the
parameters of the graph edit distance. We propose in this paper a new
formulation of the bipartite graph matching algorithm designed to solve
efficiently the associated graph edit distance problem. The resulting
algorithm requires O(nm) memory space and O(min(n,m)2 max(n,m))
execution times.

Keywords: Graph edit distance · Bipartite matching · Error-correcting
matching · Hungarian algorithm

1 Introduction

Computing an efficient similarity or dissimilarity measure between graphs is a
major problem in structural pattern recognition. The graph edit distance (GED),
developed in the context of error-correcting graph matching, provides such a
measure. It may be understood as the minimal amount of distortion required to
transform one graph into another, by a sequence of edit operations applied on
nodes and edges, restricted here to substitutions, insertions and removals. Such
a sequence is called an edit path. Each possible edit operation is penalized by a
non-negative cost, and the integration of these costs over an edit path defines the
length (or the cost) of this path. An edit path having a minimal length, among
all edit paths transforming one graph into another one defines the GED between
these two graphs. Since computing the GED is NP-complete, it is restricted to
rather small graphs. So several approaches have been proposed to approximate
the GED efficiently and to process larger graphs.

In this paper, graphs are assumed to be simple (no loop nor multiple edge),
and each element of the two graphs can be edited only once (no composition
of edit operations). Under these hypotheses, each node of a graph G1 can be
c© Springer International Publishing AG 2017
P. Foggia et al. (Eds.): GbRPR 2017, LNCS 10310, pp. 118–127, 2017.
DOI: 10.1007/978-3-319-58961-9 11



A Hungarian Algorithm for Error-Correcting Graph Matching 119

either substituted once to a node of another graph G2, or removed. Similarly,
any node of G2 may be substituted once, or inserted. Since each node of G1

and G2 is transformed only once, such operations on nodes can be encoded by
a (n + m) × (n + m) permutation matrix X [12], where n and m denote the
orders of G1 and G2. The costs related to these operations can be encoded by
a (n+ m)× (n+ m) cost matrix C. Using different heuristics [6,12] to design
matrix C, an approximation of the GED can be obtained by solving a linear
sum assignment problem (LSAP), i.e. by computing an optimal permutation
matrix X, for instance with the Hungarian algorithm in O((n + m)3) time
complexity.

However, matrix C contains an important amount of redundant informa-
tion mainly used to transform the initial graph edit distance problem into a
bipartite matching problem (LSAP). The storage of these additional informa-
tion induces important memory requirements and increases the size of matrix
C, which determines the complexity of the algorithm. Moreover, the resulting
matrix X may contain some useless operations. Serratosa [13] proposed to reduce
the size of matrix C in the special case where the graph edit distance fulfills all
the axioms of a distance. Such an assumption induces several constraints of the
elementary edit costs. Assuming these constraints, Serratosa proposed either to
store a n × m rectangular cost matrix whose optimal solution may be found
in O(min(n,m)2 max(n,m)) using the Bourgeois’ adaption [4] of the Hungarian
algorithm or to store a max(n,m) × max(n,m) cost matrix [14] whose optimal
solution may be found by combining the Jonker-Volgenant [8] and Hungarian
algorithms. The overall complexity of this last approach is O(max(n,m)3).

Following [12], the approach proposed in this paper approximates the graph
edit distance by the Hungarian algorithm. However, our method reformulates
the basic problem, hence leading to a (n + 1) × (m + 1) cost matrix [2]. Note
that a similar formulation has been proposed by [7]. However, this formulation is
combined with a Jonker-Volegenant matrix reduction and the classical Hungar-
ian algorithm, hence leading to a O((n + m)3) overall complexity. In this paper
we investigates the basic principles of the Hungarian algorithm in order to adapt
it to this new formulation. Such an extension is detailed in Sect. 3 after a short
introduction to the Hungarian algorithm in Sect. 2. The resulting algorithm has
a worst case complexity of O(min(n,m)2 max(n,m)). Conversely to the meth-
ods [13] proposed by Serratosa, our method only assumes that the edit costs
are non negative. We also provide in Sect. 4 accuracy and execution times of a
previously published quadratic minimizer [2,3] of the GED combined with our
new Hungarian algorithm.

2 Bipartite Matching and Hungarian Algorithm

Preliminary Definitions. Given a bipartite graph (U ∪ V,E), a matching M is a
subset of E such that each node in U ∪ V is incident to at most one edge of M .
It defines a bijective mapping between a subset of U and a subset of V . An edge
is matching edge if it is in M , else it is an unmatching edge. A node incident to



120 S. Bougleux et al.

an edge of M is covered by M , and otherwise uncovered. If all nodes of both sets
are covered, the two sets have the same size and the matching is called perfect.
It defines a bijection between U and V , also called an assignment.

Consider a matching M with at least two uncovered nodes, one in each set. A
path in the bipartite graph is called alternating if it alternates between unmatch-
ing and matching edges. An alternating path that begins and ends with uncov-
ered nodes is called augmenting. If an augmenting path P exists, a new matching
is obtained from M by removing the matching edges of P and by inserting the
unmatching ones. The new matching augments the number of matching edges
by one, and the number of covered nodes by two.

Linear Sum Assignment Problem and Its Dual. Consider two sets U and V
with the same size n. Each assignment of an element i∈ U to an element j ∈V
is penalized by a non-negative1 cost ci,j . All costs are encoded through a n× n
matrix C= (ci,j)(i,j)∈U×V , i.e. a node-node cost matrix associated with the com-
plete bipartite graph (U ∪V,U ×V ). When the assignment of a node i to a node
j is forbidden, the cost of the edge (i, j) is commonly set to a large value ω,
larger than all costs. The linear sum assignment problem (LSAP), or minimal-
cost perfect matching problem, consists in finding a perfect matching having a
minimal cost L, among all perfect matchings:

argmin
X

⎧
⎨

⎩
L(X,C) =

n∑

i=1

n∑

j=1

ci,jxi,j : X∈ {0, 1}n×n, X1=1, XT1=1

⎫
⎬

⎭
(1)

where X defines the node-node adjacency matrix of a perfect matching M
(xi,j = 1 if (i, j)∈ M and xi,j = 0 else), i. e. a permutation matrix.

Several algorithms have been developed to find a solution to the LSAP [5].
Among them, the Hungarian algorithm is commonly used to compute approxi-
mate GED [2,6,12–14]. When it is properly implemented, it finds a solution in
O(n3) in time and in O(n2) in space [5,9], in worst-case.

The Hungarian algorithm uses a primal-dual approach to find a solution to
the LSAP and its dual problem, known as the maximum labeling problem:

argmax
(u,v)

{
1Tu + 1Tv : u,v≥0, u1T + v1T ≤C

}
(2)

where vectors u= (ui)i=1,...,n and v= (vj)j=1,...,n associate a label (or capacity)
to each node of U ∪ V . A pair (u,v) satisfying the constraint u1T + v1T ≤C is
called a feasible node labeling. A pair (X, (u,v)) solves the LSAP and its dual
iff it verifies the complementary slackness condition:

∀(i, j)∈ U ×V, ((xi,j = 1)∧ (ui + vj = ci,j))∨((xi,j = 0)∧ (ui + vj ≤ ci,j)) (3)

More generally, given a feasible node labeling, let E0 = {(i, j)∈ U × V : ci,j =
ui + vj}, the graph induced by this set is called the equality subgraph. When E0

contains an optimal perfect matching, it contains also all other ones.
1 If some costs are negative, all costs are shifted by − mini,j{ci,j} [5].



A Hungarian Algorithm for Error-Correcting Graph Matching 121

Hungarian Algorithm. Given a cost matrix C, an initial feasible node labeling
(u,v) and an associated matching M (included in the equality subgraph), the
Hungarian algorithm proceeds by iteratively updating M and (u,v) such that
two more nodes are covered at each iteration. It is realized by growing a tree
of alternating paths in the equality subgraph, called Hungarian tree, until an
augmenting path is found. At each iteration of the growing process, the tree is
augmented by a pair of unmatching and matching edges of the equality subgraph.
If this is not possible, because the equality subgraph does not contain enough
unmatching edges, the feasible node labeling is revised. We describe the efficient
version detailed in [5,9]. The tree is represented by matching edges and by a
predecessor array, denoted by pred, which encodes the predecessor (a node of U)
of each node of V . Nodes encountered in the tree are encoded by the sets TU ⊂U
and TV ⊂V . The efficiency of the algorithm relies on maintaining slack variables
during the search for an augmenting path: ∀j ∈ V \TV , slackj = min{ci,j − ui −
vj , i ∈ TU}.

1. If all nodes of U are covered by M , a pair of solutions is found. Else, initialize
a Hungarian tree rooted in an uncovered node i∈ U : TU = {i} and TV = ∅.
Also, initialize all slack values to +∞.

2. Grow the Hungarian tree in the equality subgraph from a leaf node i∈ TU :
(a) Update neighbors of i to add unmatching edges (i, j) to the tree:

∀j ∈V \TV ,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

if ci,j − ui − vj < slackj then
slackj ← ci,j − ui − vj

predj ← i

if slackj = 0 then TV ← TV ∪ {j}

(4)

(b) If there is no leaf node in TV , the tree cannot grow anymore. The dual
variables are updated to add at least one unmatching edge in the equality
subgraph and in the tree:

δ = min {slackj , j ∈ V \TV } (5)
∀i∈ TU , ui ← ui + δ (6)
∀j ∈TV , vj ← vj − δ (7)

∀j ∈ V \TV ,

{
slackj ← slackj − δ
if slackj = 0 then TV ← TV ∪ {j} (8)

(c) If there is an uncovered leaf node j ∈TV , an augmenting path is found,
go to Step 3. Else, the tree is extended with the unmatching edge (i, j)
followed by the matching edge (l, j) by inserting l into TU . Then go to
Step 2a with i← l.

3. Update the matching by backtracking in the tree from the node j ∈ V found
in Step 2c to the root, i. e. by traversing an augmenting path. Along this path,
each matching edge is removed from the matching and each unmatching edge
is inserted. Then go to Step 1.



122 S. Bougleux et al.

An initial feasible labeling is usually given by ui ← min{ci,j , ∀j ∈ V } ∀i∈ U ,
and vj ← min{ci,j − ui, ∀i∈ U} ∀j ∈ V . A matching is then deduced from this
labeling by traversing the equality subgraph. More sophisticated methods, such
as the one proposed by Jonker and Volgenant [5,8] can also be used.

3 Proposed Adaptation of the Hungarian Algorithm

Error-Correcting Matching and Minimal-Cost Problem. An error-correcting
matching from a set U to a set V transforms U into V by editing their ele-
ments, together with their attributes. Edit operations are restricted here to
substitutions, removals and insertions. Let U ε = U ∪{ε} and V ε = V ∪{ε} be
the sets extended by the null element ε. Consider the complete bipartite graph
(U ε ∪V ε, U ε × V ε). An error-correcting matching in this graph is a subset of
edges connecting each node in U to a unique node of V (substituted by) or to ε
(removed), and similarly, each node in V to a unique node of U (substituted to)
or to ε (inserted). Null nodes are unconstrained, they can be connected to zero or
more nodes. By considering node-node matrices associated to bipartite graphs,
all error-correcting matching are represented by the set of binary matrices:

Πε
n,m = { X ∈ {0, 1}(n+1)×(m+1) : xn+1,m+1 = 0, (9)

∀j = 1, . . . ,m,
∑n+1

i=1 xi,j = 1, ∀i = 1, . . . , n,
∑m+1

j=1 xi,j = 1
}

(10)

Null elements correspond to the last row and the last column. As observed in
Eq. 10, they are unconstrained.

Let C be a (n+1)× (m+1) cost matrix associated to the complete bipartite
graph, i. e. a non-negative cost (see Footnote 1) for each substitution, removal
and insertion:

C =

⎛

⎜
⎜
⎝

c1,1 · · · c1,m c1,ε

...
. . .

...
...

cn,1 · · · cn,m cn,ε

cε,1 · · · cε,m 0

⎞

⎟
⎟
⎠ (11)

The cost of an error-correcting bipartite matching is then written as

L(X,C) =
n+1∑

i=1

m+1∑

j=1

ci,jxi,j =
n∑

i=1

m∑

j=1

ci,jxi,j +
n∑

i=1

ci,εxi,m+1 +
m∑

j=1

cε,jxn+1,j

Transforming U into V , with minimum cost, consists in finding an error-
correcting bipartite matching having a minimal cost:

argmin
X

{
L(X,C), X ∈ Πε

n,m

}
(12)

This is a linear sum assignment problem with error-correction (LSAPE). Its dual
problem, given by max

(u,v)

{
1Tu + 1Tv : u1T + v1T ≤ C, un+1 = vm+1 = 0

}
, is



A Hungarian Algorithm for Error-Correcting Graph Matching 123

similar to the labeling problem dual to the LSAP, with two elements constrained
to be null (the null elements). Based on these formulations of the LSAPE and
its dual, it is not difficult to show that the framework used to analyze and solve
the LSAP and its dual problem still apply. The Hungarian algorithm can thus
be adapted to find a pair of the primal and dual solutions satisfying Eq. 3. The
adaptation concerns the processing of null nodes, since they are unconstrained.
While the notion of alternating path and Hungarian tree are unchanged, this
modifies the notion of augmenting paths as follows.

Fig. 1. (a) An incomplete error-correcting matching (solid) and the other edges of the
inequality subgraph (dashed). (b) An augmenting path between two uncovered nodes.
(c) The new matching obtained by interchanging matching and unmatching edges along
this path. (d, e) An augmenting path ending by a null node.

Augmenting Paths. Since null nodes are always unconstrained, any path con-
taining a null node ends by this node. This is equivalent to consider null nodes as
never covered. As before (Sect. 2), an augmenting path can end with an uncov-
ered node (Fig. 1(a)), which may thus be a null node (Fig. 1(d)). In this last
case, the new matching contains one more covered node and one more matching
edge. An augmenting path can also end with a null node incident to a matching
edge (Fig. 1(e)). In this case, the new matching augments the number of cov-
ered nodes by one while the number of matching edges remains the same. So
an augmenting path can be constructed by growing a Hungarian tree until an
uncovered node is encountered, including null nodes. Null nodes do not need
to be explicitly represented in the tree to find an augmenting path (always leaf
nodes). This allows to modify the Hungarian algorithm as follows.

Hungarian Algorithm. Given two sets U and V , and a (n+ 1)× (m + 1) edit
cost matrix (Eq. 11) C, consider an initial 2 feasible node labeling (u,v) and
an associated incomplete error-correcting matching M (all nodes are not yet
covered). We complete the Hungarian algorithm described in Sect. 2 in order to
treat the case of null nodes independently, without altering the global process. To
this, the growing of the Hungarian is stopped when a null node is encountered:

2 The Jonker-Volgenant algorithm proposed in [7] can be used to provide a good
initialization. Here we adapt the basic one (Sect. 2): ui ← min{ci,j , ∀j ∈V ε} ∀i∈U ,
and vj ← min{ci,j − ui, ∀i∈U ε} ∀j ∈V , with un+1 = vm+1 = 0. An error-correcting
matching is then deduced as in Sect. 2 by traversing the equality subgraph.



124 S. Bougleux et al.

– A null node incident to a matching edge (here an insertion) can be detected
in Eqs. 4 and 8 of Step 2 by replacing the instruction TV ← TV ∪{j} by:

if (ε, j)∈ M go to Step 3, else TV ←TV ∪ {j}. (13)

– A null node incident to an unmatching edge (here a removal) can be detected
in Step 2c, when there is an edge (l, ε) ∈ M in the equality subgraph, i. e. if
cl,ε = ul. If this is the case, the algorithm goes to Step 3 instead of going to
Step 2a. A null node incident to an unmatching edge can also be detected
after the update of the dual variables in Step 2b, as detailed below.

Dual variables are updated (Step 2b) such that costs associated to null nodes
are also taken into account. Therefore, Eq. 5 is replaced by:

δ = min {min{slackj , j ∈ V \TV }, min{ci,ε − ui, i∈ TU}} . (14)

Then, after Eqs. 6 and 7, and just before Eq. 8, if the minimum δ is obtained
from an unmatching edges (i, ε), an augmenting path is found and the algorithm
goes to Step 3.

The proposed modifications allow to cover all nodes of U . Some nodes of V
may not be covered, which occurs if n < m or if at least one node in U is assigned
to a null node. To find a minimal-cost error-correcting matching, the modified
Hungarian algorithm is completed by the following step to cover all nodes of V :

4 When all nodes of U are covered, swap the sets U and V , and go to Step 1
with CT and (v,u) as initial feasible node labeling.

The proposed algorithm finds a minimal-cost error-correcting matching in
O(min{n,m}2 max{n,m}) in time and O(nm) in space, see [1] for a proof. These
complexities are similar to the ones obtained in [4] for solving the LSAP with
rectangular cost matrices.

4 Experiments

Bipartite GED. The other formulations of the LSAPE (Sect. 1), transform the
problem into a LSAP with a square cost matrix for BP [12] and SFBP [14], or
with a rectangular one for FBP [13]. The Hungarian algorithm used in these
works [12], differs from the algorithm presented in Sect. 2 on two aspects: sev-
eral Hungarian trees are grown at each iteration, and the cost matrix is updated
instead of the dual variables. As already discussed [5,9], the version described
in this paper has lower execution times. So we have repeated the experiments
carried out in [14] on artificially created graphs, with the Hungarian algorithm of
Sect. 2 for solving BP and SFBP. Note that our implementation of the Hungar-
ian algorithm is optimized such that forbidden assignments (with a cost equal to
ω) are not treated. As already observed in [14], all the methods lead to a similar
approximation of the GED. This is also the case of the approach proposed in this
paper (denoted by BPE). A more interesting behavior concerns the computa-
tional time. Figure 2(a) shows the average run time of 10 computations of FBP,



A Hungarian Algorithm for Error-Correcting Graph Matching 125

with respect to the order of the graphs. Contrary to what was observed in [14],
the shape of the run time surface is symmetric. The run time surface of the other
algorithms (BP, SFBP and BPE) have a similar pyramidal shape. As illustrated
in Fig. 2(b), BP and SFBP have a similar behavior, with an asymmetry, and are
less efficient than FBP and BPE. Observe that these two last approaches have
also a similar behavior. Contrary to FBP, BPE does not impose any constraint
on the costs.

Fig. 2. Computational time of the bipartite GED with respect to the graphs’ order.

IPFP and GNCCP. As illustrated in [2,3], LSAP methods may also be the
core component of different solvers of quadratic programming formulations of
the GED. A first method [2] called QAP consists in adapting the IPFP algo-
rithm [10] to the computation of the quadratic formulation of GED. Basically,
IPFP iterates over LSAP resolutions to compute a gradient direction leading
to an approximate solution of a relaxed version of the quadratic problem. The
second proposition [2] uses a convex-concave relaxation of the IPFP approach to
tackle drawbacks induced by the influence of initialization and by the final pro-
jection step from a stochastic matrix to a mapping one. This approach, denoted
GNCCP, iterates over a slightly modified version of IPFP which iterates over
LSAP resolutions. Therefore, these two contributions use LSAP as a core com-
ponent in their respective algorithms. In these experiments, we evaluate the
gain obtained by the use of our new algorithm (LSAPE) to resolve LSAP steps
in QAP [3] and GNCCP (new in this paper) approaches instead of the classic
Hungarian algorithm.

Both algorithms are evaluated on real world chemical datasets3 composed of
different kinds of molecules: Alkane and Acyclic are represented as acyclic graphs
of about 8 nodes in average, whereas MAO and PAH are composed of larger
graphs, with an average size of 20 nodes. As in [2,6], the cost of substituting
nodes and edges has been set to 1, and to 3 for insertions and deletions.
3 Datasets are available at https://iapr-tc15.greyc.fr/links.html.

https://iapr-tc15.greyc.fr/links.html


126 S. Bougleux et al.

Table 1 shows average edit distances and computational times obtained by
different approaches on the four chemical datasets. A� approach, on the first
line, computes the exact graph edit distance and constitutes a reference for
approximation methods. However, due to its high complexity, exact graph edit
distances have been only computed for Alkane and Acyclic datasets. The first
block of three methods, from line 2 to 4, corresponds to methods based on
the bipartite approach. The line denoted as Riesen and Bunke corresponds to
the original method proposed in [12], while the two others use a different cost
matrix [6] using respectively LSAP and LSAPE algorithms. The next block, lines
5 to 7, corresponds to methods based on the quadratic formulation of the graph
edit distance. QAP and QAPE [3] use IPFP algorithm with respectively LSAP
and LSAPE algorithms. The line denoted as “Neuhaus” corresponds to another
quadratic approach [11] which does not handle insertions and removals of nodes
during the optimization process. Finally, the last block corresponds to GNCCP
approach [2] using LSAP and LSAPE algorithms.

Table 1. Accuracy and complexity scores. d and t denote respectively the average edit
distance and computational time (in seconds).

Algorithm Alkane Acyclic MAO PAH

d t d t d t d t

A∗ 15.47 1.29 17.33 6.02 – – – –

Riesen and Bunke [12] 35.16 0.00135 35.43 0.00109 105 0.00551 138 0.00692

LSAP [6] 34.51 0.00205 32.52 0.00181 56.89 0.02218 123.6 0.03342

LSAPE 34.51 0.00203 32.61 0.00179 56.92 0.02212 123.8 0.03338

QAP [2] 19.28 0.00925 20.51 0.00711 32.97 0.04158 48.5 0.08285

QAPE [3] 19.33 0.00553 20.43 0.00489 32.94 0.03017 48.9 0.04832

Neuhaus [11] 20.5 0.07 25.7 0.0424 59.1 7 52.9 8.2

GNCCP [2] 16.54 0.3474 18.36 0.2481 32.14 4.128 39.2 6.141

GNCCPE 16.83 0.116 19.09 0.07638 32.92 0.4673 38.7 0.8623

As expected, approximations of graph edit distances are not significantly
different using either LSAP or LSAPE approaches. Conversely, as previously
observed [2,3], methods based on a quadratic formulation obtain better approx-
imations than the ones based on a linear approximation. From a computational
point of view, quadratic approaches require more computational time. However,
using LSAPE instead of LSAP algorithm leads to a significant improvement on
computational times. This gain almost reaches 10 times with MAO dataset. On
MAO and PAH datasets, executions times of LSAP and QAPE methods are
comparable. Note that we only observe a very tight improvement using LSAPE
instead of LSAP within the original bipartite approach (lines 3 and 4). This lim-
ited gain can be explained by the fact that most of computational time is spent
in computing the cost matrix rather than optimizing the mapping problem.



A Hungarian Algorithm for Error-Correcting Graph Matching 127

5 Conclusion

We have presented in this paper a new type of linear sum assignment problem
designed to solve efficiently the bipartite graph edit distance. The resulting algo-
rithm only supposes that the basic costs are non negative. It requires the storage
of an (n+1)× (m+1) matrix, n and m being the orders of both graphs and has
a time complexity of O(min(n,m)2 max(n,m)). This algorithm may be applied
once to obtain a rough estimate of the edit distance or be integrated into more
complex iterative quadratic solvers. The speed-up obtained by our algorithm is
significant in this last case and opens the way to the computation of the graph
edit distance on larger graphs.

References

1. Bougleux, S., Brun, L.: Linear sum assignment with edition. Technical report,
Normandie Univ, GREYC UMR 6072, Caen (2016)

2. Bougleux, S., Brun, L., Carletti, V., Foggia, P., Gaüzère, B., Vento, M.: Graph
edit distance as a quadratic assignment problem. Pattern Recognit. Lett. 87, 38–
46 (2017)

3. Bougleux, S., Gaüzère, B., Brun, L.: Graph edit distance as a quadratic program.
In: International Conference on Pattern Recognition. IEEE (2016)

4. Bourgeois, F., Lassalle, J.: An extension of the Munkres algorithm for the assign-
ment problem to rectangular matrices. Commun. ACM 14, 802–804 (1971)

5. Burkard, R., Dell’Amico, M., Martello, S.: Assignment Problems. SIAM, Philadel-
phia (2009)

6. Gaüzère, B., Bougleux, S., Riesen, K., Brun, L.: Approximate graph edit distance
guided by bipartite matching of bags of walks. In: Fränti, P., Brown, G., Loog, M.,
Escolano, F., Pelillo, M. (eds.) S+SSPR 2014. LNCS, vol. 8621, pp. 73–82. Springer,
Heidelberg (2014). doi:10.1007/978-3-662-44415-3 8

7. Jones, W., Chawdhary, A., King, A.: Revisiting Volgenant-Jonker for approximat-
ing graph edit distance. In: Liu, C.-L., Luo, B., Kropatsch, W.G., Cheng, J. (eds.)
GbRPR 2015. LNCS, vol. 9069, pp. 98–107. Springer, Cham (2015). doi:10.1007/
978-3-319-18224-7 10

8. Jonker, R., Volgenant, A.: Improving the Hungarian assignment algorithm. Oper.
Res. Lett. 5, 171–175 (1986)

9. Lawler, E.: Combinatorial Optimization: Networks and Matroids. Holt, Rinehart
and Winston, New York (1976)

10. Leordeanu, M., Hebert, M., Sukthankar, R.: An integer projected fixed point
method for graph matching and map inference. In: Advances in Neural Information
Processing Systems, vol. 22, pp. 1114–1122 (2009)

11. Neuhaus, M., Bunke, H.: A quadratic programming approach to the graph edit
distance problem. In: Escolano, F., Vento, M. (eds.) GbRPR 2007. LNCS, vol.
4538, pp. 92–102. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72903-7 9

12. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of
bipartite graph matching. Image Vis. Comput. 27, 950–959 (2009)

13. Serratosa, F.: Fast computation of bipartite graph matching. Pattern Recognit.
Lett. 45, 244–250 (2014)

14. Serratosa, F.: Speeding up fast bipartite graph matching through a new cost
matrix. Int. J. Pattern Recognit. 29(2), 1550010 (2015)

http://dx.doi.org/10.1007/978-3-662-44415-3_8
http://dx.doi.org/10.1007/978-3-319-18224-7_10
http://dx.doi.org/10.1007/978-3-319-18224-7_10
http://dx.doi.org/10.1007/978-3-540-72903-7_9

	A Hungarian Algorithm for Error-Correcting Graph Matching
	1 Introduction
	2 Bipartite Matching and Hungarian Algorithm
	3 Proposed Adaptation of the Hungarian Algorithm
	4 Experiments
	5 Conclusion
	References


