
Pasquale Foggia · Cheng-Lin Liu
Mario Vento (Eds.)

 123

LN
CS

 1
03

10

11th IAPR-TC-15 International Workshop, GbRPR 2017
Anacapri, Italy, May 16–18, 2017
Proceedings

Graph-Based
Representations
in Pattern Recognition

Lecture Notes in Computer Science 10310

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7412

http://www.springer.com/series/7412

Pasquale Foggia • Cheng-Lin Liu
Mario Vento (Eds.)

Graph-Based
Representations
in Pattern Recognition
11th IAPR-TC-15 International Workshop, GbRPR 2017
Anacapri, Italy, May 16–18, 2017
Proceedings

123

Editors
Pasquale Foggia
Università degli Studi di Salerno
Fisciano
Italy

Cheng-Lin Liu
Chinese Academy of Sciences
Beijing
China

Mario Vento
Università degli Studi di Salerno
Fisciano
Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-58960-2 ISBN 978-3-319-58961-9 (eBook)
DOI 10.1007/978-3-319-58961-9

Library of Congress Control Number: 2017940628

LNCS Sublibrary: SL6 – Image Processing, Computer Vision, Pattern Recognition, and Graphics

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0002-7096-1902
http://orcid.org/0000-0002-2948-741X

Preface

This volume contains the papers presented at GbR2017: the 11th IAPR-TC15 Work-
shop on Graph-Based Representations in Pattern Recognition, held during May 16–18,
2017, in Anacapri, Italy.

GbR2017 was the 11th edition of a series of workshops organized every two years
by Technical Committee 15 of the International Association for Pattern Recognition
(IAPR). This workshop series traditionally provides a forum for presenting and dis-
cussing research results and applications in the intersection of pattern recognition,
image analysis on one side and graph theory on the other side. In addition, given the
avenue of new structural/graphical models and structural criteria for solving computer
vision problems, GbR2017 organization encourages researchers in this more general
context to actively participate in the workshop. Furthermore, the application of graphs
to pattern recognition problems in other fields like computational topology, graphic
recognition systems, and bioinformatics is also highly welcome at the workshop.

The present volume contains 25 papers. Each accepted paper was reviewed by two
Program Committee members. The program of GbR2017 also included two invited
talks by Prof. Luc Brun (Ecole Nationale Superieure d’Ingenieurs de Caen, France) and
Prof. Vladimir Batagelj (University of Ljubljana, Slovenia).

We want to thank the International Association for Pattern Recognition for making
GbR2017 an IAPR-sponsored event. We also thank the University of Salerno and the
Department of Information and Electrical Engineering and Applyed Mathematics
(DIEM) for sponsoring the workshop, and the Municipality of Anacapri for endorsing
GbR2017.

May 2017 Pasquale Foggia
Cheng-Lin Liu
Mario Vento

Organization

Conference Chairs

Pasquale Foggia Università degli Studi di Salerno, Italy
Cheng-Lin Liu Institute of Automation of Chinese Academy of Sciences,

China
Mario Vento Università degli Studi di Salerno, Italy

Program Committee

Nicole M. Artner PRIP, TU Wien, Austria
Isabelle Bloch ENST, CNRS UMR 5141 LTCI, France
Sebastien Bougleux Normandie University, UNICAEN, France
Luc Brun GREYC, ENSICaen, France
Vincenzo Carletti Università degli Studi di Salerno, Italy
Ananda S. Chowdhury Jadavpur University, India
Donatello Conte Ecole Polytechnique de l’Université François Rabelais

de Tours, France
Guillaume Damiand CNRS, LIRIS, Université de Lyon, France
Francisco Escolano University of Alicante, Spain
Pasquale Foggia Università degli Studi di Salerno, Italy
Benoit Gaüzere Normandie Université, INSA de Rouen, LITIS, France
Rosalba Giugno University of Catania, Italy
Rocio Gonzalez-Diaz University of Seville, Spain
Edwin Hancock University of York, UK
Yll Haxhimusa Vienna University of Technology, Austria
Pierre Héroux Université de Rouen, LITIS EA 4108, France
Xiaoyi Jiang University of Münster, Germany
Walter G. Kropatsch TU Wien, Austria
Cheng-Lin Liu Institute of Automation of Chinese Academy of Sciences,

China
Josep Llados Computer Vision Center, Universitat Autònoma

de Barcelona, Spain
Bin Luo Anhui University, China
Jean-Marc Ogier University of La Rochelle, Laboratoire L3i, France
Marcello Pelillo Università Ca’ Foscari, Italy
Kaspar Riesen University of Applied Sciences and Arts Northwestern

Switzerland, Switzerland
Alessia Saggese Università degli Studi di Salerno, Italy
Francesc Serratosa Universitat Rovira i Virgili, Spain
Christine Solnon LIRIS CNRS UMR 5205, INSA Lyon, France
Salvatore Tabbone Université de Lorraine, France

Andrea Torsello Università Ca’ Foscari, Italy
Seiichi Uchida Kyushu University, Japan
Ernest Valveny Computer Vision Center, Universitat Autònoma

de Barcelona, Spain
Mario Vento Università degli Studi di Salerno, Italy
Richard Wilson University of York, UK

Organizing Committee

Alessia Saggese Università degli Studi di Salerno, Italy
Vincenzo Carletti Università degli Studi di Salerno, Italy
Antonio Greco Università degli Studi di Salerno, Italy
Luca Greco Università degli Studi di Salerno, Italy
Pierluigi Ritrovato Università degli Studi di Salerno, Italy

VIII Organization

Invited Talks

Approaches to Analysis of Large Networks

Vladimir Batagelj1,2

1 Department of Theoretical Computer Science, Institute of Mathematics, Physics
and Mechanics, Jadranska 19, 1000 Ljubljana, Slovenia

vladimir.batagelj@uni-lj.si
2 University of Primorska, Andrej Marušič Institute,

Muzejski trg 2, Koper, Slovenia

Large networks are networks with some thousands up to billions of nodes that can be
entirely stored in computer’s memory. Most of large networks are sparse – their
number of links is of the same order as their number of nodes (Dunbar’s number). This
allows us to develop very efficient (subquadratic) algorithms for analysis of large
networks. To support the analysis of large networks we started in 1996 to develop a
program Pajek (De Nooy et al. 2011). Besides basic graph theory algorithms, such as
weak and strong connectivity, condensation, topological ordering, etc., Pajek contains
also several specific network analysis algorithms: 3-rings and 4-rings weights, SPC
weights, (generalized) cores, fragment (motif) searching, network multiplication, cuts,
islands, clustering and blockmodeling (Doreian et al. 2004) and others. For details see
Batagelj et al. (2014).

References

Batagelj, V., Doreian, P., Ferligoj, A., Kejžar, N.: Understanding Large Temporal
Networks And Spatial Networks: Exploration, Pattern Searching, Visualization And
Network Evolution. Wiley Series in Computational and Quantitative Social Science.
Wiley (2014)

De Nooy, W., Mrvar, A., Batagelj, V.: Exploratory Social Network Analysis with
Pajek. Revised and Expanded Second Edition. Structural Analysis in the Social
Sciences. Cambridge University Press (2011)

Doreian, P., Batagelj, V., Ferligoj, A.: Generalized Blockmodeling. Structural Analysis
in the Social Sciences. Cambridge University Press (2004)

Graph Edit Distance: Basics and History

Luc Brun1,2

1 Normandy University, ENSICAEN, CNRS, Caen, France
luc.brun@ensicaen.fr

2 University of Caen Normandy, GREYC (UMR 6072), Caen, France

Abstract. Defining a metric between objects is a basic step of any pattern
recognition algorithm. Using graphs, this notion of distance is not straightfor-
ward. Among the different distances between graphs that one may imagine, the
Graph Edit Distance has progressively become a standard tool within the
structural pattern recognition framework. Indeed, this distance allows to take
into account fine differences between graphs, may be easily tuned and may
satisfy all the axioms of a distance. Basically, the most common definition of the
graph edit distance is based on the notion of edit path. An edit path between two
graphs G1 and G2 is a sequence of node/edge removal/substitution or insertion
operations transforming G1 into G2. Each edit path may be associated to a cost
hence defining the Graph Edit Distance between G1 and G2 as the minimal cost
of all edit paths between these two graphs. Within this survey, we will first
review some definitions and properties of the Graph Edit Distance in order to set
up a framework which will allow us to review the main families of methods used
to compute the graph edit distance. Among them, we may cite methods based on
a tree search or methods based on integer programming.

Contents

Image and Shape Analysis

Saliency Detection via A Graph Based Diffusion Model 3
Zhouqin He, Bo Jiang, Yun Xiao, Chris Ding, and Bin Luo

Shape Simplification Through Graph Sparsification 13
Francisco Escolano, Manuel Curado, Silvia Biasotti,
and Edwin R. Hancock

Reeb Graphs of Piecewise Linear Functions . 23
Barbara Di Fabio and Claudia Landi

Learning and Graph Kernels

Learning from Diffusion-Weighted Magnetic Resonance Images
Using Graph Kernels . 39

Sylvain Takerkart, Gottfried Berton, Nicole Malfait,
and François-Xavier Dupé

Learning Graph Matching with a Graph-Based Perceptron
in a Classification Context . 49

A Nested Alignment Graph Kernel Through the Dynamic Time
Warping Framework . 59

Lu Bai, Luca Rossi, Lixin Cui, and Edwin R. Hancock

Graph Applications

GERoMe – A Novel Graph Extraction Robustness Measure 73
Dominik Drees, Aaron Scherzinger, and Xiaoyi Jiang

Speeding-Up Graph-Based Keyword Spotting in Historical
Handwritten Documents . 83

Michael Stauffer, Andreas Fischer, and Kaspar Riesen

Detecting Alzheimer’s Disease Using Directed Graphs. 94
Jianjia Wang, Richard C. Wilson, and Edwin R. Hancock

Romain Raveaux, Chlo Martineau, Donatello Conte,
and Gilles Venturini

é

http://dx.doi.org/10.1007/978-3-319-58961-9_1
http://dx.doi.org/10.1007/978-3-319-58961-9_2
http://dx.doi.org/10.1007/978-3-319-58961-9_3
http://dx.doi.org/10.1007/978-3-319-58961-9_4
http://dx.doi.org/10.1007/978-3-319-58961-9_4
http://dx.doi.org/10.1007/978-3-319-58961-9_5
http://dx.doi.org/10.1007/978-3-319-58961-9_5
http://dx.doi.org/10.1007/978-3-319-58961-9_6
http://dx.doi.org/10.1007/978-3-319-58961-9_6
http://dx.doi.org/10.1007/978-3-319-58961-9_7
http://dx.doi.org/10.1007/978-3-319-58961-9_8
http://dx.doi.org/10.1007/978-3-319-58961-9_8
http://dx.doi.org/10.1007/978-3-319-58961-9_9

Graph Matching

Error-Tolerant Coarse-to-Fine Matching Model for Hierarchical Graphs 107
Pau Riba, Josep Lladós, and Alicia Fornés

A Hungarian Algorithm for Error-Correcting Graph Matching 118
Sébastien Bougleux, Benoit Gaüzère, and Luc Brun

Introducing VF3: A New Algorithm for Subgraph Isomorphism 128
Vincenzo Carletti, Pasquale Foggia, Alessia Saggese, and Mario Vento

Large Graphs and Social Networks

Node Matching Computation Between Two Large Graphs in Linear
Computational Cost . 143

Pep Santacruz, Shaima Algabli, and Francesc Serratosa

Measuring Vertex Centrality Using the Holevo Quantity 154
Luca Rossi and Andrea Torsello

On the Interplay Between Strong Regularity and Graph Densification 165
Marco Fiorucci, Alessandro Torcinovich, Manuel Curado,
Francisco Escolano, and Marcello Pelillo

Mining and Clustering

Mining Frequent Patterns in 2D+t Grid Graphs for Cellular
Automata Analysis . 177

Romain Deville, Elisa Fromont, Baptiste Jeudy, and Christine Solnon

Density Normalization in Density Peak Based Clustering 187
Jian Hou and Hongxia Cui

Fast Nearest Neighbors Search in Graph Space Based
on a Branch-and-Bound Strategy. 197

Zeina Abu-Aisheh, Romain Raveaux, and Jean-Yves Ramel

Graph Edit Distance

Exact Computation of Graph Edit Distance for Uniform and Non-uniform
Metric Edit Costs . 211

David B. Blumenthal and Johann Gamper

Improved Graph Edit Distance Approximation with Simulated Annealing . . . 222
Kaspar Riesen, Andreas Fischer, and Horst Bunke

XIV Contents

http://dx.doi.org/10.1007/978-3-319-58961-9_10
http://dx.doi.org/10.1007/978-3-319-58961-9_11
http://dx.doi.org/10.1007/978-3-319-58961-9_12
http://dx.doi.org/10.1007/978-3-319-58961-9_13
http://dx.doi.org/10.1007/978-3-319-58961-9_13
http://dx.doi.org/10.1007/978-3-319-58961-9_14
http://dx.doi.org/10.1007/978-3-319-58961-9_15
http://dx.doi.org/10.1007/978-3-319-58961-9_16
http://dx.doi.org/10.1007/978-3-319-58961-9_16
http://dx.doi.org/10.1007/978-3-319-58961-9_17
http://dx.doi.org/10.1007/978-3-319-58961-9_18
http://dx.doi.org/10.1007/978-3-319-58961-9_18
http://dx.doi.org/10.1007/978-3-319-58961-9_19
http://dx.doi.org/10.1007/978-3-319-58961-9_19
http://dx.doi.org/10.1007/978-3-319-58961-9_20

An Edit Distance Between Graph Correspondences 232
Carlos Francisco Moreno-García, Francesc Serratosa,
and Xiaoyi Jiang

A Survey on Applications of Bipartite Graph Edit Distance 242
Michael Stauffer, Thomas Tschachtli, Andreas Fischer,
and Kaspar Riesen

Graphs and Information Theory

Minimising Entropy Changes in Dynamic Network Evolution. 255
Jianjia Wang, Richard C. Wilson, and Edwin R. Hancock

Synchronization Over the Birkhoff Polytope for Multi-graph Matching 266
Michele Schiavinato and Andrea Torsello

Adaptive Feature Selection Based on the Most Informative
Graph-Based Features . 276

Lixin Cui, Yuhang Jiao, Lu Bai, Luca Rossi, and Edwin R. Hancock

Author Index . 289

Contents XV

http://dx.doi.org/10.1007/978-3-319-58961-9_21
http://dx.doi.org/10.1007/978-3-319-58961-9_22
http://dx.doi.org/10.1007/978-3-319-58961-9_23
http://dx.doi.org/10.1007/978-3-319-58961-9_24
http://dx.doi.org/10.1007/978-3-319-58961-9_25
http://dx.doi.org/10.1007/978-3-319-58961-9_25

Image and Shape Analysis

Saliency Detection via A Graph
Based Diffusion Model

Zhouqin He1, Bo Jiang1(B), Yun Xiao1, Chris Ding2,1, and Bin Luo1

1 School of Computer Science and Technology, Anhui University, Hefei 230601, China
hezhouqin@foxmail.com, {jiangbo,xiaoyun,luobin}@ahu.edu.cn

2 CSE Department, University of Texas at Arlington, Arlington, TX 76019, USA
chqding@uta.edu

Abstract. This paper proposes a graph based diffusion method for
image saliency detection problem by adopting random walk with restart
(RWR) model. Our method begins with computing background and fore-
ground priors respectively for the input image. Based on these priors, we
then adopt RWR method to obtain more reasonable and accurate back-
ground and foreground measurements by further considering the local
structure of image. At last, we combine both background and foreground
measurements together to obtain a more accurate saliency estimation.
Experimental evaluations on four benchmark datasets demonstrate the
benefits and effectiveness of the proposed method.

Keywords: Saliency detection · Background prior · Foreground prior ·
Random walk with restart

1 Introduction

Image saliency detection aims to automatically identify the salient or interesting
regions of an image that attract human attention [5,12,13]. It is an important
and fundamental problem in pattern recognition and computer vision area. The
salient regions of the input image usually indicate the main objects or discrimi-
native features contained in this image. Thus, saliency detection techniques can
be widely used in many computer vision and image processing tasks such as
image segmentation [34], image retrieval [4] and visual object tracking [23].

In recent years, many methods have been proposed for image saliency detec-
tion problem. Generally, these methods can be roughly categorized into three
types, i.e., bottom-up methods, top-down methods and combination of top-down
and bottom-up methods [9,33,39,40]. Bottom-up methods are usually unsuper-
vised while top-down methods are commonly supervised. In this paper, we focus
on bottom-up methods. In the past decade, many bottom-up methods have been
proposed [14,21,27,37]. Among them, one kind of commonly used methods is
to use graph models and methods [8,10,14]. For example, Gopalakrishnan et al.
[8] adopted a random walk model for image salient object location. Yang et al.
[39] used graph manifold ranking method to obtain image saliency. Zhu et al.
c© Springer International Publishing AG 2017
P. Foggia et al. (Eds.): GbRPR 2017, LNCS 10310, pp. 3–12, 2017.
DOI: 10.1007/978-3-319-58961-9 1

4 Z. He et al.

[40] provided a general optimization model to obtain a more accurate saliency
detection results by combining background and foreground priors at the same
time. Li et al. [20] proposed to use a regularized random walks ranking model
to achieve object saliency estimation. Wang et al. [34] also presented a saliency
detection approach by combing both local graph structure and background priors
together.

In this paper, we propose a new graph based diffusion method for image
saliency detection problem by adopting random walk with restart (RWR) model
[17,19]. First, we compute both background and foreground priors respectively
for the input image. Based on these priors, we then adopt RWR method to
obtain more accurate measurements of background and foreground. At last, we
combine these two cues together to obtain more accurate saliency estimation.
Comprehensive evaluations on benchmark datasets indicate that our method
performs better than state-of-the-art methods.

2 Brief Review of Random Walk with Restart

Random walk with restart model has been widely used in many computer vision
problems, such as image saliency and segmentation [18,19], object tracking [17]
and data mining [26]. Here, we give a brief review of random walk with restart
model.

Given a graph G(V,E) with V and E denoting nodes and edges, respectively.
A transition matrix A is first defined, in which Aij denotes the probability that
a walker moves from node vi to node vj . In random walk with restart (RWR),
starting at a node, the walker have two options at each step, i.e., moving to
a randomly chosen neighbor with probability α or jumping to a specified node
with probability (1 − α) [17,26]. Formally, in RWR, it iteratively computes the
probability distribution r(t) as,

r(t+1) = αAr(t) + (1 − α)p (1)

where α ∈ [0, 1] is a restarting probability, and p = (p1,p2, · · ·pN) is a restarting
distribution. It is known that regardless of any initialization p(0), as the iteration
t increases, the diffusion process will converge to the stationary distribution p∗.
Moreover, since the stationary distribution p∗ satisfies the following,

r∗ = αAr∗ + (1 − α)p. (2)

Thus, the stationary distribution p∗ can also be solved directly as

r∗ = (1 − α)(I − αA)−1p (3)

where I is an identity matrix.
From diffusion aspect, the above RWR process provides a kind of diffusion.

That is, the restarting distribution p are propagated or diffused throughout the
graph G(V,E) and matrix (1 − α)(I − αA)−1 can be regarded as a kind of
diffusion matrix [22].

Saliency Detection via Graph Based Diffusion Model 5

3 Saliency Detection

In this section, we present our saliency detection method based on RWR model.
Our method consists of three main steps which are introduced below.

3.1 Graph Construction

Given an input image I, we first segment it into a set of non-overlapping super-
pixels via the simple linear iterative clustering (SLIC) approach [2]. Then, we
construct a k-regular graph G(V,E) as follows [39]. Each node vi ∈ V represents
a superpixel and an edge eij ∈ E exists between node vi and vj if node vi and
vj are either neighbour or having common boundaries with their neighboring
nodes. For each superpixel, we use the average CIE LAB color of all pixels in
this superpixel as the feature descriptor [39], and then compute the weight Wij

between node vi and vj as,

Wij = exp(−η ‖ci − cj‖2) (4)

where ci and cj are the mean Lab color feature of superpixel si and sj . The η
is set to η = 0.1 in this paper.

In order to conduct the diffusion process via RWR model, we need to trans-
form graph weight matrix W to transition matrix A by normalizing each column
of weight matrix W to 1, i.e.,

Aij =
Wij

∑N
i=1 Wij

. (5)

Based on transition matrix A, we can conduct diffusion process for both back-
ground and foreground as follows.

3.2 Diffusion with Background Prior

Given any background prior pb, we can use the above RWR model to conduct
the diffusion of background prior as follows,

b(t+1) = αAb(t) + (1 − α)pb (6)

where t = 0, · · · n and pb is the restart term. As iteration t increases, b(t+1)

will converge to a stationary distribution b∗ regardless of any initialization b(0).
Comparing with original background prior pb, the diffusion stationary distrib-
ution b∗ maintains more local smooth constraint and thus provides a kind of
more reasonable background measurement.

For image saliency detection problem, there exist many background prior
computation methods [15,37,39,40]. In this paper, we compute the background
prior pb using the boundary connectivity. Formally, for any superpixel s, the
boundary connectivity (BC) [40] of superpixel s is defined as [40],

BC(s) =

∑
si∈B S(s, si)

√∑N
i=1 S(s, si)

(7)

6 Z. He et al.

where B denotes the boundary area of image and S(s, si) is the similarity between
superpixel s and si. N is the number of superpixels. Based on the above boundary
connectivity, the background prior pb(s) for superpixel s is computed as [40],

pb(s) = 1 − exp
(− BC(s)2

2σ2
b

)
(8)

where σb is set to 1 in our experiments.

3.3 Diffusion with Foreground Prior

Similar to background diffusion process, we can also conduct diffusion for fore-
ground prior. Given any foreground prior fb, such as contrast [5,40], objectness
[15] and center prior [34], we can use the above RWR model to obtain the fore-
ground measurement f̃ as follows,

f(t+1) = αAf(t) + (1 − α)pf (9)

where t = 0, · · · n and pf is the restart term. Comparing with original foreground
prior pf , the diffusion stationary result f∗ maintains more smooth consistent of
image object and thus provides a more reasonable foreground measurement.

In this paper, we use background weighted contrast [5,40] to define the fore-
ground prior pf which incorporates background information in its definition, i.e.,

pf =
N∑

i=1

b∗(si)da(s, si)exp
(− d2s(s, si)

2σ2
f

)
(10)

where da(s, si) and ds(s, si) denote the Lab color feature distance and spatial
distance respectively between superpixel s and si. The weight b∗ is the back-
ground measurement obtained from the above background diffusion. Parameter
σf is set to 0.25 in our experiments.

3.4 Combination

After obtaining the background measurement b∗ and foreground measurement
f∗ based on RWR model, we then combine these two cues together to compute
the final saliency result r∗.

Note that large background measurement (probability) b∗
i of superpixel si

encourages superpixel si to take a small saliency value ri, while large foreground
prior b∗

i encourages superpixel si to take a large saliency value. This observation
can be achieved by minimizing the following energy function [34,40],

min
r

1
2

N∑

i=1

N∑

j=1

Wij(ri − rj)2 + γ

N∑

i=1

b∗
i r

2
i + β

N∑

i=1

f∗i (ri − 1)2. (11)

where γ, β are two balancing parameters. Matrix W is the weight matrix of
graph G(V,E), as mentioned above. This optimization problem has a closed-form

Saliency Detection via Graph Based Diffusion Model 7

Fig. 1. Quantitative PR-curve and F-measure evaluation of recent approaches on four
benchmark datasets. The rows from top to bottom correspond to ASD, DUT-OMRON,
SED and SOD dataset respectively. The first two columns show the comparison of PR-
curves and the last column shows the comparison of F-measure values using an adaptive
threshold.

solution and the optimal solution r∗ can be obtained by setting the first deriva-
tive of the energy function w.r.t. variable r to 0, i.e.,

r∗ = β
(
D − W + γB + βF

)−1
f∗ (12)

where D is a diagonal matrix with Dii =
∑N

j=1 Wij . Matrix B and F are
diagonal matrices with Bii = b∗

i and Fii = f∗i .

8 Z. He et al.

To overcome the undesirable block effect, for the input image I, we first com-
pute the saliency maps independently under different superpixels numbers (we set
number of superpixels to 150, 200, 250, respectively) using the proposed RWR
method, and then generate our final smooth saliency map by averaging them.

4 Experiments

In this section, we evaluate our method on four benchmark datasets including
ASD, SED, SOD and DUT-OMRON datasets. We compare our method with
some recent state-of-the-art methods. The parameter γ , β and α are setting to
2.5 , 0.5 and 0.35 in all the experiments.

4.1 Datasets and Settings

The benchmark datasets used in our paper are introduced below.

ASD [1] dataset contains 1000 natural images and associated ground truth
object images. The images in this dataset generally have large variations in
image content with simple and smooth background structures.

SED [3] dataset consists of 200 natural images and corresponding ground truth
object images. In this dataset, half of images involve a single salient object, while
the rest of images have two salient objects.

SOD [24] dataset contains 300 images and corresponding ground truth object
images. The images used in this dataset generally have a large salient object
which are usually touching one or more image boundaries.

DUT-OMRON [39] dataset includes 5168 natural images and corresponding
ground truth images. The images in this dataset have been manually selected
from more than 140,000 natural images.

In order to evaluate the performance of our method, we compare our method
with some recent state-of-the-art saliency detection methods including SR [12],
SUN [16], SeR [30], SEG [28], SWD [6], SIM [25], FES [31], BM [35], SS [11],
COV [7], PCA [29], BS [36], DSR [21], GCHC [38], HS [37], MC [14], MR [39],
MS [32], SO [40], RR [20] and MST [33]. The codes or executables of all these
compared methods are available and we use them to obtain the results. For per-
formance evaluation, we use standard precision-recall curves (PR-curve) and F-
measure evaluation metrics. To obtained the precision-recall (PR) curve, we need
to binarize the normalized saliency map with thresholds ranging from 0 to 255,
respectively and then compute the precision and recall values respectively. In addi-
tion to PR curve, we also use the F-measure metric for evaluation. The F-measure
is the weighted average of precision and recall, which is defined as follows,

Fλ =
(1 + λ)Precision × Recall

λPrecision + Recall
(13)

We set λ = 0.3 in all the experiments to give more weight to precision than
recall, as suggested in [20,39].

Saliency Detection via Graph Based Diffusion Model 9

4.2 Results

Figure 2 shows some visual comparison examples of the different saliency meth-
ods. Intuitively, one can note that, the proposed method generally highlights
the salient object in desirable and can preserve the finer object boundaries
more clearly than other compared methods, which demonstrates the proposed

Fig. 2. Sample saliency maps of the compared methods. Intuitively, our saliency maps
are generally more close to the ground truth results which demonstrates the more
accurate saliency detection results obtained by our method.

10 Z. He et al.

method can detect the saliency region more accurate than some other meth-
ods. Figure 1 shows the precision-recall curves and F-measure of all methods on
different datasets, respectively. Overall, the results demonstrate that the pro-
posed method outperforms the state-of-the-art methods on all the four public
benchmark datasets. More detailly, we can note that: (1) Comparing with the
traditional SO [40] method, our method can obtain better results, which clearly
demonstrates the effectiveness of the proposed RWR based diffusion method by
finding the more reasonable background and foreground cues and thus generate
more accurate saliency results. (2) Our method performs better than other graph
based diffusion methods such as MR [39], MC [14] and RR [20], which indicates
the more effectiveness of the proposed method on conducting saliency object
detection task. (3) Our method generally obtains better performance when com-
pared to some recent saliency methods such as MST [33] and RR [20].

5 Conclusions

In this paper, we propose a new graph based diffusion method for image saliency
detection problem by using random walk with restart (RWR) model. Our method
aims to derive a more reasonable measurement for background and foreground
respectively by adopting RWR model, which can thus lead to more accurate
saliency estimation by further using an optimization framework. Experimental
results on four benchmark databases show the better performance of the pro-
posed method.

Acknowledgement. This study was funded by the National Key Basic Research Pro-
gram of China (973 Program) (2015CB351705); National Nature Science Foundation of
China (61602001, 61572030, 61671018); Natural Science Foundation of Anhui Province
(1708085QF139); Natural Science Foundation of Anhui Higher Education Institutions
of China (KJ2016A020).

References

1. Achanta, R., Hemami, S., Estrada, F., Susstrunk, S.: Frequency-tuned salient
region detection. In: CVPR, pp. 1597–1604. IEEE (2009)

2. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC super-
pixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal.
Mach. Intell. 34(11), 2274–2282 (2012)

3. Alpert, S., Galun, M., Basri, R., Brandt, A.: Image segmentation by probabilistic
bottom-up aggregation and cue integration. In: 2007 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 1–8 (2007)

4. Chen, T., Cheng, M.M., Tan, P., Shamir, A., Hu, S.M.: Sketch2photo: internet
image montage. ACM Trans. Graph. (TOG) 28(5), 124 (2009)

5. Cheng, M.M., Zhang, G.X., Mitra, N.J., Huang, X., Hu, S.M.: Global contrast
based salient region detection. In: CVPR, pp. 409–416. IEEE (2011)

6. Duan, L., Wu, C., Miao, J., Qing, L., Fu, Y.: Visual saliency detection by spatially
weighted dissimilarity. In: 2011 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 473–480. IEEE (2011)

Saliency Detection via Graph Based Diffusion Model 11

7. Erdem, E., Erdem, A.: Visual saliency estimation by nonlinearly integrating fea-
tures using region covariances. J. Vis. 13(4), 1–20 (2013)

8. Gopalakrishnan, V., Hu, Y., Rajan, D.: Random walks on graphs for salient object
detection in images. IEEE Trans. Image Process. 19(12), 3232–3242 (2010)

9. Han, B., Zhu, H., Ding, Y.: Bottom-up saliency based on weighted sparse coding
residual. In: International Conference on Multimedia 2011, Scottsdale, AZ, USA,
November 28 - December, pp. 1117–1120 (2011)

10. Harel, J., Koch, C., Perona, P.: Graph-based visual saliency. In: Advances in Neural
Information Processing Systems, pp. 545–552 (2006)

11. Hou, X., Harel, J., Koch, C.: Image signature: highlighting sparse salient regions.
IEEE Trans. Pattern Anal. Mach. Intell. 34(1), 194–201 (2012)

12. Hou, X., Zhang, L.: Saliency detection: a spectral residual approach. In: 2007 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8. IEEE
(2007)

13. Itti, L., Koch, C., Niebur, E., et al.: A model of saliency-based visual attention for
rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259
(1998)

14. Jiang, B., Zhang, L., Lu, H., Yang, C., Yang, M.H.: Saliency detection via absorbing
Markov chain. In: ICCV, pp. 1665–1672 (2013)

15. Jiang, P., Ling, H., Yu, J., Peng, J.: Salient region detection by UFO: uniqueness,
focusness and objectness. In: Proceedings of the IEEE International Conference on
Computer Vision, pp. 1976–1983 (2013)

16. Kanan, C., Tong, M.H., Zhang, L., Cottrell, G.W.: Sun: top-down saliency using
natural statistics. Vis. Cognit. 17(6–7), 979–1003 (2009)

17. Kim, H.U., Lee, D.Y., Sim, J.Y., Kim, C.S.: SOWP: spatially ordered and weighted
patch descriptor for visual tracking. In: Proceedings of the IEEE International
Conference on Computer Vision, pp. 3011–3019 (2015)

18. Kim, J.S., Sim, J.Y., Kim, C.S.: Multiscale saliency detection using random walk
with restart. IEEE Trans. Circ. Syst. Video Technol. 24(2), 198–210 (2014)

19. Kim, T.H., Lee, K.M., Lee, S.U.: Generative image segmentation using ran-
dom walks with restart. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV
2008. LNCS, vol. 5304, pp. 264–275. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-88690-7 20

20. Li, C., Yuan, Y., Cai, W., Xia, Y., Feng, D.D.: Robust saliency detection via
regularized random walks ranking. In: CVPR, pp. 2710–2717 (2015)

21. Li, X., Lu, H., Zhang, L., Ruan, X., Yang, M.H.: Saliency detection via dense and
sparse reconstruction. In: ICCV, pp. 2976–2983 (2013)

22. Lu, S., Mahadevan, V., Vasconcelos, N.: Learning optimal seeds for diffusion-based
salient object detection. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2790–2797 (2014)

23. Mahadevan, V., Vasconcelos, N.: Saliency-based discriminant tracking. In: IEEE
Conference on Computer Vision and Pattern Recognition, pp. 1007–1013 (2009)

24. Movahedi, V., Elder, J.H.: Design and perceptual validation of performance mea-
sures for salient object segmentation. In: Computer Society Conference on Com-
puter Vision and Pattern Recognition-Workshops, pp. 49–56. IEEE (2010)

25. Murray, N., Vanrell, M., Otazu, X., Parraga, C.A.: Saliency estimation using a
non-parametric low-level vision model. In: 2011 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 433–440. IEEE (2011)

http://dx.doi.org/10.1007/978-3-540-88690-7_20
http://dx.doi.org/10.1007/978-3-540-88690-7_20

12 Z. He et al.

26. Pan, J.Y., Yang, H.J., Faloutsos, C., Duygulu, P.: Automatic multimedia cross-
modal correlation discovery. In: Proceedings of the Tenth ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 653–658. ACM
(2004)

27. Perazzi, F., Krähenbühl, P., Pritch, Y., Hornung, A.: Saliency filters: contrast based
filtering for salient region detection. In: CVPR, pp. 733–740. IEEE (2012)

28. Rahtu, E., Kannala, J., Salo, M., Heikkilä, J.: Segmenting salient objects from
images and videos. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV
2010. LNCS, vol. 6315, pp. 366–379. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-15555-0 27

29. Ran, M., Tal, A., Zelnikmanor, L.: What makes a patch distinct? In: IEEE Con-
ference on Computer Vision and Pattern Recognition, pp. 1139–1146 (2013)

30. Seo, H.J., Milanfar, P.: Static and space-time visual saliency detection by self-
resemblance. J. Vis. 9(12), 1–27 (2009)

31. Rezazadegan Tavakoli, H., Rahtu, E., Heikkilä, J.: Fast and efficient saliency detec-
tion using sparse sampling and kernel density estimation. In: Heyden, A., Kahl,
F. (eds.) SCIA 2011. LNCS, vol. 6688, pp. 666–675. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-21227-7 62

32. Tong, N., Lu, H., Zhang, L., Ruan, X.: Saliency detection with multi-scale super-
pixels. IEEE Signal Process. Lett. 21(9), 1035–1039 (2014)

33. Tu, W.C., He, S., Yang, Q., Chien, S.Y.: Real-time salient object detection with
a minimum spanning tree. In: 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 2334–2342 (2016)

34. Wang, Q., Zheng, W., Piramuthu, R.: Grab: visual saliency via novel graph model
and background priors. In: 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 535–543 (2016)

35. Xie, Y., Lu, H.: Visual saliency detection based on Bayesian model. In: Interna-
tional Conference on Image Processing, vol. 263, no. 4, pp. 645–648 (2011)

36. Xie, Y., Lu, H., Yang, M.H.: Bayesian saliency via low and mid level cues. IEEE
Trans. Image Process. 22(5), 1689–1698 (2013)

37. Yan, Q., Xu, L., Shi, J., Jia, J.: Hierarchical saliency detection. In: CVPR, pp.
1155–1162 (2013)

38. Yang, C., Zhang, L., Lu, H.: Graph-regularized saliency detection with convex-
hull-based center prior. IEEE Signal Process. Lett. 20(7), 637–640 (2013)

39. Yang, C., Zhang, L., Lu, H., Ruan, X., Yang, M.H.: Saliency detection via graph-
based manifold ranking. In: CVPR, pp. 3166–3173 (2013)

40. Zhu, W., Liang, S., Wei, Y., Sun, J.: Saliency optimization from robust background
detection. In: CVPR, pp. 2814–2821 (2014)

http://dx.doi.org/10.1007/978-3-642-15555-0_27
http://dx.doi.org/10.1007/978-3-642-15555-0_27
http://dx.doi.org/10.1007/978-3-642-21227-7_62

Shape Simplification Through Graph
Sparsification

Francisco Escolano1(B), Manuel Curado1, Silvia Biasotti2,
and Edwin R. Hancock3

1 Department of Computer Science and AI,
University of Alicante, 03690 Alicante, Spain

{sco,mcurado}@dccia.ua.es
2 CNR-IMATI, Via de Marini, 6 (Torre di Francia), 16149 Genova, Italy

silvia.biasotti@ge.imati.cnr.it
3 Department of Computer Science, University of York, York YO10 5DD, UK

erh@cs.york.ac.uk

Abstract. In this paper, we draw on Spielman and Srivastava’s method
for graph sparsification in order to simplify shape representations. The
underlying principle of graph sparsification is to retain only the edges
which are key to the preservation of desired properties. In this regard,
sparsification by edge resistance allows us to preserve (to some extent)
links between protrusions and the remainder of the shape (e.g. parts of a
shape) while removing in-part edges. Applying this idea to alpha shapes
(abstract representations which have a huge number of edges) opens up
a way of introducing a hierarchy of the edge strength, thus being relevant
for shape analysis and interpretation.

Keywords: Graph sparsification · Shape simplification · Alpha shapes

1 Introduction

1.1 Shape Representations: Triangulations vs Alpha Shapes

The traditional problem addressed by shape reconstruction is to recover a digital
representation of a physical shape that has been scanned, where the scanned data
contain a wide variety of defects or the representation of data acquired by dif-
ferent diagnostic equipments such as angiography, Computed Tomography (CT)
and Magnetic Resonance (MR). To encode the data in a digital model different
geometric representations have been explored in detail. The work reported in [11]
organizes them into a spectrum with respect to the achieved trade-off between
verbosity and complexity. Voxel grids are at one extreme of the spectrum, since
they are the simplest, but the most verbose and less accurate representation.
Although, in principle, the use of arbitrarily fine grids could achieve any level
of approximation, the practical limit comes from constraints on the resolution.
At the other end of the spectrum, the functional representations - using smooth
functions to specify the continuous of points that make up the shape - provide
c© Springer International Publishing AG 2017
P. Foggia et al. (Eds.): GbRPR 2017, LNCS 10310, pp. 13–22, 2017.
DOI: 10.1007/978-3-319-58961-9 2

14 F. Escolano et al.

an accurate and complex representation. Piecewise linear representations are at
the center of the spectrum.

The most popular representations in the piecewise class are the simplicial
complexes [12], including triangular meshes that have become the de-facto stan-
dard in graphics accelerators [5] and tetrahedral meshes that are used to rep-
resent volumes and are used for the simulation of deformable models, such as
organs or tissues. A generalization of the concept of triangulation are the so-
called alpha (α-) shapes, that are families of piecewise linear simple curves in
the Euclidean space associated with a dense and unorganized set of data points.
An alpha shape is demarcated by a frontier, which is a linear approximation of
the original shape. First introduced in the 2D plane by Edelsbrunner et al. [8],
they were extended to 3D spaces [10] and higher dimensions [6]. In the case of
2D, an alpha shape consists of vertices, edges and triangles, while for 3D there
are also tetrahedra. In our graph representation, we consider the 1-skeleton of
both triangulations and alpha-shapes, i.e., the set of vertices and edges of the
complex.

Fig. 1. From left to right: a point set, a triangulation and a sequence of three alpha
shapes with increasing values of α.

Alpha shapes depend on the parameter α used as radius of spheres centered
on the points that determine the connection among the neighbourhoods. A very
small value will generate many isolated points and the alpha shape degenerates
to the point cloud when α → 0. On the other hand, a large value of α will
consider many points inside the spheres and therefore the size of the 1-skeleton
considerably increases. The limit of the alpha shape when α → ∞ is the con-
vex hull of the point cloud and the 1-skeleton of the alpha shape becomes the
complete graph.

The main application of alpha shapes is the reconstruction of objects which
have been sampled by points. How to determine the best value of α is not
obvious and in practice α is found using a trial-and-error strategy. This leads the
computation of quite large families of alpha shapes and the 1-skeleton increases
as long as the value of α increases. Moreover, there are point-sets for which
there is no unique α value, for instance because small α values capture local
characteristics while larger ones determine large connectivity. For instance, this
is the case when a point cloud is not uniformly sampled or the point cloud is
supposed to represent either small or large features (for instance, it contains
both thin and long handles like the examples shown in Fig. 1). Low density
sampling requires a rather large radius to build a connected representation.

Shape and Sparsification 15

But a large value of α will unfortunately close some handles. In practice, a
large value of α results in (among possibly other things) a closure of handles,
connection of multiple components and joints (e.g., sharp turns) being destroyed.
For this reasons and because the general size of the 1-skeleton, the approach
proposed in this work is able to simplify connections without destroying the
global topology of the alpha shape.

1.2 Contributions

Spielman and Srivastava [15] have developed an efficient method for graph spar-
sification based on edge resistance (which is proportional to the commute time
of its end nodes). The method is based on the observation that the probability of
an edge appearing in a random spanning tree of a graph is equal to its effective
resistance. Drawing on Spielman and Teng’s approximately linear solver [16],
they show how to efficiently compute resistance, and hence sample edges for the
purposes of sparsification.

Herein, we present a unified view of resistance sparsification through sam-
pling. In addition, we exploit such a sampling for retaining edges (both in trian-
gulations and alpha spaces) that are key to the preservation of the topological
properties of the input shape. Our experiments show high compression rates as
the allowed error ε increases. However each shape is sensitive to a different value
of ε. It is the persistence of a given edge as ε increases what will provide us
with is the relative importance of a vertex. This characterisation is pivotal for
subsequent tasks such as efficient shape matching and shape representation.

2 Graph Sparsification

2.1 Definition and Ingredients

Graph sparsification [16] is the principled study of how to significantly decrease
the number of edges of an input graph G so that the output, H, preserves some
of the structural properties of G.

Benczúr and Karger [4] showed that every cut in G = (V,E) can be approx-
imated in H = (V,E′), with E′ ⊆ E, so that every cut in H has a value within
(1± ε) times its value in G. For instance, a Kn (complete) graph with n vertices
and O(n2) edges can be approximated by a random d–regular graph, i.e. a graph
with O(dn) edges. This means that for every subset S ⊂ V the ratio between
the value of a cut in Kn and that of the same cut in the random d–regular graph
H is n/d. This link between sparsification and random graphs is useful (to some
extent). For instance, if an edge in G is included in H with probability p, we
must set p � 1/c where c is the value of the minimal cut. As a result, if we have
m edges in G we can only have O(m/c) edges in H.

This limitation leads to non-uniform sampling, i.e. to associate a different
probability pe to each edge e ∈ E. The edge e it is included in E′ with probability
pe and it is given a weight 1/pe if it is included. This inverse weighting ensures
that the expected weight of e in H is unity.

16 F. Escolano et al.

The choice of a suitable value of pe is the first step in graph sparsification.
For cut sparsification, the choice of pe relies on the strong connectivity ce of e.
The strong connectivity ce is the maximum value of a cut in a connected compo-
nent including e. This quantity is upper bounded by the standard connectivity
of e (the minimal value of a cut separating its endpoints), but it is hard to
find. However lower bounds c′

e ≤ ce can be founds through sparse certification
(see details in [4]). In this way we have that pe = ρ/c′

e ≥ ρ/ce, where ρ is
the compression factor, is a good choice for pe. The compression factor ρ has
complexity O(c(d + 2)(log n)/ε2) and it is in turn inversely proportional to the
squared error ε2. The setting pe = min{1, ρ/c′

e} then ensures the correctness of
the approximation with probability 1 − n−d.

The above rationale leads to the second ingredient of sparsification, namely
the minimal number of samples required to correctly sparsify the graph with high
probability. For cut sparsification, we have that taking O(nρ), i.e. O(n log n/ε2),
samples will suffice. This can be proved by means of the Chernoff bound, which
is a standard information-theoretic tool for limiting the number of samples.

2.2 Spectral Formulation and Effective Resistances

An alternative approach to the the sparsification problem consists of enforcing
the preservation of structural properties by bounding the quadratic form asso-
ciated with the graph Laplacian of the sparsified graph H with respect to that
of the input graph G (see the survey in [3]). Therefore, given G = (V,E,w) we
must obtain H = (V,E′, w′) by taking O(n log n/ε2) independent samples, so
that we satisfy (with probability at least 1/2) the following constraint

∀ x ∈ R
n : (1 − ε) ≤ xT LGx ≤ xT LHx ≤ (1 + ε)xT LG, (1)

where ε > 0, n = |V |, and LG, LH are the respective Laplacian matrices of G and
H. Recall that LG = D−W where D is the diagonal degree matrix and W is the
weighted adjacency matrix, and that xT LGx =

∑
(u,v)∈E(x(u) − x(v))2wuv and

similarly for LH .
Since Laplacian matrices are Semidefinite Positive (SDP), which is denoted

by LG � 0, we can reformulate Eq. 1 in terms of circumventing the hyper ellipsoid
associated with LH with that associated with LG, i.e. one must satisfy

(1 − ε)LG � LH � (1 + ε)LG, or equivalently LG � LH � κLG, (2)

with κ = 1+ε
1−ε . This implies that all of the eigenvalues λ′

i of LH satisfy λ′
i ≤

κλi, where λi is the corresponding eigenvalue of LG. In addition, since Eq. 2 is
invariant under rescaling, we have that

L
−1/2
G LGL

−1/2
G � L

−1/2
G LHL

−1/2
G � κL

−1/2
G LGL

−1/2
G (3)

i.e.
I � L

−1/2
G LHL

−1/2
G � κI, (4)

Shape and Sparsification 17

where I is the identity matrix and L
−1/2
G LHL

−1/2
G is the so called relative Lapla-

cian. This leads to locating LH so that the relative Laplacian is properly con-
tained between I and κI. In this regard, the structure of LH is determined by a
weighted sum of outer products: LH =

∑
e∈E w′

ebeb
T
e , where w′

e are the unknown
weights, be = δu−δv = buv, δu is the unit vector with a 1 at u and zeros elsewhere
(similarly for v), and e = (u, v) is the edge. In this regard, since E′ ⊆ E, an
edge of E not included in E′ will have w′

e = 0. We define the random variables
se (our unknowns) so that w′

e = sewe where E(se) = 1 for all e ∈ E. Then, Eq. 4
can be rewritten as follows

I � L
−1/2
G

(
∑

e∈E

seweL
−1/2
G beb

T
e

)

L
−1/2
G � κI. (5)

It is well known that the Laplacian matrix L cannot be inverted since it contains
the zero eigenvalue. Expressions including the inverse must be computed using
the pseudo-inverse L+ instead. The pseudo inverse plays a key role in defining
the effective resistance across e = (u, v) (the scaled commute time) Re, which is
given by

Re = (δu − δv)T L+(δu − δv) = bT
e L+be. (6)

Then, combining Eqs. 5 and 6 we obtain

I �
∑

e∈E

sewevev
T
e � κI, (7)

where ve = L
−1/2
G be, i.e., the squared norm of ve is

||ve||2 = (L−1/2
G be)T (L−1/2

G be) = (bT
e L

−1/2
G)(L−1/2

G be) = bT
e L+

Gbe = Re. (8)

This squared norm allows us to treat
∑

e∈E sewevev
T
e in Eq. 5 as a quadratic

form quite close to the identity matrix I. This is extremely important since: (i)
the relative Laplacian relies on the effective resistances of G, and (ii) we can
pose the sparsification problem in terms of finding the sampling probabilities pe

so that the constraint in Eq. 5 is satisfied. To this end, Batson et al. [2] exploited
the following fact: ∑

e∈E

ṽeṽ
T
e = I, (9)

where ṽe = w
1/2
e ve. This can be proved by using the m × n incidence matrix

of G, i.e. B, with elements B(e, v) = 1 if v is e’s head, B(e, v) = −1 if v is
e’s tail, and B(e, v) = 0 otherwise. Then the Laplacian matrix of G is given by
LG = BT WeB, where We is the diagonal m × m matrix where We(e, e) = we.
Since the vectors ve = L

−1/2
G be rely on the columns of BT , we have that vectors

ṽe = vew
1/2
e are the columns of a n × m matrix Ṽ = L

−1/2
G BT W

1/2
e . Then

∑

e∈E

ṽeṽ
T
e = Ṽ Ṽ T = L

−1/2
G BT W 1/2

e W 1/2
e BL

−1/2
G = L

−1/2
G LGL

−1/2
G = I.

18 F. Escolano et al.

In addition we have that

||ṽe||2 = (w1/2
e L

−1/2
G be)T (w1/2

e L
−1/2
G be) = we(bT

e L+
Gbe) = weRe, (10)

i.e. we obtain weighted effective resistances. The identity ||ṽe||2 = weRe suggests
to sample E with probabilities pe proportional to weRe.

Let y1, y2, . . . , yq vectors drawn independently with replacement from the
distribution

y =
1√
pe

ṽe with probability pe. (11)

Then, the expectation of yyT (which contains the effective resistances) is

E
[
yyT

]
=

∑

e∈E

pe
1
pe

ṽeṽ
T
e = I. (12)

In addition, the shape of each of the q samples yi = ṽe/
√

pe leads to

1
q

q∑

i=1

yiy
T
i =

1
q

q∑

i=1

#e
ṽe√
pe

· ṽT
e√
pe

=
1
q

q∑

i=1

#e
ṽeṽ

T
e

pe
=

∑

e∈E

seṽeṽ
T
e , (13)

where #e is the number of times that e is sampled, and se = #e/qpe. Then, we
obtain

1
q

q∑

i=1

yiy
T
i =

∑

e∈E

seṽeṽ
T
e =

∑

e∈E

sewevev
T
e , (14)

i.e. a proper sampling process leads to the relative Laplacian. This is ensured
insofar 1

q

∑q
i=1 yiy

T
i and EyyT conform the Chernoff bound for matrices [14]:

E

[∥
∥
∥
∥
∥

1
q

q∑

i=1

yiy
T
i − E

[
yyT

]
∥
∥
∥
∥
∥

]

≤ min

(

CM

√
log q

q
, 1

)

, (15)

where || [EyyT
] || < 1 and supy||y|| ≤ M . The first norm condition is verified

since E
[
yyT

]
= I. For verifying the second norm condition we must set the link

between weRe (weighted effective resistances) and pe (sampling probabilities).
In order to do so, Spielman and Srivastava [15] exploit the fact that

∑
e weRe =

n − 1. Therefore, we may set

pe =
weRe

n − 1
so that ||y|| =

1√
pe

√
weRe =

√
n − 1
weRe

√
weRe =

√
n − 1. (16)

Therefore, taking q = 9C2n log n/ε2 yields

E

[∥
∥
∥
∥
∥

1
q

q∑

i=1

yiy
T
i − E

[
yyT

]
∥
∥
∥
∥
∥

]

≤ C

√

ε2
log(9C2n log n/ε2)(n − 1)

9C2n log n
≤ ε/2, (17)

for n large enough and ε ≥ 1/
√

n.
Summarising, the resistance-based sparsifier [15] consists in five steps:

Shape and Sparsification 19

1. Given the input graph G = (V,E,w), estimate the effective resistances Re

for each e ∈ E.
2. Set an error tolerance ε. Set E′ = ∅, w′ = ∅, define H = (V,E′, w′) and set

#e = 0 for all edges in E.
3. Make q = 9C2n log n/ε2 independent samples (with replacement) with prob-

ability pe ∝ weRe. Each sample is associated with an edge e.
4. If e is selected from a cumulative sum test, then increment #e and add e to

E′ with weight 1/pe.
5. For all e ∈ E′ set w′

e = #e
qpe

.

Finally, the computation Re can be accomplished using exact spectral meth-
ods [13]. However, this step takes O(n3) steps and the eigenvalues are ill condi-
tioned if the graph G has several connected components. This is why Spielman
and Srivastava [15] propose to approximate the computation of effective resis-
tances by exploiting the Achlioptas version [1] of the Johnson-Lindenstrauss (JL)
Lemma. This lemma states that if we project the original vectors (for instance
those belonging to the effective resistance embedding) onto a subspace spanned
by O(log n) random vectors, the distances between the projected vectors and the
original ones are preserved, and then to some extent are given by ε.

3 Experiments

We have performed several experiments on the reduction of the 1-skeleton of
both triangulations and alpha shapes. As previously mentioned, triangulations
are the standard de-facto representations of the surface of 3D objects.

Triangulations are sets of triangles and vertices and are fully described by
their 1-skeleton. All vertices of a triangulation have the same importance. For
instance, it is not possible to distinguish peaks, pits or passes from other struc-
tures. Moreover, connections are all represented without any relations with their
importance (for instance from shape outliers or dense regions). For this reason,
it is necessary to derive more abstract, high level shapes. In this sense, spar-
sification can act has a tool able to determine a hierarchy between the vertex
connections. It may therefore determine a relative importance of the vertices.

Alpha shapes provide a family of shape representations that is very useful
when performing shape reconstruction. The reason for this is that they connect
vertices with all neighbourhoods that are enclosed in a ball of radius alpha. In
general, alpha shapes generalize triangulations and their importance is mainly
theoretical. In our experiments on 3D point clouds, triangulations represent the
external boundary connections, while alpha shapes encode spatial (volumetric)
relationships.

Figure 2 shows five triangulations used in our experiments. These 3D models
correspond to an abstract shape, a cactus, a deer, a cup and a cow model,
respectively. Most of these models contain features that can be considered to be
at a small scale (for instance the small handles in the abstract shape, the details
of the cow and deer models, etc.) or to a larger scale, such as the handles and
the elongated parts (in the cactus, the deer and the cup models). The results

20 F. Escolano et al.

Fig. 2. Examples of triangulations used in our experiments.

Table 1. Statistics on the number of edges of the 1-skeleton of some triangulations
when the parameter ε increases.

Triangulation ε = 0 ε = 0.25 ε = 0.75 ε = 1.25 ε = 1.75 ε = 2.25

Model in Fig. 2(a) 3906 3905 3837 3090 2098 1438

Model in Fig. 2(b) 4623 4622 4550 3643 2543 1782

Model in Fig. 2(c) 15012 15011 14757 11871 80623 5506

Model in Fig. 2(d) 18837 18836 18504 17146 10392 7290

Model in Fig. 2(e) 21759 21757 21415 17201 11677 7989

in Table 1 report the number of edges when sparsification is performed and how
they vary when the value of the ε parameter increases1.

Similarly Fig. 3 shows the 1-skeletons of five alpha shapes that were con-
structed over various point clouds, also varying the α value. These cor-
respond to two different versions of the abstract shape already shown in
Fig. refFig:triangulations(a), two alpha shapes of the deer model in Fig. 2(c)
and an alpha shape from the cow point set that correspond to Fig. 2(e). The
choice of these alpha shapes is motivated by the presence of small and larger
handles and features that alpha shapes have difficulty capturing with a single
choice of the parameter α, as previously discussed. The results in Table 2 report
the number of edges of the 1-skeleton of the alpha shape when the value of the
ε parameter increases. From these experiment, we think that with sparsification
would be possible to overcome the limitations of alpha shapes in the sense that
we hope that it will be possible to commence from a quite large value of the
parameters α and then to remove the redundant edges by using sparsification,
thus implementing a connected, progressive, geometrical-topological peeling of
the shape.

Fig. 3. Examples of alpha shapes used in our experiments.

1 In this paper, the parameter ε controls the number of samples needed by the process,
whereas the weight for choosing the edges is given by effective resistances.

Shape and Sparsification 21

Fig. 4. Degradation of topological properties as ε increases. 2D projections of the blob
alpha shape. From left to right: ε = 0, ε = 0.75, ε = 1.0 and ε = 1.25.

Table 2. Statistics on the number of edges of the 1-skeleton of some alpha shapes
when the parameter ε increases.

Alpha-shape α ε = 0 ε = 0.25 ε = 0.75 ε = 1.25 ε = 1.75 ε = 2.25

Model in Fig. 3(a) 3 8492 8491 6960 4167 2453 1621

Model in Fig. 3(b) 10 9526 9525 7643 4316 2563 1663

Model in Fig. 3(c) 1 39224 39223 33083 19476 11596 7531

Model in Fig. 3(d) 10 39707 39705 33416 19440 11664 7502

Model in Fig. 3(e) 10 55598 55596 48044 28769 17304 11235

Finally, Fig. 4 shows the potential degradation of the topological properties
of the simplified shape as ε increases. For the abstract shape (models (a), (b)
in Fig. 3) we observe that the shape of the graph is preserved up to ε = 1.2.
However, for ε = 1.25 the representation collapses to the most important con-
nected component. This is partially due to the fact that the link between the
original resistances Re (ε = 0) and their sampled counterparts R′

e is governed
by R′

e = (1 ± ε)2Re according to the JL lemma, if we do not compute them
by spectral means. In addition, as ε increases we reduce the number of sam-
ples q = 9C2n log n/ε2 (C = 1 in this paper). This leads to an increment of
entropy, which in turn flattens the importance of certain key edges. Therefore,
the critical value of ε is larger for shapes with an increasing number of nodes.
For instance, for the deer alpha shapes we have that the critical value of ε is in
the range [1.4, 1.45] whereas for the cow alpha shape we have that it is in the
range [1.4, 1.5]. For triangulations the values are similar but larger. For the blob
the critical value is close to 1.4, and for the remaining ones is the range [1.4, 1.5].

4 Conclusions

In this paper, we have shown that graph sparsification leads to a principled way
of simplifying shapes. Experiments on both triangulations and alpha shapes
show promising preliminary results. In particular, it introduces a hierarchy (and
therefore a priority queue) of the edge strength. It is relevant for shape analysis
and interpretation. We plan to further develop these ideas, in particular, in
relation to the filtrations induced by the theory of topological persistence [7,9].

Acknowledgments. F. Escolano and M. Curado are funded by Project TIN2015-
69077-P of the Spanish Government.

22 F. Escolano et al.

References

1. Achlioptas, D.: Database-friendly random projections. In: Buneman, P. (ed.) Pro-
ceedings of the Twentieth ACM SIGACT-SIGMOD-SIGART Symposium on Prin-
ciples of Database Systems, PODS, 21–23 May 2001, Santa Barbara, California,
USA. ACM (2001)

2. Batson, J.D., Spielman, D.A., Srivastava, N.: Twice-ramanujan sparsifiers. SIAM
J. Comput. 41(6), 1704–1721 (2012)

3. Batson, J.D., Spielman, D.A., Srivastava, N., Teng, S.: Spectral sparsification of
graphs: theory and algorithms. Commun. ACM 56(8), 87–94 (2013)

4. Benczúr, A.A., Karger, D.R.: Approximating s-t minimum cuts in Õ(n2) time.
In: Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of
Computing, STOC, Philadelphia, Pennsylvania, USA, 22–24 May 1996, pp. 47–55
(1996)

5. Berger, M., Tagliasacchi, A., Seversky, L.M., Alliez, P., Guennebaud, G., Levine,
J.A., Sharf, A., Silva, C.T.: A survey of surface reconstruction from point clouds.
Comput. Graph. Forum 36, 301–329 (2016)

6. Edelsbrunner, H.: Alpha shapes - survey. In: Tessellations in the Sciences: Virtues,
Techniques and Applications of Geometric Tilings. Springer Verlag (2011)

7. Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. American
Mathematical Society, Providence (2010)

8. Edelsbrunner, H., Kirkpatrick, D., Seidel, R.: On the shape of a set of points in
the plane. IEEE Trans. Inf. Theory 29(4), 551–559 (1983)

9. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and sim-
plification. Discrete Comput. Geom. 28, 511–533 (2002)

10. Edelsbrunner, H., Mücke, E.P.: Three-dimensional alpha shapes. ACM Trans.
Graph. 13(1), 43–72 (1994)

11. Naylor, B., Bajaj, C., Edelsbrunner, H., Kaufman, A., Rossignac, J.: Computa-
tional representations of geometry. In: SIGGRAPH 1996 Course Notes (1996)

12. Paoluzzi, A., Bernardini, F., Cattani, C., Ferrucci, V.: Dimension-independent
modeling with simplicial complexes. ACM Trans. Graph. 12(1), 56–102 (1993)

13. Qiu, H., Hancock, E.R.: Clustering and embedding using commute times. IEEE
Trans. Pattern Anal. Mach. Intell. 29(11), 1873–1890 (2007)

14. Rudelson, M., Vershynin, R.: Sampling from large an approach through geometric
functional analysis. J. ACM 54(4), 21 (2007)

15. Spielman, D.A., Srivastava, N.: Graph sparsification by effective resistances. SIAM
J. Comput. 40(6), 1913–1926 (2011)

16. Spielman, D.A., Teng, S.: Spectral sparsification of graphs. SIAM J. Comput.
40(4), 981–1025 (2011)

Reeb Graphs of Piecewise Linear Functions

Barbara Di Fabio and Claudia Landi(B)

Università di Modena e Reggio Emilia DISMI, Pad. Morselli,
Via Amendola 2, 42122 Reggio Emilia, Italy

claudia.landi@unimore.it

Abstract. The Reeb graph is a popular tool in the field of computa-
tional topology for shape analysis. The Reeb graph is usually thought of
as a transform from shapes, viewed as spaces endowed with functions, to
graphs. It finds its roots in the classical Morse theory, where the Reeb
graph transform is granted to produce a graph, but it finds its applica-
tions mostly in Computer Graphics. Therefore it is usually applied on
objects that are not smooth but polyhedral. While the definition of the
Reeb graph perfectly makes sense also in the polyhedral case, it is not
straightforward to see that the output of the transform in this case is a
graph. This paper is devoted to provide a formal guarantee of this fact.

1 Introduction

The Reeb graph is defined for shapes modeled as spaces endowed with scalar
functions. It is obtained by shrinking each connected component of a level set
of the function to a single point. Often, vertices of the Reeb graph are labeled
by the value of the function at the corresponding level set.

Reeb graphs have been initially studied in pure mathematics where spaces are
assumed to be differentiable and functions to be Morse [14]. These assumptions
guarantee that the Reeb graph is actually a graph, that is a structure consisting
of vertices connected by edges.

Since [16,17], the Reeb graph construction gained popularity in the Com-
puter Graphics community as an effective tool for shape analysis and description
tasks. Application fields related to the use of Reeb graphs are: surface analy-
sis and understanding [1,17]; identification of topological quadrangulations [11];
data simplification [5]; animation [12]; human body segmentation [18]; surface
parameterization [13,19]; sub-part correspondence [6].

A number of characteristics of the Reeb graph have contributed to make it
useful for specific application domains. For example, with regard to utilization
of the Reeb graph as a search query for 3D objects, it is interesting that there
is a natural link between the function and the shape, and the possibility of
adopting different functions for describing different aspects of shapes have led
to a wide use of Reeb graphs for similarity evaluation, shape matching and
retrieval. If the function is constructed from geometric information, such as a
height function or a distance function, the Reeb graph captures both topological
and geometric features of a shape, thus combining global and local information.
c© Springer International Publishing AG 2017
P. Foggia et al. (Eds.): GbRPR 2017, LNCS 10310, pp. 23–35, 2017.
DOI: 10.1007/978-3-319-58961-9 3

24 B. Di Fabio and C. Landi

Also, by defining the function appropriately, it is possible to construct a Reeb
graph that is invariant to translation and rotation, or even more complicated
isometries of the shape. A more complete account on these aspects can be found
in the survey paper [4].

In this paper, we focus on another characteristic of the Reeb graph that
is very important independently of the application: the property of having a
one-dimensional structure without any higher dimension components. This is
an interesting property that in applications makes the Reeb graph sometimes
preferable to other similar transforms such as the medial axis, where instead
degenerate surfaces can occur.

The property of being a graph is of the utmost importance not only in appli-
cations, but also in the development of the theory of Reeb graphs. For example,
the graph structure plays a central role in the results concerning the stability of
Reeb graphs, i.e. the property that small perturbations on the input data still
produce small perturbations in the Reeb graph. In the literature concerning the
stability of the Reeb graph it is usually assumed that the data produce a Reeb
graph that is one-dimensional [2,3,7].

That a Reeb graph has a combinatorial structure is important also for those
algorithms conceived to handle Reeb graphs for specific tasks, like maintaining
the Reeb graph through time [9], or computing the persistent Reeb graph homol-
ogy for a sequence of Reeb graphs defined on a filtered space [8]. In [10], where
the Reeb graph is generalized by using several functions on the same space at
the same time, the authors prove that every point of the obtained structure has
a neighborhood that is a cone over a Reeb space of dimension one less. Hence,
the polyhedral nature of this structure depends on that of the Reeb graph.

On the other hand, to the best of our knowledge, the literature lacks of a
acknowledgeable result in this sense in the piecewise linear case. Indeed, the
one-dimensional nature of the Reeb graph is usually accepted as a matter of fact
in the transition from pure mathematics, where the Reeb graph is built under
differentiability and genericity assumptions so that the Reeb graph is actually
guaranteed to be a graph [14], to applications, where spaces and functions are
usually only piecewise linear.

This paper aims at providing a guarantee that the Reeb graph is actu-
ally a graph also in the piecewise linear setting. In our opinion, this will allow
researchers that develop the theory and applications of the Reeb graph to found
their results on a more solid basis, filling a gap in the literature.

The paper is organized as follows. In Sect. 2, we review the general definition
of the Reeb graph, and the basic properties common to all the frameworks where
it may be defined, let it be the smooth setting or the piecewise linear setting. In
Sect. 3, we show some properties of polyhedra that turn out to be useful to prove
that the Reeb graph in this context is actually a graph. Section 4 is devoted to
the main result of this paper. Few comments in Sect. 5 conclude this work.

Reeb Graphs of Piecewise Linear Functions 25

2 The Topological Reeb Graph and Its Properties

In this section, we review the definition and properties of the Reeb graph.
The more general setting in which the definition of Reeb graph makes sense

is when X is a compact topological space endowed with a continuous function
f : X → R. This setting is so general that it encompasses the case when spaces
and functions are smooth as well when they are piecewise linear. The basic idea
is that of shrinking each connected component of a level set of the function f to
a single point. Technically, this is done via a quotient.

Definition 1. The topological Reeb graph of f is the quotient space X/∼f

where, for every x, x′ ∈ X, x ∼f x′ if and only if x and x′ belong to the same
connected component of f−1(f(x)).

In other words, the points of the topological Reeb graph correspond to con-
nected components of the level sets of f . Examples of Reeb graphs in the smooth
and piecewise linear cases are displayed in Fig. 1.

Fig. 1. Left: the Reeb graph of a Morse function on a smooth manifold. Right: the
Reeb graph of a PL function on a polyhedron.

In the case when the space is a smooth manifold and the function is generic
enough, technically a simple Morse function, it is well-known that this construc-
tion is guaranteed to yield a graph.

Theorem 2 ([14]). Let M be a compact n-dimensional manifold and f a simple
Morse function defined on M . The quotient space M/∼f has the structure of a
finite graph whose vertices bijectively correspond to the critical points of f .

In the next sections, we will prove that we get a graph also when the space
is piecewise linear.

26 B. Di Fabio and C. Landi

3 Preliminary Facts on Polyhedra

This section is initially devoted to reviewing the definitions of a polyhedron and
a piecewise linear function. Next, we focus on properties of level and inter-level
sets of piecewise linear functions.

Let A,B ⊂ R
n. The join of A and B is the set

A ∗ B = {λ · a + μ · b : a ∈ A, b ∈ B, λ, μ ∈ R, λ, μ ≥ 0, λ + μ = 1}.

If A = {a}, we say that the join of A and B, denoted simply by a ∗ B is a cone
with vertex a and base B.

Following [15], a subset P ⊂ R
n is called a polyhedron if each point p ∈ P

has a cone neighborhood N(p) = p ∗ L(p) in P , where L(p) is compact. In this
case, p,N(p) and L(p) are called the vertex, the star and the link of the cone,
respectively. Moreover, a map f : P → Q between polyhedra is said to be piece-
wise linear (abbreviated PL) if each point p ∈ P has a star N(p) = p ∗ L(p) in
P such that f(λ ·p+μ · �) = λ · f(p)+μ · f(�), with � ∈ L(p), λ, μ ≥ 0, λ+μ = 1,
i.e. if f is linear on each cone in P .

From now on, we let P be a compact polyhedron (and hence a Hausdorff
space), and f : P → R a PL-function. Because the definition of Reeb graph is
based on level sets, we now consider the level and inter-level sets of f .

Lemma 3. For every c ∈ f(P), f−1(c) is a compact sub-polyhedron of P .

Proof. By the continuity of f , f−1(c) is a compact subset of P because closed
in P , that is compact. We want to show that each point p ∈ f−1(c) has a cone
neighborhood N(p) = p ∗ L(p) in f−1(c), where L(p) is compact.

Because P is a polyhedron, p ∈ P has a cone neighborhood N ′(p) = p∗L′(p)
in P , where L′(p) is compact. We prove that N ′(p) ∩ f−1(c) is the star of the
cone in f−1(c) with vertex p and link the compact set L′(p) ∩ f−1(c), i.e. that
N ′(p) ∩ f−1(c) = p ∗ (L′(p) ∩ f−1(c)).

Let us show that N ′(p)∩f−1(c) ⊆ p∗ (L′(p)∩f−1(c)). If q ∈ N ′(p)∩f−1(c),
then f(q) = c and, by definition of N ′(p), q ∈ p∗L′(p). In other words, f(q) = c,
and q = λ · p + μ · �, with λ, μ ≥ 0, λ + μ = 1, � ∈ L′(p). In the case μ = 0, it
follows that q = p, and hence the claim holds true. In the case μ
= 0, because f
is PL, we deduce the following equalities:

c = f(q) = f(λ · p + μ · �) = λ · f(p) + μ · f(�) = λ · c + μ · f(�). (1)

From equalities (1), we get (1 − λ) · c = μ · f(�), with μ
= 0, i.e. f(�) = c. Thus
we can conclude that � ∈ L′(p) ∩ f−1(c), and, therefore, q ∈ p ∗ (L′(p) ∩ f−1(c)).

Let us prove that p ∗ (L′(p) ∩ f−1(c)) ⊆ N ′(p) ∩ f−1(c). If q ∈ p ∗ (L′(p) ∩
f−1(c)), then q = λ · p + μ · �, with λ, μ ≥ 0, λ + μ = 1, � ∈ L′(p) ∩ f−1(c).
Therefore q ∈ p ∗ L′(p) = N ′(p) and it holds that

f(q) = f(λ · p + μ · �) = λ · f(p) + μ · f(�),

with f(p) = f(�) = c by assumption, implying f(q) = c. In conclusion, q ∈
N ′(p) ∩ f−1(c). ��

Reeb Graphs of Piecewise Linear Functions 27

Lemma 4. For every a, b ∈ f(P), with a < b, f−1([a, b]) is a compact sub-
polyhedron of P .

Proof. By the continuity of f , f−1([a, b]) is a compact subset of P because closed
in P , which is compact. We want to show that each point p ∈ f−1([a, b]) has a
cone neighborhood N(p) = p ∗ L(p) in f−1([a, b]), with L(p) a compact set. Let
us distinguish the following two cases: (i) p ∈ f−1((a, b)) and (ii) p ∈ f−1(a) or
p ∈ f−1(b).

(i) If p ∈ f−1((a, b)), the claim immediately follows because f−1((a, b)) is open
in P and hence it is a sub-polyhedron of P (see [15, p. 4]).

(ii) If p ∈ f−1(a) (the case p ∈ f−1(b) is analogous), then we observe that,
in particular, p ∈ P , with P a polyhedron. This implies that p has a cone
neighborhood N ′(p) = p ∗ L′(p) in P , with L′(p) compact. We want to prove
that N ′(p) ∩ f−1([a, b]) is the star of the cone with vertex p and link the
compact set L′(p) ∩ f−1([a, b]), i.e. that N ′(p) ∩ f−1([a, b]) = p ∗ (L′(p) ∩
f−1([a, b])). Without loss of generality, we can assume that f(�) < b for every
� ∈ L′(p).
Let us show that N ′(p) ∩ f−1([a, b]) ⊆ p ∗ (L′(p) ∩ f−1([a, b])). If q ∈ N ′(p) ∩
f−1([a, b]), then a ≤ f(q) ≤ b and, by definition of N ′(p), q ∈ p ∗ L′(p). In
other words, a ≤ f(q) ≤ b, and q = λ · p + μ · �, with λ, μ ≥ 0, λ + μ = 1,
� ∈ L′(p). In the case μ = 0, it follows that q = p, and hence the claim. In
the case μ
= 0, let us consider the following equalities:

f(q) = f(λ · p + μ · �) = λ · f(p) + μ · f(�) = λ · a + μ · f(�),

where a ≤ f(q) ≤ b and f(�) < b by assumption. Thus λ · a + μ · f(�) ≥ a,
with μ
= 0, that yields f(�) ≥ a. Hence, we get � ∈ L′(p) ∩ f−1([a, b]), and,
therefore, q ∈ p ∗ (L′(p) ∩ f−1([a, b]).
Let us prove that p∗(L′(p)∩f−1([a, b])) ⊆ N ′(p)∩f−1([a, b]). If q ∈ p∗(L′(p)∩
f−1([a, b])), then q = λ·p+μ·�, with λ, μ ≥ 0, λ+μ = 1, � ∈ L′(p)∩f−1([a, b]).
Therefore, q ∈ p ∗ L′(p) = N ′(p), and it holds that

f(q) = f(λ · p + μ · �) = λ · f(p) + μ · f(�),

with f(p) = a and a ≤ f(�) < b by assumption. Thus, q ∈ N ′(p) and, on
the one hand, λ · a + μ · f(�) ≥ λ · a + μ · a, that yields f(q) ≥ a; on the
other hand, λ · a + μ · f(�) < λ · a + μ · b, that yields f(q) < b. In conclusion,
q ∈ N ′(p) ∩ f−1([a, b]).

��
Lemma 5. For every c ∈ f(P), there exist a real value ε = ε(c) > 0 and a PL-
retraction r : f−1([c−ε, c+ε]) → f−1(c) such that f−1(c) is a strong deformation
retract of f−1([c − ε, c + ε]) through r.

Proof. Because P is a polyhedron, for every p ∈ f−1(c) there exists a cone
neighborhood of p in P , N(p) = p∗L(p), with L(p) compact. Moreover f−1(c) ⊆⋃

p∈f−1(c)

N(p).

28 B. Di Fabio and C. Landi

Let us start by proving that there exists a real value δ = δ(c) > 0 such
that, for every 0 ≤ δ ≤ δ, f−1([c − δ, c + δ]) ⊆ ⋃

p∈f−1(c)

. By contradiction,

suppose that, for every δ > 0, there exists a point pδ ∈ f−1([c − δ, c + δ]) with
pδ /∈ ⋃

p∈f−1(c)

N(p). Hence, for δ = 1
k , and k ∈ N, there is a point pk ∈ f−1([c −

1
k , c+ 1

k]) such that pk /∈ ⋃

p∈f−1(c)

N(p). By the compactness of P , we can extract

a convergent subsequence from (pk), say (pkj
). Let p = lim

j→+∞
pkj

. We have

f(p) = lim
j→+∞

f(pkj
) = c because f is continuous, and pkj

∈ f−1([c− 1
kj

, c+ 1
kj

]).

Therefore, p ∈ f−1(c) ⊆ ⋃

p∈f−1(c)

N(p). This means that there exists a j̄ such

that, for every kj > kj̄, pkj
∈ ⋃

p∈f−1(c)

N(p), yielding a contradiction.

Now we proceed with the construction of the map r. We observe that, for
every 0 ≤ δ ≤ δ, f−1(c) is a sub-polyhedron of f−1([c − δ, c + δ]), and f−1([c −
δ, c + δ]) is a sub-polyhedron of P by virtue of Lemmas 3 and 4. Let us fix a
value 0 < δ ≤ δ. By [15, Theorem 2.11], P , f−1([c − δ, c + δ]) and f−1(c) are
the underlying polyhedra of simplicial complexes K,L and M , respectively. We
write

P = |K|, f−1([c − δ, c + δ]) = |L|, f−1(c) = |M |.
Since |M | ⊂ |L| ⊂ |K|, we can use [15, Addendum 2.12] to ensure the existence
of simplicial subdivisions K ′ � K, L′ � L, M ′ � M such that M ′ ⊂ L′ ⊂ K ′.

Let us denote by StL′(M ′), and call it the star of the simplicial complex M ′

in L′, the set of simplexes of L′ that have a face in M ′:

StL′(M ′) = {β ∈ L′ : α ≤ β, α ∈ M ′}.

We also denote by StL′(M ′), and call it the closed star of M ′ in L′, the set

StL′(M ′) = {γ ∈ L′ : γ ≤ β, β ∈ StL′(M ′)}.

Finally, we denote by LkL′(M ′), and call it the the link of M ′ in L′, the set of
simplexes of the closed star of M ′ in L′ that have no faces in M ′:

LkL′(M ′) = StL′(M ′) − StL′(M ′).

We observe that StL′(M ′) and LkL′(M ′) are simplicial sub-complexes of L′,
and |M ′|, |LkL′(M ′)| ⊆ |StL′(M ′)| ⊆ |L′|.

For any real number 0 < ε < δ such that

|LkL′(M ′)| ⊆ f−1([c − δ, c + δ])\f−1([c − ε, c + ε]) (2)

we construct the map:

r : f−1([c − ε, c + ε]) → f−1(c)

Reeb Graphs of Piecewise Linear Functions 29

as follows:

– For every p ∈ f−1(c), we define r(p) = p;
– For every p ∈ f−1([c − ε, c + ε]), with f(p)
= c, we observe that p belongs

to the interior of exactly one simplex α of StL′(M ′). Indeed, p ∈ StL′(M ′)
and it cannot be a vertex because of (2). Denote by σ the maximal face of α
in M ′ and by γ the maximal face of α in LkL′(M ′). It holds that p ∈ σ ∗ γ.
Thus there exists a unique point a in σ and a unique point b in γ such that
p = (1 − t) · a + t · b, t ∈ [0, 1]. We define r(p) = b.

We observe that r is a well-defined map because each point p ∈ f−1([c −
ε, c + ε]), with f(p)
= c, belongs to exactly one such segment, and two different
segments in StL′(M ′)∩f−1([c−ε, c+ε]) are either disjoint or meet at a common
point p′ ∈ f−1(c). Moreover, the map r is continuous, and linear on each simplex,
hence a PL retraction. Finally, f−1(c) is a strong deformation retract of f−1([c−
ε, c + ε]) via the homotopy

F : f−1([c − ε, c + ε]) × [0, 1] → f−1([c − ε, c + ε]), F (p, s) = (1 − s) · p + s · r(p).

��

4 The Reeb Graph is a Graph Also in the PL Case

In this section we assume X to be a compact polyhedron and f to be piecewise
linear.

We start this section with a preliminary result stating that the points of the
Reeb graph of a piecewise linear model are separable in the same way as points
in R

n are (technically, the space is Hausdorff).
We denote by πf the natural projection of X onto X/∼f induced by ∼f . The

topological Reeb graph X/∼f is naturally endowed with a continuous function
f̃ : X/∼f→ R defined by setting f̃(πf (x)) = f(x), so that the following diagram
commutes:

X
πf ��

f ���
��

��
��

� X/ ∼f

f̃����
��

��
��

�

R

Proposition 6. The topological Reeb graph X/∼f is a Hausdorff and compact
space.

Proof. We use the fact that X/∼f is Hausdorff if and only if

ker πf = {(x, x′) ∈ X × X : πf (x) = πf (x′)}

is closed. We want to show that, for every x, x′ ∈ X such that πf (x)
= πf (x′),
there exists an open neighborhood U of (x, x′) in X × X that does not intersect

30 B. Di Fabio and C. Landi

ker πf . This yields that (X × X) − ker πf is open, and hence the claim. By
Definition 1, we have to consider the following two cases: (i) f(x)
= f(x′), and
(ii) f(x) = f(x′) with x and x′ belonging to different components of f−1(f(x)).

(i) If f(x)
= f(x′), let 0 < ε < |f(x) − f(x′)|/2. Then it is sufficient to take
U = f−1((f(x)− ε, f(x)+ ε))× f−1((f(x′)− ε, f(x′)+ ε)). Indeed, it is an open
neighborhood of (x, x′) disjoint from kerπf .

(ii) If f(x) = f(x′) = c, let ε > 0 be such that the connected components
C and C ′ of f−1((c − ε, c + ε)) that contain x and x′, respectively, are disjoint.
Such ε exists because, by Lemma 5, f−1((c − ε, c + ε)) retracts onto f−1(c),
and we are assuming that x and x′ belong to different connected components
of f−1(c). The sets C and C ′ are open in X. Indeed, by the continuity of f ,
f−1((c−ε, c+ε)) is open in X, and therefore a sub-polyhedron of X. Hence, it is a
locally path-connected space because each of its points has a cone neighborhood.
This implies that the connected components of f−1((c − ε, c + ε)) are open in
f−1((c − ε, c + ε)), and, hence, in X. From the properties that C and C ′ are
disjoint, open and connected, it follows that C × C ′ is an open subset of X × X
that contains (x, x′) and does not intersect ker πf .

Finally, X/∼f is compact because X is compact and πf is continuous. ��
Proposition 7. X/ ∼f is an abstract polyhedron of dimension 0 or 1.

Proof. As seen in the proof of Lemma 5, for every c ∈ f(X) there is an ε =
ε(c) > 0 and a retraction r such that f−1([c−ε, c+ε]) retracts onto f−1(c) and is
contained in the set

⋃
x∈f−1(c) N(x), with N(x) = x ∗L(x) a cone neighborhood

of x in X. By the compactness of X, there exists a finite sequence of values
c1 < c2 < · · · < ck in f(X) such that, setting εj = ε(cj), X ⊆ ⋃k

j=1 f−1((cj −
εj , cj +εj)). Without loss of generality, we can assume that the cover is minimal,
i.e. for no j̄ = 1, . . . , k, f−1((c̄j − ε̄j, c̄j + ε̄j)) ⊆ ⋃

j �=j̄ f
−1((cj − εj , cj + εj)), and

that cj < cj+1 − εj+1 < cj + εj < cj+1, for 1 ≤ j ≤ k − 1. For j = 1, . . . , k,
denote by rj the retraction of f−1([cj − εj , cj + εj]) onto f−1(cj) defined as in
the proof of Lemma 5.

Let Cα be a connected component of f−1([cj − εj , cj + εj]) with 1 ≤ j ≤ k.
Our goal is to define a PL function

hα : Cα → R
2

whose image is a compact polyhedron of dimension one.
To this end, let ∂−Cα = f−1(cj −εj)∩Cα and ∂+Cα = f−1(cj +εj)∩Cα. We

assume that ∂−Cα, if non-empty, is the union of m components, C−
α,1, . . . , C−

α,m,
and, similarly, ∂+Cα, if non-empty, is the union of n components, C+

α,1, . . . , C+
α,n,

with m,n ≥ 1. Now we observe that ∂−Cα is empty if and only if the set
Cα ∩ f−1((cj − εj , cj)) is empty. Moreover, if x ∈ Cα ∩ f−1((cj − εj , cj)), then
there is a unique i ∈ {1, . . . , m} such that the line passing through x and rj(x)
intersects C−

α,i. In that case, we denote by s−
i (x) the intersection point. Similarly

for ∂+Cα. Thus, in order to define the function hα : Cα → R
2 we proceed as

follows:

Reeb Graphs of Piecewise Linear Functions 31

– For every x ∈ f−1(cj) ∩ Cα, we set

hα(x) = O = (0, 0)

– If ∂−Cα is non-empty
• for every x ∈ C−

α,i, i = 1, . . . , m, we set

hα(x) = A−
α,i = (i,−εj)

• for every x ∈ Cα with cj − εj < f(x) < cj , letting i ∈ {1, . . . , m} be the
index such that the line passing through x and rj(x) intersects C−

α,i at
s−

i (x), so that x = (1 − t) · s−
i (x) + t · rj(x), with t ∈ [0, 1], we set

hα(x) = (1 − t) · hα(s−
i (x)) + t · hα(rj(x)) = (1 − t) · A−

α,i

– If ∂+Cα is non-empty,
• for every x ∈ C+

α,i, i = 1, . . . , n, we set

hα(x) = A+
α,i = (i, εj)

• for every x ∈ Cα with cj < f(x) < cj + εj , letting i ∈ {1, . . . , n} be the
index such that the line passing through x and rj(x) intersects C+

α,i at
s+

i (x), so that x = (1 − t) · s+
i (x) + t · rj(x), with t ∈ [0, 1], we set

hα(x) = (1 − t) · hα(s+
i (x)) + t · hα(rj(x)) = (1 − t) · A+

α,i

It is easily seen that hα is well-defined, continuous and PL. Moreover, by
construction, hα(Cα) is a compact polyhedron of dimension 1 in R

2:

hα(Cα) = Nα(O) = O ∗ Lα(O)

with Lα(O) = {A−
j,1, . . . , A

−
j,m, A+

j,1, . . . , A
+
j,n}. We also observe that if x1, x2 ∈

Cα are such that hα(x1) = hα(x2), then f(x1) = f(x2).
Now we use the maps hα in the same way as in [15, Example 2.27(3)] to prove

that X/∼f is an abstract polyhedron. To do so, for every connected component
Cα of f−1([cj − εj , cj + εj]), with 1 ≤ j ≤ k, we construct a continuous injection

ηα : Nα(O) → X/∼f

so that the maps ηα are PL related, i.e. η−1
α ◦ ηβ is PL whenever it is defined.

Let us consider the following diagram:

Cα

˜hα

����������
πα

����������

Nα(O)
ηα �� X/ ∼f

(3)

where h̃α = h
|Nα(O)
α , πα = πf |Cα

, and ηα(y) = πα(h̃−1
α (y)) for every y ∈ Nα(O).

It holds that:

32 B. Di Fabio and C. Landi

– ηα is a well-defined map making Diagram (3) commute.
Let y ∈ Nα(O). Let x1, x2 ∈ h−1

α (y). As already remarked, f(x1) = f(x2).
Moreover, by construction, x1 and x2 belong to the same connected compo-
nent of f−1(f(x1)). Hence, πf (x1) = πf (x2), implying the claim.

– ηα is continuous.
Let D be a closed set in the image im ηα, of ηα. By the commutativity of
Diagram (3), D ⊆ im πα. By the continuity of πα, π−1

α (D) is closed in Cα.
Moreover, since h̃α is a continuous map from a compact space to a Haus-
dorff space, by the closed map lemma we see that h̃α is closed, and, hence,
h̃α(π−1

α (D)) = η−1
α (D) is a closed set in Nα(O).

– ηα is injective.
Let y1, y2 ∈ Nα(O) such that ηα(y1) = ηα(y2). Because h̃α is surjec-
tive, there exists x1, x2 ∈ Cα such that h̃α(x1) = y1 and h̃α(x2) = y2.
By the commutativity of Diagram (3), ηα(h̃α(x1)) = ηα(h̃α(x2)) if and
only if πα(x1) = πα(x2). In turn, the latter equality occurs if and only
if f(x1) = f(x2) and x1, x2 belong to the same connected component of
f−1(f(x1)). In particular, if f(x1) = f(x2) = cj , then, by the definition
of hα, we have h̃α(x1) = h̃α(x2) = O, i.e. y1 = y2 = O. Otherwise, if
f(x1) = f(x2) < cj , then

x1 = (1 − t1) · s−
i (x1) + t1 · rj(x1)

and
x2 = (1 − t2) · s−

i′ (x2) + t2 · rj(x2)

with t1 = t2 ∈ [0, 1] and i, i′ ∈ {1, . . . , m}. Necessarily, it holds that i = i′

because x1, x2 belong to the same component of f−1(f(x1)). Thus, h̃α(x1) =
h̃α(x2), i.e. y1 = y2. The case f(x1) = f(x2) > c is analogous.

– ηα is an embedding.
Since every continuous injection from a compact to a Hausdorff space is an
embedding, it is sufficient to apply Proposition 6 to obtain the claim.

– If Cα is a connected component of f−1([cj −εj , cj +εj]) and Cβ is a connected
component of f−1([cj′ − εj′ , cj′ + εj′]) such that Cα ∩ Cβ
= ∅, it holds that

η−1
α ◦ ηβ|˜hβ(Cα∩Cβ) : h̃β(Cα ∩ Cβ) → h̃α(Cα ∩ Cβ)

is PL.
By the minimality of the cover {f−1((cj − εj , cj + εj))}, we can assume that
j′ = j + 1. From the commutativity of the diagram

Cα ∩ Cβ

˜hα

���������������
πf|Cα∩Cβ

��

˜hβ

		�������������

Nα(O)
ηα

�� X/∼f Nβ(O)
ηβ

Reeb Graphs of Piecewise Linear Functions 33

we see that, for every x ∈ Cα ∩ Cβ , we have

η−1
α ◦ ηβ(h̃β(x)) = h̃α(x).

Moreover, since we are assuming that cj < cj+1 − εj+1 < cj + εj < cj+1, if
x ∈ Cα ∩ Cβ , there are s+

i (x) ∈ ∂+(Cα) and s−
i′ (x) ∈ ∂−(Cβ) such that

x = λ · s−
i′ (x) + μ · s+

i (x)

for λ, μ > 0, λ + μ = 1. We observe that s+
i (x) and s−

i′ (x) belong to Cα ∩ Cβ .
By definition of h̃α and h̃β ,

h̃α(s+
i (x)) = (i, εj) = A+

i , h̃β(s−
i′ (x)) = (i′, εj+1) = B−

i′

We set Â+
i = h̃β(s+

i (x)) and B̂−
i′ = h̃α(s−

i′ (x)). Now we use the fact that h̃α

and h̃β are PL to deduce that

h̃α(x) = λ · B̂−
i′ + μ · A+

i

and
h̃β(x) = λ · B−

i′ + μ · Â+
i

Thus,

η−1
α ◦ ηβ(λ · B−

i′ + μ · Â+
i) = η−1

α ◦ ηβ(h̃β(x)) = h̃α(x)

= λ · η−1
α ◦ ηβ(B−

i′) + μ · η−1
α ◦ ηβ(Â+

i)

proving the piecewise linearity of the map η−1
α ◦ ηβ . ��

Corollary 8. The topological Reeb graph X/∼f embeds into a polyhedron Rf

of dimension 0 or 1, via a homeomorphism ξ : X/∼f→ Rf such that the map
π̂f = ξ ◦ πf ,

X
πf ��

π̂f ���
��

��
��

� X/∼f

ξ����
��

��
��

Rf

is PL. Moreover, the function f̂ : Rf → R that makes the following diagram
commute

X
π̂f ��

f ���
��

��
��

� Rf

f̂��		
		

		
		

R

is also PL.

Proof. By Proposition 7, X/∼f is the identification space of the family of 1-
dimensional polyhedra {Nα(O)} under the family of PL related maps {ηα}.
Hence it can be embedded as a polyhedron Rf in R

n for some n in such a way
that π̂f is PL. The piecewise linearity of f̂ follows from the surjectivity of π̂f

and the fact that f and π̂f are PL. ��

34 B. Di Fabio and C. Landi

5 Conclusions

In this paper we have provided a proof that the Reeb graph of a polyhedron
is itself a polyhedron of dimension 0 or 1, i.e. it is a graph. It is interesting to
notice that while in the smooth case the Reeb graph is guaranteed to be a graph
under a genericity condition for the function defined on a manifold, in the PL
case we neither need the space to be a manifold nor the function to be generic.
Thus, in the PL case the result is much more general than in the differentiable
case.

References

1. Attene, M., Biasotti, S., Spagnuolo, M.: Shape understanding by contour driven
retiling. Vis. Comput. 19(23), 127–138 (2003)

2. Bauer, U., Di Fabio, B., Landi, C.: An edit distance for Reeb graphs. In: Ferreira,
A., Giachetti, A., Giorgi, D. (eds.) Eurographics Workshop on 3D Object Retrieval.
The Eurographics Association (2016)

3. Bauer, U., Ge, X., Wang, Y.: Measuring distance between Reeb graphs. In: Pro-
ceedings of the Thirtieth Annual Symposium on Computational Geometry, SOCG
2014, New York, NY, USA, pp. 464–473. ACM (2014)

4. Biasotti, S., De Floriani, L., Falcidieno, B., Frosini, P., Giorgi, D., Landi, C.,
Papaleo, L., Spagnuolo, M.: Describing shapes by geometrical-topological prop-
erties of real functions. ACM Comput. Surv. 40(4), 1–87 (2008)

5. Biasotti, S., Falcidieno, B., Spagnuolo, M.: Extended Reeb graphs for surface
understanding and description. In: Borgefors, G., Nyström, I., Baja, G.S. (eds.)
DGCI 2000. LNCS, vol. 1953, pp. 185–197. Springer, Heidelberg (2000). doi:10.
1007/3-540-44438-6 16

6. Biasotti, S., Marini, S., Spagnuolo, M., Falcidieno, B.: Sub-part correspondence by
structural descriptors of 3D shapes. Comput. Aided Des. 38(9), 1002–1019 (2006)

7. de Silva, V., Munch, E., Patel, A.: Categorified Reeb graphs. Discrete Comput.
Geom. 55(4), 1–53 (2016)

8. Dey, T.K., Wang, Y.: Reeb graphs: approximation and persistence. Discrete Com-
put. Geom. 49(1), 46–73 (2013)

9. Edelsbrunner, H., Harer, J., Mascarenhas, A., Pascucci, V.: Time-varying Reeb
graphs for continuous space-time data. In: Proceedings of the Twentieth Annual
Symposium on Computational Geometry, SCG 2004, pp. 366–372. ACM (2004)

10. Edelsbrunner, H., Harer, J., Patel, A.K.: Reeb spaces of piecewise linear mappings.
In: Proceedings of the Twenty-fourth Annual Symposium on Computational Geom-
etry, SCG 2008, pp. 242–250. ACM (2008)

11. Hétroy, F., Attali, D.: Topological quadrangulations of closed triangulated surfaces
using the Reeb graph. Graph. Models 65, 131–148 (2003). Special Issue: Discrete
Topology and Geometry for Image and Object Representation

12. Kanongchaiyos, P., Shinagawa, Y.: Articulated Reeb graphs for interactive skeleton
animation, pp. 451–467. World Scientific (2011)

13. Patané, G., Spagnuolo, M., Falcidieno, B.: Para-graph: graph-based parameter-
ization of triangle meshes with arbitrary genus. Comput. Graph. Forum 23(4),
783–797 (2004)

http://dx.doi.org/10.1007/3-540-44438-6_16
http://dx.doi.org/10.1007/3-540-44438-6_16

Reeb Graphs of Piecewise Linear Functions 35

14. Reeb, G.: Sur les points singuliers d’une forme de Pfaff complétement intégrable
ou d’une fonction numérique. Comptes Rendus de L’Académie ses Sciences 222,
847–849 (1946). (French)

15. Rourke, C.P., Sanderson, B.J.: Introduction to piecewise-linear topology. Ergeb-
nisse der Mathematik und ihrer Grenzgebiete, Band 69. Springer, New York (1972)

16. Shinagawa, Y., Kunii, T.L.: Constructing a Reeb graph automatically from cross
sections. IEEE Comput. Graphics Appl. 11(6), 44–51 (1991)

17. Shinagawa, Y., Kunii, T.L., Kergosien, Y.L.: Surface coding based on Morse The-
ory. IIEEE Comput. Graph. Appl. 11(5), 66–78 (1991)

18. Werghi, N., Xiao, Y., Siebert, J.P.: A functional-based segmentation of human
body scans in arbitrary postures. IEEE Trans. Syst. Man Cybern. Part B 36(1),
153–165 (2006)

19. Zhang, E., Mischaikow, K., Turk, G.: Feature-based surface parameterization and
texture mapping. ACM Trans. Graph. 24(1), 1–27 (2005)

Learning and Graph Kernels

Learning from Diffusion-Weighted Magnetic
Resonance Images Using Graph Kernels

Sylvain Takerkart1(B), Gottfried Berton1, Nicole Malfait1,
and François-Xavier Dupé2

1 Aix Marseille Univ, CNRS, INT, Inst Neurosci Timone, Marseille, France
sylvain.takerkart@univ-amu.fr

2 Aix Marseille Univ, CNRS, Centrale Marseille, LIF, Marseille, France

Abstract. Diffusion-weighted magnetic resonance imaging (DWI) is a
scanning procedure that allows infering the anatomical connectivity of
the brain non invasively. DWI can be used to segment the brain into a
set of relevant sub-regions, yielding what is called a parcellation in the
neuroimaging literature. In this paper, we introduce a generic framework
that allows building predictive models using parcellations obtained on a
single individual. It consists in constructing attributed region adjacency
graphs to represent the parcellations and using suitable graph kernels to
exploit the versatility of kernel methods. We demonstrate the relevance of
this framework on real data, by showing that we can predict the age range
of an individual from the connectivity structure of its corpus callosum,
the main hub of connections between the left and right hemispheres of
the brain. Furthermore, we study the behavior of different graph kernels
for this task. This work opens new opportunities to identify DWI-based
biomarkers of neurodegenerative and psychiatric diseases.

Keywords: Region-adjacency graphs · Graph kernel · Magnetic reso-
nance imaging · Brain connectivity · Brain parcellation

1 Introduction

In recent years, the use of neuroimaging-based predictive models has seen a fast
development. In most cases, these machine learning models are designed in order
to build diagnosis or prognosis tools to help clinicians deal with neurological
or psychiatric disorders [23]. But they also prove valuable in the field of basic
research aiming at a better understanding of the organization of the brain [26].
Amongst the different neuroimaging modalities used in this context, diffusion-
weighted magnetic resonance imaging (DWI) is under-exploited, with only a
limited number of published studies (see for instance [7,9,11,16,17]). Yet it is
attracting a growing interest.

DWI is a magnetic resonance imaging procedure that uses the diffusion of
water molecules to reveal the micro-architecture of a physiological tissue. The
white matter of the brain (WM) is of particular interest for neuroscientists and

c© Springer International Publishing AG 2017
P. Foggia et al. (Eds.): GbRPR 2017, LNCS 10310, pp. 39–48, 2017.
DOI: 10.1007/978-3-319-58961-9 4

40 S. Takerkart et al.

can be studied using DWI. Indeed, the WM mostly contains myelinated axons,
the neuronal fibers, which are organized into large groups of axons called bundles.
The structure of these bundles alters the free motion of the water molecules, and
the resulting anisotropy can be captured using DWI. In the nervous system, the
role of the axons is to transmit information between neurons, connecting different
brain regions. Thanks to its ability to characterize the axon bundles of the WM,
DWI has developed into a major tool to study brain connectivity. Furthermore,
because a large number of brain disorders involve abnormal connectivity [6], DWI
has allowed to gain unprecedent insights about these pathologies. It is therefore
crucial to further design new DWI-based predictive models in order to identify
non-invasive biomarkers of connectivity-based neurological syndromes.

One of the major questions to be addressed when designing predictive models
based on DWI data is the representation of the data itself. A commonly used
high-level summary representation of the diffusion data consists in segmenting
the domain of interest – either the full brain or a given region of interest – into
homogeneous sub-regions, often denoted as parcels in the neuroimaging com-
munity. The literature focuses on estimating parcellation models that are valid
for a population, for two main reasons: first, because one of the main aims of
neuroscience is to find invariants across individuals; secondly, because it is not
possible to produce inference at the population level using parcellations esti-
mated on data from a single individual using the statistical tools that are most
commonly used in neuroimaging. However, because such parcellations simply
are the results of a segmentation, the field of pattern recognition offers a wide
range of methods which could help overcome this challenge. Our objective in
this paper is therefore to demonstrate that pattern recognition tools can make it
possible to build predictive models based on DWI-based parcellations estimated
on a single individual, in order to make inference at the population level.

The framework we propose starts by the construction of attributed graphs
from such individual parcellations and then relies on kernel methods [21], using
appropriate graph kernels, to build a predictive model. We demonstrate the
effectiveness of this framework on a real DWI dataset, by showing, for the first
time, that we can estimate the age category of a subject from the connectivity
structure of his/her corpus callosum, the main hub of connections between the
two hemispheres of the brain. Furthermore, we study the influence of the choice
of the kernel on the performance of the model, by comparing the expressivity
of several classical graph kernels. In Sect. 2, we describe the processing workflow
necessary to obtain a parcellation from the raw DWI data, the processes used to
construct attributed graphs and the different graph kernels. Then, in Sect. 3, we
provide a full description of the data itself, the neuroscientific question addressed
in our experiments and the obtained results. Finally, we discuss these results and
future research directions in Sect. 4.

Learning from DWI Data Using Graph Kernels 41

2 Methods

2.1 Constructing DWI-Based Parcellations

The processing of DWI data involves a complex analysis workflow to obtain
a parcellation from the raw data, which is a set of three-dimensional volumes
that each provides, at every brain voxel, a measurement of the amount of water
diffusion in a given direction – the set of directions being a priori chosen to
isotropically span the entire sphere. After correction of the image distortions and
compensation of the between-volume displacements, we first estimate the fibre
orientation distribution at each voxel. We use the so-called ball-and-stick model,
which assumes that the orientation diffusion function includes an isotropic com-
ponent – the ball – and one or several directions that follows the neuronal fibers
passing through this voxel – the stick(s). This model is fit at each voxel using
a sampling-based Bayesian technique [2]. Secondly, a probabilistic tractography
algorithm allows to estimate the probability of connection p(m,n) between two
brain voxels/regions m and n [2]. For the domain D to be parcellated and a
set of target brain regions T , we can thus compute the connectivity matrix
C = [p(m,n)]m∈T ,n∈D ∈ R

M×N , where M and N are respectively the number of
regions in T and the number of voxels in D. Note that the vector [p(m,n)]m∈T
is called the tractogram of n. The segmentation of D into parcels is obtained
using a clustering of the columns of C. Here, we use Ward’s hierarchical cluster-
ing, with an added spatial constraint, to identify contiguous clusters of voxels

Fig. 1. Processing workflow of the DWI data. A: a structural MRI depicting the shape
of the brain. B: extraction of the domain D to be parcellated (here, the corpus cal-
losum). C: definition of the set of target regions T for the tractography (here, a set
of anatomically defined regions of the cortex). D: the connectivity matrix C contains
the probability of connection of any given voxel of D to any of the target regions. E:
the re-ordered connectivity matrix after clustering of the tractograms/columns. F: the
parcellation V , where voxels are colored with the corresponding cluster label.

42 S. Takerkart et al.

that have similar tractograms. Each of these clusters forms a parcel vi, i.e. a
sub-region with a homogeneous connectivity structure, as estimated using DWI
data. This workflow is illustrated on Fig. 1.

2.2 Graph Construction

Given a parcellation V of the domain of interest D, i.e. a set of R sub-
regions/parcels {vi}i=R

i=1 that fully cover D and do not intersect, we would like
to obtain an adequate representation of the connectivity structure within D. We
use region adjacency graphs to encode the topographical character of the infor-
mation contained in the parcellation. We therefore define a node of the graph at
each parcel vi ∈ V . The set of edges E ⊂ V ×V is given by the spatial adjacency
of the parcels, i.e. e = vivj ∈ E ⇐⇒ parcels vi and vj are spatially adja-
cent. We then add two vectorial attributes to each graph node: i) the average
tractogram of all voxels of the parcel, and ii) the coordinates of the barycen-
ter of the parcel, in a coordinate system that is comparable across participants.
We note ϕ1 : V → R

M and ϕ2 : V → R
3 the functions respectively giving

the tractogram and coordinate attributes of a node, and ϕ : V → R
M × R

3 so
that ϕ(v) = (ϕ1(v), ϕ2(v)). The connectivity structure of a given brain region is
therefore represented by the attributed graph defined as G = (V,E, ϕ).

2.3 Learning from Graphs

Learning from graphs is a difficult task and graph kernels, which provide an
indirect projection of a graph onto a Hilbert space, are popular for that matter
because they render accessible a vast array of machine learning methods. Several
strategies can be employed to design graph kernels, such as instantiating an R-
convolution kernel [8] (see e.g. the random walk kernel [10,27], kernels over sets
of paths [24], trees [13] or graphlets [22]), exploiting spectral graph decomposi-
tions [28] or the concept of graph edit distance [18]. While most recent works
focus on improving kernel scalability for unlabeled or weakly-labeled graphs (see
e.g. [1,5,12,22]), we here need kernels that can easily accomodate vector-valued
attributes. We describe below the kernels that we will use for our experiments.

Walk-Based R-Convolution Graph Kernels. Given a graph G, we denote
V its set of vertices, E ⊂ V ×V its set of edges and ϕ : V → R

L the vector-valued
function giving the attributes of the nodes. A walk w is defined as a sequence of
adjacent nodes in the graph, and we suppose that a positive definite walk kernel,
denoted Kwalk, is available.

The first kernel we will use is the classical random walk graph kernel [10].
For two graphs G1 and G2, it is defined as

Krandom(G1, G2) =
∑

w1∈G1

∑

w2∈G2

Kwalk(w1, w2)p(w1|G1)p(w2|G2), (1)

where p(w|G) is the probability of walk w in G. It compares the density of walks
between graphs, thus taking into account both local and global information.

Learning from DWI Data Using Graph Kernels 43

Our second kernel is the bag of paths kernel [4,24] – paths are walks with
unique nodes. Let P1 and P2 be bags of paths respectively associated with G1

and G2. We denote by |.| the number of paths inside a bag. The mean bag of
paths kernel is constructed by averaging the walk kernel over all couples of paths
from each bag:

Kmean(P1, P2) =
1

|P1|
1

|P2|
∑

h∈P1

∑

h′∈P2

Kwalk(h, h′). (2)

In practice, we use bags of paths of constant size, i.e. PP(G) =
{w ∈ G | |w| ∈ P} .

At the core of these graph kernels, the walk kernel Kwalk measures the sim-
ilarity between two walks. Clearly most of the expressivity of the whole kernel
relies on how we compare walks with Kwalk. Here, we use the classical kernel
proposed by [10], where we only compare walks of the same size by making a
direct alignment of both nodes and edges. The considered walk kernel writes as
follow for two walks h = v1v2 . . . v|h| and h′ = v′

1v
′
2 . . . v′

|h′|,

Kwalk(h, h′) =

⎧
⎪⎨

⎪⎩

|h|∏
i=1

Knode(ϕ(vi), ϕ(v′
i)) if |h| = |h′|

0 otherwise

, (3)

where Knode is a kernel on the attributes of the nodes, usually defined with
a combination of Gaussian kernels. Given our definition ϕ = (ϕ1, ϕ2) given in
Sect. 2.2, we use the following node kernel,

Knode(ϕ(v1), ϕ(v2)) = exp

(
−‖ϕ1(v1) − ϕ1(v2)‖2

2σ2
1

)
exp

(
−‖ϕ2(v1) − ϕ2(v2)‖2

2σ2
2

)
,

(4)

where σ1 > 0 and σ2 > 0 are two hyper-parameters.

Graph Edit Distance Kernels. Graph edit distances [14,20] are an attractive
way of comparing graphs as they provide a set of editions (e.g. node/edge sub-
stitution, suppression, addition. . .) with its cost. In [18], the authors proposed
to build a graph kernel from such distances by applying them inside a Gaussian
kernel. Let dE be a graph edit distance, the corresponding kernel is defined by:

Kedit(G1, G2) = exp

(
−dE(G1, G2)

2

2σ2
E

)
, (5)

where σE > 0 is the hyper-parameter of the kernel.
In order to avoid the computational burden associated with computing dE , we

use the approximation proposed in [20], which relies on the Munkres assignment
algorithm and requires comparing nodes attributes. For this, given that ϕ =
(ϕ1, ϕ2), we use a combination of euclidean norms:

dnode(v1, v2) = ‖ϕ1(v1) − ϕ1(v2)‖ + γ‖ϕ2(v1) − ϕ2(v2)‖, (6)

where γ is an equilibrium parameter.

44 S. Takerkart et al.

3 Experiments and Results

The objective of our experiments is to demonstrate that our framework makes
it possible to perform predictions from an individual’s DWI-based parcellation.
In the following, we present the addressed prediction task and its neuroscientific
motivation, the dataset used in our experiments, the experimental procedure
and the quantitative results that we obtained.

3.1 Aging Trajectory of the Corpus Callosum

The brain is an organ that continuously evolves throughout the lifespan. In par-
ticular, numerous markers of aging can be identified using neuroimaging tech-
niques, such as for instance the reduction of the global volume of grey matter
in the brain. Numerous brain pathologies – such as Alzheimer’s disease – induce
some alterations compared to the normal aging process. Establishing the aging
trajectory of specific brain features in a healthy population can therefore allow
to use a deviation from this normal trajectory as a potential marker of a dis-
ease, which opens possibilities to design diagnosis and/or prognosis tools. In a
predictive framework, establishing an aging trajectory comes down to obtaining
a model that can guess the age of the subject from a given set of brain features.

Amongst the particular parts of the brain that have been identified to dis-
play age-related changes, the corpus callosum (CC), the largest commissure of
white matter connecting the two hemispheres of the brain, is of particular inter-
est because its integrity is known to be altered in several neurodegenerative
diseases, with for instance an abnormally low CC size [25]. However, the age-
related changes of the spatial organisation of the CC structural connectivity have
not been studied until now. It is well known that the connectivity structure of
the CC is topographically organized: among others, the fibers that pass through
its most anterior part – called the genu – project to the anterior part of the
cortex – the frontal lobe, while fibers passing through the posterior CC – the
splenium – project to the back of the brain – the occipital lobe. In the present
paper, we use DWI data to investigate whether the spatial organization of the
CC connectivity changes with age.

3.2 Data and Experiments

Our data comes from the enhanced Nathan Kline Institute-Rockland Sample1.
A small sub-sample of the participants enrolled in this initiative have been
scanned using structural and diffusion-weighted MRI, allowing us to work with
data from 65 participants aged 36 to 77 year-old. We analyzed the structural
MRI (MPRAGE sequence, voxel size: 1 mm, volume size: 256×256×176, acqui-
sition time: 6 mn, see Fig. 1(A) using the freesurfer software suite2 to identify
the CC (Fig. 1(B) and define a set of 1000 target regions for the tractography

1 http://fcon 1000.projects.nitrc.org/indi/enhanced/.
2 https://surfer.nmr.mgh.harvard.edu/.

http://www.fcon.com/_1000.projects.nitrc.org/indi/enhanced/
https://surfer.nmr.mgh.harvard.edu/

Learning from DWI Data Using Graph Kernels 45

(Fig. 1(C). The DWI data (EPI sequence, 137 directions, voxel size: 2 mm, vol-
ume size: 106 × 90 × 64, acquisition time: 6 mn) was pre-processed with the
FSL software suite3. The rest of the experiments were conducted using in-house
software (see Fig. 2 for an illustration of the resulting parcellations and graphs).

Fig. 2. Top: 10 examples of parcellations of the corpus callosum (with R = 12 parcels).
Bottom: the resulting graphs, displayed in a local rectangular coordinate system.

We seperated the 65 participants into two groups, the 32 oldest and the 33
youngest, to set up a binary classification problem. Our experiments therefore
asked whether it is possible to predict the age group of an individual from the
graph G of his/her CC, which would imply, if successfull, that the spatial organi-
zation of the CC connectivity does indeed change with aging. We used a Support
Vector Machine to perform this classification task, using five kernels amongst the
ones described above: (i) Krandom (using σ1 = σ2 = 0.5, as with all the following
walk-based kernels); (ii) Kmean with P ∈ {2} (i.e. walks with 2 nodes), that we
will denote Kmean 2; (iii) Kmean with P ∈ {3}, hereafter Kmean 3; (iv) Kmean

with P ∈ {2, 3}, hereafter Kmean 23; (v) Kedit (with γ = 1000 and σE = 1).
We assessed the quality of the predictions with the mean classification accuracy
obtained using a cross-validation scheme that included 500 randomly drawn bal-
anced data splits, each with 56 and 9 participants respectively in the training
and test set. Given the small size of the dataset, this procedure ensures obtaining
an unbiased estimate of the mean accuracy.

We conducted two sets of experiments. First, in order to study the influence
of the number of graph nodes R, we computed the classification accuracy when
R is kept constant – taken in {4, 6, 8, · · · , 68, 70} – for all splits of the cross-
validation. Secondly, we performed a model order selection, choosing R within
the same range, separately for each split, using an inner cross-validation within
the training set. The selected value was used to fit the model on the full training
set and test it on the left-out data.

3 http://fsl.fmrib.ox.ac.uk.

http://fsl.fmrib.ox.ac.uk

46 S. Takerkart et al.

3.3 Results

The results of the experiments are shown on Fig. 3. All the classification results
are above chance level (0.5), establishing the two main outcomes of the paper:
from a methodological point of view, this demonstrates the validity of our frame-
work and therefore the feasability of using individual parcellations to build pre-
dictive models; from an applicative angle, this shows for the first time that the
connectivity structure of the corpus callosum changes with aging. The classifi-
cation scores are not very high (maximum: 0.68), which is common with neu-
roimaging data, for which the signal to noise ratio of the brain signatures of
interest is usually very weak and the sample size very limited.

Fig. 3. Mean classification accuracy (± standard error) for five kernels. A: in function
of the number R of graph nodes (kept constant for all folds of the cross-validation).
Right: when R is selected through an inner cross-validation.

Figure 3(A) shows that the performance of the model strongly depends on the
number R of graph nodes. Interestingly, the peak performances are not obtained
for the same value of R for all kernels: the accuracy peaks for the random walk
and edit distance kernels between R = 12 and 18, while the mean kernels per-
form best around R = 44. Figure 3(B) shows that when performing model order
selection, Krandom outperforms the other kernels, followed by Kmean 2 and Kedit.

4 Discussion and Future Work

In this paper, we have introduced a new framework that allows designing predic-
tive models from individual DWI-based parcellations. To the best of our knowl-
edge, this is the first of its kind.

The behavior of the different kernels we used is interesting since they are
sensitive to various types of information. The fact that Kmean 2 outperforms
Kmean 3 and Kmean 23 indicates that most of the information lies at the local
level, and more precisely at the level of pairs of adjacent nodes. Adding an extra
node in the paths seems to introduce noise rather than information, which could

Learning from DWI Data Using Graph Kernels 47

be expected from the noisy character of the parcellation process illustrated by
the variability of the graphs on Fig. 2. But the higher performances of Krandom,
which can catch both local and global features, suggests that some extra infor-
mation might lie at a more global scale. Also note that Kedit is more unstable
than the other kernels, which can be caused by its non positive-definiteness [19]
or by a failure of the Munkres-based assignment on our noisy parcellations.

This opens several directions for future work. First, the graph construction
should benefit from concatenating different parcellations into multi-scale hierar-
chical graphs. Indeed this will provide a more robust representation of the data
and render more explicit the combination of local and global information. Fur-
thermore, because these graphs have a geometric embedding, the use of combi-
natorial maps and pyramids [3] could also be beneficial. Secondly, improvements
should come from the graph kernel itself. We believe that the level of expressiv-
ity of the kernel on this data should increase by incorporating ideas from recent
work such as [5] or using more structured base elements such as graphlets [22].

From an applicative perspective, we have demonstrated that the connectivity
structure of the corpus callosum changes with age. However, additional work is
needed to understand the nature of these modifications. Furthermore, in order
to apply this framework on clinical data and identify biomarkers of a given
neurological disorder, two main lines of work lie ahead of us. First, we will have
to assess more finely the aging trajectory – of the corpus callosum or any other
brain region – using a regression model that would offer a direct prediction of
the age of the subject (similarly to [16]). Second, we will have to improve the
performances far beyond the classification accuracies obtained here. This will
require working with much larger datasets and therefore using more scalable
kernels such as introduced in [15].

References

1. Bai, L., Rossi, L., Zhang, Z., Hancock, E.R.: An aligned subtree kernel for weighted
graphs. In: ICML, pp. 30–39 (2015)

2. Behrens, T., Berg, H.J., Jbabdi, S., Rushworth, M., Woolrich, M.: Probabilistic
diffusion tractography with multiple fibre orientations: what can we gain? Neu-
roImage 34(1), 144–155 (2007)

3. Brun, L., Kropatsch, W.: Introduction to combinatorial pyramids. In: Bertrand,
G., Imiya, A., Klette, R. (eds.) Digital and Image Geometry. LNCS, vol. 2243, pp.
108–128. Springer, Heidelberg (2001). doi:10.1007/3-540-45576-0 7

4. Dupé, F.-X., Brun, L.: Tree covering within a graph kernel framework for shape
classification. In: Foggia, P., Sansone, C., Vento, M. (eds.) ICIAP 2009. LNCS, vol.
5716, pp. 278–287. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04146-4 31

5. Feragen, A., Kasenburg, N., Petersen, J., de Bruijne, M., Borgwardt, K.: Scalable
kernels for graphs with continuous attributes. In: NIPS, pp. 216–224 (2013)

6. Fornito, A., Zalesky, A., Breakspear, M.: The connectomics of brain disorders. Nat.
Rev. Neurosci. 16(3), 159–172 (2015)

7. Ghanbari, Y., Smith, A.R., Schultz, R.T., Verma, R.: Identifying group discrimi-
native and age regressive sub-networks from DTI-based connectivity via a unified
framework of non-negative matrix factorization and graph embedding. Med. Image
Anal. 18(8), 1337–1348 (2014)

http://dx.doi.org/10.1007/3-540-45576-0_7
http://dx.doi.org/10.1007/978-3-642-04146-4_31

48 S. Takerkart et al.

8. Haussler, D.: Convolution kernels on discrete structures. Technical report UCSC-
CRL-99-10, Department of Computer Science, Univ. of California at Santa Cruz
(1999)

9. Kamiya, K., Amemiya, S., Suzuki, Y., Kunii, N., Kawai, K., Mori, H., Kunimatsu,
A., Saito, N., Aoki, S., Ohtomo, K.: Machine learning of DTI structural brain
connectomes for lateralization of temporal lobe epilepsy. Magn. Reson. Med. Sci.
15(1), 121–129 (2016)

10. Kashima, H., Tsuda, K., Inokuchi, A.: Marginalized kernel between labeled graphs.
In: ICML, pp. 321–328 (2003)

11. Kawahara, J., Brown, C.J., Miller, S.P., Booth, B.G., Chau, V., Grunau, R.E.,
Zwicker, J.G., Hamarneh, G.: BrainNetCNN: convolutional neural networks for
brain networks; towards predicting neurodevelopment. NeuroImage, September
2016

12. Kriege, N., Mutzel, P.: Subgraph matching kernels for attributed graphs. In: ICML,
pp. 1015–1022 (2012)

13. Mahé, P., Vert, J.P.: Graph kernels based on tree patterns for molecules. Mach.
Learn. 75(1), 3–35 (2009)

14. Messmer, B.T., Bunke, H.: A new algorithm for error-tolerant subgraph isomor-
phism detection. IEEE PAMI 20(5), 493–504 (1998)

15. Morris, C., Kriege, N.M., Kersting, K., Mutzel, P.: Faster kernels for graphs with
continuous attributes via hashing. In: ICDM (2016)

16. Mwangi, B., Hasan, K.M., Soares, J.C.: Prediction of individual subject’s age across
the human lifespan using diffusion tensor imaging: a machine learning approach.
NeuroImage 75, 58–67 (2013)

17. Mwangi, B., Wu, M.J., Bauer, I.E., Modi, H., Zeni, C.P., Zunta-Soares, G.B.,
Hasan, K.M., Soares, J.C.: Predictive classification of pediatric bipolar disorder
using atlas-based diffusion weighted imaging and support vector machines. Psychi-
atry Res. Neuroimaging 234(2), 265–271 (2015)

18. Neuhaus, M., Bunke, H.: Bridging the gap between graph edit distance and kernel
machines. World Scientific (2007)

19. Pȩkalska, E., Haasdonk, B.: Kernel discriminant analysis for positive definite and
indefinite kernels. IEEE PAMI 31(6), 1017–1032 (2009)

20. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of
bipartite graph matching. Image Vis. Comput. 27(7), 950–959 (2009)

21. Scholkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Reg-
ularization, Optimization, and Beyond. MIT Press, Cambridge (2001)

22. Shervashidze, N., Vishwanathan, S., Petri, T., Mehlhorn, K., Borgwardt, K.M.:
Efficient graphlet kernels for large graph comparison. AISTATS 5, 488–495 (2009)

23. Siuly, S., Zhang, Y.: Medical big data: neurological diseases diagnosis through
medical data analysis. Data Sci. Eng. 1(2), 54–64 (2016)

24. Suard, F., Rakotomamonjy, A., Bensrhair, A.: Kernel on bag of paths for measuring
similarity of shapes. In: ESANN, pp. 355–360 (2007)

25. Van Schependom, J., Jain, S., Cambron, M., Vanbinst, A.M., De Mey, J., Smeets,
D., Nagels, G.: Reliability of measuring regional callosal atrophy in neurodegener-
ative diseases. NeuroImage Clin. 12, 825–831 (2016)

26. Varoquaux, G., Thirion, B.: How machine learning is shaping cognitive neuroimag-
ing. GigaScience 3(1), 28 (2014)

27. Vishwanathan, S.V.N., Schraudolph, N.N., Kondor, R., Borgwardt, K.M.: Graph
kernels. J. Mach. Learn. Res. 11(Apr), 1201–1242 (2010)

28. Wilson, R.C., Zhu, P.: A study of graph spectra for comparing graphs and trees.
Pattern Recogn. 41(9), 2833–2841 (2008)

Learning Graph Matching with a Graph-Based
Perceptron in a Classification Context

Abstract. Many tasks in computer vision and pattern recognition are
formulated as graph matching problems. Despite the NP-hard nature
of the problem, fast and accurate approximations have led to signifi-
cant progress in a wide range of applications. Learning graph matching
functions from observed data, however, still remains a challenging issue.
This paper presents an effective scheme to parametrize a graph model
for object matching in a classification context. For this, we propose a
representation based on a parametrized model graph, and optimize it to
increase a classification rate. Experimental evaluations on real datasets
demonstrate the effectiveness (in terms of accuracy and speed) of our
approach against graph classification with hand-crafted cost functions.

Keywords: Learning graph matching · Graph classification · Graph
edit distance

1 Introduction

Graphs are frequently used in various fields of computer science since they con-
stitute a universal modeling tool which allows the description of structured data.
The handled objects and their relations are described in a single and human-
readable formalism. Hence, tools for graphs supervised classification and graph
mining are required in many applications such as pattern recognition [1], chem-
ical components analysis [2], structured data retrieval [3]. Different approaches
have been proposed during the last decade to tackle the problem of graph classi-
fication. A first one consists in transforming the initial problem in a common sta-
tistical pattern recognition one by describing the graphs with vectors in a Euclid-
ean space [2]. Another family of approaches also consists in using kernel-based
machine learning algorithms. Contrary to the approaches mentioned above, the
graphs are not explicitly but implicitly projected in a Euclidean space, through
the use of a graph kernel which computes inner products in the graph space.
Many kernels have been proposed in the literature [4]. Another possible approach
also consists in projecting the graphs in a Euclidean space of a given dimension
but using a distance matrix between each of the graphs. In such cases, a dis-
similarity measure between graphs has to be designed. Kernels can be derived
c© Springer International Publishing AG 2017
P. Foggia et al. (Eds.): GbRPR 2017, LNCS 10310, pp. 49–58, 2017.
DOI: 10.1007/978-3-319-58961-9 5

Romain Raveaux(B), Chlo Martineau, Donatello Conte,
and Gilles Venturini

Laboratoire d’Informatique (EA 6300),
Université de Tours, 64 avenue Jean Portalis, Tours, France

é

romain.raveaux@univ-tours.fr, chloémartineau99@gmail.com

50 R. Raveaux et al.

from the distance matrix. It is the case for multidimensional scaling methods
proposed in [5].

All the aforementioned approaches aim at projecting the graphs into a vec-
tor or kernel space however this process may impact the interpretability of the
results. This paper deals with paradigms that operate directly on the graph
space and can thus capture more structural distortions.

Graph space (d : G × G → R). To classify unknown objects using the K-
Nearest Neighbor paradigm, one needs to define a metric that measures the dis-
tance between the unknown object and the elements in the learning database.
The similarity or dissimilarity between two graphs requires the computation and
the evaluation of the “best” matching between them. Since exact isomorphism
rarely occurs in pattern analysis applications, the matching process must be
error-tolerant, i.e., it must tolerate differences on the topology and/or its label-
ing. For instance, in the Graph Edit Distance (GED) [1], the graph matching
process and the dissimilarity computation are linked through the introduction
of a set of graph edit operations. Each edit operation is characterized by a cost,
and GED is the total cost of the least expensive set of operations that transform
one graph into another one. Since graph matching is NP-hard most research has
long focused on developing accurate and efficient approximate algorithms.

Recent studies have revealed that simple graphs with hand-crafted struc-
tures and dissimilarity functions, typically used in graph matching, are insuffi-
cient to capture the inherent structure underlying the problem at hand. As a
consequence, a better optimization of the graph matching objective does not
guarantee better correspondence accuracy [6,7] and neither better classification
rate. To tackle this issue a set of parameters in the graph matching problem has
to be learned. Such a learned matching function would better model the inherent
structure of the classification problem without losing the interpretability of the
results.

2 Problem Statement

In this section, we formally define the problem of learning discriminative graph
matching.

Attributed graph is considered as a triple (V , E, L) such that: V is a set of
vertices. E is a set of edges such as E ⊆ V × V . L is a set of attributes of the
nodes and edges. For the sake of clarity, we abuse the set notation such that Li

is a label associated to vertex vi and Lij is a label associated to an edge (vi, vj).

Graph Matching Problem. Let G1 = (N1, E1, L1) and G2 = (N2, E2, L2)
be two graphs, with N1 = {1, · · · , n} and N2 = {1, · · · ,m}. In order to apply
deletion or insertion operation on nodes, node sets are augmented by dummy
elements. The deletion of each node vi ∈ N1 is modeled as a mapping vi → ε2i
where ε2i is the dummy element associated with vi. As a consequence, the set N2

is increased by max(0, n−m) dummy elements ε2 to form a new set V 2 = N2∪ε2.
The node set N1 is increased similarly by max(0,m − n) dummy elements ε2

Learning Graph Matching with a Graph-Based Perceptron 51

to form V 1 = N1 ∪ ε1. Note that V 1 and V 2 have the same cardinality (n1 =
n2 = max(n,m)). A solution of graph matching is defined as a subset of possible
correspondences y ⊂ V 1 × V 2, represented by a binary assignment matrix Y ∈
{0, 1}n1×n2 , where n1 and n2 denote the size of V 1 and V 2, respectively. If
v1

i ∈ V 1 matches v2
a ∈ V 2, then Yi,a = 1, and Yi,a = 0 otherwise. We denote by

y ∈ {0, 1}n1n2 , a column-wise vectorized replica of Y . With this notation, graph
matching problems can be expressed as finding the assignment vector y∗ that
minimizes a score function d(G1, G2, y) as follows:

Definition 1. Graph Matching formulation

y∗ = argmin
y

d(G1, G2, y), (1a)

subject to y ∈ {0, 1}n1n2 (1b)
n1∑

i=1

yi,a = 1 ∀a ∈ [1, · · · , n2] (1c)

n2∑

a=1

yi,a = 1 ∀i ∈ [1, · · · , n1] (1d)

The function d(G1, G2, y) measures the dissimilarity of graph attributes, and
is typically decomposed into a first order dissimilarity function dV (L1

i , L
2
a) for

a node pair v1
i ∈ V 1 and v2

a ∈ V 2, and a second-order similarity function
dE(L1

ijL
2
ab) for an edge pair e1ij ∈ E1 and e2ab ∈ E2. Dissimilarity functions

are usually represented by a symmetric dissimilarity matrix D, where a non-
diagonal element Dia;jb = dE(L1

ij , L
2
ab) contains the edge dissimilarity of two

correspondences (v1
i , v2

a) and (v1
j , v2

b) and a diagonal term Dia;ia = dV (L1
i , L

2
a)

represents the node dissimilarity of a correspondence (v1
i , v2

a).
Thus, the matching function of graph matching is defined as:

d(G1, G2, y) =
∑

yia=1

dV (L1
i , L

2
a) +

∑

yia=1

∑

yjb=1

dE(L1
ij , L

2
ab) = yT Dy (2)

In essence, the score accumulates all the dissimilarity values relevant to the
assignment. The Definition 1 is referred to as an integer quadratic programming.
More precisely, it is the quadratic assignment problem, which is known to be
NP-hard. Many efficient approximate algorithms have been proposed for this
problem [8–11].

Parametrized Graph Matching. In the context of scoring functions defined
in Eq. 2, an interesting question is what can be learned to improve graph match-
ing. To address this, we parameterize Eq. 2 as follows. Let π(a) = i denote an
assignment of node v2

a in G2 to node v1
i in G1, i.e. yia = 1. A joint feature map

Φ(G1, G2, y) is defined by aligning the relevant dissimilarity values of Eq. 2 into a
vectorial form as: Φ(G1, G2, y) = [· · · , dV (L1

π(a), L
2
a), · · · , dE(L1

π(a)π(b), L
2
ab), · · ·]

52 R. Raveaux et al.

By introducing weights on all elements of this feature map, we obtain a
discriminative score function:

d(G1, G2, y, β) =βΦ(G1, G2, y) (3a)

=[· · · , dV (L1
π(a), L

2
a)βa, · · · , dE(L1

π(a)π(b), L
2
ab)βab, · · ·] (3b)

where β is a weight vector encoding the importance of node and edge dissim-
ilarity values. In the case of uniform weights, i.e. β = 1 ∀β, Eq. 3 it reduces
to the conventional graph matching score function of Eq. 2: d(G1, G2, y) =
d(G1, G2, y; 1).

The discriminative weight formulation is general in the sense that it can
assign different parameters for individual nodes and edges. However, it does not
learn a graph model underlying the feature map, and requires a reference graph
G2 at query time, whose attributes cannot be modified in the learning phase.

Graph Classification Problem. For sake of clarity, the rest of the paper is
focused on a 2-class problem but the paradigm can be extended to a multi-class
problem. A linear classifier is a function that maps its input x ∈ R

q (a real-valued
vector) to an output value f(x) ∈ {0, 1} (a single binary value).

f(x) =

{
1 if β · x + b > 0
0 otherwise

where β is a vector of real-valued weights, w · x is the dot product
q∑

i=1

βixi,

where q is the number of inputs to the classifier and b is the bias. The bias shifts
the decision boundary away from the origin and does not depend on any input
value. The value of f(x) (0 or 1) is used to classify x as either a positive or a
negative instance, in the case of a binary classification problem. If b is negative,
then the weighted combination of inputs must produce a positive value greater
than |b| in order to push the classifier over the 0 threshold.

To extend this paradigm to graph, let D be the set of graphs. Given a graph
training set TrS = {<Gi, ci>}M

i=1, where Gi ∈ D is a graph and ci ∈ C is
the class of the graph among the two classes. The learning of a graph classifier
consists in inducing from TrS a mapping function f(G) → C which assigns a
class to an unknown graph.

f(G) =

{
1 if β · Φ(G,Gm, y) + b > 0
0 otherwise

With Gm a model graph

Let Δ(TrS, f) be a function computing the error rate obtained by a classifier
f . We represent the error for the pth training sample by errorp = δ(Cp, f(Gp)),
where Cp is the target value, f(Gp) is the value produced by the classifier and
δ(a, b) is the Kronecker Delta function. The error rate (Δ) is the mean of errors

Learning Graph Matching with a Graph-Based Perceptron 53

errorp over the set TrS between the ground-truth values and values produced
by the classifier. Straightforwardly, we define η = 1−Δ as the classification rate.

To address the problem of learning graphs matching, we start with the dis-
criminative weight formulation of Eq. 3. We learn the weights β from labelled
examples from TrS minimizing the function Δ. The objective function is the
error rate function with extra β weights.

3 State of the Art

The literature on learning similarity/dissimilarity matching functions can be
roughly categorized into two parts whether the objective is to minimize an error
rate on the number of matched graph components (matching level) or an error
rate on a classification task (classification level).

Matching level. In this category, the purpose is to minimize the average Ham-
ming distance between a ground-truth’s correspondence and the automatically
deducted correspondence. Caetano et al. [6] use a 60-dimensional node simi-
larity function for appearance similarity and a simple binary edge similarity
for edges. Leordeanu et al. [12] do not use dV , and instead employ a multi-
dimensional function dE for dissimilarity of appearance, angle, and distance. The
work of Torresani et al. [13] can be viewed as adopting 2-dimensional dV and dE

functions for measuring appearance dissimilarity, geometric compatibility, and
occlusion likelihood. In [14] a method to learn the real numbers for the inser-
tion dV (ε → v) and deletion dV (v → ε) costs on nodes and edges is proposed.
An extension to substitution costs is presented in [15]. While the optimization
methods for learning these functions are different, all of them are essentially
aimed at learning common weights for all the edge and node dissimilarity func-
tions in a matching context. The discriminative weight formulation Eq. 3 is more
general in the sense that it can assign different parameters for individual nodes
and edges. In [7], the discriminative weight formulation is also employed. The
learning problem is turned into a regression problem and a structured support
vector machine (SSVM) is used to minimize it.

Classification level. Learning graph matching in a classification context is more
challenging since the ground truth is given at the class level and not at the
node/edge level. In [8], a grid search on a validation set is used to determine
the values of the parameters βn

del = βn
ins, which corresponds to the cost of a

node deletion or insertion, and βe
del = βe

ins, which corresponds to the costs
of an edge deletion or insertion. Neuhaus and Bunke [16] address the issue of
learning dissimilarity functions for numerically labeled graphs from a corpus
of sample graphs. A system of self-organizing maps (SOMs) that represent the
distance measuring spaces of node and edge labels was proposed. The learning
process is based on the concept of self-organization. It adapts the edit costs
in such a way that the similarity of graphs from the same class is increased,
whereas the similarity of graphs from different classes decreases. Two limitations
can be put forward (i) attributes must be numeric vectors and (ii) the method

54 R. Raveaux et al.

aimed at learning common weights for all the edges and nodes (βdel, βins, βsub).
From the same authors, in [17], the graph matching process is formulated in
a stochastic context and perform a maximum likelihood parameter estimation
of the distribution of matching operations. The underlying distortion model is
learned using an Expectation Maximization algorithm. The matching costs are
adapted so as to decrease the distance between graphs from the same class,
leading to compact graph clusters.

Adapting methods that operate at the matching level is not trivial since
node correspondences must be inferred from the class label. The neural meth-
ods proposed in [16] works at the classification level but it is limited to vector
attributes and common weights shared to all nodes and edges. The former limita-
tion is leveraged in [17] thanks to a probabilistic framework but the Expectation
Maximization algorithm is not robust as the neural-based minimizer. In this
paper we propose to merge both ideas, a neural-based algorithm and the dis-
criminative weight formulation to learn graph matching dissimilarity functions
in a classification context.

4 Proposal: A Graph-Based Perceptron

The perceptron is an algorithm for learning a binary classifier C = {0, 1}. In
the context of neural networks, a perceptron is an artificial neuron using the
Heaviside step function as the activation function. A global picture of the graph-
based perceptron is depicted in Fig. 1. The conventional perceptron is adapted
to graphs thanks to three main features: (a) The learning rule to update the
weight vector β. (b) The graph matching algorithm to find y∗. (c) The graph
model Gm.

Fig. 1. Overview of the perceptron and our proposal a modified perceptron for graph

Learning rule. The learning rule aims at modifying β. The weights should be
updated in cases of wrong classifications. The correction must take into account
the amount and the sign of the committed error.

Learning rule: β(t + 1) = β(t) + α(ci − ck)Φ(Gi, Gm, y) (4)

To show the time-dependence of β, we use βi(t) as the weight at time t. The
parameter α is the learning rate, where 0 < α ≤ 1. (ci −ck) is the error function.
This error is positive if (ci > ck) or negative if (ci < ck). The learning rule is the

Learning Graph Matching with a Graph-Based Perceptron 55

steepest gradient descent. It tries to reduce the error in the direction of the error
descending along the gradient. If we consider the Φ(Gi, Gm, y) entries associated
with weight β respectively.

Graph matching solver. Many efficient approximate algorithms have been pro-
posed to solve the graph matching problem defined in Definition 1. In [8], Riesen
et al. have reformulated the Quadratic Assignment Problem of Definition 1 to
a Linear Sum Assignment Problem (LSAP). Nodes of both graphs are involved
in the assignment problem. A cost matrix is computed to enumerate pair-wise
node distances. The LSAP can be solved in polynomial time O(n3) which makes
this approach very fast.

Graph model. The graph matching is computed between an input graph Gi and
a model graph Gm. The choice of a model graph among a set of graphs is of
first interest. The model graph should represent the diversity of attributes and
topologies which can be found in the graph set TrS. The graph model selection
rule is defined as follows: Gm = arg max

G∈TrS
|G|. With |G| = |V |+ |E|. Accordingly

Gm is the largest graph of the set. In such a way that Gm may gather a large
diversity of attributes along with different structures. Other definition could hold
such as the median graph definition but this is beyond the scope of the paper.

Learning algorithm. We design the learning algorithm of the graph-based per-
ceptron. Algorithm 1 is an O(#iter.|TrS|) deterministic algorithm. Solving the
parametrized graph matching problem is indicated in Line 8. Line 9 is the classi-
fication step while lines 10 to 12 are the application of the learning rule defined
Eq. 4 when the classification is wrong. Finally, it is worth mentioning that clas-
sifying an entire test set (TeS) is done by only |TeS| call to the graph match-
ing algorithm involved in the function Φ. This low complexity makes it a fast
classifier.

Data: TrS = {< Gi, ci >}M
i=1

Data: #iter is the maximum number of iterations
Data: α learning rate
Result: Learned β. A weight vector

1 β ← 0 and t ← 0
2 while error > 0 and iter< #iter do
3 error ← 0 and iter ← 0
4 for Gi ∈ TrS do
5 y∗ ← argmin

y
β(t) · Φ(Gi, Gm, y) // Solve problem in Definition 1

6 ci ← heavyside(β(t) · Φ(Gi, Gm, y∗))
7 ck ← getLabel(Gi)
8 if ci − ck != 0 then
9 β(t + 1) ← β(t) + α(ci − ck)Φ(Gi, Gm, y∗)

10 error← error +1

11 end
12 t ← t +1

13 end
14 error ← error/|TrS|
15 iter ← iter +1

16 end

Algorithm 1. Learning graph-based perceptron scheme

56 R. Raveaux et al.

5 Experiments

Two graph databases LETTER HIGH (LETTER for short) and GREC were
chosen from from the IAM repository [18]. Each database consists on a set of
different graph instances divided in different classes where each class is composed
of a training set and a test set. Datasets are described in Table 1. Matching
functions dv and de were taken from [8].

Table 1. Summary of graph data set characteristics.

Database size (TrS, TeS) �classes Node

labels

Edge

labels

|V | |E| max |V | max |E| Balanced

LETTER

(high)

(750, 750) 15 x, y None 4.7 4.5 9 9 Y

GREC (286, 528) 22 x, y Line

types

11.5 12.2 25 30 Y

A commonly used approach in pattern classification is based on nearest-
neighbor classification. That is, an unknown object is assigned the class or iden-
tity of its closest known element, or nearest neighbor (1-NN). Two versions were
involved in the tests. A 1-NN with no weights (β = 1) called NW-1-NN and a
tuned 1-NN (T-1-NN) where βe

del = βe
ins and βn

del = βn
ins values are taken from

[8]. To assess the performance of our learning scheme and our new classifier,
two experiments were performed. First, the impact of the learning rate α was
studied on 2 classes of the GREC dataset (class 0 and 1) and second, pair-wise
binary classifications were carried out among all classes of two datasets GREC
and LETTER. To sum-up all theses experiments, the mean classification rate
(η) during the training and the test phases are reported along with the standard
deviation (std(η)). The time in milliseconds to classify all instances is also con-
sidered. In Fig. 2, the impact of the learning rate is depicted. A high learning
rate leads to fast convergence with many oscillations around 80% of classification
rate, while at the opposite a low learning rate implies a slow but stable conver-
gence. A trade-off can be found with an intermediate value (α = 0.01). This
value was chosen to perform the rest of the experiments with a number of iter-
ations set to 100. To continue on the learning capability of the Algorithm 1, in
Table 2, the classification rate obtained during the learning phase are tabulated
(column ηTrS). A first comment leads to say that with the highest classification
rate GREC was easier to learn than LETTER. A second comment is the clear
capability of learning of our method. In fact, a dummy classifier with “bad”
weights β = 1 would produce a random classification and a classification rate
of 0.5. Finally, binary classifications results on (22 − 1)2 = 441 and 196 pairs of
classes for GREC and LETTER, respectively, are synthesized in Table 2. First,
on the speed side, our classifier is by far the fastest with a speed gain of about
350 (350 times faster). In fact, time complexity of our graph-based perceptron is
linear in function of the test set size (|TeS|) whereas the complexity of the 1-NN

Learning Graph Matching with a Graph-Based Perceptron 57

Fig. 2. Learning rate as a function of the number of iterations

Table 2. Classification results on GREC and LETTER. The best results are marked
in bold style.

GREC LETTER

ηTrS η std(η) time std(time) ηTrS η std(η) time std(time)

Proposal 0.9733 0.9488 0.1054 87.31 24.49 0.8610 0.8262 0.1279 31.09 6.42

NW-1-NN

(β = 1)

NA 0.5235 0.0561 1588.83 870.46 NA 0.9735 0.0294 1584.15 510.37

T-1-NN [8] NA 0.9992 0.0096 1789.52 990.08 NA 0.9735 0.0295 1573.96 490.51

grows quadratically in function of |TrS|.|TeS|. On the classification rate side,
on GREC, our proposal clearly outperformed the NW-1-NN classifier with no-
weights while obtaining similar results than the T-1-NN classifier. On LETTER,
the situation is different, the NW-1-NN classifier provides astonished results as
good as the T-1-NN. We can conclude that dissimilarity functions dV and dE are
well suited on their own for the problem and that performances come from the
good graph prototypes of TrS. With a single model graph our approach does
not succeed to capture the whole variability of the problem. However, the 15%
loss of accuracy is counter balanced by a large speed-up.

6 Conclusion

In this paper, a graph classifier operating in the graph space was presented. A
graph-based perceptron was proposed to learn discriminative graph matching in
a classification context. Graph matching was parametrized to build a weighted
formulation. This weighted formulation is used to define a perceptron classi-
fier. Weights are learned thanks to the gradient descent algorithm. Classification
results on two publicly available datasets demonstrated a large speed-up in clas-
sification (350 times faster in average) with a loss of accuracy of 4% in average.
As the conventional perceptron, the graph-based perceptron will be extended
to multi-class problems. Another perceptive is to extend our work to multiple
layers and consequently to learn mid-level graph-based representations.

58 R. Raveaux et al.

References

1. Riesen, K.: Structural Pattern Recognition with Graph Edit Distance: Approxi-
mation Algorithms and Applications. Advances in Computer Vision and Pattern
Recognition. Springer, Heidelberg (2015)

2. Gaüzère, B., Brun, L., Villemin, D.: Two new graphs kernels in chemoinformatics.
Pattern Recogn. Lett. 33(15), 2038–2047 (2012)

3. Raveaux, R., Burie, J.-C., Ogier, J.-M.: Structured representations in a content
based image retrieval context. J. Vis. Commun. Image Represent. 24(8), 1252–
1268 (2013)

4. Neuhaus, M., Bunke, H.: Bridging the Gap Between Graph Edit Distance and
Kernel Machines. World Scientific Publishing Co., Inc., River Edge (2007)

5. Roth, V., Laub, J., Kawanabe, M., Buhmann, J.M.: Optimal cluster preserving
embedding of nonmetric proximity data. IEEE Trans. Pattern Anal. Mach. Intell.
25(12), 1540–1551 (2003)

6. Caetano, T.S., McAuley, J.J., Cheng, L., Le, Q.V., Smola, A.J.: Learning graph
matching. IEEE Trans. Pattern Anal. Mach. Intell. 31(6), 1048–1058 (2009)

7. Cho, M., Alahari, K., Ponce, J.: Learning graphs to match. In: IEEE International
Conference on Computer Vision (ICCV 2013), Sydney, Australia, 1–8 December
2013, pp. 25–32. IEEE Computer Society (2013)

8. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of
bipartite graph matching. Image Vis. Comput. 27(7), 950–959 (2009)

9. Neuhaus, M., Riesen, K., Bunke, H.: Fast suboptimal algorithms for the computa-
tion of graph edit distance. In: Yeung, D.-Y., Kwok, J.T., Fred, A., Roli, F., Ridder,
D. (eds.) SSPR /SPR 2006. LNCS, vol. 4109, pp. 163–172. Springer, Heidelberg
(2006). doi:10.1007/11815921 17

10. Raveaux, R., Burie, J.-C., Ogier, J.-M.: A graph matching method and a graph
matching distance based on subgraph assignments. Pattern Recogn. Lett. 31(5),
394–406 (2010)

11. Serratosa, F.: Fast computation of bipartite graph matching. Pattern Recogn. Lett.
45, 244–250 (2014)

12. Leordeanu, M., Sukthankar, R., Hebert, M.: Unsupervised learning for graph
matching. Int. J. Comput. Vis. 96(1), 28–45 (2012)

13. Torresani, L., Kolmogorov, V., Rother, C.: Feature correspondence via graph
matching: models and global optimization. In: Forsyth, D., Torr, P., Zisserman,
A. (eds.) ECCV 2008. LNCS, vol. 5303, pp. 596–609. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-88688-4 44

14. Cortés, X., Serratosa, F.: Learning graph-matching edit-costs based on the optimal-
ity of the oracle’s node correspondences. Pattern Recogn. Lett. 56, 22–29 (2015)

15. Cortés, X., Serratosa, F.: Learning graph matching substitution weights based on
the ground truth node correspondence. IJPRAI 30(2), 1650005 (2016)

16. Neuhaus, M., Bunke, H.: Self-organizing maps for learning the edit costs in graph
matching. IEEE Trans. Syst. Man Cybern. Part B 35(3), 503–514 (2005)

17. Neuhaus, M., Bunke, H.: Automatic learning of cost functions for graph edit dis-
tance. Inf. Sci. 177(1), 239–247 (2007)

18. Riesen, K., Bunke, H.: IAM graph database repository for graph based pattern
recognition and machine learning. In: da Vitoria Lobo, N., Kasparis, T., Roli,
F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) Struc-
tural, Syntactic, and Statistical Pattern Recognition. LNCS, vol. 5342, pp. 287–297.
Springer, Heidelberg (2008)

http://dx.doi.org/10.1007/11815921_17
http://dx.doi.org/10.1007/978-3-540-88688-4_44

A Nested Alignment Graph Kernel Through
the Dynamic Time Warping Framework

Lu Bai1, Luca Rossi2(B), Lixin Cui1(B), and Edwin R. Hancock3

1 Central University of Finance and Economics, Beijing, China
cuilixin@cufe.edu.cn

2 Aston University, Birmingham, UK
l.rossi@aston.ac.uk

3 University of York, York, UK

Abstract. In this paper, we propose a novel nested alignment graph
kernel drawing on depth-based complexity traces and the dynamic time
warping framework. Specifically, for a pair of graphs, we commence by
computing the depth-based complexity traces rooted at the centroid ver-
tices. The resulting kernel for the graphs is defined by measuring the
global alignment kernel, which is developed through the dynamic time
warping framework, between the complexity traces. We show that the
proposed kernel simultaneously considers the local and global graph char-
acteristics in terms of the complexity traces, but also provides richer sta-
tistic measures by incorporating the whole spectrum of alignment costs
between these traces. Our experiments demonstrate the effectiveness and
efficiency of the proposed kernel.

1 Introduction

In pattern recognition, graph kernels are powerful tools for applying standard
machine learning techniques to graph datasets [24]. These kernels are typically
used in conjuction with kernel methods such as Support Vector Machines (SVM)
and kernel Principle Component Analysis (kPCA) for the purposes of classifica-
tion or clustering [4,21].

The idea underpinning most existing graph kernels is that of decomposing
graphs into substructures and comparing pairs of specific isomorphic substruc-
tures. Some examples are graph kernels based on counting pairs of isomorphic (a)
walks [27], (b) paths [1], and (c) restricted subgraph or subtree substructures [14].
Other examples include the work of Bach [2], who proposed a family of kernels
for comparing point clouds. These kernels are based on a local tree-walk kernel
between subtrees, which is defined by a factorization on suitably defined graph-
ical models of the subtrees. Wang and Sahbi [28], on the other hand, defined a
graph kernel for action recognition. They first describe actions in the videos using
directed acyclic graphs (DAGs). The resulting kernel is defined as an extend-
ing random walk kernel by counting the number of isomorphic walks of DAGs.
Harchaoui and Bath [18] proposed a segmentation graph kernel for images by
counting the inexact isomorphic subtree patterns between image segmentation
c© Springer International Publishing AG 2017
P. Foggia et al. (Eds.): GbRPR 2017, LNCS 10310, pp. 59–69, 2017.
DOI: 10.1007/978-3-319-58961-9 6

60 L. Bai et al.

graphs. Other state-of-the-art graph kernels include the subtree-based hyper-
graph kernel [7], the Lovász graph kernel [19], the aligned subgraph kernel [10],
the subgraph matching kernel [21], the fast depth-based subgraph kernel [6],
the optimal assignment kernel [22], and the aligned Jensen-Shannon subgraph
kernel [11].

Unfortunately, all the aforementioned graph kernels tend to capture only local
characteristics of graphs, since they usually use substructures of limited sizes. As
a result, these kernels may fail to reflect global graph characteristics. To overcome
this shortcoming, Johansson et al. [19] developed a family of global graph kernels
using geometric embeddings. Specifically, they use the Lovász number and its
associated orthonormal representation to capture global graph characteristics.
Bai et al. and Rossi et al. [4,9,25,26] developed a family of graph kernels based
on the classical Jensen-Shannon divergence, as well as its quantum analogue.
Specifically, they use either the classical or the quantum walk together with
quantum information theoretical measures to probe the global structure of the
graph.

The aim of this work is to overcome the gap between local kernels (i.e., ker-
nels based on local substructures of limited sizes) and the global kernels (i.e.,
global kernels and quantum or classical Jensen-Shannon kernels), by proposing a
novel nested alignment kernel for graphs based on their depth-based complexity
traces [5] and the dynamic time warping framework [15]. For a pair of graphs,
we commence by computing the depth-based complexity traces rooted at the
centroid vertices. The resulting kernel is defined by measuring the global align-
ment kernel [15] between the complexity traces. Recall that the depth-based
complexity trace of a graph is based on a family of expansion subgraphs that
form a nested sequence which gradually expands from the centroid vertex to the
global graph structure. As a consequence, this sequence of subgraphs can reflect
both local and global structure information of a graph. Furthermore, we show
that the associated global alignment kernel encapsulates the whole spectrum
of the alignment cost between the complexity traces. As a result, the proposed
kernel can not only simultaneously consider both local and global graph charac-
teristics in terms of the nested depth-based complexity traces, but also provide
richer statistic measures by incorporating the whole spectrum of alignment costs
between these traces. Experiments demonstrate the effectiveness and efficiency
of the proposed kernel.

The remainder of this paper is organized as follows. Section 2 reviews the
preliminary concepts that will be used in this work. Specifically, we introduce the
global alignment kernel through the dynamic time warping framework and the
depth-based complexity trace. Section 3 defines the proposed nested alignment
kernel. Section 4 provides the experimental evaluation. Section 6 concludes this
work.

2 Preliminary Concepts

In this section, we review some preliminary concepts that will be used in
this work. We commence by reviewing the dynamic time warping framework.

A Nested Alignment Graph Kernel 61

Specifically, we introduce the global alignment kernel based on this framework.
Finally, we review the concept of depth-based complexity trace of a graph.

2.1 Global Alignment Kernels from the Dynamic Time
Warping Framework

In this subsection, we review the global alignment kernel based on the dynamic
time warping framework proposed in [15]. Let T be a set of discrete time series
that take values in a space X . For a pair of discrete time series P = (p1, . . . , pm) ∈
T and Q = (q1, . . . , qn) ∈ T with lengths m and n respectively, the alignment
π between P and Q is defined as a pair of increasing integral vectors (πp, πq) of
length l ≤ m + n − 1, where

1 = πp(1) ≤ · · · ≤ πp(l) = m

and
1 = πq(1) ≤ · · · ≤ πq(l) = n

such that (πp, πq) is defined to have unitary increments and no simultaneous
repetitions. For any index 1 ≤ i ≤ l − 1, the increment vector of π = (πp, πq)
satisfies (

πp(i + 1) − πp(i)
πq(i + 1) − πq(i)

)
∈

{(
0
1

)
,

(
1
0

)
,

(
1
1

)}
. (1)

In the dynamic time warping framework [15], the coordinates πp and πq of the
alignment π define the warping function. Let A(m,n) be the set of all possible
alignments between P and Q. The dynamic time warping distance between P
and Q is defined as

DTW(P,Q) = minπ∈A(m,n)DP,Q(π), (2)

where the cost

DP,Q(π) =
|π|∑
i=1

ϕ(pπp(i), qπq(i)), (3)

is defined by a local divergence ϕ that measures the discrepancy between any
pair of elements pi ∈ P and qi ∈ Q. Generally, ϕ can be defined as the squared
Euclidean distance, i.e., ϕ(p, q) = ‖p − q‖2.

Based on the dynamic time warping distance defined in Eq. (2), a dynamic
time warping kernel kDTW [17] between P and Q can be defined as

kDTW(P,Q) = e−DTW(P,Q). (4)

Unfortunately, this kernel is not positive definite. This is because the optimal
alignment required by the dynamic time warping cannot guarantee transitivity.
To overcome the shortcoming, Cuturi [15] considers all possible alignments in

62 L. Bai et al.

A(m,n) and proposes another dynamic time warping inspired kernel, i.e., the
global alignment kernel, as

kGA(P,Q) =
∑

π∈A(m,n)

e−DP,Q(π), (5)

where kGA is positive definite, since it quantifies the quality of both the optimal
alignment and all other alignments π ∈ A(m,n). The kernel kGA elaborates on
the dynamic time warping distance by considering the same set of elementary
operations [16]. However kGA not only generalizes the dynamic time warping
kernel kDTW, but also provides richer statistic measures by incorporating the
whole spectrum of alignment costs {DP,Q(π), π ∈ A(m,n)}.

Intuitively, the global alignment kernel kGA allows one to define a new graph
kernel, by measuring the warping alignment π between any types of graph char-
acteristic sequences (or graph embedding vectors [13]) that have certain ele-
ment orders with increasing structural variables, e.g., the depth-based complex-
ity traces [5] from expansion subgraphs of increasing sizes, or cycle characteristics
with increasing lengths identified from the Ihara zeta function [23].

2.2 Centroid Depth-Based Complexity Traces

We review the concept of the depth-based complexity trace of a graph rooted at
the centroid vertex [5]. Let G(V,E) be an undirected graph with vertex set V
and edge set E. Based on Dijkstra’s algorithm, we commence by computing the
shortest path matrix SG, where each element SG(v, u) of SG represents the length
of the shortest path between vertices v ∈ V and u ∈ V . For each vertex v ∈ V ,
let S(v) be the average length of the shortest paths from v to the remaining
vertices, i.e.,

S(v) =
1

|V |
∑
u∈V

SG(v, u). (6)

As discussed in [5], the centroid vertex v̂C of G(V,E) can be identified by select-
ing the vertex that has the minimum variance of shortest path lengths to the
remaining vertices, i.e., the index of v̂C is

v̂C = arg min
v

∑
u∈V

[SG(v, u) − SV (v)]2. (7)

Let NK
v̂C

be a vertex subset of G(V,E) satisfying

NK
v̂C

= {u ∈ V | SG(v̂C , u) ≤ K}. (8)

For G(V,E) and its centroid vertex v̂C , we construct a family of K-layer expan-
sion subgraphs GK(VK ; EK) as

{VK = {u ∈ NK
v̂C

};
EK = {(u, v) ⊂ NK

v̂C
× NK

v̂C
| (u, v) ∈ E}.

(9)

A Nested Alignment Graph Kernel 63

Note that the number expansion subgraphs is equal to the greatest length L of
the shortest paths from the centroid vertex to the remaining vertices of G(V,E).
Moreover, the L-layer expansion subgraph is the graph G(V,E) itself. An exam-
ple of constructing a K-layer subgraph is shown in Fig. 1.

Fig. 1. The left-most figure shows the determination of K-layer centroid expansion
subgraphs for a graph G(V,E) which hold |N1

v̂C
| = 6 and |N2

v̂C
| = 10 vertices. While

the middle and the right-most figure show the corresponding 1-layer and 2-layer sub-
graphs regarding the centroid vertex v̂C , and are depicted by red-colored edges. In this
example, the vertices of different K-layer subgraphs regarding the centroid vertex v̂C
are calculated by Eq. (7), and pairwise vertices possess the same connection information
in the original graph G(V,E).

Definition (Depth-based complexity traces): For a sample undirected
graph G(V,E), let {G1, · · · ,GK , · · · ,GL} be the family of K-layer expansion
subgraphs rooted at the centroid vertex of G(V,E). Then the depth-based com-
plexity trace DB(G) of G(V,E) is computed by measuring the entropies of the
subgraphs [5], i.e.,

DB(G) = {HS(G1), · · · ,HS(GK), · · · ,HS(GL)}, (10)

where · · · ,HS(GK) is the Shannon entropy associated with the steady state
random walk on the K-layer centroid expansion subgraph GK [4]. �

The depth-based complexity trace has a number of interesting properties [5].
First, it encapsulates the entropy-based information content flow through the
family of K-layer expansion subgraphs rooted at the centroid vertex, and thus
reflects rich intrinsic depth topology information of a graph. Second, it can be
efficiently computed also on large graphs. This is because it is computed on a
small set of expansion subgraphs rooted at the centroid vertex, and the compu-
tational complexity is polynomial. Furthermore, based on Eq. (9), we can also
observe that the family of K-layer expansion subgraphs rooted at the centroid
vertex v̂C of the graph G constructs a nested sequence. This is because the family
of the expansion subgraphs satisfies

v̂C ∈ G1 · · · ⊆ GK ⊆ · · · ⊆ GL ⊆ G.

64 L. Bai et al.

In other words, it represents a sequence of subgraphs that gradually expand from
the centroid vertex to the global graph. As a result of it nested nature, the depth-
based complexity trace can reflecs both the local and global structure information
of a graph. In summary, the depth-based complexity trace provides an elegant
way of developing novel fast graph kernels that simultaneously consider local
and global graph structures.

3 The Proposed Kernel

In this section, we introduce a novel nested alignment graph kernel through the
dynamic time warping framework and the depth-based complexity trace.

3.1 A Nest Aligned Kernel from the Dynamic Time
Warping Framework

Let GP (VP , EP) and GQ(VQ, EQ) be a pair of graphs, from a graph set G. We
commence by computing the depth-based complexity traces of GP and GQ as

DB(GP) = {HS(GP ;1), · · · ,HS(GP ;K), · · · ,HS(GP ;Lmax)}

and
DB(GQ) = {HS(GQ;1), · · · ,HS(GQ;K), · · · ,HS(GQ;Lmax)},

respectively. Here GP ;K and GQ;K are the K-layer expansion subgraphs rooted
at the centroid vertices of GP and GQ, and Lmax is the greatest length of the
shortest paths rooted at the centroid vertices over all graphs in G. Note that, for
GP and GQ and the greatest lengths M and N of the shortest paths rooted at
their centroid vertices, if K ≥ M and K ≥ M their K-layer expansion subgraphs
are themselves, i.e., their global structures. Based on the global alignment kernel
defined in Sect. 2.1, we develop a new nested alignment graph kernel kNA between
GP and GQ as

kNA(GP , GQ) = kGA(DB(GP),DB(GQ))

=
∑

π∈A(Lmax,Lmax)

e−DP,Q(π), (11)

where π denotes the warping alignment between DB(GP) and DB(GQ),
A(Lmax, Lmax) denotes all possible alignments, and DP,Q(π) is the alignment
cost defined in Eq. (3). Note that we cannot prove that the proposed kernel kNA

is positive definite. Although our kernel is based on the global alignment kernel
kGA, which is a positive definite kernel, the time series compared by kNA are not
defined over the same underlying space but on two different graphs. Future work
will explore the possibility of creating a positive definite kernel by computing the
depth-based complexity traces over a common structure obtained by combining
the input graphs.

A Nested Alignment Graph Kernel 65

As we have observed, the depth-based complexity trace reflects the nested
entropy-based information and thus simultaneously considers the local and global
graph structures. Furthermore, the proposed kernel kNA(GP , GQ) is based on
all possible warping alignments between depth-based complexity traces of the
input graphs. As a result, kNA(GP , GQ) can simultaneously capture richer local
and global graph characteristics in terms of all possible alignments between the
nested depth-based complexity traces.

3.2 Computational Analysis

For a pair of graphs both having n vertices, computing the nested alignment
kernel kGA has time complexity O(n3). This is because computing the depth-
based complexity trace of a graph relies on the computation of the shortest path
matrix and thus has time complexity O(n3). Furthermore, computing all possi-
ble alignments between the depth-based complexity traces has time complexity
O((Lmax)2), where Lmax is the greatest length of the shortest paths rooted at
the centroid vertices of the two graphs and is lower than the vertex number n.
As a result, the proposed kernel kGA has polynomial time complexity O(n3).

4 Experimental Evaluations

4.1 Graph Datasets

We evaluate our kernels on standard graph datasets. These datasets include:
MUTAG, PTC, COIL5, Shock and CATH2. Details of these datasets are shown
in Table 1.
MUTAG: The MUTAG dataset consists of graphs representing 188 chemical
compounds labeled according to whether or not they affect the frequency of
genetic mutations in the bacterium Salmonella typhimuriums and aims to predict
whether each compound is associated with mutagenicity.
PTC: The PTC (The Predictive Toxicology Challenge) dataset records the car-
cinogenicity of several hundred chemical compounds for male rats (MR), female
rats (FR), male mice (MM) and female mice (FM). These graphs are very small,
i.e., 20–30 vertices, and sparsem, i.e., 25–40 edges. We select the graphs of male
rats (MR) for evaluation. There are 344 test graphs in the MR class.
COIL5: The COIL5 dataset is abstracted from the COIL image database. The
COIL database consists of images of 100 3D objects. In our experiments, we
use the images for the first five objects. For each of these objects we employ 72
images captured from different viewpoints. For each image we first extract corner
points using the Harris detector, and then establish Delaunay graphs based on
the corner points as vertices. Each vertex is used as the seed of a Voronoi region,
which expands radially with a constant speed. The linear collision fronts of the

66 L. Bai et al.

Table 1. Information on the selected graph based bioninformatics datasets

Datasets MUTAG PTC COIL Shock CATH2

Max # vertices 28 109 241 33 568

Min # vertices 10 2 72 4 143

Mean # vertices 17.93 25.60 144.90 109.63 308.03

graphs 188 344 360 150 190

classes 2 2 5 5 2

regions delineate the image plane into polygons, and the Delaunay graph is the
region adjacency graph for the Voronoi polygons.
Shock: The Shock dataset consists of graphs from the Shock 2D shape database.
Each graph is a skeletal-based representation of the differential structure of the
boundary of a 2D shape. There are 150 graphs divided into 10 classes.
CATH2: The CATH2 dataset is harder to classify, since the proteins in the
same topology class are structurally similar. The protein graphs are 10 times
larger in size than chemical compounds, with 200 . 300 vertices. There is 190
testing graphs in the dataset.

5 Experiments on Standard Graph Datasets

We evaluate the performance of the nested alignment graph kernel (NAGK) on
a number of graph classification tasks. Furthermore, we also compare our ker-
nel with three state-of-the-art kernels, including (1) the Jensen-Shannon graph
kernel (JSGK) [4], (2) the random walk graph kernel (RWGK) [20], (3) the
unaligned quantum Jensen-Shannon graph kernel (QJSK) [9], and (4) the Lovász
graph kernel (LGK) [19].

We compute the kernel matrix associated with each kernel on each dataset.
We perform 10-fold cross-validation using a C-Support Vector Machine (C-SVM)
to compute the classification accuracies, using LIBSVM software library [12]. We
use nine samples for training and one for testing. The parameters of the C-SVMs
are optimized on each training set using cross-validation. We report the average
classification accuracy and the runtime for each kernel in Table 2 and Table 3.
The runtime is measured under Matlab R2015a running on a 2.5 GHz Intel 2-
Core processor (i.e., i5-3210 m).

In terms of classification accuracy, Table 2 indicates that the proposed NAGK
kernel can significantly outperform the alternative state-of-the-art graph kernels,
excluding the QJSK kernel on the COIL5 and Shock datasets. However, the pro-
posed NAGK kernel is still competitive to the QJSK kernel on the COIL5 dataset
and outperforms the QJSK kernel on the MUTAG, PTC and CATH2 datasets.
The reasons for this effectiveness are twofold. First, as we have stated, the depth-
based complexity traces used by the proposed NAGK kernel encapsulate nested
entropy-based information that extend from the centroid vertex to the global

A Nested Alignment Graph Kernel 67

Table 2. Classification accuracy (In % ± Standard error) runtime in second.

Datasets MUTAG PTC COIL5 Shock ATH2

NAGK 84.22± .50 58.00± .64 69.75 ± .65 37.60 ± .62 74.00± .83

JSGK 83.11 ± .80 57.29 ± .41 69.13 ± .79 21.73 ± .76 72.26 ± .76

RWGK 80.77 ± .75 53.97 ± .31 14.21 ± .65 0.33 ± .37 −
QJSK 82.72 ± .44 56.70 ± .49 70.11± .61 40.60± .92 71.11 ± .88

LGK 80.83 ± .43 56.29 ± .47 − 31.80 ± .89 −

Table 3. Runtime for various kernels.

Datasets MUTAG PTC COIL5 Shock CATH2

NAGK 8.6 · 102 2.3 · 103 3.3 · 103 3.8 · 102 9.4 · 102

JSGK 1.0 · 100 1.0 · 100 1.0 · 100 1.0 · 100 1.0 · 100

RWGK 4.6 · 101 6.7 · 101 1.1 · 103 2.3 · 101 −
QJSK 2.0 · 101 1.0 · 102 1.0 · 103 1.4 · 101 4.4 · 103

LGK 1.0 · 103 7.4 · 103 − 1.0 · 103 −

graph structure. As a consequence, the proposed NAGK kernel can simultane-
ously consider the local and global graph characteristics. By contrast, the QJSK
and JSGK kernels can only reflect global graph characteristics, whereas the LGK
and RWGK can only reflect local graph characteristics. Second, the proposed
NAGK kernel is based on all possible alignments between the complexity traces,
and thus reflects rich statistic measures by incorporating the whole spectrum of
alignment costs. On the other hand, we observe that the QJSK kernel based on
the global von Neumann entropy from the continuous-time quantum walk is the
most competitive kernel to the proposed NAGK kernel, though the QJSK kernel
can only reflect global characteristics. This is because the entropy measure from
the quantum walk can reflect richer intrinsic topology information than that
from the classical steady state random walk (for the proposed NAGK kernel).
This in turn suggest the possibility of further extending the NAGK kernel using
quantum walks to extract an analogous of the depth-based complexity trace used
in this study.

In terms of runtime, the proposed the NAGK kernel is not the fastest ker-
nel, when compared to the other graph kernels. However, we can observe that
the proposed NAGK kernel can always complete the computation of the ker-
nel matrices, unlike some alternative graph kernels (e.g., the LGK and RWGK
kernels), which failed complete the computation in a reasonable time.

6 Conclusion

In this paper, we have proposed a novel nested alignment graph kernel. The
kernel is an adaptation of the dynamic time warping framework based kernel

68 L. Bai et al.

(i.e., the global alignment kernel) to graphs. To this end, we made use of the
depth-based complexity traces of graphs, a powerful and fast to compute graph
descriptor. Unlike most existing graph kernels that only probe local or global
graph characteristics, the proposed kernel simultaneously considers local and
global graph characteristics and thus reflects the presence of richer structural
patterns. The experiments have demonstrated the effectiveness and efficiency of
the proposed kernel.

Our future work is to extend the proposed kernel to attributed graphs that
encapsulate vertex and edge labels. Moreover, we would also like to further
develop novel graph kernels through the dynamic time warping framework asso-
ciated with other types of (hyper)graph characteristic sequences, e.g., the cycle
numbers identified by the Ihara zeta function, the time-varying entropies com-
puted from the continuous-time or discrete-time quantum walk [8,9], and the
depth-based hypergraph complexity traces [3]. Finally, we are also interested in
developing novel graph kernels for time-varying financial market networks [29],
using the dynamic time warping framework.

Acknowledgments. This work is supported by the National Natural Science Foun-
dation of China (Grant no. 61503422 and 61602535), the Open Projects Program of
National Laboratory of Pattern Recognition, the Young Scholar Development Fund
of Central University of Finance and Economics (No. QJJ1540), and the program for
innovation research in Central University of Finance and Economics.

References

1. Alvarez, M.A., Qi, X., Yan, C.: A shortest-path graph kernel for estimating gene
product semantic similarity. J. Biomed. Semant. 2, 3 (2011)

2. Bach, F.R.: Graph kernels between point clouds. In: Proceedings of ICML, pp.
25–32 (2008)

3. Bai, L., Escolano, F., Hancock, E.R.: Depth-based hypergraph complexity traces
from directed line graphs. Pattern Recogn. 54, 229–240 (2016)

4. Bai, L., Hancock, E.R.: Graph kernels from the jensen-shannon divergence. J.
Math. Imaging Vis. 47(1–2), 60–69 (2013)

5. Bai, L., Hancock, E.R.: Depth-based complexity traces of graphs. Pattern Recogn.
47(3), 1172–1186 (2014)

6. Bai, L., Hancock, E.R.: Fast depth-based subgraph kernels for unattributed graphs.
Pattern Recogn. 50, 233–245 (2016)

7. Bai, L., Ren, P., Hancock, E.R.: A hypergraph kernel from isomorphism tests. In:
Proceddings of ICPR, pp. 3880–3885 (2014)

8. Bai, L., Rossi, L., Cui, L., Zhang, Z., Ren, P., Bai, X., Hancock, E.R.: Quan-
tum kernels for unattributed graphs using discrete-time quantum walks. Pattern
Recogn. Lett. 87, 96–103 (2017)

9. Bai, L., Rossi, L., Torsello, A., Hancock, E.R.: A quantum jensen-shannon graph
kernel for unattributed graphs. Pattern Recogn. 48(2), 344–355 (2015)

10. Bai, L., Rossi, L., Zhang, Z., Hancock, E.R.: An aligned subtree kernel for weighted
graphs. In: Proceedings of ICML, pp. 30–39 (2015)

A Nested Alignment Graph Kernel 69

11. Bai, L., Zhang, Z., Wang, C., Bai, X., Hancock, E.R.: A graph kernel based on the
Jensen-Shannon representation alignment. In: Proceedings of IJCAI, pp. 3322–3328
(2015)

12. Chang, C.C., Lin, C.J.: Libsvm: a library for support vector machines. ACM Trans.
Intell. Syst. Technol. 2(3), 27 (2011)

13. Conte, D., Ramel, J., Sidere, N., Luqman, M.M., Gaüzère, B., Gibert, J., Brun,
L., Vento, M.: A comparison of explicit and implicit graph embedding methods for
pattern recognition. In: Proceedings of GbRPR, pp. 81–90 (2013)

14. Costa, F., De Grave, K.: Fast neighborhood subgraph pairwise distance kernel. In:
Proceedings ICML, pp. 255–262 (2010)

15. Cuturi, M.: Fast global alignment kernels. In: Proceedings of ICML, pp. 929–936
(2011)

16. Cuturi, M., Vert, J., Birkenes, Ø., Matsui, T.: A kernel for time series based on
global alignments. In: Proceedings of ICASSP, pp. 413–416 (2007)

17. Haasdonk, B., Bahlmann, C.: Learning with distance substitution kernels. In:
Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM
2004. LNCS, vol. 3175, pp. 220–227. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-28649-3 27

18. Harchaoui, Z., Bach, F.: Image classification with segmentation graph kernels. In:
Proceedings of CVPR, pp. 1–8 (2007)

19. Johansson, F.D., Jethava, V., Dubhashi, D.P., Bhattacharyya, C.: Global graph
kernels using geometric embeddings. In: Proceedings of ICML, pp. 694–702 (2014)

20. Kashima, H., Tsuda, K., Inokuchi, A.: Marginalized kernels between labeled
graphs. In: Proceedings of ICML, pp. 321–328 (2003)

21. Kriege, N., Mutzel, P.: Subgraph matching kernels for attributed graphs. In: Pro-
ceedings of ICML (2012)

22. Kriege, N.M., Giscard, P., Wilson, R.C.: On valid optimal assignment kernels and
applications to graph classification. In: Proceedings of NIPS, pp. 1615–1623 (2016)

23. Ren, P., Aleksić, T., Wilson, R.C., Hancock, E.R.: A polynomial characterization
of hypergraphs using the Ihara zeta function. Pattern Recogn. 44(9), 1941–1957
(2011)

24. Riesen, K., Bunke, H.: Graph classification and clustering based on vector space
embedding. World Scientific Publishing Co., Inc., River Edge (2010)

25. Rossi, L., Torsello, A., Hancock, E.R.: Measuring graph similarity through
continuous-time quantum walks and the quantum jensen-shannon divergence.
Phys. Rev. E 91(2), 022815 (2015)

26. Rossi, L., Torsello, A., Hancock, E.R., Wilson, R.C.: Characterizing graph sym-
metries through quantum jensen-shannon divergence. Phys. Rev. E 88(3), 032806
(2013)

27. Urry, M., Sollich, P.: Random walk kernels and learning curves for gaussian process
regression on random graphs. J. Mach. Learn. Res. 14(1), 1801–1835 (2013)

28. Wang, L., Sahbi, H.: Directed acyclic graph kernels for action recognition. In:
Proceedings of ICCV, pp. 3168–3175 (2013)

29. Ye, C., Comin, C.H., Peron, T.K.D., Silva, F.N., Rodrigues, F.A., da Costa, F.,
Tosello, A., Hancock, E.R.: Thermodynamic characterization of networks using
graph polynomials. Phys. Rev. E 92(3), 032810 (2015)

http://dx.doi.org/10.1007/978-3-540-28649-3_27
http://dx.doi.org/10.1007/978-3-540-28649-3_27

Graph Applications

GERoMe – A Novel Graph Extraction
Robustness Measure

Dominik Drees(B), Aaron Scherzinger, and Xiaoyi Jiang

Faculty of Mathematics and Computer Science, University of Münster,
Münster, Germany

{dominik.drees,scherzinger,xjiang}@uni-muenster.de

Abstract. The extraction of graph structures in Euclidean vector space
is a topic of interest with applications in many fields, e.g., the biomed-
ical domain. While a number of different approaches have been presented,
a quantitative evaluation of those algorithms remains a challenging task:
Manual generation of ground truth for real-world data is often time-
consuming and error-prone, and while tools for generating synthetic
datasets with corresponding ground truth exist, this data often does
not reflect the complexity in morphology and topology that real-world
scenarios show. As a complementary or even alternative approach, we
propose GERoMe, a novel graph extraction robustness measure, which
quantifies the stability of algorithms that extract multigraphs with asso-
ciated node positions from non-graph structures. Our method takes edge-
associated properties into consideration and does not necessarily require
ground truth data. Moreover, available ground truth information can be
incorporated to additionally evaluate the correctness of the graph extrac-
tion algorithm. We demonstrate the usefulness and applicability of our
approach in an exemplary study on synthetic and real-world data.

Keywords: Graph extraction · Evaluation · Robustness · Stability

1 Introduction

Extracting graphs which are embedded in Euclidean space from non-graph like
structures has been a topic of interest in various areas of research, especially with
regard to biomedical applications. Here, researchers may be interested in the
general structure and topology of the graph, the position of branching points, or
specific (e.g., morphologic) properties of individual edges, e.g., in the analysis of
hepatic blood vasculature [10], airway trees [12], neural systems [11] or lymphatic
vessel systems [6]. There exist several publications which focus on the extraction
of embedded graphs from 2D or 3D images [1,7]. Moreover, there is an interest
in the simultaneous extraction of geometrical and morphological edge-associated
properties from the original dataset, e.g., [2,3,9].

While a number of algorithms exist which produce plausible results, pro-
viding an objective evaluation of the quality of the extracted graph remains a
challenging task. Although manual ground truth generation is conceivable for the
c© Springer International Publishing AG 2017
P. Foggia et al. (Eds.): GbRPR 2017, LNCS 10310, pp. 73–82, 2017.
DOI: 10.1007/978-3-319-58961-9 7

74 D. Drees et al.

topological structure of the graph and node positions, it is time-consuming and
error-prone, especially for 3D structures such as complex vessel networks in med-
ical imaging. Even more so, an accurate manual annotation of edge-associated
properties such as volume or average radius appears almost impossible in 3D.
Although tools for producing synthetic datasets have been presented, they only
include a limited number of edge-associated properties. Moreover, the complexity
of the generated datasets does not compare to real-world data (see Sect. 2).

As a complement or even an alternative to using synthetic data, we propose
GERoMe – a novel graph extraction robustness measure, which is able to quan-
tify the stability of extraction algorithms on arbitrary (e.g., real-world) input
data, without requiring ground truth information. Moreover, we introduce a
graph similarity measure which can be used to evaluate the accuracy of a graph
extraction algorithm if ground truth information is available.

For a given input, a set of transformations, and any edge-associated property,
our method generates a scalar robustness index. This is achieved by applying one
of the transformations to the input data, and using the result to extract a graph,
which is then retransformed into the original space. This graph is matched with
a template graph directly extracted from the input. For each transformation, a
similarity measure is computed based on the difference in features of matched
edges and the quality of the matching itself. The similarities for all transforma-
tions are then combined to form the robustness index GERoMe. Our method
does not require ground truth data for evaluating the robustness of an algorithm.
However, if it is available for the desired properties, ground truth data can be
used as the template graph. In this case the resulting GERoMe value quantifies
the accuracy of the examined algorithm in conjunction with its robustness.

The extracted graphs can be of arbitrary structure, may include multiple
edges connecting two nodes (i.e., they may be multigraphs), and can be evalu-
ated for arbitrary real-valued edge-associated properties. The input data for the
considered graph extraction algorithm can be of arbitrary nature, as long as a
geometric transformation can be applied to it. We demonstrate the applicabil-
ity of our approach in an exemplary study using a preliminary version of the
algorithm proposed in [3] on artificial and real-world datasets.

The remainder of this paper is structured as follows. In the following section
we give an overview of related publications. Afterwards we provide an in-depth
description of our proposed method. Finally, we exemplarily apply the proposed
graph robustness measure to an existing algorithm and discuss the results.

2 Related Work

Drechsler et al. [2] have proposed a graph extraction method for hepatic blood
vasculature. In order to evaluate their algorithm, they rotate and resample the
original volume and plot the number of nodes and edges in the generated graph
for various rotation angles. They observe that their algorithm is not rotation-
invariant, but note that an ideal algorithm should fulfill this requirement.

A possible validation strategy for graph extraction methods is the use of syn-
thetic data for which ground truth information is available. VascuSynth [5] is a

GERoMe – A Novel Graph Extraction Robustness Measure 75

tool for the simulation of 3D medical images of blood vasculature. In addition to
the raw image data it provides ground truth data which includes a segmentation,
the generated graph (i.e., node positions and edges), as well as radius, length,
and flow for each edge of the graph. However, the generated vessel networks
always have a tree-like topology and thus do not include cycles or multiple edges
connecting the same pair of nodes. Moreover, the approach only simulates images
of blood vasculature where the generated vessels are of relatively simple mor-
phology. The resulting data sets thus do not heavily challenge graph extraction
algorithms in that regard.

One important aspect of this paper is matching edges of two (multi-)graphs.
Traditional graph matching, which aims to find a mapping between the nodes of
two graphs, is a current and popular research topic [4]. Frameworks for match-
ing multigraphs with additional attributes exist (e.g., [13]) and may in principle
be applied to the matching problem in this paper. However, although these
approaches may incorporate geometrical information, traditional graph match-
ing algorithms heavily rely on the second order (i.e., topological) information
present in the graph. As it turns out, when matching two graphs for the pur-
pose of this paper, geometrical information can be expected to be fairly reliable,
while the topology of the generated graphs may differ (depending on the exam-
ined algorithm and the input data). We therefore employ a direct edge match-
ing approach using geometric and additional edge-associated information (see
Sect. 3).

3 Method

An embedded multigraph shall be defined as a tuple G = (N,E) of a set of
nodes N ∈ R

n (we assume nodes with the same spatial position to be identical)
and a set of edges E ⊂ (N × N ×N). Edges (n1, n2, i) are defined by two nodes
n1, n2 ∈ N and a unique identifier i. Additionally, edges e ∈ E have m associated
real-valued properties Pi ≥ 0, i ∈ {1, . . . m}.

3.1 The Graph Extraction Robustness Measure

The graph extraction robustness measure (GERoMe), which will be denoted G for
the remainder of this paper, provides a stability measure for multigraph extrac-
tion algorithms. Conceptually, it describes a process which compares the results of
the extraction algorithm A on a transformed version of the input s to a template
graph. The template graph can either be given as ground truth GGT , or – e.g., if
ground truth information for the property of interest is not available – extracted
from the input dataset without applying any transformation, i.e., Gtpl = A(s).
The input dataset is then transformed by T , and the result is used as input to
the examined graph extraction algorithm. For a robust algorithm, the result can
be expected to be similar to the template graph (after retransforming one of the
results into the original space using T−1) for any T . Therefore, the measure G
is defined as the minimum similarity SP (see Subsect. 3.2) over all elements of a

76 D. Drees et al.

Fig. 1. A schematic overview of the proposed method. T is a set of transformations,
P is an edge-associated property, A is a graph extraction algorithm, s is a non-graph
structure. Annotated images on the sides show intermediate results of the approach
when applied to a preliminary version of the algorithm described in [3] and a lymphatic
vessel foreground segmentation dataset [6].

set of transformations T for a given dataset. This process is illustrated in Fig. 1.
Hence, T must be an automorphism that can be applied to both the input dataset
s and an extracted graph. Moreover, for a perfect extraction algorithm A∗ for the
corresponding edges e and e∗ in A∗(s) and (T−1 ◦ A∗ ◦ T)(s) one should have
P (e) ≈ P (e∗) for any property P . As an example, if T includes a scaling opera-
tion (on s), and the information extracted via A∗ includes the distance between
two nodes Pdistance for all edges, T−1 subsequently must scale Pdistance accord-
ingly. For many properties in real world applications, this is the case if T is a rigid-
body transformation. More formally, given the parameters mentioned above, this
procedure can be defined as follows:

Gs,T ,P (A) = min
T∈T

SP (Gtpl, (T−1 ◦ A ◦ T)(s)) (1)

It should be noted that Gs,T ,P ∈ [0, 1]. A robust extraction algorithm A will pro-
duce similar graphs regardless of any transformation T ∈ T , yielding a GERoMe-
value near the optimal value 1. If ground truth information for P in form of a
ground truth graph GGT is available, G also includes information about the accu-
racy of A for Gtpl = GGT . Otherwise, we set Gtpl = A(s) and only quantify the
robustness of the algorithm.

GERoMe – A Novel Graph Extraction Robustness Measure 77

3.2 Graph Similarity

In order to compare two embedded multigraphs, they need to be matched. Since
we are interested in differences in edge properties, and since nodes have an
associated position, it is sufficient to find a matching MG1,G2 ⊂ E1 × E2 for two
graphs G1 = (N1, E1), G2 = (N2, E2) which matches edges in G1 to edges in G2.
Note that not all edges in E1 or E2 have to be part of the matching, but any
edge in E1 or E2 can only be part of one pair in MG1,G2 .

MG1,G2 ⊂ E1 × E2 ⇒∀e1 ∈ E1 : |{(e1, e) ∈ MG1,G2}| ≤ 1
∧∀e2 ∈ E2 : |{(e, e2) ∈ MG1,G2}| ≤ 1 (2)

Moreover, given a property P we define the relative error EP of two edges e1, e2:

EP (e1, e2) =
|P (e1) − P (e2)|

max(P (e1), P (e2))
∈ [0, 1] (3)

Then, given a graph matching MG1,G2 and a property P , the relative error of a
graph matching can be defined using (3):

EP (MG1,G2) =
1

|MG1,G2 |
∑

(e1,e2)∈M

EP (e1, e2) (4)

However, EP (MG1,G2) ignores edges in the original graphs that have not been
matched. Therefore, for two graphs G1 and G2 we define the similarity (in terms
of the property P) as follows:

SP (G1, G2) = (1 − EP (MG1,G2)) · 2|MG1,G2 |
|E1| + |E2|

(5)

The term 2|MG1,G2 |
|E1|+|E2| , i.e., the edge match ratio, can be understood as the DICE

index for E1 ∩ E2 := MG1,G2 . For |E1| = |E2| the term simulates (arbitrarily)
pairing all leftover (i.e., non-matched) edges while setting the relative error of
all of these fake matches to 1.

3.3 Matching

In order to compute a matching, we utilize the Hungarian method [8] using a
distance d between two edges. As a basis for d we first define d′ which only relies
on the spatial positions and Euclidean distances between the node positions of
two edges. The distance d′ is calculated by concatenating the nodes for both
edges to form a 2n-dimensional vector, and computing the Euclidean distance.
This punishes edges that share one node but not the other harder than the sum
of node distances. Since the order of nodes is arbitrary, the minimum distance
of both unique node pairing permutations is denoted d′.

d′((n1, n2, . . .), (n′
1, n

′
2, . . .)) = min(||(n1 ◦ n2) − (n′

1 ◦ n′
2)||2,

||(n1 ◦ n2) − (n′
2 ◦ n′

1)||2) (6)

78 D. Drees et al.

The distance d is then defined by increasing the base distance given by d′ if the
average of relative property errors (3) is large:

d(e1, e2) =
d′(e1, e2)

1 − 1
m

∑
i∈[1,m]

EPi
(e1, e2)

(7)

In order to omit false positive matches produced by the Hungarian method, we
set all distances above a certain threshold t to the same value dmax. The threshold
is chosen to be equal to the 2·min(|E1|,|E2|)

|E1|·|E2| -quantile (i.e., the 2 ·min(|E1|, |E2|)’th
smallest value) of the set of all |E1|·|E2| edge distances. Finally, matches reported
by the Hungarian method with a distance greater than t are ignored. In this way,
obvious matches can still be found by the matching algorithm, while edges that
do not have a correspondence in the other graph stay unmatched and do not
skew the overall result by interfering with other matches in the search for a global
minimum. In total, no more than min(|E1|, |E2|) matches can be found. However,
two edges connecting the same nodes will have similar distances to corresponding
edges in the other graph. Therefore, min(|E1|, |E2|) cannot be a hard cutoff point.
In order to include all likely match candidates the 2 · min(|E1|, |E2|)’th smallest
value is chosen. It should be noted that the threshold is designed for real-world
applications such as the extraction of blood or lymphatic vasculature. Extreme
cases where a large percentage of nodes are connected by multiple edges may
thus require a larger threshold.

4 Exemplary Study

In order to demonstrate the applicability and usefulness of our proposed method
and measure, a preliminary version of the graph creation and feature extraction
algorithm proposed in [3] will be evaluated in terms of its robustness as an
exemplary study. The algorithm first creates a voxel skeleton from a binary
volumetric input dataset, from which it then extracts a graph embedded in
3D space and calculates both geometric as well as morphologic edge-associated
properties using the skeleton and the original input volume. For the purpose of
this study we restrict the set of examined edge-properties to length (the length
of a branch when following the medial line), distance (the Euclidean distance
of the connected nodes), straightness = distance

length , avgRadius (i.e., the average
distance of a centerline to the surface of the branch) and volume (the total
volume occupied by a branch in the original binary volume). For the set of applied
transformations T , 4 rotation axes (the three coordinate axes as well as (1, 1, 1))
are taken into account. For each axis, 36 equally distributed rotations (from 0
to 2π) are generated, resulting in |T | = 4 · 36 = 144. Using these parameters,
Gs,T ,P is applied to the 3D ground truth segmentation of an artificial blood
vessel tree structure generated by VascuSynth [5] as well as a segmentation
of an ultramicroscopy image of human lymphatic vessel tissue [6] (the latter
depicted in Fig. 1). The transformation T is applied to the 3D image data by
resampling the volume. Since a rotation T (or T−1) does not change the values

GERoMe – A Novel Graph Extraction Robustness Measure 79

of the edge-associated properties, an extracted graph can be transformed by
applying T merely to the node positions. Since both datasets contain vessels of
low avgRadius, the transformed volume (i.e., T (s)) is generated by doubling
the resolution in each dimension in order to reduce the error introduced in the
resampling step. As this may allow for a better accuracy in the generation of
the intermediate voxel skeleton and the extraction of edge-associated properties,
the resolution of original dataset is also octupled prior to starting the graph
extraction process. Since there is no ground truth information available for the
real-world dataset, and the ground truth for the synthetic dataset does not
include all properties of interest, we use graphs extracted from the input dataset
as template graphs and thus only consider the robustness of the algorithm.

4.1 Synthetic Data

The similarity of the original graph extracted from a synthetic blood vasculature
dataset generated using VascuSynth and a transformed version is illustrated in
Fig. 2a for 5 selected properties. The set of applied transformations comprises
36 rotations around the x-axis of the coordinate system. As can be seen, the
plot shows 4 peaks for all properties which correspond to the angles in which the
transformed volume is aligned with the grid of the original volume (i.e., all angles
that are multiples of π

2). This illustrates that the observed error can partially be
attributed to the resampling process rather than the graph extraction algorithm
itself. Moreover, the relative error of some properties seems to be affected more by
the transformation process than others: Both avgRadius and straightness are
less affected than distance, length, and especially volume. The relative errors
of length and distance are probably caused by small variations in node posi-
tions, while this does not have such a strong effect on straightness = distance

length .

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Rotation Angle (rad)

S
im

ila
rit

y

0 π 2 π 3π 2 2π

−
−
−
−
−

length
distance
straightness
avgRadiusMean
volume

(a) SP for synthetic dataset

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Rotation Angle (rad)

S
im

ila
rit

y

0 π 2 π 3π 2 2π

−
−
−
−
−

length
distance
straightness
avgRadiusMean
volume

(b) SP for real-world dataset

Fig. 2. Intermediate results of the procedure depicted in Fig. 1 for a synthetic (a)
and a real-world dataset (b) without using ground truth information. Graphs have
been extracted using a preliminary version of the algorithm described in [3]. For each
dataset, the similarity SP of the graph extracted from the original dataset and the
graphs extracted after applying 36 rotations around the x-axis are shown for 5 selected
properties.

80 D. Drees et al.

Table 1. The robustness measure GERoMe G applied to a preliminary version of the
algorithm proposed in [3] for 5 selected properties, using the synthetic dataset generated
by VascuSynth and a real-world lymphatic vessel dataset. The sets of transformations
comprise 36 rotations around each of the coordinate axes (Tx, Ty, Tz) as well as the axis
(1, 1, 1) (Txyz).

Gs,T ,P (A) length distance straightness avgRadius volume

Synthetic dataset Tx 0.822 0.835 0.891 0.900 0.787

Ty 0.816 0.828 0.874 0.892 0.789

Tz 0.830 0.837 0.880 0.893 0.801

Txyz 0.730 0.735 0.790 0.799 0.675

Real-world dataset Tx 0.460 0.486 0.528 0.553 0.429

Ty 0.460 0.484 0.556 0.563 0.429

Ty 0.559 0.575 0.651 0.656 0.528

Txyz 0.298 0.312 0.341 0.371 0.272

The volume is heavily affected by errors in the resampling process. The relative
error of avgRadius is likely caused by errors in the resampling process as well,
but to a lesser extent, since the property is averaged along the run of a branch.
GERoMe values for sets of rotations for the 4 considered rotation axes are shown
in Table 1.

4.2 Real-World Lymphatic Vessel Data

The similarity of the original graph extracted from a real-world lymphatic vascu-
lature dataset and a transformed version is shown in Fig. 2b for 5 selected prop-
erties. Again, the set of applied transformations includes 36 rotations around the

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Rotation Angle (rad)

R
el

at
iv

e
E

rr
or

0 π 2 π 3π 2 2π

−
−
−
−
−

length
distance
straightness
avgRadiusMean
volume

(a) Relative property error

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Rotation Angle (rad)

E
dg

e
M

at
ch

 R
at

io

0 π 2 π 3π 2 2π

−
−
−
−

x−axis rotation
y−axis rotation
z−axis rotation
(1,1,1)−axis rotation

(b) Edge match ratio

Fig. 3. This figure shows intermediate measures generated from a real-world dataset
for a preliminary version of the algorithm described in [3]. In (a), the relative errors of
5 selected properties are plotted for 36 rotations T around the x-axis. In (b) the edge
match ratios for 36 rotations around the x-, y-, and z-axis, as well as (1,1,1) are shown.

GERoMe – A Novel Graph Extraction Robustness Measure 81

x-axis of the coordinate system. In comparison to the similarities extracted from
the synthetic dataset, the property similarities SP are much lower. These rela-
tively low similarity values originate from both the relative property error (see
Fig. 3a) as well as the edge match ratio (see Fig. 3b). As observed for the syn-
thetic dataset, the similarity, the edge match ratio, and (to a lesser extent) the
relative error seem to peak whenever the voxel grids of the original volume and
the transformed volume are aligned, i.e., for rotation angles that are multiples
of π

2 for coordinate axes as rotational axes, and for multiples of 2π
3 for (1, 1, 1).

Again, this suggests that at least part of the dissimilarity originates from resam-
pling errors (even more so for rotational axes other than the coordinate axes,
since resampling errors are introduced in 3, and not only in 2 dimensions in this
case). However, this does not imply a weakness of the proposed method itself, as
the parameter T as well as optional upsampling can and should always be kept
constant when comparing methods and specified along with the results. The fact
that a rotational axis of (1, 1, 1) produces larger resampling errors also becomes
apparent in the final GERoMe values (see Table 1): For both datasets the min-
imum similarity for all properties was reached for a transformation around this
(non-aligned) axis. Moreover, it can be observed that the amount of the rela-
tive error introduced by the transformation and resampling process seems to be
relatively independent of the dataset: Just like it is the case for the synthetic
dataset, avgRadius and straightness seem to be less affected than distance,
length, and volume.

Another aspect to note is that at least the examined algorithm does not
produce outliers in terms of the similarity between two graphs for any transfor-
mation. This is an important property of robust graph extraction algorithms.
Any potentially generated outliers would immediately become visible in G, as it
is defined as the minimum of all similarities.

These results also show that the examined extraction algorithm produces
much more stable results for the synthetic dataset than for the real-world dataset.
This indicates that evaluating graph extraction algorithms solely on the basis
of synthetic datasets is a highly problematic strategy. In combination with diffi-
culties in obtaining ground truth annotations for real-world data this underlines
the usefulness of our method.

5 Conclusion

We have proposed GERoMe, a novel robustness measure for graph extrac-
tion algorithms. Our approach does not necessarily require ground truth data,
and can be applied to any algorithm which extracts (multi-)graphs that are
embedded in Euclidean space from non-graph structures for which an edge
property-preserving transformation is defined. If ground truth data is available,
the method and the introduced similarity measure can be used to quantify the
accuracy of graph extraction algorithms in conjunction with the robustness. In
addition to the node positions, we use edge-associated properties to distinguish
edges, which is useful for matching true multigraphs. We have demonstrated

82 D. Drees et al.

the applicability and usefulness of our method in an exemplary study on syn-
thetic and real-world medical 3D image data. We are convinced that GERoMe
may prove useful for evaluating graph extraction algorithms, especially in cases
where ground truth data is not available. In the future, we plan to use GERoMe
to study and compare the performance of state-of-the-art graph extraction algo-
rithms. Moreover, we would like to augment and generalize GERoMe to utilize
information from node-associated properties in both the matching process and
the similarity measure itself. Additionally, it may be worthwhile to consider
and compare alternative matching approaches which utilize the expected spatial
proximity of matched edges if the runtime of the proposed method (which is
dominated by the Hungarian algorithm) is problematic.

References

1. Chen, Y., Laura, C.O., Drechsler, K.: Generation of a graph representation from
three-dimensional skeletons of the liver vasculature. In: Proceeding of 2nd Inter-
national Conference on BioMedical Engineering and Informatics, pp. 1–5 (2009)

2. Drechsler, K., Laura, C.O.: Hierarchical decomposition of vessel skeletons for graph
creation and feature extraction. In: IEEE International Conference on Bioinformat-
ics and Biomedicine, pp. 456–461 (2010)

3. Drees, D., Scherzinger, A., Hägerling, R., Kiefer, F., Jiang, X.: Graph creation
and feature extraction for vessel networks of arbitrary topology in large volumetric
datasets (in preparation)

4. Foggia, P., Percannella, G., Vento, M.: Graph matching and learning in pattern
recognition in the last 10 years. Int. J. Pattern Recogn. Artif. Intell. 28(1), 1450001
(2014)

5. Hamarneh, G., Jassi, P.: Vascusynth: Simulating vascular trees for generating vol-
umetric image data with ground truth segmentation and tree analysis. Comput.
Med. Imaging Graph. 34(8), 605–616 (2010)

6. Hägerling, R., et al.: Novel diagnostic approach identifies the vascular pathology
causing lymphedema in WILD sydrome (in preparation)

7. Klette, G.: Branch voxels and junctions in 3D skeletons. In: Proceeding 11th Inter-
national Workshop on Combinatorial Image Analysis, pp. 34–44 (2006)

8. Kuhn, H.W.: The hungarian method for the assignment problem. Naval Res. Logis-
tics Q. 2(1–2), 83–97 (1955)

9. Rodriguez, A., Ehlenberger, D.B., Hof, P.R., Wearne, S.L.: Rayburst sampling,
an algorithm for automated three-dimensional shape analysis from laser scanning
microscopy images. Nat. Protoc. 1(4), 2152–2161 (2006)

10. Selle, D., Preim, B., Schenk, A., Peitgen, H.O.: Analysis of vasculature for liver
surgical planning. IEEE Trans. Med. Imaging 21(11), 1344–1357 (2002)

11. Wearne, S., Rodriguez, A., Ehlenberger, D., Rocher, A., Henderson, S., Hof, P.:
New techniques for imaging, digitization and analysis of three-dimensional neural
morphology on multiple scales. Neuroscience 136(3), 661–680 (2005)

12. Wood, S.A., Zerhouni, E.A., Hoford, J.D., Hoffman, E.A., Mitzner, W.: Measure-
ment of three-dimensional lung tree structures by using computed tomography. J.
Appl. Physiol. 79(5), 1687–1697 (1995)

13. Yan, J., Wang, J., Zha, H., Yang, X., Chu, S.M.: Consistency-driven alternating
optimization for multigraph matching: a unified approach. IEEE Trans. Image
Process. 24(3), 994–1009 (2015)

Speeding-Up Graph-Based Keyword Spotting
in Historical Handwritten Documents

Michael Stauffer1,4(B), Andreas Fischer2,3, and Kaspar Riesen1

1 Institute for Information Systems, University of Applied Sciences
and Arts Northwestern Switzerland, Riggenbachstr. 16, 4600 Olten, Switzerland

{michael.stauffer,kaspar.riesen}@fhnw.ch
2 Department of Informatics, University of Fribourg, 1700 Fribourg, Switzerland

andreas.fischer@unifr.ch
3 Institute for Complex Systems, University of Applied Sciences

and Arts Western Switzerland, 1705 Fribourg, Switzerland
4 Department of Informatics, University of Pretoria, Pretoria, South Africa

Abstract. The present paper is concerned with a graph-based system
for Keyword Spotting (KWS) in historical documents. This particular
system operates on segmented words that are in turn represented as
graphs. The basic KWS process employs the cubic-time bipartite match-
ing algorithm (BP). Yet, even though this graph matching procedure is
relatively efficient, the computation time is a limiting factor for process-
ing large volumes of historical manuscripts. In order to speed up our
framework, we propose a novel fast rejection heuristic. This heuristic
compares the node distribution of the query graph and the document
graph in a polar coordinate system. This comparison can be accom-
plished in linear time. If the node distributions are similar enough, the
BP matching is actually carried out (otherwise the document graph is
rejected). In an experimental evaluation on two benchmark datasets we
show that about 50% or more of the matchings can be omitted with this
procedure while the KWS accuracy is not negatively affected.

Keywords: Handwritten keyword spotting · Bipartite graph matching ·
Fast rejection · Filtering graph matching

1 Introduction

An automatic full transcriptions of historical handwritten documents is often
negatively affected by both the degenerative conservation state of scanned doc-
uments and different writing styles. Thus, Keyword Spotting (KWS) as a more
error-tolerant, flexible, and suitable approach has been proposed [1–4]. KWS
refers to the task of retrieving any instance of a given query word in a docu-
ment. This task is of high relevance due to a global trend towards digitalisation
of paper-based archives and libraries. Similar to handwriting recognition, tex-
tual KWS can be divided into two different approaches online and offline KWS,
respectively. The former has access to temporal information, while the latter is
c© Springer International Publishing AG 2017
P. Foggia et al. (Eds.): GbRPR 2017, LNCS 10310, pp. 83–93, 2017.
DOI: 10.1007/978-3-319-58961-9 8

84 M. Stauffer et al.

limited to spatial information only. The focus of this paper is on historical docu-
ments, and thus, offline KWS, referred to as KWS from now on, can be applied
only.

KWS approaches can be divided into template-based or learning-based algo-
rithms. Template-based matching algorithms such as for example Dynamic Time
Warping (DTW) [2,5,6] directly match sample images of the keyword with doc-
ument images. Learning-based algorithms [3,4,7], on the other hand, derive char-
acter or word models from learning samples. The latter typically achieve higher
accuracies than template-based approaches but are limited by the need for a con-
siderable amount of learning samples. Template-based approaches, in contrast,
require only one or a few keyword instances and are thus more flexible. In this
paper, we focus on template-based KWS using different graph representations
of handwritten words.

Even though graphs gained noticeable attention in diverse applications [8,9],
we observe only limited attempts where graphs are used to represent handwriting
for KWS [10–14]. This is particularly interesting as graphs are, in contrast with
feature vectors, flexible enough to adapt their size to the size and complexity of
the underlying handwriting. Moreover, graphs are capable to represent binary
relationships in the handwriting (e.g. strokes between two keypoints). Overall,
graphs offer a more natural and comprehensive way to represent handwritten
characters or words when compared to feature vectors. Additionally, various
procedure for efficiently evaluating the dissimilarity of graphs, commonly known
as graph matching, have been proposed in the last decade [9].

Yet, in the case of searching n keywords in a certain document (represented
by a set of graphs G), we need to match n × |G| pairs of graphs. Even when
a fast graph matching procedure is employed, this large amount of matchings
can substantially slow down the complete KWS process. To speed up the KWS
procedure the number of graph matchings actually carried out, can be reduced
by efficiently filtering graphs from G with a low similarity to the current query
graph q. This approach is known as fast rejection [3,5,7] and the focus of the
present paper. That is, we introduce a novel heuristic for fast and accurate
filtering of irrelevant document graphs given a certain query graph.

The remainder of this paper is organised as follows. In Sect. 2, the pro-
posed fast rejection approach to speed up graph-based KWS is introduced. The
datasets employed as well as the different graph representations are reviewed
in Sect. 3. An experimental evaluation and comparison with the original frame-
work is given in Sect. 4. Finally, Sect. 5 concludes the paper and outlines possible
future research activities.

2 Fast Rejection of Document Graphs

Given a set of document graphs G = {g1, . . . , gN} as well as query graph q (used to
represent a certain keyword), the process of KWS performs a matching of q with all
graphs from G. We employ the Bipartite Graph Edit Distance (BP) [15], and thus
observe cubic time complexity for these pairwise dissimilarity computations. The

Speeding-Up Graph-Based Keyword Spotting 85

present paper introduces a fast rejection approach in order to substantially reduce
the number of document graphs needed to be matched with q. The motivation is to
filter document graphs without relevance to the given keyword and thus speeding
up the KWS procedure without negatively affecting the retrieval accuracy.

The basic idea of our approach is as follows. Before actually carrying out the
graph matching, we first measure the dissimilarity between histograms based on
a specific segmentation of the graphs by means of a polar coordinate system.
We denote this fast graph dissimilarity computation by Polar Graph Dissimilar-
ity (PGD) from now on. If the PGD is below a certain threshold D for a pair of
graphs (q, gi), we carry out the computationally more expensive BP matching
procedure [13]. Otherwise, we define the distance between q and gi to be ∞.
Formally,

d(q, gi)

{
∞, if PGD(q, gi) > D

BP (q, gi), otherwise
, (1)

where q and gi denotes the query and document graph, respectively. Increas-
ing the threshold D generally reduces the number of filtered document graphs.
Likewise, the number of filtered graphs is increased when D is decreased. The
overall aim is to find a good tradeoff between low matching time (due to many
filterings) and high KWS accuracy.

Our novel dissimilarity model PGD has been inspired by the scale-invariant
shape descriptor Contour Points Distribution Histogram (CPDH) for 2D-shape
matching [16]. The basic idea behind this shape descriptor is to segment equidis-
tant contour points by a specific polar coordinate system. A given shape image is
formally described by a histogram CPDH = {h1, . . . , hi, . . . , hn} where hi basi-
cally consists of the number of contour points ni in the corresponding segment.

We adopt this procedure in order to measure the dissimilarity between graphs
in linear time. Rather than contour points, however, we make use of nodes as
shown in Fig. 1. For all of our graphs that represent segmented words, nodes
are labelled with two-dimensional numerical labels, while edges remain unla-
belled (see Sect. 3 for details).

To create a histogram for a given graph g, we first calculate the centre of
mass (xm, ym) of g and then transform the (x, y)-coordinates of each node label
μ(v) = (x, y) ∈ R

2 into polar coordinates (see Fig. 1a)1. Formally,

ρ =
√

(x − xm)2 + (y − ym)2 and θi = atan2((y − ym)/(x − xm)),

where ρ denotes the radius from the centre of g to the node position and −π ≤
θi < π refers to the angle from the x-axis to the node position (computed via
arctangent function with two arguments in order to return the correct quadrant).
Next, we define a bounding circle C given by the maximum radius ρmax that
surrounds all nodes of graph g. We segment C based on the number of different

1 Node coordinates are a priori denormalised by the standard deviation of all node
coordinates, for further details we refer to [13].

86 M. Stauffer et al.

(xm, ym)

ρmax

b1

b2b3
b4

b5
b6 b7

b8

b9

b10b11

b12

b13

b14 b15

b16

b17

b18b19

b20

b21

b22 b23

b24

h1=2

h2=2h3=4

h4=5
h5=2

h6=1 h7=2

h8=2

h9=9

h10=3h11=2

h12=7

h13=5

h14=2 h15=3

h16=4

h17=5

h18=0h19=0

h20=0

h21=7

h22=0 h23=0

h24=0

(a) Circle C with Centre
of Mass (xm, ym) and Ra-
dius ρmax

(b) Segmentation of C into
Bins

(c) Number of Nodes per
Bin

Fig. 1. Construction of the polar graph dissimilarity.

radii umax and angles vmax into umax × vmax bins (in Fig. 1b umax = 3 and
vmax = 8 resulting in 24 bins). Every bin bi is defined by two radii ρimin and ρimax ,
and two angles θimin and θimax , and thus every node v ∈ V with coordinates (ρ, θ)
can be assigned to the corresponding bin bi with ρimin ≤ ρ < ρimax and θimin ≤
θ < θimax . Finally, we count the number of nodes of g in each bin and build a
corresponding histogram H = {h1, . . . , hn} for graph g (see Fig. 1c). To measure
the dissimilarity between two histograms H1 and H2, an arsenal of different
distance measures have been proposed [17]. In the present paper, we make use
of the χ2 distance.

We further refine the computation of our fast graph dissimilarity computation
by implementing a recursive quadtree segmentation. The idea is formalised in
Algorithm 1. First, the procedure is initialised by an external call with l =
1 (i.e. PGD(1, g1, g2)). On the basis of two graphs g1 and g2, the histograms H1

and H2 are created with respect to umax and vmax (see line 2 of Algorithm 1)2.
Next, the χ2-distance between the two histograms is measured (see line 2). If the
current recursion level l is equal to the maximal recursion depth r, the distance
is returned (see lines 4 and 5). Otherwise, both graphs g1 and g2 are segmented
into four independent subgraphs. Each of these subgraphs represent the nodes
and edges in one of the four quadrants in circle C (see line 6). Eventually, for each
subgraph pair, the PGD is measured by means of a recursive function call (see
line 7). This procedure is repeated until the current recursion level l is equal to
the user-defined maximum depth r.

3 Handwriting Graphs

Our novel algorithm for fast rejection is evaluated in the context of KWS on
two different manuscripts. First, the George Washington (GW) letters that are

2 Note that umax and vmax can be defined for every recursion level separately.

Speeding-Up Graph-Based Keyword Spotting 87

Algorithm 1. Polar Graph Dissimilarity (PGD)
Input: Graphs g1 and g2, number of radii and segments umax and vmax, recursion depth r
Output: Polar graph dissimilarity between graph g1 and g2
1: function PGD(l, g1, g2)
2: Create H1 based on g1, umax, vmax, and H2 based on g2, umax, vmax
3: Calculate χ2-distance d(H1, H2)
4: if l equal r then
5: return d
6: Segment g1 and g2 based on quadtree to g11 , g12 , g13 , g14 and g21 , g22 , g23 , g24

7: return (
4∑

i=1
PGD(l + 1, g1i , g2i)) + d

written in English and consist of twenty pages with a total of 4,894 words stem-
ming from handwritten letters with only minor writing variations and signs of
degradation3. Second, the Parzival (PAR) manuscript that is written in Mid-
dle High German and consists of 45 pages with a total of 23,478 words stem-
ming from handwritten letters with low writing variations but markable signs of
degradation4.

We extract graphs from segmented words of both documents by means of
the following four graph extraction algorithms (originally presented in [14]).

– Keypoint: The first graph extraction algorithm makes use of keypoints in the
word images such as start, end, and junction points. These keypoints are rep-
resented as nodes that are labelled with the corresponding (x, y)-coordinates.
Between pairs of keypoints further intermediate points are converted to nodes
and added to the graph in equidistant intervals. Finally, undirected edges are
inserted into the graph for each pair of nodes that is directly connected by a
stroke.

– Grid: The second graph extraction algorithm is based on a grid-wise segmen-
tation of the word images. For every segment, a node is inserted into the graph
and labelled by the (x, y)-coordinates of the centre of mass of this segment.
Undirected edges are inserted between two neighbouring segments that are
actually represented by a node. Eventually, the inserted edges are reduced by
means of a Minimal Spanning Tree algorithm.

– Projection: The next graph extraction algorithm works very similar to Grid.
However, this methods is based on an adaptive segmentation of word images by
means of projection profiles (using horizontal and vertical projection profiles).

– Split: The last graph extraction algorithm is based on an iterative segmen-
tation of word images. Segments are iteratively split into smaller subsegments
until the width and height of all segments is below a certain threshold.

3 George Washington Papers at the Library of Congress, 1741–1799: Series 2, Letter-
book 1, pp. 270–279 & 300–309, http://memory.loc.gov/ammem/gwhtml/gwseries2.
html.

4 Parzival at IAM historical document database, http://www.fki.inf.unibe.ch/
databases/iam-historical-document-database/parzival-database.

http://memory.loc.gov/ammem/gwhtml/gwseries2.html
http://memory.loc.gov/ammem/gwhtml/gwseries2.html
http://www.fki.inf.unibe.ch/databases/iam-historical-document-database/parzival-database
http://www.fki.inf.unibe.ch/databases/iam-historical-document-database/parzival-database

88 M. Stauffer et al.

The dynamic range of the (x, y)-coordinates of each node label μ(v) is nor-
malised with a z-score. Formally,

x̂ =
x − μx

σx
and ŷ =

y − μy

σy
, (2)

where (μx, μy) and (σx, σy) represent the mean and standard deviation of all
(x, y)-coordinates in the graph under consideration.

On the resulting sets of word graphs, ten different keywords are manually
selected on both datasets to optimise several system parameters (see Sect. 4.2).
For validation these keywords are matched against a validation set that consists
of 1,000 different random words including at least 10 instances of all 10 keywords.
The optimised systems are eventually evaluated on the same training and test
sets as used in [4]. All templates of a keyword present in the training set are
used for KWS. In Table 1 a summary of the datasets is given.

Table 1. The number of keywords as well as the size of the training and test sets for
both documents.

Dataset Keywords Train Test

GW 105 2,447 1,224

PAR 1,217 11,468 6,869

4 Experimental Evaluation

4.1 Basic KWS Systems

For evaluating our proposed fast rejection heuristic, we consider the graph-
based KWS system introduced in [13] and the four types of handwriting graphs
described in Sect. 3. The original KWS system [13] is termed BP from now on,
while our extended model with fast rejection is termed BP-FR.

To evaluate the KWS performance, two different metrics are used for global
and local thresholds. In the case of global thresholds, the Average Precision (AP)
is measured, which is the area under the Recall-Precision curve for all keywords
given a single (global) threshold. In the case of local thresholds, we compute the
Mean Average Precision (MAP), that is the mean of all APs for each individual
keyword query. To measure the effects of our fast rejection filter, we compute the
relative amount of pairwise matchings that is filtered by BP-FR (termed Filter
Rate (FR) from now on).

4.2 Optimisation of the Parameters

For the basic KWS system BP and the four graph representations, we adopt
parameters from previous work [13,14]. For our extension BP-FR the following
parameters are additionally optimised on the validation set.

Speeding-Up Graph-Based Keyword Spotting 89

First, the parameters of PGD are optimised with respect to MAP. That is,
we employ PGD (rather than BP) as basic matching procedure in our KWS
framework. On the validation set different polar segmentations (defined via
umax and vmax) are tested for two recursion levels (i.e. we define the maxi-
mal recursion depth to r = 2). For l = 1, the parameter combinations umax =
{1, 2, 3, 4, 5, 6} × vmax = {4, 8, 12, 16, 20, 24, 28, 32, 36, 40} are evaluated, while
for l = 2 the parameter combinations umax = {1, 2, 3, 4} × vmax = {2, 4, 6, 8, 10}
are tested. Hence, we evaluate 6 × 10 × 4 × 5 = 1, 200 parameter combinations
for every graph extraction method. In Table 2 the best performing parameters
are presented for every graph extraction method and both datasets.

Table 2. Optimal umax and vmax for PGD on both recursion levels l.

Method GW PAR

l = 1 l = 2 l = 1 l = 2

umax vmax umax vmax umax vmax umax vmax

Keypoint 4 12 1 6 3 20 2 6

Grid 5 24 1 4 4 20 1 6

Projection 5 16 1 4 3 36 3 4

Split 4 20 1 4 3 40 2 6

For fast rejection in our extension BP-FR we evaluate different thresholds
D = {5, 10, . . . , 195, 200}. In Fig. 2, the MAP and FR are shown for every tested
threshold D. By increasing D we observe that the KWS performance is improved
in general. Simultaneously, the number of filtered graphs is decreasing (making
the KWS process slower in general). Threshold D is finally determined such that
the MAP is maximal (or not further improved, when D is increased). In Table 3

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100 125 150 175 200

D

[%
]

MAP

FR

Keypoint

Grid

Projection

Split

(a) GW

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100 125 150 175 200

D

[%
]

MAP

FR

Keypoint

Grid

Projection

Split

(b) PAR

Fig. 2. Mean average precision (MAP) and filter rate (FR) as function of the thresh-
old D.

90 M. Stauffer et al.

Table 3. Optimal D for BP-FR and corresponding filter rate (FR).

Method GW PAR

D MAP FR D MAP FR

Keypoint 100 82.8 61.1 95 91.7 71.5

Grid 165 75.6 46.0 70 86.5 85.6

Projection 115 80.7 56.9 130 92.2 70.9

Split 155 76.4 44.6 145 90.9 57.5

the selected threshold D is given for each graph extraction method and both
datasets.

4.3 Results and Discussion

We compare the optimised system BP-FR on the independent test sets with the
original KWS framework BP [13] (without fast rejection). In Table 4 the mean
average precision (MAP) for local thresholds, the average precision (AP) for
global thresholds, as well as the filter rate (FR) is given for both BP and BP-
FR. On the GW dataset we observe a filter rate between 50% and 70% (i.e. only
50% to 30% of all comparisons have to be carried out by the bipartite match-
ing algorithm). Due to this filtering, we decrease the computation time of the
complete KWS experiment by about 80 to 150 h on the different graph repre-
sentations. Similar (or even better) filter rates can be observed on the second
dataset5.

Regarding the effects of our fast filtering on the KWS performance, we
observe that the MAP is not negatively affected on both datasets. On the con-
trary, the filtering of irrelevant documents via PGD actually improves the MAP
by about 5% and 10% on the GW and PAR dataset, respectively.

Regarding the AP (employed for global rather than local thresholds), we
observe both deteriorations and improvements of BP-FR when compared with
the original framework. Yet, most of the deviations are negligible. In particular
on the GW dataset only small differences are observed on the resulting APs.
On PAR we observe two substantial deteriorations of the AP. Yet, in these two
cases we observe very high filter rates of about 60% and 70%.

Regarding the results in Table 4 the question arises whether the novel graph
dissimilarity PGD would be able to achieve a competitive KWS accuracy. In
order to answer this question, we employ the optimised PGD (rather than the
bipartite matching) in the original KWS framework. In Table 5, the MAP and
AP of this particular KWS system is shown on the Keypoint graphs (for the

5 Actually, we carry out our experiment on a high performance computing cluster
with dozens of CPU nodes. Hence, these readings are approximated by means of the
average matching time per keyword measured on the validation set in a sequential
scenario.

Speeding-Up Graph-Based Keyword Spotting 91

Table 4. Mean average precision (MAP) using local thresholds, average precision (AP)
using a global threshold, and filter rate (FR) for KWS using the original bipartite graph
matching without rejection (BP) and with the proposed fast rejection (BP-FR). With ±
we indicate the relative percental gain or loss in the accuracy of BP-FR when compared
with BP.

Method GW PAR

MAP ± AP ± FR MAP ± AP ± FR

BP Keypoint 66.08 54.99 0.00 62.04 60.74 0.00

Grid 60.02 46.44 0.00 56.50 44.08 0.00

Projection 61.43 48.69 0.00 66.23 60.61 0.00

Split 60.23 47.96 0.00 59.44 55.46 0.00

BP-FR Keypoint 68.81 +4.12 55.68 +1.25 69.04 67.70 +9.12 58.03 −4.46 58.72

Grid 62.59 +4.27 47.48 +2.23 54.65 63.41 +12.23 38.59 −12.45 78.71

Projection 64.65 +5.25 50.41 +3.53 61.04 72.02 +8.74 55.83 −7.89 58.10

Split 63.49 +5.41 46.95 −2.11 47.70 65.65 +10.45 56.97 +2.72 39.24

Table 5. Mean average precision (MAP) using local thresholds, average precision (AP)
using a global threshold for KWS using the original bipartite graph matching (BP),
and the polar graph dissimilarity (PGD) on the Keypoint graphs.

GW PAR

MAP AP MAP AP

BP 66.08 54.99 62.04 60.74

PGD 58.54 44.77 42.65 31.63

other graphs similar results are obtained). We observe that this system achieves
worse results than BP on both datasets (regarding both MAP and AP). Hence,
we conclude that PGD itself is not powerful enough to serve as basic dissimilarity
model for graph-based KWS. Yet, as seen in the previous evaluation in Table 4,
the PGD as fast rejection criterion in conjunction with BP is clearly beneficial.

5 Conclusion and Outlook

In the present paper a fast rejection approach for graph-based KWS is intro-
duced. The rejection is based on a novel graph dissimilarity model, which com-
pares the histograms of the node distributions in a polar coordinate system.

We compare our extended model with the original KWS framework without
rejection ability on two benchmark datasets. We observe that our novel rejec-
tion approach reduces the amount of graph matchings by 50% or more on both
datasets (in fact, filter rates of up to 80% are observed). Our rejection crite-
rion is computed in linear time, while the actual graph matching needs cubic
time. Hence, a dramatic speed up of the complete KWS process is achieved.
Moreover, we can conclude that our novel extension for speeding up the existing
KWS framework does not negatively influence the spotting accuracy.

92 M. Stauffer et al.

In future work we aim at extending our novel graph dissimilarity model. For
instance, we could consider not only nodes but also edges in the histograms.

Acknowledgments. This work has been supported by the Hasler Foundation
Switzerland.

References

1. Manmatha, R., Han, C., Riseman, E.: Word spotting: a new approach to indexing
handwriting. In: Computer Vision and Pattern Recognition, pp. 631–637 (1996)

2. Rath, T., Manmatha, R.: Word image matching using dynamic time warping. In:
Computer Vision and Pattern Recognition, vol. 2, pp. II-521–II-527 (2003)

3. Rodŕıguez-Serrano, J.A., Perronnin, F.: Handwritten word-spotting using hidden
Markov models and universal vocabularies. Pattern Recogn. 42(9), 2106–2116
(2009)

4. Fischer, A., Keller, A., Frinken, V., Bunke, H.: Lexicon-free handwritten word
spotting using character HMMs. Pattern Recogn. Lett. 33(7), 934–942 (2012)

5. Rodriguez, J.A., Perronnin, F.: Local gradient histogram features for word spotting
in unconstrained handwritten documents. In: International Conference on Frontiers
in Handwriting Recognition, pp. 7–12 (2008)

6. Rodŕıguez-Serrano, J.A., Perronnin, F.: A model-based sequence similarity with
application to handwritten word spotting. IEEE Trans. Pattern Anal. Mach. Intell.
34(11), 2108–20 (2012)

7. Perronnin, F., Rodriguez-Serrano, J.A.: Fisher kernels for handwritten word-
spotting. In: International Conference on Document Analysis and Recognition,
pp. 106–110 (2009)

8. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in
pattern recognition. Int. J. Pattern Recogn. Artif. Intell. 18(03), 265–298 (2004)

9. Riesen, K.: Structural pattern recognition with graph edit distance. Advances in
Computer Vision and Pattern Recognition, Cham (2015)

10. Wang, P., Eglin, V., Garcia, C., Largeron, C., Llados, J., Fornes, A.: A novel
learning-free word spotting approach based on graph representation. In: Interna-
tional Workshop on Document Analysis Systems, pp. 207–211 (2014)

11. Bui, Q.A., Visani, M., Mullot, R.: Unsupervised word spotting using a graph repre-
sentation based on invariants. In: International Conference on Document Analysis
and Recognition, pp. 616–620 (2015)

12. Riba, P., Llados, J., Fornes, A.: Handwritten word spotting by inexact match-
ing of grapheme graphs. In: International Conference on Document Analysis and
Recognition, pp. 781–785 (2015)

13. Stauffer, M., Fischer, A., Riesen, K.: Graph-based keyword spotting in historical
handwritten documents. In: International Workshop on Structural, Syntactic, and
Statistical Pattern Recognition (2016)

14. Stauffer, M., Fischer, A., Riesen, K.: A novel graph database for handwritten word
images. In: Robles-Kelly, A., Loog, M., Biggio, B., Escolano, F., Wilson, R. (eds.)
S+SSPR 2016. LNCS, vol. 10029, pp. 553–563. Springer, Cham (2016). doi:10.
1007/978-3-319-49055-7 49

http://dx.doi.org/10.1007/978-3-319-49055-7_49
http://dx.doi.org/10.1007/978-3-319-49055-7_49

Speeding-Up Graph-Based Keyword Spotting 93

15. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of
bipartite graph matching. Image Vis. Comput. 27(7), 950–959 (2009)

16. Shu, X., Wu, X.J.: A novel contour descriptor for 2D shape matching and its
application to image retrieval. Image Vis. Comput. 29(4), 286–294 (2011)

17. Serratosa, F., Sanfeliu, A.: Signatures versus histograms: definitions, distances and
algorithms. Pattern Recogn. 39(5), 921–934 (2006)

Detecting Alzheimer’s Disease
Using Directed Graphs

Jianjia Wang(B), Richard C. Wilson, and Edwin R. Hancock

Department of Computer Science, University of York, York YO10 5DD, UK
jw1157@york.ac.uk

Abstract. The neurobiology of Alzheimer’s disease (AD) has been
extensively studied by applying network analysis techniques to activa-
tion patterns in fMRI images. However, the structure of the directed
networks representing the activation patterns, and their differences in
healthy and Alzheimer’s people remain poorly understood. In this paper,
we aim to identify the differences in fMRI activation network structure
for patients with AD, late mild cognitive impairment (LMCI) and early
mild cognitive impairment (EMCI). We use a directed graph theoretical
approach combined with entropic measurements to distinguish subjects
falling into these three categories and the normal healthy control (HC)
group. We explore three methods. The first is based on applying linear
discriminant analysis to vectors representing the in and out degree statis-
tics of different anatomical regions. The second uses an entropic measure
of node assortativity to gauge the asymmetries in the node with in and
out degree. The final approach selects the most salient anatomical brain
regions and uses the degree statistics of the connecting directed edges.

Keywords: fMRI Networks · Directed graphs entropy · Alzheimer’s
disease (AD)

1 Introduction

Functional magnetic resonance imaging (fMRI) provides a sophisticated means of
studying the neuropathophysiology associated with Alzheimer’s disease (AD) [1].
Specifically, the blood oxygen level-dependent (BOLD) signal in fMRI indicates
the activation potential of different brain regions, and neuronal activity between
the various brain regions can be determined by measuring the correlation between
activation signals. The resulting network representation of region activity has
proved useful in understanding the functional working of the brain [2]. Functional
neuroimaging has also proved useful in understanding Alzheimer’s disease (AD)
via the analysis of intrinsic brain connectivity [3]. Abnormal brain function in AD
is characterized by progressive impairment of episodic memory and other cogni-
tive domains, resulting in dementia and, ultimately, death [5]. Although there is
converging evidence about the identity of the affected regions in fMRI, it is not
clear how this abnormality affects the functional organization of the whole brain.

c© Springer International Publishing AG 2017
P. Foggia et al. (Eds.): GbRPR 2017, LNCS 10310, pp. 94–104, 2017.
DOI: 10.1007/978-3-319-58961-9 9

Detecting Alzheimer’s Disease Using Directed Graphs 95

Tools from complex network analysis provide a convenient approach for
understanding the functional association of different regions in the brain [3]. The
approach is to characterize the topological structures present in the brain and to
quantify the functional interaction between brain regions, using the mathemati-
cal study of networks and graph theory. Graph theory offers an attractive route
since it provides effective tools for characterizing network structures together
with their intrinsic complexity. This approach has led to the design of several
practical methods for characterizing the global and local structure of undirected
graphs [4]. Features based on the global and local measures of connectivity are
widely used in functional brain analysis [6]. By comparing the structural and
functional network topologies between different populations of subjects, graph
theory provides meaningful and easily computable measurements to reveal con-
nectivity abnormalities in both neurological and psychiatric disorders [5].

Unfortunately, there is relatively little literature aimed at studying structural
network features using directed graphs. The reason for that is the vast major-
ity of techniques suggested by graph theory pertain to undirected rather than
directed graphs. However, directed graphs are a more natural representation for
brain structure, since they allow the temporal causality of activation signals for
different anatomical structures in the brain. Moreover, Granger causality pro-
vides a powerful tool that can be used to investigate the direction of information
flow between different brain regions [6]. When combined with machine learning
algorithms, classification exhibited from directed graphs provides an effective
way of detecting functional regions associated with Alzheimer’s disease [6]. By
explicitly defining anatomical and functional connections in a directed manner
between brain regions, fMRI data may be analyzed in a more detailed way and
used to identify the different stages of neurodegenerative diseases [5,6].

This paper is motivated by the need to fill this important gap in the litera-
ture, and to establish effective methods for measuring the structural properties
of directed graphs representing inter-regional casual networks extracted from
fMRI brain data. In particular, in order to characterize the functional organi-
zation of the brain, our approach uses as its starting point the von Neumann
entropy for directed graphs. In a recent paper, Ye et al. [4] have derived an
approximation of the Neumann entropy of a directed graph that depends on
the in and out degrees of nodes in a directed graph. Thus it provides a natural
way of capturing the flow of information across a directed network, based on the
asymmetry of edges entering and exiting its nodes. We aim to use the directed
network entropy to develop graph analytical methods to measure the degree of
functional connectivity in brain networks.

We demonstrate that the resulting techniques can be used to distinguish the
fMRI data from healthy controls and AD objects. The AD subjects exhibit sig-
nificantly lower regional connectivity and exhibit disrupted the global functional
organization when compared to healthy controls. Moreover, we apply linear dis-
criminant analysis to brain network data from two groups of subjects with early
mild cognitive impairment (EMCI) and late mild cognitive impairment (LMCI).
Our results indicate that the node in and out degree statistics together with their

96 J. Wang et al.

associated von Neumann entropy may be useful as a graph-based indicator to
distinguish Alzheimer’s disease subjects from normal healthy control population.

2 Directed Graphs in fMRI Networks

2.1 Preliminaries

Let G(V,E) be a directed graph with node set V and directed edge set E ⊆ V ×V .
Each edge e = (u, v) ∈ E, has a start vertex u and end-vertex v. The adjacency
matrix A of the directed graph is defined as

A =

{
1 if (u, v) ∈ E

0 otherwise.
(1)

For the node u the in-degree and out-degree of node are

din
u =

∑
v∈V

Avu dout
u =

∑
v∈V

Auv (2)

and the total degree of node in the directed graph is du = din
u + dout

u . An edge is
said to be unidirectional if Auv = 1 and Avu = 0, and bidirectional if Auv = 1
and Avu = 1.

2.2 Von Neumann Entropy for Directed Graphs

For an undirected graph the von Neumann entropy [7] computed from the nor-
malised Laplacian spectrum has been shown to be effective for network charac-
terization. In fact, Han et al. [8] have shown how to approximate the calculation
of von Neumann entropy in terms of simple degree statistics. Their approxima-
tion allows the cubic complexity of computing the von Neumann entropy from
the Laplacian spectrum, to be reduced to one of quadratic complexity using
simple edge degree statistics, i.e.

SU = 1 − 1
|V | − 1

|V |2
∑

(u,v)∈E

1
dudv

(3)

This expression for the von Neumann entropy has been shown to be an
effective tool for characterizing structural properties of networks. Moreover, it
has extremal values for cycles and fully connected graphs. Ye et al. [4] have
extended this result to directed graphs by distinguishing between the in-degree
and out-degree of nodes, giving the following expression for the entropy

SD = 1 − 1
|V | − 1

2|V |2
∑

(u,v)∈E1

din
u

din
v dout2

u

+
∑

(u,v)∈E2

1
dout

u dout
v

(4)

Detecting Alzheimer’s Disease Using Directed Graphs 97

where the edge set E is partitioned into two disjoint subsets E1 and E2, which
respectively contain the unidirectional and directional edges.

The two subsets E1 and E2 satisfy the conditions that E1 = {(u, v)|(u, v) ∈
E ∩ (v, u) /∈ E}, E2 = {(u, v)|(u, v) ∈ E ∩ (v, u) ∈ E}. E1 ∪E2 = E, E1 ∩E2 = ∅.
If most of the edges in the graph are unidirectional, i.e., |E1| � |E2|, then the
graph is said to be strongly directed. In this case we can ignore the entropy
associated with the summation over E2, giving the approximate entropy for
strongly directed graphs as

SSD = 1 − 1
|V | − 1

2|V |2
∑

(u,v)∈E

din
u

dout
u

· 1
din

v dout
u

(5)

There are thus two factors determining the entropy. The first is the ratio of the
in to out degree of the start node u of the directed edge, i.e. ρu = din

u

dout
u

, while the
second is the directed version of the edge entropy, i.e. 1

dout
u din

v
. The former weights

the contributions of the entropy associated with the directed edges exiting node
u. The contributions to the entropy are thus large if the ratio ρu is small, and
directed edge connects nodes with large both out and in degree.

2.3 Entropic Edge Assortativity for Directed Graphs

For undirected graphs, the assortativity is the tendency of nodes to connect to
those of similar degree. This concept can be extended to directed graphs if we
measure the tendency of nodes to connect to those nodes of similar in and out
degree. Foster et al. [11] define the directed assortativity as

r(α, β) =
1

|E|

∑
(u,v)∈E [(dα

u − d̄α
u)(dβ

v − d̄β
v)]

σασβ
(6)

where α, β ∈ {in, out} is the incoming and outgoing direction for a directed edge.
d̄α

u = |E|−1
∑

(u,v)∈E dα
u and σα =

√
|E|−1

∑
(u,v)∈E(dα

u − d̄α
u)2. The similar

definitions are for d̄β
v and σβ .

Ye [10] adopts a different approach to defining degree assortativity for
directed graphs based on von Neumann entropy decomposition. The method
is based on the observation that edges associated with high degree nodes have
large entropy and preferentially attach to clusters in a graph. The entropic assor-
tativity measurement provides a novel way to analyze the graph structure. For
instance, with the approximation for the von Neumann entropy for directed
graph SD, the coefficient of directed edge assortativity is given by [10]

R =

∑
(u,v)∈E [(Su

uv − ¯Su
uv)(Sv

uv − ¯Sv
uv)]

σS
u σS

v

(7)

where Su
uv associate the entropy of all the outgoing edges from vertex u, and Sv

uv

are all the incoming edges of vertex v.

98 J. Wang et al.

3 Experiments and Evaluations

In this section, we describe the application of the above methods to the analysis
of interregional connectivity structure for fMRI activation networks for normal
and Alzheimer subjects. We first examine the differences in degree distribution
for the four groups of subjects. Then we apply the entropy-based analysis to
distinguish Early Mild Cognitive Impairment (EMCI) and Late Mild Cognitive
Impairment (LMCI).

3.1 fMRI Data Set

The fMRI data comes from the ADNI initiative [9]. Each image volume is
acquired every two seconds with Blood-Oxygenation-Level-Dependent (BOLD)
signals. The fMRI voxels here have been aggregated into larger regions of inter-
est (ROIs). The different ROI’s correspond to different anatomical regions of
the brain and are assigned anatomical labels to distinguish them. There are 96
anatomical regions in each fMRI image. The correlation between the average
time series in different ROIs represents the degree of functional connectivity
between regions which are driven by neural activities [12].

A directed graph with 96 nodes is constructed for each patient based on the
magnitude of the correlation and the sign of the time-lag between the time-series
for different anatomical regions. To model causal interaction among ROIs, the
directed graph uses the time lagged cross-correlation coefficients for the average
time series for pairs of ROIs. We detect directed edges by finding the time-
lag that results in the maximum value of the cross-correlation coefficient. The
direction of the edge depends on whether the time lag is positive or negative.
We then apply a threshold to the maximum values to retain directed edges with
the top 40% of correlation coefficients. This yields a binary directed adjacency
matrix for each subject, where the diagonal elements are set to zero. Those ROIs
which have missing time series data are discarded.

Subjects fall into four categories according to their degree of disease severity.
The classes are full Alzheimer’s (AD), Late Mild Cognitive Impairment (LMCI),
Early Mild Cognitive Impairment (EMCI) and Normal Healthy Controls (HC).
The LMCI subjects are more severely affected and close to full Alzheimer’s,
while the EMCI subjects are closer to the healthy control group (Normal). We
have fMRI data for 30 AD subjects, 34 LMC subjects, 47 EMCI subjects, and
38 normal healthy control subjects.

3.2 Alzheimer’s Classification

We first investigate the in and out degree distribution of the data by showing
a scatter plot in-degree versus out-degree for each directed edge in the data. In
order to extract potential structural difference, the distribution of points in the
scatter plot is analyzed using a general linear model. Figure 1 shows the scat-
ter plots of in-degree versus out-degree, comparing the first AD vs. Normal and

Detecting Alzheimer’s Disease Using Directed Graphs 99

Fig. 1. The in-degree/out-degree distribution for edges in the directed graphs in Nor-
mal Healthy Control and Alzheimer’s groups (left), Early Mild Cognitive Impair-
ment(EMCI) and Late Mild Cognitive Impairment (LMCI) (right). The blue stars
represent the edges in normal patients’ graphs which occupy the high degree region
with large variance. The red cycles show the AD patients’ graphs with narrow and low
degree occupation. (Color figure online)

secondly EMCI vs. LMCI respectively. The obvious difference is that normal sub-
jects exhibit a high degree of interregional connection compared to Alzheimer’s
subjects. A similar effect is shown by Early and Late detection groups. Table 1
shows the coefficients of a linear model with 95% confidence bounds and root
mean square error.

The results of fitting the linear model show that the in and out degree dis-
tributions for the nodes in the AD and LMCI groups of subjects have a greater
slope than those of the Normal and Early groups. This implies that there is a
greater imbalance in in-degree and out-degree in the Alzheimers and late detec-
tion groups. In other words, the nodes in the fMRI inter-regional connectivity
graphs for these two groups tend to have larger in-degree than out-degree. More-
over, the small value of RMSE in these two groups reveals that for Alzheimer’s
subjects the scatter about the regression lines is smallest. By contrast, for the
normal and early control subjects the scatter is significantly higher. This under-
lines the imbalance in in-degree for the subjects belonging to the diseased groups.

We can explore this asymmetry of in and out degree in more detail using Ye’s
entropy assortativity measure. This gauges the extent to which nodes to connect
to others with similar in-degree or out-degree [6]. To represent the structural

Table 1. Liner polynomial model to fit the edge in-degree/out-degree distribution

Group of subjects Coef (α) BSC (α) Coef (β) BSC (β) R2 RMSE

AD 0.8582 [0.8406, 0.8758] 5.445 [4.719, 6.171] 0.7604 7.2444

Normal 0.6103 [0.5848, 0.6357] 22.45 [20.94, 23.96] 0.3771 11.3445

EMCI 0.7235 [0.7034, 0.7436] 14.6 [13.5, 15.7] 0.5253 10.3959

LMCI 0.9236 [0.9098, 0.9375] 2.933 [2.356, 3.509] 0.8395 6.4426

100 J. Wang et al.

Fig. 2. Histogram of directed edge entropy association for four healthy control groups.
The normal and early patients exhibit low entropy association for each edge compared
to the late and AD groups which the distributions shift to high entropy region.

difference regarding the entropy associated with degree of each node, we plot
the histogram of edge entropy assortativity in Fig. 2. It shows the difference in
entropy of the directed edges for subjects in AD vs. Normal, and EMCI vs. LMCI.
By comparing the directed edges in the AD and normal groups, we conclude that
the edges in the directed graphs for Alzheimer’s subjects tend to have a higher
value of entropy, and this reveals the structure is weakly connected with a lower
average in out to in degree ratio. A similar effect is shown in the EMCI and
LMCI subject groups. For late Alzheimer’s subjects, the shift in entropy to the
right represents the weak degree connection in the nodes. This clearly reveals
the loss of interregional connection for directed edges in Alzheimer’s.

Finally, the in-degree and out-degree of nodes are used as the features to dis-
tinguish the different group of subjects. For each edge, we construct four dimen-
sional feature vectors with two nodes and in and out degree measurements on
each node. So the graph can be represented by these directed edges associated
with four-dimensional feature vectors. We perform the linear discriminant analy-
sis (LDA) on the Alzheimer’s (AD) and Normal healthy control groups as the
training process to find the decision boundary. Then the LDA model is applied
on the EMCI and LMCI groups to classify patients. We compare the results and
the labels to get classification accuracy.

Table 2 shows the classification accuracy of linear discriminant analysis(LDA).
The directed graphs for the AD and Normal subjects are used as the training data
to find the decision boundary. The performance of the resulting LDA classier is
high with an accuracy of 87.87% when computed using 10-fold cross-validation.
We randomly divide the AD and Normal subjects into 10 disjoint subsets of equal

Table 2. The classification accuracy with linear discriminant analysis(LDA) for train-
ing data (AD/Normal) and testing data (EMCI/LMCI) (in %)

LDA Accuracy Sensitivity Specificity Positive predictivity

AD/Normal 87.87 ± 0.58 88.59 87.10 88.00

EMCI/LMCI 80.47 ± 0.41 75.85 86.18 87.14

Detecting Alzheimer’s Disease Using Directed Graphs 101

size. Remove one subset, train the LDA model using the other nine subsets. This
process is repeated by removing each of the ten subsets once at a time and then
average the classification accuracy. In order to evaluate the performance of clas-
sification, we provide results for sensitivity and specificity for LDA classifier. The
sensitivity indicates the percentage of Alzheimer’s people who are correctly iden-
tified. It reaches 88.59% which represents the high percentage of correctly classi-
fied. In addition, the specificity shows the true negative that is the healthy people
correctly identified as healthy. It is 87.10% revealing most normal healthy peo-
ple are correctly identified in the Normal group. Similarly to the LDA in AD and
Normal classier, for the discrimination of subjects belonging to the EMCI and
LMCI groups, we obtain a classification accuracy of 80.47%. Although this result
is acceptable, the sensitivity is reduced to 75.85% indicating some percentage of
patients are not correctly classified in LMCI groups.

3.3 Identifying Salient Nodes for Disease Classification

Identifying diseased regions in the brain is also important in the study in
Alzheimer’s analysis. Several studies have shown that in anatomical structures
the corresponding ROIs are important for understanding brain disorders [1,3].
Here we compute the difference of out-degree and in-degree in our study and
investigate the method for identification of the disease nodes in patients with
Alzheimer’s.

Fig. 3. Histogram of degree difference between Alzheimer’s (AD) and Normal Healthy
Controls (HC) groups. The normal and early patients exhibit wide bound range com-
pared to the late and AD groups which the distributions narrows around zero.

We first compute the histogram of degree imbalance, i.e. out-degree minus
in-degree for each node. Figure 3 compares histograms obtained for AD and
HC, and for EMCI and LMCI. The obvious feature is that the directed graphs
for HC (normal) and EMCI (early development) groups give a much broader
range of degree difference compared to that for the AD (fully developed disease)
and LMCI (late development) groups. In other words for subjects with fully
developed AD, there is a loss of connection between brain regions and gives rise
to a narrowing of the distribution of degree difference.

We now plot the difference in directed edge entropy between corresponding
regions (nodes) in the directed graphs for the AD and HC groups. We find a

102 J. Wang et al.

Fig. 4. Directed edge entropy difference between Alzheimer’s (AD) and Normal
Healthy Controls (HC) groups (left). The ratio of out-degree and in-degree difference
corresponding to each ROI in two groups of AD and Normal patients (right). The sig-
nificant changes of degree ratio in each nodes associate to the similar pattern in edge
entropy plot, which illustrates the disease area in the brain.

similar feature pattern of the degree difference in both plots as shown in Fig. 4.
The entropic measurements associated with degree difference in the brain areas,
such as the Temporal Gyrus, Parahippocampal Gyrus, Operculum Cortex and
Lingual Gyrus, suggest that subjects with AD experience loss of interconnection
in their brain network during the progression of the disease.

Table 3. Top 10 ROIs with the significant difference between groups of AD and Normal.
These ROIs are extracted from the absolute value of out-degree to in-degree ratio.

Graph measure ROI number Corresponding area in brain

Out-degree/In-degree ratio difference 83 Right Parahippocampal Gyrus

14 Left Inferior Temporal Gyrus

27 Left Paracingulate Gyrus

65 Right Temporal Fusiform Cortex

93 Right Heschl’s Gyrus

43 Left Parietal Operculum Cortex

75 Right Paracingulate Gyrus

38 Left Temporal Fusiform Cortex

42 Left Central Opercular Cortex

5 Left Inferior Frontal Gyrus

As listed in Table 3, the ten anatomical regions with the largest entropy dif-
ferences for subjects with full AD are right Parahippocampal Gyrus, left Infe-
rior Temporal Gyrus, left Paracingulate Gyrus, right Temporal Fusiform Cortex,
right Heschl’s Gyrus, left Parietal Operculum Cortex, right Paracingulate Gyrus,
left Temporal Fusiform Cortex, left Central Opercular Cortex and left Inferior
Frontal Gyrus. This result is consistent with the previous study [5,6], which sug-
gested that the middle temporal gyrus is an important region in AD pathology [3].

Detecting Alzheimer’s Disease Using Directed Graphs 103

Table 4. The LDA classification accuracy with top 20 selected ROIs to distinguish
AD/Normal and EMCI/LMCL (in %)

LDA Accuracy Sensitivity Specificity Positive Predictivity

AD/Normal 90.52 ± 0.67 91.36 89.61 91.20

EMCI/LMCI 86.20 ± 0.81 83.90 90.12 89.26

The parahippocampal gyrus has consistently been reported as being an affected
region in EMCI and AD [11]. The loss of connection between these brain regions
results in significant functional impairment between healthy subjects and patients
with AD.

We now repeat our LDA analysis using just the salient regions listed in
Table 3, since it is the impairment of connections to these anatomical structures
that appears to determine the onset of AD. We perform LDA on the 4 vectors
representing the pairs of listed anatomical regions. The classification accuracy
is shown in Table 4. In comparison to the previous results in Table 2, the accu-
racy increases by about 3% in AD/Normal groups and 6% in the EMCI/LMCL
groups. All other performances are also improved with these selected degree
features.

4 Conclusions

In conclusion, this paper is motivated by filling the gap in the literature of
analyzing fMRI regional brain interaction networks using directed graphs. We
commence from the recently developed simplified approximations to the von
Neumann entropy of directed graphs, which are dependent on the graph size and
the in and out degree statistics of vertices. In order to characterize the functional
organization of the brain, assortativity of nodes in directed graphs provides
insights into the neuropathology of Alzheimer’s disease. Entropic measurements
associated with node degree identifies the edge connection features which offer
high discrimination between subjects suffering from AD and normal subjects.

References

1. van den Heuvel, M., Pol, H.E.H.: Exploring the brain network: a review on resting-
state fMRI functional connectivity. J. Eur. Neuropsychopharmacol. 20, 519–534
(2010)

2. Anwar, A.R., et al.: Complex network analysis of resting-state fMRI of the brain.
In: 2016 IEEE 38th Annual International Conference of the Engineering in Medi-
cine and Biology Society (EMBC). IEEE (2016)

3. Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: uses
and interpretations. Neuroimage 52(3), 1059–1069 (2010)

4. Ye, C., Wilson, R.C., Comin, C.H., Costa, L.D.F., Hancock, E.R.: Approximate
von Neumann entropy for directed graphs. Phys. Rev. E 89(5), 052804 (2014)

104 J. Wang et al.

5. Rombouts, S.A., Barkhof, F., Goekoop, R., Stam, C.J., Scheltens, P.: Altered rest-
ing state networks in mild cognitive impairment and mild Alzheimer’s disease: an
fMRI study. Hum. Brain Mapp. 26(4), 231–239 (2005)

6. Khazaee, A., Ebrahimzadeh, A., Babajani-Ferem, A.: Classification of patients with
MCI and AD from healthy controls using directed graph measures of resting-state
fMRI. Behav. Brain Res. 322, 339–350 (2016)

7. Passerini, F., Severini, S.: The von neumann entropy of networks. Int. J. Agent
Technol. Syst. 1, 58–67 (2008)

8. Han, L., Escolano, F., Hancock, E.R., Wilson, R.C.: Graph characterizations from
von neumann entropy. Pattern Recogn. Lett. 33, 1958–1967 (2012)

9. Alzheimer’s Disease Neuroimaging Initiative (ADNI). http://adni.loni.usc.edu/
10. Ye, C., Wilson, R.C., Hancock, E.R.: An entropic edge assortativity measure. In:

Liu, C.-L., Luo, B., Kropatsch, W.G., Cheng, J. (eds.) GbRPR 2015. LNCS, vol.
9069, pp. 23–33. Springer, Cham (2015). doi:10.1007/978-3-319-18224-7 3

11. Foster, J.G., Foster, D.V., Grassberger, P., Paczuski, M.: Edge direction and the
structure of networks. Proc. Natl. Acad. Sci. U.S.A. 107(24), 10815–10820 (2010)

12. Wang, J., Wilson, R.C., Hancock, E.R.: fMRI activation network analysis using
bose-einstein entropy. In: Robles-Kelly, A., Loog, M., Biggio, B., Escolano, F.,
Wilson, R. (eds.) S+SSPR 2016. LNCS, vol. 10029, pp. 218–228. Springer, Cham
(2016). doi:10.1007/978-3-319-49055-7 20

http://adni.loni.usc.edu/
http://dx.doi.org/10.1007/978-3-319-18224-7_3
http://dx.doi.org/10.1007/978-3-319-49055-7_20

Graph Matching

Error-Tolerant Coarse-to-Fine Matching Model
for Hierarchical Graphs

Pau Riba(B), Josep Lladós, and Alicia Fornés

Computer Science Department, Computer Vision Center,
Universitat Autònoma de Barcelona, Barcelona, Spain

{priba,josep,afornes}@cvc.uab.es
http://www.cvc.uab.es

Abstract. Graph-based representations are effective tools to capture
structural information from visual elements. However, retrieving a query
graph from a large database of graphs implies a high computational
complexity. Moreover, these representations are very sensitive to noise or
small changes. In this work, a novel hierarchical graph representation is
designed. Using graph clustering techniques adapted from graph-based
social media analysis, we propose to generate a hierarchy able to deal
with different levels of abstraction while keeping information about the
topology. For the proposed representations, a coarse-to-fine matching
method is defined. These approaches are validated using real scenarios
such as classification of colour images and handwritten word spotting.

Keywords: Graph matching · Hierarchical graph · Graph-based repre-
sentation · Coarse-to-fine matching

1 Introduction

Graph-based representations play an important role in content-based image
retrieval. Using graphs, not only statistical information is codified but also the
relations between the compounding parts. The use of graph representations in
computer vision has two main requirements. First, the extraction of the struc-
tures underlying the visual objects. Second, error-tolerant metrics coping with
noise or distortion must be designed. Graph matching is one of the most impor-
tant challenges of graph processing [6]. Generally speaking, the problem consists
in finding the best correspondence between the sets of vertices of two graphs
preserving the underlying structures. The intrinsic variability of patterns, noise
and errors produced from the graph extraction process, makes mandatory to
encode tolerance to errors into graph matching frameworks. Thus error-tolerant
graph matching has to be applied.

Graph edit distance [9] is the process of evaluating the similarity of two dif-
ferent graphs computing the minimum edit cost from the source to the target
graph in terms of node and edge insertion, deletion and substitution. It is an
optimal method and the computational complexity is exponential in the number
c© Springer International Publishing AG 2017
P. Foggia et al. (Eds.): GbRPR 2017, LNCS 10310, pp. 107–117, 2017.
DOI: 10.1007/978-3-319-58961-9 10

108 P. Riba et al.

of nodes. A suboptimal approximation called bipartite graph matching was pro-
posed by Riesen et al. [16]. It is based on the assignment problem solution using
a cost matrix which codifies the edit operations costs. More recently, an efficient
approach was proposed by Zhou and De la Torre [20] formulating graph match-
ing as a quadratic assignment. To avoid the computation of the large pairwise
affinity matrix, they propose a factorisation into smaller matrices that encode
the local structure of each graph and the pairwise affinity between edges.

When dealing with large scale data, indexation strategies are required to
prune the number of graph comparisons. Generally, graph indexing is solved
by graph factorisation techniques where the dataset of graphs is decomposed
in smaller ones representing a codebook of compounding structures. The index-
ation is formulated in terms of matching the constituent graphs organised in
a look-up table structure. Usually, path-based methods are used to split the
graphs into small redundant fragments. GraphGrep [17] enumerates all the exist-
ing paths up to a predefined length. This reduces the search space performing the
exact matching using only few graphs. A relevant work was proposed by Yan
et al. [19]. They propose to use frequent substructures instead of path-based
methods as indexing features. Frequent graph substructures are obtained by
graph sequentialization, according to a depth first search (DFS) traversal of the
graph edges. Edge sequences are organised in a prefix tree called the gIndex tree.
Riba et al. [15] proposed a binary embedding for the local context of each node.
A vote scheme is used for indexation, so the subgraphs with more votes are more
accurately analyzed in a finer matching process.

The above methods rely on local structures rather than global knowledge of
the graph. An interesting alternative is to use a scale-space approach where the
input data is hierarchically organized, summarizing it in order to avoid complex
graph comparisons. Several hierarchical graph approaches have been proposed.
Brun and Kropatsch [4] introduces a set of relationships between regions of a
partition through irregular graph pyramids. Broelemann et al. [3] propose to deal
with noise such as spurious nodes and edges through a hierarchical representation
of plausible graphs. Ahuja and Todorovic [1] present a region based approach
for object recognition based in multi-scale region segmentation. Conte et al. [5]
propose a similar graph multi-resolution approach in order to improve the object
tracking in a video. Mousavi et al. [11] use a hierarchical graph representation
in order to improve the information codified by graph embedding frameworks.
Indexation frameworks have been also proposed.

The main contribution of this work is a hierarchical graph representation and
matching able to discard non-promising structures. Our hierarchical information
avoids a direct matching at the original graph. The hierarchy is designed to
perform a big reduction of the graphs drastically reducing the matching time.
The proposed approaches are validated using real scenarios such as classification
of colour images and handwritten word spotting. In the next sections we describe
the representation, the matching and the results respectively.

Error-Tolerant Graph Matching Model 109

2 Hierarchical Attributed Graph Representation

2.1 Hierarchy Construction

A hierarchical graph representing information at different levels of abstraction
(contraction) allows to perform the retrieval problem in an abstract manner.

Definition 1 (Hierarchical Graph). A hierarchical graph H is defined as a
6-tuple H(V,EN , EH , LV , LEN

, LEH
) where V is the set of nodes; EN ⊆ V × V

are the neighborhood edges; EH ⊆ V ×V are the hierarchical edges; LV, LEN and
LEH are three labeling functions defined as LV : V → ΣV × Ak

V , LEN : EN →
ΣEN

× Al
EN

and LEH : EH → ΣEH
× Am

EH
, where ΣV , ΣEN

and ΣEH
are three

sets of symbolic labels for vertices and edges, AV , AEN
and AEH

are three sets
of attributes for vertices and edges, respectively, and k, l,m ∈ N.

Given a graph G, two functions are needed to construct a hierarchical graph H:

– Contraction: c : G → H, defines the groups of nodes that are gathered
together. The contraction process can follow different criteria such as topol-
ogy, features of the nodes or edges, etc. This function follows a clustering
process.

– Embedding: ϕ : G → R
n, returns a vectorial representation of the contracted

subgraph to be used as an attribute. The embedding function can be seen as
a signature of the subgraph that summarizes the information from one level
to another (information propagation between levels).

We propose a contraction criterion based on the topology. The embedding
function is applied to all contracted groups of nodes propagating the information.
This function is application dependent and is specified for each particular case.

2.2 Hierarchy Construction by Community Detection

To determine the group of nodes that are joined into a unique vertex, the Girvan-
Newman algorithm [10] is applied. This is a well-known method for community
detection in complex systems with complexity O(m2n), where m and n are
the number of edges and nodes respectively. It is a global divisive algorithm
which removes the appropriate edge at each step until all the edges are deleted.
The betweenness centrality measure is used as edge selection. The betweenness
centrality of e ∈ E is defined as the number of shortest walks between any
pair of nodes that cross e. The idea is that the edges with higher centrality
are candidates to connect two clusters. After the edge deletion, each connected
component is considered as a cluster in the hierarchy. This algorithm consists of
4 steps:

1. Calculate the betweenness centrality (BC) for all edges in the network.
2. Remove the edge with highest BC and generate a cluster for each connected

component.

110 P. Riba et al.

3. Recalculate BCs for all edges affected by the removal.
4. Repeat from step 2 until no edges remain.

The output of this algorithm is a dendrogram providing a hierarchical clustering
of the graph nodes. In case of ties (i.e. several edges have the same BC), The
edge with more connections in their compounding nodes is deleted. From it, we
contract clusters containing at least two nodes. Moreover, it does not allow any
node to be a cluster individually. Therefore, the reduction ratio is at least of 2.
Afterwards, the corresponding nodes are contracted into only one vertex which
is labelled with the embedding function applied to these subgraphs. The idea is
that each node of the hierarchy represents a subgraph and provide information
about its topology. Finally, connected communities will create connected nodes.

2.3 Splitting of Articulation Points

There are cases where slight deformations in the input graphs can lead to com-
pletely different hierarchies. Figure 1 shows a common subgraph that can lead to
two possible hierarchies. This ambiguity can result in matching errors. Although
overlapping community detection techniques have been developed [13], they gen-
erate redundant information leading to a bad abstraction. This problem usually
comes from a symmetry in the original graph. To tackle with this problem we
define articulation points as follows:

Definition 2 (Articulation Point). A node in an undirected graph is an artic-
ulation point if and only if removing it the number of connected components of
the graph increases.

Fig. 1. Ambiguity configuration that can significantly influence in the hierarchy con-
struction, in red two possible clusterings of nodes from the contraction function.
(Color figure online)

These nodes are of key importance, if they are classified in an incorrect
cluster, they can change significantly the topology. Thus, we propose to split
the articulation points of the graphs creating virtual nodes and disconnecting
them. Hence, the hierarchical representation is stabilised without introducing
noise to the data. The articulation points therefore divide and belong to two
or more clusters. Introducing this modification to the contraction function, a
more stable hierarchy is generated. Figure 2 shows the splitting process in a real
scenario where graphs represent skeleton features in handwritten word images.

Error-Tolerant Graph Matching Model 111

Fig. 2. From left to right: input graph, hierarchy for the proposed contraction func-
tion and hierarchy splitting the articulation points. In red, the contracted nodes.
(Color figure online)

3 Error Tolerant Hierarchical Matching

As graph matching baseline, we have used the algorithm of bipartite graph match-
ing proposed by Riesen and Bunke in [16]. It uses a cost matrix that codifies
the edit costs between the source and target nodes. Once the cost matrix is
defined, an edit operation is assigned to each node minimising the total cost. We
have used the same edit costs as [14]: node substitution cost is based in the dis-
tance, the attributes and local structure of incident edges; edge substitution cost
is computed in terms of edge attribute, angle and length; predefined costs are
defined for node and edge insertion and deletion. Thus, there are 8 parameters:
3 (node substitution), 3 (edge substitution) and 2 (insertion and deletion).

To take advantage of the hierarchical representation, we propose a coarse-to-
fine graph matching approach. Let us denote Hi the graph representation at level
i = 1, . . . , N . It iteratively refines the matching starting at the coarsest level (i.e.
i = N). The comparison is performed using bipartite graph matching taking the
graph representation at level i without the hierarchical edges. If the distance at
level i is small enough, the matching is performed at the next level (i − 1). The
threshold to decide whether to advance in the hierarchy or not is application
dependent and a threshold is set experimentally. Starting the matching at the
abstract level avoids a high number of comparisons at more detailed levels where
the graphs are significantly bigger. Ideally, the last level is only used for graphs
that are very similar to the input one. The information about the matching level
is kept. Figure 3 shows the iterative process to decide whether the graphs match
or we can discard the comparisons in any of the abstract levels of the hierarchy.

4 Experiments

4.1 Datasets

Different databases have been used. First, the Columbia Object Image Library
(COIL-100) [12] and the Object DataBank (ODBK) [18] have been used to repro-
duce the experiments proposed by Mousavi et al. [11] in an object classifica-
tion scenario. Second, the Barcelona Historical Handwritten Marriages (BH2M)
database has been used in a graph-based word spotting scenario in handwritten
documents where graphs are irregular and suffer from high distortions.

112 P. Riba et al.

Fig. 3. Coarse-to-fine matching scheme.

The COIL database consists of images of 100 different objects taken at 72
equally spaced poses whereas the ODBK database is formed by 209 3D objects
with 14 views. Graph nodes are extracted using the Harris corner detector. The
edges are generated using the Delaunay triangulation on these nodes. The final
graphs are not weighted for the edges and store the coordinates for the nodes.
For the experimentation, 15 and 50 classes, with maximum average number of
nodes are used. The graphs are divided into three sets, training, validation and
test of 360, 75 and 150 for the COIL dataset and 300, 150 and 150 for the ODBK
database. Figure 4 shows some examples coming from these databases.

Fig. 4. Example of objects from the COIL-100 and ODBK databases.

The BH2M database [8] corresponds to marriage licenses written between
1617 and 1619. It contains 174 handwritten pages divided into training (100), val-
idation (34) and test (40). The handwritten words are represented by attributed
graphs where nodes correspond to basic primitives called graphemes [14].
Graphemes defined as convexities are described using the Blurred Shape Model
(BSM) descriptor [7]. The descriptors extracted from the training set are used
to create a codebook, from which node labels are set. Edges represent adjacency
relations between those primitives. Figure 2 shows an example of the obtained
graphs plotted on the image.

4.2 Results

The experiments have been divided into two challenges: object classification and
word spotting. Thresholds have been carefully selected using the validation set.

Object Classification: The use of a richer representation allows us to use a
simple classification approach (k-NN) achieving similar results than an scheme

Error-Tolerant Graph Matching Model 113

with a less expressive representation and complex classifier, with the advantage
of reducing the computational cost. The selected embedding function encodes
information of the Morgan Index of length 1 and 2 of the previous level. Three
approaches have been evaluated for the information selection: averaging the Mor-
gan Index and node position from all contracted nodes, averaging the Morgan
Index and selecting the most connected node, and taking the maximum Morgan
Index and the most connected node position.

Each level of the hierarchy has been validated alone and combined with the
original graph to explore the benefits of the proposed coarse-to-fine matching.
All the parameters for the distance computation have been chosen performing
a random search in the validation set. Since the graphs are generated using
a triangulation, there are not articulation points, therefore, both contraction
functions will lead to the same hierarchy.

Table 1 shows the performance for COIL and ODBK databases respectively.
For this experiment, the mean of the node positions and the Morgan Index is
used as embedding function. The last 3 rows correspond to the performance
reported by [11] using their hierarchical representation with the same graphs.

Note that the big loss of performance between the abstract levels is corrected
choosing a good trade-off between them. We are able to prune more than the
50% of comparisons at the finest level while achieving good results. For instance,
choosing a conservative threshold, the time reduction is half, losing only 2%
of accuracy for the COIL database and 1.5 times faster maintaining the same
accuracy for the ODBK database. However, relaxing this threshold, we are able
to achieve a speed-up of 7× with a loss of 10% in accuracy for the COIL database
and 3.3 times faster losing 1% in accuracy for ODBK. In a large scale scenario,
this is an acceptable loss to make an application much faster. Compared to
[11], our methodology do not achieve as good results as them in the different
abstraction levels. One of the main reasons is that our hierarchy is dynamically
constructed, not fixing the contraction degree and generating smaller graphs.

Word Spotting: Word spotting is the task of retrieving word images from a
document image similar to a given query (text or image). It is formulated as a
visual object detection problem. Most word spotting techniques use statistical
representations (e.g. HOG, SIFT) of the word images, e.g. [2]. The embedding
function consists in a vector that counts the number of paths of length up to k
from any node to a node with label i. The best configuration has been k = 0,
i.e. counting the number of nodes with label i (similar to a bag of words for
the nodes). As a retrieval problem the mean average precision (mAP) has been
used for the evaluation. Using the same parameters proposed in [14] in order
to compute the edit cost operations a mAP of 69.45% is achieved. Reproducing
the same experiment using the first level of the hierarchy the achieved mAP is
35.67%. By splitting the articulation points as proposed in Sect. 2.3 achieves
a mAP of 46.37%. Figure 5 shows the interpretation of the hierarchical graph
representation in the context of this database. Observe how the graphemes are
combined at each level to create more complex shapes like letters, bi-grams and
finally words.

114 P. Riba et al.

T
a
b
le

1
.
P
er

fo
rm

a
n
ce

fo
r

O
b
je

ct
C

la
ss

ifi
ca

ti
o
n

fo
r

C
O

IL
(l

ef
t)

a
n
d

O
D

B
K

(r
ig

h
t)

d
a
ta

se
ts

.
R

ow
s

a
re

d
iv

id
ed

in
5

b
lo

ck
s:

p
er

fo
rm

a
n
ce

fo
r

ea
ch

le
v
el

;
co

a
rs

e-
to

-fi
n
e

m
a
tc

h
in

g
u
si

n
g

th
e

1
st

,
2
n
d

a
b
st

ra
ct

le
v
el

s
a
n
d

th
e

co
m

b
in

a
ti

o
n

o
f
th

em
;
th

e
fi
n
a
l
ro

w
-b

lo
ck

co
rr

es
p
o
n
d

th
e

p
er

fo
rm

a
n
ce

re
p
o
rt

ed
b
y

M
o
u
sa

v
i
et

a
l.

C
o
lu

m
n
s

co
rr

es
p
o
n
d

to
th

e
u
se

d
th

re
sh

o
ld

;
a
cc

u
ra

cy
o
f
a

k
-N

N
cl

a
ss

ifi
er

;
p
er

ce
n
ta

g
e

o
f
av

o
id

ed
co

m
p
a
ri

so
n
s

a
t

th
e

b
a
se

le
v
el

;
ti

m
e

in
se

co
n
d
s

to
p
er

fo
rm

a
ll

th
e

co
m

p
a
ri

so
n
s.

C
O

IL
d
a
ta

b
a
se

O
D

B
K

d
a
ta

b
a
se

T
h
re

sh
.

K
-N

N
(%

)
A

C
a

(%
)

t
(s

)
T

h
re

sh
.

K
-N

N
(%

)
A

C
a

(%
)

t
(s

)

1
3

5
1

3
5

O
ri

g
in

a
l

–
1
0
0
.0

0
1
0
0
.0

0
9
8
.0

0
–

2
0
1
0

O
ri

g
in

a
l

–
7
9
.3

3
7
6
.0

0
7
4
.0

0
–

3
4
9
5
9

1
st

a
b
st

.
–

7
2
.6

7
7
4
.6

7
7
2
.6

7
–

1
6
7

1
st

a
b
st

.
–

5
8
.6

7
5
8
.0

0
5
4
.6

7
–

1
9
5
4

2
n
d

a
b
st

.
–

3
8
.0

0
3
9
.3

3
4
4
.6

7
–

1
3

2
n
d

a
b
st

.
–

4
2
.0

0
4
1
.3

3
4
6
.0

0
–

1
4
1

1
st

a
b
st

.
0
.1

9
8
2

9
8
.0

0
9
7
.3

3
9
3
.3

3
6
7
.3

7
9
7
7

1
st

a
b
st

.
0
.2

3
9
6

7
9
.3

3
7
6
.0

0
7
4
.0

0
4
8
.1

8
2
2
5
0
1

0
.1

6
8
0

9
0
.0

0
8
9
.3

3
8
2
.6

7
9
5
.4

1
2
8
9

0
.2

1
3
0

7
8
.6

7
7
5
.3

3
7
2
.0

0
7
9
.1

0
1
0
4
9
6

2
n
d

a
b
st

.
0
.2

1
5
3

1
0
0
.0

0
9
9
.3

3
9
6
.6

7
3
3
.6

8
1
4
4
4

2
n
d

a
b
st

.
0
.2

9
7
3

7
8
.6

7
7
4
.6

7
7
2
.6

7
3
3
.7

6
2
6
1
1
1

0
.1

8
9
5

9
7
.3

3
9
4
.6

7
9
3
.3

3
5
8
.9

9
9
3
7

0
.2

5
7
3

7
6
.6

7
7
1
.3

3
6
8
.6

7
6
8
.4

9
1
2
2
2
8

1
st

a
b
st

.
0
.1

9
8
2

9
8
.6

7
9
8
.0

0
9
2
.6

7
7
1
.6

3
8
9
3

1
st

a
b
st

.
0
.2

1
3
0

7
8
.0

0
7
4
.0

0
7
0
.6

7
7
9
.2

3
1
0
2
9
2

2
n
d

a
b
st

.
0
.2

1
5
3

2
n
d

a
b
st

.
0
.2

9
7
3

O
ri

g
in

a
l

–
1
0
0
.0

0
9
7
.0

0
9
0
.0

0
M

o
u
sa

v
i
et

a
l.

[1
1
]

O
ri

g
in

a
l

–
6
6
.6

7
6
5
.3

3
6
3
.3

3
M

o
u
sa

v
i
et

a
l.

[1
1
]

1
st

a
b
st

.
–

9
8
.1

7
9
4
.8

3
8
8
.8

3
1
st

a
b
st

.
–

6
6
.6

7
6
2
.6

7
6
2
.0

0

2
n
d

a
b
st

.
–

8
7
.0

0
8
1
.6

7
7
8
.1

7
2
n
d

a
b
st

.
–

6
0
.0

0
5
5
.3

3
5
3
.3

3
a
A

C
st

a
n
d
s

fo
r

A
v
o
id

ed
C

o
m

p
a
ri

so
n

Error-Tolerant Graph Matching Model 115

Fig. 5. Hierarchy construction for the word “Dalmau”.

Table 2 shows a comparison between: the original graphs, the proposed frame-
work with two thresholds, and graph indexation [15]. Recall (R) and Specificity
(SPC) are computed on the selected graphs using the first abstract level as clas-
sifier. Notice that the proposed hierarchical framework achieves high specificity
whereas keeping a better trade-off with the recall than the indexation approach.
Moreover, only losing 8% of mAP which is acceptable for a large scale retrieval
we are able to speed up the process almost 5 times.

Table 2. Comparison of the proposed hierarchical framework against an indexation
framework [15]. The mean average precision corresponds to the evaluation of the word
spotting problem; recall (R) and specificity (SPC) are computed on the selected graphs
using the hierarchy or the indexation respectively; finally, time per query is provided.

mAP (%) R (%) SPC (%) Time/querya (s)

Original 69.45 100.00 0.00 19.58

+abst. (t = 0.30) 68.27 90.91 69.98 12.46

+abst. (t = 0.25) 61.71 67.93 97.91 3.94

+ [15] (t = 0.20) 66.13 92.54 46.13 16.34

+ [15] (t = 0.30) 61.15 83.55 63.04 12.74
a1000 queries selected randomly against 13098 graphs

5 Conclusions

This paper has presented a construction of a hierarchical graph representation by
means of contraction and embedding functions. Contraction uses graph cluster-
ing techniques to gather nodes and simplify the graph. Moreover, a modification
of the contraction function has been proposed to stabilise the hierarchy in cer-
tain graphs. The proposed method is able to significantly reduce the graph size
allowing a fast graph comparison through a coarse-to-fine matching approach.

116 P. Riba et al.

This methodology prunes the amount of comparisons in the fine level. The app-
roach has been exhaustively validated using several databases for of large-scale
graph retrieval. Compared to other related works, the proposed approach dynam-
ically gathers the nodes without predefining the number of clusters, therefore,
the ratio of reduction for each sample can change. Furthermore, the graph size
is extremely reduced from one level to another.

We conclude that hierarchical graph representations are a powerful tool in
the matching process. This representation gives information about the relation
of a group of nodes (those that are contracted) instead of the typical pair-wise
relations. Moreover, each level of the hierarchy can be enriched following other
indexation methodologies such as [15]. The future work will be focused on the
development of matching algorithms using the whole representation at once.

Acknowledgments. This work has been partially supported by the Spanish project
TIN2015-70924-C2-2-R, a FPU fellowship FPU15/06264 from the Spanish Ministerio
de Educación, Cultura y Deporte, the Ramon y Cajal Fellowship RYC-2014-16831 and
the CERCA Programme/Generalitat de Catalunya.

References

1. Ahuja, N., Todorovic, S.: From region based image representation to object dis-
covery and recognition. In: Hancock, E.R., Wilson, R.C., Windeatt, T., Ulusoy, I.,
Escolano, F. (eds.) SSPR /SPR 2010. LNCS, pp. 1–19. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-14980-1 1

2. Almazán, J., Gordo, A., Fornés, A., Valveny, E.: Word spotting and recognition
with embedded attributes. IEEE Trans. Pattern Anal. Mach. Intell. 36(12), 2552–
2566 (2014)

3. Broelemann, K., Dutta, A., Jiang, X., Lladós, J.: Hierarchical plausibility-graphs
for symbol spotting in graphical documents. In: Lamiroy, B., Ogier, J.-M. (eds.)
GREC 2013. LNCS, vol. 8746, pp. 25–37. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-44854-0 3

4. Brun, L., Kropatsch, W.: Contains and inside relationships within combinatorial
pyramids. Pattern Recognit. 39(4), 515–526 (2006). Graph-based Representations

5. Conte, D., Foggia, P., Jolion, J.M., Vento, M.: A graph-based, multi-resolution
algorithm for tracking objects in presence of occlusions. Pattern Recognit. 39(4),
562–572 (2006). Graph-based Representations

6. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in
pattern recognition. Int. J. Pattern Recognit. Artif. Intell. 18(03), 265–298 (2004)

7. Escalera, S., Fornés, A., Pujol, O., Radeva, P., Sánchez, G., Lladós, J.: Blurred
shape model for binary and grey-level symbol recognition. Pattern Recognit. Lett.
30(15), 1424–1433 (2009)

8. Fernández-Mota, D., Almazán, J., Cirera, N., Fornés, A., Lladós, J.: BH2M: the
Barcelona historical handwritten marriages database. In: International Conference
on Pattern Recognition (2014)

9. Gao, X., Xiao, B., Tao, D., Li, X.: A survey of graph edit distance. Pattern Anal.
Appl. 13(1), 113–129 (2010)

10. Girvan, M., Newman, M.E.J.: Community structure in social and biological net-
works. Natl. Acad. Sci. 99(12), 7821–7826 (2002)

http://dx.doi.org/10.1007/978-3-642-14980-1_1
http://dx.doi.org/10.1007/978-3-662-44854-0_3
http://dx.doi.org/10.1007/978-3-662-44854-0_3

Error-Tolerant Graph Matching Model 117

11. Mousavi, S.F., Safayani, M., Mirzaei, A., Bahonar, H.: Hierarchical graph embed-
ding in vector space by graph pyramid. Pattern Recognit. 61, 245–254 (2017)

12. Nayar, S., Nene, S., Murase, H.: Columbia object image library (COIL 100).
Department of Computer Science, Columbia University, Technical report CUCS-
006-96 (1996)

13. Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community
structure of complex networks in nature and society. Nature 435(7043), 814–818
(2005)

14. Riba, P., Fornés, A., Lladós, J.: Handwritten word spotting by inexact matching
of grapheme graphs. In: 13th International Conference on Document Analysis and
Recognition, pp. 781–785, August 2015

15. Riba, P., Lladós, J., Fornés, A., Dutta, A.: Large-scale graph indexing using binary
embeddings of node contexts. In: Liu, C.-L., Luo, B., Kropatsch, W.G., Cheng, J.
(eds.) GbRPR 2015. LNCS, vol. 9069, pp. 208–217. Springer, Cham (2015). doi:10.
1007/978-3-319-18224-7 21

16. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of
bipartite graph matching. Image Vis. Comput. 27(7), 950–959 (2009)

17. Shasha, D., Wang, J.T.L., Giugno, R.: Algorithmics and applications of tree and
graph searching. In: Proceedings of the 21st Symposium on Principles of Database
Systems, pp. 39–52. ACM, New York (2002)

18. Tarr, M.J.: The object databank (2011)
19. Yan, X., Yu, P.S., Han, J.: Graph indexing: a frequent structure-based approach.

In: Proceedings of the International Conference on Management of data, pp. 335–
346 (2004)

20. Zhou, F., de la Torre, F.: Factorized graph matching. IEEE Trans. Pattern Anal.
Mach. Intell. 38(9), 1774–1789 (2016)

http://dx.doi.org/10.1007/978-3-319-18224-7_21
http://dx.doi.org/10.1007/978-3-319-18224-7_21

A Hungarian Algorithm for Error-Correcting
Graph Matching

Sébastien Bougleux1(B), Benoit Gaüzère2, and Luc Brun1

1 Normandie Univ, CNRS - ENSICAEN - UNICAEN, Caen, France
bougleux@unicaen.fr

2 Normandie Univ, INSA de Rouen, Rouen, France

Abstract. Bipartite graph matching algorithms become more and more
popular to solve error-correcting graph matching problems and to
approximate the graph edit distance of two graphs. However, the mem-
ory requirements and execution times of this method are respectively
proportional to (n + m)2 and (n + m)3 where n and m are the order of
the graphs. Subsequent developments reduced these complexities. How-
ever, these improvements are valid only under some constraints on the
parameters of the graph edit distance. We propose in this paper a new
formulation of the bipartite graph matching algorithm designed to solve
efficiently the associated graph edit distance problem. The resulting
algorithm requires O(nm) memory space and O(min(n,m)2 max(n,m))
execution times.

Keywords: Graph edit distance · Bipartite matching · Error-correcting
matching · Hungarian algorithm

1 Introduction

Computing an efficient similarity or dissimilarity measure between graphs is a
major problem in structural pattern recognition. The graph edit distance (GED),
developed in the context of error-correcting graph matching, provides such a
measure. It may be understood as the minimal amount of distortion required to
transform one graph into another, by a sequence of edit operations applied on
nodes and edges, restricted here to substitutions, insertions and removals. Such
a sequence is called an edit path. Each possible edit operation is penalized by a
non-negative cost, and the integration of these costs over an edit path defines the
length (or the cost) of this path. An edit path having a minimal length, among
all edit paths transforming one graph into another one defines the GED between
these two graphs. Since computing the GED is NP-complete, it is restricted to
rather small graphs. So several approaches have been proposed to approximate
the GED efficiently and to process larger graphs.

In this paper, graphs are assumed to be simple (no loop nor multiple edge),
and each element of the two graphs can be edited only once (no composition
of edit operations). Under these hypotheses, each node of a graph G1 can be
c© Springer International Publishing AG 2017
P. Foggia et al. (Eds.): GbRPR 2017, LNCS 10310, pp. 118–127, 2017.
DOI: 10.1007/978-3-319-58961-9 11

A Hungarian Algorithm for Error-Correcting Graph Matching 119

either substituted once to a node of another graph G2, or removed. Similarly,
any node of G2 may be substituted once, or inserted. Since each node of G1

and G2 is transformed only once, such operations on nodes can be encoded by
a (n + m) × (n + m) permutation matrix X [12], where n and m denote the
orders of G1 and G2. The costs related to these operations can be encoded by
a (n+ m)× (n+ m) cost matrix C. Using different heuristics [6,12] to design
matrix C, an approximation of the GED can be obtained by solving a linear
sum assignment problem (LSAP), i.e. by computing an optimal permutation
matrix X, for instance with the Hungarian algorithm in O((n + m)3) time
complexity.

However, matrix C contains an important amount of redundant informa-
tion mainly used to transform the initial graph edit distance problem into a
bipartite matching problem (LSAP). The storage of these additional informa-
tion induces important memory requirements and increases the size of matrix
C, which determines the complexity of the algorithm. Moreover, the resulting
matrix X may contain some useless operations. Serratosa [13] proposed to reduce
the size of matrix C in the special case where the graph edit distance fulfills all
the axioms of a distance. Such an assumption induces several constraints of the
elementary edit costs. Assuming these constraints, Serratosa proposed either to
store a n × m rectangular cost matrix whose optimal solution may be found
in O(min(n,m)2 max(n,m)) using the Bourgeois’ adaption [4] of the Hungarian
algorithm or to store a max(n,m) × max(n,m) cost matrix [14] whose optimal
solution may be found by combining the Jonker-Volgenant [8] and Hungarian
algorithms. The overall complexity of this last approach is O(max(n,m)3).

Following [12], the approach proposed in this paper approximates the graph
edit distance by the Hungarian algorithm. However, our method reformulates
the basic problem, hence leading to a (n + 1) × (m + 1) cost matrix [2]. Note
that a similar formulation has been proposed by [7]. However, this formulation is
combined with a Jonker-Volegenant matrix reduction and the classical Hungar-
ian algorithm, hence leading to a O((n + m)3) overall complexity. In this paper
we investigates the basic principles of the Hungarian algorithm in order to adapt
it to this new formulation. Such an extension is detailed in Sect. 3 after a short
introduction to the Hungarian algorithm in Sect. 2. The resulting algorithm has
a worst case complexity of O(min(n,m)2 max(n,m)). Conversely to the meth-
ods [13] proposed by Serratosa, our method only assumes that the edit costs
are non negative. We also provide in Sect. 4 accuracy and execution times of a
previously published quadratic minimizer [2,3] of the GED combined with our
new Hungarian algorithm.

2 Bipartite Matching and Hungarian Algorithm

Preliminary Definitions. Given a bipartite graph (U ∪ V,E), a matching M is a
subset of E such that each node in U ∪ V is incident to at most one edge of M .
It defines a bijective mapping between a subset of U and a subset of V . An edge
is matching edge if it is in M , else it is an unmatching edge. A node incident to

120 S. Bougleux et al.

an edge of M is covered by M , and otherwise uncovered. If all nodes of both sets
are covered, the two sets have the same size and the matching is called perfect.
It defines a bijection between U and V , also called an assignment.

Consider a matching M with at least two uncovered nodes, one in each set. A
path in the bipartite graph is called alternating if it alternates between unmatch-
ing and matching edges. An alternating path that begins and ends with uncov-
ered nodes is called augmenting. If an augmenting path P exists, a new matching
is obtained from M by removing the matching edges of P and by inserting the
unmatching ones. The new matching augments the number of matching edges
by one, and the number of covered nodes by two.

Linear Sum Assignment Problem and Its Dual. Consider two sets U and V
with the same size n. Each assignment of an element i∈ U to an element j ∈V
is penalized by a non-negative1 cost ci,j . All costs are encoded through a n× n
matrix C= (ci,j)(i,j)∈U×V , i.e. a node-node cost matrix associated with the com-
plete bipartite graph (U ∪V,U ×V). When the assignment of a node i to a node
j is forbidden, the cost of the edge (i, j) is commonly set to a large value ω,
larger than all costs. The linear sum assignment problem (LSAP), or minimal-
cost perfect matching problem, consists in finding a perfect matching having a
minimal cost L, among all perfect matchings:

argmin
X

⎧
⎨

⎩
L(X,C) =

n∑

i=1

n∑

j=1

ci,jxi,j : X∈ {0, 1}n×n, X1=1, XT1=1

⎫
⎬

⎭
(1)

where X defines the node-node adjacency matrix of a perfect matching M
(xi,j = 1 if (i, j)∈ M and xi,j = 0 else), i. e. a permutation matrix.

Several algorithms have been developed to find a solution to the LSAP [5].
Among them, the Hungarian algorithm is commonly used to compute approxi-
mate GED [2,6,12–14]. When it is properly implemented, it finds a solution in
O(n3) in time and in O(n2) in space [5,9], in worst-case.

The Hungarian algorithm uses a primal-dual approach to find a solution to
the LSAP and its dual problem, known as the maximum labeling problem:

argmax
(u,v)

{
1Tu + 1Tv : u,v≥0, u1T + v1T ≤C

}
(2)

where vectors u= (ui)i=1,...,n and v= (vj)j=1,...,n associate a label (or capacity)
to each node of U ∪ V . A pair (u,v) satisfying the constraint u1T + v1T ≤C is
called a feasible node labeling. A pair (X, (u,v)) solves the LSAP and its dual
iff it verifies the complementary slackness condition:

∀(i, j)∈ U ×V, ((xi,j = 1)∧ (ui + vj = ci,j))∨((xi,j = 0)∧ (ui + vj ≤ ci,j)) (3)

More generally, given a feasible node labeling, let E0 = {(i, j)∈ U × V : ci,j =
ui + vj}, the graph induced by this set is called the equality subgraph. When E0

contains an optimal perfect matching, it contains also all other ones.
1 If some costs are negative, all costs are shifted by − mini,j{ci,j} [5].

A Hungarian Algorithm for Error-Correcting Graph Matching 121

Hungarian Algorithm. Given a cost matrix C, an initial feasible node labeling
(u,v) and an associated matching M (included in the equality subgraph), the
Hungarian algorithm proceeds by iteratively updating M and (u,v) such that
two more nodes are covered at each iteration. It is realized by growing a tree
of alternating paths in the equality subgraph, called Hungarian tree, until an
augmenting path is found. At each iteration of the growing process, the tree is
augmented by a pair of unmatching and matching edges of the equality subgraph.
If this is not possible, because the equality subgraph does not contain enough
unmatching edges, the feasible node labeling is revised. We describe the efficient
version detailed in [5,9]. The tree is represented by matching edges and by a
predecessor array, denoted by pred, which encodes the predecessor (a node of U)
of each node of V . Nodes encountered in the tree are encoded by the sets TU ⊂U
and TV ⊂V . The efficiency of the algorithm relies on maintaining slack variables
during the search for an augmenting path: ∀j ∈ V \TV , slackj = min{ci,j − ui −
vj , i ∈ TU}.

1. If all nodes of U are covered by M , a pair of solutions is found. Else, initialize
a Hungarian tree rooted in an uncovered node i∈ U : TU = {i} and TV = ∅.
Also, initialize all slack values to +∞.

2. Grow the Hungarian tree in the equality subgraph from a leaf node i∈ TU :
(a) Update neighbors of i to add unmatching edges (i, j) to the tree:

∀j ∈V \TV ,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

if ci,j − ui − vj < slackj then
slackj ← ci,j − ui − vj

predj ← i

if slackj = 0 then TV ← TV ∪ {j}

(4)

(b) If there is no leaf node in TV , the tree cannot grow anymore. The dual
variables are updated to add at least one unmatching edge in the equality
subgraph and in the tree:

δ = min {slackj , j ∈ V \TV } (5)
∀i∈ TU , ui ← ui + δ (6)
∀j ∈TV , vj ← vj − δ (7)

∀j ∈ V \TV ,

{
slackj ← slackj − δ
if slackj = 0 then TV ← TV ∪ {j} (8)

(c) If there is an uncovered leaf node j ∈TV , an augmenting path is found,
go to Step 3. Else, the tree is extended with the unmatching edge (i, j)
followed by the matching edge (l, j) by inserting l into TU . Then go to
Step 2a with i← l.

3. Update the matching by backtracking in the tree from the node j ∈ V found
in Step 2c to the root, i. e. by traversing an augmenting path. Along this path,
each matching edge is removed from the matching and each unmatching edge
is inserted. Then go to Step 1.

122 S. Bougleux et al.

An initial feasible labeling is usually given by ui ← min{ci,j , ∀j ∈ V } ∀i∈ U ,
and vj ← min{ci,j − ui, ∀i∈ U} ∀j ∈ V . A matching is then deduced from this
labeling by traversing the equality subgraph. More sophisticated methods, such
as the one proposed by Jonker and Volgenant [5,8] can also be used.

3 Proposed Adaptation of the Hungarian Algorithm

Error-Correcting Matching and Minimal-Cost Problem. An error-correcting
matching from a set U to a set V transforms U into V by editing their ele-
ments, together with their attributes. Edit operations are restricted here to
substitutions, removals and insertions. Let U ε = U ∪{ε} and V ε = V ∪{ε} be
the sets extended by the null element ε. Consider the complete bipartite graph
(U ε ∪V ε, U ε × V ε). An error-correcting matching in this graph is a subset of
edges connecting each node in U to a unique node of V (substituted by) or to ε
(removed), and similarly, each node in V to a unique node of U (substituted to)
or to ε (inserted). Null nodes are unconstrained, they can be connected to zero or
more nodes. By considering node-node matrices associated to bipartite graphs,
all error-correcting matching are represented by the set of binary matrices:

Πε
n,m = { X ∈ {0, 1}(n+1)×(m+1) : xn+1,m+1 = 0, (9)

∀j = 1, . . . ,m,
∑n+1

i=1 xi,j = 1, ∀i = 1, . . . , n,
∑m+1

j=1 xi,j = 1
}

(10)

Null elements correspond to the last row and the last column. As observed in
Eq. 10, they are unconstrained.

Let C be a (n+1)× (m+1) cost matrix associated to the complete bipartite
graph, i. e. a non-negative cost (see Footnote 1) for each substitution, removal
and insertion:

C =

⎛

⎜
⎜
⎝

c1,1 · · · c1,m c1,ε

...
. . .

...
...

cn,1 · · · cn,m cn,ε

cε,1 · · · cε,m 0

⎞

⎟
⎟
⎠ (11)

The cost of an error-correcting bipartite matching is then written as

L(X,C) =
n+1∑

i=1

m+1∑

j=1

ci,jxi,j =
n∑

i=1

m∑

j=1

ci,jxi,j +
n∑

i=1

ci,εxi,m+1 +
m∑

j=1

cε,jxn+1,j

Transforming U into V , with minimum cost, consists in finding an error-
correcting bipartite matching having a minimal cost:

argmin
X

{
L(X,C), X ∈ Πε

n,m

}
(12)

This is a linear sum assignment problem with error-correction (LSAPE). Its dual
problem, given by max

(u,v)

{
1Tu + 1Tv : u1T + v1T ≤ C, un+1 = vm+1 = 0

}
, is

A Hungarian Algorithm for Error-Correcting Graph Matching 123

similar to the labeling problem dual to the LSAP, with two elements constrained
to be null (the null elements). Based on these formulations of the LSAPE and
its dual, it is not difficult to show that the framework used to analyze and solve
the LSAP and its dual problem still apply. The Hungarian algorithm can thus
be adapted to find a pair of the primal and dual solutions satisfying Eq. 3. The
adaptation concerns the processing of null nodes, since they are unconstrained.
While the notion of alternating path and Hungarian tree are unchanged, this
modifies the notion of augmenting paths as follows.

Fig. 1. (a) An incomplete error-correcting matching (solid) and the other edges of the
inequality subgraph (dashed). (b) An augmenting path between two uncovered nodes.
(c) The new matching obtained by interchanging matching and unmatching edges along
this path. (d, e) An augmenting path ending by a null node.

Augmenting Paths. Since null nodes are always unconstrained, any path con-
taining a null node ends by this node. This is equivalent to consider null nodes as
never covered. As before (Sect. 2), an augmenting path can end with an uncov-
ered node (Fig. 1(a)), which may thus be a null node (Fig. 1(d)). In this last
case, the new matching contains one more covered node and one more matching
edge. An augmenting path can also end with a null node incident to a matching
edge (Fig. 1(e)). In this case, the new matching augments the number of cov-
ered nodes by one while the number of matching edges remains the same. So
an augmenting path can be constructed by growing a Hungarian tree until an
uncovered node is encountered, including null nodes. Null nodes do not need
to be explicitly represented in the tree to find an augmenting path (always leaf
nodes). This allows to modify the Hungarian algorithm as follows.

Hungarian Algorithm. Given two sets U and V , and a (n+ 1)× (m + 1) edit
cost matrix (Eq. 11) C, consider an initial 2 feasible node labeling (u,v) and
an associated incomplete error-correcting matching M (all nodes are not yet
covered). We complete the Hungarian algorithm described in Sect. 2 in order to
treat the case of null nodes independently, without altering the global process. To
this, the growing of the Hungarian is stopped when a null node is encountered:

2 The Jonker-Volgenant algorithm proposed in [7] can be used to provide a good
initialization. Here we adapt the basic one (Sect. 2): ui ← min{ci,j , ∀j ∈V ε} ∀i∈U ,
and vj ← min{ci,j − ui, ∀i∈U ε} ∀j ∈V , with un+1 = vm+1 = 0. An error-correcting
matching is then deduced as in Sect. 2 by traversing the equality subgraph.

124 S. Bougleux et al.

– A null node incident to a matching edge (here an insertion) can be detected
in Eqs. 4 and 8 of Step 2 by replacing the instruction TV ← TV ∪{j} by:

if (ε, j)∈ M go to Step 3, else TV ←TV ∪ {j}. (13)

– A null node incident to an unmatching edge (here a removal) can be detected
in Step 2c, when there is an edge (l, ε) ∈ M in the equality subgraph, i. e. if
cl,ε = ul. If this is the case, the algorithm goes to Step 3 instead of going to
Step 2a. A null node incident to an unmatching edge can also be detected
after the update of the dual variables in Step 2b, as detailed below.

Dual variables are updated (Step 2b) such that costs associated to null nodes
are also taken into account. Therefore, Eq. 5 is replaced by:

δ = min {min{slackj , j ∈ V \TV }, min{ci,ε − ui, i∈ TU}} . (14)

Then, after Eqs. 6 and 7, and just before Eq. 8, if the minimum δ is obtained
from an unmatching edges (i, ε), an augmenting path is found and the algorithm
goes to Step 3.

The proposed modifications allow to cover all nodes of U . Some nodes of V
may not be covered, which occurs if n < m or if at least one node in U is assigned
to a null node. To find a minimal-cost error-correcting matching, the modified
Hungarian algorithm is completed by the following step to cover all nodes of V :

4 When all nodes of U are covered, swap the sets U and V , and go to Step 1
with CT and (v,u) as initial feasible node labeling.

The proposed algorithm finds a minimal-cost error-correcting matching in
O(min{n,m}2 max{n,m}) in time and O(nm) in space, see [1] for a proof. These
complexities are similar to the ones obtained in [4] for solving the LSAP with
rectangular cost matrices.

4 Experiments

Bipartite GED. The other formulations of the LSAPE (Sect. 1), transform the
problem into a LSAP with a square cost matrix for BP [12] and SFBP [14], or
with a rectangular one for FBP [13]. The Hungarian algorithm used in these
works [12], differs from the algorithm presented in Sect. 2 on two aspects: sev-
eral Hungarian trees are grown at each iteration, and the cost matrix is updated
instead of the dual variables. As already discussed [5,9], the version described
in this paper has lower execution times. So we have repeated the experiments
carried out in [14] on artificially created graphs, with the Hungarian algorithm of
Sect. 2 for solving BP and SFBP. Note that our implementation of the Hungar-
ian algorithm is optimized such that forbidden assignments (with a cost equal to
ω) are not treated. As already observed in [14], all the methods lead to a similar
approximation of the GED. This is also the case of the approach proposed in this
paper (denoted by BPE). A more interesting behavior concerns the computa-
tional time. Figure 2(a) shows the average run time of 10 computations of FBP,

A Hungarian Algorithm for Error-Correcting Graph Matching 125

with respect to the order of the graphs. Contrary to what was observed in [14],
the shape of the run time surface is symmetric. The run time surface of the other
algorithms (BP, SFBP and BPE) have a similar pyramidal shape. As illustrated
in Fig. 2(b), BP and SFBP have a similar behavior, with an asymmetry, and are
less efficient than FBP and BPE. Observe that these two last approaches have
also a similar behavior. Contrary to FBP, BPE does not impose any constraint
on the costs.

Fig. 2. Computational time of the bipartite GED with respect to the graphs’ order.

IPFP and GNCCP. As illustrated in [2,3], LSAP methods may also be the
core component of different solvers of quadratic programming formulations of
the GED. A first method [2] called QAP consists in adapting the IPFP algo-
rithm [10] to the computation of the quadratic formulation of GED. Basically,
IPFP iterates over LSAP resolutions to compute a gradient direction leading
to an approximate solution of a relaxed version of the quadratic problem. The
second proposition [2] uses a convex-concave relaxation of the IPFP approach to
tackle drawbacks induced by the influence of initialization and by the final pro-
jection step from a stochastic matrix to a mapping one. This approach, denoted
GNCCP, iterates over a slightly modified version of IPFP which iterates over
LSAP resolutions. Therefore, these two contributions use LSAP as a core com-
ponent in their respective algorithms. In these experiments, we evaluate the
gain obtained by the use of our new algorithm (LSAPE) to resolve LSAP steps
in QAP [3] and GNCCP (new in this paper) approaches instead of the classic
Hungarian algorithm.

Both algorithms are evaluated on real world chemical datasets3 composed of
different kinds of molecules: Alkane and Acyclic are represented as acyclic graphs
of about 8 nodes in average, whereas MAO and PAH are composed of larger
graphs, with an average size of 20 nodes. As in [2,6], the cost of substituting
nodes and edges has been set to 1, and to 3 for insertions and deletions.
3 Datasets are available at https://iapr-tc15.greyc.fr/links.html.

https://iapr-tc15.greyc.fr/links.html

126 S. Bougleux et al.

Table 1 shows average edit distances and computational times obtained by
different approaches on the four chemical datasets. A� approach, on the first
line, computes the exact graph edit distance and constitutes a reference for
approximation methods. However, due to its high complexity, exact graph edit
distances have been only computed for Alkane and Acyclic datasets. The first
block of three methods, from line 2 to 4, corresponds to methods based on
the bipartite approach. The line denoted as Riesen and Bunke corresponds to
the original method proposed in [12], while the two others use a different cost
matrix [6] using respectively LSAP and LSAPE algorithms. The next block, lines
5 to 7, corresponds to methods based on the quadratic formulation of the graph
edit distance. QAP and QAPE [3] use IPFP algorithm with respectively LSAP
and LSAPE algorithms. The line denoted as “Neuhaus” corresponds to another
quadratic approach [11] which does not handle insertions and removals of nodes
during the optimization process. Finally, the last block corresponds to GNCCP
approach [2] using LSAP and LSAPE algorithms.

Table 1. Accuracy and complexity scores. d and t denote respectively the average edit
distance and computational time (in seconds).

Algorithm Alkane Acyclic MAO PAH

d t d t d t d t

A∗ 15.47 1.29 17.33 6.02 – – – –

Riesen and Bunke [12] 35.16 0.00135 35.43 0.00109 105 0.00551 138 0.00692

LSAP [6] 34.51 0.00205 32.52 0.00181 56.89 0.02218 123.6 0.03342

LSAPE 34.51 0.00203 32.61 0.00179 56.92 0.02212 123.8 0.03338

QAP [2] 19.28 0.00925 20.51 0.00711 32.97 0.04158 48.5 0.08285

QAPE [3] 19.33 0.00553 20.43 0.00489 32.94 0.03017 48.9 0.04832

Neuhaus [11] 20.5 0.07 25.7 0.0424 59.1 7 52.9 8.2

GNCCP [2] 16.54 0.3474 18.36 0.2481 32.14 4.128 39.2 6.141

GNCCPE 16.83 0.116 19.09 0.07638 32.92 0.4673 38.7 0.8623

As expected, approximations of graph edit distances are not significantly
different using either LSAP or LSAPE approaches. Conversely, as previously
observed [2,3], methods based on a quadratic formulation obtain better approx-
imations than the ones based on a linear approximation. From a computational
point of view, quadratic approaches require more computational time. However,
using LSAPE instead of LSAP algorithm leads to a significant improvement on
computational times. This gain almost reaches 10 times with MAO dataset. On
MAO and PAH datasets, executions times of LSAP and QAPE methods are
comparable. Note that we only observe a very tight improvement using LSAPE
instead of LSAP within the original bipartite approach (lines 3 and 4). This lim-
ited gain can be explained by the fact that most of computational time is spent
in computing the cost matrix rather than optimizing the mapping problem.

A Hungarian Algorithm for Error-Correcting Graph Matching 127

5 Conclusion

We have presented in this paper a new type of linear sum assignment problem
designed to solve efficiently the bipartite graph edit distance. The resulting algo-
rithm only supposes that the basic costs are non negative. It requires the storage
of an (n+1)× (m+1) matrix, n and m being the orders of both graphs and has
a time complexity of O(min(n,m)2 max(n,m)). This algorithm may be applied
once to obtain a rough estimate of the edit distance or be integrated into more
complex iterative quadratic solvers. The speed-up obtained by our algorithm is
significant in this last case and opens the way to the computation of the graph
edit distance on larger graphs.

References

1. Bougleux, S., Brun, L.: Linear sum assignment with edition. Technical report,
Normandie Univ, GREYC UMR 6072, Caen (2016)

2. Bougleux, S., Brun, L., Carletti, V., Foggia, P., Gaüzère, B., Vento, M.: Graph
edit distance as a quadratic assignment problem. Pattern Recognit. Lett. 87, 38–
46 (2017)

3. Bougleux, S., Gaüzère, B., Brun, L.: Graph edit distance as a quadratic program.
In: International Conference on Pattern Recognition. IEEE (2016)

4. Bourgeois, F., Lassalle, J.: An extension of the Munkres algorithm for the assign-
ment problem to rectangular matrices. Commun. ACM 14, 802–804 (1971)

5. Burkard, R., Dell’Amico, M., Martello, S.: Assignment Problems. SIAM, Philadel-
phia (2009)

6. Gaüzère, B., Bougleux, S., Riesen, K., Brun, L.: Approximate graph edit distance
guided by bipartite matching of bags of walks. In: Fränti, P., Brown, G., Loog, M.,
Escolano, F., Pelillo, M. (eds.) S+SSPR 2014. LNCS, vol. 8621, pp. 73–82. Springer,
Heidelberg (2014). doi:10.1007/978-3-662-44415-3 8

7. Jones, W., Chawdhary, A., King, A.: Revisiting Volgenant-Jonker for approximat-
ing graph edit distance. In: Liu, C.-L., Luo, B., Kropatsch, W.G., Cheng, J. (eds.)
GbRPR 2015. LNCS, vol. 9069, pp. 98–107. Springer, Cham (2015). doi:10.1007/
978-3-319-18224-7 10

8. Jonker, R., Volgenant, A.: Improving the Hungarian assignment algorithm. Oper.
Res. Lett. 5, 171–175 (1986)

9. Lawler, E.: Combinatorial Optimization: Networks and Matroids. Holt, Rinehart
and Winston, New York (1976)

10. Leordeanu, M., Hebert, M., Sukthankar, R.: An integer projected fixed point
method for graph matching and map inference. In: Advances in Neural Information
Processing Systems, vol. 22, pp. 1114–1122 (2009)

11. Neuhaus, M., Bunke, H.: A quadratic programming approach to the graph edit
distance problem. In: Escolano, F., Vento, M. (eds.) GbRPR 2007. LNCS, vol.
4538, pp. 92–102. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72903-7 9

12. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of
bipartite graph matching. Image Vis. Comput. 27, 950–959 (2009)

13. Serratosa, F.: Fast computation of bipartite graph matching. Pattern Recognit.
Lett. 45, 244–250 (2014)

14. Serratosa, F.: Speeding up fast bipartite graph matching through a new cost
matrix. Int. J. Pattern Recognit. 29(2), 1550010 (2015)

http://dx.doi.org/10.1007/978-3-662-44415-3_8
http://dx.doi.org/10.1007/978-3-319-18224-7_10
http://dx.doi.org/10.1007/978-3-319-18224-7_10
http://dx.doi.org/10.1007/978-3-540-72903-7_9

Introducing VF3: A New Algorithm
for Subgraph Isomorphism

Vincenzo Carletti(B), Pasquale Foggia , Alessia Saggese, and Mario Vento

Department of Information Engineering, Electrical Engineering and Applied
Mathematics, University of Salerno, Salerno, Italy
{vcarletti,pfoggia,asaggese,mvento}@unisa.it

http://mivia.unisa.it

Abstract. Several graph-based applications require to detect and locate
occurrences of a pattern graph within a larger target graph. Subgraph
isomorphism is a widely adopted formalization of this problem. While
subgraph isomorphism is NP-Complete in the general case, there are
algorithms that can solve it in a reasonable time on the average graphs
that are encountered in specific real-world applications. In 2015 we intro-
duced one such algorithm, VF2Plus, that was specifically designed for the
large graphs encountered in bioinformatics applications. VF2Plus was an
evolution of VF2, which had been considered for many years one of the
fastest available algorithms. In turn, VF2Plus proved to be significantly
faster than its predecessor, and among the fastest algorithms on bioin-
formatics graphs. In this paper we propose a further evolution, named
VF3, that adds new improvements specifically targeted at enhancing
the performance on graphs that are at the same time large and dense,
that are currently the most problematic case for the state-of-the-art algo-
rithms. The effectiveness of VF3 has been experimentally validated using
several publicly available datasets, showing a significant speedup with
respect to its predecessor and to the other most advanced state-of-the-art
algorithms.

1 Introduction

A graph-based representation is commonly used in several application fields deal-
ing with structured data, i.e. data that can be decomposed into atomic entities
and relationships between entities (described using the nodes and the edges of
the graph). In the last few years, in several disciplines the trend has been to use
larger and larger graph structures, thanks to the increase in the available mem-
ory and computational power. Examples are the bioinformatics and chemoinfor-
matics disciplines [2,4,5,11,12], with the obvious application to the structure of
molecules or proteins, but also to less obvious information such as the protein
or gene interaction networks; Social Network Analysis [19], where graphs are
used to model the interactions and relations between people or organizations,
in very large social networks like Facebook; semantic technologies, where huge
knowledge bases (like DBPedia [13]) are encoded using the Resource Description
Framework (RDF), a standardized graph-based representation.
c© Springer International Publishing AG 2017
P. Foggia et al. (Eds.): GbRPR 2017, LNCS 10310, pp. 128–139, 2017.
DOI: 10.1007/978-3-319-58961-9 12

http://orcid.org/0000-0002-7096-1902
http://orcid.org/0000-0002-2948-741X

Introducing VF3 129

A common problem in many graph-based applications is the search for the
occurrences of a pattern graph within a larger target graph. This problem can
be formalized as the search for all the subgraph isomorphisms between the two
graphs [7]. In the general case (i.e. if no restrictive assumptions are made on the
graphs) the subgraph isomorphism problem is provably NP-complete. However,
many algorithms have been proposed over the years that are fast enough to be
practical at least on the actual graphs commonly encountered in some applica-
tions [7,9,18]. These algorithms typically use some kind of heuristics, that take
advantage of knowledge about the structure of the graphs in the common cases
of the addressed applications, although they maintain a worst-case complexity
that is exponential. Thus, as new and more complex applications emerge, new
algorithms with more suitable heuristics are required to cope efficiently with the
new cases at hand.

Most of the recently proposed algorithms follow three different approaches:
Tree Search, Constraint Propagation and Graph Indexing. Algorithms based on
Tree Search formulate the problem as the exploration of a search space (hav-
ing a tree structure), composed of states that represent partial solutions. The
search space is visited usually with a depth-first order, using heuristics to avoid
exploring useless parts of the space. Two very popular algorithms based on this
approach are Ullmann’s algorithm [16] and VF2 [8]; this latter emerged in sev-
eral benchmarks as the fastest algorithm at the time of its introduction. Other
more recent algorithms in this family are RI/RI-DS [3] and VF2Plus [6], that
were expressly designed to be efficient on large bioinformatics graphs.

Algorithms based on Constraint Propagation view the search for subgraph
isomorphisms as a Constraint Satisfaction Problem, where the goal is to find
an assignment of values to a set of variables that satisfies a set of mutual con-
straints. In particular, for each node of the pattern a domain of compatibility
is mantained, containing the potential matching nodes in target. Local con-
straints (e.g. node or edge consistency) are propagated to different parts of the
graphs reducing the domains, until only few candidate matchings remain, that
can be explored to find the solutions. An early algorithm following this approach
is McGregor’s [14]; more recent proposals are by Zampelli et al. [20], Solnon
et al. [15] and Ullmann [17].

The last approach, Graph Indexing, originates from graph database appli-
cations, where the goal is to retrieve, from a large set of graphs, only the ones
containing the desired pattern. To this aim, an index structure is built that makes
possible to quickly verify if the pattern is present or not in a target graph, usu-
ally without even requiring to load the whole target in memory, thus filtering
out unfruitful targets. In general, after the index verification is passed, a more
costly refinement phase is needed to actually determine if and where the pattern
graph is present. GADDI [21] and TurboISO [10] are recent algorithms based on
this approach.

In this paper we present a novel subgraph isomorphism algorithm called VF3.
VF3 can be considered an evolution of VF2Plus [6], introduced in 2015 specif-
ically for addressing the very large graphs that occur in several bioinformatics

130 V. Carletti et al.

applications. Like its predecessor, VF3 is based on the Tree Search approach,
and uses several heuristics to prune the search space. While VF2Plus is particu-
larly effective on graphs that are large but sparse, the improvements introduced
in VF3 significantly increase the performance when the graphs become more
dense, without compromising the performance on sparse graphs. Thus, the new
algorithm has a much broader field of applicability; in particular, it becomes
the fastest algorithm on a class of graphs (simultaneously large and dense) that
present serious problems for the other state-of-the-art algorithms. The effec-
tiveness of the new algorithm has been verified experimentally with a thorough
testing in comparison with VF2Plus and with other state of the art algorithms,
using different publicly available databases.

2 The Base of VF3: The VF2Plus Algorithm

In this section we provide a brief introduction to VF2Plus [6], upon which VF3
is based, while next section will be devoted to the novel parts introduced in VF3.

2.1 Graph Matching and State Space Representation

Given two graphs G1 = (V1, E1) and G2 = (V2, E2), graph matching is the
problem of finding a mapping function M : V1 → V2 that satisfies a given set
of structural constraints. In the case of the subgraph isomorphism, as detailed
in [7,9,18], the function M must be injective and structure preserving, i.e. it must
preserve both the presence and the absence of the edges between corresponding
pairs of nodes.

The problem of finding a matching between two graphs is addressed by VF3,
similarly to its predecessors, using a State Space Representation (SSR). Each
state s of the SSR represents a partial mapping ˜M(s) ⊆ M that is consistent
with the matching constraints; a goal state is a state whose mapping is complete,
i.e. when covers all the nodes in G1. For each state s the algorithm keeps different
sets: the core sets ˜M1(s) and ˜M2(s) containing the nodes of G1 and G2 that
belongs to ˜M(s), and two feasibility sets ˜T1(s) and ˜T2(s) containing the nodes
of G1 and G2 connected to those in ˜M1(s) and ˜M2(s). Furthermore, we will
denote as ˜V1(s) and ˜V2(s) the sets V1 − ˜M1(s) − ˜T1(s) and V2 − ˜M2(s) − ˜T2(s)
respectively.

The algorithm starts from a state whose mapping is empty and explores
the state space, using a depth-first strategy, till a goal state is reached. State
transitions consist in adding a new pair of nodes (un, vn) to the partial mapping
of the current state sc so as to generate a new state sn = sc ∪ (un, vn), that
becomes the new current state. The algorithm uses a set of rules, called feasibility
rules, to check if the addition will generate a consistent state; if this is not the
case, the new state is not explored. When no node pair remains that can be added
to sc for making a consistent state, the algorithm backtracks, i.e. it undoes the
addition leading to sc and restarts from its parent state sp, looking for a different
node pair to be added to it.

Introducing VF3 131

2.2 Making the SSR a Tree

The SSR is, by its nature, a graph. Indeed, if we consider a state sc whose
mapping ˜M(sc) contains k pairs, it can be generated using k! different paths,
involving the same pairs added in different orders. To avoid visiting the same
state several times, either a memory-consuming data structure is needed to keep
memory of the visited states, or the state space must be reduced to a tree,
ensuring that each state is reachable from only one path. Since the order of the
couples is not important to have a consistent mapping, the algorithm introduces
a total order relationship over the nodes of G1, and adds the couples so that
their first component follows this order, making the state space a tree.

The algorithm defines the order relationship by computing the node explo-
ration sequence NG1 , that is a permutation of V1. The order relationship is based
on the idea to explore first the nodes that are more rare and constrained. As
for the rareness of a node u, it is defined in terms of probability to find a node
in G2 that is suitable to generate a feasible couple. Such a probability Pf (u) is
obtained by combining Pl(l) and Pd(d) that are, respectively, the probability to
find a node with label l and the probability to find a node with degree d in G2.
In the case of the subgraph isomorphism Pf (u) is computed ad follows:

Pf (u) = Pl(λV1(u)) ·
∑

d′≥d(u)

Pd(d′) (1)

where λV1(u) and λV2(v) are the labeling functions associating a label to each
node. Note that the two probabilities are considered as independent instead of
joint. This is a weak assumptions in some cases, but it reduces the worst-case
complexity of the probability estimation from O(N3) to O(N). As regards the
constraints of a node u, they are computed by considering only its connections
with the nodes already in the sequence NG1 . To this aim, we defined the node
mapping degree dM (u) as the number of edges connecting u to all the nodes that
are already inside NG1 .

Therefore, the procedure that computes NG1 first uses, as the ordering crite-
rion, dM ; if two or more nodes have the same dM , they are sorted according to
Pf ; finally, if both dM and Pf are equal, the nodes are sorted using their degree.
If also the latter are equal, the choice is done randomly.

2.3 Checking for Feasibility

As introduced in Sect. 2.1 an important issue to reduce the search space is the
exploration of only consistent states, i.e. states satisfying the constraints of the
subgraph isomorphism problem. In addition, a further reduction is obtained by
avoiding also consistent states that surely will not be part of a solution. There-
fore, before generating a new state sn from the current state sc, the algorithm
checks the candidate couple (un, vn) using the feasibility rules Fs and Ft, to
check the semantic and structural feasibility respectively. Fs analyzes only the
labels of the two nodes and, if present, of the edges connecting them.

132 V. Carletti et al.

Ft analyzes the structural constraints given by the neighbors of un and vn. To
this aim, the nodes in the two graphs are partitioned into q equivalence classes
using a classification function ψ : V1 ∪ V2 → C = c1, . . . , cq; the classification
function has the only constraint that it must ensure that if two nodes can be
matched in a consistent mapping, they must be in the same class. The easiest
way to define a classification function is to use the node labels, but other kind
of information can be used if it makes sense for the problem at hand. For each
class ci we define as ˜T ci

1 (s) the restriction of ˜T1(s) to the nodes having this class;
we define similarly ˜T ci

2 (s).
Now we can define the feasibility function Ft:

Ft(sc, un, vn) = Fc(sc, un, vn) ∧ Fla1(sc, un, vn) ∧ Fla2(sc, un, vn) (2)

The rule Fc(sc, un, vn) is called core rule and is responsible to verify the neces-
sary and sufficient condition for the consistency. The latter verify that all the
neighbors of un and vn already in the mapping ˜M(sc) are mapped each other;
more formally:

Fc(sc, un, vn) ⇔ ∀u′ ∈ adj1(un) ∩ ˜M1(sc) ∃v′ = μ̃(sc, u
′) ∈ adj2(vn)

∧ ∀v′ ∈ adj2(vn) ∩ ˜M2(sc) ∃u′ = μ̃−1(sc, v
′) ∈ adj1(un)

(3)

The other two rules Fla1(sc, un, vn) and Fla2(sc, un, vn), called 1-level and 2-level
lookahead rules respectively, check two additional necessary but not sufficient
conditions for the (sub)graph isomorphism so as to guarantee that the new state
will part of a solution. In particular, the rule Fla1(sc, un, vn) counts the number
of neighbors of un and vn that are in the sets ˜T ci

1 (sc) and ˜T ci
2 (sc):

Fla1(sc, un, vn) ⇐⇒ F 1
la1(sc, un, vn) ∧ . . . ∧ F q

la1(sc, un, vn) (4)

where the functions F i
la1, with i = 1, . . . , q, are defined as follows:

F i
la1(sc, un, vn) ⇐⇒ |adj1(un) ∩ ˜T ci

1 (sc)| ≤ |adj2(vn) ∩ ˜T ci
2 (sc)| (5)

The rule Fla2(sc, un, vn) counts the remaining neighbors, i.e. those are neither
in ˜M(sc) nor in the feasibility sets:

Fla2(sc, un, vn) ⇐⇒ F 1
la2(sc, un, vn) ∧ . . . ∧ F q

la2(sc, un, vn) (6)

where each F i
la2, with i = 1, . . . , q, is defined as:

F i
la2(sc, un, vn) ⇐⇒ |adj1(un) ∩ ˜V1

ci
(sc)| ≤ |adj2(vn) ∩ ˜V2

ci
(sc)| (7)

It is worth noting that the rules have been shown only for undirected graphs,
but they can be easily extended to the case of directed graphs by considering
incoming and outgoing edges separately.

Introducing VF3 133

3 The VF3 Algorithm

When it was introduced, in [6], VF2Plus brought a great performance improve-
ment to the VF2 algorithm, especially on large graphs. VF3 optimizes and refines
some of the novelties introduced by VF2Plus, so as to further improve its per-
formances when the density and the size of the graphs increase. VF3 inherits
the structure of VF2Plus and introduces two main novelties: a new procedure to
pre-process the pattern graph and a new criterion to select the next candidate
couples.

u1

u2u3

u4

u5

A

BC

B

D

v3

v1v6

v5

v4

v2

DA

D B

CB

Fig. 1. Graphs, G1 and G2, used as an example.

3.1 State Space Precalculation

The exploration sequence NG1 , provided by the sorting procedure, makes the
algorithm able to pre-process the graph G1 and compute, before starting the
matching, the sets used to explore it: ˜M1(s), ˜T ci

1 (s), for i = 1, . . . , q. Further-
more, during the pre-preprocessing VF3 computes, together with the feasibility
sets, a spanning tree of G1, hereinafter the parent tree (see Fig. 2), that associates
a parent to each node of G1. As explained in more details below, this tree will
be used during the matching process to select the next candidate node from G2.

u1 u2

u3

u4 u5

Fig. 2. Parent tree of G1, for the example of Fig. 1.

The idea behind the pre-processing, is that the sequence NG1 fixes, for each
level of the depth-first search, the candidate node of G1. So that, the algorithm
is able to determine the exact composition of each feasibility set of G1 for all
the possible states. For instance, if we consider the exploration sequence NG1 =
{u3, u1, u5, u2, u4}, when VF3 is exploring a state sc that belongs to the second
level of the SSR, the first node of the candidate couple (un, vn) will always be the
one is at the third position of NG1 , i.e. u5. Thus, the mapping ˜M of all the states
belonging to the third level of the SSR contains the couples (u3, vi), (u1, vj)

134 V. Carletti et al.

Table 1. Core and feasibility sets of G1 (see Fig. 1), computed for each level of the
search.

Level ˜M1(s) ˜T c1
1

˜T c2
1

˜T c3
1

˜T c4
1

0 {} {} {} {} {}
1 {u3} {u5} {u2, u4} {} {u1}
2 {u3, u1} {u5} {u2, u4} {} {}
3 {u3, u1, u5} {} {u2, u4} {} {}
4 {u3, u1, u5, u2} {} {u4} {} {}
5 {u3, u1, u5, u2, u4} {} {} {} {}

Algorithm 1. Procedure to preprocess the graph G1 given the sequence NG1 . The procedure
computes the feasibility sets and the parent tree (Parent(u) in the procedure).

1: function PreprocessGraph(G1,NG1)

2: i = 0
3: for all u ∈ NG1 do

4: for all u′ ∈ adj1(u) do
5: ci = ψ(u′)
6: Put u′ in ˜M1 at level i
7: if u′ /∈ ˜T ci

1 then

8: Put u′ in ˜T ci
1 at level i

9: Parent(u′) = u

10: i = i + 1

11: return Parent

and (u5, vk). The order and the composition of these couples always follows
the sequence NG1 . The nodes vi, vj and vk, belonging to G2 are dynamically
determined during the candidate selection step. Since ˜M1(s) is known, from G1

and ˜M1(s) it is possible to precompute the sets ˜T ci
1 (s) for each SSR level. The

time saved by this precomputation depends on how many states are at each
level of the SSR; in general it increases with the density of the graphs. Notice
that with a naive encoding of the ˜T ci

1 (s) sets, they would occupy a space that
is O(N2

1) (where N1 is the size of G1), since there are N1 levels, and at each
level the ˜T ci

1 (s) sets have a size that is O(N1). This would be a problem when
working with very large graphs. However, we have demonstrated that for each
node of G1, the levels at which the node belongs to a given ˜T ci

1 form a (possibly
empty) interval; thus we are able to represent all the ˜T ci

1 (s) sets with a single
table that for each node reports the first and the last level at which it is in
˜T ci
1 (s), with a space occupation that is just O(N1). Table 1 shows the result of

the pre-preprocessing on the graph G1 in Fig. 1.

3.2 Candidate Selection

Another relevant difference between VF2Plus and VF3 is the way they select the
candidate node from the graph G2. In the previous section we have clarified that
VF3 defines, before the matching begins, the candidates of G1 for each possible
state in the SSR. However, this is not possible for the graph G2, so VF3 has to

Introducing VF3 135

select the candidate node for each new state. Thus, being un, the candidate node
of G1, the algorithm analyses neighborhood of the node ṽ mapped to the parent
of un (hereinafter Parent(un)) and select the first unmapped node belonging to
the same class of un. If the node un has no parent (eg. it is the first node of the
sequence NG1), VF3 will select uv from the unmapped nodes of G2 belonging
to the same class of un. More formally, when the un has not a parent VF3 will
consider the set R2 ⊂ V2; the latter is composed of the nodes in G2 that are not
in the mapping ˜M2(sc) of the current state sc and belong to the same class of
the node un.

R2(sc, ψ(un)) = {vn ∈ V2 : vn /∈ ˜M2(sc) ∧ ψ(vn) = ψ(un)}. (8)

In the other case, when the node Parent(uu) exists, the algorithm will consider
the subset of Radj

2 containing only the neighbors of ṽ.

Radj
2 (sc, ψ(un), ṽ) = {vn ∈ V2 : vn ∈ adj2(ṽ) ∩ R2(sc, un)} (9)

The candidate selection procedure is shown in details in Algorithm 2. As it will
be shown in Sect. 4, this difference has a great impact especially on dense graphs,
because it greatly reduces the number of possible candidate nodes.

0 2000 4000 6000 8000 10000 12000
Target Size

10−5

10−4

10−3

10−2

10−1

100

S
ec
on

d

LAD
RI
VF2
VF2Plus
VF3

(a) Proteins

100 200 300 400 500 600 700 800
Target Size

10−4

10−3

10−2

S
ec
on

d

LAD
RI
VF2
VF2Plus
VF3

(b) Contact Maps

Fig. 3. Matching times for Proteins graphs (a) and Contact Map graphs (b) in the
Biological dataset.

4 Experiments

The proposed approach has been tested over two different datasets: a biological
dataset (hereinafter Biological dataset) and a synthetic dataset, composed by
randomly generated graphs (hereinafter Random dataset).

As for the former, we have used a real dataset, recently introduced
within the International Contest on Pattern Search in Biological Databases [4].

136 V. Carletti et al.

Algorithm 2. Procedure to generate the next candidate couple. The inputs are the current state
sc, the last inserted couple (uc, vc), the exploration sequence NG1 , the set Parent, and the graphs
G1 and G2. The procedure returns a candidate couple (un, vn) to be checked for the feasibility or a
null couple (ε, ε) if there are no more couples to explore.

1: function SelectCandidate(sc, (uc, vc), NG1 , Parent, G1, G2)

2: if uc = ε then
3: un = GetNextInSequence(NG1 , sc)

4: if un = ε then � The sequence is finished
5: return (ε, ε)

6: else
7: un = uc

8: if Parent(un) = ε then � un has not a parent node
9: vn = GetNextNode(vc, R2(sc, ψ(un)))

10: return (un, vn)
11: else
12: ṽ = μ̃(sc, Parent(un)) � Get the node matched to Parent(un)
13: if un in adj1(Parent(un)) then � un is predecessor of Parent(un)

14: vn = GetNextNode(vc, Radj
2 (sc, ψ(un), ṽ))

15: return (u′, v′)
16: return (ε, ε) � There is not a pair for un

The dataset is composed of Contact Map and Protein graphs, extracted from
the Protein Data Bank [1]. Protein graphs are very large and sparse: the number
of nodes ranges from 500 to 10000 and the average degree is 4; contact maps
graphs have a medium size (from 150 to 800 nodes) and are denser than protein
graphs (their average degree is 20). The number of labels are 6 for proteins and
20 for contact maps.

As for the latter, the choice to use a synthetic dataset has been determined
by the possibility of generating a statistically significant number of graphs of
any size and density, so as to analyze the performance of the proposed approach
by varying these two important parameters. In more details, we generated a
set of unlabeled graphs, with a size in the range N = {300, ..., 1000} and with
three different values of density, namely η = 0.2, 0.3 and 0.4. For each couple of
parameters η−N we generated 50 graphs. The times reported in the figures have
been obtained by averaging over the 50 graphs sharing the same parameters.

The experimentation has been carried out on a cluster infrastructure, using
identical virtual machines hosted by VMWare ESXi 5. Each virtual machine
is provided with two dedicated AMD Opteron 6376 processors running at
2300 MHz, with 2 Mb of cache and 4 Gb of RAM. In order to confirm the effective-
ness of the proposed approach, we have compared it with its previous versions,
VF2 and VF2Plus, and with two other state of the art algorithms, namely RI
and LAD. The results are reported in Figs. 3 and 4 for Biological and Random
datasets, respectively.

From Fig. 3, we can note that VF3 outperforms, independently on the size of
the target graphs, LAD, VF2 and VF2Plus. The most interesting comparison,
however, is between VF3 and RI, the last one being the winner of the Contest
on Pattern Search in Biological Databases. We can note that VF3 is particularly
suited for challenging graphs, since it overcomes RI around 2000 nodes for pro-
teins and around 500 nodes in case of contact maps.

Introducing VF3 137

300 400 500 600 700 800 900 1000
Target Size

10−1

100

101

102

103

104

105
S
ec
on

d

LAD
RI
VF2
VF2Plus
VF3

(a) η = 0.2

300 400 500 600 700 800 900 1000
Target Size

100

101

102

103

104

105

S
ec
on

d

LAD
RI
VF2
VF2Plus
VF3

(b) η = 0.3

Fig. 4. Matching times for η = 0.2 (a), η = 0.3 (b) for the graphs in the Random
dataset.

This consideration is confirmed by the results obtained over random graphs,
reported in Figs. 4 and 5. Indeed, we can note that VF3 improves over VF2 and
LAD of around two orders of magnitude. In practice, this is a very interesting
result, since it means to be able to solve, for instance, a graph with 500 nodes
and having η = 0.2 in around two seconds, with respect to more than 1000 s
required by VF2 and LAD over the same graph. Furthermore, VF3 improves
also VF2Plus with all the η values, confirming the effectiveness of the novelties
introduced in the proposed approach.

The improvement with respect to RI becomes more and more evident by
increasing the size of the graphs and the η value. Indeed, the overtaking of
VF3 with respect to RI is around 550 nodes for graphs having η = 0.3 and

300 400 500 600 700 800 900 1000
Target Size

101

102

103

104

105

S
ec
on

d

LAD
RI
VF2
VF2Plus
VF3

Fig. 5. Matching times for η = 0.4 (c) for the graphs in the Random dataset.

138 V. Carletti et al.

around η = 450 for η = 0.4, thus confirming that VF3 is particularly suited for
challenging graphs, big and dense.

5 Conclusions

In this paper we have presented VF3, a new algorithm for (sub)graph isomor-
phism. VF3 extends the previously introduced VF2Plus algorithm, improving
its ability to deal with larger and denser graphs. An experimental evaluation on
different datasets show a consistent performance improvement, that increases as
the graphs become larger or denser. The new algorithm has also been compared
with two other state-of-the-art algorithm, and has shown to be the fastest one
in almost all the conditions.

References

1. RCSB: Protein data bank web site (2017). http://www.rcsb.org/pdb
2. Aittokallio, T., Schwikowski, B.: Graph-based methods for analysing networks in

cell biology. Brief. Bioinform. 7(3), 243 (2006). http://dx.doi.org/10.1093/bib/
bbl022

3. Bonnici, V., Giugno, R.: On the variable ordering in subgraph isomorphism algo-
rithms. IEEE/ACM Trans. Comput. Biol. Bioinform. PP(99) (2016)

4. Carletti, V., Foggia, P., Vento, M., Jiang, X.: Report on the first contest on graph
matching algorithms for pattern search in biological databases. In: Liu, C.-L., Luo,
B., Kropatsch, W.G., Cheng, J. (eds.) GbRPR 2015. LNCS, vol. 9069, pp. 178–187.
Springer, Cham (2015). doi:10.1007/978-3-319-18224-7 18

5. Carletti, V., Foggia, P., Vento, M.: Performance comparison of five exact graph
matching algorithms on biological databases. In: Petrosino, A., Maddalena, L.,
Pala, P. (eds.) ICIAP 2013. LNCS, vol. 8158, pp. 409–417. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-41190-8 44

6. Carletti, V., Foggia, P., Vento, M.: VF2 plus: an improved version of VF2 for
biological graphs. In: Liu, C.-L., Luo, B., Kropatsch, W.G., Cheng, J. (eds.)
GbRPR 2015. LNCS, vol. 9069, pp. 168–177. Springer, Cham (2015). doi:10.1007/
978-3-319-18224-7 17

7. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in
pattern recognition. IJPRAI 18(3), 265–298 (2004)

8. Cordella, L., Foggia, P., Sansone, C., Vento, M.: A (sub)graph isomorphism algo-
rithm for matching large graphs. IEEE Trans. Pattern Anal. Mach. Intell. 26,
1367–1372 (2004)

9. Foggia, P., Percannella, G., Vento, M.: Graph matching and learning in pattern
recognition on the last ten years. J. Pattern Recognit. 28(1), 1450001 (2014)

10. Han, W., Lee, J.h., Lee, J.: TurboISO: towards ultrafast and robust subgraph
isomorphism search in large graph databases. In: Proceedings of the 2013 ACM
SIGMOD International Conference on Management of Data, pp. 337–348 (2013)

11. Huan, J., et al.: Comparing graph representations of protein structure for mining
family-specific residue-based packing motif. J. Comput. Biol. 12(6), 657–671 (2005)

12. Lacroix, V., Fernandez, C., Sagot, M.: Motif search in graphs: application to
metabolic networks. Trans. Computat. Biol. Bioinform. 4, 360–368 (2006)

http://www.rcsb.org/pdb
http://dx.doi.org/10.1093/bib/bbl022
http://dx.doi.org/10.1093/bib/bbl022
http://dx.doi.org/10.1007/978-3-319-18224-7_18
http://dx.doi.org/10.1007/978-3-642-41190-8_44
http://dx.doi.org/10.1007/978-3-319-18224-7_17
http://dx.doi.org/10.1007/978-3-319-18224-7_17

Introducing VF3 139

13. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N.,
Hellmann, S., Morsey, M., van Kleef, P., Auer, S., Bizer, C.: DBpedia - a large-
scale, multilingual knowledge base extracted from Wikipedia. Semant. Web J. 6(2),
167–195 (2015)

14. McGregor, J.: Relational consistency algorithms and their application in finding
subgraph and graph isomorphisms. Inf. Sci. 19(3), 229–250 (1979)

15. Solnon, C.: Alldifferent-based filtering for subgraph isomorphism. Artif. Intell.
174(12–13), 850–864 (2010)

16. Ullmann, J.R.: An algorithm for subgraph isomorphism. J. Assoc. Comput. Mach.
23, 31–42 (1976)

17. Ullmann, J.: Bit-vector algorithms for binary constraint satisfaction and subgraph
isomorphism. J. Exp. Algorithm. (JEA) 15(1) (2010)

18. Vento, M.: A long trip in the charming world of graphs for pattern recognition.
Pattern Recognit. 48(1), 11 (2014)

19. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications,
vol. 8. Cambridge University Press, Cambridge (1994)

20. Zampelli, S., Deville, Y., Solnon, C.: Solving subgraph isomorphism problems with
constraint programming. Constraints 15(3), 327–353 (2010)

21. Zhang, S., Li, S., Yang, J.: GADDI: Distance Index Based Subgraph Matching
In Biological Networks. In: Proceedings of the 12th International Conference on
Extending Database Technology: Advances in Database Technology (2009)

Large Graphs and Social Networks

Node Matching Computation Between Two
Large Graphs in Linear Computational Cost

Pep Santacruz, Shaima Algabli, and Francesc Serratosa(&)

Universitat Rovira i Virgili, Catalonia, Spain
{joseluis.santacruz,francesc.serratosa}@urv.cat,

shaima.ahmed@estudiants.urv.cat

Abstract. Error-tolerant graph matching has been demonstrated to be an
NP-problem, for this reason, several sub-optimal algorithms have been pre-
sented with the aim of making the runtime acceptable in some applications.
Some well-known sub-optimal algorithms have 6th, cubic or quadratic cost with
respect to the order of the graphs. When applications deal with large graphs
(social nets), these costs are not acceptable. For this reason, we present an
error-tolerant graph-matching algorithm that it is linear with respect to the order
of the graphs. Our method needs an initial seed, which is composed of one or
several node-to-node mappings. The algorithm has been applied to analyse the
friendship variability of social nets.

Keywords: Large graph matching � Graph edit distance � Bipartite graph
matching

1 Introduction

Recently, we have seen an increase in the number of people enrolled in the social nets
and also the number of different social networks. In some applications, for instance,
personalised publicity, it would be interesting to locate people from one net at the other
net, with the aim of increasing the knowledge we have from these people. It is worth
noting that in some cases, we know the node in each net that represents the same
person, due to we have this knowledge from other sources of information. Neverthe-
less, this is not the most common case because of several people could have the same
name in the net or people suggest different alias in each net.

Attributed graphs are good models to represent social nets, thus, if we want to
correlate two nets, what we have to do is to find a matching between nodes of the
graphs that represent these nets. The methods that return a distance between two graphs
and a matching between their nodes are called error-tolerant graph matching [1].

Error-tolerant graph matching has been demonstrated to be an NP-problem [2], for
this reason, several algorithms have been presented that apply some heuristics with the
aim of reducing the computational cost [3–5]. Nevertheless, sub-optimal algorithms

This research is supported by the spanish projects TIN2016-77836-C2-1-R and ColRobTransp
MINECO DPI2016-78957-R AEI/FEDER EU.

© Springer International Publishing AG 2017
P. Foggia et al. (Eds.): GbRPR 2017, LNCS 10310, pp. 143–153, 2017.
DOI: 10.1007/978-3-319-58961-9_13

have been presented that deduce a distance and a matching between nodes in poly-
nomial time. For instance, the Graduated assignment [6], the Bipartite graph matching
[7, 8] or the Greedy edit distance algorithm [9, 10]. All of these algorithms define a
bi-dimensional matrix in which the number of rows or columns is the graph order.

The aim of this paper is to present an error-tolerant graph-matching algorithm
designed to match huge graphs. Thus, we have imposed two main restrictions. Firstly,
any bi-dimensional matrix cannot be defined in which the number of rows or columns
is the graph order (or, a vector with a quadratic length with respect to the order of the
graphs). Secondly, the computational cost has to be linear with respect to the order of
the graphs. Moreover, we assume that some (few) initial mappings between nodes of
both nets are given. We call these initial mappings as seeds since, as we will see in the
following sections, they are the seeds from which the algorithm begins to spread its
knowledge of the partial matching.

The rest of paper is going to be as follows. In the next section, we introduce the
attributed graphs, the graph-edit distance and the graph-matching algorithms that
computethe graph edit distance. In Sect. 3, we move on explaining our graph-matching
algorithm that we have called Belief propagation graph matching. In Sect. 4, we show
the experimental section. It is composed of two parts. In the first one, we have ran-
domly generated some graphs and we compare our method to the state of the art
methods. In the second part, we show how we have used our method to map people of
two social nets. In Sect. 5, we conclude the paper.

2 Attributed Graphs and Graph Matching

Let G ¼ Rv;Re; cv; ce
� �

and G0 ¼ R
0
v;R

0
e; c

0
v; c

0
e

� �
be two attributed graphs. Rv ¼

fviji ¼ 1; . . .; ng is the set of vertices and Re ¼ ei;j
���i; j 2 1; . . .; n

n o
is the set of

edges. Functions cv : Rv ! Dv and ce : Re ! De assign attribute values in any domain
to vertices and edges. Coherent definitions hold for G0 ¼ R

0
v;R

0
e; c

0
v; c

0
e

� �
.

A local structure of a node is the set of edges and nodes of the graph adjacent to it.
The influence on selecting different local structures was analysed in [10, 11]. The most
common local structures are the Node, the Degree and the Star (also called Clique in
some papers). In the Node, the local sub-structure is composed of only a node and any
edges or other nodes are not considered. In the Degree, the local sub-structure is
composed of a node and its connecting edges. Finally, in the Star, the local
sub-structure is composed of a node, its connecting edges and the nodes that these
edges connect. These structures are defined as attributed graphs with their specific node
and edge structure. Larger structures are not used due to its matching computational
cost.

There are some applications in which comparing graphs is needed. For instance, in
the classification procedures such that elements are represented by attributed graphs. In
these cases, a distance between attributed graphs has to be applied. One of the most
widely used methods to deduce a distance between graph and to extract a “logical”

144 P. Santacruz et al.

matching between them is the Graph edit distance [1]. In the Graph edit distance; the
distance is defined as the minimum amount of required distortion to transform one
graph into the other. To this end, a number of distortion or edit operations, consisting of
insertion, deletion or substitution of nodes and edges are defined. Edit cost functions
are introduced to quantitatively evaluate the edit operations. The basic idea is to assign
a penalty cost to each edit operation according to the amount of distortion that it
introduces in the transformation. To allow the maximum flexibility in the matching
process, both graphs are theoretically extended with null nodes and edges to have the
same order n. The null nodes and edges are assigned at the set R̂v and R̂e for graph G

and R̂
0
v and R̂0

e for graph G0. Thus, deletion and insertion operations are transformed to
assignations of a non-null node of the first or second graph to a null node of the second
or first graph. Substitutions simply indicate node-to-node assignations. Using this
transformation, given two graphs G and G0 and a bijective matching between their
nodes f , the graph edit cost, EditCost G;G0; fð Þ, is computed. It is based on the fol-
lowing constants and functions: Cvs is a function that represents the cost of substituting
node vi of G by node f vi

� �
of G0. Ces is a function that represents the cost of substi-

tuting edge ei;k of G by edge f ei;k
� �

of G0. Cvd and Cvi are the costs of deleting node vi
of G (mapping it to a null node) or inserting node v0j of G

0 (or being mapped from a null
node). Likewise, Ced and Cei are the costs of assigning edge ei;k of G to a null edge of
G0 or assigning edge e0j;p of G

0 to a null edge of G. Note that we have not considered the
cases in which two null nodes or null edges are mapped; this is because this cost is zero
by definition. The expression EditCost is formally described as follows,

EditCost G;G
0
; f

� �
¼

X

va 2 Rv � R̂v

v0i 2 R
0
v � R̂

0

v

Cvs va; v
0
i

� �þ
X

eab 2 Re � R̂e

e0ij 2 R̂
0

e � R̂
0

e

Ces eab; e
0
ij

� �

þ
X

va 2 R̂v

v0i 2 R
0
v � R̂

0

v

Cvd va; v
0
i

� �þ
X

eab 2 R̂e

e0ij 2 R
0
e � R̂

0

e

Ced eab; e
0
ij

� �

þ
X

va 2 Rv � R̂v

v0i 2 R̂
0

v

Cvi va; v
0
i

� �þ
X

eab 2 Re � R̂e

e0ij 2 R̂
0

e

Cei eab; e
0
ij

� �

ð1Þ

Where f va
� � ¼ v0i and f vb

� � ¼ v0j.
The Graph edit distance EditDist is defined as the minimum cost under any

bijection in T:

Node Matching Computation Between Two Large Graphs 145

EditDist G;G0ð Þ ¼ min
f2T

EditCost G;G0; fð Þf g ð2Þ

Computing the Graph edit distance and the optimal matching is an NP-problem [2].
For this reason, several optimal algorithms have been defined to compute it and deduce
the matching that obtains the minimum cost applying different search strategies [14].
Nevertheless, due to runtime reasons, applications use to apply suboptimal algorithms
that search for a suboptimal distance and a matching in polynomial time. One of the
classical ones is the Graduated assignment [6] that has a Oðn6Þ computational cost.
Nowadays, one of the most used algorithms is the Bipartite graph matching [7, 8] that
has a Oðn3Þ computational cost. Finally, it is worth to mention the Greedy edit distance
algorithm [9, 10] that returns a distance in Oðn2Þ computational cost.

The whole mentioned algorithms have a first step in which a matrix is filled with
the distances between all combinations of the local structures of both graphs (Node,
Degree or Star). The computational cost of this step is approximated by Oððs � nÞ2Þ
where s is the computational cost of computing the distance between local structures.
Then, there is a second step in which the bijective matching is obtained. The com-
putational cost of this second step is Oðn6Þ, Oðn3Þ or Oðn2Þ depending whether the
matching is deduced by the Graduated assignment [6] Bipartite graph matching [7, 8]
or Greedy edit distance [9, 10], respectively. In the case of the Bipartite graph
matching, the problem at hand is seen as a minimisation of the sum of linear assig-
nation given the cost matrix and it is usually solved through the Munkers algorithm
[12] or the Jonker-Volgenant algorithm [13].

When applications handle huge graphs (more than 100.000 nodes) the matching
process becomes an important handicap not only from the runtime point of view but
also from the storage space. The graph-matching algorithm that we present in this paper
is designed to match huge graphs. Thus, we have imposed two main restrictions.
Firstly, any bi-dimensional matrix cannot be defined in which the number of rows or
columns is the graph order. Secondly, the computational cost has to be linear with
respect to the order of the graphs. These restrictions suppose that the algorithm does not
perform the two previously mentioned steps and the distance between the whole
combinations of the local structures of both graphs is never completely performed.

3 Belief Propagation Graph Matching

Algorithm 1 shows the pseudo-code of our error-tolerant graph-matching algorithm
that we have called Belief Propagation Graph Matching. The input of the algorithm is
composed of a pair of graphs, the edit cost functions and some initial mappings
between nodes of both graphs, which we call seeds. The output is the deduced
matching between both graphs.

The core of the algorithm is the distance between Stars. In any moment of the
iterative process, the algorithm keeps a set of mappings between Stars. Thus, in each

146 P. Santacruz et al.

iteration, the algorithm considers the mapping in the set that its Star distance is the
minimum one as a correctand definitive mapping between two nodes. Then, the
algorithm computes the entireStar distances between the mapped neighbour nodes and
introduces them into theset.

The algorithm uses the following four sets:

Seeds: Set of initial mappings between nodes of both graphs that are supposed to be
ground-truth mappings. Each initial mappings is represented by Seed; Seed0½ � being
Seed 2 Rv and Seed0 2 R

0
v.

Matching: The output of the program. Each element is a mapping between a node of
each graph v; v0½ �, v 2 Rv and v0 2 R and it represents a bijective function. During the
execution of the algorithm, this set always increases since any pair of nodes is never
deleted from itand it represents the current partial matching.

Pending: A Setofregisters composed of three elements: A pair of mapped nodes v; v0½ �,
v 2 Rv and v0 2 R

0
v and also the Graph edit distance D and the matching f between the

Stars that they are the central nodes. This distance and matching is computed through
function D; fð Þ ¼ Match Star S; S0½ �ð Þ, where S and S0 are the Stars of v and v0,
respectively. In each iteration of the algorithm, a mapping with the minimum distance
is extracted and erased from Pending. The algorithm finishes when Pending is empty,
which means that the algorithm has explored all the mappings that it believes they
might be correct.

Computed: A Set of pairs of nodes such that Match Star S; S0½ �ð Þ has been computed. It
is necessary in order not to compute this function several times with the same pair of
nodes. Note that this set always increases since any pair of nodes is never deleted from it.

The algorithm is composed of two main parts. In the first one (lines 1–8), the
imposed mappings are introduced into Pending. In the second one (the rest of lines),
the algorithm iteratively extracts the mappings Map;Map0½ � from Pending that have the
minimum Star distance (line 10). These mappings are always considered part of the
final matching (line 11). Any mapping in Pending that have one of the selected nodes
in line 10 are deleted from Pending to force the matching to be bijective (line 12).
Symbol * means any value. Line 13 selects each mapping N Map;N Map0½ � of the
matching f from the current mapping obtained in line 10. The aim of the loop in lines
13–23 is to compute the distance between Stars of the mapped neighbourhood nodes
N Map;N Map0½ � and insert them into Computed and Pending. Note that this action is
performed only if they have not been previously computed (line 14) and if the involved
nodes of both graphs do not form part of the partial current matching (line 15). This is
to assure we obtain a bijective mapping. For this reason, for sure, the maximum of
node-to-node comparison is n and this makes the algorithm to be linear with respect to
the number of nodes, n.

Node Matching Computation Between Two Large Graphs 147

4 Experimental Validation

In the first part of this section we validate and analyse our algorithm using synthetic
graphs whereas in the second part we show a real application of it. Graphs in the first
part are small because we want to compare our algorithm to other non-linear algo-
rithms. Nevertheless, in the second part, we only use our new algorithm and so we have
used large graphs.

4.1 Validation Using Synthetic Graphs

The aim of this section is to validate our new proposal from the quality of the matching
and also from the runtime point of view. As it can be deduced from Eq. 2, the lower the
edit cost, the better we consider the matching is. Thus, we have compared our method
with the Bipartite graph matching [7, 8] that has a cubic cost and the Greedy graph
matching [9, 10] that has a quadratic cost. Remember that our method has a linear

148 P. Santacruz et al.

computational cost but it needs an initial mapping that we have called Seed. We have
not computed the optimal matching through an A* algorithm [14] due to runtime
reasons. For this reason, we do not know which is the optimal distance given a pair of
graphs. Algorithms are implemented in Matlab and they have been executed in a
Windows i7. Experiments are publically available at [16].

The experiments have been set up as follows. First, we have randomly generated an
attributed graph with only one attribute on the nodes (a value between 0 and 99), and a
degree of approximately 0:2 � n, being n the order of graphs. From this graph, we have
generated another one by first copying it and then deleting and inserting the 10% of
nodes and edges and modifying the attribute value of other 10% of nodes. We assume
that the optimal matching is the identity and for this reason, when we compute the
Belief propagation algorithm, we impose the Seed = [1, 1]. Clearly, it may happen that
there is another matching with lower cost due to the noise added to the second graph
and so the mapping [1, 1] could not the best option. We consider this fact as part of the
noise our algorithm has to deal with. The cost of deleting and inserting nodes and edges
has been 25 (it is a ¼ of the maximum value [15]).

Figure 1 shows the average distance of 100 runs. In general, the Belief algorithm
(with only one Seed) performs worse than the Greedy algorithm and the Bipartitegraph
matching algorithm. Moreover, larger the graphsare, large the gap between these
algorithms is.

Figure 2 shows the runtime of the three algorithms. As it is supposed to be, the
fastest algorithm is the Belief propagation graph matching followed by the Greedy and

Fig. 1. Distance obtained by three error-tolerant graph-matching algorithms.

Node Matching Computation Between Two Large Graphs 149

Fig. 2. Runtime in seconds spent by three error-tolerant graph-matching algorithms.

Fig. 3. Number of times Match_Star function is run divided by the number of nodes with
respect to the degree of graphs.

150 P. Santacruz et al.

the slowest one is the Bipartite algorithm. From the plots, we realise the computational
cost of the three algorithms.

Having compared our algorithm with two other ones, we proceed now to analyse
the behaviour of our proposal. The knowledge of the current and partial matching is
spread through mapping the Stars. For this reason, the degree of the graphs is an
important parameter to be considered in the computational cost. Note that given a pair
of mapped nodes, the number of times the Match_Star function is executed is lower or
equal than the amount of neighbours it has (line 13 in the algorithm). Figure 3 shows
the number of times that function Match_Star has been executed (normalised by the
order of the graphs) with respect to the degree of the graphs. We realise that the
maximum value is achieved when the degree is 0.5. Moreover, although not shown in
the paper, we performed the same tests considering different levels of noise and orders
of graphs. In the whole tests, the function showed a similar behaviour although dif-
ferent maximum values. The shown test is the average of 100 runs. The order of the
initial graph was 120 nodes. From this graph, we generated another one by copying it
and then deleting 30 nodes and modifying the attribute of 30 other ones. Moreover the
20% of the edges were deleted and inserted.

Figure 4 shows the number of times Match_Starwas executed (normalised by the
graph order) and considering three levels of noise on the graphs. We realise that with
low noise on the graphs, the plot is almost constant, and so, linear with respect to the
number of nodes. With high ratios of noise, the plot increases when the order of graphs
is low but it rapidly tends to stabilise.

Fig. 4. Number of times Match_Star function is run divided by the number of nodes with
respect to the degree of graphs.

Node Matching Computation Between Two Large Graphs 151

4.2 Real Application

The final experiments have been conducted with a real graph database called ego-
Facebook [17]. In this database, nodes represent people and edges arefriendships. The
order of the graph is 4039 and the number of edges is 88234. Facebook data has been
anonymised by replacing the Facebook-internal ids for each user with a new value.
Also, while feature vectors from this dataset have been provided, the interpretation of
those features has been obscured. For instance, where the original dataset may have
contained a feature “political = Democratic Party”, the new data would simply contain
“political = anonymised feature 1”. Thus, using the anonymised data it is possible to
determine whether two users have the same political affiliations, but not what their
individual political affiliations represent.

The aim of our application is to know the variability of the friendships. That is, we
want to know which percentage of friendships change each time the social net is
sampled. Due to the anonimisation, we do not know the nodemapping in each net
sample. Thus, the matching between social nets (represented as attributed graphs) is
deduced through our algorithm before computing the friendship variation. Thanks to
the process of creation of the graphs that represent the social net samples, we know the
mapping of the first node of each graph. Figure 5 shows the normalised histogram of
the friendship variation, which has been computed as the difference between the degree
of each node. We conclude that almost half of the population have a variation lower
than 2 friends, which is considered very low.

5 Conclusions and Further Work

We have presented, for the first time, an error-tolerant graph-matching algorithm that
has a linear computational costwith respect to the nodes and a linear space with respect
to the number of edges or nodes. It has the specific feature that an initial node-to-node
mapping is needed to begin to spread the knowledge of the node-to-node matching.

Fig. 5. Normalised variation of the social network Facebook considering the database
ego-Facebook.

152 P. Santacruz et al.

Experimental validation shows that the algorithm is clearly faster than two of the most
used algorithms although the average distance seems to be larger than these algorithms.
Nevertheless, it is the first time that the matching between two large social netshas been
deduced due to two main reasons. The linear runtime with respect to the number of
nodes and also the fact thata bi-dimensional matrix, in which the number of rows or
columns is the graph order, is not needed to be defined.

References

1. Riesen, K.: Structural Pattern Recognition with Graph Edit Distance. Advances in Computer
Vision and Pattern Recognition. Springer, Cham (2015)

2. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, San Francisco (1979)

3. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in pattern
recognition. IJPRAI 18(3), 265–298 (2004)

4. Foggia, P., Percannella, G., Vento, M.: Graph matching and learning in pattern recognition
in the last 10 years. Int. J. Pattern Recogn. Artif. Intell. (2013)

5. Solé, A., Serratosa, F., Sanfeliu, A.: On the graph edit distance cost: properties and
applications. Int. J. Pattern Recogn. Artif. Intell. 26(5), 1260004 (2012)

6. Gold, S., Rangarajan, A.: A Graduated assignment algorithm for graph matching. IEEE
Trans. Pattern Anal. Mach. Intell. 18(4), 377–388 (1996)

7. Riesen, K. Bunke, H.: Approximate graph edit distance computation by means of bipartite
graph matching. Image Vis. Comput. 27(7), 950–959 (2009)

8. Serratosa, F.: Fast computation of bipartite graph matching. Pattern Recogn. Lett. PRL 45,
244–250 (2014)

9. Riesen, K., Ferrer, M., Dornberger, R., Bunke, H.: Greedy graph edit distance. In: Perner,
P. (ed.) MLDM 2015. LNCS (LNAI), vol. 9166, pp. 3–16. Springer, Cham (2015). doi:10.
1007/978-3-319-21024-7_1

10. Cortés, X., Serratosa, F., Riesen, K.: On the relevance of local neighbourhoods for greedy
graph edit distance. In: Robles-Kelly, A., Loog, M., Biggio, B., Escolano, F., Wilson, R.
(eds.) S+SSPR 2016. LNCS, vol. 10029, pp. 121–131. Springer, Cham (2016). doi:10.1007/
978-3-319-49055-7_11

11. Serratosa, F., Cortés, X.: Graph edit distance: moving from global to local structure to solve
the graph-matching problem. Pattern Recogn. Lett. 65, 204–210 (2015)

12. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. Logistics Q. 2,
83–97 (1955)

13. Jonker, R., Volgenant, T.: Improving the Hungarian assignment algorithm. Oper. Res. Lett.
5(4), 171–175 (1986)

14. Ferrer, M., Serratosa, F., Riesen, K.: Improving bipartite graph matching by assessing the
assignment confidence. Pattern Recogn. Lett. 65, 29–36 (2015)

15. Serratosa, F., Cortés, X., Moreno, C.-F.: Graph edit distance or graph edit pseudo-distance? In:
Robles-Kelly, A., Loog, M., Biggio, B., Escolano, F., Wilson, R. (eds.) S+SSPR 2016. LNCS,
vol. 10029, pp. 530–540. Springer, Cham (2016). doi:10.1007/978-3-319-49055-7_47

16. http://deim.urv.cat/*francesc.serratosa/SW/
17. McAuley, J., Leskovec, J.: Learning to discover social circles in ego networks. In: NIPS

2012
18. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: densification and shrinking

diameters. ACM Trans. Knowl. Discov. Data (ACM TKDD), 1(1), 5–34 (2007)

Node Matching Computation Between Two Large Graphs 153

http://dx.doi.org/10.1007/978-3-319-21024-7_1
http://dx.doi.org/10.1007/978-3-319-21024-7_1
http://dx.doi.org/10.1007/978-3-319-49055-7_11
http://dx.doi.org/10.1007/978-3-319-49055-7_11
http://dx.doi.org/10.1007/978-3-319-49055-7_47
http://deim.urv.cat/%7efrancesc.serratosa/SW/

Measuring Vertex Centrality Using
the Holevo Quantity

Luca Rossi1(B) and Andrea Torsello2

1 School of Engineering and Applied Science, Aston University, Birmingham, UK
l.rossi@aston.ac.uk

2 DAIS, Università Ca’ Foscari Venezia, Venice, Italy

Abstract. In recent years, the increasing availability of data describing
the dynamics of real-world systems led to a surge of interest in the com-
plex networks of interactions that emerge from such systems. Several
measures have been introduced to analyse these networks, and among
them one of the most fundamental ones is vertex centrality, which quan-
tifies the importance of a vertex within a graph. In this paper, we pro-
pose a novel vertex centrality measure based on the quantum information
theoretical concept of Holevo quantity. More specifically, we measure the
importance of a vertex in terms of the variation in graph entropy before
and after its removal from the graph. More specifically, we find that the
centrality of a vertex v can be broken down in two parts: (1) one which is
negatively correlated with the degree centrality of v, and (2) one which
depends on the emergence of non-trivial structures in the graph when v
is disconnected from the rest of the graph. Finally, we evaluate our cen-
trality measure on a number of real-world as well as synthetic networks,
and we compare it against a set of commonly used alternative measures.

Keywords: Complex networks · Vertex centrality · Quantum
information

1 Introduction

A large number of real-world systems can be modelled and analysed by looking
at the structure that emerges from the interaction between their components [5].
The resulting graph is called a complex network, and provides a powerful way to
study the static and dynamic aspects of the underlying system. Typical examples
of systems that are studied in network science include metabolic pathways [9],
protein interactions [8], brain regions interactions [20] and scientific collabora-
tions [13]. Complex networks often display non-trivial structural properties that
distinguish them from Erdös-Rényi random graphs [4], such as small-worldness
and a power-law distribution of vertex degrees [5].

In these large networks one of the key problems is that of identifying the
set of most relevant nodes, also called central nodes. A number of centrality
measure have been introduced in the literature [3,5–7,12,17], each of them cap-
turing different but equally significant aspects of vertex importance. Commonly
c© Springer International Publishing AG 2017
P. Foggia et al. (Eds.): GbRPR 2017, LNCS 10310, pp. 154–164, 2017.
DOI: 10.1007/978-3-319-58961-9 14

Measuring Vertex Centrality Using the Holevo Quantity 155

encountered examples include the degree centrality [7], the closeness central-
ity [21], and the betweenness centrality [7]. Let G be a graph with n nodes. In
the degree centrality [7] the normalised (degree) is taken as the centrality value
of a vertex, i.e.,

DC(v) =
dv∑n
u=1 du

,

where dv denotes the degree of the vertex v. In other words, the number of
edges incident on a vertex is interpreted as a measure of its “popularity”, or,
alternatively, as the risk of a node being infected in an epidemiological scenario.
The closeness centrality [21] links the importance of a vertex to its proximity to
the remaining vertices of the graph. More specifically, the closeness centrality is
defined as the inverse of the sum of the distance of a vertex v to the remaining
nodes of the graph, i.e.,

CC(v) =
n − 1

∑n
u=1 sp(u, v)

,

where sp(u, v) denotes the shortest path distance between nodes u and v. Finally,
the betweenness centrality [7] measures the extent to which a given vertex lies
on the (shortest) paths between the remaining vertices, i.e.,

BC(v) =
∑

s,t∈V

σ(s, t|v)
σ(s, t)

,

where V is the set of nodes, σ(s, t) and σ(s, t|v) denote the number of shortest
paths between s and t and the number of shortest paths between s and t that
pass through v.

Recently, there has been an increasing interest in using concepts from quan-
tum mechanics and quantum information theory to probe the structure of
graphs [11,18,19]. In [11], Lockhart et al. introduced an edge centrality index
based on quantum information theory, where the importance of an edge is mea-
sured in terms of its contribution to the Von Neumann entropy of the net-
work [16]. This in turn relies on decomposing the edge set of a graph as follows.
Given an edge u, the original graph is decomposed into two graphs over the same
vertex set, but with different number of edges: (1) a graph where only the edge
e is present, and (2) a graph where all the original edges except e are present.
With this decomposition to hand, the centrality of e is measured as the Holevo
quantity of the associated decomposition [11].

In this paper, we show that a similar approach can be taken to measure the
centrality of a vertex. Given a vertex v, we propose to decompose the graph
into two graphs over the same vertex set but with edge sets as follows: (1) one
graph where only the edges incident to v are present, and (2) one graph where
all the original edges except those incident to v are present. Then, the centrality
of v is the Holevo quantity associated to the resulting graph ensemble. We show
that the centrality of a vertex v can be broken down in two parts: (1) one part
that is negatively correlated with the degree centrality of v, and (2) one part

156 L. Rossi and A. Torsello

that depends on the emergence of non-trivial structures in the graph when v
is disconnected from the rest of the graph by removing all edges incident to
it. Finally, we perform a series of experiments to evaluate the proposed edge
centrality measure on real-world as well as synthetic graphs, and we compare it
against a number of commonly used alternative measures.

The remainder of this paper is organised as follows: Sect. 2 reviews the neces-
sary quantum mechanical background and the quantum information theoretical
concepts that underpin our approach. Section 3 introduces the proposed vertex
centrality measure, which is then analysed and compared to alternative measures
in Sect. 4. Finally, Sect. 5 concludes the paper.

2 Quantum Information Theoretical Background

2.1 Quantum States and von Neumann Entropy

In quantum mechanics, a system can be either in a pure state or a mixed state.
Using the Dirac notation, a pure state is represented as a column vector |ψi〉.
A mixed state, on the other hand, is an ensemble of pure quantum states |ψi〉,
each with probability pi. The density operator of such a system is a positive
unit-trace matrix defined as

ρ =
∑

i

pi |ψi〉 〈ψi| . (1)

The von Neumann entropy [14] S of a mixed state is defined in terms of the
trace and logarithm of the density operator ρ

S(ρ) = −Tr(ρ ln ρ) = −
∑

i

λi ln(λi) (2)

where λ1, . . . , λn are the eigenvalues of ρ. If 〈ψi| ρ |ψi〉 = 1, i.e., the quantum
system is a pure state |ψi〉 with probability pi = 1, then the Von Neumann
entropy S(ρ) = −Tr(ρ ln ρ) is zero. On other hand, a mixed state always has a
non-zero Von Neumann entropy associated with it.

2.2 A Mixed State from the Graph Laplacian

Let G = (V,E) be a simple graph with n vertices and m edges. We assign
the vertices of G to the elements of the standard basis of an Hilbert space HG,
{|1〉 , |2〉 , ..., |n〉}. Here |i〉 denotes a column vector where 1 is at the i-th position.
The graph Laplacian of G is the matrix L = D − A, where A is the adjacency
matrix of G and D is the diagonal matrix with elements d(u) =

∑n
v=1 A(u, v).

For each edge ei,j , we define a pure state

|ei,j〉 :=
1√
2
(|i〉 − |j〉). (3)

Measuring Vertex Centrality Using the Holevo Quantity 157

Then we can define the mixed state { 1
m , |ei,j〉} with density matrix

ρ(G) :=
1
m

∑

{i,j}∈E

|ei,j〉 〈ei,j | =
1

2m
L(G). (4)

Let us define the Hilbert spaces HV
∼= C

V , with orthonormal basis av, where
v ∈ V , and HE

∼= C
E , with orthonormal basis bu,v, where {u, v} ∈ E. It can

be shown that the graph Laplacian corresponds to the partial trace of a rank-
1 operator on HV ⊗ HE which is determined by the graph structure [2]. As a
consequence, the Von Neumann entropy of ρ(G) can be interpreted as a measure
of the amount of entanglement between a system corresponding to the vertices
and a system corresponding to the edges of the graph [2].

2.3 Holevo Quantity of a Graph Decomposition

Given a graph G, we can define an ensemble in terms of its subgraphs. Recall that
a decomposition of a graph G is a set of subgraphs H1,H2, ...,Hk that partition
the edges of G, i.e., for all i, j,

⋃k
i=1 Hi = G and E(Hi)∩E(Hj) = ∅, where E(G)

denotes the edge set of G. Notice that isolated vertices do not contribute to a
decomposition, so each Hi can always be seen a subgraph that contains all the
vertices. If we let ρ(H1), ρ(H2), ..., ρ(Hk) be the mixed states of the subgraphs,
the probability of Hi in the mixture ρ(G) is given by |E(Hi)|/|E(G)|. Thus, we
can generalise Eq. 4 and write

ρ(G) =
k∑

i=1

|E(Hi)|
|E(G)| ρ(Hi). (5)

Consider a graph G and its decomposition H1,H2, ...,Hk with corresponding
states ρ(H1), ρ(H2), ..., ρ(Hk). Let us assign ρ(H1), ρ(H2), ..., ρ(Hk) to the ele-
ments of an alphabet {a1, a2, ..., ak}. In quantum information theory, the classical
concepts of uncertainty and entropy are extended to deal with quantum states,
where uncertainty about the state of a quantum system can be expressed using
the density matrix formalism. Assume a source emits letters from the alpha-
bet and that the letter ai is emitted with probability pi = |E(Hi)|/|E(G)|. An
upper bound to the accessible information is given by the Holevo quantity of the
ensemble {pi, ρ(Hi)}:

χ({pi, ρ(Hi)}) = S

(
k∑

i=1

piρ(Hi)

)

−
k∑

i=1

piS(ρ(Hi)) (6)

3 The Holevo Vertex Centrality

Given a graph G = (V,E) and a vertex v ∈ V , we propose to measure the
centrality of v as follows. Let Gv = (V,Ev) denote the subgraph with vertex set
V and edge set Ev = {(u, v) ∈ E|u ∈ V }, and Gv = (V,Ev) be the subgraph

158 L. Rossi and A. Torsello

with vertex set V and edge set Ev = {(u, v) ∈ E|(u, v)
∈ Ev}. In other words,
E = Ev ∪ Ev and Ev ∩ Ev = ∅. Hence, from Eq. 5, we can show that

|Ev|
|E| ρ(Gv) +

|Ev|
|E| ρ(Gv) = ρ(G). (7)

With this decomposition to hand, we define the Holevo vertex centrality of v as

HC(v) = χ

({(|Ev|
|E| , Gv

)

,

(|Ev|
|E| , Gv

)})

= S (ρ(G)) −
(|Ev|

|E| S (ρ(Gv)) +
|Ev|
|E| S (ρ(Gv))

)

. (8)

Given a graph G = (V,E) and a vertex v ∈ V , the first term in Eq. 8 (i.e.,
S (ρ(G))) does not depend on the choice of v, and thus can be ignored when
ranking the nodes of G according to their Holevo centrality. Moreover, note that
we only need to compute the spectrum of ρ(Gv), as the spectrum of ρ(Gv) can be
easily determined analytically. Recall that the star graph on n vertices K1,n−1

has Laplacian spectrum
{n[1], 1[n−2], 0[1]},

i.e., it has three eigenvalues n, 1, and 0 with multiplicity 1, n − 2, and 1, respec-
tively. This in turn implies that the spectrum of the density matrix ρ(K1,n−1) is

{ n

2n − 2

[1]
,

1
2n − 2

[n−2]

, 0[1]},

as shown in [10]. Since adding disconnected vertices to a graph does not change
its Von Neumann entropy [16], we have that the entropy of ρ(Gv) is

S (ρ(Gv)) = − dv + 1
2dv

log
(

dv + 1
2dv

)

− dv − 1
2dv

log
(

1
2dv

)

=
dv + 1
2dv

log
(

2dv
dv + 1

)

+
dv − 1
2dv

log (2dv)

=
1

2dv
(2dv log (2dv) − (dv + 1) log(dv + 1)) (9)

where dv denotes the degree of v. In other words, the entropy of ρ(Gv) is com-
pletely determined by the degree of v. As a result, the computational complexity
of computing the Holevo centrality of v is dominated by the cost of computing
the eigendecomposition of ρ(Gv).

Finally note that the Von Neumann entropy of a star graph is 0 when dv = 1,
and it grows logarithmically as a function of dv. This in turn suggests that the
Holevo centrality given by Eq. 8 could be negatively correlated with the degree
centrality, however proving this would require finding general analytical form of
the spectrum of ρ(Gv). Moreover, it should be noted that the Von Neumann
entropy of ρ(Gv) depends on the presence of several non-trivial structural pat-
terns, including paths, cliques, and connected components. Therefore the Holevo
vertex centrality measures the importance of a vertex as a combination of its
degree as well as the structural patterns that emerge after its removal.

Measuring Vertex Centrality Using the Holevo Quantity 159

4 Experimental Evaluation

We perform our experiments on two well known real-world networks, the Floren-
tine families graph [15] and the Karate club network [22], as well as a number of
synthetic graphs. We compare the proposed similarity measure the three com-
monly used alternative measures: (1) the degree centrality [7], (2) the closeness
centrality [21], and (3) the betweenness centrality [7].

4.1 Synthetic Networks

Wheel Graph. The Wheel graph Wn on n nodes is the graph obtained by
taking a cycle Cn−1 on n− 1 nodes and connecting each of the nodes of Cn−1 to
another node, i.e., the hub. Figure 1 shows 3 wheel graphs of increasing number
of nodes n and the corresponding value of the Holevo centrality. Note that for
small values of n the hub is the least central node. However as n grows the
centrality of the hub remains constant while the centrality of the other nodes
decreases, until the hub becomes the most central node.

Indeed, our centrality measure seems to capture the increasing redundancy
of the nodes along the cycle Cn−1 as n grows. Note that this implies that our
measure is negatively correlated with the degree centrality for small values of
n, but positively correlated for large values of n. While this may seem surpris-
ing given the negative correlation highlighted in Eq. 9, the observed behaviour
is likely due to the other component in Eq. 8, i.e., S(ρ(Gv)), as well as their
respective weights.

Lollipop Graph. The (m,n)-lollipop graph on m + n nodes is the graph
obtained by joining the clique Km on m nodes with the path graph Pn on n
nodes. Figure 2 shows the value of the Holevo centrality for increasing size of
the clique, while keeping the size of the path fixed. For small clique sizes, the
most central node is the central node on the path. However, as the size of the
clique increases, the centrality of the path node decreases, while the clique nodes
become increasingly important. We observe a similar behaviour when the length

Fig. 1. Holevo centrality for the nodes of the Wheel graph on 6 (a) and 15 (b) nodes.
The radius of each node is proportional to their Holevo centrality. In (c) we show a line
plot of the Holevo centrality for increasing graph size. Here 0 denotes the hub node.

160 L. Rossi and A. Torsello

Fig. 2. Holevo centrality for the nodes of the (m,n)-lollipop graph for (a) m = 4, n = 2,
(b) m = 6, n = 2, and (c) m = 8, n = 2. The radius of each node is proportional to
their Holevo centrality.

of the path is increased, with the nodes belonging to it being the most central
ones for small values of n. However, as we increase n, the most central node in
the graph becomes the node the shared node between the clique and the path.

Similarly to the Wheel graph, the Holevo centrality measure seems to capture
the importance of the nodes belonging to the path when the total number of
nodes in the graph is small. However, as m+n grows, our measure places most of
the importance on the tightly connected nodes of the clique, while the centrality
of the path is “diluted” as its length increases.

Barbell Graph. The Barbell graph is the graph obtained by joining two cliques
Km through a path Pn (i.e., a bridge between the two cliques). Note that when
m = 2 the corresponding Barbell graph is the path graph Pn+2m. Figure 3 shows
three Barbell graphs with n constant (i.e., the length of the bridge is 3 in all the
graphs) and m equal to 2, 3, and 4, respectively. When m = 2 the graph is a path
over 7 nodes. In this case, our centrality measures assigns the largest weight to
the two nodes that connect the two ends of the path to the rest of the nodes. As
the m increases, the weight of the cliques shifts the importance from the bridge
to the cliques, with the node connecting the cliques to the path becoming then
most central ones. If we increase the path length, we observe that the junctions

Fig. 3. Holevo centrality for the nodes of the Barbell graph joining two cliques Km

through a path Pn, for (a) m = 2, n = 3, (b) m = 3, n = 3, and (c) m = 4, n = 3. The
radius of each node is proportional to their Holevo centrality.

Measuring Vertex Centrality Using the Holevo Quantity 161

Fig. 4. Average correlation with the degree centrality for different realisation of the
Barabási-Albert preferential attachment model [1]. Here we varied the number of nodes
of the generated graph, as well as the number of edges k that are created from a new
node to existing nodes.

between the cliques and the path remain the most central nodes. However we
start to discriminate between the nodes along the bridge, with the nodes closer
to the center of the bridge being assigned a higher centrality. Note that this is
contrast with the degree centrality, which would assign the same weight to all
the nodes on the bridge (since they all have the same degree).

Scale-Free Graph. Finally, we consider a set of scale-free graphs generated by
the Barabási-Albert preferential attachment model [1]. Starting from an empty
graph, we iteratively add nodes to it until a user-defined size n is reached. At
each iteration, the new node is connected to at most m nodes chosen according
to their degree, i.e., nodes with a higher degree are more likely to be selected.
We let m and n vary between 1 and 3, and 10 and 20, respectively, and for each
pair of parameters we generated 100 graphs.

We are interested in measuring the correlation between the Holevo vertex
centrality and the degree centrality. In the previous subsections we have observed
that the correlation with the degree centrality seems to increase as the size of
the graph increases. Figure 4 confirms that this is the case. The figure also shows
that the correlation increases as we increase the number of connections added
per iteration. Note that when m = 1 the resulting graph is guaranteed to be
a tree. Indeed, Fig. 4 seems to suggest that the correlation is particularly high
on trees, however further investigation is needed to understand if the observed
effect is instead due to the particular degree distribution of scale-free graphs or
to the presence of high degree nodes.

4.2 Real-World Networks

We conclude our experimental evaluation by measuring the centrality of two
well-known networks, the Florentine families graph [15] and the Karate club
network [22]. Figures 5(a) and (b) show the two networks, where the radius of
the nodes is proportional to their Holevo centrality. We also compute the degree
(DC), closeness (CC), and betweenness (BC) centralities over these networks
and we show the corresponding correlation matrices in Figs. 5(c) and (d).

162 L. Rossi and A. Torsello

Fig. 5. The Karate network (a) and the Florentine families network (b). (c) and (d)
show the correlation matrices between the Holevo (HC), degree (DC), closeness (CC),
and betweenness (BC) centrality measures on the Karate and Florentine families net-
works, respectively. Each node of (b) is labeled with the index associated to the corre-
sponding family in Table 1.

In these networks, the Holevo centrality measure shows a large positive cor-
relation with all the other measure, in particular the degree centrality. However,
if we look at the ranking induced by our measure there are some important
differences. Table 1 shows the ranking given by the Holevo centrality, as well as
the degree of each family in the network. Clearly, the degree centrality cannot
distinguish between those families that have the same degree, while the Holevo
centrality allows to define a more fine-grained ranking. For example, the Salviati

Table 1. The Holevo and the degree (in bold) centrality of the families of Florentine
families network. The number next to the name of each family is the index of the
corresponding node in Fig. 5(b).

Family Centrality Family Centrality Family Centrality

Medici (2) 0.6582 (0.150) Peruzzi (9) 0.4409 (0.075) Barbadori (14) 0.3586 (0.050)

Guadagni (13) 0.5728 (0.100) Bischeri (8) 0.4403 (0.075) Pazzi (6) 0.2615 (0.025)

Strozzi (0) 0.5057 (0.100) Ridolfi (5) 0.4259 (0.075) Ginori (4) 0.2501 (0.025)

Albizzi (3) 0.4834 (0.075) Tornabuoni (1) 0.4242 (0.075) Lamberteschi (12) 0.2424 (0.025)

Castellani (11) 0.4615 (0.075) Salviati (10) 0.4075 (0.050) Acciaiuoli (7) 0.2305 (0.025)

Measuring Vertex Centrality Using the Holevo Quantity 163

family (node 10) is ranked higher than the Barbadori family (node 14), although
both families have degree two. However the Salviati family is the only node con-
necting the Pazzi family (node 6) to the Medici family (node 2) and the rest of
the graph, and therefore its importance is higher.

5 Conclusion

In this paper we have proposed a novel vertex centrality measure based on the
quantum information theoretical notion of Holevo quantity. The idea underpin-
ning our approach is that the importance of a vertex is proportional to the
variation in the information content of the network before and after its removal.
We have shown that the centrality of a vertex v can be broken down in two
parts, one which is negatively correlated with the degree centrality of v, and one
which depends on the emergence of non-trivial structures in the graph when v is
disconnected from the rest of the graph. Finally, we have evaluated the Holevo
centrality measure on a number of synthetic as well as real-world networks, and
we have compared it against commonly used alternative measures. Future work
will be aimed at investigating further the structural pattern that influence this
centrality measure.

References

1. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science
286(5439), 509–512 (1999)

2. de Beaudrap, N., Giovannetti, V., Severini, S., Wilson, R.: Interpreting the von
Neumann entropy of graph Laplacians, and coentropic graphs. Panorama Math.
Pure Appl. 658, 227 (2016)

3. Bonacich, P.: Power and centrality: a family of measures. Am. J. Sociol. 92, 1170–
1182 (1987)

4. Erdös, P., Rényi, A.: On random graphs. Publ. Math. Debrecen 6, 290–297 (1959)
5. Estrada, E.: The Structure of Complex Networks. Oxford University Press,

New York (2011)
6. Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry

40(1), 35–41 (1977)
7. Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Netw.

1(3), 215–239 (1979)
8. Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., Sakaki, Y.: A compre-

hensive two-hybrid analysis to explore the yeast protein interactome. Proc. Nat.
Acad. Sci. 98(8), 4569 (2001)

9. Jeong, H., Tombor, B., Albert, R., Oltvai, Z., Barabási, A.: The large-scale orga-
nization of metabolic networks. Nature 407(6804), 651–654 (2000)

10. Li, J.Q., Chen, X.B., Yang, Y.X.: Quantum state representation based on combi-
natorial Laplacian matrix of star-relevant graph. Quantum Inf. Process. 14(12),
4691–4713 (2015)

11. Lockhart, J., Minello, G., Rossi, L., Severini, S., Torsello, A.: Edge centrality via the
Holevo quantity. In: Robles-Kelly, A., Loog, M., Biggio, B., Escolano, F., Wilson,
R. (eds.) S+SSPR 2016. LNCS, vol. 10029, pp. 143–152. Springer, Cham (2016).
doi:10.1007/978-3-319-49055-7 13

http://dx.doi.org/10.1007/978-3-319-49055-7_13

164 L. Rossi and A. Torsello

12. Newman, M.E.: A measure of betweenness centrality based on random walks. Social
Netw. 27(1), 39–54 (2005)

13. Newman, M.: Scientific collaboration networks. i. network construction and fun-
damental results. Phys. Rev. E 64(1), 016131 (2001)

14. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press, New York (2010)

15. Padgett, J.F., Ansell, C.K.: Robust action and the rise of the medici, 1400–1434.
Am. J. Sociol. 98(6), 1259–1319 (1993)

16. Passerini, F., Severini, S.: Quantifying complexity in networks: the von Neumann
entropy. Int. J. Agent Technol. Syst. (IJATS) 1(4), 58–67 (2009)

17. Rossi, L., Torsello, A., Hancock, E.R.: Node centrality for continuous-time quantum
walks. In: Fränti, P., Brown, G., Loog, M., Escolano, F., Pelillo, M. (eds.) S+SSPR
2014. LNCS, vol. 8621, pp. 103–112. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-44415-3 11

18. Rossi, L., Torsello, A., Hancock, E.R.: Measuring graph similarity through
continuous-time quantum walks and the quantum Jensen-Shannon divergence.
Phys. Rev. E 91(2), 022815 (2015)

19. Rossi, L., Torsello, A., Hancock, E.R., Wilson, R.C.: Characterizing graph sym-
metries through quantum Jensen-Shannon divergence. Phys. Rev. E 88(3), 032806
(2013)

20. Sporns, O.: Network analysis, complexity, and brain function. Complexity 8(1),
56–60 (2002)

21. Stanley, W., Faust, K.: Social Network Analysis: Methods and Applications.
Cambridge University, Cambridge (1994)

22. Zachary, W.W.: An information flow model for conflict and fission in small groups.
J. Anthropol. Res. 33(4), 452–473 (1977)

http://dx.doi.org/10.1007/978-3-662-44415-3_11
http://dx.doi.org/10.1007/978-3-662-44415-3_11

On the Interplay Between Strong Regularity
and Graph Densification

Marco Fiorucci1, Alessandro Torcinovich1, Manuel Curado2,
Francisco Escolano2(B), and Marcello Pelillo1,3

1 DAIS, Ca’ Foscari University, Via Torino 155, 30172 Venezia Mestre, Italy
2 DCCIA, University of Alicante, 03690 San Vicente del Raspeig, Alicante, Spain

sco@dccia.ua.es
3 ECLT, Ca’ Foscari University, S. Marco 2940, 30124 Venezia, Italy

Abstract. In this paper we analyze the practical implications of Sze-
merédi’s regularity lemma in the preservation of metric information con-
tained in large graphs. To this end, we present a heuristic algorithm to
find regular partitions. Our experiments show that this method is quite
robust to the natural sparsification of proximity graphs. In addition, this
robustness can be enforced by graph densification.

Keywords: Graph algorithms · Regular partition · Commute time ·
Graph densification

1 Introduction

A crucial role in the development of machine learning and pattern recognition is
played by the tractability of large graphs, which is intrinsically limited by their
size. In order to overcome this limit, the input graph can be compressed into a
reduced version by means of Szemerédi’s regularity lemma [16], which is “one
of the most powerful results of extremal graph theory” [10]. Basically, it states
that any sufficiently large (dense) graph can almost entirely be partitioned into
a bounded number of random-like bipartite graphs, called regular pairs. Komlós
et al. [9,10] introduced an important result, the so-called key lemma. It states
that, under certain conditions, the partition resulting from the regularity lemma
gives rise to a reduced graph which inherits many of the essential structural prop-
erties of the original graph. This result provides a solid theoretical framework
for the exploitation of the regularity lemma to summarize large graphs, and can
be regarded as a manifestation of the all-pervading dichotomy between structure
and randomness. The regularity lemma is an existential, non-constructive pred-
icate, but during the last decades different constructive algorithms have been
proposed.

In this paper we use an approximate approach of the exact algorithm intro-
duced by Alon et al. [1], who proposed a constructive version of the original
(strong) regularity lemma useful only for large dense graphs. This is a crucial
limit in practical applications considering that real large graphs not only are
c© Springer International Publishing AG 2017
P. Foggia et al. (Eds.): GbRPR 2017, LNCS 10310, pp. 165–174, 2017.
DOI: 10.1007/978-3-319-58961-9 15

166 M. Fiorucci et al.

often very sparse, but also become sparser and sparser as the dimensionality d
of the data increases.

The aim of this work is to analyze the ideal density regime where the reg-
ularity lemma can find useful applications. In particular, we use the regularity
lemma to reduce an input graph and we then exploit the key lemma to obtain
an expanded version which preserves some topological properties of the original
graph. If we are out of the ideal density regime, we have to densify the graph
before applying the regularity lemma. Among the many topological measures we
test the effective resistance (or equivalently the scaled commute time), one of
the most important metrics between the vertices in the graph, which has been
very recently questioned. In [12] it is argued that this measure is meaningless
for large graphs. However, recent experimental results show that the graph can
be pre-processed (densified) to provide some informative estimation of this met-
ric [4,5]. Therefore, in this paper, we analyze the practical implications of the
key lemma in the estimation of commute time in large graphs.

2 Regular Partitions and the Key Lemma

In essence, Szemerédi’s regularity lemma states that for every ε > 0, every
sufficiently dense graph G can almost entirely be partitioned into k(ε) random-
like bipartite graphs, where the deviation from randomness is controlled by ε.
In particular, the lemma deals with vertex subsets that shows a sort of regular
behaviour which is expressed in terms of edge density. To state Szemerédi’s
regularity lemma, some terminology is required.

Let G = (V,E) be an undirected graph without self-loops. The edge den-
sity d of a pair (X,Y) of two disjoint subsets of V is defined as d(X,Y) =
e(X,Y)/(|X||Y |), where e(X,Y) is the number of edges with an endpoint in X
and the other in Y .

A pair is said to be ε-regular with ε > 0 if, given A,B ⊆ V such that A and
B are disjoint, then for each pair of subsets X,Y such that X ∈ A and Y ∈ B
the following inequality is satisfied:

|d(X,Y) − d(A,B)| < ε (1)

This means that the edges in an ε-regular pair are distributed fairly uniformly,
where the deviation from uniform distribution is controlled by the parameter ε.

Further, a partition of V into pairwise disjoint classes C0, C1, ..., Ck is called
equitable if all the classes Ci (1 ≤ i ≤ k) have the same cardinality. Thus we can
define an ε-regular partition as follows

Definition 1 (ε-regular partition). An equitable partition C0, C1, ..., Ck, with
C0 being the exceptional set is called ε-regular if:

1. |C0| < ε|V |
2. all but at most εk2 of the pairs (Ci, Cj) are ε-regular (1 ≤ i < j ≤ k)

On the Interplay Between Strong Regularity and Graph Densification 167

The regularity lemma states that every sufficiently large dense graph admits
an ε-regular partition.

Lemma 1 (Szemerédi’s regularity lemma [2]). For every positive real ε
and for every positive integer m, there are positive integers N = N(ε,m) and
M = M(ε,m) with the following property: for every graph G = (V,E), with
|V | ≥ N , there is an ε-regular partition of G into k + 1 classes such that m ≤
k ≤ M .

The lemma allows us to specify a lower bound m on the number of classes.
A large value of m ensures that the partition classes Ci are sufficiently small,
thereby increasing the proportion of (inter-class) edges subject to the regularity
condition and reducing the intra-class ones. The upper bound M on the number
of partitions guarantees that for large graphs the partition sets are large too.
Finally, it should be noted that a singleton partition is ε-regular for every value
of ε and m.

An ε-regular partition resulting from the regularity lemma gives rise to a
reduced graph which is basically a graph R = (V (R), E(R)) whose vertices rep-
resents the classes of the regular partition, and an edge joins two vertices if
the corresponding pair of classes is ε-regular, with density greater than a given
threshold d. The reduced graph R plays an important role in most applications of
the regularity lemma, relying on the Komlós and Simonovits’s “key lemma” [10].
It states that many structural properties of the original graph G are inherited
by R.

Before presenting the key lemma, another kind of graph needs to be defined,
namely the t-fold reduced graph, which is a graph R(t) obtained from R by
replacing each vertex x ∈ V (R) by a set Vx of t independent vertices, and
joining u ∈ Vx to v ∈ Vy if and only if (x, y) is an edge in R. R(t) is a graph in
which every edge of R is replaced by a copy of the complete bipartite graph Ktt.

The key lemma asserts that, under certain conditions, the existence of a
subgraph in R(t) implies its existence in G.

Lemma 2 (Key lemma). Given the reduced graph R, d > ε > 0, a positive
integer m, let construct a graph G by replacing every vertex of R by m vertices,
and replacing the edges of R with ε-regular pairs of density at least d. Let H be
a subgraph of R(t) with h vertices and maximum degree Δ > 0 and let δ = d − ε
and ε0 = δΔ/(2 + Δ). If ε ≤ ε0 and t − 1 ≤ ε0m, then H is embeddable into G
(i.e., G contains a subgraph isomorphic to H). In fact, we have:

||H → G|| > (ε0m)h (2)

where ||H → G|| denotes the number of labeled copies of H in G.

Thus, the reduced graph R can be considered as a summary of the graph G,
which inherits many structural properties of the original graph G.

The constructive version of the regularity lemma introduced by Alon et al.
[1] has been formalized in the following theorem:

168 M. Fiorucci et al.

Theorem 1 (Alon et al. [1]). For every ε > 0 and every positive integer t
there is an integer Q = Q(ε, t) such that every graph with n > Q vertices has
an ε-regular partition into k + 1 classes, where t ≤ k ≤ Q. For every fixed ε > 0
and t ≥ 1 such a partition can be found in O(M(n)) sequential time, where
M(n) = O(n2.376) is the time for multiplying two n×n matrices with 0,1 entries
over the integers.

The proof of Theorem 1 provides a deterministic polynomial time algorithm for
finding a regular partition of an input dense graph. In the following, a sketch of
the proof and the resulting algorithm are presented.

Let H be a bipartite graph with classes A,B such that |A| = |B| = n, then
the neighbourhood deviation of a pair of different vertices y1, y2 ∈ B is defined
as:

σ(y1, y2) = |N(y1) ∩ N(y2)| − d2

n
(3)

where N(x) is the neighbourhood of x. The deviation of a subset Y ⊆ B is
defined as follows:

σ(Y) =

∑
y1,y2∈Y σ(y1, y2)

|Y |2 (4)

The following lemma states the conditions to check the regularity of a pair:

Lemma 3 (Alon et al. [1]). Let H be a bipartite graph with equal classes
|A| = |B| = n and let d denote the average degree of H. Let 0 < ε < 1/16. If
there exists Y ⊆ B, |Y | > εn such that σ(Y) ≥ ε3n/2, then at least one of the
following cases occurs:

1. d < ε3n (which implies that H is ε-regular);
2. there exists in B a set of more than 1

8ε4n vertices whose degrees deviate from
d by at least ε4n;

3. there are subsets A′ ⊂ A, B′ ⊂ B, |A′| ≥ ε4

4 n, |B′| ≥ ε4

4 n and
|d(A′, B′) − d(A,B)| ≥ ε4.

Conditions 1 and 2 can be easily checked in O(n2) time. The third condition
in volves a matrix squaring of H to compute the quantities σ(y, y′),∀y, y′ ∈ B,
thus requiring O(M(n)) = O(n2.376) time.

Finally, the algorithm to find a regular partition for a graph G = (V,E) with
n vertices is described as follows:

1. Create the initial partition: Arbitrarily divide the vertices of G into an
equitable partition P1 with classes C0, C1, ..., Cb where |C1| =
n

b � and hence
|C0| < b. Denote k1 = b

2. Check regularity: For every pair (Cr, Cs) of Pi, verify if it is ε-regular or
find X ⊆ Cr, Y ⊆ Cs, |X| ≥ ε4

16 |C1|, |Y | ≥ ε4

16 |C1|, such that

|d(X,Y) − d(Cs, Ct)| ≥ ε4

3. Count regular pairs: If there are at most ε
(
ki

2

)
pairs that are not verified

as ε-regular, then halt. Pi is an ε-regular partition

On the Interplay Between Strong Regularity and Graph Densification 169

4. Refine: Apply the refinement algorithm (Lemma 2) where P = Pi, k = ki,
γ = ε4

16 and obtain a partition P ′ with 1 + ki4ki classes
5. Iterate: Let ki+1 = ki4ki , Pi+1 = P ′, i = i + 1, and go to step (2)

The above mentioned algorithm has a polynomial worst-case complexity in
the size of the underlying graph, but it also has a hidden tower-type depen-
dence on an accuracy parameter, which is necessary in order to ensure a regular
partition for all graphs [7]. The latter is a crucial limit in the application of
regular partitions to practical problems. The main obstacle concerns Step 2 and
Step 4: in Step 2, in fact, the algorithm finds all possible irregular pairs in the
graph, which leads to an exponential growth, while in Step 4 the cardinality of
the refined partition increases according to the tower-type dependence. To avoid
such problems, Sperotto and Pelillo [15] proposed for each class to limit the
number of irregular pairs containing it to at most one, possibly chosen randomly
among all irregular pairs. The introduction of such heuristics allowed to divide
the classes into a constant, instead of an exponential number of subclasses. These
approximations made this algorithm truly applicable in practice. In this heuris-
tic framework, an additional implementation is used in this paper. More details,
as well as the code, are available in the following repository [6]. Finally, it is
worth noting that in the past few years, different algorithms explicitly inspired
by the regularity lemma have been applied in pattern recognition, bioinformatics
and social network analysis. The reader can refer to [13] for a survey of these
emerging algorithms.

3 Motivation of the Experimental Setup

In this section, we analyze the ideal density regime, defined as the range of den-
sities of the input graph G such that our heuristic algorithm outputs a reduced
graph G′ preserving some topological properties of G. We use the effective resis-
tance to assess to what extent G′ retains the metric information that can be
inferred from G.

As we noted in the introduction, the effective resistance is a metric between
the vertices in G, whose stability is theoretically constrained by the size of G. In
particular, von Luxburg et al. [12] derived the following bound for any connected,
undirected graph that is not bipartite:

∣
∣
∣
∣

1
vol(G)

Cij −
(

1
di

+
1
dj

)∣
∣
∣
∣ ≤ 1

λ2

2
dmin

(5)

where Cij is the commute time between vertices i and j, vol(G) is the volume
of the graph, λ2 is the so called spectral gap and dmin is the minimum degree in
G. Since Cij = vol(G)Rij , where Rij is the effective resistance between i and j,
this bound leads to Rij ≈ 1

di
+ 1

dj
. This means that, in large graphs, effective

resistances do only depend on local properties, i.e. degrees. However, some of
the authors of this work have recently argued that looking at the density of the
graph can be a way of mitigating the devastating effects of the bound in Eq. 5.

170 M. Fiorucci et al.

In particular, Escolano et al. [5] showed that densifying G significantly decreases
the spectral gap which in turn enlarges the von Luxburg bound. As a result,
effective resistances do not depend only on local properties and become mean-
ingful for large graphs provided that these graphs have been properly densified.
As defined in [8] and revisited in [4], graph densification aims to significantly
increase the number of edges in G while preserving its properties as much as
possible. One of the most interesting properties of large graphs is their frac-
tion of sparse cuts, that are cuts where the number of pairs of vertices involved
in edges is a small fraction of the overall number of pairs associated with any
subset S ⊂ V , i.e. sparse cuts stretch the graphs, thus leading to small con-
ductance values, which in turn reduce the spectral gap. This is exactly what is
accomplished by the state-of-the-art strategies for graph densification, including
anchor graphs [11].

In light of these observations, our experiments aim to answer two questions:

– Phase transition: What is the expected behaviour of our heuristic algorithm
when the input graph is locally sparse?

– Commute times preservation: Given a densified graph G, to what extent does
our algorithm preserve its metrics in the expanded graph G′?

To address them we perform experiments both with synthetic and real datasets.
Experiments on synthetic datasets allow us to control the degree of both intra-
cluster and inter-cluster sparsity. On the other hand, the use of real datasets,
such as NIST, leads to understand the so called global density scenario. Reaching
this scenario in realistic data sets may require a proper densification, but once
it is provided, the regularity lemma becomes a powerful structural compression
method.

4 Results

Since we are exploring the practical effect of combining regularity and key lem-
mas to preserve metrics in large graphs, our performance measure relies on the
so called relative deviation between the measured effective resistance and the
von Luxburg et al. local prediction [12]: RelDev(i, j) =

∣
∣
∣Rij −

(
1
di

+ 1
dj

)∣
∣
∣ /Rij .

The larger RelDev(i, j) the better the performance. For a graph, we retain the
average RelDev(i, j), although the maximum and minimum deviations can be
used as well.

4.1 Synthetic Experiments

For these experiments we designed a Ground Truth (GT) consisting of k cliques
linked by O(n) edges. Inter-cluster links in the GT were only allowed between class
k and k + 1, for k = 1, . . . , k − 1. Then, each experiment consisted of modifying
the GT by either removing intra-cluster edges (sparsification) and/or adding inter-
cluster edges and then looking at the reconstructed GT after the application of our

On the Interplay Between Strong Regularity and Graph Densification 171

Fig. 1. Top: experiments 1, 2. Bottom: experiment 3 (n = 200, k = 10 classes).

Fig. 2. Reconstruction from R. From left to right: Original similarity matrix W with
σ = 0.0248, its reconstruction after compressing-decompressing, sparse matrix obtained
by densifying W and its reconstruction.

172 M. Fiorucci et al.

heuristic partition algorithm followed by the expansion of the obtained reduced
graph (key lemma). We refer to this two stage approach as SZE.

Experiment 1: Constant global density. We first proceeded to incrementally
sparsify the cliques while adding the same amount of inter-cluster edges that are
removed. This procedure assures the constancy of the global density. Since in
these conditions the relative deviation provided by the expanded graph is quite
stable, we can state the our heuristic algorithm produces partitions that preserve
many of the structural properties of the input graph. However, the performances
of the uncompressed-decompressed GT decay along this process Fig. 1(top-left).

Experiment 2: Only sparsification. Sparsifying the cliques without introducing
inter-cluster edges typically leads to an inconsistent partition, since it is diffi-
cult to find regular pairs. So SZE RelDev is outperformed by that of the GT
without compression. This is an argument in favor of using graph densification
with approximate cut-preservation as a preconditioner of the regularity lemma.
However, this is only required in cases where the amount of inter-cluster noise
is negligible. In Fig. 1 (top-right) we show two cases: deleting inter-cluster edges
(solid plots) vs replacing these edges by a constant weight w = 0.2 (dotted plots).
Inter-cluster completion (dotted-plots) increases the global density and this con-
tributes to significantly increase the performances of our heuristic algorithm,
although it is always outperformed by the uncompressed corrupted GT.

Experiment 3: Selective increase of the global density. In this experiment, we
increase the global density of the GT as follows. For Fig. 1 (bottom-left), each
noise level x means the fraction of intra-cluster edges removed, while the same
fraction of inter-cluster edges is increased. Herein, the density of x is D(x) =
(1−x)#In+x#Out, where #In is the maximum number of intra-cluster links and
#Out is the maximum number of inter-cluster links. Since #Out #In we have
that D(x) increases with x. However, only moderate increases of D(x) lead to a
better estimation of commute times with SZE, since adding many inter-cluster
links destroys the cluster structure.

However, in Fig. 1 (bottom-right) we show the impact of increasing the frac-
tion x′ of inter-cluster noise (add edges) while the intra-cluster fraction is fixed.
We overlay three results for SZE: after retaining 50%, 75% and 100% of #In.
We obtain that SZE contributes better to the estimation of commute times for
small fractions on #In which is consistent with Experiment 2. Then, the optimal
configuration for SZE is: low inter-cluster noise and moderate sparsified clusters.

As a conclusion of the synthetic experiments, we can state that our algorithm
is robust to a high amount of intra-clustering sparsification provided that a cer-
tain number of inter-cluster edges exists. This answers the first question (phase
transition). It also partially ensures the preservation of commute times provided
that the density is high enough or it is kept constant during a sparsification
process, which answers to the second question (commute times preservation).

On the Interplay Between Strong Regularity and Graph Densification 173

4.2 Experiments with the NIST Dataset

When analyzing real datasets, NIST (herein we use 10, 000 samples with d = 86)
provides a nice amount of intra-cluster sparsity and inter-cluster noise (both due
to ambiguities). We compare our two stage approach (SZE) either applied to the
original graph (for a given σ) or to an anchor graph obtained with a nested
MDL strategy relying on our EBEM clustering method [3]. In Fig. 2, we show
a NIST similarity matrix W (with O(107) edges) obtained using the negative
exponentiation method. Even with σ = 0.0248 we obtain a dense matrix due
to inter-cluster noise. Let R(W) be the reduced graph of W . After expanding
this graph we obtain a locally dense matrix, which suggests that our algorithm
plays the role of a cut densifier. We also show the behaviour of compression-
decompression for densified matrices in Fig. 2. The third graph in this figure
corresponds to D(W), namely the selective densification of W (with O(2 × 106)
edges). From R(D(W)) the key lemma leads to a reconstruction with a similar
density but with more structured inter-cluster noise. Finally, it is worth noting
that the compression rate in both cases is close to 75%.

5 Conclusions

In this paper, we have explored the interplay between regular partitions and
graph densification. Our synthetic experiments show that the proposed heuristic
version of Alon et al.’s algorithm is quite robust to intra-cluster sparsification
provided that the graph is globally dense. This behavior has a good impact in
similarity matrices obtained from negative exponentiation, since this implemen-
tation of the regularity lemma plays the role of a selective densifier. Regarding
the effect of compression-decompression in non-densified matrices, the recon-
struction preserves the structure of the input matrix. This result suggests that
graph densification acts as a preconditioner to obtain reliable regular partitions.
Future work may include the study of the reduced graph as a source of selective
densification.

Acknowledgments. We are grateful to I. Elezi for his advice on our code imple-
mentation, and to the anonymous reviewers for their constructive feedback. Fran-
cisco Escolano and Manuel Curado are funded by the Project TIN2015-69077-P of
the Spanish Government.

References

1. Alon, N., Duke, R.A., Lefmann, H., Rödl, V., Yuster, R.: The algorithmic aspects
of the regularity lemma. J. Algorithms 16(1), 80–109 (1994)

2. Alon, N., Fischer, E., Krivelevich, M., Szegedy, M.: Efficient testing of large graphs.
Combinatorica 20(4), 451–476 (2000)

3. Benavent, A.P., Escolano, F.: Entropy-based incremental variational Bayes learn-
ing of Gaussian mixtures. IEEE Trans. Neural Netw. Learn. Syst. 23(3), 534–540
(2012). http://dx.doi.org/10.1109/TNNLS.2011.2177670

http://dx.doi.org/10.1109/TNNLS.2011.2177670

174 M. Fiorucci et al.

4. Escolano, F., Curado, M., Hancock, E.R.: Commute times in dense graphs. In:
Robles-Kelly et al. [14], pp. 241–251

5. Escolano, F., Curado, M., Lozano, M.A., Hancock, E.R.: Dirichlet graph densifiers.
In: Robles-Kelly et al. [14], pp. 185–195

6. Fiorucci, M., Torcinovich, A.: Alonszemerediregularitylemma github repository
(2013). https://github.com/MarcoFiorucci/AlonSzemerediRegularityLemma

7. Gowers, T.: Lower bounds of tower type for Szemerédi’s uniformity lemma. Geom.
Func. Anal. 7(2), 322–337 (1997)

8. Hardt, M., Srivastava, N., Tulsiani, M.: Graph densification. In: Innovations in
Theoretical Computer Science 2012, Cambridge, MA, USA, 8–10 January 2012,
pp. 380–392 (2012). http://doi.acm.org/10.1145/2090236.2090266

9. Komlós, J., Shokoufandeh, A., Simonovits, M., Szemerédi, E.: The
regularity lemma and its applications in graph theory. In: Khosrovshahi,
G.B., Shokoufandeh, A., Shokrollahi, A. (eds.) Theoretical Aspects of Computer
Science: Advanced Lectures, pp. 84–112. Springer, Berlin (2002)

10. Komlós, J., Simonovits, M.: Szemerédi’s regularity lemma and its applications in
graph theory. In: Miklós, D., Szonyi, T., Sós, V.T. (eds.) Combinatorics, Paul Erdós
is Eighty, pp. 295–352. János Bolyai Mathematical Society, Budapest (1996)

11. Liu, W., He, J., Chang, S.: Large graph construction for scalable semi-supervised
learning. In: Proceedings of the 27th International Conference on Machine Learning
(ICML-2010), Haifa, Israel, 21–24 June 2010, pp. 679–686 (2010)

12. von Luxburg, U., Radl, A., Hein, M.: Hitting and commute times in large random
neighborhood graphs. J. Mach. Learn. Res. 15(1), 1751–1798 (2014)

13. Pelillo, M., Elezi, I., Fiorucci, M.: Revealing structure in large graphs: Szemerédi’s
regularity lemma and its use in pattern recognition. Pattern Recogn. Lett. 87, 4–11
(2017)

14. Robles-Kelly, A., Loog, M., Biggio, B., Escolano, F., Wilson, R. (eds.): S+SSPR
2016. LNCS, vol. 10029. Springer, Cham (2016)

15. Sperotto, A., Pelillo, M.: Szemerédi’s regularity lemma and its applications to pair-
wise clustering and segmentation. In: Proceedings of the 6th International Confer-
ence on Energy Minimization Methods in Computer Vision and Pattern Recogni-
tion, EMMCVPR 2007, Ezhou, China, 27–29 August 2007, pp. 13–27 (2007)

16. Szemerédi, E.: Regular partitions of graphs. In: Colloques Internationaux CNRS
260–Problèmes Combinatoires et Théorie des Graphes, pp. 399–401. Orsay (1976)

https://github.com/MarcoFiorucci/AlonSzemerediRegularityLemma
http://doi.acm.org/10.1145/2090236.2090266

Mining and Clustering

Mining Frequent Patterns in 2D+t Grid Graphs
for Cellular Automata Analysis

Romain Deville1,2(B), Elisa Fromont1, Baptiste Jeudy1, and Christine Solnon2

1 UJM, CNRS, LaHC UMR 5516, 42000 Saint-Etienne, France
romain.deville@insa.lyon.fr

2 Université de Lyon, INSA-Lyon, LIRIS UMR 5205, 69621 Villeurbanne, France

Abstract. A 2D grid is a particular geometric graph that may be used
to represent any 2D regular structure such as, for example, pixel grids,
game boards, or cellular automata. Pattern mining techniques may be
used to automatically extract interesting substructures from these grids.
2D+t grids are temporal sequences of grids which model the evolution of
grids through time. In this paper, we show how to extend a 2D grid min-
ing algorithm to 2D+t grids, thus allowing us to efficiently find frequent
patterns in 2D+t grids. We evaluate scale-up properties of this algorithm
on 2D+t grids generated by a classical cellular automaton, i.e., the game
of life, and we show that the extracted spatio-temporal patterns may be
used to analyze this kind of cellular automata.

1 Introduction

A 2D grid is a particular geometric graph that may be used to model any 2D
regular structure such as, for example, grids of pixels (i.e., images), game boards,
or cellular automata. To characterize these grids, we may mine them to extract
recurrent patterns [6]. In some applications, we use temporal sequences of grids
(i.e., 2D+t grids) to model the evolution of grids through time. This is the case,
for example, of videos, or sequences of actions in board games. In this paper, we
motivate and illustrate our work on Cellular Automata (CA) used to model the
temporal evolution of ecosystems [3,12,13]. Indeed, biodiversity of ecosystems
is increasingly recognized as an important element of global change. CA-based
models are used to understand, predict and control spatio-temporal spread of
species which is a key issue to preserve biodiversity [9]. A CA is a regular grid
of cells. Each cell has a state which evolves through time, depending on the
state of its neighbours in the grid. One of the most famous CA is the Game of
Life [5]. In this CA, the grid is in 2 dimensions (on toric grids), and each cell has
8 neighbours (horizontally, vertically, and diagonally). Initially (at time t = 0),
each cell is either alive or dead. The state at time t + 1 of a cell depends on its
state and on the state of its 8 neighbours at time t. It is computed by applying the
following rules: (1) if the cell is alive at time t and has 2 or 3 living neighbours,
then it is alive at time t + 1, otherwise it becomes dead; (2) if the cell is dead at
time t and has exactly 3 living neighbours, then it becomes alive at time t + 1,
otherwise it stays dead. When executing a CA from a given initial state, one
c© Springer International Publishing AG 2017
P. Foggia et al. (Eds.): GbRPR 2017, LNCS 10310, pp. 177–186, 2017.
DOI: 10.1007/978-3-319-58961-9 16

178 R. Deville et al.

Fig. 1. Left: First three states of a 6×6 game of life modelled with a 2D+t grid. Living
(resp. dead) cells are displayed in black (resp. gray). (x, y) coordinates are displayed in
green and blue, respectively. Temporal edges are not displayed, but there is a temporal
edge between each pair of nodes (i, j) such that xi = xj , yi = yj , and |ti − tj | = 1.
Right: Two examples of spatio-temporal patterns (temporal edges are not displayed).
P1 is isomorphic to a subgrid of the grid on the left (with translation T = (2, 4, −4)
and rotation θ = −π/2). P2 is also isomorphic to a subgrid of the grid on the left.
P2 is not isomorphic to P1 because the angle between edges (a, b) and (b, c) with
xa = ya = yb = 2, xb = xc = 3, and yc = 1 in P1 is not preserved in P2. (Color figure
online)

may observe the emergence of spatio-temporal patterns, and these patterns are
characteristic of different ecosystem outcomes. [12] distinguishes four possible
outcomes: (1) development of a homogeneous fixed pattern, (2) development of
a periodic pattern, (3) development of a chaotic pattern, and (4) development
of patterns composed of homogeneous regions and regions containing complex
localized structures.

In this paper, we present an efficient algorithm for extracting spatio-temporal
patterns in 2D+t grids. This algorithm may be used, for example, to extract
meaningful spatio-temporal patterns in CA. When CA are used to model ecosys-
tems, these patterns could be used by ecologists to better understand and control
the dynamics of the ecosystems. For example, [3] explains that we can foresee
the future of an ecosystem by identifying recurring patterns. Ecologists are also
interested in understanding how dependent the patterns and the initial state are.

Our algorithm is an extension of GriMA [6], an algorithm for mining 2D
grids which has been designed to tackle real-life applications such as image clas-
sification. This algorithm is recalled in Sect. 2. In Sect. 3, we show how to extend
it to mine 2D+t grids. In Sect. 4, we evaluate scale-up properties of our new
algorithm for mining game-of-life CA, and we show that the extracted spatio-
temporal patterns are relevant for classification purposes.

2 Background on 2D Grids and GriMA

Definition of 2D Grids, and 2D Subgrid Isomorphism. A 2D grid is a special
case of graph such that each node has a 2D coordinate which is a couple of
integer values, and each edge connects nodes which are neighbours on a grid.
More formally, a grid is defined by G = (N,E,L, x, y) such that N is a set of

Mining Frequent Patterns in 2D+t Grid Graphs 179

nodes, E ⊆ N × N is a set of edges, L : N ∪ E → N is a labeling function which
associates a label L(c) with every component (node or edge) c ∈ N ∪ E, and
x : N → Z and y : N → Z map each node u ∈ N to its 2D coordinates (xu, yu),
and ∀(u, v) ∈ E, |xu−xv|+ |yu−yv| = 1. A subgrid of a grid G = (N,E,L, x, y)
is a grid G′ = (N ′, E′, L′, x′, y′) such that N ′ ⊆ N , E′ ⊆ E ∩N ′ ×N ′ and L′, x′,
and y′ are the restrictions of L, x, and y to N ′ ∪ E′, N ′, and N ′, respectively.

Looking for patterns in a grid amounts to searching for subgrid isomorphisms.
Patterns should be invariant to translations and rotations. More formally, the
translation of G = (N,E,L, x, y) by a vector T ∈ Z2, denoted G + T , is the
grid obtained by moving all its nodes with respect to T , i.e., ∀u ∈ N , (xu, yu)
becomes (xu, yu) + T . Let Θ = {(

1 0
0 1

)
,
(
0 −1
1 0

)
,
(−1 0

0 −1

)
,
(

0 1−1 0

)} be the set of
rotation matrices of respective angles 0, π/2, π and 3π/2. The rotation of G
with respect to θ ∈ Θ, denoted θG, is the grid obtained by rotating all its nodes
with respect to θ, i.e., ∀u ∈ N, (xu, yu) becomes (xu, yu)θ. Two grids G1 and G2

are grid isomorphic if there exist a translation T ∈ Z
2 and a rotation θ ∈ Θ

such that G1 = T + θG2. Finally, G1 is sub-grid-isomorphic to G2 if there
exists a subgrid of G2 which is isomorphic to G2 (see Fig. 1 for an example).

Graph Mining. Given a database D of graphs and a frequency threshold σ, the
goal of the graph mining problem is to output all frequent subgraphs in D, i.e.,
all graphs G such that there exist at least σ graphs in D to which G is sub-
isomorphic. This problem may be solved by gSpan [14], and all similar general
exhaustive graph mining algorithms [8]. However, as the subgraph isomorphic
problem is NP-complete, these algorithms do not scale well. On the other hand,
Plagram [11] and FreqGeo [1] are graph mining algorithms dedicated to spe-
cial cases of graphs for which subgraph isomorphism becomes polynomial, i.e.,
plane graphs for Plagram and geometric graphs for FreqGeo. These algo-
rithms have better scale-up properties. However, Plagram only mines patterns
composed of faces and the smallest possible subgraph pattern is a single face,
i.e., a cycle with 3 nodes. Using Plagram to mine grids is possible but the
problem needs to be transformed such that each grid node becomes a face in
the graph tackled by Plagram. This transformation artificially increases the
number of nodes and edges which causes a scalability problem for Plagram.
Also, grids are special cases of geometric graphs. Therefore, FreqGeo may be
used to mine grids. However, it has a higher time-complexity than GriMA, the
2D grid mining algorithm introduced in [6].

Description of GriMA. GriMA follows the same basic principle as gSpan,
Plagram, and FreqGeo to avoid generating the same pattern multiple times:
It uses codes to represent grids. This code is a list of edges encountered when
performing a traversal of the grid. A grid may have several codes but one of
them is chosen as the signature: The canonical code, which is the largest code
wrt lexicographic order. GriMA explores the search space of all canonical codes
in a depth-first recursive way. It first computes all frequent edges and then calls
an Extend function for each of these frequent extensions. Extend has one input
parameter: A pattern code P which is frequent and canonical. It outputs all

180 R. Deville et al.

frequent canonical codes P ′ such that P is a prefix of P ′. To this aim, it first
computes the set E of all possible valid extensions of all occurrences of P in the
database D of grids: A valid extension is the code e of an edge such that P.e
occurs in D. Finally, Extend is recursively called for each extension e such that
P.e is frequent and canonical. Hence, at each recursive call, the pattern grows.

3 2D+t Grid Mining Algorithm

A 2D+t grid is defined by a tuple (N,E,L, x, y, t) such that (N,E,L, x, y) is
a 2D grid graph and t : N → Z is a function that maps nodes to temporal
coordinates, i.e., ∀u ∈ N , tu is the temporal coordinate of node u. Also, edges
are enforced to connect neighbour nodes in the grid, i.e., ∀(u, v) ∈ E, |xu−xv|+
|yu−yv|+ |tu− tv| = 1. We distinguish two different kinds of edges: spatial edges
(such that |xu −xv|+ |yu−yv| = 1) and temporal edges (such that |tu− tv| = 1).

2D grid isomorphism is defined so that isomorphism is invariant to transla-
tions and rotations. When extending this definition to 2D+t grids, we still ensure
that isomorphism is invariant to translations wrt all axis. However, as time is an
oriented dimension, we allow rotations only along the temporal axis. Hence, we
consider the set Θ = {(1 0 0

0 1 0
0 0 1

)
,
(0 −1 0
1 0 0
0 0 1

)
,
(−1 0 0

0 −1 0
0 0 1

)
,
(0 1 0−1 0 0

0 0 1

)} of rotation matrices
of respective angles 0, π/2, π and 3π/2 along the temporal axis.

To extend GriMA to 2D+t grids, we have to define the canonical code of
a 2D+t grid. A code C(G) of a 2D+t grid G is a sequence of n edge codes
(C(G) = 〈ec0, ..., ecn−1〉) which is associated with a depth-first traversal of G
starting from a given initial node. During this traversal, each edge is traversed
once, and nodes are numbered: The initial node has number 0; each time a new
node is discovered, it is numbered with the smallest integer not already used in
the traversal. Each edge code corresponds to a different edge of G and the order
of edge codes in C(G) corresponds to the order edges are traversed. Hence, eck is
the code associated with the kth traversed edge. This edge code eck is the tuple
(δ, i, j, a, Li, Lj , L(i,j)) where:

– i and j are the numbers associated with the nodes of the kth traversed edge.
– δ ∈ {0, 1} is the direction of the kth traversed edge:

• δ = 0 if it is forward, i.e., j is a new node reached for the first time;
• δ = 1 if it is backward, i.e., j already appears in 〈ec0, ..., eck−1〉.

– a ∈ {−2,−1, 0, 1, 2, 3} is the angle value of the kth traversed edge (i, j):
• if (i, j) is a temporal edge, then a = −2 if ti = tj + 1, and a = −1 if

ti = tj − 1;
• else, (i, j) is a spatial edge.

∗ If (i, j) is the first spatial edge encountered since the beginning of the
traversal, then a = 0.

∗ Else, let (l,m) be the first spatial edge in 〈ec0, ..., eck−1〉 such that
xi = xm and yi = ym. We have a = 2A/π where A ∈ {0, π/2, π, 3π/2}
is the angle between (l,m) and (i, j) in the x, y plane.

– Li, Lj , L(i,j) are labels of i, j, and (i, j), respectively.

Mining Frequent Patterns in 2D+t Grid Graphs 181

Fig. 2. Left: A 2D+t grid (temporal edges are displayed in red, node labels are dis-
played next to nodes, and all edges have the same label 0). Right: 3 codes for this grid
(other codes may be built by changing the traversal). (Color figure online)

For example, let us consider code 1 in Fig. 2. Let us explain how the code of
the fourth traversed edge (E,F) is built. δ = 0 because (E,F) is a forward edge
(F has not been reached before). (E,F) is a spatial edge, and the first spatial
edge (l,m) such that m has the same spatial coordinates as E is (B,C). The
angle between (E,F) and (B,C) is 0. So, a = 0. For the fifth edge of code 1,
(F,B), δ = 1 because B has already been reached before (backward edge). As
(F,B) is a temporal edge, a = −2.

Given a code, we can reconstruct the corresponding grid since edges are
listed in the code together with angles and labels. However, there exist different
possible codes for a given grid, as illustrated in Fig. 2: Each code corresponds
to a different traversal (starting from a different initial node and choosing edges
in a different order). As we did for GriMA, we define a total order on the set
of all possible codes that may be associated with a given grid by considering
a lexicographic order (all code components have integer values). Among all the
possible codes for a grid, the largest one according to this order is the canonical
code of this grid and it is unique. For example, in Fig. 2, code 1 is canonical: It
is greater than codes 2 and 3, and it is also greater than all other possible codes
for this grid (not shown here).

Note that it is not necessary to exhaustively build all codes when computing
a canonical code. We use heuristics to first build large codes (by first choosing
spatial edges with 3π/2 angles, such as for (D,B) and (B,C), for example).
Also, when building a code, we stop the traversal as soon as the corresponding
code becomes smaller than the largest current code.

This canonical code for 2D+t allows us to extend GriMA to mine 2D+t grids
in a straightforward way, and we can show that the resulting mining algorithm,
called GriMA2D+t, is both correct (it only outputs frequent subgrids) and
complete (it cannot miss any frequent subgrid). The proof (not detailed due to
lack of space) basically shows that every prefix of a canonical code is canonical.

GriMA2D+t enumerates all frequent patterns in O(kn2.|P |2) = O(kn4)
time per pattern P , where k is the number of grids in the set D of input grids,
n the size of the largest grid Gi ∈ D (in number of edges) and |P | the number
of edges in a pattern P .

182 R. Deville et al.

Node-induced GriMA2D+t. In our application, the mined grids are complete
and have no label on edges. Thus, we designed a variant of GriMA2D+t,
called node-induced-GriMA2D+t, which computes node-induced grids, i.e. grids
induced by their node sets. This corresponds to a “node-induced” closure oper-
ator on graphs where, given a pattern P , we add all possible edges to P without
adding new nodes. We have shown in [6] that this optimization decreases the
number of extracted patterns and the extraction time.

Limitation on Edge Extension. Moreover, to avoid mining patterns that only
contain dead cells, we also limit the extension procedure of our mining process.
In the Extend function, we forbid extension with edges linking two dead cells.
As a consequence, every edge (i, j) in a mined pattern is such that either i, or
j, or both i and j correspond to living cells.

4 Experiments

We study the scale-up properties of GriMA2D+t and assess the relevance of
the mined patterns on a classification task related to the behavior of a CA, i.e.,
the Game of Life described in Sect. 1. More precisely, given the k first cell states,
with k ∈ {1, 2, 5, 10, 20}, the goal is to forecast the outcome at time t = 1000,
where we only consider two possible outcomes: dead (if all cells are dead at time
t = 1000), or alive (if at least one cell is alive at time t = 1000).

Dataset. We consider four sizes of grids n×n, with n ∈ {20, 30, 40, 50}. For each
size n, we randomly choose the initial state (dead or alive) of each n × n cell
wrt to a cell probability p. We have chosen p in such a way that the outcome
at time t = 1000 is dead or alive with equal probabilities. This way, we ensure
during our dataset generation process that there is no bias towards one of the
two classes. This imposes a cell probability p of 74%, 78%, 80%, and 81% for
n = 20, 30, 40, and 50, respectively. Besides, to avoid trivial predictions of the
class dead, due to the fact that all cells may be dead before the kth iteration,
we only select initial states such that there is at least one cell alive at the 50th

iteration. For each size n ∈ {20, 30, 40, 50}, we generate a set Sn of 2000 initial
states such that the outcome at time t = 1000 is dead for half of them (Sd

n), and
alive for the other half (Sa

n). We split each set Sd
n and Sa

n into two equal parts
for learning (Ld

n and La
n) and training (T d

n and T a
n).

2D+t Grids. For each state si ∈ Sn (with n ∈ {20, 30, 40, 50}), and for each
temporal horizon k ∈ {1, 2, 5, 10, 20}, we build a 2D+t grid G(si, k) which is a
temporal sequence of k 2D grids: The first one corresponds to the state si, and
the next k − 1 ones correspond to states obtained by iteratively applying the
game-of-life rules starting from si. Each node is labeled with either 0 (dead cell)
or 1 (cell alive), and all edges have the same label.

Mining Frequent Patterns in 2D+t Grid Graphs 183

Mining Process. For each size n ∈ {20, 30, 40, 50} and each temporal horizon k ∈
{1, 2, 5, 10, 20}, we mine frequent patterns in the learning sets. This is done for
each class separately: We compute the set F d

n,k (resp. F a
n,k) of frequent patterns

in all G(si, k) with si ∈ Sd
n (resp. si ∈ Sa

n). We consider two different frequency
threshold σ ∈ {50%, 100%}: When σ = 50% (resp. σ = 100%), a pattern is
frequent if it is present in half of the grids (resp. all the grids). Note that, the
higher the frequency, the lower the number of mined patterns and the more
efficient the mining process. Each mining process has been limited to 12 h of
CPU time: If the mining process is not completed after 12 h, we stop it and
consider the subset of patterns that have been extracted within this time limit.

Classification Process. For each size n ∈ {20, 30, 40, 50} and each temporal hori-
zon k ∈ {1, 2, 5, 10, 20}, we build the set Fn,k = F a

n,k ∪ F d
n,k that contains all

frequent patterns (in the two classes). Then, for each state si ∈ Ld
n ∪ La

n, we
count the number of occurrences of each pattern of Fn,k in G(si, k), and build a
frequency vector that gives the frequency of each pattern. Hence, each state is
represented by a histogram of frequent substructures.

We report two sets of experiments: One with histograms created using all
the patterns mined on both classes (which can be very sparse) and one with
a selected subset of 100 patterns. This post-processing selection is performed
using the relevance score and the greedy selection algorithm presented in [7].
To fasten the preprocessing step, we delete at each of the 100 iterations of the
greedy algorithm, the patterns with the 10% lowest scores.

Frequency vectors (of length |Fn,k| or 100) are used to train a binary Support
Vector Machine (SVM) to discriminate between the two classes. We use the
Libsvm [4] library with the intersection kernel presented in [10] (known to be
good on histograms).

Finally, we use the trained model to forecast the class of each state in our
training set: For each state si ∈ T d

n ∪ T a
n , we count the number of occurrences

of each pattern of Fn,k (or the 100 selected patterns of Fn,k) in G(si, k), and
build a frequency vector which is used by the SVM model to forecast an outcome
(dead or alive) which is compared to the true outcome (dead for states coming
from T d

n and alive for states coming from T a
n). We report accuracy results, i.e.,

the percentage of states for which the forecasted outcome is equal to the true
outcome.

Accuracy Results. We report accuracy results in Table 1. When increasing the
temporal horizon k (i.e., the temporal size of the mined grids), accuracy results
are improved. This shows the relevance of the GriMA2D+t algorithm compared
to GriMA. However, when increasing k, the mining process needs more time
and we often had to stop the mining process after 12 h (red cells) for the largest
values of k. In this case, we only explored part of the substructure search space.

Also, the larger the grid size n, the better the results. It is well known that,
for the game of life, large grids have higher probabilities of containing stable
patterns that may characterize alive outcomes. However, as with k, we often

184 R. Deville et al.

Table 1. Accuracy results for the classification of states in T d
n ∪ T a

n . For each size
n ∈ {20, 30, 40, 50}, the first line reports the number of frequent patterns |Fn,k|, and
the cell is colored in red if the 12 h time-out has been reached and green otherwise;
the second and third line report accuracy results with vectors of size |Fn,k| and 100,
respectively (if |Fn,k| < 100, results are not given for vectors of size 100). Each line
gives results for k = 1, 2, 5, 10, and 20, and with σ = 50% and 100%.

had to stop the mining process after 12 h for the largest grids. This shows the
necessity of efficient algorithms to tackle real-life problems.

The number of mined patterns |Fn,k|, is smaller when the frequency threshold
σ = 100% than when it is 50%. For small temporal horizons k ∈ {1, 2}, the
number of mined patterns is not large enough (smaller than 27 for k = 1 and than
79 for k = 2). In this case, the results obtained with σ = 100% are worse than
those obtained with σ = 50%. However, for larger time horizons k ∈ {5, 10, 20},
the number of mined patterns becomes large enough for σ = 100% while it
becomes so large for σ = 50% that the mining process is never completed. As
we only have a subset of the frequent patterns in this case, it may be possible
that some relevant patterns have not be found. We observe that in this case the
results are worse with σ = 50% than with σ = 100%.

Finally, let us compare the results obtained when all patterns of Fn,k are used
for the classification (All Pat) with the results obtained when we only use the 100
first patterns selected by the post-processing process (100 Pat): The difference is
usually rather small, and in some cases it improves results (e.g., k = 20, n = 40)
whereas in some other cases it degrades them (e.g., k = 20, n = 20). However,
the post-processing improves the efficiency of the counting step: The process of
counting all occurrences of all patterns of Fn,k (to create histograms used as
inputs for the SVMs) takes on average 0.002 s when k = 1 and up to 45 s when
k = 20, whereas it takes 0.0005 s when k = 1 and up to 0.008 s when k = 20 if
we only count occurrences of the 100 patterns selected by post-processing.

Mining Frequent Patterns in 2D+t Grid Graphs 185

Table 2. Average and Maximum (in parenthesis) depth and number of cells for all
patterns of Fn,k or only those selected with post processing.

k 1 2 5 10 20

n All Pat 100 Pat All Pat 100 Pat All Pat 100 Pat All Pat 100 Pat All Pat 100 Pat

20 Depth 0 (0) 0 (0) 0.9 (1) 0.9 (1) 2.1 (4) 2.0 (4) 5.3 (9) 4.5 (9) 11.7 (19) 9.0 (19)

NbCell 6.4 (11) 6.6 (10) 7.9 (15) 7.2 (11) 11.3 (25) 11.8 (20) 14.8 (28) 15.3 (24) 18.3 (32) 14.7 (25)

30 Depth 0 (0) 0 (0) 0.9 (1) 0.9 (1) 2.3 (4) 2.4 (4) 6.4 (9) 6.0 (9) 14.5 (19) 11.1 (19)

NbCell 6.4 (11) 6.4 (9) 8.4 (17) 7.7 (12) 11.7 (23) 11.0 (18) 16.8 (35) 15.3 (29) 21.5 (32) 16.6 (25)

40 Depth 0 (0) 0 (0) 0.9 (1) 0.9 (1) 2.3 (4) 2.2 (4) 6.8 (9) 6.4 (9) 16.2 (19) 14.1 (19)

NbCell 6.4 (12) 6.3 (9) 9.0 (18) 7.6 (13) 12.1 (24) 11.1 (17) 20.2 (39) 21.3 (35) 23.4 (34) 19.6 (27)

50 Depth 0 (0) 0 (0) 1.0 (1) 0.9 (1) 2.3 (4) 2.3 (4) 6.7 (9) 6.5 (9) 16.5 (19) 15.6 (19)

NbCell 6.5 (12) 6.7 (11) 9.2 (19) 7.5 (13) 13.2 (27) 12.3 (21) 19.4 (39) 20.5 (33) 24.1 (34) 21.8 (30)

Overall, those results show that taking into account the structural infor-
mation along the spatio-temporal grids can be used for the prediction of the
outcome of cellular automata and the extension to temporal dimension of our
grid mining algorithm can be used to tackle spatio-temporal problems.

Patterns Statistics. Table 2 reports some statistics about the mined patterns
(all patterns in Fn,k, or the 100 ones selected by post-processing). We report
the average and maximum (in parenthesis) number of nodes of each pattern as
well as their depth, i.e., the number of temporal steps on which the patterns are
present (spatial patterns have a depth of 0). The average number of nodes and
the depth of the patterns selected by post-processing are usually less important
than the same statistics for all the mined patterns. This may come from the fact
that deep patterns are not diverse enough to be selected by the post-processing
step which in turn suggests that, when the timeout is reached, the diversity of the
mined pattern is not high enough. To further increase this diversity, stochastic
search methods such as Monte-Carlo Tree Search [2] could be integrated in our
algorithm.

5 Conclusion and Future Work

We have presented GriMA2D+t, an algorithm to mine temporal sequences of
2D regular structures called grids. We have shown on experiments on a classical
cellular automaton, the game of life, that GriMA2D+t can effectively extract
spatio-temporal patterns in temporal grids. We have also shown that those pat-
terns can be used as new features for classification algorithms and, in particular,
to successfully predict the outcomes of cellular automata. This opens interest-
ing new paths in the automatic analysis of the evolution of ecosystems and, in
particular, to predict and control spatio-temporal spread of species in order to
preserve biodiversity.

To further increase the efficiency of the classification process and scale to
larger problems, we proposed to use a post-processing step that allows us to
select a good subset of the mined patterns. In future work, we planned to directly

186 R. Deville et al.

mined a relevant subset of the possible patterns by using Monte-Carlo tree search
methods. We also plan to apply this algorithm to analyze other temporal struc-
tures such as videos.

Acknowledgements. This work has been supported by the ANR project SoLStiCe
(ANR-13-BS02-0002-01).

References

1. Arimura, H., Uno, T., Shimozono, S.: Time and space efficient discovery of maximal
geometric graphs. In: Corruble, V., Takeda, M., Suzuki, E. (eds.) DS 2007. LNCS,
vol. 4755, pp. 42–55. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75488-6 6

2. Bosc, G., Räıssi, C., Boulicaut, J.-F., Kaytoue, M.: Any-time diverse subgroup
discovery with Monte Carlo tree search. CoRR (2016)

3. Breckling, B., Pe’er, G., Matsinos, Y.G.: Cellular automata in ecological mod-
elling. In: Jopp, F., Reuter, H., Breckling, B. (eds.) Modelling Complex Ecological
Dynamics: An Introduction into Ecological Modelling for Students, Teachers &
Scientists, pp. 105–117. Springer, Heidelberg (2011)

4. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM-
TIST 2, 27:1–27:27 (2011). http://www.csie.ntu.edu.tw/∼cjlin/libsvm

5. Conway, J.: The game of life. Sci. Am. 223(4), 4 (1970)
6. Deville, R., Fromont, E., Jeudy, B., Solnon, C.: GriMa: a grid mining algorithm

for bag-of-grid-based classification. In: Robles-Kelly, A., Loog, M., Biggio, B.,
Escolano, F., Wilson, R. (eds.) S+SSPR 2016. LNCS, vol. 10029, pp. 132–142.
Springer, Cham (2016). doi:10.1007/978-3-319-49055-7 12

7. Fernando, B., Fromont, É., Tuytelaars, T.: Mining mid-level features for image
classification. IJCV 108(3), 186–203 (2014)

8. Jiang, C., Coenen, F., Zito, M.: A survey of frequent subgraph mining algorithms.
KER 28, 75–105 (2013)

9. Marco, D.E., Páez, S.A., Cannas, S.A.: Species invasiveness in biological invasions:
a modelling approach. Biol. Invasions 4(1), 193–205 (2002)

10. Odone, F., Barla, A., Verri, A.: Building kernels from binary strings for image
matching. IEEE-TIP 14(2), 169–180 (2005)

11. Prado, A., Jeudy, B., Fromont, E., Diot, F.: Mining spatiotemporal patterns in
dynamic plane graphs. IDA 17, 71–92 (2013)

12. Wolfram, S.: Cellular automata as models of complexity. Nature 311(5985), 419–
424 (1984)

13. Wootton, J.T.: Local interactions predict large-scale pattern in empirically derived
cellular automata. Nature 413(6858), 841–844 (2001)

14. Yan, X., Han, J.: gSpan: graph-based substructure pattern mining. In: ICDM,
pp. 721–724 (2002)

http://dx.doi.org/10.1007/978-3-540-75488-6_6
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://dx.doi.org/10.1007/978-3-319-49055-7_12

Density Normalization in Density Peak
Based Clustering

Jian Hou1,2(B) and Hongxia Cui3

1 College of Engineering, Bohai University, Jinzhou 121013, China
dr.houjian@gmail.com

2 ECLT, Università Ca’ Foscari Venezia, 30124 Venezia, Italy
3 College of Information Science, Bohai University, Jinzhou 121013, China

Abstract. As a promising clustering approach, the density peak (DP)
based algorithm utilizes the data density and carefully designed distance
to identify cluster centers and cluster members. The key to this approach
is the density calculation, which has a significant impact on the cluster-
ing results. However, the original DP algorithm applies the local density
to identify cluster centers directly, and fails to take into account the
density difference among clusters. As a result, large-density clusters may
be partitioned into multiple parts and small-density clusters are likely
to be merged with other clusters. In this paper we introduce a density
normalization step to deal with this problem, and show that the normal-
ized density can be used to characterize cluster centers more accurately
than the original one. In experiments on various datasets, our method is
shown to improve the performance of different density kernels evidently.

Keywords: Density peak · Clustering · Density normalization · Density
kernel

1 Introduction

As an important unsupervised learning approach, data clustering has been
studied extensively for decades, and a lot of algorithms have been proposed
[1,2,5,18,21]. Among various branches of clustering algorithms, graph based
clustering has been attracting increasing attention due to the impressive perfor-
mance. Graph based algorithms use as input the pairwise data similarity (dis-
tance) matrix, which captures rich information of the data distribution. Different
algorithms have been proposed to make use of the data distribution information.
Spectral clustering [12,13] performs dimensionality reduction based on the eigen-
structure of the similarity matrix and then accomplish the clustering in the data
space of fewer dimensions. As an instance of spectral clustering, the normalized
cuts algorithm (NCuts) [18] has become a standard baseline of image segmenta-
tion techniques, and important advances in this area include the algorithm based
on robust graph [21]. The affinity propagation algorithm (AP) [2] identifies clus-
ter centers and cluster members iteratively by passing among data the affinity

c© Springer International Publishing AG 2017
P. Foggia et al. (Eds.): GbRPR 2017, LNCS 10310, pp. 187–196, 2017.
DOI: 10.1007/978-3-319-58961-9 17

188 J. Hou and H. Cui

message encoded in the similarity matrix. Different from both spectral clustering
and AP, the dominant sets algorithm (DSets) [14,16] extends the clique concept
in graph theory to edge-weighted graph, and defines dominant set as a graph
based concept of a cluster. By treating a dominant set as a cluster, the DSets
algorithm extracts clusters sequentially with game dynamics and obtains the
number of clusters automatically. Further works on DSets include [8,9,15,19].

Another graph based clustering approach worth mentioning is the density
peak based algorithm (DP) proposed in [17]. With the pairwise data distance
matrix as input, the DP algorithm firstly calculates the local density ρ of each
data, which is then used to calculate the distance δ denoting the distance between
one data and its nearest neighbor with larger density. It is found that cluster
centers are often with both large ρ’s and large δ’s and correspond to the density
peaks of the dataset, whereas the non-center data are usually with either small
ρ’s or small δ’s. Consequently, the cluster centers are presented as the outliers of
the dataset in the so-called ρ-δ decision graph, and can be identified relatively
easily. After the cluster centers are identified, each non-center data is assigned
the same label as its nearest neighbor with larger density. Considering that
identifying cluster centers with the ρ-δ decision graph involves two thresholds,
[17] further proposes to use γ = ρδ as the single measure to describe the data,
and select the data with largest γ’s as the cluster centers. The DP algorithm is
reported to generate superior clustering results in [17].

Unfortunately, [17] fails to provide a reliable method to identify cluster cen-
ters. While cluster centers are assumed to have both large σ’s and large δ’s,
or equivalently, large γ’s, there is no clear distinction between the large and
small values of these features. As a result, it is not easy to determine how many
data should be identified as cluster centers. Even if the number of cluster cen-
ters are given, it is possible that not all of the cluster centers with largest γ’s
are really cluster centers. In the case that the densities of different clusters are
similar, the centers of all the clusters can be identified and the method works
well. However, in the case that different clusters have a large density difference,
even the density peak of a small-density cluster may have a small ρ. Conse-
quently, a large-density cluster may have multiple density peaks being identified
as cluster centers, whereas no data in a small-density cluster is selected as the
cluster center. As a result, a large-density cluster is likely to be partitioned into
several clusters, and a small-density cluster may be merged with other clusters.
In summary, using the original density ρ to identify cluster centers may not be
appropriate as the density difference among clusters is not taken into account.
On the basis of the work in [10], we propose to use density normalization to
account for the density difference among clusters. We show that the normalized
density can be used to describe cluster centers more accurately, and therefore
improves clustering results in comparison to the original one.

The remainder of this paper is organized as follows. Section 2 provides a
brief introduction of the DP algorithm. Then in Sect. 3 we discuss the problem
of the DP algorithm and present normalized density as a better alternative to

Density Normalization in Density Peak Based Clustering 189

the original one. The detailed experimental validation of the proposed method
is reported in Sect. 4. Finally, Sect. 5 concludes this paper.

2 Density Peak Clustering

The DP algorithm is proposed on the basis of the following assumptions. First,
cluster centers are local density peaks in their neighborhoods. This means that
cluster centers have larger ρ’s than the neighboring non-center data. Second,
with δ denoting the distance between one data and its nearest neighbor with
larger density, cluster centers are with large δ’s. This assumption is supported
by the observation that cluster centers are surrounding non-center data with
smaller density. In contrast, as in practice few data have identical density, it is
easy to find a neighbor with larger density for a non-center data. Consequently,
the δ’s of non-center data are usually small. Third, the label of one non-center
data is the same as that of its nearest neighbor with larger density. The first
two assumptions point out the difference between cluster centers and non-center
data, and are used to identify cluster centers and determine the labels of center
data. After the center of each cluster is determined, the third assumption is used
to group non-center data into respective clusters. While the three assumptions
have no theoretical foundation, they are consistent with human intuition and
are shown to be effective in experiments.

The original DP algorithm is described in the following. Given the pairwise
distance matrix, the first step is to calculate the local density ρ of each data.
Two density kernels are used in [17] for this purpose, namely cutoff and Gaussian
kernel. With the cutoff kernel, the density of the data i is calculated by

ρi =
∑

j∈S,j �=i

χ(dc − dij), (1)

where S denotes the dataset for clustering, dc ∈ R is the cutoff distance, dij ∈ R
measures the distance between data i and j, and

χ(x) =

{
1, x > 0,

0, x < 0.
(2)

Intuitively, the cutoff kernel uses the number of data in the neighborhood of
radius dc to measure the local density. With the Gaussian kernel, the density is
computed by

ρi =
∑

j∈S,j �=i

exp(−d2ij
d2c

). (3)

As to the parameter dc involved in both kernels, [17] recommends to determine
dc so that on average 1% to 2% of all data are included in the neighborhood.
After the local density is obtained, the distance δi of the data i is calculated by
definition as

δi = min
j∈S,ρj>ρi

dij . (4)

190 J. Hou and H. Cui

With the ρ and δ of each data available, we are able to represent the data
as points in the ρ − δ space and obtain the ρ − δ decision graph. Taking the
Aggregation dataset [7] for example, we show its ρ − δ decision graph with the
cutoff kernel in Fig. 1(b), where dc is determined by including 1.7% of the data
in the neighborhood on average. It is evident that a few data are with both large
ρ and γ and isolated from the majority of the dataset. Considering that with
the ρ − δ decision graph we need two thresholds to identify the cluster centers,
we further sort the data in the decreasing order according to their γ’s, with
γi = ρiδi, and show the data in the γ decision graph in Fig. 1(c). With the γ
decision graph the data with the largest γ’s will be selected as cluster centers.

Fig. 1. The Aggregation dataset, two decision graphs with the cutoff kernel and cluster
result.

While it is true that cluster centers are separated from non-center data with
the ρ−δ decision graph or γ decision graph, we also notice that it is still difficult
to select cluster centers, if the number of clusters are not given. In Fig. 1(b) more
than 10 data can be regarded as cluster centers, and in Fig. 1 there are also 10
data being isolated from the majority of the dataset. In both cases the obtained
numbers of clusters are different from the real value (7). The reason is that

Density Normalization in Density Peak Based Clustering 191

there is no clear distinction between the large and small values of features, and
therefore the differentiation between center and non-center data are ambiguous.
Unfortunately, [17] fails to provide a reliable solution to this problem.

Considering that γ has been proposed to as the sole feature to measure the
qualification of data as cluster centers, in this paper we assume that the number
of clusters is given by user, as in the case of the k-means algorithm. With the
specified number N of clusters, we simply use the N data with largest γ’s as
the cluster centers. The following clustering of non-center data can then be
accomplished easily. The clustering result of the Aggregation dataset is shown
in Fig. 1(d). Evidently, the clustering result is very close to the ground truth.

3 Our Algorithm

In the last section we show that with the cutoff kernel the DP algorithm is able
to generate very good clustering result on the Aggregation dataset. However,
this does not mean that the DP clustering results will be satisfactory with other
density kernels and datasets, even if the number of clusters is given. In Fig. 2 we
use two examples to illustrate this problem. Figure 2(a) shows the distribution of
the 7 selected cluster centers with Gaussian kernel, where we observe that there
is one cluster with two centers and one cluster without centers. Correspondingly,
the clustering result is not satisfactory, as shown in Fig. 2(c). The two selected
cluster centers with the cutoff kernel on the Jain dataset [11] are shown in
Fig. 2(b), where both centers appear in the large-density cluster. As a result, the
small-density cluster is merged with part of the large-density one in Fig. 2(d).

In our opinion, the incorrectly selected cluster centers shown in Fig. 2 can
be attributed to the following reasons. First, while it is generally reasonable to
regard density peaks as cluster centers, the adopted density kernel and involve
parameters have significant influence on the estimated densities, and then on
the selected cluster centers and clustering results. In this sense, it is not strange
to see that the cutoff kernel performs well on the Aggregation dataset, and the
Gaussian kernel generates unsatisfactory result on the same dataset. Second, in
the case that the density difference among clusters is large, even the density
peaks of small-density clusters have relatively small ρ’s. In this case, applying
γ = ρδ to select cluster centers directly may reduce the chance of data in small-
density clusters being selected. This problem is illustrated quite evidently on the
Jain dataset in Fig. 2. In addition, these two reasons often interact with some
other factors, including the data distribution and cluster size and shapes, and
they together result in the incorrectly selected cluster centers.

The basic idea of the DP algorithm is to identify cluster centers and then
group non-center data into respective clusters. For this purpose, the features ρ
and δ are proposed to select cluster centers and the density relationship among
data are used to group non-center data. Since the grouping of non-center data
is a simple procedure based on cluster centers and a reasonable assumption, we
focus our discussion on the cluster center identification. The key to identifying
cluster centers is to highlight the difference between cluster centers and non-
center data in some feature space. In the DP algorithm we use γ = ρδ to select

192 J. Hou and H. Cui

Fig. 2. The selected clusters and clustering results on Aggregation and Jain, with
different density kernels.

cluster centers. Noticing that δ is calculated based on ρ, we further limit our
analysis to the density ρ. It is generally reasonable to use density peaks as the
candidates of cluster centers. However, as we use γ as the criterion of cluster
center selection, there exists the possibility that the centers of small-density
clusters are not selected because of the small density, as shown in the Jain
dataset in Fig. 2. In order to make each cluster have one and only one data
being selected as cluster center, we need a better feature than the original ρ to
characterize cluster centers.

The DP algorithm uses ρ as a feature of the data and regards density peaks as
candidates of cluster centers. Here we make use of only the density relationship
between cluster centers and non-center data, i.e., cluster centers have larger
density than neighboring non-center data. However, in applying γ = ρδ to select
cluster centers, the absolute values of density, but not the density relationship,
are what really works. This inconsistency between purpose and implementation
is at the root of the problems observed in Fig. 2. In order to relieve this problem,
we propose to replace the original ρ by normalized density ρ′ in cluster center
identification, and use γ′ = ρ′δ to select cluster centers. The normalized density

Density Normalization in Density Peak Based Clustering 193

can be simply obtained as the ration of the original density and the average
density of neighboring data, i.e.,

ρ′
i =

ρi
1

|Dinn|
∑

j∈Dinn

ρj

, (5)

where Dinn is a subset consisting of the 30 nearest neighbors of i, and |Dinn| is
the subset size. The ρ′ defined this way eliminates the influence of density dif-
ference among clusters to some extent. It should be noted that the normalized
density is only used in selecting the cluster centers. The grouping of non-center
data is still based on the relationship of the original density, which reflects the
relationship between individual data more accurately. With this simple density
normalization step, the selected cluster centers and clustering results on Aggre-
gation and Jain datasets are shown in Fig. 3. We observe from Fig. 3 that both
cluster center selection and clustering results are improved significantly. On the
other hand, while the two cluster centers are really in two clusters of the Jain
dataset, a considerable amount of data are still grouped into the wrong cluster.

Fig. 3. The selected clusters and clustering results on Aggregation and Jain, based on
normalized density.

194 J. Hou and H. Cui

This can be attributed to the effect of several factors, including density kernel
and parameters, cluster shape and complex data distribution in clusters.

4 Experiments

We firstly validate the effectiveness of density normalization in improving clus-
tering results quantitatively. The experiment is conducted on eight datasets,
including Aggregation, Spiral [3], D31 [20], R15 [20], Jain, Flame [6] and two
UCI datasets Iris and Breast. The cutoff kernel and Gaussian kernel are used to
calculate the density ρ, and with both kernels the parameter dc is determined
by including 1.7% of the data in the neighborhood of radius dc. With Normal-
ized Mutual Information (NMI) as the clustering result evaluation criterion, we
report the comparison of the results with and without density normalization in
Fig. 4. Evidently on all the datasets, the density normalization either improves
the clustering results, or keep the results unchanged. This observation shows that
the density normalization is effective in solving the problems caused by density
difference among clusters.

Fig. 4. Comparison of clustering results before and after density normalization.

We then compare the results of DP algorithm with density normalization with
those of other algorithms, including k-means, NCuts, DBSCAN, AP, DSets, and
the algorithm proposed in [8]. With k-means and NCuts the required numbers of
clusters are set as the ground truth. With DBSCAN the parameter MinPts is
set as 3 and Eps is determined based on MinPts based on the method proposed
in [4]. The AP algorithm needs to be fed the preference value p of each data, and
the range [pmin, pmax] can be calculated with the code provided by the authors
of [2]. We then select p = pmin + 9.2step, where step = (pmax − pmin)/10. With
the DSets algorithm we use s(i, j) = exp(−d(i, j)/σ) and σ = 20d to build
the similarity matrix, where d(i, j) is the Euclidean distance and d is the mean
of all pairwise distances. Finally, we also use average distances to evaluate the
data density in the form of ρi = dmax/dimean, where dmax is the maximum of
all pairwise distances, and dimean is the average distance between i and its 30

Density Normalization in Density Peak Based Clustering 195

Table 1. Comparison of cluster results (NMI) among different algorithms on eight
datasets.

DSets k-means NCuts DBSCAN AP [8] cutoff Gaussian dmean

Aggregation 0.86 0.85 0.77 0.92 0.82 0.89 0.99 0.99 0.99

Spiral 0.14 0.00 0.00 0.71 0.00 0.66 0.44 0.73 1.00

D31 0.85 0.92 0.96 0.84 0.59 0.67 0.96 0.96 0.96

R15 0.83 0.91 0.99 0.87 0.74 0.91 0.99 0.99 0.99

Jain 0.43 0.36 0.33 0.73 0.46 0.87 0.28 0.68 0.51

Flame 0.60 0.45 0.42 0.83 0.57 0.90 0.78 0.41 1.00

Iris 0.65 0.74 0.74 0.75 0.79 0.60 0.71 0.81 0.72

Breast 0.54 0.74 0.80 0.62 0.57 0.54 0.30 0.64 0.40

Average 0.61 0.62 0.63 0.78 0.57 0.75 0.68 0.78 0.82

nearest neighbors. The comparison of these algorithms are shown in Table 1,
where cutoff, Gaussian and dmean are used to denote DP algorithms with the
three density kernels. With all the three DP algorithms, normalized density is
used to replace the original one.

Table 1 shows that in terms of average clustering results, the cutoff kernel
performs the worst in the three kernels of the DP algorithm. This is not strange
as this kernel is based on only the number of data in a neighborhood and much
distance information is discarded. Even in this case, we find it performs better
than DSets, k-means, NCuts and AP. The Gaussian kernel performs much better
than the cutoff kernel, and the average distance based kernel further generates
the best results in all the algorithms. We believe these observations highlight the
potential of the DP algorithm, and also indicates the necessity to explore better
density kernels for further performance improvement.

5 Conclusions

Density peak based clustering is a promising clustering approach. In this paper
we study the influence of density kernels on the clustering results, and find
that existing density kernels are not able to deal with the density difference
among clusters. We analyze the reason behind this observation and propose
to use density normalization to relieve this problem. In experiments we show
that density normalization is able to improve the clustering results evidently. In
comparison with other clustering algorithms, the density peak clustering with
normalized density generates the best results on average.

Acknowledgement. This work is supported in part by National Natural Science
Foundation of China under Grant No. 61473045 and No. 41371425, and in part by
China Scholarship Council.

196 J. Hou and H. Cui

References

1. Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: Optics: ordering points to
identify the clustering structure. In: ACM SIGMOD International Conference on
Management of Data, pp. 49–60 (1999)

2. Brendan, J.F., Delbert, D.: Clustering by passing messages between data points.
Science 315, 972–976 (2007)

3. Chang, H., Yeung, D.Y.: Robust path-based spectral clustering. Pattern Recogn.
41(1), 191–203 (2008)

4. Daszykowski, M., Walczak, B., Massart, D.L.: Looking for natural patterns in data:
Part 1. density-based approach. Chemometr. Intell. Lab. Syst. 56(2), 83–92 (2001)

5. Ester, M., Kriegel, H.P., Sander, J., Xu, X.W.: A density-based algorithm for dis-
covering clusters in large spatial databases with noise. In: International Conference
on Knowledge Discovery and Data Mining, pp. 226–231 (1996)

6. Fu, L., Medico, E.: Flame, a novel fuzzy clustering method for the analysis of dna
microarray data. BMC Bioinform. 8(1), 1–17 (2007)

7. Gionis, A., Mannila, H., Tsaparas, P.: Clustering aggregation. ACM Trans. Knowl.
Discov. Data 1(1), 1–30 (2007)

8. Hou, J., Gao, H., Li, X.: Dsets-dbscan: a parameter-free clustering algorithm. IEEE
Trans. Image Process. 25(7), 3182–3193 (2016)

9. Hou, J., Liu, W., Xu, E., Cui, H.: Towards parameter-independent data clustering
and image segmentation. Pattern Recogn. 60, 25–36 (2016)

10. Hou, J., Pelillo, M.: A new density kernel in density peak based clustering. In:
International Conference on Pattern Recognition, pp. 463–468 (2016)

11. Jain, A.K., Law, M.H.C.: Data clustering: a user’s dilemma. In: International Con-
ference on Pattern Recognition and Machine Intelligence, pp. 1–10 (2005)

12. von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416
(2007)

13. Ng, A., Jordan, M., Weiss, Y.: On spectral clustering: analysis and an algorithm.
In: Advances in Neural Information Processing Systems, pp. 849–856 (2002)

14. Pavan, M., Pelillo, M.: A graph-theoretic approach to clustering and segmentation.
In: IEEE International Conference on Computer Vision and Pattern Recognition,
pp. 145–152 (2003)

15. Pavan, M., Pelillo, M.: Efficient out-of-sample extension of dominant-set clusters.
In: Advances in Neural Information Processing Systems, pp. 1057–1064 (2005)

16. Pavan, M., Pelillo, M.: Dominant sets and pairwise clustering. IEEE Trans. Pattern
Anal. Mach. Intell. 29(1), 167–172 (2007)

17. Rodriguez, A., Laio, A.: Clustering by fast search and find of density peaks. Science
344, 1492–1496 (2014)

18. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern
Anal. Mach. Intell. 22(8), 167–172 (2000)

19. Torsello, A., Bulo, S.R., Pelillo, M.: Grouping with asymmetric affinities: a game-
theoretic perspective. In: IEEE International Conference on Computer Vision and
Pattern Recognition, vol. 1, pp. 292–299 (2006)

20. Veenman, C.J., Reinders, M., Backer, E.: A maximum variance cluster algorithm.
IEEE Trans. Pattern Anal. Mach. Intell. 24(9), 1273–1280 (2002)

21. Zhu, X., Loy, C.C., Gong, S.: Constructing robust affinity graphs for spectral clus-
tering. In: IEEE International Conference on Computer Vision and Pattern Recog-
nition, pp. 1450–1457 (2014)

Fast Nearest Neighbors Search in Graph Space
Based on a Branch-and-Bound Strategy

Zeina Abu-Aisheh(B), Romain Raveaux, and Jean-Yves Ramel

Laboratoire d’Informatique (LI), Université François Rabelais, 37200 Tours, France
{zeina.abu-aisheh,romain.raveaux,jean-yves.ramel}@univ-tours.fr

http://www.li.univ-tours.fr/

Abstract. When using k-nearest neighbors, an unknown object is clas-
sified by comparing it to all the prototypes stored in the training data-
base. When the size of the database is large, and especially if prototypes
are represented by graphs, the search of k-nearest neighbors can be very
time consuming. On this basis, some researchers have tried to propose
optimization techniques to speed up or to approximate the search of the
nearest neighbors of a query. However, these studies pay attention only
to the case of vector space. In this paper, we propose an optimization
technique dedicated to structural pattern recognition. We take advantage
of a recent branch-and-bound graph edit distance approach in order to
speed up the classification stage. Instead of considering each graph edit
distance problem as an independent search tree, the search trees whose
purpose is to classify an unknown graph are considered as a one search
tree. Results showed that this approach drastically outperformed the
classical one under limited time constraints. Moreover, this approach
beat fast graph matching algorithms in terms of average execution time.

Keywords: Graph classification · Graph edit distance · K-nearest
neighbors · Branch-and-bound · Optimization

1 Introduction

Due to the long time needed by the k-nearest neighbors (KNN) classifier when
the size of the database (i.e., prototypes and unknown graphs) is large, some
optimization techniques have been proposed to speed up or to approximate the
search of KNN [14]. These studies pay attention only to vector space. In this
paper, we propose an optimization technique for structural pattern recognition
(graph space). Similar to the works proposed for the vector space, when the
objective is to classify unknown graphs, questions like “why do we need to con-
sider each graph matching problem as an independent one?” and “cannot we
consider all the graph matching problems used to classify the unknown graph as
a single problem?” become of crucial interest.

To classify unknown objects using the KNN paradigm, one needs to define a
metric that measures the distance between the unknown object and the elements
in the learning set. In the context of attributed graphs, the distortion and noise
c© Springer International Publishing AG 2017
P. Foggia et al. (Eds.): GbRPR 2017, LNCS 10310, pp. 197–207, 2017.
DOI: 10.1007/978-3-319-58961-9 18

198 Z. Abu-Aisheh et al.

are taken into account during the matching process. One of the most well-known
and used approaches to compute a distance (dissimilarity) between two graphs
taking distortion into account is Graph Edit Distance (GED). GED is achieved
by finding a set of graph edit operations: insertions, deletions and substitutions
of vertices as well as edges in order to transform a graph into another with the
minimal cost. GED between two graphs can be computed by different manners
but it is usually time consuming especially if we want an exact solution.

On the basis of all these hypotheses and remarks, we propose to take advan-
tage of Branch-and-Bound (BnB) based algorithms to elaborate the idea of deal-
ing with the classification of each unknown graph as a global problem instead of
independently solving successive GED computations. In this paper, we couple a
recent anytime GED algorithm with the KNN classifier. Instead of considering
each search tree of the unknown graph compared to a training graph as an inde-
pendent one, we group all of them in a single search tree. The comparisons are
achieved in a sequential manner and the best upper bound found so far is used
as an initial upper bound of the next GED problem. For instance, the solution
of the first GED problem is considered as an upper bound of the second one.
Results, on 3 different datasets, showed that the proposed approach drastically
outperformed the classical one and beat fast graph matching algorithms in terms
of average execution time under limited time constraints.

The rest of the paper is organized as follows: In Sect. 2, the problem statement
is presented in details after defining the KNN classifier and the GED problem.
At the end of Sect. 2, the selection of a GED method is made. In Sect. 3, the
BnB strategy proposed to speed up the KNN search in graph space based on a
recent GED algorithm is described. Section 4 is dedicated to the experiments,
protocol and results that show the efficiency of the extended approach. Section 5
is devoted to conclusions and perspectives.

2 Problem Statement

2.1 K-Nearest Neighbors Problem

KNN is a simple and precise classifier. It is non-parametric and thus it does
not need knowledge about the distribution of classes. Moreover, the associated
algorithm is quite simple to implement. When there are enough training patterns,
classification error will be smaller than twice the Bayes error [7].

Unlike other classifiers which are considered as black-box models [8], when the
metric is defined, KNN can provide an explanation of the classification results.
However, KNN requires enormous computation time that is proportional to the
number of training samples and the number of dimensions of feature vector.
Thus, because of its simplicity and precision, many researches have tried to
speed-up the algorithm in vector space. Even if optimization methods in graph
space are different from the ones in vector space, we can shed light on the two
categories of methods proposed in vector space. The first category provides exact
neighbors and thus tries to reduce, in an off-line way, the number of samples for
distance calculation by finding an effective subset from training data set [11] or

Fast Nearest Neighbors Search in Graph Space 199

by constructing a new set used for classification [6]. The second category provides
approximate neighbors and tries to limit the search space according to the query.
Consequently, the number of problems for distance calculation becomes smaller,
and the computation time is decreased. In some cases of this category, there is no
guarantee that the results using subsets or using selected new sets are the same
as the results using the original KNN rule. One can notice that some methods
reduce computation time and space complexity, and some others reduce only
time complexity.

Fukunaga et al. in [10] and Omachi et al. in [20] have proposed fast search
methods based on a BnB strategy. They achieve a fast search by skipping the
search of subtrees that are unnecessary to explore. Then, the search efficiency
strongly depends on the structure of search tree (i.e., height of the tree, number
of children of one node, etc.) that is to say on the propriety of the construction
method (i.e., clustering algorithm).

To solve KNN in graph space, we formulate the problem as follows: Given a
set S of n samples and a query element q, find a subset S0 ⊂ S of k ≤ n elements
such that for any elements p1 ∈ S0 and p2 ∈ S − S0, dist(q; p1) ≤ dist(q; p2).

2.2 Graph Edit Distance as a Metric

To classify graphs using KNN, one needs to define a metric that measures the
distance between the graphs. In the context of attributed graphs, distortion
and noise are taken into account during the graph matching process. One of the
most well-known approaches to compute distance (dissimilarity) between graphs
taking distortion into account is Graph Edit Distance (GED) [17,21].

Let G1 = (V1, E1, μ1, ξ1) and G2 = (V2, E2, μ2, ξ2) be two graphs with V1 =
(u1, ..., un) and V2 = (v1, ..., vm) the sets of vertices of G1 and G2, respectively.
E1 and E2 represent the edges of G1 and G2, successively, whereas the terms μ
and ζ refer to the attributes on vertices and edges, respectively. In error-tolerant
GM, a measurement of the cost of matching vertices and/or edges of two graphs
G1 and G2, referred to as penalty cost, is applicable on both graph structures and
attributes. The basic idea is to assign a penalty cost to each matching operation.
When (sub)graphs differ in their attributes or structures, a high penalty cost is
added during the matching process. Such a cost prevents dissimilar (sub)graphs
from being matched since they are different. Likewise, when (sub)graphs are
similar, a small penalty cost is added to the overall cost. This cost includes
matching, inserting and/or deleting vertices/edges.

Formally saying, GED is based on a set of edit operations oi where i = 1 . . . k
and k is the number of edit operations. This set is referred to as Edit Path in
the literature [17].

Definition 1. Edit Path
A set {o1, · · · , ok} of k edit operations that completely transform G1 into G2 is
called a (complete) edit path between G1 and G2. A partial edit path refers to
a subset of {o1, · · · , oq} that partially transforms G1 into G2.

200 Z. Abu-Aisheh et al.

Formally saying, GED between two graphs is defined as follows:

Definition 2. Graph Edit Distance
Let G1 = (V1,E1,μ1,ζ1) and G2 = (V2,E2,μ2,ζ2) be two graphs, the graph edit
distance between G1 and G2 is defined as:

dλmin
(G1, G2) = min

λ∈Γ (G1,G2)

∑

o∈λ

c(o) (1)

where c(o) denotes the cost function measuring the cost of an edit operation o
and Γ (G1, G2) denotes the set of all edit paths transforming G1 into G2. The
exact correspondence is one of the correspondences that obtains the minimum
cost (i.e., dλmin

(G1, G2)).

2.3 Formulation of K-Nearest Neighbors Coupled with Graph Edit
Distance Computation

For simplicity, we will formalize the KNN problem such that k = 1. However,
this problem can be easily generalized for K > 1.

Let L be the set of training graphs and Gq is a query graph, the KNN problem
is defined as follows:

G∗ = arg min
G∈L

d(Gq, G) (2)

where d is a dissimilarity measure between graphs and G∗ is the graph that
minimizes the distance to Gq. The complexity of the problem grows linearly
with the size of L. However, the problem of computing d in graph space is NP-
Hard, see Eq. 1. Solving Eq. 2 implies independently solving the problem of Eq. 1
|L| times. Instead of separating the |L| sub-problems, we propose to unify them
and redefine the problem of Eq. 2 as follows:

G∗ = arg min
λG∈{Γ (Gq,G)}

∑

o∈λG

c(o) ∀G ∈ L (3)

where {Γ (Gq, G)} ∀G ∈ L is the set of all the possible matchings between Gq

and each graph G in L.

2.4 Possible Techniques for GED Computation

We aim at choosing a GED algorithm to solve the problem described in
Eq. 3. Thus, in this section, we explore the state-of-the-art methods dedicated
to solving GED.

Techniques for the GED computation vary in their way of solving GED and
their complexities. In this section, we globally divide them into three main cat-
egories. First, the exact GED category such as the A∗ algorithm [13]. A∗ is a
foundation work that is based on a best-first search and thus it is memory con-
suming. Recently, a depth-first GED algorithm (DF) has been proposed in [3]
to tackle the memory consumption of A∗ using the depth-first paradigm with a

Fast Nearest Neighbors Search in Graph Space 201

preprocessing and a BnB steps. However, in a classification context, A∗ and DF
are relatively slow, especially when matching large graphs.

The second category represents approximate GED methods. Beam-Search
(BS) [12] has been put forward to reduce the complexity of A∗. The purpose of
BS is to prune the search tree via a parameter that keeps the x most promis-
ing partial edit paths. However, such an algorithm cannot always find the exact
matching. Riesen et al. in [16] reformulated the assignment problem as finding
an exact matching in a complete bipartite graph in order to reduce the quadratic
assignment problem (of GED computation) to an instance of a linear sum assign-
ment problem. This method was then sped up in [19]. These approaches take
local rather than global relationships into consideration. To go beyond the local
structure problem, few works have been proposed [5,9,18], to name a few of
them. Recently, two approaches based on Integer Projected Fixed Point and
Graduated Non-Convexity and Concavity methods have been proposed in [4].
All these approaches cannot speed up the search of KNN since a precedent com-
parison cannot be used to prune the search space of the current one.

Recently, a new category has been added to GED, this category is referred to
as anytime [2]. From an initial solution, anytime algorithms provide successive
solutions during the enumeration of the search tree, they can be used to get
good approximate distances (under limited time constraints) as well as exact
ones (with plenty of available time). A first algorithm proposed in this category
to solve GED is referred to as anytime depth-first (ADF). In this paper, we
selected ADF since it can take advantage of the previous graph comparisons, in
an iterative manner, to prune the search space.

3 Fast Nearest Neighbors in Graph Space

Traditionally, when classifying Gq using GED approaches, the class of the nearest
neighbor G ∈ L (when K = 1) is assigned to Gq after comparing it with each
G ∈ L. Furthermore, the distances between Gq and all the graphs in L are
computed independently by running a GED algorithm |L| times. This solution
is naive as each comparison is launched and not stopped until its end of execution
and the initial upper bound (UB) of each comparison is set to ∞. If we have no
extra information, this step is essential to find the correct solution. But in the
KNN problem, the result of the previous problem may give us some clues for a
better pruning in the next search whose aim is to classify Gq. It is an evident
fact that with a smaller UB, BnB algorithms become more efficient during the
successive GED computations.

In this paper, we propose to consider the classification of Gq as a sin-
gle problem by coupling the KNN classifier with ADF. Algorithm 1 depicts
the main steps of the proposed approach, called One-Tree-ADF. First, the
initialization step (lines 1 to 3) starts. Second, the refined ADF is applied
on Gq and each Gi in the training set L (line 5). UB and so the class
assigned to Gq (i.e., Cq) are modified if dmin is better than the current UB

202 Z. Abu-Aisheh et al.

Algorithm 1. One-Tree-ADF Algorithm
Input: The set L of labeled graphs (i.e., train set): {(G1, C1), · · · , (Gl, Cl)} and the
unknown graph Gq

Output: the class label assigned to Gx

1: dmin = ∞ � An initial distance between two graphs
2: UB = ∞ � The initial upper bound
3: Cq = φ � The class assigned to Gx

4: for i = 1 to |L| do
5: dmin=ADF(Gq,Gi,UB)
6: if UB > dmin then
7: UB= dmin

8: Cq = Ci

9: end if
10: end for
11: Return Cq

(lines 7 and 8). The outputted distance dmin is used as UB of the next com-
parison (i.e., ADF (Gq, Gi+1)) (line 7). This algorithm finally terminates by out-
putting Cq.

Note that for the sake of simplicity, we considered K = 1. The extension
of the algorithm for K > 1 is straightforward, UB is the distance obtained by
the current kth nearest neighbor. When a distance is calculated (line 5), it is
compared to the distance of the k nearest neighbors and the current table of the

Fig. 1. One-Tree-ADF. Given a query graph Gq and graphs in the training set, the
problems GED(Gq,G1), GED(Gq,G2) and GED(Gq,G3) are considered as sub-trees of
the global tree (TGq). The sub-tree of GED(Gq,G2) is pruned thanks to UB that is
found via GED(Gq,G1).

Fast Nearest Neighbors Search in Graph Space 203

k nearest neighbors is updated when it is necessary, discarding a sample from
the table when finding a better distance (i.e., a better nearest neighbor).

Figure 1 highlights the idea of One-Tree-ADF. Given a query graph Gq and a
learning database L, the idea is to consider each search tree S of the GED(Gq,Gi)
as a sub-tree of the global tree dedicated to Gq and referred to as TGq

. For
instance, in Fig. 1, one can see that the first UB found while exploring the sub-
tree S of GED(Gq,G1) is 2. UB is then used as an initial UB of the sub-tree S′

of GED(Gq,G2) and so on. Such an operation helps in pruning the sub-trees as
fast as possible while searching for the nearest neighbor of Gq.

4 Protocol and Experiments

4.1 Selected Datasets

In the experiments, GREC, Protein and Mutagenicity of the IAM database [15]
are selected. GREC data set consists of 1100 graphs where graphs are uniformly
distributed between 22 symbols. 286 graphs are included in the training set
while 528 graphs are included in the test set. In Mutagenicity, 4337 elements
are represented in this data set (2401 mutagen elements and 1936 non-mutagen
elements) which are divided into: a training set of size 1500, a test set of size
2337 and the rest of elements are in the validation set. For simplicity, we refer to
this database as Muta. 600 Proteins are uniformly distributed over 100 classes.
The size of each of the training and the test sets is 200. The cost functions of
the selected datasets and their parameters can be found in [1].

4.2 Chosen Methods

On the exact method side, we chose the DF algorithm since it outperforms the
A∗ algorithm in terms of running time. On the approximate side, we included
BS-1 (i.e., the greedy algorithm) and BS-100. We also chose the bipartite match-
ing algorithm BP [16] since it has been shown to be one of the most efficient
approximate algorithms so far. In addition, we selected a fast version of BP [19],
referred to as FBP in the literature.

4.3 Environment and Constraints

The experiments were conducted on a computer with a 24-core Intel i5 processor
at 2.10 GHz and 16 GB of memory. The time constraint used for all the datasets
is fixed to 500 milliseconds (ms) which is the maximum time needed by BP and
FBP to output a solution. That is, any GED algorithm that needs more than
500 ms is stopped and the best answer found so far is outputted. Note that
One-Tree-ADF and DF are exact algorithms without time constraints.

The order of the training graphs of each of GREC, Protein and Muta is
randomized. Four different orders are generated. The reason is that we did not
want One-Tree-ADF to be influenced by the ordered lists that are given in IAM.
Note than one can extensively study the influence of the order of the training
graphs on the accuracy and the total execution time of One-Tree-ADF.

204 Z. Abu-Aisheh et al.

4.4 Results

In Table 1, the results achieved on all datasets are presented. Note that the
computation time corresponds to the average time needed to classify graphs Gq.

We ran the experiments on the 4 different orders of train graphs (see
Sect. 4.3). The results of these orders are quite similar. Thus, the measured time
(in milliseconds) is the average time of the 4 different orders. The results show
that on the 3 datasets, One-Tree-ADF was always faster than the classical DF
approach. It also improved the classification rate of DF on both Protein and
Muta. This is due to the fact that One-Tree-ADF could improve UB while mov-
ing from one comparison to another. As a consequence, it pruned unfruitful parts
of some sub-trees and found a better UB. On the other hand, when comparing
One-Tree-ADF to BP, one can see that One-Tree-ADF was 4 times faster (on
GREC) and 2 times faster (on Muta), it also improved the classification rate on
Muta. However, on Protein, it was less accurate than BP. FBP was faster than
One-Tree-ADF on Protein, however, the accuracy of FBP was lower.

Table 1. Classification results on GREC, Protein and MUTA. The best results are
marked in bold style.

GREC Protein Muta

Acc t Acc t Acc t

One-Tree-ADF 98.5 15483.16 47 58321.20 71.28 104183.21

DF 98.5 140675.0 42 124361.61 70 1139134.29

BS-1 98.5 69236.34 24 129571.76 55.5 1015688

BS-100 58.7 83928.20 26 141265.41 55.5 1383838.66

BP 98.5 62294.60 52 59041.84 70 528546.64

FBP 98.5 27922.65 38.5 39425.69 70 376135.51

Figure 3 depicts two examples, for classifying two graphs Gq taken from
GREC and Muta. Note that the value of UB is outputted after each
ADF (Gq, G), see line 5 in Algorithm 1. One can see that improving UB is
easier in the first few milliseconds, however, after a certain time, UB could keep
stable for a longer time, depending on whether or not the next comparisons are
fruitful.

For the same examples illustrated in Fig. 2, we divided the comparisons into
intervals, and measured the average time needed in each interval, see Fig. 3.
Results showed that, on both datasets, the first interval needed around 400 ms
while the other intervals needed less time. This shows the ability of UB in pruning
the search tree. One could also notice that the average time of the intervals on
Muta is higher than the one on GREC; that is due to the difficulty of search
trees of Muta.

Fast Nearest Neighbors Search in Graph Space 205

Fig. 2. The upper bound found at the end of each comparison ADF (Gq,G) and needed
to find the 1NN of Gq. (Left: GREC, Right: Muta)

Fig. 3. The evolution of the time needed to compare two graphs while exploring the
search tree of Gq. (Left: GREC, Right: Muta)

5 Conclusions and Perspectives

In this paper, a fast nearest neighbor approach dedicated to graph classification
was proposed. This approach, referred to as One-Tree-ADF takes advantage of
a recent BnB-based algorithm dedicated to solving GED. Instead of considering
the comparison of graph Gq and a graph G in the training set as a single problem,
One-Tree-ADF groups trees whose objective is to classify a graph Gq in one
search tree. Such an approach aims at improving the upper bound as fast as
possible and thus pruning the misleading parts of the search tree. Results showed
that the One-Tree-ADF drastically minimizes the total classification time while
achieving high classification rates when compared to exact and approximate
GED algorithms.

Our future work is two-fold. First, learning the order of the training graphs
set. Second, transforming One-Tree-ADF into a parallel algorithm. These propo-
sitions can reduce the computation time of One-Tree-ADF.

206 Z. Abu-Aisheh et al.

References

1. Abu-Aisheh, Z., Raveaux, R., Ramel, J.-Y.: A graph database repository and
performance evaluation metrics for graph edit distance. In: Liu, C.-L., Luo, B.,
Kropatsch, W.G., Cheng, J. (eds.) GbRPR 2015. LNCS, vol. 9069, pp. 138–147.
Springer, Cham (2015). doi:10.1007/978-3-319-18224-7 14

2. Abu-Aisheh, Z., Raveaux, R., Ramel, J.-Y.: Anytime graph matching. Pattern
Recogn. Lett. 84, 215–224 (2016)

3. Abu-Aisheh, Z., Raveaux, R., Ramel, J.-Y., Martineau, P.: An exact graph edit
distance algorithm for solving pattern recognition problems. In: ICPRAM, pp.
271–278 (2015)

4. Bougleux, S., Brun, L., Carletti, V., Foggia, P., Gaüzère, B., Vento, M.: Graph
edit distance as a quadratic assignment problem. Pattern Recogn. Lett. 87, 38–46
(2017)

5. Carletti, V., Gaüzère, B., Brun, L., Vento, M.: Approximate graph edit dis-
tance computation combining bipartite matching and exact neighborhood sub-
structure distance. In: Liu, C.-L., Luo, B., Kropatsch, W.G., Cheng, J. (eds.)
GbRPR 2015. LNCS, vol. 9069, pp. 188–197. Springer, Cham (2015). doi:10.1007/
978-3-319-18224-7 19

6. Chang, C.L.: Finding prototypes for nearest neighbor classifiers. IEEE Trans. Com-
put. 23(11), 1179–1184 (1974)

7. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theor.
13(1), 21–27 (2006)

8. Dreiseitl, S., Ohno-Machado, L.: Logistic regression and artificial neural network
classification models: a methodology review. J. Biomed. Inform. 35, 352–359 (2002)

9. Ferrer, M., Serratosa, F., Riesen, K.: A first step towards exact graph edit distance
using bipartite graph matching. In: Liu, C.-L., Luo, B., Kropatsch, W.G., Cheng,
J. (eds.) GbRPR 2015. LNCS, vol. 9069, pp. 77–86. Springer, Cham (2015). doi:10.
1007/978-3-319-18224-7 8

10. Fukunaga, K., Narendra, P.M.: A branch and bound algorithm for computing k-
nearest neighbors. IEEE Trans. Comput. 24(7), 750–753 (1975)

11. Gates, G.W.: The reduced nearest neighbor rule. IEEE Trans. Inform. Theory
18(5), 431–433 (1972)

12. Riesen, K., Neuhaus, M., Bunke, H.: Fast suboptimal algorithms for the computa-
tion of graph edit distance. SSPR 28, 163–172 (2006)

13. Raphael, B., Hart, P., Nilsson, N.: A formal basis for the heuristic determination
of minimum cost paths. IEEE TSSC 28, 100–107 (2004)

14. Raveaux, R., Adam, S., Héroux, P., Trupin, É.: Learning graph prototypes for
shape recognition. CVIU 115(7), 905–918 (2011)

15. Riesen, K., Bunke, H.: IAM graph database repository for graph based pattern
recognition and machine learning. In: da Vitoria, L.N., et al. (eds.) SSPR/SPR
2008. LNCS, vol. 5342, pp. 287–297. Springer, Heidelberg (2008)

16. Bunke, H., Riesen, K.: Approximate graph edit distance computation by means of
bipartite graph matching. Image Vis. Comput. 28, 950–959 (2009)

17. Riesen, K.: Structural Pattern Recognition with Graph Edit Distance. ACVPR.
Springer, Cham (2015)

18. Riesen, K., Fischer, A., Bunke, H.: Combining bipartite graph matching and beam
search for graph edit distance approximation. In: Gayar, N., Schwenker, F., Suen,
C. (eds.) ANNPR 2014. LNCS, vol. 8774, pp. 117–128. Springer, Cham (2014).
doi:10.1007/978-3-319-11656-3 11

http://dx.doi.org/10.1007/978-3-319-18224-7_14
http://dx.doi.org/10.1007/978-3-319-18224-7_19
http://dx.doi.org/10.1007/978-3-319-18224-7_19
http://dx.doi.org/10.1007/978-3-319-18224-7_8
http://dx.doi.org/10.1007/978-3-319-18224-7_8
http://dx.doi.org/10.1007/978-3-319-11656-3_11

Fast Nearest Neighbors Search in Graph Space 207

19. Serratosa, F.: Fast computation of bipartite graph matching. Pattern Recogn. Lett.
45, 244–250 (2014)

20. Aso, H., Omachi, S.: A fast algorithm for a k-nn classifier based on the branch and
bound method and computational quantity estimation. Syst. Comput. Jpn. 31(6),
1–9 (2000)

21. Vento, M.: A long trip in the charming world of graphs for pattern recognition.
Pattern Recogn. 48(2), 291–301 (2015)

Graph Edit Distance

Exact Computation of Graph Edit Distance
for Uniform and Non-uniform Metric Edit Costs

David B. Blumenthal(B) and Johann Gamper

Faculty of Computer Science, Free University of Bolzano,
Piazza Dominicani 3, 39100 Bolzano, Italy
{david.blumenthal,gamper}@inf.unibz.it

Abstract. The graph edit distance is a well-established and widely
used distance measure for labelled, undirected graphs. However, since
its exact computation is NP-hard, research has mainly focused on devis-
ing approximative heuristics and only few exact algorithms have been
proposed. The standard approach A�-GED, a node-based best-first search
that works for both uniform and non-uniform metric edit costs, suffers
from huge runtime and memory requirements. Recently, two better per-
forming algorithms have been proposed: DF-GED, a node-based depth-first
search that works for uniform and non-uniform metric edit costs, and
CSI GED, an edge-based depth-first search that works only for uniform
edit costs. Our paper contains two contributions: First, we propose a
speed-up DF-GEDu of DF-GED for uniform edit costs. Second, we develop a
generalisation CSI GEDnu of CSI GED that also covers non-uniform metric
edit cost. We empirically evaluate the proposed algorithms. The experi-
ments show, i.a., that our speed-up DF-GEDu clearly outperforms DF-GED
and that our generalisation CSI GEDnu is the most versatile algorithm.

Keywords: Graph matching · Graph similarity · Graph edit distance ·
Branch and bound

1 Introduction

Labelled, undirected graphs can be used for modelling various kinds of objects,
such as social networks, molecular structures, and many more. Because of this,
labelled graphs have received increasing attention over the past years. One task
researchers have focused on is the following: Given a database G that contains
labelled graphs, find all graphs G ∈ G that are sufficiently similar to a query
graph H or to find the k graphs from G that are most similar to H. For approach-
ing this task, a distance measure between undirected, labelled graphs G and H
has to be defined. One of the most commonly used measures is the graph edit dis-
tance. Formally, a labelled, undirected graph G is a 4-tuple G = 〈V G, EG, �G

V , �G
E〉,

where V G is a set of nodes, EG is a set of undirected edges, and �G
V : V G → ΣV

and �G
E : EG → ΣE are labelling functions that assign nodes an edges to labels

from alphabets ΣV and ΣE . Both ΣV and ΣE contain a special label ε reserved
for dummy nodes and dummy edges. The graph edit distance λ(G,H) between
c© Springer International Publishing AG 2017
P. Foggia et al. (Eds.): GbRPR 2017, LNCS 10310, pp. 211–221, 2017.
DOI: 10.1007/978-3-319-58961-9 19

212 D.B. Blumenthal and J. Gamper

graphs G and H on common label alphabets ΣV and ΣE is defined as the mini-
mum cost of an edit path between G and H. An edit path is a sequence of labelled
graphs starting with G and ending at a graph that is isomorphic to H. Each
graph along the path can be obtained from its predecessor by applying one of
the following edit operations: Deleting or inserting an α-labelled edge, deleting
or inserting an isolated α-labelled node, changing a node’s or an edge’s label
from α to β �= α. Edit operations on nodes and edges come with associated edit
costs cV : ΣV × ΣV → IR and cE : ΣE × ΣE → IR, respectively. The cost of an
edit path is defined as the sum of the costs of its edit operations. If the cost of
each edit operation equals 1, we say that the edit costs are uniform. In many
scenarios, it is natural to consider non-uniform metric edit costs. For instance, if
the graphs model spacial objects and the node labels are Euclidean coordinates,
the cost cV (α, β) one has to pay for changing a node’s label from α to β should
probably be defined as the Euclidean distance between α and β.

It has been shown that, even for uniform edit costs, it is NP -hard to exactly
compute the graph edit distance [14]. Exact algorithms that, if applied to large
graphs, terminate within an acceptable amount of time are hence out of reach.
Consequently, a substantial part of research on both uniform [14–16] and non-
uniform [2–4,6,10,12,13] graph edit distance has focused on the task of devising
heuristics that compute lower and/or upper bounds for λ(G,H). Nonetheless,
efficient exact algorithms are still important. This is because some of the objects
that are readily modelled by labelled, undirected graphs — for instance, some
molecular compounds — induce graphs with very few nodes [9]. For these graphs,
queries of the kind “find all G ∈ G with λ(G,H) ≤ τ” can in principle be
answered. Of course, one would first use efficiently computable upper and lower
bounds in order to filter out candidates from G. However, for the surviving
candidates, λ(G,H) ≤ τ has to be verified by means of an exact algorithm.

The standard approach A�-GED [11] for exactly computing λ(G,H) carries
out a node-based best-first search in order to find the optimal edit path. It is
very slow and has huge memory requirements. Recently, three better performing
algorithms BLP-GED [8], DF-GED [1], and CSI GED [5] have been proposed. BLP-GED
formulates the problem of computing λ(G,H) as a binary linear program which
is solved by calling the commercial solver CPLEX. It has been found to be faster
and more memory-efficient than A�-GED. DF-GED carries out a node-based depth-
first search for finding the cheapest edit path. It has been found to be much more
memory-efficient and slightly faster than A�-GED. In contrast, CSI GED carries out
an edge-based depth-first search. It also has been found to be both faster and
much more memory-efficient than A�-GED. While A�-GED, BLP-GED, and DF-GED
cover non-uniform metric edit costs, CSI GED only works for uniform edit costs.
A direct comparison between BLP-GED, DF-GED, and CSI GED is lacking.

Our paper contains the following contributions: In Sect. 2, we present a speed-
up DF-GEDu of DF-GEDfor uniform edit costs. DF-GEDu exploits the fact that, in the
uniform case, a subroutine that DF-GED employs at each node of its search tree
can be implemented to run in linear rather than cubic time. In Sect. 3, we pro-
pose a generalisation CSI GEDnu of CSI GED that also covers non-uniform metric

Exact Computation of Graph Edit Distance 213

edit costs. This generalisation comes at the price of a slightly increased run-
time. However, this increase is very moderate, as the computational complexity
is increased only at the initialisation of CSI GEDnu and at the leafs of its search
tree. In Sect. 4, we experimentally evaluate the performance of the newly pro-
posed algorithms. The experiments show that, for uniform edit costs, our speed-
up DF-GEDu clearly outperforms DF-GED, while CSI GED and our generalisation
CSI GEDnu perform similarly. They also indicate that, neither for uniform nor for
non-uniform edit costs, there is a clear winner between DF-GEDu and DF-GED, on
the one side, and CSI GED and CSI GEDnu, on the other side. Finally, the exper-
iments suggest that CSI GEDnu is the most versatile algorithm: It covers both
uniform and non-uniform edit costs and runs very stable even on datasets where
other algorithms perform better. Section 5 concludes the paper.

2 DF-GEDu: Fast DF-GED for Uniform Edit Costs

In this section, we show how to speed-up the node-based depth-first search
DF-GED for uniform edit costs. We first summarise DF-GED and then describe
our speed-up DF-GEDu.

The Baseline Approach. DF-GED builds upon the following observation: If edit
costs are metric, then λ(G,H) can be defined equivalently as the minimum cost
of an edit path that is induced by a node map [6]. Let V G+|H| and V G+|H| be
the sets that are obtained from V G and V H by adding |V H | respectively |V G|
isolated dummy nodes. A node map is an injective partial function π : V G+|H| →
V H+|G|, whose domain contains V G and whose image contains V H . For a given
node map π, its induced edit path is defined as follows: If π maps a real node
i ∈ V G to a dummy node jε, i is deleted. Conversely, if a dummy node iε is
mapped to a real node k ∈ V H , k is inserted. If a real node i ∈ V G is mapped
to a real node k ∈ V H , i’s label is changed from �G

V (i) to �H
V (k). If ij ∈ EG but

π(i)π(j) /∈ EH , the edge ij is deleted. If kl ∈ EH but π−1(k)π−1(l) /∈ EG, the
edge kl is inserted. Finally, if an edge ij ∈ EG is mapped to an edge kl ∈ EH ,
ij’s label is changed from �G

E(ij) to �H
E (kl). The cost of the edit path induced by

π is denoted by g(π).
DF-GED performs a depth-first search on the set of all partial node maps

between V G+|H| and V H+|G| starting with the empty node map. The tree’s leafs
correspond to complete node maps and its inner nodes correspond to incomplete
node maps. DF-GED starts with sorting the nodes of V G such that evident nodes
will be processed first [3]. It also initialises an upper bound UB for λ(G,H),
using a fast sub-optimal heuristic [10]. For each visited node π of the search
tree, values g(π) and h(π) are maintained. The value g(π) denotes the cost of
the corresponding incomplete induced edit path, and h(π) is a lower bound for
the cost from π to a leaf, i.e., complete node map, in π’s down-shadow. Assume
that all nodes in V G up to node i have already been assigned by π. If i is the
last node in V G, π is extended to a complete node map by assigning a dummy
node to each of the yet unassigned nodes j ∈ V G, and UB is updated to g(π) if

214 D.B. Blumenthal and J. Gamper

g(π) < UB . Otherwise, π’s children π′ ∈ {π ∪ (i + 1, j) : j ∈ V H unassigned by
π} ∪ {π ∪ (i + 1, jε)} are considered in order of non-decreasing g(π′) + h(π′). If
g(π′) + h(π′) < UB , π is updated to π′ and the process iterates. Otherwise, the
branch rooted at π′ is pruned. At termination, UB is returned.

Note that, for each visited partial node map π, the lower bound h(π) has to
be recomputed. DF-GED computes h(π) as follows: For a given partial node map
π, let V G+|H|−π and V H+|G|−π be the sets of unassigned nodes and EG−π and
EH−π be the sets of unassigned edges filled up with dummy edges to ensure
|EG−π| = |EH−π|. Furthermore, let �G

V (V G+|H|−π), �H
V (V H+|G|−π), �G

E(EG−π),
and �H

E (EH−π) denote the multisets of labels of the unassigned nodes or edges
contained in these sets. Then h(π) is defined as h(π) = hV (π) + hE(π), where
hV (π) is the minimum cost of a linear assignment between �G

V (V G+|H|−π) and
�H
V (V H+|G|−π) with assignment costs cV , and hE(π) is the minimum cost of a

linear assignment between �G
E(EG−π) and �H

E (EH−π) with assignment costs cE .
Since a minimum linear assignment can be computed in cubic time, e.g., by using
the Hungarian Algorithm [7], the runtime complexity of computing h(π) is thus
cubic in n and m, where n = |V G| + |V H | and m = max{|EG|, |EH |}.

Our Speed-Up for Uniform Edit Costs. Our speed-up DF-GEDu builds upon
the observation that, for uniform edit cost, h(π) can be computed in linear time.
For showing this, we need the following lemma:

Lemma 1. Let A and B be two equally sized multisets and c : A × B → IR be
uniform in the sense that c(a, b) equals 1 if a �= b and 0 otherwise. Then the
cost of a minimum linear assignment between A and B for the assignment cost
c equals |A| − |A ∩ B|.

Proof. Let (ai)
|A|
i=1 and (bi)

|B|
i=1 be orderings of A and B such that, for all i ≤

|A ∩ B|, it holds that ai = bi. Note that this implies ai �= bi for all i > |A ∩ B|.
We define f : A → B as f(ai) = bi. It is easy to see that f is a minimum
linear assignment between A and B for the uniform assignment cost c. Its cost
is

∑
a∈A c(a, f(a)) =

∑|A∩B|
i=1 c(ai, bi) +

∑|A|
i=|A∩B|+1 c(ai, bi) = |A| − |A ∩ B|.
�

It has been shown that, if A and B are sorted multisets, the size of their
intersection can be computed in linear time [14]. Together with Lemma 1, this
immediately implies that, if cV and cE are uniform, hV (π) and hE(π) can be
computed in O(n log n) and O(m log m) time, respectively: We first sort the
labels of the nodes and the edges that have not been assigned by π in O(n log n)
and O(m log m) time, respectively. Then, we compute the intersection sizes of the
resulting sorted multisets in linear time. In order to further reduce the complexity
of the computation of hV (π) and hE(π), we proceed as follows. When initialising
DF-GED, we once sort �G

V (V G+|H|), �H
V (V H+|G|), �G

E(EG), and �H
E (EH), i.e., the

multisets containing the labels of all nodes and edges. For each L of the resulting
sorted multisets and each partial node map π, we maintain a boolean vector that
indicates if the node or edge with label Li is still unassigned by π. This vector
can be updated in constant additional time when updating the cost g(π) of the

Exact Computation of Graph Edit Distance 215

partial edit path induced by π. For each partial node map π, hV (π) and hE(π)
can then be computed in linear time by using a variation of the algorithm for
multiset intersection presented in [14].

3 CSI GEDnu: CSI GED for Non-uniform Metric Edit Costs

In this section, we show how to generalise the edge-based depth-first search
CSI GED to non-uniform metric edit costs. We first summarise CSI GED and then
describe our generalisation CSI GEDnu.

The Baseline Approach. While DF-GED enumerates the space of all node maps,
CSI GED considers valid edge maps φ :

−→
EG → ←→

EH ∪{eε}. The set
−→
EG contains one

arbitrarily oriented edge (i, j) for each undirected edge ij ∈ EG,
←→
EH contains

two directed edges (k, l) and (l, k) for each kl ∈ EH , and eε denotes a dummy
edge. An edge map φ induces a relation πφ on V G × V H : If φ(i, j) = (k, l), then
(i, k) ∈ πφ and (j, l) ∈ πφ. Since nodes cannot be assigned twice, φ is called valid
if and only if πφ is a partial injective function. A valid edge map φ also induces a
partial edit path between G and H: If φ(i, j) = (k, l), ij’s label is changed from
�G
E(ij) to �H

E (kl). If φ(i, j) = eε, the edge ij is deleted. If φ−1[{(k, l), (l, k)}] = ∅
holds for an edge kl ∈ EH , kl is inserted. And if πφ(i) = k, i’s label is changed
from �G

V (i) to �H
V (k). The cost of the partial edit path induced by φ is denoted by

g(φ). In general, φ’s induced edit path is incomplete, since the sets V G−πφ ⊆ V G

and V H−πφ ⊆ V H containing the nodes that are left unassigned by πφ are in
general non-empty. The following theorem constitutes the backbone of CSI GED:

Theorem 1 (Cf. Theorem 1 in [5]). If the edit costs cV and cE are uni-
form, then, for each node map π : V G+|H| → V H+|G|, there is a valid edge
map φ :

−→
EG → ←→

EH ∪ {eε} with g(π) ≥ g(φ) + Γ (V G−πφ , V H−πφ), where
Γ (V G−πφ , V H−πφ) = max{|V G−πφ |, |V H−πφ |} − |�G

V (V G−πφ) ∩ �H
V (V H−πφ)|.

Moreover, g(φ)+Γ (V G−πφ , V H−πφ) ≥ λ(G,H) holds for each valid each map φ.

Theorem 1 implies that, for uniform edit costs, one can compute the graph
edit distance by enumerating the space of all valid edge maps. To this purpose,
CSI GED carries out a depth-first search on the set of all valid partial edge maps
starting with the empty edge map. CSI GED maintains an upper bound for the
graph edit distance, which is initialised as UB = ∞, and considers the edges
er ∈ −→

EG in an arbitrary but fixed order. For each visited incomplete edge map
φ, the current induced cost g(φ) and a lower bound g′(φ) for the induced cost of
a complete edge map in φ’s down-shadow are maintained. Assume that all edges
in

−→
EG up to er have already been assigned by φ. If er is the last edge in

−→
EG, φ

is a complete valid edge map, and UB is updated to g(φ) + Γ (V G−πφ , V H−πφ)
if g(φ) + Γ (V G−πφ , V H−πφ) < UB . Otherwise, φ’s children φ′ ∈ {φ ∪ (er+1, e) :

e ∈ ←→
EH unassigned by φ and φ∪ (er+1, e) valid}∪{φ∪ (er+1, eε)} are considered

in order of non-decreasing C(er+1, e). C(er+1, e) is an estimate of the graph edit

216 D.B. Blumenthal and J. Gamper

distance under the constraint that the edge er+1 is mapped to e. Note that
the estimated cost matrix C only has to be computed once at initialisation. If
g′(φ′) < UB , φ is updated to φ′ and the process iterates. Otherwise, the branch
rooted at φ′ is pruned. At termination, UB is returned.

Our Generalisation to Non-uniform Metric Edit Costs. The key-
ingredient of our extension CSI GEDnu is the following generalised version of
Theorem 1:

Theorem 2. If the edit costs cV and cE are metric, then, for each node map
π : V G+|H| → V H+|G|, there is a valid edge map φ :

−→
EG → ←→

EH∪{eε} with g(π) ≥
g(φ)+Γ nu(V G−πφ , V H−πφ), where Γ nu(V G−πφ , V H−πφ) is defined as the cost of
a minimum linear assignment between �G

V (V G+|H|−πφ) and �H
V (V H+|G|−πφ) for

the assignment cost cV . Moreover, g(φ) + Γ nu(V G−πφ , V H−πφ) ≥ λ(G,H) holds
for each valid edge map φ.

Proof. Given a node map π, we construct a valid edge map φ as follows: Let
(i, j) ∈ −→

EG. If the corresponding undirected edge ij is preserved under π, i.e., if
π(i)π(j) ∈ EH , we define φ(i, j) = (π(i), π(j)). Otherwise, we set φ(i, j) = eε.
By construction, πφ equals the restriction of π to those real nodes i ∈ V G

that are incident with an edge that is preserved under π. This implies that
φ is valid. Next, we compare the complete edit path Pπ that is induced by π
and the partial edit path Pφ that is induced by φ. We observe that Pφ con-
tains all edge-deletions, -insertions, and -relabelings that appear in Pπ, as well
as all relabelings of nodes that are incident with a preserved edge. Apart from
these edit operations, Pπ also contains deletions and relabelings of nodes that
are not incident with a preserved edge, as well as node-insertions. These latter
operations can be viewed as a linear assignment between �G

V (V G+|H|−πφ) and
�H
V (V H+|G|−πφ) for the assignment cost cV , which, together with the observa-

tion above, implies g(π) ≥ g(φ) + Γ nu(V G−πφ , V H−πφ). For showing the second
part of the theorem, we fix a valid edge map φ. Let π′

φ be a minimum lin-
ear assignment between �G

V (V G+|H|−πφ) and �H
V (V H+|G|−πφ) for the assignment

cost cV . Then π = πφ ∪ π′
φ is a complete node map. By construction, we have

g(φ) + Γ nu(V G−πφ , V H−πφ) ≥ g(π) ≥ λ(G,H), where the last inequality follows
from the fact that, for metric edit costs, the graph edit distance can be defined
as the minimum cost of an edit path that is induced by a node map.
�

Theorem 2 indicates how to extend CSI GED to non-uniform metric edit costs:
We just have to replace all occurrences of Γ by Γ nu. As presented above, during
the depth-first search carried out by CSI GED, Γ has to be computed at the leafs
of the search tree. At initialisation, further computations of Γ are required for
computing the estimated cost matrix C and a constant that is required for the
computation of g′ (cf. [5] for these details of CSI GED). Note that computing
Γ requires linear time, whereas computing Γ nu needs cubic time (cf. Sect. 2).
This implies that our generalisation leads to an increased runtime of CSI GED.

Exact Computation of Graph Edit Distance 217

However, the increase is very moderate, as Γ nu does not need to be computed
at the inner nodes of the (exponentially large) search tree.

4 Empirical Evaluation

The aim of our experiments is to compare the performance of the algorithms
CSI GED, CSI GEDnu, DF-GED, and DF-GEDu for both uniform and non-uniform met-
ric edit costs. We implemented all algorithms in C++ making them employ the
same data structures and subroutines. All tests were carried out on a machine
with two Intel Xeon E5-2667 v3 processors with 8 cores each and 98 GB of main
memory running GNU/Linux. We conducted tests on the datasets Aids and Fin-
gerprints [9], which are widely used in the research community [5,10–16]. Both
datasets contain graphs with both node and edge labels for which non-uniform
metric relabelling costs cV and cE are naturally induced by the domain [10].
For defining non-uniform metric edit costs, we thus only had to specify the dele-
tion/insertion costs cV (α, ε) and cE(α, ε). This was done by setting cV (α, ε) =
max{cV (β, γ) | β, γ ∈ ΣV } for all α ∈ ΣV � {ε}, and cE(α, ε) = max{cE(β, γ) |
β, γ ∈ ΣE} for all α ∈ ΣE � {ε}, i.e., deleting and inserting nodes and edges
was defined to be as expensive as the most expensive relabelling operations. Since
both DF-GED and CSI GED fail to compute the exact graph edit distance for graphs
with more than 25 nodes within reasonable time [1,5], we excluded larger graphs
from Aids. Fingerprints only contains small graphs, anyway. We then used
the experimental setup suggested in [5]: For both considered datasets D and all
i ∈ {3, 6, . . . ,maxG∈D |G|}, we defined a size-constrained test-group Gi that con-
tains four randomly selected graphs G ∈ D satisfying |V G| = i ± 1. For each
tested algorithm ALGand each test-group Gi, all six pairwise comparisons between
graphs contained in Gi were carried out. We set a time limit of 1000 s and recorded
the metrics timeouts, t , and dev . Since pretesting showed that the main memory
demand of all tested algorithms is negligible, we did not record memory usage.

– timeouts(ALG, i): The number of timeouts on Gi, i.e., of pairwise comparisons
between graphs in Gi where ALGdid not finish within 1000 s.

– t(ALG, i): ALG’s average runtime across all six pairwise comparisons between
graphs in Gi.

– dev(ALG, i): ALG’s average percentual deviation from the best tested algorithm
as introduced in [1], i.e., the average of 100 · [UB(ALG)−UB�]/UB� across all
six pairwise comparisons between graphs in Gi. UB(ALG) denotes the value
of the upper bound UB maintained by ALGafter 1000 s and UB� is defined as
UB� = min{UB(ALG′) | ALG′ is tested algorithm}.

Figure 1 shows the outcomes of our experiments for uniform edit costs. We
observe that, on both datasets, our speed-up DF-GEDu outperforms DF-GED in
terms of all recorded metrics, while CSI GED and our generalisation CSI GEDnu

perform similarly. For instance, on Fingerprints, DF-GEDu is on average 4.75
times faster than DF-GED, while avgi t(CSI GEDnu, i)/t(CSI GED, i) ≈ 1.32. On
Aids, we have avgi t(DF-GED, i)/t(DF-GEDu, i) ≈ 2.05 and avgi t(CSI GEDnu, i)/

218 D.B. Blumenthal and J. Gamper

t(CSI GED, i) ≈ 1.31. These results are readily explained by the fact that DF-GED
has to carry out the cubic computation of the lower bound h at each node of
its search tree, whereas CSI GEDnu has to carry out the cubic computation of
Γ nu only at the leafs and at initialisation. Secondly, we see that, on Finger-
prints (cf. Fig. 1a), the node-based approaches DF-GEDu and DF-GED outperform
the edge-based algorithms CSI GED and CSI GEDnu, while, on Aids (cf. Fig. 1b),
the opposite is the case. Finally, we note that the edge-based algorithms are more
stable: While their deviation never exceeds 2%, the node-based approaches’ devi-
ation explodes on comparisons between large graphs contained in Aids.

3 ± 1 9 ± 1 15 ± 1 21 ± 1

10−4
10−3
10−2
10−1

100
101
102
103

runtime t in sec.

3 ± 1 9 ± 1 15 ± 1 21 ± 1

0

1

2

3

4

5

6

timeouts

3 ± 1 9 ± 1 15 ± 1 21 ± 1

0

1

2

3

deviation dev in %

CSI GEDnu CSI GED DF-GED DF-GEDu

(a) Results for the dataset Fingerprints.

3 ± 1 9 ± 1 15 ± 1 21 ± 1

10−4
10−3
10−2
10−1

100
101
102
103

number of nodes

3 ± 1 9 ± 1 15 ± 1 21 ± 1

0

1

2

3

4

5

6

number of nodes

3 ± 1 9 ± 1 15 ± 1 21 ± 1

0

50

100

number of nodes

(b) Results for the dataset Aids.

Fig. 1. Results for uniform edit costs.

The results for non-uniform edit metric costs are displayed in Fig. 2. Note
that the algorithms DF-GEDu and CSI GED do not appear in the evaluation,
as they are designed only for uniform edit costs. The first observation is
that, just like for uniform edit costs, the node-based approach DF-GED per-
forms better on Fingerprints (cf. Fig. 2a), while our edge-based generalisa-
tion CSI GEDnu performs better on Aids (cf. Fig. 2b). Secondly, we again note
that the edge-based algorithm runs much more stable than the node-based app-
roach: On Fingerprints, i.e., the dataset where DF-GED performs better, we
have maxi dev(CSI GEDnu, i) ≈ 1.48; whereas on Aids, i.e., the dataset where
CSI GEDnu performs better, we observe maxi dev(DF-GED, i) ≈ 47.97.

Exact Computation of Graph Edit Distance 219

3 ± 1 9 ± 1 15 ± 1 21 ± 1

10−4
10−3
10−2
10−1

100
101
102
103

runtime t in sec.

3 ± 1 9 ± 1 15 ± 1 21 ± 1

0

1

2

3

4

5

6

timeouts

3 ± 1 9 ± 1 15 ± 1 21 ± 1

0

0.5

1

1.5

deviation dev in %

CSI GEDnu DF-GED

(a) Results for the dataset Fingerprints.

3 ± 1 9 ± 1 15 ± 1 21 ± 1

10−4
10−3
10−2
10−1

100
101
102
103

number of nodes

3 ± 1 9 ± 1 15 ± 1 21 ± 1

0

1

2

3

4

5

6

number of nodes

3 ± 1 9 ± 1 15 ± 1 21 ± 1

0

20

40

number of nodes

(b) Results for the dataset Aids.

Fig. 2. Results for non-uniform metric edit costs.

5 Conclusions and Future Work

Our experiments show that, for uniform edit costs, our speed-up DF-GEDu always
outperforms DF-GED, while CSI GED and our generalisation CSI GEDnu perform
similarly. We also observed that, neither for uniform nor for non-uniform metric
edit costs, there is a clear winner between the node-based approaches DF-GEDu

and DF-GED, on the one side, and the edge-based algorithms CSI GED and
CSI GEDnu, on the other side. On Fingerprints, the former two algorithms
outperformed the latter in terms of runtime and timeouts, while on Aids, the
opposite outcome was observed. However, CSI GEDnu and CSI GED turned out
to be more stable than DF-GED and DF-GEDu: While CSI GEDnu’s and CSI GED’s
deviation is small across all test-runs, DF-GED’s and DF-GEDu’s deviation explodes
for comparisons between large graphs contained in the Aids dataset. A global
assessment of these observations indicates that, if there is no prior knowledge
about the dataset and the graph edit distance has to be computed for both
uniform and non-uniform metric edit costs, our generalisation CSI GEDnu is the
algorithm of choice. For future research, it might be interesting to individuate
graph-properties that indicate if the node-based approaches DF-GEDu and DF-GED
or the edge-based algorithms CSI GED and CSI GEDnu perform better. A meta-
algorithm could then first compute these properties and select node-based or
edge-based algorithms accordingly.

220 D.B. Blumenthal and J. Gamper

References

1. Abu-Aisheh, Z., Raveaux, R., Ramel, J.Y., Martineau, P.: An exact graph edit
distance algorithm for solving pattern recognition problems. In: Marsico, M.D.,
Figueiredo, M.A.T., Fred, A.L.N. (eds.) ICPRAM 2015, vol. 1, pp. 271–278.
SciTePress, Setúbal (2015)

2. Carletti, V., Gaüzère, B., Brun, L., Vento, M.: Approximate graph edit dis-
tance computation combining bipartite matching and exact neighborhood sub-
structure distance. In: Liu, C.-L., Luo, B., Kropatsch, W.G., Cheng, J. (eds.)
GbRPR 2015. LNCS, vol. 9069, pp. 188–197. Springer, Cham (2015). doi:10.1007/
978-3-319-18224-7 19

3. Ferrer, M., Serratosa, F., Riesen, K.: Learning heuristics to reduce the overestima-
tion of bipartite graph edit distance approximation. In: Perner, P. (ed.) MLDM
2015. LNCS (LNAI), vol. 9166, pp. 17–31. Springer, Cham (2015). doi:10.1007/
978-3-319-21024-7 2

4. Gaüzère, B., Bougleux, S., Riesen, K., Brun, L.: Approximate graph edit distance
guided by bipartite matching of bags of walks. In: Fränti, P., Brown, G., Loog,
M., Escolano, F., Pelillo, M. (eds.) S+SSPR 2014. LNCS, vol. 8621, pp. 73–82.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-44415-3 8

5. Gouda, K., Hassaan, M.: CSI GED: an efficient approach for graph edit similarity
computation. In: ICDE 2016, pp. 265–276. IEEE Computer Society (2016)

6. Justice, D., Hero, A.: A binary linear programming formulation of the graph edit
distance. IEEE Trans. Pattern Anal. Mach. Intell. 28(8), 1200–1214 (2006)

7. Kuhn, H.W.: The hungarian method for the assignment problem. Nav. Res. Logist.
Q. 2(1–2), 83–97 (1955)

8. Lerouge, J., Abu-Aisheh, Z., Raveaux, R., Héroux, P., Adam, S.: Exact graph edit
distance computation using a binary linear program. In: Robles-Kelly, A., Loog,
M., Biggio, B., Escolano, F., Wilson, R. (eds.) S+SSPR 2016. LNCS, vol. 10029,
pp. 485–495. Springer, Cham (2016). doi:10.1007/978-3-319-49055-7 43

9. Riesen, K., Bunke, H.: IAM graph database repository for graph based pattern
recognition and machine learning. In: da Vitoria Lobo, N., Kasparis, T., Roli, F.,
Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) S+SSPR
2008. LNCS, vol. 5342, pp. 287–297. Springer, Heidelberg (2008)

10. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of
bipartite graph matching. Image Vis. Comput. 27(7), 950–959 (2009)

11. Fankhauser, S., Riesen, K., Bunke, H.: Speeding up graph edit distance computa-
tion through fast bipartite matching. In: Jiang, X., Ferrer, M., Torsello, A. (eds.)
GbRPR 2011. LNCS, vol. 6658, pp. 102–111. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-20844-7 11

12. Riesen, K., Fischer, A., Bunke, H.: Computing upper and lower bounds of graph
edit distance in cubic time. In: Gayar, N., Schwenker, F., Suen, C. (eds.) ANNPR
2014. LNCS (LNAI), vol. 8774, pp. 129–140. Springer, Cham (2014). doi:10.1007/
978-3-319-11656-3 12

13. Serratosa, F.: Fast computation of bipartite graph matching. Pattern Recogn. Lett.
45, 244–250 (2014)

14. Zeng, Z., Tung, A.K.H., Wang, J., Feng, J., Zhou, L.: Comparing stars: on approx-
imating graph edit distance. PVLDB 2(1), 25–36 (2009)

15. Zhao, X., Xiao, C., Lin, X., Wang, W.: Efficient graph similarity joins with edit
distance constraints. In: Kementsietsidis, A., Salles, M.A.V. (eds.) ICDE 2012, pp.
834–845. IEEE Computer Society (2012)

http://dx.doi.org/10.1007/978-3-319-18224-7_19
http://dx.doi.org/10.1007/978-3-319-18224-7_19
http://dx.doi.org/10.1007/978-3-319-21024-7_2
http://dx.doi.org/10.1007/978-3-319-21024-7_2
http://dx.doi.org/10.1007/978-3-662-44415-3_8
http://dx.doi.org/10.1007/978-3-319-49055-7_43
http://dx.doi.org/10.1007/978-3-642-20844-7_11
http://dx.doi.org/10.1007/978-3-642-20844-7_11
http://dx.doi.org/10.1007/978-3-319-11656-3_12
http://dx.doi.org/10.1007/978-3-319-11656-3_12

Exact Computation of Graph Edit Distance 221

16. Zheng, W., Zou, L., Lian, X., Wang, D., Zhao, D.: Graph similarity search with
edit distance constraint in large graph databases. In: He, Q., Iyengar, A., Nejdl,
W., Pei, J., Rastogi, R. (eds.) CIKM 2013, pp. 1595–1600. ACM (2013)

Improved Graph Edit Distance Approximation
with Simulated Annealing

Kaspar Riesen1,3(B), Andreas Fischer2, and Horst Bunke3

1 Institute for Information Systems, University of Applied Sciences FHNW,
Riggenbachstrasse 16, 4600 Olten, Switzerland

kaspar.riesen@fhnw.ch
2 Department of Informatics,

University of Fribourg and HES-SO, 1700 Fribourg, Switzerland
andreas.fischer@unifr.ch

3 Institute of Computer Science and Applied Mathematics,
University of Bern, Neubrückstrasse 10, 3012 Bern, Switzerland

bunke@iam.ch

Abstract. The present paper is concerned with graph edit distance,
which is widely accepted as one of the most flexible graph dissimilarity
measures available. A recent algorithmic framework for approximating
the graph edit distance overcomes the major drawback of this distance
model, viz. its exponential time complexity. Yet, this particular approxi-
mation suffers from an overestimation of the true edit distance in general.
Overall aim of the present paper is to improve the distance quality of
this approximation by means of a post-processing search procedure. The
employed search procedure is based on the idea of simulated anneal-
ing, which turns out to be particularly suitable for complex optimization
problems. In an experimental evaluation on several graph data sets the
benefit of this extension is empirically confirmed.

1 Introduction

Due to their power and flexibility, graphs have found widespread application in
pattern recognition and related fields [1,2]. Prominent examples of a classes of
patterns, which can be formally represented in a more suitable and natural way
by means of graphs rather than with feature vectors, are chemical compounds [3],
binary executables [4], or networks [5].

The problem of computing graph dissimilarity is commonly solved via a par-
ticular graph matching algorithm. Graph matching has been the topic of numer-
ous studies in pattern recognition over the last decades [1,2], resulting in powerful
methods such as, for instance, spectral methods [6] or graph kernels [3]. Graph
edit distance [7], introduced about 30 years ago, is still one of the most flexible
graph distance models available. Yet, the run time of exact graph edit distance
computation is exponential in the number of nodes of the involved graphs, which
limits its applicability to rather small graphs.

In [8] the authors of the present paper introduced an algorithmic framework
for the approximation of graph edit distance in cubic time. Yet, one of the major
c© Springer International Publishing AG 2017
P. Foggia et al. (Eds.): GbRPR 2017, LNCS 10310, pp. 222–231, 2017.
DOI: 10.1007/978-3-319-58961-9 20

Improved Graph Edit Distance Approximation with Simulated Annealing 223

problems of this particular approximation framework is that it overestimates the
true edit distance quite often. The present paper is concerned with an extension
of this approximation that aims at making the distance approximation more
accurate. The idea of this extension is based on a post-processing procedure
that takes the result of the original approximation as a starting point for a
(non-exhaustive) search process.

Note that in [9] several search procedures for the improvement of the approx-
imation accuracy have already been proposed (amongst others, greedy forward
search procedures). The novelty of the present paper is twofold. First, it presents
a search strategy which takes into account both a lower and an upper bound on
the true edit distance (rather than only the upper bound as proposed in [9]).
Second, we make use of a different search method which is based on simulated
annealing [10,11].

The basic idea of simulated annealing is to explore the search space in a
random fashion and accepting solutions as long as they are getting better than
the previous solution. Yet, in contrast with pure greedy algorithms, simulated
annealing also accepts worse solutions with a certain probability (which slowly
decreases during run time). The property of accepting worse solutions is funda-
mental as this allows to escape local minima during the search process.

The remainder of this paper is organized as follows. Next, in Sect. 2, the
approximation framework for graph edit distance is reviewed. In Sect. 3, the novel
search procedure based on simulated annealing is described in detail. Eventually,
in Sect. 4, we empirically confirm the benefit of this extension on three graph
data sets. Finally, in Sect. 5, we conclude the paper.

2 Graph Edit Distance (GED)

2.1 Basic Definition of GED

A graph g is a four-tuple g = (V,E, μ, ν), where V is the finite set of nodes,
E ⊆ V × V is the set of edges, μ : V → LV is the node labeling function, and
ν : E → LE is the edge labeling function. The labels for both nodes and edges
can be given by the set of integers L = {1, 2, 3, . . .}, the vector space L = R

n,
a set of symbolic labels L = {α, β, γ, . . .}, or a combination of various label
alphabets from different domains. Unlabeled graphs are obtained by assigning
the same (empty) label ∅ to all nodes and edges, i.e. LV = LE = {∅}.

Given two graphs, g1 = (V1, E1, μ1, ν1) and g2 = (V2, E2, μ2, ν2), the basic
idea of graph edit distance (GED) [7] is to transform g1 into g2 using edit oper-
ations, viz. insertions, deletions, and substitutions of both nodes and edges. The
substitution of two nodes u and v is denoted by (u → v), the deletion of node
u by (u → ε), and the insertion of node v by (ε → v)1. A set of edit operations
λ(g1, g2) = {e1, . . . , ek} that completely transform g1 into g2 is called an edit
path between g1 and g2.

1 A similar notation is used for edges.

224 K. Riesen et al.

Let Υ (g1, g2) denote the set of all admissible edit paths between two graphs
g1 and g2. To find the most suitable edit path out of Υ (g1, g2), one introduces
a cost c(ei) for every edit operation ei, measuring the strength of the corre-
sponding operation. The idea of such a cost is to define whether or not an edit
operation represents a strong modification of the graph. The graph edit distance
dλmin between two graphs g1 = (V1, E1, μ1, ν1) and g2 = (V2, E2, μ2, ν2) is then
defined by

dλmin(g1, g2) = min
λ∈Υ (g1,g2)

∑

ei∈λ

c(ei).

2.2 Approximate Computation of GED

The problem of minimizing the graph edit distance can be reformulated as an
instance of a Quadratic Assignment Problem (QAP) which in turn belong to
the class of NP-complete problems. QAPs basically consist of a linear and a
quadratic term which have to be simultaneously optimized. In case of graph edit
distance, the linear term of QAPs can be used to model the sum of node edit
costs, while the latter is commonly used to represent the sum of edge edit costs
(see [12] for further details).

The graph edit distance approximation framework introduced in [8] reduces
the QAP of graph edit distance computation to an instance of a Linear Sum
Assignment Problem (LSAP). Similar to QAPs, LSAPs deal with the question
how the entities of two sets can be optimally assigned to each other. We formally
represent assignments by means of permutations (ϕ1, . . . , ϕn) of the integers
(1, 2, . . . , n). Such a permutation refers to the assignment where the i-th entity of
the first set is mapped to the entity at position ϕi in the second set (i = 1, . . . , n).

For solving LSAPs, which cope with a linear term only, a large number of
efficient algorithms exist (see [13] for an exhaustive survey). The time complexity
of the best performing exact algorithms for LSAPs is cubic in the size of the
problem. Hence, LSAPs can be – in contrast with QAPs – quite efficiently solved.

In order to reformulate the graph edit distance problem to an instance of an
LSAP, the use of a square (n + m) × (n + m) cost matrix C has been proposed
in [8]. This particular cost matrix represents the costs of all possible node substi-
tutions as well as all possible node deletions and node insertions. The framework
proposed in [8] optimizes the linear term of the LSAP stated on C.

By omitting the quadratic term during the assignment process, we neglect the
structural relationships between the nodes (i.e. the edges between the nodes). In
order to integrate knowledge about the graph structure, to each entry cij ∈ C,
i.e. to each cost of a node edit operation (ui → vj), the minimum sum of edge
edit operation costs, implied by the corresponding node operation, is added.
This particular encoding of the minimum matching cost arising from the local
edge structure enables the LSAP to consider information about the local, yet
not global, edge structure of a graph.

A minimum cost permutation (ϕ1, . . . , ϕn+m) derived on C = (cij) via LSAP
solving algorithm corresponds to the assignment of all nodes of g1 to all nodes of
g2. Assignment ψ includes edit operations of the form (ui → vj), (ui → ε), and

Improved Graph Edit Distance Approximation with Simulated Annealing 225

(ε → vj)2. Two different distance approximations can now be instantly derived
from this node assignment, viz. an upper and a lower bound on the true graph
edit distance.

ψ = ((u1 → vϕ1), (u2 → vϕ2), . . . , (um+n → vϕm+n
))

For the upper bound we observe that edit operations on edges are uniquely
defined by the edit operations on their adjacent nodes. That is, whether an
edge (u, v) is substituted with an existing edge from the other graph, deleted, or
inserted actually depends on the operations performed on both adjacent nodes
u and v (and whether or not there is an edge between the matching nodes of the
other graph). Hence, we can use the node assignment ψ to infer the complete
set of globally consistent edge edit operations. The sum of costs of the node
edit operations plus the costs of the implied edge operations gives us a first
approximation value for the graph edit distance. Note that this approximation
generally overestimates the true edit distance and actually builds an upper bound
on the exact distance [14]. Thus, we denote this approximation with dup(g1, g2),
or dup for short.

The second approximation, which actually provides a lower bound dlow on
the true edit distance [14], can be additionally inferred from the optimal assign-
ment (ϕ1, . . . , ϕn). Remember that every entry cij ∈ C reflects the cost of the
corresponding node edit operation (ui → vj) plus the minimal cost of editing the
incident edges of ui to the incident edges of vj . Hence, given an optimal permu-
tation (ϕ1, . . . , ϕ(n+m)), the minimal sum

∑(n+m)
i=1 ciϕi

can be subdivided into
costs for node edit operations and costs for edge edit operations. Since every edge
(ui, uj) is adjacent with two individual nodes ui and uj , every edge is considered
twice in two independent entries in the optimal sum

∑(n+m)
i=1 ciϕi

(viz. once in
entry ciϕi

and once in entry cjϕj
). In order to derive a suitable approximation

for the true edit distance, the cost of edge edit operations encoded in the sum∑(n+m)
i=1 ciϕi

has thus to be multiplied by 1
2 . In summary, we obtain a lower

bound on the true edit distance by summing up the cost of all node and half the
cost of all edge edit operations, given the optimal assignment.

It is important to note that the permutation (ϕ1, . . . , ϕn+m) can be arbitrar-
ily permuted and the resulting approximation dup remains an admissible upper
bound on the true edit distance. Yet, this does not account for the lower bound
as defined above. That is, dlow constitutes a lower bound on the exact edit dis-
tance, if, and only if, the underlying permutation (ϕ1, . . . , ϕn+m) refers to the
optimal solution of the LSAP stated on C.

3 Improving the Accuracy with Simulated Annealing

It has been observed that both bounds dup and dlow might introduce a
(substantial) approximation error compared to the exact edit distance dλmin .

2 Edit operations of the form (ε → ε) can be dismissed, of course.

226 K. Riesen et al.

The present work aims at improving the overall distance quality of the approxi-
mation by means of a post processing procedure which searches within the inter-
val [dup, dlow]. The proposed search procedure is based on simulated annealing,
which emulates a phenomenon in material science, viz. the annealing of solids.
Simulated annealing has been originally proposed to obtain a state of minimum
energy of a multiparticle physical system [10] and has later been adopted to solve
difficult optimization problems [11].

The basic idea of solving optimization problems with simulated annealing is
to start with a (random) initial solution and then randomly disturb it. As long
as the resulting solution is better than the previous one, it is accepted and used
in the following step. If the resulting solution is worse than the previous one,
it may still be accepted with a certain probability. This probability is typically
reciprocally proportional to the quality difference of the current and the previous
solution and proportional to the current temperature. Usually, one starts with
a high temperature in order to rather frequently allow deteriorations in the
first iterations. Yet, during the running process the temperature is gradually
decreased, and thus the probability that a worse solution is accepted becomes
smaller. This reflects the idea of initially sampling the search space in larger steps
and then gradually focusing on smaller, promising areas for the final solution.

The detailed algorithmic procedure for the improvement of the distance accu-
racy is given in Algorithm1. As input parameters the algorithm takes the cost
matrix C, the upper and lower bound of the true edit distance dup and dlow, the
maximum number of iterations N , the starting temperature T , as well as the
temperature decrease factor F .

On line 1 of Algorithm1 two counters (counter1 and counter2) are initialized
with zero. The former controls the number of iterations, while the latter is used
to compute the probability of resetting the current search to a new random
starting point (details follow below). Next, on line 2 and 3, a list with the first
(n + m) integers is initialized (in ascending order) and dmin as well as dcurrent
are initialized with the original upper bound dup.

On line 4 the main loop of the search procedure starts. In every iteration we
aim at improving, i.e. decreasing, the current upper bound dcurrent by means of
slightly changing the assignment ψ. In any case dcurrent remains a valid upper
bound on the exact edit distance. However, remember that the lower bound dlow
cannot be improved, i.e. increased, during the proposed search process.

The main loop of Algorithm 1 is repeated until the current upper bound
dcurrent becomes equal to dlow. In this case we have found the optimal edit
distance and can stop the procedure. Yet, this can only occur when the lower
bound is equal to the true edit distance, of course (i.e. when dlow = dλmin).
Otherwise, the maximum number of iterations N have to be carried out. In
either case, dmin, which corresponds to the minimal upper bound that has been
found during the search process, is finally returned by the algorithm.

In every iteration of the main loop a new candidate for the upper bound
is generated by means of the sub-procedure Candidate-Generator, which takes
ordercurrent and C as parameters (see line 6). This sub-procedure, outlined in

Improved Graph Edit Distance Approximation with Simulated Annealing 227

Algorithm 1. Compute-Improvement(C, dup, dlow, N, T, F)
1: counter1=0 and counter2=0
2: ordercurrent = (1, 2, . . . , (n + m))
3: dmin = dup and dcurrent = dup

4: while ((dmin − dlow) > 0 and counter1 < N) do
5: counter1++
6: (dcand, ordercand) = Candidate-Generator(ordercurrent, C)
7: Δ = |dcand − dcurrent|
8: select random number r from [0, 1]

9: if (dcand < dcurrent) or
(

r < exp
(

−Δ
Δavg×T

))
then

10: dcurrent = dcand

11: ordercurrent = ordercand

12: end if
13: if (dcurrent < dmin) then
14: dmin = dcurrent

15: counter2=0
16: else
17: counter2++
18: end if
19: select random number r from [0, 1]

20: if
(

r <
counter2

N

)
then

21: ordercurrent = random permutation of (1, 2, . . . , (n + m))
22: end if
23: T = F × T
24: end while

25: return dmin

Algorithm 2, randomly changes the current order on one position. Formally, the
integer at position r in ordercurrent is moved to the head of the current list (the
remaining parts remain unaltered). Next, the LSAP stated on C is solved with
a suboptimal assignment algorithm in O((n + m)2) time [15]. This algorithm
iterates through the rows of C and assigns every node to the minimum unused
node in the respective row in a greedy manner. By removing column ϕi in C it is
ensured that every column of the cost matrix is considered exactly once (i.e. ∀j
refers to available columns in C). This assignment procedure crucially depends
on the order in which the rows are processed (actually defined in ordercurrent).
Due to the (slight) change of the processing order introduced at the beginning of
Algorithm 2, an alternative assignment ψ and thus an alternative upper bound
can be expected. Finally, we return both the candidate processing order ordercand
and the corresponding distance approximation dcand to the main procedure.

Both ordercand and dcand are accepted when dcand is lower than dcurrent
(i.e. we observe an improvement of the current upper bound) – see line 9 to
12 of Algorithm 1. If the distance approximation dcand is greater than (or equal
to) the current upper bound dcurrent, it may still be accepted with probability

P = exp
(−Δ

Δavg × T

)
,

where Δ refers to the absolute difference between dcand and dcurrent, the normal-
izing factor Δavg corresponds to the running average of all values of Δ at that
time, and T is the current temperature. Note the influence of Δ and T on the
probability P . The greater the deterioration Δ, the smaller is P . Vice versa, the

228 K. Riesen et al.

greater the current temperature T , the greater is P (yet, note that temperature
T is gradually lowered by factor F at the end of every iteration – see line 23).

On line 13 to line 18 we verify whether the current distance dcurrent is smaller
than the minimal upper bound dmin that has been found so far. Whenever a new
minimal distance has been found, counter2 is reset to zero, otherwise counter2 is
increased by one (i.e. we count the number of iterations without improvements
of the minimal upper bound). This counter is eventually used to control whether
or not the current solution is reset to a new random starting point. Formally, the
probability that the current processing order (ordercurrent) is randomly disturbed
on all positions increases with counter2 (see line 20 to 22). The rationale behind
this resetting is that whenever the number of iterations without improvements
exceeds a certain limit, a restart of the search procedure from another point in
the search domain might be beneficial.

Algorithm 2. Candidate-Generator(order = (i(1), i(2), . . . , i((n+m))), C)
1: select random integer r from [0, (n + m)]
2: order = (i(r), i(1), i(2), . . . , i(r−1), i(r+1), . . . , i((n+m)))

3: ψ = {}
4: for i ∈ order do
5: ϕi = argmin

∀j
cij

6: Remove column ϕi from C
7: ψ = ψ ∪ {(ui → vϕi

)}
8: end for

9: return (dψ, order)

4 Experimental Evaluation

4.1 Experimental Setup

The experimental evaluation aims at investigating the benefit of the post process-
ing search procedure proposed in the present paper in a graph matching scenario.
In particular, we measure the approximation error and the computation time
on three different real world data sets from the IAM graph database reposi-
tory [16]3. The first graph data set involves graphs that represent molecular
compounds (AIDS). The graphs from the second and third data set represent
images of fingerprints (FP) and images of symbols from architectural and elec-
tronic drawings (GREC). For details on the graph extraction methods and the
graph characteristics we refer to [16]. From all data sets, subsets of 1,000 graphs
are randomly selected on which 1,000,000 pairwise graph edit distance compu-
tations are conducted.

Rather than choosing an appropriate starting temperature T it might be more
intuitive to define the probabilities Ps and Pe of accepting a worse solution at the

3 www.iam.unibe.ch/fki/databases/iam-graph-database.

www.iam.unibe.ch/fki/databases/iam-graph-database

Improved Graph Edit Distance Approximation with Simulated Annealing 229

beginning and at the end of the optimization process, respectively. Eventually,
one can define the starting and end temperature according to

Ts =
1

ln(Ps)
and Te =

1
ln(Pe)

.

The end temperature Te is merely used for a proper definition of the decrease
factor F for the temperature T(n+1) in iteration (n + 1) with respect to the
current temperature Tn. Formally, given the the total number of iterations N ,
the decrease factor F can be defined as

F =
(

Te

Ts

)1/(N−1)

.

In our evaluation we set the starting and end probability to Ps = 0.8 and Pe =
0.01 and we test the novel algorithm with N = 1000 and N = 10, 000 iterations
(referred to as BP-SA(1) and BP-SA(10), respectively).

4.2 Empirical Investigation

In Table 1 the mean computation time per graph pair (t) as well as the approx-
imation error, i.e. the degree of overestimation (o), is indicated for the different
edit distance algorithms on all data sets. Exact-GED and BP-GED refer to an
exact computation via tree search algorithm and the original approximation
framework presented in [8] (these two algorithms are the reference systems).
The first reference system is mainly used to control whether our novel method’s
computation time remains below the computation time of an exact algorithm,
while the second reference system is mainly used to investigate the impact of
the novel method on the approximation quality.

We first focus on the computation time. We note that BP-GED needs some
fractions of a millisecond on average for one graph matching. With the proposed
extension we observe an increase of the mean computation time to 1–3 ms and
10–25 ms on average with BP-SA(1) and BP-SA(10), respectively. Yet, compar-
ing these matching times with the matching times of the exact algorithm (which
takes 3–5 s per matching on average), the increase of the run time seems to be
acceptable.

Taking the sum of distances of BP-GED as reference point for the overestima-
tion (i.e. we take the sum of distances returned by BP-GED as 100%), we observe
reductions of the approximation error of approximately 77%, 98%, and 85% on
the three data sets (using BP-SA(1)). The approximation error can be further
reduced by increasing the number of iterations from N = 1000 to N = 10, 000.
That is, with 10,000 iterations we can report reductions of the approximation
error of approximately 89%, 99%, and 93%.

The substantial improvement of the approximation accuracy can be also
observed in the scatter plots in Fig. 1 (on the GREC data set4). These scatter

4 On the other data sets very similar plots can be observed.

230 K. Riesen et al.

Table 1. The mean run time for one matching (t) and overestimation error (o) using
a specific graph edit distance algorithm.

Data Set Algorithm
Exact-GED BP-GED BP-SA(1) BP-SA(10)
t o t o t o t o

AIDS 5.63 s 0.00 0.07 ms 100.00 2.95 ms 23.42 25.44 ms 10.82
FP 5.00 s 0.00 0.29 ms 100.00 1.24 ms 1.91 9.46 ms 0.44
GREC 3.10 s 0.00 0.20 ms 100.00 2.21 ms 14.23 17.84 ms 6.40

(a) BP-GED (b) BP-SA(1) (c) BP-SA(10)

Fig. 1. Exact (x-axis) vs. approximate (y-axis) graph edit distance on the GREC data
computed with (a) original framework BP-GED, (b) BP-SA(1), and (c) BP-SA(10).

plots give us a visual representation of the accuracy of our approximations. We
plot for each pair of graphs its exact (horizontal axis) and approximate (vertical
axis) distance value. The reduction of the overestimation using our proposed
extension is clearly observable and illustrates the power of BP-SA.

5 Conclusions

In the present paper we propose to improve the graph edit distance quality of a
recent approximation framework by means of simulated annealing. The basic idea
of this search process is to start with the upper- and lower bound on the true edit
distance and then randomly search in the neighborhood of the current solution.
As long as we improve the current distance, the new solution is accepted. Yet,
also a deterioration of the solution might be accepted by the algorithm with
a certain probability (that depends on both the level of deterioration and the
search progress). This allows the search procedure to overcome local minima and
possibly find the globally optimal solution. With an empirical investigation on
three data sets we observe that substantial improvements of the approximation
quality can be made with our novel extension.

Acknowledgements. This work has been supported by the Hasler Foundation
Switzerland.

Improved Graph Edit Distance Approximation with Simulated Annealing 231

References

1. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in
pattern recognition. Int. J. Pattern Recognit. Artif. Intell. 18(3), 265–298 (2004)

2. Foggia, P., Percannella, G., Vento, M.: Graph matching and learning in pattern
recognition in the last 10 years. Int. J. Pattern Recognit. Artif. Intell. 28(1),
1450001 (2014)

3. Gaüzère, B., Brun, L., Villemin, D.: Two new graphs kernels in chemoinformatics.
Pattern Recognit. Lett. 33(15), 2038–2047 (2012)

4. Kinable, J., Kostakis, O.: Malware classification based on call graph clustering. J.
Comput. Virol. 7(4), 233–245 (2011)

5. Dickinson, P.J., Bunke, H., Dadej, A., Kraetzl, M.: Matching graphs with unique
node labels. Pattern Anal. Appl. 7(3), 243–254 (2004)

6. Wilson, R.C., Hancock, E.R., Luo, B.: Pattern vectors from algebraic graph theory.
IEEE Trans. Pattern Anal. Mach. Intell. 27(7), 1112–1124 (2005)

7. Bunke, H., Allermann, G.: Inexact graph matching for structural pattern recogni-
tion. Pattern Recognit. Lett. 1, 245–253 (1983)

8. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of
bipartite graph matching. Image Vis. Comput. 27(4), 950–959 (2009)

9. Riesen, K., Bunke, H.: Improving bipartite graph edit distance approximation using
various search strategies. Pattern Recognit. 48(4), 1349–1363 (2015)

10. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equa-
tion of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087
(1953)

11. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 4598, 671–680 (1983)

12. Riesen, K.: Structural Pattern Recognition with Graph Edit Distance: Approxi-
mation Algorithms and Applications. Advances in Computer Vision and Pattern
Recognition. Springer, Heidelberg (2015)

13. Burkard, R., Dell’Amico, M., Martello, S.: Assignment Problems. Society for Indus-
trial and Applied Mathematics, Philadelphia (2009)

14. Riesen, K., Fischer, A., Bunke, H.: Estimating graph edit distance using lower and
upper bounds of bipartite approximations. Int. J. Pattern Recognit. Artif. Intell.
29(2), 1550011 (2015)

15. Riesen, K., Ferrer, M., Dornberger, R., Bunke, H.: Greedy graph edit distance. In:
Perner, P. (ed.) MLDM 2015. LNCS, vol. 9166, pp. 3–16. Springer, Cham (2015).
doi:10.1007/978-3-319-21024-7 1

16. Riesen, K., Bunke, H.: IAM graph database repository for graph based pattern
recognition and machine learning. In: da Vitoria Lobo, N., Kasparis, T., Roli,
F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) Struc-
tural, Syntactic, and Statistical Pattern Recognition. LNCS, vol. 5342, pp. 287–297.
Springer, Heidelberg (2008)

http://dx.doi.org/10.1007/978-3-319-21024-7_1

An Edit Distance Between Graph
Correspondences

Carlos Francisco Moreno-García1, Francesc Serratosa2(&),
and Xiaoyi Jiang3

1 School of Computer Science and Digital Media,
The Robert Gordon University, Aberdeen, UK

c.moreno-garcia@rgu.ac.uk
2 Department of Computer Science and Mathematics,

Universitat Rovira i Virgili, Tarragona, Spain
francesc.serratosa@urv.cat

3 Department of Mathematics and Computer Science,
University of Münster, Münster, Germany

xjiang@uni-muenster.de

Abstract. The Hamming Distance has been largely used to calculate the dis-
similarity of a pair of correspondences (also known as labellings or matchings)
between two structures (i.e. sets of points, strings or graphs). Although it has the
advantage of being simple in computation, it does not consider the structures
that the correspondences relate. In this paper, we propose a new distance
between a pair of graph correspondences based on the concept of the edit
distance, called Correspondence Edit Distance. This distance takes into con-
sideration not only the mapped elements of the correspondences, but also the
attributes on the nodes and edges of the graphs being mapped. In addition to its
definition, we also present an efficient procedure for computing the correspon-
dence edit distance in a special case. In the experimental validation, the results
delivered using the Correspondence Edit Distance are contrasted against the
ones of the Hamming Distance in a case of finding the weighted means between
a pair of graph correspondences.

Keywords: Graph correspondence � Hamming distance � Edit distance �
Weighted mean

1 Introduction

A graph correspondence (or simply referred as a correspondence) is defined as a
bijective function which designates a set of element-to-element mappings between the
nodes of a pair of graphs. It can be generated either manually or automatically, with the
purpose of finding the similarity between these two graphs. In the case that a

This research is supported by projectsTIN2016-77836-C2-1-R, ColRobTransp MINECO
DPI2016-78957-R AEI/FEDER EU and by Consejo Nacional de Ciencia y Tecnologías (CONACyT
México).

© Springer International Publishing AG 2017
P. Foggia et al. (Eds.): GbRPR 2017, LNCS 10310, pp. 232–241, 2017.
DOI: 10.1007/978-3-319-58961-9_21

correspondence is obtained through an automatic method; the process is most com-
monly done through an optimisation process called error-tolerant graph matching.
Several graph matching methods have been proposed in recent years [1–3] and
therefore, it is possible to generate more than one correspondence between a single pair
of graphs. In these scenarios, it may be interesting to know how different the generated
correspondences are with respect to a ground truth correspondence, or also to analyse
how different two correspondences are, and thus the requirement of a specifically
designed distance between correspondences. So far in literature, the most commonly
used distance between correspondences is the Hamming Distance (HD), which mea-
sures the number of mappings that are different between two correspondences. This
distance has been used either to measure the accuracy of graph matching algorithms
[4, 5] or to perform classification [6]. Nonetheless, the HD falls short on truly repre-
senting the dissimilarity between a pair of correspondences.

To justify this claim, consider the following toy example. Assume that three sep-
arate parties (human experts or automatic systems) deduce respectively three corre-
spondences f 1, f 2 and f 3 between two graphs G and G0 as shown in Fig. 1 (numbers in
nodes represent their attribute). Notice that if the HD is used to calculate the dissim-
ilarity between these correspondences, the result is HD f 1; f 2ð Þ ¼ 2 and HD f 1; f 3ð Þ ¼ 2,
implying that both f 2 and f 3 are equally dissimilar with respect to f 1. Nonetheless, if
we consider the cost of matching nodes on G and G0 as the Euclidean distance between
the attributes, then it can be seen that Cost f 1ð Þ ¼ 1þ 0þ 1þ 1 ¼ 3, Cost f 2ð Þ ¼
1þ 0þ 1þ 3 ¼ 5 and Cost f 3ð Þ ¼ 6þ 5þ 1þ 1 ¼ 13. Notice that the HD fails at
reflecting that the cost difference between f 1 and f 3 is larger than between f 1 and f 2.

The rest of the paper is structured as follows. The next section briefly introduces the
basic definitions. In Sect. 3, we present the newly proposed distance between a pair of
correspondences. In Sect. 4, we contrast the new distance against the Hamming dis-
tance in the case of finding the weighted mean correspondences. Finally, Sect. 5 is
reserved for conclusions and further work.

Fig. 1. A first example of two correspondences f 1 and f 2 between two graphs.

An Edit Distance Between Graph Correspondences 233

2 Basic Definitions

Let us represent an attributed graph as a four-tuple G ¼ ðV ;E; c; lÞ, where elements
vi 2 R represent the set of nodes, elements ei 2 E represent the set of edges, and c and
l are functions that assign a set of attributes to each node or edge respectively. Such
graph may contain a specific kind of nodes called “null nodes”, which are an additional
set of nodes which have differentiated attributes (i.e. distinct values to the range of the
original attribute values). Moreover, given a pair of graphs G ¼ ðV ;E; c; lÞ, and
G0 ¼ ðV 0;E0; c0; l0Þ, of the same order n (naturally or due to the presence of null nodes),
we define the set T of all possible correspondences, such that each correspondence in T
maps all nodes of G to nodes in G0, f : V ! V 0 in a bijective manner. Let f 1 and f 2

denote two arbitrarily selected correspondences in T . We can calculate how similar
these two correspondences are through the Hamming distance (HD) between f 1 and f 2

HD f 1; f 2
� � ¼

Xn
i¼1

1� @ v0a; v
0
b

� �� � ð1Þ

Where a and b are defined such that f 1 við Þ ¼ v0a and f 2 við Þ ¼ v0b, and @ is the
well-known Kronecker Delta function

@ðx; yÞ ¼ 0 if x 6¼ y
1 if x ¼ y

�
ð2Þ

One of the most widely used frameworks to evaluate the distance between two data
structures is the edit distance. This concept has been concretised in the literature as
string edit distance [7], tree edit distance [8] and graph edit distance [9–11]. The edit
distance is defined as the minimum amount of required operations that transform one
object into the other. To this end, several distortions or edit operations, consisting of
insertion, deletion and substitution of elements are defined. Edit cost functions are
introduced to quantitatively evaluate the edit operations. The basic idea is to assign a
penalty cost to each edit operation considering the amount of distortion that it intro-
duces in the transformation. Substitutions simply indicate element-to-element map-
pings. Deletions are transformed to assignments of a non-null element of the first
structure to a null element of the second structure. Insertions are transformed to
assignments of a non-null element of the second structure to a null element of the first
structure. Given two graphs G and G0 and a correspondence f between them, the edit
cost would be

Graph EditCost G;G
0
; f

� �
¼

X
vi2V

DV vi; v0a
� �þ

X
eij2E

DE eij; e
0
ab

� �
ð3Þ

where f við Þ ¼ v
0
a, f vj

� � ¼ v
0
b, and DV and DE the distances between nodes and edges

respectively. In the case that one of the nodes is a null node, then DV vi; v0a
� � ¼ Kv,

which is the assigned penalty cost for nodes. Similarly for edges, DE eij; e
0
ab

� � ¼ Ke in

234 C.F. Moreno-García et al.

case that one of the edges is a “null edge” (i.e. non-existing edge). If both nodes and
adjacent edges are null, these functions return a zero. In the case that both nodes or both
edges are non-null, these functions are application dependent. For instance, if the
attributes of the nodes and edges are in Rn, it is usual to apply the Euclidean distance or
the weighted Euclidean distance.

Thus, the graph edit distance (GED) is defined as the minimum cost under any
bijection in T

GED G;G0ð Þ ¼ min
f2T

Graph EditCost G;G0; fð Þf g ð4Þ

Several algorithms have been presented in the literature to compute the GED in an
exact or an approximate From this vast pool of options, one of the most widely used
algorithms to calculate the GED based on the local substructures [12–14] of the graphs
is the bipartite graph matching(BP) framework [15–19].

3 Correspondence Edit Distance

In this section, we present a first step towards a concretisation of an edit distance for
correspondences, which we have called Correspondence Edit Distance (CED). In
contrast to the HD, the CED aims to consider both the attributes and the local sub-
structure of the nodes mapped by the correspondences. Given G and G

0
and two cor-

respondences f 1 and f 2 between them, the elements to be considered by the CED must
be the elements within the correspondence (mappings) within f 1 and f 2. To that aim,
correspondences f 1 and f 2 are defined as sets of mappings f 1 ¼ m1

1; . . .;m
1
i ; . . .;m

1
n

� �
and f 2 ¼ m2

1; . . .;m
2
a; . . .;m

2
n

� �
, where m1

i ¼ vi; f 1ðviÞð Þ and m2
a ¼ va; f 2ðvaÞð Þ. This

means that we do not intend to compute the distance between G and G
0
, but rather the

distance between f 1 and f 2 while also considering the attributes of graphs G and G
0
.

Figure 2 (left) shows an illustrative example of our proposal using two graphs with
no edges, four nodes each (in both graphs, the fourth node is a null node marked as /
and /0) and two correspondences between them: f 1 (blue) composed of m1

1, m
1
2, m

1
3 and

m1
4, and f 2 (red) composed of m2

1, m
2
2, m

2
3 and m2

4. Notice that m
1
4 and m2

4 map the null
node of G, and thus will be onwards referred as “null mappings”. Figure 2 (right)
shows a bijective function h ¼ fh1; h2; h3; h4g (green) between f 1 and f 2. Then, the
cost of h is calculated as the sum of distances between all mapping-to-mapping rela-
tions in h. For this example, the cost yielded by the mappings in h1 is zero, given the
two mappings are the same. For the rest of cases, depending on the attributes and the
penalty costs Kv;Ke, the substitution costs would be calculated for the mappings
involved.

Notice that for the CED it is important to first define a bijective function h 2 H
between mappings, where H is the set of all possible bijections between a pair of
correspondences. Given such a bijective function h, the edit cost function
Corr EditCost is defined in terms of the distances between mappings

An Edit Distance Between Graph Correspondences 235

Corr EditCost G;G
0
; f 1; f 2; h

� �
¼

X
m1

i 2f 1
DM G;G

0
;m1

i ; hðm1
i

� �
Þ ð5Þ

where DM is the distance (cost) between two mappings related by h. Then, the CED is
defined in a similar way as the GED, that is

CED G;G
0
; f 1; f 2

� �
¼ min

h2H
Corr EditCost G;G

0
; f 1; f 2; h

� �n o
ð6Þ

Due to the combinatorial nature, the computation of CED is not easy in general. In
the following we thus consider a special case which enables an efficient CED com-
putation. If the aim of defining h is to relate the mappings which may resemble the
most, then the most straightforward solution is to set all mapping-to-mapping relations
in h as hj : m1

j ! m2
j . Figure 2 shows an example of this solution. In this case, the DM

(Eq. 5) becomes the distance between the local substructures DS of the nodes being
mapped, that is

DM G;G
0
;m1

i ;m
2
i

� �
¼ DS G

0
; f 1ðviÞ; f 2ðviÞ

� �
ð7Þ

Notice that a key difference between Graph EditCost (Eq. 3) and Corr EditCost
(Eq. 5) is that in the first case, the distance functions DV and DE are defined between
the nodes and adjacent edges of G and G0, while in the second case, the distance
between local substructures DS is obtained between nodes and adjacent edges on the
same graph G0. In other words, to compute DS it is only necessary to compute the
distance (cost) between the local substructure being mapped by f 1 in G

0
and the local

substructures being mapped by f 2 in the same G
0
.

For this special case, the computation of the CED is presented in Algorithm 1. If
the ith pair of mappings of f 1 and f 2 is equal, then it is excluded from the CED
calculation. Moreover, the exclusion also prevails for the cases that two null mappings
are paired, or that the two mappings refer to a null node (/) in G0.

Fig. 2. Left: Two graphs G and G
0
and two correspondences f 1 and f 2 between them. Right:

A bijective function h between f 1 and f 2. (Color figure online)

236 C.F. Moreno-García et al.

4 Validation

To demonstrate in the most practical way that the use of either the HD or the CED
produces different outcomes, we propose to use the scenario of calculating the
weighted mean between a pair of correspondences. The concept of the weighted mean
between two elements x and y has been largely used on data structures such as strings
[20], graphs [21] and data clusters [22] to find an element z such that

Dist x; yð Þ ¼ Dist x; zð ÞþDist y; zð Þ ð8Þ

In practice, the weighted mean is used to implement methods that approximate
towards the generalised median [23] of a set of strings [24–26], graphs [27], data
clusters [28] or correspondences [29], as well as to define frameworks such as the

Fig. 3. Correspondences f 1 (top) and f 2 (bottom) between the graphs. (Color figure online)

An Edit Distance Between Graph Correspondences 237

“consensus” calculation between a set of correspondences, where the aim is to find the
most accurate representative prototype from a pool of set-of-points correspondences or
graph correspondences [30–33].

Using the first two images of the “BOAT” sequence in the “Tarragona Rotation
Zoom” database [6], we randomly select 7 out of the 50 original nodes provided.
A node represents a salient point in the image and the normalised SURF features [34]
are its attribute. Afterwards, a graph is constructed using these nodes with edges
conformed through the Delaunay triangulation. Two correspondences f 1 and f 2 are
generated using two different matching algorithms. Notice that since graphs have been
enlarged with a null node each to create mutually bijective correspondences, both have
a total of eight mappings, with 7 of them being different one from the other (green
lines) and one being equal (red line). The result of this process is shown in Fig. 3.

Fig. 4. All weighted means between f 1 and f 2 excluding the first and last one.

238 C.F. Moreno-García et al.

To find all weighted mean correspondences, we have implemented an A� search
algorithm which generates all possible correspondences between the two graphs and
selects the ones that hold

Dist f 1; f 2
� � ¼ Dist f 1;�f

� �þDist f 2;�f
� � ð9Þ

Using either HD or CED, the algorithm obtains the same weighted means, but with
a different numerical value. For this test, the algorithm found the set of correspon-
dences W ¼ �f1; . . .�f12, as weighted means, where two of them are the original f1 and f2,
thus �f1 ¼ f 1 and �f12 ¼ f 2. Figure 4 shows the correspondences �f2; . . .�f11, in W.

Figure 5 shows the distance value using HD (+) or CED (O) (KV ¼ KE ¼ 0:2)
between each of the 12 weighted means towards f1, normalised by the distance between
f1 and f2, that is

ai ¼ Dist f1;�fið Þ
Dist f1; f2ð Þ ; 1� i� 12 ð10Þ

Notice that using the HD for the weighted means in W achieves seven different
distance values, with repetitions such as a3 ¼ a4 ¼ a5 ¼ 0:�3 and a8 ¼ a9 ¼ a10 ¼ 0:�6.
Conversely, all weighted means inW deliver different distance values when the CED is
used. The main conclusion drawn from this validation is that CED can deliver more
diverse distance values than HD since it considers the attributes of the nodes and edges
of the graphs being mapped. This characteristic allows to find better distributed
weighted means when intending to use algorithms that aim at approximating towards
the generalised median.

Fig. 5. Normalised distances of the 12 weighted means considering HD (+) and CED (O). The
horizontal axis represents the different weighted means �fi; 1� i� 12.

An Edit Distance Between Graph Correspondences 239

5 Conclusion and Further Work

In this paper, we present a first approach towards a new distance between a pair of
correspondences called Correspondence Edit Distance (CED), based on the
well-known concept of the edit distance. In contrast to the classic HD, CED is defined
through the attributes of the nodes and their local substructure from the graphs being
mapped. This characteristic allows more flexibility and versatility in cases such as
obtaining the weighted mean correspondences for their use in algorithms that approach
towards the generalised median or the consensus correspondence. In a near future, we
intend to present an algorithm to calculate the generalised median correspondence
through the use of the CED.

References

1. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching. Int. J. Pattern
Recognit. Artif. Intell. 18(3), 265–298 (2004)

2. Foggia, P., Percannella, G., Vento, M.: Graph matching and learning in pattern recognition
on the last ten years. Int. J. Pattern Recognit. Artif. Intell. 28(1), 1450001 (2014). (40 pages)

3. Vento, M.: A long trip in the charming world of graphs for pattern recognition. Pattern
Recognit. 48(2), 291–301 (2015)

4. Caetano, T.S., McAuley, J.J., Cheng, L., Le, Q.V., Smola, A.J.: Learning graph matching.
IEEE Trans. Pattern Anal. Mach. Intell. 31(6), 1048–1058 (2009)

5. Zhou, F., De la Torre, F.: Factorized graph matching. IEEE Trans. Pattern Anal. Mach.
Intell. 38(9), 1774–1789 (2016)

6. Moreno-García, C.F., Cortés, X., Serratosa, F.: A graph repository for learning error-tolerant
graph matching. In: Robles-Kelly, A., Loog, M., Biggio, B., Escolano, F., Wilson, R. (eds.)
S+SSPR 2016. LNCS, vol. 10029, pp. 519–529. Springer, Cham (2016). doi:10.1007/978-3-
319-49055-7_46

7. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. J. ACM 21(1), 168–
173 (1974)

8. Bille, P.: A survey on tree edit distance and related problems. Theoret. Comput. Sci. 337(9),
217–239 (2005)

9. Sanfeliu, A., Fu, K.S.: A distance measure between attributed relational graphs for pattern
recognition. IEEE Trans. Syst. Man Cybern. 13(3), 353–362 (1983)

10. Gao, X., Xiao, B., Tao, D., Li, X.: A survey of graph edit distance. Pattern Anal. Appl. 13
(1), 113–129 (2010)

11. Solé-Ribalta, A., Serratosa, F., Sanfeliu, A.: On the graph edit distance cost: properties and
applications. Int. J. Pattern Recognit Artif Intell. 26(5), 1260004 (2012). (24 pages)

12. Cortés, X., Serratosa, F., Moreno-García, C.F.: On the influence of node centralities on graph
edit distance for graph classification. In: Liu, C.-L., Luo, B., Kropatsch, W.G., Cheng,
J. (eds.) GbRPR 2015. LNCS, vol. 9069, pp. 231–241. Springer, Cham (2015). doi:10.1007/
978-3-319-18224-7_23

13. Serratosa, F., Cortés, X.: Graph edit distance: moving from global to local structure to solve
the graph-matching problem. Pattern Recognit. Lett. 65, 204–210 (2015)

240 C.F. Moreno-García et al.

http://dx.doi.org/10.1007/978-3-319-49055-7_46
http://dx.doi.org/10.1007/978-3-319-49055-7_46
http://dx.doi.org/10.1007/978-3-319-18224-7_23
http://dx.doi.org/10.1007/978-3-319-18224-7_23

14. Cortés, X., Serratosa, F., Riesen, K.: On the relevance of local neighbourhoods for greedy
graph edit distance. In: Robles-Kelly, A., Loog, M., Biggio, B., Escolano, F., Wilson, R.
(eds.) S+SSPR 2016. LNCS, vol. 10029, pp. 121–131. Springer, Cham (2016). doi:10.1007/
978-3-319-49055-7_11

15. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of bipartite
graph matching. Image Vis. Comput. 27(7), 950–959 (2009)

16. Serratosa, F.: Fast computation of bipartite graph matching. Pattern Recognit. Lett. 45, 244–
250 (2014)

17. Serratosa, F.: Computation of graph edit distance: reasoning about optimality and speed-up.
Image Vis. Comput. 40, 38–48 (2015)

18. Serratosa, F.: Speeding up fast bipartite graph matching trough a new cost matrix. Int.
J. Pattern Recognit. Artif. Intell. 29(2), 1550010 (2015). (17 pages)

19. Sanroma, G., Penate-Sanchez, A., Alquezar, R., Serratosa, F., Moreno-Noguer, F.,
Andrade-Cetto, J., Gonzalez, M.A.: MSClique: multiple structure discovery through the
maximum weighted clique problem. PLoS ONE 11(1), e0145846 (2016)

20. Bunke, H., Jiang, X., Abegglen, K., Kandel, A.: On the weighted mean of a pair of strings.
Pattern Anal. Appl. 5(1), 23–30 (2002)

21. Bunke, H., Günter, S.: Weighted mean of a pair of graphs. Computing 67(3), 209–224
(2001)

22. Franek, L., Jiang, X., He, C.: Weighted mean of a pair of clusterings. Pattern Anal. Appl. 17
(1), 153–166 (2014)

23. Jiang, X., Münger, A., Bunke, H.: On median graphs: properties, algorithms, and
applications. IEEE Trans. Pattern Anal. Mach. Intell. 23(10), 1144–1151 (2001)

24. Jiang, X., Abegglen, K., Bunke, H., Csirik, J.: Dynamic computation of generalised median
strings. Pattern Anal. Appl. 6(3), 185–193 (2003)

25. Jiang, X., Wentker, J., Ferrer, M.: Generalized median string computation by means of string
embedding in vector spaces. Pattern Recognit. Lett. 33(7), 842–852 (2012)

26. Franek, L., Jiang, X.: Evolutionary weighted mean based framework for generalized median
computation with application to strings. In: Gimel’farb, G., et al. (eds.) S+SSPR 2012. LNCS,
vol. 7626, pp. 70–78. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34166-3_8

27. Ferrer, M., Valveny, E., Serratosa, F., Riesen, K., Bunke, H.: Generalized median graph
computation by means of graph embedding in vector spaces. Pattern Recognit. 43(4), 1642–
1655 (2010)

28. Franek, L., Jiang, X.: Ensemble clustering by means of clustering embedding in vector
spaces. Pattern Recognit. 47(2), 833–842 (2014)

29. Moreno-García, C.F., Serratosa, F., Cortés, X.: Generalised median of a set of correspon-
dences based on the hamming distance. In: Robles-Kelly, A., Loog, M., Biggio, B.,
Escolano, F., Wilson, R. (eds.) S+SSPR 2016. LNCS, vol. 10029, pp. 507–518. Springer,
Cham (2016). doi:10.1007/978-3-319-49055-7_45

30. Moreno-García, C.F., Serratosa, F.: Correspondence consensus of two sets of correspon-
dences through optimisation functions. Pattern Anal. Appl. 20(1), 201–213 (2015)

31. Moreno-García, C.F., Serratosa, F.: Online learning the consensus of multiple correspon-
dences between sets. Knowl. Based Syst. 90, 49–57 (2015)

32. Moreno-García, C.F., Serratosa, F.: Consensus of multiple correspondences between sets of
elements. Comput. Vis. Image Underst. 142, 50–64 (2016)

33. Moreno-García, C.F., Serratosa, F.: Obtaining the consensus of multiple correspondences
between graphs through online learning. Pattern Recognit. Lett. (2016)

34. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput.
Vis. Image Underst. 110(3), 346–359 (2008)

An Edit Distance Between Graph Correspondences 241

http://dx.doi.org/10.1007/978-3-319-49055-7_11
http://dx.doi.org/10.1007/978-3-319-49055-7_11
http://dx.doi.org/10.1007/978-3-642-34166-3_8
http://dx.doi.org/10.1007/978-3-319-49055-7_45

A Survey on Applications of Bipartite Graph
Edit Distance

Michael Stauffer1,4(B), Thomas Tschachtli1, Andreas Fischer2,3,
and Kaspar Riesen1

1 Institute for Information Systems, University of Applied Sciences
and Arts Northwestern Switzerland, Riggenbachstr. 16, 4600 Olten, Switzerland

{michael.stauffer,kaspar.riesen}@fhnw.ch
2 Department of Informatics, University of Fribourg, 1700 Fribourg, Switzerland

andreas.fischer@unifr.ch
3 Institute for Complex Systems, University of Applied Sciences and Arts Western

Switzerland, 1705 Fribourg, Switzerland
4 Department of Informatics, University of Pretoria, Pretoria, South Africa

Abstract. About ten years ago, a novel graph edit distance framework
based on bipartite graph matching has been introduced. This particular
framework allows the approximation of graph edit distance in cubic time.
This, in turn, makes the concept of graph edit distance also applicable to
larger graphs. In the last decade the corresponding paper has been cited
more than 360 times. Besides various extensions from the methodological
point of view, we also observe a great variety of applications that make
use of the bipartite graph matching framework. The present paper aims
at giving a first survey on these applications stemming from six differ-
ent categories (which range from document analysis, over biometrics to
malware detection).

Keywords: Applications of bipartite graph matching · Graph-based
pattern representations

1 Introduction

Most pattern recognition applications are either based on statistical (i.e. vec-
torial) or structural data structures (i.e. strings, trees, or graphs). Graphs, in
contrast to feature vectors, are able to represent both entities and binary relation-
ships that might exist between subparts of these entities. Moreover, graphs can
adapt their size and complexity to the size and complexity of the actual pattern
to be modelled. Due to their representational power and flexibility, graphs have
found widespread application in pattern recognition and related fields. Promi-
nent examples of classes of patterns, which can be formally represented in a more
suitable and natural way by means of graphs rather than with feature vectors,
are chemical compounds [1], documents [2], proteins [3], and networks [4] (see [5]
for an early survey on applications of graphs in pattern recognition).

c© Springer International Publishing AG 2017
P. Foggia et al. (Eds.): GbRPR 2017, LNCS 10310, pp. 242–252, 2017.
DOI: 10.1007/978-3-319-58961-9 22

A Survey on Applications of Bipartite Graph Edit Distance 243

The availability of a dissimilarity or similarity measure is a basic require-
ment for pattern recognition and analysis. For graph dissimilarity computation,
commonly solved via a particular graph matching algorithm, no standard model
has been established to date. For an excellent and exhaustive review on graph
matching methods emerged during the last forty years, the reader is referred
to [6,7].

The present paper is concerned with the graph matching paradigm of graph
edit distance [8,9]. In fact, the concept of graph edit distance is considered as one
of the most flexible and versatile graph matching models available. Yet, the major
drawback of graph edit distance is its computational complexity that restricts
its applicability to graphs of rather small size. Graph edit distance belongs to
the family of Quadratic Assignment Problems (QAPs), which in turn belong to
the class of NP-complete problems. That is, an exact and efficient algorithm for
the graph edit distance problem can not be developed unless P = NP.

About ten years ago, an algorithmic framework, which allows the approxi-
mate computation of graph edit distance in a substantially faster way than tra-
ditional methods on general graphs, has been introduced [10,11]. The basic idea
of this approach, termed Bipartite Graph Edit Distance (BP), is to reduce the
difficult QAP of graph edit distance computation to a Linear Sum Assignment
Problem (LSAP). LSAPs basically constitute the problem of finding an optimal
assignment between two independent sets of entities. For LSAPs quite an arsenal
of efficient (i.e. polynomial) algorithms exist (see [12] for an exhaustive survey
on LSAP algorithms).

The graph dissimilarity framework BP presented in [10,11] resolves several
major issues that appear when graph edit distance is reformulated to an instance
of an LSAP. In a first step the graphs to be matched are subdivided into individ-
ual nodes including local structural information. Next, in step 2, an algorithm
solving the LSAP is employed in order to find an optimal assignment of the nodes
(plus local structures) of both graphs. Finally, in step 3, an approximate graph
edit distance, which is globally consistent with the underlying edge structures of
both graphs, is derived from the assignment of step 2.

The time complexity of this matching framework is cubic with respect to the
number of nodes of the involved graphs. Hence, BP is also applicable to larger
graphs. Due to this benefit, the underlying methodology has been employed in
a great variety of applications. The contribution of the present paper is to give
a first survey on these application fields and the corresponding methods that
actually use the BP framework.

2 Applications

In the last decade, the original paper (that describes BP for the first time) [10] as
well as its extended version [11] have been cited more than 360 times. Regarding
these citing papers we observe two main categories. The first category is con-
cerned with methodological extensions of BP. There are, for instance, papers that
use another basic cost model than proposed in the original framework [13,14],

244 M. Stauffer et al.

or works that aim at making the approximation faster [15,16], or more accu-
rate [17,18]. The second category of citing papers is concerned with differ-
ent applications of the approximate graph matching framework BP. The main
focus of the present paper is to review and categorise the papers of this second
category.

A taxonomy of the application fields and the corresponding papers (reviewed
in the following subsections) is given in Fig. 1. In all of these applications, graphs
are used to represent real-word (or abstract) objects or patterns, such as for
instance images, proteins, or business processes (to mention just a few examples).
Eventually, the BP framework is used to measure the (dis)similarity between
pairs of graph-based representations.

Applications of the Bipartite Graph Edit Distance (BP)

Image Analysis [19–24]

Handwritten Document Analysis [25–33]

Biometrics [34–40]

Bio- and Chemoinformatics [41–46]

Knowledge and Process Management [47–50]

Malware Detection [51–54]

Other Applications [55–58]

Fig. 1. Taxonomy of the reviewed application fields and papers that use the framework
for Bipartite Graph Edit Distance (BP).

2.1 Image Analysis

Image analysis is often based on measuring the similarity of objects represented
by 2D- or 3D-images. In the present scenario, graphs are used to represent these
images, while the dissimilarity between pairs of images is measured by BP. In
fact, many of the reviewed application fields presented below can be seen as
special case of image analysis. In the present section, however, we present appli-
cations that are not part of any of the following subsections.

In [19], for instance, graphs are used to represent envelope images. That is,
segmented regions are represented by nodes, while edges are inserted between

A Survey on Applications of Bipartite Graph Edit Distance 245

specific pairs of nodes. The dissimilarities returned by BP are finally used to build
a retrieval system. Another image analysis application is presented in [20]. In
this case lunar surface images are formalised with graphs, where nodes represent
SIFT-keypoints, while edges represent a Delaunay triangulation of the nodes.
The BP distances are eventually used for localisation tasks. In [21] graphs are
used to represent thinned images of archaeological structures (so called Kites) in
order to find similar structures in large aerial image databases. Finally, in [22] the
BP framework has been employed for shoe print classification, while in [23] the
BP algorithm is used for the computation of similarities between petroglyphs.

Graphs are also used for 3D-images analysis. In [24], for instance, graphs
are used to represent topological building structures by a so called Room Con-
nectivity Graph. To this end, nodes represent rooms and are labelled by three-
dimensional characteristics of the room. The edges are used to represent the
connectivity between rooms labelled by two-dimensional features (i.e. width and
height). BP is then employed in a retrieval scenario.

2.2 Handwritten Document Analysis

In recent years, handwritten (historical) documents have become increasingly
digital available. However, the accessibility to these digitised documents with
respect to browsing and searching is often limited. A first approach to bridge
this gap is presented in [25], which aims at the recognition of unconstrained
handwriting images. In this approach, nodes represent keypoints on the skele-
tonised word images, while edges represent strokes between keypoints. The BP
framework (which has been extended in this particular case) is eventually used
to define graph similarity features.

Keyword spotting allows to retrieve arbitrary keywords in handwritten doc-
uments. In case of graph-based keyword spotting, graphs commonly repre-
sent (parts of) segmented word images. The nodes of these graphs are, for
instance, based on keypoints [26–29] or prototype strokes [30,31], while edges
are commonly used to represent the connectivity between pairs of keypoints or
prototype strokes. The actual spotting for certain words in a document is then
based on dissimilarity computations between the query graph and document
graphs using BP.

The BP dissimilarity framework has not only been applied for spotting key-
words in historical documents, but also for clustering ancient ornamental ini-
tials (so called lettrines) [32]. In this particular case, each lettrine is represented
by a Region Adjacency Graph (RAG), where nodes are used to represent homoge-
nous regions. Finally, edges are inserted based on the adjacency of regions.

In [33] a graph database for ancient handwritten documents is proposed and
evaluated by means of a word classification experiment using BP. In particular,
on the basis of segmented word images, six different graph representation for-
malisms are proposed and compared with each other using the BP dissimilarity
model.

246 M. Stauffer et al.

2.3 Biometrics

Biometrics are often used to verify or identify an individual based on certain
biometrical characteristics (e.g. iris, fingerprint, or signature). In [34,35], retina
vessels are used as a biometric trait for user verification. Formally, nodes are
used to represent keypoints in skeletonised vessel images, while edges represent
the vessels between selected keypoints. Finally, BP is used to match the retina
vessel graphs [34] or to derive different graph similarity measures for building a
multiple classifier system [35]. In [36,37] a very similar approach is applied on
palm veins rather than retina vessels.

Moreover, graphs are also used to for fingerprint identification as introduced
in [38]. In particular, fingerprint images are segmented into core areas (i.e. areas
with same ridge direction), which are in turn represented by nodes, while edges
are inserted between adjacent areas. The resulting fingerprint graphs are then
classified using the distances derived from the BP framework.

In recent years, a trend towards high coverage of video surveillance can be
observed. Thus, person re-identification over serval camera scenes evolved to a
crucial task. In [39] a graph-based approach is presented for this task. To this
end, segmented camera images are represented by means of a RAG [32]. The
BP framework is then used in conjunction with a Laplacian-kernel in order to
re-identify persons.

Last but not least, BP is also used for on-line signature verification [40]. First,
the signatures are divided into segments which are in turn represented by graphs.
That is, nodes represent the sample points of a segment, while edges are inserted
between specific pairs of nodes. Finally, two signatures are compared with each
other by measuring a sum of BP dissimilarities between pairs of graphs.

2.4 Bio- and Chemoinformatics

Bio- and chemoinformatics combine approaches and techniques of a broad field
to analyse and interpret biological (i.e. DNA, protein sequences) or chemical
structures (i.e. molecules), respectively. An important application in the field
of bioinformatics is the analysis of deviations in biological structures to detect
cancer. In [41], for instance, graphs are used to represent tissue image of biolog-
ical cells. In this case nodes are used to represent tissue components, while their
spatial relationship is represented by edges. Subsequently, the BP framework is
used to classify graphs representing normal, low-grade and high-grade cancerous
tissue images. In [42], a similar approach is introduced to detect irregularities in
blood vessels rather than biological cells.

Chemoinformatics has become a well established field of research. Chemoin-
formatics is mainly concerned with the prediction of molecular properties by
means of informational techniques. The assumption that two similar molecules
should have similar activities and properties, is one of the major principles in
this particular field. Clearly, molecules can be readily described with labelled
graphs, where atoms are represented by nodes, while bonds between atoms (e.g.
single, double, triple, or aromatic) are represented by edges.

A Survey on Applications of Bipartite Graph Edit Distance 247

In [43,44] the approximation of graph edit distance by means of BP is used
to build a novel graph kernel for activity predictions of molecular compounds.
In [45] various graph embeddings methods and graph kernels, which are in part
built upon the BP framework, are evaluated in diverse chemoinformatics appli-
cations. Finally, in [46] an algorithm to compute single summary graphs from a
collection of molecule graphs has been proposed. The formulation of the cost of
a matching, which is actually used in this methodology, is based on BP.

2.5 Knowledge and Process Management

In the last decades, a trend towards digitalisation of business models can
be observed throughout most industries. Knowledge and process management
ensures a thorough information flow, which is actually needed to manage both
physical and intellectual resources. Nowadays, business processes are often
supported (or completely created) by means of web services. Thus, the re-
discoverability of composite web services (described by means of an OWL-S
process) is of high relevance and issued in [47]. To this end, a graph is used to
represent a composite process. Nodes represent process states and atomic ser-
vices, while directed edges are used to represent the control flow. By a similar
principle, business (sub)-processes rather than web services are retrieved in [48].
In particular, business process activities represent nodes, while directed edges
are used to represent the business process flow. Finally, the BP framework is
used to find similarities between business (sub)-processes.

Another application in this field is presented in [49], where semantical
enriched documents (so called Resource Description Framework (RDF) ontolo-
gies) are represented by graphs. To this end, document key concepts (e.g.
db:Bob Dylan, db:Folk Music) are represented by nodes, while directed edges
are used to represent semantic relations (e.g. dbp:genre) and labelled by their
importance. Finally, the similarity of documents is computed by an adapted BP
matching framework.

Based on (similar) RDF ontologies, an approach to estimate the execution
time of SPARQL (the RDF query language) queries is presented in [50]. In this
scenario the BP distances of an unknown query to a set of training queries are
used as query features.

2.6 Malware Detection

Anti-virus companies receive huge amounts of samples of potentially harmful
executables. This growing amount of data makes robust and automatic detection
of malware necessary.

The differentiation between malicious and original binary executables is actu-
ally another field where the framework BP has been extensively used. In [51–53],
for instance, malware detection based on comparisons of call graphs has been
proposed. In particular, the authors propose to represent malware samples as
call graphs such that certain variations of the malware can be generalised. This
approach enables the detection of structural similarities between samples in a

248 M. Stauffer et al.

robust way. For pairwise comparisons of these call graphs the approximation of
BP is employed.

In [54] a similar approach has been pursued for the detection of malware
by using weighted contextual API dependency graphs in conjunction with an
extended version of BP for graph comparison. Finally, in [51] BP has been
employed for the development of a polynomial time algorithm for calculating
the differences between two binaries.

2.7 Other Applications

A further application where the BP matching algorithm has been applied, is for
instance, the retrieval of stories (for storytelling) [55]. In this scenario, nodes
represent goals and actions, while edges represent time and order. Thus, similar
stories can be retrieved by means of the BP framework. In [56] a similar approach
is introduced to retrieve sketches used to define the building behaviour of non-
player characters in computer games. Finally, the BP framework is also used to
detect plagiarism. In particular, [57] and [58] BP is used to detect plagiarism in
Haskell programs and in textual documents, respectively.

3 Conclusion

In this paper we have reviewed about 40 different papers applying the BP match-
ing framework. The reviewed applications stem from different fields like image
analysis, handwritten document analysis, biometrics, bio- and chemoinformatics,
knowledge and process management, malware detection, and others. In future
work, we plan to extend this survey by integrating not only applications, but
also methodological extensions of the BP matching algorithm.

Acknowledgments. This work has been supported by the Hasler Foundation
Switzerland.

References

1. Mahé, P., Ueda, N., Akutsu, T., Perret, J.L., Vert, J.P.: Graph kernels for molecular
structure-activity relationship analysis with support vector machines. J. Chem. Inf.
Model. 45(4), 939–951 (2005)

2. Schenker, A.: Graph-Theoretic Techniques for Web Content Mining, vol. 62. World
Scientific, Singapore (2005)

3. Borgwardt, K.M., Kriegel, H.P., Vishwanathan, S.V.N., Schraudolph, N.N.: Graph
kernels for disease outcome prediction from protein-protein interaction networks.
In: Pacific Symposium on Biocomputing, pp. 4–15 (2007)

4. Dickinson, P.J., Bunke, H., Dadej, A., Kraetzl, M.: Matching graphs with unique
node labels. Pattern Anal. Appl. 7(3), 243–254 (2004)

5. Conte, D., Foggia, P., Sansone, C., Vento, M.: Graph matching applications in
pattern recognition and image processing. Int. Conf. Image Process. 3, 21–24 (2003)

A Survey on Applications of Bipartite Graph Edit Distance 249

6. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in
pattern recognition. Int. J. Pattern Recognit. Artif. Intell. 18(03), 265–298 (2004)

7. Foggia, P., Percannella, G., Vento, M.: Graph matching and learning in pattern
recognition in the last 10 Years. Int. J. Pattern Recognit. Artif. Intell. 28(01),
1450001 (2014)

8. Bunke, H., Allermann, G.: Inexact graph matching for structural pattern recogni-
tion. Pattern Recognit. Lett. 1(4), 245–253 (1983)

9. Sanfeliu, A., Sanfeliu, A., Fu, K.S.: A distance measure between attributed rela-
tional graphs for pattern recognition. IEEE Trans. Syst. Man. Cybern. 13(3), 353–
362 (1983)

10. Riesen, K., Neuhaus, M., Bunke, H.: Bipartite graph matching for computing the
edit distance of graphs. In: Escolano, F., Vento, M. (eds.) GbRPR 2007. LNCS,
vol. 4538, pp. 1–12. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72903-7 1

11. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of
bipartite graph matching. Image Vis. Comput. 27(7), 950–959 (2009)

12. Burkard, R., Dell’Amico, M., Martello, S.: Assignment Problems. SIAM, Philadel-
phia (2009)

13. Serratosa, F.: Fast computation of bipartite graph matching. Pattern Recognit.
Lett. 45(1), 244–250 (2014)

14. Gaüzère, B., Bougleux, S., Riesen, K., Brun, L.: Approximate graph edit distance
guided by bipartite matching of bags of walks. In: Fränti, P., Brown, G., Loog,
M., Escolano, F., Pelillo, M. (eds.) S+SSPR 2014. LNCS, vol. 8621, pp. 73–82.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-44415-3 8

15. Riesen, K., Ferrer, M., Bunke, H.: Approximate graph edit distance in quadratic
time. IEEE Trans. Comput. Biol. Bioinform. (99), 1 (2015). http://ieeexplore.ieee.
org/document/7264987/

16. Fischer, A., Riesen, K., Bunke, H.: Improved quadratic time approximation of
graph edit distance by combining Hausdorff matching and greedy assignment. Pat-
tern Recognit. Lett. 87, 55–62 (2017)

17. Riesen, K., Bunke, H.: Improving bipartite graph edit distance approximation using
various search strategies. Pattern Recognit. 48(4), 1349–1363 (2015)

18. Riesen, K., Fischer, A., Bunke, H.: Estimating graph edit distance using lower and
upper bounds of bipartite approximations. Int. J. Pattern Recognit. Artif. Intell.
29(02), 1550011 (2015)

19. Liu, L., Lu, Y., Suen, C.Y.: Retrieval of envelope images using graph matching.
In: International Conference on Document Analysis and Recognition, pp. 99–103
(2011)

20. Zhang, Y., Yang, X., Qiao, H., Liu, Z., Liu, C., Wang, B.: A graph matching based
key point correspondence method for lunar surface images. In: World Congress on
Intelligent Control and Automation, pp. 1825–1830 (2016)

21. Madi, K., Seba, H., Kheddouci, H., Barge, O.: A graph-based approach for Kite
recognition. Pattern Recognit. Lett. 87, 186–194 (2017)

22. Hasegawa, M., Tabbone, S.: A local adaptation of the histogram radon trans-
form descriptor: an application to a shoe print dataset. In: Gimel’farb, G., et al.
(eds.) SSPR/SPR 2012. LNCS, vol. 7626, pp. 675–683. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-34166-3 74

23. Seidl, M., Wieser, E., Zeppelzauer, M., Pinz, A., Breiteneder, C.: Graph-based
shape similarity of petroglyphs. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.)
ECCV 2014. LNCS, vol. 8925, pp. 133–148. Springer, Cham (2015). doi:10.1007/
978-3-319-16178-5 9

http://dx.doi.org/10.1007/978-3-540-72903-7_1
http://dx.doi.org/10.1007/978-3-662-44415-3_8
http://ieeexplore.ieee.org/document/7264987/
http://ieeexplore.ieee.org/document/7264987/
http://dx.doi.org/10.1007/978-3-642-34166-3_74
http://dx.doi.org/10.1007/978-3-319-16178-5_9
http://dx.doi.org/10.1007/978-3-319-16178-5_9

250 M. Stauffer et al.

24. Wessel, R., Blümel, I., Ochmann, S., Vock, R.: Efficient retrieval of 3D building
models using embeddings of attributed subgraphs. In: ACM Conference on Infor-
mation and Knowledge Management, pp. 2097–2100 (2011)

25. Fischer, A., Suen, C.Y., Frinken, V., Riesen, K., Bunke, H.: A fast matching algo-
rithm for graph-based handwriting recognition. In: Kropatsch, W.G., Artner, N.M.,
Haxhimusa, Y., Jiang, X. (eds.) GbRPR 2013. LNCS, vol. 7877, pp. 194–203.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-38221-5 21

26. Riesen, K., Brodić, D., Milivojević, Z.N., Maluckov, Č.A.: Graph based key-
word spotting in medieval slavic documents – a project outline. In: Ioannides,
M., Magnenat-Thalmann, N., Fink, E., Žarnić, R., Yen, A.-Y., Quak, E. (eds.)
EuroMed 2014. LNCS, vol. 8740, pp. 724–731. Springer, Cham (2014). doi:10.
1007/978-3-319-13695-0 74

27. Wang, P., Eglin, V., Garcia, C., Largeron, C., Llados, J., Fornes, A.: A novel
learning-free word spotting approach based on graph representation. In: Interna-
tional Workshop on Document Analysis Systems, pp. 207–211 (2014)

28. Wang, P., Eglin, V., Garcia, C., Largeron, C., Llados, J., Fornes, A.: A coarse-to-
fine word spotting approach for historical handwritten documents based on graph
embedding and graph edit distance. In: International Conference on Pattern Recog-
nition, pp. 3074–3079 (2014)

29. Stauffer, M., Fischer, A., Riesen, K.: Graph-based keyword spotting in historical
handwritten documents. In: Robles-Kelly, A., Loog, M., Biggio, B., Escolano, F.,
Wilson, R. (eds.) S+SSPR 2016. LNCS, vol. 10029, pp. 564–573. Springer, Cham
(2016). doi:10.1007/978-3-319-49055-7 50

30. Bui, Q.A., Visani, M., Mullot, R.: Unsupervised word spotting using a graph repre-
sentation based on invariants. In: International Conference on Document Analysis
and Recognition, pp. 616–620 (2015)

31. Riba, P., Llados, J., Fornes, A.: Handwritten word spotting by inexact match-
ing of grapheme graphs. In: International Conference on Document Analysis and
Recognition, pp. 781–785 (2015)

32. Jouili, S., Coustaty, M., Tabbone, S., Ogier, J.M.: NAVIDOMASS: structural-based
approaches towards handling historical documents. In: International Conference on
Pattern Recognition, pp. 946–949 (2010)

33. Stauffer, M., Fischer, A., Riesen, K.: A Novel Graph Database for Handwritten
Word Images. In: Robles-Kelly, A., Loog, M., Biggio, B., Escolano, F., Wilson,
R. (eds.) S+SSPR 2016. LNCS, vol. 10029, pp. 553–563. Springer, Cham (2016).
doi:10.1007/978-3-319-49055-7 49

34. Arakala, A., Davis, S.A., Horadam, K.J.: Retina features based on vessel graph
substructures. In: International Joint Conference on Biometrics, pp. 1–6 (2011)

35. Lajevardi, S.M., Arakala, A., Davis, S.A., Horadam, K.J.: Retina verification sys-
tem based on biometric graph matching. IEEE Trans. Image Process. 22(9), 3625–
3635 (2013)

36. Horadam, K.J., Arakala, A., Davis, S., Lajevardi, S.M.: Hand vein authentication
using biometric graph matching. IET Biom. 3(4), 302–313 (2014)

37. Arakala, A., Hao, H., Davis, S., Horadam, K.J.: The palm vein graph for bio-
metric authentication. In: Camp, O., Weippl, E., Bidan, C., Aı̈meur, E. (eds.)
ICISSP 2015. CCIS, vol. 576, pp. 199–218. Springer, Cham (2015). doi:10.1007/
978-3-319-27668-7 12

38. Choi, Y., Kim, G.: Graph-based fingerprint classification using orientation field in
core area. IEICE Electron. Express 7(17), 1303–1309 (2010)

http://dx.doi.org/10.1007/978-3-642-38221-5_21
http://dx.doi.org/10.1007/978-3-319-13695-0_74
http://dx.doi.org/10.1007/978-3-319-13695-0_74
http://dx.doi.org/10.1007/978-3-319-49055-7_50
http://dx.doi.org/10.1007/978-3-319-49055-7_49
http://dx.doi.org/10.1007/978-3-319-27668-7_12
http://dx.doi.org/10.1007/978-3-319-27668-7_12

A Survey on Applications of Bipartite Graph Edit Distance 251

39. Brun, L., Conte, D., Foggia, P., Vento, M.: A graph-kernel method for re-
identification. In: Kamel, M., Campilho, A. (eds.) ICIAR 2011. LNCS, vol. 6753,
pp. 173–182. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21593-3 18

40. Wang, K., Wang, Y., Zhang, Z.: On-line signature verification using segment-to-
segment graph matching. In: International Conference on Document Analysis and
Recognition, pp. 804–808 (2011)

41. Ozdemir, E., Gunduz-Demir, C.: A hybrid classification model for digital pathology
using structural and statistical pattern recognition. IEEE Trans. Med. Imaging
32(2), 474–483 (2013)

42. Núñez, J.M., Bernal, J., Ferrer, M., Vilariño, F.: Impact of keypoint detection on
graph-based characterization of blood vessels in colonoscopy videos. In: Luo, X.,
Reichl, T., Mirota, D., Soper, T. (eds.) CARE 2014. LNCS, vol. 8899, pp. 22–33.
Springer, Cham (2014). doi:10.1007/978-3-319-13410-9 3

43. Brun, L., Conte, D., Foggia, P., Vento, M., Villemin, D.: Symbolic learning vs.
graph kernels: an experimental comparison in a chemical application. In: East-
European Conference on Advances in Databases and Information Systems (2010)

44. Gaüzère, B., Brun, L., Villemin, D.: Two new graph kernels and applications
to chemoinformatics. In: Jiang, X., Ferrer, M., Torsello, A. (eds.) GbRPR
2011. LNCS, vol. 6658, pp. 112–121. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-20844-7 12

45. Gaüzère, B., Hasegawa, M., Brun, L., Tabbone, S.: Implicit and explicit graph
embedding: comparison of both approaches on chemoinformatics applications. In:
Gimel’farb, G., et al. (eds.) SSPR/SPR 2012. LNCS, vol. 7626, pp. 510–512.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-34166-3 56

46. Koop, D., Freire, J., Silva, C.T.: Visual summaries for graph collections. In: IEEE
Pacific Visualization Symposium, pp. 57–64 (2013)

47. Cuzzocrea, A., Coi, J.L., Fisichella, M., Skoutas, D.: Graph-based matching of
composite OWL-S services. In: Xu, J., Yu, G., Zhou, S., Unland, R. (eds.) DAS-
FAA 2011. LNCS, vol. 6637, pp. 28–39. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-20244-5 4

48. Niedermann, F.: Deep business optimization: concepts and architecture for an ana-
lytical business process optimization platform. Ph.D. thesis, University of Stuttgart
(2015)

49. Schuhmacher, M., Ponzetto, S.P.: Knowledge-based graph document modeling. In:
ACM International Conference on Web Search and Data Mining, New York, pp.
543–552 (2014)

50. Hasan, R., Gandon, F.: A machine learning approach to SPARQL query perfor-
mance prediction. In: IEEE/WIC/ACM International Joint Conferences on Web
Intelligence (WI) and Intelligent Agent Technologies (IAT), pp. 266–273 (2014)

51. Bourquin, M., King, A., Robbins, E.: BinSlayer: accurate comparison of binary
executables. In: ACM SIGPLAN on Program Protection and Reverse Engineering,
New York, pp.1–10 (2013)

52. Elhadi, A.A.E., Maarof, M.A., Osman, A.H.: Malware detection based on hybrid
signature behaviour application programming interface call graph. Am. J. Appl.
Sci. 9(3), 283–288 (2012)

53. Kostakis, O., Kinable, J., Mahmoudi, H., Mustonen, K.: Improved call graph com-
parison using simulated annealing. In: ACM Symposium on Applied Computing,
New York, pp. 1516–1523 (2011)

http://dx.doi.org/10.1007/978-3-642-21593-3_18
http://dx.doi.org/10.1007/978-3-319-13410-9_3
http://dx.doi.org/10.1007/978-3-642-20844-7_12
http://dx.doi.org/10.1007/978-3-642-20844-7_12
http://dx.doi.org/10.1007/978-3-642-34166-3_56
http://dx.doi.org/10.1007/978-3-642-20244-5_4
http://dx.doi.org/10.1007/978-3-642-20244-5_4

252 M. Stauffer et al.

54. Zhang, M., Duan, Y., Yin, H., Zhao, Z.: Semantics-aware android malware clas-
sification using weighted contextual api dependency graphs. In: ACM SIGSAC
Conference on Computer and Communications Security, New York, pp.1105–1116
(2014)

55. Paul, S.: Exploring story similarities using graph edit distance algorithms (2013)
56. Flórez-Puga, G., González-Calero, P.A., Jiménez-Dı́az, G., Dı́az-Agudo, B.: Sup-

porting sketch-based retrieval from a library of reusable behaviours. Expert Syst.
Appl. 40(2), 531–542 (2013)

57. Kammer, M., Bodlaender, H., Hage, J.: Plagiarism detection in Haskell programs
using call graph matching (2011)

58. Røkenes, H.D.: Graph-based natural language processing: graph edit distance
applied to the task of detecting plagiarism (2012)

Graphs and Information Theory

Minimising Entropy Changes in Dynamic
Network Evolution

Jianjia Wang(B), Richard C. Wilson, and Edwin R. Hancock

Department of Computer Science,
University of York, York YO10 5DD, UK

jw1157@york.ac.uk

Abstract. The modelling of time-varying network evolution is critical to
understanding the function of complex systems. The key to such models
is a variational principle. In this paper we explore how to use the Euler-
Lagrange equation to investigate the variation of entropy in time evolv-
ing networks. We commence from recent work where the von Neumman
entropy can be approximated using simple degree statistics, and show
that the changes in entropy in a network between different time epochs
are determined by correlations in the changes in degree statistics of nodes
connected by edges. Our variational principle is that the evolution of the
structure of the network minimises the change in entropy with time.
Using the Euler-Lagrange equation we develop a dynamic model for the
evolution of node degrees. We apply our model to a time sequence of
networks representing the evolution of stock prices on the New York
Stock Exchange (NYSE). Our model allows us to understand periods of
stability and instability in stock prices, and to predict how the degree
distribution evolves with time. We show that the framework presented
here provides allows accurate simulation of the time variation of degree
statistics, and also captures the topological variations that take place
when the structure of a network changes violently.

Keywords: Dynamic networks · Financial markets · Euler-Lagrange
equation

1 Introduction

One of the challenges presented by networks is how to model and predict their
evolution with time [1]. This problem can be addressed either at the local or
the global level. At the local level the aim is to model how the detailed connec-
tivity structure changes with time [2,6], while at the global level the aim is to
model the evolution of characteristics which capture the structure of network,
and allow different types of network to be distinguished from one to another.
Methods falling into the former category include generative models which allow
the detailed edge connectivity structure to be estimated from noisy or uncertain
input data [5]. The latter includes models of the degree distribution, and other
global properties such as edge density or structural community indices [3,4,8].
c© Springer International Publishing AG 2017
P. Foggia et al. (Eds.): GbRPR 2017, LNCS 10310, pp. 255–265, 2017.
DOI: 10.1007/978-3-319-58961-9 23

256 J. Wang et al.

However, in both cases a model is required to describe how vertices interact
through edges and how this interaction evolves with time. In the case of a gen-
erative model it is captured probabilistically and can be described by various
forms of regressive or autoregressive models [5,7]. In the latter case it is easier
to couch the model in terms of how different node degrees co-occur on the edges
connecting them [2]. Both models require a means fitting to data or of learning
their parameters.

In recent work we have addressed the former problem by detailing a gen-
erative model of graph-structure [5] and have shown how it can be applied to
network time series using an autoregressive model [7,9]. One of the key elements
for this model is a means of approximating the von Neumann entropy of both
directed and undirected graphs [13]. The von Neumann entropy is the Shannon
entropy associated with the re-scaled eigenvalues of the normalised Laplacian
matrix. We have shown how the Shannon entropy can be approximated using
a quadratic entropy, and this leads to simple expressions for the von Neumann
entropy in terms of the degrees of nodes forming edges. The fitting of the gen-
erative model to both statics and time vary data (in its autoregressive form)
involves the use of a description length criterion [1,7]. The criterion is two-part,
with a data likelihood terms modelling goodness of fit and the approximate von
Neumann entropy controlling the complexity of the fitted structure.

The aim in this paper is to explore whether our model of network entropy
can be extended to model the way in which the node degree distribution evolves
with time, taking into account the effect of degree correlations caused by the
degree structure of edges. According to our model of the von Neumann entropy,
those edges that connect high degree vertices have the lowest entropy, while those
connecting low degree vertices have the highest entropy [2]. Moreover the change
in entropy of an edge between different epochs depends on the product of the
degree of one vertex, and the degree change of the second vertex. In other words
the change in entropy depends on the structure of the degree change correlations.

We exploit this property by modelling the evolution if network structure using
the Euler-Lagrange equations. Our variational principle is that the evolution
minimises changes in entropy. Using our approximation of the von Neumann
entropy this leads to update equations for the node degree which include the
effects of correlations induced by the edges of the network. It is effectively a
type of diffusion process that models how the degree distribution propagates
across the network. In fact, it has elements similar to preferential attachment
[11], since it favours edges that connect high degree nodes [12].

The remainder of the paper is organized as follows. In Sect. 2, we provide
a detailed analysis of entropy changes in dynamic networks using the Euler-
Lagrange equation. In Sect. 3, we apply the resulting characterization to the
real-world time-varying networks, i.e. New York Stock Exchange (NYSE) data.
Finally, we conclude the paper and make suggestions for future work.

Minimising Entropy Changes in Dynamic Network Evolution 257

2 Variational Principle on Graphs

2.1 Preliminaries

Let G(V,E) be an undirected graph with node set V and edge set E ⊆ V × V ,
and let |V | represent the total number of nodes on graph G(V,E). The adjacency
matrix A of a graph is defined as

A =

{
0 if (u, v) ∈ E

1 otherwise.
(1)

Then the degree of node u is du =
∑

v∈V Auv.
The normalized Laplacian matrix L̃ of the graph G is defined as L̃ =

D− 1
2 LD

1
2 , where L = D − A is the Laplacian matrix and D denotes the degree

diagonal matrix whose elements are given by D(u, u) = du and zeros elsewhere.
The element-wise expression of L̃ is

L̃uv =

⎧⎪⎨
⎪⎩

1 if u = v and du �= 0
− 1√

dudv
if u �= v and (u, v) ∈ E

0 otherwise.

(2)

2.2 Network Entropy

Severini et al. [14] import ideas from quantum mechanics to the graph domain to
define the density matrix with normalized Laplacian. A density matrix can be
obtained by scaling the combinatorial Laplacian matrix by the reciprocal of
the number of nodes in the graph, i.e. ρ = L̃

|V | . This opens up the possibility of
computing the von Neumann entropy to characterize a graph. The von Neumann
entropy is defined as the Shannon entropy associated with the density matrix
eigenvalues. It is given in terms of the eigenvalues λ1,, λV of the density
matrix ρ,

S = −Tr(ρ log ρ) = −
|V |∑
i=1

λ̂i

|V | log
λ̂i

|V | (3)

Recently, Han et al. [13] have shown how to approximate the calculation of
von Neumann entropy in terms of simple degree statistics. Their approximation
allows the cubic complexity of computing the von Neumann entropy from the
Laplacian spectrum, to be reduced to one of quadratic complexity. The idea is
to approximate the Shannon entropy ρ log ρ by the quadratic entropy ρ(1 − ρ).
The resulting approximation to the von Neumann entropy is

S = 1 − 1
|V | − 1

|V |2
∑

(u,v)∈E

1
dudv

(4)

258 J. Wang et al.

This expression for the von Neumann entropy allows the approximate entropy
of the network to be efficiently computed. It has been shown to be an effective
tool for characterizing structural properties of networks, with extremal values
for cycle and fully connected graphs.

Suppose that two undirected graphs Gt = (Vt, Et) and Gt+1 = (Vt+1, Et+1)
represent the structure of a time-varying complex network at two consecutive
epochs t and t+1 respectively. Then the change of von Neumann entropy between
two undirected graphs can be written

ΔS = S(Gt+1) − S(Gt) =
1

|V |2
∑

(u,v)∈E,E′

duΔv + dvΔu + ΔuΔv

du(du + Δu)dv(dv + Δv)
(5)

where Δu is the change of degree for node u, i.e., Δu = dt+1
u −dtu; Δv is similarly

defined as the change of degree for node v, i.e., Δv = dt+1
v − dtv. The entropy

change is sensitive to degree correlations for pairs of nodes connected by an edge.

2.3 Euler-Lagrange Equation

We would like to understand the dynamics of a network which evolves so as to
minimise this entropy change between different sequential epochs. To do this
we cast the evolution process into a variational setting of the Euler-Lagrange
equation, and consider the system which optimises the functional

E(q) =
∫ t2

t1

G [t, q(t), q̇(t)] dt. (6)

where t is time, q(t) is the variable of the system as a function of time, and q̇(t)
is the time derivative of q(t). Then, the Euler-Lagrange equation is given by

∂G
∂q

[t, q(t), q̇(t)] − d

dt

∂G
∂q̇

[t, q(t), q̇(t)] = 0 (7)

Here we consider an evolution which changes just the edge connectivity struc-
ture of the vertices, and does not change the number of vertices in the graph.
As a result, the factors 1− 1

|V | and 1
|V |2 are constants and do not affect the solu-

tion of the Euler-Lagrange equation. We aim to study evolutions that minimise
the entropy, i.e. minimise the entropy change between time intervals. Then we
apply the Euler-Lagrange equation with G = ΔS the entropy change in Eq. (5)
to obtain

G [t, u(t),Δu(t), v(t),Δv(t)] =
duΔv + dvΔu + ΔuΔv

(du + Δu)(dv + Δv)
(8)

For the vertex indexed u with degree du the Euler-Lagrange equation in
Eq. (7) gives,

∂G
∂du

− d

dt

∂G
∂Δu

= 0 (9)

Minimising Entropy Changes in Dynamic Network Evolution 259

First, solving for the partial derivative of the degree du, we find

∂G
∂du

= − dvΔu

(du + Δu)2(dv + Δv)
(10)

Then computing the partial time derivative to the first order degree difference
Δu, we obtain

∂G
∂Δu

=
dvdu

(du + Δu)2(dv + Δv)
(11)

Substituting Eqs. (10) and (11) into Eq. (9), the solution for Euler-Lagrange
equation in terms of node degree difference is

duΔv = −2dvΔu (12)

As a result, solving the Euler-Lagrange equation which minimises the change
in entropy over time gives a relationship between the degree changes of nodes
connected by an edge. Since we are concerned with understanding how network
structure changes with time, the solution of the Euler-Lagrange equation pro-
vides a way of modelling the effects of these structural change on the degree
distribution across nodes in the network. The update equation for the node
degree is at time epochs t and t + 1 is

dt+1
u = dtu +

∑
v∼u

Δ̇vΔt = dtu +
∑
v∼u

(
Δu

Δt

)
v

Δt (13)

In other words by summing over all edges connected to node u, we increment the
degree at node u due to changes associated with the degree correlations on the
set of connecting edges. We then leverage the solution of the Lagrange equation
to simplify the degree update equation, to give the result

dt+1
u = dtu −

∑
v∼u

(
du
2dv

)
Δv (14)

This can be viewed as a type of diffusion process, which updates edge degree
so as to satisfy constraints on degree change correlation so as to minimise the
entropy change between time epochs. Specifically, the update of degree reflects
the effects of correlated degree changes between nodes connected by an edge.

3 Experimental Evaluation

3.1 Data Set

We test our method on data provided by the New York Stock Exchange. This
dataset consists of the daily prices of 3,799 stocks traded continuously on the New
York Stock Exchange over 6000 trading days. The stock prices were obtained
from the Yahoo! financial database [15]. A total of 347 stock were selected from

260 J. Wang et al.

this set, for which historical stock prices from January 1986 to February 2011
are available. In our network representation the nodes correspond to stock and
the edges indicate that there is a statistical similarity between the time series
associated to the stock closing prices [10].

To establish the edge-structure of the network we use a time window of 20
days is to compute the cross-correlation coefficients between the time-series for
each pair of stock. Connections are created between a pair of stock if the cross-
correlation exceeds an empirically determined threshold. In our experiments we
set the correlation co-efficient threshold to the value to ξ = 0.85. This yields a
time-varying stock market network with a fixed number of 347 nodes and varying
edge structure for each of 6,000 trading days. The edges of the network therefore
represent how the closing prices of the stock follow each other.

3.2 Network Dynamics

Using the degree update equation derived from the principle of minimum entropy
change and the Euler-Lagrange equation, we aim to simulate the behavior of
the financial market networks. Here we focus on how the degree distribution
evolves with time. We compare the simulated structure and the observed network
properties, and provide a way to identify the consequence of structural variations
in time-evolving networks.

0 50 100 150 200 250 300 350
degree

0

50

100

150

200

250

300

350

cu
m

ul
at

iv
e

de
gr

ee
 d

is
tr

ib
ut

io
n

Before/After Black Monday

Orignial Network Degree
Simulated Network Degree

0 50 100 150 200 250 300 350
degree

0

50

100

150

200

250

300

350

cu
m

ul
at

iv
e

de
gr

ee
 d

is
tr

ib
ut

io
n

During Black Monday

Orignial Network Degree
Simulated Network Degree

Fig. 1. Degree distribution of original networks and simulated networks before/after
Black Monday (left) and during Black Monday (right). Around the Black Monday, the
network is highly connected with large number of nodes having high degree. During
Black Monday, the network is becomes disconnected and most vertices are disjoint,
which results in the degree distribution following the power-law.

Our procedure is as follows. We select a network at a particular epoch from
the time series, and simulate its evolution using the degree update equation in
Eq. 14. Then we compare the degree distributions for the real network sampled
at a subsequent time and the simulation of the degree distribution after an
identical elapsed time. One of the most salient events in the NYSE is Black
Monday. This event occurred on October 19, 1987, during which the world stock
markets crashed, dropping in value in a very short time. The crash began in

Minimising Entropy Changes in Dynamic Network Evolution 261

(A) Before Black Monday (B) During Black Monday (C) After Black Monday

（a）Before Black Monday （b）During Black Monday (c) After Black Monday

O
rig

in
al

 N
et

w
or

ks
Si

m
ul

at
ed

 N
et

w
or

ks

Fig. 2. The first order von Neumann entropy difference of the NYSE networks during
and around the Black Monday. We show a visualization of the original and simulated
networks at three specific days in Black Monday financial crisis. The red line corre-
sponds to the entropy difference for the original networks (A-C), and the blue line
represents the simulated networks with Euler-Lagrange equation (a-c). (Color figure
online)

Hong Kong and spread west to Europe, hitting the United States after other
markets had already declined by a significant margin.

We compare the prediction of consecutive time steps at different epochs,
before/after and during the Black Monday crisis. The results are shown in Fig. 1.
The most obvious feature is that the degree distribution for the networks before
and after Black Monday is quite different to that during the crisis period. Dur-
ing the Black Monday crisis, large number of vertices in the network are discon-
nected. This results in a power-law degree distribution. However, for time epochs

262 J. Wang et al.

before and after Black Monday, the disconnected nodes recover their interactions
to one another. This increases the number of connections among vertices, and
causes departures from the power law distribution. This phenomenon is also
observed in the networks simulated networks using our degree update equation.
This is an important result that shows empirically that the simulated networks
reflect the structural properties of the original networks from which they are
generated. Moreover, our dynamic model can reproduce the topological changes
that occur during the financial crisis.

In Fig. 2, we show network visualizations corresponding to three different
instants of time around the Black Monday crisis. In order to compare the original
and simulated network structures, we show the connected components (commu-
nity structures) at three time epochs. As the network approaches the crisis, the
network structure changes violently, and the community structure substantially
vanishes. Only a single highly connected cluster at the center of the network
persists. These features can be observed in both the original and simulated net-
works. At the crisis epoch, most stocks are disconnected, meaning that the prices
evolve independently without strong correlations to the remaining stock. Dur-
ing the crisis, the persistent connected component exhibits a more homogeneous
structure as shown in Fig. 2. After the crisis, the network preserves most of its
existing community structure and begins to reconnect again. This result also
agrees with findings in other literatures concerning the structural organization
of financial market networks [10].

3.3 Anomaly Detection

We now validate our framework by analyzing the entropy differences between
simulated networks and actual stock market networks in the New York Stock
Exchange (NYSE). In order to quantitatively investigate the relationship
between a financial crisis and network entropy changes, we analyze a set of
well documented crisis periods. These periods are marked alongside the curve of
the first order entropy difference in Fig. 3, for all business days in our dataset.

Figure 4 plots the entropy difference for simulated networks with two different
values of the time interval. We commence simulation with start time t1 and
continue to the end time t2. In the study reported in Sect. 3.2 this time interval
is one day, i.e. Δt = t1 − t2 = 1. In other words we use the network on the
previous day to predict the structure for the next day. We now consider the
effects of varying parameter to longer intervals, i.e. Δt = 5 days and Δt = 10
days respectively, and investigate the effect on the performance of our method.
Increasing the value of the simulation interval results in significant fluctuations,
and reduces the amplitude of the entropy change associated with the different
crises. So our method is capable of modelling local trends which gives rise to
structural changes in the network, but it is less effective when used to predict
changes in network structure over an extended time interval.

Overall, the most striking observation is that the largest peaks of entropy
difference can be used to identify the corresponding financial crisis both in the
original and simulated networks. This shows that the entropy difference is a

Minimising Entropy Changes in Dynamic Network Evolution 263

Fig. 3. The von Neumann entropy difference in NYSE (1987–2011) for original finan-
cial networks and simulated networks. Critical financial events, i.e., Black Monday,
Friday the 13th mini-crash, Early 1990s Recession, 1997 Asian Crisis, 9.11 Attacks,
Downturn of 2002–2003, 2007 Financial Crisis, the Bankruptcy of Lehman Brothers
and the European Debt Crisis, are associated with large entropy differences.

Fig. 4. The performance of time difference for simulated networks in NYSE (1987–
2011). The smaller number of time intervals in simulation, the better identifying the
financial crisis.

sensitive to significant structural changes in networks. The financial crises are
characterized by significant entropy changes, whereas outside these critical peri-
ods the entropy difference remains stable.

4 Conclusion

In this paper, we explore how to model the time evolution of networks using a
variational principle. We use the Euler-Lagrange equations to model the evolu-
tion of networks that undergo changes in structure by minimising the change in
von Neumann entropy. This treatment leads to model of how the node degree

264 J. Wang et al.

varies with time, and captures the effects of degree change correlations intro-
duced by the edge-structure of the network. In other words, because of these
correlations, the variety of one degree determines the translation in connected
nodes.

We experiment with the model on a time-serial networks representing stock
trades on the NYSE. Our model is capable of predicting how the degree distrib-
ution evolves with time. Moreover, it can also be used to detect abrupt changes
in network structure.

In the future, it would be interesting to study different variational models
for the network evolution, based on minimising different physical quantities or
different forms of the entropy. It would also be interesting to understand the
dynamics of quantities such as the edge density and its variance.

References

1. Wolstenholme, R.J., Walden, A.T.: An efficient approach to graphical modeling of
time series. IEEE Trans. Sig. Process. 63, 3266–3276 (2015). ISSN: 1053–587X

2. Ye, C., Torsello, A., Wilson, R.C.: Hancock, ER 2015, Thermodynamics of time
evolving networks. In: Liu, C.-L., Luo, B., Kropatsch, W.G., Cheng, J. (eds.)
Graph-Based Representations in Pattern Recognition: 10th IAPR-TC-15 Inter-
national Workshop, GbRPR 2015, Beijing, China, 13–15 May 2015

3. Ernesto, E., Naomichi, H.: Communicability in complex networks. Phys. Rev. E
77, 036111 (2008)

4. Bai, L., Hancock, E.: Depth-based complexity traces of graphs. Pattern Recogn.
47, 1172–1186 (2014)

5. Han, L., Wilson, R.C., Hancock, E.R.: Generative graph prototypes from informa-
tion theory. IEEE Trans. Pattern Anal. Mach. Intell. 37(10), 2013–2027 (2015)

6. Lucas, L., Bartolo, L., Fernando, B., Jordi, L., Juan, C.N., Author, A.: From time
series to complex networks: the visibility graph. Proc. Natl. Acad. Sci. 105(13),
4972–4975 (2008)

7. Andreas, L., Simonetto, A., Leus, G.: Distributed autoregressive moving average
graph filters. IEEE Sig. Process. Lett. 22(11), 1931–1935 (2015)

8. Bai, L., Hancock, E.R., Han, L., Ren, P.: Graph clustering using graph entropy
complexity traces. In: 21st International Conference on Pattern Recognition
(ICPR) 2012, Tsukuba, Japan, 11–15 November 2012

9. Ye, C., Wilson, R.C., Hancock, E.R.: Correlation network evolution using mean
reversion autoregression. In: Robles-Kelly, A., Loog, M., Biggio, B., Escolano, F.,
Wilson, R. (eds.) S+SSPR 2016. LNCS, vol. 10029, pp. 163–173. Springer, Cham
(2016). doi:10.1007/978-3-319-49055-7 15

10. Silva, F.N., Comin, C.H., Peron, T.K.D., Rodrigues, F.A., Ye, C., Wilson, R.C.,
Hancock, E., Costa, L.F.: Modular Dynamics of Financial Market Networks, pp.
1–13 (2015)

11. Barabsi, A.L., Albert, R.: Emergence of scaling in random networks. Science
286(5439), 509–512 (1999)

12. Wang, J., Wilson, R., Hancock, E.R.: Network entropy analysis using the Maxwell-
Boltzmann partition function. In: The 23rd International Conference on Pattern
Recognition (ICPR), pp. 1–6 (2016)

http://dx.doi.org/10.1007/978-3-319-49055-7_15

Minimising Entropy Changes in Dynamic Network Evolution 265

13. Han, L., Escolano, F., Hancock, E.R., Wilson, R.C.: Graph characterizations from
von Neumann entropy. Pattern Recogn. Lett. 33, 1958–1967 (2012)

14. Passerini, F., Severini, S.: The von Neumann entropy of networks. Int. J. Agent
Technol. Syst. 1(4), 58–67 (2008)

15. Yahoo! Finance. http://finance.yahoo.com

http://finance.yahoo.com

Synchronization Over the Birkhoff Polytope
for Multi-graph Matching

Michele Schiavinato and Andrea Torsello(B)

Dipartimento di Scienze Ambientali, Informatica e Statistica,
Universitá Ca’ Foscari Venezia, via Torino 155, 30172 Mestre, VE, Italy

andrea.torsello@unive.it

Abstract. In this paper we address the problem of simultaneously
matching multiple graphs imposing cyclic or transitive consistency
among the correspondences. This is obtained through a synchroniza-
tion process that projects doubly-stochastic matrices onto a consistent
set. We overcome the lack of group structure of the Birkhoff polytope,
i.e., the space of doubly-stochastic matrices, by making use the Birkhoff-
Von Neumann theorem stating that any doubly-stochastic matrix can be
seen as the expectation of a distribution over the permutation matrices,
and then cast the synchronization problem as one over the underlying
permutations. This allows us to transform any graph-matching algorithm
working on the Birkhoff polytope into a multi-graph matching algorithm.
We evaluate the performance of two classic graph matching algorithms in
their synchronized and un-synchronized versions with a state-of-the-art
multi-graph matching approach, showing that synchronization can yield
better and more robust matches.

Keywords: Transformation synchronization · Doubly-stochastic
matrix · Birkhoff polytope · Graph matching

1 Introduction

Graph-based representations have found widespread application in several
domains due to their ability to characterize complex systems in terms of parts
and relations, capturing the fundamental state of the system in a way that is
invariant to transformations that are irrelevant to the classification task at hand.
Concrete examples include the use of graphs to represent shapes [13], metabolic
networks [7], protein structure [6], and road maps [8]. However, this enhanced
expressive power comes at the cost of the inability to utilize most of the pattern
analysis toolset directly and in general in the requirement of using approaches
that are computationally more demanding.

Structural pattern recognition in its first 30 years of research has mainly
focused its attention to the graph matching problem as the fundamental means
of dealing with structural representation and assessing their similarity [3]. In
fact, with correspondences at hand, standard similarity-based recognition and

c© Springer International Publishing AG 2017
P. Foggia et al. (Eds.): GbRPR 2017, LNCS 10310, pp. 266–275, 2017.
DOI: 10.1007/978-3-319-58961-9 24

Synchronization Over the Birkhoff Polytope for Multi-graph Matching 267

classification techniques can be imported to the structural domain. However,
graph matching is in general very computationally demanding and can introduce
bias in the inference process [15].

Alternatively, graphs can be embedded in a low-dimensional pattern space
using either multidimensional scaling, non-linear manifold leaning techniques,
or by adopting the famous kernel trick through the definition of graph kernels
[1,5,9,12]. One drawback of these approaches is that they neglect the locational
information for the substructures in a graph, thus limiting the precision of the
resulting similarity measures.

More recently, in an attempt to increase matching performance and reducing
the bias in the inference process, some researchers have started studying the
problem of simultaneously extracting correspondence information from whole
sets of graphs, rather than limiting the analysis to each pair. In this multi-graph
matching setting, we aim at improve correspondence estimation by incorporat-
ing transitivity constraints among the matches. Namely, if node u in graph A
matches node v in graph B and, in turn, the latter node v matches node w in
graph C, then node u in A must match node w in C.

Williams et al. [16], impose the transitive vertex-matching constraint in a
softened Bayesian manner, favoring inference triangles through fuzzy composi-
tions of pairwise matching functions. Sole-Ribalta and Serratosa [14] extended
the Graduated Assignment algorithm [4] to the multi-graph scenario by raising
the assignment matrices associated to pair of graphs to assignment hypercube,
or tensors, between all the graphs. For computational efficiency, the hypercube
is constructed via sequential local pair matching, but still result in a potentially
exponential expansion of the state space. More recently, Yan et al. [19,20] pro-
posed a new framework explicitly extending the Integer Quadratic Programming
(IQP) formulation of pairwise matching to the multi-graph matching scenario.
The resulting IQP is then solved through alternating optimization approach.
Yan et al. [17,18] introduced a method to iteratively approximating the global-
optimal affinity matching score in a pool of graphs using the consistency between
all the pairwise matching as a regularizer for the whole process. Conversely Zhou
et al. [22] avoided the semi-definite programming formulation (SDP) proposing a
method for multi-image matching as a low-rank matrix recovery problem based
on the nuclear-norm relaxation. Pachauri et al. [10] and Schiavinato et al. [11] on
the other hand, start from given pairwise correspondence estimations, and syn-
chronize them, that is fin the set of correspondences that satisfy the transitivity
constraint that are closer to the given ones in the least square sense.

The advantage of this permutation synchronization approach is that it can
be paierd with any given graph-matching algorithm in the literature it does
not require any additional memory other than what is required to store the
original

(
n
2

)
correspondences among n graphs. However, it offers only an ex post

correction through a relaxation process and cannot be fully integrated with an
iterative matching process to direct its convergence to a better solution.

268 M. Schiavinato and A. Torsello

1.1 Contribution

In this paper we aim at extending the synchronization approach in such a way
that it can be used within well-known graph-matching approaches transforming
them into multi-graph matching algorithms. In particular, we aim at defining a
synchronization process for doubly-stochastic matrices, a probabilistic relaxation
of correspondence matrices commonly used as a state space in several iterative
matching processes [4,21].

The problem with defining a synchronization process over the doubly-
stochastic matrices, is that, contrary to the permutation or orthogonal groups
used in other approaches, the Birkhoff polytope does not have a group structure
necessary even for defining the notion of transitivity.

Here we use the Birkhoff-Von Neumann theorem stating that any doubly-
stochastic matrix can be seen as the expectation of a distribution over the per-
mutation matrices, and synchronize the doubly-stochastic matrices by implicitly
constructing a low entropy distribution over synchronized permutations that fit
the given observations in a least square sense.

2 Synchronization Over the Birkhoff Polytope

The Birkhoff-Von Neumann theorem states that any doubly stochastic matrix
can be constructed as the convex linear combination of a set of permutation
matrices. This implies that, given a probability distribution q over the group σn

of n × n permutation matrices, the expected value of such distribution

O = 〈qP 〉 =
∑

k

= qkPk

is a doubly-stochastic matrix and that any doubly-stochastic matrix can be
constructed this way. Unfortunately this construction is not unique and sev-
eral distributions lead to the same expected value. In general, however, we are
interested in sparse, low entropy distributions.

We exploit this property to lower the definition of transitivity to that over
the permutation group Σn and then raise it back to the Brikhoff polytope.

Let Pij , i, j = 1, . . . , N be a set of permutation matrices. We say that they
satisfy the transitivity property if

∀i, j, k = 1, . . . , N P ijP jk = P ik. (1)

It can be shown [11] that if the matrices Pij are transitive, then there exist a
reference canonical ordering of the vertices and a set Qi ∈ Σn i = 1, . . . , N of
alignment matrices that map vertices in Gi to the reference order, such that

∀i, j = 1, . . . , NP ij = QiQ
T
j . (2)

Let Pk
ij = Qk

i (Qk
j)T be a sequence of transitive permutation matrices, where

k is the sequence index, while i, j span over the set of graphs. Further, let qk be

Synchronization Over the Birkhoff Polytope for Multi-graph Matching 269

a distribution over the sequence, then

∀i, j = 1, . . . , NOij =
∑

k

qkPk
ij (3)

forms a set of doubly-stochastic matrices over the given graphs that are composed
as expectation of permutations that satisfy the transitivity property. We say
that any doubly-stochastic matrix thus constructed is transitive. The problem of
synchronization over the Birckhoff polytope can thus reduced to that of finding
the transitive set of doubly-stochastic matrices closest to a given set in a least
square sense. However, the search space is huge, O(n!N) where N is the number
of graphs and n is the number of nodes in each graph. We solve this by looking for
a sparse distribution q over the set of transitive permutations. This is achieved
through the introduction of an entropic regularizer over q:

argmin
q,Q̄

N∑

i,j=1

||Oij −
n!N∑

k

qkQk
i Q

k
j

T ||22 + λH(q) (4)

where λ ∈ R is a free parameter and H(q) = −∑
k qk ln(qk) denotes the

entropy.
Assuming the sparsity of the resulting q, we find an approximate solution to

(4) through Matching Pursuit.
Let R(t)

ij =
∑n!N

k q
(t)
k Qk

i Q
k
j

T with i = 1, . . . , N be the set of synchronized
doubly stochastic matrices at iteration t, we can write the solution at the next
iteration as

R(t+1)
ij = (1 − α)R(t)

ij + αQk̂(t+1)

i Qk̂(t+1)

j

T
(5)

where k̂(t+1) is the index which denotes the optimal residual alignment and α is
a value in [0, 1]. Moreover, under the sparsity assumption, we can assume that
we only bring in new entries over the distribution q, so the update step for the
probability distribution q becomes

q(t+1) = (1 − α)q(t) + αek̂(t+1) (6)

where ek̂(t+1) is a vector of zeros where the unique one is placed in position k̂(t+1).
This assumption on q allows us to ignore the entropic term λH(q) from (4).

With this formulation, the matching pursuit iteration is computed by solving

min
k̂,α

N∑

i,j=1

||Oij − (1 − α)R(t)
ij − αQk̂

i Q
k̂
j

T ||22 + λH(q(t+1)) (7)

We can observe that k̂ does not depend by α, thus we can iteratively solve for
k̂, and then for α given the current set of correspondences introduced into the
reconstruction of the doubly stochastic matrices.

270 M. Schiavinato and A. Torsello

2.1 Solving for k̂

Let the matrix M(t)
ij = Oij −(1−α)R(t)

ij we can rewrite the objective function in
the problem (7) as follows (without considering the entropic term λH(q(t+1)):

N∑

i,j=1

||Oij − (1 − α)R(t)
ij − αQk̂

i Q
k̂
j

T ||22 =
N∑

i,j=1

||M(t)
ij − αQk̂

i Q
k̂
j

T ||22

=
N∑

i,j=1

||M(t)
ij ||22 + α2n2 − 2α Tr

(
Qk̂

i Q
k̂
j

T
M̄(t)

ij

)
(8)

Note that the optimization over the index k̂ in the set of synchronized per-
mutations can be substituted for the direct optimization over the synchronized
permutations Q̄ = {Qi}, i = 1 . . . , N . Further, under the assumption that α is
small, we can set M̄(t)

ij = Oij − R(t)
ij resulting in the optimization problem

argmax
Q̄

N∑

i,j=1

Tr
(
QiQj

TM̄(t)
ij

)
(9)

which can be solved with any approach extracting synchronized permutations,
such as [11].

2.2 Solving for α

The entropic term H(q(t+1)) can be written explicitly as follows:

H(q(t+1)) = −
∑

k

(
(1 − α)qk + αδkk̂

)
ln

(
(1 − α)qk + αδkk̂

)
(10)

where δkk̂ denotes the Kronecker delta operator. This can be re-written as:

H(q(t+1)) = −(1 − α)
∑

k �=k̂

qk

(
ln qk + ln(1 − α)

) − α ln α

= (1 − α)H(q(t)) − (1 − α) ln(1 − α) − α lnα

= (1 − α)H(q(t)) + H(α) (11)

The problem (7) can be solved by gradient descent of the energy function:

E =
N∑

i,j=1

||Oij − (1 − α)R(t)
ij − αQk̂(t+1)

i Qk̂(t+1)

j

T ||22 + λH(q(t+1)) (12)

Differentiating E with respect to α yields:

dE

dα
= −λ

(
H(q(t)) + ln

(
α

1 − α

))

+ 2
N∑

i,j=1

[
α||R(t)

ij −Qk̂(t+1)

i Qk̂(t+1)

j

T

||22 + Tr
(
(Oij −R

(t)
ij)T (R

(t)
ij −Qk̂(t+1)

i Qk̂(t+1)

j

T

)
)]

(13)

Synchronization Over the Birkhoff Polytope for Multi-graph Matching 271

and with the derivative to hand we extract the optimal alpha [0, 1] and recon-
struct the new solution using (5).

R(t+1)
ij = (1 − α)R(t)

ij + αQk̂(t+1)

i Qk̂(t+1)

j

T

Note that, α = 0, or more unlikely α = 1, means that the basic pursuit step
cannot reduce the entropy-regularized energy and we take that as a stopping
criterion for our basis pursuit approach.

3 Synchronized Algorithms

In this section we describe our experimental setup and evaluation strategies for
the method presented in this paper. To this end, we synchronize two well-known
graph-matching algorithms working in the Birkhoff Polytope, namely Graduated
Assignment [4] and Path Following Algorithm [21]. In particular, we included a
synchronization step inside their main updating loops, maintaining the relaxed
correspondences consistency among all the graphs throughout the execution of
the algorithms.

Considering a single iteration of the main loop we perform the pairwise gradu-
ated assignment/path following iteration for all the graphs computing the doubly
stochastic permutation matrices O. In either case there is a β parameter which
governs the whole process, pushing it towards the vertices of the polytope, i.e.,
towards permutation matrices. After the pairwise computation of all the doubly
stochastic permutation matrices in a given β-iteration, we perform our synchro-
nization process resulting in synchronized doubly stochastic matrices. This phase
is controlled by our parameter λ, which we set to be proportional to β since the
goal of both parameters is to push the solution towards the vertices of the poly-
tope. When the synchronized graduated assignment/path following algorithms
converge, we discretize the solutions applying the typical maximum bipartite
assignment problem through the well-know Hungarian algorithm to each doubly
stochastic matrix.

4 Experimental Setup and Evaluation

We evaluated our work by comparing the two synchronized algorithms to their
un-synchronized counterparts and to a state-of-the art multi-graph match-
ing algorithm: the Consistency-driven Non-Factorized Alternating Optimization
(CDAO) [20]. We summarized the main parameter setting for these 5 methods
as follows:

GA, S-GA. For the Synchronized Graduated Assignment (S-GA) we initial-
ized β = n and all the doubly stochastic matrices are initialized as a random
perturbation from the barycenter of the polytope. The entropy scale para-
meter λs, i.e., the proportionality factor between β and λ, was set to 10−6.
Moreover, the growth rate and exit threshold for β were set to 1.075 and 200
respectively.

272 M. Schiavinato and A. Torsello

PF, S-PF. For the Synchronized Path Following algorithm (S-PF) we ini-
tialized the doubly stochastic matrices Opq as int the original work [21] per-
forming a convex quadratic optimization problem by Frank-Wolfe algorithm.
The entropy scale parameter was set to 1 while the increasing rate for β was
0.15.
CDAO. For this method we respected the original setup for the Consistency-
driven Non-Factorized Alternating Optimization algorithm in [20] initializing
the max number of iteration Tmax = 2 and using the Reweighted Random
Walks [2] as pairwise graph matching solver.

We performed tests over several random synthetic graph datasets with dif-
ferent levels of distortion, variations in edge density and proportion of outlier
nodes. This evaluation approach follows a widely adopted protocol [2,19,20].
The dataset is generated from a set of N root graphs Gr, r = 1, . . . , N , with
nin inlier nodes randomly connected with edge density ρ. Edge attributes ar

ij
are

randomly drawn form a uniform distribution in [0, 1]. From these root graphs, we
generate several perturbed sets, by varying (a) edge attributes, adding Gaussian
noise sampled from N(0, σ2) for increasing values of σ; (b) edge density ρ; and
(c) adding a number of outlier nodes.

We introduced another synthetic test as [14] whose aim is to control the
topological structure of the graphs. The construction of a synthetic dataset
G in this experiment is based on the generation of an initial seed P r =
{([0, 1]; [0, 1])i}i=1,...,n of 2D points which are related to the n nodes. Each per-
turbed graph is generated through a random Gaussian perturbation of the points
in P r, from which we extract a Delaunay triangulation. The computation of the
affinity matrix Mpq = (mia,jb) for each pair of graphs (Gp, Gq) is defined as

mia,jb = exp

(

− (ap
ij − aq

ab)
2

σ2

)

where σ2 is a scale factor which we set to 0.15. No single-node weight is consid-
ered, so we set the unary affinity as mia,ia = 0.

We present our results in terms of vertex correspondences from the permuta-
tions given by the graph-matching methods. The evaluation strategy is based on
the computation of a matching accuracy (MA) between the common n nodes of
two graphs Gp, Gq ∈ G, which is defined as the ratio between the number of cor-
respondences found (CALG

pq) with respect to those of the ground truth (CTRU
pq)

and the total number of possible matching as follows:

MA(Gp, Gq) =
|CALG

pq ∩ CTRU
pq |

n

We underline that we only calculate the accuracy for common inlier nodes ignor-
ing the matching results over outliers. Given a whole dataset G of N graphs, the
agglomerated matching accuracy (MA) can be expressed as the mean measure:

MA(G) =

∑N−1
p=1

∑N
q=p+1 MA(Gp, Gq)

N(N − 1)/2

Synchronization Over the Birkhoff Polytope for Multi-graph Matching 273

In Fig. 1 we plot the final results of all the synthetic tests varying the para-
meter of (a) deformation, (b) edge density, (c) number of outlier nodes and (d)
topological noise. All these experiments are repeated over 10 trials, for which we
plot average and standard error. Each synthetic dataset has N = 10 graphs with
nin = 20 nodes. For the deformation and edge density tests we set nout = 0,
for outlier and density tests we set the Gaussian deformation with standard
deviation as σ = 0.05 and σ = 0.2 respectively.

0.05 0.1 0.15 0.2 0.25 0.3 0.35

deformation

30

40

50

60

70

80

90

100

m
at

ch
in

g
ac

cu
ra

cy

GA
S-GA
PF
S-PF
CDAO

(a)

0.4 0.5 0.6 0.7 0.8 0.9 1

edge density

20

30

40

50

60

70

80

90

100

m
at

ch
in

g
ac

cu
ra

cy

GA
S-GA
PF
S-PF
CDAO

(b)

2 4 6 8 10 12 14

outlier

75

80

85

90

95

100

m
at

ch
in

g
ac

cu
ra

cy

GA
S-GA
PF
S-PF
CDAO

(c)

0 0.01 0.03 0.2 0.8 3 6

topological noise (10 -2)

10

20

30

40

50

60

70

80

90

100

m
at

ch
in

g
ac

cu
ra

cy

GA
S-GA
PF
S-PF
CDAO

(d)

Fig. 1. Average results with standard error for synthetic test at varying of the levels
of (a) deformation, (b) edge density, (c) number of outlier nodes and (d) topological
noise performing Graduated Assignment (GA), Synchronized Graduated Assignment
(S-GA), Path Following (PF), Synchronized Path Following (S-PF) and Consistency-
driven Non-Factorized Alternating Optimization (CDAO) for Multi-graph Matching
algorithms.

From Fig. 1 we can see that in general for high deformations the synchro-
nized algorithms are the best performers regardless of the original algorithm
chosen and they generally outperform CDAO as well. It is interesting to not
that for deformation, edge density and outlier Graduated Assignment seems to
be just as robust as the synchronized algorithms, while is exhibit high sensitiv-
ity on the topological noise using Delaunay triangulations. On the other hand,

274 M. Schiavinato and A. Torsello

the synchronized version of Graduated Assignment seems to under-perform for
low topological noise, going back to very high precision for larger noise. On the
other hand, the Synchronized Path Following algorithm is almost always the top
performer, even when the original Path Following algorithm appears to be the
worst-performing of the lot. This appears to point to the fact that path-following
ans synchronization provide complementary information. Finally, CDAO, which
was built as a multi-graph matching algorithm optimizing a global objective func-
tion does not seem to offer a real advantage over the synchronized algorithms,
performing generally at the level of the worst-performing non-synchronized
algorithms.

5 Conclusion

In this paper we proposed a synchronization process for doubly stochastic matri-
ces which is set as a basis pursuit over the set of synchronized permutations.
Through this approach we can transform any graph-matching algorithm work-
ing over the Birkhoff polytope into a multi-graph matching algorithm simply
maintain the states synchronized throughout the execution of the algorithm. We
used this approach to create multi-graph versions of the Graduated Assignment
and Path Following Algorithms, and show that the resulting synchronized algo-
rithms outperform not only the original unsynchronized algorithms, but also the
state-of-the-art in multi-graph matching algorithms.

References

1. Borgwardt, K.M., Kriegel, H.P.: Shortest-path kernels on graphs. In: Proceedings
of the Fifth IEEE International Conference on Data Mining (ICDM 2005), pp.
74–81 (2005). http://dx.doi.org/10.1109/ICDM.2005.132

2. Cho, M., Lee, J., Lee, K.M.: Reweighted random walks for graph matching. In:
Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6315, pp.
492–505. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15555-0 36

3. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in
pattern recognition. IJPRAI 18(3), 265–298 (2004)

4. Gold, S., Rangarajan, A.: A graduated assignment algorithm for graph matching.
IEEE Trans. Pattern Anal. Mach. Intell. 18(4), 377–388 (1996)

5. Haussler, D.: Convolution kernels on discrete structures. Technical report UCS-
CRL-99-10, University of California at Santa Cruz, Santa Cruz, CA, USA (1999).
http://citeseer.ist.psu.edu/haussler99convolution.html

6. Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., Sakaki, Y.: A compre-
hensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl.
Acad. Sci. 98(8), 4569 (2001)

7. Jeong, H., Tombor, B., Albert, R., Oltvai, Z., Barabási, A.: The large-scale orga-
nization of metabolic networks. Nature 407(6804), 651–654 (2000)

8. Kalapala, V., Sanwalani, V., Moore, C.: The structure of the united states road
network. Preprint, University of New Mexico (2003)

9. Kashima, H., Tsuda, K., Inokuchi, A.: Marginalized kernels between labeled
graphs. In: ICML, pp. 321–328 (2003)

http://dx.doi.org/10.1109/ICDM.2005.132
http://dx.doi.org/10.1007/978-3-642-15555-0_36
http://citeseer.ist.psu.edu/haussler99convolution.html

Synchronization Over the Birkhoff Polytope for Multi-graph Matching 275

10. Pachauri, D., Kondor, R., Singh, V.: Solving the multi-way matching problem by
permutation synchronization. Adv. NIPS 2013, 1860–1868 (2013)

11. Schiavinato, M., Gasparetto, A., Torsello, A.: Transitive assignment kernels
for structural classification. In: Feragen, A., Pelillo, M., Loog, M. (eds.) SIM-
BAD 2015. LNCS, vol. 9370, pp. 146–159. Springer, Cham (2015). doi:10.1007/
978-3-319-24261-3 12

12. Shervashidze, N., Schweitzer, P., van Leeuwen, E.J., Mehlhorn, K., Borgwardt,
K.M.: Weisfeiler-Lehman graph kernels. J. Mach. Learn. Res. 12, 2539–2561 (2011).
http://dblp.uni-trier.de/db/journals/jmlr/jmlr12.html#ShervashidzeSLMB11

13. Siddiqi, K., Shokoufandeh, A., Dickinson, S., Zucker, S.: Shock graphs and shape
matching. Int. J. Comput. Vis. 35(1), 13–32 (1999)

14. Solé-Ribalta, A., Serratosa, F.: Models and algorithms for computing the common
labelling of a set of attributed graphs. Comput. Vis. Image Underst. 115(7), 929–
945 (2011)

15. Torsello, A.: An importance sampling approach to learning structural representa-
tions of shape. In: 2008 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR 2008), 24–26 June 2008, Anchorage, Alaska, USA.
IEEE Computer Society (2008). http://dx.doi.org/10.1109/CVPR.2008.4587639

16. Williams, M.L., Wilson, R.C., Hancock, E.R.: Multiple graph matching with
Bayesian inference. Pattern Recogn. Lett. 18, 080 (1997)

17. Yan, J., Cho, M., Zha, H., Yang, X., Chu, S.M.: A general multi-graph matching
approach via graduated consistency-regularized boosting. CoRR abs/1502.05840
(2015). http://arxiv.org/abs/1502.05840

18. Yan, J., Li, Y., Liu, W., Zha, H., Yang, X., Chu, S.M.: Graduated consistency-
regularized optimization for multi-graph matching. In: Fleet, D., Pajdla, T.,
Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 407–422.
Springer, Cham (2014). doi:10.1007/978-3-319-10590-1 27

19. Yan, J., Tian, Y., Zha, H., Yang, X., Zhang, Y., Chu, S.M.: Joint optimization for
consistent multiple graph matching. In: Proceeding IEEE International Conference
on Computer Vision, pp. 1649–1656. IEEE Computer Society (2013)

20. Yan, J., Wang, J., Zha, H., Yang, X., Chu, S.: Consistency-driven alternating
optimization for multigraph matching: a unified approach. IEEE Trans. Image
Process. 24(3), 994–1009 (2015)

21. Zaslavskiy, M., Bach, F., Vert, J.-P.: A path following algorithm for graph match-
ing. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D. (eds.) ICISP
2008. LNCS, vol. 5099, pp. 329–337. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-69905-7 38

22. Zhou, X., Zhu, M., Daniilidis, K.: Multi-image matching via fast alternating min-
imization. CoRR abs/1505.04845 (2015). http://arxiv.org/abs/1505.04845

http://dx.doi.org/10.1007/978-3-319-24261-3_12
http://dx.doi.org/10.1007/978-3-319-24261-3_12
http://dblp.uni-trier.de/db/journals/jmlr/jmlr12.html#ShervashidzeSLMB11
http://dx.doi.org/10.1109/CVPR.2008.4587639
http://arxiv.org/abs/1502.05840
http://dx.doi.org/10.1007/978-3-319-10590-1_27
http://dx.doi.org/10.1007/978-3-540-69905-7_38
http://dx.doi.org/10.1007/978-3-540-69905-7_38
http://arxiv.org/abs/1505.04845

Adaptive Feature Selection Based on the Most
Informative Graph-Based Features

Lixin Cui1, Yuhang Jiao1, Lu Bai1(B), Luca Rossi2(B), and Edwin R. Hancock3

1 Central University of Finance and Economics, Beijing, China
bailucs@cufe.edu.cn

2 Aston University, Birmingham, UK
l.rossi@aston.ac.uk

3 University of York, York, UK

Abstract. In this paper, we propose a novel method to adaptively
select the most informative and least redundant feature subset, which
has strong discriminating power with respect to the target label. Unlike
most traditional methods using vectorial features, our proposed app-
roach is based on graph-based features and thus incorporates the rela-
tionships between feature samples into the feature selection process. To
efficiently encapsulate the main characteristics of the graph-based fea-
tures, we probe each graph structure using the steady state random walk
and compute a probability distribution of the walk visiting the vertices.
Furthermore, we propose a new information theoretic criterion to mea-
sure the joint relevance of different pairwise feature combinations with
respect to the target feature, through the Jensen-Shannon divergence
measure between the probability distributions from the random walk on
different graphs. By solving a quadratic programming problem, we use
the new measure to automatically locate the subset of the most informa-
tive features, that have both low redundancy and strong discriminating
power. Unlike most existing state-of-the-art feature selection methods,
the proposed information theoretic feature selection method can accom-
modate both continuous and discrete target features. Experiments on the
problem of P2P lending platforms in China demonstrate the effectiveness
of the proposed method.

1 Introduction

Many real-world applications, including image processing, bioinformatics analy-
sis, face recognition, and P2P lending analysis [16], are represented by high
dimensional data. However, only a small number of features are really signifi-
cant to describe the target label [12]. One way to overcome this problem is to
use feature selection.

Mutual information (MI) [8,9,15,18] is a well-known means of measuring
the mutual dependency of two variables, and has received much attention for
developing new feature selection methods. Typical examples include (1) the
Information-based Feature Selection method (MIFS) [8], (2) the Maximum-
Relevance Minimum-Redundancy Feature Selection method (MRMR) [18],
c© Springer International Publishing AG 2017
P. Foggia et al. (Eds.): GbRPR 2017, LNCS 10310, pp. 276–287, 2017.
DOI: 10.1007/978-3-319-58961-9 25

Adaptive Feature Selection 277

(3) the Joint-Information Feature Selection method (JMI) [20], and (4) the
MIFS method under the assumption of a uniform distribution for input features
(MIFS-U) [14]. Unfortunately, these methods suffer from two widely known
drawbacks. First, these methods require the number of selected features in
advance. Second, these methods mine subsets of the most informative features in
a greedy manner [10]. To overcome the shortcomings, Liu et al. [15] have devel-
oped the Adaptive MI based Feature Selection method (AMIF) that can auto-
matically determine the size of most informative feature subsect, by maximizing
the average pairwise informativeness. Zhang and Hancock [21] have developed
a Hypergraph based Information-Theoretic Feature Selection method (HITF)
that can automatically determine the most informative feature subset through
dominant hypergraph clustering [17].

Unfortunately, the aforementioned information theoretic feature selection
methods cannot incorporate the relationship between pairwise samples of
each feature dimension. More specifically, for a dataset with N features
denoted as X = {f1, . . . , fi, . . . , fN}, each feature fi has M samples as fi =
{fi1, . . . , fia, . . . , fib, . . . , fiM}T . Traditionally, existing information theoretic
feature selection methods accommodate each feature fi as a vector, and thus
ignore the relationship between pairwise samples fia and fib in fi. This drawback
limits the precise information theoretic measure between pairwise features. To
address this shortcoming, Cui et al. [11] have proposed a new feature selection
method in terms of graph-based features. They transform each vectorial fea-
ture into a graph structure that encapsulates the relationship between pairwise
samples from the feature. The most relevant vectorial features are identified by
selecting the graph-based features that are most similar to the graph-based tar-
get feature, in terms of the Jensen-Shannon divergence measure between graphs.
Unfortunately, this method cannot adaptively determine the most relevant fea-
ture subset. It is fair to say that developing effective information theoretic feature
selection method still remains a challenge.

This paper aims to overcome the shortcomings of existing information theo-
retic feature selection methods by developing a new algorithm that can incorpo-
rate the relationship between feature samples into the feature selection process.
In summary, the main contributions are threefold. First, like Cui et al. [11], for
the above dataset X having N features, we transform each vectorial feature fi
into a graph-based feature Gi. Here, Gi is a complete weighted graph, where
each vertex va represents a corresponding sample fia in fi and each weighted
edge {va, vb} represents the relationship between pairwise samples fia and fib.
We use the Euclidean distance to measure the relationship between fia and fib.
Similarly, for the target feature Y (e.g., the class labels), we also compute a tar-
get feature graph GY . We argue that the graph-based features can reflect richer
characteristics than the original vectorial features. Furthermore, for the feature
graphs Gi and GY , we probe each graph structure in terms of the steady state
random walk (SSRW) [3] and compute a probability distribution of the walk
visiting the vertices. Second, with the probability distributions of the feature
graphs Gi and GY to hand, we propose a new information theoretic criterion to

278 L. Cui et al.

measure the joint relevance of different pairwise feature combinations with
respect to the target feature, through the Jensen-Shannon divergence (JSD).
Third, we use the new information theoretic measure to automatically locate
the subset of the most informative and less redundant features by solving a
quadratic program problem [17]. We show that, unlike most existing feature
selection methods, the proposed feature selection method can accommodate both
continuous and discrete target variables. Experimental results on the analysis of
P2P lending platforms in China demonstrate the effectiveness of the proposed
method.

2 Preliminary Concepts

2.1 The Steady State Random Walk (SSRW)

As mentioned in the previous section, we propose to use the SSRW to capture
the main characteristics of the graph-based features. The main advantages of
using SSRWs are twofold. First, SSRWs can accommodate weighted information
residing on edges. Second, the computational complexity of probing a graph
structure using SSRWs is quadratic in the number of vertices, i.e., SSRWs can
be efficiently performed on graphs. As a result, SSRWs represent an elegant way
of efficiently characterizing the graph-based features. Below, we review the main
concepts underpinning SSRWs.

Let G(V,E) be a weighted graph, V be the vertex set, and E be edge set.
Assume ω : V × V → R

+ is a edge weight function. If ω(u, v) > 0 (ω(u, v) =
ω(v, u)), we say that (u, v) is an edge of G, i.e., the vertices u ∈ V and v ∈ V are
adjacent. The vertex degree matrix of G is a diagonal matrix D whose elements
are given by D(v, v) = d(v) =

∑
u∈V ω(v, u). Based on [3], the probability of

the steady state random walk visiting each vertex v is p(v) = d(v)/
∑

u∈V d(u).
Furthermore, from the probability distribution P = {p(1), . . . , p(v), . . . , p(|V |)},
we can straightforwardly compute the Shannon entropy of G as

HS(G) = −
∑

v∈V

p(v) log p(v). (1)

2.2 The Jensen-Shannon Divergence

In information theory, the JSD is a dissimilarity measure between prob-
ability distributions. Let two (discrete) probability distributions be P =
(p1, . . . , pa, . . . , pA) and Q = (q1, . . . , qb, . . . , qB), then the JSD between P and
Q is defined as

ID(P,Q) = HS

(P + Q
2

)
− 1

2
HS(P) − 1

2
HS(Q), (2)

where HS(P) =
∑A

a=1 pa log pa is the Shannon entropy of the probability distri-
bution P. In [3], the JSD has been used as a means of measuring the information

Adaptive Feature Selection 279

theoretic dissimilarity between graphs associated with their probability distrib-
utions. In this work, we are also concerned with the similarity measure between
graph-based features. Therefore, we transform the JSD into its negative form and
obtain the corresponding exponential function value to denote the information
theoretic similarity measure IS between probability distributions, i.e.,

IS(P,Q) = exp{−ID(P,Q)}. (3)

3 Methodology of the Proposed Feature Selection
Method

3.1 Graph-Based Features from Vectorial Features

In this subsection, we introduce how to transform each vectorial feature into
a complete weighted graph. The advantages of using the graph-based represen-
tation are twofold. First, graph structures have stronger ability to encapsulate
global topological information than vectors. Second, the graph-based features
can incorporate the relationships between samples of each original vectorial fea-
ture into the feature selection process, thus reducing information loss.

Given a dataset of N features denoted as X = {f1, . . . , fi, . . . , fN} ∈
R

M×N , fi represents the i-th vectorial feature and has M samples as fi =
{fi1, . . . , fia, . . . , fib, . . . , fiM}T . We transform each feature fi into a graph-based
feature Gi(Vi, Ei), where each vertex via ∈ Vi indicates the a-th sample fia of fi,
each pair of vertices via and viv is connected by a weighted edge (via, vib) ∈ Ei,
and the weight ω(via, vib) of (via, vib) is the Euclidean distance between fia and
fib, i.e.,

ω(via, vib) =‖ fia − fib ‖2 . (4)

Similarly, if the sample values of the target feature Y = {y1, . . . , ya, . . . ,
yb, . . . , yM}T are continuous, its graph-based feature Ĝ(V̂ , Ê) can be computed
using Eq. (4) and each vertex v̂a represents the a-th sample ya. However, for
classification problems, the sample of the target feature Y is the class label
c and thus takes the discrete value c = 1, 2, . . . , C, i.e., the samples of each
feature fi belong to the C different classes. In this case, we propose to compute
the graph-based target feature Ĝi(V̂i, Êi) for each feature fi, where the weight
ω(v̂ia, v̂ib) of each edge (v̂ia, v̂ib) ∈ Êi is

ω(v̂ia, v̂ib) =‖ μia − μib ‖2, (5)

where μia is the mean value of all samples in fi from the same class c.
Note that, constructing the graph-based feature from the original vectorial

feature is an open problem. In fact, in addition to the distance measure employed
in this paper, one could employ a number of alternative measures, e.g., covari-
ance, cosine similarity, etc. Moreover, instead of a complete graph, one may want
to define a sparser graph.

280 L. Cui et al.

3.2 The Information Theoretic Criterion for Feature Selection

We propose to use the following information theoretic criterion to measure
the joint relevance of different pairwise feature combinations with respect
to either the continuous or discrete target feature. For a set of N features
f1, . . . , fi, . . . , fj , . . . , fN and the associated continuous target feature Y, the rel-
evance degree of a feature pair {fi, fj} is

Wi,j = IS(Gi, Ĝ) × IS(Gj , Ĝ) × ID(Gi,Gj), (6)

where Gi and Ĝ are the graph-based features of fi and Y, IS is the JSD based
information theoretic similarity measure defined in Eq. (3), and ID is the JSD
based information theoretic dissimilarity measure defined in Eq. (2). The above
relevance measure consists of three terms. The first and second terms IS(Gi, Ĝ)
and IS(Gj , Ĝ) are the relevance degrees of individual features fi and fj with
respect to the target feature Y, respectively. The third term IS(Gi,Gj) measures
the non-redundancy between the feature pair {fi, fi}. Therefore, Wfi,fj is large
if and only if both IS(Gi, Ĝ) and IS(Gj , Ĝ) are large (i.e., both fi and fj are
informative themselves with respect to the target feature Y) and ID(Gi,Gj) is
also large (i.e., fi and fj are not redundant).

For classification problems, the samples of the target feature Y take the
discrete value c and c = 1, 2, . . . , C. In this case, we compute the individual
graph-based target feature Ĝi for each feature fi, and the relevance measure
defined in Eq. (6) can re-written as

Wi,j = {S(fi)IS(Gi, Ĝi)} × {S(fj)IS(Gj , Ĝj)} × {ID(Gi,Gj)}, (7)

where S(fi) is the Fisher score of feature fi [13] and is defined as

S(fi) =
L∑

c=1

nl(μl − μ)2/
C∑

c=1

ncσ
2
c , (8)

where μc and σ2
c are the mean and variance of the samples belonging to the

c-th class in feature fi, μ is the mean of feature fi, and nc is the sample number
of the c-th class in feature fi. For Eq. (8), the Fisher score S(fi) indicates the
quality of the graph-based target feature Ĝi for fi, i.e., a higher Fisher score
S(fi) means a better target feature graph Ĝi. This follows the definition of
Eq. (5). More specifically, the graph-based target feature Ĝi of original vectorial
feature fi is preferred, if the distances between samples in different classes are
as large as possible and the distances between data points in the same class are
as small as possible. Similar to Eq. (6), the three terms of Eq. (7) have the same
corresponding theoretical significance.

3.3 Determination of the Most Informative Feature Subset

We adaptively determine the most informative subset of features by solving
a quadratic program problem [17]. More specifically, for a set of N features

Adaptive Feature Selection 281

f1, . . . , fi, . . . , fj , . . . , fN and the target feature Y, we commence by transforming
each feature into a graph-based feature. Moreover, based on the graph-based
features, we construct a feature informativeness matrix W, where each element
Wi,j ∈ W represents the information theoretic measure between a feature pair
{fi, fj} based on Eq. (6) (for Y is continuous) or Eq. (7) (for Y is discrete). As we
have stated in Sect. 3.2, Wfi,fj is large if and only if both fi and fj are informative
themselves with respect to the target feature Y, and fi and fj are not redundant.
Therefore, we locate the most informative feature subset by finding the solution
of the following quadratic program problem [17]

max f(a) =
1
2
aTWa (9)

subject to a ∈ R
N , a ≥ 0 and

∑N
i=1 ai = 1. The solution vector a to the above

quadratic program is an N -dimensional vector. When ai > 0, the i-th feature
fi belongs to the most informative feature subset. Therefore, the number of the
selected features n can be determined by counting the positive components of
vector a. Pavan and Pelillo [17] have shown that the local maximum of f(a) can
be solved using the following equation

ai(t + 1) = ai(t)
(Wa(t))i

a(t)TWa(t)
. (10)

where ai(t) corresponds to the i-th feature fi at iteration t of the update process.
According to the value of the element in a, all features f1, . . . , fN fall into two
disjoint subsets, i.e., S1(a) = {fi | ai > 0} and S2(a) = {fj | aj = 0}. Clearly, the
set S1 that has nonzero variables is the selection of the most informative feature
subset. The features in S1 have both low redundancy and strong discriminative
power.

3.4 Complete Feature Ranking

The proposed feature selection method aims to adaptively select a compact most
informative feature subset that falls into the subset S1(a) = {fi | ai > 0}. We can
rank the feature fi ∈ S1 by evaluating the values of their indicators ai. A higher
indicator ai means a more informative feature. Moreover, we can also rank the
features contained in the unselected feature subset S2(a) = {fj | aj = 0} based
on the selection method in [15]. More specifically, we compute the reward of each
feature fj ∈ S2 as

rj =
∑

fi∈S1,ai>0

Wi,jai, (11)

which summarizes the pairwise informativeness between the feature fj ∈ S2 and
each feature fi ∈ S1. A higher rj means a more informative feature in S2, thus
providing a measure to rank the features in S2. Based on the feature ranking
of S1 and S2, we can obtain a Complete Feature Ranking List L, from 1 to a
user-specified number.

282 L. Cui et al.

4 Experimental Evaluations

To validate the effectiveness of the proposed feature selection approach, we per-
form the following experimental evaluation on a P2P dataset collected from the
Peer-to-Peer (P2P) lending sector in China. The reasons for using this dataset
are twofold. First, P2P lending data are usually high-dimensional, highly cor-
related, and unstable, thus representing a challenge for traditional statistical
and machine learning techniques. To better analyze the P2P data, the sam-
ple relationship of the P2P data encapsulating significant information should
be incorporated, when designing feature selection methods. Unfortunately, most
existing feature selection methods ignore the sample relationships and may cause
significant information loss. By contrast, our proposed adaptive feature selection
method is able to encapsulate the sample relationship of P2P data and overcome
these shortcomings. Second, the P2P lending industry in China has developed
rapidly since 2007, with more than 3,000 P2P lending platforms and an accu-
mulative loan amount of 12 trillion by 2015. It is of great significance to develop
an effective decision aid for the credit risk analysis of the P2P platforms.

The P2P dataset is collected from a reputable P2P lending portal in China1,
which consists of the most popular 200 platforms (i.e., 200 samples) until Aug
2014. For each platform, we collect 19 features including (1) transaction vol-
ume, (2) total turnover, (3) average annualized interest rate, (4) total number
of borrowers, (5) total number of investors, (6) online time, which refers to the
foundation year of the platform, (7) operation time, i.e., number of months since
the foundation of the platform, (8) registered capital, (9) weighted turnover, (10)
average term of loan, (11) average full mark time, i.e., tender period of a loan
raised to the required full capital, (12) average amount borrowed, i.e., average
loan amount of each successful borrower, (13) average amount invested, which
is the average investment amount of each successful investor, (14) loan disper-
sion, i.e., the ratio of the repayment amount to the total capital, (15) investment
dispersion, the ratio of the invested amount to the total capital, (16) average
times of borrowing, (17) average times of investment, (18) loan balance, and (19)
popularity.

4.1 Identification of the Most Influential Factors for Credit Risk

We evaluate the performance of the proposed feature selection approach with
respect to continuous target features. Specifically, we use the proposed
method to perform credit risk evaluation of the P2P lending platforms. As it
is difficult to obtain sufficient data of the platforms which encountered problem,
we use the annualized average interest rate as an indicator of the credit risk of the
P2P lending platforms. In finance, interest rate is the amount charged, expressed
as a percentage of principal, by a lender to a borrower for the use of assets. When
the borrower is a low-risk party, they will usually be charged a low interest rate.
On the other hand, if the borrower is considered high risk, the interest rate

1 See the website http://www.wdzj.com/ for more details.

http://www.wdzj.com/

Adaptive Feature Selection 283

charged will be higher. Likewise, a higher annualized average interest rate of the
P2P lending platforms often indicates greater likelihood of default, i.e., higher
credit risk of the platforms. Identifying the most relevant features to the interest
rate can help investors effectively manage the credit risks involved in P2P lend-
ing. Therefore, in our experiment, we set the average annualized interest rate
as the target feature which takes continuous values. Our purpose is to identify
the most informative subset of features for the credit risk of the P2P platforms
by using the proposed feature selection method. To further strengthen our find-
ings, we also compare the proposed adaptive feature selection method associated
with the SSRW (AFS-RW) with three alternative methods. These include cor-
relation analysis (CA) and multiple linear regression (MLR), which are simple
but widely applied. Furthermore, we also compare the proposed method to the
most relevant graph-based feature selection method associated with the SSRW
(FS-RW) [11], since it can also accommodate the continuous target feature.

Table 1 presents a comparison of the results obtained using these methods.
For each method, we display the top 10 features in terms of correlation to the
average annualized interest rate. Because the number of the most informative
features adaptively located by AFS-RW is six, we display these results in bold.
It is worth noting that the most influential factors located by the proposed AFS-
RW method is in general different from the remaining three methods used for
comparison. This is due to the unique characteristics of the proposed feature
selection method which encourages the most informative and least redundant
features to be selected. For instance, AFS-RW identifies average full mark time,
transaction volume, and average amount borrowed as the most informative fea-
tures. This is reasonable because a longer full mark time of the loan often reflects
a higher level of credit risk and a higher amount of total transaction volume and

Table 1. Comparison of four methods

Ranking AFS-RW FS-RW Correlation analysis Multiple linear

regression

1# Average full

marktime

Registered capital Popularity Loan dispersion

2# Transaction volume Operation time Loan balance Investment dispersion

3# Average amount

borrowed

Average amount

invested

Average times of

investment

Online tim

4# Loan balance Loan dispersion Average times of

borrowing

Popularity

5# Investment

dispersion

Average times of

investment

Investment dispersion Operation time

6# Total number of

borrowers

Online time Loan dispersion Average times of

borrowing

7# Average times of

borrowing

Average term of loan Average amount

invested

Total number of

borrowers

8# Total turnover Total number of

investors

Average amount

borrowed

Loan balance

9# Average amount

invested

Investment dispersion Average full mark

time

Transaction volume

10# Weighted turnover Popularity Average term of loan Weighted turnover

284 L. Cui et al.

a higher level of the average amount borrowed indicate a higher preference of
both the borrowers and investors for the P2P lending platform due to a higher
degree of security. Also, AFS-RW and CA consider loan balance as a relevant
feature. This is also reasonable because a higher amount of loan balance often
indicates a higher level of credit risk and can result in a higher interest rate. In
addition, the total number of borrowers reflects the borrowers preference for the
P2P lending platforms and is a significant influential factor. A platform with a
relatively low average annualized interest rate is often more attractive to the bor-
rowers because this indicates both a lower transaction cost and a lower credit
risk of the platform. However, only the proposed AFS-RW method is able to
select this factor, whereas the remaining three methods rank this factor much
lower. These results demonstrate the effectiveness of the proposed method for
identifying the most influential factors for credit risk of P2P lending platforms.

4.2 Classification for the Credit Rating of the P2P Lending
Platforms

We evaluate the performance of the proposed feature selection approach with
respect to discrete target features. Specifically, we aim to locate the most
informative subset of features for the credit rating of the P2P platforms in China,
which takes discrete values and is collected from the Report on the Develop-
ment of the P2P lending industry in China, 2014–2015, issued by the Financial
Research Institute of the Chinese Academy of Social Sciences. In this
Report, only 104 platforms are included due to the strict evaluation criteria
involved, among which only 42 platforms belong to the 200 platforms used in
the above P2P dataset. Thus, we use the 42 platforms (i.e., samples) for the
evaluation. We set the credit ranking for these platforms as the discrete target
feature, and aim to locate the most informative feature subset using the proposed
approach.

To evaluate the effectiveness of the features selected by the proposed app-
roach, we set the discrete credit ranking targets as classification labels. Since
there are only 42 samples and these need to be classified into four classes, it is
a very challenging classification problem. In the experiment, we randomly select
50% samples as training data and the remainder as testing data. By repeating
this selection process 10 times, we obtain 10 random partitions of the original
data. For each partition, we identify the most relevant features via the proposed
method based on the train data, and perform a 10-fold cross-validation using
a C-Support Vector Machine (C-SVM) to evaluate the classification accuracy
associated with the selected features based on the testing data, i.e., we use 9
folds for training and 1 fold for testing. For the C-SVM on each partition, we
repeat the process 10 times and compute the average classification accuracy.
Finally, we compute the average classification accuracy over the 10 partitions.
To further evaluate our study, we compare the proposed method (AFS-QW)
with several alternative feature selection methods. These alternative methods
include: (1) the Fisher Score method (FS) [13], (2) the Mutual Information based
method (MI) [19], and (3) most relevant graph-based feature selection method

Adaptive Feature Selection 285

(FS-RW) [11]. The classification accuracy of each method is shown in Fig. 1 as
a function of the number of features selected.

Figure 1 indicates that the proposed method AFS-RW achieves the best clas-
sification accuracy (34.50%) while requiring the lowest number of features, i.e.,
3 adaptively selected features. In contrast, FS and MI both require 4 features to
generate best classification accuracies. Like the proposed method, the FS-RW
also achieves best accuracy with 3 features. However, only the proposed method
can adaptively determine the most informative feature subset. Finally, recall
that there are only 42 samples divided into 4 class for the evaluation, making
this classification task very challenging. Thus, these results demonstrates the
effectiveness of the proposed method.

0 2 4 6 8 10 12 14 16 18 20
0.1

0.15

0.2

0.25

0.3

0.35

Number of Selected Features

AFS−RW
FS−RW
FS
MI
All Features

Fig. 1. Accuracy vs. number of selected features for different feature selection methods.

5 Conclusion

In this paper, we have proposed an adaptive feature selection method, based on
a new information theoretic criterion between graph-based features. Unlike most
existing information theoretic feature selection methods, our approach has two
advantages. First, it is based on graph-based features and thus incorporates the
relationships between feature samples into the feature selection process. Second,
it can accommodate both continuous and discrete target features. Experiments
on the analysis of P2P lending platforms in China demonstrate the effectiveness
of the proposed feature selection method.

We will extend our method in a number of ways. First, in our previous
works [4,5], we have developed a number of quantum Jensen-Shannon kernels
using both the continuous-time and discrete-time quantum walks. It is interest-
ing to extend the proposed feature selection method using the classical Jensen-
Shannon divergence to that using its quantum counterpart. Second, we will also
use our previous graph kernel measures as the graph similarity measures for
our feature selection frameworks [2,6,7]. We will explore the performance of our
feature selection method associated with different graph kernels. Third, the pro-
posed feature selection method only considers the relationship between pairwise
features, i.e., it only evaluates the two-order relationship between features. Our
future work will extend the proposed method into a high-order feature selection

286 L. Cui et al.

method by establishing higher order relationship between features. Finally, it is
interesting to establish hypergraph-based features [1] and thus develop a new
hypergraph-based feature selection method.

Acknowledgments. This work is supported by the National Natural Science Foun-
dation of China (Grant no. 61602535 and 61503422), the Open Projects Program of
National Laboratory of Pattern Recognition, the Young Scholar Development Fund
of Central University of Finance and Economics (No. QJJ1540), and the program for
innovation research in Central University of Finance and Economics.

References

1. Bai, L., Escolano, F., Hancock, E.R.: Depth-based hypergraph complexity traces
from directed line graphs. Pattern Recogn. 54, 229–240 (2016)

2. Bai, L., Hancock, E.R.: Fast depth-based subgraph Kernels for unattributed
graphs. Pattern Recogn. 50, 233–245 (2016)

3. Bai, L., Rossi, L., Bunke, H., Hancock, E.R.: Attributed graph Kernels using the
Jensen-Tsallis q-differences. In: Calders, T., Esposito, F., Hüllermeier, E., Meo,
R. (eds.) ECML PKDD 2014. LNCS, vol. 8724, pp. 99–114. Springer, Heidelberg
(2014). doi:10.1007/978-3-662-44848-9 7

4. Bai, L., Rossi, L., Cui, L., Zhang, Z., Ren, P., Bai, X., Hancock, E.R.: Quan-
tum Kernels for unattributed graphs using discrete-time quantum walks. Pattern
Recogn. Lett. 87, 96–103 (2017)

5. Bai, L., Rossi, L., Torsello, A., Hancock, E.R.: A quantum Jensen-Shannon graph
Kernel for unattributed graphs. Pattern Recogn. 48(2), 344–355 (2015)

6. Bai, L., Rossi, L., Zhang, Z., Hancock, E.R.: An aligned subtree Kernel for weighted
graphs. In: Proceedings of ICML, pp. 30–39 (2015)

7. Bai, L., Zhang, Z., Wang, C., Bai, X., Hancock, E.R.: A graph Kernel based on
the Jensen-Shannon representation alignment. In: Proceedings of IJCAI, pp. 3322–
3328 (2015)

8. Battiti, R.: Using mutual information for selecting features in supervised neural
net learning. IEEE Trans. Neural Netw. 5(4), 537–550 (1994)

9. Bonev, B., Escolano, F., Cazorla, M.: Feature selection, mutual information, and
the classification of high-dimensional patterns. Pattern Anal. Appl. 11(3–4), 309–
319 (2008)

10. Brown, G.: A new perspective for information theoretic feature selection. In: Pro-
ceedings of AISTATS, pp. 49–56 (2009)

11. Cui, L., Bai, L., Wang, Y., Bai, X., Zhang, Z., Hancock, E.R.: P2P lending analy-
sis using the most relevant graph-based features. In: Robles-Kelly, A., Loog, M.,
Biggio, B., Escolano, F., Wilson, R. (eds.) S+SSPR 2016. LNCS, vol. 10029, pp.
3–14. Springer, Cham (2016). doi:10.1007/978-3-319-49055-7 1

12. Han, J., Sun, Z., Hao, H.: Selecting feature subset with sparsity and low redundancy
for unsupervised learning. Knowl.-Based Syst. 86, 210–223 (2015)

13. He, X., Cai, D., Niyogi, P., Laplacian score for feature selection. In: Proceedings
of NIPS, pp. 507–514 (2005)

14. Kwak, N., Choi, C.-H.: Input feature selection by mutual information based on
Parzen window. IEEE Trans. Pattern Anal. Mach. Intell. 24(12), 1667–1671 (2002)

15. Liu, S., Liu, H., Latecki, L.J., Yan, S., Xu, C., Lu, H.: Size adaptive selection of
most informative features. In: Proceedings of AAAI (2011)

http://dx.doi.org/10.1007/978-3-662-44848-9_7
http://dx.doi.org/10.1007/978-3-319-49055-7_1

Adaptive Feature Selection 287

16. Malekipirbazari, M., Aksakalli, V.: Risk assessment in social lending via random
forests. Expert Syst. Appl. 42(10), 4621–4631 (2015)

17. Pavan, M., Pelillo, M.: Dominant sets and pairwise clustering. IEEE Trans. Pattern
Anal. Mach. Intell. 29(1), 167–172 (2007)

18. Peng, H., Long, F., Ding, C.H.Q.: Feature selection based on mutual information:
criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pat-
tern Anal. Mach. Intell. 27(8), 1226–1238 (2005)

19. Pohjalainen, J., Räsänen, O., Kadioglu, S.: Feature selection methods and their
combinations in high-dimensional classification of speaker likability, intelligibility
and personality traits. Comput. Speech Lang. 29(1), 145–171 (2015)

20. Yang, H., Moody, J.: Feature selection based on joint mutual information. In:
Proceedings of AIDA, pp. 22–25 (1999)

21. Zhang, Z., Hancock, E.R.: Hypergraph based information-theoretic feature selec-
tion. Pattern Recogn. Lett. 33(15), 1991–1999 (2012)

Author Index

Abu-Aisheh, Zeina 197
Algabli, Shaima 143

Bai, Lu 59, 276
Berton, Gottfried 39
Biasotti, Silvia 13
Blumenthal, David B. 211
Bougleux, Sébastien 118
Brun, Luc 118
Bunke, Horst 222

Carletti, Vincenzo 128
Conte, Donatello 49
Cui, Hongxia 187
Cui, Lixin 59, 276
Curado, Manuel 13, 165

Deville, Romain 177
Di Fabio, Barbara 23
Ding, Chris 3
Drees, Dominik 73
Dupé, François-Xavier 39

Escolano, Francisco 13, 165

Fiorucci, Marco 165
Fischer, Andreas 83, 222, 242
Foggia, Pasquale 128
Fornés, Alicia 107
Fromont, Elisa 177

Gamper, Johann 211
Gaüzère, Benoit 118

Hancock, Edwin R. 13, 59, 94, 255, 276
He, Zhouqin 3
Hou, Jian 187

Jeudy, Baptiste 177
Jiang, Bo 3

Jiang, Xiaoyi 73, 232
Jiao, Yuhang 276

Landi, Claudia 23
Lladós, Josep 107
Luo, Bin 3

Pelillo, Marcello 165

Ramel, Jean-Yves 197
Raveaux, Romain 49, 197
Riba, Pau 107
Riesen, Kaspar 83, 222, 242
Rossi, Luca 59, 154, 276

Saggese, Alessia 128
Santacruz, Pep 143
Scherzinger, Aaron 73
Schiavinato, Michele 266
Serratosa, Francesc 143, 232
Solnon, Christine 177
Stauffer, Michael 83, 242

Takerkart, Sylvain 39
Torcinovich, Alessandro 165
Torsello, Andrea 154, 266
Tschachtli, Thomas 242

Vento, Mario 128
Venturini, Gilles 49

Wang, Jianjia 94, 255
Wilson, Richard C. 94, 255

Xiao, Yun 3

Malfait, Nicole 39
49

Moreno-García, Carlos Francisco 232
Martineau, Chloé

	Preface
	Organization
	Invited Talks
	Approaches to Analysis of Large Networks
	Graph Edit Distance: Basics and History
	Contents
	Image and Shape Analysis
	Saliency Detection via A Graph Based Diffusion Model
	1 Introduction
	2 Brief Review of Random Walk with Restart
	3 Saliency Detection
	3.1 Graph Construction
	3.2 Diffusion with Background Prior
	3.3 Diffusion with Foreground Prior
	3.4 Combination

	4 Experiments
	4.1 Datasets and Settings
	4.2 Results

	5 Conclusions
	References

	Shape Simplification Through Graph Sparsification
	1 Introduction
	1.1 Shape Representations: Triangulations vs Alpha Shapes
	1.2 Contributions

	2 Graph Sparsification
	2.1 Definition and Ingredients
	2.2 Spectral Formulation and Effective Resistances

	3 Experiments
	4 Conclusions
	References

	Reeb Graphs of Piecewise Linear Functions
	1 Introduction
	2 The Topological Reeb Graph and Its Properties
	3 Preliminary Facts on Polyhedra
	4 The Reeb Graph is a Graph Also in the PL Case
	5 Conclusions
	References

	Learning and Graph Kernels
	Learning from Diffusion-Weighted Magnetic Resonance Images Using Graph Kernels
	1 Introduction
	2 Methods
	2.1 Constructing DWI-Based Parcellations
	2.2 Graph Construction
	2.3 Learning from Graphs

	3 Experiments and Results
	3.1 Aging Trajectory of the Corpus Callosum
	3.2 Data and Experiments
	3.3 Results

	4 Discussion and Future Work
	References

	Learning Graph Matching with a Graph-Based Perceptron in a Classification Context
	1 Introduction
	2 Problem Statement
	3 State of the Art
	4 Proposal: A Graph-Based Perceptron
	5 Experiments
	6 Conclusion
	References

	A Nested Alignment Graph Kernel Through the Dynamic Time Warping Framework
	1 Introduction
	2 Preliminary Concepts
	2.1 Global Alignment Kernels from the Dynamic Time Warping Framework
	2.2 Centroid Depth-Based Complexity Traces

	3 The Proposed Kernel
	3.1 A Nest Aligned Kernel from the Dynamic Time Warping Framework
	3.2 Computational Analysis

	4 Experimental Evaluations
	4.1 Graph Datasets

	5 Experiments on Standard Graph Datasets
	6 Conclusion
	References

	Graph Applications
	GERoMe -- A Novel Graph Extraction Robustness Measure
	1 Introduction
	2 Related Work
	3 Method
	3.1 The Graph Extraction Robustness Measure
	3.2 Graph Similarity
	3.3 Matching

	4 Exemplary Study
	4.1 Synthetic Data
	4.2 Real-World Lymphatic Vessel Data

	5 Conclusion
	References

	Speeding-Up Graph-Based Keyword Spotting in Historical Handwritten Documents
	1 Introduction
	2 Fast Rejection of Document Graphs
	3 Handwriting Graphs
	4 Experimental Evaluation
	4.1 Basic KWS Systems
	4.2 Optimisation of the Parameters
	4.3 Results and Discussion

	5 Conclusion and Outlook
	References

	Detecting Alzheimer's Disease Using Directed Graphs
	1 Introduction
	2 Directed Graphs in fMRI Networks
	2.1 Preliminaries
	2.2 Von Neumann Entropy for Directed Graphs
	2.3 Entropic Edge Assortativity for Directed Graphs

	3 Experiments and Evaluations
	3.1 fMRI Data Set
	3.2 Alzheimer's Classification
	3.3 Identifying Salient Nodes for Disease Classification

	4 Conclusions
	References

	Graph Matching
	Error-Tolerant Coarse-to-Fine Matching Model for Hierarchical Graphs
	1 Introduction
	2 Hierarchical Attributed Graph Representation
	2.1 Hierarchy Construction
	2.2 Hierarchy Construction by Community Detection
	2.3 Splitting of Articulation Points

	3 Error Tolerant Hierarchical Matching
	4 Experiments
	4.1 Datasets
	4.2 Results

	5 Conclusions
	References

	A Hungarian Algorithm for Error-Correcting Graph Matching
	1 Introduction
	2 Bipartite Matching and Hungarian Algorithm
	3 Proposed Adaptation of the Hungarian Algorithm
	4 Experiments
	5 Conclusion
	References

	Introducing VF3: A New Algorithm for Subgraph Isomorphism
	1 Introduction
	2 The Base of VF3: The VF2Plus Algorithm
	2.1 Graph Matching and State Space Representation
	2.2 Making the SSR a Tree
	2.3 Checking for Feasibility

	3 The VF3 Algorithm
	3.1 State Space Precalculation
	3.2 Candidate Selection

	4 Experiments
	5 Conclusions
	References

	Large Graphs and Social Networks
	Node Matching Computation Between Two Large Graphs in Linear Computational Cost
	Abstract
	1 Introduction
	2 Attributed Graphs and Graph Matching
	3 Belief Propagation Graph Matching
	4 Experimental Validation
	4.1 Validation Using Synthetic Graphs
	4.2 Real Application

	5 Conclusions and Further Work
	References

	Measuring Vertex Centrality Using the Holevo Quantity
	1 Introduction
	2 Quantum Information Theoretical Background
	2.1 Quantum States and von Neumann Entropy
	2.2 A Mixed State from the Graph Laplacian
	2.3 Holevo Quantity of a Graph Decomposition

	3 The Holevo Vertex Centrality
	4 Experimental Evaluation
	4.1 Synthetic Networks
	4.2 Real-World Networks

	5 Conclusion
	References

	On the Interplay Between Strong Regularity and Graph Densification
	1 Introduction
	2 Regular Partitions and the Key Lemma
	3 Motivation of the Experimental Setup
	4 Results
	4.1 Synthetic Experiments
	4.2 Experiments with the NIST Dataset

	5 Conclusions
	References

	Mining and Clustering
	Mining Frequent Patterns in 2D+t Grid Graphs for Cellular Automata Analysis
	1 Introduction
	2 Background on 2D Grids and GriMA
	3 2D+t Grid Mining Algorithm
	4 Experiments
	5 Conclusion and Future Work
	References

	Density Normalization in Density Peak Based Clustering
	1 Introduction
	2 Density Peak Clustering
	3 Our Algorithm
	4 Experiments
	5 Conclusions
	References

	Fast Nearest Neighbors Search in Graph Space Based on a Branch-and-Bound Strategy
	1 Introduction
	2 Problem Statement
	2.1 K-Nearest Neighbors Problem
	2.2 Graph Edit Distance as a Metric
	2.3 Formulation of K-Nearest Neighbors Coupled with Graph Edit Distance Computation
	2.4 Possible Techniques for GED Computation

	3 Fast Nearest Neighbors in Graph Space
	4 Protocol and Experiments
	4.1 Selected Datasets
	4.2 Chosen Methods
	4.3 Environment and Constraints
	4.4 Results

	5 Conclusions and Perspectives
	References

	Graph Edit Distance
	Exact Computation of Graph Edit Distance for Uniform and Non-uniform Metric Edit Costs
	1 Introduction
	2 DF-GEDu: Fast DF-GED for Uniform Edit Costs
	3 CSI_GEDnu: CSI_GED for Non-uniform Metric Edit Costs
	4 Empirical Evaluation
	5 Conclusions and Future Work
	References

	Improved Graph Edit Distance Approximation with Simulated Annealing
	1 Introduction
	2 Graph Edit Distance (GED)
	2.1 Basic Definition of GED
	2.2 Approximate Computation of GED

	3 Improving the Accuracy with Simulated Annealing
	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Empirical Investigation

	5 Conclusions
	References

	An Edit Distance Between Graph Correspondences
	Abstract
	1 Introduction
	2 Basic Definitions
	3 Correspondence Edit Distance
	4 Validation
	5 Conclusion and Further Work
	References

	A Survey on Applications of Bipartite Graph Edit Distance
	1 Introduction
	2 Applications
	2.1 Image Analysis
	2.2 Handwritten Document Analysis
	2.3 Biometrics
	2.4 Bio- and Chemoinformatics
	2.5 Knowledge and Process Management
	2.6 Malware Detection
	2.7 Other Applications

	3 Conclusion
	References

	Graphs and Information Theory
	Minimising Entropy Changes in Dynamic Network Evolution
	1 Introduction
	2 Variational Principle on Graphs
	2.1 Preliminaries
	2.2 Network Entropy
	2.3 Euler-Lagrange Equation

	3 Experimental Evaluation
	3.1 Data Set
	3.2 Network Dynamics
	3.3 Anomaly Detection

	4 Conclusion
	References

	Synchronization Over the Birkhoff Polytope for Multi-graph Matching
	1 Introduction
	1.1 Contribution

	2 Synchronization Over the Birkhoff Polytope
	2.1 Solving for ˆk
	2.2 Solving for α

	3 Synchronized Algorithms
	4 Experimental Setup and Evaluation
	5 Conclusion
	References

	Adaptive Feature Selection Based on the Most Informative Graph-Based Features
	1 Introduction
	2 Preliminary Concepts
	2.1 The Steady State Random Walk (SSRW)
	2.2 The Jensen-Shannon Divergence

	3 Methodology of the Proposed Feature Selection Method
	3.1 Graph-Based Features from Vectorial Features
	3.2 The Information Theoretic Criterion for Feature Selection
	3.3 Determination of the Most Informative Feature Subset
	3.4 Complete Feature Ranking

	4 Experimental Evaluations
	4.1 Identification of the Most Influential Factors for Credit Risk
	4.2 Classification for the Credit Rating of the P2P Lending Platforms

	5 Conclusion
	References

	Author Index

