
Frédéric Desprez
Pierre-François Dutot et al. (Eds.)

 123

LN
CS

 1
01

04

Euro-Par 2016 International Workshops
Grenoble, France, August 24–26, 2016
Revised Selected Papers

Euro-Par 2016:
Parallel Processing
Workshops

Lecture Notes in Computer Science 10104

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Frédéric Desprez • Pierre-François Dutot et al. (Eds.)

Euro-Par 2016:
Parallel Processing
Workshops
Euro-Par 2016 International Workshops
Grenoble, France, August 24–26, 2016
Revised Selected Papers

123

Editors
Frédéric Desprez
Inria
Université Grenoble Alpes
Grenoble
France

Pierre-François Dutot
LIG
Université Grenoble Alpes
Grenoble
France

Workshop Editors see next page

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-58942-8 ISBN 978-3-319-58943-5 (eBook)
DOI 10.1007/978-3-319-58943-5

Library of Congress Control Number: 2017940837

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Workshop Editors

Euro-EDUPAR
Christos Kaklamanis
CTI and University of Patras
Greece
kakl@ceid.upatras.gr

HeteroPar
Loris Marchal
CNRS and University of Lyon
France
loris.marchal@ens-lyon.fr

IWMSE
Korbinian Molitorisz
Agilent Technologies
USA
korbinian.molitorisz@agilent.com

LSDVE
Laura Ricci
University of Pisa
Italy
laura.ricci@unipi.it

PADABS
Vittorio Scarano
Università di Salerno
Italy
vitsca@dia.unisa.it

PBio
Miguel A. Vega-Rodríguez
University of Extremadura
Spain
mavega@unex.es

PELGA
Ana Lucia Varbanescu
University of Amsterdam
The Netherlands
a.l.varbanescu@uva.nl

REPPAR
Sascha Hunold
TU Wien
Austria
hunold@par.tuwien.ac.at

Resilience
Stephen L. Scott
Tennessee Tech University and Oak
Ridge National Laboratory, USA
SScott@tntech.edu

ROME
Stefan Lankes
RWTH Aachen University
Germany
slankes@eonerc.rwth-aachen.de

UCHPC
Josef Weidendorfer
Technische Universität München
Germany
Josef.Weidendorfer@in.tum.de

Preface

Euro-Par is an annual, international conference on European ground, covering all
aspects of parallel and distributed processing, ranging from theory to practice, from
small to the largest parallel and distributed systems and infrastructures, from funda-
mental computational problems to full-fledged applications, from architecture, com-
piler, language and interface design and implementation to tools, support
infrastructures, and application performance aspects. The Euro-Par conference itself is
complemented by a workshop program, where workshops dedicated to more special-
ized themes, to cross-cutting issues, and to upcoming trends and paradigms can be
easily and conveniently organized with little administrative overhead.

This year, 14 workshop proposals were submitted, and after a careful revision
process, which was led by the workshop co-chairs, 12 workshops were accepted. One
workshop had to be canceled later due to a low number of submissions.

The workshops took place on the two days before the Euro-Par conference and the
program included the following 11 workshops:

1. Parallel and Distributed Computing Education for Undergraduate Students (EURO-
EDUPAR)

2. Algorithms, Models, and Tools for Parallel Computing on Heterogeneous Plat-
forms (HETEROPAR)

3. Multicore Software Engineering (IWMSE)
4. Large-Scale Distributed Virtual Environments (LSDVE)
5. Parallel and Distributed Agent-Based Simulations (PADABS)
6. Parallelism in Bioinformatics (PBIO)
7. Performance Engineering for Large-scale Graph Analytics (PELGA)
8. Reproducibility in Parallel Computing (REPPAR)
9. Resiliency in High-Performance Computing in Clusters, Clouds, and Grids

(RESILIENCE)
10. Runtime and Operating Systems for the Many-Core Era (ROME)
11. UnConventional High-Performance Computing (UCHPC)

All workshops together received a total of 95 submissions from 20 different
countries. Each workshop had an independent Program Committee, which was in
charge of selecting the papers. The workshop papers received more than three reviews
per paper on average (320 reviews in total). Out of the 95 submissions, 66 papers were
selected to be presented at the workshops.

The success of the Euro-Par workshops depends on the work of many individuals
and organizations. We therefore thank all workshop organizers and reviewers for the
time and effort that they invested. The Euro-Par vice-chair, Luc Bougé, provided
guidance and support throughout the whole organizational process of the workshops.
We would also like to express our sincere thanks to Springer for their help in pub-
lishing the proceedings.

Lastly, we thank all participants, panelists, and keynote speakers of the Euro-Par
workshops for contributing to a productive meeting. It was a pleasure to organize and
host the Euro-Par workshops 2016 in Grenoble.

October 2016 Frédéric Desprez

VIII Preface

Organization

Euro-Par Steering Committee

Chair

Christian Lengauer University of Passau, Germany

Vice-Chair

Luc Bougé ENS Rennes, France

European Representatives

Emmanuel Jeannot LaBRI-Inria, Bordeaux, France
Christos Kaklamanis Computer Technology Institute, Greece
Paul Kelly Imperial College, UK
Thomas Ludwig University of Hamburg, Germany
Emilio Luque Autonomous University of Barcelona, Spain
Tomàs Margalef Autonomous University of Barcelona, Spain
Wolfgang Nagel Dresden University of Technology, Germany
Rizos Sakellariou University of Manchester, UK
Fernando Silva University of Porto, Portugal
Henk Sips Delft University of Technology, The Netherlands
Domenico Talia University of Calabria, Italy
Jesper Larsson Träff Vienna University of Technology, Austria
Denis Trystram Grenoble Institute of Technology, France
Felix Wolf Technische Universität Darmstadt, Germany

Honorary Members

Ron Perrott Oxford e-Research Centre, UK
Karl Dieter Reinartz University of Erlangen-Nuremberg, Germany

Observers

Marco Aldinucci University of Turin, Italy
Francisco Rivera CiTIUS, Santiago de Compostela, Spain

Euro-Par 2016 Organization

Co-chairs

Frédéric Desprez Inria, France
Pierre-François Dutot Université Grenoble Alpes, France
Denis Trystram Grenoble Institute of Technology, France

Workshops

Frédéric Desprez Inria, France

Local Organization

Annie Simon Inria, France
Sophie Azzaro Inria, France
Grégory Mounié Grenoble Institute of Technology, France
Frédéric Wagner Grenoble Institute of Technology, France

X Organization

Second European Workshop on Parallel and Distributed
Computing Education for Undergraduate Students

(Euro-EDUPAR)

Today, Parallel and Distributed Computing (PDC) is omnipresent. It is encountered in
all computational environments, from mobile devices, laptops, and desktops, to clusters
of multicore nodes and supercomputers, usually comprising one or several coproces-
sors of different types (GPU, MIC, FPGA). This explains why it is vital to educate new
generations of scientists and engineers about a range of PDC-related topics as we
prepare them to effectively use modern computational systems. In a word, PDC-related
topics must appear early and often in modern courses in Computational Science,
Computer Science, and Computer Engineering.

In 2010, the IEEE Computer Society Technical Committee on Parallel Processing
(TCPP) launched the Curriculum Initiative on Parallel and Distributed Computing, with
Core Topics for Undergraduates. This led in 2011 to the EduPar workshop, which is
dedicated to Parallel and Distributed Computing Education. Given the differences in
educational environments in different parts of the world, the Euro-EDUPAR workshop
starts with the aim of analyzing PDC education in a European context, i.e., within the
structure and organization of European education.

Thus, the second Euro-EDUPAR was dedicated to analyzing where and how to
include topics related to both PDC and HPC (high-performance computing) within the
curricula of programs in Computer Science and Engineering and Computational
Science, while emphasizing European undergraduate teaching. The workshop
especially sought papers that report on experiences with incorporating PDC-related
topics into undergraduate core courses taken by the majority of students on a degree
course. Methods, pedagogical approaches, tools, and techniques that have potential for
adoption across the European teaching community are of particular interest.

Topics of interest include: Parallel and Distributed Computing teaching in the
European space; pedagogical issues in PDC, educational methods and learning
mechanisms; novel ways of teaching PDC topics, including informal learning environ-
ments; curriculum design, models for incorporating PDC topics in core CS/CE curriculum;
experience with incorporating PDC topics into core CS/CE courses; experience with
incorporating PDC topics in the context of other applications learning; pedagogical tools,
programming environments, and languages for PDC; e-learning, e-laboratory, Massive
Open Online Courses (MOOC), Small Private Online Courses (SPOC); PDC experiences
at non-university levels, secondary school, postgraduate, industry, diffusion of PDC.

Program Chairs

Christos Kaklamanis CTI and University of Patras, Greece
Yves Robert École normale supérieure de Lyon, France
Arnold L. Rosenberg Northeastern University, Boston, USA

Program Committee

Marco Aldinucci University of Turin, Italy
Rosa M. Badia Barcelona Supercomputing Center, Spain
Olivier Beaumont Inria Bordeaux, Sud-Ouest, France
Marco Danelutto Università di Pisa, Italy
Alex Delis University of Athens, Greece
Efstratios Gallopoulos University of Patras, Greece
Chryssis Georgiou University of Cyprus, Cyprus
Domingo Giménez University of Murcia, Spain
Emmanuel Jeannot Inria Bordeaux Sud-Ouest, France
Helen Karatza Aristotle University of Thessaloniki, Greece
Thilo Kielmann Vrije Universiteit Amsterdam, The Netherlands
Danny Krizanc Wesleyan University, USA
Milan Mihajlovic University of Manchester, UK
Dana Petcu West University of Timisoara, Romania
Andrea Pietracaprina Università di Padova, Italy
Christian Scheideler Universität Paderborn, Germany
Fernando Silva University of Porto, Portugal
Jesper Larsson Träff TU Wien, Austria
Frédéric Vivien Inria Grenoble Rhône-Alpes, France

XII Second European Workshop on Parallel and Distributed Computing Education

Workshop on Algorithms, Models and Tools for Parallel
Computing on Heterogeneous Platforms (HeteroPar)

HeteroPar is a forum for researchers working on algorithms, programming languages,
tools, and theoretical models aimed at efficiently solving problems on heterogeneous
platforms. Heterogeneity is emerging as one of the most profound and challenging
characteristics of today’s parallel environments. From the macro level, where networks
of distributed computers, composed by diverse node architectures, are interconnected
with potentially heterogeneous networks, to the micro level, where deeper memory
hierarchies and various accelerator architectures are increasingly common, the impact
of heterogeneity on all computing tasks is increasing rapidly. Traditional parallel
algorithms, programming environments and tools, designed for legacy homogeneous
multiprocessors, will at best achieve a small fraction of the efficiency and the potential
performance that we should expect from parallel computing in tomorrow’s highly
diversified and mixed environments. New ideas, innovative algorithms, and specialized
programming environments and tools are needed to efficiently use these new and
multifarious parallel architectures.

The 14th International Workshop on Algorithms, Models and Tools for Parallel
Computing on Heterogeneous Platforms (HeteroPar’2016) was held in Grenoble,
France. For the eighth time, this workshop was organized in conjunction with the
Euro-Par annual series of international conferences. The format of the workshop
includes a keynote, followed by technical presentations. The workshop was
well-attended (around 30 attendees).

This year, we received 17 articles for review, from 12 countries. After a thorough
peer-reviewing process, we selected eight articles for presentation at the workshop. The
review process focused on the quality of the papers, their innovative ideas, and their
applicability to heterogeneous settings. The papers were accepted after discussion and
agreement by the reviewers. As a consequence, the quality and the relevance of the
selected articles were high, despite a rather high acceptance ratio (47%). The accepted
articles represent an interesting mix of topics, techniques, applications, and scales,
exhibiting nicely the diversity and growth of the heterogeneous computing field.

Last, but certainly not least, I would like to thank the HeteroPar Steering
Committee and the HeteroPar 2016 Program Committee, who made the workshop
possible. I would also like to thank Euro-Par for hosting our community, and the
Euro-Par workshop chairs, Frédéric Desprez and Luc Bougé, for their help and support.

Steering Committee

Domingo Giménez University of Murcia, Spain
Alexey Kalinov Cadence Design Systems, Russia
Alexey Lastovetsky University College Dublin, Ireland
Yves Robert École normale supérieure de Lyon, France

Leonel Sousa INESC-ID/IST, TU Lisbon, Portugal
Denis Trystronel Sousa INESC-ID/IST, TU Lisbon, Portugal
Denis Trystram LIG, Grenoble, France

Program Chair

Loris Marchal CNRS and University of Lyon, France

Program Committee

Rosa M. Badia Barcelona Supercomputing Center, Spain
Jorge Barbosa Faculdade de Engenharia do Porto, Portugal
Olivier Beaumont Inria Bordeaux Sud-Ouest, France
Cristina Boeres Universidade Federal Fluminense, Brazil
Aurélien Bouteillier University of Tennessee Knoxville, USA
Louis-Claude Canon University of Franche-Comté, France
Edgar Gabriel University of Houston, USA
Shuichi Ichikawa Toyohashi University of Technology, Japan
Emmanuel Jeannot Inria Bordeaux Sud-Ouest, France
Helen Karatza Aristotle University of Thessaloniki, Greece
Hatem Ltaief KAUST, Saudi Arabia
Giorgio Lucarelli LIG, University of Grenoble-Alpes, France
Pierre Manneback University of Mons, Belgium
Satoshi Matsuoka Tokyo Institute of Technology, Japan
Rafael Mayo Universidad Jaume I, Spain
Masahiro Nakao RIKEN Advanced Institute of Computational Science,

Japan
Dana Petcu West University of Timisoara, Romania
Enrique S. Quintana-Ortí Universidad Jaume I, Spain
Thomas Rauber University of Bayreuth, Germany
Matei Ripeanu University of British Columbia, Canada
Erik Saule University of North Carolina at Charlotte, USA
Tom Scogland Lawrence Livermore National Laboratory, USA
Antonio M. Vidal Universidad Politecnica de Valencia, Spain
Frédéric Vivien Inria Grenoble Rhône-Alpes and University of Lyon,

France
Jon Weissman University of Minnesota, USA

XIV Workshop on Algorithms, Models and Tools

International Workshop on Multicore
Software Engineering (IWMSE)

With the general availability of multicore processors, software engineers face the
challenge of developing parallel software that exploits the computing power in an
optimal way. This is highly relevant for performance-critical applications of all types,
but with degrading clock frequencies this is also relevant for any other application.
Compared with sequential applications, our repertoire of tools and methods for
cost-effectively developing reliable and performant parallel software is still quite
limited.

The IWMSE workshop brings together researchers and practitioners with diverse
backgrounds in order to advance the state of the art in software engineering for the
various kinds of modern multicore architectures. It aims at making parallelism available
to a wide range of applications using systematic software engineering methodology.
We cover a broad variety of work that extends the knowledge and understanding of the
software engineering and the parallel systems community as a whole. We want to
establish and persist in a significant research dialogue and push the architectural
boundaries of multicore engineering.

The Fifth International Workshop on Multicore Software Engineering (IWMSE
2016) was held in Grenoble, France. For the first time it was held in conjunction with
the Euro-Par conference series. Previous editions were hosted by the International
Conference on Software Engineering (ICSE) and the ACM SIGSOFT Symposium on
the Foundations of Software Engineering (FSE). The format of IWMSE includes a
keynote followed by unpublished scientific results or technical presentations. Although
this year was the first time it was co-located with Euro-Par, the workshop was
well-attended. During our sessions we had around 40 attendees.

In 2016, we specifically invited both researchers and practitioners to submit early
research work, technical sessions, or general discussions. Besides traditional papers we
accepted technical tutorials that familiarize workshop participants with languages,
environments, tools, or concepts from parallel software engineering.

From the number of submitted articles we see the low awareness of this
workshop. We only received six submissions from eight different countries, of which
five were selected by the Program Committee for presentation at the workshop. We
hope to increase the awareness for IWMSE and the number of submissions in the
future.

Our review process focused on the paper quality and the level of innovation and
potential for further research result, and the acceptance decision was based on the
reviewers’ consensus. For this first edition, we had a large acceptance ratio of 80%. Our
accepted articles were well-balanced in current research trends in multicore software
engineering: from multicore programming to performance optimization and defect
fixing, from general-purpose techniques to specific applications, and from research to
industry.

This year’s keynote was held by Michael Chang, vice-president of Research and
Development at Codeplay Inc., who talked about massive parallelism in C++.

I would like to thank all the authors who submitted to IWMSE and made this
workshop essential. My special thank goes to the IWMSE Program Committee, who
made the workshop possible. And finally, thank you for the support of the Euro-Par
workshop chairs, Frédéric Desprez and Luc Bougé, for making the workshop
worthwhile.

Workshop Chairs

Korbinian Molitorisz Agilent Technologies, USA
Walter F. Tichy Karlsruhe Institute of Technology (KIT), Germany

Program Committee

Michael Gerndt Technical University Munich (TUM), Germany
Urs Gleim Siemens AG, Germany
Ali Jannesari University of California, Berkeley, USA
Wolfgang Karl Karlsruhe Institute of Technology (KIT), Germany
Tim Mattson Intel Corporation, USA
Korbinian Molitorisz Agilent Technologies, USA
David Padua University of Illinois, USA
Michael Phillipsen University of Erlangen, Germany
Walter F. Tichy Karlsruhe Institute of Technology (KIT), Germany
Hans Vandierendonck Queen’s University Belfast, Northern Ireland
Michael Wong Codeplay Software, Scotland

XVI International Workshop on Multicore Software Engineering (IWMSE)

4th Workshop on Large-Scale Distributed
Virtual Environments (LSDVE 2016)

The 4th Workshop on Large-Scale Distributed Virtual Environments (LSDVE 2016)
was held in Grenoble, France. For the fourth time, this workshop was organized in
conjunction with the Euro-Par annual series of international conferences. The main aim
of the fourth edition of the workshop was to provide a venue for researchers to present
and discuss important aspects of large-scale networked collaborative applications and
of the platforms supporting them.

Recent advances in networking have led to an increasing use of information
technology to support interactive networked cooperative applications. Several novel
applications have emerged in this area: social networks, distributed gamification
applications like Nike+ or MyStarbucksRewards, collaborative learning systems,
large-scale, crowd-based applications, and collaborative work platforms. This kind of
applications can be generally referred to as Large-Scale Distributed Virtual Environ-
ments (LSDVE). The definition of these applications poses several challenges, like the
design of user interfaces, coordination protocols, and proper middle-ware and
architectures supporting distributed cooperation. Collaborative applications may
greatly benefit from the support of different kinds of platforms, both cloud and
peer-to-peer, and also platforms recently proposed for the Internet of Things (IoT), like
fog computing. Integration of different platforms, for instance, mobile and cloud
environments, is currently a challenge. Furthermore, the analysis and validation of the
huge amount of content generated by these applications require big data analysis and
processing techniques.

The main aim of the workshop was to investigate open challenges for LSDVE
applications, related to both the design of applications and to the definition of proper
architectures. Some important challenges are, for instance, collaborative protocols
design, latency reduction/hiding techniques for guaranteeing real-time constraints,
large-scale processing of user information, privacy and security issues, and state
consistency/persistence.

LSDVE 2016 opened with the invited talk “Use of Bio-Inspired Algorithms for the
Efficient Management of Geo-distributed Data Centers,” given by Carlo Mastroianni,
ICAR, Institute of High-Performance Computing of the Italian National Council,
Cosenza, Italy. The papers presented in the first session concerned smart cities, edges
and opportunistic computing, while the second session was devoted to the
European ENTICE Project. The last session includes papers related to P2P networks.

We wish to thank all who helped to make this fourth edition of the workshop a
success: Carlo Mastroianni, who accepted our invitation to give a talk, the authors
submitting papers, colleagues who reviewed the submitted papers and attended the
sessions, and finally the Euro-Par 2016 organizers whose invaluable support greatly
helped in the organization of the workshop.

Program Chairs

Laura Ricci Department of Computer Science, University of Pisa, Italy
Alexandru Iosup TU Delft, The Netherlands
Radu Prodan Institute of Computer Science, Innsbruck, Austria

Program Committee

Michele Amoretti University of Parma, Italy
Emanuele Carlini ISTI CNR, Pisa, Italy
Patrizio Dazzi ISTI CNR, Pisa, Italy
Kalman Graffi University of Dusseldorf, Germany
Barbara Guidi University of Pisa, Italy
Alexandru Iosup TU Delft, The Netherlands
Jose A.F. de Macedo Federal University of Cearà, Brazil
Pedro Garcia Lopez Rovira i Virgili University, Spain
Pietro Michiardi EURECOM, France
Alberto Montresor University of Trento, Italy
Dana Petcu West University of Timisoara, Romania
Florin Pop University Politehnica of Bucarest, Romania
Radu Prodan Institute of Computer Science, Innsbruck, Austria
Laura Ricci University of Pisa, Italy
Alexey Vinel Tampere University of Technology, Finland

XVIII 4th Workshop on Large-Scale Distributed Virtual Environments (LSDVE 2016)

4th Workshop on Parallel and Distributed Agent-Based
Simulations (PADABS)

Agent-Based Simulation Models are an increasingly popular tool for research and
management in many fields such as ecology, economics, sociology, etc. In some fields,
such as social sciences, these models are seen as a key instrument in the generative
approach, essential for understanding complex social phenomena. But also in
policy-making, biology, military simulations, control of mobile robots and economics,
the relevance and effectiveness of Agent-Based Simulation Models are recently
recognized.

The need for complex and massive Agent-Based Simulation Models is a recent
trend. It engages computer scientists in the field of Parallel and Distributed Computing,
whose objective is to make the (possibly repeated) simulations of large Agent-Based
Models efficient and tractable. In fact, while the community has developed several
platforms, libraries, and tools that make the design, implementation, and testing of
Agent-Based Models easy, less attention has been devoted to the theme of the
performance of large models.

In this workshop, we want to bring together researchers who are interested in
getting more performance from their simulations, by using synchronized, many-core
simulations (e.g., GPUs), strongly coupled, parallel simulations (e.g., MPI), and
loosely coupled, distributed simulations (distributed heterogeneous setting). It is a
crucial objective, since having efficient and scalable simulations of large models makes
it possible to use, in some cases, the simulation itself in research (the execution time
being limited), and, in other cases, it allows for repeated executions of simulations
of the same models with different input parameters, thereby allowing for an effective
exploration of the parameter space that can lead to insights into the structure of the
model.

Several frameworks have been recently developed and are active in this field. They
range from the GPU-Manycore approach, to parallel and distributed simulation
environments. In the first category, you can find FLAME GPU, that allows also
non-GPU specialists to harness the GPU performance for real-time simulation and
visualization. For tightly coupled, large computing clusters and supercomputers, a very
popular framework is Repast for High-Performance Computing (REPAST-HPC), a
C++-based modeling system. On the distributed side, recent work on Distributed
Mason, allows non-specialists to use heterogeneous hardware and software in
local-area networks to enlarge the size and speed up the simulation of complex
Agent-Based models.

Our workshop is dedicated to this area: framework, tools, libraries, use cases of
large, massive parallel/distributed agent-based simulations.

Therefore, our focus and positioning is on the applied side of parallel computing,
with a particular emphasis on performance, but also on the expressivity of the
frameworks, since the field that is the target of our research is multidisciplinary and
does not include only “hard-science” scientists.

Program Chairs

Vittorio Scarano (Chair) Università di Salerno, Italy
Gennaro Cordasco Seconda Università di Napoli, Italy
Paul Richmond University of Sheffield, UK
Carmine Spagnuolo Università di Salerno, Italy (Publicity Chair)

Program Committee

Maria Chli Aston University, UK
Claudio Cioffi-Revilla George Mason University, USA
Biagio Cosenza University of Innsbruck, Austria
Nick Collier Argonne National Laboratory, USA
Rosaria Conte CNR, Italy
Andrew Evans University of Leeds, UK
Bernardino Frola The MathWorks, Cambridge, UK
Joanna Kolodziej Cracow University of Technology and AGH University

of Science and Technology, Cracow, Poland
Nicola Lettieri Università del Sannio and ISFOL, Italy
Sean Luke George Mason University, USA
Michael North Argonne National Laboratory, USA
Mario Paolucci CNR, Italy
Paul Richmond The University of Sheffield, UK
Arnold Rosenberg Northeastern University, USA
Flaminio Squazzoni Università di Brescia, Italy
Michela Taufer University of Delaware, USA

XX 4th Workshop on Parallel and Distributed Agent-Based Simulations (PADABS)

4th International Workshop on Parallelism
in Bioinformatics (PBio 2016)

Welcome to the proceedings of the 4th International Workshop on Parallelism in
Bioinformatics (PBio 2016), which was held in conjunction with the 22nd International
European Conference on Parallel and Distributed Computing (Euro-Par 2016) during
August 22–26, 2016.

In Bioinformatics, we find a variety of problems that are affected by huge
processing times and memory/storage consumption, due to the large size of biological
data sets and the inherent complexity of biological problems. In fact, bioinformatics is
one of the most exciting research areas in which Parallelism finds application.
Successful examples are mpiBLAST, RAxML-HPC, or ClustalW-MPI, among many
others. In conclusion, bioinformatics allows for and encourages the application of many
different parallelism-based technologies. In this sense, PBio 2016 offered a set of
original, high-quality research presentations, clearly focused on the application of
parallelism to different bioinformatics problems.

The workshop received 18 high-quality submissions from different countries (USA,
Spain, Iran, Taiwan and Germany). All 18 papers were reviewed by at least three expert
reviewers. Out of them, 13 papers of high quality in emerging research areas were
accepted for publication in the proceedings and presentation at the conference
(acceptance rate: 72%).

The papers presented at PBio 2016 cover diverse hot topics: multithreaded
computing in bioinformatics, cluster computing in bioinformatics, heterogeneous
computing in bioinformatics, multi-level parallelism in bioinformatics, as well as
parallel tools and applications in bioinformatics. The topics covered in the papers are
timely and important, and the authors did an excellent job of presenting the material. In
fact, this workshop would not have been possible without the assistance of both the
authors and the Program Committee members, to whom we give many thanks.

Finally, it is important to highlight that PBio 2016 was held in the modern and
lovely city of Grenoble (France), and we trust that everyone enjoyed their stay.

Program Chairs

Miguel A.
Vega-Rodríguez

University of Extremadura, Spain

Sergio
Santander-Jiménez

University of Extremadura, Spain

Álvaro Rubio-Largo University Nova of Lisbon, Portugal

Program Committee

Antonio Gómez-Iglesias Texas Advanced Computing Center, USA
César Gómez-Martín University of Extremadura, Spain
David L.

González-Álvarez
University of Extremadura, Spain

Francisco Prieto-Castrillo MIT (Massachusetts Institute of Technology), USA
José M. Granado-Criado University of Extremadura, Spain
María Arsuaga-Ríos CERN, Switzerland
María Botón-Fernández CETA-CIEMAT, Spain
Marisa da Silva

Maximiano
Polytechnic Institute of Leiria, Portugal

Miguel Cárdenas-Montes CIEMAT, Spain
Sónia M. Almeida-Luz Polytechnic Institute of Leiria, Portugal
Víctor Berrocal-Plaza University of Extremadura, Spain

XXII 4th International Workshop on Parallelism in Bioinformatics (PBio 2016)

Performance Engineering for Large-Scale
Graph Analytics (PELGA)

Knowledge economy is based on data, of which graphs represent an increasing part, in
advanced marketing, in social networking, in life sciences, in health and bioinformatics
services, in academic networks, in hiring of professionals, etc. As a consequence, graph
analytics is fast becoming a significant consumer of computing resources, due to ever
larger graphs of hundreds of millions up to hundreds of billions of edges, and to the
increased complexity of analysis tasks. To enable existing algorithms to fit modern
architectures and scale with these new requirements, there is a growing need for
performance engineering.

PELGA is a venue that aims to address this need. Its goal is to bring together
specialists from both industry and academia to discuss the state of the art of
graph-processing systems, with a special focus on performance. Hosting PELGA with
Euro-Par allows the largest community of parallel and distributed systems in Europe
and elsewhere to participate in the discussion and acknowledge the new research
opportunities that large-scale graph processing presents.

PELGA is a venue that welcomes contributions focusing on graph-centric
performance engineering tools and methods, workload characterization, new algo-
rithms and graph-processing systems, and performance modeling. Less conventional
workshop topics such as surveys, performance studies, comparative analyses are also
encouraged, given the young age of the large-scale graph processing community. We
strive to cover the specifics of three large classes of topics.

1. Systems invites contributions focusing on new graph processing systems focused on
high-performance analytics, performance studies of existing systems to be used for
graph processing, and comparative and/or in-depth analysis of graph processing
systems.

2. Algorithms, Applications, and Architectures is the largest topic cluster, including
work focusing on new high-performance graph-processing algorithms, new
performance-aware applications for graph-processing algorithms, platform-specific
algorithms and their performance optimization (e.g., GPUs, Xeon Phi, heteroge-
neous platforms) for graph analytics, algorithms and/or architectures for large-scale
graph analytics, and partitioning methods for large-scale or otherwise challenging
graphs.

3. Characterization, modeling, and engineering is the core of the workshop. We
encourage novel contributions focusing on graph models for performance tuning
and/or prediction of analytics workloads, performance models for prediction or
ranking of graph-processing platforms, performance analysis and engineering of
existing graph-processing algorithms, and tools and benchmarks for graph-centric
performance engineering.

In summary, graph processing is a high-impact field in full development, driven by
both the data owners and the analytics world. As we recognize the need to adapt
traditional performance evaluation, analysis, and modeling to the needs of this dynamic
new topic, PELGA is a workshop with a strong community focus, aiming to bring the
challenges of large-scale graph processing to the attention of the Euro-Par community
as an unconventional, yet very relevant topic for parallel and distributed computing.

We would like to thank the authors who sent us their manuscripts: Without you,
this workshop could not exist. We would also like to thank the members of our
Program Committee for their hard work in reviewing the submitted papers and giving
constructive feedback to all authors. We would also like to extend our thanks to Dr.
Frédéric Desprez, who helped us greatly in many organizational aspects. Finally,
Grenoble was a wonderful host for all of us. Thank you.

Program Chairs

Ana Lucia Varbanescu University of Amsterdam, The Netherlands
Alexandru Iosup Delft University of Technology, The Netherlands

Program Committee

Alexandru Iosup Delft University of Technology, The Netherlands
Arnau Prat-Perez UPC, Spain
Holger Fröning University of Heidelberg, Germany
Hannes Muhleisen CWI Amsterdam, The Netherlands
Jan Hidders Vrije Universiteit Brussel, Belgium
Josep Lluis Larriba Pey UPC, Spain
Mihai Capota Intel Labs, USA
Ted Willke Intel Labs, USA
Taro Takaguchi NII Tokyo, Japan
George Fletcher Eindhoven University of Technology, The Netherlands
Yuechao Pan UC Davis, USA

XXIV Performance Engineering for Large-Scale Graph Analytics (PELGA)

Third International Workshop on Reproducibility
in Parallel Computing (REPPAR)

Conducting sound and reproducible experiments in parallel computing is not easy, as
the hardware and software architectures of current parallel computers are most often
very complex. This high complexity makes it difficult—and often impossible—for
computer scientists to model such systems mathematically. Therefore, scientists rely on
experiments to study new parallel algorithms, different software solutions (e.g.,
operating systems), or novel hardware architectures. The situation in parallel
computing is made even more difficult than it would otherwise be, as parallel systems
are in a constant state of flux, e.g., the total core count is rapidly growing and many
programming paradigms for parallel machines have emerged and are actively being
used in a hybrid fashion, e.g., MPI, OpenMP, or PGAS.

For these reasons, the workshop is concerned with experimental practices in
parallel computing research. We solicit research papers and experience reports on a
number of relevant topics, particularly: methods for analysis and visualization of
experimental data, best practice recommendations, results of attempts to replicate
previously published experiments, and tools for experimental computational sciences.
Some examples of the latter include workflow management systems, experimental
testbeds, and systems for archiving and querying large data files.

Program Chairs

Sascha Hunold TU Wien, Austria
Arnaud Legrand CNRS, LIG, Grenoble, France
Lucas Nussbaum Université de Lorraine, LORIA, France
Mark Stillwell Imperial College London, UK

Program Committee

Sascha Hunold TU Wien, Austria
Arnaud Legrand CNRS, LIG, Grenoble, France
James McClure Virginia Tech, USA
Lucas Nussbaum Université de Lorraine, LORIA, France
Swann Perarnau Argonne National Lab, USA
Robert Ricci University of Utah, USA
Luka Stanisic Inria Bordeaux Sud-Ouest, France
Mark Stillwell Imperial College London, UK

9th Workshop on Resiliency in High-Performance Computing
in Clusters, Clouds, and Grids (Resilience 2016)

Resilience is a critical challenge as high-performance computing (HPC) systems
continue to increase component counts, individual component reliability decreases
[e.g., due to shrinking process technology and near-threshold voltage (NTV) operation],
and software complexity increases. Application correctness and execution efficiency, in
spite of frequent faults, errors, and failures, are essential to ensure the success of the
extreme-scale HPC systems, cluster computing environments, Grid computing
infrastructures, and Cloud computing services.

While a fault (e.g., a bug or stuck bit) is the cause of an error, its manifestation as a
state change is considered an error (e.g., a bad value or incorrect execution), and the
transition to an incorrect service is observed as a failure (e.g., an application abort or
system crash). A failure in a computing system is typically observed through an
application abort or a full/partial service or system outage. A detectable correctable
error is often transparently handled by hardware, such as a single bit flip in memory
that is protected with single-error correction double-error detection (SECDED) error
correcting code (ECC). A detectable uncorrectable error (DUE) typically results in a
failure, such as multiple bit flips in the same addressable word that escape
SECDED ECC correction, but not detection, and ultimately causes an application
abort. An undetectable error (UE) may result in silent data corruption (SDC), e.g., an
incorrect application output. There are many other types of hardware and software
faults, errors, and failures in computing systems.

Resilience for HPC systems encompasses a wide spectrum of fundamental and
applied research and development, including theoretical foundations, fault detection
and prediction, monitoring and control, end-to-end data integrity, enabling infrastruc-
ture, and resilient solvers and algorithm-based fault tolerance. This workshop brings
together experts in the community to further research and development in HPC
resilience and to facilitate exchanges across the computational paradigms of
extreme-scale HPC, cluster computing, Grid computing, and Cloud computing.

The goal of this workshop is to bring together experts in the area of fault tolerance
and resilience for HPC to present the latest achievements and to discuss the challenges
ahead. The program of the Resilience 2016 workshop included five high-quality
papers.

Workshop Chairs

Stephen L. Scott Tennessee Tech University and Oak Ridge National
Laboratory, USA

Chokchai
(Box) Leangsuksun

Louisiana Tech University, USA

Program Chairs

Patrick G. Bridges University of New Mexico, USA
Christian Engelmann Oak Ridge National Laboratory, USA

Program Committee

Ferrol Aderholdt Tennessee Tech University, USA
Vassil Alexandrov Barcelona Supercomputer Center, Spain
Dorian Arnold University of New Mexico, USA
Wesley Bland Intel Corporation, USA
Hans-Joachim Bungartz Technical University of Munich, Germany
Franck Cappello Argonne National Laboratory and University of Illinois

at Urbana-Champaign, USA
Zizhong Chen University of California at Riverside, USA
Robert Clay Sandia National Laboratories, USA
Miguel Correia Universidade de Lisboa, Portugal
Nathan DeBardeleben Los Alamos National Laboratory, USA
James Elliott North Carolina State University, USA
Kurt Ferreira Sandia National Laboratory, USA
Michael Heroux Sandia National Laboratories, USA
Larry Kaplan Cray Inc., USA
Dieter Kranzlmueller Ludwig Maximilians University of Munich, Germany
Sriram Krishnamoorthy Pacific Northwest National Laboratory, USA
Ignacio Laguna Lawrence Livermore National Laboratory, USA
Scott Levy University of New Mexico, USA
Kathryn Mohror Lawrence Livermore National Laboratory, USA
Christine Morin Inria Rennes Bretagne-Atlantique, France
Dirk Pflueger University of Stuttgart, Germany
Nageswara Rao Oak Ridge National Laboratory, USA
Alexander Reinefeld Zuse Institute Berlin, Germany
Rolf Riesen Intel Corporation, USA
Yves Robert ENS Lyon, France
Thomas Ropars Université Grenoble Alpes, France
Martin Schulz Lawrence Livermore National Laboratory, USA
Keita Teranishi Sandia National Laboratories, USA

XXVIII 9th Workshop on Resiliency in High-Performance Computing in Clusters

4th Workshop on Runtime and Operating Systems
for the Many-Core Era (ROME 2016)

Since the beginning of the multicore era, parallel processing has become prevalent
across the board. However, in order to continue a performance increase according to
Moore’s law, a new step needs to be taken: away from common multicores toward
innovative many-core architectures. Such systems, equipped with a significantly higher
number of cores per chip than multicores, raise challenges in both hardware and
software design. On the hardware side, complex on-chip networks, scratchpads, hybrid
memory cubes, non-volatile memory and stacked memory, as well as deep
cache-hierarchies and novel cache-coherence strategies will enrich the current research
areas in the future.

However, the ROME workshop (Runtime and Operating Systems for the
Many-Core Era) focuses on the software side because without complying system
software as well as runtime and operating system support, all these new hardware
facilities cannot be exploited. Hence, the new challenges in hardware/software
co-design are to step beyond traditional approaches and to create new programming
models and operating system designs in order to exploit the theoretically available
performance of future hardware as effectively and as power-aware as possible.

This focus of the ROME workshop stands in the tradition of a successful series of
events originally hosted by the many-core applications research community (MARC).
Prior MARC Symposia took place at the ONERA Research Center in Toulouse, at the
Hasso Plattner Institute in Potsdam, and at the RWTH Aachen University. Starting in
2013, the organizers continued this series by establishing ROME as one of the
co-located workshops of Euro-Par, the prime European conference for parallel and
distributed computing.

While the first ROME workshop, which was hosted at Euro-Par 2013 in Aachen,
was still a MARC-related, follow-up event but for a broader audience, the second
ROME workshop, held in conjunction with Euro-Par 2014 in Porto, already expanded
its focus to research questions arising from the upcoming generation of heterogeneous
and/or massive parallel systems stepping toward a many-core dominated exascale era.
In 2015, this broader focus was essentially retained for the third ROME workshop,
which was held in conjunction with Euro-Par 2015 in Vienna, but the relevance of
runtime and operating system aspects was stressed once again as being the primary
scope of the ROME workshop series.

In this spirit, this years’s ROME workshop at Euro-Par 2016 in Grenoble was once
again held as a half-day workshop with many seminal and technical discussions and
highly interesting presentations. The organizers were particularly happy that Rolf
Riesen from Intel volunteered to deliver the invited keynote talk about “Extreme-Scale
Operating Systems.”

Program Chairs

Stefan Lankes RWTH Aachen University, Germany
Carsten Clauss ParTec Cluster Competence Center GmbH, Germany

Program Committee

Jens Breitbart TU München, Germany
André Brinkmann Johannes Gutenberg Universität, Mainz, Germany
Carsten Clauss ParTec Cluster Competence Center GmbH, Germany
Christos Kartsaklis Oak Ridge National Laboratory, USA
Florian Kluge Universität Augsburg, Germany
Stefan Lankes RWTH Aachen University, Germany
Timothy G. Mattson Intel Labs, USA
Jörg Nolte Brandenburg University of Technology (BTU), Cottbus,

Germany
Lena Oden Argonne National Laboratory, USA
Antonio J. Peña Barcelona Supercomputing Center, Spain
Andreas Polze Hasso Plattner Institute, Postdam, Germany
Pablo Reble RWTH Aachen University, Germany
Bettina Schnor University of Potsdam, Germany
Oliver Sinnen University of Auckland, New Zealand
Christian Terboven RWTH Aachen University, Germany
Josef Weidendorfer TU München, Germany
Carsten Weinhold TU Dresden, Germany

Additional Reviewers

Steffen Christgau University of Potsdam, Germany
Tim Suess Johannes Gutenberg-Universität, Mainz, Germany

XXX 4th Workshop on Runtime and Operating Systems

Unconventional High-Performance Computing 2016 (UCHPC16)

Recent issues with the power consumption of conventional HPC hardware have
resulted in both new interest in accelerator hardware and in usage of mass-market
hardware not originally designed for HPC. The most prominent examples are GPUs,
but FPGAs, DSPs, and embedded designs are also possible candidates to provide
higher-power efficiency, as they are used in energy-restricted environments, such as
smartphones or tablets. The so-called dark silicon forecast, i.e., not all transistors may
be active at the same time, may lead to even more specialized hardware in future
mass-market products. Exploiting this hardware for HPC can be a worthwhile
challenge.

As the word “Unconventional” in the title suggests, the workshop focuses on usage
of hardware or platforms for HPC that are not (yet) conventionally used today, and may
not be designed for HPC in the first place. Reasons for its use can be raw computing
power, good performance per watt, or low cost in general. To address this
unconventional hardware, often, new programming approaches and paradigms are
required to make best use of it. Another focus of the workshop is on innovative,
(yet) unconventional new programming models, and algorithms (e.g., Big Data)
exploiting unconventional HPC hardware or software. To this end, UCHPC tries to
capture solutions for HPC that are unconventional today but could become
conventional and significant tomorrow, and thus provide a glimpse into the future of
HPC.

This year was the ninth time the UCHPC workshop took place, and was the seventh
time in a row that it was co-located with Euro-Par (every year since 2010). Before that,
it was held in conjunction with the International Conference on Computational Science
and Its Applications 2008 and with the ACM International Conference on Computing
Frontiers 2009. However, UCHPC is a perfect addition to the scientific fields of
Euro-Par, and this is confirmed by the continuous interest we see among Euro-Par
attendees for this workshop.

While the general focus of the workshop is fixed, the topic is actually a moving
target. GPUs were quite unconventional for HPC a few years ago, but today a notable
portion of the machines in the Top500 list are making use of them. Due to raising costs
for energy consumption, mobile processors for HPC – including on-chip GPU and
DSPs – are a hot topic. FPGAs are traditionally used for architecture design
exploration. However, using them directly within HPC systems allows for (reconfig-
urable) hardware tailored to specific application requirements and thus may result in
higher energy efficiency. We invited Michaela Blott from Xilinx to give a keynote
about recent trends in FPGA usage. Programmer productivity is always an issue when
talking about highly efficient hardware. For a second keynote (at the end of the
workshop) we invited Martin Vorbach to talk about his recent idea on a new processor
architecture (Hyperion), which tries to dynamically map regular instruction streams to
an array of processing elements, promising high instruction-level parallelism.

These proceedings include the final versions of the papers presented at UCHPC and
accepted for publication. They take the feedback from the reviewers and workshop
audience into account.

The workshop organizers/program chairs want to thank the authors of the papers
for joining us in Grenoble, the Program Committee for doing the hard work of
reviewing all submissions, the conference organizers for providing such a nice venue,
and last but not least the large number of attendees again this year.

Program Chairs

Jens Breitbart Technische Universität München, Germany
Josef Weidendorfer Technische Universität München, Germany

Program Committee

Michael Bader Technische Universität München, Germany
Denis Barthou University of Bordeaux, France
Alex Bartzas National Technical University of Athens, Greece
Lars Bengtsson Chalmers University of Technology, Sweden
James Beyer Cray Inc., USA
Michaela Blott Xilinx, Ireland
Jens Breitbart Technische Universität München, Germany
Georgios

Dimitrakopoulos
Democritus University of Thrace, Greece

Karl Fürlinger Ludwig-Maximilians-Universität München, Germany
Frank Hannig University of Erlangen-Nuremberg, Germany
Anders Hast Uppsala University, Sweden
Paul Keir University of the West of Scotland, UK
Rainer Keller Hochschule für Technik Stuttgart, Germany
Gaurav Khanna University of Massachusetts Dartmouth, USA
Harald Köstler University of Erlangen-Nuremberg, Germany
Stefan Lankes RWTH Aachen, Germany
Dimitar Lukarski Paralution Labs, Germany
Manfred Mücke Materials Center Leoben, Austria
Yannis Papaefstathiou Technical University of Crete, Greece
Bertil Schmidt University of Mainz, Germany
Carsten Trinitis Technische Universität München, Germany
Josef Weidendorfer Technische Universität München, Germany
Jan-Philipp Weiss COMSOL, Sweden
Ren Wu HP Labs, Palo Alto, USA
Peter Zinterhof Jr. University of Salzburg, Austria

XXXII Unconventional High-Performance Computing 2016 (UCHPC16)

Contents

EUROEDUPAR - European Workshop on Parallel and Distributed
Computing Education for Undergraduate Students

Lattice Boltzmann Flow Simulation on Android Devices for Interactive
Mobile-Based Learning . 3

Philipp Neumann and Michael Zellner

Using Everest Platform for Teaching Parallel and Distributed Computing. . . . 16
Oleg Sukhoroslov

Experiences with Teaching a Second Year Distributed Computing Course . . . 28
Rizos Sakellariou

HETEROPAR - Workshop on Algorithms, Models and Tools
for Parallel Computing on Heterogeneous Platforms

Distributed In-GPU Data Cache for Document-Oriented Data Store
via PCIe over 10 Gbit Ethernet . 41

Shin Morishima and Hiroki Matsutani

Resource Aggregation for Task-Based Cholesky Factorization
on Top of Heterogeneous Machines. 56

T. Cojean, A. Guermouche, A. Hugo, R. Namyst, and P.A. Wacrenier

Task-Based Conjugate Gradient: From Multi-GPU Towards
Heterogeneous Architectures. 69

E. Agullo, L. Giraud, A. Guermouche, S. Nakov, and J. Roman

Task-Based Sparse Hybrid Linear Solver for Distributed Memory
Heterogeneous Architectures. 83

Emmanuel Agullo, Luc Giraud, and Stojce Nakov

Automatic Generation of OpenCL Code for ARM Architectures 96
Sergio Afonso, Alejandro Acosta, and Francisco Almeida

Workflow Performance Profiles: Development and Analysis 108
Dariusz Król, Rafael Ferreira da Silva, Ewa Deelman,
and Vickie E. Lynch

http://dx.doi.org/10.1007/978-3-319-58943-5_1
http://dx.doi.org/10.1007/978-3-319-58943-5_1
http://dx.doi.org/10.1007/978-3-319-58943-5_2
http://dx.doi.org/10.1007/978-3-319-58943-5_3
http://dx.doi.org/10.1007/978-3-319-58943-5_4
http://dx.doi.org/10.1007/978-3-319-58943-5_4
http://dx.doi.org/10.1007/978-3-319-58943-5_5
http://dx.doi.org/10.1007/978-3-319-58943-5_5
http://dx.doi.org/10.1007/978-3-319-58943-5_6
http://dx.doi.org/10.1007/978-3-319-58943-5_6
http://dx.doi.org/10.1007/978-3-319-58943-5_7
http://dx.doi.org/10.1007/978-3-319-58943-5_7
http://dx.doi.org/10.1007/978-3-319-58943-5_8
http://dx.doi.org/10.1007/978-3-319-58943-5_9

A Data-Parallel ILUPACK for Sparse General and Symmetric Indefinite
Linear Systems . 121

José I. Aliaga, Matthias Bollhöfer, Ernesto Dufrechou, Pablo Ezzatti,
and Enrique S. Quintana-Ortí

Performance and Power-Aware Classification for Frequency Scaling
of GPGPU Applications. 134

João Guerreiro, Aleksandar Ilic, Nuno Roma, and Pedro Tomás

IWMSE - International Workshop on Multicore Software Engineering

A Context-Aware Primitive for Nested Recursive Parallelism 149
Herbert Jordan, Peter Thoman, Peter Zangerl, Thomas Heller,
and Thomas Fahringer

Achieving High Parallel Efficiency on Modern Processors for X-Ray
Scattering Data Analysis . 162

Abhinav Sarje, Xiaoye S. Li, and Nicholas Wright

Exploiting a Parametrized Task Graph Model for the Parallelization
of a Sparse Direct Multifrontal Solver . 175

Emmanuel Agullo, George Bosilca, Alfredo Buttari,
Abdou Guermouche, and Florent Lopez

Parallel String Matching. 187
Philip Pfaffe, Martin Tillmann, Sarah Lutteropp, Bernhard Scheirle,
and Kevin Zerr

Speed-Up Computational Finance Simulations with OpenCL
on Intel Xeon Phi . 199

Michail Papadimitriou, Joris Cramwinckel, and Ana Lucia Varbanescu

LSDVE - Workshop on Large-Scale Distributed Virtual Environments

TallyNetworks: Protecting Your Private Opinions
with Edge-Centric Computing. 211

Marc Ruiz Rodríguez, Pedro García López, and Marc Sánchez-Artigas

Balancing Speedup and Accuracy in Smart City Parallel Applications 224
Carlo Mastroianni, Eugenio Cesario, and Andrea Giordano

Multi-objective Optimization Framework for VMI Distribution in Federated
Cloud Repositories . 236

Dragi Kimovski, Nishant Saurabh, Sandi Gec, Vlado Stankovski,
and Radu Prodan

XXXIV Contents

http://dx.doi.org/10.1007/978-3-319-58943-5_10
http://dx.doi.org/10.1007/978-3-319-58943-5_10
http://dx.doi.org/10.1007/978-3-319-58943-5_11
http://dx.doi.org/10.1007/978-3-319-58943-5_11
http://dx.doi.org/10.1007/978-3-319-58943-5_12
http://dx.doi.org/10.1007/978-3-319-58943-5_13
http://dx.doi.org/10.1007/978-3-319-58943-5_13
http://dx.doi.org/10.1007/978-3-319-58943-5_14
http://dx.doi.org/10.1007/978-3-319-58943-5_14
http://dx.doi.org/10.1007/978-3-319-58943-5_15
http://dx.doi.org/10.1007/978-3-319-58943-5_16
http://dx.doi.org/10.1007/978-3-319-58943-5_16
http://dx.doi.org/10.1007/978-3-319-58943-5_17
http://dx.doi.org/10.1007/978-3-319-58943-5_17
http://dx.doi.org/10.1007/978-3-319-58943-5_18
http://dx.doi.org/10.1007/978-3-319-58943-5_19
http://dx.doi.org/10.1007/978-3-319-58943-5_19

Adgt.js: A Web Application Framework for Peer-to-Peer
Location-Based Services . 248

Giacomo Brambilla, Michele Amoretti, and Francesco Zanichelli

VM Image Repository and Distribution Models for Federated Clouds:
State of the Art, Possible Directions and Open Issues 260

Nishant Saurabh, Dragi Kimovski, Simon Ostermann, and Radu Prodan

TRACE: Generating Traces from Mobility Models for Distributed
Virtual Environments. 272

Emanuele Carlini, Alessandro Lulli, and Laura Ricci

Towards a Methodology to Form Microservices from Monolithic Ones 284
Gabor Kecskemeti, Attila Kertesz, and Attila Csaba Marosi

Misrouted Prophecy – On the Impact of Security Attacks on PRoPHET 296
Raphael Bialon and Kalman Graffi

PADABS -Workshop on Parallel and Distributed Agent-Based Simulations

A Standardised Benchmark for Assessing the Performance of Fixed Radius
Near Neighbours . 311

Robert Chisholm, Paul Richmond, and Steve Maddock

D-MASON on the Cloud: An Experience with Amazon Web Services 322
Michele Carillo, Gennaro Cordasco, Flavio Serrapica,
Carmine Spagnuolo, Przemysaw Szufel, and Luca Vicidomini

Load-Sharing Policies in Parallel Simulation of Agent-Based
Demographic Models. 334

Alessandro Pellegrini, Cristina Montañola-Sales, Francesco Quaglia,
and Josep Casanovas-García

Computational Considerations for a Global Human
Well-Being Simulation. 347

Aaron Howell and Paul Brenner

PBIO - International Workshop on Parallelism in Bioinformatics

High Performance Small RNA Detection with Pipelined Task Parallel
Computation Model. 359

Linqiang Ouyang and Jin H. Park

Improving Memory Accesses for Heterogeneous Parallel Multi-objective
Feature Selection on EEG Classification . 372

Juan José Escobar, Julio Ortega, Jesús González, and Miguel Damas

Contents XXXV

http://dx.doi.org/10.1007/978-3-319-58943-5_20
http://dx.doi.org/10.1007/978-3-319-58943-5_20
http://dx.doi.org/10.1007/978-3-319-58943-5_21
http://dx.doi.org/10.1007/978-3-319-58943-5_21
http://dx.doi.org/10.1007/978-3-319-58943-5_22
http://dx.doi.org/10.1007/978-3-319-58943-5_22
http://dx.doi.org/10.1007/978-3-319-58943-5_23
http://dx.doi.org/10.1007/978-3-319-58943-5_24
http://dx.doi.org/10.1007/978-3-319-58943-5_25
http://dx.doi.org/10.1007/978-3-319-58943-5_25
http://dx.doi.org/10.1007/978-3-319-58943-5_26
http://dx.doi.org/10.1007/978-3-319-58943-5_27
http://dx.doi.org/10.1007/978-3-319-58943-5_27
http://dx.doi.org/10.1007/978-3-319-58943-5_28
http://dx.doi.org/10.1007/978-3-319-58943-5_28
http://dx.doi.org/10.1007/978-3-319-58943-5_29
http://dx.doi.org/10.1007/978-3-319-58943-5_29
http://dx.doi.org/10.1007/978-3-319-58943-5_30
http://dx.doi.org/10.1007/978-3-319-58943-5_30

Improving Multiobjective Phylogenetic Searches by Using a Parallel
e-Dominance Based Adaptation of the Firefly Algorithm 384

Sergio Santander-Jiménez and Miguel A. Vega-Rodríguez

Evaluation of Parallel Differential Evolution Implementations on
MapReduce and Spark . 397

Diego Teijeiro, Xoán C. Pardo, David R. Penas, Patricia González,
Julio R. Banga, and Ramón Doallo

Performance Analysis and Optimization of SAMtools Sorting. 409
Nathan T. Weeks and Glenn R. Luecke

Ultra-Fast Detection of Higher-Order Epistatic Interactions on GPUs 421
Daniel Jünger, Christian Hundt, Jorge González-Domínguez,
and Bertil Schmidt

A Framework for Accessible Cluster-Enabled Epistatic Analysis 433
Alex Upton, Johan Karlsson, Oswaldo Trelles, Miguel Hernandez,
and Juan Elvira

Two-Level Parallelism to Accelerate Multiple Genome Comparisons 445
Oscar Torreno and Oswaldo Trelles

Improving Bioinformatics Analysis of Large Sequence Datasets
Parallelizing Tools for Population Genomics. 457

Javier Navarro, Gonzalo Vera, Sebastián Ramos-Onsins,
and Porfidio Hernández

A Data Partitioning Model for Highly Heterogeneous Systems 468
S. Tabik, G. Ortega, E.M. Garzón, and D. Suárez

Seamless HPC Integration of Data-Intensive KNIME Workflows
via UNICORE . 480

Richard Grunzke, Florian Jug, Bernd Schuller, René Jäkel, Gene Myers,
and Wolfgang E. Nagel

Optimized Execution Strategies for Sequence Aligners on NUMA
Architectures . 492

Josefina Lenis and Miquel Angel Senar

Architecture for the Execution of Tasks in Apache Spark in Heterogeneous
Environments . 504

Estefania Serrano, Javier Garcia Blas, Jesus Carretero,
and Monica Abella

XXXVI Contents

http://dx.doi.org/10.1007/978-3-319-58943-5_31
http://dx.doi.org/10.1007/978-3-319-58943-5_31
http://dx.doi.org/10.1007/978-3-319-58943-5_32
http://dx.doi.org/10.1007/978-3-319-58943-5_32
http://dx.doi.org/10.1007/978-3-319-58943-5_33
http://dx.doi.org/10.1007/978-3-319-58943-5_34
http://dx.doi.org/10.1007/978-3-319-58943-5_35
http://dx.doi.org/10.1007/978-3-319-58943-5_36
http://dx.doi.org/10.1007/978-3-319-58943-5_37
http://dx.doi.org/10.1007/978-3-319-58943-5_37
http://dx.doi.org/10.1007/978-3-319-58943-5_38
http://dx.doi.org/10.1007/978-3-319-58943-5_39
http://dx.doi.org/10.1007/978-3-319-58943-5_39
http://dx.doi.org/10.1007/978-3-319-58943-5_40
http://dx.doi.org/10.1007/978-3-319-58943-5_40
http://dx.doi.org/10.1007/978-3-319-58943-5_41
http://dx.doi.org/10.1007/978-3-319-58943-5_41

PELGA - Performance Engineering for Large-Scale Graph Analytics

Parametric Multi-step Scheme for GPU-Accelerated Graph Decomposition
into Strongly Connected Components . 519

Stefano Aldegheri, Jiří Barnat, Nicola Bombieri, Federico Busato,
and Milan Češka

Investigations on Path Indexing for Graph Databases. 532
Jonathan M. Sumrall, George H.L. Fletcher, Alexandra Poulovassilis,
Johan Svensson, Magnus Vejlstrup, Chris Vest, and Jim Webber

Improving Performance of Distributed Graph Traversals
via Application-Aware Plug-In Work Scheduler . 545

Jesun Sahariar Firoz, Marcin Zalewski, Martina Barnas,
and Andrew Lumsdaine

Synthetic Graph Generation for Systematic Exploration
of Graph Structural Properties. 557

Merijn Verstraaten, Ana Lucia Varbanescu, and Cees de Laat

Towards the Next Generation of Large-Scale Network Archives 571
Stijn Heldens, Ana Varbanescu, Wing Lung Ngai, Tim Hegeman,
and Alexandru Iosup

REPPAR - International Workshop on Reproducibility
in Parallel Computing

Computation-Aware Dynamic Frequency Scaling: Parsimonious Evaluation
of the Time-Energy Trade-Off Using Design of Experiments 583

Luis Felipe Millani and Lucas Mello Schnorr

The Information Needed for Reproducing Shared Memory Experiments. 596
Vincent Gramoli

Reproducible, Accurately Rounded and Efficient BLAS. 609
Chemseddine Chohra, Philippe Langlois, and David Parello

RESILIENCE - Workshop on Resiliency in High Performance
Computing in Clusters, Clouds, and Grids

Horseshoes and Hand Grenades: The Case for Approximate Coordination
in Local Checkpointing Protocols . 623

Patrick M. Widener, Kurt B. Ferreira, and Scott Levy

A Massively-Parallel, Fault-Tolerant Solver for High-Dimensional PDEs 635
Mario Heene, Alfredo Parra Hinojosa, Hans-Joachim Bungartz,
and Dirk Pflüger

Contents XXXVII

http://dx.doi.org/10.1007/978-3-319-58943-5_42
http://dx.doi.org/10.1007/978-3-319-58943-5_42
http://dx.doi.org/10.1007/978-3-319-58943-5_43
http://dx.doi.org/10.1007/978-3-319-58943-5_44
http://dx.doi.org/10.1007/978-3-319-58943-5_44
http://dx.doi.org/10.1007/978-3-319-58943-5_45
http://dx.doi.org/10.1007/978-3-319-58943-5_45
http://dx.doi.org/10.1007/978-3-319-58943-5_46
http://dx.doi.org/10.1007/978-3-319-58943-5_47
http://dx.doi.org/10.1007/978-3-319-58943-5_47
http://dx.doi.org/10.1007/978-3-319-58943-5_48
http://dx.doi.org/10.1007/978-3-319-58943-5_49
http://dx.doi.org/10.1007/978-3-319-58943-5_50
http://dx.doi.org/10.1007/978-3-319-58943-5_50
http://dx.doi.org/10.1007/978-3-319-58943-5_51

On the Inherent Resilience of Integer Operations. 648
Laura Monroe, William M. Jones, Scott R. Lavigne, Claude H. Davis IV,
Qiang Guan, and Nathan DeBardeleben

Pragma-Controlled Source-to-Source Code Transformations for Robust
Application Execution . 660

Pedro C. Diniz, Chunhua Liao, Daniel J. Quinlan, and Robert F. Lucas

A Cooperative Approach to Virtual Machine Based Fault Injection 671
Thomas Naughton, Christian Engelmann, Geoffroy Vallée,
Ferrol Aderholdt, and Stephen L. Scott

ROME - Workshop on Runtime and Operating Systems
for the Many-Core Era

Dealing with Layers of Obfuscation in Pseudo-Uniform
Memory Architectures . 685

Randolf Rotta, Robert Kuban, Mark Simon Schöps, and Jörg Nolte

Exploring Task Parallelism for Heterogeneous Systems Using Multicore
Task Management API . 697

Suyang Zhu, Sunita Chandrasekaran, Peng Sun, Barbara Chapman,
Marcus Winter, and Tobias Schuele

Reducing Response Time with Preheated Caches . 709
Mathias Gottschlag and Frank Bellosa

Viability of Virtual Machines in HPC: A State of the Art Analysis 721
Jens Breitbart, Simon Pickartz, Josef Weidendorfer,
and Antonello Monti

UCHPC - UnConventional High-Performance Computing

The ICARUS White Paper: A Scalable, Energy-Efficient, Solar-Powered
HPC Center Based on Low Power GPUs . 737

Markus Geveler, Dirk Ribbrock, Daniel Donner, Hannes Ruelmann,
Christoph Höppke, David Schneider, Daniel Tomaschewski,
and Stefan Turek

Exploiting In-Memory Processing Capabilities for Density Functional
Theory Applications . 750

Paul F. Baumeister, Thorsten Hater, Dirk Pleiter, Hans Boettiger,
Thilo Maurer, and José R. Brunheroto

Are Low-Power SoCs Feasible for Heterogenous HPC Workloads? 763
Max Plauth and Andreas Polze

XXXVIII Contents

http://dx.doi.org/10.1007/978-3-319-58943-5_52
http://dx.doi.org/10.1007/978-3-319-58943-5_53
http://dx.doi.org/10.1007/978-3-319-58943-5_53
http://dx.doi.org/10.1007/978-3-319-58943-5_54
http://dx.doi.org/10.1007/978-3-319-58943-5_55
http://dx.doi.org/10.1007/978-3-319-58943-5_55
http://dx.doi.org/10.1007/978-3-319-58943-5_56
http://dx.doi.org/10.1007/978-3-319-58943-5_56
http://dx.doi.org/10.1007/978-3-319-58943-5_57
http://dx.doi.org/10.1007/978-3-319-58943-5_58
http://dx.doi.org/10.1007/978-3-319-58943-5_59
http://dx.doi.org/10.1007/978-3-319-58943-5_59
http://dx.doi.org/10.1007/978-3-319-58943-5_60
http://dx.doi.org/10.1007/978-3-319-58943-5_60
http://dx.doi.org/10.1007/978-3-319-58943-5_61

In-Cache Streaming: Morphable Infrastructure for Many-Core
Processing Systems . 775

Nuno Neves, Adrien Mussio, Fabien Gonçalves, Pedro Tomás,
and Nuno Roma

A Low-Cost Energy-Efficient Raspberry Pi Cluster
for Data Mining Algorithms . 788

João Saffran, Gabriel Garcia, Matheus A. Souza, Pedro H. Penna,
Márcio Castro, Luís F.W. Góes, and Henrique C. Freitas

Theano-MPI: A Theano-Based Distributed Training Framework 800
He Ma, Fei Mao, and Graham W. Taylor

Acceleration of Turbomachinery Steady Simulations on GPU 814
Mohamed Hassanine Aissa, Lasse Müller, Tom Verstraete,
and Cornelis Vuik

Author Index . 827

Contents XXXIX

http://dx.doi.org/10.1007/978-3-319-58943-5_62
http://dx.doi.org/10.1007/978-3-319-58943-5_62
http://dx.doi.org/10.1007/978-3-319-58943-5_63
http://dx.doi.org/10.1007/978-3-319-58943-5_63
http://dx.doi.org/10.1007/978-3-319-58943-5_64
http://dx.doi.org/10.1007/978-3-319-58943-5_65

EUROEDUPAR - European Workshop
on Parallel and Distributed Computing
Education for Undergraduate Students

Lattice Boltzmann Flow Simulation on Android
Devices for Interactive Mobile-Based Learning

Philipp Neumann(B) and Michael Zellner

Department of Informatics, Technical University of Munich,
Boltzmannstr. 3, 85748 Garching, Germany

philipp.neumann@tum.de

Abstract. Interactive tools and learning environments have a high
potential to facilitate learning. We developed the app LB2M for
two-dimensional Lattice Boltzmann-based flow simulation on Android
devices. The software enables interactive simulation and visualization of
various flow scenarios. We detail the software with regard to design, sim-
ulation kernel, and visualization. In particular, we demonstrate how the
app can be used to teach basics of fluid dynamics in beginner’s courses
at the example of cavity flow.

Keywords: Lattice Boltzmann · Smartphone · Computational fluid
dynamics · Interactive · Simulation-based learning

1 Introduction

Smartphones have become our daily companion. A great variety of applications
(apps) yields flexible and highly interactive usage of these powerful devices rang-
ing from communication over information and education to entertainment, gam-
ing and business.

Interactive, computer-based methods such as interactive simulations can have
a very positive effect in education. Interactive simulations allow students to
experiment and “play around” within a given framework. Feedback with regard
to observations and success is immediate and—in case of interactive simulation
on mobile devices—the students are free to conduct their studies where- and
whenever they wish.

Various works, amongst others [1,2] (and references therein) and [3], point
at the effectiveness of simulations in the context of discovery learning. De Jong
and Van Joolingen [2] discuss that instructional measures such as provision of
domain information, provision of assignments, and inclusion of model progres-
sion are essential in this context. Similarly, Bodemer and Plötzner [1] argue in
the context of learning with interactive simulations that for “instance, learners
can be encouraged to (1) identify parameters of the underlying model, (2) gen-
erate hypotheses about relationships between parameters, (3) test the hypothe-
ses by designing experiments, predicting the outcomes, performing the experi-
ments, and interpreting the results and (4) evaluate the results in the light of
c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 3–15, 2017.
DOI: 10.1007/978-3-319-58943-5 1

4 P. Neumann and M. Zellner

the hypotheses formulated. However, it has been demonstrated that success-
ful learning with interactive simulations requires further support. Particularly,
generating and testing hypotheses seem to be very demanding tasks.”

It is also the preparation of material in form of interactive simulations and
software for courses on engineering and science that has been reported in litera-
ture. For example, more than 400 simulations based on Mathematica have been
developed and provided online for chemical engineering education [4]. The PhET
Interactive Simulations project has been launched in 2002 at the university of
Colorado and comprises a great variety of interactive math and science simu-
lations to “engage students through an intuitive, game-like environment where
students learn through exploration and discovery”1 [5].

The use of mobile devices in form of tablet PCs and its impact on student
learning is investigated in [6], focussing on a rather supportive and accompanying
usage of these devices (taking notes, drawing graphs, etc.). It is found that com-
puter science and engineering “students’ motivation to learn and engage with
engineering course content increases in learning environments where students
make use of Tablet PCs” [6], and it is expected that a more regular use of the
handheld computers “could potentially increase if faculty employed Tablet fea-
tures more readily in their engineering courses”. Wilson and Gramoll [7] describe
a fluid dynamics app to be used in class rooms for interactive learning. Due to
the high computational cost of their simulations, computations are carried out
on a cluster; up to 140 users can simultaneously—and interactively—connect
via the app to the cluster, compute, and afterwards visualize the results on their
mobile devices.

In this contribution we take one further step and show that (and how) mobile
devices can be used for on-device fluid dynamics simulations, and so allow for
mobile computer-based learning. We incorporate the comment drawn by Bode-
mer and Plötzner [1] and point out how further support for interactive computer-
based learning can be established.

We revise the underlying Lattice Boltzmann-based simulation methodology
in Sect. 2 and present the design and usage of the fluid dynamics app LB2M in
Sect. 3. To guarantee interactivity and related performance, we show results from
performance studies and provide a comparison with related software in Sect. 4.
Section 5 demonstrates the applicability of the software for interactive computer-
based learning at the example of dimensional analysis in fluid dynamics. We
summarize our work and give an outlook to future developments in Sect. 6.

2 Lattice Boltzmann Method

Algorithm. Fluid dynamics is governed by the Navier-Stokes equations. Vari-
ous solvers are available to compute approximate solutions to these nonlinear
partial differential equations. We decided to use the Lattice Boltzmann method
(LBM) [8,9] as method of choice. The method is “non-traditional” in the sense

1 https://phet.colorado.edu.

https://phet.colorado.edu

Interactive Lattice Boltzmann Flow Simulation on Android Devices 5

that it solves Navier-Stokes indirectly via discrete Boltzmann equation approx-
imations. However, it is simple to implement, it requires less computations per
time step than direct Navier-Stokes solvers, and the method in a nutshell can be
explained in ten minutes2. The latter aspect is considered essential in the scope
of mobile-based learning since basic understanding on the underlying simulation
can thus be gathered by students autonomously. The Lattice Boltzmann method
uses distribution functions fi(x, t) ∈ R>0, i = 1, ..., Q, to simulate the motion of
a fluid on a Cartesian grid [8,9]. In each time step fluid particles collide locally
in each grid cell (collide step). They subsequently move along directions ci into
neighboring grid cells, or rest inside the current one (Streaming step). Since
complex, fully three-dimensional fluid flow simulations exhibit very high compu-
tational loads and may even require parallel or supercomputing [10], we restrict
our considerations to the two-dimensional D2Q9 model (two dimensions, nine
velocity directions ci ∈ R

2). This is sufficient to consider fluid dynamics princi-
ples, e.g. by studying convective and diffusive flow behavior in cavity flows, or
pressure drops and shear rates in channel flows. We consider the BGK collision
operator for local interactions [11]. The corresponding time step rule reads

fi(x + ciΔt, t + Δt) = fi(x, t) − 1
τ (fi(x, t) − feq

i (ρ(x, t),u(x, t))) with

ρ(x, t) =
∑

i

fi(x, t),

ρu(x, t) =
∑

i

fi(x, t)ci,

feq
i (ρ(x, t),u(x, t)) = wiρ

(
1 + ciu

c2s
+ (ciu)

2

2c4s
− u2

2c2s

)
,

(1)

lattice-specific weights wi and speed of sound cs := 1√
3
. Density and fluid velocity

are denoted by ρ and u. The relaxation time τ is related to the kinematic viscosity
ν of the fluid, ν := c2s(τ − 1

2).

Boundary Conditions. Wall, velocity inlet and outflow conditions are realized in
our app LB2M.

Walls are simulated via the half-way bounce back rule. Assume that a distri-
bution function fi would enter the fluid domain from “outside” due to streaming.
Distributions finv(i) that move from a fluid cell “into” a solid boundary during
streaming are bounced back and stored in the current fluid cell as fi, with the
inverse defined as cinv(i) := −ci.

If the solid boundary is moving at velocity uboundary, or if we want to model
a velocity inlet with inlet velocity uboundary, we also employ the bounce back
rule, but include an additional term 2

c2s
wiρciuboundary to account for momentum

transfer at the wall.
Outflow conditions are set according to the descriptions in [12]. A distribution

function is set accordingly to fi := feq
i (ρA,u) + feq

inv(i)(ρA,u) − finv(i), with
ρA := 1.0.
2 cf. YouTube teaching video Of Foxes, Attackers,... and the Lattice Boltzmann
Method, https://youtu.be/trvSBGyK74g, by P. Neumann.

https://youtu.be/trvSBGyK74g

6 P. Neumann and M. Zellner

3 LB2M

3.1 Software Design

The app LB2M consists of three major parts that are executed in individual
threads, cf. Fig. 1. The first part is represented by the main thread which is
responsible for displaying the GUI Elements and controlling all other threads.
It is further used to integrate user interactions. The second part of LB2M is
the Lattice Boltzmann kernel which calculates the results for the next time step
and computes data that are required for visualization. At the current stage,
the velocity field u(x, t) is visualized via cellwise coloring using an array of
shorts with one color entry per grid cell. The third part uses OpenGL ES 2.0 to
visualize the generated cell colors. LB2M is designed for Android devices. This
has been decided due to the fact that Android clearly dominates the worldwide
smartphone OS market, with a market share of 69.3%–82.8% in 2012–2015 [13].

Fig. 1. Flow chart of LB2M.

3.2 Simulation Engine

We provide both a Java- and C++-based implementation of the LBM. Although
the whole app is written in Java to guarantee portability between different
Android devices, see Table 1, the C++-version yields significantly higher perfor-
mance and thus allows for a more sophisticated use in interactive simulations.

Both Java- and C++-implementation are based on the standard two-field
approach [14] in which two fields of distributions are used to avoid read-write
conflicts during the streaming step. Due to the variety in smartphone architec-
tures, cf. Table 1, device-specific optimization of the C++-based simulation to
achieve optimal performance is difficult to establish and—with regard to upcom-
ing architectures—hardly possible. We therefore rather focus on straight-line

Interactive Lattice Boltzmann Flow Simulation on Android Devices 7

code and algorithmic optimization (in both implementations) to, e.g., mini-
mize computations in the compute-intensive collide kernel, and employ shared-
memory parallelization using OpenMP. This is not sufficient to reach up to the
memory bandwidth roofline [15] which typically limits Lattice Boltzmann perfor-
mance. Yet, it yields sufficient performance for interactive two-dimensional flow
simulations. The C++ simulation engine is incorporated into the Java-based
framework of LB2M via the Java Native Interface (JNI).

Table 1. Supported Android-based devices. Device (Android version) shows the
tested smartphone including its Android version. Java LBM and C++ LBM corre-
spond to the Java- and C++-based Lattice Boltzmann simulation kernels. OpenGL
denotes the visualization model of LB2M.

Device (Android
version)

Processor Java LBM C++ LBM OpenGL

HTC One (5.1.1) Qualcomm Snapdragon 600,
quad-core Krait 300 1.9GHz

x x x

LG Nexus 5 (6.0) Qualcomm Snapdragon 800,
quad-core Krait 400 2.3GHz

x x x

Samsung Galaxy
A5 (5.0)

Qualcomm Snapdragon 410,
quad-core ARM Cortex A53
1.2GHz

x x x

Samsung Galaxy
S3 (4.3)

Qualcomm Samsung Exynos 4412,
quad-core ARM Cortex A9 1.4GHz

x x x

Motorola Razr i
(4.1.2)

Intel Medfield, single-core Atom
Z2460 1.6GHz

x

Motorola Moto G
(5.1.1)

Qualcomm Snapdragon 400,
quad-core ARM Cortex A7 1.6GHz

x x x

Huawei Ascend
G7 (4.4.4)

Qualcomm Snapdragon 410,
quad-core ARM Cortex A53
1.2GHz

x x x

Huawei
Y330-U01 (4.2.2)

MediaTek MTK6572, dual-core
ARM Cortex A7 1.3GHz

x x

3.3 Visualization

There are various APIs available in the scope of data visualization on Android
devices, with Canvas and OpenGL ES representing two of the most prominent
ones. Since interactivity is essential for our app, we conducted performance
benchmarks for both Canvas and OpenGL ES 2.0 in which we measured the time
to visualize given numbers of rectangular grid cells. The visualization based on
OpenGL ES 2.0 was clearly superior in our tests. Since OpenGL ES 2.0 is the
most distributed version among OpenGL ES—50.9% as of April 4 2016 [16]—and
since it also allows for backward compatibility with regard to OpenGL ES 3.0 and
other (upcoming) versions, we based the visualization in LB2M on this approach.
Per time step, the velocity field data is extracted and visualized as colored grid

8 P. Neumann and M. Zellner

cells according to the velocity magnitude, see Fig. 2(a) for a visualization of a lid-
driven cavity. The coloring—red/green/blue for high/medium/low velocities—
can be adjusted by the user.

Fig. 2. OpenGL ES 2.0-based visualization of predefined scenarios of LB2M. (a) Evolv-
ing lid-driven cavity flow using 1000 × 1000 cells. (b) T-flow scenario with 100 × 100
cells. An additional rectangular obstacle has been added to the simulation by the user.
(c) Wind tunnel scenario with 300 × 100 cells. The writing “TUM” was added by the
user via several rectangular obstacles. (Color figure online)

3.4 Interactive Simulation Workflow and Usage

Specification of General Simulation Parameters. Starting LB2M , the user is
asked to specify general simulation settings, comprising the grid size in x- and
y-direction, the relaxation time τ , and the choice whether to use the Java- or
the C++-based simulation kernel. If the C++ kernel is not supported by the
device, LB2M automatically switches to the (single-threaded) Java kernel.

Boundary Setup. In the second step, the user configures the boundary conditions
of the computational domain. The cells along left/right/top/bottom boundary
are enumerated; any subset of boundary cells can be configured by the user to

Interactive Lattice Boltzmann Flow Simulation on Android Devices 9

resemble inlet, outflow, or wall conditions. Alternatively, the user can choose one
out of three pre-configured scenarios, cf. Fig. 2:

– Cavity : the top boundary wall constantly moves from left to right at a pre-
scribed speed. The other boundaries (left, right, bottom) are non-moving
walls. This induces vortex formation inside the quadratic box.

– Wind Tunnel : the left boundary is configured as velocity inlet with a constant
inlet velocity, the right boundary is chosen as outflow region. Top and bottom
boundary resemble non-moving walls.

– T-Flow : the middle region of the bottom boundary is configured as velocity
inlet and upper parts of the left and right boundary are chosen as outflow
regions. All other boundaries are non-moving walls.

Interactive Simulation. After specifying the boundary conditions, the simulation
starts in interactive mode. Besides start/stop and zoom/rotate functionality,
the user can draw (rectangular) obstacles and place them at arbitrary points
in the flow field. Moreover, a statistics button Stats shows the performance
of the simulation in MLUPS (M ega Lattice Updates Per Second), a common
performance measure of Lattice Boltzmann codes [14].

4 Benchmarking

4.1 Related Work and Performance

In the context of mesh-based mobile computational fluid dynamics, several other
apps have been recently developed.

Various simple LBM-based simulation apps for single scenarios are provided
at [17]. For example Lid-driven cavity flow simulates a cavity; the user can only
modify the kinematic viscosity via the dimenionless Reynolds number, cf. Sect. 5.
The grid size is fixed (51 × 51 cells) and cannot be changed.

Albm [18] allows to interactively draw walls, or to modify the grid size (with
a max. grid size of 150 × 75 cells), the number of threads, the frame rate or
the visualization technique. Modification of the outer boundary conditions—and
thus configuring different kinds of fluid flow scenarios—is not supported.

Besides, other apps based on solving the Navier-Stokes equations exist. Wind-
Tunnel/WindTunnelFree [19] is a flexible Navier-Stokes based app which is devel-
oped for both iOS and Android devices and exploits the SIMD Neon technology
to achieve high performance. On most devices, however, the resolution of the
computational domain is set to 120×180 which “requires a lot of computational
power, especially to sustain a high 30 fps frame rate” [19]. The Navier-Stokes
app discussed in [20] also embeds efficient C/C++ kernels in Java code, sup-
ports obstacle placement and even free surfaces. To compute the pressure field,
however, an SOR scheme is used to solve a Poisson equation in every time step
which may significantly limit the overall performance.

10 P. Neumann and M. Zellner

Fig. 3. Performance in MLUPS of LB2M. (a) Java- and C++-kernel evaluation on
emulated Android system and LG Nexus 5. (b) Comparison of different apps with
LB2M ’s Java- and C++-based simulation kernels (log-scale). The C++-kernel uses a
single thread; multi-threading yields a speedup of up to two (not shown).

We evaluated the performance of LB2M and compared it with the other
LBM-based apps. For this purpose, we measured the MLUPS for each app, cf.
Fig. 3. The C++-based simulation kernel of LB2M is significantly faster, cf.
Fig. 3(a). On all investigated devices, cf. Table 1, the C++-based kernel per-
formed at least twice as fast as the Java kernel. Due to the restricted domain
size settings of Albm and Lid-driven cavity flow, a detailed quantitative compar-
ison of the apps in terms of performance could not be achieved. Still, Fig. 3(b)
clearly demonstrates the superiority of the performance of LB2M.

4.2 Interactivity

Interactive simulations are only possible if an acceptable frame rate—and thus
a respective number of simulated time steps per second—can be retained. Cur-
rently, LB2M renders data of each time step which allows for very detailed visual
analysis of the simulation progress and cellwise flow evolution; note that each
time step invokes only interactions between neighbored cells and thus informa-
tion inside the flow field is propagated at most at a rate of one cell per time
step.

We measured the frames per second (fps) on our test device (Nexus 5), cf.
Fig. 4. Assuming a frame rate of 15–25 fps to be still acceptable for interactive
simulations, we observe that domain sizes up to 512 × 512 cells can be handled
by LB2M. These domains are big enough to consider different test scenarios in
fluid dynamics under various flow conditions, cf. Sect. 5.

Interactive Lattice Boltzmann Flow Simulation on Android Devices 11

Fig. 4. Frame rate of LB2M, evaluated on a Nexus 5.

5 LB2M for Teaching

Various aspects of fluid dynamics can be investigated by different classes of
users with LB2M. At high-school or university entry level, LB2M can be used to
explore the phenomenological behavior of fluid flow. Examples comprise vortex
formation in cavity flow or observation of laminar channel flow splitting up in
front of a user-defined obstacle and merging together further downstream. In
courses dedicated to basics of fluid dynamics, the concept of shear stresses in
laminar flow can be considered in channel flow simulations, (weak) compressibil-
ity can be considered by channel flow initialization and respective shock front
propagation, laminar flow around obstacles can be studied, etc.

In the following, we discuss how to use LB2M in the context of interac-
tive computer-based learning in two exercises on dimensional analysis in fluid
dynamics. Dimensional analysis allows to map results of numerical simulations
to experimental setups by appropriate parameter scaling. A characteristic num-
ber, at which (incompressible) flows behave similar, is the Reynolds number
Re := uboundaryL

ν . For a cavity scenario, uboundary = ‖uboundary‖ stands for the
tangential velocity of the lid, L for the number of cells in each, x- and y-, direc-
tion, and ν for the kinematic viscosity.

The exercises are meant for undergraduate students—typically beginners in
the field of fluid dynamics—who have just installed LB2M and have read Sect. 3
to become acquainted with its usage. We describe each exercise and its learning
outcomes and analyze them with regard to (1)–(4) of Bodemer’s and Plötzner’s
encouragements, cf. Sect. 1.

5.1 Exercise 1: Cavity Flow

Description. Use LB2M to run the following cavity configurations:

1. 100 × 100 cells, uboundary = 0.004, τ = 1.7
2. 100 × 100 cells, uboundary = 0.04, τ = 1.7
3. 100 × 100 cells, uboundary = 0.04, τ = 0.62
4. 200 × 200 cells, uboundary = 0.08, τ = 0.596

12 P. Neumann and M. Zellner

Compare the patterns of vortex formation and simulation runtime until steady-
state is reached for each configuration.

Learning Outcomes. The students are able to use LB2M for different cavity sim-
ulations. They are able to analyze and extract information on the flow patterns
from the visual flow field representation of the app. They have further observed
that the given parameters—domain size, lid velocity and relaxation time—have
a major impact on the flow physics: a bigger, “ring-like” vortex structure with its
center located rather in the middle of the computational domain forms out for
higher velocities/lower relaxation times/bigger domain sizes. Another important
observation is constituted in the runtime requirements. While simulations 1–3
can be handled by a mobile device within seconds to minutes, the simulation
4 at higher velocity/lower relaxation time/bigger domain size, requires up to
20–30 min until steady state is reached. Having gathered this information, stu-
dents are able to deduce appropriate parametrization, for example in terms of
acceptable domain sizes and available computational power, in future simula-
tions on their individual devices. Figure 5 shows the resulting velocity profiles
and the Reynolds number for each of the four scenarios.

Re = 1 Re = 10 Re=100 Re = 500

Fig. 5. Cavity configurations 1–4 (from left to right) from exercise 1 at steady state.

5.2 Exercise 2: The Reynolds Number

Description. An important characteristic quantity in incompressible fluid dyn-
amics is the Reynolds number which—in case of a cavity scenario—is given by
Re := uboundaryL/ν.

Similar to exercise 1, investigate the formation of the primary vortex as
well as its final form and the location of its center at steady state for different
configurations. This time,

1. fix the viscosity ν and vary uboundary, L such that uboundary · L = const,
2. fix the velocity uboundary and vary ν, L such that L

ν = const,

Interactive Lattice Boltzmann Flow Simulation on Android Devices 13

3. fix the domain size L and vary uboundary, ν such that uboundary

ν = const,
4. vary all three parameters, such that Re = const.

Consider the four cavity parametrizations from exercise 1 and modify them,
respectively. What do you observe? Which Reynolds numbers do these scenarios
correspond to?

Learning Outcomes. The students are able to compute the Reynolds number for
different parametrizations. In the experiments 1–4 from exercise 1, the Reynolds
number is given by Re ∈ {1, 10, 100, 500}. By considering special cases (exercise
2, 1–3) and the general case (exercise 2, 4) of Reynolds number tuning, the
students have experienced the similarity of flows at equal Reynolds numbers from
their simulations. They are further able to construct parametrizations for a given
Reynolds number to be used in a numerical simulation or in an experimental fluid
dynamics investigation.

5.3 Supporting Students at Interactive Computer-Based Learning

According to the points (1)–(4) by Bodemer and Plötzner, exercises 1, 2 provide
sufficient support for discovery learning, cf. Sect. 1: three of the most important
parameters in (computational) fluid dynamics have been considered in exercise
1 to analyze flow patterns and to understand their influence on the evolving
velocity field, cf. (1). The guided parameter study in exercise 2 allows students
to formulate the hypothesis “Flows exhibit similar behavior under conditions
1–4”, cf. (2). In this context, LB2M is a simple-to-use tool to interactively set
up, run and evaluate numerical experiments to confirm the hypothesis, cf. (3),(4).

6 Summary

We introduced the app LB2M for two-dimensional fluid flow simulations on
Android devices. We briefly discussed the software design of LB2M and demon-
strated that interactive fluid flow simulations on smartphones are indeed rea-
sonable. This allows for interactive mobile-based teaching, e.g., of basics in fluid
dynamics by exploring pre- or user-defined flow scenarios on a smartphone. We
showcased the use of LB2M for dimensional analysis in cavity flows.

We just incorporated multi-threading in LB2M, resulting in speedups of up to
two. We currently evaluate respective applications of the app with regard to
parallel computing education. Furthermore, we work towards the integration of
remote computing: computationally expensive simulations can be outsourced to
a server, and LB2M can be used to analyze and visualize the simulation results
as well as (parallel) simulation performance. This will not only yield an even
wider range of applicability for fluid dynamics simulations in teaching, but it
will also allow for interactive exploration of parallel computing aspects and data
management.

14 P. Neumann and M. Zellner

The app LB2M has already been used for educational purposes at the Tech-
nical University of Munich in the scope of an open day for school children. Its
deployment in university courses and respective further evaluation of the app as
well as its release are planned.

Acknowledgements. P. Neumann acknowledges the financial support by the prior-
ity program 1648 Software for Exascale Computing, funded by the German Research
Foundation (DFG).

References

1. Bodemer, D., Plötzner, R.: Encouraging the active integration of information dur-
ing learning with multiple and interactive representations. In: Instructional Design
for Multimedia Learning. Proceedings of the 5th International Workshop of SIG
6 Instructional Design of the European Association for Research on Learning and
Instruction (EARLI), pp. 127–138. Waxmann, Münster (2004)

2. de Jong, T., van Joolingen, W.R.: Scientific discovery learning with computer sim-
ulations of conceptual domains. Rev. Educ. Res. 68(2), 179–201 (1998)

3. Rieber, L.P., Tzeng, S.C., Tribble, K.: Discovery learning, representation, and
explanation within a computer-based simulation: finding the right mix. Learn.
Instr. 14, 307–323 (2004)

4. Falconer, J., Nicodemus, G.: Interactive mathematica simulations in chemical engi-
neering courses. Chem. Eng. Educ. 48(3), 165–174 (2014)

5. Wieman, C.E., Adams, W.K., Perkins, K.K.: PhET: simulations that enhance
learning. Science 322, 682–683 (2008)

6. Amelink, C.T., Scales, G., Tront, J.G.: Student use of the Tablet PC: impact on
student learning behaviors. Adv. Eng. Educ. 3(1), 1–17 (2012)

7. Wilson, J.R., Gramoll, K.C.: Viscous fluid dynamics app for mobile devices using
a remote high performance cluster. In: 122nd ASEE Annual Conference and Expo-
sition, Paper ID 11877 (2015)

8. Succi, S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford
University Press, Oxford (2001)

9. Wolf-Gladrow, D.: Lattice-Gas Cellular Automata and Lattice Boltzmann Models
- An Introduction. Springer, Berlin (2000)

10. Schornbaum, F., Rüde, U.: Massively parallel algorithms for the lattice Boltzmann
method on nonuniform grids. SIAM J. Sci. Comput. 38(2), C96–C126 (2016)

11. Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases.
I. Small amplitude processes in charged and neutral one-component systems. Phys.
Rev. 94(3), 511–525 (1954)

12. Körner, C., Thies, M., Hofmann, T., Thürey, N., Rüde, U.: Lattice Boltzmann
model for free surface flow for modeling foaming. J. Stat. Phys. 121(1/2), 179–196
(2005)

13. IDC: Smartphone OS Market Share, 2015 Q2 (2016). http://www.idc.com/prod
serv/smartphone-os-market-share.jsp

14. Wittmann, M., Zeiser, T., Hager, G., Wellein, G.: Comparison of different propa-
gation steps for lattice Boltzmann methods. Comput. Math. Appl. 65(6), 924–935
(2013)

15. Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual perfor-
mance model for multicore architectures. Commun. ACM 52, 65–76 (2009)

http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.idc.com/prodserv/smartphone-os-market-share.jsp

Interactive Lattice Boltzmann Flow Simulation on Android Devices 15

16. Google Android Dashboard: OpenGL Version (2016). http://developer.android.
com/about/dashboards/index.html

17. Seta, T.: Open Source Lattice Boltzmann Code (2016). http://www3.u-toyama.
ac.jp/seta/software/software.html

18. Brebion, M.: Albm (2016). https://www.androidpit.de/app/com.bmsofts.mbrebion.
albm

19. Rizk, A., Rizk, G.: WindTunnel (2016). https://www.windtunnelapp.com
20. Mehlbeer, F., Scheufele, K., Soell, D.: Numerical Simulation in Fluid Dynamics

on Android Operating System (2013). https://www.informatik.uni-stuttgart.
de/studium/interessierte/bsc-studiengaenge/informatik/projekt-inf/2013-05-17/
Gruppe 1.pdf

http://developer.android.com/about/dashboards/index.html
http://developer.android.com/about/dashboards/index.html
http://www3.u-toyama.ac.jp/seta/software/software.html
http://www3.u-toyama.ac.jp/seta/software/software.html
https://www.androidpit.de/app/com.bmsofts.mbrebion.albm
https://www.androidpit.de/app/com.bmsofts.mbrebion.albm
https://www.windtunnelapp.com
https://www.informatik.uni-stuttgart.de/studium/interessierte/bsc-studiengaenge/informatik/projekt-inf/2013-05-17/Gruppe_1.pdf
https://www.informatik.uni-stuttgart.de/studium/interessierte/bsc-studiengaenge/informatik/projekt-inf/2013-05-17/Gruppe_1.pdf
https://www.informatik.uni-stuttgart.de/studium/interessierte/bsc-studiengaenge/informatik/projekt-inf/2013-05-17/Gruppe_1.pdf

Using Everest Platform for Teaching Parallel
and Distributed Computing

Oleg Sukhoroslov1,2(B)

1 Institute for Information Transmission Problems of the Russian
Academy of Sciences (Kharkevich Institute), Moscow, Russia

sukhoroslov@iitp.ru
2 Higher School of Economics, Moscow, Russia

Abstract. The paper presents a practical approach for building high-
level services for teaching parallel and distributed computing based on
Everest platform. Originally designed for publication of computing appli-
cations, the platform is suitable for rapid development of services for run-
ning different types of parallel programs on high-performance resources,
as well as services for evaluation of practical assignments. As was demon-
strated by using Everest for teaching two introductory PDC courses, the
proposed approach helps to enhance students’ practical experience while
avoiding low-level interfaces and providing a level of automation neces-
sary for scaling the course to a large number of students. In contrast to
other solutions, the exploited Platform as a Service model provides the
ability to quickly reuse this approach by other PDC educators without
installation of the platform.

Keywords: Parallel programming ·Distributed computing ·Web-based
interfaces · Web services · Platform as a Service

1 Introduction

The teaching of parallel and distributed computing (PDC) has increasingly
gained importance during the last decade due to the ubiquity of multi-core
architectures, graphical processors, cloud computing services and the need to
process wast amounts of data. Aside from the theoretical foundations, practical
programming exercises form an integral part of any PDC course aimed at mas-
tering domain knowledge and developing relevant skills by working with different
classes of computational systems and programming technologies.

However, providing a practical experience to the students of PDC course
is challenging due to the inherent complexity of involved systems, user inter-
faces and technologies. A typical example is arranging practical exercises and
homework assignments on a compute cluster. A common approach is to provide
remote logins for each student, and then train students to use cluster command
line environment to compile and submit their programs. This approach suffers
from several problems. First, it introduces additional administration, teaching
c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 16–27, 2017.
DOI: 10.1007/978-3-319-58943-5 2

Using Everest Platform for Teaching Parallel and Distributed Computing 17

and support overheads for the course staff. Second, it requires a considerable
effort for running programs by students who are often unfamiliar with Unix
environment, etc. As a result, the additional time and effort are spent by both
instructors and students instead of focusing on the essential parts of the course.
Due to the limited human resources the traditional approaches to teaching also
do not scale well to a large number of students. Therefore new approaches are
needed to make teaching PDC more efficient and reach a wider audience.

Web-based environments provide a convenient alternative for accessing par-
allel computing systems and supporting practical assignments on such systems.
While being successfully used in teaching some PDC courses, the development of
such environments represents a substantial cost to many educators. While some
of existing solutions can be reused, the additional costs related to deployment,
customization and administration of such systems in-house can also be signifi-
cant. Therefore there is a need in generic platforms that can be reused with a
minimal effort, possibly without installation as modern cloud platforms, while
being flexible and supporting all common use cases.

In this paper we present an approach to automation of practical programming
exercises in PDC based on using Everest platform [1,9]. While originally designed
for building computational web services, the platform proved to be extremely
useful for supporting educational activities as well. Everest has a number of
unique features in comparison to related solutions. It implements the Platform
as a Service (PaaS) model by supporting multiple users and providing all its
functionality via remote interfaces. The platform is not tied to a predefined
computing infrastructure by enabling users to attach external resources and
bind them to applications. This makes it possible to immediately start using
Everest without installation.

In order to simplify access to computing resources a number of generic ser-
vices have been developed on Everest for running various types of concurrent,
parallel and distributed programs. Also a number of problem-specific services
has been created for each homework assignment in order to automate evaluation
and provide immediate feedback to a student. The presented approach has been
successfully used since 2014 for teaching two introductory PDC courses.

The paper is organized as follows: Sect. 2 discusses related work and com-
pares the presented approach and available solutions. Section 3 provides technical
details on the Everest platform and describes it’s use for development of services
supporting teaching activities on HPC resources. Section 4 presents several use
cases from different PDC topics and describes the experience gained from using
Everest in two PDC courses. Section 5 concludes and discusses future work.

2 Related Work

The use of web technologies for building convenient interfaces for accessing high-
performance resources has been exploited since the emergence of the World Wide
Web. In [3] authors describe several prototypes of web-based parallel program-
ming environments, including the Virtual Programming Laboratory (VPL) used

18 O. Sukhoroslov

for teaching parallel programming. The emergence of grid computing and the
web portal technology enabled development of grid portals facilitating access to
distributed computing facilities. [10] describes an experience of building a grid
portal to support an undergraduate parallel programming course.

Web-based interfaces have also been exploited to support submission and
automated evaluation of programming assignments in PDC courses. In [5]
authors describe a framework enabling implementation of web portals for auto-
mated testing of student programming assignments in distributed programming
courses. Among the recent works, [8] describes a web-based application for auto-
mated assessment and evaluation of source code in the field of parallel pro-
gramming. In [6] authors present a similar web-based system for running and
validating parallel programs written in different programming paradigms.

Finally, a few web-based environments emerged to support recent PDC
topics such as big data processing and general-purpose computing on GPU.
WebMapReduce [4] is a web interface for Hadoop designed for teaching MapRe-
duce programming. WebGPU is a web-based system developed to support
GPU programming assignments in the Heterogeneous Parallel Programming
course [2].

In comparison to existing solutions built from scratch for teaching purposes,
the presented approach is based on reusing a general-purpose web platform for
building computational web services. The ability to quickly build custom services
and connect them to computing resources helps to significantly reduce devel-
opment time. The flexibility of service-oriented approach enables development
of different types of services targeting various use cases and application areas.
Finally, the exploited PaaS model provides the ability to reuse this approach
by other educators without installation of the platform. To our best knowledge,
there are no similar attempts were previously made. These features make Everest
to stand out in cases where educators need an easy to use yet flexible solution,
but lack the resources needed to deploy and maintain such system in-house.

3 Technical Aspects

3.1 Everest Overview

Everest [1,9] is a web-based platform enabling publication, sharing and execution
of scientific applications across distributed computing resources. In this section
we provide a brief overview of this platform.

Figure 1 shows the high-level architecture and some of the key concepts
of Everest. In contrast to traditional distributed computing platforms, Ever-
est implements the Platform as a Service model by providing its functionality
via remote web and programming interfaces. A single instance of the platform
can be accessed by many users in order to create, run and share applications
with each other. An application added to Everest is automatically published as
a web form and a web service. The latter enables programmatic access to appli-
cations, integration with third-party tools and composition of applications into

Using Everest Platform for Teaching Parallel and Distributed Computing 19

Applications

Compute

REST API

Web browser

Web UI

Client

Client Library

Service Service

Application Application

tasktask task

Job

exposesowns

uses

HTTPS + JSON

Agent

Agent

Agent
owns

Fig. 1. High-level architecture of Everest

workflows. Another distinct feature of Everest is that it allows users to attach
their computing resources and flexibly bind them to applications.

The server-side part of the platform is composed of three main layers: REST
API, Applications layer and Compute layer. The client-side part includes the
web user interface (Web UI) and client libraries.

REST API implements the remote programming interface providing access
to all platform’s capabilities. It serves as a single entry point for all clients,
including Web UI and client libraries, and is implemented as a set of web services
following the Representational State Transfer (REST) architectural style [7]. The
API specification is open and allows implementation of third-party clients.

Applications layer implements a hosting environment for applications cre-
ated by users. Applications are the core entities in Everest that represent reusable
computational units that follow a well-defined model. An application has a num-
ber of inputs that constitute a valid request to the application and a number of
outputs that constitute a result of computation corresponding to some request.
Each application is automatically exposed as a web service via the REST API.
This enables remote access to the application via Web UI and client libraries.

To simplify creation of applications Everest provides a generic skeleton for
command-line applications that makes it possible to avoid programming while
adding an application. In addition to description of application inputs and out-
puts, the user should specify the command pattern parametrized by input values
and describe the mappings between inputs/outputs and files read/produced by
the application.

20 O. Sukhoroslov

Compute layer manages execution of applications on computing resources.
When an application is invoked via REST API it generates a job consisting of
one or more computational tasks. Compute layer manages execution of these
tasks on remote resources and performs all routine actions related to staging of
task input files, submitting a task, monitoring a task state and downloading task
results.

Everest does not provide a computing infrastructure and instead relies on
external resources attached by users. The platform implements integration with
standalone machines and clusters by using a developed program called agent.
The agent runs on the resource and acts as a mediator between it and Everest
enabling the platform to submit and manage computations on the resource. The
platform also supports integration with the European Grid Infrastructure.

Web UI provides a convenient graphical interface for interaction with the
platform. It is implemented as a JavaScript application that can run in a modern
web browser without installation of additional software on the user’s machine.

Client libraries simplify programmatic access to Everest via REST API and
enable users to write programs that access applications and compose them in
workflows. At the moment, a client library for Python language is implemented.

3.2 Generic Services for Running Parallel Programs

A common challenge for students learning PDC is working on computing
resources in order to run their programs on scale. The command line environment
and queuing systems used on such resources are unfamiliar and too low-level for
many students. Everest can be used to remove these technical barriers by creat-
ing web-based services for running parallel programs on a compute cluster. Such
services are implemented as Everest applications linked to the provided resource.
Since different programming models and technologies use different languages and
runtime parameters it is convenient to create multiple generic applications with
relevant parameters. In this section we outline steps required in order to create
such applications. The complete description of these steps along with technical
details can be found in user tutorial on the Everest website [1].

In order to create an application an instructor should specify via Everest
Web UI application’s metadata, input and output parameters, mapping of para-
meters to the executed command and files, etc. The core part of the application
is a wrapper that takes input parameters and manages execution of a paral-
lel program on the cluster. The wrapper can be written in any programming
language since Everest runs it via command line. It usually performs program
compilation, preparing of execution environment, submitting the program via
queuing system, etc. The development of such wrapper is currently the most
difficult part of the process, however once implemented its parts can be reused
for other applications.

In order to link the application to a compute cluster used in the course
the instructor should attach the cluster to Everest by installing and starting
the agent. This step usually does not require much effort since the agent is
easy to install under non-root user, provides integration with common batch

Using Everest Platform for Teaching Parallel and Distributed Computing 21

systems and does not need inbound connectivity. It is convenient to create a
dedicated account on the cluster for running the agent and student submissions
from Everest. This approach also avoids creation of personal accounts for each
student and associated management overheads.

Once the application is tested and ready to be used by the students, the
instructor configures access to the application by specifying users and groups
allowed to run it. Everest supports creation of arbitrary user groups. For teach-
ing activities it is convenient to create two groups for students and instructors
respectively and configure application to allow submissions from both groups.
The students’ group can be configured to allow self-registration by providing a
secret code to avoid manually adding students to the group. After all is set up it
is sufficient to ask students to sign up in Everest, add themselves to the required
group and check the applications list.

An example of generic application for running MPI programs created on
Everest is presented in Fig. 2. The submit form shown on the figure includes
input parameters that should be specified by a student for submitting a job. It
is also possible to specify custom job name and enable email notification when
the job completes which is convenient for long-running jobs or jobs waiting in a
queue. Note that this example allows only a single source file to be submitted by
a user, which is often adequate for teaching purposes. However it can be easily
modified to support cases that require submitting multiple source files.

Upon the job submission the student is redirected to the job page that dis-
plays dynamically updated information about the job state. Figure 3 contains
a screenshot of completed job for the MPI application. The opened Outputs
section provides access to output parameters produced by the job. The job page
also includes sections containing general information about the job and all input
parameters specified by the student. By default Everest job is accessible only by
its owner. For teaching purposes it is possible to automatically share all jobs sub-
mitted by the students with the instructors group, so that in case of a problem
a student can just send a link to a failed job to the instructor.

The described approach have been used to implement a number of generic
services for running different types of programs described in Sect. 4.

3.3 Problem-Specific Services for Programming Assignments

The evaluation of programming assignments in PDC requires a significant effort
and is one of the key scalability bottlenecks in terms of a number of students.
The generic applications described above can be used for quick demonstrations,
practical exercises and projects. However, they usually do not provide a feedback
needed to validate solutions to programming assignments. For example, whether
the program produced a correct result or has a good performance. Such imme-
diate feedback is crucial for students since it helps to avoid manual validation
and to focus on the solution. This feedback can also help instructors to reduce
the time and effort needed to grade the solution.

The automated evaluation of assignments requires development of problem-
specific services that run the program against the custom test suite. Such ser-
vices can be implemented on Everest using the same approach as the previously

22 O. Sukhoroslov

Fig. 2. Submit form of generic application for running MPI programs

Fig. 3. Results of completed MPI job

Using Everest Platform for Teaching Parallel and Distributed Computing 23

discussed generic services. However, in this case the wrapper is replaced by a test
suite for the given assignment that can execute a program multiple times with
different runtime parameters and performs additional actions such as result val-
idation and performance measurements. The outputs of problem-specific appli-
cations can include validation results, performance metrics and scores, etc.

4 Use Cases

The described approach and Everest have been successfully used since 2014 to
support two PDC courses for students of various levels.

The Parallel and Distributed Computing course at The Yandex School of
Data Analysis (YSDA, Moscow, Russia) is an introductory PDC course for MSc
students that features the following topics: concurrency, parallel programming
and distributed data processing. The course grade is based on the results of
homework assignments implying writing parallel and distributed programs that
are executed on a dedicated compute cluster.

The use of Everest in the YSDA course started in 2014 by development
of services for evaluation of homework assignments. These services have been
improved and are actively used in this course since that time. Until 2016 no
generic services for running parallel programs were used, and students had direct
access to the YSDA cluster via personal SSH accounts.

In 2015 a similar approach has been applied for teaching High Performance
Computing course for BSc students from the Faculty of Computer Science at the
Higher School of Economics (HSE, Moscow, Russia). In order to simplify working
with the cluster, in addition to problem-specific services, new generic services for
running different types of parallel programs have been introduced. Such services
also helped to arrange more practical exercises and demos in the class. The
students had no problem with accessing Everest via a web browser and were
able to quickly learn and successfully use the provided services for submitting
their programs both in class and while working on homework assignments.

In 2016 the complete approach using both generic and problem-specific ser-
vices was used during teaching YSDA course. This time the students were able to
perform all practical activities via Everest without directly accessing the cluster.
As an option, it was possible to request a cluster account as in previous years
to get an additional practical experience. However, only a few students used
this option during the course and none of them has completely switched from
using Everest to the cluster command line. The decreased support overhead and
increased level of automation helped to scale the course to a larger number of
students (118 enrolled students in comparison to 80 in 2015 and 48 in 2014).

According to existing experience the development of a service takes from an
hour to several days depending on case. The majority of the time is consumed
by implementing and debugging a wrapper or a test suite written in Python or
Bash. The development of test suites and corresponding services is usually more
time consuming than generic services where some previous code can be reused.

In the rest of this section we provide an overview of various services used in
the mentioned courses grouped by the core subjects.

24 O. Sukhoroslov

4.1 Multi-threaded Programming

Both courses include introduction to concurrency and multi-threaded program-
ming. The C++ programming language and the standard thread support library
are used for writing concurrent programs. During this part students examine var-
ious pitfalls of concurrent programming, learn how to avoid them and perform
coordination between threads.

Since the students usually have no problem with compiling and running
multi-threaded programs on their machines, there were no need in development
of generic services for running such programs on a cluster. However, the devel-
opment of problem-specific services for testing homework assignments proved to
be extremely useful.

For example, in the Dining Philosophers task the students should solve the
well-known problem by meeting the basic safely and liveness guarantees while
also ensuring fairness, performance and scalability of their solution. The students
are provided with an initial implementation that is not safe and serves as a
template for a student’s solution. A test suite for evaluation of solutions has
been developed that performs checking of all requirements by running a program
under various conditions. Besides checking safety and liveness, the test suite also
measures fairness, performance and scalability of the solution. The key metrics
used are min-max ratio of eat counts and mean wait time in hungry state. The
scalability is evaluated by increasing the number of philosophers up to 5000. The
test suite prints results of each test and overall summary including scores for all
requirements and the total grade.

The developed test suite was provided to the students as a service that takes
a program and runs the tests against it on a cluster. To ensure the reliable and
reproducible evaluation each test run was configured to use a whole cluster node.

4.2 Parallel Programming

The parallel programming part considers OpenMP and MPI, the two most pop-
ular technologies used for shared and distributed memory systems respectively.
The generic services are developed for running both kinds of parallel programs
on the cluster.

While it is quite easy to compile and run OpenMP programs on students’
machines, the OpenMP service provided the students with the ability to run
a program on a high-end server with 12 processor cores. The input parame-
ters include the program, command arguments, additional files and number
of threads to use, while the output parameters include compiler and program
outputs.

The generic MPI service enabled students to compile and run MPI programs
with different runtime configurations on the cluster. The interface of this service
was already presented in Sect. 3.

The YSDA course includes a programming assignment with two tasks cover-
ing both technologies. In the first task the students should implement a parallel
version of the K-means method using OpenMP. A sequential implementation of

Using Everest Platform for Teaching Parallel and Distributed Computing 25

the method in C++ is provided as a starting point along with a generator of
input data. The solution is required to produce the same result as the initial
program on the same dataset. The second task considers a parallel implementa-
tion of the Game of Life using MPI. Similarly the students are provided with a
reference sequential program in C and an input data generator.

A test suite and an Everest application is developed for each task. Both test
suites have a similar structure. They compile a solution and perform multiple
runs with different runtime configuration (number of threads or processes), input
files and other parameters. The execution time, speedup and efficiency are mea-
sured for each run. The results of a run are compared with the reference values.
This enables a complete evaluation of a solution including its’ correctness, per-
formance, scalability, and dependence on input parameters. Figure 4 contains a
screenshot of completed submission for the MPI assignment.

Fig. 4. Results of testing Game of Life assignment

4.3 Distributed Data Processing

This part considers distributed computing models and platforms for processing
of large data sets, which are being actively developed during the last decade.
Students learn the MapReduce programming model and its implementation in
the Apache Hadoop platform. Another popular framework for distributed data
processing considered in both courses is Apache Spark.

26 O. Sukhoroslov

Two generic services were implemented for running MapReduce programs
written in Python and Java respectively on the Hadoop cluster. Both services
allow specifying program files, command line arguments, input and output paths
in HDFS, number of reduce tasks and additional Hadoop options. The wrap-
per script performs submission of MapReduce job, monitors the job’s state and
updates status information displayed in Everest. When the job is running, a stu-
dent is provided with a link to the job status page in the Hadoop web interface.
After the job is completed the total resource usage in core-seconds is displayed
along with a link to the job history interface with task logs. This provides enough
information to troubleshoot failed programs or evaluate the program’s efficiency.

Two similar services were implemented for running Spark programs written
in Python or Scala/Java on the same cluster. In comparison to MapReduce
services, the Spark services have more sophisticated runtime parameters such
as the number of executors, cores and memory per executor. It is also possible
to specify the minimum ratio of registered executors to wait for before starting
computations. This enables students to examine various trade-offs related to
using different values of runtime parameters. The corresponding wrapper script
is also more sophisticated. It allows to limit the maximum amount of physical
resources requested by the program and the number of concurrent jobs per user.

Due to the large size of input data and produced results, in addition to
running programs on Hadoop cluster it was essential to provide a way to easily
browse files stored in the HDFS file system. This was achieved by using Hue, a
Web interface for Hadoop which includes a convenient HDFS file browser.

The homework assignments include building an inverted index of Wikipedia
using MapReduce and analysis of Twitter graph using Spark. The corresponding
services were created for each assignment. In contrast to previous assignments,
these services do not run students’ programs and only check the produced results.
Therefore the students were asked to provide links to all submissions via generic
services used to produce these results.

5 Conclusion and Future Work

In this paper, we have presented a practical approach for building high-level
services for teaching PDC based on Everest platform. Originally designed for
publication of computing applications, the platform supports rapid development
of various types of computational web services. In particular, as was demon-
strated by using Everest for teaching introductory PDC courses, the platform is
suitable for building services for running different types of parallel programs on
HPC resources, as well as services for evaluation of practical assignments.

The use of discussed services helped to provide easy-to-use interfaces to stu-
dents and to reduce administration overheads. The problem-specific services
ensured reliable and reproducible execution of test suites against students’ solu-
tions while providing immediate feedback to students and assisting grading by
instructors.

Everest has a number of unique features in comparison to related solutions.
It implements the PaaS model by supporting multiple users and providing all

Using Everest Platform for Teaching Parallel and Distributed Computing 27

its functionality via remote web and programming interfaces. The latter enable
integration of the platform and applications with external systems. Everest is
not tied to a predefined computing infrastructure by enabling users to attach
arbitrary resources and bind them to applications. This makes it possible to
immediately start using Everest without installation. The platform is publicly
available online to all interested users [1].

Being a general-purpose platform, Everest lacks a number of high-level fea-
tures in comparison to specialized solutions. For example, in order to create a
service an instructor should write a wrapper script or test suite implementing
all necessary actions. While providing maximum flexibility, this approach often
requires writing a boilerplate code dealing with cluster job submission or results
checking. We plan to address these issues in future by implementing additional
features in Everest and publishing ready-to-use blueprints to quickly reproduce
the discussed services by other PDC educators.

Acknowledgements. This work is supported by the Russian Science Foundation
(project No. 16-11-10352).

References

1. Everest. http://everest.distcomp.org/
2. Heterogeneous Parallel Programming. https://www.coursera.org/course/hetero
3. Dincer, K., Fox, G.C.: Design issues in building web-based parallel programming

environments. In: 1997 Proceedings of the Sixth IEEE International Symposium
on High Performance Distributed Computing, pp. 283–292. IEEE (1997)

4. Garrity, P., Yates, T., Brown, R., Shoop, E.: Webmapreduce: an accessible and
adaptable tool for teaching map-reduce computing. In: Proceedings of the 42nd
ACM Technical Symposium on Computer Science Education, pp. 183–188. ACM
(2011)

5. Maggi, P., Sisto, R.: A grid-powered framework to support courses on distributed
programming. IEEE Trans. Educ. 50(1), 27–33 (2007)

6. Nowicki, M., Marchwiany, M., Szpindler, M., Ba�la, P.: On-line service for teaching
parallel programming. In: Hunold, S., et al. (eds.) Euro-Par 2015. LNCS, vol. 9523,
pp. 78–89. Springer, Cham (2015). doi:10.1007/978-3-319-27308-2 7

7. Richardson, L., Ruby, S.: RESTful web services. O’Reilly Media Inc., Sebastopol
(2008)

8. Schlarb, M., Hundt, C., Schmidt, B.: SAUCE: a web-based automated assess-
ment tool for teaching parallel programming. In: Hunold, S., et al. (eds.) Euro-
Par 2015. LNCS, vol. 9523, pp. 54–65. Springer, Cham (2015). doi:10.1007/
978-3-319-27308-2 5

9. Sukhoroslov, O., Volkov, S., Afanasiev, A.: A web-based platform for publication
and distributed execution of computing applications. In: 2015 14th International
Symposium on Parallel and Distributed Computing (ISPDC), pp. 175–184, June
2015

10. Touriño, J., Mart́ın, M.J., Tarŕıo, J., Arenaz, M.: A grid portal for an undergrad-
uate parallel programming course. IEEE Trans. Educ. 48(3), 391–399 (2005)

http://everest.distcomp.org/
https://www.coursera.org/course/hetero
http://dx.doi.org/10.1007/978-3-319-27308-2_7
http://dx.doi.org/10.1007/978-3-319-27308-2_5
http://dx.doi.org/10.1007/978-3-319-27308-2_5

Experiences with Teaching a Second Year
Distributed Computing Course

Rizos Sakellariou(B)

School of Computer Science, University of Manchester, Manchester, UK
rizos@manchester.ac.uk

Abstract. The proliferation of parallel and distributed computing in
the last years has led to calls for the early introduction of parallel and
distributed computing in the undergraduate curriculum arguing that the
topic should and can be offered at different levels but some basic knowl-
edge must be acquired by every computer science graduate. However,
there is no widespread agreement on how this can be achieved. This
paper contributes to the debate by presenting the approach and experi-
ences from designing and teaching a second year undergraduate distrib-
uted computing course that has been running for a decade in the School
of Computer Science of the University of Manchester. The course evolved
to follow an approach which presents material in a way that attempts to
emphasize the importance of four key pillars of abstraction, which under-
pin the design and management of modern distributed systems, namely:
trade-offs, failures, concurrency and synchronization, performance. The
paper presents the details of this approach arguing that the use of suit-
able abstractions allows for a rewarding learning experience that helps
students familiarize with and appreciate the challenges of distributed
computing at an early stage.

1 Introduction

The so-called “triumph of parallel computing” [9] is indisputable. Whether in the
presence of multiple CPUs in everyday computing devices or as part of large-scale
infrastructures such as Google, parallel and distributed computing manifests
itself nowadays as a mainstream Computer Science topic. However, there are
several indications that this trend has not fully found its way into the Computer
Science curriculum, especially to the degree that would be desirable in order to
train successfully future computer scientists. Motivated by such observations, a
report [7], produced by a working group aiming to develop curricular guidelines
for Computer Science and Engineering undergraduates, tried to identify essential
topics and concepts and where in the curriculum they could be incorporated
to ensure that “all students graduating with a bachelor’s degree in computer
science/computer engineering receive an education that prepares them in the area
of parallel and distributed computing, preparation which is increasingly important
in the light of emerging technology” [7]. Despite the elaborate discussion of how
and where different concepts need to be introduced, the report did not really
c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 28–37, 2017.
DOI: 10.1007/978-3-319-58943-5 3

Experiences with Teaching a Second Year Distributed Computing Course 29

make concrete suggestions for specific new courses tailored towards an early
introduction of parallel and distributed computing in the curriculum.

Traditionally, parallel and distributed computing courses have been consid-
ered as advanced courses taught at advanced undergraduate or postgraduate
level. To a large extent, this reflects the historical development of parallel and
distributed computing and the long track record of specialized research in the
area1. As a result of the need to prepare graduates better in terms of parallel and
distributed computing background, one may be tempted, as in [7], to identify
the key concepts that need to be introduced early in the curriculum. However,
as some of these concepts have been developed as part of previous specialized
research, especially at a time when parallel and distributed computing was not
a mainstream topic, the question is whether they carry the stamp of their time
and origins, which makes them not easily amenable to early undergraduates. In
other words, the question is whether educators need to think about some extra
level of abstraction to introduce early undergraduates to parallel and distrib-
uted computing without risking losing them through early exposure to low-level
‘heavyweight’ details. Such a level of abstraction can also address the require-
ment to teach students principles that “will remain relevant and abiding for
the unforeseeable technologies of the next decade”, a need that was eloquently
identified in [3].

As part of a curriculum redesign more than ten years ago, it has been decided
to introduce Distributed Computing to the second year programme of the pri-
marily 3-year degree of the School of Computer Science of the University of
Manchester, starting Spring 2007. The author (along with a team of two col-
leagues) has been responsible for the initial design of the course and since then
he has delivered it (jointly or as the sole instructor since 2012) every spring with
the exception of 2009 when he was on sabbatical leave. In total, over 1100 stu-
dents have taken the course during these ten years. Following this experience,
this paper will present:

– a detailed view on how the course has been organized and delivered;
– the approach followed/developed, which tried to emphasize four main pillars

at a high level of abstraction, namely: trade-offs, failures, concurrency and
synchronization, performance; and,

– some observations and suggestions stemming from the 10-year experience.

The rest of the paper is structured as follows. Section 2 presents the syllabus
including lecture topics and laboratory assignments. Section 3 presents the main
abstraction pillars used to introduce the course. Section 4 discusses observations
from the 10-year experience. Finally, Sect. 5 concludes the paper.
1 Parallel and Distributed Computing is treated here as a single field, same as in [7]

and in line with most modern views and classifications. However, it should not be
forgotten that parallel (primarily aiming towards high-performance) computing on
one hand and distributed computing on the other have been kept apart for many
years, each with its own history and research; it is only in recent years that common
aspects and principles have (re)gained importance leading to some sort of conver-
gence.

30 R. Sakellariou

2 Syllabus

2.1 Background

The course is offered as part of the 2nd year program of the School of Computer
Science of the University of Manchester during the Spring semester, which runs
for twelve weeks (interrupted by the Easter break), typically from late January
to the beginning of May. The method of study consists of twenty-two 50-minute
lecture slots and five 2-hour laboratory sessions, where students work on specific
assignments. Assessment is based on a 2-hour closed book examination, which
counts for 80% of the overall mark, and marking of the laboratory assignments
counting for the remaining 20%. In recent years about 150 students register for
the course each year, reflecting the rather large size of the Computer Science
intake of the University of Manchester. The majority of these students study
towards a 3-year BSc degree in Computer Science.

2.2 Lecture Topics

Fourteen of the lecture slots are used to introduce and discuss the course topics.
These topics broadly cover issues related to: (i) motivation for parallel and dis-
tributed systems; (ii) communication; (iii) naming; (iv) synchronization (includ-
ing logical timing and coordination); (v) failure management; (vi) advanced top-
ics. The remaining slots are used for guest lectures, introducing and motivating
laboratory work and revision. Lectures are supported by handouts and references
to two core textbooks [4,10].

Most specifically, the fourteen slots are dedicated to the following topics:

1. Introduction to Distributed Computing: In addition to providing the rubric
for the course, the lecture is used to motivate the challenges of distributed
systems using for this the so-called “eight fallacies of distributed systems” [2].
Although more than twenty years old by now, these fallacies have an impor-
tant educational value as they provide a wealth of opportunities to introduce
and motivate the challenges of developing distributed systems.

2. Introduction to Parallel Computing: The lecture is used to introduce the
need for performance and the concept of scalability. Application examples
are presented and Amdahl’s law (despite criticism [9]) is used as a way to
highlight the impact of inherently sequential parts of an application. At the
same time, alternative approaches to get an upper bound on parallelism
using the work of the critical path are discussed and illustrated with scien-
tific workflow applications that appear to gain momentum as an important
class of applications that benefit from parallelism and large-scale distributed
computing [11].

3. Models and Architectures: The focus of the lecture is on different architec-
tures and models to build distributed systems. The trade-offs of different
solutions, such as client-server versus P2P, are discussed and used to high-
light the observation that there is not a single architectural solution that
fits everything.

Experiences with Teaching a Second Year Distributed Computing Course 31

4. RPC and RMI: The lecture introduces Remote Procedure Calls (RPCs)
as a way to provide a high-level alternative to low-level send and receive
constructs. The context in which the first practical implementations of RPC
were developed as well as the criticism often made are mentioned and used
to understand how current solutions and problems may inherit the legacy
of the past. In addition, as the Computer Science syllabus in Manchester is
using Java as the introductory programming language in the first year, RMI
is described as the Java approach to RPC.

5. Exercises on RPC and RMI: These exercises attempt to consolidate
understanding but also to introduce more specialized topics such as ‘call
by copy/restore’, at-least-once and at-most-once semantics and contrast
between RPC and messaging.

6. Name and Directory Servers: This lecture discusses naming issues following
the Internet Domain Name System as a running example.

7. Time and Logical Clocks: This lecture discusses approaches to deal with the
lack of global clock in distributed systems. Lamport clocks and Vector clocks
are introduced and their properties are explained and discussed.

8. Coordination and Agreement: This lecture is used to motivate and describe
two classical algorithms for election of a coordinator such as ring-based elec-
tion and the Bully algorithm.

9. Transactions: This lecture is used to introduce the problems that arise
from unexpected failures and the importance of treating some operations
as atomic operations using as a motivating example the problems that may
occur during a bank transfer if a crash occurs half way through the transfer.
The four key properties of transactions, known with the acronym ACID,
are introduced, and there is a discussion of how transactions can be imple-
mented.

10. Distributed Transactions: This lecture describes in more detail the issues
with respect to the implementation of transactions and highlights the need to
strike a balance between enforcement of transaction constraints and concur-
rency. Furthermore, the lecture motivates distributed transactions, describes
protocols such as one-phase and two-phase commit and discusses problems
that may arise in this context such as distributed deadlocks and how they
can be detected.

11. Byzantine Fault Tolerance: This lecture is used to introduce students to some
key results on arbitrary (byzantine) failures. The impossibility of making an
agreement when there are three generals (one of whom is a traitor) as well
as a protocol for an agreement when there are four generals, three of whom
are loyal, are illustrated using examples from the original 1982 paper [5].
Occasionally, the issues with Byzantine failures are illustrated in the class
by assigning the role of loyal or traitor general to groups of students and let
them emulate the process of trying to make an agreement.

12. Replication: This lecture discusses the benefits as well as the cost of repli-
cation and describes some fundamental consistency models, such as sequen-
tial consistency, causal consistency and eventual consistency. Algorithms for
placing replicas are also discussed.

32 R. Sakellariou

13. The Integration Game: This lecture focuses on interoperability and stan-
dardization as mechanisms that enable the development of large systems
primarily focusing on a service-based model.

14. Cloud Computing and advanced topics: This lecture traces back the historical
development of Grid computing and the move to the Cloud. It highlights
problems stemming from the sheer size of data that a number of applications
produce as well as the distributed collaborative nature of such applications.

Two guest lectures are typically offered every year (subject to availability).
One of the guest lecturers typically comes from the banking sector and helps stu-
dents understand how some of the concepts discussed in the course are present in
the problems faced by a demanding, large-scale, real-world environment. Another
guest lecturer with expert knowledge has often been invited to discuss more
advanced topics: in early years in relation to grid computing and e-Science, in
recent years in relation to Cloud Computing and virtualization.

2.3 Laboratory Assignments

There are three laboratory assignments, each one serving a different purpose and
addressing different aspects of the course, exposing students to different concepts.
The assignments have been repeated every year with only minor changes or
adjustments.

The first assignment is a simple exercise whose only purpose is to introduce
students to three different mechanisms for implementing a client-server interac-
tion. The three mechanisms are sockets, Java RMI and Java servlets. The choice
has partly been driven by the particular study programme which uses Java as
an introductory programming language. This is a simple exercise but it helps
introduce concepts that are not taught at an earlier stage.

The second assignment is the main laboratory exercise, counting for 60%
of the laboratory mark. In this exercise students are asked to write a client
to interact with a server through http and xml and make a booking. Each
student’s client competes with other students’ clients for the booking. The idea
is that a server advertises 200 slots for a band and 200 slots for a hotel and a
client is asked to find the earliest common slot to arrange both a band and a
hotel for a wedding as soon as possible. The server introduces random failures
and delays, which requires students to build robust clients capable of dealing
with such problems if they arise. Bookings are made and changed all the time,
which suggests that any information on availability of slots may be quickly out-
of-date and a slot that appears to be free may already be taken before a request
to book it is issued. To avoid having a number of clients monopolize the server,
students are asked to include a deliberate delay of one second between successive
requests and they are limited to two bookings for each of band and hotel. The
use of a controlled environment for the server facilitates the introduction of
delays and random failures (e.g., server unavailable) that help students realize
the importance of building robust code.

Experiences with Teaching a Second Year Distributed Computing Course 33

The third assignment asks students to build a simple discrete-event simulator
that simulates a queue-based system where: (i) requests arrive at a given rate;
(ii) each request requires a certain amount of server time; (iii) a number of
servers can serve requests from a queue that initially stores requests; and, (iv)
the size of the queue is limited. For given values of each of these four parameters,
students are asked to calculate over a period of time: (i) average queue size; (ii)
average response time for requests; and, (iii) percentage of requests rejected.
This exercise helps students appreciate the value of performance modelling and
simulation as a mechanism for capacity planning when building a distributed
system.

3 Objectives and Key Abstraction Pillars

The main intended learning outcome of the course, as advertised to students, is
to make them aware of the principles, techniques and methods involved when
dealing with distributed systems. There are four key abstractions along with a
number of lesser ones that summarize the key principles emphasized through-
out the course. Following the experience over the years it has emerged that an
emphasis on these abstractions would create the right mindset to help students
from an early level to acquire a good understanding of the issues in distributed
systems.

Trade-Offs in the Design of Distributed Systems: An important message for an
early course on parallel and distributed computing is to infuse the concept of
trade-off between different objectives that need to be considered when designing,
building and using distributed systems. Especially for distributed computing in
the early years of the curriculum it is important to make clear that such trade-offs
exist and emphasize their main direct implication: there is not a single solution
that fits everything. Although some of the trade-offs may be relatively obvious
or, in their general form, they may have been around for long enough (e.g., the
interplay between cost and performance), it appears that less obvious trade-offs
emerge. Taking into account the increasing heterogeneity of modern platforms,
the different options made available to users and the scales envisaged for tackling
new problems, one could argue that even more interesting trade-offs will emerge
in parallel and distributed computing. One needs only consider frequency scaling,
a technique commonly used nowadays, and ponder about how it affects the
interplay between energy, cost, and performance, in not easy to predict ways
[6,8]. This suggests that creating a mindset directed towards the detection and
appreciation of such trade-offs is particularly important as an essential parallel
and distributed computing skill for future computer scientists. The first example
of a trade-off that is used early enough in the module to motivate students is
a consequence of one of the eight fallacies, “latency is not zero”, and relates to
the interplay between latency and bandwidth. It can be easily realized that over
a low-latency network the time to send several remote requests will primarily
be affected by bandwidth; in this case, many small-sized requests will result

34 R. Sakellariou

in a good execution time. However, over a high-latency network, latency will
dominate and many remote requests may result in long execution times because
of the high latency; in this case, it can be faster to send one large-sized request
to avoid the cost of high-latency. Interestingly enough, such an issue received
high-profile attention as recently as 2006 in the context of a popular browser,
leading to the suggestion that “computing over a high-latency network means
you have to bulk up” [1].

Dealing with Failures: There is an old quote by Leslie Lamport that suggests
that “a distributed system is one in which the failure of a computer you didn’t
even know existed can render your own computer unusable”. The message that
effective distributed systems need to address failures and the primary approach
to do this is some sort of redundancy is repeatedly made during the course. The
second laboratory assignment helps reinforce this message by getting students
realize that client code that may work once is not necessarily robust enough
to deal with everything that may go wrong. It is often the case that several
students realize the importance of managing unpredictable situations during this
laboratory exercise, something that suggests that appreciating the importance
to deal with failures requires exposure to failure handling both from a theoretical
and from a practical point of view.

Implications of Concurrency: Concurrency is introduced very early in the course,
primarily focusing on embarrassingly parallel applications as they provide an
easy way to demonstrate the benefits of parallelism and some of them are easily
recognizable by students (e.g., online games). The implications of concurrent
execution are discussed as a means to motivate transactions following a classical
example of concurrent accesses to the same banking accounts. This allows for
a good discussion of the trade-off between synchronization and the amount of
parallelism available, something which is also discussed in the context of the
second laboratory exercise where excessive locking would help with individual
implementations but at the same time it would reduce the overall degree of
parallelism in the system. It is argued that such a simple example-driven app-
roach helps illustrate parallelism/concurrency step-by-step without overloading
students with the complexity of specialized application examples often seen in
the delivery of traditional high-performance computing courses. If anything, the
argument is that, in the early curriculum, the illustration of concurrency and its
implications or trade-offs (especially the trade-offs and interplay between con-
currency and computation versus communication or synchronization) requires
even more simple examples that what are currently offered by standard
textbooks.

The Quest for Performance: Performance has been a key objective in the tradi-
tional parallel computing curriculum, however, it has been often downgraded in
distributed computing. Nevertheless, performance objectives are always present

Experiences with Teaching a Second Year Distributed Computing Course 35

in reality2 and they are emphasized in different parts of the course, also in terms
of capacity planning as part of the third laboratory assignment.

4 Discussion

The approach that was described above in organizing the course seems to work
well. The overall student assessment of the course has been positive, consistently
among the best of the year. Performance during the final examination, based on
a mix of bookwork and small problem solving exercises, seems to indicate that
a number of students get a good understanding of some key concepts related
to distributed computing. Judging from the experience over the last decade, it
appears that, in recent years, students come with an already improved under-
standing of distributed systems, which could be partly a result of the everyday
use of many widespread distributed applications or smartphones. As a matter
of fact, in early years the average mark (grade) of the students attending the
course was significantly lower than their overall average mark for the year. In
recent years, marks have improved (without any significant changes in the style
or difficulty of the examination paper) and the average mark of the students
attending the course has been broadly in line with their overall average mark
for the year. This observation raises the bar with respect to the new topics and
angles that have to be adopted to keep the course interesting and relevant on
one hand but also to prepare students for future challenges in relation to parallel
and distributed computing.

The generation of an ever increasing amount of data and the suggestion that
many future distributed applications may need to handle large volumes of data
raises a question on what is the best approach to introduce students to the
challenges involved. During the course, there are only passing references to the
volumes of data that may have to be handled in the future. This may have to
followed-up by more advanced courses, especially as anecdotal evidence seems
to suggest that addressing large-scale software requirements seems to be a skill
much desired by industry. An additional issue that is also mentioned in passing
is the issue of economy. The ever increasing availability of resources (memory,
storage, etc.) often tempts programmers to write code without consideration of
the amount of resources consumed. Even though earlier generations were used
to face limited resources this skill seems to have gone away with the dramatic
increase in the amount of resources. Yet, the increasing importance on issues
such as energy minimization may suggest that resource-efficient programming
will become more important in the future than it is now. This may have to be
introduced in an early parallel and distributed computing course as an additional
dimension whose trade-offs need to be considered.

2 A guest lecturer from industry once mentioned how important and time-consuming
it had been to find quick solutions in his company to ship large files between the
UK and USA. Eventually the answer relied on tailored versions of TCP/IP but the
solution was found through third-party products after a significant amount of time
had been spent internally.

36 R. Sakellariou

During the course, an attempt is made to give an historical perspective wher-
ever possible. This is useful to understand the limitations of some approaches,
which may have been excellent solutions at the time they were devised but may
be holding understanding back in today’s settings. Some examples were already
given. It can be argued that giving a good historical perspective and associating
different algorithms and techniques with problems and context at the time they
were developed enables students to see beyond earlier limitations. In one par-
ticular case, however, when discussing consistency models, it appears that the
common notation used to illustrate examples of different protocols (also adopted
by [4,10]) carries lots of weight from distributed shared memory days and, every
year it becomes one of the most puzzling topics for students. The question is to
what extent a different notation that presents examples at a coarse-grain level
(as opposed to the standard fine-grain, variable level currently used) could make
things easier to understand.

An issue that clearly merits some discussion in a distributed computing
course is security although one would expect that security issues are primar-
ily addressed by specialized courses. In early versions of the course there was
one lecture on security, which was dropped due to time limitations and because
it was not necessarily good value for the time spent. However, one pertinent issue
that has been discussed as part of the second laboratory exercise was denial of
service attacks, as many students inadvertently did not add the requested one
second delay in their code between successive requests to the server; such cases
were monitored and, when detected, were used to discuss the problem of denial
of service attack as well as the importance of capacity planning, that is planning
server resources in line with the number of expected requests over a period of
time.

Finally, it is interesting to trace how the course has evolved over the years
to reflect experience gained, and student background in addition to changes
in the field (most notably the transition from grid computing to cloud com-
puting). The early design of the course tried to come up with a set of mostly
self-contained lectures that described selected algorithms from the mainstream
distributed computing literature (as an initial reference point the fourth edition
of [4,10] were used). Over the years, a connecting link was developed, which
crystallized in the key abstraction pillars described in Sect. 3, but most of the
initial lectures remained largely unchanged. However, students in recent years
started raising more often questions that added extra dimensions of complexity
to some of the classical algorithms (e.g., byzantine problems with communica-
tion uncertainty, ring-based election in the presence of failures and so on). At
the same time, it is the author’s impression that many concepts or algorithms
(such as logical clocks or election algorithms) were more easily understood and
digested by students in recent years than they were in early years. This obser-
vation raises the question of whether there is scope for educators to enhance the
description of some of the problems addressed by the relevant algorithms (some
of which, even though classical, are a few decades old) to improve the student
learning experience and possibly match some of today’s problems more closely.

Experiences with Teaching a Second Year Distributed Computing Course 37

5 Conclusion

This paper has presented the structure of a second year distributed computing
course offered by the School of Computer Science of the University of Manchester
for the last decade. The approach tried to build on four main pillars at a high-
level of abstraction, which allowed the introduction of a number of distributed
computing topics at an early level in the curriculum. This suggests that in order
to appreciate the growing challenges of the field and prepare future computer sci-
entists well, early introduction of parallel and distributed computing in the cur-
riculum may benefit from the introduction of and emphasis on suitable abstrac-
tions as part of appropriately (and holistically) designed courses more than sim-
ply moving some advanced (and possibly difficult to understand without suitable
context) concepts to different parts of the early curriculum.

Acknowledgements. The author would like to thank Chris Kirkham and Dean Kuo
who were members of the team that designed the original course. Chris, in particular,
who jointly delivered the course until 2011 when he retired, and his long experience in
computing contributed enormously in the early years of the course. Special thanks are
also due to a number of Teaching Assistants who assisted with laboratories, the guest
lecturers, and, above all, the over 1100 students who attended the course during the
last ten years and helped shape it and evolve. Finally, detailed course information is
available from: http://studentnet.cs.manchester.ac.uk/ugt/COMP28112/.

References

1. https://blogs.msdn.microsoft.com/oldnewthing/20060407-25/?p=31613/
2. https://en.wikipedia.org/wiki/Fallacies of distributed computing
3. Adams, J., Brown, R., Shoop, E., Patterns, E.: Compelling strategies for teaching

parallel and distributed computing to CS undergraduates. In: 27th IEEE Inter-
national Parallel and Distributed Processing Symposium Workshops (IPDPSW),
EduPar 2013 (2013)

4. Coulouris, G., Dollimore, J., Kindberg, T., Blair, G., Systems, D.: Concepts and
Design, 5th edn. Addison-Wesley, Boston (2011)

5. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans.
Program. Lang. Syst. (TOPLAS) 4(3), 382–401 (1982)

6. Pietri, I., Sakellariou, R.: Cost-efficient CPU provisioning for scientific workflows
on clouds. In: Altmann, J., Silaghi, G.C., Rana, O.F. (eds.) GECON 2015. LNCS,
vol. 9512, pp. 49–64. Springer, Cham (2016). doi:10.1007/978-3-319-43177-2 4

7. Prasad, S.K., Gupta, A., Kant, K., Lumsdaine, A., Padua, D., Robert, Y., Rosen-
berg, A., Sussman, A., Weems, C.: Literacy for all in parallel and distributed com-
puting: guidelines for an undergraduate core curriculum. CSI J. Comput. 1(2),
81–95 (2012)

8. Rauber, T., Rünger, G.: Modeling and analyzing the energy consumption of fork-
join-based task parallel programs. Concurr. Comput.: Pract. Exp. 27(1), 211–236
(2015)

9. Schreiber, R.: A few bad ideas on the way to the triumph of parallel computing.
J. Parallel Distrib. Comput. 74(7), 2544–2547 (2014)

10. Tanenbaum, A.S., Van Steen, M.: Distributed Systems: Principles and Paradigms,
2nd edn. Prentice-Hall, Upper Saddle River (2006)

11. Taylor, I.J., Deelman, E., Gannon, D.B., Shields, M.: Workflows for e-Science:
Scientific Workflows for Grids. Springer, Heidelberg (2014)

http://studentnet.cs.manchester.ac.uk/ugt/COMP28112/
https://blogs.msdn.microsoft.com/oldnewthing/20060407-25/?p=31613/
https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing
http://dx.doi.org/10.1007/978-3-319-43177-2_4

HETEROPAR - Workshop on
Algorithms, Models and Tools for

Parallel Computing on Heterogeneous
Platforms

Distributed In-GPU Data Cache
for Document-Oriented Data Store via PCIe

over 10Gbit Ethernet

Shin Morishima1(B) and Hiroki Matsutani1,2,3

1 Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
{morisima,matutani}@arc.ics.keio.ac.jp

2 National Institute of Informatics, Tokyo, Japan
3 Japan Science and Technology Agency PRESTO, Kawaguchi, Japan

Abstract. As one of NOSQL data stores, a document-oriented data
store manages data as documents in a scheme-less manner. Various string
match queries, such as a perfect match, begins-with (prefix) match, par-
tial match, and regular expression based match, are performed for the
documents. To accelerate such string match queries, we propose DistGPU
Cache (Distributed In-GPU Data Cache), in which data store server and
GPU devices are connected via a PCI-Express (PCIe) over 10Gbit Eth-
ernet (10 GbE), so that GPU devices that store and search documents
can be added and removed dynamically. We also propose a partition-
ing method that distributes ranges of cached documents to GPU devices
based on a hash function. The distributed cache over GPU devices can
be dynamically divided and merged when the GPU devices are added
and removed, respectively. We evaluate the proposed DistGPU Cache in
terms of regular expression match query throughput with up to three
NVIDIA GeForce GTX 980 devices connected to a host via PCIe over
10 GbE. We demonstrate that the communication overhead of remote
GPU devices is small and can be compensated by a great flexibility to
add more GPU devices via a network. We also show that DistGPU Cache
with the remote GPU devices significantly outperforms the original data
store.

1 Introduction

Recent advances on Social Networking Services, Internet of Things technologies,
mobile devices, and sensing technologies are continuously generating large data
sets, and a simple, scalable, and high-throughput data store is a key component
for managing such big data. Structured storage or NOSQL is an attractive option
for storing large data sets in addition to traditional RDBMS. NOSQL data stores
typically employ a simple data structure optimized for high horizontal scalability
on some selected application domains via sharding and replication over number
of machines. Due to these features, NOSQL data stores are increasing their
presence in Web applications and cloud-based systems that store and manage
big data.
c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 41–55, 2017.
DOI: 10.1007/978-3-319-58943-5 4

42 S. Morishima and H. Matsutani

Document-oriented data store [1,2] is one of major classes of NOSQL. In a
document-oriented data store, data are typically stored as documents in a JSON-
like binary format without any predefined data structure or schema; thus it is
referred to as a scheme-less data store. In the document-oriented data store, a
search query retrieves documents whose values are matched to a search condition
given by the search query. Especially, string search queries, such as perfect,
begins-with (prefix), and regular expression based string match queries, are used
in document-oriented data stores. Since the computation cost for string search
increases as the number of documents increases, it becomes quite high when
dealing with large data sets. To mitigate the computation cost increase, database
indexes are typically employed in document-oriented data stores [7], in order to
reduce the cost from O(n) to O(logn), where n is the number of documents.
Database indexing is a powerful technique especially for perfect and prefix string
match queries. However, it cannot be directly applied to some important string
search queries, such as partial and regular expression based string match queries,
although database indexes for regular expression based search have been studied.
A motivation of this paper is to accelerate search queries of the document-
oriented data store without relying on database indexes.

To accelerate all the string search queries including the regular expression
based search in document-oriented data stores, an array-based cache suitable
for GPU processing of string search queries was proposed in [5]. The cache is
extracted from the original document-oriented data store. When the document-
oriented data store receives a string search query, the query is performed by a
GPU device using the cache and the search result is returned to the original
document-oriented data store. However, a serious problem of the cache is that,
since it targets only a single GPU device, it is inefficient for data larger than a
device memory capacity of a single GPU device. Thus, a horizontal scalability
to add more GPU devices and increase the device memory capacity is required
to manage a larger data set. In addition, since the number of documents in the
data store increases and decreases dynamically, a flexibility to add and remove
GPU devices dynamically is required.

To address these requirements, in this paper we propose DistGPU Cache
(Distributed In-GPU Data Cache), in which a data store server (i.e., host) and
GPU devices are connected via a PCI-Express (PCIe) over 10 Gbit Ethernet
(10 GbE) technology [9], so that GPU devices that store and search data can
be added and removed dynamically. We also propose a documents partitioning
method that distributes ranges of cached data to GPU devices based on a hash
function. DistGPU Caches can be dynamically divided and merged when the
GPU devices are added and removed, respectively. An inherent concern on Dist-
GPU Cache may be communication latency between the host and remote GPU
devices connected via 10 GbE. However, since in our proposal, DistGPU Caches
reside in GPUs’ device memory, they are not transferred to the GPU devices for
every search query. Thus, communication overhead can be mitigated even with
remote GPU devices. The contributions of this paper are summarized as follows.

Distributed In-GPU Data Cache for Document-Oriented Data Store 43

– We propose DistGPU Cache that distributes database cache over GPU
devices connected via a PCIe over 10 GbE technology.

– We propose a documents partitioning method so that GPU devices that form
DistGPU Cache can be added and removed dynamically.

– We evaluate document-oriented data store performance when varying the
number of remote GPU devices.

The rest of paper is organized follows. Section 2 surveys related work.
Section 3 proposes DistGPU Cache and the cache partitioning method for mul-
tiple remote GPU devices. Section 4 evaluates DistGPU Cache and compares it
with that with local GPU devices and the original document-oriented data store
using database indexes. Section 5 concludes this paper.

2 Background and Related Work

2.1 GPU-Based Regular Expression Matching

There are two approaches to implement regular expression matching: NFA (Non-
deterministic Finite Automaton) based approach and DFA (Deterministic Finite
Automaton) based approach. To accelerate the regular expression matching,
GPU devices are used for DFA-based approach in [10] and NFA-based approach
in [11]. Both the approaches have pros and cons. NFA-based approach is advan-
tageous in terms of memory efficiency, while DFA-based approach is faster than
NFA-based one. For a small rule-set regular expression matching, a DFA-based
approach can be accelerated by using tokens of words in [6]. In addition, a text
matching based on KMP algorithm is studied for database applications in [8]. In
this paper, we implemented a DFA-based regular expression matching for GPU
devices based on the design of [10].

2.2 GPU-Based Document-Oriented Data Store

To accelerate search queries of document-oriented data store, DDB Cache suit-
able for GPU processing was proposed in [5]. A similar idea was applied for a
graph database in [4]. DDB Cache is an array-based data cache extracted from
the document-oriented data store, and GPU-based string processing (e.g., regular
expression based string matching) is performed for DDB Cached. Figure 1 shows
a creation of DDB Cache from document-oriented data store. The upper half
illustrates a simplified data structure of the document-oriented data store that
includes multiple documents. The lower half illustrates its DDB Cache struc-
ture. DDB Cache is created for each field of documents. The same field name
and value type are used for every document. Thus, only values are extracted
from documents for each field and cached in a one-dimensional array structure
as DDB Cache. Since the length of each value (e.g., string data) differs, an aux-
iliary array (PTR) is additionally used in DDB Cache to point the start address
of field value of a specified document.

44 S. Morishima and H. Matsutani

Fig. 1. DDB Cache creation.

In DDB Cache, value and auxiliary arrays are created for each field. Although
Fig. 1 illustrates DDB Cache of only a single field, we can add DDB Cache for the
other fields. When a search query is performed, one or more pairs of value and
auxiliary arrays, which are corresponding to the field(s) specified in the query,
are transferred to GPU device memory and then a string search is performed
by the GPU device. Although a regular expression based string match query
was accelerated by a single GPU device with DDB Cache in [5], a horizontal
scalability to add or remove GPU devices dynamically was not considered though
the horizontal scalability is one of the most important properties of NOSQL.

To address the horizontal scalability issue, in this paper we propose Dist-
GPU Cache, in which a host and GPU devices are connected via a PCIe over
10 GbE. We employ NEC ExpEther [9] as a PCIe over 10 GbE technology. Using
ExpEther, PCIe packets for hardware resources (e.g., GPU devices) are trans-
ported in 10 GbE by encapsulating the packets into an Ethernet frame. Please
note that there are software services based on client-server model that provides
GPU computation to clients [3], while we employ a PCIe over 10 GbE technol-
ogy for connecting many GPU devices directly. In our case, pooled GPU devices
can be connected to the data store server machine via 10 GbE when necessary.
Thus, our proposed DistGPU Cache is well suited to recent trends on rack-scale
architecture and software-defined infrastructure.

3 DistGPU Cache and Its Partition Method

3.1 System Overview

DistGPU Cache is a distributed database cache stored in many remote GPU
devices. DistGPU Cache consists of certain-sized buckets, each of which is
processed by a GPU device. The detail about the buckets is described in the
following subsections.

Figure 2 shows an overview of the proposed system. It consists of two compo-
nents: (1) document-oriented data store and (2) DistGPU Cache distributed over

Distributed In-GPU Data Cache for Document-Oriented Data Store 45

Fig. 2. Overview of DistGPU Cache. Fig. 3. Photo of remote GPU devices connected
via 10 GbE.

remote GPU devices accessed via 10 GbE. We use MongoDB [2] as a document-
oriented data store in this paper and value fields of documents are cached in
remote GPU devices as DistGPU Cache. Figure 3 shows remote GPU devices
connected via a 10 GbE switch for DistGPU Cache. Remote GPU device is con-
nected to PCIe card via two 10 GbE cables (i.e., 20 Gbps) and the PCIe card is
mounted in the host machine where MongoDB and DistGPU Cache are working.

The following steps are performed for each query in the proposed system.

– For UPDATE query, new data are written to the original document-oriented
data store. Cached data in GPU device memory (i.e., DistGPU Cache) are
updated if necessary.

– For SEARCH query, if the target fields have been cached in DistGPU Cache,
the query is transferred to a corresponding GPU device to perform the doc-
ument search. The search result is returned to the client via the document-
oriented store.

– For SEARCH query, if the target fields have not been cached, the query is
performed by the document-oriented store and the result is returned to the
client.

3.2 Partitioning of Documents Values with Hash Function

Since DistGPU Cache is built by extracting values of a specific field of the doc-
uments, values in the DistGPU Cache are independent of each other. Thus, the
set of values in DistGPU Cache can be partitioned and stored into GPUs in
response to the number of GPU devices and their device memory capacity, in
order to perform a search query in parallel. For example, assuming two GPU
devices, the first half of the documents is stored in a GPU and the latter half is
stored in another GPU. However, such a simple document partitioning is ineffi-
cient, e.g., write operations are concentrated on a single partition that contains
the latest documents.

46 S. Morishima and H. Matsutani

Fig. 4. Relationship between blocks
and buckets using the hash function.

Fig. 5. Assignment of buckets to GPU
devices.

In this paper, we propose an efficient partitioning method that distributes
document values to multiple GPU devices by using a hash function. More specif-
ically, by the hash function, document values are distributed into small blocks
and they are distributed to GPU devices evenly so as to equalize their workload
and reduce the reconstruction overhead.

Using the proposed partitioning method, we can utilize the hash value as an
index to narrow down a search space and reduce the computation cost.

Typically, a collision resistance is required for hash functions. On the other
hand, we introduce a coarse-grain hash function that generates the same hashed
value for a range of consecutive values. Here we define “block” as a group of
values with the same hashed value. All the values in the same block are stored
into the same GPU device for search. Thus we can use such a hashed value
instead of a database index for search in order to narrow down the search range.

However, a block is not suitable to be used as a bucket directly, because the
number of values in each block (partitioned by the coarse-grain hash function)
may differ and the number of values stored in each bucket should be balanced
in order to distribute the workload of each bucket and thus improve the perfor-
mance. Instead of a single block, multiple blocks (with different sizes) are grouped
as a “bucket” so that sizes of buckets should be balanced. We also define “hashed
value range” as a set of hashed values of blocks grouped in the same bucket. One
or more buckets are assigned to a GPU device (the assignment is discussed in
Sect. 3.4). This approach tolerates collisions of hashed values. It also tolerates
unbalanced sizes of blocks (and thus non-uniform distribution of hashed values).
Thus, a simple hash function with a low computation overhead can be used. For
example, in our implementation, the first n characters of value strings are used
as hashed values. By varying n, the sizes of blocks can be controlled.

Figure 4 shows relationship between blocks and buckets using the hash func-
tion. We assume that values d1 to d14 are hashed and then hashed values ‘A’ to
‘E’ are generated for simplicity. Figure 4(a) shows the values in documents and
their corresponding hashed values. As shown, multiple values that have the same

Distributed In-GPU Data Cache for Document-Oriented Data Store 47

hashed value are grouped as a block. Figure 4(b) shows the hashed values and
their corresponding blocks. Since sizes of blocks differ, these blocks are packed
into buckets so that the number of values in each bucket should be balanced,
as shown in Fig. 4(c). In this example, blocks that have hashed values A or B
are grouped as bucket 1 and those have hashed values C, D, or E are grouped
as bucket 2. The sizes of buckets 1 and 2 are balanced. Blocks in a bucket are
independent with each other (i.e., blocks with different hashed values coexist
in a bucket). When we add a new value to DistGPU Cache, a hashed value of
the new value is computed and then the new value is stored into a bucket that
covers this hashed value. Although the sizes of buckets are currently balanced
in Fig. 4, the number of values in each bucket will change dynamically due to
write queries and thus their sizes will be unbalanced as time goes on. To handle
such dynamic growth of buckets, we need to update the hashed value range of
each bucket dynamically. In our design, the maximum number of values (or the
maximum total sizes of values) in each bucket is predefined and if the number
of values in a bucket exceeds the maximum number, the bucket is divided into
two buckets.

Algorithm 1 shows a pseudo code of the proposed bucket partitioning method,
assuming bucket A is divided into buckets A and B. If a bucket covers only a
single hashed value, the bucket cannot be partitioned (Line 6–8). In this case, a
finer hash function should be used instead. For example, when the hash function
uses the first n characters as a hashed value, we can increase n. The hash function
should be selected so that the number of values in each bucket does not exceed
the maximum number. In Line 9–11, a half of hashed value range of bucket A
is moved to bucket B. In Line 12–13, the number of values in each bucket is
recomputed based on the new hashed value range. Then values in bucket A are
moved to bucket B based on the new hashed value range.

Building a new DistGPU Cache or reconstructing an existing DistGPU Cache
is equivalent to newly-adding whole documents to an empty bucket. In other
words, first, HA is set to all the hashed values and xA is set to 0, then Algorithm 1
is repeated until buckets are partitioned so that their number of values does not
exceed the maximum value.

3.3 Toward Schema-Less Data Structure

In a document-oriented data store, each document may have different fields. For
example, a document has fields A and B, while another document may have only
field C. DistGPU Cache is required to support such a scheme-less data structure.

In MongoDB, all the documents must have id field as a primary key. Dist-
GPU Cache of id field is used as a primary key to refer to those of the other
fields. To do this, DistGPU Cache of id field needs two additional data for each
field: (1) bucket ID and (2) address inside the bucket where the field value is
stored. Thus, DistGPU Cache of id field has 2×N additional arrays, where N
is the number of fields, to record the bucket ID and address inside the bucket
where a corresponding field value is stored.

48 S. Morishima and H. Matsutani

Algorithm 1. Bucket partitioning
1: A ← Original bucket to be partitioned
2: B ← New bucket to be diverged
3: HA, HB ← Hashed value ranges for A and B
4: hA ← Actual hashed values included in A (hA ∈ HA)
5: xA, xB ← Numbers of hashed values in A and B
6: if xA = 1 then
7: Terminate //Bucket A cannot be partitioned any more
8: end if
9: for i = 1 to �xA/2� do

10: Move largest hashed value in hA to HB and delete it from HA

11: end for
12: xA ← �xA/2� //Number of hashed values of HA after partitioning
13: xB ← �xA/2� //Number of hashed values of HB after partitioning
14: Values are moved from A to B based on new HA

DistGPU Cache of the other fields has an additional array, in order to record
the bucket ID and address in the bucket where a corresponding id is stored.
In other words, these additional arrays record the relationship between id field
and the other fields in the same document. When a field value in a document
is accessed, another field value of the same document can be accessed by using
these additional arrays. Please note that DistGPU Cache may not cache all the
fields used in the documents. When a field value not cached in DistGPU Cache
is accessed, MongoDB is invoked by specifying id in order to retrieve all the
field values.

3.4 Assignment of Buckets to GPU Devices

To store buckets in GPU device memory as DistGPU Cache, we need to take
into account which buckets are stored to which GPU devices. In our design,
each bucket has a random integer number which is less than the number of GPU
devices (e.g., each bucket has 0, 1, or 2 as a random integer number when the
number of GPU devices is three). The buckets are assigned to GPU devices
based on their random integer numbers. If the number of buckets is huge, such
a random assignment of buckets to GPU devices can balance the workload of
GPU devices. When a new bucket is added, assignments of the other buckets to
GPU devices are not changed and only the new bucket is newly assigned to a
GPU device; thus the overhead to add new buckets is low.

Figure 5 shows an assignment of buckets to GPU devices. Seven buckets
(Fig. 5(a)) are assigned to three GPU devices, as shown in Fig. 5(b). Once a
bucket is assigned to GPU device, it resides in the same GPU device until Dist-
GPU Cache is reconstructed.

In DistGPU Cache, the number of GPU devices changes dynamically and the
bucket assignment also takes into account the number of GPU devices available.
When a new GPU device is added, b/G buckets in existing GPU devices are
randomly selected and moved to the new GPU device, where b is the number of

Distributed In-GPU Data Cache for Document-Oriented Data Store 49

total buckets and G is the number of total GPU devices. When an existing GPU
device is removed, a new random integer number (not the current number) is
generated for each bucket in the GPU device. Then buckets in the GPU device to
be removed are moved to the other GPU devices based on their random integer
number. When a GPU device is added or removed, a range of random integer
numbers for new buckets is updated.

3.5 GPU Processing for DistGPU Cache

We use NVIDIA GPU devices and CUDA (Compute Unified Device Architec-
ture) C development environment to implement GPU kernels.

Since in DistGPU Cache, documents are grouped as buckets and stored into
GPU devices, document search is performed in bucket basis. In our design, values
that generate the same hashed value are grouped as a block in a bucket; thus
some search queries may scan only a limited bucket or GPU device memory. For
example, a perfect or prefix search query for string values scans only a bucket
or GPU device memory. On the other hand, regular expression search without
any prefix cannot limit the search space and thus scans all the DistGPU Cache.

We implemented a DFA-based regular expression search kernel similar to [10]
using CUDA. When a search space is limited to a single block, the CUDA kernel
is executed only once. Otherwise, the CUDA kernel is executed for each bucket
in the search space. In this case, since buckets are independent with each other,
the CUDA kernels for different buckets are executed in asynchronous manner.
We can thus hide the CPU-GPU data transfer overhead since the data transfer
to/from GPU devices and computation in GPU devices can be overlapped.

4 Evaluations

4.1 Evaluation Environment

MongoDB and our DistGPU Cache are operated in the same machine. CPU
of the host machine is Intel Xeon E5-2637v3 running at 3.5 GHz and memory
capacity is 128 GB. Up to three NVIDIA GeForce GTX980 GPUs, each of which
has a 4 GB device memory, are used for DistGPU Cache. We use MongoDB ver-
sion 2.6.6 and CUDA version 6.0. For DistGPU Cache, the experiment system
shown in Fig. 3 except that remote GPU devices are directly connected to the
host without L2 switch for simplicity. For comparison, we evaluate the perfor-
mance when the GPU devices are directly attached to the host machine via PCIe
Gen3 x16.

4.2 Performance with Different Bucket Sizes

Here we evaluate the performance of DistGPU Cache when the bucket size varies.
We measured the throughputs of a perfect string match query that scans only a
single bucket and a regular expression based string match query that scans all

50 S. Morishima and H. Matsutani

Fig. 6. Perfect string match query per-
formance vs. bucket sizes.

Fig. 7. Regular expression based string
match query performance vs. bucket
sizes.

the buckets in DistGPU Cache. In addition, we measured the query execution
time when the number of GPU devices varies in order to evaluate the dynamic
join/leave of GPU devices vs. the bucket sizes. The number of documents in our
experiments is ten million.

For the perfect string match query, ten million documents each of which
has two fields, id field and a randomly-generated 8-character string field, are
generated and the perfect string match query is performed for the string field.
The regular expression based string match query is also performed for the above-
mentioned ten million documents.

Figure 6 shows the perfect string match query performance of DistGPU Cache
when the number of GPU devices is varied from one to three and the maximum
bucket size is varied from 1 × 210 to 512 × 210. The throughput is represented
as rps (request per second). Since a perfect string match query scans only a
single bucket, the size of search space is proportional to the bucket size. Please
note that when the bucket size is smaller than a certain threshold, the GPU
parallelism cannot be fully utilized and thus the throughput becomes constant.
As shown, when the maximum bucket size is larger than 128× 210 or 256× 210,
the throughput decreases.

Figure 7 shows the regular expression based string match query performance
of DistGPU Cache. Since a regular expression based string match query scans
all the buckets, the search space is constant regardless of bucket size. When the
bucket size is small, since more CUDA kernels for smaller buckets are executed,
the number of CUDA kernel invocations and the data transfer overhead between
host and GPU devices are increased, resulting in a lower throughput. As shown,
the throughput is increased until the maximum bucket size is enlarged to 128×
210. The throughput is significantly decreased when the maximum bucket size is
512 × 210 especially when the number of GPU devices is three. This is because,
as the maximum bucket size is enlarged, the number of buckets is decreased, the
workload cannot be divided into the three GPU devices evenly.

Figure 8 shows the execution times when the GPU devices are dynamically
added or removed. The number of GPU devices are increased from one to two
and decreased from two to one. In both the cases, as the maximum bucket

Distributed In-GPU Data Cache for Document-Oriented Data Store 51

Fig. 8. Execution time when GPU
devices are added or removed dynami-
cally.

Fig. 9. Perfect string match perfor-
mance when GPU devices are local and
remote.

size is enlarged, the execution time is decreased. This is because, as the bucket
size is enlarged, the number of buckets is decreased and the number of memory
allocations and data transfer between host and GPU devices are decreased. When
we compare both the cases (i.e., adding and removing GPU), the execution time
of the latter case is shorter than that of the first case. This is because, when the
GPU device is added, a device memory is allocated in the new GPU device and
then a part of existing data are transferred to the new GPU device.

In summary, the performance is not degraded in both the perfect and regular
expression based string match queries when the maximum bucket size is 128 ×
210. Since this bucket size is proper in this evaluation environment, we use this
parameter in the following experiments.

4.3 Performance with Local and Remote GPUs

In DistGPU Cache, we assume that GPU devices are connected to the host
machine via 10 GbE (in our design, two STP+ cables are used for each GPU
device, resulting in 20 Gbps). Of course it is possible to directly mount the GPU
devices to the host machine via PCIe Gen3 x16, but the number of such local
GPU devices mounted will be limited by the motherboard or chassis. Here we
measured the performance when the GPU devices are directly attached to the
host machine via PCIe Gen3 x16, in order to show the performance overhead
due to the “remote” GPU devices.

The perfect string match and regular expression based string match queries
are performed for local and remote GPU devices. Although these queries and
documents are the same as those in Sect. 4.2, the number of documents are varied
from one hundred thousand to one hundred million.

Figure 9 shows the perfect string match query throughputs for local and
remote GPU devices when the number of GPU devices is one and three. When
the number of documents is quite small, the number of buckets is also small and
buckets cannot be distributed to GPU devices evenly; thus the throughput of
3GPU case is decreased when the number of documents is small. The throughput
of the local GPU case is always better than that of remote GPU case. However, in
the remote GPU case, the throughput increases in a higher rate compared to the

52 S. Morishima and H. Matsutani

Fig. 10. Regular expression based
string match performance when GPU
devices are local and remote.

Fig. 11. Perfect string match perfor-
mance of DistGPU Cache and original
MongoDB.

local GPU case. Actually, when the number of documents is one hundred million,
the throughput improvement from 1GPU to 3GPU is 2.14x for the remote GPU
case, while it is only 1.73x for the local GPU case. The local GPU performance
is better than the remote GPU case by 1.20x when the number of documents is
one hundred million and the number of GPU devices is three; thus performance
degradation of remote GPU case is not significant by taking into account the
scalability benefits.

Figure 10 shows the regular expression based string match query throughputs
for local and remote GPU devices. In the graph, the throughput (Y-axis) is
represented as a logarithmic scale. As the number of documents is increased,
the computation cost is proportionally increased and thus the throughput is
degraded. However, the performance degradation is relatively slow, since the
CUDA kernels are executed in parallel. The local GPU performance is better
than the remote GPU case by only 1.08x when the number of documents is one
hundred million and the number of GPU devices is three; thus the performance
degradation of the remote GPU case is quite small.

Regarding the latency, the execution times to deal with the perfect matching
query are 0.30 ms and 0.22 ms for local and remote GPU cases respectively, when
the numbers of documents and GPU devices are one hundred million and three
respectively. Their latencies are almost constant regardless of the number of
GPU devices because we can narrow down the search space only to a single
bucket stored in a single GPU device. Those of the regular expression matching
query are 44.0 ms and 40.9 ms for local and remote GPU cases respectively, and
the latencies are decreased as the number of GPU devices increases.

4.4 Performance Comparison with MongoDB

Here we compare the proposed DistGPU Cache using three remote GPU devices
with the original MongoDB in terms of throughput using the same queries and
documents as in Sect. 4.3. For MongoDB, B+tree index is used to improve the
search performance of the perfect string match query, while any index is not used
for the regular expression based search query since a simple indexing cannot be
used for the regular expression based search query. In addition to the search

Distributed In-GPU Data Cache for Document-Oriented Data Store 53

Fig. 12. Regular expression based
string match performance of DistGPU
Cache and original MongoDB.

Fig. 13. Write query performance of
DistGPU Cache and original Mon-
goDB.

query performance, the write throughput is measured in both the cases: DistGPU
Cache and MongoDB with indexes. MongoDB is operated on a memory file
system (i.e., tmpfs) for fair comparisons.

Figure 11 shows the perfect string match query throughputs of DistGPU
Cache and the original MongoDB. Comparison between DistGPU Cache and
MongoDB shows that the DistGPU Cache outperforms MongoDB even if the
number of documents is small. When the number of documents is one hundred
million, DistGPU Cache outperforms MongoDB by 2.79x.

Figure 12 shows the regular expression based string match query throughputs
of DistGPU Cache and the original MongoDB. In the case of DistGPU Cache, the
throughput degradation is suppressed especially when the number of documents
is large. As a result, when the number of documents is one hundred million,
DistGPU Cache outperforms the original MongoDB by 640.8x.

Regarding the latency, the execution times to deal with the perfect match-
ing query are 0.30 ms and 0.071 ms for the DistGPU Cache and the original
MongoDB cases respectively. On the other hand, those of the regular expres-
sion matching query are 44.0 ms and 28198.8 ms for the DistGPU Cache and the
original MongoDB cases respectively as the regular expression matching query
is quite compute intensive.

Figure 13 shows write query throughputs of DistGPU Cache and the original
MongoDB. B+tree database indexes are used in the original MongoDB case.
In this experiment, write queries that add new documents are performed on
both the data stores (i.e., DistGPU Cache and the original MongoDB) where
ten million documents have been already stored. Here, each document has id
field and five string fields filled with randomly-generated eight characters. As
shown in Fig. 13, the write throughput of the original MongoDB is degraded as
the number of indexed fields increases, while the write throughput of DistGPU
Cache is almost constant even when the number of cached fields in DistGPU
Cache increases.

54 S. Morishima and H. Matsutani

5 Summary

In this paper, we proposed DistGPU Cache, in which a host and GPU devices
are connected via PCIe over 10 GbE so that GPU devices that cache and process
a document-oriented data store can be added and removed dynamically. We also
proposed a bucket partitioning method that distributes ranges of documents to
GPU devices based on a hash function. The buckets of DistGPU Cache can be
dynamically divided and merged when the GPU devices are added and removed,
respectively.

In the evaluations, we compared local and remote GPU devices on DistGPU
Cache in terms of regular expression match query throughput. We also com-
pared the DistGPU Cache with remote GPU devices and the original document-
oriented data store in terms of performance. We showed that although the local
GPUs case outperforms the remote GPUs case by 1.08x, the remote overhead
is quite small and can be compensated by a high horizontal scalability to add
more GPU devices via a network. We also showed that DistGPU Cache with
GPU devices significantly outperforms the original data store.

Acknowledgements. This work was partially supported by Grant-in-Aid for JSPS
Research Fellow. H. Matsutani was supported in part by JST PRESTO.

References

1. Apache Couch DB. http://couchdb.apache.org
2. MongoDB. http://www.mongodb.org
3. Duato, J., Pena, A., Silla, F., Mayo, R., Quintana-Orti, E.: rCUDA: reducing the

number of GPU-based accelerators in high performance clusters. In: Proceedings
of the International Conference on High Performance Computing and Simulation
(HPCS 2010), pp. 224–231, June 2010

4. Morishima, S., Matsutani, H.: Performance evaluations of graph database using
CUDA and OpenMP-compatible libraries. ACM SIGARCH Comput. Archit. News
42(4), 75–80 (2014)

5. Morishima, S., Matsutani, H.: Performance evaluations of document-oriented data-
bases using GPU and cache structure. In: Proceedings of International Symposium
on Parallel and Distributed Processing with Applications, pp. 108–115, August
2015

6. Naghmouchi, J., Scarpazza, D.P., BereKovic, M.: Small-ruleset regular expression
matching on GPGPUs: quantitative performance analysis and optimization. In:
Proceedings of the International Conference on Supercomputing (ICS 2010), pp.
337–348, June 2010

7. Shukla, D., et al.: Schema-agnostic indexing with Azure DocumentDB. In: Pro-
ceedings of the International Conference on Very Large Data Bases (VLDB 2015),
pp. 1668–1679, August 2015

8. Sitaridi, E.A., Ross, K.A.: GPU-accelerated string matching for database applica-
tions. VLDB J. 1–22 (2015)

9. Suzuki, J.,Hidaka,Y.,Higuchi, J.,Yoshikawa,T., Iwata,A.:ExpressEther -Ethernet-
basedvirtualizationtechnologyforreconfigurablehardwareplatform.In:Proceedings
of International Symposium on High-Performance Interconnects, pp. 45–51, August
2006

http://couchdb.apache.org
http://www.mongodb.org

Distributed In-GPU Data Cache for Document-Oriented Data Store 55

10. Vasiliadis, G., Polychronakis, M., Ioannidis, S.: Parallelization and characterization
of pattern matching using GPUs. In: Proceedings of the International Symposium
on Workload Characterization (IISWC 2011), pp. 216–225, November 2011

11. Zu, Y., Yang, M., Xu, Z., Wang, L., Tian, X., Peng, K., Dong, Q.: GPU-based NFA
implementation formemory efficient high speed regular expressionmatching. In:Pro-
ceedingsoftheACMSIGPLANSymposiumonPrinciplesandPracticeofParallelPro-
gramming (PPoPP 2012), pp. 129–140, February 2012

Resource Aggregation for Task-Based Cholesky
Factorization on Top of Heterogeneous Machines

T. Cojean1(B), A. Guermouche1, A. Hugo2, R. Namyst1, and P.A. Wacrenier1

1 INRIA, LaBRI, University of Bordeaux, Talence, France
{terry.cojean,abdou.guermouche,raymond.namyst,pierre-andre.wacrenier}@inria.fr

2 University of Uppsala, Uppsala, Sweden
andra.hugo@it.uu.se

Abstract. Hybrid computing platforms are now commonplace, featur-
ing a large number of CPU cores and accelerators. This trend makes
balancing computations between these heterogeneous resources perfor-
mance critical. In this paper we propose aggregating several CPU cores
in order to execute larger parallel tasks and thus improve the load balance
between CPUs and accelerators. Additionally, we present our approach
to exploit internal parallelism within tasks. This is done by combining
two runtime systems: one runtime system to handle the task graph and
another one to manage the internal parallelism. We demonstrate the rele-
vance of our approach in the context of the dense Cholesky factorization
kernel implemented on top of the StarPU task-based runtime system.
We present experimental results showing that our solution outperforms
state of the art implementations.

Keywords: Multicore · Accelerator · GPU · Heterogeneous computing ·
Task DAG · Runtime system · Dense linear algebra · Cholesky

1 Introduction

Due to recent evolution of High Performance Computing architectures toward
massively parallel heterogeneous multicore machines, many research efforts have
been devoted to the design of runtime systems able to provide programmers with
portable techniques and tools to exploit such hardware complexity. The avail-
ability of mature implementations of task based runtime systems (e.g. OpenMP
or Intel TBB for multicore machines, PaRSEC [6], Charm++ [12], KAAPI [9],
StarPU [4] or StarSs [5] for heterogeneous configurations) has allowed program-
mers to rely on dynamic schedulers and develop powerful implementations of
parallel libraries (e.g. Intel MKL1, DPLASMA [7]).

However one of the main issues encountered when trying to exploit both
CPUs and accelerators is that these devices have very different characteristics

This work is supported by the French National Research Agency (ANR), under the
grant ANR-13-MONU-0007.

1 https://software.intel.com/en-us/intel-mkl.

c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 56–68, 2017.
DOI: 10.1007/978-3-319-58943-5 5

https://software.intel.com/en-us/intel-mkl

Resource Aggregation for Task-Based Cholesky Factorization 57

and requirements. Indeed, GPUs typically exhibit better performance when exe-
cuting kernels applied to large data sets, which we call coarse grain kernels (or
tasks) in the remainder of the paper. On the contrary, regular CPU cores typi-
cally reach their peak performance with fine grain kernels working on a reduced
memory footprint.

To work around this granularity problem, task-based applications running on
such heterogeneous platforms typically adopt a medium granularity, chosen as a
trade-off between coarse-grain and fine-grain kernels. A small granularity would
indeed lead to poor performance on the GPU side, whereas large kernel sizes may
lead to an under-utilization of CPU cores because (1) the amount of parallelism
(i.e. task graph width) decreases when kernel size increases and (2) the efficiency
of GPU increases while a large memory footprint may penalize CPU cache hit
ratio. This trade-off technique is typically used by dense linear algebra hybrid
libraries [2,7,14]. The main reason for using a unique task granularity in the
application lies in the complexity of the algorithms dealing with heterogeneous
task granularities even for very regular applications like dense linear libraries.
However some recent approaches relax this constraint and are able to split coarse-
grain tasks at run time to generate fine-grain tasks for CPUs [17].

The approach we propose in this paper to tackle the granularity problem is
based on resource aggregation: instead of dynamically splitting tasks, we rather
aggregate resources to process coarse grain tasks in a parallel manner on the
critical resource, the CPU. To deal with Direct Acyclic Graphs (DAGs) of parallel
tasks, we have enhanced the StarPU [4,10] runtime system to cope with parallel
tasks, the implementation of which relies on another parallel runtime system
(e.g. OpenMP). This approach allows us to delegate the division of the kernel
between resources to a specialized library. We illustrate how state of the art
scheduling heuristics are upgraded to deal with parallel tasks. Although our
scheme is able to handle arbitrary clusters, we evaluate our solution with fixed-
size ones. We show that using our solution for a dense Cholesky factorization
kernel outperforms state of the art implementations to reach a peak performance
of 4.6 Tflop/s on a platform equipped with 24 CPU cores and 4 GPU devices.

2 Related Work

A number of research efforts have recently been focusing on redesigning
HPC applications to use dynamic runtime systems. The dense linear algebra
community has massively adopted this modular approach over the past few
years [2,7,14] and delivered production-quality software relying on it. For exam-
ple, the MAGMA library [2], provides Linear Algebra algorithms over heterogeneous
hardware and can optionally use the StarPU runtime system to perform dynamic
scheduling between CPUs and GPUs, illustrating the trend toward delegating
scheduling to the underlying runtime system. Moreover, such libraries often
exhibit state-of-the-art performance, resulting from heavy tuning and strong
optimization efforts. However, these approaches require that accelerators process
a large share of the total workload to ensure a fair load balancing between

58 T. Cojean et al.

resources. Additionally, all these approaches rely on an uniform tile size, conse-
quently, all tasks have the same granularity independently from where they are
executed leading to a loss of efficiency of both the CPUs and the accelerators.

Recent attempts have been made to resolve the granularity issue between reg-
ular CPUs and accelerators in the specific context of dense linear algebra. Most
of these efforts rely on heterogeneous tile sizes [15] which may involve extra mem-
ory copies when split data need to be coalesced again [11]. However the decision
to split a task is mainly made statically at submission time. More recently, a
more dynamic approach has been proposed in [17] where coarse grain tasks are
hierarchically split at runtime when they are executed on CPUs. Although this
paper successes at tackling the granularity problem, the proposed solution is
specific to linear algebra kernels. In the context of this paper, we tackle the
granularity problem with the opposite point of view and a more general app-
roach: rather than splitting coarse grained tasks, we aggregate computing units
which cooperate to process the task in parallel. By doing so, our runtime system
does not only support sequential tasks but also parallel ones.

However, calling simultaneously several parallel procedures is difficult
because usually they are not aware of the resource utilization of one another
and may oversubscribe threads to the processing units. This issue has been first
tackled within the Lithe framework [13] a resource sharing management inter-
face that defines how threads are transferred between parallel libraries within
an application. This contribution suffered from the fact that it does not allow
to dynamically change the number of resources associated with a parallel ker-
nel. Our contribution in this study is a generalization of a previous work [10],
where we introduced the so-called scheduling contexts which aim at structuring
the parallelism for complex applications. Actually, our runtime system is able
to cope with several flavors of inner parallelism (OpenMP, Pthreads, StarPU)
simultaneously. In this paper, we showcase the use of OpenMP to manage inter-
nal task parallelism.

3 Background

We integrate our solution to the StarPU runtime system as it provides a flexi-
ble platform to deal with heterogeneous architectures. StarPU [4] is a C library
providing a portable interface for scheduling dynamic graphs of tasks onto a
heterogeneous set of processing units called workers in StarPU (i.e. CPUs and
GPUs). The two basic principles of StarPU are firstly that tasks can have sev-
eral implementations, for some or each of the various heterogeneous processing
units available in the machine, and secondly that necessary data transfers to
these processing units are handled transparently by the runtime system. StarPU
tasks are defined as multi-version kernels, gathering the different implementa-
tions available for CPUs and GPUs, associated to a set of input/output data.
To avoid unnecessary data transfers, StarPU allows multiple copies of the same
registered data to reside at the same time in different memory locations as long
as it is not modified. Asynchronous data prefetching is also used to hide memory
latencies allowing to overlap memory transfers with computations when possible.

Resource Aggregation for Task-Based Cholesky Factorization 59

StarPU is a platform for developing, tuning and experimenting with various
task scheduling policies in a portable way. Several built-in schedulers are avail-
able, ranging from greedy and work-stealing based policies to more elaborated
schedulers implementing variants of the Minimum Completion Time (MCT) pol-
icy [16]. This latter family of schedulers is based on auto-tuned history-based
performance models that provide estimations of the expected lengths of tasks
and data transfers. The performance model of StarPU also supports the use of
regressions to cope with dynamic granularities.

4 A Runtime Solution to Deal with Nested Parallelism

We introduce a set of mechanisms which aim at managing nested parallelism
(i.e. task inner parallelism) within the StarPU runtime system. We consider the
general case where a parallel task may be implemented on top of any runtime
system. We present in Fig. 1a the standard architecture of a task-based runtime
system where the task-graph is provided to the runtime and the ready tasks
(in purple) are dynamically scheduled on queues associated with the underlying
computing resources. We propose a more flexible scheme where tasks may feature
internal parallelism implemented using any other runtime system. This idea is
represented in Fig. 1b where multiple CPU devices are grouped to form virtual
resources which will be referred to as clusters: in this example, each cluster
contains 3 CPU cores. We will refer to the main runtime system as the external
runtime system while the runtime system used to implement parallel tasks will
be denoted as the inner runtime system. The main challenges regarding this
architecture are: (1) how to constrain the inner runtime system’s execution to
the selected set of resources, (2) how to extend the existing scheduling strategies
to this new type of computing resources, and (3) how to define the number of
clusters and their corresponding resources. In this paper, we focus on the first
two problems since the latter is strongly related to online moldable/malleable
task scheduling problems which are out of the scope of this paper.

Firstly, we need to aggregate cores into a cluster. This is done thanks to a
simple programming interface which allows to group cores in a compact way
with respect to memory hierarchy. In practice, we rely on the hwloc frame-
work [8], which provides the hardware topology, to build clusters containing
every computing resource under a given level of the memory hierarchy (e.g.
Socket, NUMA node, L2 cache, . . .). Secondly, forcing a parallel task to run on
the set of resources corresponding to a cluster depends on whether or not the
inner runtime system has its own pool of threads. On the one hand, if the inner
runtime system offers a multithreaded interface, that is to say the execution of
the parallel task requires a call that has to be done by each thread, the inner
runtime system can directly use the StarPU workers assigned to the cluster. We
show in Fig. 2a how we manage internal SPMD runtime systems. In this case,
the parallel task is inserted in the local queue of each StarPU worker. On the
other hand, if the inner runtime system features its own pool of threads (e.g. as
most OpenMP implementations), StarPU workers corresponding to the cluster

60 T. Cojean et al.

need to be paused until the end of the parallel task. This is done to avoid over-
subscribing threads over the underlying resources. We describe in Fig. 2b how
the interaction is managed. We allow only one StarPU worker to keep running.
This latter called the master worker of the cluster, is in charge of popping the
tasks assigned to the cluster by the scheduler. When tasks have to be executed,
the master worker takes the role of a regular application thread with respect
to the inner runtime system. In Fig. 2b, the black threads represent the StarPU
workers and the pink ones the inner runtime system (e.g. OpenMP) threads. The
master worker joins the team of inner threads while the other StarPU threads
are paused.

(a) Sequential tasks only. (b) Parallel tasks support.

Fig. 1. Managing internal parallelism within StarPU.

Depending on the inner scheduling engine, the set of computing resources
assigned to a cluster may be dynamically adjusted during the execution of a
parallel task. This obviously requires the inner scheduler (resp. runtime system)
to be able to support such an operation. For instance, parallel kernels imple-
mented on top of runtime systems like OpenMP will not allow removing a com-
puting resource during the execution of the parallel task. In this case we refer to
the corresponding parallel task as a moldable one and we consider resizing the
corresponding cluster only at the end of the task or before starting a new one.

From a practical point of view, we integrate in a callback function the specific
code required to force the inner runtime to run on the selected set of resources.
This prologue is transparently triggered before starting executing any sequence
of parallel tasks. We call this callback the prologue callback. This approach can
be used for most inner runtime systems as the programmer can provide the
implementation of the prologue callback and thus use the necessary functions in
order to provide the resource allocation required for the corresponding cluster.
Such a runtime should however respect certain properties: be able to be executed
on a restricted set of resources and allow the privatization of its global and static
variables. From the user point of view, provided that he has parallel implemen-
tation of his kernels, using clusters in his application is straightforward: he needs

Resource Aggregation for Task-Based Cholesky Factorization 61

to implement the callback and create clusters. In the experimental section, we
use this approach to force the MKL library, which relies on OpenMP, to run on
the set of resources corresponding to the clusters.

(a) multi-
threaded.

(b) OpenMP-
like.

Fig. 2. Management of the pool of
threads within a cluster.

(a) MCT. (b) cluster-
MCT.

Fig. 3. Adaptation of the MCT schedul-
ing strategy.

4.1 Adapting MCT and Performance Models for Parallel Tasks

As presented in Sect. 3, MCT is a scheduling policy implemented in StarPU. The
task’s estimated length and transfer time used for MCT decisions is computed
using performance prediction models. These models are based on performance
history tables dynamically built during the application execution. It is then pos-
sible for the runtime system to predict for each task the worker which completes it
at the earliest. Therefore, even without the programmer’s involvement, the run-
time can provide a relatively accurate performance estimation of the expected
requirements of the tasks allowing the scheduler to take appropriate decisions
when assigning tasks to computing resources.

As an illustration, we provide in Fig. 3a an example showing the behavior of
the MCT strategy. In this example, the blue task represents the one the scheduler
is trying to assign. This task has different length on CPU and GPU devices. The
choice is then made to schedule it on the CPU0 which completes it first. We
have adapted the MCT strategy and the underlying performance models to be
able to select a pool of CPUs when looking for a computing resource to execute
a task. We have thus introduced a new type of resource: the cluster of CPUs.
The associated performance model is parametrized not only by the size and
type of the task together with the candidate resource but also by the number
of CPUs forming the cluster. Thus, tasks can be assigned to a cluster either
explicitly by the user or by the policy depending on where it would finish first.
This is illustrated in Fig. 3b, where the three CPUs composing our platform are
grouped in a cluster. We can see that the expected length of the parallel task on
the cluster is used to choose the resource having the minimum completion time
for the task. Note that in this scenario, we chose to illustrate a cluster with an
OpenMP-like internal runtime system.

This approach permits to deal with a heterogeneous architecture made of
different types of processing units as well as clusters grouping different sets of

62 T. Cojean et al.

processing units. Therefore, our approach is able to deal with multiple clusters
sizes simultaneously with clusters of one CPU core and take appropriate deci-
sions. Actually, it is helpful to think of the clusters as mini-accelerators. In this
work, we let the user define sets of such clusters (mini-accelerators) and schedule
tasks dynamically on top of them.

5 Experimental Results

For our evaluation, we use the Cholesky factorization of Chameleon [1], a dense
linear algebra library for heterogeneous platforms based on the StarPU runtime
system. Similarly to most task-based linear algebra libraries, Chameleon relies
on optimized kernels from a BLAS library. Our adaptation of Chameleon does
not change the high level task-based algorithms and subsequent DAG. We sim-
ply extend the prologue of each task to allow the use of an OpenMP implemen-
tation of MKL inside the clusters and manage the creation of clusters. We call
pt-Chameleon this adapted version of Chameleon that handles parallel tasks. The
machine we use is heterogeneous and composed of two 12-cores Intel Xeon CPU
E5-2680 v3 (@2.5 GHz equipped with 30 MB of cache each) and enhanced with
four NVidia K40m GPUs. In StarPU one core is dedicated to each GPU, con-
sequently we report on all figures performance with 20 cores for the Chameleon
and pt-Chameleon versions. We used a configuration for pt-Chameleon composed
of 2 clusters aggregating 10 cores each (noted 2 × 10), so that the 10 cores of a
CPU belong to a single cluster. In comparison, Chameleon uses 20 sequential CPU
cores on this platform. Finally, we show on all figures the average performance and
observed variation over 5 runs on square matrices.

Table 1. Acceleration factor of Cholesky factorization kernels on a GPU and 10 cores
compared to one core with tile size 960 and 1920.

dpotrf dtrsm dsyrk dgemm

960 1920 960 1920 960 1920 960 1920

1 core (Gflop/s) 27.78 31.11 34.42 34.96 31.52 32.93 36.46 37.27

GPU/1 core 1.72 5.95 8.72 18.59 26.96 31.73 28.80 30.86

10 cores/1 core 5.55 7.48 6.75 8.48 6.90 8.63 7.77 8.56

We report in Table 1 the acceleration factors of using 10 cores or one GPU
compared to the single core performance for each kernel of the Cholesky factor-
ization. We conduct our evaluation using MKL for the CPUs and CuBLAS (resp.
MAGMA) for the GPUs. This table highlights a sublinear scalability of using 10
cores compared to using 1 core. For example on our best kernel dgemm we accel-
erate the execution by a factor of 7.77 when using 10 cores and this increases to
8.56 with a tile size of 1920. Despite this, we can see that relying on sequential
kernels worsens the performance gap between the CPUs and GPUs while relying

Resource Aggregation for Task-Based Cholesky Factorization 63

on clusters makes the set of computing resources more homogeneous. We can
obtain an acceleration factor of GPU against CPUs by dividing the second line
by the third one. For example, the performance gap for the dgemm kernel with
a tile size of 960 is � 29 when using 1 core compared to a GPU whereas it is
28.80/7.77 � 3.7 when using 10 cores compared to a GPU. As a consequence,
if 28 independent dgemm of size 960 are submitted on computer of 10 cores
and a GPU, the Chameleon scheduler assigns all the tasks to the GPU whereas
pt-Chameleon assigns 6 tasks to the 10 core cluster and 22 tasks to GPUs.
Another important aspect which can compensate some loss in efficiency is the
pt-Chameleon ability to accelerate the critical path. Indeed, a cluster of 10 cores
can execute the dpotrf kernel on a tile size of 960 three times faster than on a
GPU. The performance is also almost the same for the dtrsm task.

Tile: 960 Tile: 1920

0

200

400

600

800

1000

1200

1400

1600

1800

5K 15K 25K 35K 45K 5K 15K 25K 35K 45K
Matrix size

G
Fl

op
/s

Type Chameleon pt−Chameleon Bound Bound Real

Fig. 4. Comparison of the pt-Chameleon and Chameleon Cholesky factorization with
computed bounds. 20 CPUs and 1 GPU are used.

We show in Fig. 4 the performance of the Cholesky factorization for both
Chameleon and pt-Chameleon with multiple tile sizes and their computed make-
span theoretical lower bounds. These bounds are computed thanks to the itera-
tive bound technique introduced in [3] which iteratively adds new critical paths
until all are taken into account. As these bounds do not take communications
with GPU devices into account, they are clearly unreachable in practice. These
bounds show that pt-Chameleon can theoretically obtain better performance
than Chameleon on small to medium sized matrices. Indeed, the CPUs are under-
utilized in the sequential tasks case due to a lack of parallelism whereas using
clusters lowers the amount of tasks required to feed the CPU cores. The 5 K
matrix order point shows a difference of performance of 600 Gflop/s, this is
close to the obtainable performance on these CPUs. For both tile sizes on large
matrices (e.g. 40K), the Chameleon bound is over the pt-Chameleon one. This is
due to the better efficiency of the sequential kernels since the parallel kernels do

64 T. Cojean et al.

not exhibit perfect scalability, allowing the CPUs to achieve better performance
per core in the sequential case. We observe that for a coarser kernel grain of
1920, the maximum achievable performance is higher, mainly thanks to a better
kernel efficiency on GPUs with this size. For dgemm kernel we can gain close
to 100 Gflop/s (or 10%). We can also note that the gap between Chameleon
and pt-Chameleon bound decreases slightly as we increase the tile size to 1920
thanks to a relatively better gain in efficiency per core compared to the sequen-
tial one. Additionally, the real executions are underneath the theoretical bounds.
This is due to the fact that transfer time is not taken into account in the bounds.
Moreover, the online MCT scheduler can exaggeratedly favor GPUs because of
their huge performance bonus in the Chameleon case as was shown in [3]. Finally,
this figure highlights a constantly superior performance of pt-Chameleon over
Chameleon which achieves up to 65% better performance on a matrix size of
11 K for the 960 tile size case and up to 100% better performance on matrices
lower than 10K. On those matrix sizes, real pt-Chameleon execution is able to
go over the theoretical bound of Chameleon which demonstrates the superiority
of our approach.

NGPUs: 1 NGPUs: 2 NGPUs: 3 NGPUs: 4

0
500

1000
1500
2000
2500
3000
3500
4000
4500

0
500

1000
1500
2000
2500
3000
3500
4000
4500

Tile_S
ize: 960

Tile_S
ize: 1920

5K 15K 25K 35K 45K 5K 15K 25K 35K 45K 5K 15K 25K 35K 45K 5K 15K 25K 35K 45K
Matrix size

G
Fl

op
/s

Type Chameleon pt−Chameleon

Fig. 5. Performance of the Cholesky factorization with pt-Chameleon and Chameleon

with varying number of GPUs and task granularity.

We report in Fig. 5 the performance behavior of our implementation of the
Cholesky factorization using the pt-Chameleon framework, compared to the
existing Chameleon library. When looking at medium sized matrices we observe
that pt-Chameleon is able to achieve significantly higher performance than
Chameleon across all test cases. On those matrices, the Chameleon library has
some performance variability. This is mainly due to bad scheduling decisions

Resource Aggregation for Task-Based Cholesky Factorization 65

regarding tasks on the critical path in Chameleon. Indeed, if an important task
is wrongly scheduled on a CPU such as a dpotrf, we may lack parallelism for
a significant period of time. Whereas in the pt-Chameleon case using paral-
lel tasks even accelerates the critical path due to a better kernel performance,
which makes the approach less sensitive to bad scheduling decisions, lowering
pt-Chameleon’s variance. Both Chameleon and pt-Chameleon showcase a good
scalability when increasing the number of GPUs. For example the peak for 1 GPU
with a tile size of 960 is at 1.6 Tflop/s and for 2 GPUs it goes up to 2.6 Tflop/s.
This improvement is as expected since 1 Tflop/s is the performance of a GPU
on this platform with the dgemm kernel. Chameleon scales slightly less than
pt-Chameleon with a coarse task grain size of 1920. The gap between the two
versions increases when increasing the number of GPUs. As shown previously,
the scheduler can schedule too many tasks on the GPUs leading to a CPU under-
utilization with such a high factor of heterogeneity.

Another factor is the cache behavior of both implementations. Indeed, each
processor benefits of 30MB cache and by using one cluster per processor instead
of 10 independent processing units we lower by 10 the working set size. Since
a tile of 960 weights 7MB whereas a tile of 1920 weights 28MB we are even
able to fit entirely a 1920 tile in the LLC. This highlights another constraint:
the memory contention bottleneck. We had to explicitly use the numactl tool
to allocate pages in a round robin fashion on all 4 NUMA nodes, otherwise
the behavior of Chameleon was very irregular. In fact, even with the interleave
setting, we observed that some compute intensive kernels such as dgemm could
become more memory bound for the Chameleon case with a matrix size of 43K.
To investigate this issue we conducted an experiment using Intel VTune where
we allocated the complete matrix on one NUMA node thanks to the numactl
tool. We saw that for Chameleon 59% of the dgemm kernels were bounded by
memory, whereas for pt-Chameleon only 13% were bounded by memory. We
also observed over two times less cache misses on our pt-Chameleon version.

Finally, in Fig. 6 we compare pt-Chameleon to multiple dense linear algebra
reference libraries: MAGMA, Chameleon and DPLASMA using the hierarchical gran-
ularity scheme presented in [17]. We make use of a constrained version (2 × 10c)
where the dpotrf and dtrsm tasks are restricted to CPU workers. On this
figure, the MAGMA and DPLASMA versions use the 24 CPU cores. This strategy is
comparable to what is done in [17] where only dgemm kernels are executed on
GPU devices. We observe that using the regular MCT scheduler for small matri-
ces leads to better performance since in the constrained version the amount
of work done by CPUs is too large. However, when we increase the matrix
size, the constrained version starts to be efficient and leads to a 5% increase
in performance on average, achieving a peak of 4.6 Tflop/s on our test platform.
the MAGMA performance with the We see that the absolute peak is obtained by
pt-Chameleon and outperforms all the other implementations.

66 T. Cojean et al.

Tile: 960 Tile: 1920

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5K 15K 25K 35K 45K 5K 15K 25K 35K 45K
Matrix size

G
Fl

op
/s

Type Chameleon
DPLASMA

MAGMA
pt−Chameleon

pt−Chameleon c

Fig. 6. Comparison of the constrained pt-Chameleon with baseline Chameleon, MAGMA
(default parameters and multithreaded MKL) and hierarchical DPLASMA (internal block-
ing of 192 (left) and 320 (right)).

6 Conclusion

One of the biggest challenge raised by the development of high performance
task-based applications on top of heterogeneous hardware lies in coping with
the increasing performance gap between accelerators and individual cores. One
way to address this issue is to use multiple tasks’ granularities, but it requires
in-depth modifications to the data layout used by existing implementations.

We propose a less intrusive and more generic approach that consists in reduc-
ing the performance gap between processing units by forming clusters of CPUs
on top of which we exploit tasks’ inner parallelism. Performance of these clusters
of CPUs can better compete with the one of powerful accelerators such as GPUs.
Our implementation extends the StarPU runtime system so that the scheduler
only sees virtual computing resources on which it can schedule parallel tasks (e.g.
BLAS kernels). The implementation of tasks inside such clusters can virtually
rely on any thread-based runtime system, and runs under the supervision of the
main StarPU scheduler. We demonstrate the relevance of our approach using
task-based implementations of the dense linear algebra Cholesky factorization.
Our implementation is able to outperform the MAGMA, DPLASMA and Chameleon
state-of-the-art dense linear algebra libraries while using the same task granu-
larity on accelerators and clusters.

In the near future, we intend to further extend this work by investigating how
to automatically determine the optimal size of clusters. Preliminary experiments
show that using clusters of different sizes sometimes leads to significant perfor-
mance gains. Thus, we plan to design heuristics that could dynamically adapt
the number and the size of clusters on the fly, based on statistical information
regarding ready tasks.

Resource Aggregation for Task-Based Cholesky Factorization 67

Acknowledgment. We are grateful to Mathieu Faverge for his help for the compar-
ison of DPLASMA and pt-Chameleon. Experiments presented in this paper were carried
out using the PLAFRIM experimental testbed.

References

1. Agullo, E., Augonnet, C., Dongarra, J., Ltaief, H., Namyst, R., Thibault, S.,
Tomov, S.: A hybridization methodology for high-performance linear algebra soft-
ware for GPUs. In: GPU Computing Gems, Jade Edition, vol. 2, pp. 473–484
(2011)

2. Agullo, E., Demmel, J., Dongarra, J., Hadri, B., Kurzak, J., Langou, J., Ltaief,
H., Luszczek, P., Tomov, S.: Numerical linear algebra on emerging architectures:
the PLASMA and MAGMA projects. J. Phys.: Conf. Ser. 180(1), 012037 (2009).
http://iopscience.iop.org/article/10.1088/1742-6596/180/1/012037

3. Agullo, E., Beaumont, O., Eyraud-Dubois, L., Kumar, S.: Are static schedules
so bad? A case study on Cholesky factorization. In: Proceedings of IPDPS 2016
(2016)

4. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: StarPU: a unified plat-
form for task scheduling on heterogeneous multicore architectures. Concurrency
Comput.: Pract. Experience 23, 187–198 (2011)

5. Ayguadé, E., Badia, R.M., Igual, F.D., Labarta, J., Mayo, R., Quintana-Ort́ı, E.S.:
An extension of the starss programming model for platforms with multiple GPUs.
In: Sips, H., Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS, vol. 5704, pp.
851–862. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03869-3 79

6. Bosilca, G., Bouteiller, A., Danalis, A., Herault, T., Lemarinier, P., Dongarra,
J.: DAGuE: a generic distributed DAG engine for high performance computing.
Parallel Comput. 38(1), 37–51 (2012)

7. Bosilca, G., Bouteiller, A., Danalis, A., Herault, T., Luszczek, P., Dongarra, J.:
Dense linear algebra on distributed heterogeneous hardware with a symbolic DAG
approach. Theory Pract. Scalable Comput. Commun. (2013)

8. Broquedis, F., Clet-Ortega, J., Moreaud, S., Furmento, N., Goglin, B., Mercier, G.,
Thibault, S., Namyst, R.: hwloc: a generic framework for managing hardware affini-
ties in HPC applications. In: Proceedings of the 2010 18th Euromicro Conference
on Parallel, Distributed and Network-based Processing, PDP 2010, pp. 180–186
(2010). http://dx.doi.org/10.1109/PDP.2010.67

9. Hermann, E., Raffin, B., Faure, F., Gautier, T., Allard, J.: Multi-GPU and multi-
CPU parallelization for interactive physics simulations. In: D’Ambra, P., Guarra-
cino, M., Talia, D. (eds.) Euro-Par 2010. LNCS, vol. 6272, pp. 235–246. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-15291-7 23

10. Hugo, A., Guermouche, A., Wacrenier, P., Namyst, R.: Composing multiple starpu
applications over heterogeneous machines: a supervised approach. IJHPCA 28(3),
285–300 (2014)

11. Kim, K., Eijkhout, V., van de Geijn, R.A.: Dense matrix computation on a het-
erogenous architecture: a block synchronous approach. Technical report TR-12-04,
Texas Advanced Computing Center, The University of Texas at Austin (2012)

12. Kunzman, D.M., Kalé, L.V.: Programming heterogeneous clusters with accelera-
tors using object-based programming. Sci. Program. 19(1), 47–62 (2011)

13. Pan, H., Hindman, B., Asanović, K.: Composing parallel software efficiently with
lithe. SIGPLAN Not. 45, 376–387. http://doi.acm.org/10.1145/1809028.1806639

http://iopscience.iop.org/article/10.1088/1742-6596/180/1/012037
http://dx.doi.org/10.1007/978-3-642-03869-3_79
http://dx.doi.org/10.1109/PDP.2010.67
http://dx.doi.org/10.1007/978-3-642-15291-7_23
http://doi.acm.org/10.1145/1809028.1806639

68 T. Cojean et al.

14. Quintana-Ort́ı, G., Quintana-Ort́ı, E.S., van de Geijn, R.A., Zee,
F.G.V., Chan, E.: Programming matrix algorithms-by-blocks for thread-
level parallelism. ACM Trans. Math. Softw. 36(3), 14:1–14:26 (2009).
https://dl.acm.org/citation.cfm?id=1527288

15. Song, F., Tomov, S., Dongarra, J.: Enabling and scaling matrix computations on
heterogeneous multi-core and multi-GPU systems. In: Proceedings of ICS 2012,
pp. 365–376 (2012)

16. Topcuoglu, H., Hariri, S., Wu, M.Y.: Performance-effective and low-complexity
task scheduling for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst.
13(3), 260–274 (2002)

17. Wu, W., Bouteiller, A., Bosilca, G., Faverge, M., Dongarra, J.: Hierarchical DAG
scheduling for hybrid distributed systems. In: 29th IEEE International Parallel &
Distributed Processing Symposium (IPDPS), Hyderabad, India, May 2015

https://dl.acm.org/citation.cfm?id=1527288

Task-Based Conjugate Gradient: From
Multi-GPU Towards Heterogeneous

Architectures

E. Agullo1, L. Giraud1(B), A. Guermouche2, S. Nakov1, and J. Roman1

1 Inria, Bordeaux, France
luc.giraud@inria.fr

2 University of Bordeaux, Bordeaux, France

Abstract. Whereas most parallel High Performance Computing (HPC)
numerical libaries have been written as highly tuned and mostly mono-
lithic codes, the increased complexity of modern architectures led the
computational science and engineering community to consider more mod-
ular programming paradigms such as task-based paradigms to design new
generation of parallel simulation code; this enables to delegate part of
the work to a third party software such as a runtime system. That lat-
ter approach has been shown to be very productive and efficient with
compute-intensive algorithms, such as dense linear algebra and sparse
direct solvers. In this study, we consider a much more irregular, and syn-
chronizing algorithm, namely the Conjugate Gradient (CG) algorithm.
We propose a task-based formulation of the algorithm together with a
very fine instrumentation of the runtime system. We show that almost
optimum speed up may be reached on a multi-GPU platform (relatively
to the mono-GPU case) and, as a very preliminary but promising result,
that the approach can be effectively used to handle heterogenous archi-
tectures composed of a multicore chip and multiple GPUs. We expect
that these results will pave the way for investigating the design of new
advanced, irregular numerical algorithms on top of runtime systems.

Keywords: High Performance Computing (HPC) · Multi-GPUs ·
Heterogeneous architectures · Task-based model · Runtime system ·
Sparse linear systems · Conjugate Gradient

1 Introduction

In the last decade, the architectural complexity of High Performance Computing
(HPC) platforms has strongly increased. To cope with this complexity, program-
ming paradigms are being revisited. Among others, one major trend consists of
writing the algorithms in terms of task graphs and delegating to a runtime sys-
tem both the management of the data consistency and the orchestration of the
actual execution. This paradigm has been first intensively studied in the context
of dense linear algebra [1–3,6–8,11,12] and is now a common utility for related
c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 69–82, 2017.
DOI: 10.1007/978-3-319-58943-5 6

70 E. Agullo et al.

state-of-the-art libraries such as PLASMA, MAGMA, FLAME, DPLASMA and
Chameleon. Dense linear algebra algorithms were indeed excellent candidates
for pioneering in this direction. First, their regular computational pattern allows
one to design very wide task graphs so that many computational units can
execute tasks concurrently. Second, the building block operations they rely on,
essentially level-three Basic Linear Algebra Subroutines (BLAS), are compute
intensive, which makes it possible to split the work in relatively fine grain tasks
while fully benefiting from GPU acceleration. As a result, these algorithms are
particularly easy to schedule in the sense that state-of-the-art greedy schedul-
ing algorithms may lead to a performance close to the optimum, including on
platforms accelerated with multiple Graphics Processing Units (GPUs). Because
sparse direct methods rely on dense linear algebra kernels, a large effort has been
made to turn them into task-based algorithms [4,9].

In this paper, we tackle another class of algorithms, the Krylov subspace
methods, which aim at solving large sparse linear systems of equations of the
form Ax = b, where A is a sparse matrix. Those methods are based on the
calculation of approximated solutions in a sequence of embedded spaces, that
is intrinsically a sequential numerical scheme. Second, their unpreconditioned
versions are exclusively based on non compute intensive kernels with irregular
memory access pattern, Sparse Matrix Vector products (SpMV) and level-one
BLAS, which need very large grain tasks to benefit from GPU acceleration. For
these reasons, designing and scheduling Krylov subspace methods on a multi-
GPUs platform is extremely challenging, especially when relying on a task-based
abstraction which requires to delegate part of the control to a runtime system. We
discuss this methodological approach in the context of the Conjugate Gradient
(CG) algorithm on a shared-memory machine accelerated with multiple GPUs
using the StarPU runtime system [5] to process the designed task graph. The CG
solver is a widely used Krylov subspace method, which is the numerical algorithm
of choice for the solution of large linear systems with symmetric positive definite
matrices [13].

The objective of this study is not to optimize the performance of CG on
an individual GPU, which essentially consists of optimizing the matrix layout in
order to speed up SpMV. We do not either consider the opportunity of reordering
the matrix in order to improve the SpMV. Finally, we do not consider numer-
ical variants of CG which may exhibit different parallel patterns. These three
techniques are extremely important but complementary and orthogonal to our
work. Instead, we rely on routines from vendor libraries (NVIDIA cuSPARSE
and cuBLAS) to implement individual GPU tasks, we assume that the ordering
is prescribed (we do not apply permutation) and we consider the standard for-
mulation of the CG algorithm [13]. On the contrary, the objective is to study
the opportunity to accelerate CG on multiple GPUs by designing an appro-
priate task flow where each individual task is processed on one GPU and all
available GPUs are exploited to execute these tasks concurrently. We first pro-
pose a natural task-based expression of CG. We show that such an expression
fails to efficiently accelerate CG. We then propose successive improvements on

Task-Based CG: From Multi-GPU Towards Heterogeneous Architectures 71

the task flow design to alleviate the synchronizations, exhibit more parallelism
(wider graph) and reduce the volume of exchanges between GPUs.

The rest of the paper is organized as follows. We first propose a natural task-
based expression of CG in Sect. 2. We then present the experimental set up in
Sect. 3. We then show how the baseline task-based expression can be enhanced
for efficiently pipelining the execution of the tasks in Sect. 4. We present a perfor-
mance analysis of a multi-GPU execution in Sect. 5. Section 6 presents concluding
remarks together with preliminary experiments in the fully heterogeneous case.

2 Baseline Sequential Task Flow (STF) Conjugate
Gradient Algorithm

In this section, we present a first task-based expression of the CG algorithm
whose pseudo-code is given in Algorithm in Fig. 1a. This algorithm can be
divided in two phases, the initialization phase (lines 1–5) and the main iter-
ative loop (lines 6–16). Since the initialization phase is executed only once, we
only focus on an iteration occurring in the main loop in this study.

Three types of operations are used in an iteration of the algorithm: SpMV
(the sparse matrix-vector product, line 7), scalar operations (lines 9, 13, 14) and
level-one BLAS operations (lines 8, 10, 11, 12, 15). In particular three different
level-one BLAS operations are used: scalar product (dot , lines 8 and 12), linear
combination of vectors (axpy , lines 10, 11 and 15) and scaling of a vector by
a scalar (scal , line 15). The scal kernel at line 15 is used in combination with
an axpy . Indeed, in terms of BLAS, the operation p ← r + βp consists of two
successive operations: p ← βp (scal) and then p ← r+p (axpy). In our implemen-
tation, the combination of these level-one BLAS operations represents a single
task called scale-axpy . The key operation in an iteration is the SpMV (line 7)
and its efficiency is thus critical for the performance of the whole algorithm.

According to our STF programming paradigm, data need to be decomposed
in order to provide opportunities for executing concurrent tasks. We consider a
1D decomposition of the sparse matrix, dividing the matrix in multiple block-
rows. The number of non-zero values per block-rows is balanced and the rest of
the vectors follows the same decomposition.

After decomposing the data, tasks that operate on those data can be defined.
The tasks derived from the main loop of Algorithm in Fig. 1a are shown in
Fig. 1b, when the matrix is divided in six block-rows. Each task is represented
by a box, named after the operation executed in that task, and edges represent
the dependencies between tasks.

The first instruction executed in the main loop of Algorithm in Fig. 1a is the
SpMV . When a 1D decomposition is applied to the matrix, dividing it in six
parts implies that six tasks are submitted for this operation (the green tasks
in Fig. 1b): qi ← Aip, i ∈ [1, 6]. For these tasks, a copy of the whole vector
p is needed (vector p is unpartitioned). But in order to extract parallelism of
other level-one BLAS operations where vector p is used (lines 8 and 15 in Algo-
rithm in Fig. 1a), in respect with our programming, the vector p needs to be

72 E. Agullo et al.

Fig. 1. Conjugate Gradient (CG) linear solver. (Color figure online)

partitioned. The partitioning operation is a blocking call; it thus represents a
synchronization point in this task flow. Once vector p is partitioned, both vec-
tors p and q are divided in six parts. Thus six dot tasks are submitted. Each
dot operation accesses α in read-write mode, which induces a serialization of the
operation. This sequence thus introduces new synchronizations in the task flow
each time we need to perform a dot operation. The twelve axpy tasks (six at line
10 and six at line 11) can then all be executed in parallel. Another dot operation
is then performed (line 12) and induces another serialization point. After the
scalar operations at lines 13 and 14 in Algorithm in Fig. 1a, the last scale-axpy
operation of the loop is executed, which updates the vector p. At this stage, the
vector is partitioned in six pieces. In order to perform the SpMV tasks for the
next iteration, an unpartitioned version of the vector p is needed. This is done
with the unpartition operation, similar to the partition operation, which is a
blocking call.

All in all, this task flow contains four synchronization points per iteration, two
for the partition/unpartition operation and two issued from the dot operations.
The task flow is also very thin. Section 4.1 exhibits the induced limitation in
terms of pipelining, while Sects. 4.2, 4.3 and 4.4 propose successive improvements
allowing us to alleviate the synchronizations and design a wider task flow, thus
increasing the concurrency and the performance.

Task-Based CG: From Multi-GPU Towards Heterogeneous Architectures 73

3 Experimental Setup

All the tests presented in Sect. 5 have been run on a cache coherent Non Uniform
Memory Access (ccNUMA) machine with two hexa-core processors Intel West-
mere Xeon X5650, each one having 18 GB of RAM, for a total of 36 GB. It is
equipped with three NVIDIA Tesla M2070 GPUs, each one equipped with 6 GB
of RAM memory. The task-based CG algorithm proposed in Sect. 2 is imple-
mented on top of the StarPU v1.2. We use the opportunity offered by StarPU
to control each GPU with a dedicated CPU core. To illustrate our discussion we
consider the matrices presented in Table 1. All needed data is prefetched to the
target GPU before the execution and assessment of all the results presented in
this paper.

Table 1. Overview of sparse matrices used in this study. The 11pts-256 and 11pts-128

matrices are obtained from a 3D regular grid with 11pt discretization stencil. The
Audi kw and af 0 k101 matrices come from structural mechanics simulations on irreg-
ular finite element 3D meshes.

Matrix name nnz N nnz/N Flop/iteration

11pts-256 183 M 17 M 11 2 G

11pts-128 23 M 2 M 11 224 M

Audi kw 154 M 943 K 163 317 M

af 0 k101 18 M 503 K 34 38 M

Scheduling and Mapping Strategy. As discussed in Sect. 2, the task flow derived
from Algorithm in Fig. 1a contains four synchronization points per iteration
and is very thin, ensuring only a very limited concurrency. Pipelining this task
flow efficiently is thus very challenging. In particular, dynamic strategies that
led to close to optimum scheduling in dense linear algebra [2] are not well suited
here. We have indeed experimented such a strategy (Minimum Completion Time
(MCT) policy), but all studied variants failed to achieve a very high perfor-
mance. We have thus implemented a static scheduling strategy. We perform a
cyclic mapping of the block-rows on the available GPUs in order to ensure load
balancing.

Building Block Operations. In order to explore the potential parallelism of the
CG algorithm, we first study the performance of its building block operations,
level-one BLAS and SpMV . The granularity does not penalize drastically the
performance for SpMV operation. Additionally when three GPUs are used, a
speed-up of 2.93 is obtained. On the other hand, in order to efficiently exploit
multiple GPUs, vector with sizes of at least few millions are needed.

74 E. Agullo et al.

 10

 100

 1000

 1000 10000 100000 1e+06 1e+07

T
im

e
in

 m
ic

ro
se

co
nd

s

Vector size (N)

1GPU
3GPU

(a) Performance of the axpy kernel. The
rest of the BLAS-1 kernels follow the
same behavior.

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25

G
F

lo
p/

s

#blocks

1 GPU
2 GPU
3 GPU

(b) Performance of the SpMV kernel on
the Audi_kw matrix.

Fig. 2. Performance of the building block operations used in the CG algorithm. All
data is prefetched before execution and performance assessment.

4 Achieving Efficient Software Pipelining

In accordance with the example discussed in Sect. 2, the matrix is split in six
block-rows and three GPUs are used. We pursue our illustration with matrix
11pts-128.

4.1 Assessment of the Proposed Task-Based CG Algorithm

Figure 3 shows the execution trace of one iteration of the task flow (Fig. 1b)
derived from Algorithm in Fig. 1a with respect to the mapping proposed in
Sect. 3. Figure 3 can be interpreted as follows. The top black bar represents the
state of the CPU RAM memory during the execution. Each GPU is represented
by a pair of bars, one for the state of the GPU and the black bar which depicts
the memory state of the GPU. When data movement occurs between different
memory nodes, they are highlighted by an arrow from the source to the desti-
nation. The top bar for each GPU represents its activity. The activity of a GPU
may have one of the three following states: active computation (green), idle (red)
or active waiting for the completion of a data transfer (purple).

An iteration starts with the execution of a SpMV operation (line 7 in Algo-
rithm in Fig. 1a) which corresponds time interval [t0, t1] in Fig. 3. Following the
cyclic mapping strategy presented in Sect. 3, each GPU is thus in charge of two
SpMV tasks. At time t1, the vector p is unpartitioned. The vector p is partitioned
into six pi pieces, i ∈ [1, 6], with respect to the block-row decomposition of the
matrix. However, this data partitioning operation is a blocking call (see Sect. 2)
which means that no other task can be submitted until it is completed at time
t1 (the red vertical bar after the SpMV tasks in Fig. 1b). Once vector p is par-
titioned, tasks for all remaining operations (lines 8–15) are submitted. The dot
tasks are executed sequentially with respect to the cyclic mapping strategy. The
reason for this, as explained in Sect. 2, is that the scalar α is accessed in read-
write mode. In addition, α needs to be moved to GPUs between each execution

Task-Based CG: From Multi-GPU Towards Heterogeneous Architectures 75

Fig. 3. Execution trace of an iteration with the CG task flow of Fig. 1b using three
GPUs. (Color figure online)

of a dot task (time interval [t1, t2] in Fig. 3). Once the scalar product at line 8 is
computed, the scalar division follows (line 9) executed on GPU 1 (respecting the
task flow in Fig. 1b). The execution of the next two instructions follows (lines 10
and 11). But before the beginning of the execution of the axpy tasks on GPU 2
and GPU 3, the new value of α is sent (the purple period at t2 in Fig. 3). The
axpy tasks (yellow tasks in Fig. 1b) are then executed during the period [t2, t3]
in parallel. The scalar product at line 12 is then executed during the time inter-
val [t3, t4], following the same sequence as explained above for line 8. Next, β
and δold are computed on GPU 1 at time t4 in Fig. 3, representing the scalar
operations from lines 13 and 14 of Algorithm in Fig. 1a. Tasks related to the last
operation of the iteration (scale-axpy tasks in Fig. 1b) are then processed during
the time interval [t4, t5]. When all the new vector blocks pi are calculated, the
vector p is unpartitioned (red vertical bar after the scale-axpy tasks in Fig. 1b).
As explained in Sect. 2, this data unpartition is another synchronization point
and may only be executed in the RAM. All blocks pi of vector p are thus moved
by the runtime system from the GPUs to the RAM during the time interval
[t5, t6] for building the unpartitioned vector p. This vector is then used to per-
form the qi ← Ai × p tasks related to the first instruction of the next iteration
(SpMV at line 7). We now understand why the iteration starts with an active
waiting of the GPUs (purple parts before time t0): vector p is only valid in the
RAM and thus needs to be copied on the GPUs.

During the execution of the task flow derived from Algorithm in Fig. 1a
(Fig. 1b), the GPUs are idle during a large portion of the time (red and purple
parts in Fig. 3). In order to achieve more efficient pipelining of the algorithm, we
present successive improvements on the design of the task flow: relieving synchro-
nization points (Sect. 4.2), reducing volume of communication that is achieved
using a packing data mechanism (Sect. 4.3) and relying on a 2D decomposition
(Sect. 4.4).

76 E. Agullo et al.

4.2 Relieving Synchronization Points

Alternatively to the sequential execution of the scalar product, each GPU j can
compute locally a partial sum (αj) and perform a StarPU reduction to compute
the final value of the scalar (α =

∑n gpus
j=1 αj). Figure 4a illustrates the benefit

of this strategy. The calculation of the scalar product, during the time interval
[t0, t1] is now performed in parallel. Every GPU is working on its own local copy
of α and once they have finished, the reduction is performed on GPU 1 just
after t1.

Fig. 4. Execution trace of one iteration when the dot is performed in reduction mode
(left) and after furthermore avoiding data partitioning and unpartitioning (right).
(Color figure online)

The partition (after instruction 7 of Algorithm in Fig. 1a) and unpartition
(after instruction 15) of vector p, that are special features of StarPU, represent
two of the four synchronization points within each iteration. They furthermore
induce extra management and data movement costs. Indeed, after instruction 15,
each GPU owns a valid part of vector p. For instance, once GPU 1 has computed
p1, StarPU moves p1 to the RAM and then receives it back. Second, vector p has
to be fully assembled in the main memory (during the unpartition operation)
before prefetching a copy of the fully assembled vector p back to the GPUs (after
time t3 in Fig. 4a). We have designed another scheme where vector p is kept by
StarPU in a partitioned form all along the execution (it is thus no longer needed
to perform partitioning and unpartitioning operations at each iteration). Instead
of building and broadcasting the whole unpartitioned vector p, each GPU gathers
only the missing pieces. This enables us to “remove” the two synchronization
points related to the partition and unpartition operations, since they are not
called anymore, and decrease the overall traffic. Figure 4b illustrates the benefits
of this policy. Avoiding the unpartitioning operation allows us to decrease the
time required between two successive iterations from 8.8 ms to 6.6 ms. Further-
more, since the partitioning operation is no longer needed, the corresponding
synchronization in the task flow control is removed. The corresponding idle time
(red part at time t0 in Fig. 4a) is removed and instructions 7 and 8 are now
pipelined (period [t0, t1] in Fig. 4b).

Task-Based CG: From Multi-GPU Towards Heterogeneous Architectures 77

Coming back to Fig. 4a, one may notice that GPUs are idle for a while just
before time t1 and again just before time t2. This is due to the reduction that
finalizes each dot operation (dot(p, q) at instruction 8 and dot(r, r) at instruc-
tion 12, respectively). In Algorithm in Fig. 1a, vector x is only used at lines 10 (in
read-write mode) and 6 (in read-only mode). The execution of instruction 10 can
thus be moved anywhere within the iteration as long as the other input data of
instruction 9, i.e. p and α have been updated to the correct values. In particular,
instruction 10 can be moved after instruction 12. This delay enables StarPU to
overlap the final reduction of the dot occurring at instruction 12 with the compu-
tation of vector x. The red part before t2 in Fig. 4a becomes (partially) green in
Fig. 4b. The considered CG formulation does not provide a similar opportunity
to overlap reduction finalizing the dot operation at instruction 8.

4.3 Reducing Communication Volume by Packing Data

By avoiding data partition and data unpartition operations, the broadcast of
vector p has been improved (from period [t2, t4] in Fig. 4a to period [t3, t4] in
Fig. 4b), but still the communication time remains the large performance bot-
tleneck (time interval [t3, t4] in Fig. 4b). This volume of communication can be
decreased. Indeed, if a column within the block-row Ai is zero, then the corre-
sponding entry of p is not involved in the computation of the task qi ← Aip.
Therefore, p can be pruned.

We now explain how we can achieve a similar behavior with a task flow
model. Instead of letting StarPU broadcast the whole vector p on every GPU,
we can define tasks that only transfer the required subset. Before executing the
CG iterations, this subset is identified with a symbolic preprocessing step. Based
on the structure of the block Ai,j , we determine which part of pj is needed to
build qi. If pj is not fully required, we do not transfer it directly. Instead, it can
be packed into an intermediate data, pi,j . StarPU provides an elegant support
for implemented all these advanced techniques through the definition of new
data types. We rely on that mechanism for implementing this packing scheme.
Furthermore, the packing operation may have a non negligible cost whereas
sometimes the values of pi,j that needs to be sent are almost contiguous. In
those cases, it may thus be worth sending an extra amount of data in order
to directly send the contiguous superset of pi,j ranging from the first to the
last index that needs to be transferred. We have implemented such a scheme. A
preliminary tuning is performed for each matrix and for each pi,j block to choose
whether pi,j is packed or transferred in a contiguous way. Although StarPU can
perform automatic prefetching, the prefetching operation is performed once all
the dependencies are satisfied. In the present context, with the static mapping,
this may be too late and further anticipation may be worthy. Therefore, we help
the runtime system in performing data prefetching as soon as possible performing
explicit prefetching within the callback of the scale-axpy task. We also do so after
the computation of the α and β scalar values (lines 9 and 13 in Algorithm in
Fig. 1a) for broadcasting them on all GPUs.

78 E. Agullo et al.

Fig. 5. Execution trace when furthermore the vector p is packed.

Figure 5 depicts the execution trace. The time interval [t3, t4] in Fig. 4b
needed for the broadcasting of the vector p has been reduced to the interval
[t0, t1] in Fig. 5. In the rest of the paper we refer to as the full algorithm when
all the blocks are transferred, or to as the packed algorithm if this packing mech-
anism is used.

4.4 2D Decomposition

The 1D decomposition scheme requires that for each SpMV task, all blocks of vec-
tor p (packed or not packed) are in place before starting the execution of the task.
In order to be able to overlap the time needed for broadcasting the vector p (time
interval [t0, t1] in Fig. 5), a 2D decomposition must be applied to the matrix. The
matrix is first divided in block-rows, and then the same decomposition is applied
to the other dimension of the matrix. Similarly as for a 1D decomposition, all the
tasks SpMV associated with the entire block-row will be mapped on the same
GPU. Contrary to the 1D decomposition, where we had to wait for the transfer
of all missing blocks of the vector p, with the 2D decomposition, time needed for
the transfer of the vector p can be overlapped with the execution of the SpMV
tasks for which the blocks of the vector p are already available on that GPU. On
the other hand, the 2D SpMV tasks yield lower performance then 1D (see Fig. 6b
and 2b), since they are executed on lower granularity.

Fig. 6. Execution trace when relying of a 2D decomposition of the matrix (left) and the
performance of SpMV kernel when 2D decomposition is applied to the matrix (right).

Task-Based CG: From Multi-GPU Towards Heterogeneous Architectures 79

The result of the impact of a 2D decomposition is shown in Fig. 6a. During
the time interval [t1, t2] in Fig. 5 there is no communication, while in Fig. 6a
communications are overlapped with the execution of the SpMV tasks. In the
rest of the paper we refer to either 1D or 2D depending on the data decomposition
used. The trade-off between large task granularity (1D) and increased pipeline
(2D) will be discussed in Sect. 5.

5 Performance Analysis

We now perform a detailed performance analysis of the task-based CG algorithm
designed above. We propose to analyze the behavior of our algorithms in terms of
speed-up (S) and parallel efficiency (e) with respect to the execution occurring
on one single GPU. In order to understand in more details the behavior of
the proposed algorithms, we decompose the parallel efficiency into three effects,
following the methodology proposed in [10]: the impact on efficiency due to
operating at a lower granularity (egranularity), the impact of concurrency on the
performance of individual tasks (etasks) and the impact of a suboptimum task
pipelining (epipeline) due to a lack of concurrency. As shown in [10], the following
equality holds:

e = egranularity × etasks × epipeline.

We observed that the efficiency of the task is maximum (etasks = 1). Indeed, in a
multi-GPU context, the different workers do not interfere with each other (they
do not share memory or caches) and hence do not deteriorate the performance
of one another. In the sequel, we thus only report on egranularity and epipeline.

Table 2 presents the performance achieved for all matrices in our multi-GPU
context. The optimal performance is represented for each scheme in bold value.
The first thing to be observed is that for all the matrices, the pack version of
our algorithm where only just the needed part of the vector p is broadcasted,

Table 2. Performance (in Gflop/s) of our CG algorithm for the matrix collection
presented in Table 1.

GPUs 1D 2D 1D 2D

full pack. full pack. full pack. full pack.

11pts-256 11pts-128

1 9.74 9.58

2 12.33 19.10 16.66 17.24 11.5 17.6 14.3 16.1

3 11.70 28.39 13.26 23.17 9.01 24.2 9.22 20.6

Audi kw af 0 k101

1 10.0 9.84

2 15.6 15.6 16.3 16.7 12.1 16.3 13.6 15.0

3 17.7 20.0 22.0 23.6 11.1 19.4 12.5 18.2

80 E. Agullo et al.

yields the optimal performance. Broadcasting entire sub-blocks is too expensive
and thus considerably slows down the execution of the CG algorithm. For the
matrices that have a regular distribution of the non zeros, i.e. the 11pts-256,
11pts-128 and the af 0 k101 matrices, the 1D algorithm outperforms the 2D
algorithm. On the other hand, in the case of the Audi kw matrix that has an
unstructured pattern, the 2D algorithm which exhibits more parallelism, yields
the best performance.

Table 3. Obtained speed-up (S), overall efficiency (e), effects of granularity on effi-
ciency egranularity and effects of pipeline on efficiency epipeline for matrices presented
in Table 1 on 3 GPUs.

Matrix 11pts-256 11pts-128 Audi kw af 0 k101

S 2.91 2.52 2.36 1.97

e 0.97 0.84 0.79 0.65

egranularity 0.99 0.98 0.87 0.96

epipeline 0.97 0.86 0.91 0.68

Table 3 allows for analyzing how the overall efficiency is decomposed accord-
ing to the metrics proposed above. Dividing the 11pts-256 matrix in several
block-rows does not induce a penalty on the task granularity (egranularity =
0.99 ≈ 1). Furthermore, thanks to all the improvements of the task flow pro-
posed in Sect. 4, a very high pipeline efficiency is achieved (epipeline = 0.97),
leading to an overall efficiency of the same (very high) magnitude. For the
11pts-128 matrix, the matrix decomposition induces a similar granularity
penalty egranularity = 0.98. The slightly lower granularity efficiency is a direct
consequence of the matrix order. For smaller matrices, the tasks are performed
on smaller sizes, thus the execution time per task is decreased. This makes
our algorithm more sensitive to the overhead created by the communications
induced by the dot-products and the broadcasting of the vector p, ending up
with a less optimal (but still high) pipeline efficiency (epipeline = 0.86). The
overall efficiency for this matrix is e = 0.84. This phenomenon is amplified when
the matrix order is getting lower, such as in the case of the af 0 k101 matrix,
resulting in a global efficiency of e = 0.65. The Audi kw matrix yields optimal
performance with the 2D algorithm (see Sect. 4.4). Although the 2D algorithm
requires to split the matrix in many more blocks inducing a higher penalty on
granularity (egranularity = 0.87), it allows for a better overlap of communication
with computation ensuring that a higher pipeline (epipeline = 0.91) is achieved.
With this trade-off, an overall efficiency equal to e = 0.79 is obtained.

6 Towards a Fully Heterogeneous CG Solver

One advantage of relying on task-based programming is that the architecture is
fully abstracted. We prove here that we can benefit from this design to run on an

Task-Based CG: From Multi-GPU Towards Heterogeneous Architectures 81

(a) nnz-based load balancing. (b) Performance model-based load bal-
ancing.

Fig. 7. Traces of an execution of one iteration of the CG algorithm in the heterogeneous
case (9 CPU and 3 GPU workers) with different partitioning strategies for the Audi kw

matrix. In (a), the nnz is balanced per block-row (33µs). In (b) a feed-back from a
history based performance model is used for the partitioning of the matrix (16µs).

heterogeneous node composed of all available computational resources. Because
the considered platform has 12 CPU cores and three GPUs, but that each GPU
has a CPU core dedicated to handle it, we can only rely on 9 CPU workers and
3 GPU workers in total.

Figure 7 presents execution traces of preliminary experiments that rely on two
different strategies for balancing the load between CPU cores and GPU. These
traces show the ability of task-based programming in exploiting heterogeneous
platforms. However, they also show that more advanced load balancing strategies
need to be designed in order to achieve a better occupancy. This question has
not been fully investigated yet and will be further investigated in a future work.

Acknowledgement. The authors acknowledge the support by the INRIA-TOTAL
strategic action DIP (http://dip.inria.fr) and especially Henri Calandra who closely
followed this work.

References

1. Agullo, E., Augonnet, C., Dongarra, J., Faverge, M., Langou, J., Ltaief, H.,
Tomov, S.: LU factorization for accelerator-based systems. In: Siegel, H.J., El-Kadi,
A. (eds.) The 9th IEEE/ACS International Conference on Computer Systems and
Applications, AICCSA 2011, Sharm El-Sheikh, Egypt, 27–30 December 2011, pp.
217–224. IEEE (2011)

2. Agullo, E., Augonnet, C., Dongarra, J., Faverge, M., Ltaief, H., Thibault, S.,
Tomov, S.: QR factorization on a multicore node enhanced with multiple GPU
accelerators. In: IPDPS, pp. 932–943. IEEE (2011)

3. Agullo, E., Augonnet, C., Dongarra, J., Ltaief, H., Namyst, R., Thibault, S.,
Tomov, S.: Faster, cheaper, better - a hybridization methodology to develop linear
algebra software for GPUs. In: Hwu, W.W. (ed.) GPU Computing Gems, vol. 2.
Morgan Kaufmann, September 2010

4. Agullo, E., Buttari, A., Guermouche, A., Lopez, F.: Implementing multifrontal
sparse solvers for multicore architectures with sequential task flow runtime systems.
ACM Trans. Math. Softw. 43, 13 (2016)

http://dip.inria.fr

82 E. Agullo et al.

5. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.-A.: StarPU: a unified
platform for task scheduling on heterogeneous multicore architectures. In: Sips,
H., Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS, vol. 5704, pp. 863–874.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-03869-3 80

6. Bosilca, G., Bouteiller, A., Danalis, A., Faverge, M., Haidar, A., Hérault, T.,
Kurzak, J., Langou, J., Lemarinier, P., Ltaief, H., Luszczek, P., YarKhan, A.,
Dongarra, J.: Flexible development of dense linear algebra algorithms on mas-
sively parallel architectures with DPLASMA. In: IPDPS Workshops, pp. 1432–
1441. IEEE (2011)

7. Buttari, A., Langou, J., Kurzak, J., Dongarra, J.: Parallel tiled QR factorization for
multicore architectures. Concurr. Comput. Pract. Exp. 20(13), 1573–1590 (2008)

8. Kurzak, J., Ltaief, H., Dongarra, J., Badia, R.M.: Scheduling dense linear algebra
operations on multicore processors. Concurr. Comput. Pract. Exp. 22(1), 15–44
(2010)

9. Lacoste, X., Faverge, M., Ramet, P., Thibault, S., Bosilca, G.: Taking advantage
of hybrid systems for sparse direct solvers via task-based runtimes, May 2014

10. Nakov, S.: On the design of sparse hybrid linear solvers for modern parallel archi-
tectures. Theses, Université de Bordeaux, December 2015

11. Quintana-Ort́ı, G., Quintana-Ort́ı, E.S., Chan, E., Van Zee, F.G., van de Geijn,
R.A.: Scheduling of QR factorization algorithms on SMP and multi-core architec-
tures. In: Proceedings of PDP 2008, FLAME Working Note #24 (2008)

12. Quintana-Ort́ı, G., Igual, F.D., Quintana-Ort́ı, E.S., van de Geijn, R.A.: Solving
dense linear systems on platforms with multiple hardware accelerators. ACM SIG-
PLAN Not. 44(4), 121–130 (2009)

13. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. Society for Indus-
trial and Applied Mathematics, Philadelphia (2003)

http://dx.doi.org/10.1007/978-3-642-03869-3_80

Task-Based Sparse Hybrid Linear Solver
for Distributed Memory Heterogeneous

Architectures

Emmanuel Agullo, Luc Giraud(B), and Stojce Nakov

Inria, HiePACS Project-Team, Bordeaux, France
luc.giraud@inria.fr

Abstract. Heterogeneity is emerging as one of the most challenging
characteristics of today’s parallel environments. However, not many fully-
featured advanced numerical, scientific libraries have been ported on such
architectures. In this paper, we propose to extend a sparse hybrid solver
for handling distributed memory heterogeneous platforms. As in the
original solver, we perform a domain decomposition and associate one
subdomain with one MPI process. However, while each subdomain was
processed sequentially (binded onto a single CPU core) in the original
solver, the new solver instead relies on task-based local solvers, delegat-
ing tasks to available computing units. We show that this “MPI+task”
design conveniently allows for exploiting distributed memory heteroge-
neous machines. Indeed, a subdomain can now be processed on multi-
ple CPU cores (such as a whole multicore processor or a subset of the
available cores) possibly enhanced with GPUs. We illustrate our discus-
sion with the MaPHyS sparse hybrid solver relying on the PaStiX and
Chameleon dense and sparse direct libraries, respectively. Interestingly,
this two-level MPI+task design furthermore provides extra flexibility for
controlling the number of subdomains, enhancing the numerical stabil-
ity of the considered hybrid method. While the rise of heterogeneous
computing has been strongly carried out by the theoretical community,
this study aims at showing that it is now also possible to build com-
plex software layers on top of runtime systems to exploit heterogeneous
architectures.

Keywords: High Performance Computing (HPC) · Heterogeneous
architectures · MPI · Task-based programming · Runtime system ·
Sparse hybrid solver · Multicore · GPU

1 Introduction

Parallel sparse linear algebra solvers are often the innermost numerical kernels
in scientific and engineering applications; consequently, they are one of the most
time consuming parts. In order to cope with the hierarchical hardware design
of modern large-scale supercomputers, the HPC solver community has proposed

c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 83–95, 2017.
DOI: 10.1007/978-3-319-58943-5 7

84 E. Agullo et al.

new sparse methods. One promising approach to high-performance, scalable solu-
tion of large sparse linear systems in parallel scientific computing is to combine
direct and iterative methods. To achieve a high scalability, algebraic domain
decomposition methods are commonly employed to split a large size linear sys-
tem into smaller size linear systems that can be efficiently and concurrently
handled by a sparse direct solver while the solution along the interfaces is com-
puted iteratively [20,22,37,40]. Such an hybrid approach exploits the advantages
of both direct and iterative methods. The iterative component allows us to use
a small amount of memory and provides a natural way for parallelization. The
direct part provides its favorable numerical properties; furthermore, this com-
bination provides opportunities to exploit several levels of parallelism as we do
in this paper. In this study we consider an actual fully-featured parallel sparse
hybrid (direct/iterative) linear solver, MaPHyS1 [3].

Starting from a baseline MPI version of the considered hybrid solver, the
objective of this study is to propose a prototype extension for which each MPI
process can handle heterogeneous processing units with a task-based approach,
delegating the task management to a runtime system. A preliminary experimen-
tal study asseses the potential of the approach.

This paper is organized as follows. Section 2 presents the solver considered
in this study and its baseline parallel design. Section 3 presents background on
task-based linear algebra and sparse hybrid solvers. Section 4 presents the design
of the task-based extension proposed for our sparse hybrid solver. Preliminary
results are discussed in Sect. 5 while concluding remarks on this work and per-
spectives are discussed in Sect. 6.

2 Baseline MPI Hybrid (Direct/Iterative) Solver

We now present the sparse hybrid (direct/iterative) method (Sect. 2.1) consid-
ered in this study and its baseline parallel design (Sect. 2.2).

2.1 Method

Let Ax = b be the linear problem and G = {V,E} the adjacency graph associated
with A. In this graph, each vertex is associated with a row or column of the
matrix A and it exists an edge between the vertices i and j if the entry ai,j is non
zero. In the sequel, to facilitate the exposure and limit the notation we voluntarily
mix a vertex of G with its index depending on the context of the description. The
governing idea behind substructuring or Schur complement methods is to split
the unknowns in two categories: interior and interface vertices. We assume that
the vertices of the graph G are partitioned into N disconnected subgraphs I1, ...,
IN separated by the global vertex separator Γ. We also decompose the vertex
separator Γ into non-disjoint subsets Γi, where Γi is the set of vertices in Γ that
are connected to at least one vertex of Ii. Notice that this decomposition is not

1 https://project.inria.fr/maphys/.

https://project.inria.fr/maphys/

Task-Based Sparse Hybrid Linear Solver 85

a partition as Γi ∩ Γj �= ∅ when the set of vertices in this intersection defines
the separator of Ii and Ij . By analogy with classical domain decomposition in
a finite element framework, Ωi = Ii ∪Γi will be referred to as a subdomain with
internal unknowns Ii and interface unknowns Γi. If we denote I = ∪Ii and order
vertices in I first, we obtain the following block reordered linear system

(AII AIΓ

AΓI AΓΓ

) (
xI
xΓ

)
=

(
bI
bΓ

)
(1)

where xΓ contains all unknowns associated with the separator and xI contains
the unknowns associated with the interiors. Because the interior vertices are only
connected to either interior vertices in the same subgraph or with vertices in the
interface, the matrix AII has a block diagonal structure, where each diagonal
block corresponds to one subgraph Ii. Eliminating xI from the second block row
of Eq. (1) leads to the reduced system

SxΓ = f (2)

where
S = AΓΓ − AΓIA−1

IIAIΓ and f = bΓ − AΓIA−1
IIbI . (3)

The matrix S is referred to as the Schur complement matrix. This reformulation
leads to a general strategy for solving (1). Specifically, an iterative method can be
applied to solve (2). Once xΓ is known, xI can be computed with one additional
solve for the interior unknowns via

xI = A−1
II (bI − AIΓxΓ) .

We illustrate in Fig. 1a all these notations for a decomposition into 4 subdomains.
The local interiors are disjoint and form a partition of the interior I = �Ii (blue
vertices in Fig. 1b). It is not necessarily the case for the boundaries. Indeed,
two subdomains Ωi and Ωj may share part of their interface (Γi

⋂
Γj �= ∅),

such as Ω1 and Ω2 in Fig. 1b which share eleven vertices. Altogether, the local
boundaries form the overall interface Γ = ∪Γi (red vertices in Fig. 1b), which is
not a disjoint union. Because interior vertices are only connected to vertices of
their subset (either on the interior or on the boundary), matrix AII associated
to the interior has a block diagonal structure, as shown in Fig. 1a. Each diagonal
block AIiIi

corresponds to a local interior.
While the Schur complement system is significantly smaller and better condi-

tioned than the original matrix A [34, Lemma 3.11], it is important to consider
further preconditioning when employing a Krylov method. We introduce the
general form of the preconditioner considered in MaPHyS. The preconditioner
presented below was originally proposed in [17] and successfully applied to large
problems in real life applications in [21,24,35]. To describe the main precondi-
tioner in MaPHyS, considering the restriction operator RΓi

from Γ to Γi, we
define S̄i = RΓi

SRT
Γi

, that corresponds to the restriction of the Schur comple-
ment to the interface Γi. If Ii is a fully connected subgraph of G, the matrix S̄i

is dense.

86 E. Agullo et al.

Fig. 1. Domain decomposition into four subdomains Ω1, . . . , Ω4. The initial domain
Ω may be algebraically represented with the graph G associated to the sparsity pattern
of matrix A (a). The local interiors I1, . . . , IN form a partition of the interior I = �Ii

(blue vertices in (b)). They interact with each others through the interface Γ (red
vertices in (b)). The block reordered matrix (c) has a block diagonal structure for the
variables associated with the interior AII . (Color figure online)

With these notations the Additive Schwarz preconditioner reads

MAS =
N∑

i=1

RT
Γi

S̄i
−1RΓi

. (4)

2.2 Baseline MPI Parallelization

With all these components, the classical parallel implementation of MaPHyS
can be decomposed into four main phases:

– the partitioning step consists of partitioning the adjacency graph G of A into
several subdomains and distribute the Ai to different processes. For this we
are able to use two state-of-the-art partitioners, Scotch [36] and METIS [28];

– the factorization of the interiors and the computation of the local Schur com-
plement factorizes Ai with the PaStiX [25] or the Mumps [9] sparse direct
solver and furthermore provides the associated local Schur Complement Si

thanks to recent progress from the development teams of those sparse direct
solvers;

– the setup of the preconditioner by assembling diagonal blocks of Si via a few
neighbour to neighbour communications and factorization of the dense local
Si using Mkl;

– the solve step consists of two steps: a parallel preconditioned Krylov method
performed on the reduced system (Eq. 2) to compute xΓi

where all BLAS
operations are provided by Mkl, followed by the back solve on the interior
to compute xIi

, done by the sparse direct solver.

3 Related Work

To cope with the complexity of modern architectures, programming paradigms
are being revisited. Among others, one major trend consists in writing the algo-
rithms in terms of task graphs and delegating to a runtime system both the

Task-Based Sparse Hybrid Linear Solver 87

management of the data consistency and the orchestration of the actual execu-
tion. This paradigm has been intensively studied in the context of dense linear
algebra and is now a common utility for related state-of-the-art libraries such
as Plasma [2], Magma [1], DPLASMA [14], Chameleon [4] and FLAME [39].
Dense linear algebra algorithms were indeed excellent candidates for pioneering
in this direction. First, their computational pattern allows one to design very
wide task graphs so that many computational units can execute tasks concur-
rently. Second, the building block operations they rely on, essentially level-three
Basic Linear Algebra Subroutines (BLAS), are compute intensive, which makes it
possible to split the work in relatively fine grain tasks while fully benefiting from
GPU acceleration. As a result, these algorithms are particularly easy to schedule
in the sense that state-of-the-art greedy scheduling algorithms may lead to high
performance, including on platforms accelerated with multiple GPUs [4].

This trend has then been followed for designing sparse direct methods. The
extra challenge in designing task-based sparse direct method is due to indirection
and variable granularities of the tasks. The PaStiX team has proposed such an
extension of the solver capable of running on the StarPU [11] and PaRSEC [15]
runtime systems on cluster of heterogeneous nodes in the context of X. Lacoste
PhD thesis [29,30]. In the meanwhile, the qr mumps library developed by A. But-
tari [16] aims at solving sparse linear least square problems and has been ported
on top of those runtime systems in the context of F. Lopez PhD thesis [6,33].

With the need of solving ever larger sparse linear systems while maintain-
ing numerical robustness, multiple sparse hybrid variants have been proposed
for computing the preconditioner for the Schur complement. PDSLin [31],
ShyLU [37] and Hips [19] first perform an exact2 factorization of the interior of
each subdomain concurrently. PDSLin and ShyLU then compute the precondi-
tioner with a two-fold approach. First, an approximation S̃ of the (global) Schur
complement S is computed. Second, this approximate Schur complement S̃ is
factorized to form the preconditioner for the Schur Complement system, which
does not need to be formed explicitly. While PDSLin has multiple options for
discarding values lower than some user-defined thresholds at different steps of
the computation of S̃, ShyLU [37] also implements a structure-based approach
for discarding values named probing and that was first proposed to approximate
interfaces in DDM [18]. Instead of following such a two-fold approach, Hips [19]
forms the preconditioner by computing a global ILU factorization based on the
multi-level scheme formulation from [26].

These sparse hybrid solvers have also been extended to cope with hierarchical
supercomputers. Indeed, to ensure numerical robustness while exploiting all the
processors of a platform, an important effort has been devoted to propose two lev-
els of parallelism for these solvers. Designed on top of the SuperLU DIST [32]
distributed memory sparse direct solver, PDSLin implements a 2-level MPI
(MPI+MPI) approach with finely tuned intra- and inter-subdomain load bal-
ancing [40]. A similar MPI+MPI approach has been assessed for additive

2 There are also options for computing Incomplete LU (ILU) factorizations of the
interiors but the related descriptions are out the scope of this paper.

88 E. Agullo et al.

Schwarz preconditioning in a prototype version of MaPHyS [23], relying on the
Mumps [9,10] and ScaLAPACK [13] sparse direct and dense distributed memory
solvers, respectively. On the contrary, expecting a higher numerical robustness
thanks to multi-level preconditioning, Hips associates multiple subdomains to
a single process and distributes the subdomains to the processes in order to
maintain load balancing [19]. Finally, especially tuned for modern multicore
platforms, ShyLU implements a 2-level MPI+thread approach [37]. A similar
2-level MPI+thread design has been investigated for MaPHyS in [35]. However,
none of these extensions were tailored to exploit heterogeneous architectures.

4 Design of Task-Based Sparse Hybrid Linear Solver for
Distributed Memory Heterogeneous Architectures

Although very efficient for exploiting multiple modern multicore nodes, the rel-
atively low-level design of the 2-level parallelism sparse hybrid solvers discussed
above cannot exploit heterogeneous architectures.

One solution for relieving this bottleneck would consist in fully abstracting
the MPI scheme of the solver in terms of a DAG of tasks where vertices repre-
sent fine grain tasks and edges represent dependencies between them. Once the
solver has been designed at such a high-level of abstraction, advanced fine-grain
mapping strategies can be implemented as the burden of moving data in the sys-
tem and ensuring their consistency is delegated to a runtime system. However,
such a design prevents from relying on SPMD paradigms. As a consequence, it
requires to fully rewrite the solver in terms of a DAG of tasks as illustrated in
Fig. 2a: the DAG representing the whole numerical algorithm implemented in
MaPHyS is written independently from the hardware architecture (we repre-
sent it on top of the runtime system and of the MPI processes). While there has
been a lot of progress in that direction as discussed in Sect. 3 for dense (such
as the DPLASMA [14] and Chameleon [4] task-based libraries, derived from

(a) Full task-based paradigm. (b) MPI + task paradigm (this
study).

Fig. 2. Illustration of the execution of MaPHyS on four subdomains with two different
task-based paradigms on a platform composed of two nodes of eight cores and four
GPUs per node

Task-Based Sparse Hybrid Linear Solver 89

Plasma [2] and Magma [1]) and sparse direct methods (such as the task-based
version of PaStiX [29] and qrm StarPU [5]), only limited work we are aware
of has been devoted to study task-based Krylov methods, the third numerical
pillar on top of which hybrid solvers are built on. Indeed, a task-based version of
the CG algorithm for platforms equipped with several GPUs was proposed in [7]
and a fault-tolerant task-based version of this algorithm was proposed in [27],
but none of them could exploit distributed memory platforms.

A second solution would consist in relying on the modular design of the hybrid
solver to use appropriate libraries depending on the target architecture leading to
a collection of MPI+X, MPI+Y, . . . solutions to support X, Y, . . . architectures
respectively.

In this paper, we propose to combine both solutions with a MPI+task app-
roach in order to benefit from the high-level modular design of the hybrid solver
and abstract the architecture with task-based local sparse and direct solvers
which delegate the orchestration of the execution of the tasks within compu-
tational nodes to a runtime system. With such MPI+task approach, it is not
only elegant to support X, Y, . . . architectures in a consistent fashion, but also
possible to exploit heterogeneous {X + Y} distributed memory architectures.
Figure 2b illustrates the proposed design.

4.1 Overall Design of the MPI+task Extension of MaPHyS

In this section we explain how to create an MPI+task design of the MaPHyS
solver. As illustrated in Fig. 2b, this latter approach aims at abstracting the
hardware architecture relying on task-based programming and delegating the
orchestration of the task within computational nodes to a runtime system. How-
ever, contrary to the full task-based abstraction depicted in Fig. 2a, each MPI
process explicitly handles a DAG representing the numerical algorithm imple-
mented in one MaPHyS subdomain. The MPI communications between sub-
domains are furthermore handled explicitly by MaPHyS (and not delegated to
the task-based runtime system).

The goal of this preliminary study is to show the feasibility of the approach.
To do so, we considered the baseline MPI version of MaPHyS and exploited
the modular software architecture to substitute the multithreaded kernels with
task-based versions of these kernels. We restricted our scope to the Symmetric
Positive Definite (SPD) case.

In this paper we focus on the compute intensive numerical steps occurring
after the partitioning step. Indeed, this stage is a symbolic pre-processing step;
furthermore, to the best of our knowledge, none of the partitioners have yet been
implemented on top of a runtime system:

– For the factorization of the interiors, we are relying on the task-based version
of PaStiX proposed in X. Lacoste thesis [29] for which we further designed
a task-based Schur complement functionality thanks to the support of the
PaStiX development team.

90 E. Agullo et al.

– For the setup of the preconditioner, we use the task-based dense Cholesky
solver from the Chameleon [4] library3.

– For the solve step, the application of the preconditioner is performed by the
Chameleon library and other operations involved in the iterative solution
step such as level-one BLAS and matrix-vector product are executed with the
multithreaded Mkl library.

All in all, we use task-based sparse (PaStiX) and dense (Chameleon) direct
solvers, both of them expressed through the StarPU task-based runtime system
that we now present.

4.2 The StarPU Task-Based Runtime System

In the last decade, a large variety of task-based runtime systems have been
developed. The most common strategy for the parallelization of task-based algo-
rithms consists in traversing the DAG sequentially and submitting the tasks,
as discovered, to the runtime system using a non blocking function call. The
dependencies between tasks are automatically inferred by the runtime system
through a data dependency analysis [8] and the actual execution of the task
is then postponed to the moment when all its dependencies are satisfied. This
programming model is known as a Sequential Task Flow (STF) model as it fully
relies on sequential consistency for the dependency detection. This para-
digm is also sometimes referred to as superscalar since it mimics the functioning
of superscalar processors where instructions are issued sequentially from a sin-
gle stream but can actually be executed in a different order and, possibly, in
parallel depending on their mutual dependencies. The popularity of this model
encouraged the OpenMP board to include it in the standard 4.0: the task con-
struct was extended with the depend clause which enables the OpenMP run-
time to automatically detect dependencies among tasks and consequently sched-
ule them. Note that the abstract model that support this mechanism has been
widely used before the inclusion in the standard. Among other, the StarSs [12]
and StarPU [11] runtime systems have certainly strongly contributed to that
progress. StarPU (read *PU) has been specifically designed for abstracting the
underlying architecture so that in can execute task on any type of hardware
(CPU core, GPU, ...). As a consequence, it is convenient for exploiting hetero-
geneous architecture. For this reason, we decided to use it for implementing the
proposed task-based extension of MaPHyS.

StarPU provides a convenient interface for implementing and parallelizing
applications or algorithms that can be described as a graph of tasks. Tasks have
to be explicitly submitted to the runtime system along with the data they work
on and the corresponding data access mode. Through data analysis, StarPU can
automatically detect the dependencies among tasks and build the corresponding
DAG. Once a task is submitted, the runtime tracks its dependencies and sched-
ules its execution as soon as these are satisfied, taking care of gathering the data
on the unit where the task is actually executed.
3 https://project.inria.fr/chameleon/.

https://project.inria.fr/chameleon/

Task-Based Sparse Hybrid Linear Solver 91

5 Experimental Results

In this section we present preliminary results of our task-based prototype of
MaPHyS. The tests presented in this section were performed on the PlaFRIM 2
platform situated installed at Inria Bordeaux-Sud-Ouest, more precisely on the
sirocco nodes. These nodes are composed of two Dodeca-core Haswell Intel Xeon
E5-2680, for a total of 24 cores per node, and 128 GB of RAM memory. Each node
is equipped with 4 Nvidia K40-M GPUs, each one having 12 GB of RAM. We
consider the SPD Audi kw matrix (size n = 900K and non-zeros nnz = 392M) to
illustrate the behavior of the proposed prototype solver. Both Chameleon and
PaStiX use the version 1.1 of the StarPU runtime system described in Sect. 4.2.
All tests were performed in double precision.

Figures 3a and b depict the traces obtained on one node, using only CPU
cores or both GPUs and CPU cores, respectively. In both cases, the matrix has
been decomposed in four subdomains. Each subdomain is associated with one
MPI process in charge of a subset of six CPU cores (left trace Fig. 3a), or six
CPU cores and one GPU (right trace Fig. 3b), respectively. The runtime system
orchestrates the execution of the tasks on the different processing units. The
traces represent the execution on one particular subdomain. In the heterogeneous
case, each GPU has a CPU core dedicated to handle it (see Sect. 4.2).

Task execution Idle Fetching input

(a) 6 CPUs per subdomain (b) 5 CPUs and a GPU per subdomain

Fig. 3. Multicore execution trace associated with one subdomain of the MPI+task
MaPHyS prototype processing the Audi kw matrix. Four subdomains (hence four
processes) are used in total.

The resulting traces show the versatility of the approach that composed
multi-threaded and task-based numerical kernels. The processing units are
abstracted and the same code may be executed indistinguishably on the homo-
geneous or on the heterogeneous cases. Although the implementation is still
preliminary and not optimized, Table 1 shows that the resulting timings allow
for accelerating all three numerical steps with the use of one GPU per subdomain
in spite of the preliminary design. The setup of the preconditioner benefits from
the highest acceleration as it mostly consists of a dense factorization accelerated

92 E. Agullo et al.

Table 1. Minimum, average and maximum time per subdomain for the MPI+task
MaPHyS prototype for the multicore case (Fig. 3a) and the heterogeneous case
(Fig. 3b) processing the Audi kw matrix. Four subdomains (hence four processes) are
used in total and a dense preconditioner is applied.

Multicore case Heterogeneous case

Factorization of the interiors min 19.6 23.3
avg 37.2 31.7
max 50.8 38.2

Setup of the preconditioner min 4.80 1.10
avg 7.02 3.63
max 9.81 7.37

Solve step min 13.1 11.8
avg 13.2 11.8
max 13.2 11.8

with Chameleon. The factorization of the interiors has a limited (but not neg-
ligible) acceleration because PaStiX internal kernel has not been tuned for the
Nvidia K40-M GPU. The solve step phase is accelerated thanks to the applica-
tion of the preconditioner with Chameleon. The time differences between the
fastest and slowest subdomain computation for the factorization of the interiors
and preconditioner setup are related to the matrix partitioning that balances
the splitting of the adjacency graph but not the calculation associated with each
subgraph. They are some ongoing work in the graph community to address this
issue that is out of the scope of this work.

6 Concluding Remarks

We have proposed an MPI+task extension of MaPHyS for exploiting distributed
memory heterogeneous platforms. The modular design of MaPHyS allowed to
use the task-based PaStiX and Chameleon sparse and dense direct libraries,
respectively, in order to benefit from their ability to efficiently exploit the under-
lying heterogeneous architecture.

Although this prototype extension of MaPHyS is working properly and
showed the feasibility of the proposed approach, designing a solid MPI+task
version of MaPHyS would require further work. First of all, the proposed app-
roach still follows a bulk-synchronous parallelism [38] (also sometimes designated
as fork-join approach) pattern. Indeed, the calls to PaStiX and Chameleon,
yet local to each subdomain, induce costly pre-processing. On the one hand,
PaStiX need to perform a reordering of the variables to limit fill-in and a sym-
bolic factorization. These steps are sequential in the present prototype. Although
there exist parallel implementations of these steps, they are known to have a

Task-Based Sparse Hybrid Linear Solver 93

very limited parallel efficiency. To overcome the subsequent synchronizations,
it would therefore be necessary to overlap these symbolic pre-processing steps
with other numerical operations. On the other hand, following Plasma design,
Chameleon first decomposes the dense matrix in tiles, which is also a synchro-
nizing operation. As for Plasma, there exists an advanced interface allowing for
tackling matrices already decomposed into tiles. Using this interface would cer-
tainly alleviate the bottleneck occurring within the setup of the preconditioner
when calling the dense solver.

Other operations involved in the iterative solution step such as level-one
BLAS and matrix-vector product could be implemented with a task-based app-
roach. In the case of a dense preconditioner, these operations could also be
implemented by calling BLAS operations implemented in Chameleon. How-
ever, in the present state, without using the advanced interface discussed above,
the synchronizations would occur multiple times per iteration. A full task-based
CG solver is presented in [7] and discuss in details how synchronization points
can be alleviated.

To completely alleviate the synchronizations between the different sequences
into which MaPHyS is decomposed, it would be necessary to further overlap
communications with computations. This could be performed with a clever usage
of asynchronous MPI calls. This approach is relatively difficult to implement and
has been applied to overlap main stages in MaPHyS, both in the MPI+thread
version and in the MPI+task prototype discussed in this section. However, rely-
ing on this paradigm for performing fine-grain overlapping would be challenging
and certainly result in a code very complex to maintain. Alternatively, the MPI
calls can be appended to the task flow. Doing so, the task-based runtime system
can dynamically decide when to perform the actual MPI call to the MPI layer
and interleave them with fine-grain computational tasks. Modern runtime sys-
tems such as StarPU and PaRSEC provide such an opportunity. However, even
in that case, the task-flow would still have to be designed accordingly to the
mapping between tasks and processes. On the contrary, the full task approach
(see Fig. 2a) would allows for fully abstracting the hardware architecture and
makes the mapping issues practically orthogonal to the design of the task flow.

References

1. MAGMA Users’ Guide, version 0.2, November 2009. http://icl.cs.utk.edu/magma
2. PLASMA Users’ Guide: Parallel Linear Algebra Software for Multicore Architec-

tures, Version 2.0, November 2009. http://icl.cs.utk.edu/plasma
3. Agullo, E., Giraud, L., Guermouche, A., Roman, J.: Parallel hierarchical hybrid

linear solvers for emerging computing platforms. C. R. Acad. Sci. Mec. 339(2–3),
96–105 (2011)

4. Agullo, E., Augonnet, C., Dongarra, J., Ltaief, H., Namyst, R., Thibault, S.,
Tomov, S.: Faster, cheaper, better - a hybridization methodology to develop linear
algebra software for GPUs. In: Hwu, W.W. (ed.) GPU Computing Gems, vol. 2.
Morgan Kaufmann, September 2010

http://icl.cs.utk.edu/magma
http://icl.cs.utk.edu/plasma

94 E. Agullo et al.

5. Agullo, E., Buttari, A., Guermouche, A., Lopez, F.: Multifrontal QR factorization
for multicore architectures over runtime systems. In: Wolf, F., Mohr, B., Mey, D.
(eds.) Euro-Par 2013. LNCS, vol. 8097, pp. 521–532. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-40047-6 53

6. Agullo, E., Buttari, A., Guermouche, A., Lopez, F.: Implementing multifrontal
sparse solvers for multicore architectures with Sequential Task Flow runtime sys-
tems. ACM Trans. Math. Softw. 43, 13 (2016)

7. Agullo, E., Giraud, L., Guermouche, A., Nakov, S., Roman, J.: Task-based
conjugate-gradient for multi-GPUs platforms. Research report RR-8192, INRIA
(2012)

8. Allen, R., Kennedy, K.: Optimizing Compilers for Modern Architectures: A
Dependence-Based Approach. Morgan Kaufmann, San Francisco (2002)

9. Amestoy, P.R., Duff, I.S., Koster, J., L’Excellent, J.-Y.: A fully asynchronous mul-
tifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl.
23(1), 15–41 (2001)

10. Amestoy, P.R., Guermouche, A., L’Excellent, J.-Y., Pralet, S.: Hybrid scheduling
for the parallel solution of linear systems. Parallel Comput. 32(2), 136–156 (2006)

11. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.-A.: StarPU: a uni-
fied platform for task scheduling on heterogeneous multicore architectures. In:
Sips, H., Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS, vol. 5704, pp. 863–
874. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03869-3 80

12. Ayguadé, E., Badia, R.M., Igual, F.D., Labarta, J., Mayo, R., Quintana-Ort́ı, E.S.:
An extension of the StarSs programming model for platforms with multiple GPUs.
In: Sips, H., Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS, vol. 5704, pp.
851–862. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03869-3 79

13. Blackford, L.S., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I.,
Dongarra, J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D.,
Whaley, R.C.: ScaLAPACK Users’ Guide. SIAM Press, Philadelphia (1997)

14. Bosilca, G., Bouteiller, A., Danalis, A., Faverge, M., Haidar, H., Herault, T.,
Kurzak, J., Langou, J., Lemarinier, P., Ltaief, H., Luszczek, P., YarKhan, A.,
Dongarra, J.: Distributed-memory task execution and dependence tracking within
DAGuE and the DPLASMA project. Innovative Computing Laboratory Technical
report (2010)

15. Bosilca, G., Bouteiller, A., Danalis, A., Faverge, M., Hérault, T., Dongarra, J.J.:
PaRSEC: exploiting heterogeneity to enhance scalability. Comput. Sci. Eng. 15(6),
36–45 (2013)

16. Buttari, A.: Fine-grained multithreading for the multifrontal QR factorization of
sparse matrices. SIAM J. Sci. Comput. 35(4), C323–C345 (2013)

17. Carvalho, L.M., Giraud, L., Meurant, G.: Local preconditioners for two-level non-
overlapping domain decomposition methods. Numer. Linear Algebra Appl. 8(4),
207–227 (2001)

18. Chan, T.F.C., Mathew, T.P.: The interface probing technique in domain decom-
position. SIAM J. Matrix Anal. Appl. 13(1), 212–238 (1992)

19. Gaidamour, J., Hénon, P.: A parallel direct/iterative solver based on a Schur com-
plement approach. In: 2013 IEEE 16th International Conference on Computational
Science and Engineering, pp. 98–105 (2008)

20. Gaidamour, J., Hénon, P.: HIPS: a parallel hybrid direct/iterative solver based on
a Schur complement approach. In: Proceedings of PMAA (2008)

21. Giraud, L., Haidar, A., Watson, L.T.: Parallel scalability study of hybrid precon-
ditioners in three dimensions. Parallel Comput. 34, 363–379 (2008)

http://dx.doi.org/10.1007/978-3-642-40047-6_53
http://dx.doi.org/10.1007/978-3-642-03869-3_80
http://dx.doi.org/10.1007/978-3-642-03869-3_79

Task-Based Sparse Hybrid Linear Solver 95

22. Giraud, L., Haidar, A.: Parallel algebraic hybrid solvers for large 3D convection-
diffusion problems. Numer. Algorithms 51(2), 151–177 (2009)

23. Giraud, L., Haidar, A., Pralet, S.: Using multiple levels of parallelism to enhance
the performance of domain decomposition solvers. Parallel Comput. 36(5–6), 285–
296 (2010)

24. Haidar, A.: On the parallel scalability of hybrid linear solvers for large 3D problems.
Ph.D. thesis, Institut National Polytechnique de Toulouse, 17 December 2008

25. Hénon, P., Ramet, P., Roman, J.: PaStiX: a high-performance parallel direct solver
for sparse symmetric definite systems. Parallel Comput. 28(2), 301–321 (2002)

26. Hénon, P., Saad, Y.: A parallel multistage ILU factorization based on a hierarchical
graph decomposition. SIAM J. Sci. Comput. 28(6), 2266–2293 (2006)

27. Jaulmes, L., Casas, M., Moretó, M., Ayguadé, E., Labarta, J., Valero, M.: Exploit-
ing asynchrony from exact forward recovery for due in iterative solvers. In: Proceed-
ings of the International Conference for High Performance Computing, Networking,
Storage and Analysis, SC 2015, pp. 53:1–53:12. ACM, New York (2015)

28. Karypis, G., Kumar, V.: MeTiS - Unstructured Graph Partitioning and Sparse
Matrix Ordering System - Version 2.0. University of Minnesota, June 1995

29. Lacoste, X.: Scheduling and memory optimizations for sparse direct solver on
multi-core/multi-GPU cluster systems. Ph.D. thesis, LaBRI, Université Bordeaux,
Talence, France, February 2015

30. Lacoste, X., Faverge, M., Ramet, P., Thibault, S., Bosilca, G.: Taking advantage
of hybrid systems for sparse direct solvers via task-based runtimes, May 2014

31. Li, X.S., Shao, M., Yamazaki, I., Ng, E.G.: Factorization-based sparse solvers and
preconditioners. J. Phys. Conf. Ser. 180(1), 012015 (2009)

32. Li, X.S., Demmel, J.W.: SuperLU DIST: a scalable distributed-memory sparse
direct solver for unsymmetric linear systems. ACM Trans. Math. Softw. 29(2),
110–140 (2003)

33. Lopez, F.: Task-based multifrontal QR solver for heterogeneous architectures.
Ph.D. thesis, University Paul Sabatier, Toulouse, France (2015, submitted)

34. Mathew, T.P.A.: Domain Decomposition Methods for the Numerical Solution of
Partial Differential Equations. Lecture Notes in Computational Science and Engi-
neering, vol. 61. Springer, Heidelberg (2008). doi:10.1007/978-3-540-77209-5

35. Nakov, S.: On the design of sparse hybrid linear solvers for modern parallel archi-
tectures. Theses, Université de Bordeaux, December 2015

36. Pellegrini, F., Roman, J.: Sparse matrix ordering with Scotch. In: Hertzberger, B.,
Sloot, P. (eds.) HPCN-Europe 1997. LNCS, vol. 1225, pp. 370–378. Springer,
Heidelberg (1997). doi:10.1007/BFb0031609

37. Rajamanickam, S., Boman, E.G., Heroux, M.A.: ShyLU: a hybrid-hybrid solver for
multicore platforms. In: International Parallel and Distributed Processing Sympo-
sium, pp. 631–643 (2012)

38. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8),
103–111 (1990)

39. Van Zee, F.G., Chan, E., van de Geijn, R.A., Quintana-Orti, E.S., Quintana-
Orti, G.: The libflame library for dense matrix computations. Comput. Sci. Eng.
11(6), 56–63 (2009)

40. Yamazaki, I., Li, X.S.: On techniques to improve robustness and scalability of a par-
allel hybrid linear solver. In: Palma, J.M.L.M., Daydé, M., Marques, O., Lopes, J.C.
(eds.) VECPAR 2010. LNCS, vol. 6449, pp. 421–434. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-19328-6 38

http://dx.doi.org/10.1007/978-3-540-77209-5
http://dx.doi.org/10.1007/BFb0031609
http://dx.doi.org/10.1007/978-3-642-19328-6_38

Automatic Generation of OpenCL Code
for ARM Architectures

Sergio Afonso(B), Alejandro Acosta, and Francisco Almeida

Universidad de La Laguna, San Cristóbal de La Laguna, Spain
{safonsof,aacostad,falmeida}@ull.es

Abstract. The efficient exploitation of the increasing computational
capabilities of mobile devices is still a challenge. The heterogeneity of
Systems on Chip (SoC) makes necessary a very specific knowledge of
their hardware in order to harness their full potential. OpenCL is a well
known standard for cross-platform usage of accelerator devices. We follow
an annotation-based approach for solving the problem of high develop-
ment cost of OpenCL programming for mobile devices. With our app-
roach, the programmer can select from different programming models the
one that offers the best performance for each section of the application.
Computational results show that our automatically-generated OpenCL
code can outperform Renderscript when running on the GPU of Android
devices, making it the best choice for a range of parallel algorithms.

Keywords: Parallelizing compiler · Source-to-source translation ·
Annotation based · OpenCL · Android · ARM

1 Introduction

Technologies previously only available in desktop computers are now imple-
mented in embedded and mobile devices. In this scenario, we can find that new
processors integrating multicore architectures, GPUs and DSPs are being devel-
oped for this market. The Nvidia Tegra [15], the Qualcomm Snapdragon [16]
and the Samsung Exynos [17] are some examples of platforms that go in this
direction. Conceptually, the architectural model can be viewed as a traditional
heterogeneous CPU/GPU system where memory is shared between processing
units and acts as a high-bandwidth communication channel.

In non-unified memory architectures, it is common to have a subset of system
memory addressable by the GPU. Technologies like Algorithmic Memory [12],
GPUDirect [14] and Unified Virtual Addressing from Nvidia and HSA from
AMD [5] are working towards a unified memory system for CPUs and GPUs on
top of traditional memory architectures. At the same time, memory performance
continues to be outpaced by the ever increasing demand of faster processors.

Many frameworks have been created to support the development of software
for these devices. The main companies competing in this market have their own
platforms: Android from Google [9], iOS from Apple [7] and Windows Phone
c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 96–107, 2017.
DOI: 10.1007/978-3-319-58943-5 8

Automatic Generation of OpenCL Code for ARM Architectures 97

from Microsoft [13]. Each of these platforms provide a high-level development
framework that makes easier the creation of applications. However, they are more
geared towards fast development of interactive applications than to reduce the
difficulty of efficiently exploiting the underlying parallel architecture. Given the
high heterogeneity existent among these devices, the creation of tools is needed
to improve the development productivity while exploiting the computational
capabilities of their different architectures.

Android provides three development models with distinct features that have
to be used in different parts of the application in order to get the best overall
performance. In [20] a detailed comparative of these models was presented and
the necessity of a unified programming model for Android is highlighted.

– Java: A very comprehensive API is provided, so it is the easiest model to pro-
gram. Most Android applications are written in Java, so Android developers
should be familiar with this language.

– Renderscript: It is designed for computationally intensive tasks, mainly
SPMD. It requires to learn a new language based on C.

– Native C: It provides access to native libraries, suffering from less runtime
overhead than Java, which sometimes compensates the extra development
cost that it supposes.

Paralldroid [1,2,4] is a development framework that allows the automatic
creation of Native C and Renderscript applications—sequential and parallel—
for mobile devices. Under Paralldroid, the developer annotates the main com-
ponents of each Java class that has to be optimized. It uses the information
provided by the annotations to generate a new program that incorporates the
code sections to run on the CPU or GPU, using a specified target language.
Therefore, Paralldroid unifies the different programming models of Android.

Paralldroid is an evolution of other annotation-based approaches to auto-
matic parallelization, such as OpenMP or OpenACC, because it is higher level.
OpenMP and OpenACC annotations still require the developer to annotate
blocks of code inside the algorithm’s implementation, whilst Paralldroid sep-
arates more clearly the implementation from the parallel semantics by applying
annotations to classes, fields and methods. Our goal is to obtain comparable
performance to these approaches while making it easier for the developer.

In this paper we present a new backend system for Paralldroid to support
the generation of OpenCL code. OpenCL is a native library and programming
language for writing high performance applications for heterogeneous systems,
supporting many kinds of accelerators [10]. It provides a mechanism for parallel
programming and a low-level API for communicating data and handling the dif-
ferent computing devices present in the hardware platform. Currently, OpenCL
is not supported by the Android implementations provided by Google. How-
ever, given the heterogeneity of the mobile ecosystem, some manufacturers offer
OpenCL in their devices, so it is still interesting to generate OpenCL for those.

The main contributions of this paper are:

– The importance of OpenCL in desktop systems is well known. Now, this
programming model is extended to mobile devices. The code generation

98 S. Afonso et al.

methodology proposed allows OpenCL code to be transparently executed
from Android applications written in Java.

– The support of OpenCL opens the possibility to extend Paralldroid to plat-
forms other than Android. The only requirements that this platform needs to
meet are support for Java and an OpenCL driver.

– We analyze the performance of the different programming models supported
to prove the benefits of our tool. Computational results show that this new
backend improves the performance of Paralldroid-generated programs when
ran in GPUs.

– Our new approach lets high-level Java application developers take advan-
tage of more efficient GPU executions without modifying the annotated Java
source code. The improvements in performance come from the use of a lower-
level library for heterogeneous computing and, as a result, the increase in
complexity of the code generation process.

Some tools that generate parallel code from an extension to Java have been
presented in [8,18,19]. In all those cases, the Java syntax is modified to intro-
duce new syntactic elements into the language. The main disadvantage of this
approach is that those new elements are not compatible with the definition of
Java, so a standard Java compiler cannot compile the source code with these
extensions. Paralldroid definitions are compatible with Java, because they are a
set of new annotations that a standard Java compiler can just ignore. However,
the semantics of parallel methods are not preserved in that case. In [11], authors
present a Domain Specific Language for generating Renderscript code. It is spe-
cific for image processing languages, and it has the downside of requiring the
user to learn a new programming language. Our proposal, in contrast, is based
on the main language for Android, and our target users know this language.

This paper is structured as follows: Sect. 2 introduces the development mod-
els in Android and the different alternatives it offers for exploiting mobile
devices, and some of the difficulties associated to each development model are
shown. Section 3 gives an overview of the methodologies proposed by Paralldroid.
Section 4 presents our new backend to Paralldroid to support the generation of
OpenCL code. The performance of our automatically generated OpenCL code is
validated in Sect. 5 using four different image-processing applications. We mea-
sure execution times of a sequential Java implementation and of Renderscript
and OpenCL implementations automatically generated by Paralldroid. We finish
with some conclusions and future work in Sect. 6.

2 The Development Model in Android

Android is a Linux based operating system mainly designed for mobile devices
such as smartphones and tablets. Android applications are written in Java, and
the Android Software Development Kit (SDK) provides the libraries and tools
needed to build, test, and debug applications. Starting in version 5.0 applications
run in the Android Run Time (ART), which manages system resources allocated
to each application.

Automatic Generation of OpenCL Code for ARM Architectures 99

Besides the development of Java applications, Android provides packages
of development tools and libraries to develop native applications: The Native
Development Kit (NDK). The NDK enables to implement parts of the applica-
tion running in ART using native programming languages such as C and C++.
Native code communicates with the main class written in Java by using the Java
Native Interface (JNI). Files of native source code are compiled using the GNU
compiler (GCC). Note that using native code does not result in an automatic
performance increase, but it always increases application complexity. Hence, its
use is only recommended in CPU-intensive operations that don’t allocate much
memory, such as signal processing and physics simulations. Native code is also
useful for porting an existing native library to Android. We can access OpenCL
from the native context if the OpenCL runtime libraries are present in the device.

In order to exploit the high computational capabilities on current devices,
Android provides Renderscript, which is a high performance computation API
and a programming language based on the C language (C99 standard). Render-
script allows the execution of parallel applications under several types of proces-
sors such as the CPU, GPU or DSP, selecting one of them at runtime depending
on the hardware’s features. Renderscript (.rs files) codes are compiled using an
LLVM compiler based on Clang. Moreover, it generates a set of Java wrapper
classes around the Renderscript code. Again, the use of Renderscript code does
not result in an automatic performance increase, but it is useful for applica-
tions that do image processing, mathematical modelling, or any operations that
require lots of parallel computation.

3 Paralldroid

Paralldroid is designed to ease the development of parallel applications on the
Android platform. We assume that mobile platforms feature a classical CPU and
other kind of co-processor, like a GPU, that can be exploited through OpenCL or
Renderscript. The way Paralldroid does this is by transforming the original Java
source code into another code that, preserving the same semantics, is executed in
a more efficient way. The generation of code on other languages is also required
in order to take advantage of all the programming models in Android, but in
each algorithm the best programming model to use can be a different one due
to their different features. This is why the target language is something the user
explicitly indicates when using Paralldroid.

Directive based parallelism has been successfully used in applications for
High Performance Computing (HPC) systems for years, and Paralldroid takes
the same approach in the mobile application development world.

The methodologies proposed by Paralldroid can be defined in two points:

– Annotation methodology: The Target annotation creates a data envi-
ronment that allows the memory management and the execution of code in
the target context. Elements inside a class (fields and methods) can be used
to define the data and execution models in the target context. Paralldroid

100 S. Afonso et al.

Table 1. Paralldroid annotations

Annotation Applied to Parameters Scope

@Target Classes Value —

@Map Fields, method parameters Value @Target

@Declare Fields, methods — @Target

@Parallel Methods — @Target

@Input Method parameters — @Parallel

@Output Method parameters — @Parallel

@NumThreads Methods, method parameters Field @Parallel

@Index Method parameters — @Parallel

defines a set of annotations that are applied to the class fields and method
definitions. These annotations allow the creation of a device data environ-
ment, specify how a variable is mapped in the device data environment (data
model) and also specify how a section of code is executed in the device envi-
ronment (execution model), see Table 1.

– Generation methodology: The Paralldroid code generation process is inte-
grated in the OpenJDK Java compiling process. It adds a set of stages in
which the Paralldroid annotations are detected and new ASTs are generated
according to these annotations. For each implementation to generate from a
single annotated Java source, a translator class has to be created, which takes
the original AST as input and outputs another AST. To add support for a
new language, only is needed a new translator for the modified Java code and
the target language. This makes Paralldroid easily extensible.

4 OpenCL Code Generation

The OpenCL standard represents the most important effort to create a common
high performance programming interface for heterogeneous devices. The main
issue of OpenCL is the complexity of its programming model, which makes it
difficult to use and to keep the maintainability of the application.

The annotation methodology proposed by Paralldroid simplifies the complex-
ity associated to OpenCL. Based on a Java class definition, the programmer can
add a set of annotations to generate OpenCL code that can be executed trans-
parently, because it is integrated into the Java workflow. This simplifies the
development of OpenCL powered Android applications and helps this standard
to have a major adoption on the Android development community.

Figure 1 shows the different sets of translations classes of Paralldroid. As with
any of the other target languages of Paralldroid, the way to generate new ASTs
from the original source code is to create a translation class for each output
AST. The Java AST translator generates the modified Java code that manages

Automatic Generation of OpenCL Code for ARM Architectures 101

Fig. 1. Paralldroid translator classes. Our contribution is highlighted.

the data and execution models of OpenCL and forwards the implementation
of methods to the target context, according to the methodology explained in
Fig. 2. However, there is a noticeable difference between the set of translators
for OpenCL and the others. That difference is the fact that there is one extra
translator class. The OpenCL context is not directly accessible from the Java
context so, in addition to generating Java and OpenCL code, native code has
also to be created to work as a bridge between the two contexts. The OpenCL
Kernel Translator, is also unlike all other translators in that it can only generate
code for annotated methods, so it is not an “standalone” translator. This means
that it has to be called from other translator when a parallel method is found.
The OpenCL Kernel Translator outputs OpenCL C code that is inserted into the
native code as a string literal. This complex model is hidden by Paralldroid; the
programmer must only create a Java class and use the Paralldroid annotations.

(a) Execution model (b) Data model

Fig. 2. Execution and data models.

102 S. Afonso et al.

4.1 Execution Model

As shown in Fig. 2(a), the execution model consists of three basic operations,
which are creating and releasing the OpenCL context and the execution of ker-
nels. These operations are carried out in the constructor, finalizer and parallel
methods of the class, respectively.

– Static initializer: Every class annotated with @Target(OPENCL) has many
of its methods defined as native, so the library containing the implementation
of those has to be loaded so that the user can call them.

– Constructor: The first time an instance of the class is created, in the con-
structor the OpenCL shared objects are initialized (context, command queue,
. . .), and the OpenCL C kernels are compiled.

– Parallel methods: The signature of the generated @Parallel methods dif-
fers from the original methods in that the @Index parameters have been
stripped, since they are assigned at runtime by the OpenCL driver. More-
over, the method body is substituted by a kernel execution enqueued in native
code. The actual code of the method is translated to an OpenCL C kernel
that is embedded in the native code as a string constant.

– Methods: All @Declare methods are removed from the Java class and only
accessible from the target context. Every other method can also be called
from Java. For methods to be callable from the target context, they have to
be defined in native code and in OpenCL C code as support functions. This
makes it possible to call them from sequential and parallel methods.

– Finalizer: All the shared OpenCL objects that were created in the first
instantiation of the class have to be released when the last instance of the
class is garbage-collected.

4.2 Data Model

The data model of our approach to automatically offloading computation to
accelerators is shown in Fig. 2(b). The user annotates fields and method para-
meters in order to specify the data movements between the different contexts.

– Constructor: The first time an instance of the class is created, all static fields
are initialized according to the default values the user might have provided.
Then, each time an instance is created, the native context has to be initialized
with the same values that were used in the constructor. These two things are
achieved by creating two native initialization functions that take as arguments
the set of initialized fields in each case.

– Fields: Fields annotated as @Declare are deleted from the Java class and
only exist in the native context. The rest of fields, however, need to be
accessible from external Java code, even though they exist in the native
context. We accomplish this by automatically generating getter and setter
methods depending on the specified annotations. When a field is annotated
as @Map(TO) or @Map(TOFROM), a setter is generated, and when it is annotated

Automatic Generation of OpenCL Code for ARM Architectures 103

as @Map(TOFROM) or @Map(FROM), a getter is generated. As arrays are repre-
sented in OpenCL as memory objects, these methods enqueue the required
memory operations into the OpenCL command queue and transform the data
format from Java to OpenCL and vice versa.

– Methods: When a native method that receives arrays as arguments is called,
a conversion is needed between the Java and native formats and between the
native and OpenCL formats. Data transfers are performed according to the
@Map annotation applied to each array before and after running the body of
the method. The semantic in this case is the same as that of fields.

– Finalizer: All memory allocated when initializing the instance is released
when the garbage collector deletes it. When the last instance of the class is
being deleted, then also global objects and native static fields are released.

1 @Target(OPENCL)
2 public class GrayScale {
3 @Declare
4 private float gMonoMult[] =
5 {0.299f, 0.587f, 0.114f};
6 @Map(TO)
7 private int width;
8 @Map(TO)
9 private int height;

10
11 public GrayScale(int width, int height){
12 this.width = width;
13 this.height = height;
14 }
15 @Parallel
16 public void test(@Map(TO) int[] srcPxs,
17 @NumThreads @Map(FROM) int[] outPxs,
18 @Index int x){
19 int acc;
20
21 acc = (int)(((srcPxs[x]) & 0xff)
22 * gMonoMult[0]);
23 acc += (int)(((srcPxs[x]>> 8) & 0xff)
24 * gMonoMult[1]);
25 acc += (int)(((srcPxs[x]>>16) & 0xff)
26 * gMonoMult[2]);
27
28 outPxs[x] = (acc) + (acc << 8)
29 + (acc << 16)
30 + (srcPxs[x] << 24);
31 }
32 }

Listing 1.1. GrayScale in Paralldroid

public class GrayScale {
static {

System.loadLibrary("grayscale");
}
private static int instanceCount = 0;
private long instanceDataPtr;
private float[] gMonoMult =
{0.299F, 0.587F, 0.114F};

private int width;
private int height;
public GrayScale(int width, int height){

this.width = width;
this.height = height;
if (instanceCount == 0) initJNI();
++instanceCount;
initGrayScale(gMonoMult, width, height);

}
public native void test(int[] srcPxstest,
int[] outPxstest);

public native void setWidth(int width);
public native void setHeight(int height);
protected void finalize(){

destroyGrayScale();
--instanceCount;
if (instanceCount == 0) releaseJNI();

}
private native void initGrayScale(
float[] gMonoMult, int width, int height);

private native void destroyGrayScale();
private static native void initJNI();
private static native void releaseJNI();

}

Listing 1.2. Generated Java code

4.3 Paralldroid Example

Listing 1.1 shows a Java implementation for the algorithm of conversion of an
image to gray scale using Paralldroid. The @Target directive (line 1) specifies
that the class has to create an OpenCL context definition and that the elements
of the class have to be defined in that context. Lines 3 to 9 define its fields. The
constructor is defined in lines 11 to 14. The method test (lines 16 to 31) defines

104 S. Afonso et al.

the algorithm to transform an image to gray scale. The @Parallel directive
specifies that this method will be executed in parallel. srcPxs and outPxs are
the vectors which contain the input image and output buffer, respectively. Note
the usage of the appropriate @Map directive parameter in each of them. The
@NumThreads directive applied to an array means that the parallel method will
be executed with as many threads as elements there are in the array, but it
is also possible to specify an integer variable. The @Index directive defines the
index used in the parallel execution, which is used to access the elements of the
input and output vectors. The value of this variable is assigned at runtime, and
its values range from zero to the number of threads minus one.

Listing 1.2 shows the code generated by our Java translator, as described in
Sects. 4.1 and 4.2. The library that it loads is obtained from compiling the native
code that we also generate. A set of fields have been added. instanceCount
lets us initialize and release native global variables before the first instance is
created and after the last one is deleted, respectively. instanceDataPtr is a
field only accessed from the native code that keeps a reference to a dynamically
allocated struct holding the native instance data. The constructor (lines 11 to
17) is modified to call the native global and instance initializer function.

4.4 Error Handling

A new methodology for error handling has been developed as part of this new
backend for Paralldroid. This methodology was designed to ease the detection
and handling of errors that could occur in the target context to make the applica-
tion fail gracefully, notify or solve these problems at runtime. This methodology
could be adapted to other target languages of Paralldroid providing the user with
a seamless and unified way of handling errors that occur in the target contexts.

An OpenCLException class was created, which is a RuntimeException that
holds specific data of the OpenCL error. This exception contains an OpenCL
error code that could be used to troubleshoot the reason of the problem, and a
message with either the name of the file and line number where the error was
detected or the compilation log in case the error occured when compiling the
OpenCL C code at runtime.

After every call to a function of the OpenCL API in the generated native
code, the error code returned by the function is checked and an OpenCLException
is raised if there was an error. These exceptions can be handled from the calling
Java code, without any need of knowing what the native code is actually doing.

5 Computational Results

Leaving aside to future researches other relevant metrics for smartphones and
tablets (e.g., power management, network management, . . .), we validate the
performance of the generated code using four different applications. These are
based on the Renderscript image processing benchmark [6] (transforming an
image to gray scale, changing contrast and saturation levels of an image and

Automatic Generation of OpenCL Code for ARM Architectures 105

convolutions with window sizes 3 × 3 and 5 × 5). In all cases, we implemented
two versions of the code: a Java sequential version and a Java version with
Paralldroid annotations. From the same annotated Java code two versions were
automatically generated by Paralldroid: Renderscript and OpenCL. As it was
shown in [3], automatically generated Renderscript code performance was com-
parable to its handwritten counterpart, so we compare our generated OpenCL
code to that generated Renderscript code. Our implementations were tested over
a Sony Xperia Z (labelled SXZ) and an Odroid-XU3 (labelled XU3). Sony Xperia
Z is based on a Qualcomm APQ8064 Snapdragon S4 Pro SoC with a Quad-core
Krait CPU @ 1.5 GHz and an Adreno 320 GPU, whilst Odroid-XU3 is based on
a Samsung Exynos 5422 Octa SoC with dual ARM CPUs (Cortex-A15 @ 2GHz
and Cortex-A7 @ 1.3 GHz) and an 8-core ARM Mali-T628 MP6 GPU. Both
devices have 2GB of RAM shared by CPU and GPU, and support OpenCL
execution in their GPU.

In Fig. 3 we observe the speed-ups obtained relative to the sequential Java
implementation. We depicted results for our smallest and biggest image sizes
and for the finest and coarsest grain algorithms benchmarked. All OpenCL exe-
cutions are done in the GPU of the device, whilst the operating system can
decide at runtime where Renderscript is executed. In all our tests on the XU3,
Renderscript executions were carried out on the CPU of the device, which turns
out to be faster than the GPU. This may be due to the fact that XU3’s GPU is
not fully cache coherent, so the OpenCL driver reports that the system contains

Fig. 3. Speed-up obtained with respect to the sequential Java version

106 S. Afonso et al.

two GPU devices and our generated OpenCL host code only uses one of these
partitions of GPU cores. However, in almost every other case where both codes
were run in a GPU our generated OpenCL code was faster.

We noticed that the input size was not as relevant as the problem’s gran-
ularity regarding the performance. Coarser grain problems always experienced
higher speed-ups. It is also clear from the graphs that the performance of our
generated OpenCL code is more unstable than Renderscript. This could be in
part due to the fact that one of the main design goals of Renderscript is to
provide stable speed-ups at the expense of peak performance.

6 Conclusion

In this paper we have presented a new methodology for automatically generating
OpenCL code for mobile devices. Our approach lets the developer write the
whole application in a high-level programming language and, through a simple
set of annotations, let the compiler take care of offloading to GPUs. Calling the
offloaded code is transparent from the developer’s point of view.

The Paralldroid framework has proven to ease the development of such auto-
matic code generation tool due to its extensible design based on translator
classes. It also provides us with the added value of letting the programmer
choose a different target language for each class in the application, or testing
and deciding the one that gives the best performance for a particular problem.

Results show that our generated OpenCL code achieves the best performance
in most of the benchmarks where the GPU was used to run Renderscript com-
putations. The differences with respect to Java code are clear, even though dif-
ferences in the code are very small. Our approach greatly reduces the costs of
developing high performance code for mobile devices.

There is still room for improvement in our proposal for automatic generation
of OpenCL code. There are a number of optimizations that we can add to make
the generated code run faster and use the available resources more efficiently:

– To reduce data transfer overheads between the CPU and accelerator devices.
– Implementing task parallelism by executing kernels asynchronously and man-

aging a runtime dependency graph. This could improve the occupancy of the
GPU when running complex heterogeneous workloads.

– Usage of a global OpenCL context shared by all generated classes. Currently
we create an OpenCL context for each of the generated classes, even though
it would be better to have a single set of global OpenCL objects, such as the
context or the command queue, shared throughout the whole application.
This could result in a smaller overhead, since all these objects refer to the
same hardware.

Acknowledgement. This work was supported by the EC (ERDF), the NESUS
IC1315 COST Action, the Spanish Ministry of Education and Science through the
TIN2011-24598 project, and the Spanish CAPAP-H network.

Automatic Generation of OpenCL Code for ARM Architectures 107

References

1. Acosta, A., Afonso, S., Almeida, F.: Extending paralldroid with
object oriented annotations. Parallel Comput. 57, 25–36 (2016).
http://www.sciencedirect.com/science/article/pii/S0167819116300126

2. Acosta, A., Almeida, F.: Towards a unified heterogeneous development model in
android. In: 11th International Workshop HeteroPar 2013: Algorithms, Models and
Tools for Parallel Computing on Heterogeneous Platforms (2013)

3. Acosta, A., Almeida, F.: Paralldroid: performance analysis of GPU executions. In:
Lopes, L., et al. (eds.) Euro-Par 2014. LNCS, vol. 8806, pp. 387–399. Springer,
Cham (2014). doi:10.1007/978-3-319-14313-2 33

4. Acosta, A., Almeida, F.: Performance analysis of paralldroid generated programs.
In: 2014 22nd Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing, pp. 60–67 (2014)

5. Anandtech: AMD Outlines HSA Roadmap: Unified Memory for CPU/GPU in
2013, HSA GPUs in 2014. http://www.anandtech.com/show/5493/

6. AOSP: Android Open Source Project. http://source.android.com/
7. Apple: iOS: Apple mobile operating system. http://www.apple.com/ios
8. Dubach, C., Cheng, P., Rabbah, R., Bacon, D.F., Fink, S.J.: Compiling a high-

level language for GPUs: (via language support for architectures and compilers).
SIGPLAN Not. 47(6), 1–12 (2012)

9. Google: Android mobile platform. http://www.android.com
10. Khronos Group: The open standard for parallel programming of heterogeneous

systems. https://www.khronos.org/opencl/
11. Membarth, R., Reiche, O., Hannig, F., Teich, J.: Code generation for embedded

heterogeneous architectures on android. In: DATE, pp. 1–6 (2014)
12. Systems, M.: Algorithmic Memory TMTechnology. http://www.memoir-systems.

com/
13. Microsoft: Windows Phone: Microsoft mobile operating system. http://www.

microsoft.com/windowsphone
14. NVIDIA: GPUDirect Technology. http://developer.nvidia.com/gpudirect
15. NVIDIA: Tegra mobile processors: Tegra 2, Tegra 3 and Tegra 4. http://www.

nvidia.com/object/tegra-superchip.html
16. Qualcomm: Snapdragon mobile processors. http://www.qualcomm.com/

snapdragon
17. Samsung: Exynos mobile processors. http://www.samsung.com/global/business/

semiconductor/minisite/Exynos/
18. Valentin, C., Christian, S., Pierre, K., François, K.P., Jean-François, R.: Parallel

object programming with Java. http://gridgroup.hefr.ch/popj/doku.php
19. Viry, P.: Ateji PX for Java-parallel programming made simple. Ateji White Paper

(2010)
20. Qian, X., Guangyu Zhu, X.F.L.: Comparison and analysis of the three program-

ming models in Google android. In: 1st Asia-Pacific Programming Languages and
Compilers Workshop (APPLC), June 2012

http://www.sciencedirect.com/science/article/pii/S0167819116300126
http://dx.doi.org/10.1007/978-3-319-14313-2_33
http://www.anandtech.com/show/5493/
http://source.android.com/
http://www.apple.com/ios
http://www.android.com
https://www.khronos.org/opencl/
http://www.memoir-systems.com/
http://www.memoir-systems.com/
http://www.microsoft.com/windowsphone
http://www.microsoft.com/windowsphone
http://developer.nvidia.com/gpudirect
http://www.nvidia.com/object/tegra-superchip.html
http://www.nvidia.com/object/tegra-superchip.html
http://www.qualcomm.com/snapdragon
http://www.qualcomm.com/snapdragon
http://www.samsung.com/global/business/semiconductor/minisite/Exynos/
http://www.samsung.com/global/business/semiconductor/minisite/Exynos/
http://gridgroup.hefr.ch/popj/doku.php

Workflow Performance Profiles: Development
and Analysis

Dariusz Król1,2(B), Rafael Ferreira da Silva2, Ewa Deelman2,
and Vickie E. Lynch3

1 Department of Computer Science and Academic Computer Center Cyfronet,
Faculty of Computer Science, Electronics and Telecommunications,

AGH University of Science and Technology, Krakow, Poland
dkrol@agh.edu.pl

2 USC Information Sciences Institute, Marina Del Rey, CA, USA
3 Oak Ridge National Laboratory, Oak Ridge TN, USA

Abstract. This paper presents a method for performance profiles devel-
opment of scientific workflow. It addresses issues related to: workflows
execution in a parameter sweep manner, collecting performance informa-
tion about each workflow task, and analysis of the collected data with
statistical learning methods. The main goal of this work is to increase
the understanding about the performance of studied workflows in a sys-
tematic and predictable way. The evaluation of the presented approach is
based on a real scientific workflow developed by the Spallation Neutron
Source - a DOE research facility at the Oak Ridge National Laboratory.
The workflow executes an ensemble of molecular dynamics and neutron
scattering intensity calculations to optimize a model parameter value.

1 Introduction

Scientific workflows are a popular way of conducting extreme-scale scientific
research, which may require composing thousands of computational jobs. Work-
flows have been widely used in different science domains, including astronomy
and gravitational wave, seismology, and others [21]. In a workflow, each job may
have different requirements for CPU, I/O, and memory. An accurate specification
of these requirements (along with job’s runtime) is crucial to optimize the per-
formance and accuracy of resource provisioning and job scheduling algorithms,
reduce the overall runtime, decrease resource utilization, etc.

Due to the high complexity of scientific workflows, users often do not have
detailed knowledge about workflow jobs requirements. Typically, users overesti-
mate job requirements, since an underestimation may lead to job termination
(e.g., due to exceeding the maximum job runtime). Resource requirements spec-
ification can also affect job’s execution, e.g. setting too few resources may lead
to extreme execution time in case of large jobs. When considering running sev-
eral instances of the same workflow with different input parameter values, it is
fundamental that job requirements estimation have good accuracy. A common
method to address this issue is to derive predictions from the analysis of past
c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 108–120, 2017.
DOI: 10.1007/978-3-319-58943-5 9

Workflow Performance Profiles: Development and Analysis 109

workflow executions. Therefore, we see the need for fine-grained monitoring tools
to automatically collect such information, and to build workflow profiles.

Most of the work in workflow profiling target the peak data of job require-
ments [7,12]. Although this information allows the estimation of peak require-
ments (e.g., disk space, memory, etc.), it does not provide any insight into how
resources are consumed by jobs over time within a workflow. This knowledge not
only improves the overall understanding of workflow executions, but it increases
the efficiency of job scheduling and resource utilization, in particular when plan-
ning large-scale workflows. Over the years, several application monitoring sys-
tems have been developed, however their practical application to produce per-
formance profiles is often constrained by the inability to compare measurements
from multiple executions.

The contributions of this paper include: (1) a holistic process for the develop-
ment and analysis of workflow performance profiles; (2) description of different
phases of the proposed process along with existing software, which can facilitate
its practical application; (3) evaluation of the presented approach using a large
high performance computing (HPC) system available at the NERSC facility [13];
and (4) the profiling of a real workflow application.

2 Performance Profiles of Scientific Workflows

Scientific workflows are often executed multiple times with different input para-
meter values to study distinct conditions, e.g. climate modeling with different
mesh resolutions. Variations of the input parameters may lead to significant dif-
ferences in resource requirements for the jobs. Understanding the relationships
between the workflow’s input and job performance metrics is crucial to accu-
rately estimate these requirements. Also, it is important to understand how a
variation in an input parameter may affect job performance. Discovery of these
relationships is often referred to as sensitivity analysis [19], i.e. the assessment
of how output variables are affected based on variations in the input variables.
This type of analysis is mostly performed on the final values of responses, and
it does not include variability of performance during job runtime. We propose
an approach to conduct such analysis, which includes the temporal aspect of the
workflow performance behavior, i.e. performance is measured not only at job
completion, but also at different time instants during the job execution.

In this context, a performance profile for a given job and a metric can be
described as a time series with values of the metric measured in equidistant
points in time during the job execution. By collecting data from multiple execu-
tions of the same workflow configuration, we can compute statistically significant
performance profiles for each job in a workflow.

2.1 End-to-End Approach to Performance Profiles Generation

The process of generating workflow performance profiles takes as input a work-
flow and a set of distinct input parameters. For each possible combination of

110 D. Król et al.

Fig. 1. Overview of the process for generating workflow performance profiles.

these parameters, a workflow execution is performed. The workflow performance
data gathered using monitoring tools is then used to build average profiles, and
to derive the sensitivity analysis. The ultimate goal of this process is to provide
quantitative information about relationships between the input parameters and
jobs’ performance over time. An overview of the proposed approached is shown
in Fig. 1. Below, we describe each of the process’ phases in detail:

Phase 1 (Data Gathering). In this phase, a workflow execution is performed for
each set of different input parameters (referred to as workflow configurations).
To increase statistical significance, each configuration runs multiple times. Each
workflow execution produces a set of time series for various performance metrics
including CPU and memory usage, I/O load, among others. Note that for tightly-
coupled parallel programs, time series performance values are collected for each
individual process executed within the program.

Phase 2 (Averaging Execution Profiles). Time series of performance measure-
ments are then used to compute averaged execution profiles—a time series
describing a performance metric for a given job. Averaged performance profiles
are computed based on multiple workflow executions of the same configuration
(same set of input parameter values). The outcomes of this phase are execution
profiles for each collected performance metric and for each job in a workflow.

Phase 3 (Sensitivity Analysis). The goal of this phase is to assess the impact on
jobs performance by varying input parameters values. In this paper, we address
this analysis with well-known statistical methods.

2.2 Generating Performance Profiles in Practice with HPC

The presented approach may pose difficulty in practice, specially when manually
implementing it in HPC environments. We identify two detached aspects of our
approach, which can be done in an automatic way with existing software: (1) exe-
cuting and monitoring workflow executions, and (2) conducting data collection.

Workflow Performance Profiles: Development and Analysis 111

We use the Pegasus [4] workflow management system to run scientific work-
flows on different computational infrastructures. It includes in-situ online mon-
itoring [8] that collects detailed information about jobs performance and the
compute resources, including: system and process CPU utilization and memory
usage, and process I/O. Each process in a job is monitored separately using
information from the proc virtual filesystem and with system calls intercep-
tion. This detailed monitoring information constitutes the basis of the workflow
performance profiles.

We use Scalarm [9,10] as a platform for parameter studies on heterogeneous
computational infrastructures, i.e. to execute the same application (a scientific
workflow in our case), with different input parameters. Scalarm supports different
steps of this process including: input parameter space specification, application
execution, and data collection. It is currently used within the EU FP7 PaaSage
project [14] that aims at creating a solution for modelling and optimized deploy-
ment of cloud-oriented applications.

By combining Pegasus and Scalarm, we enable the data gathering phase of
the process for generating and analyzing workflow performance profiles (Fig. 1).
Both tools are generic, and support a vast number of different high performance
and high throughput systems, which significantly increases the probability of
successful practical application of the proposed approach.

3 Experimental Evaluation

In this section, we present an application of our method for generating and
analyzing workflow performance profiles. We focus on phases 2 and 3 from the
process described in Fig. 1, i.e. calculating averaged performance profiles, and
conducting a sensitivity analysis of the workflow performance for different input
parameters. The data gathering process (phase 1) is not discussed in this paper,
since the data generation process is automatically performed by Scalarm and
Pegasus. Due to limited space and a large amount of data collected, we focus our
analysis to a subset of the data, which provides the most relevant information.

3.1 Scientific Workflow Application

To evaluate our approach, we use a material science-related workflow devel-
oped at the Spallation Neutron Source (SNS) facility. The workflow executes an
ensemble of molecular dynamics and neutron scattering intensity calculations to
optimize a model parameter value, e.g. to investigate temperature and hydrogen
charge parameters for models of water molecules. The results are compared with
experimental data from experiments such as QENS [2].

The SNS workflow takes as input a set of temperature values and 4 additional
parameters: type of material, the number of required CPU cores, the number of
timesteps in simulation, and the frequency the output data is written. Figure 2
shows a branch of the workflow to analyze one temperature value. First, each set
of parameters is fed into a series of parallel molecular dynamics simulations using

112 D. Król et al.

Fig. 2. A diagram of a branch of the SNS workflow.

NAMD [16]. The first simulation computes an equilibrium (namd ID0000002),
which is used by the second (namd ID0000003) to compute the production
dynamics. The output from the MD simulations has the global translation and
rotation removed using AMBER’s [18] cpptraj utility (ptraj ID0000004), which
is passed into Sassena [11] to compute coherent (sassena ID0000005) and inco-
herent (sassena ID0000006) neutron scattering intensities from the trajectories.
The final outputs of the workflow are transferred to the user’s desktop and loaded
into Mantid [1] for analysis and visualization.

3.2 Experiment Configuration and Execution Environment

The data gathering was prepared to run 16 different configurations of the work-
flow created as combinations of the input parameter values. We define a two-level
analysis: low (L) representing small values, and high (H) representing large values
of each parameter. There are many sampling methods available in the literature
(especially in case of sensitivity analysis popular techniques include Morris and
Sobol’ samplings) however the use of the proposed 2k method is justified by:

– time-consuming calculations - running a production workflow hundreds of
time to calculate input sensitivity would be infeasible,

– interpretation simplicity during the analysis phase,
– exploratory approach where we first use a coarse-grain sampling to develop

initial understanding and then we move to a fine-grain sampling in a subspace
of the input parameter space to improve initial findings.

Table 1 summarizes the values used for the analyzes. Atoms represent the mate-
rial used for simulation. Cores represent the number of cores used by NAMD and
Sassena jobs, respectively. Each configuration was executed 3 to 5 times to confirm
performance homogeneity of task executions and to eliminate any outliers created
by using shared resources, e.g. storage systems. To assess the performance impact
of each parameter value on the workflow execution, we limit our analysis to pairs of
configurations, where only one parameter value is varied. We focus on two specific
configurations where the material used is varied: atoms L cores L timesteps H
outfreq L and atoms H cores L timesteps H outfreq L. In this case, we can
evaluatetheimpactofdifferentmaterialtypesontheworkflowperformanceforsmall
number of cores and output data frequency (L), and large timesteps (H). Sequential
jobs (e.g., ptraj ID0000004) have a very short runtime (below 1 min), thus we do
not consider them in our analysis.

Workflow Performance Profiles: Development and Analysis 113

Table 1. Input parameter values for the SNS workflow in the experimental evaluation.

Factor level Atoms Cores Timesteps Data write freq.

L 3,692 144/72 50,000 = 0.005 ns 1,000 = 0.0001 ns

H 7,496 288/144 500,000 = 0.5 ns 5,000 = 0.0005 ns

User

Schedule data
gathering

Progress monitoring
Results

executions NERSC
Schedule tasks

executions

Monitoring data
from Kickstart

Monitoring
data

Aggregated
measurements

Time series DB
and Message Broker

Aggregated
monitoring data

Fig. 3. Overview of the testbed used during the experimental evaluation.

Figure 3 shows an overview of the testbed used in the experiments. Workflows
ran on the Hopper Supercomputer at NERSC [13], a Cray XE6 system with a
peak performance of 1.28 Petaflops, while Scalarm and Pegasus were deployed on
external hosts. A Pegasus workflow was launched for each configuration obtained
from the set of parameters. A message broker and a time series database server
were also deployed to collect online monitoring data during the workflow execu-
tion. Performance metrics were collected every 5 s, and include CPU utilization
(stime and utime), I/O (read and write bytes, iowait, syscr, and syscw),
memory (vmRSS and vmSize), and number of threads.

3.3 Experimental Results and Discussion

We focus our analysis on the four MPI jobs for performing molecular simulation
(NAMD and Sassena), since they represent most of the total CPU hours of
the workflow. Although several analyzes could be derived from this data, we
focus in: (1) determining whether a job is CPU- or I/O-bound; (2) studying job
behavior as a function of I/O- and CPU-related metrics; and (3) studying the
job performance behavior with averaged profiles.

Resource-Boundedness. Determining whether an application is CPU- or I/O-
bound may aid the resolution of poor performance issues, in particular for large-
scale applications. Typically, applications are classified into one of these cate-
gories based on the ratio between the time spent in the user (utime) and kernel
(stime) spaces—handling I/O-related interruptions, etc. However, for long run-
ning jobs (several hours or days), an application may behave differently along

114 D. Król et al.

0 200 400 600 800

0
50

10
0

15
0

20
0

25
0

Runtime [s]

st
im

e

atoms_H_cores_L_timesteps_H_outfreq_L
atoms_L_cores_L_timesteps_H_outfreq_L

0 200 400 600 800

40
0

60
0

80
0

10
00

Runtime [s]

ut
im

e

atoms_H_cores_L_timesteps_H_outfreq_L
atoms_L_cores_L_timesteps_H_outfreq_L

Fig. 4. Averaged performance profiles of stime [s] (left) and utime [s] (right) for a
namd ID0000002 job.

its execution. For instance, an application can be mostly CPU-bound with sev-
eral instants where I/O operations prevail. Therefore, computing platforms may
consider this dynamic behavior during scheduling or performance tuning.

We computed averaged workflow performance profiles for every MPI job. We
combined time series from runs of the same workflow input configuration for
each monitored performance metric, and then computed the average value of
the metric at each monitoring interval (5 s). Averaged performance profiles show
how resources are consumed by a job over time.

Overall, jobs present similar profiles for stime and utime, with larger config-
urations (atoms H) having longer runtimes. Figure 4 shows an example of aver-
aged profiles for namd ID0000002. Most of the execution time is spent on the
user space. I/O operations are mostly executed in the beginning of the execu-
tion, and then few (nearly negligible) write operations are performed along the
job execution. In the utime analysis (Fig. 4-right), occasional spikes disrupt the
linear behavior once the heaviest I/O operations have completed. These spikes
are due to the short timespan of the monitoring interval. Note that peaks are
often followed by troughs of similar magnitude, or vice-versa.

Jobs Behavior Analysis. Understanding jobs behavior is fundamental to the
design and optimization of computing systems (e.g., job scheduling, resource
provisioning, etc.). Therefore, we assess how different workflow input parame-
ters impact jobs performance. We analyze relative cumulative value (RCV) of a
performance metric as a function of normalized job runtime, which describes how
many resources where consumed from the beginning of execution till the speci-
fied time moment. Since runtime varies among executions (mostly influenced by
the machine’s performance or external load), the scaled runtime values allow the
analysis of (1) overall resource consumption over time, and of (2) infrastructure-
related anomalies between different executions of the same workflow configu-
ration. Anomalies can be inferred from abnormal behaviors of the RCV. The
analysis and handling of these behaviors is out of the scope of this work.

Figure 5 shows RCVs for stime and utime from the NAMD jobs previously
analyzed. Notice: for each configuration, a RCV graph was plotted for each run.
There is a visible difference between both configurations for stime (Fig. 5-left).

Workflow Performance Profiles: Development and Analysis 115

Fig. 5. RCVs of stime (left) and utime (right) for a namd ID0000002 job.

The configuration with the lower number of atoms (atoms L) performs most of
the I/O operations within the first 15% of its runtime, while atoms H spreads I/O
operations over time. This difference is due to: (1) the lower percentage number of
I/O operations performed by atoms H in the beginning of the execution; or (2)
a significant increase on the number of I/O operations by atoms H along the
execution. In the subsequent analysis, we investigate this difference in detail.
The utime behavior is similar and linearly correlated to the job runtime in
both cases. This result indicates that computations in both configurations follow
nearly the same pattern, and have a consistent number of operations throughout
the job execution. This analysis confirms similarity between different runs of the
workflow.

Performance Profiles. Although RCVs are useful for modeling job behaviors,
they cannot characterize and quantify the differences obtained using differ-
ent input parameters. The difference in stime between both configurations
can be explained by analyzing performance profiles for I/O-related metrics.
Figure 6 shows the performance profile of write bytes and read bytes for
namd ID0000002 jobs with different number of atoms. The amount of data writ-
ten per time interval (Fig. 6-left) is nearly identical for both configurations,
except that atoms H takes longer. Note that for the larger configuration, the
magnitude of peaks and troughs on average is similar to atoms L. In contrast, a
significant difference on the amount of bytes read is observed in the first stage
of the execution for atoms H (Fig. 6-right). Furthermore, there is a significant
amount of data that is continuously read during the job execution, while almost
no read operations are performed for atoms L (notice the scale difference between
Fig. 6-right and Fig. 6-left). This result indicates that most of the time spent in
the kernel space (Fig. 5-left) is due to read operations.

Figure 7 shows the I/O profile for sasenna ID0000005 jobs. Write operations
(Fig. 7-left) present a particular behavior of writing significant amounts of data
in a regular time interval. Moreover, atoms H writes about twice as much data
as atoms L. In contrast to the previous analysis for the NAMD jobs, here the
increase in the number of atoms seems to enable an iteration process (e.g., a
loop condition). Read operations (Fig. 7-right) present a similar behavior, but
scaled up to the configuration with the higher number of atoms.

116 D. Król et al.

0 200 400 600 800

0
10

00
20

00
30

00
40

00

Runtime [s]

W
rit

te
n

da
ta

 [k
B

]

atoms_H_cores_L_timesteps_H_outfreq_L
atoms_L_cores_L_timesteps_H_outfreq_L

0 200 400 600 800

0
10

00
0

20
00

0
30

00
0

40
00

0

Runtime [s]

R
ea

d
da

ta
 [k

B
]

atoms_H_cores_L_timesteps_H_outfreq_L
atoms_L_cores_L_timesteps_H_outfreq_L

Fig. 6. Performance profile of write (left) and read (right) operations for
namd ID0000002.

0 500 1000 1500 2000 2500 3000

0
50

0
10

00
15

00

Runtime [s]

W
rit

te
n

da
ta

 [k
B

]

atoms_H_cores_L_timesteps_H_outfreq_L
atoms_L_cores_L_timesteps_H_outfreq_L

0 500 1000 1500 2000 2500 3000

0e
+

00
1e

+
05

2e
+

05
3e

+
05

4e
+

05

Runtime [s]

R
ea

d
da

ta
 [k

B
]

atoms_H_cores_L_timesteps_H_outfreq_L
atoms_L_cores_L_timesteps_H_outfreq_L

Fig. 7. Performance profile of write (left) and read (right) operations for
sassena ID0000005.

Sensitivity Analysis. The main effect of an input parameter on a response is
calculated with Eq. 1 as a difference between the average response for high and
low values of the input.

Ek = |Rk,H −Rk,L| (1)

where Rk,H denotes averaged simulation output (in our case resource consump-
tion) when input parameter k is set to high values H. This difference should be
interpreted as a change in the response due to a change in the input. We use
main effects to describe how input parameters influence workflow performance.
Figure 8 shows the normalized sensitivity for workflow jobs calculated as:

Sk =
Ek∑

i

Ei
(2)

where k denotes an input parameter, Ek is the effect of the input parameter on
the model output measure at the end of job’s execution. It doesn’t have a unit
since it is a ratio between the effect of a single parameter to summarised effect of
all parameters. NAMD jobs (Fig. 8a and b) are mostly influenced by the number
of simulation steps and the type of material used in the simulation.

In order to provide enhanced sensitivity analysis of workflow performance
profiles, we compute sensitivity over time, i.e. the impact of each input parameter
on the application response during task runtime. It is still calculated with Eq. 2

Workflow Performance Profiles: Development and Analysis 117

utime stime write_bytes read_bytes

atoms
cores
timesteps
outfreq

Sensitivity for task
namd_ID0000002

No
rm

al
ize

d
se

ns
itiv

ity
 o

f i
np

ut
 p

ar
am

et
er

s
[1

]

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

utime stime write_bytes read_bytes

atoms
cores
timesteps
outfreq

Sensitivity for task
namd_ID0000003

No
rm

al
ize

d
se

ns
itiv

ity
 o

f i
np

ut
 p

ar
am

et
er

s
[1

]

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) namd ID0000002 (b) namd ID0000003

Fig. 8. Cumulative normalized sensitivity of the NAMD jobs in the SNS workflow.

however this time we calculate sensitivity for each monitoring period. Due to
limited space, we only include results for the namd ID0000002 job (Fig. 9). For
utime (Fig. 9a), the number of cores has significant impact at the beginning of
the execution. However, the number of timesteps becomes more influential along
the execution. For runs above 500 s, there is not much variation. This behavior is
due to the small number of jobs with longer runtime. In Fig. 9b, stime is mostly
influenced by the material type (atoms), however cores has important impact
at the beginning of the execution. Note that the output writing frequency has
no significant impact for time-related metrics. Not surprisingly, write bytes is
substantially influenced by outfreq (Fig. 9c) and the number of timesteps. The
material type (atoms) becomes irrelevant after the initial phase, and the number
of cores does not drive any influence. In contrast, read bytes (Fig. 9d) is heavily
influenced by atoms—as it is related to the amount of data read from input files.
The influence of timesteps and cores increases along the execution.

In summary, the main behaviors identified in this analysis include: (1) linear
correlations between the amount of computations and job runtime in the namd
jobs; (2) accumulation of I/O operations in the first stage of the execution in
the namd jobs; and (3) periodic data dumps in the sassena jobs.

4 Related Work

Workflow profiling analysis is often used to drive advancements on workflow
optimization studies, including job scheduling and resource provisioning. For
instance, in [5,17] workflow profiles are used to model and predict execution time
of workflow activities on distributed resources. In [3,6], heuristics and models are
developed from workflow profiles to estimate the number of resources required to
execute a workflow. We recently used profiling data from Pegasus workflows to
estimate job resource consumption on distributed platforms [20]. Although our
techniques yield satisfactory estimates, our studies were limited to the aggre-
gated performance information, i.e. no time series analysis was considered. Sev-
eral papers have profiled scientific workflow executions on real platforms [7,12],
however none of them have collected time series data from workflow executions
at the job level. Workload archives [15] are used for research on distributed

118 D. Król et al.

0.0

0.2

0.4

0.6

0.8

0 250 500 750
Runtime [s]

N
or

m
al

iz
ed

 m
ai

n
ef

fe
ct

s
[1

]

factor
atoms

cores

timesteps

outfreq

Normalized sensitivity of 'utime' over time

0.0

0.2

0.4

0.6

0 250 500 750
Runtime [s]

N
or

m
al

iz
ed

 m
ai

n
ef

fe
ct

s
[1

]

factor
atoms

cores

timesteps

outfreq

Normalized sensitivity of 'stime' over time

(a) utime (b) stime

0.0

0.2

0.4

0.6

0 250 500 750
Runtime [s]

N
or

m
al

iz
ed

 m
ai

n
ef

fe
ct

s
[1

]

factor
atoms

cores

timesteps

outfreq

Normalized sensitivity of 'write_bytes' over time

0.0

0.2

0.4

0.6

0.8

0 250 500 750
Runtime [s]

N
or

m
al

iz
ed

 m
ai

n
ef

fe
ct

s
[1

]

factor
atoms

cores

timesteps

outfreq

Normalized sensitivity of 'read_bytes' over time

(c) write bytes (d) read bytes

Fig. 9. Normalized sensitivity over time for namd ID0000002 (calculated with Eq. 2 for
each monitoring period).

systems, e.g. to evaluate methods in simulation or in experimental conditions.
Although the data is collected at the infrastructure and application level, the
gathered data is also limited to aggregated performance information. To the best
of our knowledge, this is the first work that builds and analyzes workflow profiles
based on time series data collected from real workflow executions.

5 Conclusions and Future Work

In this paper, we described a generic approach for the development and analysis
of workflow performance profiles, which describes application resource consump-
tion over time. Such profiles provide much more information than the aggregated
information given at the end of the execution. The presented approach is com-
prehensive, i.e. it takes into account the processes of generating, preparing, and
analysis of data. It is independent of the analyzed workflow and can be used with
existing, large-scale HPC infrastructures. The proposed approach was validated

Workflow Performance Profiles: Development and Analysis 119

with a real-life workflow from material science running on a TOP500 machine.
The analysis conducted unveiled useful insights about the workflow regarding
the effect of input parameters on task performance.

As part of future we will integrate the proposed solution with Scalarm and
Pegasus to minimize workflow runtime by improving job scheduling onto distrib-
uted resources based on information extracted from performance profiles, e.g. to
identify which tasks can be executed in parallel on the same resource without
performance disruption. We will also use the PaaSage framework to deploy and
manage both tools and to run scientific workflows on cloud resources in a cost-
effective way.

Acknowledgments. This research was supported by DOE under contract #DE-
SC0012636, “Panorama–Predictive Modeling and Diagnostic Monitoring of Extreme
Science Workflows”. D. Król thanks to the EU FP7-ICT project PaaSage (317715) and
Polish grant 3033/7PR/2014/2.

References

1. Arnold, O., et al.: Mantid - data analysis and visualization package for neutron
scattering and SR experiments. Nucl. Instrum. Methods Phys. Res. Sect. A 764,
156–166 (2014)

2. Borreguero, J.M., Lynch, V.E.: Molecular dynamics force-field refinement against
quasi-elastic neutron scattering data. J. Chem. Theory Comput. 12(1), 9–17 (2016)

3. Byun, E., Kee, Y., et al.: Estimating resource needs for time-constrained workflows.
In: IEEE 4th International Conference on eScience (2008)

4. Deelman, E., Vahi, K., et al.: Pegasus, a workflow management system for science
automation. Future Gener. Comput. Syst. 46, 17–35 (2015)

5. Duan, R., Nadeem, F., et al.: A hybrid intelligent method for performance modeling
and prediction of workflow activities in grids. In: 9th IEEE/ACM International
Symposium on Cluster Computing and the Grid (2009)

6. Huang, R., Casanova, H., et al.: Automatic resource specification generation for
resource selection. In: 2007 ACM/IEEE Conference on Supercomputing, SC 2007
(2007)

7. Juve, G., Chervenak, A., et al.: Characterizing and profiling scientific workflows.
Future Gener. Comput. Syst. 29(3), 682–692 (2013)

8. Juve, G., Tovar, B., et al.: Practical resource monitoring for robust high throughput
computing. In: 2nd Workshop on Monitoring and Analysis for High Performance
Computing Systems Plus Applications (2015)

9. Król, D., Kitowski, J.: Self-scalable services in service oriented software for cost-
effective data farming. Future Gener. Comput. Syst. 54, 1–15 (2016)

10. Kvassay, M., et al.: A novel way of using simulations to support urban security
operations. Comput. Inform. 34(6), 1201–1233 (2015)

11. Lindner, B., Smith, J.C.: Sassena—x-ray and neutron scattering calculated from
molecular dynamics trajectories using massively parallel computers. Comput. Phys.
Commun. 183(7), 1491–1501 (2012)

12. Mayer, B., Worley, P., et al.: Climate science performance, data and productivity
on titan. In: Cray User Group Conference (2015)

13. NERSC: Hopper. https://www.nersc.gov/users/computational-systems/hopper

https://www.nersc.gov/users/computational-systems/hopper

120 D. Król et al.

14. FP7 PaaSage project website. http://www.paasage.eu/. Accessed 10 May 2016
15. Parallel workloads archive. http://www.cs.huji.ac.il/labs/parallel/workload
16. Phillips, J.C., Braun, R., et al.: Scalable molecular dynamics with NAMD on the

IBM Blue Gene/l system. IBM J. Res. Dev. 26(1.2), 177–188 (2008)
17. Pietri, I., Juve, G., et al.: A performance model to estimate execution time of

scientific workflows on the cloud. In: Proceedings of 9th Workshop on Workflows
in Support of Large-Scale Science (2014)

18. Salomon-Ferrer, R., et al.: An overview of the amber biomolecular simulation pack-
age. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 3(2), 198–210 (2013)

19. Saltelli, A., Ratto, M., et al.: Global Sensitivity Analysis: The Primer. Wiley,
Hoboken (2008)

20. da Silva, F.R., Juve, G., et al.: Online task resource consumption prediction for
scientific workflows. Parallel Process. Lett. 25(3), 1541003 (2015)

21. Taylor, I.J., et al.: Workflows for e-Science: Scientific Workflows for Grids. Springer,
London (2007)

http://www.paasage.eu/
http://www.cs.huji.ac.il/labs/parallel/workload

A Data-Parallel ILUPACK for Sparse General
and Symmetric Indefinite Linear Systems

José I. Aliaga1, Matthias Bollhöfer2, Ernesto Dufrechou3(B), Pablo Ezzatti3,
and Enrique S. Quintana-Ort́ı1

1 Dep. de Ingenieŕıa y Ciencia de la Computación,
Universidad Jaime I, Castellón, Spain

{aliaga,quintana}@icc.uji.es
2 Institute of Computational Mathematics, TU Braunschweig,

Braunschweig, Germany
m.bollhoefer@tu-bs.de

3 Instituto de Computación, Universidad de la República, Montevideo, Uruguay
{edufrechou,pezzatti}@fing.edu.uy

Abstract. The solution of sparse linear systems of large dimension is a
critical step in problems that span a diverse range of applications. For
this reason, a number of iterative solvers have been developed, among
which ILUPACK integrates an inverse-based multilevel ILU precondi-
tioner with appealing numerical properties. In this paper, we enhance the
computational performance of ILUPACK by off-loading the execution of
several key computational kernels to a Graphics Processing Unit (GPU).
In particular, we target the preconditioned GMRES and BiCG methods
for sparse general systems and the preconditioned SQMR method for
sparse symmetric indefinite problems in ILUPACK. The evaluation on a
NVIDIA Kepler GPU shows a sensible reduction of the execution time,
while maintaining the convergence rate and numerical properties of the
original ILUPACK solver.

Keywords: Iterative solvers · Preconditioning · Incomplete LU (ILU)
factorization · Sparse triangular linear systems · Graphics processing
unit (GPU)

1 Introduction

Sparse linear systems arise in a vast number of scientific and engineering applica-
tions that range from the discretization of partial differential equations (PDEs)
to quantum physics or circuit simulation. In many of these cases, the solution of
the linear system is often the most computationally-demanding task, asking for
fast and accurate numerical solvers when the problem dimension is large [5].

An appealing approach for a wide range of applications consists in using
Krylov subspace methods, combined with preconditioning techniques, among
which those based in approximate matrix factorizations stand out [11]. A relevant
example is ILUPACK (http://ilupack.tu-bs.de), a package for the solution of
c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 121–133, 2017.
DOI: 10.1007/978-3-319-58943-5 10

http://ilupack.tu-bs.de

122 J.I. Aliaga et al.

sparse linear systems via Krylov subspace methods that relies on an inverse-
based multilevel ILU (incomplete LU) preconditioning technique for general as
well as Hermitian positive definite/indefinite linear systems [6].

The computation of ILUPACK’s preconditioner and its application in the
context of an iterative Krylov solver are computationally demanding, especially
for linear systems of large dimension. This motivated the development of parallel
variants of ILUPACK’s CG method [11] on shared memory [2,3] and distributed
memory platforms [4]. In order to expose task-parallelism, these variants calcu-
late a preconditioner which differs from that computed by the original (sequen-
tial) ILUPACK, yielding distinct convergence rates, and usually requiring more
floating point operations, with the overhead cost rapidly growing with the degree
of task-parallelism being exposed [3].

In [2] we also introduced a version of ILUPACK’s CG method that exploits
the data-parallelism intrinsic to the main kernels in ILUPACK, off-loading them
to a graphics processing unit (GPU). In contrast with the task-parallel solvers,
the data-parallel version preserves the computational cost, semantics and con-
vergence rate of the sequential implementation. In this work, we follow the same
approach to accelerate ILUPACK’s solvers for general (unsymmetric) and sym-
metric indefinite linear systems on GPUs, making the following contributions:

– We introduce data-parallel GPU versions of three relevant sparse solvers in
ILUPACK: GMRES and BiCG for general systems [10], and SQMR for sym-
metric indefinite systems [11]. Following our work on ILUPACK’s implemen-
tation of CG for symmetric positive definite systems, our new solvers main-
tain the computational cost, numerical properties, and convergence rate of
the original routines, exposing the conventional interface to the user.

– Our experimental analysis compares the performance advantages of the dif-
ferent methods using a number of real problems, in particular, from the Uni-
versity of Florida Matrix Collection (UFMC) [7].

– Our results show that the novel GPU-enabled solvers can efficiently exploit
the hardware resources of state-of-the-art GPU platforms, especially for mod-
erate and large problems, with speed-ups of up to 3×.

We point out that there exist no parallel version of ILUPACK for the class of
problems addressed in our work (not even a task-parallel one). The acceleration
factors we report are those that a user of ILUPACK can presently expect.

The rest of the paper is structured as follows. In Sect. 2 we review the iterative
solver integrated into ILUPACK. This is followed by a description of our proposal
to accelerate the solver on GPUs in Sect. 3. Section 4 presents the experimental
results, and a few remarks close the paper in Sect. 5.

2 Solution of Sparse Linear Systems with ILUPACK

Given a linear system Ax = b, where A ∈ R
n×n is sparse and b ∈ R

n, ILUPACK
obtains an inverse-based multilevel ILU preconditioner M ∈ R

n×n that can
be leveraged in combination with a number of iterative methods to solve the

A Data-Parallel ILUPACK for Sparse General 123

system for the unknown x ∈ R
n. ILUPACK offers solvers for different matrix

types, precisions, and arithmetic, covering Hermitian positive definite/indefinite
and general real and complex matrices. In all these cases, the most challenging
task is the computation and application of the preconditioner, which respectively
occur before and during the iterative solution.

2.1 Computation of the Preconditioner

The computation of ILUPACK’s preconditioner is organized as follows:

1. A preprocessing that scales A by a diagonal matrix D̃ ∈ R
n×n and reorders

the result by a permutation P̃ ∈ R
n×n: Â = P̃T D̃AD̃P̃ .

2. An incomplete factorization next computes Â ≈ LDU , where L,UT ∈ R
n×n

are unit lower triangular factors and D ∈ R
n×n is (block) diagonal. In some

detail, Â is processed in this stage yielding a partial ILU factorization:

P̂T ÂP̂ ≡
(
B F
G C

)
= LDU + E =

(
LB 0
LG I

)(
DB 0
0 Sc

)(
UB UF

0 I

)
+ E. (1)

Here, P̂ ∈ R
n×n is a permutation matrix, ‖L−1

B ‖, ‖U−1
B ‖ � κ, with κ a user-

predefined threshold, E contains the elements “dropped” during the ILU fac-
torization, and SC represents the approximate Schur complement assembled
from the “rejected” rows and columns.

3. The process is then restarted with A = Sc, (until Sc is void or “dense enough”
to be handled by a dense solver,) yielding a multilevel approach.

At level l, the multilevel preconditioner can be recursively expressed as

Ml ≈ D̃−1P̃ P̂

(
LB 0
LG I

) (
DB 0
0 Ml+1

) (
UB UF

0 I

)
P̂T P̃T D̃−1, (2)

where LB , DB and LF are blocks of the factors of the multilevel LDU precondi-
tioner (with LB , UT

B unit lower triangular and DB diagonal); and Ml+1 stands
for the preconditioner computed at level l + 1.

A detailed explanation of each stage of the process can be found in [6].

2.2 Iterative Solution and Application of the Preconditioner

In the analysis of this operation, we consider its application at level l, e.g. to
compute z := M−1

l r. This requires solving the system of linear equations:
(
LB 0
LG I

)(
DB 0
0 Ml+1

)(
UB UF

0 I

)
P̂T P̃T D̃−1z = P̂T P̃T D̃r. (3)

Breaking down (3), we first recognize two transforms to the residual vector,
r̂ := P̂T P̃T (D̃r), before the following block system is defined:

(
LB 0
LG I

) (
DB 0
0 Ml+1

)(
UB UF

0 I

)
w = r̂. (4)

124 J.I. Aliaga et al.

This is then solved for w(= P̂T P̃T D̃−1z) in three steps,
(
LB 0
LG I

)
y = r̂,

(
DB 0
0 Ml+1

)
x = y,

(
UB UF

0 I

)
w = x. (5)

where the recursion is defined in the middle step.
In turn, the expressions in (5) also need to be solved in two steps. Assuming

y and r̂ are split conformally with the factors, for the left expression we have
(
LB 0
LG I

)(
yB
yC

)
=

(
r̂B
r̂C

)
⇒ LByB = r̂B , yC := r̂C − LGyB. (6)

Splitting the vectors as earlier, the middle step involves the diagonal-matrix
multiplication and the effective recursion:

(
DB 0
0 Ml+1

) (
xB

xC

)
=

(
yB
yC

)
⇒ xB := D−1

B yB , xC := M−1
l+1yC . (7)

In the recursion base step, Ml+1 is void and only xB has to be computed. Finally,
after an analogous partitioning, the right step can be reformulated as

(
UB UF

0 I

)(
wB

wC

)
=

(
xB

xC

)
⇒ wC := xC , UBwB = xB − UFwC , (8)

where z is simply obtained from z := D̃(P̃ (P̂w)).
To save memory, ILUPACK discards the off-diagonal blocks LG and UF

once the level of the preconditioner is calculated, keeping only the rectangular
matrices G and F , frequently much sparser. Thus, (6) is changed as follows:

LG = GUB−1D−1
B

⇒ yC := r̂C − GU−1
B D−1

B yB = r̂C − GU−1
B D−1

B L−1
B r̂B ,

(9)

while the expressions related to (8) are modified as

UF = D−1
B L−1

B F ⇒ UBwB = D−1
B yB − D−1

B L−1
B FwC . (10)

Operating with care, the final expressions are obtained,

LBDBUBsB = r̂B , LBDBUB ŝB = FwC

⇒ yC := r̂C − GsB , wB := sB − ŝB
(11)

In summary, the application of the preconditioner requires, at each level, two
SpMV, solving two linear systems with coefficient matrix of the form LDU , and
a few vector kernels.

3 Data-Parallel Variants of ILUPACK

In this section we describe our general strategy to obtain GPU-accelerated ver-
sions of ILUPACK’s general and symmetric indefinite solvers. Our enhanced

A Data-Parallel ILUPACK for Sparse General 125

solvers can off-load the entire application of the preconditioner to the GPU,
though there are problems where, for the higher levels of the preconditioner, it
is more efficient to solve the sparse triangular systems in the CPU. The rea-
son is that these kernels then become small in dimension (and, therefore, can-
not achieve an acceptable occupancy in the GPU); and/or involve much denser
matrix blocks, (implying a strong amount of data dependencies), and thus exhibit
a modest amount of data-parallelism.

3.1 Unsymmetric Linear Systems

We targeted the acceleration of GMRES and BiCG for general linear systems.
Note that the parallelization of the preconditioner application is essentially anal-
ogous for both methods, with the only major difference being that BiCG involves
the application of the transposed preconditioner while GMRES does not.

Let us consider GMRES first. ILUPACK’s multilevel preconditioner is stored
as a linked list of structures that contain the information computed at each
level. Concretely, a level contains pointers to the submatrices that form the
ILU factorization: the B submatrix that comprises the LDU factored upper left
block and the G and F rectangular matrices, along with the diagonal scaling
and permutation vectors that correspond to D̃, P̃ , and P̂ ; see Subsect. 2.1.

The computational cost required to apply the preconditioner is dominated
by the sparse triangular system solves (SpTrSV) and SpMV. NVIDIA’s CUS-
PARSE [1] provides efficient GPU implementations of these two kernels that
support several common sparse matrix formats. Therefore, it is convenient for
us to rely on this library. The rest of the operations are mainly vector scalings
and reorderings, which gain certain importance only for highly sparse matrices
of large dimension, and are accelerated in our codes via ad-hoc CUDA kernels.

For its unsymmetric preconditioner, ILUPACK stores B in a modified CSR
format [8], with the L and U factors kept, by columns, in an interlaced manner.
Concretely, only the strictly lower triangular part of L is stored as its is unit
diagonal; furthermore, the diagonal entries contain the inverses of the diagonal
elements of U . In order to use CUSPARSE, we thus need to split each B sub-
matrix into separate L and U factors, stored by rows in the conventional CSR
format. This transform is done only once, during the calculation of each level of
the preconditioner, and occurs entirely in the CPU. After that, the L and U fac-
tors, in CSR format, are transferred to the GPU, where the triangular systems
involved in the preconditioner application are solved via two consecutive calls to
cusparseDcsrsv solve. The analysis phase required by the CUSPARSE solver,
which gathers information about the data dependencies and aggregates the rows
of the triangular matrix into levels, is executed only once for each level of the
preconditioner, and it runs asynchronously with respect to the host CPU.

In order to compute the SpMV on the GPU, G and F are also transferred
to the device during the computation of the preconditioner. As these matrices
are stored by ILUPACK in CSR format, no reorganization is needed prior to the
invocation of the CUSPARSE kernel for SpMV.

126 J.I. Aliaga et al.

The BiCG solver involves both G and F as well as their respective transposes
in the calculations. Our initial approach only kept G and F in the GPU, and
operated with the transposed/non-transposed matrices by setting the appropri-
ate value for the transpose switch. Unfortunately, the implementation of SpMV
in CUSPARSE delivers considerable low performance when operating with the
transposed matrix. In order to overcome this, our implementation of BiCG stores
both G,F and GT , FT in GPU memory. If the amount of GPU memory is lim-
ited, these matrices can be asynchronously transferred from CPU to GPU, with
this process overlapped with computations, before they are needed.

3.2 Symmetric Indefinite Linear Systems

We addressed the parallelization of the SQMR method [11] in ILUPACK for
symmetric indefinite problems. As in the general case, we need to transform the
representation employed by ILUPACK for the LDU(= LDLT) leading block of
each preconditioner level, in order to be able to invoke the CUSPARSE library to
solve the corresponding triangular linear systems. Instead of maintaining L and
D separately, ILUPACK relies on a MCSR representation, where the symmetric
block-diagonal matrix D is stored inverted using 2nB floating point numbers,
(with nB denoting the size of the leading block,) while the rest of the structure
contains L̂ ∈ R

nB×nB , i.e., the strictly lower triangle of L. This matrix is kept in
CSR format. ILUPACK then solves a system of the form (L̂D−1+InB)D(L̂D−1+
InB)T . Those columns that correspond to 2 × 2 pivots are stored interleaved,
since in L̂D−1 they have the same nonzero pattern and this is exploited by the
serial CPU solver.

To solve these systems with CUSPARSE, we split their structure into a sym-
metric tridiagonal matrix D−1, which we store as two vectors of size nB, and
then form matrix L̃ = (L̂D−1 + InB) explicitly. After this transform, at each
level, we solve linear systems with coefficient matrix of the form L̃D−1L̃T . Here,
as the inverse of D is available, this involves a tridiagonal matrix-vector product,
which is performed in the GPU by means of a simple ad-hoc CUDA kernel.

3.3 Parallelization of SpMV and Other Kernels

In addition to the parallelization of the preconditioner, we further enhanced the
solvers in ILUPACK by off-loading the SpMV to the GPU. For this purpose, it is
necessary to store A in the GPU. In our implementation this matrix is transferred
to the GPU memory before the iterative solve commences, and resides there until
completion. The matrix is stored in CSR format and the SpMV is performed
via the implementation of this kernel in CUSPARSE.

In general, the vector operations contribute little to the computational cost of
the solver. Therefore, these operations are performed in the CPU. Parallelizing
more complex operations, like the Gram-Schmidt orthogonalization involved in
the GMRES, is considered as part of future work.

A Data-Parallel ILUPACK for Sparse General 127

4 Experimental Evaluation

We next evaluate our GPU-enabled solvers for general/symmetric indefinite lin-
ear systems, and compare their performance to that of the corresponding routines
in ILUPACK’s current sequential (CPU) implementation (release 2.4).

The experiments were carried out an Intel i7-4770 processor (3.40 GHz)
and 16 GB of DDR3 RAM (26 GB/s of bandwidth), connected to an NVIDIA
Tesla K40 GPU, with 2,880 cuda cores (0.75 GHz), and 12 GB of DDR5 RAM
(288 GB/s bw). NVIDIA CUBLAS/CUSPARSE 6.5 was employed in the exper-
imentation. For the CPU codes we used GNU gcc (v4.9.2) with -O4 as an opti-
mization flag. All results were obtained using ieee double-precision arithmetic.
In all cases, the total runtime includes the cost of transferring the matrix to the
GPU.

4.1 Test Cases

UFMC Test Cases. We selected a range of large-scale unsymmetric matrices
with dimension n > 1, 000, 000, and several symmetric indefinite ones with n >
100, 000, all from the UFMC benchmark collection; see Table 1.

Table 1. Matrices from the UFMC used in the experiments.

Unsymmetric Symmetric indefinite

Matrix n nnz nnz/n Matrix n nnz nnz/n

cage14 1,505,785 27,130,349 18.02 darcy003 389,874 2, 097, 566 5.38

memchip 2,707,524 13,343,948 4.93 F1 343,791 26, 837, 113 78.06

Freescale1 3,428,755 17,052,626 4.97 mario002 389,874 2, 097, 566 5.38

rajat31 4,690,002 20,316,253 4.33 cbig 345,241 2, 340, 859 6.78

cage15 5,154,859 99,199,551 19.24 nlpkkt120 3,542,400 95, 117, 792 26.85

nlpkkt160 8,345,600 225, 422, 112 27.01

Unsymmetric Convection-Diffusion Problems (CDP). We considered the
PDE εΔu+ b ∗u = f in Ω, where Ω = [0, 1]3. For this example, we use homoge-
neous Dirichlet boundary conditions, i.e. u = 0 on ∂Ω. The diffusion coefficient
ε is set to 1, and the convective functions b(x, y, z) are given by:

conv. in x-direction: [1, 0, 0],
diagonal convection: 1√

3
[1, 1, 1],

circular convection: [12 − z, x − 1
2 , 1

2 − y].

The domain is discretized with a uniform mesh of size h = 1
N+1 resulting in a

linear system of size N3. For the present experiments we chose a value of N =
200. For the diffusion part −εΔu we use a seven-point-stencil. The convective
part b ∗ u is discretized using up-wind differences.

128 J.I. Aliaga et al.

Symmetric Indefinite PDE. We considered the Laplacian equation Δu = f
in a 3D unit cube Ω = [0, 1]3 with Dirichlet boundary conditions u = g on δΩ.
The discretization consists in a uniform mesh of size h = 1

N+1 and a seven-point
stencil is used. The resulting symmetric positive definite (SPD) linear system
Au = b has a sparse SPD coefficient matrix with seven nonzero elements per
row, and n = N3 unknowns. We performed experiments with N = 50, 100,
159, 200, 252, which results in five benchmark SPD linear systems of order n ≈
1M, 1.9M, 3.3M, 8M and 16M. These matrices were then modified so that the
resulting problem becomes indefinite.

4.2 Evaluation of GMRES and BiCG

We first applied the BiCG and GMRES methods to the SPD matrices associated
with the Laplacian PDE, treating them as if they were unsymmetric. The test
instances in this benchmark can be scaled up arbitrarily while preserving certain
pattern in the non-zeros structure of the factorization. The results in Table 2
show an important improvement in the performance of the two GPU-accelerated
solvers, though this is more notorious for BiCG. The reason is that the only
stages of the solver that are off-loaded to the accelerator are the application of the
preconditioner and SpMV. The first one occurs twice per iteration for BiCG (as
the transposed preconditioner also has to be applied), but only once for GMRES.
If we consider the stages that involve the preconditioner, the acceleration factor
reaches up to 6× for the transposed preconditioner in the largest test case. This
is not surprising given the memory-bound nature of the problem and that the
GPU has a memory bandwith only 11× higher than the CPU. The matrices
of this set are SPD and well-conditioned, allowing us to use a drop tolerance
τ = 0.1 and still converge in a few iterations. This arguably high value of τ
produces a sparser preconditioner, exposing a larger volume of data-parallelism
that is exploited by the GPU kernels.

To expose the performance of the unsymmetric solvers, we repeated the eval-
uation with a set of large unsymmetric problems from the UFMC. Table 2 reports
fair acceleration factors for the GPU versions of the solvers. In some detail, the
speed-up values for the application of the preconditioner are quite similar to
those attained for the Laplace matrices set, but the improvement experienced
by the SpMV kernel is larger in all cases.

Thirdly, we tested our solver on the unsymmetric CDP cases. In these exper-
iments, the parallel versions outperform the serial CPU solvers, with speed-ups
in the order of 2×, while the acceleration of the preconditioner is almost 3×.

Comparing both solvers, the acceleration attained by GMRES is always lower
than that observed for BiCG. This can be easily explained by noting that, in
BiCG, the GPU-accelerated stages (preconditioner application and SpMV) take
most of the execution time. For GMRES, the time of the unaccelerated stages is
more important, to the extent that, in some cases, the unaccelerated steps of the
GPU versions consume a higher fraction of the time than the accelerated ones.
A detailed analysis revealed that, in these cases, the bottleneck of the GMRES
method is the modified Gram-Schmidt re-orthogonalization, which we plan to

A Data-Parallel ILUPACK for Sparse General 129

Table 2. Performance evaluation of BiCG and GMRES. From left to right: problem
case; target architecture (device); number of iterations; execution time required for
SpMV, preconditioner application (with M−1 and its transpose M−T), remainder,
and total; relative residual error of the solution; and speed-up of the GPU version with
respect to the original CPU code in ILUPACK.

Solver Matrix Device #Iters. Time R(x∗) Speed-up

SpMV M−1 M−T Rem Total M−1 M−T Total

BiCG A050 CPU 16 0.010 0.016 0.017 0.008 0.05 1.80E-09 - - -

GPU 16 0.009 0.012 0.010 0.008 0.04 1.80E-09 1.35 1.62 1.31

A100 CPU 14 0.07 0.18 0.21 0.08 0.54 5.80E-09 - - -

GPU 14 0.06 0.05 0.05 0.08 0.24 5.80E-09 3.25 4.60 2.25

A159 CPU 14 0.29 0.67 0.63 0.31 1.90 4.90E-09 - - -

GPU 14 0.24 0.20 0.18 0.32 0.93 4.90E-09 3.43 3.79 2.04

A200 CPU 14 0.60 1.35 1.25 0.62 3.82 5.30E-09 - - -

GPU 14 0.47 0.39 0.35 0.63 1.84 5.30E-09 3.45 3.78 2.08

A252 CPU 14 1.15 3.40 4.13 1.23 9.92 5.70E-09 - - -

GPU 14 0.93 0.77 0.69 1.22 3.62 5.80E-09 4.39 6.27 2.74

cage14 CPU 12 0.60 0.72 0.75 0.13 2.20 2.70E-09 - - -

GPU 12 0.21 0.19 0.16 0.10 0.68 2.70E-09 3.78 4.69 3.24

Freescale1 CPU 292 15.24 29.52 45.98 5.71 96.44 1.00E-03 - - -

GPU 292 6.92 5.04 10.17 4.82 26.96 1.00E-03 5.86 4.52 3.58

rajat31 CPU 8 0.48 0.93 0.86 0.29 2.55 1.40E-06 - - -

GPU 8 0.16 0.19 0.29 0.22 0.88 1.40E-06 4.89 2.97 2.90

cage15 CPU 12 2.25 2.83 3.28 0.43 8.78 5.50E-09 - - -

GPU 12 0.86 0.60 0.51 0.35 2.33 5.50E-09 4.72 6.43 3.77

CDP/circ CPU 286 18.61 82.22 107.58 11.27 219.68 1.20E-07 - - -

GPU 286 14.18 18.86 42.58 11.35 86.97 1.20E-07 4.36 2.53 2.53

CDP/diag CPU 298 19.37 78.44 81.87 11.59 191.27 2.00E-07 - - -

GPU 298 14.48 19.47 44.24 11.58 89.77 2.00E-07 4.03 1.85 2.13

CDP/u-vec CPU 316 20.50 83.05 86.71 12.29 202.55 4.10E-08 - - -

GPU 316 15.46 20.59 46.85 12.42 95.33 4.10E-08 4.03 1.85 2.12

GMRES A050 CPU 9 0.006 0.019 − 0.018 0.043 9.20E-10 - - -

GPU 9 0.005 0.013 − 0.017 0.035 9.20E-10 1.43 - 1.23

A100 CPU 8 0.04 0.22 − 0.15 0.42 4.60E-09 - - -

GPU 8 0.03 0.06 − 0.15 0.24 4.60E-09 3.60 - 1.75

A159 CPU 8 0.16 0.97 − 0.66 1.79 4.10E-09 - - -

GPU 8 0.10 0.23 − 0.66 0.99 4.10E-09 4.22 - 1.81

A200 CPU 8 0.33 1.90 − 1.34 3.57 4.00E-09 - - -

GPU 8 0.20 0.45 − 1.34 1.99 4.00E-09 4.22 - 1.79

A252 CPU 8 0.63 3.13 − 2.58 6.34 3.90E-09 - - -

GPU 8 0.41 0.89 − 2.59 3.88 3.90E-09 3.52 - 1.63

cage14 CPU 7 0.36 0.84 − 0.26 1.46 2.40E-09 - - -

GPU 7 0.05 0.22 − 0.21 0.49 2.40E-09 3.82 - 2.98

Freescale1 CPU 46 2.70 9.32 − 6.19 18.21 6.30E-03 - - -

GPU 46 0.54 1.60 − 5.18 7.33 6.30E-03 5.83 - 2.89

rajat31 CPU 4 0.27 0.93 − 0.53 1.74 3.60E-07 - -

GPU 4 0.06 0.19 − 0.41 0.67 3.60E-07 4.89 - 2.60

cage15 CPU 7 1.31 3.30 − 0.91 5.52 4.80E-09 - - -

GPU 7 0.18 0.70 − 0.71 1.61 4.80E-09 4.65 - 3.43

CDP/circ CPU 203 12.84 116.44 − 63.32 192.61 1.40E-06 - - -

GPU 203 5.65 26.75 − 62.97 95.37 1.40E-06 2.27 - 2.02

CDP/diag CPU 241 15.25 127.66 − 75.89 218.81 1.60E-06 - - -

GPU 241 6.73 31.59 − 76.21 114.52 1.60E-06 2.27 - 1.91

CDP/u-vec CPU 251 15.69 131.47 − 79.67 226.85 1.40E-06 - - -

GPU 251 7.00 32.70 − 79.91 119.61 1.40E-06 2.24 - 1.90

130 J.I. Aliaga et al.

address as part of future work. Regarding the quality of the computed solution
x∗, the GPU enabled solvers converge in the same number of iterations and
present the same final relative residual error R(x∗) := ||b − Ax∗||2/||x∗||2 as the
original version of ILUPACK.

4.3 Evaluation of SQMR

The results for these problem cases are summarized in Table 3. The first part
contains the experiments with the modified symmetric PDE of scalable size, and
illustrates a performance advantage of the GPU solvers that grows with the size
of the instances. For this set of matrices, the acceleration of the SpMV is about
3×, and the preconditioning stage is improved around 4× for the larger test

Table 3. Performance evaluation of SQMR. From left to right: problem case; target
architecture (device); number of iterations; execution time required for SpMV, precon-
ditioner application, remainder, and total; relative residual error of the solution; and
speed-up of the GPU version with respect to the original CPU code in ILUPACK.

Matrix Device #Iters. Time R(x∗) Speed-up

SpMV M−1 Rem Total Total

A050 CPU 40 0.04 0.29 0.03 0.37 7.90E-09

GPU 40 0.02 0.28 0.04 0.34 7.90E-09 1.09

A100 CPU 72 0.79 5.00 0.71 6.51 3.00E-08

GPU 72 0.26 1.72 0.77 2.76 3.00E-08 2.35

A159 CPU 114 5.03 34.78 4.65 44.49 4.10E-08

GPU 114 1.67 9.32 4.88 15.89 4.10E-08 2.79

A200 CPU 137 12.27 85.07 11.19 108.56 3.00E-08

GPU 137 4.07 21.30 12.16 37.56 3.00E-08 2.89

A252 CPU 170 31.37 201.91 27.33 260.66 6.60E-08

GPU 170 9.81 51.89 28.59 90.35 4.50E-08 2.88

darcy003 CPU 88 0.68 2.73 0.26 3.68 4.00E-08

GPU 88 0.12 2.02 0.33 2.48 3.60E-08 1.48

F1 CPU 477 23.03 33.90 1.35 58.29 1.30E-07

GPU 477 1.74 38.72 1.55 42.01 1.40E-07 1.39

c-big CPU 22 0.11 0.87 0.06 1.06 1.10E-09

GPU 22 0.12 0.72 0.09 0.93 1.10E-09 1.13

mario002 CPU 88 0.63 2.58 0.26 3.48 4.00E-08

GPU 88 0.13 2.03 0.34 2.51 3.90E-08 1.38

nlpkkt120 CPU 187 24.35 73.02 6.34 103.73 1.40E-06

GPU 176 3.67 24.24 6.86 34.78 4.40E-06 2.98

nlpkkt160 CPU 252 82.92 252.22 21.77 356.95 4.40E-06

GPU 252 12.34 73.26 22.51 108.14 4.50E-06 3.30

A Data-Parallel ILUPACK for Sparse General 131

cases, but the unaccelerated stages of the solver represent more than 10% of the
total runtime and keep the global speedups below 3×.

In most of the test cases extracted from the UFMC, shown in the second part
of the table, the preconditioner is not able to converge for τ > 0.01. Decreasing
the value of τ introduces a large amount of fill-in in the preconditioner, reducing
the degree of data-parallelism. Figure 1 shows the sparsity pattern of the L factor
that corresponds to each level of the preconditioner for the problem c-big. The
plots illustrate that the fill-in in the L factor increases dramatically from the
first to the second level of the factorization. This has two main effects. On the
one hand, the new non-zero elements are likely to generate data dependencies
between the rows of the L factor during the solution of the triangular linear sys-
tems, which severely harms the performance of CUSPARSE’s level-based solver.
On the other hand, as the dimension of the systems grow, the important mem-
ory requirements turn increasingly difficult to store the necessary matrices in
the GPU, and thus the symmetric instances presented in the middle section of
the table are all of intermediate size. The little improvement obtained for this
set of matrices is mostly due to the speedup of the SpMV.

Fig. 1. L factor of each level of the LDL multilevel factorization of matrix c-big. Levels
increase from left to right and from top to bottom.

The largest symmetric indefinite instance we were able to test was a non-
linear programming problem from UFMC, also studied in [12]. The results for
this benchmark are closer to those obtained in the symmetric indefinite PDE.
There are four instances of this problem, which vary in size. When τ = 0.01, the
fill-in of the preconditioner allows only the three smaller instances to be executed
in the GPU.

To close this discussion, we note that, contrary to the results obtained in the
previous experiments, there are discrepancies in the number of iterations as well
as residual errors for some of the tested instances.

132 J.I. Aliaga et al.

5 Concluding Remarks and Future Work

ILUPACK provides an assorted number of sophisticated Krylov subspace-based
routines for the iterative solution of general and symmetric (or Hermitian) pos-
itive definite/indefinite sparse linear systems. Unfortunately, this package con-
tains sequential codes only. While there exist task-parallel versions of ILUPACK,
these present a number of drawbacks: First, they compute a preconditioner dif-
ferent from that obtained with the original ILUPACK, with distinct numerical
properties and convergence rate. Second, they incur a certain computational
overhead, which increases with the amount of task-parallelism. Finally, they
only cover the CG method for SPD linear systems in ILUPACK and, how to
exploit task-parallelism for other types of systems, remains an open question.

In this paper we have continued our work in order to obtain a fully functional
data-parallel version of ILUPACK, accelerated by means of GPUs, that preserves
the most appealing properties of the sequential solver. For this purpose, we have
extended our strategies, applied in the past to the CG method, to cover three
new solvers: GMRES and BiCG for general systems, and SQMR for symmetric
indefinite ones. All our data-parallel solvers off-load the most computationally-
demanding operations to the graphics accelerators, where they are carried out
via the kernels in CUSPARSE and our own ad-hoc CUDA kernels.

Our results on an NVIDIA Kepler GPU, using a collection of examples from
UFMC, a convection-diffusion problem, and the Laplace equation, show speed-
ups for the GPU version that are around 2× in many cases and up to 3.7×
for one problem instance. As there exist no parallel version of ILUPACK for
the class of problems targeted in this work, these speed-ups correspond to fair
acceleration factors. Furthermore, these values are mostly determined by the
scarce parallel efficiency of the triangular solvers in CUSPARSE, and are similar
to the results found in the literature for this kind of operation. The experiments
also reveal a few bottlenecks in the current codes, that we plan to address in
future work. Concretely, we will develop an accelerated version of the Gram-
Schmidt orthogonalization procedure for GMRES; and we will investigate the
design and use of approximate GPU solvers and optimized SpMV kernels ([9])
for the preconditioner application that can replace CUSPARSE.

Acknowledgments. J.I. Aliaga and E.S. Quintana-Ort́ı were supported by project
TIN2014-53495-R of the MINECO and FEDER. E. Dufrechou and P. Ezzatti were
supported by Programa de Desarrollo de las Ciencias Básicas (PEDECIBA), Uruguay.

References

1. CUDA Toolkit 5.5. CUSPARSE Library. NVIDIA Corporation, Version 5.5, July
2013

2. Aliaga, J.I., Badia, R.M., Barreda, M., Bollhöfer, M., Dufrechou, E., Ezzatti, P.,
Quintana-Ort́ı, E.S.: Exploiting task and data parallelism in ILUPACK’s precon-
ditioned CG solver on NUMA architectures and many-core accelerators. Parallel
Comput. 54, 97–107 (2016)

A Data-Parallel ILUPACK for Sparse General 133

3. Aliaga, J.I., Bollhöfer, M., Mart́ın, A.F., Quintana-Ort́ı, E.S.: Exploiting thread-
level parallelism in the iterative solution of sparse linear systems. Parallel Comput.
37(3), 183–202 (2011)

4. Aliaga, J.I., Bollhöfer, M., Mart́ın, A.F., Quintana-Ort́ı, E.S.: Parallelization
of multilevel ILU preconditioners on distributed-memory multiprocessors. In:
Jónasson, K. (ed.) PARA 2010. LNCS, vol. 7133, pp. 162–172. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-28151-8 16

5. Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J., Dongarra, J.,
Eijkhout, V., Pozo, R., Romine, C., Van der Vorst, H.: Templates for the Solu-
tion of Linear Systems: Building Blocks for Iterative Methods, 2nd edn. SIAM,
Philadelphia (1994)

6. Bollhöfer, M., Saad, Y.: Multilevel preconditioners constructed from inverse-based
ILUs. SIAM J. Sci. Comput. 27(5), 1627–1650 (2006)

7. Davis, T.A., Hu, Y.: The University of Florida sparse matrix collection. ACM
Trans. Math. Softw. 38(1), 1–25 (2011)

8. Eijkhout, V.: LAPACK working note 50: distributed sparse data structures for
linear algebra operations. Technical report, Knoxville, TN, USA (1992)

9. Greathouse, J.L., Daga, M.: Efficient sparse matrix-vector multiplication on GPUs
using the CSR storage format. In: Proceedings of International Conference on High
Performance Computing, Networking, Storage and Analysis, SC 2014 (2014)

10. Saad, Y.: A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci.
Comput. 14(2), 461–469 (1993)

11. Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM Publications,
Philadelphia (2003)

12. Schenk, O., Wächter, A., Weiser, M.: Inertia-revealing preconditioning for large-
scale nonconvex constrained optimization. SIAM J. Sci. Comp. 31(2), 939–960
(2009)

http://dx.doi.org/10.1007/978-3-642-28151-8_16

Performance and Power-Aware Classification
for Frequency Scaling of GPGPU Applications

João Guerreiro(B), Aleksandar Ilic, Nuno Roma, and Pedro Tomás

INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
joaoguerreiro@inesc-id.pt

Abstract. The increased adoption of Graphics Processing Units
(GPUs) to accelerate modern computational intensive applications,
together with the strict power and energy constraints of many com-
puting systems, has pushed for the development of efficient procedures
to exploit dynamic voltage and frequency scaling (DVFS) techniques in
GPUs. Although previous works have applied several pattern recognition
techniques for GPGPU application classification, these approaches often
result in many misclassifications when trying to identify which appli-
cations can benefit from DVFS. To circumvent this limitation, a new
lightweight methodology for classifying GPU applications based on their
performance and power consumption in the presence of GPU core fre-
quency scaling is presented. The proposed methodology is based on a
set of performance counters, such as memory bandwidth utilization and
memory-related stalls, which are extracted during the application execu-
tion. Experimental results for a set of 20 applications from the Parboil,
Rodinia and Polybench benchmark suites show that the proposed classifi-
cation approach is able to correctly identify applications that can benefit
from frequency scaling.

1 Introduction

Modern high performance computing (HPC) systems are increasingly making
use of general purpose accelerators, such as graphics processing units (GPUs),
in order to increase the resulting system performance. This is confirmed by
an analysis of the most recent version of the TOP500 list (November 2015),
where 103 of these systems are equipped with accelerators (75 and 90 in the
two previous editions of this list). However, with the established adoption of
GPUs, it is gradually important to find mechanisms that ensure the maximum
efficiency of the computing system, both in terms of performance and (most
importantly) energy. Accordingly, significant research efforts are being put forth
in the investigation of dynamic voltage and frequency scaling (DVFS) techniques,
due to the inherent potential for significant power and energy savings in many
of the computer system components, including the processor cores [4].

General-purpose applications can largely vary in the way they use the com-
putational and memory resources of the devices where they are executing [10].
While some applications perform a large number of computational operations for
c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 134–146, 2017.
DOI: 10.1007/978-3-319-58943-5 11

Performance and Power-Aware Classification 135

each loaded data (more compute-bound), other applications may perform very
few operations for each portion of fetched data (more memory-bound). Although
in the former type of applications the resulting performance is more likely to scale
proportionally with the frequency of the cores (highest frequency ≡ best perfor-
mance), this behaviour is not guaranteed for the latter set of applications. This
opens an interesting window of opportunity, since some of these applications can
be executed at lower frequency levels with negligible performance drop-off. Con-
sequentially, and considering that (under DVFS) power consumption increases
with the operating frequency of the device, the identification of these classes
of applications can potentially be considered as an interesting opportunity for
energy savings. However, just as power scales up with the operating frequency,
the execution time scales down, making the definition of the optimal operat-
ing frequency a non-trivial choice. Hence, to perform this type of analysis, it
is therefore fundamental the adoption of appropriate methodologies that allow
the proper classification of the applications workloads, in order to identify which
cases could potentially result in power- or energy-savings.

Although some previous works have already addressed the topic of workload
classification, they have mostly focused on CPUs [10], even though addressing
many different goals, e.g. characterization, diversity analysis, subsetting, etc..
In particular, the majority of the previous works on workload characterization
involves the combination of principal component analysis (PCA) and hierarchical
clustering [9]. As a consequence, some previous studies on workload characteri-
zation in the GPU-domain have tried to use similar approaches to the ones that
were applied to the CPUs. In particular, Kerr et al. [6] characterized PTX work-
loads using a GPU simulator with the purpose of optimizing these applications.
Che et al. [3] also performed a diversity analysis on the Rodinia benchmark
suite, by using a real GPU (NVIDIA GTX 480). However, when looking at the
majority of the state-of-the-art works in the area of GPU workload classification,
it can be seen that most of the research relies on the usage of GPU simulators
instead of real hardware. Although this allows for a detailed profiling of the work-
loads, usually by considering performance counters that are non-existent in real
hardware, this renders these approaches impossible to replicate in real systems.
Additionally, the existing GPU simulators are based on the NVIDIA’s Fermi
microarchitecture, which has already been followed by Kepler (2013), Maxwell
(late 2014) and more recently Pascal (2016).

In the same trend, Adhinarayanan et al. [1] also provided an automated
framework for characterizing and subsetting GPU workloads, by also relying
on PCA and hierarchical clustering. While this approach has the advantage of
reducing the dimensionality of the problem, usually by transforming a large
number of metrics into a smaller number of principal components, it makes the
understanding of each resulting class harder (from the computing architecture
perspective) and does not necessarily result in a energy-aware classification.

In contrast with the described approaches, this work specifically addresses
the definition of alternate classification methodologies in order to unveil which
workloads will benefit from the application of DVFS techniques to provide energy

136 J. Guerreiro et al.

savings. In fact, while it makes sense to classify applications and workloads as
compute-bound or memory-bound when analysing their performance on a given
GPU, it is observed that these notions cannot be applied in the same way when
the power consumption is considered. In particular, we show that classifying
for performance and for power consumption may result in different application
classifications, confirming the need for separate classification techniques that
depend on the considered goal. Additionally, unlike the previous proposals, this
work is performed by using real and modern hardware systems. Accordingly, the
major contributions of this paper are the following:

– Analysis of different types of performance and power consumption metrics
using several relevant GPU benchmarks on real hardware;

– novel application classification algorithms based on GPU performance and
power metrics, able to characterize the execution of each application on a
range of GPU frequencies based on its execution on a single core frequency;

– comparison with other state-of-the-art classification techniques for GPU
applications.

To conduct this work, we study 20 applications from different relevant bench-
mark suites (Parboil [8], Rodinia [2] and Polybench [7]), and analyse how the
core frequency scaling affects their performance and their power consumption.
The obtained experimental results show that the proposed algorithms are able
to accurately and consistently classify the considered GPU applications in terms
of their behaviour in performance, power and energy consumption. Finally, the
proposed approach is compared with other state-of-the-art classification method-
ologies, which result in classes of applications that do not exhibit similar perfor-
mance/power behaviour in the presence of frequency scaling.

2 Application Classification for GPGPU DVFS

This work focuses on the classification of GPGPU applications, with the objec-
tive of identifying which applications can benefit from DVFS in order to provide
energy-savings. The goal is to be able to properly classify one given application
for all operating frequencies of a given GPU device, after the execution of that
application on a single operating frequency.

However, changing the frequency of the GPU cores may affect an application
execution in very different ways, depending on each application’s characteristics.
While it can be expected that a decrease in the core frequency (f) will cause the
kernel execution time to increase (T ∝ 1

f) and power consumption to decrease
(Pdynamic ∝ V 2f and Pstatic ∝ V eγV), the actual values for the application’s
performance and power consumption over different frequencies are highly depen-
dent on the application. In fact, it has been shown that accurately predicting the
impact of DVFS in the execution time or power consumption requires complex
predictive models [5]. Hence, given that the energy (E) consumed by the GPU is
computed as the product between power (P) and execution time (t), E = P × t,

Performance and Power-Aware Classification 137

Memory Opera ons:
Compute Opera ons:

Frequency: F1

Increase F1

Frequency: F2 > F1

Frequency: F3 < F1

Mem 1 Mem 2
Comp 1 Comp 2

Mem 1 Mem 2
Comp 1 Comp 2

Mem 1 Mem 2
Comp 1 Comp 2

Mem 1 Mem 2
Comp 1 Comp 2

Mem 1 Mem 2 Mem 1 Mem 2
Comp 1 Comp 2 Comp 1 Comp 2

Mem 1 Mem 2 Mem 1 Mem 2 Mem 1 Mem 2
Comp 1 Comp 2 Comp 1 Comp 2 Comp 1 Comp 2

Decrease F1Memory-bound

Compute-bound

Memory and compute perfectly balanced

Fig. 1. Example of memory and compute operations overlap on three different core
frequencies, with F2 > F1 > F3. The instructions pairs (Mem1, Comp1) and (Mem2,
Comp2) require full synchronization.

it is important to understand the effects of DVFS on both the execution time
and power consumption of applications.

The DVFS impact on execution time is a complex problem that require a
better understanding of the GPU architecture. In particular, one of the GPU
main design goals concerns the use of multiple groups of parallel threads (warps
in NVIDIA nomenclature) to hide instruction latency. However, in many general
purpose applications, it is not always possible to hide the instruction latency with
other warps. Therefore, when analysing the performance of applications, from
the perspective of their bottleneck, most works tend to consider two main types
of applications: compute-bound and memory-bound. Compute-bounded applica-
tions are defined as those where the execution time is mainly determined by
the performance of the processing components, and is a direct consequence of an
intensive utilization of the processing pipeline and functional units. On the other
hand, memory-bound applications have their execution time mainly dependent
on the bandwidth and latency of the memory hierarchy when satisfying the
memory access requests.

Accordingly, when applying core level DVFS, the performance of a memory-
bound kernel is limited by the communication with the GPU global memory,
since the operating frequency of such component does not scale with the core
frequency. However, such limitation is a consequence of the applied setup in terms
of the core and memory operating frequencies. Hence, while one kernel may be
compute-bound at one core operating frequency, it may become memory-bound
if the operating frequency increases. To illustrate such condition, Fig. 1 presents
a simplification of relative weight represented by the memory and compute oper-
ations of one given kernel at three different core frequencies. At frequency F1,
the threads start executing both the Mem1 and Comp1 instructions at the
same time and both finish their execution at the same time. In this example,

138 J. Guerreiro et al.

instructions Mem2 and Comp2 require full synchronization but since both
instructions finish at the same time, the latency of the threads waiting to be
issued is fully hidden by the threads currently executing.

However, if the core frequency is changed to a higher value (F2), there will
be a time interval where only the Mem instructions are executing on the GPU,
meaning that there are not enough compute threads to hide the latency of the
threads waiting to be issued. This will cause an increase of the number of stalls
caused by memory dependencies, therefore making the corresponding perfor-
mance counter a good indicator of the bottleneck of one application. Hence,
at core frequency F2, the application is memory-bounded, since its performance
bottleneck depends on the latency of the memory operations. If, on the contrary,
the core frequency is set to a value F3 that is lower than F1, the duration of the
Comp instructions will be longer than that of the Mem instructions. In this
case, the performance bottleneck will be determined by the critical path of the
compute instructions, thus resulting in a compute-bounded classification.

However, although such classification strategy is valid for the application exe-
cution time, it is not entirely accurate for power classification. To demonstrate
such conclusion, a set of benchmark applications from the previously referred
Parboil, Rodinia and Polybench benchmark suites were executed on an NVIDIA
Tesla K40c GPU at different core frequency levels, namely 875 MHz (default
level), 810 MHz, 745 MHz and 666 MHz. Additionally, the DVFS impact on
the execution time and energy consumption was measured (see Fig. 2). Also,
the applications were hand-classified as memory-bound and compute-bound at
the default operating frequency (Fig. 2, top-right), by considering the execu-
tion time increase when operating at the different frequencies, and each group’s
energy variation was analysed (Fig. 2, bottom-right). As can be observed, the
presented compute/memory bound classification presents uninteresting results
when energy consumption is considered. Hence, different methodologies must
be employed. As a consequence, and keeping in mind that E = P × t, a sepa-
rate methodology to characterize effects of DVFS on the power consumption of
applications is required.

In most GPUs (and in particular in modern NVIDIA GPUs) there are two
independent frequency domains: (1) Core domain, which includes the streaming
multiprocessors (SMs); and (2) Off-chip domain, which includes the off-chip
DRAM. Accordingly, the power consumption can be expressed as

P(fCORE, fMEM) = PCORE(fCORE) + PMEM(fMEM) (1)

where PCORE is the power consumed by the components of the core domain, and
PMEM is the power consumed by the memory components, i.e. by the DRAM,
which is herein assumed to remain constant. Based on Eq. 1, it is possible to
characterize the applications depending on their usage of the core and memory
components. Therefore, a given application shall be considered to have a high
memory utilization (i.e. with high activity of the memory resources) if the power
consumed by the GPU is dominated by the PMEM parcel, i.e. if PMEM � PCORE.
As a consequence, when the frequency of the core is changed, since the power

Performance and Power-Aware Classification 139

Fig. 2. Execution of the training set applications on NVIDIA Tesla K40c.

consumed by the memory is independent of the frequency of the core domain,
the total power consumed will remain almost constant. On the other hand, if
PCORE � PMEM, the GPU power consumption will scale linearly with the core
frequency and the applications are considered to have a high core utilization.
In order to perform the power-aware classification of GPU applications, a third
scenario is also herein considered where both the memory and core components
present a low utilization. Hence, since both components present a low activation
of their resources, the average power consumption variation will be reduced when
the core frequency is scaled.

Accordingly, when looking at the behaviour of the GPU power consumption
over different operating frequencies, three different classes will be considered:
High Core Utilization, High Memory Utilization and Low Device Utilization.

However, in order to perform such classification without having to execute
the kernel at a different operating frequency, it is necessary to retrieve some
profiling information regarding each application, which in this case must charac-
terize its usage of the memory components (specifically, of the off-chip DRAM).
One metric that gives a good indicator of the level of utilization of the memory
resources is the percentage of stalls caused by memory dependencies (Eq. 2).
However, it is still possible for one application to have other dominant causes
for stalls and still a have high utilization of the memory components. In accor-
dance, a complementary metric that quantifies the ratio of the achieved memory
bandwidth over the device’s peak (Eq. 3) is also considered.

Stallsmem =
Memory Dependency Stalls

All Stalls
(2)

Bandwidthmem =
Device memory transactions × Transaction size

Global memory bandwidth
(3)

Hence, in order to perform the power-aware classification, additional metrics
that characterize the utilization of the GPU resources are required, namely per-
formance counters that characterize the amount of time the GPU resources are

140 J. Guerreiro et al.

being used. Among the provided set of execution metrics that are nowadays
made available in GPU devices, it was selected a subset of metrics related with
the total kernel execution time and the core utilization (Utilcore) which corre-
sponds to the average percent of time over the previous sample period during
which one or more kernels was executing on the GPU.

Algorithms 1 and 2 formalize the proposed methodologies to classify GPU
applications into classes that characterize their performance and power consump-
tion, respectively, over different frequency levels based on performance counters
measured while executing on single core operating frequency.

Algorithm 1. Classification method-
ology of GPU applications based on the
effects on execution time of DVFS.
Inputs: Bandwidthmem and Stallsmem.
Output: Benchmark classification.

1: if Bandwidthmem>α then
2: memory-bound class.
3: else
4: if Stallsmem depend>β then
5: memory-bound class.
6: else
7: compute-bounded class.
8: end if
9: end if

Algorithm 2. Classification method-
ology of GPU applications based on the
DVFS effects on power consumption.
Inputs: Exec time, Stallsmem, Utilcore.
Output: Benchmark classification.

1: if Exec time<γ OR Utilcore<δ then
2: Low Device Utilization class
3: else
4: if Stallsmem>η then
5: High Mem. Utilization class
6: else
7: High Core Utilization class
8: end if
9: end if

For the performance-aware classification (Algorithm1), a given application
can be classified by executing it in the target GPU on a single chosen frequency
level, during which the two mentioned performance counters are measured. The
application under analysis is considered to be memory-bounded if one of the two
measured values is higher than the corresponding respective thresholds, α and
β, respectively, whose values were experimentally determined by using a training
set to determine the combination of values that would result in the minimum
misclassified applications. The power-aware classification (Algorithm2), is simi-
lar to the performance one, with an additional class that selects the applications
with low device utilization, according with a set of threshold γ, δ and η which
were determined in the same way as before.

3 Experimental Results

To evaluate the proposed methodologies, several CUDA-based application bench-
marks from the Parboil [8], Rodinia [2] and Polybench [7] suites (see Table 1)
were executed on a NVIDIA Tesla K40c GPU (Kepler microarchitecture), which
provides a user-level interface to scale the core operating frequency (fCORE) in
four non-idle levels, namely 875 MHz, 810 MHz, 745 MHz and 666 MHz.

Performance and Power-Aware Classification 141

Table 1. Summary of the considered application benchmarks.

Rodinia

Application Size

Backprop 655360
CFD missile.domn.0.2M

Gaussian 2048×2048
Hotspot 1024, 2, 10000
K-Means 3000000 34f.txt

Lud 8192×8192
SRAD2 4096

Streamcluster Default

Polybench

Application Size

2MM Default
CORR Default
COVAR Default

FDTD-2D Default
GEMM 2048×2048

GESUMMV 10240
GRAMSCHM Default

SYRK Default

Parboil

Application Size

CUTCP Large
Histo Large
LBM Long

MRI-Gridding Small

Each application was executed at the four allowed core frequency levels and
their execution time was measured using CUDA events, together with the pre-
viously referred performance counters (see Sect. 2) for the reference (default)
frequency level (875 MHz). Finally, in order validate the devised power-aware
classification, the power consumption of each application executed on Tesla K40c
GPU was obtained using NVML. Such power samples were obtained at a sample
interval of 15 ms, and the final power consumption was computed as the average
of all the kernels that constitute each application benchmark.

3.1 Classification Parameters

The previously proposed performance classification algorithm is dependent on
two architecture-related parameters (α and β), which are determined using a ran-
domly selected training set of applications. To assess such values Fig. 3a presents
the number of misclassified benchmarks for different values of these parameters
for the Tesla K40c GPU, when comparing the classifications resulting from the
proposed algorithm with a manual classification of each application (oracle clas-
sifications), which confirms that α = 0.5 and β = 0.5 correspond to the optimal
setup. The values for the γ, δ and η parameters used in the proposed power
classification methodology were also experimentally determined using the same
approach. The obtained values are γ = 170ms, δ = 50% and η = 22%.

3.2 Performance-Aware Algorithm Evaluation

Figure 3b and c depict the obtained values for the two metrics considered in the
performance classification (Stallsmem and Bandwidthmem), with the GPU cores
set to 875 MHz. From these plots it can be observed that some applications
have the majority of stalls caused by memory dependencies, while simultane-
ously achieving low usage of the device memory bandwidth. Some others display
the opposite behaviour. Hence, after applying Algorithm1, the two resulting
classes correspond the ones presented in Fig. 4. To validate the obtained clas-
sification, all considered benchmarks were executed using the four allowed core

142 J. Guerreiro et al.

Fig. 3. Considered metrics for the performance-aware classification on NVIDIA’s Tesla
K40c.

Fig. 4. DVFS effects on the execution time of the considered applications of the two
performance classes in NVIDIA’s Tesla K40c.

frequency levels for the considered GPU. The applications classified memory-
bounded (see Fig. 4a) have a variation of their execution time lower than the
frequency variation for frequencies above 810 MHz. Hence, at this core frequency
the applications start behaving as compute-bound applications and have their
execution time scaling approximately linearly with the core frequency. Further-
more, the compute-bounded applications (see Fig. 4b) always have their execution
time scaling approximately linearly with the core frequency.

Again, it is important to stress that this methodology allows the classifica-
tion of GPU applications into classes that characterize their performance at all
frequency levels, by using the information obtained from their execution at a
single core frequency in a real hardware device.

Performance and Power-Aware Classification 143

3.3 Power-Aware Algorithm Evaluation

Figure 5 presents the metrics considered in the devised power classification
methodology (Exec time, Utilcore and Stallsmem) for the considered applications.
By looking at their execution time (see Fig. 5a) it can be observed that there
are many applications whose total kernel execution time is below the previously
obtained γ parameter (170 ms), which will classify them in the Low Device Uti-
lization class. By combining the values for these metrics for each of the workloads
and applying Algorithm2, the three classes presented in Fig. 6 are obtained. To
validate the obtained classification, all considered applications were executed
using the four allowed frequency levels for the considered GPU, resulting in dis-
tinct power curves. This is particularly noticeable by looking at the value of the
power decrease at 666 MHz, since in the Low Device Occupancy class all appli-
cations have a decrease in power consumption below 10%; in the High Memory
Utilization class have power savings between 10% and 20%; and finally in the
High Core Utilization class the applications decrease their power consumption
by more than 20%.

Fig. 5. Considered metrics for power classification on NVIDIA’s Tesla K40c.

3.4 Energy Clusters

Since the proposed methodology depicts two performance classes and three power
classifications for a given set of applications, it is possible to combine all this
information, thus obtaining six energy classes, whose results is depicted in Fig. 7.
Hence, when considering this classification methodology, it is not possible for one
application to be simultaneously in the memory-bounded and high core utilization
classes (it would require an application to simultaneously have Stallsmem > 0.5
and Stallsmem < 0.22).

When validating this classification by executing the applications at the GPU
core levels and measuring the consumed energy (see Fig. 7), it can be seen that
the applications within each class display a similar behaviour in the presence
of DVFS. Hence, the result of those classification can be used to select the
applications in which DVFS is more likely to generate greater energy-savings.

144 J. Guerreiro et al.
De

cr
ea

se
 in

 p
ow

er
 c

on
su

m
p

on
 (%

)

0

5

10

15

20

25

30

Clock cycle me (ns)

1.14 ns
875 MHz

1.23 ns
810 MHz

1.34 ns
745 MHz

1.50 ns
666 MHz

streamcluster
srad2
kmeans
GESUMMV
mri−gridding
lbm
Frequency

(a) High Core Util.

2MM
CORR
COVAR

GEMM

GRAMSCHM
FDTD−2D

cfd
gaussian
histo
Frequency

0

5

10

15

20

25

30

De
cr

ea
se

 in
 p

ow
er

 c
on

su
m

p
on

 (%
)

Clock cycle me (ns)

1.14 ns
875 MHz

1.23 ns
810 MHz

1.34 ns
745 MHz

1.50 ns
666 MHz

(b) High Memory Util.

0

5

10

15

20

25

30

De
cr

ea
se

 in
 p

ow
er

 c
on

su
m

p
on

 (%
)

Clock cycle me (ns)

1.14 ns
875 MHz

1.23 ns
810 MHz

1.34 ns
745 MHz

1.50 ns
666 MHz

lud
SYRK
backprop
hotspot
cutcp
Frequency

(c) Low Device Util.

Fig. 6. DVFS effects on power consumption of applications in the three power classes
in NVIDIA’s Tesla K40c.

Fig. 7. Different energy classes resulting from the performance and power classes
obtained for NVIDIA’s Tesla K40c.

The proposed approach is considerable more versatile than other related
approaches. As an example, Adhinarayanan et al. [1] perform a clustering of
GPU applications using 13 performance counters, later reduced using Principal
Component Analysis (PCA) into 6 principal components used in the hierar-
chical clustering stage. However, when their methodology is replicated in Tesla
K40c using the applications benchmarks that were used in this work, and by
considering six clusters during the hierarchical clustering stage, the results pre-
sented in Fig. 8 are achieved. As it can be seen, unlike the results from the
proposed methodologies, this approach produces classes of applications that do
not exhibit similar characteristics when DVFS is applied. Additionally, by using
PCA and hierarchical clustering makes it harder to extract any architectural

Performance and Power-Aware Classification 145

Fig. 8. Different classes resulting from the methodology proposed in [1].

meaning from the resulting classifications. In particular, it is hard to under-
stand from Fig. 8 which of the resulting classes would correspond to the class
composed by memory-bounded applications with high memory utilization.

4 Conclusion

A new methodology for GPU applications classification based on the resulting
effects of DVFS on the application’s execution time and power consumption was
proposed. Such results from the fact that, existing classification techniques are
not targeted for this specific goals, resulting in many wrongly classified applica-
tions when performance and power consumption are considered. To circumvent
this absence, the proposed algorithms allow the classification of GPU applica-
tions into classes that characterize their performance (or power consumption) at
all operating frequency levels, by solely using the information obtained from the
execution of each application at a single core frequency. The performance and
power classes define 6 distinct energy-aware classes of applications that present
a similar behaviour in the presence of DVFS.

Acknowledgment. This work was partially supported by national funds through
Fundação para a Ciência e a Tecnologia (FCT), under the project UID/CEC/50021/
2013.

References

1. Adhinarayanan, V., Feng, W.C.: An automated framework for characterizing
and subsetting GPGPU workloads. In: International Symposium on Performance
Analysis of Systems and Software (ISPASS). IEEE (2016)

146 J. Guerreiro et al.

2. Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J.W., Lee, S.H., Skadron, K.:
Rodinia: a benchmark suite for heterogeneous computing. In: International Sym-
posium on Workload Characterization (IISWC). IEEE (2009)

3. Che, S., Sheaffer, J.W., Boyer, M., Szafaryn, L.G., Wang, L., Skadron, K.: A charac-
terization of the Rodinia benchmark suite with comparison to contemporary CMP
workloads. In: International Symposium on Workload Characterization (IISWC).
IEEE (2010)

4. Herbert, S., Marculescu, D.: Analysis of dynamic voltage/frequency scaling in chip-
multiprocessors. In: Low Power Electronics and Design (ISLPED). IEEE (2007)

5. Keramidas, G., Spiliopoulos, V., Kaxiras, S.: Interval-based models for run-time
DVFS orchestration in superscalar processors. In: Proceedings of the 7th ACM
International Conference on Computing Frontiers, pp. 287–296. ACM (2010)

6. Kerr, A., Diamos, G., Yalamanchili, S.: A characterization and analysis of PTX ker-
nels. In: International Symposium on Workload Characterization (IISWC). IEEE
(2009)

7. Pouchet, L.N.: Polybench: the polyhedral benchmark suite. http://www.cs.ucla.
edu/∼pouchet/software/polybench/. Accessed 2012

8. Stratton, J.A., Rodrigues, C., Sung, I.J., Obeid, N., Chang, L.W., Anssari, N., Liu,
G.D., Hwu, W.M.W.: Parboil: a revised benchmark suite for scientific and com-
mercial throughput computing. Cent. Reliab. High-Perform. Comput. 127 (2012)

9. Yi, J.J., Sendag, R., Eeckhout, L., Joshi, A., Lilja, D.J., John, L.K.: Evaluat-
ing benchmark subsetting approaches. In: International Symposium on Workload
Characterization (IISWC). IEEE (2006)

10. Zhuravlev, S., Blagodurov, S., Fedorova, A.: Addressing shared resource contention
in multicore processors via scheduling. In: ACM SIGARCH Computer Architecture
News. ACM (2010)

http://www.cs.ucla.edu/~pouchet/software/polybench/
http://www.cs.ucla.edu/~pouchet/software/polybench/

IWMSE - International Workshop on
Multicore Software Engineering

A Context-Aware Primitive for Nested
Recursive Parallelism

Herbert Jordan1(B), Peter Thoman1, Peter Zangerl1, Thomas Heller2,
and Thomas Fahringer1

1 University of Innsbruck, Innsbruck, Austria
{herbert,petert,peterz,tf}@dps.uibk.ac.at

2 Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
thomas.heller@fau.de

Abstract. Nested recursive parallel applications constitute an impor-
tant super-class of conventional, flat parallel codes. For this class, parallel
libraries utilizing the concept of tasks have been widely adapted. How-
ever, the provided abstract task creation and synchronization interfaces
force corresponding implementations to focus their attention to individ-
ual task creation and synchronization points – unaware of their relation
to each other – thereby losing optimization potential.

Within this paper, we present a novel interface for task level paral-
lelism, enabling implementations to grasp and manipulate the context of
task creation and synchronization points – in particular for nested recur-
sive parallelism. Furthermore, as a concrete application, we demonstrate
the interface’s capability to reduce parallel overhead within applications
based on a reference implementation utilizing C++14 template meta pro-
gramming techniques to synthesize multiple versions of a parallel task
during the compilation process.

To demonstrate its effectiveness, we evaluate the impact of our app-
roach on the performance of a series of eight task parallel benchmarks.
For those, our approach achieves substantial speed-ups over state of
the art solutions, in particular for use cases exhibiting fine grained
tasks.

1 Introduction

For the development of parallel programs, various programming language exten-
sions and libraries have been created. Many of these, including OpenMP, MPI,
OpenCL, or CUDA, focus on the concept of parallel loops, and variations of
those, as their primary use case. In general the associated data parallelism pro-
vides high degrees of concurrency, leading to scalable applications. Furthermore,
the management overhead for distributing sub-ranges of parallel loops scales
only with the number of processors, not the problem size itself – and is thus low.

c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 149–161, 2017.
DOI: 10.1007/978-3-319-58943-5 12

150 H. Jordan et al.

However, beyond the class of loop-parallel applications – also referred to as
flat parallel applications – there is a large group of algorithms favoring nested
parallelism. In those, concurrent control flows spawn further, nested, parallel
control flows to obtain higher degrees of parallelism. In many cases, this nesting
of parallel control flows, or threads, is even continued recursively.

Example algorithms benefiting from nested parallelism include divide and
conquer approaches such as those found in sorting algorithms, the entire class
of graph processing, as well as the wide range of problem space exploration
algorithms, covering combinatorial problems, optimization problems, and deci-
sion problems (e.g. SAT or SMT problems). Also, many numerical problems
have effective nested parallel implementations: matrix multiplication – in its
3-loop form a text book example for loop-level parallelism – can be more effec-
tively solved by Strassen’s algorithm, which exhibits a nested recursive parallel
structure. Furthermore, conventional flat parallelism constitutes a special case
of nested parallelism. Thus, the class of flat parallel algorithms is a true subset
of the class of nested parallel algorithms.

Due to its benefits, existing languages and libraries have been modified to
provide support for nested parallel codes. OpenMP introduced task-based paral-
lelism in its version 3.0 [3] and CUDA supports nested parallelism since version
5.0 [8]. However, both superimpose nested parallelism on their otherwise flat exe-
cution model, resulting in management overhead for the runtime as well as for
the developer. Cilk, on the other hand, has been specifically designed for nested,
recursive parallelism, resulting in a (nearly) hands-off solution for the schedul-
ing of nested (recursive) parallelism. However, as we will address in this paper,
Cilk’s fully general approach introduces overhead. Furthermore, as a compiler
based approach, modifications and extensions to Cilk require modifications in
the compiler and are thus not portable among different system software stacks.

The construct presented in this paper, the prec operator, provides a way
to define nested parallel operations offering the flexibility of future based task
systems, combined with the hands-off scheduling and load management qualities
of Cilk, yet avoiding Cilk’s inherent overhead for task-scheduling opportunities.
Furthermore, all of those features are realized utilizing C++’s template-meta-
programming feature – essentially a built-in, widely supported language feature
to script C/C++ code generation in an early compilation stage. Thus, while
being a code generation based solution, its implementation behaves like a library.
It can therefore be flexibly extended or modified and is directly supported by
every standard C++ compiler. Consequently, parallel codes developed utilizing
prec are portable to all systems offering a C++ compiler.

2 Motivation and Main Idea

Our work was motivated by the unexpected low parallel performance observed
when parallelizing nested recursive algorithms using state-of-the-art tools. For
instance, Fig. 1 compares the execution time of various parallel codes computing
Fibonacci numbers recursively similar to

A Context-Aware Primitive for Nested Recursive Parallelism 151

33
61

2

13
62

27

0

500

1000

1500

2000

ex
ec

u
on

m

e
[m

s]

Fig. 1. Performance comparison of parallel fib(40) computations using parallel
libraries integrated into GCC 5.3.0, compared to a desired linear speedup.

int fib(int n) {

if (n <= 2) return 1;

int a = spawn fib(n-1);

int b = fib(n-2);

sync;

return a + b;

}

utilizing different parallel library and runtime implementations. Based on the
parallel structure of the problem, an almost linear speedup would have been
expected. However, as the data shows, none of the parallel implementations
manages to provide any speedup over the sequential version. While the Cilk
based version exhibits a slowdown by a factor of 2.2, the std::async and OpenMP
variants lead to a slowdown by a factor of 70 and 284 respectively.

One common concept in all existing parallel libraries or program extensions is
that each creation of at task is handled independently. While it is very prominent
and explicit when using C++11’s std::async, Cilk and OpenMP implementa-
tions also process each individual task-creation site independently of its context.
Thus, if nested in a recursive function, each (potential) task-creation point has
to be processed, and the cost for the thereby introduced overhead has to be paid.

With the prec operator, to be specified in detail in Sect. 3, we enable the
parallel library implementation to grasp the context of a parallel task creation
point – in particular in a nested recursive environment. Furthermore, we enable
the parallel library to specialize the context around those task creation points.
This capability is utilized by the prec operator to create multiple implementation
versions of a given recursive operation – one processing sub-tasks in parallel and
another processing sub-tasks sequentially. The runtime system may then switch
between these two implementations depending on the system state.

As a result, when utilizing the prec operator for parallelizing nested recursive
code, the compiler is synthesizing an interleaved sequential and parallel version
of the recursive function from a single specification. Thus, the user only has to
provide and maintain a single implementation. The multi-versioning is conducted

152 H. Jordan et al.

by the compiler. Furthermore, the compiler is capable of applying low-level opti-
mizations to the sequential version of the synthesized code such that, compared
to a purely sequential version, no performance is lost.

3 Method

Let α, β, γ, and δ be type variables, A → B denote the type of a function
accepting a value of type A as an argument and obtaining a value of type B,
and (A1, . . . , An) be the type of a n-tuple where the i-th component is of type
Ai. Further, let B be the type of the boolean values true and false, and N the
set of natural numbers.

3.1 The rec Operator

A recursive function can be defined by providing (i) a test for the base-case,
(ii) a function evaluating a base-case, and (iii) a function evaluating a step-case.
Furthermore, in a typed system, the parameter type and the result type of the
function has to be specified. For instance, for defining a recursive version of the
Fibonacci function fib, where

fib(x) =

{
1 x <= 2
fib(x − 1) + fib(x − 2) otherwise

the parameter and result type is N (natural numbers), the base-case test, the
base-case, and the step case are given (in C++11 lambda-like syntax) by the
three expressions

base_case_test = [](N x){ return x <= 2; };

base_case = [](N x){ return 1; };

step_case = [](N x, N → N fib){

return fib(x-1) + fib(x-2);

};

where the parameter fib is a token passed as an argument to conduct recursive
calls.

Let α and β be type variables representing the parameter type and result
type respectively. Then, in the general case, a definition requires

– a base-case test of type α → B
– a base-case evaluation function of type α → β and
– a step-case evaluation function of type (α, α → β) → β

To combine those parameters, a higher-order function rec of type

(α → B, α → β, (α, α → β) → β) → (α → β)

can be defined, such that a call rec(a,b,c) evaluates to the recursive function

A Context-Aware Primitive for Nested Recursive Parallelism 153

β f (α in) {

if (a(in)) return b(in);

return c(in,f);

}

Thus, for our example above, we obtain after inlining

N f (N in) {

if (in <= 2) return 1;

return f(in -1) + f(n-2);

}

corresponding to a sequential implementation of the Fibonacci function.

3.2 The prec Operator

For the parallel case it would be desirable to process sub-tasks of the recursion
in parallel. However, once sufficient concurrent control flows are present in the
system, the individual tasks should avoid the overhead induced by allowing for
task spawning by being processed sequentially. Thus, the scheme of the rec

operator needs to be modified to enable the generation of sequential and parallel
versions of the recursive function as well as to enable the task scheduler to decide
which version to execute at every scheduling point.

Similar to the rec operator, the prec operator is a higher order function of
type

(α → B, α → β, (α, α → γ〈β〉) → β) → (α → future〈β〉)
accepting three functions as arguments, and returning a new function as a result.
The interpretation of α and β is the same as for the rec operator. Additionally,
γ is a generic type to be substituted by a value wrapper providing access to a
(potentially asynchronously processed) value. Two examples of such value wrap-
pers are:

– value<δ> wrapping an immediately available value of type δ that has been
computed synchronously, and

– future<δ> referencing a value of type δ asynchronously computed by a task

The result of the prec operator is a function asynchronously computing the
recursive function defined by its parameters, thus returning a future to a value
of type β.

Let expr1, . . . , exprn be n ≥ 1 expressions of type T . Furthermore, let the
expression spawn expr1or ... or exprn create a task evaluating asynchronously
exactly one of the given n expressions and return a future of type future〈T 〉 as a
handle to the resulting value. A call to prec(a, b, c) is translated into the nested
recursive parallel function f defined by

value <β> seq_f(α in) {

if (a(in)) return value(b(in));

return value(c(in ,seq_f));

}

154 H. Jordan et al.

future <β> par_f(α in) {

if (a(in)) return spawn b(in);

return spawn c(in ,f);

}

future <β> f(α in) {

return spawn seq_f(in).get() or par_f(in).get ();

}

where seq_f is the sequential version of the recursion, par_f the parallel version
and f a version serving as a dispatcher point between the sequential and parallel
version upon each recursive invocation. Note that the functions par_f and f are
mutually recursive, while seq_f is only invoking itself.

3.3 The Runtime System

A runtime system supporting the prec operator needs to provide efficient imple-
mentations for the spawn expression and the future class. It can rely on the
fact that the spawn expression is called by passing (i) a single, nested parallel
expression or (ii) two expressions, where the first is a sequential implementation
and the second a parallel implementation. Thus, in case two implementations are
provided, the first may be used in situations where the available parallel process-
ing units are saturated and more parallelism is not beneficial, while the second
implementation may be chosen if there are still idle resources in the system.

For the futures, any runtime implementation has to provide means to syn-
chronize upon the completion of spawned tasks as well as to retrieve asynchro-
nously computed values.

3.4 Implementation

We have implemented the prec operator in a reference implementation utilizing
C++14 and its template meta-programming facilities. It is internally maintain-
ing a pool of threads, each equiped with a local task queue. For load balancing, a
task steeling policy has been integrated. The implementation is available online1.

4 Evaluation

To evaluate the impact of our construct on the performance of task parallel appli-
cations we have conducted several experiments based on our reference implemen-
tation. The results are discussed in the following subsections.

4.1 Fibonacci

Our first evaluation concludes our motivational example. In Sect. 2 various par-
allel implementations of fib, based on state-of-the-art parallel libraries and

1 https://github.com/HerbertJordan/parec commit 9aa5dac.

https://github.com/HerbertJordan/parec

A Context-Aware Primitive for Nested Recursive Parallelism 155

language extensions, have been presented. All of them fall short in providing
acceptable performance results for computing our benchmark case fib(40). For
a sequential execution time of ≈480 ms one would expect, presuming ideal scal-
ing, an execution time of 40 ms on a 12-thread system, as illustrated in Fig. 1.
Our prec based implementation obtains the result within 41 ms, corresponding to
a 97.5% parallel efficiency. Clearly, our approach is able to mitigate the majority
of overhead and to achieve acceptable performance for the given benchmark.

The evaluation of this fibonacci motivating example, as well as the compar-
ison results shown in the motivation section, have been carried out using GCC
5.3.0, on a 6-core/12-thread Intel Core i7-5820K CPU at 3.3 GHz.

4.2 The prec Impact

In our second experimental setup, our goal was to identify the impact of consid-
ering the calling context like it is done by our prec operator compared to a purely
localized task-generation code realized by utilizing a conventional async call. To
eliminate any impact of the quality of an underlying runtime system, we utilized
the same runtime implementation for both situations. Thus, we can exclude the
effects of different scheduling policies, task queue lengths, stealing policies, or
task handling overheads. To that end we compared two slightly different versions
of our reference runtime:

– the parec::async configuration, where every call to spawn is treated like a
std::async call, creating a new light-weight task to be scheduled by the run-
time system

– the parec::prec configuration, where nested recursive tasks and their calling
context are treated as described in Sect. 3

To compare those two setups, we ported the INNCABS [12] benchmark suite to
the prec operator. The port can be obtained online2.

Table 1 enumerates the eight benchmarks we have ported for our evaluation.
The covered codes reach from numeric algorithms like Strassen and SparseLU,
over combinatorial problems including QAP and NQueens, to standard utility
algorithms like Sort. Table 1 also lists the problem sizes for our experiments. For
practical reasons we decided to cancel all unfinished executions after 100 s and
consider these to have timed out.

Our evaluation platform is a quad-socket shared-memory system equipped
with Intel Xeon E5-4650 processors, each offering 8 cores clocked at a nominal
frequency of 2.7 GHz (up to 3.3 GHz with Turbo Boost). The software stack
consists of GCC 5.2.0 with -O3 optimizations, running on a Linux operating
system with kernel version 2.6.32-473. The thread affinity for all benchmark runs
was fixed using a fill-socket-first policy, and all reported numbers are medians
over ten runs.

Figure 2 illustrates our experimental results. For each benchmark we show
the median execution time for a varying number of threads. The execution times
2 https://github.com/PeterTh/inncabs/tree/parec port.

https://github.com/PeterTh/inncabs/tree/parec_port

156 H. Jordan et al.

Table 1. Ported INNCABS benchmarks and problem sizes

Name Description Problem size

Fib Fibonacci number 47

Health Health care simulation medium.input

NQueens The N-Queens problem 13

Pyramids 2D cache-oblivious stencil solver -

QAP Quadratic assignment problem chr15c.dat

Sort Merge-sort 108 8192 2048 128

SparseLU LU factorization -

Strassen Strassen algorithm 4096

(a) Fib (b) Health (c) NQueens

(d) Pyramids (e) QAP (f) Sort

(g) SparseLU (h) Strassen

Fig. 2. Performance comparison of the parec::async and parec::prec operator
mapped to the same runtime system.

for running in parec::async and in parec::prec mode are compared – with the
exception of Fib, where the total run time of the parec::async configuration did
not finish within a timeout of 100 s for any number of threads.

For benchmarks where task creation and spawning is clearly dominated by
the actual workload of the task, no significant difference between the two config-
urations can be observed. This includes Pyramids, Sort, SparseLU, and Strassen.
For all of those, both configurations produce almost identical results.

A Context-Aware Primitive for Nested Recursive Parallelism 157

Benchmarks where the actual workload is small compared to the task spawn-
ing overhead however, benefit from context-awareness and specialization con-
ducted by the prec. Those include

– Fib – with only one comparison, two function calls, and three arithmetic
operations per task – here prec is faster by several orders of magnitude

– Health – where each task is a local operation on a single node in a graph
– NQueens – where each task conducts a small number of stack local operations
– QAP – where each task conducts stack local operations and a single access

to a globally shared scalar value

Especially those benchmarks with a large, yet irregular fan out (Health and
QAP) produce a large number of tasks in lower levels of the execution tree, the
overhead of which can be significantly reduced by the prec approach.

For some of the benchmarks, increasing the number of threads beyond a sin-
gle socket – thus exceeding 8 threads – shows a considerable change in their
scaling behaviour. This is particularly prominent for Health, and QAP, in which
each task accesses a single, globally shared scalar due to the branch-and-bound
nature of the represented algorithms. Also, for some data intensive benchmarks
like Pyramids, the data access order – and thus the efficient usage of caches – has
a much higher impact on the execution performance of the benchmark than the
task scheduling overhead. However, our reference runtime has not been specifi-
cally tuned to deal efficiently with this kind of challenges, which constitute large
branches of research on their own.

As the data shows, the utilization of prec can provide substantial perfor-
mance benefits, in particular for use cases with a low number of operations per
tasks.

The raw data of this experiment, as well as all the sources and scripts used
for their generation can be obtained online3.

4.3 Application Benchmarks

For our final evaluation, we are comparing the absolute performance of our
prec implementation with the performance obtainable by utilizing comparable
parallel libraries – in particular GCC’s Cilk Plus and std::async.

While Cilk Plus does not require additional tuning parameters, std::async

does allow the user to specify a launch policy. According to the C++ standard,
the following policies need to be supported:

– async – the spawned task is processed asynchronously
– deferred – the task is processed by the thread requesting the result (lazy

evaluation)
– default – which is equivalent to either async or deferred, but leaves the choice

to the implementation

For our comparison we evaluated all three of those policies and included the one
providing the best performance for the respective number of threads. Further-
more, we utilized the same benchmarks and setup as in Subsect. 4.2.
3 https://github.com/PeterTh/inncabs/tree/parec port commit b3f87a2.

https://github.com/PeterTh/inncabs/tree/parec_port

158 H. Jordan et al.

(a) Fib (b) Health (c) NQueens

(d) Pyramids (e) QAP (f) Sort

(g) SparseLU (h) Strassen

Fig. 3. Performance comparison of our parec::prec implementation, Cilk Plus, and
C++’s std::async.

Figure 3 illustrates the obtained results. Similarly to our parec::async setup,
std::async is not able to compute a solution for Fib within our time limit of
100 s.

In several cases the launch policy deferred turned out to be the fastest option,
although leading to an effective serialization of the program code. As a result,
for a set of benchmarks including NQueens, Sort, and Strassen, the execution
time of std::async does not change with the number of threads.

Cilk Plus, on the other hand, also fails to obtain a result for Fib with only 1
or 2 threads within 100 s.

For NQueens, Sort, SparseLU, and Strassen, Cilk Plus and our reference
runtime provide comparable results, while C++’s std::async only manages to
obtain a speedup for SparseLU.

In particular for Fib, but also for the intra-socket QAP, our approach pro-
vides (highly) superior performance compared to the alternative libraries and/or
language extensions.

For Pyramids, the Cilk and std::async implementation suffer from high
sequential overhead due to their internal operation, which only Cilk manages
to compensate due to almost linear scaling. However, within a single socket, our
runtime manages to provide higher performance than both of them. Beyond the
single-socket boundary, however, impacting factors like the evaluation order of
sub-tasks and their effect on cache usage and NUMA effects become more impor-
tant, weakening the performance of our runtime. However, those have not been

A Context-Aware Primitive for Nested Recursive Parallelism 159

the objectives of the presented work. These aspects will be further investigated
by follow-up efforts.

The raw data for this experiment, as well as full sources and scripts to repro-
duce it, may be obtained online4.

5 Related Work

Due to its status as a fundamental and easy to use parallel abstraction, there is
a large body of existing work in optimizing task parallelism. Particular attention
was previously paid to scheduling strategies [2,9] and alleviating task creation
overhead [5,10]. What is common to all of these approaches is that they focus
primarily on the runtime system level, while we employ C++ template program-
ming in order to introduce a code-generation component evaluated at compile
time. This allows us to generate more efficient parallel code, and to provide any
given runtime system with the option of switching to a zero-overhead sequen-
tial implementation without requiring the user to manually create and maintain
separate versions of their code. As such, our approach is orthogonal to and com-
patible with any further runtime-level adaptation and optimization – such as the
lazy task creation scheme described by Duran et al. [5] or any of the hardware-
aware or locality-based scheduling strategies [7].

Looking specifically at the C++ language, parallelism is primarily the domain
of traditional tasking libraries [1,11], which are also inherently limited to run-
time optimization due to the type of primitives they offer. Meanwhile, current
compiler research related to C++11 parallelism has focused on the correctness
of the memory model underlying the standard [4], not on the performance of
its library function implementations. An exception is the authors’ previous work
on semantics-aware compilation techniques [13], however, unlike the template
library based approach presented in this paper it requires a non-standard sys-
tem software stack, limiting its applicability in real-world software deployments.

Existing C++ template libraries for parallelism which operate on a higher
level of abstraction, such as Quaff [6], aim to support a wide variety of parallel
patterns. However, unlike the work presented in this paper, they do not focus
specifically on reducing overheads in recursive task parallel algorithm by compile-
time multiversioned code generation.

6 Conclusion and Future Work

In this paper we presented a novel, abstract parallel construct enabling parallel
task library implementations to grasp and manipulate the context of task spawn-
ing points. By utilizing the capabilities established by its design, we demon-
strated its potential of reducing the task creation overhead within nested recur-
sive parallel codes. Our reference implementation generally achieved comparable
4 The files for the std::async reference implementation, the Cilk Plus port, and

the parec::prec port are available at https://github.com/PeterTh/inncabs/

tree/[master,cilk port,parec port] respectively (commits a87ed27, 6476d75 and
b3f87a2).

160 H. Jordan et al.

or better performance than state-of-the art solutions. Crucially, for a class of use
cases in which the computational effort of individual tasks is low, our approach
was able to attain superior performance. Furthermore, unlike the best state of
the art competitor (Cilk Plus), which depends on compiler extensions, our app-
roach is a pure C++14 solution and thus portable to any compliant compiler.

Due to its library based nature, our approach is easy to customize e.g. in its
scheduling and version selection policy. More sophisticated concepts for these
will be investigated to improve the load balancing and scalability of our runtime
implementation. Furthermore, additional high-level parallel constructs including
parallel loops, stencils, or map-reduce like operators can be designed on top of
prec to improve its usability.

Acknowledgement. This project has received funding from the European Union’s
Horizon 2020 research and innovation programme as part of the FETHPC AllScale
project under grant agreement No. 671603.

References

1. An, P., et al.: STAPL: an adaptive, generic parallel C++ library. In: Dietz, H.G.
(ed.) LCPC 2001. LNCS, vol. 2624, pp. 193–208. Springer, Heidelberg (2003).
doi:10.1007/3-540-35767-X 13

2. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: StarPU: a unified plat-
form for task scheduling on heterogeneous multicore architectures. Concurrency
Comput.: Pract. Exp. 23(2), 187–198 (2011)

3. Ayguadé, E., Copty, N., Duran, A., Hoeflinger, J., Lin, Y., Massaioli, F., Teruel, X.,
Unnikrishnan, P., Zhang, G.: The design of openMP tasks. IEEE Trans. Parallel
Distrib. Syst. 20(3), 404–418 (2009)

4. Batty, M., Memarian, K., Owens, S., Sarkar, S., Sewell, P.: Clarifying and compiling
C/C++ concurrency: from C++11 to power. In: ACM SIGPLAN Notices, vol. 47,
pp. 509–520. ACM (2012)

5. Duran, A., Corbalán, J., Ayguadé, E.: An adaptive cut-off for task parallelism. In:
International Conference for High Performance Computing, Networking, Storage
and Analysis, SC 2008, pp. 1–11. IEEE (2008)

6. Falcou, J., Sérot, J., Chateau, T., Lapresté, J.T.: Quaff: efficient C++ design for
parallel skeletons. Parallel Comput. 32(7), 604–615 (2006)

7. Guo, Y., Zhao, J., Cave, V., Sarkar, V.: SLAW: a scalable locality-aware adaptive
work-stealing scheduler. In: 2010 IEEE International Symposium on Parallel &
Distributed Processing (IPDPS), pp. 1–12. IEEE (2010)

8. Jones, S.: Introduction to dynamic parallelism. In: GPU Technology Conference
Presentation, vol. 338 (2012)

9. Lakshmanan, K., Kato, S., Rajkumar, R.: Scheduling parallel real-time tasks on
multi-core processors. In: 2010 IEEE 31st Real-Time Systems Symposium (RTSS),
pp. 259–268. IEEE (2010)

10. Mohr, E., Kranz, D.A., Halstead Jr., R.H.: Lazy task creation: a technique for
increasing the granularity of parallel programs. IEEE Trans. Parallel Distrib. Syst.
2(3), 264–280 (1991)

11. Reinders, J.: Intel Threading Building Blocks: Outfitting C++ for Multi-core
Processor Parallelism. O’Reilly Media Inc., Sebastopol (2007)

http://dx.doi.org/10.1007/3-540-35767-X_13

A Context-Aware Primitive for Nested Recursive Parallelism 161

12. Thoman, P., Gschwandtner, P., Fahringer, T.: On the quality of implementation
of the C++11 thread support library. In: 2015 23rd Euromicro International Con-
ference on Parallel, Distributed and Network-Based Processing (PDP), pp. 94–98.
IEEE (2015)

13. Thoman, P., Moosbrugger, S., Fahringer, T.: Optimizing task parallelism with
library-semantics-aware compilation. In: Träff, J.L., Hunold, S., Versaci, F. (eds.)
Euro-Par 2015. LNCS, vol. 9233, pp. 237–249. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-48096-0 19

http://dx.doi.org/10.1007/978-3-662-48096-0_19
http://dx.doi.org/10.1007/978-3-662-48096-0_19

Achieving High Parallel Efficiency on Modern
Processors for X-Ray Scattering Data Analysis

Abhinav Sarje1(B), Xiaoye S. Li1, and Nicholas Wright2

1 Computational Research Division,
Lawrence Berkeley National Laboratory, Berkeley, USA

abhinav.sarje@gmail.com
2 National Energy Research Scientific Computing Center,
Lawrence Berkeley National Laboratory, Berkeley, USA

Abstract. Modern processors have increasingly more parallelism avail-
able on-chip, which include simultaneous multithreading (SMT) and
single-instruction multiple-data (SIMD) parallelisms. The former is typ-
ically available through multiple compute cores and the latter through
long vector units. In this paper, we consider several compute kernels
of a real-world scientific application, X-ray scattering data analysis, to
demonstrate and analyze high performance through the exploitation of
available SMT and SIMD parallelism on such modern processors, which
form the base of current state-of-the-art supercomputers. We discuss var-
ious methods to effectively exploit the available on-node parallelism to
increase parallel efficiency and provide detailed performance analysis on
two leading Cray supercomputers. In addition, we also present perfor-
mance results obtained on the Intel Knights Landing processor.

1 Introduction and Background

Modern processor architectures are being designed with increasing amount of on-
chip parallelism available. These processors are designed to deliver higher com-
puting power by exploiting multiple levels of parallelism. In high-performance
scientific computing, these architectures play a central role in delivering the
much needed compute and memory resources. In this paper, we consider per-
formance analysis and optimization of an application code developed recently,
HipGISAXS [2,3]. This is a high-performance code for X-ray scattering data
analysis [4,5]. Such data analysis is useful to scientists for the characterization
of macromolecules and nano-particle systems based on their structural proper-
ties, such as their shape and size, at the micro/nano-scales. Some of the major
applications of these include the characterization of materials for the design
and fabrication of energy-relevant nano-devices, such as photovoltaic cells, and
development of high-density storage media.

In this paper, we consider some of the most compute-intensive kernels of
the HipGISAXS code to demonstrate and analyze high-performance through
the exploitation of simultaneous multi-threading (SMT) and single-instruction
multiple-data (SIMD) parallelism on modern multi-core processors. We discuss
c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 162–174, 2017.
DOI: 10.1007/978-3-319-58943-5 13

Achieving High Parallel Efficiency on Modern Processors 163

various methods to effectively exploit the available on-node parallelism to increase
parallel efficiency and provide detailed performance analysis on leading Cray
supercomputers. We further provide performance analysis on Intel’s Knights
Landing manycore processor, which has even larger number of compute cores with
512-bit wide vector units.

2 Computational Kernels

In HipGISAXS simulation code, the kernels compute on a two-dimensional grid,
with non-uniform positioning of the grid points. The simulated scattering light
intensities are computed at each grid point. The computations at each grid point
are independent of each other, which is amenable to efficient exploitation of par-
allelism. In each simulation, two types of routines are executed: Form Factor
(FF) computations and Structure Factor (SF) computations. The former repre-
sent the scattering phenomenon due to individual nanoparticles in the sample
model, while the latter represent the scattering due to all particles forming a
structure (such as their three-dimensional arrangements) as a whole. Both types
contain a number of kernels, each depending on the type of computations per-
formed. The FF kernels could be either analytic, where computations are derived
analytically for simple nanoparticle shapes, such as spheres, cylinders, cubes,
etc., or numerical, which are generic and used for complex structures when they
cannot be efficiently defined through simple shapes. In the following we focus on
one of the analytical kernels and one of the numerical kernels for the purpose
of demonstrating the exploitation of thread and vector parallelism. The form
factor computation at a single q-point involves accessing data and performing
independent calculations for each of the input shape triangles, followed by a
reduction over all the triangles. This is done for all the q-points in the problem
under consideration. The output matrix F of the same size as the Q-grid Q, is
constructed with the results of these computations. This is summarized in the
following equation:

F : f(q) = − i

|q|2
nt∑

t=1

eiq·rtqn,tst, ∀q ∈ Q. (1)

2.1 An Analytical Form Factor Kernel

For certain simple nanoparticle shapes, such as spherical, cylindrical, cuboidal,
etc., analytical formulae can be derived to calculate the form factor. In most
cases, such analytical computations are significantly cheaper than performing the
general-case computations through volume integrals. Hence, if a sample model
can be described in terms of simple shapes, it is preferable to use the analytical
method. The application under consideration includes a number of such analyt-
ical form factor computational kernels. We select one of these analytical kernels,
the form factor for a cylindrical shape, for our study in the following sections.

164 A. Sarje et al.

Algorithm 1. Simplified structure of analytical cylinder form factor kernel

for(int z = 0; z < nqz; ++ z) {
int y = z % nqy;
vector3c_t mq = rotate(qx[y], qy[y], qz[z], rot);
complex_t qpar = sqrt(mq[0] * mq[0] + mq[1] * mq[1]);
// ... more computations ...
complex_t temp_ff(0.0, 0.0);
for(int i_r = 0; i_r < rsize; ++ i_r) {

for(int i_h = 0; i_h < hsize; ++ i_h) {
// ... more computations ...
complex_t expo_val = exp(0.5 * mq[3] * h[i_h]);
complex_t sinc_val = sinc(0.5 * mq[3] * h[i_h]);
complex_t bess_val = cbesselj(qpar * r[i_r], 1) / (qpar * r[i_r]);
temp_ff += sinc_val * expo_val * bess_val;

}
}
// ... more computations ...
complex_t temp2 = exp(temp1);
ff[z] = temp_ff * temp2;

}

The basic computational loop structure of the cylinder form factor kernel is
shown in Algorithm 1. The outermost loop is over all the q-points (nqz). The
number of q-points in a typical simulation is in over 1 million. All the kernels in
this application make a heavy use of various transcendental functions, such as
sine, cosine, exponential, Bessel, etc. Additionally, since the q-points are in the
complex space, the computations are performed on complex numbers. The inner
loop-nest in Algorithm 1 are over the two parameters defining the cylinderical
shape, radius (rsize) and height (hsize). Total number of iterations for this
loop-nest is typically small, on the order of tens, and in many cases, just one.

2.2 A Numerical Form Factor Kernel

For sample models where the nanoparticle shapes cannot be defined in terms
of simple shapes, a full numerical integration over the particles’ structure needs
to be performed. This represents the general case, which can handle any kind
of complex shapes. The shapes are defined through discretization of its sur-
face, such as by triangulation. The higher the discretization resolution, the
better the computed approximation, but with higher computational cost. The
shape surface integration adds another dimension to the computational problem.
A typical structure of a numerical form factor kernel is shown in Algorithm2.
As with the analytical kernels described previously, the outermost loop is over
the q-points. The primary internal loop is over the set of triangles describing the
corresponding structure in the sample. The number of triangles can vary from
several hundreds to several millions depending on the structure complexity and
discretization resolution.

Achieving High Parallel Efficiency on Modern Processors 165

Algorithm 2. A simplified structure of a numerical form factor kernel that uses
triangulated structure definitions

for(int z = 0; z < nqz; ++ z) {
int y = z % nqy;
vector3c_t mq = rotate(qx[y], qy[y], qz[z], rot);
// ... more computations ...
complex_t ff_temp(0.0, 0.0);
for(int t = 0; t < num_triangles; ++ t) {

// ... load triangle data ...
// ... more computations ...
complex_t ff(0.0, 0.0);
for(int e = 0; e < 3; ++ e) {

// ... more computations ...
vector3_t n_e = cross(edge[e], n_t); n_e = n_e / n_e.abs();
vector3_t n_v = edge[e] / edge[e].abs();
complex_t q_dot_ne = dot(mq, n_e);
complex_t q_dot_v = dot(mq, vertex[e]);
complex_t q_dot_nv = dot(mq, n_v)
// ... more computations ...
complex_t c0 = CMPLX_MINUS_ONE_ * q_dot_nt * q_dot_ne * q_dot_nv;
complex_t c1 = exp(CMPLX_MINUS_ONE_ * q_dot_v);
ff += c0 * c1 / f0;

}
ff_temp += ff;

}
ff[z] = ff_temp;

}

3 Computational Platforms and Performance Modeling

In the work discussed in this paper, we perform experiments and performance
analysis on the current Cray supercomputers installed at NERSC at Berkeley
Lab:

1. Cray XC30 (Edison): Consists of dual-socket compute nodes with 12-core
Intel Ivybridge processors, total 24 cores and 64 GB memory per node.

2. Cray XC40 (Cori Phase 1): Consists of dual-socket compute nodes with 16-
core Intel Haswell processors, total 32 cores and 128 GB memory per node.

Additionally, we also analyze the performance on Intel’s new Knights Landing
(KNL) processor:

3. A single-socket compute node with 1.3 GHz 64-core Intel Knights Landing
processor, 96 GB DRAM as well as 16 GB of MCDRAM (high-bandwidth
memory).

In order to understand the performance of a code and identify bottlenecks before
any optimization is performed, it is helpful to establish a performance model
on which the code performance can be measured. In this paper, we present the
analysis using the Roofline performance model [6]. The Roofline toolkit was used
to obtain the empirical performance bounds for computations (GFLOPs/s) and
memory bandwidths (GB/s) with respect to the first-level cache and DRAM.
These are discussed in Sect. 6.

166 A. Sarje et al.

4 Threading

An effective way to exploit multiple compute cores available on a processor is
through shared-memory threading. In our case, we utilize OpenMP to imple-
ment threading in each of the kernels. Since scattering light intensity computa-
tions at each q-point are independent of each other, a straight-forward thread-
ing of the loop over the q-points is the most efficient approach. The OpenMP
threads do not require any significant synchronizations, making the kernel able
to make full use of the available cores asynchronously. To achieve a higher thread-
ing performance, care should be taken while constructing data structures and
buffers so as to minimize data movement overheads, cache line invalidation over-
head and page thrashing. A node on typical supercomputers may have multi-
ple NUMA regions. It is programmer’s responsibility to minimize data traffic
across these regions. The platforms we use to perform the experiments in this
paper are dual-socket nodes (see Sect. 3), giving effectively two primary NUMA
regions. Furthermore, to best affinities, we use the KMP AFFINITY for setting the
thread affinities to core-level and compact bindings with permute value of 1
(KMP AFFINITY = granularity = core, compact, 1). Thread strong scaling per-
formance are shown in Fig. 1 for the two systems under consideration.

Fig. 1. Speedups for the two form factor kernels under consideration with increasing
number of threads are shown on the Edison (left) and Cori-1 (right) systems, with
Q-grid of size 125,000 q-points.

5 Vectorization

Data parallelism in modern processors is provided through wide vector units,
which can have various widths such as 128, 256 or 512 bits. Typical multi-core
processors, such as the Intel Ivybridge and Intel Haswell, provide 256-bit wide
registers and support AVX2 vector instructions. Our application uses double
precision computations, enabling the possibility of utilizing these vector units
with a 4-way SIMD parallelism.

Achieving High Parallel Efficiency on Modern Processors 167

5.1 Compiler-Based Auto-Vectorization

Modern compilers are quite sophisticated and are able to automatically vector-
ize many codes. This alleviates the need for implementations that use vector
datatypes directly in order to take advantage of the vector units. Typically com-
pilers are able to auto-vectorize inner-most loops if they satisfy certain conditions
such as, (1) the loop counts are known before its execution, (2) the loops are
single block and do not have branching, particularly those which may break
the loop short, (3) there are no backward loop dependencies, (4) computations
involve simple operations which either have vector instructions or a vectorized
libraries available, and the such. We use Intel compilers version 16 to compile our
code for all the experiments presented in this paper. We used various compiler-
directed pragmas, including Intel’s ivdep and OpenMP simd. Unfortunately in
our case, attempts to auto-vectorize the kernel codes failed. As we described
in Sect. 2, the loop structures of the kernels in our application violate most of
the requirements for auto-vectorization, since they: (1) make heavy use of tran-
scendental functions, and subroutines with significant amounts of branching,
(2) have inner-most loops which have either small iteration counts, such as in
the analytical kernel presented previously, or complex structures, like those in
the numerical kernels, (3) perform computations on complex number datatypes,
which although can be generally auto-vectorized, may be inefficient with respect
to non-basic operations.

5.2 Intel Math Kernel Library Vector Functions

Since the compilers are unable to auto-vectorize our codes, we utilized exist-
ing vectorized libraries such as the Intel Math Kernel Library’s (MKL) Vector
Math Library (VML) and CBLAS (level 1) vector functions to implement the
kernels. CBLAS is the C-style interface to the BLAS library. Although use of
these libraries enabled vectorization of a large fraction of the kernels, it pre-
sented a tradeoff between floating-point accuracy and performance. The default
mode in VML is High-Accuracy (HA)1. Use of this mode resulted in a perfor-
mance slowdown of our kernel codes on the Intel Ivybridge processors. The two
other accuracy modes available in VML are Low-Accuracy (LA)2 and Enhanced-
Performance (EP)3. Using LA with our kernel code, we observed a slowdown
as well. On the other hand, with the EP mode the code showed a performance
speedup of up to 1.3×. Unfortunately, the precision provided by EP mode is
too low to be used by our application to perform any useful simulations. These
results on the use of Intel MKL are summarized in Table 1.

5.3 Hand-Vectorization

Highest performance efficiency can be achieved if the implementation can
be done efficiently using vector instructions. Intel provides a set of vector
1 High-Accuracy mode in VML provides an accuracy of 1 ulp.
2 Low-Accuracy mode in VML provides an accuracy of 4 ulp.
3 Enhanced-Performance mode in VML guarantees only 50% of the bits to be accurate.

168 A. Sarje et al.

Table 1. Performance comparisons on Cori-1 between different accuracy models of
Intel MKL VML applied to the analytical cylinder form factor kernel.

Version Performance speedup Rel. # instructions

Base (non-vectorized) 1.00 1.0

MKL VML Mode HA 0.73 3.8

MKL VML Mode LA 0.78 3.4

MKL VML Mode EP 1.28 0.6

instrinsics, which are low-level C functions, acting as a wrapper around the
assembly instructions, and allow a programmer to be more effective in the imple-
mentation by removing the need to directly implement in assembly language.
Given the low performance boost achieved by using the Intel MKL VML as
presented in the previous section, hand-vectorization is an obvious next step
to enable efficient vectorization. Additionally, since our kernels perform compu-
tations on complex numbers, hand-vectorization gives more flexibility on data
encoding and storage. In our implementation we follow the AoSoA (Array of
Structures of Arrays) model. The real and imaginary components of a complex
number are encoded with vector datatypes into a structure. Arrays of this ‘com-
plex vector’ structure are used in implementing the kernels. This structure can
be written for AVX as shown in Fig. 2, where m256d is defined as an AVX
datatype of packed four-double-precision length (256-bits). Hence, one complex
AVX vector holds four double precision complex numbers. This allows full use
of the available SIMD capabilities as opposed to the alternate approach where
the full complex numbers are encoded within the same vector with alternate
real and imaginary components. This alternative can hold two double precision
complex numbers in a single AVX vector, but would involve some redundancy
to perform operations on them. We implement all compute operations on vec-
tor complex numbers using the first approach and real number vector intrinsics.
One of the simplest operations, a complex-complex multiplication may be writ-
ten using the real multiply and add/subtract intrinsics, also shown in Fig. 2,
where mm256 ∗ pd() intrinsics represent the AVX vector operations on the
packed double precision AVX datatype.

Fig. 2. (Left) AVX vectorized representation of a complex number using two double
precision AVX vector datatype m256d. (Right) An example of a complex number
multiplication using the available AVX instrinsics for real numbers.

Achieving High Parallel Efficiency on Modern Processors 169

5.4 Vectorizing Analytical Cylinder Form Factor Kernel

We implement the entire analytical cylinder form factor kernel using the AVX
vector intrinsics. The vectorization level is the same as the outer loop level for
the code structure showed in Algorithm 1. A major performance bottleneck in
this kernel is the first order Bessel function of the first kind, commonly denoted
by J1. Because of the two factors: need of a complex J1 function, and, absence
of any AVX vectorized implementation of J1, we implemented this function fol-
lowing the sequential real-number implementation of this function as described
in [1]. This function involves significant branching and loop breaks based on
argument values, making it harder to vectorize efficiently. For example, to deal
with branching based on the argument value, in the case of a vector, some
arguments might satisfy one condition while others satisfying another. Hence,
masking was used to handle such cases. Another example is the redundancy
introduced with vectorization in the conditional loop breaks. For a given vector,
the loop is executed for the largest number of iterations required among the
vector entries, while masking the redundant computations.

Fig. 3. Execution times (left) of the analytical cylinder form factor kernel and cor-
responding speedups (right) with various vectorized versions on Cori-1: base (non-
vectorized), using Intel MKL with VML modes HA, LA and EP, and using AVX
intrinsics. Performance is shown for this kernel with Q-grid of size 500,000 q-points.

A basic structure of the scalar J1 function is shown in Algorithm3. This
function also takes form of a transcendental function with infinite series summa-
tions. This listing highlights the basic branching and conditional loop breaks. In
a vectorized version, the input argument is a set of complex numbers, and the
computations depend on the actual values of each of these numbers. Both the
asymptotic and direct methods are executed in a call to this function. A masking
vector is used to ensure that only the correct arguments are used in each method.
For example, given an argument vector 〈z0, z1, z2, z3〉 with z0, z2, z3 > THRESHOLD
and z1 ≤ THRESHOLD, a mask 〈1, 0, 1, 1〉 is used in the asymptotic method branch,
and its complement 〈0, 1, 0, 0〉 is used in the direct method branch. Again, to
ensure correctness with the conditional loop breaks, another mask vector, with

170 A. Sarje et al.

Algorithm 3. Simplified structure of Bessel function J1 highlighting argument depen-
dent branching and conditional loop breaks

complex_t cj1(complex_t z) {
complex_t result;
if(z > THRESHOLD) { // asymptotic method

// ... initialize ak, xk, xk_sum, yk, yk_sum ...
int k;
for(k = 1; k < MAX_ITERATIONS; ++ k) {

// ... more computations ...
xk = compute_xk(...);
xk_sum = xk_sum + xk;

// ... more computations ...
yk = compute_yk(...);
yk_sum = yk_sum + yk;

if(is_zero(abs(xk)) && is_zero(abs(yk))) break; // conditional break
}
assert(k != MAX_ITERATIONS);
result = sqrt(...) * (cos(...) * xk_sum - sin(...) * yk_sum);

} else { // direct method
// ... initialize zk, zk_sum ...
int k;
for(k = 1; k < MAX_ITERATIONS; ++ k) {

// ... more computations ...
zk = compute_zk(...);
zk_sum = zk_sum + zk;
if(is_zero(abs(zk))) break; // conditional break

}
assert(k != MAX_ITERATIONS);
result = zk_sum * z / 2;

}
return result;

}

all elements initialized to 1, is used where an element is set to 0 when the cor-
responding element of the compute vectors satisfy the loop break condition.
Finally, the loop break is taken when all the mask vector elements are set to 0.
With this manual vectorization of the analytical kernel, we were able to achieve
speedups of more than 1.5× with respect to the baseline. The performance of
all these versions of this kernel, vectorization using Intel MKL and with AVX
intrinsics, are summarized in Fig. 3.

5.5 Vectorizing Numerical Form Factor Kernel

Due to the presence of an additional data dimension in the numerical form factor
kernels, the vectorization approach used here is quite different from the one used
for the analytical kernels. A single triangle is described by its three vertices, each
with three coordinates, adding to nine real numbers. Constructing vectors with
the previous approach would be quite inefficient in this case due to the need
for excessive padding in describing a triangle using vectors. Hence, as seen in
Algorithm 2 described previously, it is most efficient to vectorize at the level of
the loop over triangles. The AoSoA model is followed to encode triangles into

Achieving High Parallel Efficiency on Modern Processors 171

set of vector triangles, as shown in Fig. 4. Hence, a vector triangle encodes four
triangles, without the need for any padding. The array of triangles is converted
to an array of vector triangles, with possible padding needed only for the last
vector in the array.

Fig. 4. AVX vectorized representation of triangles. Each triangle is described by its
three vertices (right), and each vertex is described by its three coordinate values (left).
Such an AVX vector triangle structure holds information about four triangles in double
precision.

Table 2. Performance of the AVX vectorized numerical form factor kernel as the
execution times and speedups with respect to the base (non-vectorized) kernel on Cori-
1. The shape structure used for this set of experiments consists of 2,280 triangles.
Performance is shown for three different Q-grid sizes.

Num. q-points Base time (ms) AVX time (ms) Speedup

31,250 19243.1 3674.47 5.237

125,000 64637.6 14256.7 4.534

500,000 239881 52906.1 4.534

We have summarized the performance results for the final vectorized numeri-
cal kernel compared to the initial version in Table 2. The hand-vectorized version
is able to achieve speedups of over 4.5× in most cases, with up to a maximum of
5.2×, over the initial baseline version showing that this vectorization approach
is highly effective.

6 Roofline Performance Modeling

In order to analyze the performance of the final optimized kernels with thread-
ing and vectorization, we visit the Roofline performance modeling as mentioned
earlier in Sect. 3. In Roofline performance modeling, the target is to achieve per-
formance as close to the roofline plot as possible, depending on the arithmetic
intensity of a given kernel. Since arithmetic intensity is defined as the ratio of
FLOPs executed to bytes moved, different levels of the bandwidth bound can
be shown with respect to the memory hierarchy. We utilize Intel SDE to cal-
culate the FLOPs and L1-cache bandwidth of the kernels. It should be noted
that the L1-cache data access are generally significantly higher than the off-chip
data movement (DRAM). In Fig. 5, the performance of the analytical cylinder
form factor kernel is shown. It can be observed that the use of Intel MKL vector

172 A. Sarje et al.

functions significantly decreased the kernel performance compared to the base-
line, while the hand-vectorized version shows improved performance. It should
be noted that the performance of the various versions shown are all obtained
with same thread concurrency on the given systems: 24 threads on Edison and
32 threads on Cori-1 (single thread per core). Similarly in Fig. 6, we show the
performance of the numerical form factor kernel. In this case, the performance
improvement with the hand-vectorized version is significantly higher with respect
to the baseline kernel. In this case also performance of the two versions are
obtained with the same thread concurrencies.

Fig. 5. The analytical cylinder form factor kernel performance plotted on the Roofline
model for the two systems, Edison (left) and Cori-1 (right), are shown. The baseline
(non-vectorized) version and the various vector versions, Intel MKL with VML mode
HA, LA and EP, and AVX-instrinsics are all shown for comparison.

Fig. 6. Performance of the numerical form factor kernel with respect to the Roofline
model are shown for the two systems, Edison (left) and Cori-1 (right), with the baseline
and the AVX-intrinsics vectorized versions.

With the increase in the number of compute cores on emerging architec-
tures, we analyze the performance of the two kernels under study on Intel’s new
Knights Landing processor testbed. The corresponding results plotted on the

Achieving High Parallel Efficiency on Modern Processors 173

Fig. 7. Roofline performance modeling of the analytical cylinder (left) and the numeri-
cal form factor kernels are shown for the Intel Knights Landing processor. Performance
of the baseline and the optimized versions are shown with respect to L1-cache and
MCDRAM memory bandwidths. It can be seen that use of MCDRAM is highly bene-
ficial for these kernels in increasing the arithmetic intensities significantly.

Roofline model are shown in Fig. 7. On this processor, we utilize the available
high-bandwidth MCDRAM for the entire runs since the complete working set
for these runs fits into this memory. Use of this high-bandwidth memory is able
to significantly improve the arithmetic intensities, opening up even more room
for computational optimizations. It should be noted that the vectorized version
used in these experiments is the AVX2 versions developed above with 256-bit
wide vectors. Due to the available room for performance improvement, use of
512-bit wide vectors on the KNL is expected to increase the performance, and
is the next step in our work. Nonetheless, the current vectorized version KNL is
showing up to 1.2× the performance on a Cori-1 node.

7 Conclusions and Further Discussions

Although modern processors pack large performance potential, exploiting them
to gain high parallel efficiency for scientific applications still remains a challenge.
In this work, we primarily considered two parallelism levels, SMT and SIMD,
to deliver higher-performance with a real-world scientific application code. Even
though current compiler technology is able to significantly optimize code perfor-
mance, there remains a large class of computations for which these technologies
fail. Our application code has such computational kernels where compilers are
unable to significantly optimize them for effective exploitation of on-chip par-
allelisms. In such cases, it is inevitable to carry out implementations in much
low-level vector intrinsics if high efficiency is desired.

The work presented in this paper is highly applicable to near-future processor
architectures because the two parallelism levels addressed here are among the
primary areas which these new processors target to deliver higher performance.
For example, Intel’s new Knights Landing manycore processor has much higher
number of compute cores (≥64). Similarly, the vector units on these processors

174 A. Sarje et al.

are 512-bit wide, with AVX512 instruction set, doubling the AVX2 vector units
on typical Intel Xeon processors, and effective vectorization techniques, such as
those presented in this work, are necessary.

Acknowledgements. This work was performed as part of the Lawrence Berkeley
National Lab Intel Parallel Computing Center. This research used resources at the
Berkeley Lab and the National Energy Research Scientific Computing Center, which
are supported by the U.S. Department of Energy Office of Science’s Advanced Scientific
Computing Research program under contract number DE-AC02-05CH11231.

References

1. Bailey, D.H.: MPFUN2015: a thread-safe arbitrary precision package (2015)
2. Chourou, S., Sarje, A., Li, X., Chan, E., Hexemer, A.: HipGISAXS: a high perfor-

mance computing code for simulating grazing incidence X-ray scattering data. J.
Appl. Crystallogr. 46(6), 1781–1795 (2013)

3. Sarje, A., Li, X., Chourou, S., Chan, E., Hexemer, A.: Massively parallel X-ray scat-
tering simulations. In: International Conference for High Performance Computing,
Networking, Storage and Analysis (Supercomputing) (2012)

4. Sarje, A., Chourou, S., Li, X., Hexemer, A.: Analysis of X-Ray Scattering Data
using HipGISAXS (2016, in preparation)

5. Sarje, A., Li, X.S., Hexemer, A.: Tuning HipGISAXS on multi and many core super-
computers. In: Jarvis, S.A., Wright, S.A., Hammond, S.D. (eds.) PMBS 2013. LNCS,
vol. 8551, pp. 217–238. Springer, Cham (2014). doi:10.1007/978-3-319-10214-6 11

6. Williams, S., Waterman, A., Patterson, D.: Roofline. Commun. ACM 53(4), 65–76
(2009)

http://dx.doi.org/10.1007/978-3-319-10214-6_11

Exploiting a Parametrized Task Graph Model
for the Parallelization of a Sparse Direct

Multifrontal Solver

Emmanuel Agullo1, George Bosilca5, Alfredo Buttari2(B),
Abdou Guermouche3, and Florent Lopez4

1 INRIA - LaBRI, Bordeaux, France
2 CNRS - IRIT, Toulouse, France
alfredo.buttari@enseeiht.fr

3 Université de Bordeaux - LaBRI, Bordeaux, France
4 RAL - STFC, Didcot, UK

5 University of Tennessee, Knoxville, USA

Abstract. The advent of multicore processors requires to reconsider
the design of high performance computing libraries to embrace portable
and effective techniques of parallel software engineering. One of the most
promising approaches consists in abstracting an application as a directed
acyclic graph (DAG) of tasks. While this approach has been popularized
for shared memory environments by the OpenMP 4.0 standard where
dependencies between tasks are automatically inferred, we investigate
an alternative approach, capable of describing the DAG of task in a dis-
tributed setting, where task dependencies are explicitly encoded. So far
this approach has been mostly used in the case of algorithms with a
regular data access pattern and we show in this study that it can be effi-
ciently applied to a higly irregular numerical algorithm such as a sparse
multifrontal QR method. We present the resulting implementation and
discuss the potential and limits of this approach in terms of productivity
and effectiveness in comparison with more common parallelization tech-
niques. Although at an early stage of development, preliminary results
show the potential of the parallel programming model that we investigate
in this work.

Keywords: Multicore architectures · Programming models · Runtime
system · Parametrized task graph · Numerical scientific library · Sparse
direct solver · Multifrontal QR factorization

1 Introduction

Since their introduction, multicore processors have become increasingly popular
and are nowadays a commodity used beyond the high performance computing
(HPC) community. However, there is no clear consensus on the best practices
for programming such architectures and developers often have to make a trade-
off between productivity (the pace at which a code may be written and main-
tained) and performance (the pace at which the code is eventually executed).
c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 175–186, 2017.
DOI: 10.1007/978-3-319-58943-5 14

176 E. Agullo et al.

For instance, some software developers may choose to limit the parallelization
of their code to the introduction of a few OpenMP pragma directives within the
main computational-intensive loops of their algorithms. On the other end of the
spectrum, highly optimized libraries such as linear algebra numerical kernels are
often written with low-level synchronizations schemes relying on POSIX threads
(pthread) primitives at a possible high cost in terms of development and main-
tenance. One of the most promising approach for enhancing the productivity
while maintaining high performance consists in abstracting an application as a
directed acyclic graph (DAG) of tasks and delegating the orchestration of the
task to a runtime system.

Whereas task-based runtime systems were mainly research tools in the past
years, their recent progress make them now a solid candidates for designing
advanced scientific software. They provide programming paradigms that allow
the programmer to express concurrency in a simple yet effective way and relieve
her from the burden of dealing with low-level architectural details. Runtime sys-
tems offer a uniform programming interface for a specific subset of hardware or
low-level software entities (e.g., pthread implementations). They are designed as
thin user-level software layers that complement the basic, general purpose func-
tions provided by the operating system. Applications then target these uniform
programming interfaces in a portable manner and low-level, hardware dependent
details are hidden inside runtime systems. The adaptation of runtime systems is
commonly handled through drivers. Portability is thus enabled by the abstrac-
tion provided by the runtime system.

All the above mentioned efforts have contributed to proving the ease of use,
the effectiveness and portability of general purpose runtime systems to the point
where the OpenMP board has decided to include similar features since the
4.0 standard: the task construct was extended with the depend clause which
enables the OpenMP runtime to automatically detect dependencies among tasks
and consequently schedule them accordingly. While task-based programming has
been popularized with OpenMP 4.0 where dependencies between tasks are auto-
matically inferred, the concept itself is much older, and provided in varied forms
by several research projects. In the context of this work we investigate an alterna-
tive approach consisting of explicitly encoding the dependencies between tasks.
Many studies [1,3,11,19] have shown the potential of the approach in the case
of relatively regular algorithms such as dense linear algebra. On the other hand,
the effort for assessing it on irregular algorithms is much more narrow [20,21].
In this paper, we consider a highly irregular numerical algorithm, namely the
sparse multifrontal QR method, and we show how we can turn it out into a DAG
of tasks with explicit dependencies. We present the resulting code and discuss
the potential and limits it delivers in terms of productivity and effectiveness in
comparison with more common parallelization techniques.

The rest of the paper is organized as follows. Section 2 presents the related
work on task-based programming models and runtime systems as well as numer-
ical libraries that have been developed on top of them, including the model we
want to highlight in this paper (consisting in explicitly defining the dependen-
cies of the DAG) together with the runtime system we use (PaRSEC [9,10]) to

Exploiting a Parametrized Task Graph Model for the Parallelization 177

support it. We then present the highly irregular numerical method we want to
implement (namely, the multifrontal QR method) to illustrate our discussion in
Sect. 3. We show how it can be written as a DAG of tasks with explicit dependen-
cies in Sect. 4 and present preliminary (but encouraging!) performance results in
Sect. 5. Section 6 concludes the paper and present perspectives.

2 Related Work

2.1 Parallel Programming Models for Task-Based Algorithms

The most common strategy for the parallelization of task-based algorithms con-
sists in traversing the DAG sequentially and submit the tasks, as discovered,
to the runtime system using a non blocking function call. The dependencies
between tasks are automatically inferred by the runtime system through a data
dependency analysis [4] and the actual execution of the task is then postponed to
the moment when all its dependencies are satisfied. This programming model is
known as a Sequential Task Flow (STF) model as it fully relies on sequential
consistency for the dependency detection. This paradigm is also sometimes
referred to as superscalar since it mimics the functioning of superscalar proces-
sors where instructions are issued sequentially from a single stream but can
actually be executed in a different order and, possibly, in parallel depending on
their mutual dependencies. As mentioned above, the popularity of this model
encouraged the OpenMP board to include it in the 4.0 standard. The simplic-
ity of the STF model facilitates the design of numerical algorithms in a concise
manner and can be exploited to efficiently target multicore architectures [2].

One challenge in scaling to large scale distributed many-core systems is how
to represent extremely large DAGs of tasks in a compact fashion. The Parame-
terized Task Graph (PTG) model introduced in [14] addresses this issue. In this
model, tasks are not enumerated as in the STF model but parametrized and
the dependencies between tasks are explicitly expressed. This property can be
used to encode the DAG in a compact, size independent, way inducing a lower
memory footprint for its representation as well as ensuring limited complexity
for parsing it as the problem size grows. For this reason the memory consump-
tion overhead in the runtime system for representing the DAG is much lower
for the PTG model than for the STF model. In addition with a STF model the
DAG has to be completely unrolled on all participating processes whereas with a
PTG the DAG is only partially unfolded during the execution following the task
progression. From this point of view, the advantage of the PTG approach over
the STF can be crucial when exploiting processors with a very large number of
cores. We address this particular model in the present paper.

2.2 Task-Based Runtime Systems for Modern Architectures

Many initiatives have emerged in the past years to develop efficient task-based
runtime systems for modern platforms. Their review is out of the scope of this

178 E. Agullo et al.

paper. We mention two important projects supporting the STF model. The
StarSs project is actually an umbrella term that describes both the StarSs lan-
guage extensions and a collection of runtime systems targeting different types of
platforms [6,7]. StarSs provides an annotation-based language which extends C
or Fortran applications to offload pieces of computation on the architecture tar-
geted by the underlying runtime system. The StarPU runtime system provides
a generic interface for developing parallel, task-based applications. It supports
multicore architectures equipped with accelerator as well as distributed memory
systems. This runtime is capable of transparently handling data and provides a
rich panel of features.

The PaRSEC runtime system provides a distributed generic task scheduler
supplemented by programming interface complying to the two main program-
ming models presented in Sect. 2.1. In particular, it is one of the few (and
certainly the most popular) runtime systems supporting the PTG model. The
embedded scheduler is dynamic, designed to exploit the memory hierarchy of
modern architectures and capable of maximizing computation to communica-
tion overlap, exploiting data locality and achieving load-balancing between the
resources. PaRSEC provides a language called Job Data Flow (JDF) providing
an extended PTG expressivity to parallel codes. During the compilation process,
the files containing the JDF code are translated into C-code files by a specific
compiler distributed with PaRSEC called daguepp. The DAG is defined by a set
of task types that can be associated with several parameters defined on a given
range of values. The tasks are associated with a list of predecessors and succes-
sors that define the dependencies in the DAG. These dependencies are generally
based on data but may also represent precedence constraints. Tasks are associ-
ated with a code that will be executed for each task instance. This task code can
have multiple instances, each tied to specific hardware resources (accelerators,
FPGA, . . .), and the runtime will select the most appropriate one dynamically
depending on the availability of resources and the needs of the algorithm. For
more information we redirect the interested reader to [8–11].

3 Multifrontal QR Method

The multifrontal method, introduced by Duff et al. [17] is a method for the
factorization (either Cholesky, LDLT , LU or QR) of sparse, linear systems.
This algorithm is based on the concept of elimination tree [22] expressing the
dependencies between the operations which eliminate the unknowns of the input
matrix A, each vertex f of the tree being associated with kf of these unknowns.
The coefficients of the corresponding kf columns and all the other coefficients
concerned by their elimination are assembled together into a dense matrix, called
frontal matrix or, simply, front, associated with the tree node. An edge of the
tree represents a dependency between such fronts. The elimination tree is thus
a topological order for the elimination of the unknowns: a front can only be
eliminated after its children. The multifrontal QR factorization then consists
in a tree traversal following a topological order for eliminating the fronts.

Exploiting a Parametrized Task Graph Model for the Parallelization 179

When a front is visited, first, the activation operation allocates and initializes
the front data structure. Next, the front can then be assembled, i.e., filled
up with the coefficients in the associated kf rows of the matrix A and with
coefficients resulting from the factorization of child nodes. Once assembled, the
kf unknowns are eliminated through a complete, dense QR factorization of
the front. This produces kf rows of the global R factor, a number of Householder
reflectors that implicitly represent the global Q factor and a contribution block
formed by the coefficients that will be assembled into the parent front together
with the contribution blocks from all the sibling fronts.

One distinctive feature of the multifrontal QR factorization is that frontal
matrices are not entirely full but, prior to their factorization, can be permuted
into a staircase structure that allows for moving many zero coefficients in the
bottom-left corner of the front and for ignoring them in the subsequent computa-
tion; this allows for a considerable saving in the number of operations. It must be
noted that when handling matrices from real-life applications, elimination trees
can be quite large (i.e., contain up to O(104) nodes), irregular and unbalanced,
frontal matrices can be of varying sizes (from a few units up to O(104) rows or
columns) and shapes (either over or under-determined). We refer to [5,12,15] for
further details on the multifrontal QR method.

Because of what said above, the multifrontal factorization results in an
extremely irregular, heterogeneous and unpredictable workload even in the case
where a regular partitioning is applied to fronts. Therefore its implementation
on modern supercomputers is a challenging task. In this work we investigate the
use of PTG based runtime systems for this method and assess their ease of use
and effectiveness.

4 Design of a Task-Based Multifrontal QR Factorization
with Explicit Dependencies

The multifrontal method provides two distinct sources of concurrency: tree-
level and node-level parallelism. The first one stems from the fact that fronts
in separate branches are independent and can thus be processed concurrently;
the second one from the fact that, if a front is large enough, multiple processes
can be used to assemble and factorize it.

In order to exploit both sources of parallelism; in the proposed implemen-
tation of our PTG-based parallel multifrontal factorization, which we refer to
as qrm parsec, we use an approach based on hierarchical DAGs. We consider
a two-level hierarchy with an outer DAG and multiple inner DAGs spawned by
the tasks in higher level DAG. The outer DAG contains tasks related to the acti-
vation, assembly and deactivation of fronts in the elimination tree whereas each
inner DAG contains the tasks related to the factorization of the frontal matrix.
This approach is illustrated in Fig. 1 where three different DAGs denoted by 1,
2 and 3 are spawned by tasks in the outer DAG.

The PaRSEC implementation of our solver is split into three JDF files
described in the next sections.

180 E. Agullo et al.

Fig. 1. Two levels hierarchical DAGs implemented in PaRSEC. The inner DAGs are
spawned by tasks contained in the top level DAG.

4.1 The Factorization

This JDF file represents the DAG operating at the elimination tree level and
contains the description of four tasks:

– activate: allocates the memory needed for assembling and factorizing a
frontal matrix. The activation of a node depends on the activation of its
children.

– assemble: spawns a lower level DAG of tasks performing the assembly of
the frontal matrix in parallel; this DAG is defined in the assembly.jdf file
described below. It depends on the activation of the related node and is
completed when all the spawned tasks have been executed.

– init: initializes the frontal matrix data structure and spawns the lower level
DAG performing the front factorization which is described below. This task
depends on the assemble tasks as the front factorization can only start once
it has been assembled. As for the assemble task, its completion is achieved
when the DAG it spawn is completely executed.

– deactivate: stores apart the result of a front factorization and frees the
memory allocated by the activate task. It can be executed only after its
contribution block has been assembled into the parent node.

An excerpt of the factorization.jdf file is shown in Fig. 2 where, for the
sake of simplicity, we only describe the init task. This task needs a set of
symbolic data denoted S in the data-flow which is provided by the assemble
task. Note that in the case were the front has no children, the assemble task
perform no operations apart from passing the symbolic data to the init task.
When the init tasks is completed, the front is factorized and can be assembled
into the parent node. Therefore we transfer the symbolic data to the assembly
operation of the parent node.

Exploiting a Parametrized Task Graph Model for the Parallelization 181

init(n)

n = 1 .. NN

/* get info on frontal matrix */
front = inline_c %{ return get_front(n); %}
p = inline_c %{ return get_front_parent(n); %}
prio = inline_c %{ return get_front_prio(front); %}

RW S <- S assemble(n) /* initialize the front assembly */
-> (p != 0) ? S assembly(p)

BODY
{

/* initialize frontal matrix */
_qrm_init_front(front);
/* create qr factorization DAG for frontal matrix */
qr_handle = qr_initialize(front);
/* submit front factorization to PaRSEC */
dague_enqueue(qr_handle);

}
END

Fig. 2. Excerpt of code for performing operation at elimination tree level with PaRSEC.

Each of these tasks are executed once for every node in the elimination tree.

4.2 qr 1d.jdf, qr 2d.jdf

Once assembled, a frontal matrix can be factorized using any QR factorization
algorithm for dense matrices. For this operation, we have chosen two different
variants, namely, a LAPACK-style factorization based on a 1D partitioning of
the front in block-columns and a Communication Avoiding method based on a
2D partitioning into tiles [13,18]. For a matter of conciseness we only present
the 1D version (qr 1d.jdf) of the code. These implementations are based on
the ones found in the DPLASMA library [8] which provide dense linear algebra
kernels routine for distributed systems built on top of the PaRSEC runtime
systems. We adapted these kernels to the specific staircase structure of frontal
matrices described in Sect. 3.

The JDF code for the QR factorization with a 1D block-column partition-
ing is presented in Fig. 3. In this JDF we have two type of task: the geqrt
task corresponding to the panel operations and the gemqrt corresponding to
update operations with respect to panel reductions. Note that this JDF is sim-
ilar to the DPLASMA implementation except that we used the geqrt stair
and gemqrt stair kernels, respectively for the panel and update operations,
capable of exploiting the staircase structure of block-columns. The geqrt tasks
are associated with the panel index represented by the parameter p which has
values in the range 0..NP-1 where NP represents the number of panel operations
in the front. Similarly, the gemqrt task is defined by two parameters. The first
represents the panel operations and the second represents the subsequent update
operations depending on each panel operation. For each panel operation p we
perform update operations on block-columns p+1..NC-1 where NC is the total

182 E. Agullo et al.

geqrt(p)

p = 0 .. (NP -1)

RW A_p <- (p==0) ? A(0,p) : C_u gemqrt(p-1, p)
-> (p < NC -1) ? V_p gemqrt(p, (p+1)..(NC -1))
-> A(p)

RW T_p <- T(p) [type = LITTLE_T]
-> (p < NC -1) ? T_p gemqrt(p, (p+1)..(NC -1)) [type = LITTLE_T]
-> T(p)

BODY
{

_geqrt_stair (&m, &n, &ib, &stair[off], &off , A_p + off ,
&lda , T_p , &ldt , work , &info);

}
END

gemqrt(p, u)

p = 0..(NP -1)
u = (p+1)..(NC -1)

READ V_p <- A_p geqrt(p)
READ T_p <- T_p geqrt(p) [type = LITTLE_T]
RW C_u <- (p==0) ? A(0,u) : C_u gemqrt(p-1, u)

-> ((u == p+1) && (u <= (NP -1))) ? A_p geqrt(u)
-> ((u > p+1) && (p < (NP -1))) ? C_u gemqrt(p+1, u)

BODY
{

_gemqrt_stair("l", "t", &m, &j, &k, &ib, &stair[off], &off , V_p + off ,
&ldv , T_p , &ldt , C_u + off , &ldc , work , &info);

}
END

Fig. 3. Code for the 1D block-column dense QR factorization with PaRSEC.

number of block-columns in the frontal matrix. Along with a R factor resulting
from the geqrt stair operation, the geqrt task produce a V and T data that
are sent to the subsequent update tasks which are represented by gemqrt(p,
p+1..NC-1) in the JDF code. Concerning the gemqrt tasks, for a given a block-
column u, it retrieves the V and T matrices of the corresponding panel p along
with the block-column issued by the update with respect to the previous panel
task denoted gemqrt(p-1,u). Once the update operation has been executed, the
block-column is sent either to the next update operation denoted gemqrt(p+1,u)
or to the panel operation denoted geqrt(u) if the block-column is up-to-date.

As for the 2D code, because of the fronts staircase structure, some tiles are
equal to zero and must be skipped in the computation which alters the data-flow
with respect to the methods described in the literature. In PaRSEC this can be
conveniently handled by using conditional expressions in the JDF.

4.3 assembly.jdf

In the DAG instantiated by this assembly operations, each task corresponds
to the assembly of a block from all the blocks in children’s frontal matrices

Exploiting a Parametrized Task Graph Model for the Parallelization 183

contributing to it. Note that in order to express the data-flow for these assem-
blies, we need to compute, for every block in a frontal matrix, a list of contribut-
ing blocks in children node. This mapping is computed upon front activation
and is not required when using a STF model.

4.4 Discussion

It must be noted that it is possible to execute some of the factorization tasks
related to a node before the handling of its child nodes is completed; this addi-
tional concurrency, which we refer to as inter-level parallelism, may lead to
considerable benefits especially in the case of narrow and unbalanced elimina-
tion trees where tree parallelism is scarce. qrm parsec cannot use inter-level
parallelism because the factorization DAG is spawned only once the front is
fully assembled due to the dependency between the init and the assemble tasks
described above. Although technically possible, using inter-level parallelism is
more complex to achieve with the PTG model than with the STF one where the
expression of dependencies is simpler when the DAG is defined dynamically, as
it’s partially the case in the multifrontal method. This is the subject of ongoing
research.

In practical cases the elimination tree may have thousands of nodes and thus
the DAG may contain millions of tasks; this much concurrency is clearly useless
for the systems targeted by this work which only include few cores. In order to
reduce the size of the DAG, entire subtrees at the bottom of the elimination
tree are handled at once within a single task. This technique is very well known
in the domain of sparse, direct methods and provides considerable benefits in
terms of reduced runtime overhead as well as improved data locality.

Most of the execution time is spent in BLAS-3 operations (like dense matrix
multiplications). Because these have a favorable ratio between computations and
data access, the whole multifrontal factorization can be considered as compute
bound and thus the effects of memory contention can be considered light.

5 Early Experimental Results

We evaluate the PTG implementation of our solver on a set of test matrices
presented in Table 1 from real world applications publicly available in the Uni-
versity of Florida Sparse Matrix Collection [16]. We also use the hirlam matrix,
from the HIRLAM1 research program. The PaRSEC runtime system is used to
support the PTG model. The COLAMD fill-reducing column permutation was
applied to all the matrices. The runs were performed on the Dude system which
is a shared-memory machine equipped with four AMD Opteron(tm) Processor
8431 (six cores) and 72 GB of memory. As a reference, we also report on the per-
formance of the STF implementation of the solver from [2], which is supported
with StarPU and named qrm starpu below.

1 http://hirlam.org.

http://hirlam.org

184 E. Agullo et al.

Table 1. The set of matrices used for the experiments along with the associated
sequential factorization time and memory consumption.

id Mat. name m n nz op. count (Gflop) Time (sec) Mem (GB)

1 karted 46502 133115 1770349 257 46.3 0.7

2 degme 185501 659415 8127528 591 103.2 1.4

3 cat ears 4 4 19020 44448 132888 716 134.9 1.2

4 hirlam 1385270 452200 2713200 2339 392.0 3.5

5 e18 24617 38602 156466 3399 474.5 3.5

6 flower 7 4 27693 67593 202218 4261 774.7 3.6

7 Rucci1 1977885 109900 7791168 12764 1786.0 5.1

8 TF17 38132 48630 586218 38209 5185.0 15.3

The experimental results are presented in Fig. 4. They show the scalability
of qrm parsec using both the 1D and 2D front factorization algorithms; the
speedups are computed with respect to the sequential running time reported in
Table 1. These are compared to the results obtained with an equivalent imple-
mentation based on the Sequential Task Flow model and the StarPU runtime
system [2]. The results show that qrm parsec achieves a satisfactory performance
on all the tested matrices, including the smallest ones (on the left side of the
plot) with speedups close to 20 (out of 24) for the largest size ones. Figure 4 also
shows that the 2D Communication Avoiding front factorization variant achieves
much better speedups than the 1D block-column one; this is expected since most
of the frontal matrices in the multifrontal QR method are (strongly) overdeter-
mined and thus the 1D method simply does not provide enough concurrency
(especially for smaller size matrices).

0

5

10

15

20

25

1 2 3 4 5 6 7 8

Matrix #

Speedups -- dude

PaRSEC 1D

PaRSEC 2D

StarPU 1D

StarPU 2D

Fig. 4. Speedup of qrm starpu and qrm parsec on the Dude system (24 cores).

Exploiting a Parametrized Task Graph Model for the Parallelization 185

Finally, the STF implementation consistently achieves better performance
than the PTG-based one. This difference comes mostly from the fact that the
STF code exploits the inter-level parallelism mentioned in Sect. 4.4. Note, also,
that qrm parsec is a proof of concept code whereas the StarPU-based implemen-
tation is fully optimized; therefore the performance gap could be partly reduced
through code optimization.

6 Concluding Remarks

In this paper, we have investigated the impact on programmability and discussed
the potential in terms of performance of programming a highly irregular numeri-
cal algorithm as a task-based DAG of tasks with explicit dependencies. We have
shown that providing the dependencies is not trivial and requires a deep under-
standing of the parallelism available in the algorithm. However, thanks to the
task-based abstraction, this model provides an interesting alternative to STF
as it allows to write the high-level algorithm independently of the underlying
processor, delegating the burden of handling synchronizations to the runtime
system. Furthermore, we have shown that the considered model provides a lot of
flexibility at runtime to instantiate the most appropriate variant of an algorithm
(such as 1D and 2D kernels in this study). Although the performance results are
preliminary, they are very encouraging. We would be delighted to present them
and discuss them in a workshop that aims at making parallelism available to a
wide range of applications using systematic software engineering methodology,
beyond the scope of numerical, scientific libraries.

References

1. Agullo, E., Augonnet, C., Dongarra, J., Ltaief, H., Namyst, R., Thibault, S.,
Tomov, S.: A hybridization methodology for high-performance linear algebra soft-
ware for GPUs. In: GPU Computing Gems, vol. 2, pp. 473–484. Jade Edition
(2011)

2. Agullo, E., Buttari, A., Guermouche, A., Lopez, F.: Implementing multifrontal
sparse solvers for multicore architectures with sequential task flow runtime systems.
In: ACM Transactions on Mathematical Software (2016, to appear)

3. Agullo, E., Demmel, J., Dongarra, J., Hadri, B., Kurzak, J., Langou, J., Ltaief, H.,
Luszczek, P., Tomov, S.: Numerical linear algebra on emerging architectures: the
PLASMA and MAGMA projects. J. Phys.: Conf. Ser. 180(1), 012–037 (2009)

4. Allen, R., Kennedy, K.: Optimizing Compilers for Modern Architectures: A
Dependence-Based Approach. Morgan Kaufmann, Burlington (2002)

5. Amestoy, P.R., Duff, I.S., Puglisi, C.: Multifrontal QR factorization in a multi-
processor environment. Int. J. Num. Linear Alg. Appl. 3(4), 275–300 (1996)

6. Ayguadé, E., Badia, R.M., Igual, F.D., Labarta, J., Mayo, R., Quintana-Ort́ı, E.S.:
An extension of the StarSs programming model for platforms with multiple GPUs.
In: Sips, H., Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS, vol. 5704, pp.
851–862. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03869-3 79

http://dx.doi.org/10.1007/978-3-642-03869-3_79

186 E. Agullo et al.

7. Badia, R.M., Herrero, J.R., Labarta, J., Pérez, J.M., Quintana-Ort́ı, E.S.,
Quintana-Ort́ı, G.: Parallelizing dense and banded linear algebra libraries using
SMPSs. Concurr. Comput.: Pract. Exp. 21(18), 2438–2456 (2009)

8. Bosilca, G., Bouteiller, A., Danalis, A., Faverge, M., Haidar, A., Hérault, T.,
Kurzak, J., Langou, J., Lemarinier, P., Ltaief, H., Luszczek, P., Yarkhan, A., Don-
garra, J.J.: Distibuted dense numerical linear algebra algorithms on massively par-
allel architectures: DPLASMA. In: Proceedings of the 25th IEEE International
Symposium on Parallel and Distributed Processing Workshops and Phd Forum
(IPDPSW 2011). PDSEC 2011, Anchorage, United States, pp. 1432–1441 (2011)

9. Bosilca, G., Bouteiller, A., Danalis, A., Faverge, M., Hérault, T., Dongarra, J.J.:
Parsec: exploiting heterogeneity to enhance scalability. Comput. Sci. Eng. 15(6),
36–45 (2013)

10. Bosilca, G., Bouteiller, A., Danalis, A., Hérault, T., Lemarinier, P., Dongarra,
J.: DAGuE: a generic distributed DAG engine for high performance computing.
Parallel Comput. 38(1–2), 37–51 (2012)

11. Bosilca, G., Bouteiller, A., Danalis, A., Herault, T., Luszczek, P., Dongarra, J.:
Dense linear algebra on distributed heterogeneous hardware with a symbolic DAG
approach. In: Scalable Computing and Communications: Theory and Practice, pp.
699–733 (2013)

12. Buttari, A.: Fine-grained multithreading for the multifrontal QR factorization of
sparse matrices. SIAM J. Sci. Comput. 35(4), C323–C345 (2013)

13. Buttari, A., Langou, J., Kurzak, J., Dongarra, J.: A class of parallel tiled linear
algebra algorithms for multicore architectures. Parallel Comput. 35, 38–53 (2009)

14. Cosnard, M., Loi, M.: Automatic task graph generation techniques. In: Proceedings
of the Twenty-Eighth Hawaii International Conference on System Sciences 1995,
Vol. 2, pp. 113–122, January 1995

15. Davis, T.A.: Algorithm 915, SuiteSparseQR: multifrontal multithreaded rank-
revealing sparse QR factorization. ACM Trans. Math. Softw. 38(1), 8:1–8:22 (2011)

16. Davis, T.A., Hu, Y.: The university of Florida sparse matrix collection. ACM Trans.
Math. Softw. 38(1), 1:1–1:25 (2011)

17. Duff, I.S., Reid, J.K.: The multifrontal solution of indefinite sparse symmetric
linear systems. ACM Trans. Math. Softw. 9, 302–325 (1983)

18. Hadri, B., Ltaief, H., Agullo, E., Dongarra, J.: Tile QR factorization with parallel
panel processing for multicore architectures. In: IPDPS, pp. 1–10. IEEE (2010)

19. Igual, F.D., Chan, E., Quintana-Ort́ı, E.S., Quintana-Ort́ı, G., van de Geijn,
R.A., Zee, F.G.V.: The flame approach: from dense linear algebra algorithms to
high-performance multi-accelerator implementations. J. Parallel Distrib. Comput.
72(9), 1134–1143 (2012)

20. Kim, K., Eijkhout, V.: A parallel sparse direct solver via hierarchical DAG schedul-
ing. ACM Trans. Math. Softw. 41(1), 1–27 (2014)

21. Lacoste, X.: Scheduling and memory optimizations for sparse direct solver on multi-
core/multi-GPU cluster systems. PhD thesis, LaBRI, Université Bordeaux, Tal-
ence, France, February 2015

22. Schreiber, R.: A new implementation of sparse Gaussian elimination. ACM Trans.
Math. Softw. 8, 256–276 (1982)

Parallel String Matching

Philip Pfaffe(B), Martin Tillmann, Sarah Lutteropp, Bernhard Scheirle,
and Kevin Zerr

Karlsruhe Institute of Technology, Karlsruhe, Germany
{philip.pfaffe,martin.tillmann}@kit.edu,

{sarah.lutteropp,bernhard.scheirle,kevin.zerr}@student.kit.edu

Abstract. We explore the benefits of parallelizing 7 state-of-the-art
string matching algorithms. Using SIMD and multi-threading techniques
we achieve a significant performance improvement of up to 43.3× over
reference implementations and a speedup of up to 16.7× over the string
matching program grep.

We evaluate our implementations on the smart-corpora and the full
human genome data set. We show scalability over number of threads and
impact of pattern length.

1 Introduction

String matching is a fundamental tool in a wide range of practical software.
Molecular biology, data compression and information retrieval all rely on effi-
cient string matching algorithms on challenging amounts of input data. For over
35 years string matching algorithms have been studied extensively. Speed and
memory constraints are the crucial attributes of state-of-the-art matching algo-
rithms.

Parallelization has become an essential part of algorithm design. Multi-
threading, heterogeneous computing and SIMD (single instruction stream, mul-
tiple data stream) instructions are the current tools of the trade. Due to the
data-parallel nature of most string matching algorithms, these techniques can
be used to achieve significant performance gains.

In this paper, we propose parallelization improvements to existing state-of-
the-art string matching algorithms. We explore a chunking approach, partition-
ing the input data and distributing the workload with a thread pool. We utilize
modern SIMD-instructions to improve throughput in computational intensive
situations and optimize data structures for parallel access. Our implementa-
tions are evaluated on the smart-corpora [11] and the human genome1 [20].
To demonstrate the effectiveness of our approach, we compare the runtime of
our implementations with sequential reference implementations provided by the

1 Dec. 2013 (GRCh38/hg38) assembly of the human genome (hg38, GRCh38 Genome
Reference Consortium Human Reference 38 (GCA 000001405.2)). See http://
genome.ucsc.edu/ for details on the data set.

c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 187–198, 2017.
DOI: 10.1007/978-3-319-58943-5 15

http://genome.ucsc.edu/
http://genome.ucsc.edu/

188 P. Pfaffe et al.

smart-corpora as well as the string matching program grep2 of the GNU/Linux
operating system.

Pattern length and alphabet size influence the effectiveness of different algo-
rithms, choosing the optimal implementation therefore depends on those two
parameters. Our evaluation considers different combinations of pattern length
and alphabet size. When both parameters are known at runtime this information
can be used to choose the optimal algorithm.

2 Problem Definition

We define the problem of string matching as the task of finding a pattern P of
length m = |P | in a text T of length n = |T |. Pattern and text are based on
an alphabet Σ. The results are the absolute positions of every occurrence of P
in T . The input is dynamic, preprocessing of pattern or text have to take place
at runtime. Only exact matches are returned, approximate matches or regular
expression patterns are not considered.

3 Related Work

The introduction of the Knuth et al. [17] and Boyer and Moore [4] algorithms
which are, respectively, the first linear and the first sublinear string matching
algorithms, initiated the ongoing search for ever faster matching approaches.
Both of these inspired many variations. Prominent examples are Horspool [15]
and QuickSearch [25], simplifying variations of Boyer-Moore, which have proven
to be efficient in practice. The Rabin and Karp [16] algorithm is an alternative
solution to the string matching problem, testing for matches based on hashes
computed from the input text and pattern.

In more recent years, many more variations and combinations of the classical
matching algorithms have been proposed. Faro and Lecroq [11] report on more
than 50 new algorithms that have been published since 2000. One example is the
Average Optimal Shift-Or algorithm by Fredriksson and Grabowski [12], an exten-
sion of the original Shift-Or [2], which leverages bit-parallelism within pattern and
text comparison. The BNDM algorithm by Navarro and Raffinot [23] is based on
the same principle, and combines it with suffix automata to find matches by effi-
ciently identifying all subpatterns of a word. Another family of algorithms which
relies on finding subpatterns is BOM [1] and its variations (cf. e.g. [10]).

For a more detailed and more complete overview of recent advances in string
matching algorithms we direct the interested reader to Faro’s and Lecroq’s review
article [11].

Despite the global trend in industry and research to increase performance by
parallelizing algorithms, to the best of our knowledge, only few parallel approaches
to string matching exist, even though efficient theoretical solutions have been

2 GNU grep 2.20, Copyright (C) 2014 Free Software Foundation, Inc. http://www.
gnu.org/software/grep/.

http://www.gnu.org/software/grep/
http://www.gnu.org/software/grep/

Parallel String Matching 189

proposed: The optimal parallel algorithm for a CREW-PRAM (concurrent-read,
exclusive write parallel random access machine) runs in O(log2 n) [13]. For a
CRCW-PRAM, even a constant time solution has been proposed [14]. There are,
however, no practical implementations available for these theoretical algorithms.
Nevertheless, there are several published approaches that in some sense rely on
inherently parallel properties of string comparisons, such as by exploiting bit-
parallelism [5] in comparing strings (cf. e.g. the Shift-Or algorithm [2] and its
derivatives, or the works of Cantone et al. [6] or Peltola and Tarhio [24], among
many others). Faro and Kúlekci, on the other hand, further increase the benefits
of these approaches by using modern processor’s SIMD extensions [9,19].

Although there is a surprising lack of approaches leveraging classical thread-
ing parallelism, there are some works which explore the benefits provided by
the massive parallel computing power within modern GPUs. Kouzinopoulos and
Margaritis evaluate the performance of GPU implementations of the classical
matching algorithms [18] and report on a possible speedup of more than 10×.
Vasiliadis et al. [26] and Cascarano et al. [7] present solutions for regular expres-
sion matching in GPUs, which is a superset of the string matching problem.
These approaches create finite state machines from the input patterns and exe-
cute them in parallel on partitioned input data. Another problem related to
string matching is the approximate string matching problem, which allows for
missing some possible matches in exchange for speed. Liu et al. [22] present
GPU-based solutions and report on up to 80× speedups.

4 Implementation

We implement a general chunking approach for all of our string matching imple-
mentations. The initial text T is split into chunks of size s = max(2∗m, sa) where
sa is 4MiB for the SSEF algorithm and 1MiB for all other algorithms. A thread
pool runs string matching tasks on these chunks in parallel. The string match-
ing tasks examine an additional overlap of m − 1 characters after each chunk to
ensure matches that cross chunk boundaries are found. This also avoids inter-
chunk synchronization in the matching algorithm. If the text size is not large
enough to create at least one chunk per thread, we reduce the chunk size to
s = n/thread count . To preserve global ordering the matching results are writ-
ten to a synchronized set.

We employ SSE (streaming SIMD extensions) in the appropriate implemen-
tations. We use the SSE instruction set (up to version 4.1), as it is supported by
Intel and AMD CPUs. The resulting bit-parallelism is essential for high through-
put on modern CPU cores.

Our implementations can be found on our project page3. We provide a unified
C++ interface for all discussed algorithms.

The following subsections give a brief overview of the implemented algo-
rithms. Of particular interest are our modifications to the SSEF algorithm. For
a more detailed discussion we refer to the referenced articles.
3 https://code.ipd.kit.edu/pmp/pgrep.

https://code.ipd.kit.edu/pmp/pgrep

190 P. Pfaffe et al.

4.1 Knuth-Morris-Pratt

The well-known Knuth-Morris-Pratt (KMP) algorithm was first published in
1977 [17]. It uses a preprocessing phase on the pattern to build a partial match
table. This table can be used to skip known matching prefixes after a partial
match was found. Once matched characters are therefore never visited again. The
preprocessing phase runs in O(m) and the actual matching in O(n), resulting in
an asymptotic runtime of O(n + m).

4.2 Shift-Or

The Shift-Or algorithm proposed by Baeza-Yates and Gonnet in 1992 uses effi-
cient bitwise operations [2]. For each character c in the alphabet Σ an occurrence
bit-vector oc is calculated in a preprocessing phase.

oc[i] =

{
1, if P [i] = c

0, otherwise

In the matching phase a result bit-vector r is iteratively and-combined with
the occurrence vector of the current character. Vector r is then bit-shifted by
one position and incremented by one. A match is found when r[m] = 1. We
use a word size of 64bit for the bit-vectors. The runtime is deterministic and in
O(n ∗ m).

4.3 Hash3

Lecroq’s Hashq algorithm from 2007 [21] is based on hash values for q-grams. The
preprocessing phase computes a shift table for each hashed q-gram in the pattern.
The search algorithm then hashes sub-strings of length q and skips characters
according to the precomputed shift table. Potential matches are checked naively.
Choosing q = 3 promises the best results for medium length patterns. Hash3
requires a minimum pattern length of m = 3.

4.4 SSEF

The SSEF algorithm [19] precomputes 65536 filter lists based on the kth bit of
each character on the pattern. These filters are then applied efficiently, utilizing
SSE instructions, on shifting alignments of pattern and text. SSEF is restricted
to patterns with a minimum length of m ≥ 32. The worst case runtime is in
O(n∗m). If we consider the probability to filter possible matches, SSEF achieves
an average runtime in O(n ∗ m/65536).

In the original SSEF algorithm parameter k has to be specified by the user.
The smart-corpora implementation chooses a fixed value of k = 7. We improved
on this by finding the bit that carries the most information in the pattern. We
count the set bit positions in each character of the pattern and choose the bit

Parallel String Matching 191

Table 1. Finding the bit that carries the most information. For the pattern ‘acaf’ the
second bit is set in 50% of the characters.

Character Bits

7 6 5 4 3 2 1

a 1 1 0 0 0 0 1

c 1 1 0 0 0 1 1

a 1 1 0 0 0 0 1

f 1 1 0 0 1 1 0

Ratio 1.00 1.00 0.00 0.00 0.25 0.50 0.75

that carries the most information, see Table 1 for an example. Optimally the kth
bit is set 50% of the time.

A second optimization is the filter list itself. The original algorithm and the
smart-corpora implementation use a linked list and allocate each entry dynami-
cally. The reference performs separate heap allocations for each individual entry.
As the number of entries in this linked list is fixed for a given pattern size,
we only allocate a single chunk of memory. This allows us to use simple off-
sets (instead of pointers) to address the list entries. Also we minimize the total
memory footprint of the filter list by automatically using the smallest data type
possible to store the offsets inside the list. This has the fortunate side effect of
improved cache locality.

4.5 Variants of the Backward-Oracle-Matching

Faro and Lecroq presented Extended-Backward-Oracle-Matching (EBOM)
and Forward-Simplified-Backward-Nondeterministic-DAWG-Matching (FSB-
NDM) in 2009 [10]. Both are variants of the Backward-Oracle-Matching algo-
rithm and based on finite automata.

Extended-Backward-Oracle-Matching. The EBOM algorithm extends
Backward-Oracle-Matching with a fast-loop. The fast-loop technique iterates
a matching heuristic in a non-branching cycle. This is used to quickly locate the
last character of the pattern in the currently observed text window. In each iter-
ation two consecutive characters are handled. EBOM requires a preprocessing
phase in O(|Σ|2).

Forward-Simplified-Backward -Nondeterministic -DAWG-Matching.
The FSBNDM algorithm uses bit-parallelism to implement a non-deterministic
forward automaton on the reversed pattern. The preprocessing phase can be
performed in O(|Σ| + m).

4.6 Exact-Packed-String-Matching

Exact-Packed-String-Matching (EPSM) was presented in 2013 by Faro and
Külekci [8]. EPSM makes use of bit-parallelism by packing several characters into

192 P. Pfaffe et al.

a bit-word and partitioning text T into chunks Ti. These bit-word sized chunks
are compared with a packed pattern bit-word. Shift and bitwise-and operations
are used to efficiently compare text chunks with the pattern. Our implementa-
tion uses SSE registers as 128 bit words. We limit the usage of EPSM to cases
with short patterns (m ≤ 8). Under these restrictions EPSM is very fast and
runs in O(n). The asymptotic runtime for the general case remains O(n ∗ m).

5 Evaluation

In the following section we present the evaluation of the performance of our
parallelized string matching algorithms. We show experimental results obtained
from two benchmarks using the smart-corpora [11] and the human genome [20].
The human genome benchmark input text is the assembly of the human genome,
which is 3.1 GB in size and uses an alphabet of four characters. The smart-
corpora benchmark is comprised of seven input texts from the smart-coprora
archive:

– The text of the English King James Bible, containing natural English lan-
guage with a complete alphabet of 63 characters.

– A set of genome sequences for the E. Coli bacterium. The DNA is encoded
over an alphabet of size 4.

– Four protein sequences hi, hs, mj, sc, with an alphabet of 20 characters (19
characters for the hs protein).

– The CIA world fact book. Natural English language with a few special char-
acters. Alphabet size of 94.

For both benchmarks, we generate 10 patterns for every input file of the
lengths 2, 4, 8, 16, 32, 64, 128, 256, 512, and 1024. The patterns for an input
file are generated by randomly picking sequences of the respective length from
the file, thus ensuring that there actually are matches for every file and pattern.
The benchmark results shown in the remainder of this chapter are averaged
over all 10 patterns for every file and configuration. To assess the benefits of
parallelization, all experiments are conducted using 1,2,4, and 8 threads.

Additionally, we compare the performance results of our implementations
with sequential reference implementations of the respective algorithm provided
by the smart-corpora as well as the string matching program grep of the
GNU/Linux operating system.

Input files are directly mapped into the application’s memory to reduce I/O
latencies. We ensured that input files are completely cached by the operating sys-
tem. To get comparable results we used an equivalent memory-mapping interface
for the smart-corpora algorithms. Memory-mapping is used in grep as well. We
invoke grep with the parameters grep <pattern> <file> -c. To benchmark
the actual string matching we use the additional switch -c to suppresses output
of the individual matches and instead print the count of matching lines. The
runtimes of grep and our implementations thus encompass the matching algo-
rithm including all synchronization but minimize file and screen I/O. To run

Parallel String Matching 193

the benchmarks we used temci [3], a benchmarking helper tool, in combination
with perf, a tool for profiling with performance counters. All experiments were
performed on an Intel Xeon E5 system, with 4 CPU cores (8 hardware threads)
at 3.7 GHz.

In the following subsection we discuss an excerpt of our result data.

5.1 Results

Figure 1 shows the average time to match a pattern of length 32 on the genome
data set for six algorithms on a logarithmic scale. We can observe linear scal-
ability with increased thread count. Our FSBNDM implementation requires a
minimum of two threads due to space limitations exceeded by the genome data
set and the EPSM algorithm is not applicable due to m > 8. The content of
the patterns has an insignificant impact on performance. The maximum relative
standard deviation over the patterns is 3% with a relative range of 9%.

Figure 2 shows the average absolute runtimes of six algorithms on the smart-
corpora. The algorithms use up to 8 threads. The pattern length is 32. Both
SSEF and Hash3 are consistently fast on all seven texts. The relative performance
between the algorithms is surprisingly stable.

In Fig. 3 we see the average performance of seven algorithms over different
pattern lengths. We use the bible text and our implementations use up to 8
threads. Several algorithms are restricted to specific pattern sizes. With increas-
ing pattern length algorithm performance increases as well with the exception
of EPSM which is optimal for m = 2. The maximum relative standard deviation

Fig. 1. Runtime scalability of six algorithms for 1,2,4, and 8 threads. Human genome
data set, pattern length of 32.

194 P. Pfaffe et al.

Fig. 2. Absolute runtimes of six parallelized algorithms for the seven texts of the
smart-corpora. Pattern length is 32.

Fig. 3. Performance over pattern length on natural language text (bible).

over the pattern contents is 26%. This increase compared to the genome data set
is explained by the relative small runtime influenced by measuring fluctuations.

To assess the practicality of our implementations we compare our runtimes
against the performance of grep. In Fig. 4 we show the relative speedups over

Parallel String Matching 195

different pattern lengths on the human genome data set on a logarithmic scale.
In the case where we are limited to one thread, we can achieve a performance
increase for pattern lengths between 4 and 128. However grep outperforms our

Fig. 4. Speedup of our implementations over grep on different pattern lengths on the
human genome data set.

196 P. Pfaffe et al.

Fig. 5. Speedup of our implementations over the smart-corpora reference implementa-
tions on different pattern lengths on a natural language text (bible).

implementations for patterns with m ≤ 2 or m ≥ 256. If we utilize eight threads
we can achieve significant speedups of up to 16.7× for all patterns with m ≥ 2.
SSEF, EBOM and Hash3 all perform consistently well on this data set.

Parallel String Matching 197

Figure 5 shows the speedups of our implementations over the reference imple-
mentations found in the smart-corpora. The speedups are displayed on a loga-
rithmic scale. The baseline for each algorithm is the corresponding reference
implementation. In contrast to speedups on the human genome data set, only
the EPSM, KMP and Shift-Or implementations benefit from an increased thread
count on this smaller data set. However our modifications to the SSEF imple-
mentation result in a significant speedup even in the sequential case.

6 Conclusion

We used a chunking approach to parallelize seven state-of-the-art string match-
ing algorithms. We have shown linear scalability on the number of threads for
large input data. We observed the influence of pattern size on string matching
algorithms. For short patterns EPSM and EBOM are the algorithms of choice,
while bigger patterns favor Hash3, SSEF and FSBNDM.

SSEF is consistently fast over different alphabet sizes and the supported
pattern lengths. With our modifications to SSEF we achieved a 43× speedup
over the reference implementation. Compared with grep we achieve significant
speedups in all cases where the pattern has two or more characters. On the
human genome data set the maximal speedup of SSEF compared to grep is
15×.

In the future we plan to explore a heterogeneous approach by distributing
text chunks on CPUs, GPUs and Intel MICs.

References

1. Allauzen, C., Crochemore, M., Raffinot, M.: Factor oracle: a new structure for pat-
tern matching. In: Pavelka, J., Tel, G., Bartošek, M. (eds.) SOFSEM 1999. LNCS,
vol. 1725, pp. 295–310. Springer, Heidelberg (1999). doi:10.1007/3-540-47849-3 18

2. Baeza-Yates, R., Gonnet, G.H.: A new approach to text searching. Commun. ACM
35(10), 74–82 (1992)

3. Bechberger, J.: temci (2016). http://temci.readthedocs.io
4. Boyer, R.S., Moore, J.S.: A fast string searching algorithm. Commun. ACM 20(10),

762–772 (1977)
5. Cantone, D., Faro, S., Giaquinta, E.: Bit-(parallelism)2: getting to the next level

of parallelism. In: Boldi, P., Gargano, L. (eds.) FUN 2010. LNCS, vol. 6099, pp.
166–177. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13122-6 18

6. Cantone, D., Faro, S., Giaquinta, E.: A compact representation of nondeterministic
(suffix) automata for the bit-parallel approach. In: Amir, A., Parida, L. (eds.)
CPM 2010. LNCS, vol. 6129, pp. 288–298. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-13509-5 26

7. Cascarano, N., Rolando, P., Risso, F., Sisto, R.: iNFAnt: NFA pattern matching
on GPGPU devices. SIGCOMM Comput. Commun. Rev. 40(5), 20–26 (2010)

8. Faro, S., Külekci, M.O.: Fast packed string matching for short patterns. In: Pro-
ceedings of the Meeting on Algorithm Engineering & Expermiments. Society for
Industrial and Applied Mathematics (2013)

http://dx.doi.org/10.1007/3-540-47849-3_18
http://temci.readthedocs.io
http://dx.doi.org/10.1007/978-3-642-13122-6_18
http://dx.doi.org/10.1007/978-3-642-13509-5_26
http://dx.doi.org/10.1007/978-3-642-13509-5_26

198 P. Pfaffe et al.

9. Faro, S., Külekci, M.O.: Fast and flexible packed string matching. J. Discret. Algo-
rithms 28, 61–72 (2014)

10. Faro, S., Lecroq, T.: Efficient variants of the backward-oracle-matching algorithm.
Int. J. Found. Comput. Sci. 20(6), 967–984 (2009)

11. Faro, S., Lecroq, T.: The exact online string matching problem: a review of the
most recent results. ACM Comput. Surv. 45(2), Article no. 13 (2013)

12. Fredriksson, K., Grabowski, S.: Practical and optimal string matching. In: Con-
sens, M., Navarro, G. (eds.) SPIRE 2005. LNCS, vol. 3772, pp. 376–387. Springer,
Heidelberg (2005). doi:10.1007/11575832 42

13. Galil, Z.: Optimal parallel algorithms for string matching. Inf. Control 67(1), 144–
157 (1985)

14. Galil, Z.: A constant-time optimal parallel string-matching algorithm. J. ACM
42(4), 908–918 (1995)

15. Horspool, R.N.: Practical fast searching in strings. Softw.: Pract. Exp. 10(6), 501–
506 (1980)

16. Karp, R.M., Rabin, M.O.: Efficient randomized pattern-matching algorithms. IBM
J. Res. Dev. 31(2), 249–260 (1987)

17. Knuth, D.E., Morris Jr., J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM
J. Comput. 6(2), 323–350 (1977)

18. Kouzinopoulos, C.S., Margaritis, K.G.: String matching on a multicore GPU using
CUDA. In: 13th Panhellenic Conference on Informatics, 2009, PCI 2009 (2009)

19. Külekci, M.O.: Filter based fast matching of long patterns by using SIMD instruc-
tions. In: Stringology (2009)

20. Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J.,
Devon, K., Dewar, K., Doyle, M., FitzHugh, W., et al.: Initial sequencing and
analysis of the human genome. Nature 409(6822), 860–921 (2001)

21. Lecroq, T.: Fast exact string matching algorithms. Inf. Process. Lett. 102(6), 229–
235 (2007)

22. Liu, Y., Guo, L., Li, J., Ren, M., Li, K.: Parallel algorithms for approximate string
matching with k mismatches on CUDA. In: Parallel and Distributed Processing
Symposium Workshops PhD Forum (2012)

23. Navarro, G., Raffinot, M.: Fast and flexible string matching by combining bit-
parallelism and suffix automata. ACM J. Exp. Algorithmics 5, Article no. 4 (2000)

24. Peltola, H., Tarhio, J.: Alternative algorithms for bit-parallel string matching. In:
Nascimento, M.A., Moura, E.S., Oliveira, A.L. (eds.) SPIRE 2003. LNCS, vol.
2857, pp. 80–93. Springer, Heidelberg (2003). doi:10.1007/978-3-540-39984-1 7

25. Sunday, D.M.: A very fast substring search algorithm. Commun. ACM 33(8), 132–
142 (1990)

26. Vasiliadis, G., Polychronakis, M., Ioannidis, S.: Parallelization and characterization
of pattern matching using GPUs. In: IEEE International Symposium on Workload
Characterization (2011)

http://dx.doi.org/10.1007/11575832_42
http://dx.doi.org/10.1007/978-3-540-39984-1_7

Speed-Up Computational Finance Simulations
with OpenCL on Intel Xeon Phi

Michail Papadimitriou1, Joris Cramwinckel2, and Ana Lucia Varbanescu3(B)

1 Delft University of Technology, Delft, The Netherlands
m.papadimitriou@student.tudelft.nl

2 Ortec Finance, Rotterdam, The Netherlands
joris.cramwinckel@ortec-finance.com

3 University of Amsterdam, Amsterdam, The Netherlands
a.l.varbanescu@uva.nl

Abstract. Computational finance is a domain where performance is in
high demand. In this work, we investigate the suitability of Intel Xeon
Phi for computational finance simulations. Specifically, we use a scenario
based ALM (Asset Liability Management) model and propose a novel
OpenCL implementation for Xeon Phi. To further improve the perfor-
mance of the application, we apply several optimization techniques (data
layout and data locality improvement, loop unrolling) and study their
effects. Our results show that the optimized OpenCL code deployed on
the Phi can run up to 135x faster than the original scalar code running
on an Intel i7 GPP. Furthermore, we also show that choosing the optimal
work-item/work-group distribution has a compelling effect on massively
parallel and heavily-branching code. Overall, these results are significant
for the computational finance specialists, as they enable a major increase
in model accuracy, because 10x more simulations can be performed in
less than a 10th of the original time.

Keywords: OpenCL · Computing · Accelerated architectures · Intel
Xeon Phi · MIC · GPGPU · Parallel computing · Asset Liability Man-
agement

1 Introduction

Modern applications targeting the finance industry become popular candidates
for using high performance computing (HPC) platforms and techniques. Almost
10% of the TOP500 supercomputers, are dedicated for computational finance
purposes [5]. This trend occurs because of the nature of applications that the
financial sector has to offer and the increasing amount of data related to these
applications. Examples of such applications are stock market data streaming,
option pricing, high frequency trading, or risk management. They are loosely
clustered in the fast-growing field of computational finance.

A computational finance instrument is the OPAL platform offered by Ortec-
Finance, which provides goal based financial planning for private investors. The
c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 199–208, 2017.
DOI: 10.1007/978-3-319-58943-5 16

200 M. Papadimitriou et al.

feasibility of potential goals is estimated based on high-quality scenario projec-
tions. These projections are influenced by investment decisions, market changes,
clients financial situation and future goals [15]. Therefore, being able to increase
efficiently the number of projections of the future can result into a more accu-
rate investment plan. For this work, we have extracted from OPAL a test case
of Asset Liability Management (ALM), to investigate the potential performance
and/or accuracy increase when utilizing HPC platforms such as Intel Xeon Phi.
ALM was chosen because it can have several applications within the finance
industry such as risk management and it’s need to comply with regulations.
Typical regulations are Solvency II1 and MiFID2.

In general, the vast majority of accelerated applications from computational
finance are using GPUs [2,6,11] and highly parallelizable (Monte Carlo and
PDEs) methods [4,17]. Because of the prevalence of GPUs, some areas of com-
putational finance, such as risk management, are less likely to be accelerated, as
they contain extensive branching.

To address performance, OpenCL solution of the extracted test case was
implemented. Then, a series of optimizations were applied for increasing its
potential performance. As this model works with several conditional statements,
GPU implementation approach can be very challenging. Therefore, Intel Xeon
Phi due to it’s CPU like behaviour, was chosen as the implementation platform.
The performance on the Intel Xeon Phi was evaluated, as well as the individual
effect for each of the optimization. In addition, solutions scalability was studied
to determine the correlation between the effective speed-up and the number of
future projections (scenarios).

Our results show that there is an great improve in performance which varied
from x17 to x135 depending on the number of future projections. In addition, we
studied the optimizations that lead to these speed-ups and their contributions
to this performance.

The main contributions of our work are as follows:

• We chose a case study extracted from the financial sector industry, where
improve in performance is in high demand.

• We propose a novel OpenCL implementation of the chosen case study.
• We applied various optimizations on the OpenCL implementation.
• We evaluate its performance on Intel Xeon Phi co-processor and the effect of

the individual optimizations.

The rest of the paper is organized as follows: Sect. 2 provides the neces-
sary background information on the test case model, programming language
and development platform. Section 3 introduces the model, the OpenCL imple-
mentation and the different optimizations techniques used. Section 4, presents
the obtained results on the Intel Xeon Phi along with the individual effect of
each optimization. Finally, conclusion and future work is featured in Sect. 5.

1 Solvency II is a new regulatory framework for insurance companies.
2 MiFID is a directive that ensures investors protection in financial instruments, such

as bonds, shares and derivatives.

Speed-Up Computational Finance Simulations with OpenCL 201

2 Background

This section contains a brief introduction to Scenario based ALM case used,
the OpenCL programming language and the Intel Xeon Phi which is proposed
implementation platform.

2.1 Scenario Based ALM

The private investor has to make a decision about investments and chose an
optimum investment strategy. The investment strategy usually lies between the
balance of risk and reward. It is a plan of attack based on individual goals,
risk tolerance, future capital needs and potential hazards [12]. In addition, these
investments strategies taking in account asset allocation, buy and sell guidelines
and risk guidelines. Therefore, the combination of this factors leads to changes
in the chosen investment strategy.

An analysis using various different economic scenarios is crucial to get an
accurate insight in risk and return. Thus, simulation techniques are clearly
favored above analytical formulas here, because simulation can take into account
a multitude of different variables, such as deposits, withdrawals, taxes, inflation,
etc., and do so across a range of investment strategies and portfolios. There-
fore, scenario based analysis instead of predicting the economic future, tries to
assemble as realistic as possible projections of it.

Consider, for example, a typical pension fund case where 10,000 real world
scenarios with a horizon of 64 years (monthly frequency), then 768000 evalua-
tions are required in total. Assuming that this computation is the most compu-
tational intensive part of a larger process pipeline (scenario generation, pattern
extraction etc.), it can take up to several minutes for completion. Therefore,
the number of scenarios is the primary constraint for future development of the
model and its accuracy.

2.2 The OpenCL Programing Lanaguage

OpenCL (Open Computing Language) is a framework which allows the com-
position of programs aiming for heterogeneous platforms. These platforms can
consist of CPUs, GPUs, FPGAs, DSPs and other hardware such as co-processors
(Intel Xeon Phi, Cell) [7].

In the early stages of development, OpenCL was initially a side project of
Apple Inc. Later, Khronos Compute Working Group consisting of CPU, GPU,
embedded-processor and other vendors. Therefore, in the OpenCL Ecosystem
hardware (IBM, AMD, Intel, ARM, NVIDIA, ALTERA, XILINX) and software
(codeplay, Sony, vmware, Adobe) dedicated members can be found. Finally, in
2008 an approved technical specification was released [7].

Figure 1 represents an overview of the OpenCL architecture. There is a host
device which is able to control more than one of Compute Devices. For instance,
these Compute devices can be either CPUs or GPUs. Each of these devices

202 M. Papadimitriou et al.

Fig. 1. Opencl architecture overview [7]

contains several Compute Units such as cores. Eventually, every Processing Unit
contains several Processing Elements which execute the OpenCL kernels.

One of the greatest advantages of OpenCL is portability. Although, even
with the code to be highly portable, the performance is not working in the
same manner. Therefore, with OpenCL code which is cross-platform executable,
unique optimizations need to performed for each platform.

2.3 Intel Xeon Phi Co-processor

The Intel Xeon Phi co-processor [9,10], is equipped with 60 general purposed
cores. These cores are connected with a high speed bidirectional ring. Also, the
cores are based on an updated Intel Pentium architecture (P54C), enhanced with
64-bit instructions and 512-bit vector instructions. These instructions are able
to perform 16 single-precision operations or 8 double precision operations per
instruction. In addition, the co-processor contains two levels of cache memory.
The cache structure corresponds to a 32KB L1 for data, 32KB L1 for instructions
and a 512KB L2 cache for every core [3]. The co-processor is able to provide 1.1
Tflops and 2.1 TFlops, peak performance for double and single precision oper-
ations, respectively. Additional features of the co-processor are the PCI express
system interface, the 16 memory channels that it offers and it’s Linux based
micro OS. Also, The it offers two main modes, where applications can run on
either native or offload mode. This allows application to run independently on
the device or offloading highly computational and parallel parts from the CPU.

In terms of programming, Intel Xeon Phi offers a broad range of tools and
programming tools, very similar to the ones available for a regular CPU [18]. In
more detail, OpenCL [20], OpenMP [14], Intel Cilk Plus [16], Pthreads [13] and
specialized math libraries like Intel Math Kernel Library [1] are available.

3 OpenCL Implementation

In this section, the Scenario based ALM, extracted from OPAL, is presented.
Also, the proposed OpenCL implementation is outlined, along with the individ-
ual optimizations that applied.

Speed-Up Computational Finance Simulations with OpenCL 203

Fig. 2. Intel Xeon Phi architecture

3.1 Scenario Based ALM

The Scenario based ALM kernel, is a part of a larger process pipeline (scenario gen-
eration, statistical interpretation etc.), but still the most computationally expen-
sive one. As it can be seen from Algorithm 1, the given application allows a level of
parallelism among the different scenarios. Each scenario, has zero inference with
the rest and therefore provide us with an initial degree of parallelization freedom.

Each scenario performs a number of computations for a given portfolio. Each
portfolio can contain several assets (up to 20). Usually, these assets represent
cash, bonds, stocks and equities from different regions (UK, US, JPN). Also, as
each scenario needs to comply with real world financial needs such as taxation
and rebalancing of the capital between the assets, extensive branching is present
in that kernel. Eventually, the value of each asset of each portfolio and the level
of taxes needs to be recorded at every iteration of every scenario.

PortfolioV alue =
n∑

i=1

= scenAssetweight(i) ∗ currentAssetV alue(i) (1)

Equation 1, represents how the total value of each portfolio is calculated. The
value of each is multiplied by a weight correspond to the current iteration of the
current scenario. Therefore, it contributes on increasing significantly the number
of accesses to global memory. Each weight is different for each scenario as it is
related to a different projection of the economy and a different financial decision.

3.2 OpenCL Implementation

The Scenario based ALM model, presented in Sect. 3.1 is implemented as a sin-
gle kernel. Each individual scenario is simulated by a work item, in 1D work
groups. OpenCL allows the compilation of kernels to take place during the exe-
cution time. Therefore, a very large part of the parameters can be passed as
preprocessed constants and save resources from parameter passing. Under this

204 M. Papadimitriou et al.

Input: Scenarios, Years, Months, portA, portB, portC, portD
Output: totalValue, valueA, valueB, cvalueC, valueD, valueTax
for Number of Scenarios do

for Number of Years do
for Twelve Months do

for each Portfolio do
for each Asset do

Calculate new value;
end
Sum of Assets value;

end
if Month is December then

Calculate amount of taxes;
end
Store Current Value of each Portfolio and each Asset;
Store Tax Value;
Store Total Value of Portfolios;

end

end

end
return totalValue, valueA, valueB, cvalueC, valueD, valueTax

Algorithm 1. Abstract representation of Scenario based ALM

structure all of the required constants by the model can be passed at a mini-
mum cost. For this first OpenCL implementation, we tried to keep as simple as
possible, without utilizing specific hardware or OpenCL features.

3.3 Optimizations

For increasing the performance of the proposed OpenCL implementation, a selec-
tion of four different optimizations were applied. By experimenting with this
optimization space, some key observations were made regarding the effect and
the possible improvement in terms of performance.

Workgroup Configuration. For any OpenCL kernel, the recommend work
group size should be equal to the SIMD width. Therefore, for Intel Xeon Phi
and float data type, the kernel width should be in multiplies of 16. This struc-
ture exploits the auto vectorization module in an optimum way while for non
multiplies of 16, the items are packaged in a traditional scalar way [21].

Compiler Optimizations. In most GPGPU architectures, several hardware
specific optimizations are available by the compiler. These optimizations may
have the form of specific “expensive” mathematical functions such as square
roots. In the same manner OpenCL allows a certain number of such flags for
allowing better exploitation of the hardware. The optimizations chosen relevant
to the nature of the model where -cl-fast-relaxed-math, -cl-no-signed-zeros and
-cl-denorms-are-zero.

Speed-Up Computational Finance Simulations with OpenCL 205

Data Layout. Data layout can have significant impact in an applications per-
formance. Memory access patterns of the kernel can be converted from array of
structures (AoS) to structure of arrays (SoA). This conversion results to a more
cache friendly layout which can be benefited by the vectorization module. [22]
Thus, the resulted performance can be improved with the used of a more SIMD
friendly layout like the SoA [19]. The vectorization module transforms scalar
data type operations on adjacent work-items into an equivalent vector opera-
tion. If vector operations already exist in the kernel source code, the module
scalarizes (breaks into component operations) and revectorizes them.

Constant Memory. The use of constant memory can allow all compute units of
the device to have access on the same data. Any constant memory element can be
accessible on the same time by all work-items. Although, use of constant memory
is strongly relative to the nature of the problem and work-group dimensions.
Moreover, constant memory is expected to effect performance only for small
problem sizes, where data can fit in the small constant memory.

4 Results

In this section, the results obtained after applying various optimizations will be
presented. All the experiments performed in an Intel i7 GPP and Intel Xeon Phi
co-processor.

4.1 Performance Impact of the Optimizations

In Table 1, the individual and relevant impact of each optimization are presented.
The final performance yield a speed-up in magnitude of 109 times compared with
our initial scalar implementation.

Initially, a naive OpenCL implementation was tested on the Phi. The out of
the box performance was x21 faster than the original scalar code. This extend of
improvement in performance was satisfying, but still not any specific architecture
or programming features were exploit.

Further results demonstrate that while choosing the optimum workgroup con-
figuration, the impact in performance can be significant. By tuning the applica-
tion for a global size of 10240 over 1D range, demonstrate an extensive effect in
performance. For the optimum work-group/work-item arrangement (128× 80),
the overall speed-up increases to x80.1, while the relative speed-up compared to
the naive OpenCL solution increases by a factor of x3.8.

Enabling the compiler flags mentioned in Sect. 3.2, increase the relative speed-
up by just x1.06. On the other hand, converting the data access patterns to
structure of arrays (SoA) gives almost 20 times faster performance in comparison
with the original version. In addition, using constant memory intead of global for
the different work-items to have access to independent scenario weights, gives an
additional x1.05 speed-up. Although, for larger number of scenarios (more than
10240), data cannot fit in constant memory.

206 M. Papadimitriou et al.

Table 1. Single precision OpenCL implementation: speed-up and relative speed-up for
various optimizations and input of 10240 scenarios

Version Time [s] Speed-up rSpeed-up

Scalar 3.1245 1 -

Naive 0.1500 20.8 1

Workgroup dim 0.0390 80.1 3.8

Compiler flags 0.0368 85 1.06

SoA 0.0304 103 1.21

Constant memory 0.0287 109 1.05

4.2 Speed-Up Scalability

After evaluating the peak performance under a specific knob of optimizations, we
evaluate the scalability of these results under different number of scenarios. For
each number of scenarios, the optimum work group configuration was determined
and used.

In Table 2, the results obtained from our novel OpenCL implementation com-
pared to the scalar baseline are presented. These results provide us with enough
information to evaluate the potential benefits of using Intel Xeon Phi. Firstly,
we note that in 2/3 of the simulation time for 1024 scenarios, we were able to
simulate 80 times more scenarios. In addition, we shown that for very large num-
ber of scenarios, we were able to achieve speed-ups, up to x135 compared to our
scalar implementation running on a GPP.

Finally, we verified that for larger scenario inputs, we achieved the best per-
formance while using work groups in multiplies of 16 [8]. This behaviour was due
to the fact that SIMD, deploys the work-group items in groups of 16. On the
other hand, for very small group scenarios, the work-group parallelism couldn’t
exploited in it’s fullest potential and thus, smaller speed-ups were achieved.

Table 2. Single precision execution time results: Intel Xeon Phi vs Intel i7-5600U

Scenarios Execution time (s) Speed-up

Intel i7-5600U Intel Xeon Phi

1024 0.2853 0.01719 x17

4096 1.1381 0.01339 x85

8192 2.1431 0.02547 x86

10240 3.1245 0.02873 x109

40960 9.8645 0.09031 x112

81920 26.06165 0.19205 x135

Speed-Up Computational Finance Simulations with OpenCL 207

5 Conclusion and Future Work

Due to the continuous need for faster and more accurate models, the financial
sector offers a broad range of applications in need for acceleration. Therefore, we
chose a scenario based ALM application, where speed and increase in accuracy
are in particular needs. We proposed a novel OpenCL implementation of the
Scenario based ALM and we tested on Intel Xeon Phi co-processor. We evaluate
its out of the box performance and the effects of different optimizations.

In general, we proved that utilizing Intel Xeon Phi and OpenCL for scenario
based ALM simulations, can yield to significant improvements in performance
(up to x135). Also, we clarify that for application in which extensive branching
is present, Intel Xeon Phi expected to offer a more efficient solution compared
to a GPU. In addition, we shown that when optimizations are applied, the out
of the box performance can be increased up to four times.

In terms of future, work we are working on investigating the performance
portability for our OpenCL scenario based ALM solution. This investigation
will focus on the OpenCL portability among different platforms, as well as the
individual effects of different optimizations in every platform. This study will
aim to find a minimum set of optimization knobs, for which a certain level of
performance can be kept among different platforms.

References

1. Intel Math Kernel Library: Reference Manual. Intel Corporation, Santa Clara
(2009). ISBN 630813-054US

2. Cramwinckel, J., Singor, S., Varbanescu, A.L.: FiNS: a framework for accelerating
nested simulations on heterogeneous platforms. In: Hunold, S., et al. (eds.) Euro-
Par 2015. LNCS, vol. 9523, pp. 246–257. Springer, Cham (2015). doi:10.1007/
978-3-319-27308-2 21

3. Fang, J., Sips, H., Zhang, L., Xu, C., Che, Y., Varbanescu, A.L.: Test-driving
intel xeon phi. In: Proceedings of the 5th ACM/SPEC International Conference
on Performance Engineering, ICPE 2014, pp. 137–148. ACM, New York (2014).
http://doi.acm.org/10.1145/2568088.2576799

4. Gaikwad, A., Toke, I.M.: Parallel iterative linear solvers on GPU: a financial engi-
neering case. In: 2010 18th Euromicro Conference on Parallel, Distributed and
Network-based Processing, pp. 607–614, February 2010

5. Giles, M.: From CFD to computational finance and back again, November 2009.
https://people.maths.ox.ac.uk/gilesm/talks/princeton.pdf

6. Giles, M., Lszl, E., Reguly, I., Appleyard, J., Demouth, J.: GPU implementation
of finite difference solvers. In: 2014 Seventh Workshop on High Performance Com-
putational Finance (WHPCF), pp. 1–8, November 2014

7. group, K.: The open standard for parallel programming of heterogeneous systems,
January 2016. https://www.khronos.org/opencl/

8. Intel: Work-group size considerations for intel xeon phi coprocessors (2015).
https://software.intel.com/en-us/node/540512

9. Intel: Intel xeon phi co-processor. April 2016. http://www.intel.com/content/
www/us/en/processors/xeon/xeon-phi-detail.html

http://dx.doi.org/10.1007/978-3-319-27308-2_21
http://dx.doi.org/10.1007/978-3-319-27308-2_21
http://doi.acm.org/10.1145/2568088.2576799
https://people.maths.ox.ac.uk/gilesm/talks/princeton.pdf
https://www.khronos.org/opencl/
https://software.intel.com/en-us/node/540512
http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html
http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html

208 M. Papadimitriou et al.

10. Jeffers, J., Reinders, J.: Intel Xeon Phi Coprocessor High Performance Program-
ming, 1st edn. Morgan Kaufmann Publishers Inc., San Francisco (2013)

11. Liu, R.S., Tsai, Y.C., Yang, C.L.: Parallelization and characterization of garch
option pricing on GPUS. In: 2010 IEEE International Symposium on Workload
Characterization (IISWC), pp. 1–10, December 2010

12. Dempster, M.A.H., Medova, E.A..: Asset liability management for individual
households. Br. Actuar. J. 405–439 (2011)

13. Nichols, B., Buttlar, D., Farrell, J.P.: Pthreads Programming. O’Reilly & Asso-
ciates Inc., Sebastopol (1996)

14. OpenMP Architecture Review Board: OpenMP application program interface ver-
sion 3.0, May 2008. http://www.openmp.org/mp-documents/spec30.pdf

15. Ortec-Finance: Goal-based financial planning, April 2016. http://www.ortec-
finance.com/Private-Wealth/Online-Financial-Services.aspx

16. Robison, A.D.: Composable parallel patterns with intel cilk plus. Comput. Sci.
Eng. 15(2), 66–71 (2013)

17. Rocki, K., Suda, R.: Large-scale parallel monte carlo tree search on GPU. In: 2011
IEEE International Symposium on Parallel and Distributed Processing Workshops
and Ph.D. Forum (IPDPSW), pp. 2034–2037, May 2011

18. Heinecke, A., Pflüger, D., Budnikov, D., Klemm, M., Narkis, A., Shevtsov, M.,
Zaks, A., Lyalin, S.: Demonstrating performance portability of a custom opencl
data mining application to the intel r xeon phi (2013). http://dx.doi.org/10.13140/
2.1.4212.6084

19. Smelyanskiy, M., Sewall, J., Kalamkar, D.D., Satish, N., Dubey, P., Astafiev,
N., Burylov, I., Nikolaev, A., Maidanov, S., Li, S., Kulkarni, S., Finan, C.H.,
Gonina, E.: Analysis and optimization of financial analytics benchmark on mod-
ern multi- and many-core IA-based architectures. In: 2012 SC Companion: High
Performance Computing, Networking Storage and Analysis, pp. 1154–1162 (2012).
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6495921

20. Stone, J.E., Gohara, D., Shi, G.: Opencl a parallel programming standard
for heterogeneous computing systems. IEEE Des. Test 12(3), 66–73 (2010).
http://dx.doi.org/10.1109/MCSE.2010.69

21. Tian, X., Saito, H., Preis, S.V., Garcia, E.N., Kozhukhov, S.S., Masten, M.,
Cherkasov, A.G., Panchenko, N.: Practical SIMD vectorization techniques for
intel R© xeon phi coprocessors. In: Proceedings of the 2013 IEEE 27th International
Symposium on Parallel and Distributed Processing Workshops and Ph.D. Forum,
IPDPSW 2013, pp. 1149–1158 (2013). http://dx.doi.org/10.1109/IPDPSW.2013.
245

22. Zhang, Y., Sinclair, M., Chien, A.A.: Improving performance portability in
OpenCL programs. In: Kunkel, J.M., Ludwig, T., Meuer, H.W. (eds.) ISC
2013. LNCS, vol. 7905, pp. 136–150. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38750-0 11

http://www.openmp.org/mp-documents/spec30.pdf
http://www.ortec-finance.com/Private-Wealth/Online-Financial-Services.aspx
http://www.ortec-finance.com/Private-Wealth/Online-Financial-Services.aspx
http://dx.doi.org/10.13140/2.1.4212.6084
http://dx.doi.org/10.13140/2.1.4212.6084
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6495921
http://dx.doi.org/10.1109/MCSE.2010.69
http://dx.doi.org/10.1109/IPDPSW.2013.245
http://dx.doi.org/10.1109/IPDPSW.2013.245
http://dx.doi.org/10.1007/978-3-642-38750-0_11
http://dx.doi.org/10.1007/978-3-642-38750-0_11

LSDVE - Workshop on Large-Scale
Distributed Virtual Environments

TallyNetworks: Protecting Your Private
Opinions with Edge-Centric Computing

Marc Ruiz Rodŕıguez(B), Pedro Garćıa López, and Marc Sánchez-Artigas

Universitat Rovira i Virgili, Tarragona, Spain
marc.ruiz@urv.cat

Abstract. In this paper we claim that your private opinions cannot be
controlled by a single centralized entity. Some examples of this are user
participation in open polls or rating (stars, like/dislike) services and
persons in a community. To this aim, we present TallyNetworks, an edge-
centric distributed overlay that aims to provide end-to-end verifiability
of online opinions by leveraging the computing resources (TallyBoxes) of
users and third-party organizations.

Thanks to blind signatures, pseudonyms and anonymous channels,
we ensure that the edge nodes (TallyBoxes) are blind and guarantee
anonymity and privacy. Thanks to a one-hop structured overlay and
a global membership protocol using redundant broadcasting and sync-
ing, we ensure that messages reach all nodes in the network (integrity,
robustness), and that vote information can be obtained and checked from
different points (end-to-end verifiability).

1 Introduction

We live in a post-privacy world where our opinions are controlled by a few
big players in the market. The business models of companies like Facebook or
Google rely on analyzing user opinions and behaviors and trade this valuable
information with advertisers. Furthermore, a flourishing market of data brokers
[4] is emerging to analyze consumer’s data to create consumer’s profiles which
may contain sensitive user information. Every time you like a post in Facebook,
every time you like or dislike something in Google or Youtube, every time you
rate something in Amazon, or every time you participate in a poll, you are giving
away valuable information about yourself.

Following the claim of edge-centric computing, we believe that key personal
and social communication services should be decentralized and human-driven. In
this article, we introduce TallyNetworks, an edge-centric distributed architecture
designed to preserve your opinions/votes’s privacy in large online communities.
The core idea of our system is to move opinion counting and storage to the edges
of the network. A key assumption is that we cannot trust a single centralized
entity to store and count our opinions. Instead, we will rely on a decentralized
overlay of TallyBoxes controlled by users.

Our model is inspired in the remote voting paradigm where participants
receive blindly signed voting credentials that permit them to vote anonymously.
c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 211–223, 2017.
DOI: 10.1007/978-3-319-58943-5 17

212 M.R. Rodŕıguez et al.

Like remote voting systems, we provide: 1. Privacy: the identity of a voter cannot
be linked to his vote; 2. Integrity: the result of the election cannot be altered
in any way; 3. Robustness: the tolerance to the misbehavior of users or external
parties; and 4. End-to-end verifiability: the check that the reception and tallying
of the votes is correct.

The key insight behind our approach is to leverage the services provided by a
decentralized, one-hop overlay of Tallyboxes and combine it with cryptographic
techniques such as blind signatures, pseudonyms and anonymous channels. The
stability and capacity of edge nodes, mainly, stable home devices, datacenter
edge services and nanodatacenters, permits the management of a global routing
table and the one-hop abstraction.

As a proof-of-concept of TallyNetworks, we implemented a global member-
ship service based on a robust and reliable broadcast and synchronization algo-
rithm for Kademlia. Our algorithm permits to set the targeted robustness to
attacks and churn by tuning redundancy across both the broadcast and syn-
chronization phases.

2 Related Work

Edge-centric computing has been recently proposed as the natural evolution
of peer-to-peer (P2P) systems. One of the major claims of this new paradigm
is to move the control to the edges of the system (human-controlled) in order
to preserve user’s privacy. Edge-centric systems may combine centralized and
decentralized components in order to overcome the limitations of P2P systems.

In this new paradigm, TallyNetworks is one of the first Internet distributed
services following the edge-centric paradigm. TallyNetworks combines central-
ized (Authenticator) and decentralized (TallyBox one-hop overlay) components
to avoid security problems (like the Sybil attack) and to simplify architecture ser-
vices (opinion voting and opinion retrieval, user membership, global knowledge
of the routing table).

TallyNetworks cannot be directly compared with traditional e-voting sys-
tems as used in public elections. Such systems are normally based on centralized
trusted components [5] managed by a public institution. The security require-
ments in these systems are extremely high; for example, voting from mobile
devices cannot be considered without secure hardware devices.

More specifically, our proposal is more related with previous approaches of
remote voting [7] or [8] using blind signatures [10]. In our case, the Authenticator
component uses blind signatures to create an anonymous pseudonym (public key)
that can later be used for voting or for participating in the network. By combin-
ing blind signatures and anonymous channels, we provide a level of pseudoanon-
imity that is by far sufficient for the problem of distributed management of
personal opinions.

Another relevant related work is the literature on one-hop structured over-
lays [11]. Such overlays are highly suitable in networks of relatively stable peers
like the ones proposed by edge-centric computing. In this case, the widespread

TallyNetworks 213

adoption of stable home appliances (storage and compute sticks, media centers,
nanodatacenters) and the improvements in residential bandwidth can create very
efficient Internet services like the one proposed in this paper.

An important difference with previous related works on one-hop overlays is
the algorithm employed for the efficient management of a huge up-to-date routing
table. Previous works [11] aim to reduce the bandwidth imposed to nodes due
to the event dissemination of active peers in the routing table. In our case, our
global membership service will only send events about permanent joins or leaves
from the network, and not about transient churn. Our novel approach efficiently
combines a redundant broadcast algorithm for Kademlia with a syncing protocol.

Finally, previous works like [9] have linked networks of edge web servers
using structured overlays. Interconnecting stable web servers using HTTP in
structured overlays offer interesting value-added services to applications such
as indexing or efficient content dissemination. Like in [9], our implementation
also interconnects edge servers in a structured overlay. But in this case, our
efficient one-hop overlay considerably reduces the communication overhead for
the servers thanks to the adaptive broadcast/sync membership model.

3 Background: Blind Signatures

In this section, we revisit the concept of blind signature. A blind signature [6]
allows a user to get a signature on a hidden message without the signer learning
the message in question. A secure blind signature scheme ensures that nobody
can fake a new signature for a new message (unforgettably) and that the signer
will never be able to learn the message he is signing nor be able to link a signature
to the protocol run where it was obtained (blindness).

We can define an analogy in order to make things clearer. Consider Alice has
a letter which should be signed by an authority, Bob. But, Alice does not want
Bob can read the letter. So, she finds a clever solution, she can place the letter
in an envelope lined with carbon paper and ask Bob to sign it. Bob will sign the
outside of the carbon envelope without being able to open it, so when he sends
it back to Alice, she will be able to open the envelope and find the letter signed
by Bob, without him seeing the contents.

We distinguish two operations: blinding B(m), the process to put the letter
m into the envelope to avoid Bob seeing the content, and the unblinding UB(m),
the process to taking out the signed letter m from the envelope.

4 TallyNetworks

In this section, we explain the key insights of our idea and the overall architecture
of our solution, the life-cycle of the system and our novel global membership
protocol based on Kademlia.

214 M.R. Rodŕıguez et al.

4.1 Main Idea

We aim to build a system that allows people to participate in any kind of poll
or rating without disclosure of their real identities. But we want also to ensure
the integrity of the result of any poll in the presence of malicious behavior. And
very importantly, we want to provide end-to-end verifiability, i.e., the property
that both the reception and tallying of votes is correct.

Instead of pure cryptographic solution, we propose TallyNetworks, a system
that meets this challenge through a novel integration of cryptographic techniques
with a one-hop Distributed Hash Table (DHT). For a given poll, the basic idea is
to leverage the underlying one-hop DHT to assign the task of tallying to a subset
of TallyBoxes with enough redundancy to ensure the correctness of the result.
To guarantee the correct delivery of the votes to the responsible TallyBoxes, we
will combine a broadcast algorithm with a pull based approach, recasting our
problem as a secure distribution of votes.

4.2 Entities

The entities involved in our proposal are the following:

– Participant: A registered user who can emit opinions (like/dislike) or
participate in public polls anonymously from a mobile terminal. It can also
query the system about the current state (votes, opinions) of specific polls or
items.

– TallyBox edge server: It is a node of the TallyNetworks overlay. It can cast
votes but also retrieve and query them using the one-hop DHT. It receives
votes from participants and redirects them to the appropriate TallyBoxes
using the opinion identifier. The responsible nodes will then count and store
the votes if they are valid according to their credentials.

– Authenticator server: It authenticates participants and TallyBoxes based
on an admission policy and blindly signs their credentials. For participants, it
can check whether they are members of the community or real authenticated
users. When a TallyBox edge server is accepted, then the Authenticator server
will assign a unique identifier to it, in order to avoid Sybil attacks.

4.3 Security Threats

We assume that the goal of a malicious participant is to try to tamper with the
poll results, for instance, by emitting multiple votes to favor some option, or even
by emitting contradictory votes for the same poll. Our system will have to handle
these situations in order to ensure one vote per user and that all participants
have seen the same vote counting result.

Further, we assume that a malicious TallyBox can drop messages, flood the
network with fake messages or try to disconnect other TallyBox servers from the
network. Our system must mainly prevent the loss of votes in addition to thwart
DoS attacks and overlay partitions.

TallyNetworks 215

4.4 Protocol Steps

We can distinguish different steps for participants and for TallyBoxes.
A TallyBox follows these protocol steps depicted in Fig. 1:

– Obtaining the node identifier: To register a new TallyBox in the network, the
first step is to contact the Authenticator server and request a node credential.
If accepted, it will receive a signed credential including the node identifier and
URL.

– Entering the network: Since the network of TallyBoxes is a one-hop overlay, a
joining node only needs to contact a group of TallyBoxes in the system, and
then broadcast its signed join request to the rest of them. The joining node
will also retrieve the one-hop routing table of the contacted TallyBoxes and
the information for the active polls it is responsible for. This is transparently
handled by the underlying DHT itself.

– Participating in the network: Every TallyBox can fine tune its activity in the
broadcast and synchronization protocols depending upon its resources. For
example, a weak node might decide to avoid participating in the broadcast
algorithm, and only periodically synchronize on a per-day or per-week basis.

Fig. 1. TallyBox protocol

A participant follows these protocol steps shown in Fig. 2:

– Obtaining a user credential: For a participant to register in the system, the
first step is to contact the Authenticator server to request a user credential.
To do so, the joining participant sends his public key PK in blinded form
B(PK). If admitted, he will receive a blindly signed credential {B(PK)}sign
from the Authenticator to participate in TallyNetworks. Upon reception, the
joining participant will unblind the signature to get {PK}sign.

– Voting process: The participant can now use an anonymous channel (e.g.,
Tor) to cast a vote in any TallyBox using his public key PK as pseudonym.
For robustness, the vote is cast to more than one TallyBox. To actually cast a

216 M.R. Rodŕıguez et al.

vote v, the vote itself, its signature {v}SK,sign with the participant’s private
key SK, and the authentication credential (PK, {PK}sign) must be sent via
the one-hop overlay to the TallyBoxes responsible for the poll. For exam-
ple, if a participants wants to add a Like to “Hans”, this Like vote will be
addressed to the TallyBoxes responsible for the key “Hans”. The number of
nodes responsible for each key can be configured to ensure the robustness of
the voting process.

– Tallying: Unlike traditional voting systems, the voting period can be always
open and a participant can retrieve the current state at any time. Tallyboxes
will receive votes for the polls they manage. For each vote, they will verify
that the signature comes from a valid participant. Then, they will check that
the vote is not a duplicate one. For keeping the vote counting up to date, the
TallyBoxes responsible for the same key will also be “in sync” so that vote
counting will eventually converge.

Fig. 2. Participant protocol

4.5 One-Hop Architecture: Membership

To build a system capable of satisfying all of the goals listed in the introduction of
this paper, it is necessary to implement an efficient DHT of stable TallyBox edge
servers. Since servers do not maintain active connections (HTTP) and they have
enough resources, they can maintain in disk a huge amount of contacts in the
network. This is clearly in line with previous one-hop or two-hop overlays that
maintain big routing tables.

The fundamental difference of our approach is that we only handle permanent
joins or leaves (and not transient churn), avoiding active checks or keep-alives
to detect and propagate the availability of nodes in the system. As explained
below, our network is designed with sufficient redundancy to overcome transient
churn and malicious participants.

TallyNetworks 217

We chose Kademlia as the structured overlay, mainly for its resilient design
and ability to issue parallel queries. To maintain the routing tables up to date, we
propose a novel Kademlia CAST & SYNC algorithm that leverages an existing
broadcast algorithm over the Kademlia tree overlay. Our algorithm is adaptive
to the size of the network and capabilities of each TallyBox. It also permits the
configuration of the redundancy level across the broadcast and synchronization
phases.

4.6 Kademlia CAST and SYNC

Our membership protocol aims to be adaptive to the size and persistent churn
of the network. In a very small network, the broadcast (CAST) algorithm may
become a star topology. In fast-growing networks, the broadcast traffic might be
very costly, so the synchronization (SYNC) phase should prevail.

The combination of CAST & SYNC algorithms is ideal for large steady-state
networks. In this case, the broadcast algorithm will accelerate convergence time
and interactivity, and the SYNC phase will guarantee 100% coverage.

Broadcast. We build upon a previous Kademlia broadcast algorithm [2,3]. This
algorithm divides the key space using the Kademlia k-bucket routing tables. The
initiator of the broadcast will send a message to a contact in each bucket. Then,
recipients will forward it to their contacts in their buckets but only to those
within their own region. This solution is the most natural and reliable way of
dividing the key space in Kademlia for broadcasting. And it has been widely
proven by the referred authors.

However, a simple Kademlia broadcast cannot assure the total coverage of the
network, because messages can be lost due to churn and malicious participants.
In our case, because malicious and offline TallyBoxes have the same effect on
the network, we will treat them equally.

To overcome message losses, one typical solution is to increase the redundancy
of the broadcast algorithm. This can be simply achieved by choosing more than
one representative contact in each bucket. This really improves the reliability
of the broadcast, but its communication cost quickly increases. As redundancy
increases, the traffic grows with it, compromising scalability. Moreover, a network
that is handling popular opinions is very susceptible to be attacked. So high
packet loss ratios should be tolerated.

To give some simple numbers: If each node had 160 buckets, the initiator of
the broadcast would send n ∗ 160 messages, where n is the redundancy level. In
our case, the messages size would be: TallyBox server ID (160 bits) + IP address
(32 bits) + port number (16 bits) + signature of the server ID (2048 bits), the
latter depending on the chosen cryptographic system. With n = 3, only the
initiator of the broadcast would send around 1 MB. If this number is ported to
huge networks, it is obvious that scalability will be severely undermined.

We must then disseminate information efficiently and with high resiliency
to packet losses, but also minimizing the communication traffic in the network.
In order to reduce redundancy, we will complement this protocol with a SYNC
phase.

218 M.R. Rodŕıguez et al.

Redundancy Analysis. Let us first study the analytical model presented and
validated by [2]. Later, we will extend it with the SYNC protocol. Now, let B
be the number of nodes receiving the message over all nodes in the overlay. The
expected coverage of the broadcast depending on packet loss ratio is then:

B = (1 + P)d, (1)

where P is the probability of correct delivery of a message and d is the length
of the message path, which can be estimated as log2 N (height of the broadcast
tree), where N is the total number of nodes.

By dividing the above expression by the number of nodes 2d, in order to get
the ratio of nodes receiving the message m, we get:

m =
(

1 + P

2

)d

(2)

In order to add redundancy, we will consider P as 1 − P kd

l , where Pl is
the packet loss ratio and kd is the level of redundancy. Substituting it into the
previous expression, we get: (

2 − P kd

l

2

)d

(3)

These equations were validated by their authors, getting even better results
in the experimentation when using the redundant algorithm, among other things
because when messages are duplicated, each node can receive the message from
multiple paths, which can be shorter than the estimated.

Broadcast + SYNC. Broadcast alone cannot make sure that every TallyBox
maintains a perfect membership of system, even with high redundancy. For this
reason, we propose a solution that uses less redundancy without (negligible) loss
of robustness based on periodic reconciliation or anti-entropy. More concretely,
the SYNC phase contacts periodically a number of random TallyBox servers and
ask them for the last received updates. In this way, if a membership message is
lost during the broadcast phase, it will be recovered from the nodes that received
it. The synchronization period can be adapted depending on the network activity
and the desired refresh rate.

We assume that malicious TallyBoxes will be evenly distributed as their
IDs are assigned by the Authenticator server. So now, we analyze not only the
reliability of the broadcast, but the reliability of combining the CAST with the
SYNC phase.

Obviously the SYNC phase will depend directly on the redundant broadcast,
so we will use its equation. There are two possible situations to fail when syncing.
The first one is that the packet gets lost with probability Pl as before. The second
one is that the packet arrives to a node that will respond, but the contacted node
does not have the message because it got lost in the broadcast phase. Taking
both situations into account, we defined the reliability S of the SYNC phase as:

S = 1 − (Pl + (1 − m)(1 − Pl)) (4)

TallyNetworks 219

But, as above, sending a single SYNC message is clearly insufficient to re-
synchronize correctly, so redundancy, ks, is added to the equation which yields

S = 1 − (1 + m ∗ (Pl − 1))ks (5)

In summary, a message can be received in two ways in our proposal, through
the broadcast or if it was not received, it will be obtained it in the SYNC phase.
So, the total system reliability M is given by:

M = m + (1 − m) ∗ S (6)

5 Analysis

5.1 Security Analysis

Now we analyze how our proposed protocol maintains the four security require-
ments:

– Privacy: This property guarantees that the relation between a vote and the
identity of the person who cast it cannot be discovered. We ensure this prop-
erty thanks to the untraceability of the blind signature scheme and the use
of an anonymous bidirectional channel between participants and TallyBoxes.
Our model only provides pseudoanonimity since the entire voting history of
a given pseudonym is stored in the network. If the participant is identified in
any of the communications with a TallyBox, the whole voting history will be
linked to his real identity.

– Integrity: This property guarantees that the result of the election cannot be
altered in any way. This includes: (1) allowing only registered users to cast
votes; (2) allowing users only to vote once; and (3) making sure that votes are
correctly tallied. The first property is ensured thanks to the Authenticator’s
signature of the pseudonym. If the pseudonym is not signed, the vote will not
be propagated into the network. The second property is ensured thanks to
the user’s signature of each vote. If a vote signed with an already used key
is emitted, it will be discarded. And the third property is ensured thanks to
the redundancy of TallyBoxes that cover each key. This allows TallyBoxes to
wait for a minimum number of messages before considering the vote as valid.
If two different votes signed with the same key are received at the same time,
both are discarded.

– Robustness: This property guarantees that the protocol is robust against
external attacks or malicious nodes that try to disrupt the overall process. In
our case, our distributed overlay is designed with sufficient redundancy and
communication to overcome such attacks. The most vulnerable part of our
architecture is the centralized Authenticator component. If this component
is not working due to attacks, the entrance of new nodes and users to the
network is compromised, but in any case, the distributed TallyNetwork can
continue working independently from the Authenticator.

220 M.R. Rodŕıguez et al.

– Verifiablity: Our system provides individual verifiability, since a user can
recover (via a GET request for a key) the votes of a poll from different Tally-
Boxes (key managers), and check if his vote is present and counted. A user
can also check if all votes in a poll are correct according to their signatures
and if the global count is consistent in the different TallyBoxes.

5.2 Experimental Analysis

Broadcast + Sync Simulation. As shown in Fig. 3, it can be easily seen
how synchronization improves the overall system reliability M , according to the
redundancy level determined by our equations. We simulated a network of 10, 000
TallyBoxes with Peersim.

(M
)

(a) Redundancy 1

(M
)

(b) Redundancy 2

(M
)

(c) Redundancy 3

(P
l
)

Fig. 3. Broadcast + Sync evaluation

As shown in Fig. 3, the obtained results (crosses) faithfully follow our analyt-
ical model (lines). However, our evaluation is rather pessimistic, as our equations
capture only the worst-case scenario when all out-of-sync TallyBoxes try to re-
sync at the same time, just after a broadcast. However, in a real situation, all
nodes will not sync at the same time, which means that the probability of re-
synchronizing increases after any other node has already synced. Therefore, a
better reliability M will be achieved in practice.

The initial reliability of the broadcast is the one that corresponds to the value
0 of the x axis (sync redundancy).

Analyzing Fig. 1(a), the most relevant result obtained is that with Pl = 10%
of loss ratio and no redundancy, reliability improves from 50% to 100% by just
contacting 8 nodes. In order to achieve the same result with just broadcasting,
a minimum of 3 levels of redundancy would be required as shown in [2].

Figure 1(b) illustrates that with redundancy 2, we only need to contact 2
nodes when Pl = 10% to achieve 100% reliability, and only 4 nodes to obtain
100% reliability with Pl = 20%. Even 30% of losses can be overcome by simply
contacting 10 nodes, improving from 50% to 100% the level of reliability. To
achieve this with just broadcasting, at least a redundancy level of 4 would be
required.

TallyNetworks 221

Finally, compared with the previous figure, Fig. 1(c) shows that the number
of nodes required to ask for synchronization is smaller up to Pl = 30%. But it
also shows that a reliability of 100% can be achieved with a loss ratio of 40%
by only contacting 10 nodes. Furthermore, even a loss ratio of 50% could be
supported by just contacting 20 nodes or even less.

Those results clearly show that our network is more tolerant to failures with
less resources, thus saving significant amounts of bandwidth. Moreover, the sync-
ing phase makes our network much less fragile in front any attack that wants to
silence the public opinion, thanks to a our greater reliability.

Notice that both the broadcast redundancy and the syncing redundancy
are not static parameters and can evolve with the network, i.e., increasing or
decreasing their values according to the network state. The state of the network
and its loss ratio can be estimated by the nodes themselves by calculating the
ratio of their unanswered requests sent to other TallyBoxes. So the algorithm
can be adaptive to optimize system resources.

Protocol Cryptographic Operations Validation. We evaluated the cost of
each protocol operation. We implemented them in Python using the Pycrypto
library. We ran more than 10, 000 tests in an Intel Core i5-3470@3.20GHz with
Debian 7.8. The obtained results are shown in the table below.

Table 1. Protocol simulation

Operations/second (depending on key size)

Stage 1024 2048 4096

1. Participant join

1.1 P: Key generation 4,23 1,06 0,16

1.2 P: Public key hashing 12500 10000 7142

1.3 P: Hash blinding 20000 7142 2857

1.4 A: Blind signature 657,89 110 18,16

1.5 P: Signature unblinding 100000 49999 16666

2. TallyBox join

2.1 A: Credential signature 657,89 110 18,16

2.2 T: Signature verification 16666,66 5000 1538,46

3. Voting

3.1 P: Vote signature 657,89 110 18,16

3.2 T: Vote signature verification 16666,66 5000 1538,46

P: Participant, A: Authenticator, T: TallyBox

As showed in Table 1, the most limiting operations are signing and key gener-
ation. The latter is not a problem, as it is performed only once by each participant
when joining. Consequently, the Authenticator is the only limiting entity. But
because it is a trusted and controlled entity, it can be easily scaled to perform

222 M.R. Rodŕıguez et al.

much more operations per second. Also, the Authenticator can rate limit the
joining process to the network in order to reduce pronounced joining peaks.

Membership Storage Cost Evaluation. We also evaluated the space cost of
storing the membership info. We assume a 160-bit TallyBox server ID, an IP
address of 32 bits, a port of 16 bits and a signature of variable size. A TallyBox
stores this information for each TallyBox in the network. As it can be seen in
the following results Table 2 in MB and assuming 4096-bit signatures, it would
take only around 513 MB of disk space, so space is not a problem.

Our combined SYNC & CAST algorithm is adaptive and resilient and can
scale to big networks. Furthermore, thanks to full membership, we know the
size of the network and depth of the tree, so that the aforementioned broadcast
algorithm is efficient and feasible to implement in real networks.

Table 2. Storage cost evaluation (MB)

Network size Signature size (bits)

1024 2048 4096

10.000 1,47 2,69 5,13

100.000 14,69 26,89 51,31

1.000.000 146,87 268,94 513,08

6 Conclusion

In this paper we have presented TallyNetworks, an edge-centric distributed over-
lay for protecting the privacy of your online opinions. It is aimed for typical user
online participation tools like open polls or item rating (stars, like/dislike).

A TallyNetwork must count opinions but also assure their correct retrieval
under attacks or censorship attempts. We show in this work how it is possible to
provide privacy, integrity, robustness, and end-to-end verifiability through the
combination of secure technologies (blind signatures, anonymous channels) with
a one-hop DHT of edge servers.

Acknowledgments. This work has been partly funded by the EU project IOStack
(H2020-644182) and Spanish research project Cloud Services and Community Clouds
(TIN2013-47245-C2-2-R) funded by the Ministry of Science and Innovation.

References

1. Maymounkov, P., Mazières, D.: Kademlia: a peer-to-peer information system
based on the XOR metric. In: Druschel, P., Kaashoek, F., Rowstron, A.
(eds.) IPTPS 2002. LNCS, vol. 2429, pp. 53–65. Springer, Heidelberg (2002).
doi:10.1007/3-540-45748-8 5

http://dx.doi.org/10.1007/3-540-45748-8_5

TallyNetworks 223

2. Czirkos, Z., Hosszú, G.: Solution for the broadcasting in the Kademlia peer-to-peer
overlay. Comput. Netw. 57(8), 1853–1862 (2013)

3. Peris, A.D., Hernández, J.M., Huedo, E.: Evaluation of alternatives for the
broadcast operation in Kademlia under churn. Peer-to-Peer Netw. Appl. 1–15
(2015)

4. Ramirez, E., et al.: Data Brokers: A call for Transparency and Accountability.
Federal Trade Commission, US, May 2014

5. Peng, K.: An efficient shuffling based eVoting scheme. J. Syst. Softw. 84(6), 906–
922 (2011)

6. Chaum, D.: Blind Signatures for Untraceable Payments. Advances in Cryptology.
Springer, US (1983)

7. Radwin, M.J., Klein, P.: An untraceable, universally verifiable voting scheme. In:
Seminar in Cryptology (1995)

8. Mu, Y., Varadharajan, V.: Anonymous secure e-voting over a network. In: Pro-
ceedings of 14th Annual IEEE Computer Security Applications Conference (1998)

9. Sanchez-Artigas, M., et al.: p2pWeb: an open, decentralized infrastructure of Web
servers for sharing ephemeral Web content. Comput. Netw. 54(12), 1968–1985
(2010)

10. Chaum, D.: Security without identification: transaction systems to make big
brother obsolete. Commun. ACM 28(10), 1030–1044 (1985)

11. Gupta, A., Liskov, B., Rodrigues, R.: One hop lookups for peer-to-peer overlays.
In: HotOS (2003)

Balancing Speedup and Accuracy in Smart City
Parallel Applications

Carlo Mastroianni(B), Eugenio Cesario, and Andrea Giordano

ICAR-CNR, Rende, CS, Italy
{mastroianni,cesario,giordano}@icar.cnr.it

Abstract. Smart city and Internet of Things applications can benefit
from the use of distributed computing architectures, due to the large
number and pronounced territorial dispersion of the involved users and
devices. In this context, a natural method to parallelize the computa-
tion is to consider the territory as partitioned into regions, e.g., city
neighborhoods, and associate a computing entity with each region. The
application considered in this paper is the prediction of the amount of
internet traffic generated within a given region, which requires to con-
sider not only the devices located in the region but also the mobile devices
that are expected to enter the local region in the future. When setting
the number of neighbor regions included in the computation, it must
be considered that this parameter has opposite effects on two impor-
tant objectives: increasing the number of neighbors tends to improve
the accuracy of the prediction but slows down the computation because
more computing entities need to synchronize among each other. Similar
considerations apply when setting the size and number of regions that
partition the territory. This paper offers an insight onto these important
tradeoff issues.

1 Introduction

In the last few years, increasing attention is devoted to the field of the so-called
“Internet of Things” (IoT), an emerging paradigm built upon the research and
development advances in a wide range of areas including wireless and sensor
networks, mobile and distributed computing, embedded systems, agent tech-
nologies, autonomic communication, Cloud computing. The variety of involved
application domains is also wide [10]: transportation and logistics, smart elec-
trical grids, big data and business analytics, social sciences, etc. The intelligent
management of “smart cities” is one of the most important application scenarios
of the Internet of Things paradigm. Sustainable development of urban areas is a
challenge of key importance and requires new, efficient, and user-friendly tech-
nologies and services [3]. The challenge is to harness the collaborative power of
ICT networks (networks of people, of knowledge, of sensors) and use the resulting
collective intelligence to implement better informed decision-making processes
and empower citizens, through participation and interaction, to adopt more sus-
tainable individual and collective behaviors and lifestyles [12]. High-quality can
c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 224–235, 2017.
DOI: 10.1007/978-3-319-58943-5 18

Balancing Speedup and Accuracy in Smart City Parallel Applications 225

be obtained by cross-correlating data retrieved from a number of sensors and
objects and by analyzing such data with sophisticated algorithms.

Due to the specific nature of smart city applications, data and objects are
strictly related to the space or territory on which they are defined and used:
for example, environmental information extracted from sensors, data inherent
to the neighborhoods and residential units in a city, etc. It is then natural to
manage such data through the use of computing entities distributed over the ter-
ritory, in order to perform the computation as close as possible to data sources
and to improve the performances by increasing the degree of parallelization [4].
Cloud computing provides an ideal back-end solution for handling the data pro-
duced by such a large number of heterogeneous devices. However, because of
the inherent dispersion of data and computing entities, it can be unfeasible or
inconvenient to bring computation to a single Cloud infrastructure, e.g., a big
centralized data center. A better support to tackle mobility and geo-distribution
of data, embrace location awareness and ensure low latency, can be provided by
a variant of Cloud, referred to as Fog Computing [2,9], which is composed by a
number of distributed Cloud facilities located close to data sources, i.e., a cloud
close to the ground. The computation related to smart city applications can be
partitioned and parallelized by assigning different areas of the city to different
computing entities, for example servers or smart sensors, all connected through
a Fog Computing infrastructure.

Most parallel applications are designed so that the computation advances
through successive steps, and all the nodes need to synchronize before proceeding
to the computation related to the next step. For example, when using the master-
slave model, the computation is “embarrassingly parallel” [5], i.e., the parallel
tasks do not need to exchange data during the execution. When completing every
step, however, the nodes must communicate the results to a central node that,
after collecting all the data, gives the nodes the permission to execute the next
step. Smart city applications differ from this model because they typically require
that the computation regarding a specific region of the city is performed using
the information received from a subset of neighbor regions. This corresponds to
the necessity of synchronizing the computation only among a limited number of
parallel nodes, without the need for a coordinator node.

Depending on the specific application, it is possible to tune the number of
regions that partition the territory – and consequently their size – and the “syn-
chronization degree”, i.e., the number of neighbor regions that must communi-
cate data among them and synchronize. The main objective of this paper is to
show that the proper setting of these parameters is of paramount importance to
balance the efficiency and effectiveness of computation. This is evaluated for the
specific case of a “smart avenue” traversed by mobile devices held by vehicles
and pedestrians, in which the goal of the computation is to predict the amount
of internet traffic generated in each region of the avenue. The prediction of inter-
net traffic is an important application scenario today [6,14], as numerous vehi-
cles possess powerful sensing, networking, communication, and data processing
capabilities, and can exchange information with each other (Vehicle to Vehicle,

226 C. Mastroianni et al.

V2V) or exchange information with the roadside infrastructure such as camera
and street lights (Vehicle to Infrastructure, V2I) over various protocols, includ-
ing HTTP, SMTP, TCP/IP, WAP, and Next Generation Telematics Protocol
(NGTP) [7].

In particular, increasing the synchronization degree allows the accuracy of the
prediction to be improved, because more devices are included in the computation,
but can slow down the computation because of the larger overhead related to
synchronization. Furthermore, increasing the degree of parallelization, i.e., the
number of regions in which the avenue is partitioned, allows the computation to
be fastened but generates the necessity of increasing the synchronization degree
to keep the same accuracy, since each region covers a smaller fraction of the
avenue. The proper tradeoff between computation and accuracy should take into
account the characteristics of the specific scenario, and can be formulated as an
optimization problem with given constraints. For example, the system manager
could be asked to maximize the accuracy of the computation given that it is
completed within a given interval of time.

The rest of the paper is organized as follows: Sect. 2 describes the smart
avenue scenario considered for this work; Sect. 3 illustrates how the synchroniza-
tion among neighbor regions can be modeled through a Petri net; Sect. 4 reports
performance results, in terms of computation time, speedup and accuracy of the
computation, when varying the number of parallel nodes and the synchronization
degree; finally, Sect. 5 concludes the paper.

2 Smart Avenue Scenario

The smart city application used as a test case in this work is the analysis of the
internet traffic generated by the devices located and moving over a city avenue.
This choice allows us to start with a mono-dimensional scenario, as this kind of
scenario is simpler to model and the related results are easier to be analyzed.
Afterward, the analysis can be naturally extended to a two- or three-dimensional
scenario. The smart avenue model consists in a large road on which pedestri-
ans and vehicles generate internet traffic to use classical audio/video applica-
tions, for example social applications or navigators. In addition, as envisioned
by the Cloud of Things paradigm, in particular by the vehicular Cloud scenario
[7], smart devices can offer their computing and storage capabilities to perform
computations in combination with the facilities of the fixed Cloud infrastructure.
The goal of the smart avenue application is to predict the amount and charac-
teristics of the data network traffic and the required computing and storage
capabilities of devices in a future interval of time, starting from the past behav-
ior of mobile devices. In this context, past behavior concerns both the usage
of internet applications and the mobility behavior of the users. The accurate
prediction of internet traffic can be used for several goals: to anticipate possible
bottlenecks in some portions of the avenue, to save energy and batteries con-
sumption by dynamically redistributing the workload between fixed and mobile
devices, as recently described in [1], to design traffic-aware energy-efficient cellu-
lar networks [11], to improve the Quality of Service offered to the users, etc. To

Balancing Speedup and Accuracy in Smart City Parallel Applications 227

this aim, the use of machine learning algorithms for traffic forecasting through
behavior modeling of mobile users is becoming a challenging issue to improve ser-
vice effectiveness and efficiency [6,14]. For instance, usage pattern prediction of
requests can be used to influence the admission/denial of service demands made
by priority and non-priority users, in order to match their respective Quality of
Service agreements [14]. As another example, the bandwidth provided in a given
area can be dynamically adapted according to the predicted volume of requests,
thus saving energy consumption in the overall network [6].

The parallelization of the computation is achieved by partitioning the avenue
into N regions, and by assigning each region to a computing entity or “node”, for
example a smart device or a server. Each node has detailed information about the
behavior of the users included in the region and receives summarized information
about the users located in a number of neighbor regions. For example, informa-
tion about the number and type of mobile devices that will probably enter the
local region. We define the visibility radius RV as the number of regions, on
each of the two sides, from which a computing node receives information. The
computation is performed at every given interval of time, or time step, whose
duration depends on the applications requirements. An essential requirement is
that the duration of the time step is longer than the time needed by the nodes
to perform the computation and transmit related data among them, so that the
nodes are able to keep the pace and complete the computation in time, i.e.,
before the beginning of the next step.

At the end of a time step, each computing node sends information about
the local region to the computing nodes up to RV regions away. Only when a
node receives the information from all the neighbor nodes it can start predicting
the internet traffic for the next time step. In the section devoted to perfor-
mance results, we will see that the number of nodes and the visibility radius are
essential parameters to establish the proper tradeoff between computation time,
speedup and accuracy of the result. The scenario of interest, outlined in Fig. 1,
is completed with the following assumptions:

– the length of the avenue under consideration is L, which is set to 10 km in
this work. The width of the avenue is a constant, therefore all the quantities
that are assumed to be proportional to the area covered by a section of the
avenue, are also proportional to the length of the section;

– to simplify the scalability analysis, all the N computing nodes are assumed
to have the same computation power;

– the time that would be needed by a single node to perform the overall com-
putation for the entire avenue is Tserial, assumed to be equal to 10 min in the
case that L= 10 km;

– the computational load is uniformly distributed over the avenue, and the
average time needed to perform the computation on a single node, Tnode, is
proportional to the length of the corresponding avenue portion, i.e., Tnode =
Tserial/N . The time is assumed to be distributed with negative exponential
distribution. The variability can depend on many factors, among which the
variable workload on the nodes and the variable number of involved devices.

228 C. Mastroianni et al.

Fig. 1. Smart avenue scenario.

– the time needed to communicate (transmit and receive) data with the neigh-
borhood nodes is negligible with respect to the computation time. This
assumption is coherent in the case that only summary and aggregated data
are communicated, such as the number and type of mobile devices, the esti-
mation about the global data that will be transmitted by such devices, etc.

– the mobile devices are assumed to belong to two classes: those held by pedes-
trians and those held by vehicles. They move along the two directions with
equal probabilities, and their average speed is 50 km/h for vehicles and 5 km/h
for pedestrians. Clearly, this is a very simple mobility model. It is possible to
use much more complex models, such as those defined in [6,14], but we use a
simple model for two reasons: (i) it is sufficient to understand the basic behav-
ior of the system; (ii) the analysis is not influenced and biased by additional
assumptions that are often related to a specific domain or city.

In this scenario, there is a clear tradeoff to achieve when setting the number
of nodes N . Indeed, parallelizing the computation on a larger number of nodes
reduces the time Tnode and therefore the time to complete the parallel computa-
tion related to a single step. However, a larger number of nodes corresponds to
smaller regions: it means that the input data used by the computation is related
to a smaller portion of the avenue (if the value of RV is kept constant) and a
smaller fraction of involved mobile devices, which can lead to a reduced accuracy
of the results.

The second important tradeoff concerns the value of RV . On the one hand,
a higher value of RV is expected to slow down the computation, due to the
stronger impact of the involved synchronization barrier. Indeed, before executing
the computation at step s, a node n must wait until 2 × RV neighbor nodes
terminate their computation at step s−1 and send to n the related computation
results. The time needed for the synchronization is expected to increase with the
number of involved nodes, 2 × RV . On the other hand, a larger value of RV (if
the value of N is kept constant) allows the accuracy of the computation to be
increased, because the computation can be based on information about a larger
portion of the avenue.

3 Petri Net Model for the Computation

The parallel computation process for the described smart avenue application,
and the synchronization barrier among the nodes, can be represented by the

Balancing Speedup and Accuracy in Smart City Parallel Applications 229

Fig. 2. Petri net representing the execution of tasks at six parallel nodes, with RV

equal to 1. In (a) all the nodes are ready to execute. After execution at nodes N3,
N4 and N5, the state of the Petri net is depicted in (b): now N1, N2 N4 and N6 are
ready to execute, while N3 and N5 must wait for the execution at nodes N2 and N6,
respectively.

Petri net model depicted in Fig. 2, in a sample scenario with six parallel nodes
and the visibility radius RV set to 1. Six Petri net transitions, labeled as N1–N6,
are associated with the parallel nodes, and the firing of a transition corresponds
to the execution of the computation at the corresponding node. Every transition
is connected by inbound arcs to three input places, and in accordance to Petri net
rules [13], the transition is enabled, and the computation can start, if all the input
places hold at least one token. When a transition fires (i.e., the computation is
performed at the current step), one token is consumed at each input place, and
one token is produced on each of the output places, i.e., the places connected
to the three outbound arcs leaving the transition. One of these output place
coincides with the input place of the same transition. The other two output
places are input places of the two neighbor nodes: the production of a token on
these two places models the delivery of the computation results to the neighbor
nodes and the permission to such nodes to execute their computation at the next
time step1.

Figure 2(a) represents the state of the system in a situation where all the
Petri net transitions are enabled, i.e., all the nodes are ready to execute the
computation at the current step. The ability to perform the computation is
represented by the presence of a red border on the square representing the tran-
sition. Figure 2(b) represents the situation after the execution of tasks at nodes
N3, N4 and N5. N4 is now enabled to execute the next task, because it has
performed the previous task and has received permissions by its neighbor nodes
N3 and N5. In the Petri net model, this corresponds to the presence of three new

1 The two transitions that correspond to the two extreme regions of the avenue are
modeled differently, as depicted in the figure, and only two outbound arcs depart
from those transitions.

230 C. Mastroianni et al.

tokens at the input places of N4, which means that the synchronization barrier
which precedes the next computation at node N4 has been successfully passed.
It is also noticed that nodes N3 and N5 are not yet enabled because they are
still waiting for the completion of tasks at nodes N2 and N6, respectively.

Analogously, the case of RV equal to 2 is modeled by putting five input places
at every transition and five outbound arcs that connect every transition to itself
and to four neighbor nodes, two on the left and two on the right. The case of
all–to–all synchronization among the nodes, where each node needs to receive
the results from all the other nodes, is modeled with each transition preceded
by N input places, and N outbound arcs connected to all the N nodes.

The Petri net model highlights the advantage of relaxing the synchronization
requirements with respect to the classical parallel computation model, in which
the synchronization involves all the nodes. When a node needs to synchronize
with a limited number of neighbor nodes, different nodes are allowed to execute
different time steps. For example, with RV set to 1, each node can be one step
ahead than its direct neighbors, and the gap between the time steps executed by
the two nodes located at the two ends of the avenue can be as large as N . This is
a notable advantage in the case that the computation time varies from node to
node and from step to step, as in the smart avenue case. The advantage resides
in the fact that a longer execution time at one node does not slow down the
execution at all the other nodes, but only at the neighbor nodes. As an example,
if the nodes located at one end of the avenue are slower for a period of time
(e.g., due to the presence of a larger number of vehicles), the nodes located at
the other end can proceed and execute some additional time steps. In the future,
the nodes that are some steps behind can become faster and reach the other
nodes, and so on. This is true if the assumption holds that the computation load
is evenly distributed on the territory. If this does not hold, it is possible to divide
the territory in a non-uniform fashion, for example, by assigning more nodes to
the regions with the highest computational load. Overall, this allows the global
computation to proceed faster, as will be shown in the next section, devoted to
performance results. The results have been obtained in two ways: by using the
well-known Petri net simulator Yasper [8], specifically its “automatic simulation”
tool, and through an ad hoc simulator written in Matlab, which reproduces the
same computation modeled by the Petri nets. Results are statistically identical,
with the correlation factor always larger than 0.99.

4 Performance Results: Speedup and Accuracy
of Computation

When setting the number of nodes N and the visibility radius RV , a tradeoff
emerges between minimizing the computation time and maximizing the accuracy
of the computation. The next two subsections focus on these two aspects.

Balancing Speedup and Accuracy in Smart City Parallel Applications 231

4.1 Computation Time and Speedup

To analyze the efficiency of the computation, we performed a scalability evalua-
tion, by considering an avenue with length L of 10 km, partitioned into a number
of regions N . As described in Sect. 2, the average computation time at a single
node, Tnode, is proportional to the length of the region, l=L/N , and is equal to
Tserial/N , where Tserial is assumed to be equal to 10 min. We also tested three
different values of the visibility radius RV , from 1 to 3, and considered the case
of all–to–all synchronization as a reference, i.e., the visibility radius extends over
the entire avenue. We simulated the computation for a time equal to 30 days
and obtained the average time needed to execute a single step on all the nodes,
Tstep, by dividing the 30-days time interval by the number of completed steps2.

Figure 3 reports the values of Tstep, the average time needed to perform a
step on all the nodes. When N increases, the value of Tstep decreases because the

 0

 2

 4

 6

 8

 10

 5 10 15 20 25 30 35 40

Ts
te

p
(m

in
ut

es
)

No. of nodes

RV=1
RV=2
RV=3

All

Fig. 3. Values of Tstep in the case of an avenue with fixed length and partitioned among
a variable number of regions.

 0

 5

 10

 15

 20

 5 10 15 20 25 30 35 40

Sp
ee

du
p

No. of nodes

RV=1
RV=2
RV=3

All

Fig. 4. Values of the speedup in the case of an avenue with fixed length and partitioned
among a variable number of regions.

2 As explained in Sect. 3, there can be a gap between the steps executed at different
nodes. Therefore, we consider the node that has executed the minimum number of
steps.

232 C. Mastroianni et al.

computation is partitioned among a larger number of nodes. Figure 4, reporting
the speedup – i.e., the ratio between Tserial and Tstep – is more useful to analyze
the effect of the visibility radius RV on the scalability. The effect is remarkable:
as an example, when N is set to 40, with all–to–all synchronization the speedup
is equal to about 9.3, while it increases to 13.2, to 14.5 and to 17.2 with values
of RV equal, respectively, to 3, 2 and 1. The corresponding speedup increments,
in percentage, are 42%, 56% and 85%.

Ongoing experiments are showing that the speedup value greatly depends on
the type of random distribution of the computation time, specifically on the coef-
ficient of variation, i.e., the standard deviation/average ratio. With larger values
of this ratio, the time needed for the synchronization increases, and the speedup
decreases. Interestingly, however, we are also noticing that the improvement
obtained when restricting the synchronization to a few neighbor nodes (with
respect to all–to–all synchronization) increases with the value of the coefficient
of variation.

4.2 Accuracy of the Computation

To predict the internet traffic that will be originated in a region during a time
interval, it is necessary to consider not only the mobile devices already located
in the region, but also those that will arrive or transit during the time interval
of interest. In a time interval T , a mobile device traveling with average speed v
can travel a distance s= v×T , and the number of regions of length l=L/N that
can be traversed during T is �s/l� = � v×T×N

L �. Therefore, mobile devices can
arrive, considering the two possible directions, from a number of regions equal to
NR = min(N, 2×� v×T×N

L �). On the other hand, the number of “visible” regions,
i.e., the number of the neighbor regions that transmit data to the local region,
is equal to 2 × RV . We then define the coverage ratio C, or simply coverage, as
the ratio between the number of visible regions and the number of regions from
which mobile devices can arrive:

C =
2 × RV

NR
(1)

This ratio is used as a measure of the accuracy of the prediction. Indeed, the
coverage ratio equal to 100% means that the computation is able to consider the
data related to all the mobile devices that can arrive or pass through the local
region. When the coverage is lower than 100%, however, the computation does
not receive information from some neighbor regions from which mobile devices
can actually arrive, and the computation can be less accurate.

Of course, the coverage is always equal to 100% in the case of all–to–all
synchronization, since each node receives information from all the other regions.
In all the other cases, the value of C depends on the speed of mobile devices, the
number of nodes N and the visibility radius RV . Figures 5 and 6 show the values
of the coverage ratio computed for the devices held, respectively, by pedestrians
traveling at 5 km/h and by vehicles traveling at 50 km/h, in the case that the
length L of the avenue is 10 km and the time interval T is set to 10 min. Of course,

Balancing Speedup and Accuracy in Smart City Parallel Applications 233

 0

 20

 40

 60

 80

 100

 10 20 30 40 50

C
ov

er
ag

e
(%

)

No. of nodes

RV=1
RV=2
RV=3
RV=4
RV=5

Fig. 5. Coverage ratio for mobile devices held by pedestrians.

with the same values of N and RV , the coverage is lower for vehicles than for
pedestrians, as vehicles can reach farther regions in the same amount of time,
and the value of NR, in the denominator of expression (1), is higher. In addition,
it clearly appears that the coverage decreases with larger values of N and with
smaller values of RV . Figures 5 and 6 can be used by administrators to set the
value of parameters needed to achieve a desired goal with given constraints. For
example, if N is set to 10, the two figures shows that the value of RV must be
set to a value equal or larger than 3 if the desired coverage is at least 50% for
both vehicles and pedestrians.

 0

 20

 40

 60

 80

 100

 10 20 30 40 50

C
ov

er
ag

e
(%

)

No. of nodes

RV=1
RV=2
RV=3
RV=4
RV=5

Fig. 6. Coverage ratio for mobile devices held by vehicles.

As speedup and coverage are heterogenous objectives, they cannot be eas-
ily combined in a single optimization function. However, the analysis of Pareto
frontiers can help to tune the values of the parameters, in our case N and
RV . Figure 7 reports the values of speedup and coverage, measured for vehi-
cles, obtained with different values of the couple (N,RV), and shows the Pareto
frontier. Values of N and RV that are not positioned on the frontier are not
acceptable, because other choices of the parameter values allow both the objec-
tives to be improved. Values that are positioned on the frontier, however, can

234 C. Mastroianni et al.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 10 20 30 40 50 60 70

Sp
ee

du
p

Coverage (%)

Fig. 7. Values of coverage and speedup for different values of the couple (N, RV). The
Pareto frontier is shown.

be considered by the administrator and can be chosen depending on the relative
importance of the two objectives.

5 Conclusion and Future Work

This paper addresses the issue of efficiently managing the parallel and concurrent
execution of smart city applications, where the computation is driven by space-
aware information. We focused on the sample mono-dimensional scenario of a
city avenue where the objective is to predict the internet traffic generated by
vehicles and pedestrians. The strategy is to distribute the computational load
among a number of nodes, where each node is assigned to a portion of the avenue
and exchanges information with the nodes assigned to neighbor portions. We
showed that is possible to tune some system parameters – in particular, the
number of parallel nodes and the number of neighbor regions among which the
information is transmitted – to achieve the desired tradeoff between the accuracy
of computation and its scalability and speedup. Specifically, when information
is exchanged among a larger number of nodes, the overall computation time
increases but the accuracy of computation is enhanced, and vice versa. Future
work aims to investigate other use case scenarios, in which the computational
load is not evenly distributed over the territory, or changes dynamically.

References

1. Altomare, A., Cesario, E., Talia, D.: Energy-aware migration of virtual machines
driven by predictive data mining models. In: Proceedings of the 23rd Euromicro
International Conference on Parallel, Distributed and Network-Based Computing
(PDP 2015), Turku, Finland, pp. 549–553 (2015)

2. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the
internet of things. In: Proceedings of the 1st ACM MCC Workshop on Mobile
Cloud Computing, pp. 13–16 (2012)

Balancing Speedup and Accuracy in Smart City Parallel Applications 235

3. Botta, A., de Donato, W., Persico, V., Pescapé, A.: Integration of cloud computing
and internet of things: a survey. Future Gen. Comput. Syst. 56, 684–700 (2016)

4. Cicirelli, F., Forestiero, A., Giordano, A., Mastroianni, C., Spezzano, G.: Parallel
execution of space-aware applications in a cloud environment. In: 24th Euromicro
International Conference on Parallel, Distributed and Network-Based Computing
(PDP 2016), Heraklion, Crete, Greece, February 2016

5. Ekanayake, J., Fox, G.: High performance parallel computing with clouds and cloud
technologies. In: Avresky, D.R., Diaz, M., Bode, A., Ciciani, B., Dekel, E. (eds.)
CloudComp 2009. LNICSSTE, vol. 34, pp. 20–38. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-12636-9 2

6. Göndör, S., Uzun, A., Rohrmann, T., Tan, J., Henniges, R.: Predicting user mobil-
ity in mobile radio networks to proactively anticipate traffic hotspots. In: Pro-
ceedings of the 2013 International Conference on Mobile Wireless MiddleWARE,
Operating Systems, and Applications (Mobilware 2013), Bologna, Italy, pp. 120–
129 (2013)

7. Hank, P., Müller, S., Vermesan, O., Van Den Keybus, J.: Automotive ethernet:
in-vehicle networking and smart mobility. In: Proceedings of the Conference on
Design, Automation and Test in Europe (DATE 2013), San Jose, CA, USA, pp.
1735–1739 (2013)

8. van Hee, K., Oanea, O., Post, R., Somers, L., van der Werf, J.M.: Yasper: a tool
for workflow modeling and analysis. In: Proceedings of the Sixth International
Conference on Application of Concurrency to System Design (ACSD 2006), pp.
279–282. IEEE Computer Society, Washington, DC (2006)

9. Krishnan, Y.N., Bhagwat, C.N., Utpat, A.P.: Fog computing- network based cloud
computing. In: 2nd IEEE International Conference on Electronics and Communi-
cation Systems (ICECS), pp. 250–251 (2015)

10. Lee, I., Lee, K.: The internet of things (IoT): applications, investments, and chal-
lenges for enterprises. Bus. Horiz. 58(4), 431–440 (2015)

11. Li, R., Zhao, Z., Zhou, X., Palicot, J., Zhang, H.: The prediction analysis of cellular
radio access network traffic: from entropy theory to networking practice. IEEE
Commun. Mag. 52(6), 234–240 (2014)

12. Mitton, N., Papavassiliou, S., Puliafito, A., Trivedi, K.S.: Combining cloud and sen-
sors in a smart city environment. EURASIP J. Wireless Commun. Netw. 2012(1),
1–10 (2012)

13. Peterson, J.L.: Petri nets. ACM Comput. Surv. 9(3), 223–252 (1977)
14. Singh, R., Srinivasan, M., Murthy, C.: A learning based mobile user traffic charac-

terization for efficient resource management in cellular networks. In: 12th Annual
IEEE Consumer Communications and Networking Conference (CCNC), pp. 304–
309, January 2015

http://dx.doi.org/10.1007/978-3-642-12636-9_2

Multi-objective Optimization Framework
for VMI Distribution in Federated Cloud

Repositories

Dragi Kimovski1(B), Nishant Saurabh1, Sandi Gec2, Vlado Stankovski2,
and Radu Prodan1

1 Distributed and Parallel Systems, Institute of Informatics,
University of Innsbruck, Innsbruck, Austria

dragi@dps.uibk.ac.at
2 Faculty of Civil and Geodetic Engineering

and Faculty of Computer and Information Science, University of Ljubljana,

Ljubljana, Slovenia

Abstract. Cloud Federation facilitates the concept of aggregation of
multiple services administered by different providers, thus opening the
possibility for the customers to profit from lower cost and better perfor-
mance, while allowing for the cloud providers to offer more sophisticated
services. Unfortunately, current state-of-the-art does not provide any
substantial means for streamlined adaptation of federated Cloud envi-
ronments. One of the essential barriers that prevents Cloud federation is
the inefficient management of distributed storage repositories for Virtual
Machine Images (VMI). In such environments, the VMIs are currently
stored by Cloud providers in proprietary centralised repositories without
considering application characteristics and their runtime requirements,
causing high deployment and instantiation overheads. In this paper, a
novel multi-objective optimization framework for VMI placement across
distributed repositories in federated Cloud environment has been pro-
posed. Based on the communication performance requirements, VMI use
patterns, and structure of images or input data, the framework provides
efficient means for transparent optimization of the distribution and place-
ment of VMIs across distributed repositories to significantly lower their
provisioning time for complex resource requests and for executing the
user applications.

Keywords: Federated Cloud environment · Distributed storage repos-
itories · Multi-objective optimization

1 Introduction

The rapid growth and development of Cloud computing platforms has brought
high level of operational efficiency, thus provoking the appearance of multitude
public cloud providers. Therefore, the increased availability of wide range of

c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 236–247, 2017.
DOI: 10.1007/978-3-319-58943-5 19

MO Framework for VMI Distribution in Federated Cloud Repositories 237

different providers has prompted the idea of federating Clouds infrastructures
[2]. The core aspect of Cloud federation can be considered the possibility for
aggregation of complementary resources, which can be bundled together to allow
boundless availability. The particular incentive for forming Cloud federations
can be of different nature, such as application driven or community driven. In
this sense, cloud federation can be viewed from the perspective of the Cloud
providers or from the user’s point of view. It may allow for the customers to
profit from lower cost and better performance, and at the same time it can open
the opportunity for the cloud providers to offer more sophisticated services [1].
Besides, this symbiosis can empower the formation of smart communities with
decentralized infrastructures at the edge of the global network.

Unfortunately, current state-of-the-art does not provide any substantial
means for streamlined adaptation of federated Cloud environments [5]. One of
the essential barriers that prevents Cloud federation is the inefficient manage-
ment of distributed storage repositories for Virtual Machine Images (VMI). In
such environments, the VMI are currently stored by Cloud providers in pro-
prietary centralised repositories without considering application characteristics
and their runtime requirements, causing high deployment and instantiation over-
heads. Moreover, users are expected to manually manage the VMI storage, which
is tedious, error-prone and time-consuming process, especially if working with
multiple Cloud providers. Formerly, limited research has been conducted on the
optimization of file distribution in relatively tightly coupled systems. Regret-
tably, those strategies are not suitable for federated Cloud environment.

In this paper, a novel multi-objective optimization framework for VMI place-
ment across distributed repositories in federated Cloud environment has been
proposed. Based on the communication performance requirements, VMI use pat-
terns, and structure of images or location of input data, the framework provides
efficient means for transparent optimization of the distribution and placement
of VMI across distributed repositories to significantly lower their provisioning
time for complex resource requests and for executing the user applications.

The optimization framework can be applied on two distinctive levels within
a federated environments: (i) initial VMI distribution and (ii) offline VMI redis-
tribution. Diverse heuristic tracks have been pursued for the implementation of
the distinctive application levels of the framework, such as NSGA-II and other
population based algorithms. Above all, a consolidated service based application
program interface has been provided for easy integration of the framework within
heterogeneous environments. The proposed framework has been developed by
leveraging the jMetal Multi-objective optimization library and it’s behaviour
has been evaluated in multiple different scenarios [3].

2 Background

In this section a brief overview of all concepts pertaining to this research work will
be presented. Significant attention has been directed towards the basic concepts
of multi-objective optimization and to the NSGA-II algorithm implemented in
the proposed optimization framework.

238 D. Kimovski et al.

2.1 Multi-objective Optimization

Optimization is a process of denoting one or multiple solutions that relate to
the extreme values of multiple specific objective functions within given con-
straints. When the optimization task encompasses a single objective function it
typically results in a single solution, called an optimal solution. Furthermore,
the optimization also considers several conflicting objectives simultaneously. In
such circumstances, the process will result in a set of alternative trade-off solu-
tions, so-called Pareto solutions, or simply non-dominated solutions. The task of
finding the optimal set of non-dominated solutions is known as multi-objective
optimization [4].

A multi-objective optimization problem usually involves a number of objec-
tive functions which have to be minimized or maximized. In the most generic
form, the problem can be formulated as:

min(f1(x), f2(x), ..., fv(x)) (1)

subject to x ∈ X where v ≥ 2 is the number of conflicting objectives functions
fi that we want to minimize, while X is a nonempty feasible region enclosing
the set of variable (decision) vectors x = (x1, x2, ..xn).

The generic formulation of the multi-objective optimization is free from any
constraints. However, this is hardly the case when real life optimization problems
are being solved, which are typically constrained by some bounds. Constraints
divide the search space into two distinctive regions: feasible and infeasible.

The multi-objective optimization consist of three distinctive phases: problem
modeling, optimization and lastly decision making. Each of these phases is of
paramount importance for attaining the optimal set of feasible solutions.

2.2 Elitist Non-dominated Sorting Genetic Algorithm - NSGA-II

The Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II) is an evolu-
tionary multi-objective optimization procedure which attempt to find multiple
Pareto-optimal solutions in a multi-objective optimization problem [6]. NSGA-II
is characterised by the following three features: (i) it uses the principle of elitism,
which dictates that the best solutions in the population should always be pre-
served and never deleted, (ii) it implements an explicit mechanism for diversity
preserving in the population, (iii) and it emphasizes the non-dominated solu-
tions on each iteration. Like with every genetic algorithm, the offspring popula-
tion Op is created by using the parent population Pp and applying the proper
crossover and mutation operators. Afterwards, the two populations are combined
together to form Rt, which has double the initial population size. Only then a
non-dominated sorting algorithm is applied to classify the full Rt population.
Even though, this process induces higher computational costs, it allows for global
non-dominated check to be performed both on parent and children populations.
After the non-domination sort has been performed, the new population is cre-
ated by adding solutions from different non-dominated fronts. The filling starts

MO Framework for VMI Distribution in Federated Cloud Repositories 239

with the best non-dominated front and continues with addition of solutions from
the other fronts. It is important to note that since the overall population of Rt
is 2N , not all fronts will be accommodated in the new population. Lastly, when
the final allowed front is considered, if the number of solutions is bigger than the
available population slots, a strategy called crowding distance sorting is applied
to select solutions from the least crowded region in the Pareto front.

3 Multi-objective Optimization Framework for VMI
Distribution

In this section a detailed description of the multi-objective optimization frame-
work for VMI distribution in Federated Cloud repositories will be presented. The
optimization framework has been applied on two distinctive application levels:
(i) initial VMI distribution and (ii) offline VM image redistribution.

3.1 Framework Description

The framework is encompassed around unified multi-objective optimization mod-
ule, which can be utilized for multiple different optimization purposes. Internally,
the optimization module is branched in two distinctive sub-modules. Each of the
sub-modules has been tailored specifically for a given task. The “Initial Distrib-
ution” sub-module covers the multi-criteria evaluation of the possible repository
sites where the VMIs or associated data sets can be initially stored. Afterwards,
the “Offline VMI Redistribution” sub-module encapsulates the optimization of
the VM images distribution within the federated repository sites. By taking into
account the VMIs usage patterns, the algorithm is capable of providing multiple
trade-off solutions, where each solution represents a possible mapping between
the stored images and available repository sites.

The framework is dependent on the repository’s usage patterns to properly
optimize the distribution of the VM images. To this aim a specific module is
required to store information on the previous transfers within the federation
and to provide the collected data in a proper format. The module has been real-
ized as an ontology-based knowledge base [8]. The framework has been designed
to acquire input data from the knowledge base, and also to return the output
results there. Moreover, a specific monitoring agent is required for proper doc-
umentation of the data transfers. The monitoring tool itself can be realized in
multiple different manners, and it is dependent on the specifics of the Cloud
infrastructure.

Furthermore, the framework provides a service based API, through which
the Decision Maker (DM) can access the list of optimal Pareto solutions in a
guided manner, thus reducing the complexity of the VMI storage management
process. The high level structure of the optimization framework is presented on
Fig. 1.

240 D. Kimovski et al.

Fig. 1. Top level view of the multi-objective optimization framework for VM image
distribution

3.2 Initial VM Image Upload

It is of paramount importance to properly store new VMIs and related data sets
in federated Cloud repositories. In this section we introduce concepts from the
field of Multiple-criteria decision making, to assist image providers and users to
efficiently store new VMIs in accordance with their needs and repository char-
acteristics. The described module, provides a tool which mitigates the process
of initial VMI upload, when the available storage sites possibilities are so large
that can overwhelm the user during the decision process.

The problem of initial VM image upload consist of a finite number of combi-
natorial alternatives, which are explicitly known in the beginning of the solving
process. In this case, each alternative solution represents one storage site in the
federated repository, where the image or data-sets can be stored. Every solution
is evaluated on the basis of two conflicting objectives. For the specific problem,
the following objectives have been defined:

f(P) = Br (2) f(C) = Cst + Ctr (3)

where Br represents the maximal theoretical performance of the interconnections
of the repository, while Cst is the cost for storing data on the given repository
and Ctr is the cost for transfer. Based on the given objectives, all possible storage
sites in the repository, are then evaluated. It is important to be noted, that the
evaluation is performed only on the feasible solutions, i.e. only on the list of
available repository sites. This means that prior to evaluation, all constraints for
storing the VMI are taken into account. Afterwards, by introducing the concept
of domination all evaluated solutions are sorted. The solutions which are non-
dominated by any other solution are presented to the user in the form of Pareto
front. In a sense, those solutions represent multiple optimal storage sites for
storing a single VM image within the federated repository. Next, the user, as a
decision maker, can choose where to initially store it’s own images.

MO Framework for VMI Distribution in Federated Cloud Repositories 241

It also worth mentioning, that due to the static nature, this type of evaluation
should only be performed when new storage sites have been added or removed
from the federated repository. Afterwards, if there are no changes in the structure
of the federated repository, the evaluation data can be used for selecting the
appropriate storage site for every VM image that might be uploaded in future.

3.3 Offline VM Image Redistribution

Unlike the initial image upload, the problem of offline VMI redistribution consist
of a finite, but very large, number of combinatorial alternatives, which are not
known in the beginning of the solving process. The optimization process is con-
ducted by utilizing two conflicting objectives: cost for storing and transferring of
the data, which we simply call Cost objective and Performance objective. This
process is performed by analyzing the repositories usage patterns, and results
in optimized distribution of the VMIs and the associated data-sets across the
federated environment. In what follows the exact sequence of steps of the offline
VMI redistribution sub-module is presented.

Objective Functions Modeling. The cost model is described around the
notion of the financial expenses which are needed to store a unit of data in a given
repository site Cst and the economical burden for transferring the data from the
initial to the optimal site Ctrnew. The exact values of the financial expenses for
data storage and transfers should be provisioned by all Cloud providers within
the federation. For each VM image the cost objective can be calculated by using
the formula below:

f(C) = Cst + Ctrnew (4)

The performance model includes much more complex reasoning behind it. It
is based on the VM image usage patterns and it requires proper monitoring tool
for efficient execution. The raw theoretical throughput of the interconnecting
structure within a Cloud federation does not properly describe the factual com-
munication performance, as it is difficult to predict the actual route the packets
may take to reach the destination and the load on the intermediate communica-
tion channels. Opportunely, it is possible to leverage the data from the frame-
work’s monitoring module to perform a coarse but sufficient estimation on the
actual throughput between any pair of end points in the federation. In this way,
if there is a sufficient information on the previous transfers among the repository
sites and the Cloud computing instances, a direct “virtual” links between the
above mentioned entities can be abstracted over the physical network and their
bandwidth can be estimated.

Furthermore, it is possible to model an undirected weighted graph, where
the vertices correspond to either a repository site or a computational Cloud
instance and the edges of the graph are represented by the “virtual” links. The
weighted graph actually enclosed a union of multiple neighboring subgraphs,
where each storage site vertex, as direct neighbor, is linked to all known compu-
tational cloud vertices. The weights of the edges in the graph are determined by

242 D. Kimovski et al.

leveraging the estimated average bandwidth Brci on the corresponding “virtual”
links. The weights are calculated dynamically, based the VMI distribution that
is being considered. To properly model the weight of the edges, we introduce
weight function, which considers the total number of downloads of the VMI to
all neighbours Gtv and the number of downloads to particular Cloud neighbor
Gi. The ratio of those two values is then multiplied with the estimated band-
width of the particular “virtual” link to provide the final value of the edge’s
weight. The structure of the neighbouring sub-graph has been represented on
Fig. 2.

Fig. 2. An example of a neighbouring sub-graph in a structure with 3 repository sites
and 4 different cloud providers

Subsequently, for modeling of the performance objective, the sum of the
weights of the edges in the neighbouring subgraph is exploited, thus the perfor-
mance can be described as:

f(P) =
n∑

i=1

Brci(
Gi

Gtv
) (5)

Search Algorithm and Decision Making. The core of the offline VMI redis-
tribution sub-module is constructed over the NSGA-II multi-objective optimiza-
tion algorithm. As with any population based genetic heuristic the basic entity
is the individual. Within the given problem description the individual has been
represented as vector with a size equal to the number of stored VMIs. The value
kept in every element of the vector corresponds to a single storage repository

MO Framework for VMI Distribution in Federated Cloud Repositories 243

where a particular VMI can be stored. For accomplishing the above statement,
within the proposed framework, each VMI is assigned with a unique ID value,
which correspond to the index of the vector element. Respectively, all storage
sites in the federation are also assigned with unique IDs that are parallel to the
appropriate values saved in the vector elements. In such way, each individual
corresponds to a solution vector that represents unique global mapping of all
VMIs to storage sites in the federated repository.

Afterwards, multiple solutions vectors are created and then randomly pop-
ulated with values in the range from one to the number of available storage
sites, thus creating the initial population. Every single individual represents one
possible distribution solution that has to be evaluated. Then, the evaluation of
each individual is performed by reading the values stored in the vector fields.
Based on those values, starting from every element in the vector, a neighbor-
ing subgraph is constructed and the appropriate objective functions are applied.
Those values are then grouped together and the median value is selected as the
overall fitness of the given individual. An example of a single individual that
correspond to a solution vector for mapping 9 VMIs to 3 storage repository sites
in a given federation is presented on Fig. 3. When all individuals in the initial
population have been successfully evaluated, the proper mutation and crossover
operators are applied to create the children population. Then, the parents and
children populations are grouped together and sorted according to dominance.
Afterwards, only the best solution of the newly formed group are selected for the
next iteration. This process is then repeated for a predefined number of itera-
tions. The solutions which have been acquired after the last iteration are sorted
based on the dominance. The non-dominated solutions are then presented to the
administrative entity of the federation, which acts as a DM, and should select
the most appropriate solution based on the pre-defined decision making policy.

Fig. 3. An example individual represented as a solution vector

Decision making on the alternatives discovered by the optimization algorithm
requires an explicit model of the decision maker preferences. For the case of offline
VMI redistribution the DM model will depend on the implementation of the
federated infrastructure. As the offline image redistribution envelops federation
wide distribution of the VMIs we envision that the DM will be an administration
entity, which will implement the federation storage policy based on the decision
making model.

244 D. Kimovski et al.

4 Experimental Evaluation

In this section, the proposed framework has been experimentally evaluated based
on a synthetic set of benchmark data. As our research deals with the implementa-
tion of a combinatorial multi-objective problem in federated Cloud environment,
we present an experimental results that demonstrate the ability of our approach
to provide an adequate VMI distribution across federated repositories.

With respect to the different application levels of the multi-objective opti-
mization framework, distinctive set of experiments were conducted. The initial
VMI upload module has been evaluated on the basis of the degree of scalabil-
ity, while the behaviour of the redistribution module has been examined from
multiple aspects, such as accuracy, scalability and computational performance.

To begin with, the scalability and computational performance of the initial
VMI upload module have been evaluated by varying the number of repository
sites in the federation from 10 up to 10000 sites. Figure 4 shows the correlation
between the average execution time and the number of storage sites in the fed-
eration. It is evident that the module can be lightly scaled up to large sizes. For
relatively small federations the module can be invoked at each VMI upload, as
it requires only few milliseconds to be executed.

On the other hand, the VMI redistribution module encloses diverse opera-
tions that can affect its behavior to a various degree. Due to the nature of the
algorithm it is not adequate to evaluate it’s computational performance based
on the number of repositories in the federation. Increasing the number of stor-
age sites, influences on the number of possibilities where to store a single VMI
image, which translates into reduced quality of the proposed solutions, but rel-
atively constant execution time. For example, on Fig. 5 a scenario in which the
vector size (number of fragments) and number of evaluations have been kept
constant, while the number of available repositories has been increased from 10
(blue) to 100 (red), is presented. The Pareto fronts from both executions have
been plotted together to show the difference in quality of the final solutions.
The experimental scenario clearly shows that if we increase the number of stor-
age sites, while maintaining constant number of evaluations, the quality of the
solutions will decrease.

Furthermore, on Figs. 6 and 7, respectively, the influence that the number of
evaluations and the size of the solution vector have on the computational per-
formance is presented. In both cases, the number of associated cloud computing
instances and storage sites were maintained constant; only the corresponding
parameters were increased gradually. The presented results support the assump-
tion of satisfactory scalability, both in a sense of increased number of stored
VMIs and number of iterations needed to provide mapping solutions with good
quality.

Lastly, Tables 1 and 2 are providing a comprehensive review of the quality
values for the trade-off mapping solutions calculated by the redistribution mod-
ule. Moreover, a comparison has been presented with a set of mapping solutions
determined by using “round robin” mapping model for storing VMIs in the fed-
eration. The statistical significance of the results has been analyzed by applying

MO Framework for VMI Distribution in Federated Cloud Repositories 245

Fig. 4. Execution time in comparison
with the number of storage sites in case
of initial distribution

Fig. 5. Comparison of two Pareto
fronts during redistribution with vary-
ing storage sites (Color figure online)

Fig. 6. Execution time in comparison
with the number of evaluations during
offline redistribution

Fig. 7. Execution time in comparison
with the size of solution vector during
offline redistribution

ANOVA test, which has shown significant difference between the proposed algo-
rithm and the “round robin” mapping strategy, both in respect with the cost
and performance objective. The cost objective has been calculated based on
the publicly provided price list for storing data in the Cloud by Amazon. The
performance objective has been modelled based on the reported communication
performance measures for 10 Gbit and 1 Gbit Ethernet [7]. For readability rea-
sons, the bandwidth values, were converted to delivery time needed for 1 Mbit
of data to be transferred from the source to the destination.

With respect to the parameters of the evolutionary algorithms, we have used
a population of 1000 individuals, that iterates from 1 to 6 generations across
populations. Every single individual (solution vector) is comprised of 1000 chro-
mosomes, thus inducing mapping solutions for 1000 VMIs. Taking into account

246 D. Kimovski et al.

Table 1. Comparison of the offline VMI redistribution module with “round robin”
strategy for the performance objective (represented as required time to transfer 1Mbit
of data).

Evaluations Average performance STD (+/−) Difference (%) p-value

10000 0.00005356 0.00000272 18.48472759 >0.005

20000 0.00004732 0.00000287 34.10821694 >0.005

30000 0.00004109 0.00000316 54.42734792 >0.005

40000 0.00003793 0.00000263 67.29142067 >0.005

50000 0.00003526 0.00000314 79.98110620 >0.005

60000 0.00003281 0.00000259 93.39303541 >0.005

the results obtained in preliminary experiments, we have used simulated single
point crossover with a crossover probability of 0.9, a mutation probability equal
to 1/n (n is the number of decision variables). The results indicate very high
efficiency of the redistribution module, as it can provide better quality mapping
solutions, especially in regards with the performance objective.

Table 2. Comparison of the offline VMI redistribution module with “round robin”
strategy for the cost objective.

Evaluations Average cost STD (+/−) Difference (%) p-value

10000 0.00003273 0.00000005 0.49133799 >0.005

20000 0.00003262 0.00000005 0.83933772 >0.005

30000 0.00003251 0.00000005 1.16811082 >0.005

40000 0.00003247 0.00000006 1.32053992 >0.005

50000 0.00003240 0.00000006 1.52613233 >0.005

60000 0.00003237 0.00000005 1.62638639 >0.005

5 Conclusion and Future Work

In this paper a novel approach for multi-objective optimization of the distribu-
tion of VMIs, as an essential storage resources, across distributed repositories in
federated Cloud environment has been proposed. The research work has resulted
in development of a optimization framework that exploits multiple different fac-
tors, such as communication performance requirements, VMI use patterns, and
structure of images, in order to optimize the distribution and placement of VMI
across distributed repositories and to significantly lower their provisioning time

MO Framework for VMI Distribution in Federated Cloud Repositories 247

for complex resource requests and for executing the user applications. The opti-
mization framework has been evaluated based on synthetic simulation bench-
mark. As our research deals with the implementation of a combinatorial multi-
objective problem, where the main incentive is to find the proper mapping of
VMIs across storage sites, we present an experimental results that demonstrate
the ability of our approach to provide an adequate VMI distribution across fed-
erated repositories.

There are multiple opportunities for future work in this research field. Novel
heuristic algorithms can be implemented to further improve the performance
and quality of the redistribution process. Furthermore, lightweight optimization
algorithms can be utilized for performing time sensitive fine-grained optimization
of the distribution of the VMIs and the associated data-sets during application
execution.

Acknowledgments. This work is being accomplished as a part of project ENTICE:
“dEcentralised repositories for traNsparent and efficienT vIrtual maChine opErations”,
funded by the European Union’s Horizon 2020 research and innovation programme
under grant agreement No. 644179.

References

1. Goiri, I., Guitart, J., Torres, J.: Characterizing cloud federation for enhancing
providers’ profit. In: 2010 IEEE 3rd International Conference on Cloud Comput-
ing (CLOUD), pp. 123–130. IEEE, July 2010

2. Villegas, D., Bobroff, N., Rodero, I., Delgado, J., Liu, Y., Devarakonda, A.,
Parashar, M.: Cloud federation in a layered service model. J. Comput. Syst. Sci.
78(5), 1330–1344 (2012)

3. Durillo, J.J., Nebro, A.J.: jMetal: a Java framework for multi-objective optimization.
Adv. Eng. Softw. 42(10), 760–771 (2011)

4. Branke, J., et al. (eds.): Multiobjective Optimization: Interactive and Evolutionary
Approaches, vol. 5252. Springer, Heidelberg (2008)

5. Kurze, T., Klems, M., Bermbach, D., Lenk, A., Tai, S., Kunze, M.: Cloud federation.
Cloud Comput. 2011, 32–38 (2011)

6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.A.M.T.: A fast and elitist multi-
objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197
(2002)

7. Feng, W.C., Balaji, P., Baron, C., Bhuyan, L.N., Panda, D.K.: Performance charac-
terization of a 10-Gigabit Ethernet TOE. In: 2005 of Proceedings 13th Symposium
on High Performance Interconnects, pp. 58–63. IEEE, August 2005

8. Abburu, S.: A survey on ontology reasoners and comparison. Int. J. Comput. Appl.
57(17) (2012)

Adgt.js: A Web Application Framework
for Peer-to-Peer Location-Based Services

Giacomo Brambilla(B), Michele Amoretti, and Francesco Zanichelli

Dipartimento di Ingegneria dell’Informazione,
Università degli Studi di Parma, Parco Area delle Scienze 181a, 43124 Parma, Italy

giacomo.brambilla@studenti.unipr.it,

{michele.amoretti,francesco.zanichelli}@unipr.it
http://dsg.ce.unipr.it

Abstract. Mobile applications are increasingly taking advantage of
user geographic location to provide sophisticated Location-Based Ser-
vices (LBSs). Unfortunately, most LBSs rely upon centralized infrastruc-
tures, with serious problems as regards user privacy. For this reason, the
research community has proposed a number of decentralized protocols
and studied their effectiveness and efficiency by means of simulations.

In this paper, we describe Adgt.js, a truly cross-platform, WebRTC-
based implementation of the ADGT georeferenced peer-to-peer overlay
scheme. Moreover, we present a concrete LBS example, realized with
Adgt.js, to illustrate how simple and powerful such a framework is.

Keywords: WebRTC · Peer-to-peer · Location-based service

1 Introduction

In recent years, there has been a growing attention to Location-Based Services
(LBSs), i.e., services that take advantage of user geographic location, especially
owing to the expansion of the smartphone and tablet markets. LBSs allow, for
example, to locate people on a map, discover nearby social events or receive
geolocalized alerts (such as warnings of traffic jams along the user route).

If, on the one hand, large IT companies such as Google and Facebook are
pushing more and more their LBSs without worrying too much about user pri-
vacy, on the other hand, researchers are investigating to provide such services
while preserving user privacy. In particular, various peer-to-peer (P2P) overlay
schemes that enable completely decentralized LBSs have been presented [1,2].

These P2P protocols, in addition to safeguard privacy of users inasmuch the
data are not in the hands of a single possibly untrustworthy company, support the
realization of bottom-up LBSs, not requiring large and expensive infrastructures.
Despite the many benefits of a P2P approach, often these solutions have been
studied only in simulative environment and truly usable implementations have
never been released.

c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 248–259, 2017.
DOI: 10.1007/978-3-319-58943-5 20

Adgt.js: A Web Application Framework Peer-to-Peer LBSs 249

In this paper we present a working implementation of the ADGT overlay
scheme [2]. The objective behind the development is the software interoper-
ability between all possible and heterogeneous devices, to make sure that the
adoption is high. For this reason, we turned to real cross-platform technologies,
such as WebRTC, WebSocket and JavaScript to build a framework that sup-
ports the development of P2P-based LBSs. To the best of our knowledge, our
implementation is the first of its kind in the area of P2P protocols for LBSs.

The paper is organized as follows. Section 2 provides an overview of the
ADGT overlay scheme. Web technologies adopted for the cross-platform imple-
mentation of ADGT are described in Sect. 3. In Sect. 4 we describe how the
ADGT has been implemented and in Sect. 5 it is explained how to realize LBSs
using the developed framework, with reference to a concrete example. Related
work are presented in Sect. 6. Finally, in Sect. 7, we present our conclusions and
future work.

2 Adaptive Distributed Geographic Table (ADGT)

ADGT is a location-aware P2P overlay scheme designed with the objective to
fully take into account peer mobility [2]. What mainly characterizes ADGT is
its particular data structure for the management of neighborhood, based on the
idea that a peer should be directly connected to those peers from which it is
most likely to obtain contents of its interest, using an adaptive topology that
reacts to peers’ movements.

In the ADGT overlay scheme, the distance between two peers is evaluated as
the great-circle distance, which is the shortest distance between two points on
the surface of a sphere, measured along the surface of the sphere itself.

The neighborhood of a geographic location is defined as the set of peers that
are geographically close to that specific location. In other words, those peers
which are located inside a given surrounding region.

In the ADGT, each peer stores a set of lists of neighbors, called GeoBucket,
each list being sorted according to the distance from the center that the
GeoBuckets have in common. Such lists are regularly updated in order to have
the latest peers’ positions. As shown in Fig. 1, the shape of GeoBuckets is ellip-
tical, where both the semi axes of the ellipse depend on the velocity of the peer,
i.e., depend both on the direction and speed of the peer.

Fig. 1. ADGT GeoBucket example.

250 G. Brambilla et al.

The idea behind such elliptical GeoBuckets is that the higher is the speed of
the peer, the higher is the eccentricity of the ellipses: when the peer is stationary,
its speed is 0 and the eccentricity of the ellipses is also 0, so the GeoBuckets
are circular. On the other hand, when the peer reaches the maximum speed,
the eccentricity of the ellipses is high, so the GeoBuckets have an elongated
shape. Also, the direction of the semi-major axis coincides with the direction of
movement of the peer.

3 Technologies

As the idea behind our implementation is the complete interoperability among
devices as much as possible different – both from the hardware point of view,
and in terms of installed software – we have turned to those technologies that
constitute the Open Web Platform (OWP).1 The OWP is a collection of open
royalty-free Web technologies, such as HTML5 and JavaScript, developed by
the World Wide Web Consortium (W3C) and other Web standardization bodies
such as the Unicode Consortium, the Internet Engineering Task Force (IETF),
and ECMA International, with the objective to obtain a platform that works on
all browsers, operating systems and devices, without requiring any approvals or
waiving license fees.

Although the standards of the Open Web Platform are at different maturity
levels, and the development of most standards is still in progress, the web browser
has become the main access interface to the Internet and has actually become
synonymous with the Internet itself for a large portion of Internet users. While
initially web browsers were designed only to display information provided by web
servers, thanks to this standardization process, they are becoming the real cross-
platform technology, being able to truly realize the “write once, run everywhere”
unfulfilled promise of Java related technologies.

Among the many technologies that are encompassed under the umbrella of
Open Web Platform, one of the most interesting definitions the W3C has worked
on is the Web Real-Time Communication (WebRTC2), a free and open API
that supports browser-to-browser applications for voice calling, video chat, and
P2P data sharing without the need of either internal or external plugins. Its
aim is to enable rich, high quality, real-time applications to be developed for
browsers, mobile platforms, and IoT devices, allowing them all to communicate
via a common set of protocols. WebRTC, WebSocket API3, Geolocation API4

and ECMAScript5 are the OWP technologies we have embraced to implement
the ADGT protocols.

1 http://www.w3.org/blog/2014/10/application-foundations-for-the-open-web-
platform.

2 http://www.w3.org/TR/webrtc/.
3 http://www.w3.org/TR/websockets/.
4 http://www.w3.org/TR/geolocation-API/.
5 http://www.ecma-international.org/ecma-262/6.0/index.html.

http://www.w3.org/blog/2014/10/application-foundations-for-the-open-web-platform
http://www.w3.org/blog/2014/10/application-foundations-for-the-open-web-platform
http://www.w3.org/TR/webrtc/
http://www.w3.org/TR/websockets/
http://www.w3.org/TR/geolocation-API/
http://www.ecma-international.org/ecma-262/6.0/index.html

Adgt.js: A Web Application Framework Peer-to-Peer LBSs 251

3.1 WebRTC

The Internet is no stranger to audio and video. Nowadays, speaking to some-
one over a video stream is a simple task for an everyday user, with technologies
such as Apple FaceTime, Google Hangouts and Skype video calling. Together
with these applications, a wide range of techniques and solutions to problems
have been developed and engineered, such as packet loss, recovering from dis-
connections, and reacting to changes in network, to ensure a high quality of the
communication.

The aim of Web Real-Time Communication (WebRTC) is to bring all of
this technology into the browser. Differently from those solutions that require
the installation of plugins which can be difficult to deploy, test and mantain,
and may necessitate licensing fees from developers, WebRTC brings high-quality
audio and video to the open Web [3].

Moreover, WebRTC supports data transfer: since a high-quality data con-
nection is needed between two clients for audio and video, it also makes sense
to use this connection to transfer arbitrary data. Indeed, WebRTC enables data
streaming between browser clients without the need to install plugins or third-
party software, implying a strong integration between the content presented by
the browser and the real-time content. With WebRTC, web browsers become
peers of a real P2P network, being capable to exchange data in an unmediated
fashion.

To acquire and communicate streaming data, WebRTC implements the fol-
lowing APIs:

– MediaStream, which represents synchronized streams of media such as user’s
camera and microphone;

– RTCPeerConnection, which handles stable and efficient communication of
streaming data between peers, with facilities for encryption and bandwidth
management;

– RTCDataChannel, which enables P2P exchange of arbitrary data, with low
latency and high throughput.

The MediaStream interface represents a stream of data of audio and/or video.
A MediaStream may be extended to represent a stream that either comes from
or is sent to a remote node, and not just the local camera. This API will not be
detailed further here because it is not strictly relevant to the presented work.

The RTCPeerConnection interface represents a WebRTC connection between
the local computer and a remote peer. It is used to handle efficient data streaming
between the two peers.

Differently from most Web applications that choose the Transmission Con-
trol Protocol (TCP), WebRTC relies on User Datagram Protocol (UDP) as the
default transport protocol. In fact, if on the one hand TCP guarantees deliv-
ery of data in the exact order and without duplication, on the other hand in
streaming applications most data quickly become obsolete and, if any data were
to be ensured in the reception, there would be a bottleneck in case of data
loss. Since a completely reliable connection is not a requirement for audio, video
and data streaming transmissions, while a very fast connection between the two

252 G. Brambilla et al.

browsers is highly desirable, UDP has been chosen as the default transport pro-
tocol in WebRTC. In particular, WebRTC transports audio and video streams
using the Secure Real-Time Transport (SRTP) protocol, which is real-time, and
provides encryption, message authentication and integrity to transmitted data.
RTCPeerConnection hides all the complexities of WebRTC to web developers.
WebRTC uses codecs and protocols to make real-time communication possible,
even over unreliable networks, adopting techniques for packet loss concealment
and noise reduction and suppression, in a completely transparent manner to
developers.

Another feature that RTCPeerConnection offers to web developers is the
Interactive Connectivity Establishment (ICE), a technique developed by the
Internet Engineering Task Force [4] to overcome the complexities of real-world
networking, where most devices live behind one or more NAT layers, some have
anti-virus software that blocks certain ports and protocols, and many are behind
proxies and corporate firewalls. First, ICE tries to make a connection using the
host address obtained from the operating system and the network card. In case
of failure, ICE uses the Session Traversal Utilities for NAT (STUN) [5] protocol
to discover the public address of the device and then pass that on. If also this
attempt fails and a direct communication between peers over UDP cannot be
established, ICE falls back on Traversal Using Relays around NAT (TURN) [6],
rerouting the traffic via a TURN relay server using TCP.

The RTCDataChannel interface allows us to transfer arbitrary data directly
from one peer to another. RTCDataChannel works with the RTCPeerConnection
API, which enables P2P connectivity with lower latency, and uses Stream Con-
trol Transmission Protocol (SCTP), allowing configurable delivery semantics:
out-of-order delivery and retransmit configuration.

SCTP is a transport-layer protocol, serving in a similar role to the popular
protocols TCP and UDP that provides some of the same service features of both:
it is message-oriented like UDP and ensures reliable, in-sequence transport of
messages with congestion control like TCP.

RTCDataChannel can work in either reliable mode (analogous to TCP) or
unreliable mode (analogous to UDP). The first guarantees the transmission of
messages and also the order in which they are delivered. This takes extra over-
head, thus potentially making this mode slower. The latter does not guarantee
every message will get to the other side nor what order they get there. This
removes the overhead, allowing this mode to work much faster.

Furthermore, in the case of WebRTC, SCTP sits on top of the Datagram
Transport Layer Security (DTLS) protocol, which is derivative of SSL, and pro-
vides communication security for datagram protocols. In particular, using DTLS,
WebRTC guarantees that every peer connection is automatically encrypted and,
in particular (Fig. 2):

– messages are not readable if they are stolen while in transit between peers;
– a third party cannot publish messages within the ADGT overlay network;
– messages can not be altered while in transit;
– the encryption algorithm is fast enough to support the highest possible band-

width between peers.

Adgt.js: A Web Application Framework Peer-to-Peer LBSs 253

Fig. 2. WebRTC and WebSocket protocol stack.

3.2 WebSocket

The Web has been traditionally tied to the request/response paradigm of HTTP.
Nevertheless, with the need to have a more and more dynamic web, new tech-
nologies such as AJAX have emerged. However, all of these technologies are not
well suited for low latency applications, carrying the overhead of HTTP.

The WebSocket specification defines an API establishing an interactive com-
munication session between a web browser and a server. With this API, the
client and the server can make a persistent full-duplex connection between them
and send data to each other at any time. The main advantage is that the client
can send messages to a server and receive event-driven responses without having
to poll the server for a reply.

3.3 Geolocation

The Geolocation API defines a high-level interface to location information asso-
ciated with the device. The API itself is agnostic of the underlying location
information sources: location can be indiscriminately obtained from a Global
Positioning System (GPS), inferred from network signals such as IP address,
RFID, Wi-Fi and Bluetooth MAC addresses, and GSM/CDMA cell IDs, as well
as user input.

The API provides the location information represented by latitude and lon-
gitude coordinates. The API is designed to enable both “one-shot” position
requests and repeated position updates, as well as the ability to explicitly query
the cached positions.

3.4 ECMAScript

ECMAScript is a scripting language specification standardized by ECMA Inter-
national. JavaScript is one of the most known implementation of the language.

The current version of the ECMAScript Language Specification standard is
ECMAScript 2015 (6th Edition) and introduces language support for classes,
constructors, and the extend keyword for inheritance. Moreover, it provides
a way to load and manage module dependencies, new Map and Set objects,
Promise objects and many other features.

254 G. Brambilla et al.

4 Implementation

The ADGT protocol has been implemented using Open Web Platform tech-
nologies only. Our implementation, named Adgt.js, has been designed as an
ECMAScript 6 software library that can be freely used for the realization of
P2P-based LBSs, where it is important to discovery geographic neighbors and
exchange messages with them using a technology that guarantees security and
data encryption.

In particular, we have defined and written a JavaScript Peer class that repre-
sents the ADGT peer. This class is characterized by a Descriptor, i.e., an unique
identifier of the peer in the network and its geographic location. This latter imple-
ments the Position interface defined in the Geolocation API and represents the
position of the peer at a given time, but also its altitude and its speed.

Furthermore, the Peer class contains a reference to a GeoBucket object that,
as the name says, implements the peculiar routing table of the ADGT protocol.
Our GeoBucket implementation consists of a wrapper of the new ECMAScript
6 Set class, whose elements are nodes of the network. The GeoBucket class,
in addition to being a collection of nodes, presents functionalities for the man-
agement of geographic neighborhood, therefore to add and remove nodes that
approach and move away from the peer, and to update the information about
the geographic locations of the neighbors.

In Adgt.js, neighbors are represented by the RemoteNode class, which actually
realizes the P2P connection with other peers, through WebRTC technologies.
More specifically, this class allows to connect to another peer of the ADGT
network using the RTCPeerConnection interface, and to directly send a message
to it with the DataChannel interface. In this way, all data exchanges between
network nodes—such as position updates as well as peer discovery messages—are
realized using WebRTC.

DataChannels are also used as signaling channels. In fact, signaling methods
and protocols, i.e., the mechanisms required to coordinate communication and
to send control messages, are not specified by WebRTC. WebRTC assumes the
existence of a communication coordination process, allowing clients to exchange
session control messages (outlined by the JavaScript Session Establishment Pro-
tocol [7]), error messages, media metadata such as codecs and codec settings,
bandwidth and media types, key data, used to establish secure connections, and
network data, such as a IP address and port, without placing constraints on the
signaling technology.

Although a signaling service consumes relatively little bandwidth and CPU
per client, signaling servers for a popular application may have to handle a lot
of messages, from different locations, with high levels of concurrency. For this
reason, we have decided to distribute the responsibility to act as signaling servers
among all the peers of the network, using DataChannels. In particular, the peer
discovery operation has been implemented in a way that when a peer receives
the list of neighbors from the peer that has contacted, the latter acts also as
a signaling server between the first and the possible peers which have to be
contacted.

Adgt.js: A Web Application Framework Peer-to-Peer LBSs 255

Fig. 3. Using ICE to cope with NATs
and firewalls.

Fig. 4. Peers of the network act as sig-
naling servers in our implementation.

A direct connection between two peers can be achieved by means of a sig-
naling server that coordinates the communication. Actually, a signaling server
by itself is not sufficient to overcome the complexities of real-world networking,
that can be solved with the use of ICE technology, as shown in Fig. 3.

To increase system scalability, Adgt.js has been designed to be architecturally
different from what depicted in Fig. 3, inasmuch the operations of signaling
between two peers that are attempting to establish a connection are provided by
an intermediary peer rather than from a centralized server. Figure 4 represents
the architecture of our implementation.

In particular, the peer designed to act as a signaler between two other peers is
the one that allowed the other two to get to know each other, at the end of the
discovery process. Figure 5 shows the sequence of messages exchanged during
a discovery operation, in the event that peer A wants to start a conversation
with peer B, just discovered by means of peer C. After peers A and C have
exchanged discovery messages, where A asks for a specific geographic location
and C returns a list of known peers near the location indicated including B, if
peer A wants to add peer B to its GeoBucket, peer C will be the signaler among
them. The first message that A has to send to B through C is an Offer message,
which is a serialized session description message, followed by an ICE message with

Fig. 5. Messages exchanged during discovery operation.

256 G. Brambilla et al.

the information about network interfaces and ports. On the other side, when B
receives the Offer message, it replies to A through C with an Answer message
containing its session description, therefore with an ICE message. Finally, at the
end of this initialization, A and B can directly exchange ADGT or application-
specific messages, such as updates on their geographic location. Despite the
complexity of the architecture, the implementation hides all these aspects to
users, which do not have to worry how the connections are established.

Since it is not always possibile to use another peer as a signaling server,
e.g., when the peer joins the P2P network, each peer has a reference to a
BootstrappingNode that is able to operate as a signaling server for those peers
that log on to the network for the first time. We have implemented this kind of
signaling server using the Node.js framework6 and the WebSocket protocol. The
choice of adopting Node.js, which is an open-source runtime environment based
on Google’s V8 JavaScript engine, has allowed to reuse most of the code written
for the ADGT implementation. Furthermore, the WebSocket protocol allowed
us to encrypt the signaling and negotiation communication like the standard
HTTPS protocol works, ensuring that no one can intercept messages sent to the
server to figure out which peers are talking to whom.

Adgt.js has been released online7 with a free and open-source software license
and can be used as a web application framework without restrictions.

5 Realizing LBSs with Adgt.js

To design and implement LBSs with Adgt.js is easy, not much different from
making a simple web page. Moreover, being Adgt.js an implementation of a P2P
protocol, it is affordable by whoever, as it may run over any type of device, not
being particularly demanding in terms of computing and memory resources.

In order to use the Adgt.js web application framework, it is sufficient to
include the JavaScript file in the HTML page using the src attribute in the
<script> tag. Once the Adgt.js is included, it is already possible to create a
new ADGT peer, as shown in Listing 1.1.

Listing 1.1. Creating a new ADGT peer.

1 va r pee r = new Peer (o p t i o n s) ;
2 pee r . connect () ;

Two statements are enough: the first one actually creates an instance of the
Peer class, while the second one starts the connection to the ADGT network.
During the creation of the peer, it is possible to specify some options, such as
the address of the bootstrapping node, the STUN and TURN servers, as well as
some parameters of the ADGT protocol.

Adgt.js has been developed with an event-driven approach, thus allowing to
define functions that are executed upon the occurrence of certain events, such as
the reception of a message from another peer, or a change in the neighborhood.
6 https://nodejs.org.
7 https://github.com/brambilla/adgt.js.

https://nodejs.org
https://github.com/brambilla/adgt.js

Adgt.js: A Web Application Framework Peer-to-Peer LBSs 257

In Listing 1.2, it is reported how to set listener functions for two kinds of
events: neighbors and data. The first event occurs when the neighborhood of
the peer changes, while the second one fires when the peer receives any type
of data from near peers. The callback functions allow us to manage the set of
neighbor descriptors and received data, respectively.

Listing 1.2. Setting listeners for peer events.

1 pee r . on (’ n e i g hbo r s ’ , f u n c t i o n (d e s c r i p t o r s) { }) ;
2 pee r . on (’ data ’ , f u n c t i o n (data) { }) ;

To send data to the geographic neighbors of the peer, it is sufficient to invoke
the send method, as in Line 1 of Listing 1.3.

Listing 1.3. Sending data to neighbors and updating peer’s position.

1 pee r . send (data) ;
2 . . .
3 pee r . move (p o s i t i o n) ;

In case the geographic location of the peer changes, it is sufficient to use the
move method to automatically trigger the position update process, that involves
the transmission of a message to the neighbors and the removal of peers no
longer included in the GeoBucket (Line 3 of Listing 1.3).

Fig. 6. The LBS developed with ADGT.js, running on Firefox for Android.

We have implemented and published online8 a simple LBS that illustrates
the ease of use of Adgt.js and represents a building block for more sophisticated
applications. The LBS shows on a map the peers connected to the network, i.e.,
visitors of the web page, that are at a maximum distance of 40 km. Neighbor
discovery and connection establishment is entrusted to Adgt.js. Regarding the
map, we have adopted Leaflet.js9, a widely used open-source JavaScript library
used to build web mapping applications. Figure 6 is a screenshot taken from an
Android smartphone running the LBS on Firefox for mobile.

8 https://brambilla.github.io/map/index.html.
9 http://leafletjs.com.

https://brambilla.github.io/map/index.html
http://leafletjs.com

258 G. Brambilla et al.

This LBS only requires to update the geographic location of the peer and
change the marker on the map with the position of the browser obtained with
the Geolocation API, as shown in Listing 1.4.

Listing 1.4. Managing current position of the device.

1 n a v i g a t o r . g e o l o c a t i o n . wa t chPo s i t i o n (f u n c t i o n (p o s i t i o n) {
2 pee r . move (p o s i t i o n) ;
3 va r l a tLng = L . l a tLng (p o s i t i o n . coo rd s . l a t i t u d e , p o s i t i o n . coo rd s . l o n g i t u d e) ;
4 marker . s e tLa tLng (l a tLng) ;
5 i f (p o s i t i o n . coo rd s . speed > 0) { marker . s e t I c o n (i c o n h e ad i n g) ; }
6 marker . s e tRo t a t i o nAng l e (p o s i t i o n . coo rd s . head ing) ;
7 map . panTo (l a tLng) ;
8 }) ;

In addition, when a change in the neighborhood happens, all the markers on
the map representing neighbors are updated as in Listing 1.5.

Listing 1.5. Managing changes of neighborhood.

1 pee r . on (” n e i g hbo r s ” , f u n c t i o n (d e s c r i p t o r s) {
2 markers . c l e a r L a y e r s () ;
3 f o r (va r i nd e x i n d e s c r i p t o r s) {
4 va r p o s i t i o n = d e s c r i p t o r s [i n d e x] . p o s i t i o n ;
5 va r l a tLng = L . l a tLng (p o s i t i o n . coo rd s . l a t i t u d e , p o s i t i o n . coo rd s . l o n g i t u d e) ;
6 va r r o t a t i o nAng l e = p o s i t i o n . coo rd s . head ing ;
7 i f (p o s i t i o n . coo rd s . speed > 0) {
8 markers . addLayer (L . marker (l a tLng , { r o t a t i o nAng l e : r o t a t i o nAng l e , i c on : i c o n h e ad i n g })) ;
9 } e l s e {

10 markers . addLayer (L . marker (l a tLng , { r o t a t i o nAng l e : r o t a t i o nAng l e , i c on : i c on })) ;
11 }
12 }
13 }) ;

6 Related Work

As WebRTC has reached a good level of maturity and has been adopted by major
web browsers, researchers have started to investigate the potentiality of this tech-
nology. Tindall and Harwood presented an implementation of an unstructured
P2P protocol using WebRTC [8]. Bevilacqua et al. described a network architec-
ture for the development of browser-based P2P web applications [9]. Such a work
has the disadvantage of requiring a nonstandard browser plugin for signaling.
A framework for decentralized online social networks is presented by Disterhoft
and Graffi [10]. The main differences between our implementation and the above-
mentioned ones, apart from the fact that the P2P schemes are different, reside in
the signaling process. Indeed, in Adgt.js, signaling is a distributed mechanism,
not supplied by a single central server.

7 Conclusion

In this paper we have presented Adgt.js, a web application framework that
enables the realization of completely decentralized LBSs, being a cross-platform
implementation of the ADGT georeferenced P2P overlay scheme.

We have described the implementation and the architecture of the developed
framework, paying particular attention to the adopted technologies. It has also
been accurately described how to use the framework, with reference to a concrete

Adgt.js: A Web Application Framework Peer-to-Peer LBSs 259

example. Moreover, the framework has been published online, together with the
example, which is freely usable.

Regarding future work, we will investigate the performance of the imple-
mented framework, with respect to technological aspects such as battery drain
of mobile devices, also compared with previous results obtained in simulation.
Furthermore, we will evaluate the adoption of even more innovative technologies,
such as Web Workers10 and Object Real-Time Communications for WebRTC.11

References

1. Florian, M., Pieper, F., Baumgart, I.: Establishing location-privacy in decentralized
long-distance geocast services. Ad Hoc Netw. 37, 110–121 (2016)

2. Brambilla, G., Picone, M., Amoretti, M., Zanichelli, F.: An adaptive peer-to-peer
overlay scheme for location-based services. In: IEEE 13th International Symposium
on Network Computing and Applications (NCA), Cambridge, MA, August 2014

3. Grigorik, I.: High Performance Browser Networking. O’Reilly Media, Sebastopol
(2013)

4. Rosenberg, J.: Interactive Connectivity Establishment (ICE): A Protocol for Net-
work Address Translator (NAT) Traversal for Offer/Answer Protocols, Internet
Engineering Task Force (IETF). Request for Comments 5245, April 2010

5. Rosenberg, J., Mahy, R., Matthews, P., Wing, D.: Session Traversal Utilities for
NAT (STUN), Internet Engineering Task Force (IETF). Request for Comments
5389, October 2008

6. Mahy, R., Matthews, P., Rosenberg, J.: Traversal Using Relays around NAT
(TURN): Relay Extensions to Session Traversal Utilities for NAT (STUN), Internet
Engineering Task Force (IETF). Request for Comments 5766, April 2010

7. Uberti, J., Jennings, C.: Javascript Session Establishment Protocol, Internet Engi-
neering Task Force (IETF), Network Working Group, February 2012

8. Tindall, N., Harwood, A.: Peer-to-peer between browsers: cyclon protocol over
WebRTC. In: IEEE International Conference on Peer-to-Peer Computing (P2P)
(2015)

9. Bevilacqua, A., Boemio, P., Romano, S.P.: Introducing ufo.js: a browser-oriented
P2P network. In: International Conference on Computing, Networking and Com-
munications (ICNC) (2014)

10. Disterhoft, A., Graffi, K.: Protected chords in the web: secure P2P framework for
decentralized online social networks. In: IEEE International Conference on Peer-
to-Peer Computing (P2P) (2015)

10 https://html.spec.whatwg.org/multipage/workers.html.
11 https://www.w3.org/community/ortc/.

https://html.spec.whatwg.org/multipage/workers.html
https://www.w3.org/community/ortc/

VM Image Repository and Distribution Models
for Federated Clouds: State of the Art, Possible

Directions and Open Issues

Nishant Saurabh(B), Dragi Kimovski, Simon Ostermann, and Radu Prodan

Distributed and Parallel Systems, Institute of Informatics,
University of Innsbruck, 6020 Innsbruck, Austria
{nishant,dragi,simon,radu}@dps.uibk.ac.at

http://www.dps.uibk.ac.at

Abstract. The emerging trend of Federated Cloud models enlist vir-
tualization as a significant concept to offer a large scale distributed
Infrastructure as a Service collaborative paradigm to end users. Virtual-
ization leverage Virtual Machines (VM) instantiated from user specific
templates labelled as VM Images (VMI). To this extent, the rapid pro-
visioning of VMs with varying user requests ensuring Quality of Service
(QoS) across multiple cloud providers largely depends upon the image
repository architecture and distribution policies. We discuss the possible
state-of-art in VMI storage repository and distribution mechanisms for
efficient VM provisioning in federated clouds. In addition, we present and
compare various representative systems in this realm. Furthermore, we
define a design space, identify current limitations, challenges and open
trends for VMI repositories and distribution techniques within federated
infrastructure.

Keywords: VMI storage repository · VMI distribution · Federated
cloud

1 Introduction

The Cloud Computing is a ubiqutous global paradigm, empowering users to
acquire on demand compute resources without the onus of owning, managing or
maintaining them. In this context, one of the important concept is Infrastruc-
ture as a Service (IaaS) [8] cloud model. Virtualization [9] is a key technology
employed in cloud data centers to support IaaS, allowing users to instantiate
multiple Virtual Machines (VM). The instantiated VMs constitute users appli-
cation environment to be adequately scaled by elastic on-demand provisioning
in response to variable load to achieve increased utilization efficiency at lower
operational cost, while guaranteeing Quality of Service (QoS) [7] to end users.

VMs in general, are instantiated using specific templates termed as VM
Images that are stored in proprietary repositories, leading to provider lock-in [10]
and hampering portability or simulataneous usage of multiple federated Clouds.
c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 260–271, 2017.
DOI: 10.1007/978-3-319-58943-5 21

VM Image Repository and Distribution Models for Federated Clouds 261

In addition, the proprietary repositories do not take into account underlying
application characterstics resulting to deployment and instantiation overheads.

To this end, VMI repository research extends to a novel operational environ-
ment aiming to mitigate limitations with regard to VMI storage and distribu-
tion for federated cloud infrastructures. Such a Large Scale Distributed Virtual
Environment for VMI repository imminently benefit the elastic auto-scaling of
diverse applications on cloud resources based on their fluctuating load. Hence-
forth, VM interoperability across multiple cloud infrastructures is achieved with-
out provider lock-in, only to justify the virtualization technology as a universal
cloud IaaS model.

In this paper, we split the state of the art contention into two parts, namely
VMI Repository and VMI Distribution. Initially, we emphasize the required
consideration to treat image repository beyond the typical storage systems and
henceforth, detail the factors defining the VMI Repository with respect to func-
tionality, architecture, VMI management and cloud federation aspects. Further-
more, we discuss the existing VMI distribution tecnhiques and suitability of each
with regard to varying VMI repository architecture meant to provide middleware
services in federated cloud models.

To examine current advances corresponding to our discussion, we consider as
case studies, various production systems, in particular namely: Virtual Machine
Repository Catalog (VMRC)1 [11], Amazon Image Service2 and Openstack
Glance3. In our view, these three systems define the closest state of the art
of VMI Repository and furthermore, each of the systems has some common and
unique set of functionalities to offer. Our discussion focusses on VMI repository
service’s rationales, distribution models and their respective usage scenario in
case of multiple cloud providers. To be concise, we have investigated possible
measures required to allow flexibility for rapid VM provisioning appropriated
by image repository and distribution models. Finally, we identify open issues
and suggest future research directions regarding federated VMI middleware
repository.

The contributions of the paper are:

• An overview of the existing storage modelling factors and its application to
VM Image repository design.

• An analysis and classification of VM Image storage and distribution tech-
niques applicable to federated cloud models.

• A synopsis of the current state of the research area, identifying trends and
open issues.

• A vision on possible future directions.

The remainder of this paper is organized as follows. Initially, Sect. 2 surveys
the existing production systems. Section 3 outlines possible state of the art to

1 http://www.grycap.upv.es/vmrc/index.php.
2 http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html.
3 http://docs.openstack.org/developer/glance/.

http://www.grycap.upv.es/vmrc/index.php
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
http://docs.openstack.org/developer/glance/

262 N. Saurabh et al.

design the VM image repository along with the distribution mechanisms in fed-
erated cloud infrastructures. We discuss and analyze the quality rationales of
surveyed image repository systems in Sect. 4, followed by possible future direc-
tions and open issues. We conclude the paper in Sect. 5.

2 Existing VMI Repository Systems

The design of most of the existing VMI repositories are subjected to specific
hypervisor technology concerning the cloud architecture. In general, users inter-
action is provided through a web interface and corresponding attached APIs to
these repository systems with very basic functionalities. Hence, the VMI and
associated metadata management are left onto the user based manual actions
instead of allowing automated query executions leading to error-prone usage.

To mention a few such systems, VMware4 repository system at its disposal
allows upload and download of images by authorized users. In addition, a weak
virtual management system for existing VMI categorization is intact, enabling
to search for the required images corresponding to the target application of the
user. Another VMI specific repository by Science Clouds5 only allow download
of exisiting stored images and evades the upload or indexing functionality of any
user specific VMIs. FutureGrid [15], an experimental system for HPC and cloud
based applications provisions another image repository with federated storage
systems empowering the users to avail upload, download and update function-
ality with limited metadata informations through REST interface.

Apart from above mentioned systems, in this section, we give a detailed
account of some VMI repositories adopted by private and public cloud infrastruc-
tures, namely VMRC (Virtual Machine Repository Catalog) [11], Openstack
Glance6 and Amazon Image Service7. In our view, these three systems are clos-
est to the state of the art in the field of VMI repository service with respect to
image storage and corresponding image functionalities as a middleware service.

2.1 VMRC

The VMRC (Virtual Machine Repository Catalogue) [11] modelled as a client-
server based architecture enables user to upload, store and catalog VMIs. It also
serves as a matchmaking collaborative system to facilitate sharing of images
availing through the usage of extensive metadata, where independent users can
search and retreive appropriate stored VMI using the catalog functionality.

In general, VMRC is represented into four modules namely Storage, Reposi-
tory, Catalog and Client. The Storage module handles the appropriate mediums
to store VMIs, while Repository provisions support for transfer of VMIs within
different storage mediums. In addition, Repository module also facilitates user
4 http://www.vmware.com/appliances.
5 http://scienceclouds.org/marketplace.
6 http://docs.openstack.org/developer/glance/.
7 http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html.

http://www.vmware.com/appliances
http://scienceclouds.org/marketplace
http://docs.openstack.org/developer/glance/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html

VM Image Repository and Distribution Models for Federated Clouds 263

authorizations in case of VMI uploads. In order to index the stored images, Cat-
alog module is used accompanied by unique matchmaking algorithms to retreive
the appropriate images suiting the users requirement. The easy usage of the men-
tioned functionalities are supported with an end-user command line application
Client module.

2.2 OpenStack Glance

Glance8 in general, is a middleware service enabling users to upload indepen-
dent data assets including VMI. In particular, glance image service provisions
various functionalities including discovering, registering and retrieving images.
In order to provide respository based service, federation of storage systems are
attached. These storage systems with varying capabilities ranging from simple
file systems to object based storage are located within varying regions to manage
VMI services.

Glance integrated with Openstack virtualized infrastructure, follows a client-
server based centralized architecture which provides a REST API for its users
to access image functionality. Furthermore, it provides an interface to its various
components managing internal operations as shown in Fig. 1 to openstack. Any
REST API based request from the client is accessed through domain controller
component which handles services corresponding to different layers, where each
layer appropriates to perform a specific task. These tasks include authorization
governing policies regarding the actions of a user to a particuar image such
as verifying access rights to add, update or delete a VMI or checking quota of
storage capacity attached to a user for adding an image at a particular region etc.
It is to be observed that policies regarding the authorization, storage quota could

AuthN

File system Swift S3 Ceph Sheepdog

Supported Storages

Glance Store Drivers

Glance Store

Glance
Domain
Controller

Auth Notify
 Policy
 Quota
Location
 DB

Glance DB

Data
Abstraction
Layer

Client

REST
API

AuthZ
Middleware

AuthN

Fig. 1. Glance architecture

8 http://docs.openstack.org/developer/glance/.

http://docs.openstack.org/developer/glance/

264 N. Saurabh et al.

vary and depend upon the organization implementing glance domain controller
component specific to its infrastructure.

Another component Glance Store, handling VMI storage provides an uniform
access to various attached storage systems. It provides a series of library func-
tions to execute VMI operations requested by the user with regards to authoriza-
tion inputs received from Domain Controller. The library functions are basically
file based operations such as upload, update, delete etc.

The Domain Controller also provides an interface to centralized Glance Data-
base API, which contains several methods for moving image metadata to and
from attached persistent storage systems. These methods basically references to
metadata regardging creating, updating, retreiving VMI with respect to para-
meters like image identifier, image location, image context etc. Once image is
registered onto the centralized database, it is deemed appropriate to be instan-
tiated with specific configurations within a particular region or loaction.

2.3 Amazon Image Service

Amazon Elastic Compute Cloud (EC2) services is one of the most poular commer-
ical public cloud infrastructure. In the early stages, Amazon Web Services (AWS)
only provided functionality to createAmazonMachine Images (AMI)9 onto its own
infrastructure instead of allowing upload of user specific images as shown in Fig. 2a.
The AMI is similar to VMI, which includes a template for the root volume for VM
to be instantiated consisting of OS, application server and underlying target appli-
cation services. Furthermore, AMI also comprise of permisssion authorizations to
launch corresponding AMI.

However, recently AWS added a VM export/import functionality to import
and export VMI from user specific environment onto Amazon EC2. This

(a) Life Cycle of AMI cre-
ation onto AWS.

(b) Life cycle of Upload of
User VMI onto AWS

Fig. 2. AWS VM image services depicting creation and upload of amazon infrastructure
supported user VMI.

9 http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html.

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html

VM Image Repository and Distribution Models for Federated Clouds 265

functionality enables a user to include its own configurations, security and com-
pliance requirement within image intended for target VM instance.

AWS provides a client interface to upload VMI. As a part of import func-
tionality, user specific images are converted to AWS EC2 AMI and stored onto
Elastic Block store or S3 data store of Amazon. The AMI identifier is further
mapped onto a region as specified by the user, hence facilitating the instatiation
of VMs. AWS also allows the user to have the authority of enabling the stored
images to be either private, shared with specific AWS users or to be public to
whole community.

3 State of the Art

In Sect. 2, we overviewed the existing image repository systems. Although most
of them support the basic functionalities of upload and download of VMIs, the
eminent federation functionalities including repository management, interoper-
ability etc. are left onto the user based manual actions. In this section, we focus
on the possible state of the art in terms of VMI storage and distribution for
federated clouds. While we state some of the common functionalities, we also
define the VMI and corresponding repository operations, currently missing in
the existing production systems.

3.1 VM Image Storage Repository

VM Image usually in size of GigaByte (GB) contains a bare operating system
(OS), or an operating system with user defined software and applications. In
specific cases, additional data is also attached to corresponding image template.
A typical example of such VMI is running an Earth Observational Data process-
ing cloud application [12] with large sized sattelite imagery data. The storage of
such diverse images require a scalable and elastic storage model for optimized
VMI distribution across the multiple cloud providers. Furthermore, image repos-
itory is also necessitated to act as a middleware providing services beyond the
typical storage repositories. Placek and Buyya et al. [6] defines storage systems
taxonomy built upon a number of factors. To this extent, we discuss the state
of the art of VMI storage Repository including functionality, architecture and
federated interoperability concerning VMI application characteristics.

Functionality. The VMI Repository is customary to have a wide array of
behavioral functions beyond the typical storage and retreival offered by general
purpose storage systems. In custom, a VMI is a collection of complex set of bytes
with a sequence of functional descriptions specific to user defined applications.
A large sized VMI can also be splitted into fragments, where each fragment
refers to a specific functionality [13]. These attributes make it difficult to inject
updates if any, directly to the stored VMI or functional fragments. In case of
decentralized repository with geographically distributed storage systems, prop-
agating updates to various stored image replicas is even more of a gruelling

266 N. Saurabh et al.

task. Hence, VMI repository is specifically to be characterised as a persistent
storage system restricted to the write-once and read-many feature. In this cate-
gory of storage, any updates to the VMI propells the removal of old image and
creating a new image onto the repository. However, the concept of VM contex-
tualization can be utilized by the incorporation of existing tools like Chef 10 and
Puppet11, hence facilitating VMI size optimization by synthesizing and pruning
the un-necessary files or analyzing and fragmenting the VMI with respect to
functionality in case of large sized images encompassed with various services.
This feature indeed helps in reducing the storage cost with faster distribution
and VM provisioning across cloud boundaries.

In addition, the modern cloud providers maintains a list of VMI’s provisioned
for sharing amongst users. These images are typically not user specific, instead
consists of some most commonly used OS platforms or applications. The reposi-
tories facilitating sharing of such images deliver pubish/share functional service,
inhibiting the censorship of stored VMI.

One of the other interesting functionality of VMI repository is providing a
homogenous interface to an array of attached storage systems. These evident
systems either coupled or decoupled to cloud storage are accomplished with
varying capabilities which provide unique interface to interact with. In such
cases VMI Repository has much of a task to act as a middleware entity instead
of just a storage service.

Repository Architecture. The repository architecture in general, determines
the operational boundaries of stored resource, ultimately forging behavior and
functionality corresponding to the application services, a resource provide [6]. In
our paper, VMI is the stored resource and the operational boundary corresponds
to the factors affecting distribution of images to multiple cloud providers. Typ-
ically, image storage repository can be classified as Centralized or Distributed
on the basis of the architecture it follows. In this section, we discuss the func-
tional capabilities and limitation of pre-mentioned architectural models to the
applications of VMI.

Centralized. In most of cloud infrastructures, a centralized image server serves
as a repository to host a catalog of VMIs. These repositories maintain a central
index of stored images which are either produced locally or imported from user
specific environment.

In general, Centralized repository can be either classified as globally or locally
central [6]. The globally centralized model contains a single image server handling
requests for many users related to VMI functionality such as upload, update,
download etc. Such architecture has limited scalability with a single point of
failure.

The image repositories within cloud data centres broadly come into category
of locally centralized architectures which alleviate independent functionalities
10 http://www.opscode.com/chef.
11 http://www.puppetlabs.com.

http://www.opscode.com/chef
http://www.puppetlabs.com

VM Image Repository and Distribution Models for Federated Clouds 267

across multiple attached servers. However, VMI repositories under this category
as well, faces scalability bottlenecks and failure centric issues, specifically in the
case of supporting federated cloud models, where each provider regulate its own
trust policies.

Distributed. The recent advances in storage repository architecture has observed
existing centralized models evolving into decentralized approaches to achieve
scalability and reliability. The reason being, centralized structured models often
encounter bandwidth and scalability bottleneck, hence influencing the quality of
service.

The essential feature of distributed repository is to compound the image
stores within multiple cloud providers interfaced with independent APIs, to be
precise a middleware service providing user transparency for the VMI storage at
different attached storage systems. Another essential characterstic is to maintain
the VMI replicas or chunks placement with respect to fault tolerance techniques
used such as Replication and Erasure Coding [14] respectively in consireation to
reduce distribution times aross cloud sites.

VMI Repository Management. The distributed VMI repository enables to
maintain a set of VMI replicas or erasure coded chunks to enhance fault tol-
erance. However, it is as imminent to decide the repository nodes at which
replicas should be placed. Initially, the user provides a set of metrics including
storage cost, performance based metrics while uploading the image. Moreover,
the attached storage systems are accomplished with varying capabilities, hence
exists different cost policies and performance metrics for each. The VMI repos-
itory system applies a decision making process, placing the replicas onto the
storage repositories satisfying the user specifications for initial upload.

Furthermore, every time a user requests for distribution of image to a cloud
provider, a learner module track the statistics of the frequency of distribution
of image to a specific provider. To this extent, the placement of VMI replicas or
chunks concerning factors like image popularity at a particular cloud provider or
across cloud boundaries, avoiding vendor lock-in etc. is reshuffled to the image
storage repository closer to the region corresponding to the provider with fre-
quent distributions. This greatly improves the geographical scalability of stored
images with respect to faster distribution and provisioning.

Federation. VM Images are currently stored by cloud providers in propri-
etary centralized repositories without considering application characterstics and
their runtime requirements, causing high deployment and instantiation over-
heads. Moreover, users are expected to manually manage the VM Image storage
which is tedious, error-prone and time-consuming especially if working with mul-
tiple cloud providers. Every cloud provider is highly interested in attracting new
customers from other providers. Unfortunately, current users must be familiar
with providers repository interfaces and specific VMI formats in order to use
them, which is unsurpassable barrier in deploying new images and exploiting
provider resources.

268 N. Saurabh et al.

The VMI repository for federated cloud models mitigate the user limita-
tions and manages the interoperability of user created images across multiple
providers. Once a request is received by the repository to distribute a corre-
sponding VMI onto a cloud provider, an image conversion module is executed
to convert VMI to the format suited for the cloud infrastructure, it has to be
instantiated on. Hence, facilitating the user with a federation middleware VMI
repository, servicing storage and distribution requests of images across a federa-
tion of cloud providers to achieve globalised Infrastructure as a Service paradigm.

3.2 VMI Distribution

Modern cloud computing data centers face the key challenge to provide rapid VM
provisioning in elastic and scalable manner. To this extent efficient VMI distribu-
tion [1–5] onto the physical compute node across cloud providers is an imminent
aspect. The distribution process essentially suffers a handicap in case of federated
cloud models owing to the inconsiderate VMI Repository architecture offering
unscalable services to increasing user requests, and lack of VMI interoperability
across multiple clouds as discussed earlier. In this section we discuss some of
the popular VMI distribution techniques, focussing to its appropriateness and
limitation with reference to repository models for federated clouds.

3.3 Unicast Distribution

Unicast distribution [3], a fairly simple method for distributing VMI works for
centralized as well as decentralized image repositories. The VMIs of appropriate
format are transferred from the image repository to the destined cloud provider
in a sequential manner. This method has a huge drawback in terms of transfer
rate specific to increased number of requests within a time interval.

Binary Tree Distribution. In contrast to the naive sequential approach used
by Unicast Distribution, binary tree based distribution [3] model follows the
parallelized transfer of images. The technique arranges the compute nodes as
balanced binary tree. The parent node initiates the image transfer in a sequen-
tial fashion followed by the transmission from child nodes at respective levels.
However, the transfers are synchronized at every level of the tree to avoid the
initiation of transmission from child node until parent’s node data is available.
Once the intial image transfer from the parent node completes, the receiving
node becomes parent itself.

Binary tree distribution of images optimizes the throughput at a lower dis-
tribution rate. This technique suits the distrbuted VMI repository architecture,
however application within a cross cloud environment is an area of concern with
regard to trust policies between multiple infrastructures.

VM Image Repository and Distribution Models for Federated Clouds 269

Multicast Distribution. The multicast distribution [3] technique is mostly
preferred in local environment. The image chunk packets are distributed to
compute nodes registered onto the host node subscribed for multicast transfer.
However multicasting of image is not preferred in case of transferring data over
network boundaries specifically in the case of multple cloud providers requiring
special multicast protocol support at the core of their internal network.

Peer-to-Peer Distribution. In case of Peer-to-Peer distribution [3], a popu-
lar bit-torrent protocol [4] is used to distribute VMI to corresponding compute
nodes. Using this technique, a torrent file is generated comprising of the URL
of the tracker node storing the VMI. Furthermore, the storage node executes
the seeder module, to which bit-torrent client started on specific compute nodes
across multiple cloud providers interface with. To this end, the compute nodes
connect to the tracker using URL and seed images from the host storage node
completing efficient transmission.

4 Discussion

In this section, we summarize the main features of three Image repository sys-
tems surveyed in Sect. 2. We lead our discussion further by focusing on system-
wise decision rationales and possible future research directions.

4.1 Summary

In terms of typical storage systems, the systems we overviewed does provide basic
functionalities including upload, store and update VMI. On one hand, VMRC
provisions indexing of images via Catalog functionality, while Amazon allows
publish/share of VMIs with respect to appropriate authorization in each case.
Although, the discussed production systems qualify for the VMI storage func-
tionality, none of them provide service to facilitate interoperability of images
over multiple cloud providers. As mentioned, Openstack Glance and Amazon
comprise of proprietary image repository, while VMRC doesnt contribute to
interoperability issue, instead has a unique VM matchmaking service for shar-
ing of images. Moreover, the locally centralized architectural model of defined
systems inhibit scalable image distribution and hence amounts to delayed VM
provisioning. Specifically, the current state of the art in consideration with these
respective systems represents a wide gap compared to the possible state of the
art for VMI Repository and Distribution models for federated clouds.

4.2 Possible Directions and Open Issues

Based on the survey of studied systems and possible state of the art presented in
the paper, we propose visions on directions and open issues. One of the promis-
ing orientation in this domain, in our view, is interoperability and portability

270 N. Saurabh et al.

support of VMIs over multiple providers by image repositories. This is partic-
ularly important to realise the Cloud IaaS as an all-inclusive paradigm. One
way of enhancing interoperability lies in the managment of images by intro-
ducing the vendor lock-in objective in consideration to trade-off establishment
with QoS cloud metrics and providing a set of optimal solutions to the user with
image store options to avoid vendor lock-in. This would require extensive analysis
of metadata informations of specific VMIs including funtional descriptions and
requirements. An another way of solving interoperability lies in VM contextual-
ization, where VMIs stored functional fragments can be assembled by minimal
virtual machines running at destination cloud sites with specific requirements.

Secondly, VMI repository is required to enforce optimization techniques for
VMI replica management over the distributed repository to enhance the dis-
tribution of images for rapid VM provisioning. In particular, the distribution
techniques and its application in different cloud environments, to be precise
within same and cross cloud networks is needed to be included as an optimiza-
tion objective.

5 Conclusion

VMI Repository systems and distribution mechanisms attibuted to underlying
VMI characteristics is a promising and essential research area. However, there is
a need to look beyond the typical storage systems with regard to VMI operational
boundaries in terms of efficient distribution and VM provisioning. Henceforth,
realizing IaaS as a cloud service beyond a specific provider. In this regard, we dis-
cussed the possible state of the art in VMI Repository and Distribution models.
We pointed out various factors to define a design space for image repository and
prior contributing scenarios to federated infrastructure. We also compared three
representative image repository systems identiying the existing gap between cur-
rent state of the art and the possible design space. Hence, highlighting some of
the open issues and possible future directions, including VMI management as
a repository service for enhanced distribution, image interoperability support
across multiple providers.

Acknowledgments. This work was accomplished as a part of project ENTICE:
“dEcentralised repositories for traNsparent and efficienT vIrtual maChine opEra-
tions” (http://www.entice-project.eu/), funded by the European Unions Horizon 2020
research and innovation programme under grant agreement No. 644179. The authors
would also like to thank anonymous reviewers for their valuable comments.

References

1. Freimuth, D.M., Pappas, V., Sathaye, S.: Virtual machine image distribution net-
work. US Patent Ap. 13/542,421, 9 January 2014

2. Peng, C., Kim, M., Zhang, Z., Lei, H.: VDN: virtual machine image distribution
network for cloud data centers. In: Greenberg, A.G., Sohraby, K. (eds.) INFOCOM,
pp. 181–189. IEEE (2012)

http://www.entice-project.eu/

VM Image Repository and Distribution Models for Federated Clouds 271

3. Schmidt, M., Fallenbeck, N., Smith, M., Freisleben, B.: Efficient distribution of
virtual machines for cloud computing. In: Proceedings of the 2010 18th Euromicro
Conference on Parallel, Distributed and Network based Processing, PDP 2010,
Washington, DC, USA, pp. 567–574. IEEE Computer Society (2010)

4. Wartel, R., Cass, T., Moreira, B., Roche, E., Guijarro, M., Goasguen, S., Schwick-
erath, U.: Image distribution mechanisms in large scale cloud providers. In: Cloud-
Com, pp. 112–117. IEEE Computer Society (2010)

5. Wu, D., Zeng, Y., He, J., Liang, Y., Wen, Y.: On P2P mechanisms for VM image
distribution in cloud data centers: modeling, analysis and improvement. In: Cloud-
Com, p. 5057. IEEE Computer Society (2012)

6. Placek, M., Buyya, R.: A Taxonomy of Distributed Storage Systems. www.
cloudbus.org/reports/DistributedStorageTaxonomy.pdf

7. Bardsiri, A.K., Hashemi, S.M.: Qos metrics for cloud computing services evalua-
tion. Int. J. Intell. Syst. Appl. (IJISA) 6, 27 (2014)

8. Iosup, A., Prodan, R., Epema, D., Benchmarking, I.C.: Approaches, challenges,
and experience. In: Proceedings of 5th Workshop on Many-Task Computing on
Grids and Supercomputers (MTAGS) (2012)

9. Uhlig, R., Neiger, G., Rodgers, D., Santoni, A.L., Martins, F.C.M., Anderson, A.V.,
Bennett, S.M., Kagi, A., Leung, F.H., Smith, L.: Intel virtualization technology.
Computer 38(5), 48–56 (2005)

10. Opara-Martins, J., Sahandi, R., Tian, F.: Critical analysis of vendor lock-in and its
impact on cloud computing migration: a business perspective. J. Cloud Comput.
5(1), 18 p. (2016). Article No. 54

11. Carrin, J.V., Molt, G., De Alfonso, C., Caballer, M., Hernndez, V.: A generic
catalog and repository service for virtual machine images. In: 2nd International
ICST Conference on Cloud Computing (CloudComp 2010) (2010)

12. Dana, P., Silviu, P., Marian, N., Marc, F., Daniela, Z.: Earth observation data
processing in distributed systems. Informatica 34(4), 463–476 (2010)

13. Kecskemeti, G., Attila, K., Zsolt, N.: Developing Interoperable and Federated
Cloud Architecture, pp. 1–398. IGI Global (2016). Web: 15 May 2016. doi:10.
4018/978-1-5225-0153-4

14. Aguilera, M.K., Janakiraman, R., Xu, L.: Using erasure codes efficiently for storage
in a distributed system. In: Proceedings of the 2005 International Conference on
Dependable Systems and Networks, DSN 2005, Washington, DC, USA, pp. 336–
345. IEEE Computer Society (2005)

15. Diaz, J., von Laszewski, G., Wang, F., Younge, A., Fox, G.: Futuregrid Image
repository: a generic catalog and storage system for heterogenous virtual machine
images. In: Third IEEE International Conference on Coud Computing Technology
and Science (CloudCom2011) (2011)

www.cloudbus.org/reports/DistributedStorageTaxonomy.pdf
www.cloudbus.org/reports/DistributedStorageTaxonomy.pdf
http://dx.doi.org/10.4018/978-1-5225-0153-4
http://dx.doi.org/10.4018/978-1-5225-0153-4

TRACE: Generating Traces from Mobility
Models for Distributed Virtual Environments

Emanuele Carlini1(B), Alessandro Lulli1,2, and Laura Ricci1,2

1 Istituto di Scienza e Tecnologie dell’Informazione (ISTI),
Consiglio Nazionale delle Ricerche (CNR), Rome, Italy

{emanuele.carlini,alessandro.lulli,laura.ricci}@isti.cnr.it,
{lulli,ricci}@di.unipi.it

2 Dipartimento di Informatica, Università di Pisa, Pisa, Italy

Abstract. The development and evaluation of a proper mobility model
is an essential feature to evaluate a system that manages a virtual world.
In distributed virtual environments, this is also more important because
each avatar requires a consistent view of the world that usually is splitted
on multiple machines. Several models have been proposed in the litera-
ture to describe avatars’ mobility, but a single environment supporting
the generation of traces from different models to enable a simple compari-
son of them is still lacking. In this work we present a tool that implements
popular mobility models and supports the generation of traces generated
by them. This may help developers to easily validate their systems using
several mobility models. Our tool provides a unified format to describe
the traces, enables the generation of traces for thousands of avatars and
defines an API enabling the integration of additional models.

1 Introduction

A common trait of many virtual environments is the fact that the behaviour of
avatars depends mostly on what happen in their immediate surroundings. This
fact, referred to as locality, has been widely exploited to optimize the manage-
ment of the virtual environments operations at system level. In the last decade
many approaches have been proposed to foster the transition of virtual environ-
ments from client-server to distributed applications, referred to as Distributed
Virtual Environments (DVEs) [14]. Most DVEs architectures heavily rely on the
concept of locality to split the virtual world and distribute each part of the world
to different machines. In this scenario, each avatar needs to reconstruct its local
view of the virtual world by interacting with the host of the nearby avatars. Also,
the machines that handle the world need to cooperate to provide a consistent
view of the virtual environment. This kind of approach holds for approaches
based on unstructured [9,15] and structured [2,10] peer-to-peer technologies, as
well as more centralized technologies like cloud computing [13]. For example, in
Voronoi-based DVE approaches, the world is assigned to the hosts of the avatars
according to a tessellation of the virtual world, which depends on the position
of the avatars [9,15]. When avatars move, the assignments change accordingly.
c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 272–283, 2017.
DOI: 10.1007/978-3-319-58943-5 22

TRACE: Generating Traces from Mobility Models for DVEs 273

Therefore, the description of how avatars move in a DVE is essential to design,
validate and compare different DVE architectures.

Performing the above actions in a real setting is an expensive and difficult
task, since it requires to organize the setting on multiple machines and involve
multiple persons each moving an avatar in the virtual world. Therefore, the
solution adopted by the researchers is to simulate avatars’ movement in order
to validate the specific DVE architecture. Normally, two common ways are con-
sidered to simulate avatars’ movements, i.e. traces taken from an instance of a
real virtual environment application, or synthetic traces generated from mobility
models. Real traces are usually a good mean of validation, as they represent what
is the actual behaviour of avatars in the virtual worlds [7]. However, they suffer
from the same issues of testing a DVE in a real setting: it is difficult to collect
real traces and, in particular, they may be not suitable to validate the system
on an extreme or specific scenario. Synthetic traces are usually not extremely
precise in simulating avatars’ movement but present many clear advantages in
contrast with real traces [17], such as (i) scalability, to stress the DVE support in
limit situations, (ii) reproducibility, as synthetic traces can be reused on different
systems in order to have a common ground for comparison.

As a consequence the best way to evaluate a DVE architecture is to exploit
a combination of real and synthetic traces. In this paper we focus on the latter,
and we provide the description of a software library we developed to gener-
ate synthetic traces using mobility models. Mostly, all the approaches generate
synthetic traces with custom specifically developed solutions. This has several
drawbacks: (i) it is hard to compare different systems on the same scenario,
as exact details on how the traces are generated are usually not released; (ii)
researchers spend time to code and test traces and trace generators; (iii) there
are no clear reference mobility models that are targeted by the DVE commu-
nity; (iv) it is difficult to reuse traces because usually they are encoded using
specific formats. In order to overcome these drawbacks, we developed trace, a
software library that generate avatar positions according to mobility models. Ini-
tially, we have used trace for internal research (such as in [4,5]) but eventually
we have made it available for the whole DVE community. trace: (i) provides
means to generate traces for a wide variety of DVE-based mobility models; (ii)
allows to export and reload traces for later uses and comparisons; (iii) works in
memory (Java) and with a separate visual tool; (iv) is fully configurable, both
on mobility models and the map; (v) is designed for an easy integration of new
and personalized mobility models; (vi) uses a unified format in all the mobility
models used.

In this paper we present the main features and characteristics of the tool,
unravelling important under-the-hood decisions that makes it easy and practi-
cal to use. We provide an overview of the tool’s API. We show an example of
integration of trace in an existing DVE support, showing how different traces
can be used to test and validate the support.

274 E. Carlini et al.

2 Related Works

Although mobility models have been extensively used, in the last years, in several
applicative domains, and in particular for dve, no tool able to generate multiple
models on demand currently exists. A mobility model is usually implemented and
used in isolation. For instance, mobility models are one of the most important
factors to validate gaming overlays. VON [9], Mopar [18], pSense [16] and Gross
et al. [6] is only a brief list of the most popular P2P game overlays that use just
random based walker models or random walk between hotspots. Those models
are popular thanks to their simplicity: a random walk model only requires a few
lines of code and the community generally accepts it as a model able to describe
several gaming scenarios. However, different and more complex models exist, that
are able describe specific scenarios more precisely. BlueBanana [12] is inspired
by the virtual world defined by Second Life. In this world, players gather around
a set of hotspots, which usually correspond to towns, or, in general, to points of
interest of the virtual world. Using the Least Action Planning trip (lapt) [11]
the avatars select hotspots in close proximity with higher probability. When
an avatar visits an hotspot, it stays there for a time drawn from a truncated-
Pareto distribution and then moves to another hotspot. In rpgm [8], each player
belongs to a group and it moves by following the movement of its group, in order
to model the players habit to gather in teams. Similar to the previous, a subset of
the authors of this work defined a mobility model called wow [3]. wow considers
also hotspots where players are placed at the start of the game and spawn after
death. This model takes into account the team-oriented nature of the scenario,
where moving in group is encouraged by the game semantics. However, an avatar
may decide to move alone by itself, for instance to take the enemy by surprise.
All the above models have been defined and used on specific scenarios. However
we think it is important to unify how the models are generated and how they
are used.

An interesting approach is that of the game trace archive [7], which collects
different real traces with the main aim of defining a common format to collect
and record game traces so that these can be easily used. In April 2016 the archive
includes 12 traces. Even if this environment presents some similarity with our
work, it does not include a mobility model generator.

Triebel et al. [17] study both the mobility of avatars and their interactions.
They compare the movement of avatars guided by mobility models versus move-
ments generated by artificial intelligence techniques. Although the latter provides
better results, using simple mobility model such as random way point and a ran-
dom model based on hot spots, give close results, in particular the one based on
hot spots. Artificial intelligence movements take into account also the context of
the game, must be built specifically for each game and they base their movement
on the mobility models. For all these reasons, although specific solutions may
get marginal improvements on the validation, we think that the generality of the
mobility models is an important way to validate games.

TRACE: Generating Traces from Mobility Models for DVEs 275

3 The Tool

trace is a open-source Java library1 specifically designed for the experimen-
tation of DVEs that generate traces from mobility models, unifies the output
of the models and provides an API to enrich trace with additional mobility
model implementations. In the following of this section we describe the main
characteristics of trace, its architecture and the functionalities provided.

trace has been primarily designed with the idea of focusing on experimen-
tation and evaluation of distributed virtual environments, therefore most of the
terminology used in this section refers to such field. However, we believe that
trace is flexible enough to be used in other contexts in which a number of enti-
ties move across a (virtual) area. In DVEs, avatars are the digital agents of the
users in the virtual environment and are associated with a position in the vir-
tual world. They are the moving unit considered in trace. Other than avatars,
trace gives the possibility to specify static entities, namely passive objects and
hotspots. Passive objects are entities that have a state and can be interacted
by avatars (e.g. doors), but unlike avatars are not controlled by an human user.
The hotspots are those areas of the virtual environment corresponding to places
of interest and where usually is present an higher density of passive and active
entities.

In a nutshell, trace (Fig. 1 provides an high-level overview of trace and
Table 1 provides a list of the most important classes of trace) takes in input
the definition of the virtual environment and the mobility model and outputs

Fig. 1. trace overview: inputs and outputs

1 Publicly available at: https://github.com/hpclab/trace.

https://github.com/hpclab/trace

276 E. Carlini et al.

Table 1. Notable interfaces and classes of trace

AMobilityModel Abstract class to define mobility models. The core method
is move in which the movement of the generic avatar is
defined according to the iteration

AStaticPlacement Abstract class to define placement function for static
entities, such hotspots and passive objects. This class is
called once during the initialization of the virtual
environment

IAvatarNumberFunction Interface to define the amount of avatars at any iteration.
It is called by the engine before the computation of each
iteration to adjust the avatar population

the resulting traces. All the inputs are defined in a configuration file composed
by a list of key-value tuples that contains all the necessary information for the
generation of the traces. Map description defines the rectangular area of the
virtual environment, including its size, hotspots and how to assign the position
of the passive objects. Note, both hotspots and passive objects can influence
the movements of the avatars, but they are not essential for the generation
of the traces. Nevertheless, the placements of hotspots and passive objects is
totally configurable via the class AStaticPlacement, which can be extended to
place static entities according to a user-defined function (e.g. randomly across
the area of the environment or with high probability placement in hotspots) or
by providing a list of points if there is the need to simulate a specific virtual
environment. Avatar number represents the amount of avatars in the virtual
environment. Frequently, DVE frameworks exploits peer-to-peer protocols to
assure scalability and cost effectiveness. In order to validate a framework is
therefore necessary to see how it behaves in scaling up and down, according to the
typical churn that characterizes DVE workloads. trace gives the opportunity
to model the churn with the interface IAvatarNumberFunction, which allows to
define the number of avatars at any iteration. Note that trace also allows for
a fine grained control of the churn, as it is possible to understand which avatars
left (or entered) because trace keeps avatar id consistent across iterations.

The definition of a mobility model is one of the core parts of trace, and can
be done by extending the AMobilityModel interface. A mobility model defines
how a generic avatar shall move within the boundaries of the virtual environment,
and this behaviour is then replicated for all avatars in the DVE. trace consid-
ers discrete time iterations, and at each iteration avatars move according to the
mobility model specified. In particular, during iteration t avatars move indepen-
dently without the knowledge of each other position at iteration t; however they
can have a read-only access to positions of avatars at iteration t− 1. A common
issue when generalizing the generation of traces is that any mobility model can
have its own configuration with specific parameter. trace resolves this issue by
allowing a free definition of the parameters inside the configuration file, leaving
to the developer the responsibility of matching the correct parameter within the

TRACE: Generating Traces from Mobility Models for DVEs 277

implementation of the mobility model. For example, the Blue Banana mobility
model (whose implementation is described in detail in Sect. 4) is heavily focused
on hotspots and therefore define specific properties such as the probability for
an avatar of being inside the area of an hotspot.

According to the configuration file, trace creates the mobility traces, iter-
ation by iteration, completing each avatar movements before dealing with the
next iteration. The MapVirtualEnvironment object stores all the information
about movements of the avatar, hotspots and passive objects. This class can be
accessed in a read-only fashion to be used right away when the generation of the
traces is done contextually to the experimentation. Apart from such in-memory
data structure, trace provides two additional and optional output features,
namely logfile archive and visualizer. These two features can be active at the
same time.

With logfile activated, a dump of VEMap is saved on disk in a format that
represents the movement of all the entities in the virtual environment. Regardless
of the model used, trace builds a compressed archive consisting of the following
files: (i) configuration, which contains all the variables to replicate the scenario;
(ii) avatars, which stores the movement of the avatars; (iii) hotspots, which
stores the position of the hotspots; (iv) objects, which stores the position of the
passive objects in the game; (v) bandwith, which provides statistics regarding
the number of objects in the AoI of each avatar; (vi) aoiStat, which provides
statistics regarding the number of avatars in the AoI of each avatar. The avatars
file contains a snapshot of the position of all the avatars in each time step in a
CSV format containing the following values: time step, unique avatar identifier,
position of the avatar in the map as a couple (x, y). The resulting file can be
loaded at a later time to be used in different experimental evaluation. With the
visualizer activated, trace provides a graphical representation of the avatars
moving across the map. Although this option may slow down the generation of
the traces, it results very useful to tune the parameters of a mobility model in
order to obtain specific behaviour from avatars.

trace comes bundled with the following mobility models already imple-
mented and ready to be used2: (i) Random Way Point [1], (ii) RandomWalk,
(iii) Lapt [11], and (iv) Blue Banana [12]. In order to provide an hand-on overview
on the utilization of trace, the next section describes in details BlueBanana
and how it has been implemented within trace.

4 Case Study: Blue Banana

Avatars move on the map according to realistic mobility traces that have been
computed according to the mobility model presented by Legtchenko et al. [12],
which simulates avatars movement in a commercial MMOG, Second Life3. We
provided a preliminary implementation of this mobility model, as well as a com-
parison with other mobility models in [3], In the model, avatars gather around
2 More mobility models are under development and will be added in the future.
3 http://secondlife.com/.

http://secondlife.com/

278 E. Carlini et al.

Algorithm 1. AMobilityModel.move() implementation: BlueBanana
Input : map: a Map representing the virtual world

t: the current time
avatarList : the avatars position at time t − 1

Output: the position of the avatars at time t
1 List next = avatarList
2 forall Avatar a∈avatarList do
3 State nextState = markovChain.getNextState(a, markovChain.getState(a))
4 if nextState = E then
5 Point current = a.getPosition()
6 next(a) = current.explore()

7 else if nextState = T then
8 Point t = map.getRandomPoint()
9 Point current = a.getPosition()

10 next(a) = current.moveToward(t)

11 else
12 do nothing

13 end

14 end
15 return next

a set of hotspots, which usually correspond to towns, or in general to points of
interest in the virtual world. Each hotspot has a circular area characterized by a
center and by a radius. Traces generation goes through two phases: initialization
and running.

In the initialization phase, the area of the virtual environment is divided in
hotspot area and outland area. The percentage of the hotspot area is defined by
phot and, consequently 1 − phot represents the outland area. The hotspots are
placed randomly in the virtual environment. The number of hotspot is defined
by the parameter Hnum. Their radius is computed such that the total area
covered by the hotspots is in accordance to phot. The parameter pden defines
the probability that an avatar would be initially placed in an hotspot, whereas
1− pden defines the probability for an avatar to be initially placed in outland. If
the avatar is placed in the outland, its position is chosen uniformly at random
on the whole map. Otherwise, an hotspot for the avatar is randomly selected
and the avatar is positioned inside the hotspot. The position inside the hotspot
is chosen by considering a Zipfian distribution, so to ensure an higher density of
players near the center of the hotspot.

The running phase moves the avatars across the virtual environment. The
movements are driven by a Markov chain, whose transition probabilities are
taken from the original paper [12]. The possible states for an avatar is the fol-
lowing:

TRACE: Generating Traces from Mobility Models for DVEs 279

– Halt(H): the avatar remains in place;
– Exploration(E): the avatar explores a specific area. If the avatar is moving

inside an hotspot, the new position is chosen according to a power law dis-
tribution. Otherwise, the new position is chosen at random;

– Travelling(T): the avatar moves straight toward another point in the virtual
environment. The new point is chosen in accordance with pden.

Initially every avatar is in state H. At each step t, the model decides the
new state according to the probability of moving between states defined in the
Markov chain. This mobility model exposes a fair balance between the time spent
by avatars in hotspots and outland.

To integrate such model in trace the following steps are required:

– configuration: it is required to load all the model specific configuration vari-
ables such as phot, Hnum and pden;

– additional functionalities: since this model requires a Markov Chain to move
the avatars between different states, i.e. (H, E, T), we implemented an utility
class to easily know, given a state, which is the next state of the avatar;

– AMobilityModel : the core of the model is the implementation of the AMobil-
ityModel interface. Specifically, it is required to implement the move method
where trace provides the position of the avatars at time t− 1 as well as an
object describing the virtual environment where is possible to find the posi-
tion and size of the hotspots and objects. The model must return the position
of the avatars at time t. Refer to Algorithm 1 to an example of the method’s
definition and implementation.

For what concerns the initialization phase, our implementation at time 0
follows the specification of the initialization phase provided in the original paper.
During the running phase, we generate a new position for each avatar (Line 2)
and the new state of the avatar according to its previous state (Line 3). Based on
the next state, we follow the specification of the model for the Travelling state
(Line 7), Exploration state (Line 4) and Halt state (Line 11). We collect all the
new positions in a list and we return all the new positions (Line 15).

Finally, to use the new implemented model, it is required to modify the config-
uration of trace, giving a name to the new model, for instance “BlueBanana”,
and providing the package and class name where it is implemented. Next, it is
necessary to set, in the configuration, the property “model BlueBanana”, as well
as all the configuration parameters required by the model. The execution will
use the selected model and generate the traces accordingly.

5 Experimental Results

We implemented trace in Java and we make the code publicly available4. For all
the experiments, we considered a virtual environment composed by a squared
region with side having 1500 points. Each avatar has a circular AoI, whose
4 https://github.com/hpclab/trace.

https://github.com/hpclab/trace

280 E. Carlini et al.

radius is 15 points. Each hotspot has a circular shape, whose radius is 100
points. The simulations ran on a machine equipped with Java 7, 128 Gb of
RAM, an AMD Opteron(TM) Processor 6276 with 32 cores @1.4 Ghz. In the
following, we present results showing some properties of the models implemented
in trace. In particular, the avatars’ crowding in the virtual world (Sect. 5.1) and
the estimated bandwidth consumption to transmit objects of the virtual world
(Sect. 5.2). We conclude our experiments with an evaluation of the computational
time to generate a mobility model and the scalability of trace (Sect. 5.3).

5.1 Evaluating the Crowding Generated

With the terms crowding we refer to the evaluation of the number of avatars
present in each avatar’s AoI. This metric assesses how much communication is
required to keep updated the vision of the avatars with respect to the other
players in the game.

Figure 2a shows the average number of avatars in the AoI of each avatar for
all the models produced by trace. On the X axis is represented the number of
avatars present in the virtual world, on the Y axis the average number of avatars
in a AOI. We generate for each model a trace having a number of avatars in the
range [100, 1600]. It is interesting to note that with rpgm we obtain similar
results in all the configurations. This result is expected because we configure
rpgm in order to keep the number of groups equals to 1/20 of the number of
avatars. The two models based on random movements are the ones having the
less number of avatars in the AoI. Instead, lapt is the model having the larger
increase of crowding as the number of avatars grows, because all the avatars
move only between hotspots. With bluebanana this effect is mitigated because
a percentage of the avatars is free to move outside the hotspots.

For what concerns lapt and bluebanana, the models that take in consid-
eration the hotspots, Fig. 2b shows the impact of the number of hotspots using

Fig. 2. Evaluation of Optimizations

TRACE: Generating Traces from Mobility Models for DVEs 281

the same metric of the previous figure. Note the log scale on the Y axis. When
the number of hotspots is kept low, lapt is, in both the configurations, the
model having a larger crowding factor. However, when the number of hotspots
increases, the two models behave similarly.

5.2 Evaluating the Bandwidth to Transmit Objects

In this set of experiments, we evaluate the ability of trace to model the avatars
and objects placement. In particular, when an object enters the AoI of an avatar,
a transmission of the object to the avatar is required, resulting in a bandwidth
consumption. We measure the total number of objects transmitted when increas-
ing the total number of objects in the virtual world. We test the two methodolo-
gies to distribute the objects, respectively the uniformly at random in Fig. 3a,
and higher probability in the hotspots in Fig. 3b. For the uniformly at random
placement, all the models behave similarly and have a linear increase of the
bandwidth with respect to the number of objects. Only lapt have a little more
bandwidth requirement but in the same order of magnitude. Instead, when the
objects are more present in the hotspots area, Fig. 3b, the two models, lapt
and bluebanana, as expected, require more bandwidth, because the avatars
are more present in the hotspots area.

Fig. 3. Evaluation of Bandwidth consumption

5.3 Evaluating the Computational Time and Scalability

Finally, we test the computational time required by trace to generate the traces.
Figure 4a depicts the computational time when requesting a different number
of avatars moving in the virtual world. As expected, the time increases when
increasing the number of avatars but it is acceptable also with a large num-
ber of avatars, as well as 51 200 avatars. All the mobility models behaves simi-
larly. Due to this, we perform the scalability of trace only with the rw model

282 E. Carlini et al.

Fig. 4. Evaluation of computational time

(we confirm that with other models the shape of the curve is identical). We are
able to test our tool with a scenario having a number of cores in the range [1, 32].
We obtain a good scalability of trace. For instance, with 8 cores we obtain a
speed-up of 6.67 to a maximum of 8 and with 12 cores a speed-up of 12.21 to a
maximum of 16.

6 Conclusions

This paper described the design and the main features of trace, a software
toolkit for the generation of mobility traces targeting DVEs. We showed that is
possible to implement a mobility model and create personalized mobility traces
with few lines of code, by extending the described programming interface. trace
is able to manage thousands of avatars concurrently, and its experimental evalua-
tion showed its good scalability when multiple cores are used for the generation of
traces. In conclusion, we believe that trace can be an effective tool to facilitate
the evaluation of DVEs frameworks and to implement effective mobility models.
In the future, we plan to extend the tool by providing even more options for
the generation of traces, as for example an command-line interface to generate
traces in a programmatic way.

References

1. Bai, F., Helmy, A.: A Survey of Mobility Models. Wireless Adhoc Networks, vol.
206. University of Southern California, USA (2004)

2. Bharambe, A., Douceur, J.R., Lorch, J.R., Moscibroda, T., Pang, J., Seshan, S.,
Zhuang, X.: Donnybrook: enabling large-scale, high-speed, peer-to-peer games.
ACM SIGCOMM Comput. Commun. Rev. 38(4), 389–400 (2008)

3. Carlini, E., Coppola, M., Ricci, L.: Evaluating compass routing based aoi-cast by
mogs mobility models. In: Proceedings of the 4th International ICST Conference
on Simulation Tools and Techniques, pp. 328–335. ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering) (2011)

TRACE: Generating Traces from Mobility Models for DVEs 283

4. Carlini, E., Dazzi, P., Mordacchini, M., Lulli, A., Ricci, L.: Community discov-
ery for interest management in DVEs: a case study. In: Hunold, S., Costan,
A., Giménez, D., Iosup, A., Ricci, L., Gómez Requena, M.E., Scarano, V., Var-
banescu, A.L., Scott, S.L., Lankes, S., Weidendorfer, J., Alexander, M. (eds.)
Euro-Par 2015. LNCS, vol. 9523, pp. 273–285. Springer, Cham (2015). doi:10.
1007/978-3-319-27308-2 23

5. Carlini, E., Ricci, L., Coppola, M.: Flexible load distribution for hybrid distributed
virtual environments. Futur. Gener. Comput. Syst. 29(6), 1561–1572 (2013)

6. Gross, C., Lehn, M., Münker, C., Buchmann, A., Steinmetz, R.: Towards a com-
parative performance evaluation of overlays for networked virtual environments.
In: 2011 IEEE International Conference on Peer-to-Peer Computing (P2P), pp.
34–43. IEEE (2011)

7. Guo, Y., Iosup, A.: The game trace archive. In: Proceedings of the 11th Annual
Workshop on Network and Systems Support for Games, p. 4. IEEE Press (2012)

8. Hong, X., Gerla, M., Pei, G., Chiang, C.C.: A group mobility model for ad hoc
wireless networks. In: Proceedings of the 2nd ACM International Workshop on
Modeling, Analysis and Simulation of Wireless and Mobile Systems, pp. 53–60.
ACM (1999)

9. Hu, S.Y., Chen, H.F., Chen, T.H.: VON: a scalable peer-to-peer network for virtual
environments. IEEE Netw. 20(4), 22–31 (2006)

10. Kavalionak, H., Carlini, E., Ricci, L., Montresor, A., Coppola, M.: Integrating peer-
to-peer and cloud computing for massively multiuser online games. Peer-to-Peer
Netw. Appl. 8(2), 301–319 (2015)

11. Lee, K., Hong, S., Kim, S.J., Rhee, I., Chong, S.: Slaw: a new mobility model for
human walks. In: INFOCOM 2009, pp. 855–863. IEEE (2009)

12. Legtchenko, S., Monnet, S., Thomas, G.: Blue banana: resilience to avatar mobility
in distributed MMOGs. In: 2010 IEEE/IFIP International Conference on Depend-
able Systems and Networks (DSN), pp. 171–180. IEEE (2010)

13. Nae, V., Prodan, R., Fahringer, T.: Cost-efficient hosting and load balancing of
massively multiplayer online games. In: 2010 11th IEEE/ACM International Con-
ference on Grid Computing (GRID), pp. 9–16. IEEE (2010)

14. Ricci, L., Carlini, E.: Distributed virtual environments: from client server to cloud
and P2P architectures. In: 2012 International Conference on High Performance
Computing and Simulation (HPCS), pp. 8–17. IEEE (2012)

15. Ricci, L., Carlini, E., Genovali, L., Coppola, M.: AOI-cast by compass routing in
delaunay based DVE overlays. In: 2011 International Conference on High Perfor-
mance Computing and Simulation (HPCS), pp. 135–142. IEEE (2011)

16. Schmieg, A., Stieler, M., Jeckel, S., Kabus, P., Kemme, B., Buchmann, A.: pSense-
maintaining a dynamic localized peer-to-peer structure for position based multicast
in games. In: Eighth International Conference on Peer-to-Peer Computing P2P
2008, pp. 247–256. IEEE (2008)

17. Triebel, T., Lehn, M., Rehner, R., Guthier, B., Kopf, S., Effelsberg, W.: Generation
of synthetic workloads for multiplayer online gaming benchmarks. In: Proceedings
of the 11th Annual Workshop on Network and Systems Support for Games, p. 5.
IEEE Press (2012)

18. Yu, A.P., Vuong, S.T.: MOPAR: a mobile peer-to-peer overlay architecture for
interest management of massively multiplayer online games. In: Proceedings of the
International Workshop on Network and Operating Systems Support for Digital
Audio and Video, pp. 99–104. ACM (2005)

http://dx.doi.org/10.1007/978-3-319-27308-2_23
http://dx.doi.org/10.1007/978-3-319-27308-2_23

Towards a Methodology to Form Microservices
from Monolithic Ones

Gabor Kecskemeti1(B), Attila Kertesz2,3, and Attila Csaba Marosi2

1 Liverpool John Moores University, Liverpool, UK
g.kecskemeti@ljmu.ac.uk

2 Institute for Computer Science and Control,
Hungarian Academy of Sciences, Budapest, Hungary
{kertesz.attila,marosi.attila}@sztaki.mta.hu

3 University of Szeged, Szeged, Hungary
keratt@inf.u-szeged.hu

Abstract. Cloud computing is the cornerstone for elastic and on-
demand service provisioning to achieve more efficient resource utilisation
and quicker responses to varying application loads. Virtual machines, one
of the building blocks of clouds, can be created using provider specific
templates stored in proprietary repositories, which may lead to provider
lock-in and decreased portability. Despite these enabling technologies,
large scale service oriented applications are still mostly inelastic. Such
applications often use monolithic services that limit the elasticity (e.g., by
obstructing the replicability of parts of a monolithic service). Decompos-
ing these services to smaller, more targeted and more modular services
would open towards elasticity, but the decomposition process is mostly
manual. This paper introduces a methodology for decomposing mono-
lithic services to several so called microservices. The proposed method-
ology applies several achievements of the ENTICE project: its image
synthesis and optimisation tools. Finally, the paper provides insights on
how these achievements help revitalise past monolithic services, and what
techniques are applied to aid future microservice developers.

1 Introduction

Cloud computing enables elastic and on-demand service provisioning by building
on the achievements of virtualisation technologies. Virtual machines, or in short
VMs, are software constructs that mimic real-life hardware with the help of
hypervisors, also known as virtual machine monitors. VMs open up possibilities
like improving resource utilisation (e.g., by server consolidation) and adapting
applications to varying application loads by scaling them up or down. VMs can
be created using provider specific templates and virtual hard disk files (so called
virtual machine images) stored in proprietary repositories. The creation process

This research work has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 644179 (ENTICE).

c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 284–295, 2017.
DOI: 10.1007/978-3-319-58943-5 23

Towards a Methodology to Form Microservices from Monolithic Ones 285

of VMs depends on the applied cloud and virtualisation technique in particular,
but as well as on the application to be hosted in the VM.

These virtualised environments host a wide range of services, but are mostly
delivered as a monolithic block composed of multitude of sometimes vaguely
related functionalities. Unfortunately, because of the monolithic nature of these
services, creating VMs hosting them costs significant amounts of time. Also, the
user needs to instantiate a VM that host a complete monolithic service regardless
of whether he/she needs only a subset or one of the offered functionalities. This
results in large portions of the VM left unused, since the rest of the functionalities
are not needed by users. The concept of microservices were proposed [13] to avoid
these problems. This concept ensures that there is only a single, well defined
functionality offered by a particular VM and its image is optimised just to host
this functionality.

Namiot and Sneps-Sneppe [8] defined microservices as lightweight and inde-
pendent services that perform single functions collaborating with other similar
services through a well-defined interface. On the contrary, in monolithic archi-
tecture, services are deployed as united solution called a monolith. Its main
drawback is the large code base and complexity, which erodes modularity and
hinders productivity. The authors also argued that splitting up monoliths to
microservices can result in a more manageable and scalable application.

Creating virtual machine images for such microservices is mostly done manu-
ally by skilled developers and it is a tedious task. Generally, the building process
is done through the following distinct approaches: (i) developing a new system
just for the necessary functionality, (ii) manually selecting parts of a previously
created and widely used monolithic service (that is often integral part of a com-
pany’s business process) until it mostly contains the desired functionality. In the
first case, the past legacy service functionality is replaced with a new one, which
might not fit well into the current business processes. In the second case, the man-
ual code clean-up procedure often overlooks significant parts of the monolithic
service thus the procedure does not necessary lead to the level of microservices
(i.e., the resulting VM image might retain some unrelated features).

The goal of this research is to propose a methodology that can be used to
split up a monolithic service to small microservices. These later can be used to
increase the elasticity of large scale applications, or to allow more flexible com-
positions with other services. To achieve this, we incorporate several techniques
to the microservice creation process: (i) we present a recipe based generic image
creation service that is capable to create VM and container images crafted for
particular cloud systems, (ii) we reveal how a dynamic, live-evaluation based
image size optimisation technique could be utilised to create a family of images
based on the previous monolithic service, and (iii) we show how this image
family can be turned to a set of microservices within the ENTICE environment.

The remainder of this paper is as follows: Sect. 2 presents related work,
then Sect. 3 introduces the ENTICE project. Section 4 introduces the pro-
posed methodology, detailing the recipe-based image synthesis and image size
optimizations. Finally, the contributions are summarised in Sect. 5.

286 G. Kecskemeti et al.

2 Related Work

To foster a more efficient and scalable cloud application management, the app-
roach of composing microservices can be used [13]. Microservice building can
be done by different tools, such as Puppet [10], Chef [2], and Docker [3]. These
tools can cover the development and operation aspects of system administration
tasks, such as delivery, testing and maintenance to improve reliability, security
and so on. For example, Tihfon et al. [12] used Docker to deploy applications
based on microservices. Gabbrielli et al. [5] proposed an automatic and optimised
deployment of microservices written in the Jolie language. Their tool can auto-
matically generate a fully detailed Service-Oriented Architecture configuration
starting from an abstract description of the target application. In this paper,
we focus on microservice image synthesis and optimisations during the creation
process instead of optimisations applied during the deployment of the services.

Existing methods for VM image creation do not provide size and functional
optimisation features other than dependency management, which is based on
predefined dependency trees produced by third-party software maintainers. If a
complex software is not annotated with dependency information, it requires man-
ual dependency analysis upon VM image creation based on worst case assump-
tions and consequently. The resulting VM images are far from optimal size in
most cases. On the other hand, optimising the size of existing images by aiming at
providing only particular functionalities can be addressed with two approaches:

1. The pre-optimising approach requires the VM image developer to provide
the application and its known dependencies prepared as reusable VM image
components. The image developers select from these components so that they
can form the base of the user application. These approaches then form the
VM image with the selected reusable components and the service itself. For
example, the company SAS [11] applied this algorithm with an extension that
supports creating custom VM images by building from the source code. Other
pre-optimising approaches determine dependencies within the VM image by
using its source code using Software clone and dependency detection tech-
niques [1]. Once the dependencies are detected, these approaches leave only
those components that are required for serving the key functionality of the
VM image. Optimising a VM image with these techniques requires the source
code of all the software encapsulated within the image and to analyse the
underlying systems.

2. The post-optimising approach uses existing but unoptimised VM images or, in
the extreme case, optimised VM images with known software. To support this
approach, several OS and application vendors offer the minimalist versions of
their products packaged together with their Just-enough Operating System [6]
using the Virtual Appliance approach. However, this approach requires the
image developer to manually install its application to a suitable optimised VM
image. The advantage of these approaches is the fast creation of the images
but at the price that the developer has to trust the optimisation attempt of
the used VM image’s vendor. If the image is not well optimised, or the vendor

Towards a Methodology to Form Microservices from Monolithic Ones 287

offers a generic image for all uses then the descendant VM images cannot be
optimal without further efforts.

Existing research mostly focuses on pre-optimising approaches, which are not
applicable to already available VM images. In ENTICE we use an VM synthesiser
to extend pre-optimising approaches so that image dependency descriptions are
mostly automatically generated.

3 The ENTICE Project

The ENTICE project [4] is a multidisciplinary team of computer scientists, appli-
cation developers, cloud providers and operators with the aim to research a ubiq-
uitous repository-based technology for VM and container image management
called ENTICE environment. This environment proves a universal backbone
for IaaS VM/container image management operations, which accommodate the
needs for different use cases with dynamic resource (e.g., requiring resources for
minutes or just for a few seconds) and other QoS requirements. As the discussed
concepts are not dependent on the applied virtualisation technology, the rest of
the paper uses the terms VM image and container image interchangeably.

The technologies developed by the ENTICE project are completely decou-
pled from the particular applications and their runtimes. Despite the decou-
pling, ENTICE still provides constant support for applications via optimised
VM image creation, assembly, migration and storage. ENTICE expects users
to provide their original and functionally complete VM or container images.
Then it transparently tailors and optimises the images for user targeted Cloud
infrastructures with respect to their size, configuration, and geographical dis-
tribution. As a result of the optimisation, these images are dispatched to the
clouds (even across Clouds), executed faster and they have a potential for QoS
improvement. ENTICE stores metadata about the images and fragments in a
distributed knowledge base to be used for interoperability, integration, reasoning
and optimisation purposes (e.g., supporting decisions about replica locations for
high demand images and also decisions about the time instances at which an
image should be replicated).

In the following we list the main ENTICE objectives:

1. The distributing Virtual Machine and Container Images (VMIs) with the
ENTICE repository;

2. The analysis and synthesis of VMIs for already existing services and func-
tionalities;

3. An image portal in association with a knowledge base, composing together
the components of the projects’ distributed, highly optimised repository.

Albeit there could be numerous stakeholders in the cloud computing context,
the project aims at the following list of stakeholders specifically who should
directly benefit from the distributed image repository built by ENTICE:

288 G. Kecskemeti et al.

– End-customers, such as the users of the satellite image service of Deimos1

should not be aware of the Deimos’s use of the ENTICE repository environ-
ment. On the other hand, they should still benefit from the better Quality
of Service (QoS) in the runtime of Deimos’s applications as a result of the
ENTICE applied optimisations.

– Cloud Application Providers and/or Software as a Service (SaaS) providers,
such as the company Wellness Telecom2, are offering SaaS applications uti-
lizing the Cloud to serve many of their customers;

– Application Developers, such the above mentioned Deimos, who aim at deploy
and run their applications with high efficiency. For example, Deimos is oper-
ating a satellite and is in great need for such deployment optimisations for its
Earth observation platform and its customers (i.e. the previously discussed
end-customers);

– Cloud Operators, such as the well-known company Flexiant3 which has sev-
eral offerings in the area of managing cloud applications across multiple
clouds;

– Cloud Providers, such as Amazon EC24 could benefit through incorporating
ENTICE technologies in their VMI storage and management solution, or even
if just their customers are applying ENTICE optimizations on their images.

4 The Proposed Methodology

Our goal set out for this research was to identify a simple to follow methodology
usable fragment a monolithic application alongside its sub-service boundaries.
Allowing these sub-services to act as small micro-services that later can be com-
posed to other services (without the need of the entire monolithic application).
The original monolithic image can then act as an shared base for its derived
micro-service family. To achieve this, we use image synthesis and image analysis
methods which both have pivotal roles within the architecture of the ENTICE
project.

Our VMI synthesis mechanism enables users to build new images with several
approaches. First, it allows the use of generic user provided images or software
recipes to act as the foundation before specialising them into micro services.
Next, VMI synthesis cooperates with the ENTICE image portal (the main GUI
for image creation and distribution procedures) to identify the functional require-
ments a newly created image must meet (this must be done on a per micro service
basis - i.e., resulting a new image from every functional requirement specified).
Then, our synthesis tool modifies the generic images (from the first step) either
directly (by altering the image file(s)) or indirectly (through creating alternative
recipes that lead to more compact images). These alterations aim at removing
contents from the original images. Thus the alterations lead the generic images
1 http://www.deimos-space.com/.
2 http://www.wtelecom.es/.
3 https://www.flexiant.com/.
4 http://aws.amazon.com/ec2.

http://www.deimos-space.com/
http://www.wtelecom.es/
https://www.flexiant.com/
http://aws.amazon.com/ec2

Towards a Methodology to Form Microservices from Monolithic Ones 289

towards their single purpose: namely, the functional requirements listed against
the image in the portal. For optimised images, VMI Synthesis offers image main-
tenance operations (e.g., allowing software updates to be done on the original
image and transforming those updates to the optimised image).

Alongside synthesis, ENTICE also delivers VMI analysis allowing the dis-
covery of equivalent pieces in apparently non-related VM images which were
sometimes even received from different stakeholders or communities. Analysis
operates independently of the cloud provider where the image is stored. Equiv-
alence information then stored in the ENTICE knowledge base for later use.
ENTICE also allows splitting VM images into smaller fragments allowing the
storage of the frequently shared image components only once (e.g., a particular
flavour of Linux used by two different images). Fragmenting fosters the VM image
distribution and enables the optimization of overall storage space throughout the
distributed repository.

As fragmented images would not be directly usable in clouds, the ENTICE
environment offers virtual machine management templates (so called VMMTs)
to be stored in the repositories of the connected cloud systems. These VMMTs
allow the fragmented images to be reconstructed at runtime. For optimal
VM instantiation performance, the templates are formulated as stand-alone
VM/Container images solely having functionality to access and build fragments
from the project’s distributed repository. After a VM is instantiated using a
VMMT, it will ensure fragments (needed for a particular functionality specified
by the user) are placed and enabled for use in the instantiated VM. VMMTs
even allow customisation of files/directories for specific VMs in accordance of the
needs of various stakeholders. The functions of the VMMTs are underpinned by
user-defined functional and non-functional descriptions about the application to
be deployed with the help of the ENTICE knowledge base and its reasoning
mechanisms.

In Fig. 1, we reveal the use case diagram for ENTICE’s image synthesis. The
nodes (use cases) of the diagram were derived from the comprehensive require-
ment set (i.e., both originated from pilot cases and architectural ones) and the
foundational principles of the project objectives. As a result, these use cases
are expected to cover the requirements and project objectives where applica-
ble, while they are strictly limited to image synthesis and analysis aspects. The
Application Developer is expected to behave as the key actor who interacts with
most use cases and can initiate most activities. Apart from the developer, we also
expect Service Providers to use our image synthesis solution when they decide
whether they should to adopt a particular service and image version. We also
expect ENTICE’s image distribution component to interact with the optimiser
if it foresees potential for more optimal delivery by automatically continuing
the optimization of not yet completely optimised images. In the coming subsec-
tions, we describe the most relevant use cases by considering and discussing their
requirements (and some of their specific aspects), and then revealing our plans
to fulfil them.

290 G. Kecskemeti et al.

Fig. 1. Detailed use cases of image synthesis

4.1 Recipe Based Image Synthesis

This section mainly focuses on the use cases of “Describe generic image with
recipes” and “Introduce new VM image” (see Fig. 1). These use cases focus
on the application developer’s activities when he/she wishes to build a set of
cloud provider specific VM/Container images. The use cases discuss the ways
developer provided recipes used to create new images with the help of devops
concepts. On this use case level, the recipes are expected to guide the creation
of the developer’s original monolithic service on a generic way.

The recipe based image synthesis process of ENTICE can be seen in Fig. 2.
It depicts 7 steps starting by creating an image, and ending with an optional
cancel request. ENTICE provides APIs in a REST interface to use the services
covered by these steps. There is also a backend part of this Synthesis service that
uses other subcomponents to create the requested images. The images that can
be managed in these processes may be of normal virtual machines (e.g. VMIs)
or containers. The contents can also vary from microservices to complex ones.
As they suggests, microservices in containers have smaller footprints, therefore

Towards a Methodology to Form Microservices from Monolithic Ones 291

they are easier to optimize. As shown in Fig. 2 the API enables the following
processes:

– 1: submission of build requests;
– 5: retrieve build results;
– 6: query the status of the builds (optional);
– and 7: cancel ongoing builds (optional).

The image creation process at the backend consists of two parts. The first one
is the building phase, while the second is the testing phase. First let’s detail the
building phase. It can be initiated with the create API call (step no. 1 in Fig. 2)
by specifying the build target with its parameters, and the service description
for the provisioning step, and the test cases for the testing phase.

The first part of the building phase is the bootstrapping step (no. 2). It is
responsible to make a base image (in case of VMI’s) or a container available for
the provision step. It is possible to create them in the following ways:

– from scratch (with tools QEMU/QCOW2);
– targeting a container build (e.g., Docker);
– or using an existing one from a cloud image repository (e.g., Amazon Web-

Services or OpenStack).

In case of QEMU/QCOW2, the build target Debian and Red Hat derived
distributions are supported.

API
Endpoint

Synthesis Service (backend)

QEMU/QCOW2build/bootstrap

build/provision

test/test

Docker

Ubuntu

CentOS

...

Chef-solo

Shell

Berkshelf

Shell ...

create

result

status

...

1.
2.

3.

4.
5.

6.

7.
cancel

AWS (Amazon)

OpenStack

Fig. 2. Process of recipe based image synthesis

292 G. Kecskemeti et al.

The first part of the building phase is the provisioning phase, which respon-
sible for installing the requested microservice by the specified description. It
can be done in two ways. First, a custom shell script can be provided contain-
ing sequential steps to be executed. Another option is to use Chef-solo, where
Chef cookbooks must be provided (e.g. retrieved via Berkshelf) or a custom one.
These targets can also be used together when needed, e.g., performing basic
maintenance via Shell and deploying the requested microservice components to
the image via Chef.

In the testing phase, the image is duplicated, and the supplied test script is
executed in the copied image. The testing methods can be of any type, only the
exit status is what matters: zero means everything went fine, non-zero denotes an
error. The script can deploy any packages from the Linux distribution repository
and beside the shell script a custom zip file can be supplied containing additional
testing tools, but no other external access is allowed for security reasons. The
methods to be used in the testing phase are very flexible, since different ser-
vices require different methods or tools to be tested. The copied test image is
discarded after the tests, and the original one will be available for download.
Currently there is no option to link the image to another location or repository,
this feature will be considered for future work. Our current implementation relies
on ImageFactory [7] and Packer [9].

4.2 Targeted Size Optimisation

In this subsection we detail and exemplify the “Optimize Image size” case of
Fig. 1. This optimization process can be executed once the recipe based synthesis
is finished resulting in several VMIs or container images composing a monolithic
service. We refer to these composing images as original images of an applica-
tion. Usually one of these images implements the functionality of a microservice,
therefore the user can use the ENTICE environment to transform such original
image to an optimized one that holds only the intended microservice function-
ality. The steps needed for this transformation are depicted in Fig. 3. Before
the microservice can be extracted from the original image the user, who knows
the application behavior, need to prepare a functionality test for the required
microservice (in the form of self-contained shell scripts without any dependen-
cies), as shown in Fig. 1 with the “Add new functional requirement” case. Such
tests should utilise all features of the required microservice, and generally they
can be constructed from unit tests of the original, composing application. Hence
these scripts test the intended functionalities of a microservice, they needs man-
ual preparation, but they are sufficient to be used in proof of concept scenarios.
In our future works we will develop techniques to describe the functionality of
an intended microservice, in order to enable automatic test script generation.

Once the functionality test is made available in the ENTICE Image portal,
the pre-evaluation phase can be started, where the original image is instantiated
in a minimal cloud infrastructure (which is part of the ENTICE environment),
as depicted in step 1 of Fig. 3. To this end a virtualised environment (VE) is set
up by instantiating a new VM or container with its filesystem instrumented for

Towards a Methodology to Form Microservices from Monolithic Ones 293

Minimal cloud

VM
Instr.

FS of O.
Img.

Optimiser cloud

Optimiser
VM

Image
Repo PO

Img

VM PO
Img

ENTICE Environment

1.
2.

3.

4.

5.

6.

7.

Functionality
 test

O. Img.

user

Fig. 3. Steps to transfrom an image to host only the intended microservice

read operations (called Instr. FS in the figure). Once the ENTICE environment
starts, it collects the VE’s read access operations to its disks (step 2 in Fig. 3).

Besides this data collection process, the microservice’s functionality test is
also executed by pointing its shell script to the VE’s host. If the test fails after
the execution, the collected data is discarded and the user is notified about
the incorrect test result for the original image. If the test is successful, the
collected data (representing the list of read blocks in the VE) is transformed to
reflect individual files in the original image. The list of files acquired during this
transformation is the so called restricted list.

The next step is the image optimisation phase. From now on, we assume
that files that are not referenced by the restricted list are not relevant for the
actual microservice. This means that in step 3 of Fig. 3 the system uploads a
partially optimised image (PO image) that contains only the registered files
(thus all unreferenced files are deleted from it). In step 4, an Optimizer VM is
deployed and contectualized to use this image, and to perform the optimisation
procedure by executing a test script in step 5. Here it analyses the remaining con-
tents of the PO image and selects parts of the image that can still be removed.
These newly selected parts should also be not relevant for the microservice’s
intended functionality, instead they are believed to be used by background activ-
ities of the original image (e.g., startup procedures and periodic activities unre-
lated to the core functionality). Since in this paper we present and describe the

294 G. Kecskemeti et al.

methodology (inner workings) of the ENTICE environment, we do not introduce
specific selection techniques to applied on the PO image for further optimisa-
tions.

Once the PO image is modified and additional files are removed, the Opti-
miser VM uploads the new image to the cloud in step 6, and tests the image
by instantiating it and evaluating its VE via the user-provided shell script. In
case the evaluation is successful, the newly uploaded image will be taken as a
new PO image instead of the previous one. It the evaluation fails, the selection
technique is restarted with the previously examined PO image. These optimiza-
tion processes are repeated until the user-defined cost limits are not achieved,
or till no more selectable image parts are found. By the end of this step the
final PO image will be ready (containing only the intended functionality of the
microservice), which is given back to the ENTICE environment in step 7.

It may happen that the user wants to alter the interface of this optimized
image after the optimization process. Generally the microservice offers a min-
imised feature set compared to the original image, so it is reasonable to reduce
the interface, too. In this case the optimisation phase should be rerun with the
altered interfaces on the original image, but the process will be much faster,
since past selection errors are saved and reused by the system.

5 Conclusion

Virtual machine and container images are generally created by provider-specific
templates stored in proprietary repositories, which may lead to provider lock-
in and decreased portability. Despite these enabling technologies, large-scale
service-oriented applications are still mostly inelastic due to the robust services
they create. In this paper we introduced image repository management of multi-
ple federated clouds in the frame of the ENTICE project, which tries to address
this issue by transfroming monolithic services to microservices. Hence, we pro-
vided a methodology for microservice creation with an image synthesis approach,
which can be used to create optimized images in a distributed repository.

In the future we will work on generalizing monolithic service fragmenta-
tion to support such monolithic services that cannot be decomposed without
introducing alternative protocols in the communication between the fragmented
microservices. We also envision further optimisations of microservice delivery by
identifying common parts of microservice in the form of custom virtual machine
management templates. Such templates would allow better image part selection
and faster optimisations.

References

1. Belguidoum, M., Dagnat, F.: Dependency management in software component
deployment. Electr. Notes Theor. Comput. Sci. 182, 17–32 (2007)

2. Chef: http://www.getchef.com, May 2016
3. Docker: https://www.docker.io, May 2016

http://www.getchef.com
https://www.docker.io

Towards a Methodology to Form Microservices from Monolithic Ones 295

4. ENTICE consortium: Entice project website. http://www.entice-project.eu/, May
2016

5. Gabbrielli, M., Giallorenzo, S., Guidi, C., Mauro, J., Montesi, F.: Self-reconfiguring
microservices. In: Ábrahám, E., Bonsangue, M., Johnsen, E.B. (eds.) Theory and
Practice of Formal Methods, pp. 194–210. Springer, Heidelberg (2016)

6. Geer, D.: The OS faces a brave new world. Computer 42, 15–17 (2009)
7. Image Factory: http://imgfac.org/, May 2016
8. Namiot, D., Sneps-Sneppe, M.: On micro-services architecture. Int. J. Open Inf.

Technol. 2(9) (2014)
9. Packer: https://www.packer.io/, May 2016

10. Puppet: http://puppetlabs.com, May 2016
11. SAS: rBuilder. http://www.sas.com/en us/software/sas9.html, May 2016
12. Tihfon, G.M., Kim, J., Kim, K.J.: A new virtualized environment for application

deployment based on Docker and AWS. In: Kim, K., Joukov, N. (eds.) ICISA 2016.
LNEE, vol. 376, pp. 1339–1349. Springer, Heidelberg (2016)

13. Toffetti, G., Brunner, S., Blöchlinger, M., Dudouet, F., Edmonds, A.: An archi-
tecture for self-managing microservices. In: Proceedings of the 1st International
Workshop on Automated Incident Management in Cloud, pp. 19–24. ACM (2015)

http://www.entice-project.eu/
http://imgfac.org/
https://www.packer.io/
http://puppetlabs.com
http://www.sas.com/en_us/software/sas9.html

Misrouted Prophecy – On the Impact
of Security Attacks on PRoPHET

Raphael Bialon(B) and Kalman Graffi

Heinrich-Heine-University Düsseldorf, Universitätsstraße 1,
40225 Düsseldorf, Germany

{bialon,graffi}@cs.uni-duesseldorf.de

Abstract. In opportunistic networking, the wireless connectivity of
mobile nodes is used to engage in opportunistic contacts, to exchange
messages and thus to forward message in a store-carry-forward approach
to a destination. Routing algorithms were developed with regards to
the characteristics of these regularly partitioned networks. Network par-
titioning, no guarantee on device availability, and long delivery delays
make these networks outstanding from traditional networks. In this
paper, we investigate the behaviour of the prominent routing algorithm
PRoPHET in opportunistic networks under different attack strategies.
The attacks are performed by malicious nodes aimed at sabotaging the
routing process in the network. Utilising ONE, the opportunistic network
environment simulator, we conduct tests on these attacks and evalu-
ate the outcomes of networks with malicious nodes compared to regular
network behaviour. Through characteristic scenarios we document the
behaviour of the network under attack. While in most cases the impact
is tremendous, we also observe an interesting case of an attack causing
an improved result in the network under attack.

Keywords: Opportunistic networks · Security · Attacks · PRoPHET
routing

1 Introduction

Smartphones and small high-performance gadgets have become a ubiquitous part
of our everyday life. Eminently mobile and connected through various wireless
interfaces, these devices are perfect applicants to participate in opportunistic
networks [2]. Establishing connections while their owners encounter each other,
deliberately or not, they can be parts of a large amount of small, segregated wire-
less mesh networks. Utilising their mobility, one can bring information from all
these segregated networks into a large time-delay network, where data exchange
happens between intermediate devices, allowing for a delayed routing of messages
over large distances.

The scenario of opportunistic networks is applicable to Android-based wire-
less networks, such as presented in [7,20]. These approaches, build on casual, not
necessarily rooted Android devices, i.e. a basis of 82.8% of all smartphones in
c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 296–308, 2017.
DOI: 10.1007/978-3-319-58943-5 24

Misrouted Prophecy – On the Impact of Security Attacks on PRoPHET 297

the year 20151. Application areas range from wireless multi-chat Apps, to local
file sharing networks as well as fully decentralized, private and local collabora-
tive applications, for e.g. such as computer supported collaborative work or local
distributed virtual world for gaming or enterprise applications.

The most prominent routing protocol in literature for the opportunistic
networks is Probabilistic Routing using History of Encounters and Transitivity
(PRoPHET) [12]. It provides a probabilistic routing without having an omni-
scient view on the network and its participants. While it focuses on a best proba-
bility routing, security counter-measures were not included in the original design
of the protocol and also have been rarely discussed up to now in literature.

In this paper, we provide an analysis of the outcomes of security attacks on
PRoPHET. In Sect. 2, we give a short description of the PRoPHET protocol that
is essential to understand the attacks. Section 3 presents related work focusing
on security attacks and counter-measures on PRoPHET Then, in Sect. 4, we
propose seven different attacks on PRoPHET. These attacks are evaluated util-
ising an opportunistic network simulation in Sect. 5. Finally, we conclude on our
observations and give an outlook on future work in Sect. 6.

2 PRoPHET Routing Protocol

PRoPHET, as presented in [5,12], is a probabilistic routing protocol which can
be applied onto opportunistic networks. Because of the nature of opportunistic
networks, paths for message routing are not known before a message is sent or
even during transmission, there is also no guaranteed comprehensibility after a
successful transmission. Message routing is conducted on single nodes’ decisions
for the next hop to forward the message to. Nodes utilising PRoPHET consult
a probabilistic function to determine the suitability of a potential next hop. For
the calculation of this function, PRoPHET takes node encounter history and
transitivity between nodes into account. A delivery predictability is calculated
for each encountered node utilising the number and duration of encounters.
Different versions of PRoPHET take different information on the encounters
into account.

Because encounters may be singular and not happen all the time, information
aging is performed on calculated values to favour more recent and active encoun-
ters instead of less recent ones. Another important characteristic of PRoPHET is
the application of transitivity of node connections. Utilising connections between
multiple nodes, a probable route for the packet can be sought.

PRoPHET then uses the delivery predictability and a given amount of copies
of the message to distribute it along suitable encounters. The PRoPHET-RFC
describes a default strategy for message distribution as follows: If an encountered
node has a higher delivery predictability than the current node and the maximum
amount of copies is not yet reached, the message is forwarded to the encountered
node for further routing.

1 See https://www.idc.com/prodserv/smartphone-os-market-share.jsp.

https://www.idc.com/prodserv/smartphone-os-market-share.jsp

298 R. Bialon and K. Graffi

3 Related Work

While PRoPHET is very prominent, only few work in literature addresses its
security issue.

In [6], the authors introduce the concept of a trust-based security protocol
in PRoPHET. The only attack considered in [6] is the Black hole Attack where
a node imposes itself into an important network position by propagating false
information on its capacities or other features. It is then a main actor in the
routing process and misuses its position to drop received packets. This way it
breaks down a part of the network by not delivering data. In our work, we do not
focus on only one attack, but on a larger amount of attacks on the PRoPHET
protocol in opportunistic networks.

In [15], the authors describe a security analysis of two opportunistic network
models using Complex Network Properties, such as Average Shortest Distance,
Degree Distribution, and Clustering Coefficients. The authors are interested in
network robustness against attacks, specifically a Wormhole Attack. While they
focus on the effects of network properties using a wormhole attack, we utilise
an attack tree according to the definitions in [18] to define different categories
of attacks, whose effects on message transmission are observed. We then inves-
tigate the outcomes of this variety of attacks carried out by a varying number
of malicious nodes.

4 Attack Tree

In this paper, we aim at a comprehensive analysis of various attack classes on
performed by selfish and/or malicious nodes on the PRoPHET protocol. An
overview of these attacks is given in Table 1, the attacks are defined according
to the methodology of attack trees described in [18].

Table 1. Attack tree

Misrouted Prophecy – On the Impact of Security Attacks on PRoPHET 299

4.1 Attack Types

In the following we give a short overview on the defined attack types and their
operations. Please note, that for all attacks, nodes still dispatch their own mes-
sages in the aforementioned manner. The attacks can be divided into three
groups containing similar attack types.

No Data Routing. Attack 1.1a.1, Attack 1.1a.2 and Attack 1.1a.3 belong to
the attacks that hinder the routing by disabling the routing process partially or
completely.

In Attack 1.1a.1, malicious nodes do accept messages and carry them with
them, but only deliver a message to its direct destination. No in-between routing
is performed by these nodes.

This behaviour is extended in Attack 1.1a.2, where malicious nodes accept
all messages but do not deliver any message at all.

Malicious nodes acting according to Attack 1.1a.3 carry and forward mes-
sages as defined by PRoPHET, but manipulate the Time-to-Live (TTL) field
by setting it to the smallest possible values, thus decreasing the possibility of a
successful message delivery.

Modification of Routing Information. As PRoPHET relies on node delivery
probabilities for message routing, manipulating delivery probabilities result in
either malicious nodes not being used or mostly malicious nodes being used for
message routing.

For Attack 1.1b.1, malicious nodes declare a small or zero probability for
node encounters. This way these node are not chosen for message routing or
only chosen for a small amount of messages to be forwarded. Similar to an
eclipse attack in overlay networks, as described in [19], this kind of attack allows
malicious nodes to exclude other nodes from participating with the network.

Attack 1.1b.2 propagates high probabilities of node encounter, leading to
more nodes relying on these malicious nodes for message routing. The malicious
node then can act as a black hole as in Attack 1.1a.1 or Attack 1.1a.2.

Overloading Other Nodes. These attacks try to overload the network by
either flooding other nodes or manipulating optimal routing paths.

A malicious node performing an attack according to Attack 1.1c.1 floods a
passing neighbour with either manipulated or invalid messages. The receiving
node dissipates its resources and is not active in the network for the duration of
attack.

Attack 1.1c.2 manipulates routing paths by choosing the worst next hop for
message routing according to delivery probabilities. Messages affected by this
attack may take longer to reach their destination or not be able to be delivered
at all.

300 R. Bialon and K. Graffi

5 Evaluation

In this section we analyse and explain the outcomes of the attacks defined
in Sect. 4. As we analysed the effects of our attacks using simulations, we depict
the simulation environment in Sect. 5.1. To compare the outcomes of different
simulations, relevant metrics are defined in Sect. 5.2 which are then executed
and evaluated on the simulation results in Sect. 5.3.

5.1 Simulation Setup

Several simulators are available for simulating opportunistic networks, such as
Opportunistic Network Environment (ONE) [10], DTN-Agent [21] or recently
PeerfactSim.KOM [3]. We performed our tests by simulating nodes in the Oppor-
tunistic Network Environment (ONE) simulator after a thoughtful comparison
of the simulators in [1].

Our scenarios include 100 nodes with different proportions of these acting
malicious according to the examined attack. For the simulation area we use
a 1500 m× 500 m rectangle on which nodes are simulated by using a random
waypoint model as described in [8]. The size of the simulation area allows for
a high delivery ratio of messages at a constant message size. This high delivery
ratio in a regular PRoPHET network without malicious nodes provides a good
standard for comparison against networks with malicious nodes present.

Nodes travel at a speeds randomly chosen between 0.5 m/s and 1.5 m/s. Sim-
ulation duration is 43200 s and randomness is initialised with a seed, so that
simulation results can be reproduced deterministically.

All nodes are equipped with Bluetooth modules having a transmission range
of 10 m. Transmission speed is constant at 250 kB/s. Each node has a 50 MB
message buffer for message carrying and dispatches a new 50 kB message with
a TTL of 360 s every 30 to 60 s. This represents a network with low message
activity but the highest possible number of nodes being active, similar to a sensor
network. As all nodes are active throughout the whole simulation, they scan for
present neighbours all the time and are able to transmit matching messages upon
every encounter.

As these simulations only focus on the effects of malicious nodes, no effects
on a node’s resources and/or lifetime in the network due to power consumption
or overload have been investigated.

5.2 Metrics

To be able to compare the effects of the different attacks on the simulation we
define comparable metrics in this section.

Delivery Ratio. One of the largest effects of our performed attacks is the
impact on message delivery. Message delivery is not guaranteed in opportunis-
tic networks. The delivery probability in a network without malicious nodes is
92.05% in our simulations. This value is always included in our graphs to allow
easy comparison within one attack and between attacks.

Misrouted Prophecy – On the Impact of Security Attacks on PRoPHET 301

Average Latency. As no connected path for a route is given to a message’s
transmission, transmission latencies vary due to different nodes forwarding mes-
sages. The average transmission latency in a simulation without malicious nodes
is 3371 s for our simulations.

5.3 Simulation Results

Simulations were conducted for a varying number of malicious nodes of 0%, 20%,
40%, 60%, 80% and 100%. For some simulations no results were received after a
certain amount of malicious nodes. In these cases, no results for a higher amount
of malicious nodes are shown. The average transmission latency is always shown
in thousands of seconds.

As we cannot explain the simulation result of every attack in detail, we
explain every simulation outcome by giving a short summary of the results and
focus on the most interesting result by giving a more detailed analysis.

Simulation 1.1a.1: No Data Routing. As can be seen in Fig. 1, the outcome
of this simulation is as expected: The larger the amount of malicious nodes gets,
the larger the average latency and the smaller the delivery ratio become. Because
nodes still perform direct delivery of messages to the destination, the delivery
ratio is still close to 50% with only malicious nodes.

Fig. 1. Delivery ratio and average latency in simulation 1.1a.1 – no data routing

Simulation 1.1a.2: No Forwarding and No Direct Delivery to Other
Nodes. Similar to Fig. 1, but far more extreme, Fig. 2 shows the simulation
outcomes for up to 60% of all nodes being malicious for this attack. A higher
amount of malicious nodes results in an arbitrarily low number of transmissions.
Malicious nodes accept only messages they are the destination for. This results
in more and more transmissions being successful only if the next hop is the
destination, too.

302 R. Bialon and K. Graffi

Fig. 2. Delivery ratio and average latency in simulation 1.1a.2 – no forwarding and no
direct delivery to other nodes

Simulation 1.1a.3: Set TTL to Smallest Possible Value. As malicious
nodes in this attack act as black holes, the decrease in the delivery ratio and the
increase in average latency is to be expected. Surprisingly, though, the outcome
is better as in simulation 1.1a.2 because the simulation maintains a higher deliv-
ery ratio and lower average latency at the same percentage of malicious nodes.
This happens at the expense of the number of transmissions, as can be seen
in Fig. 3(c). Without malicious nodes, only 69 606 transmissions took place and
usually decreased with the amount of malicious nodes increasing. In this scenario
PRoPHET was able to cope with some malicious nodes because the number of
transmissions was elevated.

Simulation 1.1b.1: Modifying the Predictability Table to Small Values.
Fig. 4 shows the delivery probability and average transmission latency for non-
cooperative and partially cooperative malicious nodes as described in [9,16].
In our simulation a non-cooperative node propagates small values for delivery
predictability, so that no other node considers the non-cooperative node for
message forwarding. A partially cooperative node decides randomly whether to
behave like a non-cooperative node or a regular node on every transmission.

The delivery ratio is only slightly more affected by non-cooperative nodes
compared to partially cooperative nodes. Both types show a similar progress of
the delivery ratio as can be observed in the preceding simulation results.

With partially cooperative nodes the average latency is more gradual than
with non-cooperative nodes. In contrast to non-cooperative nodes, partially
cooperative nodes are sometimes chosen for message forwarding, which helps
reduce latency as no other next hop has to be found.

The better score of partially cooperative nodes is caused by a slightly higher
amount of transmissions. Due to the difference between these two node behav-
iours’, this outcome can be expected.

Simulation 1.1b.2: Modifying the Predictability Table to High Values.
For this attack, malicious nodes always propagate a high delivery probability

Misrouted Prophecy – On the Impact of Security Attacks on PRoPHET 303

Fig. 3. Delivery ratio and average latency in simulation 1.1a.3 – set TTL to smallest
possible value

 0.4

 0.6

 0.8

 1

20 40 60 80 100

D
el

iv
er

y
ra

ti
o

Percentage of Malicious Nodes

non-cooperative

partially cooperative

(a) Delivery Ratio

 4

 5

 6

 7

 8

 9

20 40 60 80 100

A
ve

ra
g

e
la

te
n

cy
 (k

ilo
)

Percentage of Malicious Nodes

non-cooperative

partially cooperative

(b) Average Latency

 0

 10000

 20000

 30000

 40000

 50000

 60000

20 40 60 80 100

N
u

m
b

er
 o

f t
ra

n
sm

is
si

o
n

s

Percentage of Malicious Nodes

non-cooperative

partially cooperative

(c) Number of Transmissions

Fig. 4. Delivery ratio, average latency, and number of transmissions of simulation
1.1b.1 – modifying the predictability table to small values

304 R. Bialon and K. Graffi

for every transmission. They act as black holes, “attracting” all messages from
surrounding neighbours and never forwarding any of them.

Fig. 5. Delivery ratio and message copies of simulation 1.1b.2 - modifying the pre-
dictability table to high values

Still, as Fig. 5(a) shows, message delivery ratio is above 50% for even 40%
of malicious nodes. This is achieved by PRoPHET due to a large amount of
message copies shown in Fig. 5(b). While message overhead was below 100 copies
per message, it strongly increases with the amount of malicious nodes.

The higher message delivery ratio can only be maintained at the cost of
multiple message copies being present in the network.

Simulation 1.1c.1: Direct Neighbor Flooding. The expected effect of this
attack is that with an increasing number of malicious nodes flooding neigh-
bouring nodes, the overall delivery ratio decreases because too many nodes are
occupied receiving flooded messages than executing the PRoPHET protocol.
Figure 6 shows this expected behaviour. At 60% malicious nodes, below 20% of
messages are delivered to their destination.

Fig. 6. Delivery ratio in simulation 1.1c.1 – direct neighbor flooding

Simulation 1.1c.2: Routing over Not Optimal Paths. The outcome of
this attack, shown in Table 2, is the most interesting. Malicious nodes acting

Misrouted Prophecy – On the Impact of Security Attacks on PRoPHET 305

Table 2. Simulation results for attack 1.1c.2 – routing over not optimal paths

Malicious nodes 0% 20% 40% 60% 80% 100%

No of started 69 606 85 763 87 669 88 524 87 449 80 379

Delivery ratio 0.9205 0.9329 0.9340 0.9391 0.9288 0.9185

Avg copy count 58 78 82 83 82 70

Avg latency 3371 2774.46 2526.47 2501.62 2718.81 3188

Avg hop count 2.6984 3.4790 3.7381 3.7242 3.4500 2.7978

according to this attack conform to the PRoPHET protocol, but with one dif-
ference: Instead of choosing the next hop with the highest delivery probability,
these nodes chose the next hop with the lowest delivery probability.

Although messages should now travel along a non-optimal routing path
as defined by PRoPHET, their delivery ratio increases and average latency
decreases over the amount of malicious nodes rising.

This all happens at the expense of message copy count and hop count.
Because no optimal next hop is chosen, the probability for an optimal rout-
ing decreases. The average hop count increases and so does the average copy
count. As nodes in our simulation travel over a manageable sized simulation
area, even the nodes with the lowest delivery probability happen to meet other
nodes whom they can forward the message as a next hop to.

6 Summary

In this paper we have seen various attacks on the PRoPHET protocol conducted
using the ONE simulator. These attacks aim at different points of attack and
thus result in divergent changes of network behaviour. Classified using an attack
tree, their goals and possible techniques were outlined.

We then introduced our simulator and simulation environment by stating
configuration parameters consulted for our simulations in the Opportunistic
Network Environment (ONE) simulator. After conducting simulations for each
attack and different constellations of malicious and regular nodes, gathering their
results and plotting the simulation outcomes with regards to our defined metrics,
we are now able to conclude on our observations.

6.1 Conclusion

The attacks belonging to the No data routing type and attack 1.1c.1 present an
expectable simulation outcome. The influence of their manipulations are reflected
by the PRoPHET protocol as one would suppose.

Attacks of type Modification of Routing Information emphasize PRoPHETs’
counter-measures, intended or not, against such types of attack. They lead to
an increase of message copy overhead, thus compensating for wrong routing
information.

306 R. Bialon and K. Graffi

For the last category of attacks, Overloading other nodes, 1.1c.1 shows an
expected behaviour towards nodes being flooded with messages. PRoPHET
does not include any resistance against such attacks as it only concentrates on
routing through an opportunistic network. Interestingly, attack 1.1c.2 – which
should break PRoPHET’s routing with least optimal next hop choices – led to an
even higher delivery ratio and lower average latency in our scenario. Nodes also
reacted to the attack by elevating the amount of message copies, which then
travelled longer paths. Still, these reactions lead to an improvement of some
simulation results while only slightly impairing others.

With this paper we have shown and explained the effects of attacks on the
PRoPHET routing protocol with regards to two metrics and additional observa-
tions. Most simulation outcomes of the attacks confirm the expected behaviour,
others led to performance drops in the network – with which PRoPHET was
able to cope for a while by producing a larger amount of message copies –, but
one attack surprisingly shows an improvement with regards to our two metrics
at the cost of the amount of message copies.

6.2 Future Work

The simulations conducted for this paper evince some interesting behaviour of
the opportunistic network and results. It has to be differentiated between influ-
ence of the attacks and influence of the simulation scenario. As our simulations
were all conducted using the same scenario to provide comparable results, thus
an influence caused by the simulation scenario cannot be precluded.

PRoPHET does not include counter measures against malicious or selfish
nodes itself, it only tries to cope with different network characteristics by shift-
ing its performance between delivery ratio, latency and resource allocation.
Techniques mentioned in [11] or in solutions for wireless mesh networks such
as in [13,14] can be implemented in PRoPHET and possible changes in the
behaviour of PRoPHET with regards to our attacks can be investigated.

Additional checks like plausibility of routing over nodes, trust between nodes
or even a proof of work for message forwarding promise to improve PRoPHET’s
behaviour against the attacks defined in this paper.

The scheduling policy and drop policy used for buffer management, as ana-
lyzed for opportunistic networks in [17] or peer-to-peer networks in [4] show
lots of potential both for improved routing, but also for security attacks, such
as through the priorization of packets that have low chances to arrive at their
destination within the remaining time to live. Options for optimization should
be harnessed here while mitigating undesired behavior.

References

1. Cheraghi, A., Amft, T., Sati, S., Hagemeister, P., Graffi, K.: The state of simula-
tion tools for p2p networks on mobile ad-hoc and opportunistic networks. In: IEEE
ICCCN 2016 Proceedings of the International Conference on Computer Commu-
nication and Networks, pp. 1–7 (2016)

Misrouted Prophecy – On the Impact of Security Attacks on PRoPHET 307

2. Conti, M., Giordano, S., May, M., Passarella, A.: From opportunistic networks to
opportunistic computing. IEEE Commun. Mag. 48(9), 126–139 (2010)

3. Graffi, K.: PeerfactSim.KOM: a P2P system simulator - experiences and lessons
learned. In: IEEE P2P 2011 Proceedings of the International Conference on Peer-
to-Peer Computing, pp. 154–155 (2011)

4. Graffi, K., Pussep, K., Kaune, S., Kovacevic, A., Liebau, N., Steinmetz, R.: Over-
lay bandwidth management: scheduling and active queue management of overlay
flows. In: IEEE LCN 2007 Proceedings of the International Conference on Local
Computer Networks (2007)

5. Grasic, S., Davies, E., Lindgren, A., Doria, A.: The evolution of a DTN routing
protocol - PRoPHETv2. In: Proceedings of Workshop on Challenged Networks
(CHANTS), pp. 27–30. ACM (2011)

6. Gupta, S., Dhurandher, S.K., Woungang, I., Kumar, A., Obaidat, M.S.: Trust-
based security protocol against blackhole attacks in opportunistic networks. In:
Proceedings of International Conference on Wireless and Mobile Computing, Net-
working and Communications (WiMob), pp. 724–729. IEEE (2013)

7. Ippisch, A., Graffi, K.: An android framework for opportunistic wireless mesh net-
working. In: NetSys 2015 Proceedings of the Conference on Networked Systems
(2015)

8. Johnson, D.B., Maltz, D.A.: Dynamic source routing in ad hoc wireless networks.
In: Imielinski, T., Korth, H.F. (eds.) Mobile Computing, pp. 153–181. Kluwer Aca-
demic Publishers, Dordrecht (1996)

9. Keränen, A., Pitkänen, M., Vuori, M.: Effect of non-cooperative nodes in mobile
DTNs. In: Proceedings of World of Wireless, Mobile and Multimedia Networks
(WoWMoM). IEEE (2011)

10. Keränen, A., Ott, J., Kärkkäinen, T.: The ONE simulator for DTN protocol eval-
uation. In: SIMUTools 2009 Proceedings of the 2nd International Conference on
Simulation Tools and Techniques. ICST, New York (2009)

11. Lilien, L., Kamal, Z.H., Bhuse, V., Gupta, A.: The concept of opportunistic net-
works and their research challenges in privacy and security. In: Makki, S.K.,
Reiher, P., Makki, K., Pissinou, N., Makki, S. (eds.) Mobile and Wireless Net-
work Security and Privacy, pp. 85–117. Springer, Boston (2007). doi:10.1007/
978-0-387-71058-7 5. ISBN 978-0-387-71058-7

12. Lindgren, A., Doria, A., Davies, E., Grasic, S.: RFC 6693: probabilistic routing
protocol for intermittently connected networks. IETF (2012)

13. Mogre, P., Graffi, K., Hollick, M., Steinmetz, R.: AntSec, WatchAnt and AntRep:
innovative security mechanisms for wireless mesh networks. In: IEEE LCN 2007
Proceedings of the International Conference on Local Computer Networks (2007)

14. Mogre, P.S., Graffi, K., Hollick, M., Steinmetz, R.: A security framework for wire-
less mesh networks. Wireless Commun. Mobile Comput. 11(3), 371–391 (2011)

15. Mohan, S., Qu, G., Mili, F.: Security analysis of opportunistic networks using
complex network properties. In: Wang, X., Zheng, R., Jing, T., Xing, K. (eds.)
WASA 2012. LNCS, vol. 7405, pp. 462–478. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-31869-6 40

16. Panagakis, A., Vaios, A.: On the effects of cooperation in DTNs (2007)
17. Sati, S., Probst, C., Graffi, K.: Analysis of buffer management policies for oppor-

tunistic networks. In: IEEE ICCCN 2016 Proceedings of the International Confer-
ence on Computer Communication and Networks, pp. 1–7 (2016)

18. Schneier, B.: Modeling security threats. Dr Dobb’s Journal (1999). https://www.
schneier.com/cryptography/archives/1999/12/attack trees.html

http://dx.doi.org/10.1007/978-0-387-71058-7_5
http://dx.doi.org/10.1007/978-0-387-71058-7_5
http://dx.doi.org/10.1007/978-3-642-31869-6_40
http://dx.doi.org/10.1007/978-3-642-31869-6_40
https://www.schneier.com/cryptography/archives/1999/12/attack_trees.html
https://www.schneier.com/cryptography/archives/1999/12/attack_trees.html

308 R. Bialon and K. Graffi

19. Singh, A., wan Johnny Ngan, T., Druschel, P., Wallach, D.S.: Eclipse attacks on
overlay networks: threats and defenses. In: Proceedings of International Conference
on Computer Communications (INFOCOM). IEEE (2006)

20. Trifunovic, S., Kurant, M., Hummel, K.A., Legendre, F.: WLAN-Opp: ad-hoc-less
opportunistic networking on smartphones. Ad Hoc Netw. 25, Part B, 346–358
(2015)

21. Vardalis, D., Tsaoussidis, V.: DTN Agent for ns-2 (2010). http://www.spice-center.
org/dtn-agent/

http://www.spice-center.org/dtn-agent/
http://www.spice-center.org/dtn-agent/

PADABS -Workshop on Parallel and
Distributed Agent-Based Simulations

A Standardised Benchmark for Assessing the
Performance of Fixed Radius Near Neighbours

Robert Chisholm(B), Paul Richmond, and Steve Maddock

Department of Computer Science, The University of Sheffield, Sheffield, UK
{r.chisholm,p.richmond,s.maddock}@sheffield.ac.uk

Abstract. Many agent based models require agents to have an aware-
ness of their local peers. The handling of these fixed radius near neigh-
bours (FRNNs) is often a limiting factor of performance. However with-
out a standardised metric to assess the handling of FRNNs, contributions
to the field lack the rigorous appraisal necessary to expose their relative
benefits.

This paper presents a standardised specification of a multi agent
based benchmark model. The benchmark model provides a means for
the objective assessment of FRNNs performance, through the compar-
ison of implementations. Results collected from implementations of the
benchmark model under three agent based modelling frameworks show
the 64-bit floating point performance of each framework to scale linearly
with agent population, in contrast the GPU accelerated framework’s 32-
bit floating point performance only became linear after maximal device
utilisation around 100,000 agents.

Keywords: Parallel agent based simulation · OpenAB · Benchmark-
ing · Fixed radius near neighbours · FLAMEGPU · MASON · Repast
simphony

1 Introduction

Many complex systems have mobile entities located within a continuous space
such as: particles, people or vehicles. Typically these systems are represented
via Agent Based Simulations (ABS) where entities are agents. In order for these
mobile agents to decide actions, they must be aware of their neighbouring agents.
This awareness is typically provided by fixed radius near neighbours (FRNNs)
search, whereby each agent considers the properties of every other agent located
within a spatial radial area about their simulated position. This searched area can
be considered the agent’s neighbourhood and must be searched every timestep of
a simulation, ensuring the agent has access to the most recent information about
their neighbourhood. In many cases such as flocking, pedestrian interaction and
cellular systems, the majority of time is spent performing this neighbourhood
search, as opposed to agent logic. It is hence often the primary performance
limitation.

c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 311–321, 2017.
DOI: 10.1007/978-3-319-58943-5 25

312 R. Chisholm et al.

The most common technique utilised for accelerating FRNNs is one of uni-
form spatial partitioning. Within uniform spatial partitioning, the environment
is decomposed into a regular grid, partitioned according to the interaction radius.
Agents are then stored or sorted according to the grid cell they are located within.
Agents consider their neighbourhood by performing a distance test on all agents
within their own grid partition and any directly adjacent neighbouring grid cells.
This has caused researchers to seek to improve the efficiency of FRNNs handling,
primarily by approaching more efficient memory access patterns [3,5,11]. How-
ever without a rigorous standard to compare implementations, exposing their
relative benefits is greatly complicated.

With ABS reliance on FRNNs, there are many capable available frame-
works, providing initial FRNNs implementations for assessment. The Open
Agent Benchmark Project (OpenAB)1 exists for the wider assessment of ABS
and to pool the research community’s ABS knowledge and resources. This paper
uses the OpenAB’s process of publishing a simulator independent benchmark
model in a format which allows the performance of implementations across mul-
tiple ABS frameworks to be compared. By unifying the process of benchmarking
ABS it is hoped that the OpenAB project will foster the necessary transparency
and standards among the ABS community, ensuring that rigorous benchmarking
standards are adhered to.

This paper formalises and standardises a benchmark model named circles,
previously implemented by frameworks such as FLAMEGPU [10]. The model
is specifically standardised and designed to assess the performance of FRNNs
implementations. A formal specification of the benchmark and it’s applications
is provided alongside a preliminary comparison of results obtained from the
single node agent modelling frameworks: FLAMEGPU, MASON and REPAST
Simphony. Single machine frameworks have been targeted as they provide a
simpler and more accessible platform than distributed for initial development.
This work has been published to the OpenAB website2 and provides a foundation
for the future assessment of ABS frameworks.

The results within this paper assess each framework’s FRNNs implementa-
tion against the metrics of problem size and neighbourhood size, which can be
measured using the circles benchmark. Most apparent from these results is how
the runtime scales linearly with problem size after maximal hardware utilisa-
tion. However, a much larger problem size is required to fully utilise Graphics
Processing Unit (GPU) hardware when working with 32-bit floating point data.

The remainder of this paper is organised as follows: Sect. 2 provides an
overview of related research; Sect. 3 lays out a clear specification of the cir-
cles benchmark model and how it can be utilised effectively; Sect. 4 details the
frameworks which have been assessed using the benchmark; Sect. 5 discusses the
results obtained from the application of the circles benchmark to each frame-
work; Finally Sect. 6 presents the concluding remarks and directions for further
research.

1 http://www.openab.org.
2 http://www.openab.org/benchmarks/models/submit/circles/.

http://www.openab.org
http://www.openab.org/benchmarks/models/submit/circles/

A Standardised Benchmark for Assessing the Performance of FRNNs 313

2 Related Research

FRNNs searches are most often found within agent-based models. They have also
been used alongside similar algorithms within the fields of Smoothed-Particle
Hydrodynamics (SPH) and collision detection. FRNNs is the process whereby
each agent considers the properties of every other agent located within a radial
area about their location. This searched area can be considered the agent’s neigh-
bourhood and must be searched every timestep of a simulation to ensure agents
have live information. Whilst various spatial data-structures such as kd-trees
and R-trees are capable of providing efficient access to spatial neighbourhoods,
in order to achieve high performance in a problem as general as FRNNs they
must sacrifice accuracy [6].

Fig. 1. A representation of
a data structure that can
be used for uniform spatial
partitioning. The Cells table
denotes the index within the
agents table that data for the
corresponding cell begins.

The naive approach for carrying out a neigh-
bourhood search is via a brute-force technique,
individually considering whether each agent is
located within the target neighbourhood. This
technique may be suitable for small agent pop-
ulations, however the overhead quickly becomes
significant as agent populations increase, reduc-
ing the proportional volume of the neighbourhoods
with respect to the volume of the environment.

The most common technique that is used to
reduce the overhead of FRNNs handling is that
of uniform spatial partitioning (Fig. 1), whereby
the environment is partitioned into a uniform grid,
whereby grid cells have dimensions equal to the
interaction radius. Agents are then (sorted and)
stored according to the ID of their containing cell
within the grid. Serial implementations are likely
to utilise linked list’s to store the agents within
each bin. Parallel implementations in contrast are
likely to store agents within a single compact array
which is sorted in a distinct step after agent loca-
tions have been updated, following which an index
to provide direct access to the storage of each cell’s
agents is produced. This allows the Moore neigh-
bourhood3 of an agent’s cell to be accessed, ignor-
ing agents within cells outside of the desired neigh-
bourhood. This method is particularly suitable for parallel implementations [4]
and several advances have been suggested to further improve their performance:
Goswami et al. proposed the use of Z-order curves to improve memory locality

3 The collection of cells inclusively bounded by the ring of adjacent cells surrounding
the target cell.

314 R. Chisholm et al.

[3]; Hoetzlein considered the effect of changing the partition cell dimensions [5];
and Sun et al. proposed the use of a parallel ordered sort to improve sorting
efficiency [11].

Recent FRNNs publications have either provided no comparative perfor-
mance results, or simply compared with their prior implementation lacking the
published innovation [3,5,11]. With numerous potential innovations which may
interact and overlap it becomes necessary to standardise the methodology by
which these advances can be compared both independently and in combina-
tion. When assessing the performance of High Performance Computation (HPC)
algorithms there are various approaches which must be taken and considered to
ensure fair results.

When comparing the performance of algorithms there are a plethora of rec-
ommendations to be followed to ensure that results are not misleading [1]. The
general trend among these guidelines is the requirement of explicit detailing
of experimental conditions and ensuring uniformity between test cases such
that results can be reproduced. Furthermore, if comparing algorithm perfor-
mance across different architectures it is important to ensure that appropriate
optimisations for each architecture have been implemented. Historically there
have been numerous cases whereby comparisons between CPU and GPU have
shown speedups as high as 100x which have later been debunked due to flawed
methodology [7].

3 Benchmark Model

The circles benchmark model is designed to utilise neighbourhood search in a
manner analogous to a simplified particle simulation in two or three dimen-
sions (although it could easily be extended to higher levels of dimensionality if
required). Within the model each agent represents a particle whose location is
clamped within between 0 and W − 1 in each axis.4 Each particle’s motion is
driven by forces applied from other particles within their local neighbourhood,
with forces applied between particles to encourage a separation of r.

The parameters (explained below) of the circles benchmark allow it to be used
to assess how the performance of FRNNs search implementations are affected by
changes to factors such as problem size and neighbourhood size. This assessment
can then be utilised in the research of FRNNs ensuring comparisons against
existing work and to advise design decisions when requiring FRNNs during the
implementation of ABS.

3.1 Model Specification

The benchmark model is configured using the parameters in Table 1. In addi-
tion to these parameters the dimensionality of the environment (Edim) must be
4 All frameworks tested utilised an environment of 0 <= x < W , as it is not possible

to cleanly clamp a floating point value within a less than bound, the nearest valid
whole number was instead used to ensure the correct operation of each framework.

A Standardised Benchmark for Assessing the Performance of FRNNs 315

Table 1. The parameters for configuring the circles benchmark model.

Parameter Description Fig. 2 Fig. 3

krep The repulsion dampening argument. Increasing
this value encourages agents to repel

1 × 10−3 1 × 10−3

katt The attraction dampening argument. Increasing
this value encourages agents to attract

1 × 10−3 1 × 10−3

r The radial distance from the particle to which
other particles are attracted. Twice this value is
the interaction radius

5 1–15

ρ The density of agents within the environment 1 × 10−2 1 × 10−2

W The diameter of the environment. This value is
shared by each dimension therefore in a two
dimensional environment it represents the width
and height. Increasing this value is equivalent to
increasing the scale of the problem (e.g. the
number of agents) assuming ρ remains
unchanged

50–300 100

decided, which in most cases will be 2 or 3. The value of Edim is not considered
a model parameter as changes to this value are likely to require implementation
changes. The results presented later in this paper are all from 3D implementa-
tions of the benchmark model.

Initialisation. Each agent is solely represented by their location. The total
number of agents Apop is calculated using Eq. 1.5 Initially the particle agents
are randomly positioned within the environment of diameter W and Edim

dimensions.

Apop =
⌊
WEdimρ

⌋
(1)

Single Iteration. For each timestep of the benchmark model, every agent’s
location must be updated. The position x of an agent i at the discrete timestep
t + 1 is given by Eq. 2, whereby Fi denotes the force exerted on the agent i
as calculated by Eq. 3.6 Within Eq. 3 F rep

ij and F att
ij represent the respective

attraction and repulsion forces applied to agent i from agent j. The values of
F att
ij and F rep

ij are calculated using Eqs. 4 and 5 respectively, the relevant force
parameter is multiplied by the distance from the force’s boundary and the unit
vector from xi to xj in the direction of the respective force. After calculation,
the agent’s location is then clamped between 0 and W − 1 in each axis.

−−−−→xi(t+1) = −−→xi(t) +
−→
Fi (2)

5 � � represents the mathematical operation floor.
6 The square Iversion bracket notation [] denotes a conditional statement; when the

statement evaluates to true a value of 1 is returned otherwise 0.

316 R. Chisholm et al.

−→
Fi =

∑

i�=j

−−→
F rep
ij [‖−−→xixj‖ < r] +

−−→
F att
ij [r <= ‖−−→xixj‖ < 2r] (3)

−−→
F att
ij = katt(2r − ‖−−→xjxi‖)

−−→xjxi

‖−−→xjxi‖ (4)

−−→
F rep
ij = krep(‖−−→xixj‖)

−−→xixj

‖−−→xixj‖ (5)

Algorithm 1 provides a pseudo-code implementation of the calculation of a
single particles new location, whereby each agent only iterates their agent neigh-
bours rather than the global agent population.

Algorithm 1. Pseudo-code for the calculation of a single particle’s new location

vec myOldLoc;
vec myNewLoc = myOldLoc;
float r2 = 2* RADIUS;
foreach neighbourLoc
{

vec toVec = neighbourLoc -myOldLoc;
float separation = length(toVec);
if(separation < r2)
{

float k = (separation <RADIUS)?REP_FORCE:ATT_FORCE;
toVec = (separation <RADIUS)?-toVec:toVec;
separation = (separation <RADIUS)?separation :(r2-separation);
myNewLoc += k * separation * normalize(toVec);

}
}
myNewLoc = clamp(myNewLoc , envMin , envMax);

Validation. There are several checks that can be carried out to ensure that
the benchmark has been implemented correctly, the initial validation techniques
rely on visual assessment. During execution if the forces Fatt & Frep are both
positive particles can be expected to form spherical clusters. Due to the force
drop-off (switching from the maximal positive force, to the maximal negative
force) when a particle crosses the force boundary, these clusters oscillate, this
effect is amplified by agent density and force magnitude. If these forces are
however both negative, particles will spread out, with some particles overlapping
each other.

More precise validation can be carried out by seeding two independent imple-
mentations7 with the same initial particle locations. With appropriate model
parameters (such as those in Table 1), it is possible to then export agent positions
after a single iteration from each implementation8. Comparing these exported

7 The implementations used within this paper are available within this projects repos-
itory. https://github.com/Robadob/circles-benchmark.

8 It is recommended to export agents in the same order that they were loaded, as
sorting diverged agents may provide inaccurate pairings.

https://github.com/Robadob/circles-benchmark

A Standardised Benchmark for Assessing the Performance of FRNNs 317

positions should show a parity to several decimal places, whilst significant dif-
ferences between the initial state and the exported states. Due to the previously
mentioned force fall-off and floating point arithmetic limitations, it was found
that a single particle crossing a boundary between two models, snowballs after
only a few iterations, causing many other particles to differ between simulation
results.

The 3 agent framework implementations tested within this paper were all
tested with shared initial particle locations states to ensure that their models
were performing the same operations.

3.2 Effective Usage

The metrics which may affect the performance of neighbourhood search imple-
mentations are agent quantity, neighbourhood size, agent speed and location
uniformity. Whilst it is not possible to directly parametrise all of these metrics
within the circles benchmark, a significant number can be controlled to provide
understanding of how the performance of different implementations is affected.

To modify the scale of the problem, the environment width W can be
changed. This directly adjusts the agent population size, according to the for-
mula in Eq. 1, whilst leaving the density unaffected. Modulating the scale of the
population is used to benchmark how well implementations scale with increased
problem sizes. In multi-core and GPU implementations this may also allow the
point of maximal hardware utilisation to be identified, whereby lesser population
sizes do not fully utilise the available hardware.

Modifying either the density ρ or the radius r can be used to affect the
number of agents found within each neighbourhood. The number of agents within
a neighbourhood of radius r can be estimated using Eq. 6, this value assumes
that agents are uniformly distributed and will vary slightly between agents.

Nsize = ρπ(2r)Edim (6)

Modifying the speed of the agent’s motion affects the rate at which the data
structure holding the neighbourhood data must change (referred to as changing
the entropy, the energy within the system). Many implementations are unaffected
by changes to this value. However optimisations such as those by Sun et al. [11]
should see performance improvements at lower speeds, due to a reduced number
of agents transitioning between cells within the environment per timestep. The
speed of an agent within the circles model is calculated using Eq. 3. There are
many parameters which impact this speed within the circles model. As a particles
motion is calculated as a result of the sum of vectors to neighbours it clear that
the parameters affecting neighbourhood size (ρ & r) impact particle speed in
addition to the forces Fatt & Frep.

The final metric location uniformity, refers to how uniformly distributed the
agents are within the environment. When agents are distributed non-uniformly,
as may be found within many natural scenarios, the size of agent neighbourhoods
are likely to vary more significantly. This can be detrimental to the performance

318 R. Chisholm et al.

of implementations which parallelise the neighbourhood search such that each
agents search is carried out in a separate thread via single instruction multi-
ple thread (SIMT) execution. This is caused by sparse neighbourhood threads
spending large amounts of time idling whilst waiting for larger neighbourhood
threads searching simultaneously within the shared thread-group to complete.
It is not currently possible to suitably affect the location uniformity within the
circles model.

Independent of model parameters, the circles benchmark is also capable of
assessing the performance of FRNNs when scaled across distributed systems,
however that is outside the scope of the results presented within this paper.

4 Assessed Frameworks

The benchmark implementations assessed within this paper all target execution
on a single machine. Care has been taken to follow best practices as expressed
in the relevant documentation and examples provided with each framework to
ensure that the optimisation of model implementations is appropriate. The asso-
ciated model implementations are publicly available on this projects repository9

and further details regarding the frameworks can be found on the OpenAB
website10. The frameworks targeted within this research are:

– Inspired by the FLAME agent-based modelling framework, FLAMEGPU
was developed to utilise GPU computation via a combination of XML and
CUDA [10].

– MASON is a Java multiagent simulation toolkit capable of executing models
with a large numbers of agents on a single machine, providing an additional
suite of visualisation tools [8].

– The Repast collective of modelling tools has now been under development for
over 15 years. Repast Simphony targets computation on individual computers
and small clusters, facilitating the development of agent-based models using
Java and Relogo [9].

Notably FLAMEGPU supports the usage of both 32-bit and 64-bit floating
point values, whereas both MASON and Repast Simphony use 64-bit floating
point values exclusively within their frameworks. This is likely influenced by the
negative impact 64-bit floating point values have on GPU performance being
significantly greater to that of CPUs.

5 Results

Results presented within this section were collected on a single machine running
Windows 7× 64 with a Quad core Intel Xeon E3-1230 v3 running at 3.3 GHz11.
9 https://github.com/Robadob/circles-benchmark.

10 http://www.openab.org/benchmarks/simulators/.
11 The processor supports hyper-threading, enabling 4 additional concurrent logical

threads.

https://github.com/Robadob/circles-benchmark
http://www.openab.org/benchmarks/simulators/

A Standardised Benchmark for Assessing the Performance of FRNNs 319

Additionally the FLAME-GPU framework utilised an Nvidia GeForce GTX 750
Ti GPU which has 640 CUDA cores running at 1 GHz.

Each of the parameter sets utilised targeted a different performance metric
identified in Sect. 3.2. Results were collected by monitoring the total runtime
of 1000 iterations of 3D implementations of the benchmark (executed without
visualisation) and are presented as the per iteration mean. Initialisation tim-
ings are excluded as the benchmarks focal point is the performance of the near
neighbours search carried out within each iteration.

The results in Fig. 2 present the variation in performance as the scale of
the problem increases. This is achieved by increasing the parameter W , which
increases the volume of the environment and hence the agent population. Most
apparent from these results is that both the FLAMEGPU implementations,
which utilise GPU computation as opposed to the other frameworks which
utilise a multi-threaded CPU approach, consistently outperform the best multi-
core framework by a margin which at the largest test-case increases to greater
than 6x with 64-bit floating point computation and 10x with the lower preci-
sion 32-bit floating point. This is slightly better than the expectations of GPU
accelerated computation [7], suggesting their may be further room for optimisa-
tion. Although MASON and Repast Simphony are both Java based frameworks,
Repast’s performance trailed that of MASON by around 3x, investigating this
showed Repast’s separate operations for updating a particle’s spatial and grid
locations to be slower than that of MASON which handles both in a single
operation. Notably the operation of updating a particles location could not be
handled in parallel by MASON or Repast.

The MASON, Repast and 64-bit floating point FLAMEGPU results both
have a Pearson correlation coefficient (PCC) [2] of 0.99. This is indicative of
a linear relationship. Similarly 32-bit floating point FLAMEGPU has a PCC
of 0.99 when only agent populations of 100,000 and higher are considered, this
suggests that smaller agent populations did not fully utilise the GPU during
32-bit floating point computation.

Fig. 2. The average iteration time of each framework against the agent population.

320 R. Chisholm et al.

Fig. 3. The average iteration time of each framework against the estimated neighbour-
hood population. The estimated neighbourhood population is the calculation of agents
within a neighbourhood where agents are uniformly distributed, providing a clearer
interpretation of changes to the interaction radius (r).

The next parameter set, shown in Fig. 3, assessed the performance of each
framework in response to increases in the agent populations within each neigh-
bourhood. The purpose of this benchmark set was to assess how each framework
performed when agents were presented with a greater number of neighbours to
survey. This was achieved by increasing the parameter r, hence increasing the
volume of each agent’s radial neighbourhood. All results have a PCC [2] of 0.96.
This is indicative of a linear relationship, albeit much weaker correlation than
that seen within the prior experiment. It is likely that this weaker relationship
can be explained by how the agent density becomes more non-uniform as the
model progresses, causing the number of agents within each neighbourhood to
grow.

The final parameter set assessed variation in performance in response to
increased entropy. This is was achieved by adjusting the parameters katt and
krep, causing the force exerted on the agents to increase, subsequently causing
them to move faster.

The purpose of this benchmark was to assess whether any of the frameworks
benefited from reduced numbers of agents transitioning between spatial parti-
tions. The results however showed no substantial relationship between increased
particle speed and performance.

6 Conclusion

The work within this paper has provided a formal and standardised specification
for the circles benchmark. This benchmark is beneficial for assessing the perfor-
mance of FRNNs search implementations in response to changes to problem size,

A Standardised Benchmark for Assessing the Performance of FRNNs 321

neighbourhood size and agent entropy. The results within this paper have shown
the linear performance relationships of the tested ABS frameworks in response
to changing agent populations and neighbourhood sizes. This provides a guide
for those looking to implement ABS reliant on FRNNs and a metric to improve
FRNNs search implementations.

The next stages of this research are: further evaluation of standalone FRNNs
implementations utilising the most recent research advances, improving the
benchmark model to further isolate assessment criteria of FRNNs and reduce
the effects of force fall-off, developing a statistical method of validating model
outputs, assessing how distributed systems affect the scalability of FRNNs and
considering the implications of wrapped (torodial) environments.

References

1. Bailey, D.H.: Misleading performance in the supercomputing field. In: Proceed-
ings of the 1992 ACM/IEEE Conference on Supercomputing, pp. 155–158. IEEE
Computer Society Press (1992)

2. Edwards, A.: The correlation coefficient. In: An Introduction to Linear Regression
and Correlation, pp. 33–46 (1976)

3. Goswami, P., Schlegel, P., Solenthaler, B., Pajarola, R.: Interactive SPH simulation
and rendering on the GPU. In: Proceedings of the 2010 ACM SIGGRAPH/Euro-
graphics Symposium on Computer Animation, pp. 55–64. Eurographics Associa-
tion (2010)

4. Green, S.: Particle simulation using cuda. Nvidia whitepaper 6, 121–128 (2010)
5. Hoetzlein, R.: Fast fixed-radius nearest neighbors: interactive million-particle flu-

ids. In: GPU Technology Conference (2014)
6. Kofler, K., Steinhauser, D., Cosenza, B., Grasso, I., Schindler, S., Fahringer, T.:

Kd-tree based n-body simulations with volume-mass heuristic on the GPU. In: 2014
IEEE International on Parallel and Distributed Processing Symposium Workshops
(IPDPSW), pp. 1256–1265. IEEE (2014)

7. Lee, V.W., Kim, C., Chhugani, J., Deisher, M., Kim, D., Nguyen, A.D., Satish, N.,
Smelyanskiy, M., Chennupaty, S., Hammarlund, P., et al.: Debunking the 100X
GPU vs. CPU myth: an evaluation of throughput computing on CPU and GPU.
In: ACM SIGARCH Computer Architecture News. vol. 38, pp. 451–460. ACM
(2010)

8. Liu, J., Chandrasekaran, B., Yu, W., Wu, J., Buntinas, D., Kini, S., Panda, D.K.,
Wyckoff, P.: Microbenchmark performance comparison of high-speed cluster inter-
connects. IEEE Micro 24(1), 42–51 (2004)

9. North, M.J., Collier, N.T., Ozik, J., Tatara, E.R., Macal, C.M., Bragen, M.,
Sydelko, P.: Complex adaptive systems modeling with repast simphony. Complex
Adapt. Syst. Model. 1(1), 1–26 (2013)

10. Richmond, P., Romano, D.: A high performance framework for agent based pedes-
trian dynamics on GPU hardware. In: European Simulation and Modelling, vol. 3
(2008)

11. Sun, H., Tian, Y., Zhang, Y., Wu, J., Wang, S., Yang, Q., Zhou, Q.: A special
sorting method for neighbor search procedure in smoothed particle hydrodynamics
on GPUs. In: 44th International Conference on Parallel Processing Workshops
(ICPPW), pp. 81–85. IEEE (2015)

D-MASON on the Cloud: An Experience
with Amazon Web Services

Michele Carillo1, Gennaro Cordasco2, Flavio Serrapica1,
Carmine Spagnuolo1(B), Przemysaw Szufel3, and Luca Vicidomini1

1 ISISLab–Dipartimento di Informatica,
Università degli Studi di Salerno, Fisciano, Italy

michele.carillo@gmail.com, flavio.serrapica@gmail.com

{cspagnuolo,lvicidomini}@unisa.it
2 Dipartimento di Psicologia, Seconda Università degli Studi di Napoli,

Caserta, Italy
gennaro.cordasco@unina2.it

3 Warsaw School of Economics (WSE - SGH), Warsaw, Poland
pszufe@gmail.com

Abstract. D-Mason framework is a parallel version of the Mason
library for writing and running Agent-based simulations – a class of mod-
els that, by simulating the behavior of multiple agents, aims to emulate
and/or predict complex phenomena. D-Mason has been conceived to
harness the amount of unused computing power available in common
installations like educational laboratory. Then the focus moved to dedi-
cated installation, such as massively parallel machines or supercomputing
centers. In this paper, D-Mason takes another step forward and now it
can be used on a cloud environment.

The goal of the paper is twofold. Firstly, we are going to present D-
Mason on the cloud – a D-Mason extension that, starting from an IaaS
(Infrastructure as a Service) abstraction, and exploiting Amazon Web
Services and StarCluster, provides a SIMulation-as-a-Service (SIMaaS)
abstraction that simplifies the process of setting up and running distrib-
uted simulations in the cloud. Secondly, an additional goal of the paper is
to assess computational and economic efficiency of running distributed
multi-agent simulations on the Amazon Web Services EC2 instances.
The computational speed and costs of an EC2 cluster will be compared
against an on-site HPC cluster.

Keywords: Agent-Based simulation Models · Cloud computing ·
D-Mason · Parallel computing · Distributed systems · High performance
computing

1 Introduction

Computational science is a rapidly growing novel field that uses advanced com-
puting in order to solve complex problems. This new discipline combines new

c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 322–333, 2017.
DOI: 10.1007/978-3-319-58943-5 26

D-Mason on the Cloud: An Experience with Amazon Web Services 323

technologies, modern computational methods and simulations to address prob-
lems too complex to be reliably predicted by theory and too dangerous or expen-
sive to be reproduced in the laboratory.

Many simulation paradigms have been proposed. Among them, Agent-Based
simulation Models (ABMs) are an increasingly popular tool in terms of expres-
siveness and easy to understand for the developer of simulation models [9].

Successes in computational sciences over the past ten years have caused
demand for supercomputing resources, to improve the performance of the sys-
tem and to allow the growth of the models, in terms of sizes and quality. From a
computer scientist’s perspective, it is natural to think to distribute the execution
of the simulations among multiple machines: it is well known that the speed of
single-processor computers is reaching some physical limits. For these reasons,
parallel computing has become the dominant paradigm for computational scien-
tists who need the latest development on computing resources in order to solve
their problems.

The cloud computing paradigm [1] is becoming very popular these days. With
cloud computing, the cloud vendors provide IT resources to users as a utility
like the electricity; the user accesses the IT resources easily and pays only for
the ones they consumed. Cloud providers offer managed infrastructures (IaaS -
Infrastructure as a Service) as well as managed platforms such as a key-value
storage or a relational database (PaaS - Platform as a Service). The offered IaaS
and PaaS services enable Cloud computing services that range from simple data
backup to the possibility of deploying entire computing clusters or data centers
in a remote environment.

The goal of cloud computing is to allow users to take benefit from IT
resources, without the need for deep knowledge about or expertise with each
one of them. Moreover, individual user or small groups do not need to provide
and maintain IT-infrastructure on their own, but instead rely on cloud services to
satisfy their needs. The flexibility, cost-efficiency, scalability, accessibility as well
as user-friendliness of cloud services make it also an attractive model to address
computational challenges in the scientific community. The design of ABMs is
usually done by domain experts who seldom are computer scientists and have
limited knowledge of managing a modern parallel infrastructure. In this context,
there is the need of tools that allow, in a transparent way, the use of cloud
resources to non-expert users [7,8].

In this paper, we introduce D-Mason on the cloud – a D-Mason extension
that provides a SIMulation-as-a-Service (SIMaaS) infrastructure that simpli-
fies the process of setting up and running distributed simulations in the cloud.
We will present a preliminary evaluation of the novel infrastructure in order to
assess computational and economic efficiency of running distributed multi-agent
simulations on the Amazon Web Services EC2 instances. The computational
speed and costs of an EC2 cluster will be compared against an on-site HPC
cluster.

324 M. Carillo et al.

2 Background

2.1 D-Mason

D-Mason [3,4] is the distributed version of Mason [10,11], a discrete-event
simulation core and visualization library written in Java, designed to be used
for a wide range of ABMs. Mason is composed of two independent layers: the
simulation layer and the visualization layer. D-Mason adds a new layer named
D-simulation, which extends the Mason simulation layer. The new layer adds
some features that allow the simulation work distribution on multiple, even het-
erogeneous, Logical Processors (LPs). D-Mason has been designed to enable the
porting of existing applications to a distributed platform in a transparent and
easy way.

Fig. 1. D-Mason scheme.

D-Mason is based on a Master/Workers paradigm that exploits a space
partitioning approach: the master partitions the space to be simulated (i.e., the
field) into cells (see Fig. 1). Each cell, together with the agents it contains, is
assigned to an LP; then each LP is in charge of:

– simulating the agents that belong to the assigned cell;
– handling the migration of agents;
– managing the synchronization between neighboring cells (this information

exchange is required in order to let the simulation run consistently).

D-Mason on the Cloud: An Experience with Amazon Web Services 325

D-Mason LPs communicate via a well-known mechanism, based on the Pub-
lish/Subscribe paradigm: a multicast channel is bound to each cell; LPs then
simply subscribe to the topics associated with the cells, which overlap with their
Area of Interest (AOI) in order to receive relevant message updates. Other topics
are also used for system management and visualization.

D-Mason has been conceived to harness the amount of unused computing
power available in common installations like educational labs, that is, a loosely
coupled environment with heterogeneous machines. To take advantage of this
environment, the former version of D-Mason used a centralized communication
mechanism (JMS), while the main emphasis was represented by load balancing
[6]. Indeed, when the number of LPs available is limited, a centralized communi-
cation is, at the same time, easy to develop/manage and efficient. Then the initial
design idea has spanned beyond this. The focus moved to dedicated installation,
such as massively parallel machines or supercomputing centers. These platforms
usually offer a large number of homogeneous machines that, on one hand, sim-
plify the issue of balancing the load among LPs, but, on the other hand, the
considerable computational power provided by the system weakens the efficiency
of the centralized communication server. For this reasons, a novel decentral-
ized communication mechanism, which realizes a Publish/Subscribe paradigm
through a layer based on the MPI standard, was implemented in D-MASON [5].

2.2 Amazon Web Services

Amazon Web Services (AWS) is a scalable and highly reliable cloud infrastruc-
ture for deploying applications on demand. The main idea is to let the user
building its services with minimal support and administration costs. AWS pro-
vides different services on the cloud. In this work, we are interested to the web
services that enable either the modeler or the developer to run their simulation
on the cloud. Amazon Elastic Compute Cloud (Amazon EC2) provides resizable
computing capacity in the cloud. In terms of abstraction layers, the Amazon
EC2 is an instance of the Infrastructure as a Service (IaaS) model, where the
Amazon infrastructure is seen as a complete virtual environment which allows
to execute different instances of virtual machines. Specifically, Amazon allows
bundling operating system, application software and configuration settings into
an Amazon Machine Image (AMI). Then each user can configure and deploy
a cluster of machines using a specific AMI instance to run distributed simula-
tions. Advanced users may also create their own AMIs and publish them on the
Amazon Marketplace Web Service (Amazon MWS).

In terms of business model, Amazon offers three different purchasing mech-
anisms: On-Demand Instances, Reserved Instances and Spot Instances. On-
Demand Instances have fixed price (per hour) and allow using the resources
immediately. With Reserved Instances, it is possible to reserve the utilization of
some instances for a predefined period (from 1 to 3 years) with lower payment.
Finally, when the timing is not crucial, with Spot Instances, it is also possible
to bid for unused resources in order to reduce drastically the costs.

326 M. Carillo et al.

2.3 StarCluster

The main issue a user needs to solve in order to use an IaaS service, to run a
distributed application, is the configuration and management of each machine.
Even using a dedicated AMI, which bundle the basic software components,
there are still several parameters that have to be configured separately on each
machine. Moreover, the management of the machines is usually time-consuming
and requires repetitive tasks that need to be executed for each instance and
therefore should be automate to avoid human mistake. To face this issue, a
cluster-computing toolkit, StarCluster [15], released under the LGPL license,
has been deployed to configure and manage Amazon EC2 instances. StarClus-
ter enables users to easily setup a cluster computing environment in the cloud,
suited for distributed and parallel computing applications and systems.

StarCluster is useful to configure the network of the cluster, create user
accounts, enable password-less connections sharing the SSH password between
the cluster’s nodes, setup NFS shares and the queuing system for the jobs. Star-
Cluster is also customizable via plug-ins, which allow users to configure fur-
ther the cluster with their specific configuration. Plugins are written in Python
exploiting StarCluster API to interact with the nodes. The API supports exe-
cuting commands, copying files, and other OS-level operations on the nodes.
StarCluster supports also the use of Spot instances allowing the user to run
on-demand experiments in easy way and at affordable prices.

3 D-Mason on the Cloud

D-Mason on the cloud has been realized with the purpose to provide a
SIMulation-as-a-Service (SIMaaS) environment. The architecture of the system
is depicted in Fig. 2. D-Mason on the cloud is based on a modular approach,
which comprises three levels: The Infrastructure is given by Amazon EC2 which
provides a wide portfolio of instance types [13] designed to be adopted for differ-
ent use cases. Instance types vary by CPU performances, memory, storage (size
and performance), and networking capacity. The user is free to select an AWS
cell according to prices and availability or resources. Starting with a free avail-
able Amazon AMI (ami-52a0c53b) that includes a minimal software stack for
distributed and parallel computing [15], we realized an AMI specifically config-
ured for executing D-Mason on the cloud. The D-Mason AMI, public available
on Amazon Infrastructure, provides also Java 8, Maven, D-Mason 3.1. On top
of that, we developed a StarCluster plugin, which exploits all the functionality
provided by StarCluster in order to create automatically a runnable D-Mason
environment based on the D-Mason AMI. With more details, the StarCluster
plugin:

– configure the cluster network environment (users account, hostnames setting,
SSH key share, NFS setup);

– appoint one of the machines as a Master node;
– install and configure the D-Mason environment.

D-Mason on the Cloud: An Experience with Amazon Web Services 327

Fig. 2. D-Mason on the cloud: architecture.

The master node runs the D-Mason Master application, the JMS message broker
(ActiveMQ) and the web system management server (see Sect. 3.1). The other
machines run the D-Mason Worker applications, which communicate using the
JMS message broker running on the Master node. Each D-Mason Worker appli-
cation provides a simulation slot for each core available on the machine. The
StarCluster D-Mason Plugin is freely available on GitHub D-Mason source
code repository [14].

The D-Mason tier did not require any particular change but, since now the
system will be executed on a cloud environment, a novel Web system manage-
ment interface has been developed in order to manage the system.

3.1 D-Mason Web System Management

The former version of D-Mason system management was introduced in [2].
Briefly, it is a console written in Java, using Java swing framework, for managing
and monitoring D-Mason simulations. In details, D-Mason system management
enables to:

328 M. Carillo et al.

– configure a simulation (choose the simulation and its parameters, define the
partitioning and the communication strategies);

– select a set of workers to be used as LPs;
– manage the simulation execution (play/pause/stop);
– collect the simulations’ logs and the outputs.

The former version of D-Mason system management had two disadvantages:
First, it was not fully decoupled from the simulation part. Hence, adding new
features often requires complex interventions with a considerable waste of time.
Moreover, the system was designed for local interactions (that is assuming that
both the simulation and the management applications are reachable on several IP
ports). Unfortunately, this is not always the case, both NAT and firewall services
may result in unreachable ports. For the reasoning above, we decided to develop
a fully decoupled system management services easily available via web services.

Design. We decided to embed a portable web server into our architecture. After
a deep analysis of the open web servers available for Java, we decided to opt
for Jetty [18]. In order to develop an efficient and pleasant interface, we were
inspired by Google material design [16], the guidelines provided by Google for
the development of good design interfaces. Our interface is based on a useful
library named Polymer [17], which has been designed to create components for
the modern web, following the material design guideline.

Architecture. The novel web server components has been encapsulated into the
D-Mason Master application, which now comprises two communication compo-
nents:

– ActiveMQ, for communication between D-Mason applications (either
master-worker or worker-worker)

– Jetty, for communication between the user and the master application (via
web interface)

When the user starts the Master application, both the ActiveMQ and the Jetty
server will run on the host. In particular the Jetty server is reachable on a
TCP port (default is 8080) and the user can access the management console via
browser. Using this approach the user can manage and monitor its simulation,
provided that the port 8080 of the Master node is reachable on the Internet.

We posit that the load of the Jetty Server will have no impact on the overall
performances of the system. This is true especially when the number of users is
small and the user interaction is limited. Indeed, the load of the Jetty server is
only due to the activity of discovering and monitoring of LPs. In any case, when
this load increases (i.e., a huge number of users continuously interacting with
the master and/or the number of LPs to be monitored is large) the master node
can be configured to use an external ActiveMQ communication server.

A dedicated hand-shaking mechanism allows bonding the Master application
with the workers available. When a worker joins the system, it communicates
how many slots (LPs) it can afford. As soon as the master realizes that he has
enough LPs to start the simulation, the system enables the user to interact with
the simulation.

D-Mason on the Cloud: An Experience with Amazon Web Services 329

The web system management enables also the user to monitor the resources
available on all connected workers (see Fig. 3). Using such information the user
is able to choose appropriately the workers to be engaged for future simulations.

The system management provides a library of preloaded simulation but at
the same time, it is possible to upload a novel simulation as a jar file. Once a
simulation has been chosen, the user has to select the simulation’s parameters
and submit it to the selected workers. The simulations page shows the list of all
the simulations running on the system; for each simulation, using the Simulation
Controller (see Fig. 4 (left)), the user can start, pause or stop the execution until
the end of the simulation. In order to monitor the evolution of a simulation, a
logging mechanism has been implemented. All the log files are available at run-
time on the Simulation Info panel (see Fig. 4 (right)). Moreover, a history page is
available in order to get all the information available about executed simulations.
The history page allows also downloading log files.

Fig. 3. Workers seen from master

Fig. 4. Simulation Controller (left) and Simulation Info (right)

330 M. Carillo et al.

4 Performance and Cost Evaluation

We performed several benchmarks in order to evaluate the performance of
D-Mason on the cloud. All the tests have been performed on D-Flockers, which
is the distributed version of Flockers Mason model and represents an imple-
mentation of the Boids model [12]. Boids/Agents have been simulated on a 2D
geometric field having size 6400×6400. For each test we executed a reproducible
simulation with 1 million agents for 15 min. At the end of the simulation, we
computed the number of simulation steps performed. We used the novel system
management, to start and stop the simulation and to collect the log files.

Five 2D space partitioning strategies (2 × 2, 2 × 4, 3 × 4, 4 × 4, 4 × 5)
which generate respectively 4, 8, 12, 16 and 20 cells have been considered. All
the simulations have been performed with a number of LPs (cores) equal to

Table 1. Cost calculation for in-house hosting of a single server with 8 Xeon 2-cores
processors.

Cost factor Value Calculated cost

Hardware purchase $6500

Amortization - number of months 36

Monthly server hardware cost $200

Average number of hours in month 730

Server usage % 50%

Average number of effective hours in month 365 h

Hardware cost for effective hour 0.49

Power consumption full load 500 W

Power consumption stand by 200 W

Power management unit (PMU) 2.5

Server usage % 50%

Average hourly consumption 350× 2.5 = 875W

Electricity price per KWh $0.13

Electricity cost for effective hour $0.11

Rack space $30/month

UPS $20/month

Internet connection $20/month

Collocation effective hour $0.19

Human hardware maintenance $200/server×month

Managing per effective hour $0.55

Total effective costs per server hour $1.34

Number of CPUs 16

Total effective costs per CPU $0.08

D-Mason on the Cloud: An Experience with Amazon Web Services 331

the number of cells described by the partitioning strategy on four instance type
(either cloud or HPC). Specifically we tested two cloud instances available on
Amazon EC2:

c3.large, processor Intel Xeon E5-2680 v2 (Ivy Bridge) with 2 vCPU, 3.75 GB
of memory and 2× 16 GB SSD storage (cost $0.105/h — or 0.019/h for spot
at the low price range);

c3.xlarge, processor Intel Xeon E5-2680 v2 (Ivy Bridge) with 4 vCPU, 7.5 GB
of memory and 2× 40 GB SSD storage. (cost $0.210/h — or 0.039/h for spot
at the low price range).

In order to compare the results against a dedicated on–site environment,
we performed the same tests on an HPC cluster. The HPC cluster consists of
16 nodes – each one equipped with 2 × Intel(R) Xeon(R) CPU E5-2430 with
12 vCPU, 16 GB of memory and 1 TB HDD storage – interconnected through a
Gigabit Ethernet. Each node is running Ubuntu 14.04 operating system with lat-
est updates. The (per node) cost of the considered HPC environment is reported
in Table 1.

We considered two different configurations. In the former one, named HPC1,
all the LPs are executed using a single node, while in the latter, named HPC∗,

Table 2. Performance and costs comparison.

Instance # of # of Partitioning Performed steps Overall cost Overall Cost (x step)

type instances LPs in 15min (Avg) cost EC2 spot $/1000

c3.large 2 4 2 × 2 110 $0.210/h $0.038/h 0.48

c3.large 4 8 2 × 4 271 $0.420/h $0.076/h 0.39

c3.large 6 12 3 × 4 408 $0.630/h $0.114/h 0.39

c3.large 8 16 4 × 4 601 $0.840/h $0.152/h 0.35

c3.large 10 20 4 × 5 846 $1.05/h $0.19/h 0.31

c3.xlarge 1 4 2 × 2 139 $0.210/h $0.038/h 0.38

c3.xlarge 2 8 2 × 4 325 $0.420/h $0.076/h 0.32

c3.xlarge 3 12 3 × 4 555 $0.630/h $0.114/h 0.28

c3.xlarge 4 16 4 × 4 598 $0.840/h $0.152/h 0.35

c3.xlarge 5 20 4 × 5 955 $1.05/h $0.19/h 0.27

HPC1 1 4 2 × 2 245 $1.34/h N/A 1.37

HPC1 1 8 2 × 4 336 $1.34/h N/A 1

HPC1 1 12 3 × 4 375 $1.34/h N/A 0.89

HPC1 1 16 4 × 4 387 $1.34/h N/A 0.87

HPC1 1 20 4 × 5 389 $1.34/h N/A 0.86

HPC∗ 2 4 2 × 2 326 $2.68/h N/A 2.05

HPC∗ 4 8 2 × 4 651 $5.36/h N/A 2.06

HPC∗ 6 12 3 × 4 966 $8.04/h N/A 2.08

HPC∗ 8 16 4 × 4 1293 $10.72/h N/A 2.07

HPC∗ 10 20 4 × 5 1591 $13.4/h N/A 2.11

332 M. Carillo et al.

we executed exactly 2 LPs for each machine. Hence in this last configuration the
system uses up to 10 nodes.

We tested the four instances (c3.large, c3.xlarge, HPC1, HPC∗) with 5
partitioning configuration (20 tests overall). We notice that all the tests have
been executed on a reproducible deterministic simulation using the same JVM
(version 1.8.0 72). We executed each test 10 times. The results are compared
using means of simulation steps performed (we observed a minimum variance in
the cloud instance results, while on the HPC instances the variance was negligi-
ble). Results about performance and costs are reported in Table 2.

Analyzing the results from Table 2, we notice that D-Mason on the cloud
scales pretty well. In general, we provide the following observations. The HPC∗

instance provides the best performance. This result was expected and we believe
that it is mainly due to the quality of the dedicated interconnection network.
It should be highlighted, however, that the HPC∗ configuration is considerably
more expensive. On the other hand the cloud instances are much cheaper than
the HPC ones. Moreover, both the cloud instances scale better than the HPC1,
which have comparable costs. Finally, in order to measure the trade-off between
performances and cost, we computed the cost (per step) of each test setting
(see last column of Table 2). The results show that the cloud instances are much
cheaper than dedicated instances.

5 Conclusion

The performance results described in Sect. 4 show that the proposed
SIMulation-as-a-Service (SIMaaS) infrastructure provides a very attractive
price-performance ratio. As a future work, it would be interesting to analyze
the performance of other cloud instances also on much more demanding simula-
tions (both in terms of computation and communication requirements).

References

1. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud comput-
ing and emerging IT platforms: vision, hype, and reality for delivering com-
puting as the 5th utility. Future Gen. Comput. Syst. 25(6), 599–616 (2009).
http://www.sciencedirect.com/science/article/pii/S0167739X08001957

2. Cordasco, G., Chiara, R., Fulgido, F., Vitale, M.F.: Supporting the exploratory
nature of simulations in D-Mason. In: Mey, D., et al. (eds.) Euro-Par
2013. LNCS, vol. 8374, pp. 555–564. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-54420-0 54

3. Cordasco, G., Chiara, R., Mancuso, A., Mazzeo, D., Scarano, V., Spagnuolo, C.: A
framework for distributing agent-based simulations. In: Alexander, M., et al. (eds.)
Euro-Par 2011. LNCS, vol. 7155, pp. 460–470. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-29737-3 51

4. Cordasco, G., De Chiara, R., Mancuso, A., Mazzeo, D., Scarano, V.,
Spagnuolo, C.: Bringing together efficiency and effectiveness in distributed simula-
tions: The experience with D-MASON. SIMULATION: Trans. Soc. Model. Simul.
Int. 89(10), 1236–1253 (2013)

http://www.sciencedirect.com/science/article/pii/S0167739X08001957
http://dx.doi.org/10.1007/978-3-642-54420-0_54
http://dx.doi.org/10.1007/978-3-642-54420-0_54
http://dx.doi.org/10.1007/978-3-642-29737-3_51
http://dx.doi.org/10.1007/978-3-642-29737-3_51

D-Mason on the Cloud: An Experience with Amazon Web Services 333

5. Cordasco, G., Milone, F., Spagnuolo, C., Vicidomini, L.: Exploiting D-Mason
on parallel platforms: a novel communication strategy. In: Lopes, L., et al. (eds.)
Euro-Par 2014. LNCS, vol. 8805, pp. 407–417. Springer, Cham (2014). doi:10.1007/
978-3-319-14325-5 35

6. Cosenza, B., Cordasco, G., De Chiara, R., Scarano, V.: Distributed load balanc-
ing for parallel agent-based simulations. In: Proceedings of the 19th International
Euromicro Conference on Parallel, Distributed, and Network-Based Processing,
(PDP 2011), pp. 62–69 (2011)

7. D’Angelo, G., Marzolla, M.: New trends in parallel and distributed simulation:
from many-cores to cloud computing. Simul. Model. Pract. Theory 49, 320–335
(2014). http://www.sciencedirect.com/science/article/pii/S1569190X14001014

8. Fujimoto, R., Malik, A., Park, A.: Parallel and distributed simulation in the cloud.
Int. Simul. Mag. Soc. Model. Simul. 3(1) (2010)

9. López-Paredes, A., Edmonds, B., Klugl, F.: Editorial of the special issue: agent
based simulation of complex social systems. SIMULATION: Trans. Soc. Model.
Simul. Int. 88(1), 4–6 (2012)

10. Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K.: MASON: a new multi-agent
simulation toolkit. In: Proceedings of the 2004 SwarmFest Workshop (2004)

11. Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: MASON: a mul-
tiagent simulation environment. Simulation 81(7), 517–527 (2005). http://dx.
doi.org/10.1177/0037549705058073

12. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. SIG-
GRAPH Comput. Graph. 21(4), 25–34 (1987). http://doi.acm.org/10.1145/
37402.37406

13. Amazon EC2. https://aws.amazon.com/ec2
14. D-MASON Official GitHub Repository. https://github.com/isislab-unisa/dmason.

Accessed May 2016
15. StarCluster. http://star.mit.edu/cluster/index.html
16. Google Material Design. https://www.google.com/design/spec/material-design
17. Polymer. https://www.polymer-project.org/1.0/
18. Jetty. http://www.eclipse.org/jetty/

http://dx.doi.org/10.1007/978-3-319-14325-5_35
http://dx.doi.org/10.1007/978-3-319-14325-5_35
http://www.sciencedirect.com/science/article/pii/S1569190X14001014
http://dx.doi.org/10.1177/0037549705058073
http://dx.doi.org/10.1177/0037549705058073
http://doi.acm.org/10.1145/37402.37406
http://doi.acm.org/10.1145/37402.37406
https://aws.amazon.com/ec2
https://github.com/isislab-unisa/dmason
http://star.mit.edu/cluster/index.html
https://www.google.com/design/spec/material-design
https://www.polymer-project.org/1.0/
http://www.eclipse.org/jetty/

Load-Sharing Policies in Parallel Simulation
of Agent-Based Demographic Models

Alessandro Pellegrini1(B), Cristina Montañola-Sales2, Francesco Quaglia1,
and Josep Casanovas-Garćıa2

1 DIAG, Sapienza University of Rome, Rome, Italy
{pellegrini,quaglia}@dis.uniroma1.it

2 inLab FIB, Barcelona School of Informatics, Barcelona, Spain
cristina.montanola@upc.edu, josepk@fib.upc.edu

Abstract. Execution parallelism in agent-Based Simulation (ABS)
allows to deal with complex/large-scale models. This raises the need for
runtime environments able to fully exploit hardware parallelism, while
jointly offering ABS-suited programming abstractions. In this paper, we
target last-generation Parallel Discrete Event Simulation (PDES) plat-
forms for multicore systems. We discuss a programming model to support
both implicit (in-place access) and explicit (message passing) interactions
across concurrent Logical Processes (LPs). We discuss different load-
sharing policies combining event rate and implicit/explicit LPs’ inter-
actions. We present a performance study conducted on a synthetic test
case, representative of a class of agent-based models.

1 Introduction

Agent-based modeling (ABM) is a simulation technique which provides abstract
representations of a scenario via a descriptive model to reproduce its evolution
through its components, including their decision-making capabilities and inter-
action patterns. An agent can be defined as an entity (theoretical, virtual or
physical) capable of acting on itself, on the environment in which it evolves, and
capable of interacting with other agents [13]. ABM is very useful in capturing
interactions at a macro scale coming from the way agents behave at a micro level.
This intrinsic expressive power makes it a proven solution to explore complex
real-world scenarios, such as disaster rescue [29], ancient societies resilience [2],
epidemiology [27], and economic analysis [23].

Supporting the execution of simulation models expressed using such a ver-
satile formalism is a task which requires a substantial methodological effort. In
fact, a large number of widely-adopted ABM frameworks [17,20,22,30] is intrin-
sically serial, and can therefore handle a population which is significantly limited
in its size. To avoid limiting the speed and scalability of simulations, efficient
parallelization techniques must be employed. On this trend, several works aim
at exploiting the high parallelism offered by GPU computing [18,24] or cluster-
based parallel computing [7]. More in general, Discrete Event Simulation (DES)
can be considered as a mainstream formalism to describe agent-based models.
c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 334–346, 2017.
DOI: 10.1007/978-3-319-58943-5 27

Load-Sharing Policies in Parallel Simulation of ABM 335

The reason is that agents’ interactions can be abstracted as occurring at par-
ticular time instants—interactions having a specific duration can be mapped to
a couple of begin and end discrete events. The mapping from ABM to DES is
trivial, as the entities (agents and the environment) can be easily mapped to
the general notion of Logical Process (LP) proper of DES. This is an impor-
tant aspect, given the existence of a plethora of techniques globally referred to
as Parallel Discrete Event Simulation (PDES) [9], which provide protocols and
mechanisms to run complex DES models in parallel, allowing for model speedup
and tractability of more complex and large models.

In this paper, we discuss a reference programming model for agent-based
demographic models to be run on top of shared-memory PDES systems. In par-
ticular, we target the speculative paradigm incarnated by the well-known Time
Warp synchronization protocol [12], which has been recently shown to provide
scalability up to thousands or millions of CPU-cores [3]. Our goal is to give the
highest degree of freedom to the programmer, and to ensure an efficient execu-
tion of the simulation. We target symmetric-multithread PDES environments for
shared-memory multicore systems [34]. LPs are allowed to interact in a twofold
way: (i) explicitly, namely via traditional message passing, or (ii) implicitly, i.e.
relying on in-place memory accesses of their respective simulation states. This
latter interaction is based on cross-state synchronization [26] to track memory
areas accessed by threads scheduling LPs, and it has already been proven a good
facility to enhance the programmability of agent-based models [25].

Moreover, we present three load-sharing policies to optimize the binding
between LPs and worker threads of the simulation platform. As discussed in [34],
this is a fundamental aspect to offer competitive performance. The binding tem-
porarily assigns computing resources (i.e., worker threads stick to certain cores)
to groups of LPs. Their composition can significantly affect the overall per-
formance due to, e.g., reduced rollback frequency. The policies are based on:
(i) density of events in the future event list of LPs; (ii) implicit interactions
among different LPs; (iii) both implicit and explicit interactions among the LPs.
Different simulative scenarios can benefit from these policies, depending on the
events’ generation pattern and/or the amount and the nature of the interactions.
A synthetic benchmark, representative of a wide range of ABM demographic
models, is used to study these policies under different workload scenarios.

The load-sharing policies can bias synchronization dynamics to let a Time
Warp system improve its performance when different portions of the simula-
tion model exhibit stricter interdependencies. This can improve the usage of
computing resources while carrying out speculative processing of DES mod-
els, by reducing negative effects of speculation, such as the rollback frequency.
This is the objective of classical load balancing/sharing approaches proposed in
literature (see, e.g., [5,10,33]). However, these proposal consider only explicit
interactions supported via the classical event cross-scheduling approach.

The remainder of this paper is structured as follows. Section 2 discusses
related work. In Sect. 3 we present our programming model. Section 4 introduces
our load-sharing policies. The experimental assessment is provided in Sect. 5.

336 A. Pellegrini et al.

2 Related Work

In the literature, there are several frameworks to efficiently support agent-based
simulation, both on distributed and shared-memory systems, or on GPUs.

The MASON framework [17] pays special attention to the performance of
simulation execution, addressing computing-intensive models (i.e., large sce-
narios with many agents), along with portability and reproducibility of the
results across different hardware architectures. A parallel/distributed version
(D-MASON) has been presented in [7], which relies on time-stepped synchroniza-
tion and on the master/slave paradigm. We similarly address the performance of
agent-based simulation execution, yet we do this for the case of speculative asyn-
chronous (non-time-stepped) PDES, reducing the negative effects of optimism
by finding proper binding between LPs and threads.

AnyLogic [14] is a commercial multi-method general-purpose simulation mod-
eling and execution framework, offering at the same time the possibility to sup-
port discrete-event, system dynamics, and agent-based simulation. The simula-
tion model developer can rely on graphical modeling languages to implement the
simulation models, along with Java code. Differently from this framework, we
target C technology and explicitly provide self-tuning capabilities in the load-
sharing policies, which allow to optimize at runtime the simulation performance.

FLAME [11] is a simulation framework targeting large, complex models with
large agent populations to be run on HPC platforms using MPI and OpenMP.
The counterpart FLAME GPU [28] targets 3D simulations of complex systems
with a multi-massive number of agents on GPU devices. We keep the ability to
deal with large amount of agents (bound by the simulation state size), yet we
rely on traditional CPU-based execution of the simulation model.

In the context of PDES, several works have studied the problem of finding
the best binding between LPs and worker threads—see, e.g., [19,31–34]. Never-
theless, none of these works has ever used information related to the interaction
between LPs to explicitly reduce the (possible) negative effects of optimistic
simulation runs.

The proposal in [4], still targeting multi-core architectures as we do, pro-
poses a technique called Dynamic Local Time Window Estimates (DLTWE), in
which each processor communicates time estimates of its next inter-processor
event to its neighbors, which use the estimates as bounds for advancement.
The proposal specifically targets spatial simulations, in which different (close)
sub-volumes could be interested by a rollback operation. A selective rollback
function is described, which allows to reduce the effects of rollbacks at LPs
managing “close” entities. Contrarily, we do not impose any topology or prede-
termined relation across the LPs, which is an implicit outcome thanks to the
different supported programming model (based on in-place state access every-
where). Moreover, we limit the effect of a rollback too for applications exploiting
such a programming model by explicitly avoiding causal inconsistencies across
LPs that are dynamically granulated together.

Load-Sharing Policies in Parallel Simulation of ABM 337

3 Reference Programming Model

In the most general case, the core element of a demographic model is the life
course of individuals, while their behaviour and their decisions strongly depend
on the environment they act into [1]. ABM is interesting for demography due to
its ability to generate personal-event histories and to produce estimates of the full
distribution outcome [21]. Only two elements are required by any demographic
agent-based model: the environment and the agents (with their interactions).
Borrowing from the discussion in [6], we map environment portions or places to
LPs, and agents to specific data structures managed by LPs’ handlers.

Indeed, an agent can be described in terms of individual-specific explanatory
variables. Changes in its state can be expressed as transitions (implemented
within the LPs’ event handlers) on some variables. In this way, different LPs
can manipulate the same agent differently, giving more expressive power at no
additional cost. The movement of an agent from a portion of space to another
can be encoded by having the origin LP schedule an event carrying the agent’s
data structure(s) at the destination LP. This LP can then register the agent’s
records within its simulation state. A LP might implement any logic within its
event handlers, and can therefore access any agent currently registered at it.

Nothing prevents multiple LPs from keeping in their states the records of the
same agents. This reflects a scenario where LPs represent non-disjoint places,
e.g., one LP might logically represent a city, while another LP might represent
a workplace within it. Both LPs can manage a subset of the state transitions
which involve an agent, and this organization clearly simplifies the implementa-
tion of the model, allowing for reuse/interoperability of different models. In this
scenario, cross-state synchronization [26] becomes a mandatory aspect to deal
with the correctness of the parallel simulation run.

By relying on cross-state synchronization, we can schematize our program-
ming model for demography as in Fig. 1. Each LP can describe a geographical

Fig. 1. Cross state-enabled programming model for agent-based demographic models.

338 A. Pellegrini et al.

region or a specific place (e.g., a workplace or a hospital) within one of the geo-
graphical regions. Both kinds of LPs keep two lists of records, a primary list
and a secondary list. The primary list keeps track of the agents currently in the
region represented by the LP, and therefore the LP’s handlers can manipulate
their attributes. Each agent is identified by a system-wide unique id, so that a
LP’s handler can manipulate subsets of the currently-hosted agents. Similarly,
the secondary list keeps track of the agents which can be managed (in terms of
record update) by the LP, yet are not primarily hosted at the region. This is a
list of pointers to some agent records kept in the primary list of any other LP in
the system. In this way, multiple LPs share a portion of their simulation state,
and concurrently access the records of the agents of interest for the execution of
the model, decoupling different logical aspects of the model. For example, if a LP
represents a workplace, all agents working there could have their salary updated
via a simple chain traversal—this operation is independent of any other action
involving the agents, and is thus realized on a separate module of the model.

By this organization of the LPs’ states, we envisage two different operations
on agents which are of general usability for demographic agent-based models:

– Agent sharing : if a LP wants to share an agent with other LPs, it simply
sends an event carrying a pointer to the record chained to its primary list.

– Agent migration: when an agent physically moves from one spatial region to
another, the source LP creates a copy of the agent’s record into a message,
which is scheduled to the destination LP with a model-specific timestamp
increment. The record currently chained to the origin LP’s primary list is
detached and free()’d1, and all the LPs keeping a pointer to the record are
instructed via message passing to removed pointers from the secondary list.

If two agents want to interact, this is likely due to them being registered
at the same LP (or shared across the same LPs), and their records can be eas-
ily retrieved from LPs’ lists. In the more unlikely case that two agents interact
remotely (e.g., they interact due to some kinship relation), this can be supported
via traditional message passing. To this end, the source agent (run by its host-
ing LP) can keep the id of the destination LP within its record. The model
should only ensure that when an agent migrates to another region, it informs
(via message passing) the interested agents of their migration.

4 Load-Sharing Policies

4.1 Policy 1—Future Event List and GVT Advancement

The first policy we propose relies on a consensus algorithm to maximize the
global event rate (namely, the global amount of committed simulation events per
wall-clock-time unit) across all the worker threads. We consider the availability
of C cores, and complying with the organization in [34], we assume K worker
1 This pattern is compliant with traditional PDES environments, in which the virtual

address of a buffer identifies its ownership with respect to a certain LP.

Load-Sharing Policies in Parallel Simulation of ABM 339

threads (K ≤ C) are available for event processing. To determine what LPs
should be bound to the available worker threads, we follow these steps:

Step 1. Each worker thread ki, i ∈ [1,K], hosts a set of LPs with cardinality
numLP ki . We associate each LPl, l ∈ [1, numLP ki], with a workload factor Ll,
defined as the wall-clock time needed to advance LPl’s local virtual time of one
unit. The factor Ll is computed considering the number of events registered into
the LP’s future event list which fall within a distance in the future equal to the last
GVT advancement normalized to the local virtual time advancement they would
produce, weighted by the average CPU time for event processing by LPl, that is:

Ll =
ql · δl

LV T ql
l − LV T 1

l

(1)

where ql is the amount of events falling within the interval of interest, LV T i
l is

the timestamp of the i-th pending event in the queue, and δl is the average CPU
time requirement for event processing by LPj . Among the above parameters, ql
and LV T i

l are known in advance, since they depend on the state of the input
queue. Instead, δl is unknown since it expresses the average cost for events that
have not yet been processed. Anyhow, it can be approximated by an exponential
mean over already-processed events.

Step 2. The worker thread ki computes its total workload as:

Lki =
numLPki∑

l=1

Ll (2)

Step 3. The actual bindings are determined, accounting for the highest workload
factor found among LPs. This is done in several sub-steps based on knapsack :

– Workload factors for the LPs hosted by ki are non-increasingly ordered (let
us call them in this order as Ll1 , Ll2 , . . . , LlH);

– The highest factor Ll1 is taken as the reference value, and the knapsack
formed by LPl1 is defined;

– The other knapsacks are built by aggregating the remaining LPs according
to a 0–1 one-dimensional multiple knapsack problem-solving algorithm. This
problem is NP-hard, whose integral solution is non-trivial. So we rely on a
greedy approximation approach [8], considering K knapsacks. At each step of
the algorithm, ∀i ∈ [2,H], the k-th knapsack’s size is updated as Sk = Sk+Lli ,
and it is considered full if the size constraint is violated. We then switch to
the k + 1 knapsack, and begin to fill it. Once all K knapsacks are full, the
remainder LPs (if any) are distributed in a round-robin fashion.

4.2 Policy 2—Implicit Synchronization

The memory management architecture in [26], allows to materialize cross-state
accesses by leveraging a Linux kernel module which installs sibling page tables in
x86 MMU registers. In this way, whenever a LP accesses a memory page bound

340 A. Pellegrini et al.

Algorithm 1. LP Grouping
1: procedure Regroup(LpGroup GLP, int LPid, int group)
2: if GLP[LPid].group �=⊥ then
3: return GLP[LPid].group
4: end if
5: if group �=⊥ then
6: GLP[LPid].group ← group
7: else
8: GLP[LPid].group ← LPid
9: end if

10: if GLP[LPid].MaxDep �=⊥ then
11: GLP[LPid].group = Regroup(GLP, GLP[LPid].MaxDep, GLP[LPid].group)
12: end if
13: return GLP[LPid].group

14: end procedure

to another LP, we can determine a cross-LP relation which we use to rebind
LPs to worker threads. We rely on the LpDependencies matrix, which gets
incremented at elements [i, j] and [j, i] whenever a cross-state access between
LPi and LPj is detected. We map LpDependencies to an incidence matrix of a
directed multigraph G = (V,E) where the set of vertices V keeps the identifiers
of the LPs in the system, and the set of edges E is defined as E = {{i, j} : i, j ∈
V ∧ LpDependencies[i, j] > 0}. Before converting it to an incidence matrix,
we filter the values to reduce the possibility of capturing spurious cross-state
relations, by using a threshold τdep. We thus build a cross-state dependency
multigraph G = {{i, j} : i, j ∈ V ∧ LpDependencies[i, j] ≥ τdep} and derive its
incidence matrix IMG. If no edge exists in G between two LPs LPi and LPj ,
then the (i, j) IMG element’s value is set to the special value ⊥. Periodically,
IMG is accessed to identify the highest cross-state access counter:

MaxDepk = max
i∈[0,numLPs−1],i �=k

{IMG[k, i]} (3)

where ⊥ is assumed to be the lowest value in the domain where the maximum is
searched. These indices are used to build a vector of tuples, each one structured
as 〈MaxDepk, group〉 ∀k ∈ [0, numLPs − 1]. Initially, the value group for all
the elements is set to ⊥, telling that LPk has its highest dependency counter set
to MaxDepk and belongs to the special group ⊥ (no group).

This construction transforms the multigraph G into another oriented multi-
graph Ḡ such that V̄ ≡ V , but if {i, j} ∈ V̄ , then {i, k} �∈ V̄ ∀k �= j. This
means that every node i ∈ V̄ has at most one edge connecting it to another
node j ∈ V̄ , with i �= j, and by construction j = MaxDepi.

A graph visiting algorithm on Ḡ is then used to group LPs together. We
iterate over all indices k ∈ [0, numLPs − 1], and for each value k we execute
the recursive function Regroup(LpGroup, k, ⊥) shown in Algorithm1. Its goal
is to determine whether the selected LP already belongs to a group or, in the
negative case, either the target LP is aggregated into the passed group (line 6)
or a new group is created (line 8). In the positive case, only the group the LP
belongs to is returned (line 3). Both cases are associated with tentative groups,
which could be later confirmed or discarded. If the LP was associated with a
tentative group, a recursive call is issued to Regroup() (line 11), selecting as

Load-Sharing Policies in Parallel Simulation of ABM 341

the target LP the MaxDep one of the current LP, and passing the ID of the
group which the current LP belongs to. The group ID of the current LP is then
updated with the return value of this call, which is done to backwards propagate
the creation of new groups or the agglomeration to existing ones (line 13).

Once the graph visiting algorithm is completed, we apply Policy 1, taking into
account the groups of LPs rather than single LPs. We note that in the scenario
where no dependencies at all are detected, Algorithm 1 creates numLPs groups,
each one keeping a single LP. In this case, Policy 2 boils down to Policy 1.

4.3 Policy 3—Implicit and Explicit Synchronization

To account for both implicit and explicit synchronization, we must optimize
towards multiple variables. For each LPi of the system, we rely on a set of coun-
ters, identifying the volume of implicit and explicit interactions. Particularly,
each LPi is associated with a tuple 〈I0, I1, . . . , InumLP−1, E0, E1, . . . EnumLP−1〉
where each component Ij is the amount of implicit accesses from LPi to LPj—
measured in terms of cross-state synchronizations. Each Ej is the amount of
events scheduled from LPi to LPj . For the case i = j, we arbitrarily set the
value Ii to the number of events executed by LPi, under the assumption that
the likelihood that one LP accesses its own state is very high. This decision
prevents the introduction of any bias in the general algorithm which is used for
load-sharing.

Each tuple 〈I0, I1, . . . , InumLP−1, E0, E1, . . . EnumLP−1〉 can be regarded as
a point in an n-dimensional space, referred to as the LPs interaction space.
The third policy aims at identifying a set of clusters of LPs with high inter-
dependence. Indeed, if two LPs have similar coordinates in the n-dimensional
space, they are very likely to interact. In particular, we want to identify K
clusters, where K is the number of active worker threads. To this end, we rely
on a variant of the Lloyd’s solution [16] to the problem of finding evenly-sized
Voronoi regions in an Euclidean space. This variant, known as the k-medoids
clustering algorithm [15], tries to partition the available numLP −1 LPs into K
different clusters trying to minimize the effect of outliers. Specifically, if we call i
and j the n-dimensional vectors associated with the coordinates of LPi and LPj

in the n-dimensional interaction space, we define the distance between the two
LPs as the Manhattan distance d(i, j) = ‖i − j‖ =

∑n
i=1 |ii − ji|. This distance

is used in the objective function of the algorithm, which is defined as:

D =
K∑

k=1

∑

i∈Ck

∑

j∈Ck

di,j (4)

where Ck is the set of all LPs in cluster k. When the load-sharing resource
allocation is recomputed, an initial LP is selected having the shortest distance
to any other LP in the n-dimensional space—it is approximately in the center.
Then, other k − 1 LPs are selected so that they decrease the value of D as
much as possible. In a second phase, possible alternatives for the k objects are
selected, by picking an unselected LP and trying to exchange it with one of the k

342 A. Pellegrini et al.

objects. The choice is kept if and only if it produces a decrease in the value of D.
This step is repeated until no exchange can be found that lowers the objective
function’s value. We anyhow impose a maximum number of refinement steps,
which can be tuned at compile time.

The selected k LPs define the centroids of the k Voronoi regions of the n-
dimensional interaction space. The LPs belonging to each group can then be
picked minimizing the distance d(i, j) with respect to the centroids.

5 Experimental Results

To study our policies, we rely on a synthetic benchmark which is representative of
a wide range of agent-based models. Upon simulation startup, a pre-determined
number of LPs acting as non-disjoint hexagonal cell regions is set up. They
implement event handlers which, with a certain probability, operate changes on
the hosted agents, execute an agent migration, or schedule to any other LP an
operative event, i.e. an event associated with an operation correlating two agents
hosted by different LPs.

As described, we map agents to data structures. An agent is described by
a bitmask of attributes and a payload which is updated by the event handler
implemented at any LP. In particular, we define three operations:

– State-machine update: with a certain probability psmu, a bit in the bitmask
is negated, mimicking a state transition;

– Memory update: with a certain probability pmu, a portion of the payload of
the agent’s structure is written with random data, mimicking the update of
less-concise metadata describing the agent;

– Remote agent interaction: with a certain probability prai, a random LP is
scheduled an event piggybacking random data. Upon its receipt, a random
agent is picked and the content of the event is copied into its state, mimicking
kinship or family interactions with relatives who live in separate places.

Upon simulation startup, each LP instantiates the same number of agents, to
have an even distribution, and links them to the primary list. Each LP schedules
to itself separate chains of events, exponentially distributed, which trigger the
state-machine and memory update operations. Once one of these operations is
triggered, the LP scans the whole list of records so as to randomly select agents
which undergo the corresponding operation. After a certain residence time, an
agent is migrated towards one remote region, and a new agent migration event
is scheduled, so that its lifetime within a certain region is pre-determined. Upon
installation, with a certain probability psh the agent is shared (via message
passing) with another region as well.

We have varied the probability p telling whether two LPs interact via message
passing—p = 0.5 shows an even amount of in-place accesses vs message passing.
We set psmu = 0.3, pmu = 0.5, prai = 0.2, and psh = 0.1, we use 1024 regions,
with a population of 100.000 agents, and run the experiments on ROOT-Sim [34]
on a 32-cores NUMA machine with 32 GB of RAM. The payload buffer of an

Load-Sharing Policies in Parallel Simulation of ABM 343

Fig. 2. Experimental results with different in-place state access probability p.

agent is 16 KB, for a total of ∼1.6 GB of live simulation state (i.e., without con-
sidering checkpoints). Additionally, we compare to an “agnostic” load sharing,
where LPs are bound to threads in a round robin fashion (RR in the plots).
By the results in Fig. 2, we can see that when the amount of message-passing
interactions is non-minimal (Fig. 2(c)), Policy 3 offers the better results. In fact,
this is the only policy which accounts for both implicit and explicit interac-
tion among LPs. On the other hand, when the vast majority of the interactions
rely on in-place accesses (Fig. 2(a)), Policy 2 gives better results, although in a
slightly reduced way since the graph visiting algorithm is not able to capture
a large amount of mutual dependencies. Policy 1 is interaction-agnostic, and is
not therefore able to compete with the other two policies.

In the best case, there is a performance speedup of around 30% with respect
to the RR policy. This evidences that load-sharing policies are fundamental to
offer a competitive simulation when run on shared-memory systems.

6 Conclusions

In this paper we have discussed a parallel ABM programming model for demog-
raphy, using the DES formalism. Additionally, we have proposed three different
policies to support efficient load balancing under different workloads. By our
results, we showed how load balancing is fundamental when running simulations
on shared-memory machines. Moreover, policies which explicitly account for
(implicit and explicit) interactions can find a binding between LPs and threads
which allows to better capture the parallelism degree of the model, and thus
increase performance.

References

1. Andrew, H.: Demographic Methods. Routledge, London (1998)
2. Balbo, A.L., Rubio-Campillo, X., Rondelli, B., Ramı́rex, M., Lancelotti, C.,

Torrano, A., Salpeteur, M., Lipovetzky, N., Reyes-Garćıa, V., Montañola-Sales, C.,
Madella, M.: Agent-based simulation of Holocene monsoon precipitation patterns
and hunter-gatherer population dynamics in semi-arid environments. J. Archaeol.
Method Theory 21(2), 426–446 (2014)

344 A. Pellegrini et al.

3. Barnes, P.D., Carothers, C.D., Jefferson, D.R., LaPre, J.M.: Warp speed: exe-
cuting time warp on 1,966,080 cores. In: Proceedings of the 2013 ACM SIGSIM
Conference on Principles of Advanced Discrete Simulation - SIGSIM-PADS
2013, p. 327 (2013). http://dl.acm.org/citation.cfm?id=2486134, http://dl.acm.
org/citation.cfm?doid=2486092.2486134

4. Bauer, P., Lindén, J., Engblom, S., Jonsson, B.: Efficient inter-process synchro-
nization for parallel discrete event simulation on multicores. In: Proceedings of
the 3rd ACM Conference on SIGSIM-Principles of Advanced Discrete Simulation -
SIGSIM-PADS 2015, pp. 183–194. ACM Press, New York (2015). http://dl.acm.
org/citation.cfm?doid=2769458.2769476

5. Carothers, C.D., Fujimoto, R.M.: Efficient execution of time warp programs on
heterogeneous, NOW platforms. IEEE Trans. Parallel Distrib. Syst. 11(3), 299–
317 (2000)

6. Cingolani, D., Pellegrini, A., Quaglia, F.: RAMSES: reversibility-based agent mod-
eling and simulation environment with speculation-support. In: Hunold, S., et al.
(eds.) Euro-Par 2015. LNCS, vol. 9523, pp. 466–478. Springer, Cham (2015). doi:10.
1007/978-3-319-27308-2 38

7. Cordasco, G., Chiara, R., Mancuso, A., Mazzeo, D., Scarano, V., Spagnuolo, C.: A
framework for distributing agent-based simulations. In: Alexander, M., et al. (eds.)
Euro-Par 2011. LNCS, vol. 7155, pp. 460–470. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-29737-3 51

8. Dantzig, G.B.: Discrete-variable extremum problems. Oper. Res. 5, 266–288 (1957)
9. Fujimoto, R.M.: Parallel discrete event simulation. Commun. ACM 33(10), 30–53

(1990)
10. Glazer, D.W., Tropper, C.: On process migration and load balancing in time warp.

IEEE Trans. Parallel Distrib. Syst. 4(3), 318–327 (1993)
11. Holcombe, M., Coakley, S., Smallwood, R.: A general framework for agent-based

modelling of complex systems. In: Proceedings of the 2006 European Conference
on Complex Systems. European Complex Systems Society Paris, France (2006)

12. Jefferson, D.R.: Virtual time. ACM Trans. Progr. Lang. Syst. 7(3), 404–425 (1985)
13. Jennings, N.R., Sycara, K., Wooldridge, M.: A roadmap of agent research

and development. Auton. Agents Multi-agent Syst. 1(1), 7–38 (1998).
http://eprints.soton.ac.uk/252112/

14. Karpov, Y.G.: AnyLogic – a new generation professional simulation tool. In: Pro-
ceedings of the 6th International Congress on Mathematical Modeling, MATH-
MOD (2004)

15. Kaufman, L., Rousseeuw, P.J.: Clustering by means of medoids. In: Statistical
Data Analysis Based on the L1-Norm and Related Methods, pp. 405–416 (1987)

16. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–
137 (1982). http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=
1056489

17. Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: MASON: a multi-
agent simulation environment. Simulation 81(7), 517–527 (2005)

18. Lysenko, M., D’Souza, R.M.: A framework for megascale agent based model
simulations on the GPU. J. Artif. Soc. Soc. Simul. 11(4), 10 (2008).
http://jasss.soc.surrey.ac.uk/11/4/10.html

19. Marziale, N., Nobilia, F., Pellegrini, A., Quaglia, F.: Granular time warp objects.
In: Proceedings of the 2016 ACM/SIGSIM Conference on Principles of Advanced
Discrete Simulation, PADS, pp. 57–68. ACM Press, New York (2016). http://dl.
acm.org/citation.cfm?doid=2901378.2901390

http://dl.acm.org/citation.cfm?id=2486134
http://dl.acm.org/citation.cfm?doid=2486092.2486134
http://dl.acm.org/citation.cfm?doid=2486092.2486134
http://dl.acm.org/citation.cfm?doid=2769458.2769476
http://dl.acm.org/citation.cfm?doid=2769458.2769476
http://dx.doi.org/10.1007/978-3-319-27308-2_38
http://dx.doi.org/10.1007/978-3-319-27308-2_38
http://dx.doi.org/10.1007/978-3-642-29737-3_51
http://dx.doi.org/10.1007/978-3-642-29737-3_51
http://eprints.soton.ac.uk/252112/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1056489
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1056489
http://jasss.soc.surrey.ac.uk/11/4/10.html
http://dl.acm.org/citation.cfm?doid=2901378.2901390
http://dl.acm.org/citation.cfm?doid=2901378.2901390

Load-Sharing Policies in Parallel Simulation of ABM 345

20. Minar, N., Burkhart, R., Langton, C., Askenazi, M.: The SWARM simulation
system: a toolkit for building multi-agent simulations. Technical report, Santa Fe
Institute (1996)

21. Montañola-Sales, C., Casanovas-Garcia, J., Kaplan-Marcusán, A., Cela-Esṕın, J.M.:
Demographic agent-based simulation of Gambians immigrants in Spain. In: Pro-
ceedings of the 10th Social Simulation Conference. European Social Simulation
Association (2014)

22. North, M.J., Howe, T.R., Collier, N.T., Vos, J.R., M.J. North, T.R. Howe, N.T.
Collier, J.V.: The repast simphony runtime system. In: Proceedings of the Agent
2005 Conference on Generative Social Processes, Models and Mechanisms, pp.
151–158. Argonne National Laboratory (2005)

23. Page, S.E.: Agent-based models. In: Durlauf, S.N., Blume, L.E. (eds.) The New
Palgrave Dictionary of Economics, pp. 47–52. Nature Publishing Group (2008).
http://www.dictionaryofeconomics.com/article?id=pde2008 A000218

24. Park, H.K., Han, J.H.: Fast rendering of large crowds using GPU. In: Stevens, S.M.,
Saldamarco, S.J. (eds.) ICEC 2008. LNCS, vol. 5309, pp. 197–202. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-89222-9 24

25. Pellegrini, A., Quaglia, F.: Programmability and performance of parallel ECS-
based simulation of multi-agent exploration models. In: Lopes, L., et al. (eds.)
Euro-Par 2014. LNCS, vol. 8805, pp. 395–406. Springer, Cham (2014). doi:10.
1007/978-3-319-14325-5 34

26. Pellegrini, A., Quaglia, F.: Transparent multi-core speculative parallelization of
DES models with event and cross-state dependencies. In: Proceedings of the 2014
ACM/SIGSIM Conference on Principles of Advanced Discrete Simulation, PADS,
pp. 105–116. ACM Press (2014). http://dl.acm.org/citation.cfm?doid=2601381.
2601398

27. Prats, C., Montañola-Sales, C., Gilabert-Navarro, J.F., Valls, J., Casanovas-
Garcia, J., Vilaplana, C., Cardona, P.J., López, D.: Individual-based modeling of
tuberculosis in a user-friendly interface: understanding the epidemiological role of
population heterogeneity in a city. Front. Microbiol. 6, 1564 (2016). http://journal.
frontiersin.org/Article/10.3389/fmicb.2015.01564/abstract

28. Richmond, P., Romano, D.: Agent based GPU, a real-time 3D simulation and
interactive visualisation framework for massive agent based modelling on the GPU.
In: Proceedings International Workshop on Supervisualisation (2008)

29. Takahashi, T., Tadokoro, S., Ohta, M., Ito, N.: Agent based approach in disaster
rescue simulation - from test-bed of multiagent system to practical application. In:
Birk, A., Coradeschi, S., Tadokoro, S. (eds.) RoboCup 2001. LNCS, vol. 2377, pp.
102–111. Springer, Heidelberg (2002). doi:10.1007/3-540-45603-1 11

30. Tisue, S., Wilensky, U.: Netlogo: a simple environment for modeling complexity. In:
Proceedings of the International Conference on Complex Systems, ICCS, pp. 1–10.
NECSI (2004). http://ccl.sesp.northwestern.edu/papers/netlogo-iccs2004.pdf

31. Vitali, R., Pellegrini, A., Quaglia, F.: A load sharing architecture for optimistic
simulations on multi-core machines. In: Proceedings of the 19th International Con-
ference on High Performance Computing, HiPC, pp. 1–10. IEEE Computer Society
(2012)

32. Vitali, R., Pellegrini, A., Quaglia, F.: Assessing load sharing within optimistic
simulation platforms. In: Proceedings of the 2012 Winter Simulation Conference,
WSC. Society for Computer Simulation (2012)

http://www.dictionaryofeconomics.com/article?id=pde2008_A000218
http://dx.doi.org/10.1007/978-3-540-89222-9_24
http://dx.doi.org/10.1007/978-3-319-14325-5_34
http://dx.doi.org/10.1007/978-3-319-14325-5_34
http://dl.acm.org/citation.cfm?doid=2601381.2601398
http://dl.acm.org/citation.cfm?doid=2601381.2601398
http://journal.frontiersin.org/Article/10.3389/fmicb.2015.01564/abstract
http://journal.frontiersin.org/Article/10.3389/fmicb.2015.01564/abstract
http://dx.doi.org/10.1007/3-540-45603-1_11
http://ccl.sesp.northwestern.edu/papers/netlogo-iccs2004.pdf

346 A. Pellegrini et al.

33. Vitali, R., Pellegrini, A., Quaglia, F.: Load sharing for optimistic parallel simu-
lations on multi core machines. ACM SIGMETRICS Perform. Eval. Rev. 40(3),
2–11 (2012). http://dl.acm.org/citation.cfm?doid=2425248.2425250

34. Vitali, R., Pellegrini, A., Quaglia, F.: Towards symmetric multi-threaded opti-
mistic simulation kernels. In: Proceedings of the 26th Workshop on Principles of
Advanced and Distributed Simulation, PADS, pp. 211–220. IEEE Computer Soci-
ety, July 2012. http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6305914,
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6305914

http://dl.acm.org/citation.cfm?doid=2425248.2425250
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6305914
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6305914

Computational Considerations for a Global
Human Well-Being Simulation

Aaron Howell1 and Paul Brenner2(B)

1 Indiana University South Bend, South Bend, IN 46615, USA
aarohowe@umail.iu.edu

2 The University of Notre Dame, Notre Dame, IN 46556, USA
paul.r.brenner@nd.edu

Abstract. Global scale human simulations have application in diverse
fields such as economics, anthropology and marketing. The sheer num-
ber of agents, however, makes them extremely sensitive to variations in
algorithmic complexity resulting in potentially prohibitive computational
resource costs. In this paper we show that the computational capability
of modern servers has increased to the point where billions of individual
agents can be modeled on moderate institutional resources and (in a few
years) on high end consumer systems. We close with the proposition of
future frameworks to enable collaborative modelling of the global human
population.

Keywords: Agent-based modeling · Parallel programming · Human
well-being · Computational social science

1 Introduction

Effective social planning and behavioural understanding is essential to improv-
ing global human well-being. Given changing global economic, social and polit-
ical landscapes, how will organizations and nations forecast and prioritize their
internal and external actions? It is difficult for governments and organizations
to effectively prioritize their policies and resource spending due to the complex
nature of human interaction–especially on a global scale. Despite libraries full of
expert strategic guidance and lessons learned in diplomatic, military, and devel-
opment efforts, a major portion of the human population lacks basic physical and
social resources for personal well-being. In a rapidly evolving and complex land-
scape, we must develop new tools to better leverage our accumulated knowledge,
experience, and the myriad of new data sensors and emerging computational
technologies.

One such tool is our ability to now produce large scale social simulations to
model behavioral patterns. In this work we specifically focus on computational
social science simulation tools in relation to modeling the global human popula-
tion given current computer systems capabilities. Fortunately for us, computa-
tional capability is growing at a faster rate than the human population of Earth,
c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 347–355, 2017.
DOI: 10.1007/978-3-319-58943-5 28

348 A. Howell and P. Brenner

which will allow us to increase the complexity (and accuracy) of the models and
make global scale simulations more tractable on increasingly less expensive IT
infrastructure.

1.1 Related Work

Over the past decade a number of researchers have demonstrated that large
scale agent-based simulations are viable. In 2008, Lysenko and D’Souza [1] used
GPGPU accelerated techniques to model up to 16 million agents spatially using
an AMD Athlon64 3500+ with 1 GB RAM and an NVidia GeForce 8800 GTX
GPU. In 2010, Rakowski et al. [2] created a grid-based framework to simulate the
38 million human population of Poland using data from LandScan and the Polish
National Census Bureau. In 2011, Parker and Epstein [3] used GSAM to imple-
ment a graph-based model of disease propagation amongst 6.75 billion people
using 32 CPU cores and 256 GB of memory. In 2014, Richmond [4] used FLAME
GPU [5,6] 1.3 to simulate up to 16.7 million simple agents with SugarScape on
an Intel Core i7-2600K Machine using an NVIDIA K40 GPU with CUDA 6.0.
In 2015, Collier et al. [7] simulated the spread of CA-MRSA throughout the
population of Chicago (2.9 million people) using a graph-based representation
and Repast HPC. Also in 2015, Lettieri et al. [8] modeled the spread of social
norms using D-MASON [9] amongst a graph-based population of 2.5 million
commuters on a cluster of 8 16 core servers. Their work serves as a foundation of
demonstrated computational capability motivating the evolution of global scale
models.

2 Creating a Global Scale Human Well-Being Simulation

2.1 A Target Framework

Our societies have developed advanced technologies to meet diverse needs
(advanced medicines, self driving cars, new energy sources) but we have yet
to solve global grand challenges such as hunger, violence and economic inequal-
ity. Understanding global complexities with increased accuracy and resolution is
essential to formulating effective global strategy, policy and plans. If the compu-
tational capability of our devices continues to double every two years (leveraging
parallelism to complement deviations from Moore’s Law) we must start develop-
ing software frameworks (and parallel algorithms) for 2025 that leverage highly
parallel systems 30× more capable than today’s leading technology. The ability
to globally model 10 billion human agents should not be a hurdle, we must make
it part of the solution.

As one example framework (Fig. 1), a Global Open Simulator (GOS) would
provide a dynamically re-scalable platform on which to develop, test, verify and
validate strategy and plans at a speed, breadth, complexity and depth of res-
olution previously deemed intractable. The open nature of the framework is a
differentiator from prior attempts which became unsustainably mired in licens-
ing restrictions and limited support/expertise. A modular GOS framework will

Computational Considerations for a Global Human Well-Being Simulation 349

GOS
Global Open Simulator

Computational Framework Example

Multi-Scale

Select Interaction Extents

Aggregation Variation

Up to 10 Billion Agents

Scale Correlated Computation

Nuclear
Family N=10 Friends

N=100 Community
N=1000

Multi-Domain
Diplomacy Aid
Military Economics
Sociology Epidemiology
Anthropology More ...

Multi-Temporal

Time Steps Vary with Aggregation

Time Steps Vary with Layer

Time Steps Vary with Emergence

Multi-Layer

Environment Religion

Race/Ethnicity Culture

Government Mass Media

Resource Availability More ...

Graph Algorithm Based
Interaction Networks

High Connectivity and
Temporal Res [1hr]

Region
N=1M

Moderate Connectivity and
Temporal Res [1day]

Country/Global
N=1-10B

Low Connectivity and
Temporal Res [1week]

Each Aggregation May
Have a Distinct Behavior

Aggregation Can Range From Global to
Individual (or a Mixture of Both) with Built-in
Parallel Computational CapabilityMass Media

Layer

Government Layer

Culture Layer

Fig. 1. A visual representation of a target GOS framework.

allow for layered application of influential factors on human behavior such as
culture, government and media. The level of aggregation can vary from a global
scale of 10 billion agents (humans) down to an individual. Additionally, tempo-
ral modeling variance allows the strategic analyst to set the time horizon (hour,
day, month, etc.) and dynamically change resolution if an emergent behavior is
triggered (agents reach a certain hunger or insecurity level).

2.2 Algorithm Analysis

Before we started running actual tests at the scale of 1 billion agents (as discussed
in the next section) we wanted to evaluate the basic algorithmic bounds for
our simulation in terms of computational requirement, data size requirements
(both transient RAM and persistent disk storage) and, ultimately, the potential
computational platforms on which to run our tests.

In the Worst Case: First, assume every person on the planet interacts with
everyone else (in a single time step), we can thus use η2 as an upper bound,
where η is the number of agents (order 10 billion). Second, assume every agent
in the simulation is updated at every step (σ). For instance, if we want each step
to represent an hour, we would need to have 365× 24 steps to study one year.
Third, we would need to account for the number of attributes (α) each agent

350 A. Howell and P. Brenner

has; and assume each attribute would have to be calculated for each step for
each agent. The final upper bound equation for the computational complexity
can be modeled as follows:

Worst Case Complexity = η2 × σ × α (1)

For the data complexity each agent (and their attributes) will need to be
stored in RAM to minimize data access time. Additionally, we need to store
some information regarding the degree of connectivity between agents, should
connectivity persist across time steps (or should the model require historical
reference to prior connectivity). As a result, the RAM data complexity will be
the number of agents multiplied by the size of each agent and the number of
connections. If we assume that we have 10 billion agents (each agent holds 1KB
of data) we will need 10 TB of RAM. Assuming the η2 worst case interactions
indicate a connection at each step the WC RAM for connecting η2 edges× 1 Byte
quickly exceeds even that of major HPC clusters where RAM can be accessed
in aggregate via MPI. Thus our brief analysis directs us to find alternate imple-
mentations to reduce RAM consumption.

Better Cases: One way to reduce the computational complexity is to intro-
duce dynamic multiscale. This means that instead of updating all 10 billion
agents every step, we would only update a small aggregation of agents per step,
with the entire population being recalibrated only after several steps. Another
way to greatly reduce the computational complexity is to reduce the number
of interactions per step. It is likely unrealistic to assume that everyone on the
planet interacts with every other person on the planet at each step (note: this
paper explicitly makes no argument in terms of the most realistic models). A
better model will reduce the number of interactions from order η2 to something
smaller, such as order η log η or just order η. For instance, if we assume that
people will only interact with the members in their nuclear family of 10 people
(or 10 random people) at each step, the number of interactions per step would
be reduced to 10 × η.

To save memory all of each agent’s attributes could be in a large group array,
instead of in each individual agent’s object as indicated by Parker et al. [3]. Each
agent is not stored as its own separate object, but rather just an entry in each
array in the group class, saving memory on object overhead. Another method
is to use agent compression, which is when similar agents are grouped together
as an aggregate agent that will behave as a single agent [1]. Finally one could
simplify edges via an integer representation such that storing similar edges as
value ‘4’ results in a lookup to the specification of 4’s properties rather than
each edge actually storing the full property set.

Ultimately the choice of “better case” algorithmic reductions has varying
impact depending upon the computational platform. In this case we typically
refer to enterprise cluster, server or high end consumer parallel programming
platforms and architectures. For instance, in 2008, a GPU-based framework for
agent-based modeling yielded over a 9000× speed increase when compared to the

Computational Considerations for a Global Human Well-Being Simulation 351

contemporary CPU-based frameworks of SugarScape [1]. With equally impres-
sive scale and speed on a totally different (non-GPU) architecture Repast HPC
enables scalable tightly coupled MPI and MPI+OpenMP based simulations on
HPC clusters [10]. Other less tightly coupled simulation techniques have run on
highly distributed commercial cloud infrastructures to potentially facilitate more
cost-effective or accessible simulation infrastructure [11].

2.3 Tests at 1 Billion

To test the practicality of our global human well-being modeling objectives, we
set an initial goal to simulate up to 1 billion agents. We used RepastHPC version
2.1 as a framework for our simulations, using Open MPI version 1.8.7 and the
Intel v15 compiler. Our server was a Dell PowerEdge R920 with 4 12 core 2.3 GHz
Intel Xeon CPUs (E7-4850v2) with 3 TB RAM running the RHEL6 OS.

We used the well-known prisoner’s dilemma model [12] as provided as part
of a Repast tutorial. In this implementation pairs of interacting agents ran-
domly decide whether to cooperate with their partner. Points are then assigned
to each agent based on whether they chose to cooperate, and whether their
partner chose to cooperate. The model was a bit too computationally simplis-
tic to accurately represent calculations over multiple human attributes, so we
increased the computational complexity by adding 1000 floating point opera-
tions per agent interaction per step. We also made some small changes to the
model’s graph instantiation (prior to the first step) which allowed for the same
number of paired interactions per step but removed a non-linear instantiation
computational cost.

We started by testing how well runtime reduced with increasing core counts.
According to our trials, when modeling 1 million agents for 100 steps, doubling
the core count generally halved the runtime in linear fashion up to 32 cores.
Bridging multiple servers for more cores showed some significant MPI communi-
cation overhead, and as our focus was shifting to RAM limitations, we therefore
decided to use 32 cores on a single large memory server for the remainder of the
tests. We then started running our simulations on varying numbers of agents in
order to test scalability. After our edits to the original RepastHPC code, we were
able to achieve linear scaling for both runtime and RAM usage for increasing
numbers of agents. As a result, we were able to run a 100 step simulation of 1
billion agents in 29 h using 800 GB of RAM as shown in Fig. 2.

3 Toward a Modular Framework for 10 Billion

3.1 Computational Limits

In this work we successfully performed a social simulation (based on the pris-
oner’s dilemma) of 1 billion human agents over 100 steps using a graph represen-
tation in roughly one day’s compute time (29 h). This was possible on a single
enterprise class large memory server. The primary resource limitation was RAM

352 A. Howell and P. Brenner

Fig. 2. Runtime and RAM usage for varying agent counts using 32 cores for 100 steps.

consumption which would have been 8 TB for a 10 billion agent system. It is
feasible to aggregate 8 TB of RAM across numerous HPC cluster compute nodes
but the MPI communication overhead and cost of the numerous cluster nodes
would be prohibitive compared to a single large memory server. Based on our
findings it was more important to re-organize code for minimal memory footprint
than to modify the computations at each step to reduce runtime. This of course
is entirely dependent upon the interaction model you choose but still highlights
the fact that memory requirements are a first class design consideration when
designing a platform to handle 10 billion human agents.

3.2 Vision of a Global Collaboration Platform

The authors have a vision for a community evolved platform on which to develop
and share human-well being models that scale up to the global population. Cer-
tainly, smaller scale or multi-scale models would also be supported, but we want
to focus design efforts on developing infrastructure over the next 10 years that
will facilitate increasingly accurate and complex models up to 8 billion (the 2025
mean world population per 2015 United Nations estimates). The computational
estimates we presented, simulation results at 1 billion and peer publications
provide the foundation to enable the continued project evolution. In Fig. 3 we
provide one example vision of the distributed infrastructure that will allow for
community driven evolution of the models.
The following are critical steps in initial development and implementation:

– Establish an Initial Team of (subject matter experts) SMEs
– Scope Phase One Human Behavior Layers

Computational Considerations for a Global Human Well-Being Simulation 353

GOS
Global Open Simulator

Functional Example

Interface

- User

 Many Domains

 Varied Expertise

- Developer

 Modular Additions

 Domain Experts

 CompSci Experts

- Sys Admin

 Maintain Operations

 Performance Tuning

 User Support

Infrastructure

- Software

 Open Source BSD Core

 GitHub Public Repository

 Private Modules/Inputs

 Validation and Verification

- Hardware

 Private or Public

 Cloud Based or Dedicated

 Cloud Burst and Scalable

 Federated Sharing

 Stand Alone Offline Version

Private
Confidential Modules & Data

Public
Open Modules and Data

Virtual
Machines

CROWD SOURCING PARTICIPANT:
Mrs. Smith wants to see if changing
poverty rates reduces community violence

SENSORS: Meteorological Atmospheric
Data for the USAF Weather Agency

ACADEMIC: Esteemed
Economics Professor (Research)
and Students (Education) study
USAID economic impacts

DoD Strategist: Dr. Jones submits
massively parallel simulation for the
Associate Secretary of the Navy Biometric

Access

State Department
Diplomat: Uploading field
data and reviewing results

Public Network

Private Network
Virtual
Machine Data

Warehouse

Data
Warehouse

Git Code
Repository

Fig. 3. Infrastructure for community driven human well-being simulation.

– Scope Phase One Aggregate Population Measures
– Design Prototype Computational Architecture and Portal Interface
– Public Messaging and Coordination Plan for Volunteer Participants
– Identify verification and validation measures to include regression testing on

historical data outcomes and integration of realtime incites from deep learning
as applied to various big data sources

3.3 Future Work

Our team plans to extend more human simulation models to the 1–10 billion
agent scale over multiple computer architectures to better classify the computa-
tional resource requirements of various model representations (geospatial, graph,
aggregated objects, etc.) Our plan is to use open models publically posted via
the Open Agent Based Modeling Consortium (we are currently scaling up a
model posted by Dr. Christopher Thron). Similarly we hope to cross reference
the varied model representations across common HPC, enterprise and high end
consumer architectural platforms. The architectural cross comparison will likely
be more challenging as some open codes written for MPI may not be naturally
algorithmically portable to accelerators (GPUs, FPGA, etc.) and vise versa.

354 A. Howell and P. Brenner

Acknowledgements. The authors would like to thank Dr. Jarek Nabrzyski and the
Notre Dame Center for Research Computing who supported Aaron Howell’s under-
graduate student internship to study large scale agent based simulations. They would
also like to thank Dr. John Murphy from Argonne National Lab for his insights into
Repast HPC and wise counsel that agent based models of greater scale are only as
good as the social science models behind them. We focus solely on the computational
requirements; not the social validity of various models.

References

1. Lysenko, M., D’Souza, R.M.: A framework for megascale agent based model sim-
ulations on graphics processing units. J. Artif. Soc. Soc. Simul. 11(4), 10 (2008)

2. Rakowski, F., Gruziel, M., Krych, M., Radomski, J.P.: Large scale daily contacts
and mobility model - an individual-based countrywide simulation large scale daily
contacts and mobility model - an individual-based countrywide simulation study
for Poland. J. Artif. Soc. Soc. Simul. 13(1), 13 (2010)

3. Parker, J., Epstein, J.M.: A distributed platform for global-scale agent-based mod-
els of disease transmission. ACM Trans. Model. Comput. Simul. 22(1), 2 (2011)

4. Richmond, P.: Resolving conflicts between multiple competing agents in parallel
simulations. In: Lopes, L., et al. (eds.) Euro-Par 2014. LNCS, vol. 8805, pp. 383–
394. Springer, Cham (2014). doi:10.1007/978-3-319-14325-5 33

5. Richmond, P.: Flame GPU technical report and user guide. Technical report CS-
11-03. University of Sheffield, Department of Computer Science (2011)

6. Heywood, P., Richmond, P., Maddock, S.: Road network simulation using FLAME
GPU. In: Hunold, S., et al. (eds.) Euro-Par 2015. LNCS, vol. 9523, pp. 429–441.
Springer, Cham (2015). doi:10.1007/978-3-319-27308-2 35

7. Collier, N., Ozik, J., Macal, C.M.: Large-scale agent-based modeling with repast
HPC: a case study in parallelizing an agent-based model. In: Hunold, S., et al. (eds.)
Euro-Par 2015. LNCS, vol. 9523, pp. 454–465. Springer, Cham (2015). doi:10.1007/
978-3-319-27308-2 37

8. Lettieri, N., Spagnuolo, C., Vicidomini, L.: Distributed agent-based simulation and
GIS: an experiment with the dynamics of social norms. In: Hunold, S., et al. (eds.)
Euro-Par 2015. LNCS, vol. 9523, pp. 379–391. Springer, Cham (2015). doi:10.1007/
978-3-319-27308-2 31

9. Balan, G.C., Cioffi-Revilla, C., Luke, S., Panait, L., Paus, S.: MASON: a Java
multi-agent simulation library. In: Proceedings of the Agent 2003 Conference (2003)

10. Park, B.H., Allen, M.R., White, D., Weber, E., Murphy, J.T., North, M.J., Sydeko,
P.: MIRAGE: a framework for data-driven collaborative high-resolution simula-
tion. In: Proceedings of the 13th International Conference on GeoComputation,
Richardson, Texas, USA, pp. 343–348 (2015)

11. Wittek, P., Rubio-Campillo, X.: Scalable agent-based modelling with cloud HPC
resources for social simulations. In: IEEE 4th International Conference on Cloud
Computing Technology and Science, Taipei, Taiwan, pp. 355–362 (2012)

12. Rapoport, A., Chammah, A.M.: Prisoner’s Dilemma: A Study in Conflict and
Cooperation. The University of Michigan Press, Ann Arbor Paperbacks (1970)

http://dx.doi.org/10.1007/978-3-319-14325-5_33
http://dx.doi.org/10.1007/978-3-319-27308-2_35
http://dx.doi.org/10.1007/978-3-319-27308-2_37
http://dx.doi.org/10.1007/978-3-319-27308-2_37
http://dx.doi.org/10.1007/978-3-319-27308-2_31
http://dx.doi.org/10.1007/978-3-319-27308-2_31

Computational Considerations for a Global Human Well-Being Simulation 355

13. Cordasco, G., Chiara, R., Mancuso, A., Mazzeo, D., Scarano, V., Spagnuolo, C.: A
framework for distributing agent-based simulations. In: Alexander, M., et al. (eds.)
Euro-Par 2011. LNCS, vol. 7155, pp. 460–470. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-29737-3 51

14. Collier, N., North, M.: Repast HPC: a platform for large-scale agent-based mod-
eling. In: Large-Scale Computing Techniques for Complex System Simulations.
Wiley, Hoboken (2011)

http://dx.doi.org/10.1007/978-3-642-29737-3_51
http://dx.doi.org/10.1007/978-3-642-29737-3_51

PBIO - International Workshop on
Parallelism in Bioinformatics

High Performance Small RNA Detection
with Pipelined Task Parallel Computation Model

Linqiang Ouyang and Jin H. Park(B)

Computer Science Department, California State University, Fresno, CA 93740, USA
jimmyou587@gmail.com, jpark@csufresno.edu

Abstract. We present efficient parallel computation models for accel-
erating secondary structure based RNA sequence searching tool Infernal
cmsearch, which processes covariance models representing small RNA
families in a serial manner with high time complexity. The proposed
computation models are based on the pipelined task parallel strategy
and both static and dynamic load balancing schemes are developed and
used to exploit the maximum parallelism. For the dynamic load balanc-
ing, regression model based heuristic is used and tested. The computa-
tion models are implemented with Pthreads and OpenMP and tested for
performance within the scope of searching Rfam bacterial small RNA
families in HMP (Human Microbiome Project) gastrointestinal track
database. Our experimental results show that the proposed computa-
tion models yield 1.56×–3.41× speedup, depending on the versions of
the models. The proposed computation models are scalable and flexible
to be used with other trivial data parallel approaches.

Keywords: RNA prediction · High performance computing · Thread ·
Pipeline · Load balancing

1 Introduction

High performance computation has always been demanded in the fields of bioin-
formatics and computational biology since the volume of biological database
has been increasing explosively in recent years. To achieve high performance
in bioinformatics applications researchers have proposed diversified approaches
of accelerating popularly used tools including software- and hardware-oriented
approaches [1–7]. Besides, recent technology of clustered or cloud systems makes
naive users attain the power of parallel systems without using specialized parallel
codes, e.g., OpenMP, MPI, etc., but simply running multiple copies of an applica-
tion with divided data through job submission queuing system, e.g., condor [8,9].
Regardless of the system environment including stand-alone, clustered/cloud and
specialized systems, developing high performance versions of applications is ever
demanded and beneficial.

In this paper, we propose and describe an efficient high performance approach
of accelerating RNA sequence searching tool Infernal [10], more specifically, the

c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 359–371, 2017.
DOI: 10.1007/978-3-319-58943-5 29

360 L. Ouyang and J.H. Park

cmsearch module in the Infernal package, based on task parallel and pipelined
parallel processing methodologies. We name this model ‘pipelined task paral-
lel’ computation model in this paper. Infernal cmsearch module is implemented
as a filter pipeline, which consists of seven major filtering stages [10]. Each stage
in the filtering pipeline is designed to yield reduced data to be processed in the
following stages. However, even with this series of filtering operations, the execu-
tion time of the cmsearch module is considerably long in many cases. To address
this, Infernal cmsearch provides MPI and Pthread mode options, which are based
on a straightforward data parallel methodology, i.e., providing multiple copies
(paths) of the serial pipeline with divided input data. However, this simple and
static data parallel approach cannot exploit highly efficient parallelism since the
code in each pipeline path is same as the original serial code. This becomes the
motivation of our research. Our aim is parallelizing the serial operations in the
filtering pipeline. Our proposed ‘pipelined task parallel’ computation model can
be deployed in either a stand-alone multicore workstation/server environment or
a clustered/cloud system environment in which each node is a multicore machine.
Also, the proposed approach is suitable to be integrated with the straightforward
data parallel approach used in the cmsearch code. In our current practice, the
proposed approach is implemented with Pthread and OpenMP, and sophisti-
cated load balancing methodologies are developed and used. The stages in the
filtering pipeline are executed in a pipelined parallel manner, i.e., after the ini-
tial trigger time slices, all stages in the filtering pipeline work in parallel with a
different segment of input data to each stage - a kind of systolic processing.

The rest of this paper is organized as follows. In Sect. 2, we briefly review
related work on the Infernal tool and background knowledge. In Sect. 3, detailed
description of the cmsearch program is provided. In Sect. 4, our proposed
approaches of achieving the maximum parallelism is described in detail. In
Sect. 5, experimental results and discussion are provided, and Sect. 6 concludes
the paper.

2 Related Work and Background

Before the emergence of Infernal, some heuristic sequence homology searching
tools, e.g., FASTA, BLAST, BLAT, etc., had already appeared, but the align-
ment processing is based on the RNA primary structure, which is not able to
detect homology in a group of samples having homologous secondary structures.
This became the motivation of developing Infernal tool [10]. Inspired by the
method of formalizing the linear sequence alignment proposed in [11], a struc-
tural RNA model is used as the query in Infernal.

The first version of the Infernal package was released in 2002 [12]. In this tool,
a memory-efficient dynamic programming algorithm is used with a divide-and-
conquer strategy [12]. To achieve a better time complexity, a query dependent
banded method was introduced in Infernal in 2007 and it was able to obtain
the average time complexity of O(LN*2.4)∼O(LN*1.3), where L and N are the
numbers of base pairs in the query and database sequences, respectively [13].

High Performance Small RNA Detection 361

Researchers considered Infernal 1.0 (released in 2009) as the first reasonably
complete version of the tool [14,15]. In this version, two levels of filtering oper-
ations are used to reduce the data to be processed. The HMM (Hidden Markov
Model) based filtering described in [16] was used as the primary filter and the
QDB CYK maximum likelihood searching algorithm is used as the secondary
filter. Subsequences that passed through the two filters are searched with Inside
algorithm [17] for the final alignment. Although later versions provide consid-
erably improved performance, Infernal cmsearch program remains as a compu-
tationally expensive module. The current version of Infernal cmsearch (version
1.1) is claimed to be 100-fold faster than the previous version [10,18]. This
improvement is achieved by using a new filtering pipeline, which takes advan-
tages of using profile HMM based filtering operations originated from HMMER3
project [19] together with banded covariance model based dynamic programming
algorithms [20].

2.1 Covariance Model Based Alignment

Infernal cmsearch module processes two input files, a CM (covariance model) file
representing an RNA secondary structure and a database sequence file in the
fasta format. A CM file consists of both profile HMM and CM representations
derived from the consensus structure of the multiple RNA sequence alignments
found in an RNA family (refer to the Rfam CM models [21]). Infernal package
provides a module named ‘cmbuild’ for this and how a CM file is constructed is
described in [10] in detail. Cmsearch program scans the database sequence file to
align the profile HMM and the CM provided in a CM file using multiple dynamic
programming algorithms. In this subsection, we briefly describe the structure of
a CM file.

A CM is a specific repetitive profile SCFG architecture, which models a
consensus secondary structure of an RNA family. Each CM has a group of states
that are mapped to consensus and non-consensus positions in the RNA secondary
structure from a given group of multiple sequence alignments in an RNA family.
The final CM becomes a list of states connected in a directed graph in which
each state has both position specific emission and transition probability scores
[10]. A profile HMM is a repetitive HMM architecture that associates with each
consensus column of a multiple alignment with a single type of model node. A
profile HMM could be thought as a special case of a CM.

Each CM file built from the cmbuild module consists of both CM and profile
HMM sections each of which contains header and state parts as illustrated in
Fig. 1. The CM header part includes metadata such as model name, RNA family,
number of nodes, number of states, etc. The CM states part contains the repre-
sentation of the entire model. Each node in the CM model is denoted by a line
of node type and node index followed by a couple of lines of state information.
Each state line consists of state type, state index, indices of parent/child states
that can transit, bit scores, etc. Analogously, the profile HMM header includes
HMM related metadata. Finally, in the profile HMM states part, each node has
a line of match emission scores and a line of insertion emission scores and state

362 L. Ouyang and J.H. Park

Fig. 1. CM file structure

transition scores. The cmsearch program code is tightly related to the node and
state data in the CM file.

3 Cmsearch Filtering Pipeline

The filtering pipeline used in the cmsearch program consists of profile HMM
based filtering stages and CM based filtering stages. Profile HMM stages use a
combination of Viterbi algorithm, forward algorithm and backward algorithm to
align the sequence with the profile HMM to find qualified sequence fragments,
which pass the threshold values set by the program. All profile HMM stages yield
considerably higher efficiency than those CM based stages since a profile HMM
structure is much simpler than its equivalent CM structure. Thus, the profile
HMM stages are positioned in the front part of the pipeline to prune relatively
higher volume of the subsequences from the target sequences to alleviate the
processing time in the following complex CM based stages. Figure 2 illustrates
the filtering pipeline, in which seven filters are organized into four stages. We
describe briefly the operation performed in each filter in the pipeline, and more
detailed descriptions can be found in [10].

3.1 Stage 1

Stage 1 consists of the front end three filters, which perform vector mode oper-
ations [10,22].

Local Scanning SSV Filter. A local un-gapped Viterbi algorithm is used
in this filter to find a set of high-scoring subsequences, defined as ‘windows’,
from a given input sequence. Each alignment can start from any position in the

High Performance Small RNA Detection 363

Fig. 2. Infernal cmsearch filtering pipeline

model and the sequence, and overlapped subsequences are combined into a SSV
(single-segment Viterbi). Very long windows are split into multiple windows [10]
and all qualified windows are passed to the next filter.

Local Viterbi Filter. In this filter, each forwarded window is aligned with
the profile HMM model using the local Viterbi algorithm for finding the optimal
gapped alignment, which calculates the maximum likelihood score of the state
sequence in the profile HMM. Note that this filter is set to be in the local mode
since each alignment can start/end at any position in the model. The same
mechanism applies to the next filter.

Local Forward Filter. Windows passed through the local Viterbi filter are
aligned with the profile HMM via a local forward algorithm in this filter. With
the forward algorithm, the maximum likelihood score for the given sequences and
the profile HMM is computed by summing up the probabilities of all possible
paths in the model.

3.2 Stage 2

In this stage, 2-D dynamic programming based forward and backward algorithms
are used to detect further shorter high-scoring subsequences from the windows.

Glocal Forward Parser Filter. The full forward algorithm is used to align
the remaining (qualified) windows to the profile HMM in the ‘glocal’ mode -
global to the profile HMM but local to the windows, i.e., each alignment can
start/end at any position in the sequence window.

Glocal Envelop Definition Filter. From the windows, which passed the glo-
cal forward parser filter, further shorter hits are identified in this filter. First, the
glocal backward algorithm is applied to the windows. Second, by combining the
results from the glocal forward algorithm the posterior probability that a target

364 L. Ouyang and J.H. Park

window starts and ends at a given position is computed. Lastly, shorter hits hav-
ing more significant probability mass, defined as ‘envelopes’ are extracted from
the windows and passed to the next stage.

3.3 Stage 3

HMM Banded CM CYK Filter. A banded version of the CYK algorithm
[21], which is based on the 3-D dynamic programming, is used to determine the
bit score of the maximum likelihood alignment of any subsequence within an
envelope to the CM that is consistent with the HMM-derived bands. This bit
score is checked with a threshold value and only qualified sequence envelopes are
passed to the next stage. The time complexity of this stage (and the next stage)
is relatively high since the CM model is processed, but the number of input
envelopes is greatly reduced by the previous HMM based light-weight filters.

3.4 Stage 4

HMM Banded CM Inside Filter. The full likelihood of each profile/sequence
envelope is evaluated in this filter using the CM Inside algorithm [17]. For each
envelope, the entire alignments are summed. Similar to the CYK algorithm,
HMM bands are used to constrain the CM dynamic programming calculations.
This filter identifies possible non-overlapping high-scoring alignments and adds
them to the final output.

4 Proposed Approaches: Pipelined Task Parallel
Computation Models

In this section, we describe our proposed approaches of exploiting maximum
parallelism in the filtering pipeline path with multiple threads. Since the pro-
posed approaches accelerate the operation of the filtering pipeline internally,
i.e., within the pipeline, they can be integrated with the original cmsearch data
parallel approach or any other data parallel approaches without difficulties for
further performance gain.

4.1 Pipelined Task Parallel (PTP) Computation Model

Our first trial is developing a ‘pipelined parallel’ computation model within
the filtering pipeline of the cmsearch program. This strategy is inspired by the
hardware pipelining used in the datapath of modern processors. In this parallel
computation model, each stage of the filtering pipeline is assigned to a thread
and all the threads work in parallel after the initial trigger time of the depth 4
pipeline (refer to Fig. 2). Since the task of each pipeline stage is different from
others’, we name this model ‘pipelined task parallel computation model’ there
after, ‘PTP computation model’. Input database sequences are divided into small
blocks and a series of the divided blocks enter the pipeline in a systolic manner.

High Performance Small RNA Detection 365

Fig. 3. Execution times of four stages in the cmsearch pipeline

In the ideal case in which the processing times of the four stages are identical,
this model can achieve 4-fold performance gain. However, in the reality, time
complexities of the four stages are not identical and the actual speedup of the
computation model tightly depends on the most time consuming stage. The
graph shown in Fig. 3 reveals this. From our primitive study with 200 randomly
selected cmsearch jobs (200 CM files with a fixed database), stage 3 (HMM
banded CM CYK filter) usually takes the longest time as shown in the figure in
which random 100 (from 200) cmsearch jobs are shown in the ascending order of
the total execution time. Thus, we need to employ a load balancing mechanism
in the pipeline.

4.2 PTP Computation Model with Static Load Balancing

Our first load balancing strategy is based on the observation as partly illustrated
in Fig. 3. Within our practice of searching Rfam [21] bacterial small RNA families
in the divided HMP [24] database, we randomly selected 200 relatively time con-
suming cmsearch jobs and tested for time consumption in each stage. To resolve
the bottleneck of the pipelining caused by the stage 3 (CYK filter), we included
a parameter for setting the desired number of threads for the stage 3. This model
is illustrated in Fig. 4(a). Although this statically load balanced version yields
much better performance than the original PTP computation model, it is still
difficult to exploit the maximum parallelism due to the lack of the information,
which predicts the relative execution time differences among the stages in the
pipeline. This became the motivation of developing a dynamic load balancing
strategy described in the following subsection.

4.3 PTP Computation Model with Dynamic Load Balancing

Our further testing practices with more diversified cmsearch jobs revealed that
there exist some abnormalities in which stage 3 is not the longest stage. This
is due to the fact that the cmsearch execution time not only depends on the

366 L. Ouyang and J.H. Park

Fig. 4. Concepts of pipelined task parallel (PTP) computation models (a) with static
load balancing (b) with dynamic load balancing

CM file to process, but also depends on the segment of the database processed.
To balance the load maximally/equally on each stage of the PTP computation
model, we need to develop a sophisticated heuristic prediction scheme to deter-
mine the relative weight of each stage upon receiving the input to the pipeline,
i.e., a CM file and a database sequence file. Based on the prediction result for
each cmsearch job, appropriate numbers of threads are assigned to each stage in
the pipeline dynamically as illustrated in Fig. 4(b).

The methodology of our prediction scheme is based on the linear/polynomial
regression model. The initial linear regression model that we started with is
shown below:

t = θ0 + θ1s + θ2n + θ3c + θ4l + θ5k (1)

where, t is the execution time to predict, s is the number of states in the
CM, n is the number of nodes in the CM, c is the length of the consensus
string (same as the number of states in the profile HMM), l is the number of
residues in the target sequence file, k is the number of sequences in the tar-
get sequence file, and {θ0, θ1, θ2, θ3, θ4, θ5} are coefficients. We collected over
2,000 cmsearch job running results as the training dataset and extracted those
dependent and independent variables. The next step is computing a set of coef-
ficients {θ0, θ1, θ2, θ3, θ4, θ5} that could minimize the average difference between
the actual execution time and the predicted execution time of each stage in the
pipeline. We utilized the linear regression model provided in the Python machine
learning library, scikit-learn, to build the regression model and we measured the
model using the R2 (coefficient of determination) score, which ranges from 0 to
1 - the closer R2 score is to 1, the better the model fits the training data. This
primitive regression model yields good predictions on the execution time of the
stage 1 in the pipeline, i.e., R2 score is over 0.8 in average, but fails to make
good predictions for other three stages.

High Performance Small RNA Detection 367

Since both profile HMM and CM are position dependent statistic models,
the performance of the cmsearch program heavily depends on the scoring model
used in the CM file and the residue distribution used in the database sequence
file. To improve the accuracy of our prediction scheme, we modify the primitive
regression model shown in (1) as follows:

t = θ0 + θ1s + θ2n + θ3c + θ4l + θ5k + θ6nwin + θ7lwin (2)

where, nwin and lwin are the number of windows and the number of residues
passed through the local scanning SSV filter, and {θ6, θ7} are two new coeffi-
cients. With this modification, the average R2 score of all stages are increased,
but it still is considered as under-fitting [23] in terms of the R2 scores for stage 2,
stage 3 and stage 4. To resolve the under-fitting problem, we finally convert our
linear regression model to a polynomial regression model in which some polyno-
mial variables are added to the dependent variables used in (2). For example,
if we set the degree of the polynomial regression to 2, the regression model (2)
becomes:

t = θ0 + θ1s
2 + θ2n + θ3c + θ4l + θ5k + . . . + θ34lwin2 + θ35lwin (3)

As we increase the polynomial degree, the R2 score on the training dataset is
increased. However, fitting the training dataset better doesn’t mean that it is
a well-established model in general. A regression model falls into over-fitting
when it fits to the training dataset well but fails to fit to the testing dataset. We
developed and tested more polynomial regression models with degree 3–5 and
realized that the higher degree yields worse cross validation scores. Our testing
results showed that the modified linear regression model (2) and the polynomial
model with degree 2 (3) yield analogously the best performance.

5 Experimental Results

To measure performance, our proposed PTP computation models were imple-
mented in the Infernal cmsearch code, which is written in C, with both Pthreads
and OpenMP. Our experiment was conducted on a server, PowerEdge T620
with two 8-core Intel Xeon processors (2.60 GHz) and 32 GB memory. Data
used are HMP (Human Microbiome Project) [24] gastrointestinal track data-
base (Dec. 2012 version, 61,238 sequences, 2.49 GB) and Rfam [21] bacterial
small RNA families (1,105 CM files from Rfam version 12.0). The HMP data-
base is divided into 20 approximately equal sized pieces (∼125 MB each) and
we randomly selected 200 combinations, each of which consists of a CM file
and a piece of the HMP database, in our experiment. To develop the regression
models described in Sect. 4, we tested 2,000 randomly selected combinations
(cmsearch jobs). Since the PTP computation model is pipelined parallel, we
tested and determined the optimum size of the pipelined data, which is ∼10%
(∼12 MB) of the given input database file (∼125 MB each), to yield the maximum
performance.

368 L. Ouyang and J.H. Park

Fig. 5. Performances of the pipelined task parallel (PTP) computation models

Figure 5 shows performances of the pipelined task parallel (PTP) computa-
tion model described in Sect. 4.1 and the PTP computation model with static
load balancing described in Sect. 4.2. We use the original Infernal cmsearch serial
pipeline as the baseline for the comparison purpose since the PTP computation
model accelerates the operation within the pipeline. As shown in the figure, the
proposed PTP computation models yield a considerable amount of performance
gain. In average, the PTP computation model in which each of the four pipeline
stages is assigned to a thread (so, total 4 threads) yields 1.56× speedup and
the PTP model with static load balancing in which the stage 3 is assigned to
3 threads (so, total 6 threads) yields 2.04× speedup over the baseline serial
pipeline.

Figure 6 shows the performance difference between the PTP with static load
balancing and the PTP with dynamic load balancing described in Sect. 4.3.
As shown in the figure, the dynamic load balancing method achieves higher

Fig. 6. Performance comparison of PTP with static/dynamic load balancing

High Performance Small RNA Detection 369

Fig. 7. Performance from doubling the threads in each stage of PTP-DL

performance than the static approach in general, and the modified linear regres-
sion model (2) and the polynomial regression model with degree 2 yield pretty
similar results, i.e., 3.41× and 3.20× speedups, respectively. The average num-
ber of threads used in the PTP-DL model is 8. Some abnormalities shown in
the figure are due to the accuracy of the current prediction scheme used in the
dynamic load balancing. As described in [10], prediction of the execution time
of the cmsearch job is highly difficult and complex task and we work towards
making further accurate prediction scheme.

Lastly, we checked the scalability and flexibility (compatibility) of the PTP
computation model, specifically the PTP with dynamic load balancing model
(PTP-DL, there after) with the modified linear regression model (2). In the
experiment of checking the scalability, we compared the PTP with the dynamic
load balancing model to the version with doubled number of threads in each
stage. Figure 7 shows the result from this experiment, i.e., 4.90× speedup. The

Fig. 8. Performance with multiple data parallel paths with PTP-DL

370 L. Ouyang and J.H. Park

flexibility is checked with an experiment of integrating our computation model
into the original data parallel approach that Infernal cmsearch provides as an
option, i.e., each data parallel path is switched with our PTP-DL. We imple-
mented with two and three data paths and Fig. 8 shows the resulting performance
from this experiment, i.e., 5.32× and 6.29× speedups, respectively. As shown in
Figs. 7 and 8, integrating the proposed computation model with doubled data
parallel paths yields higher performance gain over the approach of doubling the
number of threads in each stage of single PTP-DL path.

6 Conclusion

We proposed high performance computation models for accelerating Infernal
cmsearch module, which is an RNA sequence prediction tool based on the sec-
ondary structure of RNA. The proposed approach is based on a pipelined task
parallel strategy in which serial steps of the operations used in the original tool
are parallelized in a pipelined parallel manner, i.e., systolic. To exploit the maxi-
mum parallelism, we included both static and dynamic load balancing strategies
to alleviate heavy loaded stages in the pipeline. To develop the dynamic load
balancing strategy we used heuristic regression models to predict the execution
time of each stage in the pipeline.

In our practice, we implemented and tested several versions of the proposed
high performance computation model with Rfam bacterial small RNA CM files
and HMP gastrointestinal track database as input to the program. Experimen-
tal results showed that 1.56× and 2.04× speedups in average were achieved
with the model with simple pipelining and pipelining plus static load balancing,
respectively. With the model with the dynamic load balancing, 3.41× speedup in
average was achieved. The proposed computation models are scalable and flexi-
ble to be integrated with other trivial data parallel approaches, i.e., hybrid model
of data parallel and our proposed pipelined task parallel approaches. With the
hybrid model with 2 and 3 data paths, 5.32× and 6.29× speedups, respectively,
in average were achieved.

References

1. Yamaguchi, Y., Maruyama, T., Konagaya, A.: High speed homology search with
FPGAs. In: Proceedings of PSB 2002, pp. 271–282 (2002)

2. Blas, A.D., Karplus, K., et al.: The UCSC kestrel parallel processor. IEEE Trans.
Parallel Distrib. Syst. 16(1), 80–92 (2005)

3. Park, J.H., Qiu, Y., Herbordt, M.: CAAD BLASTn: accelerated NCBI BLASTn
with FPGA prefiltering. In: Proceedings of 2010 IEEE International Symposium
on Circuits and Systems, pp. 3797–3800 (2010)

4. Chitty, D.M.: Fast parallel genetic programming: multi-core CPU versus many-core
GPU. Soft. Comput. 16(10), 1795–1814 (2012)

5. Lenis, J., Senar, M.A.: On the performance of BWA on NUMA architectures. In:
2015 IEEE Trustcom/BigDataSE/ISPA, Helsinki, pp. 236-241 (2015)

High Performance Small RNA Detection 371

6. Mahram, A., Herbordt, M.C.: NCBI BLASTP on high-performance reconfigurable
computing systems. ACM Trans. Reconfig. Technol. Syst. 7(4), 33 (2015)

7. Rubio-Largo, A., Vega-Rodŕıguez, M.A., González-Álvarez, D.L.: Parallel H4MSA
for multiple sequence alignment. In: Proceedings of 2015 IEEE Trust-
com/BigDataSE/ISPA, vol. 3, pp. 242–247 (2015)

8. Thain, D., Tannenbaum, T., Livny, M.: Distributed computing in practice: the
condor experience. Concurr. Comput.: Pract. Exp. 17(2–4), 323–356 (2005)

9. Computing with HTCondor. https://research.cs.wisc.edu/htcondor/index.html.
Accessed Apr 2016

10. Nawrocki, E.P., Eddy, S.R.: The Infernal 1.1 User’s Guide. (2012) http://infernal.
janelia.org

11. Krogh, A., Brown, M., Mian, I., et al.: Hidden Markov models in computational
biology: applications to protein modeling. J. Mol. Biol. 1994(235), 1501–1531
(1994)

12. Eddy, S.R.: A memory-efficient dynamic programming algorithm for optimal align-
ment of a sequence to an RNA secondary structure. BMC Bioinform. 3, 18 (2002)

13. Nawrocki, E.P., Eddy, S.R.: Query-dependent banding (QDB) for faster RNA sim-
ilarity searches. PLoS Comput. Biol. 3, E56 (2007)

14. Nawrocki, E.P.: Structural RNA homology search and alignment using covariance
models. Ph.D. thesis, School of Medicine, Washington University (2009)

15. Nawrocki, E.P., Kolbe, D.L., Eddy, S.R.: Infernal 1.0: inference of RNA alignments.
Bioinformatics 25, 1335–1337 (2009)

16. Weinberg, Z., Ruzzo, W.L.: Sequence-based heuristics for faster annotation of non-
coding RNA families. Bioinformatics 22, 35–39 (2006)

17. Durbin, R., Eddy, S.R., et al.: Biological Sequence Analysis: Probabilistic Models
of Proteins and Nucleic Acids. Cambridge University Press, Cambridge (1998)

18. Nawrocki, E.P., Eddy, S.R.: Infernal 1.1: 100-fold faster RNA homology searches.
Bioinformatics 29, 2933–2935 (2013)

19. Eddy, S.R.: HMMER: Biosequence Analysis Using Profile Hidden Markov Models
(2008). http://hmmer.janelia.org

20. Eddy, S.R.: Profile hidden Markov models. Bioinformatics 1998(14), 755–763
(1998)

21. Rfam 12.1. http://rfam.xfam.org/. Accessed Apr 2016
22. Eddy, S.R.: Accelerated profile HMM searches. PLoS Comput. Biol. 7(10),

E1002195 (2011)
23. Model Fit: Underfitting vs. Overfitting. http://docs.aws.amazon.com/

machine-learning/latest/dg/model-fit-underfitting-vs-overfitting.html. Accessed
Apr 2016

24. NIH Human Microbiome Project. http://hmpdacc.org/. Accessed Apr 2016

https://research.cs.wisc.edu/htcondor/index.html
http://infernal.janelia.org
http://infernal.janelia.org
http://hmmer.janelia.org
http://rfam.xfam.org/
http://docs.aws.amazon.com/machine-learning/latest/dg/model-fit-underfitting-vs-overfitting.html
http://docs.aws.amazon.com/machine-learning/latest/dg/model-fit-underfitting-vs-overfitting.html
http://hmpdacc.org/

Improving Memory Accesses for Heterogeneous
Parallel Multi-objective Feature Selection

on EEG Classification

Juan José Escobar, Julio Ortega(B), Jesús González, and Miguel Damas

Department of Computer Architecture and Technology, CITIC,
University of Granada, Granada, Spain

{jjescobar,jortega,jesusgonzalez,mdamas}@ugr.es

Abstract. Bioinformatics applications that analyze large volumes of
high-dimensional data and present different implicit parallelism can ben-
efit from the efficient use, in performance terms, of heterogeneous paral-
lel architectures, including accelerators such as graphics processing units
(GPUs). This paper aims to take advantage of parallel codes to accel-
erate electroencephalogram (EEG) classification and feature selection
problems in the context of Branch-Computing Interface (BCI) tasks. As
the approaches to tackle these applications usually involve optimized
codes that implement different types of parallelism, the use of hetero-
geneous architectures with multicore microprocessors along with GPUs
could provide relevant performance improvements after careful code opti-
mizing. More specifically, the memory access patterns have been taken
into account to improve the performance of data-parallel GPU kernels.

Keywords: EEG classification · Feature selection · GPU · Heteroge-
neous parallel architectures · Multi-objective optimization

1 Introduction

Many bioinformatics applications involve high-dimensional data mining prob-
lems that comprise tasks such as classification, clustering, optimization, fea-
ture selection and optimization. EEG classification is a good example of such
applications that process high-dimensional patterns and require feature selec-
tion techniques to remove noisy or irrelevant features or to improve the learning
accuracy and result comprehensibility, especially when the number of features
in the input patterns is higher than the number of available patterns. The pro-
posed approach to EEG classification for BCI tasks [16], includes an evolutionary
multi-objective optimization algorithm and a clustering algorithm applied to a
set of high-dimensional patterns usually requiring high-volume storage. Thus, as
many other bioinformatics applications, the application here considered requires
solving problems with different kinds of inherent parallelism.

This paper aims to provide an insight into the design of efficient parallel
procedures for high-dimensional classification and optimization tasks, in het-
erogeneous parallel architectures involving multiple general-purpose superscalar
c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 372–383, 2017.
DOI: 10.1007/978-3-319-58943-5 30

Improving Memory Accesses on EEG Classification 373

multicore CPUs and accelerators (mainly GPUs). As they constitute the present
mainstream approach to take advantage of technology improvements [5] their use
has been proposed in many previous papers on parallel metaheuristics and evo-
lutionary computation [1]. Nevertheless, the parallelization on a heterogeneous
platform of a whole data mining application with the characteristics of our target
application is less frequent in the literature.

After this introduction, Sect. 2 describes the evolutionary multi-objective
optimization approach to feature selection whose implementation we have par-
allelized. Section 3 analyzes the main issues to develop efficient parallel codes
in heterogeneous platforms and also details our proposed OpenCL codes. Then,
Sect. 4 describes the experimental results and compares the behavior of different
considered alternatives and finally, Sect. 5 summarizes the conclusions.

2 Multi-objective Feature Selection

This paper deals with feature selection in unsupervised classification of patterns
characterized by a high number of features. As the number of patterns to classify
is usually lower than the number of features, we have to cope with a curse of
dimensionality problem [4]. Thus, the most relevant features should be selected
to achieve an adequate performance of the classifier, decrease the computational
complexity of the classification, and remove irrelevant/redundant features. Nev-
ertheless, optimal feature selection is an NP-hard problem that requires efficient
metaheuristics, especially in high-dimensional classification problems. Here, we
apply multi-objective optimization to feature selection and propose the use of
heterogeneous parallel architectures to accelerate it.

The use of multi-objective optimization in data mining applications is shown
in [14,15], and the benefits from a multi-objective approach to feature selec-
tion in both supervised and unsupervised classification have been reported else-
where [12]. Moreover, as the number of features involved in the applications here
considered is large, a multi-objective optimization approach would imply high
computational costs, and execution time is an important issue to consider. The
main contribution of this paper deals with parallel processing, on CPU and GPU
architectures, of feature selection approached by multi-objective optimization in
applications with a large number of features.

Figure 1 describes our approach for feature selection in unsupervised classi-
fication of EEG patterns. A multi-objective evolutionary procedure, in our case
the well-known NSGA-II algorithm [6], evolves a population of individuals that
codify different feature selections. Given a feature selection (an individual in
the population of the evolutionary algorithm), the NP patterns included in the
database, DS, will be used to define the set training patterns by choosing the
components corresponding to the number of features, NF , selected. This way, the
K-means algorithm will be applied to the NP patterns Pi = (p1i , . . . , p

NF
i)(i =

1, . . . , NP) to determine the centroids K(j)(j = 1, . . . ,W) of the W clusters we
have (W is known in our classification problems, and it is equal to the number
of classes). The K-means algorithm has the following steps:

374 J.J. Escobar et al.

Fig. 1. Wrapper procedure for unsupervised feature selection by evolutionary multi-
objective optimization (and K-means as clustering algorithm)

1. Generate W initial centroids (as many centroids as clusters or classes).
2. Assign each pattern to the cluster corresponding to the nearest centroid.
3. Calculate the new cluster centroids.
4. If the end condition is not met (either changes in the centroids or a maximum

number of iterations have not been completed yet) repeat steps 2 and 3.

Once the clusters are built, the fitness of each individual in the population
is evaluated by using two clustering validation indices (CVI) [2], defined as:

f1 =
W∑

j=1

1
|C(j)|

⎛

⎝
∑

Pi∈C(j)

‖Pi − K(j)‖
⎞

⎠ (1)

f2 = −
W−1∑

j=1

⎛

⎝
∑

i>j

‖K(i) − K(j)‖
⎞

⎠ (2)

where (1) and (2) correspond, respectively, to the intraclass and minus the inter-
class distances. In these equations, |C(j)| is the number of patterns in cluster
C(j)(j = 1, . . . ,W) whose centroid is K(j), and ‖Pi − K(j)‖ is the Euclidean
distance between the pattern Pi and the centroid K(j).

The papers of Sharma and Collet [17] and Wong and Cui [18] show imple-
mentations of evolutionary multi-objective procedures. Others [19,20] have
approached the parallelization of the K-means algorithm for high-dimensional
data on GPUs using large datasets. Our procedure, not only distributes the indi-
viduals to evaluate their fitness but also parallelizes the clustering algorithm and
the computation of the cost functions required to complete the fitness evaluation
for each individual.

3 OpenCL Codes for Multi-objective Feature Selection

In this section, we will describe the parallel implementations we have considered
to take advantage of heterogeneous CPU-GPU architectures. The GPU plays

Improving Memory Accesses on EEG Classification 375

the role of a coprocessor connected, through a bus, to a host including multiple
superscalar cores that share the main memory. The basic computing elements or
cores of the GPU are the so called Stream Processors (SP). They do not contain
instruction units and are able to execute scalar operations. Several SP along with
one or several instruction units and a register file comprise a multiprocessor, also
called Streaming Multiprocessor (SMX). A GPU can include several SMX and
allows the simultaneous execution of the same program on different data (i.e.
the SPMD model). The threads are organized within thread blocks in such a
way that all the threads in a block are assigned to a single SMX. Moreover, the
blocks are also partitioned into warps containing threads with consecutive and
increasing identity number that start together at the same program address.
While the threads in a block are able to cooperate and share the instruction
unit, the register file and some low latency memory, threads in different blocks
can only communicate among themselves through the global memory.

Codes have been developed on OpenCL, which allows platform-independent
parallel programming through programs executed in a host that launch func-
tions, called kernels, to other OpenCL devices, such as multicore CPUs or GPUs.
A device in OpenCL is an array of functionally independent computing units
divided into processing elements. For example, in the GPU previously described,
the SMX processors are computing units and the SP cores processing elements.
The units of concurrent execution are called work-items, which are mapped to the
processing elements. The abstract memory model of OpenCL also defines mem-
ory spaces that also resemble the usual memory hierarchies. Thus, the global
memory is visible to all computing units in the device, as the constant memory,
included in the global memory to store variables whose values do not change. All
the processing elements in a given computing unit share the corresponding local
memory, while the private memory is only accessed by a processing element.

From Fig. 1 of Sect. 2, it is clear that our application involves both evolution-
ary multi-objective and clustering algorithms. In [13] we have proposed several
approaches to parallelize the application through different parallel evolutionary
multi-optimization options, although we did not parallelize the fitness compu-
tation for the individuals in the population. This issue is considered here by
taking advantage of the GPU resources to run data parallel codes. Thus, a core
in the CPU (i.e. the host) launches a kernel in the GPU to evaluate the fitness
(the two cost functions) of the individuals in the population. The GPU ker-
nel implements two levels of parallelism: parallel evaluation of the population
(implemented as a master-worker parallel evolutionary algorithm) and the data
parallel evaluation of the cost functions for each individual. The paper [9] shows
another OpenCL implementation of a genetic algorithm for feature selection in
a biometric recognition application. Although that paper does not implement
a multi-objective algorithm and the fitness function differs from the one here
considered, its approach follows a quite similar strategy.

This way, the patterns have to be transferred from the host memory to the
GPU memory at the beginning and, each iteration, individuals of the population
and their computed fitness have to be transferred between host and GPU and

376 J.J. Escobar et al.

Algorithm 1. Kernel pseudocode for the evaluation of the individuals
1 Kernel function evaluation(S(i), DS,K,DSt)

Input : A possible solution for the problem, S(i)
Input : Dataset DS(j); ∀j = 1, ..., P training patterns of F components)
Input : The set K of W centroids randomly chosen from the dataset DS
Input : Dataset DSt is DS in column-major order (only for GPU kernel)
Output: f1(S(i)), the intraclass distances in S(i) according to (1)
Output: f2(S(i)), the interclass distances in S(i) according to (2)

2 << All work-groups,All work-items >>
3 for i ← 1 to N individuals do

4 << work-groupID,All work-items in work-groupID >>
5 Kl ← Copy the centroids from global memory to local memory
6 I ← Copy the individual S(i) from global memory to local memory
7 Initialization of the mapping table, MT ← 0
8 repeat

9 << work-groupID,work-itemID >>
10 MT ← Each pattern is assigned to the nearest cluster using DSt

11 D ← Nearest Euclidean distance is stored for each pattern
12 Check if the pattern has been assigned to another centroid

13 << work-groupID,All work-items in work-groupID >>
14 Kl ← Update the centroids using the dataset DS

15 until stop criterion is not reached ;

16 << work-groupID,Work-item number 0 >>
17 f1(S(i)) ← intraclass(Kl, DS)
18 f2(S(i)) ← interclass(Kl, DS)

19 end
20 return (f1(S(i)), f2(S(i)))

21 End

vice versa. The drawback of this scheme is the number of copies (in each direc-
tion per iteration) through a bus with worse bandwidth and latency than those
provided by the memory buses in CPU cores and GPU. It could be an important
bottleneck as in the application here considered the size of the dataset is usually
big and the GPU memory hierarchy should be carefully managed. Thus, the local
memory (i.e. the shared memory in the NVIDIA GPUs), available for the threads
of a thread block, should be used to store the data structures corresponding to
the subpopulation of individuals assigned to each thread block.

Algorithm 1 shows the kernel pseudocode to evaluate the fitness of the indi-
viduals (the intraclass and interclass distances defining the two cost functions of
the multi-objective optimization procedure). As it has been said, in the OpenCL
GPU kernel, individuals are evaluated in parallel by different work-groups, thus
implementing the first level of parallelism of the algorithm (line 3 in Algorithm1).
Moreover, the GPU kernel also implements a second level of parallelism as each
work-group is composed by warps of 32 work-items each in the case of the

Improving Memory Accesses on EEG Classification 377

NVIDIA GPUs for example. This second level of parallelism corresponds to the
parallel implementation of the K-means algorithm (lines 5–15 in Algorithm1).
The expression <<work-groupID,work-itemID>> defines the distribution of
work-items in each work-group through the different steps of the K-means algo-
rithm in the GPU. For comparison purposes in Sect. 4, we have also implemented
the first parallel approach in a CPU kernel to be executed in the multicore host.
In this CPU kernel case, a work-group is composed by only one work-item (the
CPU kernel does not implement data parallel processing).

In what follows, we describe the main details of the proposed GPU kernel.
Relevant optimizations have been implemented with respect to our first approach
described in [8]. As it will be demonstrated in Sect. 4, these optimizations have
allowed efficient data parallel performances.

1. The CPU/GPU kernels receive the input parameters provided by the host
code: the individuals of the population, the dataset, and the initial centroids
for the K-means algorithms. An individual, S(i), is a one-dimensional array
of contiguous 0’s and 1’s (according to the selection or not of the correspond-
ing feature) stored in global memory. It will be copied into local memory (line
6 in Algorithm 1) as this on-chip memory is faster. The global memory used
is SPop = N × F bytes, where N is the number of individuals and F is the
number of features (among which the selection is to be done). The datasets
DS and DSt include the P training patterns, each characterized by F fea-
tures. Both sets are stored in the global memory due to their large sizes, in a
one-dimensional array of P ×F elements normalized by the host program. In
DS the patterns are organized in row-major order while column-major order
is used in DSt. Each dataset needs SDB = 4×P ×F bytes of memory. Instead
the W centroids randomly selected from the dataset, the indices of these cen-
troids are copied from the host memory to the GPU constant memory: the
amount of constant memory used is SW = 4 × W bytes.

2. As the positions of the centroids are modified along the iterations of the
K-means algorithm (otherwise K-means ends), it is necessary to copy each
centroid from global memory to local memory whenever a new individual
is going to be evaluated (line 5). The operations of lines 5 and 6 in Algo-
rithm1 are executed in parallel by all work-items of the corresponding work-
group. Thus we can benefit from coalescence, a technique in which consecutive
threads of a warp request data stored in global memory, in consecutive logical
addresses. This technique aims to minimize the number of transaction seg-
ments requested from the global memory by taking advantage of memory bus
width to get multiple data in a single transaction. We have been able to use
coalescence as consecutive work-items in the same work-group request data
stored in consecutive logical addresses of the global memory. As Fig. 2 shows,
the memory bank conflicts in the local memory are minimized. When the WI
work-items in the work-group process the first WI data, the next WI data are
repeatedly requested and processed, until finish. In the CPU kernel, the only
work-item in a work-group sequentially performs the copy of the centroids
and individuals of the population. The centroids need SKl

= 4×W ×F bytes

378 J.J. Escobar et al.

Fig. 2. Work-items of different warps (in white and shaded) copy from global memory
to local memory providing coalescent access and minimizing the memory bank conflicts

of memory and each individual Sind = F bytes (W centroids, F features and
4 bytes per floating-point data).

3. The mapping table MT needs SMT = P bytes of local memory (P is the
number of patterns in the dataset DS). This table contains the centroid
assigned to each pattern along the K-means iterations. The initialization
(line 7) is carried out by all work-items in the same way as the previous
initialization of centroids and individuals. Each pattern only stores the index
of its corresponding centroid, Ki. Moreover, through the mapping table MT ,
it is easier to check the algorithm convergence by taking into account whether
a pattern has been assigned to another centroid (line 12), instead of at the
end of the iteration (if there are not changes in the centroid assignments).

4. Each work-item has to find the nearest centroid for a specific pattern by
using the Euclidean distances between patterns and centroids. The dataset
DSt is stored in the GPU global memory to accelerate this task. The P first
memory addresses of DSt store the values of the first feature for all patterns,
the following P memory addresses store the values of the second feature,
and so on. Therefore, as each work-item handles a different pattern in a given
time, consecutive work-items will request consecutive memory addresses, thus
allowing full coalescence of the accesses to global memory. Moreover, when
the nearest centroid to a given pattern and the corresponding distance are
obtained, they can be written in, respectively, MT and D with the mini-
mum number of memory bank conflicts. As MT , the array D is stored in
local memory including the Euclidean distances between each pattern and its
closest centroid, occupying a total of SD = 4 × P bytes.

5. Update the centroids (line 14) is the most complex step of K-means in terms
of data parallelization. Some approaches [7,11] propose to perform this step
sequentially in the host, although the cost per iteration associated to trans-
fer the centroids to the host, process them, and return them could be too
high, especially in applications with high-dimensional patterns. Thus, we use
our GPU kernel and assign each work-item to add the same feature of all
patterns belonging to the centroid in question. The dataset DSt is not ade-
quate as consecutive work-items compute consecutive features. Now, DS is
used because its first F memory addresses contain all the features of the first

Improving Memory Accesses on EEG Classification 379

pattern, the following F addresses contain the features of the second pattern,
and so on. Thus, the coalescence of global memory accesses can be achieved
and the memory bank conflicts are minimized when a centroid is updated.

6. The GPU and CPU kernels return the fitness values of the individuals (lines
17 and 18), built from two components, the intra-cluster and the inter-cluster
distances given in (1) and (2) of Sect. 2.

4 Experimental Results

In this section, we analyze the performance of our OpenCL (version 1.2) codes
running on Linux CentOS 6.7 operating system, in a platform comprised of two
NUMA (Non-Uniform Memory Access) nodes connected by Gigabit Ethernet.
Each node has 32 GB of DDR3 memory and two Intel Xeon E5-2620 processors
at 2.1 GHz including six cores per socket with Hyper-Threading, thus comprising
24 threads. One of the nodes of this NUMA platform also includes a Tesla K20c
with 5 GB of global memory, 208 GB/s as maximum memory bandwidth and
2496 CUDA cores at 705.5 MHz, distributed into 13 SMXs, thus including 192
cores per SMX. In our experiments, we have used two benchmarks extracted
from the datasets recorded in the BCI Laboratory at the University of Essex
and described in [3]. The data benchmark b480a includes 178 patterns (EEGs)
with 480 features corresponding to the subject coded as 110 in the dataset. We
have also considered another larger data file for the same subject, the b3600a,
including 178 patterns (EEGs) with 3600 features. We have made 10 repetitions
of each experiment, to apply Kolmogorov-Smirnov tests in order to determine
whether the data follow a standard normal distribution. According to these tests,
we then apply either an ANOVA test if the data follow a normal distribution or
a Kruskal-Wallis test otherwise.

The implemented multi-objective optimization algorithm NSGA-II [6] uses
two point crossover with a probability of 0.9, a mutation by inversion of the
selected bit with probability of 0.1, and selection by binary tournament. The
hypervolumes are obtained with (1, 1) as reference point, and the minimum
values for the cost functions f1 and f2 are respectively 0 and −1, i.e. (0,−1).

Fig. 3. Mean hypervolumes for 20 and 50 iterations (sY = sequential; cX Y /gX Y =
CPU/GPU kernels; X = number of cores/SMXs; Y = population size) with b3600a

380 J.J. Escobar et al.

Table 1. Memory (in bytes) used by (Ref) code [8] and our proposed code (Opt). N ,
W , F and P are the number of individuals, centroids, features and patterns respectively

Mem. type Global Constant Local

Description Population Databases Centroids Indiv. Tables Distances

Array Spop SDB SW SKl
Sind SMT SD

Size Ref N × F 4 × P × F 4 × W × F 4 × W × F F 3 × W × P 4 × W × P

Opt 8 × P × F 4 × W P 4 × P

Total size Ref N × F + 4 × P × F 4 × W × F 4 × W × F + 7 × W × P + F

Opt N × F + 8 × P × F 4 × W 4 × W × F + 5 × P + F

Figure 3 shows the mean hypervolumes [10] obtained after 10 experiments
for different codes and configurations. After analyzing the obtained hypervolume
results, it has been observed that there are not statistically significant differences
with respect to the results obtained by the sequential procedures with the same
number of individuals in the population and generations. This is expected, as our
OpenCL codes correspond to alternative parallel implementations that keep the
behavior of the sequential algorithm. In what follows, we analyze the behavior
of the parallel codes here proposed. These codes implement the optimizations
described in Sect. 3 with respect to a basic parallel code evaluated in [8]. Table 1
compares the memory requirements of both codes and shows the decrease in the
memory requirements achieved by the optimizations previously described.

Fig. 4. Mean running times for 13 SMXs and data file b480a in (Ref) codes [8] and
our proposed codes (Opt). Population size of 1000 individuals

The optimized GPU code here proposed requires less running time than the
base GPU code used as reference [8] in all the experiments accomplished under
the same conditions of SMXs and work-items. As an example of the obtained
results, Fig. 4 shows the mean running times for 13 SMXs multiprocessors (the
maximum number of SMXs in our GPU) and different number of work-items.

As can be seen, contrary to the optimized code here proposed, in the refer-
ence code the time does not decrease from 512 to 1024 work-items. Indeed, not

Improving Memory Accesses on EEG Classification 381

Fig. 5. Mean speedups in (opt) GPU and CPU kernels for b3600a and 1000 individuals

only the running time decreases as more work-items are used in all the cases, but
also the amount of time-cutting provided by the optimized GPU-kernel grows as
more work-items are used due to the effect of the applied coalescence technique.
Moreover, it has not been possible to compare both codes by using the bench-
mark b3600a due to its local memory requirements for the not optimized code.
Figure 5 compares the speedups obtained by a CPU kernel and those obtained
by the proposed optimized GPU kernel with a population of 1000 individuals.
While the CPU kernel implements the parallel evaluation of individuals, the
GPU kernel takes advantage of both, and also implements the data parallel
implementation of the evaluation function based on K-means. The sequential
time used in all the speedup measures corresponds to the execution of the pro-
cedure in one of the host cores. This way, the speedups also allow us to compare
the corresponding running times. If we only consider the maximum number of
available CPU cores and SMXs multiprocessors (24 and 13 respectively), the
CPU kernel provides better results.

5 Conclusions

Many works in the literature have shown important speedups achieved by dif-
ferent parallel evolutionary algorithms implemented on GPUs, but fewer details
have been reported about the benefits of such many-core architectures in data
mining applications with irregularities in the codes or in the data accesses, along
with high-dimensional patterns and/or high volume data. This paper compares
parallel implementations for heterogeneous platforms including multicore CPU
and GPU architectures of a multi-objective approach to a high-dimensional
feature selection problem related with EEG classification on BCI tasks. Thus,
OpenCL CPU and GPU kernels have been implemented to analyze the behavior
of different parallel approaches to take advantage of heterogeneous architectures.

More specifically, the parallelized application is based on a multi-objective
optimization evolutionary algorithm with two cost functions. Thus, the fitness
evaluation for a given individual implies the computation of two validation
indices through a K-means algorithm applied to the patterns of the dataset.

Two parallelization approaches have been implemented in the GPU ker-
nel. The first one corresponds to a master-worker parallel multi-objective

382 J.J. Escobar et al.

evolutionary algorithm that distributes the evaluation of the individuals among
the available cores or SMXs. The second approach entails the parallelization
of the evaluation function. The CPU kernel only implements the master-worker
parallelization while the GPU kernel implements both approaches. This way, the
K-means algorithm is parallelized among the WILocal work-items. The use of
the GPU memory hierarchy has been optimized through some techniques among
which the coalescing of memory accesses and the minimization of memory bank
conflicts have been the most efficient ones.

The experimental results show a relevant time reduction in the optimized
GPU kernel here proposed compared to a first GPU kernel previously provided
in [8]. Moreover, our proposed GPU kernel also provides an efficient use of the
work-items as more of them are used. Nevertheless, despite the relatively good
results shown in this paper, more alternatives should be also explored to take
advantage of the heterogeneous parallelism. Among them, parallel implemen-
tations with load-balancing between CPUs and GPUs in the present comput-
ing platforms, and the implementation of evolutionary subpopulations through
island approaches could offer new insights about the possibilities of heteroge-
neous parallel architectures in the kind of applications here considered.

Acknowledgements. This work has been funded by project TIN2015-67020-P
(Spanish “Ministerio de Economı́a y Competitividad” and FEDER funds). We also thank
the BCI laboratory of the University of Essex, and especially Prof. John Q. Gan, for
allowing us to use their databases.

References

1. Alba, E., Luque, G., Nesmachnow, S.: Parallel metaheuristics: recent advances and
new trends. Int. Trans. Oper. Res. 20(1), 1–48 (2013)

2. Arbelaitz, O., Gurrutxaga, I., Muguerza, J., Pérez, J., Perona, I.: An extensive com-
parative study of cluster validity indices. Pattern Recogn. 46(1), 243–256 (2013)

3. Asensio-Cubero, J., Gan, J., Palaniappan, R.: Multiresolution analysis over simple
graphs for brain computer interfaces. J. Neural Eng. 10(4), 046014 (2013)

4. Bellman, R.: Adaptive Control Processes: A Guided Tour. Princeton University
Press, Princeton (1961)

5. Collet, P.: Why GPGPUs for evolutionary computation? In: Tsutsui, S., Collet, P.
(eds.) Massively Parallel Evolutionary Computation on GPGPUs. NCS, pp. 3–14.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-37959-8 1

6. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting
genetic algorithm for multi-objective optimization: NSGA-II. In: Schoenauer, M.,
Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J.J., Schwefel, H.-P. (eds.)
PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000). doi:10.
1007/3-540-45356-3 83

7. Dhanasekaran, B., Rubin, N.: A new method for GPU based irregular reductions
and its application to k-means clustering. In: Proceedings of 4th Workshop on
General Purpose Processing on Graphics Processing Units (GPGPU-4), pp. 729–
737. ACM, Newport Beach, March 2011

http://dx.doi.org/10.1007/978-3-642-37959-8_1
http://dx.doi.org/10.1007/3-540-45356-3_83
http://dx.doi.org/10.1007/3-540-45356-3_83

Improving Memory Accesses on EEG Classification 383

8. Escobar, J.J., Ortega, J., González, J., Damas, M.: Assessing parallel heterogeneous
computer architectures for multiobjective feature selection on EEG classification.
In: Ortuño, F., Rojas, I. (eds.) IWBBIO 2016. LNCS, vol. 9656, pp. 277–289.
Springer, Cham (2016). doi:10.1007/978-3-319-31744-1 25

9. Fazendeiro, P., Padole, C., Sequeira, P., Prata, P.: OpenCL implementations
of a genetic algorithm for feature selection in periocular biometric recognition.
In: Panigrahi, B.K., Das, S., Suganthan, P.N., Nanda, P.K. (eds.) SEMCCO
2012. LNCS, vol. 7677, pp. 729–737. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-35380-2 85

10. Fonseca, C., López-Ibáñez, M., Paquete, L., Guerreiro, A.: Computation of the
hypervolume indicator. http://lopez-ibanez.eu/hypervolume. Accessed 30 Nov
2015

11. Gunarathne, T., Salpitikorala, B., Chauhan, A., Fox, G.: Optimizing OpenCL ker-
nels for iterative statistical algorithms on GPUs. In: Proceedings of 2nd Interna-
tional Workshop on GPUs and Scientific Applications (GPUScA 2011), Galveston
Island, Texas, USA, pp. 33–44, October 2011

12. Handl, J., Knowles, J.: Feature subset selection in unsupervised learning via mul-
tiobjective optimization. Int. J. Comput. Intell. Res. 2(3), 217–238 (2006)

13. Kimovski, D., Ortega, J., Ortiz, A., Baños, R.: Leveraging cooperation for parallel
multi-objective feature selection in high-dimensional EEG data. Concurr. Comput.:
Pract. Exp. 27(18), 5476–5499 (2015)

14. Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S., Coello Coello, C.: A survey of
multiobjective evolutionary algorithms for data mining: part i. IEEE Trans. Evol.
Comput. 18(1), 4–19 (2014)

15. Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S., Coello Coello, C.: A survey of
multiobjective evolutionary algorithms for data mining: part ii. IEEE Trans. Evol.
Comput. 18(1), 20–35 (2014)

16. Rupp, R., Kleih, S.C., Leeb, R., Millan, J., Kübler, A., Müller-Putz, G.R.: Brain–
computer interfaces and assistive technology. In: Grübler, G., Hildt, E. (eds.) Brain-
Computer-Interfaces in their ethical, social and cultural contexts. TILELT, vol. 12,
pp. 7–38. Springer, Dordrecht (2014). doi:10.1007/978-94-017-8996-7 2

17. Sharma, D., Collet, P.: Implementation techniques for massively parallel multi-
objective optimization. In: Tsutsui, S., Collet, P. (eds.) Massively Parallel Evolu-
tionary Computation on GPGPUs. NCS, pp. 267–286. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-37959-8 13

18. Wong, M.L., Cui, G.: Data mining using parallel multi-objective evolutionary algo-
rithms on graphics processing units. In: Tsutsui, S., Collet, P. (eds.) Massively
Parallel Evolutionary Computation on GPGPUs. NCS, pp. 287–307. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-37959-8 14

19. Wu, R., Zhang, B., Hsu, M.: Clustering billions of data points using GPUs.
In: Hast, A., Buchty, R., Tao, J., Weidendorfer, J. (eds.) Proceedings of Com-
bined Workshops on UnConventional High Performance Computing Workshop
Plus Memory Access Workshop (UCHPC-MAW 2009), pp. 1–6. ACM, Ischia, May
2009

20. Zechner, M., Granitzer, M.: Accelerating k-means on the graphics processor via
cuda. In: Proceedings of 1st International Conference on Intensive Applications
and Services (INTENSIVE 2009), pp. 7–15. IEEE, Valencia, April 2009

http://dx.doi.org/10.1007/978-3-319-31744-1_25
http://dx.doi.org/10.1007/978-3-642-35380-2_85
http://dx.doi.org/10.1007/978-3-642-35380-2_85
http://lopez-ibanez.eu/hypervolume
http://dx.doi.org/10.1007/978-94-017-8996-7_2
http://dx.doi.org/10.1007/978-3-642-37959-8_13
http://dx.doi.org/10.1007/978-3-642-37959-8_14

Improving Multiobjective Phylogenetic Searches
by Using a Parallel ε-Dominance Based
Adaptation of the Firefly Algorithm

Sergio Santander-Jiménez(B) and Miguel A. Vega-Rodŕıguez

Department of Computer and Communications Technologies,
Escuela Politécnica, University of Extremadura,
Campus Universitario s/n, 10003 Cáceres, Spain

{sesaji,mavega}@unex.es

Abstract. One of the current trends of research in bioinformatics
focuses on the application of multiobjective techniques to solve biological
optimization problems involving multiple criteria. In this sense, the com-
bination of parallelism and multiobjective bioinspired computing repre-
sents a relevant approach to tackle challenging NP-hard problems in
this area. In this work, we aim to improve a previous multiobjective
proposal based on the Firefly Algorithm to infer multiobjective phyloge-
netic hypotheses. We study the integration of the ε-dominance mecha-
nism, along with other multiobjective strategies, to improve the overall
quality of the Pareto fronts generated by the algorithm. The resulting
approach is parallelized with OpenMP to exploit the capabilities of a
multicore system composed of 32 execution cores. Experiments over four
real nucleotide data sets give account of significant parallel and multi-
objective results, pointing out the benefits of the applied strategies in
comparison to our original proposal and other biological tools from the
literature.

Keywords: Multiobjective optimization · OpenMP · Firefly Algorithm ·
Bioinformatics

1 Introduction

Recent advances in algorithmic and hardware development have allowed the
inclusion of more realistic assumptions in the modelling of biological optimization
problems. As a result, a significant increase in the proposal of parallel and multi-
objective approaches to solve bioinformatics problems has been observed [9,18].
A representative NP-hard problem in this context is given by the reconstruction
of phylogenetic histories describing the evolution of living organisms [11]. The
literature gives account of successful applications of multiobjective bioinspired
computing to solve incongruence issues during the inference process. Poladian
and Jermiin applied multiobjective optimization with the aim of performing phy-
logenetic analyses when conflicting sources of information are considered [14].
c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 384–396, 2017.
DOI: 10.1007/978-3-319-58943-5 31

Improving Phylogenetic Searches Using a Parallel ε-Dominance Algorithm 385

Other proposals focused on tackling the problem according to multiple optimal-
ity criteria. We can highlight the works from Coelho et al. [4], who proposed
immune-inspired strategies according to distance-based criteria, and Cancino
and Delbem [1], who designed the PhyloMOEA tool to perform phylogenetic
searches attending to parsimony and likelihood. The additional challenge that
represents the multiobjective treatment of this problem has motivated the appli-
cation of parallel computing to minimize execution times. For example, Cancino
et al. reported in [2] MPI and MPI+OpenMP parallelization schemes to their
proposal, while Santander-Jiménez and Vega-Rodŕıguez evaluated evolutionary
and swarm intelligence parallel designs for multicore clusters in [15].

When solving multiobjective optimization problems, the output of the algo-
rithm is given by a set of solutions which represent a compromise between n ≥ 2
objective functions [5]. The Pareto dominance concept is often used to distin-
guish solution quality throughout the search. It states that, given two solutions
s1 and s2, s1 dominates s2 iff ∀ i ∈ [1, 2...n], fi(s1) is not worse than fi(s2) and
∃ i ∈ [1, 2...n] such that fi(s1) is better than fi(s2). In this optimization context,
we can define two key properties to measure the quality of the output provided
by a multiobjective algorithm: convergence to the Pareto-optimal front and solu-
tion diversity. Accomplishing these two goals is considered a challenging issue in
real optimization scenarios, so multiobjective searches can be boosted by using a
variety of strategies. A representative approach is given by the ε-dominance pro-
posal [10], which extends Pareto dominance by not allowing two solutions with a
difference (or proportion) less than εi in the i-th objective to be non-dominated
to each other. This mechanism can be useful i.e. to identify promising individuals
in the population, considering them in the learning strategies of the algorithm
to support the generation of improved candidate solutions.

In this work, we study the application of ε-dominance and other strate-
gies to improve a Multiobjective Firefly Algorithm (MO-FA) [15] for inferring
phylogenies according to parsimony and likelihood. We also propose a parallel
adaptation of the resulting algorithm, named as ε-MO-FA, to exploit multicore
machines with OpenMP [3]. The main goal lies on assessing the performance
of the proposed algorithm from both parallel and multiobjective perspectives.
We will evaluate firstly the scalability of the algorithm in a multicore system
up to 32 cores attending to the metrics of speedup and efficiency. Secondly, we
will introduce a comparative study to assess ε-MO-FA with regard to our previ-
ous proposal, using three multiobjective metrics: hypervolume, set coverage and
spacing. This experimental analysis will be conducted over four real nucleotide
data sets, making comparisons with other phylogenetic tools from the literature.

This paper is organized in the following way. The next section details the defi-
nition of the problem and formulates the considered objective functions. Section 3
highlights the main features of ε-MO-FA and describes its parallelization with
OpenMP. Section 4 contains the experimental evaluation of the proposal. Finally,
concluding remarks and future work lines are included in Sect. 5.

386 S. Santander-Jiménez and M.A. Vega-Rodŕıguez

2 Phylogenetic Reconstruction Problem

Phylogenetic reconstruction methods are aimed at describing the evolutionary
history of species by modelling ancestor-descendant relationships between liv-
ing and hypothetical organisms. A phylogenetic hypothesis is given by a tree
data structure T = (V,E). Here, V represents the node set containing ancestral
organisms at the internal nodes, while the results of the evolutionary process are
given in the shape of leaf nodes. On the other hand, E contains the branches
used to link related organisms throughout the course of evolution. This evolu-
tionary history is inferred by processing the similarities and divergence observed
in a dataset composed of N aligned sequences (i.e. nucleotide sequences in the
case of DNA-based analyses, represented by character strings following the state
alphabet Λ = {A,C,G,T}) with M sites per sequence.

Phylogenetic inference can be modelled as an optimization problem which
seeks to obtain an optimal phylogeny attending to certain biological criteria
(implemented as objective functions). However, different phylogenetic functions
can give rise to conflicting phylogenies for the same biological data [12]. To
address this issue, we tackle the problem from a multiobjective perspective, con-
sidering two popular objective functions: parsimony and likelihood. On the one
hand, the maximum parsimony principle applies Ockham’s razor to give prefer-
ence to the simplest evolutionary hypothesis, given by a phylogenetic topology
which minimizes the number of changes observed between related organisms
(that is, the one showing a minimal number of mutation events per generation).
The parsimony score for a phylogenetic tree T = (V,E) is calculated as [11]:

P (T) =
M∑

i=1

∑

(a,b)∈E

C(ai, bi), (1)

where (a, b) ∈ E defines the evolutionary relationship between two nodes a, b ∈
V , ai and bi are the state values at the i-th site of the sequences related to a
and b, and C(ai, bi) quantifies the state divergence observed between ai and bi.

On the other hand, maximum likelihood approaches conduct the inference
process under the assumptions provided by an evolutionary model, which defines
the probabilities of observing mutation events. The main idea focuses on using
these probabilities to infer the most likely evolutionary hypothesis that explains
the features observed in the input organisms. Considering the probabilities
defined by a model μ, the maximum likelihood hypothesis is described by the
evolutionary tree T = (V,E) which maximizes the following expression [11]:

L[T, μ] =
M∏

i=1

∑

x,y∈Λ

πx [Pxy(tru)Lp (ui = y)] × [Pxy (trv) Lp (vi = y)], (2)

where πx is the stationary probability of the state x ∈ Λ, Pxy(t) the probability
of observing a mutation from x to a different state y within a time t, r ∈ V the
root node of the tree with descendants u, v ∈ V , and Lp(ui = y), Lp(vi = y) the
partial likelihoods of observing y at the i-th site in u and v, respectively.

Improving Phylogenetic Searches Using a Parallel ε-Dominance Algorithm 387

Tackling phylogenetic inference as an optimization problem represents a sig-
nificant challenge from a computational perspective. This is due to the fact that
the reconstruction of optimal phylogenies (i.e. under parsimony and likelihood)
shows an NP-hard complexity. This hardness is closely related to the dimensions
N and M of the input dataset. Firstly, the size of the tree search space depends on
the number of species N in such a way that a exponential growth in the number
of possible phylogenetic topologies is verified for increasing values of N . Secondly,
the evaluation times required by the computation of objective functions depend
on the sequence size M , showing a linear growth with M which can represent
a significant time-consuming factor in current biological alignments. These two
key issues explain why phylogenetic inference represents a grand computational
challenge and the need to undertake real-world analyses upon the basis of high
performance computing and bioinspired computing.

3 A Parallel ε-Dominance Based Proposal

To address the phylogeny inference problem, we propose a parallel approach
which implements ε-dominance and other multiobjective techniques to improve
search capabilities. This section describes the main features of the proposal.

ε-Based Multiobjective Firefly Algorithm. The Firefly Algorithm (FA)
[17] is a bioinspired algorithm built upon the bioluminescence of fireflies to solve
optimization problems. The basic idea lies on modelling the interactions per-
formed by these organisms, based on the emission of flashing lights to attract
potential partners. The decision on moving to the position of another firefly
according to this attraction system depends on multiple factors, such as the light
intensity, the distance between fireflies and the environmental light absorption.
A previous multiobjective adaptation of this algorithm (MO-FA) was reported
in [15], in which we applied the dominance concept to distinguish which fire-
flies showed the most attractive light patterns, that is, which solutions showed
the best quality from a multiobjective perspective. Although high-quality solu-
tions were obtained by this approach (improving the standard Non-dominated
Sorting Genetic Algorithm II, NSGA-II [6]), the overall shape of the obtained
Pareto fronts could be improved from both convergence and diversity perspec-
tives. This is the reason why we propose here a new adaptation ε-MO-FA based
on ε-dominance to promote improved search capabilities by making more flexi-
ble the learning patterns in this algorithm. The input parameters for ε-MO-FA
include the number of fireflies in the population (popSize), the maximum number
of evaluations established as stop criterion (maxEval), an attractiveness factor
(β0), an environmental light absorption coefficient (γ), a randomization factor
(α), and the epsilon values for each objective (ε1, ε2).

In order to apply this algorithm to phylogenetics, solutions are encoded by
means of NxN symmetric floating-point distance matrices, where N is the num-
ber of input species. These structures contain in each entry m[x,y] a measure of
the evolutionary distance between the organisms x and y. This indirect encoding
allows us to perform searches in an auxiliary matrix space which is suitable to

388 S. Santander-Jiménez and M.A. Vega-Rodŕıguez

be processed by using the operators defined in the original FA design, applying
the BIONJ tree-building method to map the matrices into the corresponding
phylogenetic trees. Starter matrices at the population initialization stage are
obtained from the processing of randomly selected starter phylogenetic topolo-
gies taken from a repository generated by bootstrapping techniques, using the
Bio++ bioinformatics library [7] for implementation purposes.

At each generation, fireflies in the population are compared with each other
under ε-dominance. Let Pi be a firefly with distance matrix Pi.m which is ε-
dominated by another firefly Pj with matrix Pj .m (Pj �ε Pi). The attraction
procedure in ε-MO-FA generates a new solution P ′

i by moving Pi towards Pj ,
computing in a first step the overall distance δij that separates Pi from Pj :

δij =

√√√√
N∑

x=1

x∑

y=1

(Pi.m[x, y] − Pj .m[x, y])2. (3)

Once we have calculated δij , the new distance matrix is computed by using
the firefly movement formula, which is governed by the parameters of attractive-
ness β0, environmental absorption γ and movement randomization α:

P ′
i .m[x, y] = Pi.m[x, y]+β0e

−γδ2
ij (Pj .m[x, y]−Pi.m[x, y])+α(rnd[0, 1]− 1

2
), (4)

where rnd[0,1] is a random number taken from a uniform distribution in the
interval [0,1]. While the second term in this formula denotes the degree Pi learns
from Pj , the third term introduces randomness to support the exploration capa-
bilities of the algorithm. These steps are repeated for each firefly in the popu-
lation that ε-dominates Pi, so the new matrix P ′

i .m is generated according to
the information provided by multiple individuals hence modelling the collective
behaviour of swarm intelligence. As the resulting matrix must be symmetric, a
blend crossover operator BLX-α [13] is applied over those entries m[x,y] �= m[y,x].
Afterwards, we infer and evaluate the corresponding phylogenies, repeating the
movement calculations over each ε-dominated firefly in the population.

At the end of each generation, the new solutions compete with the original
fireflies with the aim of preserving the most promising popSize solutions. For
this purpose, we apply fast non-dominated sorting and crowding computation
to classify and sort our solutions by means of Pareto ranks and density values
[6]. Then, the Pareto front is updated and a new generation takes place.

Parallel Design. Algorithm 1 provides an OpenMP-based parallel design of
ε-MO-FA for shared-memory multicore systems. When parallelizing this algo-
rithm, the main challenge from a parallel perspective is given by the fact that
firefly movements are affected by two main sources of load imbalance. Firstly,
the attraction procedure checks the whole population under ε-dominance, so
the movements are only applied over those solutions which are ε-dominated
by at least another solution in the population. Secondly, as solutions can be ε-
dominated by multiple, different fireflies at the current generation, the movement

Improving Phylogenetic Searches Using a Parallel ε-Dominance Algorithm 389

Algorithm 1. ε-MO-FA - OpenMP Parallel Design
1: #pragma omp parallel (num threads)
2: P ← Initialize Population (popSize, dataset, num threads), ParetoFront ← 0
3: while ! stop criterion reached (maxEval) do
4: #pragma omp single
5: /* Obtaining information about ε-dominated fireflies */
6: idεDominatedFireflies ← 0
7: numεDominatedFireflies ← 0
8: εDominatingFireflies ← 0
9: for i = 1 to popSize do

10: if ∃ Pj : Pj �ε Pi then
11: idεDominatedFireflies[numεDominatedFireflies] ← i
12: εDominatingFireflies[i] ← εDominatingFireflies[i] ∪ Pj

13: numεDominatedFireflies ← numεDominatedFireflies + 1
14: end if
15: end for
16: #pragma omp for schedule (dynamic) /* Parallelizing the firefly movement loop */
17: for i = 1 to numεDominatedFireflies do
18: idDom ← idεDominatedFireflies[i]
19: PpopSize+i.m ← Attract Firefly (PidDom.m, εDominatingFireflies[idDom], β0, γ, α)
20: PpopSize+i.T ← Infer Phylogenetic Tree (PpopSize+i.m, dataset)
21: PpopSize+i.scores ← Evaluate Solution (PpopSize+i.T , dataset)
22: end for
23: #pragma omp single
24: P ← Fast Non-Dominated and Crowding Sorting (P , popSize+numεDominatedFireflies)
25: ParetoFront ← Update Pareto Front (P , ParetoFront)
26: end while

operators must be applied a variant number of times, thus leading to different
processing times for each ε-dominated firefly.

Our parallel proposal deals with these two issues in the following way. At the
beginning of each generation, we calculate the number of ε-dominated fireflies
in the population (lines 4–15 in Algorithm1), storing their identifiers along with
the ones from the ε-dominating fireflies. Once we have identified which fireflies
must be processed, we apply the movement loop over the number of ε-dominated
fireflies detected. In this way, we are able to remove the if-condition which gov-
erned the calculation of new fireflies in the original movement loop from the
serial version, addressing the first source of load imbalance. The movement loop
(lines 16–22) is parallelized by using #pragma omp for, enabling a dynamic
scheduling policy to address the second source of imbalance, mainly related to
the changing number of ε-dominating fireflies that must be considered per iter-
ation. The final steps of the generation (lines 23–25) are enclosed in a #pragma
omp single directive due to the presence of data dependences in the management
of the population and Pareto front data structures. Please observe that this par-
allelization scheme, in which we define a parallel region at the beginning and
apply single/for directives to define serial/parallel fractions of code, is aimed at
minimizing the additional thread management overhead that would imply the
use of #pragma omp parallel for inside the main loop of the algorithm.

4 Experimental Results

This section reports the results of the experiments conducted to evaluate ε-MO-
FA from both parallel and multiobjective perspectives. Our experimentation

390 S. Santander-Jiménez and M.A. Vega-Rodŕıguez

involves the analysis of four real nucleotide data sets from the literature
[1]: rbcL 55 (rbcL plastid gene data, N= 55 sequences, M = 1314 nucleotides
per sequence), mtDNA 186 (human mitochondrial DNA, N= 186, M = 16608),
RDPII 218 (prokaryotic RNA, N = 218, M = 4182), and ZILLA 500 (rbcL gene,
N = 500, M = 759). Our hardware setup comprises two 16-core processors AMD
Opteron ‘Abu Dhabi’ 6376 (a total of 32 execution cores) running at 2.3 GHz
with 48GB DDR3 RAM, using Ubuntu 14.04 LTS and GCC 5.3.0.

In order to evaluate the behaviour of the proposal on these real-world scenar-
ios, we have used different metrics to measure parallel performance and solution
quality. Firstly, the speedup and efficiency metrics have been used to study how
the algorithm scales over different problem and system sizes, taking as refer-
ence the serial times reported in Table 1. Secondly, the multiobjective quality
of the generated Pareto fronts has been assessed by using three multiobjective
metrics [5]: the hypervolume IH of the objective space covered by the reported
solutions, the coverage relation SC(X,Y) which allows to make pairwise com-
parisons between two algorithms X and Y by calculating the fraction of solutions
in Y which are weakly-dominated by X, and the spacing SP between solutions
in the Pareto front. The configuration of input parameters in ε-MO-FA has been
performed by studying different uniformly-distributed values for each one, using
hypervolume to measure the quality of the generated outputs. This parametric
study reported the following best values for each parameter: popSize = 128,
β0 = 1, γ = 0.5, α = 0.05, and the epsilon values ε1 = 0.005 (parsimony objec-
tive) and ε2 = 0.0005 (likelihood objective). The stop criterion was set to 10000
evaluations and the analyses were conducted under the GTR + Γ evolutionary
model.

Table 1. Serial times (in seconds) for ε-MO-FA

rbcL 55 mtDNA 186 RDPII 218 ZILLA 500

Texec 5008.131 44927.917 45576.534 70179.939

Parallel Results. The evaluation of parallel performance for ε-MO-FA has
been conducted by considering increasing system configurations involving 8, 16,
24 and 32 cores. For each configuration and dataset, 11 independent runs were
carried out in order to obtain statistically meaningful samples of execution time.
Table 2 shows the median speedups (columns 2, 4, 6 and 8) and efficiencies
(columns 3, 5, 7, and 9) observed over the serial times reported in Table 1 for each
dataset. In addition, columns 10–11 in Table 2 summarize the mean behaviour
of the algorithm under these two parallel metrics, taking into account the results
obtained in all the data sets under study.

In overall terms, our parallel proposal is able to take effective advantage of
the parallel resources available in the architecture. In short, ε-MO-FA obtains
speedup values in the ranges 7.2–7.8 (8 cores), 12.3–14.4 (16 cores), 16.3–19.8 (24
cores), and 19.6–24.0 (32 cores). The efficiencies point out that the algorithm

Improving Phylogenetic Searches Using a Parallel ε-Dominance Algorithm 391

Table 2. Speedups and efficiencies achieved by ε-MO-FA

rbcL 55 mtDNA 186 RDPII 218 ZILLA 500 Mean

Cores Speedup Eff.(%) Speedup Eff.(%) Speedup Eff.(%) Speedup Eff.(%) Speedup Eff.(%)

8 7.209 90.114 7.291 91.141 7.294 91.180 7.818 97.727 7.403 92.541

16 12.255 76.592 13.123 82.018 13.383 83.645 14.385 89.905 13.286 83.040

24 16.257 67.736 17.821 74.256 18.423 76.762 19.782 82.424 18.071 75.295

32 19.568 61.150 21.190 66.219 22.029 68.841 24.042 75.131 21.707 67.835

Fig. 1. Parallel performance - speedup comparisons

attains a satisfying exploitation of the underlying hardware, reporting in the
dataset with the highest number of species (ZILLA 500) a significant efficiency
value of 75.1% when using the whole system (32 cores). It is also remarkable to
point out that the attained speedups are closely related to the complexity of the
input dataset, as growing problem sizes imply more computations over matrix
and tree data structures of growing size, motivating in this way an increase in
the parallelizable fraction of the application.

With the aim of assessing these parallel results, we have conducted com-
parisons with two parallel tools for phylogenetic reconstruction: RAxML [16]
(maximum likelihood inference) and PhyloMOEA [2] (multiobjective infer-
ence). Figure 1 provides a graphical comparison between the speedups obtained
by ε-MO-FA and RAxML in its multicore POSIX-based release. For system

Table 3. Speedup comparisons with PhyloMOEA (16 cores)

rbcL 55 mtDNA 186 RDPII 218 ZILLA 500

ε-MO-FA 12.26 13.12 13.38 14.39

PhyloMOEA MPI 7.30 7.40 9.80 6.70

PhyloMOEA Hybrid 8.30 8.50 10.20 6.30

392 S. Santander-Jiménez and M.A. Vega-Rodŕıguez

configurations involving 16 or more execution cores, a significant improvement
in the way ε-MO-FA scales can be verified with regard to RAxML-PTHREADS.
In fact, when using the whole system, ε-MO-FA is able to obtain a mean speedup
value of 21.7, in comparison to the speedup of 8.95 reported by this likelihood-
based parallel tool. Regarding PhyloMOEA, Table 3 introduces a comparison
with the speedup results reported (16 cores) for the MPI-based and hybrid
MPI+OpenMP parallel versions of this tool [2]. This table gives account of how
the parallel implementation of ε-MO-FA shows an improved behaviour from a
parallel perspective in comparison to these two versions of the multiobjective
method PhyloMOEA. Therefore, these comparisons with other parallel phylo-
genetic tools confirm that our proposal achieves relevant results from a parallel
perspective, leading to a significant exploitation of current multicore systems.

Multiobjective Results. Now we undertake the evaluation of the Pareto fronts
reported by ε-MO-FA by making comparisons with our original proposal MO-
FA. In this comparative study, we have considered the median results obtained
from 31 independent executions per dataset, which are detailed in Table 4. In this
table, we show the median hypervolume values (along with their interquartile
ranges) obtained by each algorithm, the spacing values which assess the uni-
formity of the Pareto front distribution, and pairwise comparisons between the
outcomes of the two algorithms under set coverage. Please observe that higher
hypervolume and set coverage values imply better multiobjective quality, while
spacing is a metric to be minimized. In addition, we report in Fig. 2 a graph-
ical comparison of the Pareto fronts obtained by ε-MO-FA and MO-FA in the
median-hypervolume execution for each dataset under study.

Attending to the overall quality of the inferred Pareto fronts, Table 4 points
out that the new ε-based proposal outperforms the original adaptation of the
algorithm in all the data sets under study. While the differences in hypervolume
scores might not be too high, both spacing and set coverage give account of the
success of ε-MO-FA in achieving more satisfying outcomes than MO-FA from
a multiobjective perspective. In fact, spacing confirms that ε-MO-FA is able
to obtain a more relevant spread of solutions in the Pareto fronts, overcoming
the diversity issues originally shown by MO-FA. In addition, the coverage rela-
tion suggests better convergence properties in the fronts obtained by ε-MO-FA,
according to the fact that the new proposal is able to cover, in average terms,
over 70% of the solutions reported by MO-FA. These two statements are verified
by the representation of Pareto fronts in Fig. 2, where a noticeable improve-
ment in both solution quality and spread can be observed. In conclusion, ε-MO-
FA succeeds in attaining significant results attending to multiobjective quality,
addressing the problems shown by the previous version of the algorithm.

Once multiobjective results have been analyzed, we now undertake the eval-
uation of the inferred phylogenetic trees by introducing comparisons with other
state-of-the-art phylogenetic tools. More specifically, Table 5 reports the parsi-
mony and likelihood scores of the extreme points in our median Pareto fronts
and compare them with the tools TNT [8] (for maximum parsimony), RAxML

Improving Phylogenetic Searches Using a Parallel ε-Dominance Algorithm 393

Table 4. Multiobjective performance - comparisons between ε-MO-FA and MO-FA

rbcL 55 mtDNA 186 RDPII 218 ZILLA 500

Hypervolume

IH(ε-MO-FA) 71.55±0.01 70.02±0.01 74.81±0.13 73.00±0.08

IH(MO-FA) 71.47± 0.08 70.00± 0.01 74.73± 0.08 72.96± 0.02

Spacing

SP(ε-MO-FA) 0.097 0.078 0.028 0.037

SP(MO-FA) 0.128 0.103 0.033 0.051

Set coverage

SC(ε-MO-FA, MO-FA) 62.50% 85.71% 57.32% 81.25%

SC(MO-FA, ε-MO-FA) 30.00% 18.75% 22.12% 13.24%

Fig. 2. Multiobjective performance - Pareto front comparisons

(under the GTR+Γ model) and PhyloMOEA (under the HKY85+Γ model).
With regard to parsimony results, ε-MO-FA matches the quality of TNT in
all the data sets under study, while outperforming PhyloMOEA in mtDNA 186,

394 S. Santander-Jiménez and M.A. Vega-Rodŕıguez

Table 5. Evaluation of parsimony and likelihood results

Parsimony score Likelihood score (GTR+Γ) Likelihood score (HKY85+Γ)

Dataset ε-MO-FATNT PhyloMOEA ε-MO-FA RAxML ε-MO-FA PhyloMOEA

rbcL 55 4874 4874 4874 −21782.64 −21788.57 −21813.81 −21889.84

mtDNA 186 2431 2431 2437 −39868.64 −39868.07 −39889.23 −39896.44

RDPII 218 41488 41488 41534 −134080.68−134085.14 −134154.31−134696.53

ZILLA 500 16218 16218 16219 −80568.24 −80599.77 −80967.27 −81018.06

RDPII 218, and ZILLA 500. As for likelihood, our proposal is also able to obtain
significant solutions attending to this phylogenetic function, improving the scores
reported by RAxML in three data sets and PhyloMOEA in all of them. In con-
clusion, our experimentation confirms the success of the new strategies intro-
duced in ε-MO-FA to boost its search capabilities, leading to Pareto fronts with
significant quality attending to multiobjective and biological performance.

5 Conclusions

In this work, we have tackled the problem of inferring multiobjective phyloge-
netic hypotheses by using an improved multiobjective adaptation of the Firefly
Algorithm, ε-MO-FA. The main goal of the proposal lies on improving search
capabilities by applying ε-dominance to govern the learning mechanisms of the
algorithm, along with other multiobjective strategies (fast non-dominated sort-
ing and crowding computations) to distinguish solution quality in a more accu-
rate way. Due to the hardness of the addressed problem, we have introduced a
parallelization scheme based on OpenMP to allow the algorithm to take advan-
tage of the computing capabilities of current multicore systems. Experiments
on four real biological data sets have provided insight into the relevance of the
proposed approach. From a parallel perspective, a significant exploitation of a
32-core hardware configuration has been verified according to the speedup and
efficiency metrics, showing improved scalability with regard to other parallel
phylogenetic tools. Furthermore, the evaluation of the inferred Pareto fronts
under different multiobjective indicators has confirmed that the new strategies
introduced in ε-MO-FA allow the algorithm to overcome the main problems
shown by the previous adaptation, MO-FA. Finally, the biological quality of the
inferred phylogenetic trees has also been confirmed by the comparisons with
other state-of-the-art methods for phylogenetic reconstruction.

Our future work lines aim to explore in a deeper way the relationship between
parallelism and multiobjective metaheuristics when solving NP-hard problems
like phylogenetic reconstruction. Particularly, we will undertake the analysis of
multiple algorithmic designs (including evolutionary algorithms and swarm intel-
ligence), evaluating the impact in parallel performance which implies the use of
alternative multiobjective strategies. In addition, advanced parallel designs for
improving multiobjective quality and parallel scalability will be studied.

Improving Phylogenetic Searches Using a Parallel ε-Dominance Algorithm 395

Acknowledgments. The authors thank the University of Extremadura for the post-
doc grant ACCION-III-04 provided to Sergio Santander-Jiménez (Plan de Iniciación
a la Investigación, Desarrollo Tecnológico e Innovación 2015). Thanks to the Junta de
Extremadura for the GR15011 grant provided to the group TIC015.

References

1. Cancino, W., Delbem, A.C.B.: A multi-criterion evolutionary approach applied to
phylogenetic reconstruction. In: New Achievements in Evolutionary Computation,
pp. 135–156. InTech (2010)

2. Cancino, W., Jourdan, L., Talbi, E.-G., Delbem, A.C.B.: Parallel multi-objective
approaches for inferring phylogenies. In: Pizzuti, C., Ritchie, M.D., Giacobini, M.
(eds.) EvoBIO 2010. LNCS, vol. 6023, pp. 26–37. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-12211-8 3

3. Chapman, B., Jost, G., van der Pas, R.: Using OpenMP: Portable Shared Memory
Parallel Programming. The MIT Press, Cambridge (2007)

4. Coelho, G.P., Silva, A.E.A., Zuben, F.J.V.: An immune-inspired multi-objective
approach to the reconstruction of phylogenetic trees. Neural Comput. Appl. 19(8),
1103–1132 (2010)

5. Coello, C., Dhaenens, C., Jourdan, L.: Advances in Multi-Objective Nature
Inspired Computing. Springer, Heidelberg (2010)

6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multi-objective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

7. Dutheil, J., et al.: Bio++: a set of C++ libraries for sequence analysis, phyloge-
netics, molecular evolution and population genetics. BMC Bioinform. 7, 188–193
(2006)

8. Goloboff, P.A., Farris, J.S., Nixon, K.C.: TNT, a free program for phylogenetic
analysis. Cladistics 24(5), 774–786 (2008)

9. Handl, J., Kell, D.B., Knowles, J.D.: Multiobjective optimization in bioinformatics
and computational biology. IEEE/ACM Trans. Comput. Biol. Bioinf. 4(2), 279–
292 (2007)

10. Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining convergence and diver-
sity in evolutionary multi-objective optimization. Evol. Comput. 10(3), 263–282
(2002)

11. Lemey, P., Salemi, M., Vandamme, A.M.: The Phylogenetic Handbook: A Practical
Approach to Phylogenetic Analysis and Hypothesis Testing. Cambridge University
Press, Cambridge (2009)

12. Macey, J.R.: Plethodontid salamander mitochondrial genomics: a parsimony eval-
uation of character conflict and implications for historical biogeography. Cladistics
21(2), 194–202 (2005)

13. Poladian, L.: A GA for maximum likelihood phylogenetic inference using
neighbour-joining as a genotype to phenotype mapping. In: Genetic and Evolu-
tionary Computation Conference, pp. 415–422 (2005)

14. Poladian, L., Jermiin, L.: Multi-objective evolutionary algorithms and phylogenetic
inference with multiple data sets. Soft. Comput. 10(4), 359–368 (2006)

15. Santander-Jiménez, S., Vega-Rodŕıguez, M.A.: Parallel multiobjective metaheuris-
tics for inferring phylogenies on multicore clusters. IEEE Trans. Parallel Distrib.
Syst. 26(6), 1678–1692 (2015)

16. Stamatakis, A.: RAxML Version 8: A Tool for Phylogenetic Analysis and Post-
Analysis of Large Phylogenies. Bioinformatics 30(9), 1312–1313 (2014)

http://dx.doi.org/10.1007/978-3-642-12211-8_3

396 S. Santander-Jiménez and M.A. Vega-Rodŕıguez

17. Yang, X.S.: Firefly algorithm, stochastic test functions and design optimisation.
Int. J. Bio-Inspired Comput. 2(2), 78–84 (2010)

18. Zomaya, A.Y.: Parallel Computing for Bioinformatics and Computational Biology:
Models, Enabling Technologies, and Case Studies. Wiley, Hoboken (2006)

Evaluation of Parallel Differential Evolution
Implementations on MapReduce and Spark

Diego Teijeiro1, Xoán C. Pardo1, David R. Penas2, Patricia González1(B),
Julio R. Banga2, and Ramón Doallo1

1 Grupo de Arquitectura de Computadores,
Universidade da Coruña, A Coruña, Spain

{diego.teijeiro,xoan.pardo,patricia.gonzalez,doallo}@udc.es
2 BioProcess Engineering Group, IIM-CSIC, Vigo, Spain

julio@iim.csic.es

Abstract. Global optimization problems arise in many areas of science
and engineering, computational and systems biology and bioinformatics
among them. Many research efforts have focused on developing parallel
metaheuristics to solve them in reasonable computation times. Recently,
new programming models are being proposed to deal with large scale
computations on commodity clusters and Cloud resources. In this paper
we investigate how parallel metaheuristics deal with these new models by
the parallelization of the popular Differential Evolution algorithm using
MapReduce and Spark. The performance evaluation has been carried out
both in a local cluster and in the Amazon Web Services public cloud.
The results obtained can be particularly useful for those interested in the
potential of new Cloud programming models for parallel metaheuristic
methods in general and Differential Evolution in particular.

Keywords: Parallel metaheuristics · Differential Evolution · Cloud
computing · MapReduce · Spark

1 Introduction

Many key problems in computational systems biology can be formulated and
solved using global optimization techniques. Metaheuristics are gaining increased
attention as an efficient way of solving hard global optimization problems. Dif-
ferential Evolution (DE) [12] is one of the most popular heuristics for global opti-
mization, and it has been successfully used in many different areas [4]. However,
in most realistic applications, like parameter estimation problems in systems
biology, this population-based method requires a very large number of evalu-
ations (and therefore, large computation time) to obtain an acceptable result.
Therefore, several parallel DE schemes have been proposed, most of them focused
on traditional parallel programming interfaces and infrastructures.

The aim of this paper is to investigate how parallel metaheuristics could be
handled based on the recent advances in Cloud programming models. Distributed

c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 397–408, 2017.
DOI: 10.1007/978-3-319-58943-5 32

398 D. Teijeiro et al.

frameworks like MapReduce or Spark, provide advantages such as higher-level
programming models to easily parallelize user programs, support for data dis-
tribution and processing on multiple nodes/cores, and run-time features such as
fault tolerance and load-balancing. The goal of this paper is to explore this direc-
tion further considering a parallel implementation of DE in both frameworks and
evaluating their performance in a real testbed using both a local cluster and the
Amazon Web Services (AWS) public cloud.

The organization of the paper is as follows. Section 2 presents the background
and related work. The proposed implementations of DE using both MapReduce
and Spark are described in Sect. 3. The performance of these implementations
and a comparison between them are assessed in Sect. 4. Finally, Sect. 5 concludes
the paper.

2 Background and Related Work

Since its appearance, MapReduce [5] (MR from now on) has been the distributed
programming model for processing large scale computations that has attracted
more attention. In short, MR executes in parallel several instances of a pair of
user-provided map and reduce functions over a distributed network of worker
processes driven by a single master. Executions in MR are made in batches,
using a distributed filesystem to take the input and store the output. MR has
been applied to a wide range of applications, including distributed sorting, graph
processing or machine learning. But for iterative algorithms, as those typical
in parallel metaheuristics, MR has shown serious performance bottlenecks [6]
because there is no way of reusing data or computation from previous iterations
efficiently when several of these single batches are executed inside a loop.

Spark [15] is a recent proposal designed from the very beginning to provide
efficient support for iterative algorithms. Spark provides a distributed mem-
ory abstraction denominated resilient distributed datasets (RDDs) for support-
ing fault-tolerant and efficient in-memory computations. Formally, an RDD is a
read–only fault–tolerant partitioned collection of records. RDDs are created from
other RDDs or from data in stable storage by applying coarse-grained transfor-
mations (e.g., map, filter or join) that can be pipelined to from a lineage. Once
created, RDDs are used in actions (e.g. count, collect or save) which are opera-
tions that return a value to the application or export data to a storage system.
Spark runtime is composed of a single driver program and multiple long-lived
workers that persist RDD partitions in RAM across operations. Developers write
the driver program where they define one or more RDDs and invoke actions on
them. Lineages are used to compute RDDs lazily whenever they are used in
actions or to recompute them in case of failure.

There are some proposals which investigate how to apply MR to parallelize
the DE algorithm. In [16] the Hadoop framework (the most widely used open
source implementation of MR) is used to perform in parallel the fitness evalua-
tion. However, the experimental results reveal that HDFS (Hadoop Distributed
File System) I/O and system bookkeeping overhead significantly reduces the

Evaluation of Parallel DE Implementations on MapReduce and Spark 399

benefits of the parallelization. In [13], a concurrent implementation of the DE
based on MR is proposed which was only evaluated on a multi-core CPU taking
advantage of the shared-memory architecture. In [3] a parallel implementation
of DE based clustering using MR is also proposed. This algorithm was imple-
mented in three levels, each of which consists of DE operations. To the best
of our knowledge, there is no previous work that explores the use of Spark for
parallel metaheuristics.

There are also a few references comparing MR and Spark performance for
iterative algorithms. In [15] Spark authors compare their proposal to MR (using
Hadoop) for different types of iterative algorithms on Amazon EC2. They imple-
mented two machine learning algorithms, logistic regression which is more I/O-
intensive and k-means which is more compute-intensive, and found that scaling
up to 100 nodes Spark outperformed MR from 12.3x up to 25.3x for logistic
regression and from 1.9x up to 3.2x for k-means. They also tested the well-
known PageRank algorithm finding that Spark outperformed MR by up to 7.4x,
scaling well in up to 60 nodes. In [8] performance of several distributed frame-
works including Hadoop (v.1.0.3) and Spark (v.0.8.0) were assessed in Amazon
EC2 for iterative scientific algorithms. The Partitioning Around Medoids (PAM)
clustering algorithm and the Conjugate Gradient (CG) linear system solver were
implemented for evaluation. Results show that scaling up to 32 nodes and using 3
datasets of different sizes, Spark outperformed MR from 1.3x up to 48x for PAM
and from 23x up to 99x for CG. Authors concluded that Spark results seemed
to be greatly affected by the characteristics of the benchmarking algorithms and
their dataset composition. In [11] Hadoop (v.2.4.0) and Spark (v.1.3.0) major
architectural components are thoroughly compared using a set of analytic work-
loads. Results show that, using a 4 node (32 cores, 190 GB RAM, 9x1TB disk
each) cluster with a 1GB Ethernet network, Spark outperformed MR by 5x for
k-means, linear regression and PageRank. Authors conclude that, for iterative
algorithms, caching the input as RDDs in Spark can reduce both CPU and disk
I/O overheads for subsequent iterations and that RDD caching is much more
efficient than other low-level caching approaches such as OS buffer caches, and
HDFS caching, which can only reduce disk I/O.

3 Implementing DE on MR and Spark

Differential Evolution [12] is an iterative mutation algorithm where vector dif-
ferences are used to create new candidate solutions. Starting from an initial
population matrix composed of NP D-dimensional solution vectors (individu-
als), DE attempts to achieve the optimal solution iteratively through changes in
its vectors. Algorithm 1 shows the basic pseudocode for the DE algorithm. For
each iteration, new individuals are generated in the population matrix through
operations performed among individuals of the matrix (mutation - F), with old
solutions replaced (crossover - CR) only when the fitness value of the objective
function is better than the current one. A population matrix with optimized
individuals is obtained as output of the algorithm. The best of these individuals
are selected as solution close to optimal for the objective function of the model.

400 D. Teijeiro et al.

Algorithm 1. Differential Evolution algorithm

input : A population matrix P with size D x NP
output: A matrix P whose individuals were optimized

repeat
for each element x of the P matrix do

−→a ,
−→
b ,−→c ⇐ different random individuals from P matrix

for k ⇐ 0 to D do
if random point is less than CR then−−→

Ind(k) ⇐ −→a (k) + F (
−→
b (k) - −→c (k))

end

end

if Evaluation(
−−→
Ind) is better than Evaluation(

−−−→
P (x)) then

Replace Individual(P ,
−−→
Ind)

end

end

until Stop conditions;

However, typical runtimes for many realistic problems are in the range from
hours to days due to the large number of objective function evaluations needed,
making the performance of the classical sequential DE unacceptable. In the
literature, different parallel models can be found [2] aiming to improve both
computational time and number of iterations for convergence. The master-slave
and the island-based models are the most popular. In the master-slave model
the behavior of the sequential DE is preserved by parallelizing the inner-loop
of the algorithm, where a master processor distributes computation between
the slave processors. In the island-based model the population matrix is divided
in subpopulations (islands) where the algorithm is executed isolated. Sparse
individual exchanges are performed among islands to introduce diversity into
the subpopulations, preventing search from getting stuck in local optima.

The implementation of the DE master-slave model does not fit well with the
distributed nature of programming models like MR or Spark [14]. The reason is
that when the mutation strategy is applied to each individual, random different
individuals have to be selected from the whole population. Considering that the
population would certainly be partitioned and distributed among slaves, any
solution to this problem would introduce an unfeasible communications over-
head. In the rest of this section we briefly describe our island-based parallel
implementations of the DE algorithm, which in advance seemed to be a more
promising approach, for both MR and Spark.

Algorithm 2 shows the pseudocode for the driver (the user-provided code run
by the master) of our island-based parallel implementation of the DE algorithm
using MR. The driver is responsible for randomly generating the initial popula-
tion and for evolving it repeating a loop until the termination criterion is met.

Evaluation of Parallel DE Implementations on MapReduce and Spark 401

Algorithm 2. Driver pseudocode

input : DE configuration parameters
output: A population P whose individuals were optimized

P ⇐ initial random population
#i ⇐ number of islands

repeat−−−−−→
Islands ⇐ PartitionPopulation(P , #i) // with shuffling

P ⇐ EvolveIslands(
−−−−−→
Islands) //the MR job

until Stop conditions;

Algorithm 3. Map pseudocode

inputs : An island I; DE configuration parameters
output: An island I whose individuals were optimized

repeat
I ⇐ EvolveIsland(I) // apply the DE mutation strategy

until number of evolutions;

for each individual
−−→
Ind of the island I do

Emit(Evaluation(
−−→
Ind),

−−→
Ind)

end

In each loop iteration the population is randomly partitioned into islands all
with the same number of individuals, islands are written to HDFS one file each,
a MR job for evolving the islands is configured and launched and the evolved
global population is gathered from HDFS after the MR job finished. Algorithm3
shows the pseudocode of the map functions executed in each MR job. Each map
is responsible for the evolution of exactly one island isolated from the rest dur-
ing a predefined number of evolutions, the same for all islands. The map starts
by reading the island individuals from HDFS and storing them in local memory,
then applying the DE mutation strategy taking random individuals only from its
island until the predefined number of evolutions is reached and, finally, emitting
an output record for each individual of the evolved island using its fitness value
as key. The MR job implementation is completed with a single identity reducer
which simply receives the individuals from all the islands ordered by their fitness
value and writes them to an HDFS file. Note that, as individuals are ordered by
fitness, the first record in the output file will be the best individual. To introduce
diversity a migration strategy that randomly shuffles individuals among islands
without replacement is applied by the driver during the partition of the popula-
tion in islands. This is a naive strategy intended only to evaluate the migration
overhead and not to improve the searching quality of the algorithm.

Figure 1 shows the scheme of our island-based parallel DE implementation
using Spark. In the figure, boxes with solid outlines are RDDs. Partitions are

402 D. Teijeiro et al.

Fig. 1. Spark-based island implementation of the DE algorithm.

shaded rectangles, darker if they are persisted in memory. A key-value pair RDD
has been used to represent the population where each individual is uniquely
identified by its key. The algorithm starts by distributing the random gener-
ation and initial evaluation of individuals that form the population using an
Spark map transformation, then an evolution-migration loop is repeated until
the termination criterion implemented as an Spark reduce action (a distributed
OR operation) is met and, finally, the selection of the best individual is done by
using an Spark reduce action (a distributed MIN operation). In the evolution-
migration loop every partition of the population RDD has been considered to
be an island, all with the same number of individuals. Islands evolve isolated
during a predefined number of evolutions, the same for all islands, and in order
to introduce diversity the same migration strategy as in the MR implementation
is executed after an evolution. We have developed a custom Spark partitioner
that randomly and evenly shuffles elements among partitions for implementing
the migration strategy.

It must be noted that although the migration strategy is the same for both
implementations, the overhead they add is not. In MR migration is implemented
in the driver that reads the population from HDFS, shuffles the individuals
among islands and writes back the islands to HDFS, so the overhead is mainly
caused by accessing HDFS. In Spark migration is implemented as a partitionBy
operation, so the overhead is mainly caused by communications.

4 Experimental Results

In order to evaluate and compare the island-based implementation of DE using
MR and Spark, different experiments have been carried out. Their behavior,
in terms of execution time and overhead, has been compared with the sequen-
tial implementation. Programming languages used have been Scala (v2.10) for
the sequential and Spark implementations, and Java (v1.7.0) for the MR imple-
mentation. Spark (v.1.4.1) and Hadoop (v2.7.1) frameworks were used for the
experiments.

Evaluation of Parallel DE Implementations on MapReduce and Spark 403

Two sets of benchmark problems were used: on the one hand, two problems
out of an algebraic black-box optimization testbed, the Black-Box Optimization
Benchmarking (BBOB) data set [7]: Rastringin function (f15) and Gallagher’s
Gaussian 21-hi Peaks function (f22); on the other hand, a challenging parameter
estimation problem in a dynamic model of the circadian clock in the plant Ara-
bidopsis thaliana, as presented in [9]. Table 1 shows the configurable parameters
used for the reported experiments.

Table 1. Benchmark functions. Parameters: dimension (D), population size (NP),
crossover constant (CR), mutation factor (F), mutation strategy (MSt), value-to-
reach/ftarget (VTR).

B Function D NP CR F MSt VTR

f15 Rastrigin function 5 1024 .8 .9 DE/rand/1 1000

f22 Gallagher’s Gaussian 10 1600 .8 .9 DE/rand/1 −1000

circadian Circadian model 13 640 .8 .9 DE/rand/1 1e−5

For the experimental testbed two different platforms has been used. First,
experiments were conducted in our multicore local cluster Pluton, that consists
of 16 nodes powered by two octa-core Intel Xeon E5-2660 CPUs with 64 GB of
RAM, and connected through an InfiniBand FDR network. Second, experiments
were deployed with default settings in the AWS public cloud using virtual clusters
formed by 2, 4, 8 and 16 nodes communicated by the AWS standard network
(Ethernet 1 GB). For the nodes the m3.medium instance (1 vCPU, 3.75 GB RAM,
4 GB SSD) was used. In both testbeds, each experiment was executed a number
of 10 independent runs, and the average and standard deviation of the execution
time are reported in this section. Note that, since Spark and MR programs run
on the Java Virtual Machine (JVM), usual precautions (i.e. warm-up phase,
effect of garbage collection) have been taken into account to avoid distortions
on the measures.

Comparing the sequential and the parallel metaheuristics is not an easy task,
therefore, guidance of [1,7] has been followed when analyzing the results of these
experiments. Since the parallel strategy followed is the same in both MR and
Spark implementations, the best way to fairly compare the performance of both
implementations is to stop at a predefined effort, that is, for a vertical view.
Results obtained in the local cluster Pluton and in the AWS public cloud, both
in terms of execution times and speedups, are shown in Fig. 2 using a prede-
fined number of evaluations as stopping criterion. All the experiments execute
two iterations of the algorithm (each iteration corresponding to an evolution-
migration). To assess the scalability up to 16 islands have been used for the
parallel implementations. We do not use more than 16 islands due to the small
population size in this benchmarks. As it can be seen, the Spark implementation
achieves good results, both in time and speedup, versus the sequential algo-
rithm, and a good scalability when the number of islands grows. However, the

404 D. Teijeiro et al.

MR implementation presents poorer results, specially for f15, the shortest of the
two benchmarks, because it introduces a high overhead. Note that the execution
times are larger in AWS than in cluster Pluton, even for sequential executions.
Virtualization overhead, use of non-dedicated resources in a multi-tenant plat-
form, and differences in node characteristics can explain these results. Even so,
the Spark implementation achieves good results in terms of speedup versus the
sequential implementation in AWS. However, the MR implementation presents
even poorer results than in the experiments carried out in the local cluster.

Fig. 2. Execution time and speedup results comparing MR vs Spark implementation in
cluster Pluton and the AWS public cloud. Stopping criterion: Nevalsf15 = 1, 025, 024
and Nevalsf22 = 3, 200, 000.

To evaluate the overhead introduced by MR and Spark we have used modified
versions of our implementations in which the evolution of the population was
removed. Each modified implementation was executed for a total of 8 evolution-
migration iterations and the overhead of each iteration was measured separately
in order to assess differences between them. Figure 3 shows the results obtained.
The first iteration in the Spark implementation is always the most time con-
suming (it corresponds to the outliers in the box plots), being the mean of the
experiments 0.050 ± 0.009 s in the local cluster. However, the rest of the iter-
ations present even lower overhead and lower dispersion in the results, being
the mean overhead of each iteration of 0.023 ± 0.004 s. In the case of MR there
is no significant difference between iterations, and the figures clearly indicate a
higher overhead and large dispersion in the results, being the mean overhead of
each iteration 17.95 ± 2.50 s in Pluton. This explains why, in Fig. 2, execution
times of MR implementation stagnate around 40 s (close to the overhead of the
two iterations) when the number of cores grows. The experiment confirms that
Spark has lower overhead and better support for iterative algorithms than MR.

Figure 3 shows also that, both for MR and Spark, the overhead in AWS is
larger than in the local cluster. The first iteration in Spark is again the most
time consuming, being the mean of the experiments of 0.26 ± 0.12 s. However,

Evaluation of Parallel DE Implementations on MapReduce and Spark 405

Fig. 3. Box plot of the overhead times per evolution-migration iteration in MR and
Spark.

the rest of the iterations present low overheads, being the mean overhead of
each iteration of 0.09 ± 0.04 s. Also, it must be noted that the Spark overhead
slightly increases when the number of nodes grows, which is in tune with what
was expected. Results in the local cluster does not clearly show this increase, but
it should be noted that differences are very small and we are shuffling very few
data among a small number of physically close nodes using a high-throughput
and low-latency InfiniBand network.

In the case of MR there is again no significant difference between the first
and the subsequent iterations, but overheads are higher than in the local cluster,
being the mean overhead for each iteration of 51.03 ± 5.07 s. In addition to the
overhead due to the virtualization and the differences in node characteristics,
these results could be explained by the use of HDFS with Amazon EBS volumes
which are mounted over a non-dedicated 1GB Ethernet network. These boxplots
also show that the variability in the MR overhead between independent experi-
ments is much more noticeable in AWS. For instance, experiments with 2, 4, 8
and 16 nodes were performed at different moments and, although they obtain
similar mean overhead, the standard deviation is significantly different.

406 D. Teijeiro et al.

Previous results explain why Spark outperforms MR for short execution
benchmarks. In order to honestly evaluate the performance in long real applica-
tions, we have considered a parameter estimation problem, the circadian bench-
mark, and we have used as stopping criterion a value-to-reach to assess the
performance form an horizontal view. Figure 4 shows a bean plot that allows
for an easy comparison of the execution times obtained using the MR and the
Spark implementations in the local cluster. Note that not only the execution
time is larger for the MR implementation but also the dispersion of the results
obtained is bigger. Figure 4 also shows the speedup achieved. The improvement
of the parallel versions against the sequential one is due both to the distribution
of computations among the workers, and to the effectiveness of the parallel algo-
rithm, since the diversity introduced by the migration phase actually reduces
the number of evaluations required for convergence. The harder the problem is,
the more improvement is achieved by the parallel algorithm. Thus, for the circa-
dian benchmark, when using Spark, superlinear speedups are obtained. The MR
implementation also achieves a reduction in the number of evaluations required
when the number of islands grows, however, the overhead introduced by MR
restrain it from attaining such speedups.

It must be noted that for problems with long execution times where the
iteration selectivity (as defined in [11]) is very low, like it is the case for the DE
algorithm, MR is favoured because the overhead accessing HDFS is very small.
For long-execution applications, such as the circadian benchmark, where the
computation time dominates the overhead introduced by the iterations in MR,
MR is competitive with Spark, though the latter still presents better scalability,
since increasing the number of resources decreases the computation time but, as
we have seen, the overhead does not decrease.

Fig. 4. Circadian benchmark. Comparing MR vs Spark implementation in cluster
Pluton: bean plots of the execution time and speedup results vs the sequential imple-
mentation in Scala.

Evaluation of Parallel DE Implementations on MapReduce and Spark 407

Finally, although it is not the aim of this work, we have performed several
preliminary tests to assess how competitive the Spark parallel implementation
can be with respect to traditional HPC solutions. The same previous experi-
ments were carried out with the implementation of the asynchronous parallel
DE described in [10]. This implementation is coded in C and uses the OpenMPI
library. Directly comparing the execution times of both implementations is not
fair, since the implemented algorithms are not the same: (i) the MPI implemen-
tation includes some heuristics to improve the convergence rate of the DE, and
(ii) the migration strategy is not the same in both algorithms. Thus, we have
estimated the execution time per evaluation such as Teval = Ttotal/Nevals. Note
that this estimated Teval includes not only the CPU time for the evaluation itself
but also the communication time and other overheads introduced by the algo-
rithm implementation. We encountered that execution time per evaluation of the
Spark implementation was between 2.24x and 2.57x the execution time per eval-
uation of the MPI implementation. It must be noted that, as already available
implementations in C/C++ and/or FORTRAN existed for all the benchmarks,
we have wrapped them in our code by using Java/Scala native interfaces (i.e.
JNI, JNA, SNA). Further studies to determine a more accurate interpretation
of this overhead are left for future work.

5 Conclusions

In order to explore how parallel metaheuristics could take advantage of the
recent advances in Cloud programming models, in this paper MR and Spark
island-based implementations of the DE algorithm are proposed and evaluated.
The performance evaluation of both implementations was conducted on a local
cluster and on the AWS public cloud. Both synthetic and real biology-inspired
benchmarks were used for the testbed.

The experimental results show that MR has significant higher overhead per
iteration than Spark mainly caused by longer task initialization times and HDFS
access, and that Spark has best support for iterative algorithms as it reduces
the overhead between the first and subsequent iterations. For short benchmarks
Spark clearly outperforms MR, which speedup is limited by its overhead. For
long running benchmarks, in which computation time prevails over iteration
overhead, MR is competitive with Spark. In addition, MR would be favoured
by algorithms with low iteration selectivity (i.e. small population size) like DE,
but on the contrary, it would be harmed by algorithms with short iterations and
higher iteration selectivity.

Acknowledgements. Financial support from the Spanish Government (and the
FEDER) through the projects DPI2014-55276-C5-2-R, TIN2013-42148-P, and from
the Galician Government under the Consolidation Program of Competitive Research
Units (Network Ref. R2014/041 and Project Ref. GRC2013/055) cofunded by FEDER
funds of the EU.

408 D. Teijeiro et al.

References

1. Alba, E., Luque, G.: Evaluation of parallel metaheuristics. In: PPSN-EMAA 2006,
pp. 9–14. Reykjavik, Iceland, September 2006

2. Alba, E., Luque, G., Nesmachnow, S.: Parallel metaheuristics: recent advances and
new trends. Int. Trans. Oper. Res. 20(1), 1–48 (2013)

3. Daoudi, M., Hamena, S., Benmounah, Z., Batouche, M.: Parallel differential evo-
lution clustering algorithm based on MapReduce. In: 6th International Conference
of Soft Computing and Pattern Recognition (SoCPaR), pp. 337–341. IEEE (2014)

4. Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art.
IEEE Trans. Evol. Comput. 15(1), 4–31 (2011)

5. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
In: The 6th USENIX Symposium on Operating Systems Design and Implementa-
tion (2004)

6. Ekanayake, J., Li, H., Zhang, B., Gunarathne, T., Bae, S.H., Qiu, J., Fox, G.:
Twister: a runtime for iterative MapReduce. In: The First International Workshop
on MapReduce and its Applications (2010)

7. Hansen, N., Auger, A., Finck, S., Ros, R.: Real-parameter black-box optimization
benchmarking 2009: experimental setup. Technical report, RR-6828, INRIA (2009)

8. Jakovits, P., Srirama, S.N.: Evaluating MapReduce frameworks for iterative sci-
entific computing applications. In: International Conference on High Performance
Computing & Simulation, HPCS 2014. IEEE (2014). http://ieeexplore.ieee.org/
xpl/articleDetails.jsp?arnumber=6903690

9. Locke, J., Millar, A., Turner, M.: Modelling genetic networks with noisy and varied
experimental data: the circadian clock in Arabidopsis thaliana. J. Theor. Biol.
234(3), 383–393 (2005)

10. Penas, D.R., Banga, J.R., González, P., Doallo, R.: Enhanced parallel differen-
tial evolution algorithm for problems in computational systems biology. Appl.
Soft Comput. 33, 86–99 (2015). http://www.sciencedirect.com/science/article/
pii/S1568494615002525

11. Shi, J., Qiu, Y., Minhas, U.F., Jiao, L., Wang, C., Reinwald, B., Özcan, F.: Clash
of the titans: MapReduce vs. spark for large scale data analytics. In: Proceedings
of the Very Large Data Bases (VLDB) Endowment, vol. 8, pp. 2110–2121 (2015)

12. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for
global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

13. Tagawa, K., Ishimizu, T.: Concurrent differential evolution based on MapReduce.
Int. J. Comput. 4(4), 161–168 (2010)

14. Teijeiro, D., Pardo, X.C., González, P., Banga, J.R., Doallo, R.: Implementing
parallel differential evolution on spark. In: Squillero, G., Burelli, P. (eds.) EvoAp-
plications 2016. LNCS, vol. 9598, pp. 75–90. Springer, Cham (2016). doi:10.1007/
978-3-319-31153-1 6

15. Zaharia, M., et al.: Resilient distributed datasets: a fault-tolerant abstraction for
in-memory cluster computing. In: The 9th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2012 (2012)

16. Zhou, C.: Fast parallelization of differential evolution algorithm using MapReduce.
In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Com-
putation, pp. 1113–1114. ACM (2010)

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6903690
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6903690
http://www.sciencedirect.com/science/article/pii/S1568494615002525
http://www.sciencedirect.com/science/article/pii/S1568494615002525
http://dx.doi.org/10.1007/978-3-319-31153-1_6
http://dx.doi.org/10.1007/978-3-319-31153-1_6

Performance Analysis and Optimization
of SAMtools Sorting

Nathan T. Weeks1,2(B) and Glenn R. Luecke2

1 Department of Computer Science, Iowa State University, Ames, USA
2 Department of Mathematics, Iowa State University, Ames, USA

weeks@iastate.edu

Abstract. SAMtools is a suite of tools that is widely-used in genomics
workflows for post-processing sequence alignment data from large high-
throughput sequencing data sets. A common use of SAMtools is to sort
the standard Binary Alignment/Map (BAM) format emitted by many
sequence aligners. This can be computationally- and I/O-intensive: BAM
files can be many gigabytes in size, and may need to be decompressed
before sorting and compressed afterwards. As a result, BAM-file sorting
can be a bottleneck in genomics workflows. This paper presents a case
study on the performance characterization and optimization of BAM
sorting with SAMtools. OpenMP task parallelism to enhance concur-
rency and memory optimization techniques were employed in both SAM-
tools and the underlying library HTSlib. Utilizing all 32 processor cores
on the benchmark system, the optimizations resulted in a speedup of
3.92X for an in-memory sort of 24.6 GiB of BAM data (102.6 GiB uncom-
pressed), while a 1.55X speedup was achieved for an out-of-core sort.

Keywords: Bioinformatics · High-throughput sequencing · OpenMP

1 Introduction

The rapid decline in DNA sequencing costs has outpaced the growth in transistor
density from Moore’s Law since 2007 [9]. The resulting increase in genomics data
generation is predicted to potentially dwarf Twitter, YouTube, and astrophysics
data combined by the year 2025 [7]. Furthermore, application performance has
generally not even kept pace with Moore’s Law, as many applications are ill-
equipped to express the parallelism needed to utilize the extra performance
potential. As a result, storing, processing, and analyzing genomics data have
already become problematic for many institutions. Improvements in algorithms,
computing hardware, and storage technology are needed to prevent this trend
from worsening.

Most genomics data being generated is high-throughput sequencing (HTS)
comprising numerous, relatively-short sequencing reads. HTS is commonly
aligned against a reference sequence, typically resulting in sequence alignment
data in the standard text-based Sequence Alignment/Map (SAM) format; its

c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 409–420, 2017.
DOI: 10.1007/978-3-319-58943-5 33

410 N.T. Weeks and G.R. Luecke

binary analog, the Binary Alignment/Map (BAM) format; or the relatively-
recent CRAM format. These formats can be consumed by a number of bioinfor-
matic tools for downstream analysis.

SAMtools is a utility for working with sequence alignment data in the
SAM, BAM, and CRAM formats [5]. SAMtools supports operations such
as sorting, merging sorted files, indexing, selecting subsets of records, com-
pressing, and reporting various statistics. SAMtools makes use of the code-
veloped HTSlib library for reading, parsing, and compressing/decompressing
SAM/BAM/CRAM data. As SAMtools and HTSlib are developed in lockstep
with the SAM/BAM/CRAM specifications, they are considered to be the ref-
erence implementations among software tools/libraries that work with these
formats.

While SAMtools is partially parallelized using the pthreads API, this imple-
mentation is inefficient in some cases (as illustrated by performance profil-
ing of SAMtools 1.3 in Sect. 3 compared with in performance profiling post-
optimization in Sect. 4), and there are other parts of the code that could benefit
from multithreading. Performance optimization of this foundational tool could
benefit many genomics workflows and many users.

The rest of this paper is organized as follows. Section 2 describes other
attempts to improve the performance of SAMtools, as well as other software
that exists with the explicit goal of implementing performance-critical SAMtools
functionality more efficiently. Section 3 characterizes the performance of a SAM-
tools sort workflow, and identifies performance bottlenecks. Section 4 describes
the various categories of optimizations implemented in this work to address the
performance bottlenecks identified in Sect. 3. The impact of the performance
optimizations on a benchmark data set is analyzed in Sect. 5. Section 6 lists
additional opportunities for performance optimization. Section 7 discusses the
significance of this work in the context of other work that has been done to
address the performance limitations of SAMtools.

2 Related Work

SAMtools uses the HTSlib library for SAM/BAM/CRAM I/O. HTSlib supports
multi-threaded reading/writing of CRAM data using a custom pthreads-based
thread pool (originally adapted from the Scramble [2] I/O library). Though
HTSlib supports multi-threaded BAM compression/output, it supports only
single-threaded BAM decompression/input. While it should be feasible to extend
HTSlib to accommodate concurrent compression/output of BAM data using the
method implemented by Scramble, this paper presents an alternative approach
using OpenMP, a high-level API for shared-memory parallel programming that
is widely supported by most C, C++, and Fortran compilers.

Other software projects exist with the explicit goal of providing better perfor-
mance over SAMtools for performance-critical tasks. Sambamba [8] is intended
to be a high-performance replacement for a subset of the SAMtools functionality

Performance Analysis and Optimization of SAMtools Sorting 411

(including BAM sorting, the focus of this paper). Written in the D programming
language with parallelism as explicit design goal, Sambamba aims to exploit
multi-core CPUs better than SAMtools.

elPrep [4] is a multi-threaded Lisp application that focuses on high-
performance, in-memory execution of a subset of SAMtools functionality use-
ful for preparing SAM/BAM/CRAM data for variant calling. elPrep has large
memory requirements for sorting, however: the elPrep 2.4 documentation states
“As a rule of thumb, elPrep requires 6x times more RAM memory than the size
of the input file in .sam format when it is used for sorting”. In contrast, the
BAM data set described in Sect. 3, which is ∼85.5 GiB when converted to SAM,
is sorted in-memory by SAMtools on the 128 GiB-memory compute node. elPrep
uses SAMtools internally for reading and writing BAM files, and so could benefit
from the decompression and compression optimizations to SAMtools described
herein.

DNANexus has submitted a patch to SAMtools that improves concurrency
in the BGZF compression/writing code1 (this paper describes a different method
in Sect. 4), as well a fork that leverages RocksDB for improved sorting/merg-
ing performance2. Neither of these contributions have been accepted into the
SAMtools code base.

Intel- and CloudFlare-optimized versions of the zlib compression library have
been shown to improve compression performance in SAMtools3.

3 Performance Profiling

A single compute node of the NERSC Cori (phase 1/Data Partition) super-
computer was used for performance profiling and benchmarking. Each compute
node contains two 16-core 2.3 GHz Intel “Haswell” Xeon processors (with each
processor core supporting two hardware threads), and 128 GiB 2133 MHz DDR4
memory. While there is no local storage on a compute node, a high-speed Aries
interconnection network provides a fast path to a Lustre parallel file system
capable of >700 GB/s aggregate bandwidth. Using the dd command with a
4 MiB block size (optimal per st blksize from the stat() system call) to test
single-threaded read performance on the data set described below resulted in a
throughput of over 500 MiB/s.

SAMtools 1.3 and HTSlib 1.3 were compiled with the gcc 5.2.0 compiler4

using the default compiler options specified in the SAMtools/HTSlib makefile,
with the exception of using the Cray compiler driver to invoke gcc, overridden
to use dynamic linking (cc -dynamic).

1 https://github.com/samtools/htslib/pull/51.
2 http://devblog.dnanexus.com/faster-bam-sorting-with-samtools-and-rocksdb/.
3 http://www.htslib.org/benchmarks/zlib.html.
4 The Intel 16.0.2 compiler was initially used, but due to a potential compiler bug

affecting subsequently-implemented OpenMP-based optimizations, the gcc compiler
was used for the benchmarking described in this paper.

https://github.com/samtools/htslib/pull/51
http://devblog.dnanexus.com/faster-bam-sorting-with-samtools-and-rocksdb/
http://www.htslib.org/benchmarks/zlib.html

412 N.T. Weeks and G.R. Luecke

SAMtools was benchmarked with the 19.9 GiB (102.6 GiB uncompressed)
BAM for individual HG00109 from the 1000 Genomes Project [3]. As this BAM
file was already sorted by position, it was first sorted by query name to “shuffle”
it. The resulting BAM had a considerably worse compression ratio: the file size
increased to 24.6 GiB.

SAMtools was run with 32 threads under two scenarios:

1. Out-of-core: the default memory per thread (768MiB) results in sublists
sorted in-memory, then written to disk for an out-of-core merge at the end.

2. In-memory: using 3664MiB per thread is enough to store and sort the entire
uncompressed BAM data set in memory.

HPCToolkit 5.4.2 [1] was used to generate a profile trace for the in-memory
sort (Fig. 1). This profile revealed that program execution (∼16 min) is divided
into four main phases, in which (1) the compressed BAM data is read and
decompressed (∼35% run time), (2) the BAM records are sorted by a single
thread (∼24% run time), (3) the sorted BAM is compressed and written to disk
(∼25% run time), and (4) data structures allocated during program execution
are deallocated (∼16% run time). Only the compress/write phase is performed
by multiple threads.

Fig. 1. HPCToolkit performance summary of SAMtools 1.3 for a sort (16 threads) of
HG00109 BAM alignment data (102.6 GiB uncompressed). This represents the number
of threads that are in a particular procedure at a given time. The white area indi-
cates that only one thread is active in three of the four phases. In the compress/write
phase, the magenta area represents the compression routine (bgzf compress()),
while the green area phase represents idle threads waiting on a condition variable
(pthread cond wait()). (Color figure online)

The out-of-core sort cycles between phases 1–3 until all input has been
processed. Unlike the in-memory sort, the sort phase for the out-of-core sort
is multi-threaded, where each thread sorts a separate sublist of BAM records
and writes its sublist to disk. Finally, the on-disk sorted BAM files are merged
and written to a single sorted BAM file.

The run time of the out-of-core sort (∼15 min) is actually less than the run
time of the in-memory sort. This is due to reductions in run time from added

Performance Analysis and Optimization of SAMtools Sorting 413

parallelism in the sort phase (∼6% of the run time is spent sorting sublists and
writing to temporary files), and in the time spent freeing dynamically-allocated
memory associated with BAM data (<3%). The additional I/O overhead from
writing the sorted sublists to disk and reading them in again during the final
merge did not outweigh the benefit of the parallel sort, at least in part because of
the high-bandwidth of the underlying Lustre parallel file system. A conventional
(non-parallel) file system might not handle I/O from multiple data streams so
effectively.

As a result of performance profiling, a goal was formulated to optimize the
performance of each of the four phases of the in-memory sort, with the recog-
nition that many of the optimizations would also benefit the out-of-core sort.
These optimizations are described in the next section.

4 Optimizations

Read/Decompress. The HTSlib routines for reading BGZF-compressed BAM
data are sequential. While reading an input stream is inherently sequential, in
this case the input stream consists of compressed BGZF5 blocks that can be
decompressed independently.

Previously there was an effort to parallelize the decompression of the input
BGZF blocks6. In this approach, the master thread reads the input data stream,
assigning a fixed number of BGZF blocks to each worker thread, while the worker
threads wait on a condition variable. When all input buffers have been filled, the
master thread executes pthread cond broadcast() to start the worker threads.
Each worker thread inflates each assigned compressed BGZF block into a tempo-
rary buffer before copying it into the origin buffer, overwriting the compressed
BGZF block. When all worker threads are complete, the master thread adds
each buffer pointer to a hash-based cache, allocates new buffers, and repeats
the process on new input data. A drawback of this approach is that it limits
concurrency: worker threads are idle while the master thread reads input data
into the workers’ input buffers.

Using the previous effort as a guide for safely adding concurrency to the rele-
vant HTSlib routines, the code was modified so that the master thread generates
OpenMP tasks to decompress BGZF blocks as they are read. The next consid-
eration was how many BGZF blocks should be decompressed by each task. A
finer level of granularity (i.e., fewer BGZF blocks per task) would improve load
balancing, while a coarser level of granularity (coalescing more adjacent BGZF
blocks into a single payload for each task) would reduce synchronization over-
head. A microbenchmark was constructed to approximate task creation overhead
from the time elapsed between the last statement before and the first statement

5 Each BGZF block is effectively a gzip file of size ≤64K (compressed or uncom-
pressed), with a user-defined field in the gzip header used to represent the length of
the BGZF block. The BGZF file format is described in more detail in the SAM/BAM
specification.

6 https://github.com/smowton/htslib/compare/parallel read.

https://github.com/smowton/htslib/compare/parallel_read

414 N.T. Weeks and G.R. Luecke

inside the OpenMP task construct. With 505,455 tasks (the number of BGZF
blocks in the HG00109 BAM file) and a 64 KiB OpenMP firstprivate pay-
load (the maximum size of a BGZF block) per task, the aggregate task creation
overhead for all 32 threads less than 4 s—an average of less than 1

8 of a second
per thread. This indicated that the fine-grained approach of one BGZF block
per task would facilitate load balancing without introducing significant synchro-
nization overhead. To eliminate a memcpy() for each BGZF block, a new target
buffer is dynamically allocated, and a pointer to this buffer is cached.

Memory Allocation. Profiling revealed that a significant fraction (∼4%) of
the run time for the in-memory SAMtools 1.3 sort was due to a single line of code
that allocated an array to store the variable-length data for each BAM record.
In the benchmark data set, this meant almost 207 million calls to realloc()
(each of which was subsequently paired with a corresponding free() upon data
structure deallocation).

The original data structure used to represent a single BAM record is listed
in Fig. 2.

Fig. 2. The original SAMtools represented each BAM record as a dynamically-allocated
bam1 t struct, each containing a dynamically-allocated data member. The length of
each BAM record is stored in the l data member. An array of pointers (buf[]) to the
BAM records is sorted during the BAM sort.

This memory allocation overhead was addressed by allocating a single, con-
tiguous array of approximately the maximum memory size requested by the user,
as well as an ancillary array of pointers of type bam1 t into this array to indi-
cate the start of each BAM record. Each subsequent BAM record starts at the
address of the previous BAM record + l data, rounded up to the nearest 8-byte
boundary to ensure proper memory alignment of all structure members.

To accomplish the partitioning of the contiguous memory region into an
array of variable-length structs, a flexible array member (fam[]) was added to
bam1 t (Fig. 3). For backwards compatibility with other HTSlib code, the data
member was retained, pointing to fam[]. Reworking the HTSlib code to remove
the dependence on the data member could save 8 bytes per bam t BAM record
(the flexible array member is not a pointer, and consumes no storage beyond the
data contained in the array).

Performance Analysis and Optimization of SAMtools Sorting 415

Fig. 3. The use of a flexible array member (fam[]) for variable-length data allows
BAM records to be stored consecutively in a contiguous memory region. The array of
pointers (buf[]) points to the beginning of each (8-byte aligned) bam1 t record in the
array. For backwards compatibility, the data member points to fam.

Sort. In SAMtools 1.3, if the input BAM records do not fit within the user-
specified memory limit, then the BAM records in memory are partitioned into
N sublists, where N is the number of threads. Each thread sorts its sublist,
then writes it to a separate temporary BAM file. After all input data has been
processed in this manner, the master thread merges the sorted temporary BAM
files to produce a single sorted output stream.

A shortcoming with the SAMtools 1.3 implementation is that if the BAM
input fits within the user-specified memory limit, then the sort will be performed
by only a single thread. To address this issue, the merge sort was implemented
on the entire in-memory array of BAM records, which dramatically reduced
the amount of time spent in the sort phase. However, it was recognized much
of the sort phase could be overlapped with the read/decompression phase to
make use of the spare computational capacity. This idea was implemented by
creating a sort task after reading/decompressing every 220 BAM records (an
empirically-chosen value). For the benchmark data set, this approach resulted
in more sublists to merge (in-memory), but the result was still faster than the
previous approach.

An additional I/O optimization was implemented for the out-of-core sort.
Instead of writing each in-memory sorted sublist to a separate file, the sorted
sublists are merged while writing to a single file. This reduces both the number of
temporary BAM files that must be written and subsequently merged, potentially
improving performance on storage systems that benefit from fewer, larger I/O
streams.

416 N.T. Weeks and G.R. Luecke

Compress/Write. SAMtools 1.3 supports multi-threaded compression of out-
put BAM records. However, as with the experimental pthreads read/decompress
code, a condition variable is used in a manner that limits concurrency. The mas-
ter thread fills per-worker-thread input buffers with “work” (by default, 256
up-to-64KiB blocks of uncompressed BAM records) while all worker threads
are blocked on a condition variable. Once the buffer for each worker has been
filled, the master thread then issues a pthread cond broadcast() to unblock
the worker threads. Each worker thread compresses a block of BAM records into
a temporary buffer, then copies it back to the original buffer, overwriting the
uncompressed block. After all worker threads are done, the master thread out-
puts all compressed BGZF blocks (during which time worker threads are idle),
and repeats the process with the next subset of the sorted BAM data.

To increase concurrency (and thus CPU utilization) during this process, the
limited-concurrency pthreads code was refactored to use OpenMP tasks, with
each task both compressing a contiguous list of 256 up-to-64KiB blocks of BAM
records, as well as writing the compressed BGZF blocks in input order (see
Listing 1.1). To reduce latency, after compressing its blocks, the thread execut-
ing the task spins until its turn to write the output (effectively implementing
a ticket lock [6]). Because OpenMP atomic directives are effectively used for
synchronization, an OpenMP flush directive must be used before and after
the routine that writes the compressed BGZF blocks to ensure memory consis-
tency between threads of any referenced shared data structures. Alternatively,
compilers supporting OpenMP 4.0 or newer could specify the seq cst clause to
the atomic directive, which makes the atomic construct sequentially consistent
(implying the flush).

Listing 1.1. Conceptual routine invoked by the master thread to concurrently BGZF
compress ≤64 KiB blocks of BAM records and serialize output in input order

void compress and output (BAM ∗ master thread) {
char b locks [SIZEOF BLOCK∗NUM BLOCKS PER TASK] ;
stat ic u in t 64 t now serv ing shared = 0 ;
memcpy(blocks , master thread−>blocks , s izeof (b locks)) ;
u i n t 64 t my t icket = master thread−>t i c k e t++;
#pragma omp task f i r s t p r i v a t e (blocks , my t icket)
{ u in t 64 t now se rv ing pr i va t e ;

compress (b locks) ; // concurrent wi th o ther t a s k s
do { // wai t u n t i l t h i s t a s k ’ s turn to output

#pragma omp atomic read
now se rv ing pr i va t e = now serv ing shared ;

} while (now se rv ing pr i va t e != my t icket) ;
#pragma omp f l u s h
output (b locks) ; // s e r i a l i z e d
#pragma omp f l u s h
#pragma omp atomic update
now serv ing shared++; // l e t the next t a s k output

} }

Performance Analysis and Optimization of SAMtools Sorting 417

The task generation is continuous until input (uncompressed blocks) has been
exhausted.

Memory Deallocation. Approximately 16% of the 32-thread in-memory
SAMtools 1.3 sort runtime was spent deallocating over 100 GiB of dynamically-
allocated memory comprising approximately 207 million BAM records. This
required two calls to free() for each BAM record: one for the (fixed-size) bam1 t
data structure, and one for the variable-length data member. As this was done
at the end of execution, an initial workaround to avoid this excessive memory
deallocation overhead was to not explicitly free the memory, instead allowing the
operating system to reclaim allocated memory upon process termination. How-
ever, storing the BAM records in a single contiguous memory region (allocated
with a single malloc(), and deallocated with a single free()) as described in
the Memory Allocation subsection obviated the need for this workaround.

5 Benchmark Results

The benchmark hardware/software environment and data set are described in
Sect. 3. Minor optimizations to avoid the overhead of dynamic memory alloca-
tion with multiple threads were implemented in several places using automatic
variables on the stack. To accommodate the extra per-thread stack usage, the
OMP STACKSIZE environment variable was set to 64M. Approximately 112 GiB
total, divided by the number of threads, was specified for the per-thread memory
argument to the samtools sort command to allow the in-memory sort.

Both the original SAMtools 1.3 and SAMtools with the optimizations
described in Sect. 4 were used to perform samtools sort on the benchmark
data set with 1, 2, 4, 8, 16, 32, and 64 threads. The 64-thread run utilized both
hardware threads in each core (HyperThreading).

Single-threaded performance was similar for both SAMtools 1.3 and the opti-
mized SAMtools. Moving to two threads activated different code paths in each
code base, and resulted in a performance regression in the optimized SAM-
tools. The reason for this regression may be due to a combination of overhead
associated with creating OpenMP tasks, and lack of work stealing in the GNU
OpenMP runtime, leading to load imbalance with one dedicated task “producer”
and one dedicated “consumer”. With ≥4 threads, the optimized SAMtools per-
formed between 29% and 73% faster than the SAMtools 1.3. The performance of
the optimized SAMtools was slightly slower with HyperThreading (64 threads,
or 2 threads per core) than without (32 threads), whereas the performance of
the original SAMtools was slightly better with HyperThreading than without.

For the in-memory sort, the optimized SAMtools saw a modest single-
threaded performance boost (7%) over the SAMtools 1.3, likely due to the
memory optimizations described in Sect. 4. As with the out-of-core sort, the
performance of the optimized SAMtools with 2 threads was worse than SAM-
tools 1.3. With more than 2 threads, the optimized SAMtools demonstrated
significant speedups: 1.58X at 4 threads, 2.41X at 8 threads, 3.6X at 16 threads,

418 N.T. Weeks and G.R. Luecke

3.92X at 32 threads, and 3.49X at 64 threads. Performance at 32 threads was not
substantially better than performance at 16 threads, as the extra computational
capacity was mostly idle (Fig. 5). Profiling with 32 threads (Fig. 5) revealed that
code for performing the N-way merge of sorted sublists using a heap data struc-
ture became a bottleneck (∼15% of total thread 0 run time). Thus, thread 0 could
not generate sorted blocks for the merge/compress/write tasks fast enough to
keep the remaining threads busy.

The profiled times for the in-memory sort (Figs. 4 and 5) exclude 30–35 s
after the call to exit(). The timings in Fig. 6 time the SLURM srun command,
and thus include this time not counted by HPCToolkit. Subsequent testing with
a microbenchmark that allocated a large amount of memory indicated that the
extra time was likely due to operating system overhead (e.g., freeing large page
tables). Specifying huge pages (via the cray-hugepages2M environment module)
at compile time reduced the time to process termination on the microbenchmark;
however, a libhugetlbfs error occurred at run time when this was attempted
with samtools on the HG00109 data set.

Interestingly, there wasn’t a substantial performance difference between the
in-memory and out-of-core sorts for SAMtools 1.3 with ≥8 threads, indicating
that the added parallelism in the sort phase in the out-of-core version compen-
sated for the extra I/O. As mentioned previously, this is due to the reduction in

Fig. 4. HPCToolkit performance summary of the optimized SAMtools for the in-
memory sort (16 threads). The green area represents overall time among all threads
spent “idle” (waiting in gomp barrier wait end()). In the merge/compress/write
phase, the magenta area indicates that most of the time is spent in the compression
routine. (Color figure online)

Fig. 5. HPCToolkit performance summary of the optimized SAMtools for the in-
memory sort with 32 threads. Unlike with 16 threads, there is noticeable thread idle
time (green area) in the merge/compress/write phase. (Color figure online)

Performance Analysis and Optimization of SAMtools Sorting 419

Fig. 6. Runtimes in seconds of SAMtools sort on HG00109 BAM for SAMtools 1.3
(labeled “orig”) and the optimized SAMtools (labeled “opt”). The average of 3 timings
for each thread count is reported.

time spent deallocating data structures and added parallelism in the sort phase,
with the cost of extra I/O to temporary files offset by the large amount of I/O
bandwidth afforded by the Lustre parallel file system.

6 Future Work

A dedicated read-ahead thread could improve concurrency and allow greater
processor utilization while reading/decompressing sequentially-read BAM files.
Similarly, a dedicated writer thread with a work queue could reduce busy-waiting
and thus improve concurrency while compressing/writing BAM data.

The out-of-core sort implementation requires all sorted BAM sublists to be
written to disk before the final merge. A more efficient approach would be to
allow as much data as possible to remain in memory.

7 Conclusions

As an important component in many HTS pipelines, SAMtools processes large
amounts of HTS data every day worldwide. Therefore, improvements to this
fundamental tool have the potential to positively affect a vast audience. In par-
ticular, performance improvements collectively reduce time to solution for many

420 N.T. Weeks and G.R. Luecke

scientific workflows in diverse life sciences fields such as agriculture, oncology,
pathology, and pharmacology.

This work significantly enhanced the performance of SAMtools for sorting
BAM data, both in-memory (3.92X speedup 32-threads) and out-of-core (1.55X
speedup with 32 threads). This may obviate the need to use alternative tools
that are more performant than the original SAMtools for this task. Although
not analyzed in this paper, many of the implemented performance improvements
should benefit other SAMtools functionality (including in-memory CRAM sort-
ing) and applications that utilize HTSlib (e.g., bgzip).

Leveraging OpenMP’s high-level task parallelism proved to have a number
of advantages over the existing pthreads-based implementation. Besides offering
additional opportunities for concurrency, the use of OpenMP enhanced code
conciseness and clarity, which should facilitate maintainability.

Acknowledgment. The authors thank Marina Kraeva for her careful proofreading
of the manuscript.

This research used resources of the National Energy Research Scientific Computing
Center, a DOE Office of Science User Facility supported by the Office of Science of the
U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

References

1. Adhianto, L., Banerjee, S., Fagan, M., Krentel, M., Marin, G., Mellor-Crummey, J.,
Tallent, N.R.: HPCToolkit: tools for performance analysis of optimized
parallel programs. Concurr. Comput.: Pract. Exp. 22(6), 685–701 (2010).
http://dx.doi.org/10.1002/cpe.1553

2. Bonfield, J.K.: The scramble conversion tool. Bioinformatics 30(19), 2818–2819
(2014). http://bioinformatics.oxfordjournals.org/content/30/19/2818.abstract

3. 1000 Genomes Project Consortium, et al.: A global reference for human genetic
variation. Nature 526(7571), 68–74 (2015)

4. Herzeel, C., Costanza, P., Decap, D., Fostier, J., Reumers, J.: elPrep: high-
performance preparation of sequence alignment/map files for variant calling. PLoS
ONE 10(7), 1–16 (2015). http://dx.doi.org/10.1371/journal.pone.0132868

5. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G.,
Abecasis, G., Durbin, R., Subgroup, G.: The sequence alignment/map format and
SAMtools. Bioinformatics 25(16), 2078–2079 (2009). http://bioinformatics.oxford
journals.org/content/25/16/2078.abstract

6. Mellor-Crummey, J.M., Scott, M.L.: Algorithms for scalable synchronization on
shared-memory multiprocessors. ACM Trans. Comput. Syst. 9(1), 21–65 (1991).
http://doi.acm.org/10.1145/103727.103729

7. Stephens, Z.D., Lee, S.Y., Faghri, F., Campbell, R.H., Zhai, C., Efron, M.J., Iyer, R.,
Schatz, M.C., Sinha, S., Robinson, G.E.: Big data: astronomical or genomical? PLoS
Biol. 13(7), 1–11 (2015). http://dx.doi.org/10.1371/journal.pbio.1002195

8. Tarasov, A., Vilella, A.J., Cuppen, E., Nijman, I.J., Prins, P.: Sambamba: fast
processing of NGS alignment formats. Bioinformatics 31(12), 2032–2034 (2015).
http://bioinformatics.oxfordjournals.org/content/31/12/2032.abstract

9. Wetterstrand, K.: DNA Sequencing Costs: Data from the NHGRI Genome Sequenc-
ing Program (GSP). http://www.genome.gov/sequencingcostsdata

http://dx.doi.org/10.1002/cpe.1553
http://bioinformatics.oxfordjournals.org/content/30/19/2818.abstract
http://dx.doi.org/10.1371/journal.pone.0132868
http://bioinformatics.oxfordjournals.org/content/25/16/2078.abstract
http://bioinformatics.oxfordjournals.org/content/25/16/2078.abstract
http://doi.acm.org/10.1145/103727.103729
http://dx.doi.org/10.1371/journal.pbio.1002195
http://bioinformatics.oxfordjournals.org/content/31/12/2032.abstract
http://www.genome.gov/sequencingcostsdata

Ultra-Fast Detection of Higher-Order
Epistatic Interactions on GPUs

Daniel Jünger1, Christian Hundt1, Jorge González-Domı́nguez2(B),
and Bertil Schmidt1

1 Institut für Informatik, Johannes Gutenberg-Universität Mainz,
Mainz, Germany

djuenger@students.uni-mainz.de, {hundt,bertil.schmidt}@uni-mainz.de
2 Grupo de Arquitectura de Computadores,
Universidade da Coruña, A Coruña, Spain

jgonzalezd@udc.es

Abstract. Detecting higher-order epistatic interactions in Genome-
Wide Association Studies (GWAS) remains a challenging task in the
fields of genetic epidemiology and computer science. A number of algo-
rithms have recently been proposed for epistasis discovery. However,
they suffer from a high computational cost since statistical measures
have to be evaluated for each possible combination of markers. Hence,
many algorithms use additional filtering stages discarding potentially
non-interacting markers in order to reduce the overall number of com-
binations to be examined. Among others, Mutual Information Cluster-
ing (MIC) is a common pre-processing filter for grouping markers into
partitions using K-Means clustering. Potentially interacting candidates
for high-order epistasis are then examined exhaustively in a subsequent
phase. However, analyzing real-world datasets of moderate size can still
take several hours when performing analysis on a single CPU. In this
work we propose a massively parallel computation scheme for the MIC
algorithm targeting CUDA-enabled accelerators. Our implementation is
able to perform epistasis discovery using more than 500,000 markers in
just a couple of seconds in contrast to several hours when using the
sequential MIC implementation. This runtime reduction by two orders-
of-magnitude enables fast exploration of higher-order epistatic interac-
tions even in large-scale GWAS datasets.

Keywords: Bioinformatics · GWAS · Epistasis · High performance
computing · CUDA

1 Introduction

Discovering genotype-phenotype associations between genetic markers and cer-
tain diseases has become an increasing field of interest in recent years. Case-
control studies, such as Genome Wide Association Studies (GWAS), search for
genetic factors that influence common complex traits. Some of these studies have
c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 421–432, 2017.
DOI: 10.1007/978-3-319-58943-5 34

422 D. Jünger et al.

explored single-locus associations between specific markers and a certain disease
[4,5]. However, most complex diseases are suspected to have more sophisticated
association patterns [1]. One cause of complex association patterns arises from
the existence of epistasis; i.e. interactions among k markers (k ≥ 2). A variety of
algorithms has been proposed using different approaches for finding such epista-
tic interactions in GWAS. Exhaustive search approaches [6,7,10,11] examine
every possible k-combination of markers. Hence, these approaches promise high
accuracy but often lack scalability, since the number of possible combinations
grows exponentially with the order of interaction k. Stochastic random sampling
methods [14] usually need to specify many parameters that heavily influence their
execution time. Machine learning algorithms [9,12] are often faster than exhaus-
tive approaches, but may only find local extrema instead of globally optimal
solutions.

Approaches for finding higher-order epistasis in GWAS use filter cascades
such as SNPHarvester [13] or MIC [8]. These approaches utilize filters to prune
unpromising markers that are unlikely to exhibit high interactions. Subsequently,
the markers that have survived the filtration stage are examined exhaustively for
k-locus interactions. The MIC algorithm uses K-Means clustering in combination
with mutual information as distance measure for the filtering to determine sets of
markers that are potentially interacting. Afterwards, the obtained candidates are
examined exhaustively. Using a CPU-only implementation of MIC, it is possible
to search for six-SNPs epistasis in the well-known Wellcome Trust Case-Control
Consortium (WTCCC) dataset with over 500,000 markers in a couple of hours.

The main contributions of this paper are the design of fine-grained paral-
lelization schemes for the sequential MIC algorithm targeting massively parallel
architectures and their implementation on CUDA-enabled accelerators providing
speedups of around two orders-of-magnitude in comparison to single-threaded
CPU code. Consequently, we are able to reduce the runtime of MIC drastically
from hours to seconds enabling researchers to perform exploratory analysis in
an interactive manner.

The rest of the paper is organized as follows. Section 2 gives a brief overview
of the sequential MIC algorithm. Section 3 describes our parallelization scheme.
Performance is evaluated in Sect. 4. Section 5 concludes the paper.

2 Background

Mutual Information Clustering (MIC) performs fast candidate selection for
higher-order epistatic interactions in GWAS. It consists of two stages for detect-
ing k-locus interactions. The first stage filters single-nucleotide polymorphisms
(SNPs) that are unlikely to interact using a variant of K-Means clustering that
determines a notion of similarity by the pairwise computation of mutual infor-
mation between the individual markers. After the clustering step a user-defined
number of m SNP candidates are selected from each cluster. These candidates
are examined to find the causative SNPs of k-locus interactions.

Based on [8], mutual information I is used as similarity measure of association
between genotypes and susceptibilities of diseases. Let X = {A1, A2, . . . , An} be

Ultra-Fast Detection of Higher-Order Epistatic Interactions on GPUs 423

a partition of a set S, meaning that S = A1 ∪A2 ∪ . . .∪An and Ai ∩Aj = ∅ for
all distinct pairs of i and j. The entropy H(X) can be expressed as

H(X) = −
n∑

i=1

|Ai|
|S| · log

|Ai|
|S| (1)

where | · | denotes the number of elements in a set. Note that |Ai|
|S| can be

interpreted as the probability mass function of the partition X. An extension
of this definition to an arbitrary number of partitions is straightforward. Let
Xj = {A(j)

1 , A
(j)
2 , . . . , A

(j)
n } for j = 1, . . . , k be k partitions of a set S. Then the

joint entropy of k partitions H(X1,X2, . . . , Xk) is defined as

H(X1,X2, . . . , Xk) = −
n1∑

i1=1

n2∑

i2=1

· · ·
nk∑

ik=1

Pi1 i2···ik · logPi1 i2···ik

where Pi1 i2···ik =
|A(1)

i1
∩ A

(2)
i2

∩ . . . ∩ A
(k)
ik

|
|S| . (2)

The mutual information between the joined partition of X1,X2, . . . , Xk and
a partition Y can be expressed as:

I(X1,X2, . . . , Xk;Y) = H(Y) + H(X1,X2, . . . , Xk)
− H(X1,X2, . . . , Xk, Y) (3)

Let X1,X2, . . . , Xk be partitions for the set of samples induced by the geno-
types of SNP1,SNP2, . . . ,SNPk, respectively, and Y be the partition by dis-
ease state (case or control) then I(X1,X2, . . . , Xk;Y) represents the degree
of associations between genotypes of SNP1,SNP2, . . . ,SNPk and the disease
state. The objective is to find the set of k SNPs that maximizes the value
of I(X1,X2, . . . , Xk;Y). Examining every possible k-combination of n SNPs
is considered computational intractable for more than half a million SNPs in
GWAS for k ≥ 3 [6,7]. In order to reduce the number of SNPs to be considered
in the exhaustive step, MIC uses K-Means which scales linearly in the num-
ber of processed markers. The clustering procedure is a modification of Lloyd’s
algorithm:

1. Assignment step. The pair-wise distance dist(Xi,Xj) between two SNPs Xi

and Xj is defined as the mutual information I(Xi,Xj ;Y). This implies that
SNPs that are strongly interacting tend to be placed into different clusters.

2. Update step. The process of selecting the centroid of each cluster works as
follows. Each SNP generates a contingency table consisting of genotype fre-
quencies among samples. The average contingency table T

(j)
avg of a cluster j

is defined as follows: each entry of T (j)
avg is the average of the corresponding

entries of all contingency tables generated by the SNPs belonging to the clus-
ter j. A centroid cj of a cluster j is defined as the nearest neighbour of T (j)

avg

with respect to the sum of squared errors

cj = argmin
q

‖Tq − T (j)
avg‖2. (4)

424 D. Jünger et al.

After the clustering step, m candidates are selected from each cluster. A
candidate in a cluster is a SNP that is far apart (in terms of pairwise mutual
information) from SNPs in other clusters. MIC makes use of this similarity mea-
sure to define a score value for SNPs. Let x(i) be a SNP in the i-th cluster with
ci as the corresponding centroid then the score value is determined by:

score(x(i)) =
∑

j �=i

dist(x(i), cj)

= I(x(i), c1 ;Y) + . . . + I(x(i), ci−1;Y)

+ I(x(i), ci+1;Y) + . . . + I(x(i), ck;Y). (5)

From each cluster MIC selects the top m SNPs in terms of their scores as
candidates for further processing. Thus, a total of k · m candidates are chosen.
Among these candidates, MIC exhaustively searches the k-tuple with the highest
mutual information value I(X1,X2, . . . , Xk;Y). This implies that it only has to
probe

(
m·k
k

)
combinations instead of

(
n
k

)
, where m · k � n.

3 CUDA Implementation

In this section, we discuss the details of our parallel implementation of the
MIC algorithm using CUDA. Besides native CUDA, we also utilize the CUDA
Unbound (CUB) library [3] which provides a set of highly optimized parallel
primitives. We subdivide the MIC algorithm into the following four distinct
phases.

3.1 Data Preparation

Our implementation stores the genotype information in form of a C++ standard
library vector containing SNP elements. A SNP is represented by a struct con-
taining the genotype information for both cases and controls. SNPs are expressed
in three different genotypes for both cases and controls. Hence, the SNP-struct
has six sub-elements. Each of these sub-elements is a bit-array where the bit at
index i encodes whether the ith individual (case or control) has the particular
genotype. For simple enumeration we will label genotype AA as 0, AB as 1,
and BB as 2. Hence, we can refer to the genotype arrays of the SNP-struct as
case0, case1, case2, ctrl0, ctrl1, and ctrl2. For later use in the clustering step
we pre-compute the genotype frequencies of each SNP for cases and controls
respectively, by determining the population count of each bit array. This step
takes linear time. We refer to the structure of combinations of the six genotype
frequencies as the contingency table.

In order to use the genotype information on the GPU in an efficient manner,
we use six global bit-arrays on the CUDA device, each of which combines one
genotype case/control bit array from all SNPs one after another. Subsequently,
we transpose each bit-array, assuring coalesced access between CUDA threads in

Ultra-Fast Detection of Higher-Order Epistatic Interactions on GPUs 425

a warp if threads are assigned to SNPs within the SNP set consecutively. Trans-
position is achieved using one CUDA-stream per array using a shared memory-
based out-of-place transposition algorithm. We compute the genotype frequency
of each SNP using the vectorization capabilities of the GPU along with coalesced
data access patterns.

3.2 Clustering

The modified K-Means algorithm can be split into three subroutines that are
parallelized separately using dedicated CUDA kernels.

First, the cluster assignment step compares each SNP with the set of centroids
cj and subsequently assigns the nearest neighbour. Since this can be determined
for each of the SNPs independently, we map individual SNPs to CUDA-threads
exploiting the optimized data alignment discussed in the previous subsection.
As a result, the cluster indices of each SNP are stored in an array residing in
the global memory of the GPU.

Second, the mean contingency table of each cluster is computed by point-
wise addition of all contingency tables of SNPs that are assigned to that cluster
and subsequent division by the number of SNPs in the cluster. The applied
reduction algorithm utilizes different memory spaces of the GPU. On the lowest
level each warp (consisting of 32 threads) computes its partial result using warp
intrinsics and stores the result in the shared memory of its block. Subsequently,
each block uses a tree-based reduction to accumulate partial sums and stores the
final result in global memory using atomic operations. We then divide the per-
cluster accumulated contingency table by the number of SNPs in each cluster in
parallel using the device-wide cub::DeviceHistogram primitive from the CUB
library on the cluster array in order to determine the cluster sizes.

The third subroutine determines the updated centroids for the next iteration
of Lloyd’s algorithm by computing the nearest neighbour SNP of each centroid in
terms of sum of squared errors to the mean contingency table of the correspond-
ing cluster. In order to update the centroids in parallel, we first compute the dis-
tance of each SNP to its corresponding cluster mean using one thread per SNP.
Subsequently, the obtained distance values are stored as 32-bit unsigned integer
into the lower half of a 64-bit unsigned integer and consecutively write the 8-bit
cluster identifier of a SNP into the upper half. This step is visualized in Fig. 1(a).
We can now define a lexicographical ordering over these elements with the clus-
ter identifier as major order and the distance value as minor order. Using this
relation, we sort this array using a device-wide call to cub::DeviceRadixSort.
A schematic overview of this step is illustrated in Fig. 1(b). Note that CUB pro-
vides the ability to run radix-sort only on a sub-set of bits of an integer. Hence,
we just consider the first 40 bits of an element for the sorting step. The SNP of
cluster cj with minimal distance to the mean contingency table is placed at index∑j−1

i=1 |ci|. We then use a cub::DeviceExclusiveSum primitive on the clustering
histogram to determine the starting indices of each cluster. Finally, we select the
first SNP of each cluster from the sorted array as the new centroid.

426 D. Jünger et al.

Fig. 1. Selection of centroids using lexicographical ordering. (a) Shows a 64-bit
unsigned integer which represents a SNP. The distance from the SNP to its centroid is
stored as a 32-bit unsigned integer in the lower half of the 64-bit datatype. The 8-bit
long identifiers of the corresponding cluster are stored consecutively. Overall the struct
holds 40 bits of information. (b) Shows the result of cub::DeviceRadixSort on an
array of the datatype depicted in (a). The new centroid elements are the first elements
of each cluster section (denoted by different color shading).

3.3 Candidate Selection

The score computation of each SNP can be performed independently by utiliz-
ing CUDA-threads. The candidates of each cluster are those m SNPs with the
highest scores. For this purpose, we use a slight modification of the major-minor
radix-sort approach as shown in Fig. 1. Different from our initial definition, we
now pack the score value of type float into the lower half of a 64-bit unsigned
integer together with the 8-bit cluster ID stored consecutively. Since we want
to sort the elements of this array ascending by the cluster ID (major ordering)
but descending by the score values (minor ordering), we negate the score values
before sorting the array. The selection step is analogous to Fig. 1(b): the first m
SNPs of each cluster are selected in the sorted array rather than just one. As a
result of this phase we have selected k ·m SNPs that are exhaustively examined
in the final phase.

3.4 Exhaustive Search

Algorithm 1 represents the implementation of Eq. 3. As a subtask of this calcu-
lation, we probe each of the 3k possible genotype combinations of the given SNP
combination in order to determine the joint entropies H(X1,X2, . . . , Xk) and
H(X1,X2, . . . , Xk, Y) as given in Eq. 2. For one of these genotype combinations

Ultra-Fast Detection of Higher-Order Epistatic Interactions on GPUs 427

igeno ∈ {0, . . . , 3k − 1} the genotype gik ∈ {0, 1, 2} to choose for one SNP snpik
with ik ∈ {0, . . . , k − 1} of this SNP combination can be calculated by:

gik = 	 igeno
3ik

 mod 3 (6)

Using this extension we can now implement the k-locus mutual information
for one SNP combination as follows:

Algorithm 1. Mutual Information of k loci
1: procedure kMI
2: pCase← 0.0
3: pCtrl← 0.0
4: Hxy ← 0.0
5: Hx ← 0.0
6: Hy ← H(Y) � computation according to Eq. 1
7:
8: for igeno ∈ [0, 3k) do � 3k combinations of genotypes
9: f case←popc(snp0.cases[g0]∩snp1.cases[g1]∩ . . . ∩ snpk−1.cases[gk−1])

10: f ctrl←popc(snp0.ctrls[g0]∩snp1.ctrls[g1]∩ . . . ∩ snpk−1.ctrls[gk−1])
11:
12: pCase← f case/(|cases| + |ctrls|)
13: pCtrl← f ctrl/(|cases| + |ctrls|)
14:
15: Hx− = (pCase + pCtrl) · log (pCase + pCtrl) � computation according to

Eq. 2
16: Hxy− = pCase · log pCase + pCtrl · log pCtrl
17: end for
18: return Hy + Hx − Hxy � computation according to Eq. 3
19: end procedure

Note that the computation of the joint frequencies is performed efficiently by
using bitwise AND-operations followed by a CUDA-intrinsic population count on
the SNP bit-sets (see Lines 9 and 10 in Algorithm 1). The parallelization-scheme
for this task assigns each SNP combination to one CUDA-thread.

The task of computing the k-locus mutual information for each k-combination
is computationally demanding. We reduce the computational load per CUDA
core by pre-computing the SNP combinations of the given candidates as follows.

First, we need to find a mapping that associates each combination index
icomb ∈ {1, . . . ,

(
k·m
k

)} with a distinct k-combination from the set of k · m can-
didates. This can be implemented by decomposing binomial coefficients using
their recursive definition:

(I) :
(
n

n

)
=

(
n

0

)
;

(II) :
(
n + 1
k + 1

)
=

(
n

k

)
+

(
n

k + 1

)
;

(7)

428 D. Jünger et al.

If we substitute n by (km − 1) and k b < (k − 1) we can rewrite (II) as
(
k · m
k

)
=

(
km − 1
k − 1

)
+

(
km − 1

k

)
(8)

Using this representation we can apply a recursive binary tree decomposition.
Each level of the tree represents one element of the set of km elements. Addition-
ally, each distinct path through the tree represents a distinct SNP combination.
Algorithm 2 computes one path given the index icomb of the combination to
be formed and returns the corresponding k-combination. We will execute this
algorithm on

(
k·m
k

)
CUDA-threads, each one processing a single combination.

Algorithm 2. Computation of k-combination
1: procedure getSNPCombination(icomb)
2: combination[]
3: index← icomb

4: local n← k · m
5: local k← k
6: j ← 0
7:
8: for i ∈ [0, km) do
9: lower← (local n−1

local k

)

10:
11: if index ≥ lower then
12: local k -= 1
13: combination[j]← i
14: j++
15: index -= lower
16: end if
17: local n -= 1
18: end for
19: return combination[]
20: end procedure

Algorithm 2 calls the binomial coefficient function k · m times per thread in
Line 9. To further reduce the workload of each CUDA-core, we pre-compute the
values of the binomial coefficients and cache them in a look-up table residing in
global memory. Finally, we determine the highest epistatic interaction candidate
using a device-wide key-value sort primitive form the CUB library.

4 Experimental Evaluation

In order to measure the time benefits of our CUDA-parallelized version of MIC
compared to the single- and multi-core CPU version, we use a real-world dataset
from WTCCC. The dataset consists of the genotype information of roughly

Ultra-Fast Detection of Higher-Order Epistatic Interactions on GPUs 429

500,000 SNPs that were gathered from 3,000 controls drawn from the British
population and 2,000 cases which are all affected by inflammatory bowel disease.
The system configuration used for benchmarking is listed in Table 1.

Table 1. Benchmark system.

Host system CPU Intel Core i7-3970X, 64-bit, HT

CPU cores 6 cores @ 3.50 GHz (max. 4.0 GHz)

RAM 32 GB DDR3

OS Ubuntu 14.04.4 LTS, 64-bit

CUDA device Device NVIDIA GeForce GTX Titan X

GPU NVIDIA GM 200

GPU cores 3072 SPs @ 1GHz

DRAM 12 GB GDDR5

CC 5.2

Compilers Host g++ v4.8.4

Device nvcc v7.5.17

Compiler flags g++ -O3 -std=c++11 -fopenmp

nvcc -O3 –expt-relaxed-constexpr -use fast math

-std=c++11 -rdc true

-gencode=arch=compute 52,code=sm 52

In this work we focus on testing the performance improvement of our GPU-
based parallel implementation as the accuracy is the same as the original MIC
which has already been assessed in [8]. The MIC algorithm can be divided into
two major phases. The first phase represents the K-Means clustering step. This
step takes O(lkn) time, where l denotes the number of samples (cases/controls),
k the number of clusters, and n the number of SNPs to be examined. The
second phase performs exhaustive search and examines

(
k·m
k

)
k-combinations of

SNPs for epistasis. The computation of the mutual information of each k-SNP
combination and disease state takes linear time i.e. O(l). Thus, this phase takes
O(l(km)k) time. Since k occurs in the asymptotical runtime of both phases, we
choose k as the varying parameter for our benchmark. The value of n is given
by the WTCCC dataset and therefore fixed. We also set m = 5 throughout the
experiments.

Table 2 shows the benchmark results for varying values of k (from one to six).
As the original MIC implementation [8] is not publicly available, we developed a
CPU-based C implementation and parallelized it using Open Multi-Processing
(OpenMP or OMP)[2] for comparison purposes. We use the average of 50 exe-
cutions for the GPU implementation and 30 executions for the CPU implemen-
tations. However, sequential execution for the highest k takes more than two
hours and is not very stable at runtime. Hence, we were only able to measure
two executions for this configuration with the sequential implementation.

430 D. Jünger et al.

Table 2. Average runtimes in seconds and speedups of the CUDA implementation on
a GTX Titan X GPU over a single- and multi-core CPU-based version for m = 5.

k 2 3 4 5 6

Runtime tseq 11.39 26.97 183.75 386.58 7865.17

tomp 4.25 5.11 6.67 49.44 1926.42

tcuda 0.69 0.74 0.83 1.36 16.41

Speedup tseq/tomp 2.68 5.28 27.55 7.82 4.08

tseq/tcuda 37.85 36.41 221.66 285.00 479.30

tomp/tcuda 6.16 6.91 8.04 36.35 117.39

Fig. 2. Execution time proportions of K-Means and exhaustive step.

The benchmark results show that the speedups grow when k is increased. This
is due to the fact that the number of combinations in the exhaustive search step
grows exponential, as the asymptotic runtime is given by O(l(km)k). Figure 2
illustrates the proportions between the K-Means step and the exhaustive step
to the execution time when k is increased. We observe that K-Means holds the
largest share for k ≤ 5, whereas the exhaustive step, by far, holds the biggest
share for k > 5. Our CUDA-based approach obtains more benefit for experiments
where the exhaustive search has a significant impact on the total runtime.

Ultra-Fast Detection of Higher-Order Epistatic Interactions on GPUs 431

5 Conclusion

We have developed an efficient parallel implementation of the MIC algorithm for
finding higher-order epistasis in GWAS using CUDA-enabled accelerator cards.
Concretely, we have proposed a parallel GPU-only implementation of a modified
K-Means clustering algorithm. In addition to the clustering step, we also make
extensive use of the GPU for the remaining parts, leaving the host CPU only
for organizational purposes during execution.

Using our implementation it is possible to examine moderately-sized GWAS
datasets in just a few seconds on a modern consumer-grade workstation. Our
benchmark results indicate speedups of about two orders-of-magnitude compared
to the sequential solution. The benefits of our parallel implementation are more
significant when increasing the order of the interactions, i.e. when the exhaustive
phase has more impact on the total execution time.

As part of our future work, we are planning to further improve the CUDA-
implementation of the exhaustive search step. For now, this computation is done
by a so-called heavy kernel, where each thread has to compute a rather big
portion of the overall task. The CUDA architecture, however, is designed and
optimized for lightweight threads. Hence, we have to develop a parallelization-
scheme that implements the concept of lightweight threads by further split-
ting each computation into independent subtasks. A further possible direction
of future research is the design and comparison of novel lightweight candidate
selection algorithms on CUDA-enabled accelerators in order to robustly prune
non-interacting markers at even higher speed.

Acknowledgments. This study makes use of data generated by the Wellcome Trust
Case-Control Consortium. A full list of the investigators who contributed to the gen-
eration of the data is available from www.wtccc.org.uk. Funding for the project was
provided by the Wellcome Trust under award 076113 and 085475.

References

1. Cordell, H.J.: Detecting gene-gene interactions that underlie human diseases. Nat.
Rev. Genet. 10(6), 392–404 (2009)

2. Dagum, L., Menon, R.: OpenMP: an industry standard API for shared-memory
programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998)

3. Duane Merrill, N.C.: Cub documentation (2016). https://nvlabs.github.io/cub/
4. Easton, D.F., Pooley, K.A., et al.: Genome-wide association study identifies novel

breast cancer susceptibility loci. Nature 447(7148), 1087–1093 (2007)
5. Frayling, T.M., Timpson, N.J., et al.: A common variant in the FTO gene is associ-

ated with body mass index and predisposes to childhood and adult obesity. Science
316(5826), 889–894 (2007)

6. González-Domı́nguez, J., Schmidt, B.: GPU-accelerated exhaustive search for
third-order epistatic interactions in case-control studies. J. Comput. Sci. 8, 93–
100 (2015)

7. Kässens, J.C., Wienbrandt, L., González-Domı́nguez, J., Schmidt, B.,
Schimmler, M.: High-speed exhaustive 3-locus interaction epistasis analysis
on FPGAs. J. Comput. Sci. 9, 131–136 (2015)

www.wtccc.org.uk
https://nvlabs.github.io/cub/

432 D. Jünger et al.

8. Leem, S., Jeong, H.H., et al.: Fast detection of high-order epistatic interactions
in genome-wide association studies using information theoretic measure. Comput.
Biol. Chem. 50, 19–28 (2014)

9. Meng, Y.A., Yu, Y., et al.: Performance of random forest when SNPS are in linkage
disequilibrium. BMC Bioinf. 10(1), 1 (2009)

10. Nelson, M., Kardia, S., et al.: A combinatorial partitioning method to identify
multilocus genotypic partitions that predict quantitative trait variation. Genome
Res. 11(3), 458–470 (2001)

11. Wan, X., Yang, C., et al.: Boost: a fast approach to detecting gene-gene interactions
in genome-wide case-control studies. Am. J. Hum. Genet. 87(3), 325–340 (2010)

12. Wan, X., Yang, C., et al.: Predictive rule inference for epistatic interaction detection
in genome-wide association studies. Bioinformatics 26(1), 30–37 (2010)

13. Yang, C., He, Z., et al.: SNPHarvester: a filtering-based approach for detecting
epistatic interactions in genome-wide association studies. Bioinformatics 25(4),
504–511 (2009)

14. Zhang, Y., Liu, J.S.: Bayesian inference of epistatic interactions in case-control
studies. Nature Genet. 39(9), 1167–1173 (2007)

A Framework for Accessible Cluster-Enabled
Epistatic Analysis

Alex Upton1(&), Johan Karlsson2, Oswaldo Trelles1,
Miguel Hernandez2, and Juan Elvira2

1 Department of Computer Architecture, University of Malaga, Málaga, Spain
{aupton,ortrelles}@uma.es

2 Perkin Elmer, 18100 Armilla, Granada, Spain
{johan.karlsson,miguel.hernandez,

juan.elvira}@perkinelmer.com

Abstract. Complex diseases are typically caused by joint effects of multiple
genetic variations, rather than a single variant. Multiple single nucleotide
polymorphism (SNP) interactions, epistatic interactions, potentially provide
information about the causes of complex diseases, building on studies that focus
on the association between single SNPs and phenotypes. However, execution of
epistatic methods on desktop computers is not practical, owing to the huge
number of interactions that have to be calculated. These models have tended to
be command line based, presenting a barrier for users such as biologists that are
not comfortable with this environment. To overcome this, we present a frame-
work with a front-end GUI deployed on a cluster that allows users to analyse
genotype/phenotype correlations using computationally accelerated epistatic
models. The parallel processing of the data results in a typical epistatic analysis
taking a few days, presenting a feasible approach for the analysis of genetic
variants associated with disease.

1 Introduction

Technological advancements in the last decade have led to a remarkable increase in the
amount of biological data produced. These data can be used to investigate human
disease, with one particular data type, single nucleotide polymorphisms (SNPs), widely
used to uncover genetic variations that are associated with phenotypes of interest. By
comparing the frequency of variants between cases and controls in genome wide
association studies (GWASs), SNPs have been linked to a number of diseases, such as
breast cancer [1] and hypertension [2]. However, it is widely agreed that complex
diseases are due to the joint effects of multiple genetic variations, rather than a single
variation [3], and this might explain why numerous studies have only uncovered alleles
with a low genotype risk. As such, epistatic interactions, interactions between SNPs,
can potentially provide insight about the causes of complex diseases, and build on
GWASs that investigate the association between single SNPs and phenotypes.

A number of models have been proposed to search for epistasis e.g. [4, 5]. How-
ever, implementation of these methods on typical desktop computers is generally not
practical, as a large number of interactions have to be calculated. For example, a

© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 433–444, 2017.
DOI: 10.1007/978-3-319-58943-5_35

relatively small GWAS dataset with 100,000 SNPs has 5 � 109 pairwise interactions.
Using the FaST-LMM method [5], the search for these pairwise interactions would take
approximately two years on a desktop computer. This does not present a viable
approach for researchers. In order to overcome this, high performance computing
(HPC) and cloud computing facilities can be taken advantage of, and the analysis can
be deployed across multiple cores or instances. By splitting the analysis into various
tasks, these can be executed in parallel, resulting in a significant speedup in the exe-
cution time. As a result, the exhaustive search for epistasis can be carried out in a
relative short time span, presenting a feasible analysis tool.

It should also be noted that the majority of these epistatic models are deployed
using command line interfaces. One of the main challenges facing bioinformatics is to
ensure that experts from across all biomedical domains are able to process biological
data via user-friendly solutions [6]. In response to this, there has been an increase in
recent years in the popularity of workflow management systems (WMSs) that allow the
deployment of workflows that piece together separate analyses often carried out by
different software packages. Workflows are becoming increasingly important in the
area of bioinformatics, allowing complex analyses to be carried out and shared.
A number of WMSs have gained prominence, with Chipster [7], and Galaxy [8]
amongst those widely used. By offering increased usability and accessibility typically
via a GUI, they allow users that do not possess specialist programming skills to run
tools and workflows that would otherwise require command line operation or com-
petence in programming language skills. Additionally, as users are able to publish and
share their analyses via the internet, WMSs offer robustness, transparency, re-usability,
and reproducibility [9, 10].

In this work, we present a prototype implementation of a Galaxy-based framework
that uses a HPC cluster in order to reduce the time needed to analyse the data, and
Spotfire for creating Galaxy-embedded visualisations that allow the user to interac-
tively explore the results. Galaxy has been chosen due to its wide user base and active
developer community; thereby allowing tools and workflows to be easily shared with
other researchers via tool sheds. These tools sheds are open resources that function in a
similar way to “app stores”, and allow resources such as Galaxy tools and workflows to
be shared amongst researchers. The main Galaxy tool shed is found at: https://toolshed.
g2.bx.psu.edu/. In addition, the creation of a custom instance avoids issues such as long
wait times for job execution, storage quotas, and bottlenecks uploading and down-
loading data associated with the main server. The custom instance offers a standardised,
easy-to-use interface, allowing users such as clinicians and biologists that are not
comfortable with command line and programming language environments to easily
deploy epistatic analysis tools. In addition, these tools in the framework have already
been configured to run on the HPC cluster, thereby enabling the analysis to be carried
out with the required computational power. Furthermore, a number of pre-defined
execution options are provided, removing the need for the end user to configure
resource allocation scripts, and the authentication step is also simplified through the use
of certificates. More details about the underlying infrastructure can be seen in Figs. 2
and 3 in the Infrastructure section, whilst further details about the framework are
provided in the following section.

434 A. Upton et al.

https://toolshed.g2.bx.psu.edu/
https://toolshed.g2.bx.psu.edu/

Finally, it should be noted that the HPC facilities at the University of Malaga have
been used to validate the cluster-based deployment of the framework, and that the
framework can be easily adapted to other computational resources. In the same vein,
the use of the epistasis tools also provides a means by which to validate the ‘generic’
framework of Galaxy with Amazon S3 for data storage, and Spotfire for visualisation
and exploration.

2 Galaxy Implementation

Two widely used epistatic analysis tools are implemented in the custom Galaxy
instance; the linear regression based method BOOST [4], and the linear mixed model
based FaST-LMM [5]. These two models have been chosen as they both test all pairs of
SNPs in the dataset for association with phenotypes, typically case and control,
returning a p-value for each tested pair. Therefore, they both require substantial
computational power. In addition, they are both deployed via the command line, and
have also been used in a number of previous studies, such as those by Lippert et al. [11]
and Tao et al. [12]. An all-in-one easy-to-use workflow is also available for end users
seeking a complete analysis protocol. This workflow is shown in Fig. 1, starting with
data in the raw .CEL format. Subsect. 2.1 details the steps that make up this workflow,
as well as detailing the software that would typically be used for each step, thereby
highlighting the advantages of an all-in-one approach, rather than multiple software
steps required.

Fig. 1. Steps in the workflow

A Framework for Accessible Cluster-Enabled Epistatic Analysis 435

2.1 Workflow Steps

The workflow above also incorporates single association analysis. This has been
incorporated as it is probable that the end user will be interested in comparing the single
association results with the epistatic results, and also in case the user has the data in raw
format. The main advantage of carrying out the workflows using Galaxy is that the
end-user can perform all these steps in just one click, instead of having to use different
programming languages and command line tools. The individual steps involved are
detailed below.

(1) The first step is for the end user to upload raw .CEL files, and apply the birdseed
v2 algorithm, using Affymetrix Power Tools. The first two steps that take the
.CEL files and convert them to .VCF format is a Galaxy implementation of
genCloud [13], a pipeline for converting .CEL to .VCF files suitable for analysis.
This has been provided as it is likely that a number of researchers will have raw
data, but will not be comfortable with the computational steps required to convert
this to a suitable analysis format. By taking advantage of the facilities offered by
the cluster, this step can be greatly speeded up by processing each of the .CEL
files in parallel, rather than serially.

(2) The next step is to convert the birdseed output to .VCF format. Along with the
previous step, this step is also part of the genCloud pipeline [13].

(3) It is also possible that the end user might already have the data as .VCF files. The
next step is to convert this to PLINK [14] binary format, using PLINK.

(4) Next, a number of quality control procedures are carried out on the data. Various
procedures are implemented; these include call rate >98%, and minor allele
frequency >0.05.

(5) Single SNP association analysis is carried out using the default PLINK settings,
that compares allele frequencies between cases and controls. The output is a list of
all the SNPs that passed the previous quality control steps with various fields,
including the p-value for each SNP for the case-control test.

(6) Epistatic analysis of the data is then carried out using HPC facilities, due to the
computationally intensive nature of the operation. The end-user can select from
two available epistatic analysis methods; BOOST, and FaST-LMM. The default
setting is for the analysis to be split into 400 tasks, and deployed on the HPC
Picasso facilities at the University of Malaga.

(7) The next step is to join the results from the tasks together, and remove interactions
between SNPs located within 1 Mb of each other. This step is taken to remove
potential false positives possibly due to proximity [15].

(8) SNPs involved in significant interactions after Bonferroni correction and filtering
are mapped to the closest protein-coding gene within a flanking distance of
500 Kb. This is performed using Spotfire, with the information about the closest
protein coding gene generated from the R library Postgwas [16].

(9) The final step is to visualise the results from both the single association, and
epistatic analysis. This is done using the TIBCO Spotfire Web Player [17]. Single
association results are typically displayed on a Manhattan plot; this plots the
genomic co-ordinates of the SNPs on the X axis, and the negative log10 value of

436 A. Upton et al.

the single association p-values for each SNP on the Y axis. Figure 5 shows a
Manhattan plot obtained from a previously published dataset. This interactive
Manhattan plot allows the end user to specify a threshold based on −log10 p-value,
and in addition to displaying the SNPs that have a p-value greater than this
threshold, will also display additional information such as the closest protein
coding gene to the SNP. The interactions of the protein-coding genes that the
SNPs map to is visualised using the D3 JavaScript library [18], and displayed in a
Galaxy frame with the Manhattan plot underneath. This enables the user to easily
compare the single association and epistatic analysis results visually.

3 Infrastructure

In order to carry out steps 1–7 shown in Fig. 1, a number of underlying infrastructure
processes have to be carried out. These are shown in the diagram below.

(1) Galaxy executes a Web-Service client with the tool to execute (must be in
pre-configured white-list) and the parameters (files).

(2) The client uploads the parameters to an Amazon S3 compatible storage. This
could be Amazon S3 instance or any of the many S3 API compatible data storages
(e.g. OpenStack). Client requests a temporary URL which is valid for a specified
time-frame.

(3) The client invokes the Web-Service Frontend (pre-configured) with the tool to
invoke and a list of URLs where the data is available. Before accepting the job,
the WS Frontend confirms that the tool is in the white-list of available tools and
that the parameters are valid. If so, the Frontend places the job in a queue and
returns a job identifier which the client will use to check for status and retrieve the
results (status polling not shown in this figure).

Fig. 2. Underlying infrastructure for single association and epistatic analysis

A Framework for Accessible Cluster-Enabled Epistatic Analysis 437

(4) The Frontend downloads the parameters specified from the S3 data storage.
(5) When the job is in the front of the queue, the Frontend executes the tool. Note that

the execution could be local or remote (e.g. in a HPC machine).
(6) Once ready, Frontend uploads results to an S3 Data Storage. Depending on the

configuration, could be a different storage than used by the client. Once uploaded,
the Frontend requests temporary URL and sets job-status to ready.

(7) Once the client has determined that the job has finished, it requests the Result(s)
URL(s) generated in step 6.

(8) Client downloads data from the S3 Data Storage using temporary URL(s).
(9) The client finishes the execution and reports the results to Galaxy.

Galaxy can be extended with visualisations for specific datatypes. In this case, we
configured Galaxy to visualise the single association and epistatic analysis results using
the Spotfire WS API. The Spotfire WS API is a flexible component, developed as part
of the Mr. SymBioMath project, which extends the Spotfire visualisation platform with
automatisation features; specifically it allows the remote, programmatic control of
Spotfire using IronPythonscripts. The communication between Galaxy and Spotfire is
through a restful web-service where the requests are saved in a queue and Galaxy
(through a JavaScript page) periodically checks for the progress. Spotfire has been used
here, as it allows rapid prototyping, integration with D3, and additional information to
be loaded for the visualisation that offers added value to the end user. The procedures
needed for steps 8 and 9 in Fig. 1 are shown in Fig. 3 below.

(1) Galaxy requests the visualisation from the Spotfire WS API, with the URL of the
single associations from PLINK and the multiple SNP associations, i.e. epistatic
analysis from FaST-LMM, together with the name of a pre-configured script
which will generate the visualisation. This script performs steps 2–6 below.

(2) The script loads a prepared visualisation from the Spotfire Server.
(3) Data are then loaded from Galaxy using specified URL into the visualisation.

Fig. 3. Infrastructure for visualisations created by Spotfire

438 A. Upton et al.

(4) Once the data are available, the script replaces the data table in the visualisation
with the new data.

(5) The new visualisation is saved in the Spotfire Server.
(6) The Spotfire WS returns a URL to a Spotfire Web-Player document. This docu-

ment can be loaded in standard Web-Browsers in most platforms (Windows,
Linux, Mac OSX).

4 Validation

In order to test the implementation of the Galaxy tools, two testing stages are
employed, each with a different dataset. First, in order to measure speedup of the
epistatic analysis obtained by using the epistatic tools deployed on the cluster that are
accessed via Galaxy, a simulated dataset of 10,000 SNPs much lower than typically
found is used. This reduced dataset permits the epistatic analysis to be carried out in a
reasonable time frame using a single core on the cluster, providing a benchmark figure
against which to compare the execution times with multiple cores, and also simulating
the performance of a single core desktop computer. This implementation is compared
against 50, 100, 200, and 400 cores for both epistatic methods. Table 1 below shows
FaST-LMM and BOOST execution times for this 10,000 SNP dataset for the different
configurations on the HPC facilities, with speedup shown in brackets.

Note that a maximum speedup of 390 for FaST-LMM execution is obtained with
400 cores compared to the single core execution, with almost linear speedups for all of
the different FaST-LMM configurations. This is not the case for BOOST, possibly due
to the time taken for data transfer, and also the short execution time of the method using
a single core. This is reflected in the noticeably different execution times of the epistatic
methods, due to the different underlying models used by both; linear regression
compared to a linear mixed model. Having obtained considerable speedups for the
simulated dataset, particularly for FaST-LMM, the next step is to test the tools with a
typical dataset. For this, we will repeat the analysis of a previously published epistatic
study [19]. After carrying out quality control procedures, as detailed in step 4 in
Subsect. 2.1, 764,537 SNPs remain. One of the advantages of using a dataset from a

Table 1. Execution times for simulated data set

Computational environment BOOST execution time (s) FaST-LMM execution time (s)

HPC deployment (a) 38.4 15212
HPC deployment (b) 1.9 (20.2) 306 (49.7)
HPC deployment (c) 1.6 (24) 153 (98.8)
HPC deployment (d) 1.4 (27.4) 77 (197.6)
HPC deployment (e) 1.2 (32) 39 (390.1)

(a) Analysis carried out using 1 GB RAM and one core on the cluster Analysis split into
(b) 50 tasks, (c) 100 tasks, (d) 200 tasks, (e) 400 tasks, with one core and 1 GB RAM
assigned to each task

A Framework for Accessible Cluster-Enabled Epistatic Analysis 439

previously published study is that it is possible to compare the results obtained with
those published. In this case, it is possible to validate the results obtained for the single
association analysis from the original study [20]. As there are 764,537 SNPs, the
association for 2.92 � 1011 SNP pairs will have to be calculated. The execution times
for the epistatic analysis for this dataset are shown in Table 2 below. As oppose to the
previous dataset, a comparison will only be made for single core execution against 400
cores due to the time this would take with all of the core configurations.

From Table 2 above, almost linear speedups are obtained for both methods. Note
that epistatic analysis for this dataset using FaST-LMM is not carried out due to the
estimated execution time, highlighting the need for HPC. Having verified that the
implemented epistatic analysis tools are capable of analysing a previously published
dataset in a reasonable timeframe, the final verification is to compare the visualisation
against a previously published example. The Manhattan plot in the paper by Xie et al.
[20], will be compared to the Manhattan plot produced by the workflow. Figure 4
shows the single association and epistatic analysis visualisations. Figure 5 shows the
Manhattan plot above in more detail. Note the similarity of this plot with the Manhattan
plot from the original Clarkson study; minor differences in the two plots are due to
slightly different quality control procedures used in the workflow compared to the
original study, resulting in 764,537 SNPs passing quality control compared to 875,967
for the original study.

As can be seen in Fig. 4, information on the closest protein coding gene for the
SNP selected is presented to the end user underneath the plot within Galaxy. Infor-
mation on the closest protein coding genes for all the SNPs above the threshold, in
Fig. 5 those with −log10 p-value > 4.5, is automatically loaded by Spotfire from the
values returned by the Postgwas R library. This provides added value to the end user by
providing additional information about the markers in the plot, thus aiding in down-
stream analysis such as gene set enrichment analysis as the end user does not have to
manually annotate SNPs of interest. In addition, clicking the gene name takes the end
user to the NCBI gene record, providing additional information of interest.

Table 2. Execution time results for the previously published Clarkson dataset. As noted before,
FaST-LMM epistatic analysis of this dataset using a single core is not feasible.

Computational environment BOOST execution time (s) FaST-LMM execution time (s)
HPC deployment (a) 158896 45401792*
HPC deployment (b) 405 113704
Speedup 392.3 399.3

(a) Analysis carried out using 1 GB RAM and one core on the cluster
(b) Analysis split into 400 tasks, with one core and 1 GB RAM assigned to each task
*estimated based on previous dataset, not carried out due to long execution time

440 A. Upton et al.

Fig. 4. Manhattan plot and network visualisations created by Spotfire Web Player

Fig. 5. TIBCO Spotfire Web Player Manhattan Plot

A Framework for Accessible Cluster-Enabled Epistatic Analysis 441

5 Conclusions and Future Work

This work has detailed the development and subsequent implementation of an epistatic
framework on the HPC cluster at the University of Malaga, accessed using a custom
instance of the easy-to-use Galaxy workflow manager. By doing so, this has resulted in
shorter execution times compared with a single core execution designed to simulate a
desktop environment, and greater accessibility for users who are not comfortable with
command line and programming language environments. As a result, this has the
potential to lead to an uptake in the use of epistatic analysis methods to analyse
genotype data. The increased usage of epistatic analysis has the potential to provide
further insights into the underlying causes of complex diseases, considering that these
are likely due to multiple genetic variations. This impacts both new datasets, and also
existing datasets that have been previously analysed using single association methods.
This is particularly important considering that epistasis has been proposed as a possible
explanation for the missing heritability in GWASs [21, 22], i.e. why other studies, such
as twin studies, find higher heritability.

It should be noted that the benchmarking of the framework was carried out using
the HPC cluster at the University of Malaga, and in order to access these facilities, an
account is required. However, the use of a custom instance of Galaxy means that the
framework can easily be adapted and deployed on other computing infrastructures. Due
to the use of SLURM as the resource manager, the scripts for the epistatic analysis
could easily be adapted to run on other HPC facilities. In future, it is also feasible to
adapt the tools presented to run on a cloud computing platform. The Mr.SymBioMath
project, which supported parts of the work reported in this paper, has a cloud com-
puting test platform based on OpenStack [23], and developments in this test platform
should be easily transferable to run on commercial cloud computing providers such as
Amazon. Furthermore, we are planning to make the tools and workflow presented in
the paper available via the Galaxy toolshed once further testing has been carried out,
thereby allowing their incorporation into existing Galaxy instances.

Moving forward, added functionality could be offered through the implementation
of both other epistatic analysis methods, and the implementation of enrichment anal-
yses of the results, through the extension of the Spotfire integration to include
OmicsOffice [24], and take advantage of the annotation manager feature, allowing
enrichment results obtained to be directly displayed within Galaxy. By carrying this
out, it would be possible to offer an all-in-one workflow that starts with raw data, and
finishes with enrichment analysis results all from within one easy-to-use platform, thus
providing a more complete tool-set for analysis of genotype data. A promising area of
research is the detection of higher order epistasis, i.e. third order and higher; as
methods for this are developed and become available, their incorporation potentially
offers further insights into the underlying genetic architecture of human disease.

Acknowledgment. This work has been partially supported by the Mr. SymBioMath IAPP
(project code: 324554), the ‘Plataforma de Recursos Biomoleculares y Bioinformaticos (ISCIII-
PT13.0001.0012)’ and ‘Proyecto de Excelencia Junta de Andalucía (P10-TIC-6108)’.

442 A. Upton et al.

References

1. Low, S.-K., Takahashi, A., Ashikawa, K., Inazawa, J., Miki, Y., Kubo, M., Nakamura, Y.,
Katagiri, T.: Genome-wide association study of breast cancer in the Japanese population.
PLoS ONE 8, e76463 (2013)

2. Adeyemo, A., Gerry, N., Chen, G., Herbert, A., Doumatey, A., Huang, H., Zhou, J., Lashley,
K., Chen, Y., Christman, M., Rotimi, C.: A genome-wide association study of hypertension
and blood pressure in African Americans. PLoS Genet. 5, e1000564 (2009)

3. Upton, A., Trelles, O., Cornejo-García, J.A., Perkins, J.R.: Review: high-performance
computing to detect epistasis in genome scale data sets. Brief. Bioinform. 17, bbv058 (2015)

4. Wan, X., Yang, C., Yang, Q., Xue, H., Fan, X., Tang, N.L.S., Yu, W.: BOOST: a fast
approach to detecting gene-gene interactions in genome-wide case-control studies. Am.
J. Hum. Genet. 87, 325–340 (2010)

5. Lippert, C., Listgarten, J., Liu, Y., Kadie, C.M., Davidson, R.I., Heckerman, D.: FaST linear
mixed models for genome-wide association studies (2011)

6. Kouskoumvekaki, I., Shublaq, N., Brunak, S.: Facilitating the use of large-scale biological
data and tools in the era of translational bioinformatics. Brief. Bioinform. 15, 942–952
(2013)

7. Kallio, M.A., Tuimala, J.T., Hupponen, T., Klemelä, P., Gentile, M., Scheinin, I., Koski, M.,
Käki, J., Korpelainen, E.I.: Chipster: user-friendly analysis software for microarray and other
high-throughput data (2011)

8. Giardine, B., Riemer, C., Hardison, R.C., Burhans, R., Elnitski, L., Shah, P., Zhang, Y.,
Blankenberg, D., Albert, I., Taylor, J., Miller, W., Kent, W.J., Nekrutenko, A.: Galaxy: a
platform for interactive large-scale genome analysis. Genome Res. 15, 1451–1455 (2005)

9. Wolstencroft, K., Haines, R., Fellows, D., Williams, A., Withers, D., Owen, S.,
Soiland-Reyes, S., Dunlop, I., Nenadic, A., Fisher, P., Bhagat, J., Belhajjame, K.,
Bacall, F., Hardisty, A., de la Hidalga, A.N., Balcazar Vargas, M.P., Sufi, S., Goble, C.: The
taverna workflow suite: designing and executing workflows of web services on the desktop,
web or in the cloud. Nucleic Acids Res. 41, W557–W561 (2013)

10. Goecks, J., Nekrutenko, A., Taylor, J.: Galaxy: a comprehensive approach for supporting
accessible, reproducible, and transparent computational research in the life sciences. Genome
Biol. 11, R86 (2010)

11. Lippert, C., Listgarten, J., Davidson, R.I., Baxter, S., Poon, H., Poong, H., Kadie, C.M.,
Heckerman, D.: An exhaustive epistatic SNP association analysis on expanded Wellcome
Trust data. Sci. Rep. 3, 1099 (2013)

12. Tao, S., Feng, J., Webster, T., Jin, G., Hsu, F.C., Chen, S.H., Kim, S.T., Wang, Z., Zhang,
Z., Zheng, S.L., Isaacs, W.B., Xu, J., Sun, J.: Genome-wide two-locus epistasis scans in
prostate cancer using two European populations. Hum. Genet. 131, 1225–1234 (2012)

13. Heinzlreiter, P., Perkins, J.R., Tirado, O.T., Karlsson, J., Ranea, J.A., Mitterecker, A.,
Blanca, M., Trelles, O.: A cloud-based GWAS analysis pipeline for clinical researchers. In:
Proceedings of the Fourth International Conference on Cloud Computing and Services
Science, pp. 378–394 (2014)

14. Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A.R., Bender, D., Maller, J.,
Sklar, P., de Bakker, P.I.W., Daly, M.J., Sham, P.C.: PLINK: a tool set for whole-genome
association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007)

15. Wood, A.R., Tuke, M.A., Nalls, M.A., Hernandez, D.G., Bandinelli, S., Singleton, A.B.,
Melzer, D., Ferrucci, L., Frayling, T.M., Weedon, M.N.: Another explanation for apparent
epistasis. Nature 514, E3–E5 (2014)

A Framework for Accessible Cluster-Enabled Epistatic Analysis 443

16. Hiersche, M., Rühle, F., Stoll, M.: Postgwas: advanced GWAS interpretation in R. PLoS ONE
8, e71775 (2013)

17. Anonymous: TIBCO Software Inc releases new version of Spotfire. Telecomworldwire
(2008)

18. Bostock, M., Ogievetsky, V., Heer, J.: D3; Data-Driven Documents. IEEE Trans. Vis.
Comput. Graph. 17, 2301–2309 (2011)

19. Upton, A., Trelles, O., Perkins, J.: Epistatic analysis of clarkson disease. Procedia Comput.
Sci. 51, 725–734 (2015)

20. Xie, Z., Nagarajan, V., Sturdevant, D.E., Iwaki, S., Chan, E., Wisch, L., Young, M., Nelson,
C.M., Porcella, S.F., Druey, K.M.: Genome-wide SNP analysis of the systemic capillary leak
syndrome (clarkson disease). Rare Dis. (Austin Tex) 1, e27445 (2013)

21. Manolio, T.A., Collins, F.S., Cox, N.J., Goldstein, D.B., Hindorff, L.A., Hunter, D.J.,
McCarthy, M.I., Ramos, E.M., Cardon, L.R., Chakravarti, A., Cho, J.H., Guttmacher, A.E.,
Kong, A., Kruglyak, L., Mardis, E., Rotimi, C.N., Slatkin, M., Valle, D., Whittemore, A.S.,
Boehnke, M., Clark, A.G., Eichler, E.E., Gibson, G., Haines, J.L., Mackay, T.F.C.,
McCarroll, S.A., Visscher, P.M.: Finding the missing heritability of complex diseases.
Nature 461, 747–753 (2009)

22. Cho, J.H.: Genome-Wide association studies: present status and future directions.
Gastroenterology 138, 1668–1672 (2010)

23. Sefraoui, O., Aissaoui, M., Eleuldj, M.: OpenStack: toward an open-source solution for
cloud computing. Int. J. Comput. Appl. 55, 38–42 (2012)

24. OmicsOffice (2014). https://www.integromics.com/omicsoffice-suite/

444 A. Upton et al.

https://www.integromics.com/omicsoffice-suite/

Two-Level Parallelism to Accelerate Multiple
Genome Comparisons

Oscar Torreno(B) and Oswaldo Trelles

Department of Computer Architecture, University of Málaga,
Campus de Teatinos, 29071 Málaga, Spain

{oscart,ortrelles}@uma.es

Abstract. We present a two-level parallel strategy focused in the
enhancement of GECKO software for multiple and pairwise genome com-
parisons. GECKO was developed to break the computational barriers on
search space and memory demands faced by equivalent software. How-
ever, although being faster than equivalent software for comparing long
sequences, its execution time attracted our interest to develop a paral-
lel strategy. Additionally, the execution time is even higher in multiple
genome comparisons where several independent pairwise comparisons
are typically performed sequentially. After a careful study of the inter-
nal data dependencies of the GECKO modules, we noticed that most of
them were subject to an easy and efficient parallelization. The result is a
two-level parallel approach to accelerate multiple genome comparisons.
The first level is aimed at parallelizing each independent pairwise genome
comparison of a multiple comparison study to a different core. This level
is application-independent, we are using GECKO but any other equiv-
alent software can be used. The second level consists on the internal
parallelization of GECKO modules with evident enhancements in per-
formance while results remain invariant. After solving the problems of
combining the big amount of I/O operations overlapped with compu-
tation, the obtained speedups reflect the good efficiency of the devised
strategy.

1 Introduction

Two-level and more generally multi-level parallelism have been already applied
in a number of different fields including video coding, aerodynamics and shape
design [3,6,7]. After analysing the specifics of the application to be parallelized,
these multi-level approaches use either only message passing implementations
applied to the different levels, or merge the usage of MPI with OpenMP for
multi-core shared memory machines. In addition, some approaches such as [7]
use hybrid CPU-GPU implementations to accelerate the computation. Examples
of reasons motivating the use of these multi-level strategies are the mixture of
lightweight and heavyweight tasks or the dissimilar combination of computation
and I/O operations.

We have found that multiple and pairwise genome comparisons have the
mentioned computation patterns and are therefore suitable to be parallelized
c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 445–456, 2017.
DOI: 10.1007/978-3-319-58943-5 36

446 O. Torreno and O. Trelles

in multiple levels. The computational space and memory demands of current
software is significantly high for just comparing two long sequences. GECKO
[9] was designed to overcome these limitations of equivalent software. However,
although reporting shorter execution time compared to equivalent software, its
execution time is still big enough to study potential parallel approaches.

The problem becomes even more notorious when we aim at comparing a
set of genome sequences in what is referred as a multiple genome comparison
study. For such studies, pairwise genome comparison software is used, executing
it sequentially several times depending on the number of genomes under study.
If already at pairwise genome comparison level the execution time is important,
at the multiple genome comparison level it becomes even higher and therefore
more interesting from the computational point of view.

After analysing in more detail the parallelization possibilities, we noticed it
was possible to apply a two-level strategy. First, we observed that each pair-
wise genome comparison inside a multiple genome comparison is independent so
it represents an embarrassingly parallel problem. Second, and less obvious, we
detected that some of the GECKO modules were subject to be parallelized. For
instance, the first step of GECKO calculates a dictionary of K-mers (words of
length K), which may consume a significant amount of time for long sequences.
In this case, splitting the calculation of given word prefixes to different processors
could be a solution. Similarly, the rest of GECKO steps could be parallelized
with relatively simple strategies.

In this work, we present a two-level parallelization strategy designed to speed
up multiple and pairwise genome comparisons. Efficiency in both levels has been
obtained by using dynamic scheduling algorithms which generate the sufficient
number of tasks to overlap I/O and computation. Hybrid solutions using GPUs
are not considered in this work (but will be possibly considered in the future)
because the application is data intensive and the loading time to GPU memory
would govern the performance. The resulting strategy reduces the execution
time when the number of processors increase, especially while working with long
sequences. The code has been developed in C using the Open MPI library [1] (it
will be available under request). The associated binaries can be obtained from
http://bitlab-es.com/gecko.

2 Related Work

In the literature, several papers provide a review on HPC solutions applied to
pairwise and multiple sequence comparisons such as [8]. The solutions mentioned
in these papers use different architectures such as GPUs, FPGAs, multicores
and/or Intel Xeon Phi being able to compare at most sequences of up to hundreds
of millions of characters (108), as stated in [8]. The CPU implementations employ
fine-grained parallelism using different data distribution techniques. Some of the
CPU techniques report memory consumption of quadratic order, thus limit-
ing the size of the input sequence. FPGA implementations clearly accelerate
the process but they have important limitations. First, they can only handle

http://bitlab-es.com/gecko

Two-Level Parallelism to Accelerate Multiple Genome Comparisons 447

sequences up to 105 base pairs (bp), and second, almost all of them only report
the alignment score as output. GPU-based solutions accelerate the process as
well, but they also are limited in the length of the input sequence (108 bp). In
addition, most GPU implementations require quadratic space to report the align-
ment. A small number of Intel Xeon Phi implementations exist, which already
report better performance than GPU implementation in some cases.

Trying to benefit from the best part of each architecture, there already exist
a number of hybrid approaches using various devices simultaneously. Such solu-
tions implement two-level parallelization, in which in a first coarse-grained level
a set of sequences is assigned to each device. The second level (i.e. fine-grained)
often uses previously proposed algorithms/tools to compare the sequences. We
considered this two-level approach suitable to multiple genome comparisons
using GECKO. The reason why we are not using GPUs, FPGAs or Intel Xeon
Phi in this work is because of the mentioned input sequence size limitation faced
in such devices.

As reported in [8], even with the performance improvement of the HPC tech-
niques applied to the research field, the comparison of long sequences such as
human chromosomes still takes more than 9 h to complete. Therefore, our effort
in this paper concentrates in both reducing such execution time, removing the
input sequence size limitation and reporting the alignment together with quality
information such as the score (i.e. the main limitations of related approaches).

3 System and Methods

3.1 The Pairwise Genome Comparison Application

The latest release of GECKO program has been used in this work as the base
sequences comparison algorithm (see Algorithm 1). GECKO is a modular appli-
cation which calculates a set of conserved segments or High-scoring Segment
Pairs (HSPs) shared by two given input sequences. It has not been modified in
terms of functionality, however a number of minor changes were introduced in
order to be able to parallelize it.

The program starts by calculating a dictionary of words of length K (K-mers)
for each of the input sequences to be compared. The dictionary calculation scans
the sequence with a sliding window of length K and a step of 1 producing an
alphabetically sorted dictionary of K-mers together with their frequencies and
occurrence positions.

Using the dictionaries of both input sequences, a set of exact word matches
(seed points or hits) is produced. A hit is defined by the coordinates of the same
word in the input sequences, therefore, a given word Wi with frequencies f1 and
f2 in sequences 1 and 2 respectively, will produce f1 × f2 hits following all the
combinations.

In order to reduce the previously generated hits set, hits are sorted and
optionally filtered based on proximity. The next program compares the residues
present at each sequence starting where each hit occurs, adding or subtracting
a given value depending if the residues match or not. When the alignment score

448 O. Torreno and O. Trelles

becomes negative, the calculated alignment (using the maximum score reached)
is reported in case it passes the threshold parameters.

Algorithm 1. GECKO
1: Calculate a dictionary of K-mers for each input sequence.
2: Calculate a set of seed points based on the previously calculated dictionaries.
3: Sort (and optionally filter) the produced set of seed points.
4: Calculate the final set of HSPs based on the previous set of seed points.

As described in GECKO documentation, CPU time is mostly concentrated
in the sorting procedures ((1) and (3)) due to the amount of data to be sorted
what forces the program to use the hard disk. Therefore, our main effort will be
in the parallelization of such steps. Besides, steps (2) and (4) are also subject
to parallelization although they do not concentrate the major CPU time. The
parallelization speedup for these steps will be noticed mostly for long similar
sequences. All the steps (from (1) to (4)) have to be executed sequentially since
each step is using the output of the previous. However, there is still room to
internally parallelize each step.

3.2 Generic Overview of the Parallelization Approaches

Master-Slave. This approach has been applied to the two parallelization levels.
In the first level, we have applied a master-slave tasks distribution approach
to perform each pairwise genome comparison of a multiple genome comparison
study in a different core (see Fig. 1.A). In the second level, the slaves calculate the
partial result of the modules composing GECKO (see Fig. 1.B). This approach
considers at both levels as many slave processes as cores being used. The master
process reads the set of tasks from a workload file, which is generated by a
previous mapping process. Later the master distributes the tasks, assigning the
cores more tasks as soon as they become idle.

Considering the high number of I/O operations performed by GECKO mod-
ules, the master is assigning more than one task per core in order to overlap I/O
and computation. Additionally, this is done to reduce the overhead introduced
by sending tasks in separated messages. Depending on the number of processes
and the selected prefix size (as explained in Sect. 3.3), the task per core value
is either 2 (for number of cores power of 2) or 4 (for number of cores power of
4) in order to always have more than 1 task per core.

Balanced Splits Distribution. This strategy is similar to the master-slave
approach, but in this case the master and slaves are customised for the spe-
cific parallelized module, what contrasts with the generic ones of the previously
described strategy. Besides, the master calculates the offset coordinates of a bal-
anced set of independent data chunks, which are later processed by the slaves.

Two-Level Parallelism to Accelerate Multiple Genome Comparisons 449

Once all the partial results become available, the master produces the final out-
put. As in the previous approach, each processor is assigned either with 2 or 4
data chunks depending on the number of cores.

Fig. 1. Overview of the parallelization levels. Sub-figure A outlines how the strategy
starting from a list of genomes ends performing each independent pairwise genome
comparison in a separate worker. Sub-figure B shows the performed parallelization
within the internal modules of GECKO.

3.3 Details of the Parallelization Strategies of the Second Level

Parallelization Strategy for the ‘Dictionary Step’ [Step (1)]. The par-
allelization of this step is performed in two levels. The first and simpler level,
is the parallelization at sequence level, since the dictionary calculation of each
sequence is independent. The second level, splits the dictionary calculation in
N tasks, being N = 4PrefixSize. PrefixSize indicates the size of the prefix
to be used to split the work, so special care with its value must be taken
in order to have the correct number of tasks as explained in the Sect. 3.2.
The alphabet used for the K-mers is Σ = {A,C,G, T}, so when the paral-
lelization is made with PrefixSize = 2, 16 tasks are generated. Such tasks
calculate words starting with the following prefixes (in alphabetical order):
AA,AC,AG,AT, ..., CA,CC, ..., TT .

450 O. Torreno and O. Trelles

Parallelization Strategy for the ‘Hits Step’ [Step (2)]. This step cal-
culates the matches between the N previously calculated sub-dictionaries suit-
able to produce matches. For example, if the dictionaries were calculated with
N = 16 then we have 16 comparisons, reference.dict-AA against query.dict-AA,
reference.dict-AC against query.dict-AC, etc. The workload generation when the
dictionaries were calculated with the same parameters in both cases is straight-
forward, but when they were calculated with different values then it is a little
bit more difficult. For instance, if the dictionary was calculated using N = 4 and
N = 16 respectively for each of the input sequences, the tasks are: reference.dict-
A against query.dict-(AA, AC, AG, AT), reference.dict-C against query.dict-
(CA, CC, CG, CT), etc. At the end of the computation, a reduce task just
concatenates each partial output file. This last step needs to be done because
later the sorting step requires the input data in one single file.

Parallelization Strategy for the ‘Sorting Hits Step’ [Step (3)]. This step
has been parallelized with a message-passing implementation of the quicksort
algorithm. The master sends to the workers the coordinates of the file that they
have to sort. The workers sort these parts and write their partial sorted chunk.
Once all the chunks are sorted, the master assigns merging tasks to the workers
following a hierarchical merge algorithm.

Parallelization Strategy for the ‘FragHits Step’ [Step (4)]. In this case
the parallelization strategy splits the input hits file in groups of diagonals (i.e.
an arbitrary value defined as the difference of the positions in the query and ref-
erence sequences respectively). The reason behind this data splitting strategy is
that hits belonging to the same diagonal have data dependencies. The extension
of a hit could cover a further one within the same diagonal and this covered hit
should in turn not be extended because it will produce a fragment contained in
the previous one. In order to have a balanced set of tasks the number of diag-
onals varies depending on the numer of hits they contain. A final reduce step
concatenates the partial results producing a unique HSPs file equivalent to the
one generated by the sequential version.

4 Results

In this section, the performance of the applied paralellization strategies in terms
of speedup and reduced time is illustrated. All the speedup curves contained
in this document reflect the average execution time of 10 runs. A number of
different tests are used to illustrate the performance achievement on each of the
parallelized levels. These tests are using input data ranging from short to large
sequences and also different tasks per core values due to the high number of
I/O operations performed by some modules. In addition to the performed tests
to each step of the second parallelization level, the multiple genome comparison
and overall application speedups are shown to illustrate the gains achieved by
the presented two-level parallelization strategy.

Two-Level Parallelism to Accelerate Multiple Genome Comparisons 451

4.1 Infrastructure

This new implementation has been tested in the fat nodes of the Picasso super-
computer located at the University of Málaga (Málaga, Spain). Each fat node has
2 TB of RAM and eight Intel E7-4870 processors, which deliver 96 Gflop/s. For
the first parallelization level only one node has been used until the measurement
of 64 cores and two nodes for the 128 cores measurement. For the second paral-
lelization level only one node has been used, requiring no MPI communication
over the network, since each node has 80 cores and the speedup measurements
are made until 32 cores.

4.2 Dataset

The selected test datasets contain several public available sequences1 of different
sizes in order to thoroughly study the speedup of the two parallelization levels. In
the first level, we are using two sets of 30 and 40 small sequences of Mycoplasma
genus with an average length of 1 Mbp. Both sets contain sequences sharing
different level of similarity ranging from closely to remotely related sequences.
The dataset to test the internal parallelization level is composed of bacteria
and mammalian sequences ranging from 5 to 410 Mbp. The large mammalian
sequences (Homo sapiens (HS) and Macaca Mulatta (MM)) are used in two tests.
The first test uses the chromosome 1 of both mammalian sequences (from now
on the test will be referred as HS-MM(chr1)), while the second one compares
the concatenation of chromosomes 1 and 2 of each species in order to conform a
longer sequence (the test will be referred as HS-MM(chr1+2)).

Fig. 2. A: Total application speedup; B: Multiple genome comparison speedup

1 http://www.ncbi.nlm.nih.gov/genome/.

http://www.ncbi.nlm.nih.gov/genome/

452 O. Torreno and O. Trelles

Fig. 3. A: Dictionary step speedup; B: Hits step speedup; C: Sort hits step speedup;
D: FragHits step speedup.

4.3 Speedup of the Performed Two-Level Parallelization

The parallelization strategy of the first level applied to enhance multiple genome
comparisons follows the speedup curve shown in Fig. 2.B. This figure contains
two series, which show the speedup of the all against all comparison of the
30 and 40 genomes sets described in Sect. 4.2. The speedup curve of the 30
genomes set accounts for 435 pairwise genome comparisons, whereas the second
curve of 40 genomes set comprises 780 pairwise genome comparisons. It is worth
mentioning that an all vs. all comparison of N genomes accounts for N∗(N−1)/2
comparisons given the symmetry property of a pairwise comparison.

The devised strategies in the second parallelization level follow the speedup
curves shown in Figs. 3 (A, B, C and D; which relates in order to the steps of
Algorithm 1) and 2.A, which shows the overall application speedup.

Two-Level Parallelism to Accelerate Multiple Genome Comparisons 453

5 Discussion

5.1 Speedup of the Multiple Genome Comparison Study

The speedup of the first parallelization level (see Fig. 2.B) indicates that the
application is scalable. It is worth noting that until 16 PE, both series (i.e. 30
and 40 genomes) have a speedup close to the theoretical one or even super-linear
because of the overlap between I/O and computation produced while executing
several comparisons at the same time. From 32 PE onwards, the speedup of the
30 genomes series degrades because there are not enough tasks for the available
cores. In contrast, the 40 genomes series, which generates a higher number of
tasks, keeps scaling closer to the theoretical speedup with an efficiency of 65.98%
in the worst case.

5.2 Dictionary Step Speedup

Results are good when the sequence size is big enough as can be observed
in Fig. 3.A, having reached accelerations above the theoretical until 8 PE for
E.coli, 32 PE for HS-MM(chr1) and 16 PE for HS-MM(chr1+2). The perfor-
mance reduction that can be observed in the E.coli series is produced by its
short length, which is on of the parameters that conducts the compute time.
It is worth noting that the speedup of the longest sequence (HS-MM(chr1+2))
is not the best as it is supposed to be, based on previous assumptions, mainly
because of the higher I/O load. It is also important to note that the application
scales good until 16 PE, from where the super-linear speedup turns into normal
speedup. We believe that the cause of this behaviour could be that the required
number of I/O operations is very high, what is not giving a good computation-
I/O ratio. Furthermore, since processes within the same physical node share the
filesystem, this could be also a bottleneck in this case.

5.3 Hits Step Speedup

We can observe two interesting aspects in the speedup curves of the hits step
(see Fig. 3.B). First, the super-linear speedup achieved in the cases of 2 and
4 PE for the longer sequences (HS-MM(chr1+2) and HS-MM(chr1)). This is
caused again by the fact of having simultaneous executions in each node over-
lapping computation and I/O operations. The second aspect, the reduction of
the speedup just after obtaining the super-linear one (after 4 PE in one case
and 2 PE in the other cases). Here, we believe that writing the output file is
consuming most of the time due to its size (around 78 GB for HS-MM(chr1) and
252 GB for HS-MM(chr1+2)). In consequence, adding more cores, which provide
processing power, does not speed up the process. With regards to the shortest
sequence (E.coli), the output file is much smaller, but the situation remains the
same, because in essence the ratio between compute and I/O is similar.

454 O. Torreno and O. Trelles

5.4 Sort Hits Step Speedup

Similarly to the hits step, we can also observe in the speedup of this module (see
Fig. 3.C) a super-linear speedup until 16 PE for E.coli, 4 PE for HS-MM(chr1)
and 2 PE for HS-MM(chr1+2). However, in this case the reason resides in the
data fitting in main memory instead of working with it stored on the hard disk.
Although the curve shapes are similar, the speedup achieved in the case of HS-
MM(chr1) for 4 PE (6.13) is higher than the obtained in the hits step (5.34).
Besides super-linearity, the speedup is again reduced due to the size of the files
to be read and written. In constrast, in the short sequences series, the super-
linear speedup is also achieved for 16 PE, what confirms our assumption of the
bottleneck caused by the size of the output file.

5.5 FragHits Step Speedup

For this step, in the case of long sequences, the speedup is again super-linear until
4 PE for the HS-MM(chr1+2) case and until 16 PE for HS-MM(chr1). Although
the speedup is super-linear at the beginning, the efficiency level degrades, result-
ing in 60.06% in HS-MM(chr1) and 49.84% in HS-MM(chr1+2) with 32 PE.
Again the results for short sequences demonstrate that the computational work-
load is not big enough in such case to take profit of a parallel strategy.

5.6 Overall Application Speedup in a Pairwise Comparison

The speedup curves shown in Fig. 2.A confirm what we explained in previous
sections. The application reports super-linear speedup until 8 PE (except for
HS-MM(chr1+2), reasons in Sects. 5.3 and 5.4). In addition, starting from 16
PE, the performance does not improve, what is normal due to parallelization
overheads compared to the actual computation as well as the high I/O load
the application has. It is important to note that although for many steps the
speedup for the shortest sequence was not that good, the efficiency of the overall
application is acceptable until 16 PE (61.25%) and the speedup is even better
than the one of the two long sequences, mostly because the speedup is better in
the most time consuming step (i.e. sort hits).

5.7 Time Reduction

Although the speedup curves in some cases suggest not particularly good effi-
ciency levels, the time reduction has been considerable. In the first parallelization
level, although the efficiency for the 30 genomes series is not good, the execution
time has been reduced to 10 s compared to the 250 s of the sequential execution.
In the second parallelization level we can observe a similar situation. Although
for some GECKO modules the speedup is not good, the overall time reduction is
significant. For instance, for the case of HS-MM(chr1+2) using 16 PE the time
has been reduced to 49 min from the 5 h and 11 min of the sequential execution.

Two-Level Parallelism to Accelerate Multiple Genome Comparisons 455

6 Conclusions

In this work we have approached the parallelization of multiple genome com-
parisons following a two-level strategy. The first level is aimed at parallelizing
each independent pairwise genome comparison of the multiple comparison study
to a different core. The second level consists on the parallelization of GECKO
modules with evident time reduction while results remain invariant. Although
the second parallelization level is customised for GECKO, the first one is generic
enough to be used with any of the GECKO equivalent applications. The reason
behind selecting GECKO is that it produces results of higher quality without
computational barriers compared to current top methods such as MUMmer [5]
or Mauve [2] as stated in [9].

To decrease the scheduling cost in the master process we implement a simple
mapping of tasks to the available workers, assigning them a new set of tasks as
soon as they became idle. This scheduler introduces a tasks per core parameter
which allows the user to overlap the execution of tasks, what we found specially
useful in terms of performance while working with a disparate combination of
CPU and I/O bounded applications. In fact, the overlapping of I/O and com-
putation is producing the super-linear speedups shown in the figures included in
this document.

Tests in the first parallelization level have been performed using two different
datasets of 30 and 40 genomes respectively. The selected dataset in this case
represents the most typical multiple genome comparison study, which is the
comparison of short sequences given that around 75% of the available sequences
are short sequences2. However, the obtained results indicate that it would be
possible to use long sequences as well. The obtained speedup in the 30 genome
sequences set indicates that from 32 PE onwards the number of tasks is not
sufficient. However, in the 40 genomes set the speedup maintains good efficiency
levels beyond that point.

In the second parallelization level, tests using different sequence lengths have
been performed, since this is one of the parameters governing the execution time.
The obtained results show that all GECKO modules reduce significantly their
execution time, although in terms of speedup with a high number of cores the
results are not specially prominent. Analysing the speedup, we can extract the
correct number of PE for each of the modules. In the case of the dictionary
module this value is 32 PE (although for the short sequence the efficiency is not
good). The hits and sort hits steps report asymptotic speedups, which are good
in terms of efficiency until 8 PE in both cases. For the last application module
(i.e. FragHits), the efficiency is acceptable until 32 PE for the long sequences
cases and clearly not worthing to be parallelized for the short sequences case. The
different values of number of PE suggest that the use of auto-scaling architectures
such as cloud computing could be suitable for this application.

It is worth noting that the biological problem addressed here is really
important. In fact, in comparative genomics the core applications include the

2 https://gold.jgi.doe.gov/statistics.

https://gold.jgi.doe.gov/statistics

456 O. Torreno and O. Trelles

competitors of GECKO (e.g. MUMmer, Mauve, Lastz [4]). Using this two-level
parallel strategy for multiple genome comparisons, the researchers have a faster
way to study a given sequence. The original version of GECKO was already able
to compare two concatenated chromosomes in less time than parallel methods,
which take 9 h as reported in [8]. The parallel version presented in this document
reduces the execution time even further reducing it to 49 min. Additionally, this
faster way of comparing multiple genomes allow users contrasting the current
evolutionary models.

As future work, we plan to test it with more input sequences and in a different
system in terms of number of processors and underlying filesystem. We sincerely
hope, that this tests will reinforce the fact of the results obtained with the devised
parallelization strategies described in this document.

Acknowledgements. This work has been partially supported by the European
projects Mr. Symbiomath (grant no. 324554) and Elixir-Excelerate (grant no. 676559),
and the Spanish national projects “Plataforma de Recursos Biomoleculares y Bioin-
formáticos” (ISCIII-PT13.0001.0012) and RIRAAF (ISCIII-RD12/0013/0006).

References

1. Open MPI. https://www.open-mpi.org/
2. Darling, A.E., Mau, B., Perna, N.T.: progressivemauve: multiple genome alignment

with gene gain, loss and rearrangement. PLoS One 5(6), e11147 (2010)
3. Duvigneau, R., Kloczko, T., Praveen, C.: A three-level parallelization strategy for

robust design in aerodynamics. In: Proceedings of 20th International Conference on
Parallel Computational Fluid Dynamics, pp. 379–384 (2008)

4. Harris, R.: Improved pairwise alignment of genomic DNA. Ph.D. dissertation, The
Pennsylvania State University (2007)

5. Kurtz, S., Phillippy, A., Delcher, A.L., Smoot, M., Shumway, M., Antonescu, C.,
Salzberg, S.L.: Versatile and open software for comparing large genomes. Genome
Biol. 5(2), R12 (2004)

6. Marco, N., Lanteri, S.: A two-level parallelization strategy for genetic algorithms
applied to optimum shape design. Parallel Comput. 26(4), 377–397 (2000)

7. Momcilovic, S., Roma, N., Sousa, L.: Multi-level parallelization of advanced video
coding on hybrid CPU+GPU platforms. In: Caragiannis, I., et al. (eds.) Euro-
Par 2012. LNCS, vol. 7640, pp. 165–174. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-36949-0 19

8. Sandes, E., Boukerche, A., Melo, A.: Parallel optimal pairwise biological sequence
comparison: algorithms, platforms, and classification. ACM Comput. Surv. (CSUR)
48(4), 63 (2016)

9. Torreno, O., Trelles, O.: Breaking the computational barriers of pairwise genome
comparison. BMC Bioinf. 16(1), 1 (2015)

https://www.open-mpi.org/
http://dx.doi.org/10.1007/978-3-642-36949-0_19
http://dx.doi.org/10.1007/978-3-642-36949-0_19

Improving Bioinformatics Analysis of Large
Sequence Datasets Parallelizing Tools

for Population Genomics

Javier Navarro1, Gonzalo Vera2, Sebastián Ramos-Onsins2,
and Porfidio Hernández1(B)

1 Universitat Autonòma de Barcelona, Bellaterra, Spain
{javier.navarro,porfidio.hernandez}@uab.es

2 Center for Research in Agricultural Genomics, Barcelona, Spain
{gonzalo.vera,sebastian.ramos}@cragenomica.es

Abstract. Next-generation sequencing (NGS) technologies initiated a
revolution in genomics, producing massive amounts of biological data
and the consequent need for adapting current computing infrastructures.
Multiple alignment of genomes, analysis of variants or phylogenetic tree
construction, with quadratic polynomial complexity in the best case are
tools that can take days or weeks to complete in conventional computers.

Most of these analysis, involving several tools integrated in workflows,
present the possibility of dividing the computational load in independent
tasks allowing parallel execution. Determining adequate load balancing,
data partitioning, granularity and I/O tuning are key factors for achiev-
ing suitable speedups.

In this paper we present a coarse-grain parallelization of GH caller
(Genotype/Haplotype caller), a tool used in population genomics work-
flows that performs a probabilistic identification process to account for
the frequency of variants present between population individuals. It
implements a master-worker model, using the standard Message Passing
Interface (MPI), and concurrently and iteratively distributes the data
among the available worker processes by mapping subsets of data and
leaving the orchestration to the master process. Our results show a per-
formance gain factor of 260x using 64 processes and additional optimiza-
tions with regard to the initial non-parallelized version.

Keywords: Bioinformatics · NGS · Population genomics · Variant
analysis · Parallelization · Scalability

1 Introduction

More than a decade ago bioinformatics analysis experienced a major revolution
with the introduction of NGS technologies, able to produce millions of DNA
fragments at very high speed [11,12]. Higher volumes of experimental data have
a great impact in multiple areas, where an increase in the amount of obser-
vations improves the statistical power and hence the accuracy of results. Vari-
ability analysis in population genomics is an example where researchers take
c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 457–467, 2017.
DOI: 10.1007/978-3-319-58943-5 37

458 J. Navarro et al.

advantage of large-scale data volumes by incorporating more individuals and
increasing DNA coverage in their experiments [16]. Originally driven by theo-
retical approaches, population genomics needs to test their models and validate
its hypothesis using large amounts of sequencing data which require high perfor-
mance technologies for its processing. In this context, population genomics has
become a data-driven discipline. By contrast, there is a wide gap between data
production and current processing capabilities. This divergence results in the
need of providing new methods and solutions in the field of high performance
computing. A typical case of variant analysis involves the identification, catalog,
and map of variations at a single position (locus) in a DNA sequence among
individuals, also known as single nucleotide polymorphism or SNP. The num-
ber of tools and its relation inside analytical workflows depends on each specific
study [13], but we can identify three common stages illustrated in Fig. 1. First
stage is performed to prepare raw input data (preprocess), followed by a main
processing stage like SNP calling (process), and a final stage where results are
arranged for its review.

Fig. 1. An example of generic workflow used in variant analysis.

Bioinformatics tools like Samtools [8], GATK [1] or ANGSD [7] have been
mainly designed for detecting SNPs while keeping lower false discovery rates,
but not for the analysis of variability. In this work we present a coarse-grain
parallelization of the software Genotype/Haplotype caller (GH caller) [13]. This
program is developed for the analysis of variability and implements the Roesti
et al. [14] algorithm to accurately account the number of effective positions and
the frequency of the variants, making this tool highly suitable for population
genomics studies. We show that our parallel implementation can provide a per-
formance advantage when using a data-intensive computing system (cluster).

Improving Bioinformatics Analysis 459

The remaining of the paper is organized as follows. Section 2 reviews the
original serial application GH caller. Our proposal and MPI implementation are
described in Sect. 3 while its performance is analyzed in Sect. 4. Final conclusions
and outlines of our future work are described in Sect. 5.

2 GH Caller

GH caller implements the Roesti algorithm [14], which is based in the algorithms
proposed by Hohenhole et al. [4] and Lynch [10]. The main difference with other
SNP callers is that GH caller counts the number of chromosomes that are effec-
tively read per site, so that it makes unbiased in relation to the frequency of the
variants for neutrality tests and to the calculation of the nucleotide variability.

As input, GH caller takes pileup or mpileup file formats obtained from bam
files [9] produced in previous steps of a variant analysis workflow. The pileup or
mpileup format is a text-based format for summarizing the base calls of aligned
reads to a reference sequence. This format describes the base-pair information
at each chromosomal position, and one line contains the information of all the
individuals at this position (locus). The output of GH caller is a fasta file with
two sequences per individual and a length equal to the total length of the input
sequence in mpileup.

Table 1 shows an example of sizes used as input and output data, and execu-
tion time of GH caller using these data sets. First column represents the number
of individuals (bam files) used to create the mpileup input file; second column
indicates the total size of the resulting mpileup. These files were obtained from 50
different bam files, and represent only one chromosome (chromosome 1) from the
pig genome. Third column shows the size of the output fasta file. Last column
shows the elapsed execution time using the original application. These figures
show that the execution time increases with the problem size. For the case of 50
individuals and one chromosome (an input file of 283 GBytes) the time elapsed
exceeds 60.000 s. It is not hard to foresee that as soon as NGS costs drop another
fraction, researchers will be willing to analyze full genomes what it will easily
require several days to process. These evidences make this problem worth to be
analyzed in order to reduce execution times and improve resource usage.

Table 1. Execution time obtained by running the original application using different
data sets.

Individuals Input (GB) Output (GB) Time (s)

10 67 6 13,058

20 125 12 24,961

30 182 18 37,991

40 231 24 51,793

50 283 50 63,626

460 J. Navarro et al.

Fig. 2. Independent rows from the input mpileup file can be processed to generate
known positions of the output fasta file.

In order to analyze the original application (serial), Fig. 2 shows the schema
of how data is processed through the main flow of execution. The main steps are:
First, it obtains all the information needed to apply the SNP algorithm at a given
position (locus), reading a full line from the mpileup file. Next, for each locus
GH caller applies the SNP calling algorithm and generates the corresponding
output. Finally, all results are stored in memory and, at the end of execution,
they are written to disk. Because all information is self-contained in each locus
and there is no data dependency to apply the SNP calling algorithm, we can
ensure that this problem is embarrassingly parallel, and hence it can be divided
into components that can be executed concurrently. Next section will shows the
strategy applied to parallelize this application.

3 Parallelization

The parallel implementation takes advantage of the inherent data parallelism
found in the Roesti algorithm [14]. As we shown in previous section, this algo-
rithm is applied independently in each site (locus), so this problem is embarrass-
ingly parallel. Thanks to this property, we can split input data in groups of n loci
and distribute them in chunks among the available processing units, where all
the computations will be performed in parallel. The main parallelization phases
are the following:

(1) All processors initialize the parallel environment;
(2) the main process (master) indexes the input file and maps the input data to

other processes (workers);
(3) the parallel computations start asynchronously on each worker. Locally, each

process reads and parses a subset of data (‘Read’ and ‘Parse’), applies the
base calling algorithm to these data (‘Process’), and finally writes his partial
results to the final fasta output file (‘Write’);

(4) if it was selected as a command line option, a synchronization point (barrier)
is used to allow the master process append a reference/outgroup sequence.

Phases 1 and 3 are independent and only need synchronization, hence are per-
formed in parallel, while phases 2 and 4 are serial and must be performed in
order. The master-worker model implemented is illustrated in Fig. 3.

Improving Bioinformatics Analysis 461

Fig. 3. Master starts indexing the input file and it generates tasks. For each task, a
worker reads and parses its data, applies the SNP calling algorithm and writes down
its output. Finally, if set, the master appends a reference sequence to the output file.

Domain Decomposition

Our application uses the standard Message Passing Interface (MPI) [3] and dis-
tributes the data among the available processors by mapping subsets of data
(hereinafter “chunks”) in an uniform way, giving one to each worker process at
a time. Index and map operations are carried out by the master process. All
workers open the input file and read the part of the assigned data. Finally, they
process its data using the algorithm described in the previous section (Fig. 4).

This master-worker model provides two main advantages: First, it allows the
implicit parallelization of input/output operations along all workers. Second, as
not all these chunks needs the same time to be processed, the master process
can apply a load balancing strategy that distributes chunks dynamically across
multiple workers. Futhermore, each chunk does not need to be replicated at the
local memory of any other process, so memory used is released when data is
written to disk: this allows GH caller to take advantage of working with data

Fig. 4. Master performs a domain decomposition process mapping subsets of data to
each worker.

462 J. Navarro et al.

sets without size limits and use the whole memory available to the bunch of
allocated processors, at the same time.

Pre-calculating Complex Operations

As described in Sect. 2, to complete the SNP calling process, we should apply the
same formulas to all positions (loci). Since the scope of these operations is well-
known and limited to a set of numbers, we created an array that holds a set of
pre-computed results and use it as a Look-Up-Table (LUT). This approach allows
to transform a set of slow complex calculations into faster memory accesses. As
a result, we reduced a fraction of high cpu costs accumulated over all the SNP
calling iterations.

4 Experimentation and Results

The main objective of the experiments proposed here are to evaluate the benefits
obtained in our parallel approach by comparing both applications, serial and
parallel versions, in terms of effective usage of variable computational resources
using the same data.

Experimental Platform

The experimental platform used is a cluster composed by 8 nodes. Each node
has 12 cores in 2 Intel Xeon X5660 processors with a frequency of 2.8 GHz, and
96 GBytes of RAM. The total number of available cores on this platform is 96
with 768 GBytes of RAM. These nodes are connected via 10 Gbit Ethernet links
and run Scientific Linux version 6.3.

Our application was evaluated using the parallel file system Lustre, version
2.5.3 configured with 1 Metadata Server (MDS) and 2 object storage servers
(OSS), which were connected to the same 10 Gbit Ethernet network. These
Lustre servers manage up to 8 Object Storage Target (OST, that stores the
data) with a size of 10 TBytes each. OSTs are served by two Storage Arrays
(SAN) via 8 Gbit/s fiber channel links. A total of 80 TBytes of space is available
to the entire cluster with a default stripe size of 1 Mbyte. We used mpicxx
for OpenMPI version 1.8.8, and gcc 4.9.1 to compile all the codes, with −03
optimization enabled.

Experimental Setup

The performance of GH caller is evaluated using the execution time, speedup,
and efficiency. These metrics are important because reducing execution time is
the main concern to parallelize our application, speedup allows us to know how
performs our solution while scales up the number of resources, and efficiency
indicates how much of the resources are being used by our implementation.

Improving Bioinformatics Analysis 463

First, we obtain the execution time of the original GH caller (serial) using
only one core as computational resources (T1). This value is used as a baseline
to compare gains obtained regarding with the execution time used by our new
parallel version (TN). Although there are different definitions of speedup [15], we
define the relative speedup obtained by the parallel program, Q, when solving a
instance of instance I of size i, using NP processes as follows:

RelativeSpeedup(I,Q) =
T(I,1)

T(I,NP)
(1)

Where T(I,1) is the time to solve I using program Q and 1 process. Because
our application uses a master-worker scheme, this value corresponds to TI,2 (2
processes using 2 cores). T(I,NP) is the time to solve I using program Q and NP
processes.

We performed each experiment ten times and kept the average execution
time. In all the experiments performed we used the case of 10 individuals, all
from the chromosome 1 of the pig genome. Sizes of input and output files used
in this example are show in first row of Table 1.

Execution Time and Scalability

Table 2 shows all results obtained from serial and parallel execution, scaling
up the parallel implementation from 2 to 96 cores, and showing the obtained
execution times, relative speedup, efficiency and gains with respect to the original
version. As we can observe, execution times has been drammatically reduced
thanks to the parallelization, while maintaining high efficiency figures (above
80%) until it reaches 64 processes, where the benefits of adding more resources
begins to decrease.

In order to clearly show and appreciate gains obtained respect the original
version, Fig. 5 plots and compares execution time of different implementations of
GH caller. First column represents the original serial implementation, whereas
next columns are results from parallel executions. As can be observed, using

Table 2. Results obtained running GH caller scaling up to 96 cores.

NP Workers Time (s) Speedup Efficiency Gain factor

1 – 13058.0 – – 1

2 1 2162.6 1.00 1.00 6.0

4 3 725.6 2.98 0.99 17.9

8 7 327.2 6.61 0.94 39.9

16 15 161.9 13.36 0.89 80.6

32 31 84.6 25.56 0.82 154.3

64 63 49.7 43.47 0.69 262.7

96 95 54.8 39.46 0.42 238.2

464 J. Navarro et al.

0

2500

5000

7500

10000

1 2 4 8 16 32 64 96
Number of cores

Ex
ec

ut
io

n
tim

e
(s

)

Fig. 5. Execution time increasing the number of workers on cluster up to 96 processes.

only 2 processes - a Master and a Worker - using this parallel implementation it
reduces in 6x total execution time, due to improvements made in SNP algorithm
internal calculations, parallelization of input/output tasks, and use of buffers to
reduce total number of input/output operations. Furthermore, if we compare
execution time using 64 cores, our results show a significant reduction in the
time with respect to the original version, from 13,000 s to nearly 50 s. Looking at
these results, we can observed that the execution time can be reduced by adding
computational resources up to 260x, by using 64 cores and MPI processes. Never-
theless, these gains start to decrease when using all the available computational
resources, a total of 96 cores, proving that there are some scalability issues.

In order to show plainly these issues, at Fig. 6 we plot relative speedup and
efficiency. Dashed lines at these figures represent linear speedup and ideal effi-
ciency, respectively. As described above, there are no data dependencies process-
ing each chunk, as a result we can expect a linear speedup when scaling up the
number of resources. However, we observe scalability issues using more than 64
processes, and these problems can be appreciate more clearly observing the effi-
ciency values obtained. In fact, relative speedup obtained with 96 processes is
limited to 39, clearly showing a low efficiency, with a value obtained of 42% of
effectiveness. This low efficiency will be discussed in the next section.

Bottleneck Analysis

The work done in this section should distinguish the overhead introduced by
each phase and identify the main reasons. First, like other analysis tools [6], we
intercept the MPI calls to instrument the application. We use the MPI Parallel

Improving Bioinformatics Analysis 465

Fig. 6. Relative speedup and efficiency for an increasing number of workers on cluster.
MPI configuration is started with 2 MPI processes with a process working as master,
and one Worker to perform heavier computational tasks.

Environment (MPE) library [17] in our parallel application to log custom events
and perform further analysis. Next, as MPE logging is accompanied by very
precise time stamps, we used output log traces created by MPE in clog2 format
to profile all executions and extract the execution time used in all application
phases described in Sect. 3.

Figure 7 shows the total CPU time used by all processes in each phase: read
the buffer from disk, parse data, apply SNP caller algorithm (process), and finally

0

1000

2000

3000

4000

2 4 8 16 32 64 96

Cores

To
ta

l C
PU

 ti
m

e
(s

)

Phases
Wait
Read
Parse
Process
Write

Fig. 7. Total CPU time used in each phase. Ideally, it should be equal in all executions
independently of the number of processes.

466 J. Navarro et al.

write results to disk. It clearly shows the impact of contention on the I/O system
when we scale up the number of MPI processes. Ideally, with no overhead, the
sum of total execution time used by all the processes in each phase should remain
constant, but we can observe an overhead in both read and write phases, but it is
particularly relevant at the last one. Indeed, when a limited number of processes
(np < 64) perform read and/or write operations, accumulated time used in all
phases remains almost constant. Nevertheless, when we scale up the number of
processes, the impact of I/O, specially in write operations, increases execution
time more than 2x over the ideal using 96 processes.

We can conclude that when scaling up the number of MPI processes (np >
64), it ends in a situation with I/O contention during the write phase. In order
to mitigate this situation, that leads in a poor scalability, future work should
be oriented to improve this writing phase, in a way that results optimal to the
underlying distributed file system characteristics.

5 Conclusions and Future Work

In this work we have described the parallelization of GH caller using a master-
worker strategy with the MPI library. We have shown that our parallel implemen-
tation can provide a performance advantage using a data-intensive computing
system (cluster), reaching a performance gain factor of 260x using 64 processes
and additional optimizations with regard to the initial non-parallelized version.
Although execution time can considerably be reduced by adding more computa-
tional resources, we measured a poor efficiency when we scale up the number of
MPI processes above a certain limit. The main reason is that our implementation
is not optimized for parallel I/O and cannot take advantage of existing advanced
techniques in this field, thus leading to poor performance when there are many
(np > 64) MPI processes writing to the same output file [2]. Future work could
explore the possibility of applying different techniques already employed by spe-
cialized input/output libraries in high performance computing, like ROMIO (a
MPI-IO implementation) [5].

Source code and instructions to compile are freely available to download at
https://bioinformatics.cragenomica.es/projects/ghcaller.

Acknowledgments. We would like to thank the original author of GH caller [13],
Bruno Nevado, for his comments and support. We are also very grateful with Joan
Jené for the support and help provided.

This work was supported by Ministerio de Ciencia y Tecnoloǵıa (Spain) under
project number TIN2014-53234-C2-1-R, and Ministerio de Economı́a y Competitividad
(grant AGL2013-41834-R) to S.E.R.-O.

References

1. Cheng, A.Y., Teo, Y.Y., Ong, R.T.H.: Assessing single nucleotide variant detec-
tion and genotype calling on whole-genome sequenced individuals. Bioinformatics
30(12), 1707–1713 (2014)

https://bioinformatics.cragenomica.es/projects/ghcaller

Improving Bioinformatics Analysis 467

2. Corbett, P., et al.: Overview of the MPI-IO Parallel I/O Interface. In: Jain, R.,
Werth, J., Browne, J.C. (eds.) Input/Output in Parallel and Distributed Com-
puter Systems, vol. 362, pp. 127–146. Springer, Heidelberg (1996). doi:10.1007/
978-1-4613-1401-1 5

3. Forum, M.P.: MPI: a message-passing interface standard. Technical report,
Knoxville, TN, USA (1994)

4. Hohenlohe, P.A., Bassham, S., Etter, P.D., Stiffler, N., Johnson, E.A., Cresko,
W.A.: Population genomics of parallel adaptation in threespine stickleback using
sequenced RAD tags. PLoS Genet 6(2), e1000862 (2010)

5. Liao, W.K., Choudhary, A.N.: Dynamically adapting file domain partitioning
methods for collective I/O based on underlying parallel file system locking pro-
tocols. In: SC 2008, p. 3. IEEE/ACM (2008). http://dblp.uni-trier.de/db/conf/
sc/sc2008.html#LiaoC08

6. Knüpfer, A., Brunst, H., Doleschal, J., Jurenz, M., Lieber, M., Mickler, H., Müller,
M.S., Nagel, W.E.: The vampir performance analysis tool-set. In: Resch, M., Keller,
R., Himmler, V., Krammer, B., Schulz, A. (eds.) Tools for High Performance Com-
puting, pp. 139–155. Springer, Heidelberg (2008). doi:10.1007/978-3-540-68564-7 9

7. Korneliussen, T., Albrechtsen, A., Nielsen, R.: ANGSD: analysis of next generation
sequencing data. BMC Bioinform. 15(1), 356 (2014)

8. Li, H.: A statistical framework for SNP calling, mutation discovery, association
mapping and population genetical parameter estimation from sequencing data.
Bioinformatics 27(21), 2987–2993 (2011)

9. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth,
G., Abecasis, G., Durbin, R.: 1000 genome project data processing subgroup: the
sequence alignment/map format and samtools. Bioinformatics 25(16), 2078–2079
(2009)

10. Lynch, M.: Estimation of nucleotide diversity, disequilibrium coefficients, and
mutation rates from high-coverage genome-sequencing projects. Mol. Biol. Evol.
25(11), 2409–2419 (2008)

11. Mardis, E.R.: A decade’s perspective on DNA sequencing technology. Nature
470(7333), 198–203 (2011). http://dx.doi.org/10.1038/nature09796

12. Metzker, M.L.: Sequencing technologies - the next generation. Nat. Rev. Genet.
11(1), 31–46 (2010)

13. Nevado, B., Ramos-Onsins, S.E., Perez-Enciso, M.: Resequencing studies of non-
model organisms using closely related reference genomes: optimal experimental
designs and bioinformatics approaches for population genomics. Mol. Ecol. 23(7),
1764–1779 (2014)

14. Roesti, M., Hendry, A.P., Salzburger, W., Berner, D.: Genome divergence during
evolutionary diversification as revealed in replicate lake-stream stickleback popu-
lation pairs. Mol. Ecol. 21(12), 2852–2862 (2012)

15. Sun, X.H., Gustafson, J.L.: Toward a better parallel perfor-
mance metric. Parallel Comput. 17(10–11), 1093–1109 (1991).
http://dx.doi.org/10.1016/S0167-8191(05)80028-6

16. Wetterstrand, K.: DNA Sequencing Costs: Data from the NHGRI Genome
Sequencing Program (GSP). http://www.genome.gov/sequencingcosts

17. Wu, C.E., Bolmarcich, A., Snir, M., Wootton, D., Parpia, F., Chan, A., Lusk,
E., Gropp, W.: From trace generation to visualization: a performance framework
for distributed parallel systems. In: Proceedings of SC 2000: High Performance
Networking and Computing, November 2000

http://dx.doi.org/10.1007/978-1-4613-1401-1_5
http://dx.doi.org/10.1007/978-1-4613-1401-1_5
http://dblp.uni-trier.de/db/conf/sc/sc2008.html#LiaoC08
http://dblp.uni-trier.de/db/conf/sc/sc2008.html#LiaoC08
http://dx.doi.org/10.1007/978-3-540-68564-7_9
http://dx.doi.org/10.1038/nature09796
http://dx.doi.org/10.1016/S0167-8191(05)80028-6
http://www.genome.gov/sequencingcosts

A Data Partitioning Model for Highly
Heterogeneous Systems

S. Tabik1,3(B), G. Ortega2, E.M. Garzón2, and D. Suárez3

1 Department of Computer Architecture, University of Málaga, 29071 Málaga, Spain
2 Department of Informatics, Agrifood Campus of International Excellence (ceiA3),

University of Almeŕıa, 04120 Almeŕıa, Spain
3 gaZ, University of Zaragoza, 50018 Zaragoza, Spain

siham.tabik@gmail.com

Abstract. Last generation supercomputers running bioinformatics
workloads are composed of multiple heterogeneous processing units,
requiring intelligent workload distribution. This paper describes an accu-
rate static workload balancing model capable of (i) efficiently balancing
the workload with no significant overhead because only a static light off-
line profiling is required and (ii) deactivating slower devices. The effec-
tiveness of the approach is experimentally validated using several repre-
sentative bioinformatics workloads on three heterogeneous platforms.

Keywords: Heterogeneous systems · Multi-GPU, multi-CPU systems ·
Workload distribution · Data-partitioning model

1 Introduction and Motivation

Heterogeneous systems that include multi-core processors, GPUs (Graphics
Processing Units) and other accelerators are becoming mainstream to continue
improving the performance of parallel applications. However, partition the work
among processing units, PUs, is challenging due to their asymmetry, resource
contention, low bandwidth of the PCIe bus, etc. This work describes an effi-
cient data-partitioning model tailored for data-parallel applications such as, lin-
ear algebra kernels and image processing applications commonly found on the
bioinformatics domain.

Finding the optimal workload partitioning among PUs depends on the char-
acteristics of the system, the size of the involved data, and the data-parallel
application itself. Previous works make the partitioning decision based on the
information obtained from an online or offline profiling of the application. Most
strategies target integrated CPU-GPU chips or one discrete GPU based systems
and assume that the execution time is a linear function of the problem size
T (v) = av + b [8] or even simpler T (v) = av with b = 0 [3,5,10,16]. Our main
observation is that using a time function per PU provides better results.

In this work, we provide a more accurate workload balancing model that (i)
finds the optimal partition on systems with multiple accelerators, (ii) it is able
c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 468–479, 2017.
DOI: 10.1007/978-3-319-58943-5 38

A Data Partitioning Model for Highly Heterogeneous Systems 469

to detect when a device is not worth to be included in the execution time, and
(iii) it is simple to use in any hybrid system. The automatic mapping model
consists of two stages, learning stage and execution stage. In the learning stage,
a light off-line training is carefully crafted to capture the inter-relation between
kernel and each one of the dissimilar devices then, the linear approximation of
the execution time on each device is calculated and finally the obtained system of
equations is solved to find the near-optimal distribution. In the execution stage
the data-parallel code is executed with the calculated optimal partitioning.

This paper is organized as follows. The description of the proposed mapping
model is given in Sect. 2. Its experimental verification on different heterogeneous
platforms is shown in Sect. 3 and Sect. 4 concludes.

2 Related Work

Previous work can be divided into two broad categories: on-line and off-line.

On-line training based strategies [1,2]: The partition decision is made at runtime.
These techniques are used when (i) the cost per parallel-for iteration is very
dependent on the characteristics of the input data or/and (ii) the cost of the
communications between different devices is either cheap or not needed. Those
works are mainly limited by the problem size because they normally store all
data in every device and distribute only the computation.

Off-line training based strategies [3,7–10,16]: They partition the data based on
the information from previous real runs on different input sizes. These techniques
provide optimal results for parallel-for with a stable cost per iteration and when
data reallocation is avoided. In general, these works assume that the computing
power among devices is similar and use an homogeneous model, T (v) = av,
(where T represents time, a is a constant, and v is the work size), tested on
only-CPU or CPUs plus single-GPU systems [3,9,10].

Luk et al. build a similar model with T (v) = av + b to calculate the opti-
mal partition as the point where the CPU and GPU fitting curves cross [8].
More complex models use heuristics and tree structures to calculate the optimal
partition [7]. The most related paper to our work is [16] which proposes a data-
partitioning strategy for multi-GPU multi-core platforms based on the assump-
tion T (v) = av; however this approach neither considers the fixed cost of using a
non-host processing unit nor can deactivate slow devices when they increase the
total execution time. Besides, their simulation framework only includes process-
ing units with similar computing power.

3 Preliminary Considerations

Algorithm 1.1 pseudo-code of a data-parallel application

for t=0, t<Nt ; t++ // s e r i a l l oop
for k=0, k<Nk ; k++ // p a r a l l e l −f o r
do work () ;

470 S. Tabik et al.

Most data-parallel applications can be expressed as a temporal loop that iter-
ates over a spatial parallel-for as shown in Algorithm 1.1. The number of oper-
ations and memory accesses performed in each individual parallel-for iteration
are similar and can be considered as the smallest unit of work. The performance
model used for these applications, which expresses the execution time T as a
function of the problem size v, T (v) = aiv + bi, was proven to be accurate on
individual processing unit i [16], where:

v is the size of the input block of data.
ai is the coefficient of the independent variable v.
bi is the fixed initialization computational-cost we have to pay on each PUi.

On multi-GPU multi-core systems the speed of one device may depend on the
load of others due to resource contention, therefore they cannot be considered as
independent devices, and their execution time can not be measured separately.
This work only considers parallel applications allowing flexible distribution of
the data and including an optimized kernel for each device architecture.

We model multi-GPU multi-core platforms as a set of abstract PUs. A group
of processing elements that execute the same kernel of the application will be
represented in the model by an abstract PU. For example if a single-threaded
kernel is used, then each CPU core executing this kernel will be represented as
one abstract PU. If a multi-threaded kernel is executed in a group of CPU cores,
these CPU cores will be grouped into one PU. A GPU is usually controlled by
a host process that executes on a dedicated CPU core. Thus, the GPU together
with its host CPU core will be considered as one PU.

4 Our Data-Partitioning Model

The main goal of this work is to find the near-optimal partition on a heterogenous
system. Hence, given an data-parallel application, a problem size and hardware
configuration, we aim at predicting the optimal workload to be assigned to each
PU. To ease this discussion we reformulate this mapping problem into finding
the optimal chunk sizes, v(v1, v2, ..., vn), to be assigned to each one of a total
number of n PUs.

Fig. 1. Flow chart of the automatic data-partitioning.

A Data Partitioning Model for Highly Heterogeneous Systems 471

We carefully design an empirical approach that predicts the execution time,
T (v), on each PU in terms of the chunk size v using a linear approximation.
Then, we calculate the optimal chunk sizes to be assigned to each PU based on
this model. A schematic illustration of the overall approach is depicted in Fig. 1.

4.1 The Learning Stage

It is well-known that parallel-for loops with little or no load unbalance are well-
suited for both multi-core and accelerators. Therefore, we first need to accurately
determine the linear function of the execution time on each asymmetric process-
ing unit. The more accurate the profiling gets, the more precise the partition
becomes. We use an off-line profiling measuring the time for multiple input
sizes. To guarantee the reliability of these experiments, the measurements are
repeated multiple times until the mean values lie in the interval with a confidence
level >= 95%.

Let us assume an initial input Vtotal that does not fit in the local memories of
some processing units. On each asymmetric PU i we consider a maximum block
size V i

fit = αVtotal that fits the local memory of that PU and we measure the time
it takes to process at most 10 block sizes, αV i

fit where α = 10%, 20%, ...100%.
We start measuring the runtime of the smaller block of size 0, 1 × V i

fit and
gradually measure the processing time of the rest of chunk sizes. On accelerators,
ideal starting block size would be a multiple of the number of cores inside the
accelerator. For the applications used in the analysis and verification of the
model, we found that three measurements using three problem sizes are enough
for an accurate load balancing.

In order to make this stage as short as possible, we profile only the first
serial-loop iterations, which represent generally less than 5% of the total ser-
ial iterations. The learning process of the first iterations is performed only on
dissimilar PUs. The built models of individual PUs can be stored in a kind of
database so that they can be reused whenever needed.

4.2 Model for Finding the Optimal Mapping

The time function T (v) = aiv + bi for each PU i = 1, ..., n is estimated using a
least-squares approximation. The desired balanced scenario occurs when all the
involved n devices finish the computation at the same time T . Let the assignment
v1, . . . , vn refer to the block sizes that reach execution time ≈ T on the PUs. The
optimization problem to find the optimal assignment has the following ingredients.

ai, bi Parameters of the linear model, computed once per kernel per dissimilar
PUs and stored in database. Calculated internally by the model.

Vtotal Total volume to be mapped. Input of the model.
vi ≥ 0 Unknown variable describing the optimal volume to be assigned to PU i.

Output of the model
T Execution time on theHeterogeneous System (HS) for the optimalmapping

472 S. Tabik et al.

We intend to minimize the total runtime on the heterogeneous platform, minT ,
given the assumed relation:

⎧
⎪⎨

⎪⎩

T (vi) = aivi + bi if vi > 0
T (vi) = T (vj) ≡ T i, j ∈ 1, ..., n

Vtotal =
∑

i vi i ∈ 1, ..., n

(1)

Equation (1) defines a linear system of equations with n + 1 unknowns and
is the key to determine the optimal execution time T and the corresponding
mapping v1, . . . , vn. T represents the optimal execution time on the heteroge-
nous system when the optimal mapping is used and can be estimated from the
parameters ai and bi as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

T ≡ T (Vtotal) = aHVtotal + bH where
aH =

∑
1
ai

−1

bH = aH

∑ bi
ai

vi = T−bi
ai

i ∈ 1, ..., n

(2)

Our aim is to determine the subset Q of {1, . . . , n} of active PUs and the
distribution vi > 0 within this set. The parameter bi is a key parameter in
our model to detect too slow PUs. It represents the cost that we must pay for
activating PU i. If the computation cost of a PU is lower than the fixed cost bi,
i.e., T −bi < 0, it will be labeled as inactive by setting vi to zero vi = 0. Besides,
if the assigned volume vi is smaller than the volume needed for one unit-of-work
the PU i will be also deactivated. More deactivation criteria can be included in
our model according to the objectives of the implementation, like for example
criteria for energy optimization.

The optimal mapping will be then computed only for the set of active PUs.
The procedure that finds the optimal data-partitioning according to the deacti-
vation criteria is provided below in Algorithm1.

Algorithm 1. v(v1, ..., vn) = Adaptive Mapping(Vtotal, ai, bi)

1. Given Q = {1, . . . , n}, set of active devices

2. aH =
∑

1
ai

−1
and bH = aH

∑ bi
ai

3. T = T (Vtotal) = aHVtotal + bH
4. while maxi∈Q bi > T
5. remove j with bj = maxi∈Q bi from Q
6. n = n − 1
7. Update aH , bH
8. T = T (Vtotal) = aHVtotal + bH
9. endwhile

10. for all i ∈ Q, vi = T−bi
ai

A Data Partitioning Model for Highly Heterogeneous Systems 473

5 Experiments and Evaluation

This section provides the analysis and validation of our mapping model using
multiple data sizes and multiple system configurations. The heterogeneous sys-
tem used in this study includes the GPUs and multi-core described in Table 1.
We consider three platforms based on different combinations of these PUs as
follows.

– Platform 1: One CPU core of the Intel Quad Core CPU Q9450 (labeled as
cpu0) and two GPUs, GeForce GTX 480 (labeled as GPU0) and Tesla C2070
(labeled as GPU1).

– Platform 2: Three GPUs, GeForce GTX 480 (GPU0), Tesla C2070 (GPU1)
and Tesla S2050 (GPU2).

– Platform 3: Two CPU cores of the Intel Quad Core CPU Q9450 (cpu1) and
two GPU devices, GeForce GTX 480 (GPU0) and Tesla C2070 (GPU1).

Table 1. Characteristics of the GPUs and multi-core included in the used
heterogenous system.

GeForce GTX 480 Tesla C2070 Tesla S2050 Intel Quad CPU
Q9450

Labeled as GPU0 GPU1 GPU2 cpu0(1 core)/
cpu1(2 cores)

Device memory
(GB)

2 6 2 7

Clock rate (GHz) 1.40 1.15 1.15 2.66

Memory bandwidth
(GBytes/sec)

177.4 144 148 4.55

Multiprocessors 15 14 14 -

Cores 480 448 448 4

Compute capability 1.5 2 2 -

For testing our approach, we consider the data-parallel applications described
in Table 2. Two widely used algebra kernels, the vector vector product, saxpy,
and the sparse matrix vector product, SpMV [13,15]. In addition to Anisotropic
Nonlinear Diffusion (AND) method which is a complex application for de-noising
3D-images in bio-informatics and structural biology [11,12]. AND iterates over
a noisy 3D-image by preserving its edges until it is completely filtered. AND
has an iterative structure that allows integrating the learning strategy proposed
in this work. For the experiments, we used NVIDIA CUDA (6.5 version) and
mpicc compilers with −O2 as optimization option. Our parallel implementation
creates one MPI-process per target PUs. Then, each process executes the opti-
mized kernel for the specific PU architecture. We consider the best thread-block
configuration [14].

474 S. Tabik et al.

Table 2. Applications used for the validation of our mapping model.

Application Description Data type

saxpy Multiplication of a constant alpha by vector x plus
vector y, y := alpha ∗ x + y

Double and complex
numbers

SpMV Sparse Matrix Vector multiplication y = Ax where A
is a sparse matrix and x and y are vectors

Double and complex
numbers

AND Anisotropic Nonlinear Diffusion (AND) method which
float efficiently de-noises 3D-tomographic images with
the property of conserving the edges of the image

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2,0E+05 1,0E+06 2,0E+06 5,0E+06 1,0E+07

W
or

kl
oa

d
(%

)

Problem size (v)

0,0

0,5

1,0

1,5

2,0

2,5

2,0E+05 1,0E+06 2,0E+06 5,0E+06 1,0E+07

Ex
ec

ut
io

n
Ti

m
e

(s
)

Problem size (v)

cpu0

GPU0

GPU1

Ideal

(a) Platform 1

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2,00E+05 1,00E+06 2,00E+06 5,00E+06 1,00E+07

W
or

kl
oa

d
(%

)

Problem size (v)

0,0

0,5

1,0

1,5

2,0

2,5

2,0E+05 1,0E+06 2,0E+06 5,0E+06 1,0E+07

Ex
ec

ut
io

n
Ti

m
e

(s
)

Problem size (v)

GPU0

GPU1

GPU2

Ideal

(b) Platform 2

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2,00E+05 1,00E+06 2,00E+06 5,00E+06 1,00E+07

W
or

kl
oa

d
(%

)

Problem size (v)

0

1

1

2

2

2,0E+05 1,0E+06 2,0E+06 5,0E+06 1,0E+07

Ex
ec

ut
io

n
Ti

m
e

(s
)

Problem size (v)

cpu1

GPU0

GPU1

Ideal

(c) Platform 3

Fig. 2. (left) The execution time of saxpy and (right) workload distribution on
each PU of Platforms 1, 2 and 3 using five data volumes.

The proposed methodology balances the workload of the applications under
test by following these steps: First, in the learning stage, saxpy, SpMV and AND
applications are evaluated using several instances of the problem size on each

A Data Partitioning Model for Highly Heterogeneous Systems 475

PU. For saxpy and SpMV, we used 100.000, 1.000.000 and 5.000.000 problem
sizes. Similarly, for AND, we used the execution time for three 3D-image sizes
dimX ×dimY ×16, dimX ×dimY ×32 and dimX ×dimY ×64, where dimX ×
dimY is the size of one plan of the input 3D-image. These measurements of the
execution time were enough to build an accurate performance model for saxpy,
SpMV and AND.

Afterwards, in the execution stage, the model defines several hybrid config-
urations, labeled as Platforms 1, 2 and 3, and takes into account the aforemen-
tioned measurements to obtains T for each configuration and calculates the size
of the chunk vi that must be assigned to each PU i. Finally, the applications are
launched in platforms 1, 2, and 3 using the calculated vi for i = 1, ..., n.

Figures 2, 3 and 4 show the execution time that each PU takes to carry
out the workload assigned by the model for saxpy, SpMV and AND for several

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2,00E+05 1,00E+06 2,00E+06 5,00E+06 1,00E+07

W
or

kl
oa

d
(%

)

Problem size (v)

0

2

4

6

8

10

12

2,0E+05 1,0E+06 2,0E+06 5,0E+06 1,0E+07

Ex
ec

u
on

Ti
m

e
(s

)

Problem size (v)

cpu0

GPU0

GPU1

Ideal

(a) Platform 1

0

2

4

6

8

10

12

2,0E+05 1,0E+06 2,0E+06 5,0E+06 1,0E+07

Ex
ec

u
on

 T
im

e
(s

)

Problem size (v)

GPU0

GPU1

GPU2

Ideal

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2,0E+05 1,0E+06 2,0E+06 5,0E+06 1,0E+07

W
or

kl
oa

d

Problem size (v)

(b) Platform 2

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2,0E+05 1,0E+06 2,0E+06 5,0E+06 1,0E+07

W
or

kl
oa

d
(%

)

Problem size (v)

0

2

4

6

8

10

12

2,0E+05 1,0E+06 2,0E+06 5,0E+06 1,0E+07

Ex
ec

u
on

 T
im

e
(s

)

Problem size (v)

cpu1

GPU0

GPU1

Ideal

(c) Platform 3

Fig. 3. (left) The execution time of SpMV and (right) workload distribution on
each PU of Platforms 1, 2 and 3 using five data volumes.

476 S. Tabik et al.

0

0,1

0,2

0,3

0,4

0,5

0,6

128x128x128 256x256x256 512x512x256

ex
ec

u
on

m
e

(s
)

GPU0

GPU1

cpu0

Ideal

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

128x128x128 256x256x256 512x512x256

w
or

kl
oa

d
(%

)

(a) Platform 1

0

0,1

0,2

0,3

0,4

0,5

0,6

128x128x128 256x256x256 512x512x256

ex
ec

u
on

m
e

(s
)

GPU0

GPU1

GPU2

Ideal

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

128x128x128 256x256x256 512x512x256

w
or

kl
oa

d
(%

)

(b) Platform 2

0

0,1

0,2

0,3

0,4

0,5

0,6

128x128x128 256x256x256 512x512x256

ex
ec

u
on

m
e

(s
)

GPU0

GPU1

cpu1

Ideal

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

128x128x128 256x256x256 512x512x256

w
or

kl
oa

d
(%

)

(c) Platform 3

Fig. 4. (left) The execution time and (right) workload distribution of AND-
application on each PU of Platforms 1, 2 and 3 using three volume sizes.

problem sizes on Platforms 1, 2 and 3. The Figures on the right side show
the percentage of the total workload associated to each PU. The execution time
includes the computation and communication time. Tideal depicted in the figures,
is calculated by the model as T = aHVtotal + bH , where aH and bH are the
parameters of the overall hybrid system as shown in the previous section. In
general, the model achieves an optimal load balancing between the involved
PUs for all the problem sizes and on all the considered hybrid platforms. In
addition, the obtained experimental execution time is very similar to the Tideal.
In particular, the model is more accurate for all the applications on Platform
2, which includes only GPUs. A slight unbalance (i.e., max(|Tideal − Ti|)/Tideal,
where i is the index of the involved PU in the considered platform <0%) is
produced for SpMV in Platform 3 but within a reasonable range. This is due to
the fact that it is more complicated to balance the load on highly heterogeneous
such as Platform 1 and 2, where the difference between the performance of their
components, i.e., the cpu and GPUs, is too high.

A Data Partitioning Model for Highly Heterogeneous Systems 477

The capacity of our model to deactivate too slow PUs can be observed in
Fig. 2(a), where cpu0 is deactivated for all problem sizes and Fig. 4(a) and (c)
in Platforms 1 and 3, where cpu0 and cpu1 are deactivated for the problem
sizes 128 × 128 × 128 and 256 × 256 × 256. In those cases, the model chooses
to deactivate cpu0 in Platform 1 or cpu1 in Platform 2 because the assigned
volume is either smaller than the volume of one unit of work or because the b
parameter of this PUs is larger than the hybrid ideal execution time Tideal.

0

0

1

10

100

0,E+00 2,E+06 4,E+06 6,E+06 8,E+06 1,E+07

ex
ec

u
on

m
e

(s
)

Problem size (v)

cpu0

cpu1

GPU0

GPU1

Pla orm 1

Pla orm 2

Pla orm 3

(a) saxpy

0

1

10

100

1.000

0,E+00 5,E+06 1,E+07

ex
ec

u
on

m
e

(s
)

Problem size (v)

cpu0

cpu1

GPU0

GPU1

Pla orm 1

Pla orm 2

Pla orm 3

(b) SpMV

0

0

1

10

100

1.000

0,E+00 2,E+07 4,E+07 6,E+07 8,E+07

ex
ec

u
on

m
e

(s
)

Problem size (v)

cpu0

cpu1

GPU0

GPU1

Pla orm 1

Pla orm 2

Pla orm 3

(c) AND

Fig. 5. The execution time of each platform, i.e., cpu0, cpu1, GPU0, GPU1,
Platforms 1, 2 and 3, takes to carry out the overall work for the 5.000.000 problem
volume for (a) saxpy, (b) SpMV and (c) AND.

To compare the heterogeneity of the used hybrid platforms and the involved
PUs, Figs. 5(a), (b) and (c) show the response time of saxpy, SpMV and AND,
using different problem sizes, on cpu0, cpu1, GPU0, GPU1 and Platforms 1, 2
and 3. As it can be observed, it is always worth using hybrid platforms (together
with a good load balancing strategy) than individual accelerators such as GPU0
in spite of their heterogeneity and the challenge of load balancing. As we can see
the optimal performance is achieved on Platforms 1, 2 and 3 in all tests.

Several metrics have been defined for evaluation and comparison purposes
on heterogeneous systems [4,6]. In this analysis, the Ideal Relative Speedup is
considered. It is calculated as the of ratio between the run-time on the fastest
device when the problem of size v is executed and Tideal(v), which represents
the estimated run-time on the hybrid platform.

Figures 6(a), (b) and (c) show a comparison between the Ideal Relative
Speedup and the Relative Speedup for saxpy, SpMV and AND, using the largest

478 S. Tabik et al.

0

0,5

1

1,5

2

2,5

GPU0 Pla orm 1 Pla orm 2 Pla orm 3

Ideal Rela ve SpeedUP
Rela ve SpeedUP

(a) saxpy

0,0

0,5

1,0

1,5

2,0

2,5

GPU0 Pla orm 1 Pla orm 2 Pla orm 3

Ideal Rela ve SpeedUP
Rela ve SpeedUP

(b) SpMV

0,0

0,5

1,0

1,5

2,0

2,5

GPU0 Pla orm 1 Pla orm 2 Pla orm 3

Ideal Rela ve SpeedUP
Rela ve SpeedUP

(c) AND

Fig. 6. The ideal speedup versus relative speedup for the 5.000.000 problem
volume for (a) saxpy, (b) SpMV and (c) AND.

volume size, on Platforms 1, 2 and 3. The differences between the Ideal Speedup
and the measured Speedup can be considered as a quantification of the current
unbalance. As it can be seen these differences are very low. Figures 6(a), (b)
and (c) depict an interesting quality of our data-partitioning model which is
its ability to estimate before hand the PUs combination that provides the best
performance.

6 Conclusions and Future Work

Selecting both the processing units and the amount of work each should perform
is a challenging task. This paper proposes a work-balance strategy that helps
overcoming these two difficulties. Namely, it builds a global performance model
with minimum training enabling to find a close to minimum execution time. Our
detailed results show that the model is within less than 3% percent of an ideal
unrealistic balancing strategy. As future work, we plan to compare our work to
Zhong et al. [16] to showcase the advantages of our method.

Acknowledgements. This work was partially supported by the Spanish Ministry
of Science throughout projects TIN2010-16144, TIN15-66680 and TIN2012-37483, by
J. Andalućıa through projects P12-TIC-301, P11-TIC7176 and TIC-8260 and by the
European Reg. Dev. Fund (ERDF).

A Data Partitioning Model for Highly Heterogeneous Systems 479

References

1. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: StarPU: a unified
platform for task scheduling on heterogeneous multicore architectures. Concurr.
Comput.-Pract. E 23(2), 187–198 (2011)

2. Barik, R., Kaleem, R., Majeti, D., Lewis, B.T., Shpeisman, T., Hu, C., Ni, Y.,
Adl-Tabatabai, A.R.: Efficient mapping of irregular C++ applications to integrated
GPUs. In: Proceedings of IEEE/ACM CGO, p. 33. ACM (2014)

3. Belviranli, M.E., Bhuyan, L.N., Gupta, R.: A dynamic self-scheduling scheme
for heterogeneous multiprocessor architectures. ACM Trans. Archit. Code Optim.
9(4), 57 (2013)

4. Chen, Y., Sun, X.H., Wu, M.: Algorithm-system scalability of heterogeneous com-
puting. J. Parallel Distrib. Comput. 68(11), 1403–1412 (2008)

5. Kaleem, R., Barik, R., Shpeisman, T., Lewis, B.T., Hu, C., Pingali, K.: Adaptive
heterogeneous scheduling for integrated GPUs. In: Proceedings of PACT, pp. 151–
162. ACM (2014)

6. Kalinov, A.: Scalability of heterogeneous parallel systems. Programm. Comput.
Softw. 32(1), 1–7 (2006)

7. Lee, J., Samadi, M., Park, Y., Mahlke, S.: Transparent CPU-GPU collaboration
for data-parallel kernels on heterogeneous systems. In: Proceedings of PACT, pp.
245–256. IEEE Press (2013)

8. Luk, C.K., Hong, S., Kim, H.: Qilin: exploiting parallelism on heterogeneous mul-
tiprocessors with adaptive mapping. In: Proceedings of IEEE/ACM MICRO, pp.
45–55. IEEE (2009)

9. Mart́ınez, J., Almeida, F., Garzón, E., Acosta, A., Blanco, V.: Adaptive load bal-
ancing of iterative computation on heterogeneous nondedicated systems. J. Super-
comput. 58(3), 385–393 (2011)

10. Mart́ınez, J.A., Garzón, E.M., Plaza, A., Garćıa, I.: Automatic tuning of iterative
computation on heterogeneous multiprocessors with ADITHE. J. Supercomput.
58(2), 151–159 (2011)

11. Tabik, S., Garzón, E.M., Garćıa, I., Fernández, J.J.: High performance noise reduc-
tion for biomedical multidimensional data. Digit. Sig. Process. 17(4), 724–736
(2007)

12. Tabik, S., Garzón, E., Garćıa, I., Fernandez, J.: Implementation of anisotropic
nonlinear diffusion for filtering 3D images in structural biology on SMP clusters.
In: Proceedings of ParCo, vol. 33, pp. 727–734 (2005)

13. Tabik, S., Ortega, G., Garzón, E.M.: Performance evaluation of kernel fusion BLAS
routines on the GPU: iterative solvers as case study. J. Supercomput. 70(2), 577–
587 (2014)

14. Tabik, S., Peemen, M., Guil, N., Corporaal, H.: Demystifying the 16 × 16 thread-
block for stencils on the GPU. Concurr. Comput.-Pract. E 27(18), 5557–5573
(2015)

15. Vázquez, F., Ortega, G., Fernández, J.J., Garzón, E.M.: Improving the perfor-
mance of the sparse matrix vector product with GPUs. In: 10th IEEE International
Conference on Computer and Information Technology, CIT 2010, pp. 1146–1151.
IEEE Computer Society (2010)

16. Zhong, Z., Rychkov, V., Lastovetsky, A.: Data partitioning on multicore and multi-
GPU platforms using functional performance models. IEEE Trans. Comput. 64,
2506–2518 (2015)

Seamless HPC Integration of Data-Intensive
KNIME Workflows via UNICORE

Richard Grunzke1(B), Florian Jug2(B), Bernd Schuller3, René Jäkel1,
Gene Myers2, and Wolfgang E. Nagel1

1 Technische Universität Dresden, Dresden, Germany
richard.grunzke@tu-dresden.de

2 Max Planck Institute for Cell Biology and Genetics, Dresden, Germany
jug@mpi-cbg.de

3 Forschungszentrum Jülich, Jülich, Germany

Abstract. Biological research is increasingly dependent on analyzing
vast amounts of microscopy datasets. Technologies such as Fiji/ImageJ2
and KNIME support knowledge extraction from biological data by pro-
viding a large set of configurable algorithms and an intuitive pipeline
creation and execution interface. The increasing complexity of required
analysis pipelines and the growing amounts of data to be processed nur-
ture the desire to run existing pipelines on HPC (High Performance
Computing) systems. Here, we propose a solution to this challenge by
presenting a new HPC integration method for KNIME (Konstanz Infor-
mation Miner) using the UNICORE middleware (Uniform Interface to
Computing Resources) and its automated data processing feature. We
designed the integration to be efficient in processing large data workloads
on the server side. On the client side it is seamless and lightweight to
only minimally increase the complexity for the users. We describe our
novel approach and evaluate it using an image processing pipeline that
could previously not be executed on an HPC system. The evaluation
includes a performance study of the induced overhead of the submission
process and of the integrated image processing pipeline based on a large
amount of data. This demonstrates how our solution enables scientists
to transparently benefit from vast HPC resources without the need to
migrate existing algorithms and pipelines.

Keywords: KNIME · UNICORE · High Performance Computing ·
Integration

1 Introduction

BioImage Computing is central for many biological research projects [3,4,11],
and many such projects share two common problems: (i) Data is large and
analyzing it is time consuming, and (ii) both, data as well as the required data

R. Grunzke and F. Jug—These authors contributed equally.

c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 480–491, 2017.
DOI: 10.1007/978-3-319-58943-5 39

Seamless HPC Integration of Data-Intensive KNIME Workflows 481

analysis chain, changes in response to progress in ongoing research projects.
Therefore, automated or semi-automated solutions are aiming at minimizing
manual user intervention and overall runtime in order to solve these problems.

Dynamic research environments require short execution times of automated
analysis pipelines and constant revisions of these pipelines to meet the projects
needs. This poses a challenge for smaller research groups or institutes that simply
cannot effort to employ dedicated HPC experts. It is desirable therefore to find
solutions where the same person who implemented the initial analysis pipeline
can also deploy it to available cluster hardware.

As delimitation to previous methods that enable the execution of KNIME
workflows on HPC systems, the following methods are mentioned. One solution,
the KNIME Cluster Execution module [13], is limited as it is proprietary and only
enables access to cluster resources in conjunction with the Oracle Grid Engine.
Another solution that is generic in scope converts KNIME workflows to gUSE
workflows [5] to execute them on HPC resources. gUSE/WS-PGRADE [12] is
a framework to build advanced HPC-enabled science gateways such as MoS-
Grid [14]. Due to the technological requirements of such science gateways and
that KNIME is our target platform, this second alternative approach is also
unsuitable in our use case. KNIME is also capable of executing jobs via Hadoop-
like frameworks. Instead of our focus on arbitrary analysis workloads, this app-
roach focuses on sub-workflows with problem structures that needs to fit the
framework.

In this article we present a novel HPC access method that allows biolog-
ical researchers with no HPC infrastructure knowledge to deploy and execute
their analysis pipelines to a broad range of existing HPC systems. Users of the
proposed setup are not required to learn any new language or HPC concept -
they do, in fact, not even have to leave their local every day analysis environment
(ImageJ2/KNIME). Regarding the technical realization we base our distribution
method on UNICORE, which can be installed on any cluster or HPC resource.
We have extended UNICORE’s existing Data Oriented Processing [21] module
with a parameter sweep feature to be capable of starting multiple parameterized
jobs (see Sect. 2.3). This is utilized within the rule we designed that triggers the
KNIME workflow execution on the HPC resources (see Sect. 2.3). For KNIME
we developed all necessary modules for receiving and interpreting parameters
for loading and fractionating the data (see Sect. 2.1). We provide various conve-
nience functions that aim at making the entire process as intuitive and generic as
possible. In Sect. 3 we present an evaluation of our approach including a thorough
performance analysis.

2 Utilized Methods and Implementation

In this section we first describe the BioImage tools Fiji/ImageJ2 and the KNIME
workflow application. Then, the UNICORE HPC middleware is described that
greatly facilitates the utilization of HPC systems. We conclude with a descrip-
tion of how we integrated KNIME with HPC resources via UNICORE. This

482 R. Grunzke et al.

integration enables applying scientists to easily and efficiently utilize vast HPC
resources from within their accustomed KNIME workflow application.

2.1 Fiji/ImageJ2 and KNIME

Image analysis tools in biological research are diverse and heterogeneous [3].
Although our proposed method is applicable for most if not for all available
tools, here we constrain us to examples using Fiji/ImageJ2 [17] and KNIME
(Konstanz Information Miner) [2]. While Fiji/ImageJ2 is the de-facto standard
for working with microscopic datasets in biological research [17,18,20], using
KNIME for image analysis applications is a more recent trend we believe to
become increasingly popular in the near future.

Fiji, by itself, is a distribution of plugins and features for ImageJ [20] and
ImageJ2. KNIME, initially a dedicated data mining and workflow management
system [2], also developed into a potent image processing tool [3]. The developers
of both systems, Fiji/ImageJ2 and KNIME, use a common image processing and
analysis library for storing and operating on image data, the ImgLib2 [15]. This
enables developers to write plugins that can be used in Fiji as well as in KNIME
without additional work or code. Today, a plethora of image analysis methods
via plugins are available.

The workflow we use throughout this paper is a data-preprocessing pipeline.
It loads microscope images sequences acquired using a microfluidic device called
‘Mother Machine’ [9,22]. Each image sequence contains multiple experimental
setups and the main task of the preprocessing is to enhance image quality and
automatically find all regions of interest for extracting each individual experi-
ment for further processing [10].

Parallelization of the overall computation is performed along two axes. Our
proposed system submits multiple jobs and assigns equal amounts of data to be
processed to each such job. Each image sequence contains multiple experimental
setups and the main task of the preprocessing is to enhance image quality and
automatically find all regions of interest for extracting each individual experi-
ment for further processing. On top of that, each job can make use of multiple
concurrently running threads to further split the data into smaller junks. The
latter is implemented directly from within the KNIME workflow by using the
‘Parallel Chunk Loop’ construction that is freely available in the ‘Virtual Nodes’
package on the KNIME update site. While a regular loop executes its body for
each dataset given, a ‘Parallel Chunk Loop’ performs for-loop-unrolling using a
thread pool of configurable size.

Like many tasks in BioImage Computing, parallelization can be achieved by
independently operating on individual images of a given dataset. A system that
allows users, without previous exposure to cluster computing, to easily design
such a processing pipeline in Fiji/ImageJ2 or KNIME was never done before.
Our proposed system achieves this via the HPC middleware UNICORE. This
constitutes an important step in unleashing the huge potential of HPC in various
use cases in BioImaging and beyond with many potential users.

Seamless HPC Integration of Data-Intensive KNIME Workflows 483

2.2 HPC Middleware UNICORE

UNICORE (Uniform Interface to Computing Resources) [1] is a middleware
for building federated computing solutions. It focuses on providing seamless
and secure access to heterogeneous resources such as high-performance comput-
ers and compute clusters, remote data storage and file systems. UNICORE is
deployed and used in a variety of settings, from small projects to large, multi-site
infrastructures involving HPC resources of the highest category. The latter cate-
gory includes the European PRACE research infrastructure [16], the US XSEDE
research infrastructure [23] and the EU flagship Human Brain Project [7].

UNICORE comprises the full middleware software stack from clients to vari-
ous server components for accessing compute or data resources. Its basic princi-
ples are abstraction of resource-specific details, openness, interoperability, oper-
ating system independence, security, and autonomy of resource providers. In
addition, it is easy to install, configure, administrate and available under a free
and open source BSD license.

UNICORE offers services such as job submission and job management, data
access and file transfer, metadata management and workflows. It abstracts the
details of job submission, batch system commands, heterogeneous cluster prop-
erties and much more, allowing for a much simpler user interaction with HPC
and data resources. Users typically use one of the UNICORE or custom clients to
interact with the system to create and submit jobs. For the present use case, a dif-
ferent, data-driven way of interaction with UNICORE is employed and extended,
which is described in detail in the next section.

2.3 Workflow Integration on a Cluster

We performed the integration of KNIME along the workflow that is introduced
in Sect. 2.1. We encapsulate the workflow logic for preprocessing the ‘Mother
Machine’ procedure in a meta-Node called ‘Workflow Logic’. We have then
loaded another Meta-Node called ‘Data Setup’ (see Fig. 1). This node serves
as a generic data loading and filtering module. The only input required from

Fig. 1. Submission of a KNIME workflow. After the pipeline is assembled by the user
he might choose to hide it in a so called Meta-Node, here called ‘Workflow Logic’. After
adding the predefined node ‘Data Setup’, the workflow is cluster ready in two simple
steps: (1) the location of the data must be configured, and (2) the workflow must be
exported to the submission directory via the standard KNIME export graphical dialog.

484 R. Grunzke et al.

the user is the location of the data to be processed. In order to start the work-
flow on the cluster at hand it suffices to export it to the designated submission
folder. This folder is exported from the cluster filesystem and mounted locally
on the workstation of the user. The authentication of the user is done transpar-
ently by re-using the authentication already done during the local mounting of
the network folder. Subsequently, UNICORE executes the user workflows on the
cluster under the login of the specific user who submitted the workflow. Below
we describe in detail how such a folder is to be configured.

Submitting and running Fiji/ImageJ2 workflows is achieved by very similar
means. As mentioned in Sect. 2.1, every ImgeJ2 plugin is also a KNIME node.
Therefore one can assemble a sequence of Fiji plugin calls from within KNIME
and use the same procedure as described above. This possibility does, of course,
not exist for all available tools and functions. Still, as long as the tool of choice
is capable of storing a full processing pipeline for later execution our proposed
UNICORE method applies.

To enable such easy job submissions and interact with the HPC cluster,
the UNICORE feature called “Data Oriented Processing” [21] was used and
extended for efficient parameter sweeps to enable the execution of multiple jobs
per rule evaluation instead of just one. Here, the UNICORE server is set up to
periodically scan a user’s specific directory according to a set of user-defined
rules. When new files are detected, the UNICORE server executes any matching
rules, which lead to the automatic creation and submission of the HPC jobs. The
rules are stored in a file in the submission folder. Here, we allow for two possi-
ble scenarios. The users themselves provide a rule for the execution of a given
workflow. Otherwise, a system administrator provides a rule using specifications
how to execute the workflow and how data handling and job creation needs to
be performed by UNICORE.

During configuration of the rule, two opposing option have to be balanced.
The first is to highly optimize the rule to get the best performance for a specific
workflow. Such an optimization might to negatively impact the performance of
other workflows and also decreases the usability as one optimized rule for every
workflow has to be provided. The second option is find one or a few reasonable
rule configurations that fit many workflows at once. This way the complexity for
the user is minimized while a large performance increase by using HPC resources
can be expected as compared to local workflow executions.

The code Listing 1.1 shows the unique part of such a UNICORE rule that
is stored in a file named .UNICORE Rules. The action within the rule is exe-
cuted when a workflow in compressed form recognized by UNICORE. In our
case the action defines a KNIME job with the workflow as import and parame-
ters to steer the execution. The parameter k (line 14) defines that parameter
sweep. In this example the job is created ten times (k from 0 to 9). The input
dataset (parameter l in line 13) is preprocessed by ten KNIME instances process-
ing independently one of the given chunks. Parameter n (line 15) declares how
many instances are executed, whereas w (line 16) denotes the location of the
imported input workflow from within the specific UNICORE job. Parameter

Seamless HPC Integration of Data-Intensive KNIME Workflows 485

tr (line 18) is the path and name of the workflow that triggered the action.
Within the Resources (lines 19–22) section the specific job requirements are
defined. According to these, UNICORE automatically requests fitting resources
from the batch system. For the measurements in Sect. 3.4 up to 100 of such
actions (lines 6–23) are activated to trigger KNIME instances.

Listing 1.1. The central section of the UNICORE rule is shown which, among other
things, governs how an action is defined and triggered.

1{
2DirectoryScan : { Inc ludeDi r s : [” . ”] , ” I n t e r v a l ” : ”30” , } ,
3Rules : [{
4Name : BioHPCMeasurements 2880 1 ,
5Match : ” . ∗ . z ip ” ,
6Action : { Type : BATCH, Job : {
7Name : knime headless ,
8Imports : [{ From : ” f i l e : // ${UC FILE PATH}” ,
9To : workflow . z ip } ,] ,
10ApplicationName : knime ,
11Appl i ca t ionVers ion : 2 . 1 1 . 3 head l e s s ,
12Parameters : {
13l : ”/ l u s t r e / ssd /grunzke /2880 1 ” ,
14k : { From : 0 , To : 9 , Step : 1 } ,
15n : ”10” ,
16w: ” . . / workflow . z ip ” ,
17t : ”8” ,
18t r : ”${UC FILE PATH}” ,} ,
19Resources : {
20Memory : 20664M, CPUs : 8 ,
21Runtime : 1h , Queue : haswel l ,
22CPUsPerNode : 8 ,}} ,} ,
23} , . . .] , }

As mentioned, the workflow is exported graphically from within KNIME to
a given network folder from where it is picked up by the UNICORE submis-
sion system. All HPC resources that are attached via UNICORE are available.
Depending on the rule, either workflows are submitted to a specific HPC sys-
tem or UNICORE submits to an arbitrary HPC system that fits the workflow
requirements configured in the rule file. In the code Listing 1.1, no specific system
is configured otherwise the “Site” option would be defined. All this is transpar-
ent to KNIME. Following a specific rule defined in the submission folder, a large
number of computing jobs can be seamlessly distributed over the cluster utilizing
the batch system transparently.

3 Results

In the following we present the results of our research. First, we discuss how
our approach is integrated from a user- and cluster-centric perspective. Second,

486 R. Grunzke et al.

the number of cores that can be efficiently utilized is identified. Then, the over-
head induced be the UNICORE middleware is evaluated. Finally, the number of
concurrently processed data is scaled up and evaluated.

3.1 Seamlessness Cluster Integration

A major motivation of our research is to enable the use of large computing
infrastructures from within the workflow application KNIME. In the following,
we discuss how we have achieved this from two different perspectives.

From a user-centric perspective, we achieved mainly two goals: (i) setting
up a KNIME workflow submission system, which can be directly used from
within KNIME, and (ii) the user does not require deeper knowledge of the
HPC system at hand. Users are not obliged to use a specific job scheduling
system or have to adopt to a different one used with the HPC infrastructure at
hand. Support for various scheduling systems and arbitrary HPC infrastructure
is an integral part of UNICORE. When a KNIME user finishes the design of
a BioImage pipeline, the workflow can be run on a single workstation, but can
now also easily be extended for cluster execution via our generic data handling
node (see Fig. 1).

From a cluster-centric perspective, the UNICORE middleware monitors
a directory for new submissions. The specified rule defines that when a valid
KNIME workflows arrives, the submission and execution is automatically trig-
gered. The rule defines the computing task that executes the KNIME workflow
on the HPC resources. KNIME is required to be installed on the HPC system
and configured in order to be executed in headless mode without graphical user
interface. For a specific workflow representation the rule has to be written and
tested just once. This enables users to continuously submit workflows for differ-
ent input data sets to HPC systems and from within their working environment.

3.2 Evaluation of Job Scaling

In order to determine good parameters for the creation of individual jobs on the
cluster the number of worker threads for the KNIME workflow is varied. The
user can specify the location of the input images to be reconstructed and the
number of threads to be used by the KNIME workflow engine.

As discussed in the previous Sect. 2.1, the user can graphically adjust the
number of worker threads and therefore the degree of parallelization of individual
jobs. The measurements for the runtime estimation use the dataset (2,880 input
images and 70,000 output images with a total of 17 GB), a varying the number
of worker threads and the overall job runtime was recorded. The HPC nodes
used for this estimation are equipped with two Intel Xeon CPUs (E5-2680) with
12 cores each and a local SSD-based filesystem was used during measurements.

From the total run time, the mean processing time per image was calculated
and is shown in Fig. 2 on the left side. As can be seen in the figure, the workflow
can make use of additional worker threads in the reconstruction and can be
reduced to slightly over one second per image (within statistical errors). Starting

Seamless HPC Integration of Data-Intensive KNIME Workflows 487

the given workflow with a larger number of worker threads does not further
decrease the mean reconstruction time per image and a value of 8 worker threads
seems to be a good trade-off value for minimal runtime per job and efficiency.

Figure 2 on the right side shows the speedup based on the runtime behavior
shown on the left side. Also shown is the theoretical linear speedup with respect
to the runtime (red line). In general the workload on the system induced by the
workflow is rather I/O intense. Therefore, some deviation from the theoretical
linear behavior is to be expected. To lower this impact we used local SSD-
based storage at the compute node to minimize the I/O effect. As discussed, the
increase in the number of threads for computation does not improve the runtime
behaviour for values larger than 8 threads, and for the next measurement series
we chose this value as default for this particular workflow.

5 10 15 20

1
2

3
4

5
6

number of threads

av
er

ag
e

pr
oc

es
si

ng
 p

er
 im

ag
e

[s
]

0 5 10 15 20 25

0
1

2
3

4
5

6

number of threads

sp
ee

du
p

Fig. 2. Evaluation of the number of individual number of threads. The left plot displays
the mean processing time per image for a given subset of image data with varying num-
bers of threads for the Fiji/ImageJ2 KNIME workflow including error bars. The right
plot shows the calculated speedup including error bars of the Fiji/ImageJ2 KNIME
workflow with a varying number of worker threads per job. The red line displays the
theoretical linear speedup. (Color figure online)

3.3 Middleware Induced Overhead

The utilization of UNICORE with its triggering feature induces an overhead in
the overall process. We estimate this overhead by measuring the time from which
a workflow submission to the corresponding job submission time to the scheduler.
One part of the overhead is the time needed for the middleware to register the
new workflow in the directory. To reduce unnecessary communication overhead,
a time interval for update checks is set to 30 s, which defines the maximum
period for the middleware to recognize an new workflow. The second part of the
overhead is the time period required by the middleware to execute methods to
create compute jobs based on the workflow rule and to send those jobs to the
scheduler. The first time measurement was triggered by exporting the workflow
to the submission folder. Via the scontrol command the relevant submission time

488 R. Grunzke et al.

was obtained from the SLURM scheduler. The additional middleware overhead
was therefore assessed by the difference between these two times. To estimate the
variation in the process, the measurement was repeated ten times and in average
a time of 27.2 s is the mean additional overhead induced by the UNICORE
middleware.

3.4 Runtimes for Increasingly Large Datasets

This measurement series determines how our approach along the previously
introduced BioImaging pipeline behaves at a large scale. The number of input
and output files is scaled up to 7.488 million files with a total data emergence of
up to 1.76 TB. The following table lists the configuration of the individual mea-
surements which were repeated five times each. The size is the combined input
and output data size. The second column displays the number of input and
output files that are handled by the KNIME workflows during a measurement,
whereas the third column denotes the number of datasets that are processed. Col-
umn four contains the number of chunks by which each dataset is partitioned for
processing. The last column signifies that 800 cores in total are utilized, meaning
8 cores for every of the 100 KNIME instances (Table 1).

Table 1. Four measurement configurations with varying sizes and number of files,
datasets, currently processed chunks per dataset, and utilized cores.

Size Files Datasets Chunks Cores

0.17 TB 0.7488 M 10 10 800

0.35 TB 1.4976 M 20 5 800

0.88 TB 3.744 M 50 2 800

1.76 TB 7.488 M 100 1 800

In our evaluation the number of concurrent KNIME instances is limited to
100. Beyond that, the error rate starts to significantly increase as KNIME is
currently not built to handle a high number of parallel instances due to synchro-
nization issues and relying on shared temporary files. A number of issues were
solved by switching off OSGI locking and increasing the synchronization interval
in knimi.ini1. As determined in Sect. 3.2, 8 cores are utilized as this is a sound
number for this workflow. In these measurements, HPC nodes (each with two
Intel Xeon CPUs (E5-2680) with 12 cores each) were utilized. A local SSD-based
filesystem was used for providing the input data and storing the resulting data.

Figure 3 shows that the measurements with up to 1.76 TB of data have a
runtime of 1259, 1955, 4318, and 7154 s respectively while utilizing 800 cores
in each setting. The error bars show a significant standard deviation. This is
due to the fact that the KNIME instances are scheduled as jobs by the HPC
1 “-Dosgi.locking = none”, “-Djava.util.prefs.syncInterval = 2000000”.

Seamless HPC Integration of Data-Intensive KNIME Workflows 489

batchsystem at varying points in time due to varying utilization levels of the
HPC system. The measurements show that our approach can either process one
dataset in parallel with many individual chunks, or it can process many datasets
in parallel. Processing the datasets of the largest measurements (1.76 TB) on a
local workstation with 4 cores would take about 17 days of continuous process-
ing. With our easy-to-use and HPC-enabled approach the processing time is
significantly reduced to just 2 h.

0
20

00
40

00
60

00
80

00

data size

ru
nt

im
e

[s
]

0.17 TB 0.35 TB 0.88 TB 1.76 TB

Fig. 3. Measurement results for concurrent processing of increasing number of datasets
with an overall data size of up to 1.76 TB in 7.488 M files. The mean runtimes are 1259,
1955, 4318, and 7154 s respectively including error bars. These constitute a significant
decrease in runtime compared to local processing on a workstation which would take
about 17 days as compared to 2 h on the HPC system.

4 Conclusion

The presented work constitutes a novel approach to easily enable the use of large
scale computing resources in the KNIME workflow application suite. Previously,
KNIME users were very limited in using large computing infrastructures. Now,
every major cluster scheduler is supported via the mature and widely used UNI-
CORE HPC middleware. Enabling a high usability, users just need to graphically
export a suitable KNIME workflow into a pre-configured directory and gets exe-
cuted in parallel on the HPC cluster. To enable this, we extended the UNICORE
middleware to support parameter sweeps via its data oriented processing feature,
developed KNIME methods for interpreting parameters and fractionating input
data, described how suitable workflows are created, and implemented it as a com-
plete and generic approach along a concrete BioImaging use case. Performance
measurements with up to 1.76 TB in 7.488 million files are presented that show
highly favorable characteristics of our method. Trade-offs are required to either
configure the method for high efficiency in a specific use case or for reasonable
efficiency for multiple use cases. Alternatively, multiple directories can be config-
ured for different use case scenarios offering more flexibility. Our approach can

490 R. Grunzke et al.

process either individual datasets in many parallel chunks, or many datasets in
parallel, or a combination thereof. Now, large datasets in the range of terabytes
can be processed in a matter of hours instead of weeks that were needed before.

5 Outlook

The preprocessing pipeline used throughout this work is a first example. We and
our collaborators work on multiple other use-cases that perfectly fit our imple-
mented system. As a rule of thumb, as soon as chunking the input in smaller
pieces is a valid parallelization scheme, our method can be applied. We are plan-
ning to apply our method on even more ‘data-hungry’ tasks such as automated
tracking pipelines for developing tissues (e.g. in C. elegans), or the segmentation,
classification, and sorting of labeled neurons in the Drosophila fly brain. Other
modes of operation are also feasible to enable novice users to use HPC resources.
Currently, we work on fully automating an existing pre-processing pipeline [19]
by utilizing the UNICORE data oriented processing approach and adding the
advantage of enabling easy research data management via an integration with
the KIT Data Manager [8] via the MASi project [6]. We also work on a method
to offload individual KNIME workflow nodes to HPC resources.

Acknowledgment. The authors would like to thank the German DFG for the oppor-
tunity to do research in the MASi (NA711/9-1) project. Financial support by the
German BMBF for the competence center for Big Data ScaDS Dresden/Leipzig and
the 031A099 project is gratefully acknowledged. Furthermore, the research leading to
these results has been supported by the LSDMA project of the German HGF and the
Human Brain Project by the European Union.

References

1. Benedyczak, K., Schuller, B., Petrova, M., Rybicki, J., Grunzke, R.: UNICORE
7 - middleware services for distributed and federated computing. In: International
Conference on High Performance Computing Simulation (HPCS) (2016, accepted)

2. Berthold, M.R., et al.: KNIME: the Konstanz information miner. In: Preisach, C.,
Burkhardt, H., Schmidt-Thieme, L., Decker, R. (eds.) Data Analysis, Machine
Learning and Applications. Studies in Classification, Data Analysis, and Knowl-
edge Organization, pp. 319–326. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-78246-9 38

3. Cardona, A., Tomancak, P.: Current challenges in open-source bioimage informat-
ics. Nat. Methods 9(7), 661–665 (2012)

4. Eliceiri, K.W., Berthold, M.R., Goldberg, I.G., Ibáñez, L., Manjunath, B.S.,
Martone, M.E., Murphy, R.F., Peng, H., Plant, A.L., Roysam, B., et al.: Biological
imaging software tools. Nat. Methods 9(7), 697–710 (2012)

5. de la Garza, L., Krüger, J., Schärfe, C., Röttig, M., Aiche, S., Reinert, K.,
Kohlbacher, O.: From the desktop to the grid: conversion of KNIME workflows
to gUSE. In: Proceedings of the International Workshop on Scientific Gateways
2013 (IWSG) (2013)

http://dx.doi.org/10.1007/978-3-540-78246-9_38
http://dx.doi.org/10.1007/978-3-540-78246-9_38

Seamless HPC Integration of Data-Intensive KNIME Workflows 491

6. Grunzke, R., Hartmann, V., Jejkal, T., Herres-Pawlis, S., Hoffmann, A., Deicke, A.,
Schrade, T., Stotzka, R., Nagel, W.E.: Towards a metadata-driven multi-
community research data management service. In: 2016 8th International Work-
shop on Science Gateways (IWSG) (2016, accepted)

7. HBP: The Human Brain Project - High Performance Computing Platform (2015).
https://www.humanbrainproject.eu/high-performance-computing-platform1

8. Jejkal, T., Vondrous, A., Kopmann, A., Stotzka, R., Hartmann, V.: KIT data man-
ager: the repository architecture enabling cross-disciplinary research. In: Large-
Scale Data Management and Analysis - Big Data in Science, 1st edn (2014). http://
digbib.ubka.uni-karlsruhe.de/volltexte/1000043270

9. Jug, F., Pietzsch, T., Kainmüller, D., Funke, J., Kaiser, M., van Nimwegen, E.,
Rother, C., Myers, G.: Optimal joint segmentation and tracking of Escherichia
Coli in the mother machine. In: Cardoso, M.J., Simpson, I., Arbel, T., Precup, D.,
Ribbens, A. (eds.) BAMBI 2014. LNCS, vol. 8677, pp. 25–36. Springer, Cham
(2014). doi:10.1007/978-3-319-12289-2 3

10. Jug, F., Pietzsch, T., Kainmüller, D., Myers, G.: Tracking by assignment facilitates
data curation. In: IMIC Workshop, MICCAI, vol. 3 (2014)

11. Jug, F., Pietzsch, T., Preibisch, S., Tomancak, P.: Bioimage informatics in the
context of Drosophila research. Methods 68(1), 60–73 (2014)

12. Kacsuk, P., et al.: WS-PGRADE/gUSE generic DCI gateway framework for a large
variety of user communities. J. Grid Comput. 10(4), 601–630 (2012)

13. KNIME: KNIME Cluster Execution (2016). https://www.knime.org/cluster-
execution/

14. Krüger, J., Grunzke, R., Gesing, S., Breuers, S., Brinkmann, A., de la Garza, L.,
Kohlbacher, O., Kruse, M., Nagel, W.E., Packschies, L., Müller-Pfefferkorn, R.,
Schäfer, P., Schärfe, C., Steinke, T., Schlemmer, T., Warzecha, K.D., Zink, A.,
Herres-Pawlis, S.: The MoSGrid science gateway - a complete solution for molecular
simulations. J. Chem. Theory Comput. 10, 2232–2245 (2014)

15. Pietzsch, T., Preibisch, S., Tomančák, P., Saalfeld, S.: ImgLib2 - generic image
processing in Java. Bioinformatics 28(22), 3009–3011 (2012)

16. PRACE: PRACE Research Infrastructure (2015). http://www.prace-ri.eu/
17. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T.,

Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., et al.: Fiji: an open-source plat-
form for biological image analysis. Nat. Methods 9(7), 676–682 (2012)

18. Schindelin, J., Rueden, C.T., Hiner, M.C., Eliceiri, K.W.: The ImageJ ecosystem:
an open platform for biomedical image analysis. Mol. Reprod. Dev. 82(7–8), 518–
529 (2015)

19. Schmied, C., Steinbach, P., Pietzsch, T., Preibisch, S., Tomancak, P.: An auto-
mated workflow for parallel processing of large multiview SPIM recordings. Bioin-
formatics 32, 1112–1114 (2015)

20. Schneider, C.A., Rasband, W.S., Eliceiri, K.W.: NIH image to ImageJ: 25 years of
image analysis. Nat. Methods 9(7), 671–675 (2012)

21. Schuller, B., Grunzke, R., Giesler, A.: Data oriented processing in UNICORE. In:
UNICORE Summit 2013 Proceedings, IAS Series, vol. 21, pp. 1–6 (2013)

22. Wang, P., Robert, L., Pelletier, J., Dang, W.L., Taddei, F., Wright, A., Jun, S.:
Robust growth of Escherichia coli. Curr. Biol. 20(12), 1099–1103 (2010)

23. XSEDE: Extreme Science and Engineering Discovery Environment (2015). https://
www.xsede.org

https://www.humanbrainproject.eu/high-performance-computing-platform1
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000043270
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000043270
http://dx.doi.org/10.1007/978-3-319-12289-2_3
https://www.knime.org/cluster-execution/
https://www.knime.org/cluster-execution/
http://www.prace-ri.eu/
https://www.xsede.org
https://www.xsede.org

Optimized Execution Strategies for Sequence
Aligners on NUMA Architectures

Josefina Lenis and Miquel Angel Senar(B)

Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
{josefina.lenis,miquelangel.senar}@uab.es

Abstract. Alignment applications are essential for solving genomic vari-
ant calling studies. We have analyzed performance problems of four pop-
ular aligners from the literature. They constitute representative exam-
ples of the two most commonly used algorithmic strategies: hash tables
and Burrows-Wheeler Transform. Although they take advantage of mul-
tithreading execution, they exhibit significant scalability limitations on
systems with a non-uniform memory architecture (NUMA). Data shar-
ing between independent threads and irregular memory access patterns
constitute performance limiting factors that affect the studied aligners.
We have also evaluated various data distribution strategies that do not
require changes to the applications. Significant improvements in speedup
were achieved when these techniques were applied to the execution of
these aligners on a NUMA system.

Keywords: NUMA · Memory system performance · Genomic aligners ·
NGS

1 Introduction

New sequencing technologies set the pace of the rapid progress in genomic stud-
ies. The steady trend of reducing the sequencing cost and increasing the length of
reads force developers to create and maintain more accurate, faster and updated
software. Numerous sequence aligning tools have been developed in recent years.
They exhibit differences in sensitivity or accuracy [16] and most of them can
execute in parallel in modern multicore systems. In general, writing parallel
programs that exhibit good scalability on non-uniform memory architectures
(NUMA) is far from easy. Achieving good system performance requires that
computations are carefully designed in order to harmonize execution of multiple
threads and data accesses over multiple memory banks.

This paper is aligned with our previous work where we analyzed the perfor-
mance of BWA-ALN, (Burrows-Wheeler Aligner) [11], on NUMA architectures.
In that study, we detected scalability problems exhibited by BWA-ALN and we
proposed simple system-level techniques to alleviate them. We obtained results
up to 4-fold speed up over original BWA-ALN multithread implementation. In
the present work, we extend the study to BWA-MEM [10] (a newer version of
c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 492–503, 2017.
DOI: 10.1007/978-3-319-58943-5 40

Optimized Execution Strategies for Sequence Aligners 493

BWA specially suited to deal with longer reads) and to other three well-known
mappers, namely, BOWTIE2 [8], GEM [13] and SNAP [18]. These mappers
are widely used by the scientific community and real production centers, and
frequently updated by its developers. We have applied various data distribu-
tion strategies to these mappers, as we did with BWA-ALN, and we obtained
promising results on all cases, reducing memory-bound drawbacks and increasing
scalability.

The paper is structured as follows. Section 2 presents related work. Section 3
describes basic concepts of NUMA systems and provides concrete details of the
system used in our experiments. Section 4 introduces the problem of sequence
alignment and a behavioral characterization of mappers used in this study. In
Sect. 5, we introduce the methodology and all data distribution scenarios used to
improve the performance of the aligners under study. Section 6 shows the results
obtained in our experiments. Last section summarizes the main conclusions of
our work.

2 Related Work

Genome alignment problems have been considered by Misale [14]. The author
implements a framework to work under BOTWIE2 and BWA improving local
affinity of the original algorithm. Herzeel et al. [4] replaces the pthread-based
parallel loop in BWA by a Cilk for loop. Rewriting the parallel section using
Cilk removes the load imbalance, resulting in a factor 2x performance improve-
ment over the original BWA. On both cases - Misale and Herzeel et al. - the
source code of the applications -aligners- are modified, which might be a costly
action and dependent on the application version. Abuin et al. [1] presented a big
data approach to solve BWA scalability problems. They introduce a tool name
BigData that enables to run BWA in several machines although it does not pro-
vide a clear strategy to divide the data or to set the number of instances. In
contrast, our approach can be applied to different aligners with minimum effort
and, although not tested yet, it can be easily applied to distributed memory sys-
tems. Our work is complementary to all the works mentioned above. We present
user-level guidelines of execution that help improving memory-bound aligners
without modifying their source code, and, in some cases, without increasing
the application initial requirements. Our contribution is based on the idea that
application performance can be improved taking into account architecture char-
acteristics and application’s memory footprint.

3 NUMA Systems

In NUMA systems, main memory is physically distributed in banks among dif-
ferent processors but it looks like one single large memory from a logical per-
spective, so accesses to different parts is done using global memory addresses
[3]. Each processor has its own memory bank and can access to it through its
memory controller. A processor and its respective memory bank is called NUMA

494 J. Lenis and M.A. Senar

node. A program running in a particular processor can also access data stored
in memory banks associated to other processors in a coherent way but at the
cost of increased latency compared to accesses to its own local memory bank.
In general, parallel applications that may run using multiple processors are not
usually designed taking into account the NUMA architecture. Mainly, because
creating a program that uses efficiently NUMA memory subsystems is not a
trivial task. Figure 1 shows an example of NUMA architecture that corresponds
to the system that we used in this study.

Fig. 1. AMD Bulldozer micro-architecture

It is a four-socket AMD Opteron Processor 6376 (Bulldozer microarchitec-
ture), each socket containing 2 dies packaged onto a common substrate, referred
to as a Multi-Chip Module (MCM). Each die (processor) consists of 8 physical
cores that share a 6 MB Last Level Cache (LLC) and a memory bank. Only one
thread can be assigned to one core and, therefore, up to 64 threads can be exe-
cuted simultaneously. The system has 128 GB of memory, divided into 8 modules
of 16 GB DDR3 1600 MHz each. Nodes are connected by HyperTransport links.
Information about the NUMA system configuration can be retrieved on Linux
systems by using the numactl – hardware command. This command displays the
available nodes and access costs to different NUMA nodes. As seen in Table 1,
access (or distance) costs within a local NUMA node is 10; this is shown in the
diagonal values of the table. According to this information, access to an interme-
diate distance node costs 1.6x more, and access to the more distant nodes costs
more than twice (2.2x). Distance between NUMA nodes is frequently referred to
as hops. Where 0 hop is the minimum distance and 2 hops is the maximum.

Table 2 shows the results of a small experiment that we carried out on our
system to bear out the accuracy of the information obtained. We modified an
available open source benchmark [6], and adapted it to our architecture. The
program is written in C and was compiled with GCC version 4.9.1, without
optimization flags (−O0). The experiment consisted in reading an array of 100M
elements. Each access was performed in such a way that prefetching was skipped

Optimized Execution Strategies for Sequence Aligners 495

Table 1. Distance map on AMD 6376.

NUMA 0 1 2 3 4 5 6 7

0 10 16 16 22 16 22 16 22

1 16 10 22 16 16 22 22 16

2 16 22 10 16 16 16 16 16

3 22 16 16 10 16 16 22 22

4 16 16 16 16 10 16 16 22

5 22 22 16 16 16 10 22 16

6 16 22 16 22 16 22 10 16

7 22 16 16 22 22 16 16 10

Table 2. Bandwidth per thread [MiB/s]

Source 1 Thread 64 Threads

0 3300 700

1 2450 250

2 2200 330

3 1700 220

4 2200 250

5 1700 220

6 2200 330

7 1700 208

and a memory access (and a last level cache miss) was ensured every time. The
array was allocated in node 0 and accessed by threads allocated in all cores
(64). In the first column, we can see the bandwidth achieved when the array was
accessed sequentially by one thread at a time. The “source” indicates to which
NUMA node the thread was bound to. Second column shows bandwidth mea-
surements when the same array was accessed by all the available threads at the
same time. It is worth mentioning that the displayed values of the bandwidth cor-
respond to the worst case scenarios. According to Table 2 accessing a local node
is approximately 3300 MiB/s; bandwidth for medium distance nodes (1 hop) is
2200 MiB/s, the penalty being 1.5x; and accesses from a two-hops node incurs
a penalty of 1.9x (bandwidth equals to 1700 MiB/s). Table 2 shows a case that
is not revealed in Table 1: accesses from a thread running on the node located
at the same socket exhibits a bandwidth of 2450 MiB/s (that might be seen as a
node between 0 and 1 hop). Penalty in access latencies between processors and
memory is one of the main problems suffered by NUMA-unaware applications.
However, another problem arises when applications use a centralized data struc-
ture that is located in a single memory bank. When a large number of threads
needs to access to this shared data structure, congestion problems might gener-
ate a significant degradation in memory accesses, as shown in the second column
of Table 2.

4 Sequence Aligners

Sequence aligners - or aligners, for the sake of simplicity - can be classified into
two main groups: based on hash tables or based on Burrow Wheeler Transform
(BWT) [12]. In hash table based algorithms, given a query P every substring of
length s of it is hashed, and can be later easily retrieved. SNAP is an example of
hash table based aligner, where given a read to align draws multiple substrings
of length s from it and performs an exact look up in the hash index to find
locations in the database that contain the same substrings. It then computes
the edit distance between the read and each of these candidate locations to
find the best alignment. On the other hand, BWT is an efficient data indexing

496 J. Lenis and M.A. Senar

technique that maintains a relatively small memory footprint when searching
through a given data block. BWT is used to transform the reference genome into
an FM-index, and, as a consequence, the look up performance of the algorithm
improves for the cases where a single read matches multiple locations in the
genome [12]. Examples of BWT base aligners are BWA, BOWTIE2 and GEM.
Hash tables are a straight forward algorithm and are very easy to implement
but memory consumption is high; BWT algorithms, on the other hand, are
complex to implement but have low memory requirements and are significantly
faster [17]. The computational time required by an aligner to map a given set of
sequences and the computer memory required are critical characteristics, even
for aligners based on BWT. If an aligner is extremely fast but the computer
hardware available for performing a given analysis does not have enough memory
to run it then the aligner is not very useful. Similarly, an aligner is not useful
either if it has low memory requirements but it is very slow. Hence, ideally, an
aligner should be able to balance speed and memory usage while reporting the
desired mappings [2]. In [14], Misale et al. defines three distinguishing features
among the parallelization of sequence aligners:

1. There is a reference data structure indexed (in our study, the human genome
reference). Typically this is read-only data.

2. There is a set of reads that can be mapped onto the reference independently.
3. The result consists in populating a shared data structure.

From a high level point of view, this is the behavior of all aligners that we used
in this study. Therefore, continuous accesses to the single shared data struc-
ture -index- by all threads can increase its memory degradation performance.
Additionally, read mapping exhibits poor locality characteristics: when a partic-
ular section of the reference index is brought to the local cache of a given core,
subsequent reads usually require a completely different section of the reference
index and, hence, cache reuse is low.

5 Allocation Strategies and Data Partitioning

In our previous work [9], we presented a series of execution strategies to improve
BWA-ALN performance without modifying its source code. In this paper, we
have applied our methodology to 4 aligners (GEM3, BOWTIE2, BWA-MEM
and SNAP) in order to assess its benefits as a general methodology that can be
applied to aligners that exhibit the features mentioned at the end of the previous
section. We have developed a series of steps to characterize the behaviour of a
memory-bound application and define its best execution strategy (see Fig. 2).

5.1 Analysis and Optimization of Shared Data Distribution
(Part A)

Part A of our methodology consists in analyzing whether an aligner is sensi-
tive to different memory allocations. In order to achieve this we carried out 3

Optimized Execution Strategies for Sequence Aligners 497

Fig. 2. Proposed methodology to find the best execution strategy

experiments: The first is a traditional scalability study in which we focused on 5
particular cases: using 8, 16, 32, 48 and 64 threads, because each processor has
8 cores and 1 memory bank associated; so 8, 16, 32, 48 and 64 threads implies
a minimum usage of 1, 2, 4, 6 and 8 NUMA nodes, respectively. For the other
two cases we used the Linux Tool numactl to set a memory policy allocation.
With the parameter – localalloc the data was allocated in the current node where
the program is being executed. The idea behind this is to maximize local data
affinity, keeping data onto the closest memory to the running processor. Finally,
in the third case the – interleave parameter is used so that memory is allocated
using a round robin fashion between selected nodes. All aligners that we used
need two input data files: one that contains all the reads that need to be mapped
and a second one that contains the reference genome index.

The objective of this part is, firstly, to gain insight into the level of scalability
of the aligner. Additionally, re-running the aligner using different parameters of
numactl provides us information about the behavior of the application and its
data allocation sensitivity by using two extreme cases: when the locality and
concurrency increase (localalloc) and vice-versa (interleave).

5.2 Data Replication and Partitioning Strategies (Part B)

The objective for part B is to reduce the usage of the interconnection bus.
This is achieved by data replication and partitioning techniques that imply the
execution of simultaneous instances of the application (aligner). For aligners
that have a small index as BOWTIE2 and BWA, data partitioning is not that

498 J. Lenis and M.A. Senar

challenging because the entire index fits in one memory bank. In these cases,
we can consider each NUMA node as a symmetric multi-processor unit, capable
of running an independent instance of an aligner. Independent instances were
created, each one running in a single NUMA node (all independent instances
were running with 8 threads). For GEM and SNAP we also run independent
instances but the index does not fit in one NUMA node. Each one of these
instances is multithread. The input file with all the reads was divided into the
number of instances. Figure 3, illustrates this configuration with 4 independent
instances that are being executed simultaneously. Input data is 1/4 the size of
the original and the reference genome is replicated 4 times.

Fig. 3. Data partitioning

For aligners like GEM and SNAP, where the index size is equal or larger than
the size of a memory bank, data partitioning becomes more complex because it
involves more than one NUMA node. In Table 3, we can see the sizes of the
indexes used. This information is crucial for designing how to split the data.
Knowing the underlying architecture is also critical. Our system has memory
banks of 16 GiB, which is not enough to run SNAP, even if two memory banks
are used, the index would barely fit in. This is why we only run 2 simultaneous
instances of SNAP (64 GiB each) and 4 instances of GEM (32 GiB each).

6 Experimental Results

In this section, we show the main results obtained during the experimentation.
For all the experiments we used the reference human genome GRCh37, main-
tained by The Genome Reference Consortium, and two data sets were used as
input data:

Optimized Execution Strategies for Sequence Aligners 499

– Synthetic benchmark [5]:
Single end, base length = 100, number of reads = 11M Size = 3.1 GB

– Segment extracted from NA12878 [19]:
Single end, base length = 100, number of reads = 22M Size = 5.4 GB

All aligners were compiled using GCC 4.9.1 and we used the latest version
available for each, as shown in the second column of Table 3. All results were
obtained as an average of five executions.

Table 3. Detailed information about the aligners.

Aligner Version Index (GB) Data partitioning

BOWTIE2 2.2.6 3.9 8x8 threads

BWA-MEM 0.7.12 5.1 8x8 threads

GEM 3.0 15.0 4x16 threads

SNAP 1.0.18 29.0 2x32 threads

In the first part of our experimentation (Part A), we obtained the execution
times of the four different aligners shown in Fig. 4. By original we refer to the
execution of a given aligner with its default parameters without any particular
allocation policy or NUMA control, and letting the operating system handle the
allocation. On Linux systems this will normally involve spreading the threads
through the system and using first-touch data allocation policy, which means
that when a program is started on a CPU, data requested by that program
will be stored on a memory bank corresponding to its local CPU [7]. Allocation
policy takes effect only when a page is first requested by a process. If we focus on
the original execution (shown by a light blue line in Fig. 4), scalability decreases
significantly beyond 32 threads in all four aligners. When aligners run on more
than 32 cores at least one NUMA node at two-hops distance are used. Therefore,
all the speed up gain due to multithreading is mitigated by the latency of remote
accesses and traffic saturation of interconnection links. For aligners BWA-MEM
Fig. 4b, GEM3 Fig. 4c and SNAP Fig. 4d it can be clearly seen that interleave
policy reduces the execution time, specially for the limited scalability scenarios
(with 48 and 64 threads).

As explained in Sect. 4, aligners share a common data structure -an index-
among all threads. This structure is loaded in memory by the master thread (by
default, Linux will place this data on its local memory bank). Therefore, as the
number of threads increases, the memory bank that allocates the index becomes a
bottleneck. Allocating data in an interleave way does not reduce remote accesses
but guarantees a fair share of them between all memory banks and, therefore,
prevents access contention, a phenomenon specially prone to happen in this
architecture due to reduced memory bandwidth between NUMA nodes [15]. This
reason explains why using localalloc policy does not produce any improvement in

500 J. Lenis and M.A. Senar

Fig. 4. Different memory allocation policies. DATASET: synthetic benchmark (Color
figure online)

execution times. BOWTIE2 Fig. 4a does not follow this trend; BOWTIE2 run-
ning on its defaults configuration performs better than using a explicit memory
policy. We could infer some memory optimization might take place at the index
load stage but a move precise analysis of the source code would be required to
provide more accurate conclusions. In the second part of our experimentation
(part B), we use data partitioning and data replication techniques to create mul-
tiple instances and run them simultaneously. We found, in our previous work,
that this was the best solution for BWA-ALN. Figure 5 shows a complete com-
parison of all strategies, calculated using the wall time of the original execution
with 64 threads (max resources).

Replication of the reference genome index reduces at the same time latency
and contention problems while the benefits from multithreading paralleliza-
tion are maintained: queries are distributed in different groups of threads that
share a particular copy of the index stored in a local bank. BOWTIE2 and
GEM also increase their performance when creating instances. Although for

Optimized Execution Strategies for Sequence Aligners 501

Fig. 5. All strategies. DATASET: synthetic benchmark

Table 4. Complete set of results for dataset NA12878

Aligner Policy Execution time [s] SpeedUp

Number of threads Max. threads

8 16 32 48 64 64

BOWTIE2 Original 679.89 361.20 223.74 279.13 431.11 1.1

LocalAlloc 826.56 476.09 296.53 305.50 433.93 0.99

Interleave 834.58 486.59 314.99 290.75 471.62 0.914

Instances – – – – 111.11 3.38

BWA-MEM Original 537.77 340.97 312.95 315.26 307.18 1

LocalAlloc 618.67 329.11 344.84 354.91 296.83 1.03

Interleave 482.20 300.89 233.23 193.21 170.23 1.80

Instances – – – – 61.93 4.96

GEM3 Original 246.30 132.56 80.82 66.016 60.94 1

LocalAlloc 405.15 256.65 303.17 202.25 273.75 0.22

Interleave 327.24 187.32 100.40 64.74 52.58 1.21

Instances – – – – 57.46 1.06

SNAP Original 465.72 237.83 218.67 297.17 297.17 1

LocalAlloc 705.76 923.40 393.85 343.18 361.02 0.92

Interleave 199.97 396.54 98.43 79.04 65.27 4.5

Instances – – – – 223.39 1.33

502 J. Lenis and M.A. Senar

GEM this strategy is only slightly better than using interleave. This can be
explained because the index does not fit into one memory bank; even when
multiple instances are created inter-node traffic can not be avoided. A simi-
lar result is observed with SNAP where instances represent an improvement of
40% over Original SNAP but its large index data structure forces it to use four
NUMA nodes per instance and to have two-hops distance accesses. Complemen-
tary results for dataset NA12878 can be found in Table 4. These results are in
line with the results discussed above.

7 Conclusions

Knowing the underlying architecture where applications are running is a key
aspect to achieve their optimal performance. If an application is memory-bound,
might suffer drawback in performance when executed in NUMA systems. In
this paper, we presented an approach to detect whether an aligner is being
penalized by contention or/and remote memory bank accesses and whether it
is susceptible to improve its execution time, by applying some simple system-
level techniques that do not require changes on the original application code.
When interleave or instances based techniques were applied, execution time was
reduced in all cases tested. Aligners in which the index size is less than half
the size of a single memory bank, data partitioning arises as the best solu-
tion because it completely avoids traffic between nodes and ensures only local
accesses. In this case, a speedup of 2.5x and 3.1x was obtained for BOWTIE2
and BWA-MEM respectively. It is noteworthy that instances based implies an
increment on memory requirements. BOWTIE2 and BWA-MEM can easily meet
this requirement in modern systems. For other aligners with larger indexes (i.e.
SNAP and GEM), interleave technique might be a better choice because the
index is distributed across the system memory banks, and mitigates the con-
tention produced when all threads try to access the same data structure albeit
HyperTransport traffic cannot be reduced. Improvements of 2.5x and for SNAP
is 3.6x were obtained for SNAP and GEM, respectively. GEM still achieved and
additional slight improvement when the instance based technique was applied
because its memory requirements are larger than BWA-MEM and BOWTIE2
but smaller than SNAP. These techniques can be implemented easily and do not
require modifying the source code of the applications neither to have privilege
permissions. Any user can add these strategies to its current running jobs. As
we have seen, very simple configurations at the time of executing an application
can generate significant differences in execution times when running on NUMA
systems. This adds an extra layer of complexity to the basic techniques of par-
allelism and performance evaluations. It is an important factor to be taken into
account when improving the overall performance of any application.

Acknowledgements. This research was supported by MICINN-Spain under contract
TIN2014-53234-C2-1-R.

Optimized Execution Strategies for Sequence Aligners 503

References

1. Abúın, J.M., Pichel, J.C., Pena, T.F., Amigo, J.: BigBWA: approaching the
Burrows-Wheeler aligner to Big Data technologies. Bioinformatics 31(24), 4003–
4005 (2015)

2. Fonseca, N.A., Rung, J., Brazma, A., Marioni, J.C.: Tools for mapping high-
throughput sequencing data: supplement. Bioinformatics 1–9 (2012)

3. Garćıa-Risueño, P., Ibañez, P.E.: A review of High Performance Computing foun-
dations for scientists. Int. J. Mod. Phys. C 23(07), 1–33 (2012)

4. Herzeel, C., Ashby, T.J., Costanza, P., Meuter, W.: Resolving load balancing issues
in BWA on NUMA multicore architectures. In: Wyrzykowski, R., Dongarra, J.,
Karczewski, K., Waśniewski, J. (eds.) PPAM 2013. LNCS, vol. 8385, pp. 227–236.
Springer, Heidelberg (2014). doi:10.1007/978-3-642-55195-6 21

5. Highnam, G., Wang, J.J., Kusler, D., Zook, J., Vijayan, V., Leibovich, N.,
Mittelman, D.: An analytical framework for optimizing variant discovery from
personal genomes. Nat. Commun. 6, 6275 (2015)

6. Klöckner, A.: Lec8-Demo (2012). http://github.com/hpc12/lec8-demo
7. Lameter, C., Hsu, B., Sosnick-Pérez, M.: NUMA (Non-Uniform Memory Access):

an overview. ACMQueue 1–12 (2013)
8. Langmead, B., Salzberg, S.L.: Fast gapped-read alignment with Bowtie 2. Nat.

Methods 9(4), 357–359 (2012)
9. Lenis, J., Senar, M.A.: On the performance of BWA on NUMA architectures. In:

2015 IEEE Trustcom/BigDataSE/ISPA, pp. 236–241 (2015)
10. Li, H.: Aligning sequence reads, clone sequences and assembly contigs with BWA-

MEM, p. 3 (2013). arXiv preprint: arXiv:1303.3997
11. Li, H., Durbin, R.: Fast and accurate short read alignment with Burrows-Wheeler

transform. Bioinformatics 25(14), 1754–1760 (2009)
12. Li, H., Homer, N.: A survey of sequence alignment algorithms for next-generation

sequencing. Brief. Bioinform. 11(5), 473–483 (2010)
13. Marco-Sola, S., Sammeth, M., Guigó, R., Ribeca, P.: The GEM mapper: fast,

accurate and versatile alignment by filtration. Nat. Methods 9, 1185–1188 (2012)
14. Misale, C., Ferrero, G., Torquati, M., Aldinucci, M.: Sequence alignment tools: one

parallel pattern to rule them all? BioMed Res. Int. 2014, 1–12 (2014)
15. Molka, D., Hackenberg, D., Schöne, R.: Main memory and cache performance of

intel sandy bridge and amd bulldozer. In: Workshop on Memory Systems Perfor-
mance and Correctness, MSPC 2014, pp. 4:1–4:10. ACM, New York (2014)

16. Shang, J., Zhu, F., Vongsangnak, W., Tang, Y., Zhang, W., Shen, B.: Evaluation
and comparison of multiple aligners for next-generation sequencing data analysis.
BioMed Res. Int. 2014, 1–16 (2014)

17. Trapnell, C., Salzberg, S.L.: How to map billions of short reads onto genomes. Nat.
Biotechnol. 27(5), 455–457 (2009)

18. Zaharia, M., Bolosky, W., Curtis, K.: Faster and more accurate sequence alignment
with SNAP, pp. 1–10 (2011). arXiv preprint: arXiv:1111.5572v1

19. Zook, J.M., et al.: Extensive sequencing of seven human genomes to characterize
benchmark reference materials, p. 26468 (2015). (bioRxiv)

http://dx.doi.org/10.1007/978-3-642-55195-6_21
http://github.com/hpc12/lec8-demo
http://arxiv.org/abs/1303.3997
http://arxiv.org/abs/1111.5572v1

Architecture for the Execution of Tasks
in Apache Spark in Heterogeneous Environments

Estefania Serrano1(B), Javier Garcia Blas1, Jesus Carretero1,
and Monica Abella2,3

1 Computer Architecture and Technology Area, Univ. Carlos III, Madrid, Spain
esserran@inf.uc3m.es

2 Bioengineering and Aerospace Engineering Department,
Univ. Carlos III, Madrid, Spain

3 Instituto de Investigacion Sanitaria Gregorio Marañon (IiSGM), Madrid, Spain

Abstract. The current disadvantages in computing platforms and the
easy migration to the Cloud Computing paradigm have as consequence
the migration of scientific applications to different task-based distributed
computing frameworks. However, many of them have already been opti-
mized for their execution on specific hardware accelerators like GPUs. In
this work, we present an architecture design that aims to facilitate the
execution of traditional HPC based applications into Big Data environ-
ments. We prove that the bigger memory capacity, the automatic task
partitioning, and the higher computational power lead to a convergence
to a highly distributed new execution model. Moreover, we present an
study of the viability of our proposal through the use of GPUs inside the
Apache Spark infrastructure. The architecture presented will be evalu-
ated through a real medical imaging application. The evaluation results
demonstrate that our approach obtains competitive execution times com-
pared with the original application.

Keywords: Computed Tomography, CT ·GPU scheduling ·MapReduce

1 Introduction

The increasing use of distributed computing frameworks that are originally cre-
ated for Big Data or data analysis problems is triggering the adaptation of these
programming paradigms through different methodologies. Examples of these
solutions are shown in [5,16]. One of the barriers related to this approximation
is the efficiency loss, mainly due to data dependencies.

In the case of scientific applications (e.g. field of medical imaging), develop-
ers have traditionally opted for the usage of accelerators, like GPUs (Graphics

E. Serrano—This work has been partially supported by the grant TIN2013-41350-P,
Scalable Data Management Techniques for High-End Computing Systems from the
Spanish Ministry of Economy and Competitiveness, FPU14/03875 from the Spanish
Ministry of Education, and by NECRA RTC-2014-3028-1 project. We also want to
thank NVidia for providing the device Tesla K40 which with we have been able to
perform the experiments.

c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 504–515, 2017.
DOI: 10.1007/978-3-319-58943-5 41

Architecture for the Execution of Tasks in Apache Spark 505

Processing Unit). Because of its SIMD (Single Instruction Multiple Data) archi-
tecture, these accelerators allow the fast execution of most of the reconstruction
and projection imaging algorithms, since the generation of each of the pixels
in the final image is completely independent. The main problem related to the
usage of these hardware elements is the lack of memory capacity due to the
fact that most of the low-cost graphics cards count only with around 3 GB of
GDDR5 memory. Although dedicated devices in the scientific computing field
(like NVidia Tesla) can provide more than 10 GB of main memory, this may
be insufficient for the future generation of high resolution images, which could
require more than 32 GB of data. A possible solution to this problem is the
partitioning of the input data into multiple independent tasks on different and
coordinated GPUs.

The advantages of distributed computing in terms of memory availability
are evident. Memory capacity and computational power are multiplied due to
a high number of computing resources. Moreover, heterogeneous clusters with
attached GPUs are being a common approach, providing even more computa-
tional capabilities. There exist many distributed computing frameworks, mainly
aimed at scientific applications and being the most notable example MPI (Mes-
sage Passing Interface). This approach has already being explored in a previous
work [3]. In case of highly parallel scientific problems, the re-implementation of
the applications using the MapReduce paradigm can result in larger benefits.
This paradigm facilitates the automatic data partitioning, a performance-based
tasks model, and locality-aware data placement.

In summary, the contributions of this work are the following. First, we present
a solution that provides access to multiple GPUs inside tasks generated by Spark.
Second, we detail the methodology followed for the migration of a medical imag-
ing application already implemented for heterogeneous environments. Finally,
we present a comparative evaluation of the proposed solution. The contributions
of this work are not only applied to the possibility of executing applications from
the medical image field, but also to the generalization of the process used here,
to any field that can take advantage of GPUs.

The rest of the document is organized as follows. In Sect. 3 a basic explanation
of the technologies employed is briefly described. Our architecture proposal is
presented in Sect. 4, including a general explanation of how to use GPUs in
Apache Spark. In Sect. 5, we introduce the medical imaging application and
we evaluate it in Sect. 6. Finally, in Sect. 7 we discuss the obtained results and
propose future works to continue with the presented solution.

2 Related Work

The unification of heterogeneous architectures with distributed computing
frameworks such as Hadoop has been exploited from different points of view.
In Hadoop there exists different examples of this unification focusing on specific
GPU programming models such as HadoopCL [8] or trying to generalize acceler-
ator programming supporting both CUDA and OpenCL with a good example in

506 E. Serrano et al.

Hadoop+ [9]. Another example is [14] which combines Hadoop and Aparapi to
create MapReduce interfaces for GPU execution (using OpenCL programming
model) obtaining an speedup of 80x in an n-Body implementation.

Regarding Spark, it is currently in development a framework improvement
called HeteroSpark [11],based in Java RMI, although it is not available at this
day. The majority of these frameworks are based, as well as the work presented
here, in the independent compilation of kernels programmed in the selected
programming model, although the scheduling of the jobs sent to the GPU is
not often included. However, other related works have chosen to not modify
the framework and add the GPUs at the application level. Examples of this
approach are those presented by Zheng and Wu [18] which uses GPUs inside
Hadoop to accelerate a kmeans algorithm, or Boubela et al. [4], which makes use
of a separated server from Spark for the analysis of MRI images. Our proposal
is similar to these approaches since we do not modify Spark, but unlike them,
we extend it for a generalized execution of suitable GPU applications.

Beyond the use of GPUs in these distributed environments, some works in the
field of medical imaging have focused on their evaluation without the presence
of accelerators like in [13]. In this approach, the authors implement the 4-D
computed tomography FDK algorithm using the Apache Hadoop MapReduce
paradigm. Another solution [6] implements a deconvolution using Apache Spark
and compares it to other alternatives such as the use of multicore CPUs or GPUs.
A complete framework in this field for real time image analysis that uses as an
accelerator Apache Spark is described in [12]. There are also similar alternatives
in general image processing applications, being the most popular one HIPI [15],
an image processing library that is accelerated through Hadoop MapReduce and
it is employed in many other applications.

3 Background

3.1 Apache Spark

Apache Spark [17] is a general purpose distributed computing framework. It is
employed in several fields, although it is mainly used in data analysis and Big
Data applications. Spark exposes a portable APIs and supports well-known lan-
guages such as Scala, Java, Python, R, and specific libraries focused on machine
learning. Spark is based on both an extended MapReduce paradigm and a task-
based execution model. This solution is compatible with several resource man-
agers and provides connectors for different file systems and distributed databases.
One of the main differences with previous frameworks such as Hadoop [1] is the
optimization in memory management.

The Spark’s architecture has two main actors: the driver and the workers. The
driver is in charge of deploying the application and its management inside the
cluster, communicating with the chosen resource manager. Workers run inside
the different nodes of the cluster and launch the isolated containers in which
tasks are executed (executors).

Architecture for the Execution of Tasks in Apache Spark 507

3.2 Python and PyCUDA

The selection of Python as programming language is motivated by the facts that
it is used as a prototyping language and the quantity of existing scientific mod-
ules. These modules provide several mathematical functions, highly optimized
thanks to their inner development in C language. However, the process described
in this work could have been done with any other compatible language as long
as they have bindings for the GPUs (either CUDA or OpenCL compatible). In
Python there are many alternatives for developing accelerators-based applica-
tions. We highlight PyCUDA [10] due to its flexible support of NVidia GPUs
and its compatibility with existing kernels.

4 GPU Support for Heterogeneous Platforms in Spark

As it can be seen in Figs. 1 and 2, from the application execution point of view,
there are three main components: the driver, the executor allocated in the worker
nodes, and the proposed GPU scheduler. This architecture is tightly tied with
the Apache Spark architecture and execution model previously presented.

The driver is in charge of the execution of the main code of the application,
stating the required transformations and actions. In case of using a local file
system, it will be also responsible of reading and writing the input and output
data. However, if we use HDFS file system, each of the worker nodes will be
in charge of acquiring the nearest data if it is not already available. The driver
is independent from the task execution (except when executing in one node),
which makes unnecessary the presence of installed GPUs.

In the executor, tasks are finally computed. These tasks can invoke CUDA-
based kernels through the PyCUDA interface. As stated in Fig. 1, first we need to
check out if the node counts with the required accelerators, in our case NVidia
GPUs. This check also includes the presence of the auxiliary tools for GPU
programming, either CUDA or OpenCL libraries. After that, it will request a
device to the scheduler. In case of not counting enough resources the scheduler

Fig. 1. Architecture of a GPU processing application in Apache Spark.

508 E. Serrano et al.

Driver Program

Spark Context Cluster Manager
Worker Node

Executor Cache

Task

Scheduler
GPU 0 GPU 1 GPU n

Task Task Task

Worker Node

Executor Cache

Task

Scheduler
GPU 0 GPU 1 GPU n

Task Task Task

Fig. 2. Spark architecture supporting multiple GPU devices.

will block the assignment process. Then the task will proceed to the online
compilation and preparation of the arguments that will be passed to the GPU
kernel. Finally, output data from the GPU will be transferred to main memory
and returned as the result of the mapping task. An example of a mapping task
is presented in Sect. 5.

The GPU scheduler consists in an independent service implemented by a
Python RPC (RPyC [2]), which is responsible of scheduling and selecting the
most suitable GPUs in which the kernels will be deployed. Due to its charac-
teristic of independent service, the scheduler is capable of scheduling the GPUs
even between independent applications that are executing inside the same node.
This component has different policies that can be applied to the scheduling
decisions, depending on factors such as available resources in the device, offered
performance, number of tasks in execution, etc. There are already three policies
implemented: Round Robin, in which the GPUs are assigned following their order
in the node; Random, the GPU is chosen randomly between those available; and
Least processes, in which the GPU with less executing kernels is chosen. However,
and due to the memory limitations of these devices, if the device chosen by the
policy does not have enough memory to execute the kernel of the task, the next
GPU (in order) will be chosen. If there is no GPU with enough memory, then
the scheduler will wait until one is available. Using this mechanism we assure
that all kernels from all tasks can be executed without memory problems in the
devices.

5 Medical Image Processing Use Case

In this Section we present the medical image processing use case that will be
used as a proof of concept. Due to the increasing resolutions of the current
scanning devices and the new techniques of image analysis, the volume of the
data produced by this type of applications has been also increased notably. The
majority of the algorithms have been optimized to be adapted to accelerators

Architecture for the Execution of Tasks in Apache Spark 509

such as Intel Xeon Phi or GPUs. However, these devices do not possess the
memory capacity necessary to generate images in high resolution 3D, which can
occupy more than 10 GB.

An example of this kind of problems is the simulation and reconstruction
in the field of medical imaging, which uses more complex algorithms every day
to obtain a better quality in the image and a reduction of the doses applied
to the patient. They also accept input data of higher sizes, which tests the
scalability of the current approaches. This is the case of the simulator Fux-Sim
that employs several Computed Tomography (CT) reconstruction methods and
simulates several acquisition geometries.

In this work we have taken one part of the simulator (the backprojection
phase) and adapted it to the architecture exposed in the previous section. The
backprojection is the essential part of the reconstruction, since it is in charge of
computing the values of each of the voxels that construct the final 3D image. In
our case, the reconstruction algorithm chosen is the analytical backprojection,
which is part of the FDK algorithm [7]. Equations 1 and 2 show the mathematical
implementation of the algorithm:

f(u, v, z) =
∑

θ

(Mag · [ucosθ − usinθ], vsinθ + vcosθ,Mag · z) (1)

Mag =
DSO + v

DSO + DDO
(2)

where f(u, v, z) is the voxel value in the back-projected image at coordinates
(u, v, z), p(s, z) the projection data for angle and position (s, z) in the detector.
DSO and DDO are the distance from the center of the FOV to the source and
the detector respectively, z is the axial coordinate, common for both detector

In
pu

t D
at

a
re

ad
in

g
Ph

as
e
M
ap

Vo
lu

m
e

co
m

bi
na

on

...

read_projections = read_binary_image()
read_projections_sc = sc.broadcast(read_projections)

size_volume_rdd = sc.parallelize([1..1..z_size_volume])
volume_result = size_volume_rdd.mapPartitions(lambda iterator:
backproject(iterator, read_projections_sc))

volume_iterator = volume_result.toLocalIterator()
for i in volume_iterator:

write_binary_image(i)
...

Fig. 3. Pseudocode of the backprojection application in Spark.

510 E. Serrano et al.

and reconstructed volumes reference frames, s is the radial coordinate in the
detector, and u, v are the Cartesian coordinates in the reconstructed volume.

Applying the architectures explained, we can reuse the already programmed
kernels obtaining automatic distribution over different threads, devices, and
nodes thanks to Spark and the GPU scheduler without sacrificing the accel-
eration provided by the GPU. A general description of the operation of the
application on Spark is given in Fig. 3.

Listing 1.1. Pseudocode of non-parallelized backprojection.

V = create roi()
for all projections in angles do

projection = read projection ()
for all u do

for all v do
for all z do
V(u, v, z) = backprojection(projection(s,z))

write roi(V)

The flow of the application can be divided in the following phases:

– Read phase: the input data are read in the driver from a local file system and
broadcasted to each of the executors for their processing. This way, Spark can
divide the output data (the 3D volume), which is the most memory consuming
data.

– Map phase: to convert the projections to the final volume. Each partition is
in charge of creating part of the volume which is assigned by Spark. During
this phase the GPU kernels are launched. Taking into account the general
algorithm shown in Listing 1.1, each of the tasks would divide the fourth loop
(the z axis), the kernel would parallelize the second and third loop, and the
upper level loop, the projection one, would be taken care inside the task on
the CPU.

– Write phase: the output of each task is concatenated in the resulting RDD.
This RDD is later written either in a local file system, which implies the recol-
lection of the data on the driver, or in HDFS in a distributed and concurrent
manner.

6 Evaluation

The evaluation has been carried out in a compute node composed of two proces-
sors Intel(R) Xeon(R) CPU E5-2620 0 @ 2.00 GHz and 3 GPUs, 1 Tesla K40c
(12 GB of memory GDDR5) and 2 Geforce GTX Titan (6 GB GDDR5 memory).
In the experiments where the memory is defined to be limited the memory of
each card is reduced to 2 GB each. The complete system is supervised through
Cloudera 5.7. The version of Spark employed is 1.6 in stand-alone mode. The
input files are stored in a local SSD and the result files are saved into an HDFS
directory, also in SSDs and with a 10 GBps Ethernet network. The Python ver-
sion was 2.7 and we used PyCUDA 1.3. The input data for the experiments
consisted in 360 projections with 1024× 1024 pixels (1.2 GB). The size of the

Architecture for the Execution of Tasks in Apache Spark 511

output data was 1024× 1024× 1024 voxels (4 GB). In each experiment, we show
the average of at least 3 different repetitions as well as the standard error. In
the case of the occupancy timelines, data of only one repetition is shown.

6.1 Overall Execution Time

In Fig. 4, we plot the total execution times for the baseline configuration (labeled
as simulator) and the Apache Spark version (labeled as Spark) with 3 threads
and 3 partitions.

Due to the overload of the execution of an associated runtime (Apache Spark),
the execution times for an standard volume of 1024 × 1024 × 1024 voxels of the
distributed backprojection application in a node are not as competitive compared
with the execution time of the simulator in the case of the same node and number
of GPUs. In all cases Spark requires more time to produce the result although,
when the number of GPUs is increased, the difference is reduced. This is due to
the better exploitation of the resources thanks to the scheduler.

In Fig. 5, we show the execution times of the Apache Spark approach for 3
threads and a variable number of partitions. We evaluate the three policies imple-
mented applying a limited memory scheme on the GPUs. From these results, we
can conclude that for the case of a single node, the increase in the number of
partitions impacts negatively in the overall execution time due to the increment
of the memory usage. With respect to the differences between policies, only
Random obtains a significantly higher execution time than the other policies,
being RoundRobin and LeastProcesses in the same time range. However, if we
look at results from Fig. 6 when we average the execution times for every num-
ber of threads and different number of partitions, in general, Leastprocesses
performs slightly better than Round Robin.

Fig. 4. Execution time for the different combinations of GPUs in a node, with memory
limitation, no limitation, in the original setup (simulator) and in its Spark version
(Spark).

512 E. Serrano et al.

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

3 4 6 8 12 15 16 18 24 48

TI
M

E
(S

)

NUMBER OF PARTITIONS

RandomRound Robin Least processes

Fig. 5. Results of the evaluation of the application with 3 threads and different number
of partitions for each of the policies and their corresponding standard error.

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

3 4 6 8 12

TI
M

E
(S

)

NUMBER OF THREADS

Round Robin RandomLeast processes

Fig. 6. Results of the evaluation of each of the policies with different number of threads.
The execution time is the average of the execution times for each number of partitions.

6.2 Occupancy of the GPUs in the Different Policies

As described before, the objective of the proposed scheduler is the exploitation
of multiple GPUs that can be attached to the compute nodes. In Fig. 7, we plot
the execution time of the application based on 12 threads and 48 partitions, on
the three available GPUs for the three policies. This configuration maximizes
the parallelism in the node. In this experiment, to evaluate the occupancy of
the GPUs with the different policies, we have simulated a more homogeneous
environment by limiting the memory available on each device to 2 GB.

The policy that takes less time to finish is LeastProcesses as we also con-
cluded in the previous section. LeastProcesses exploits the GPUs in a more
regular manner. Both RoundRobin and Random policies possess several spikes
in the occupancy meanwhile with the first policy the occupancy is held around
12 tasks assigned to GPUs, which maximizes the maximum number of threads

Architecture for the Execution of Tasks in Apache Spark 513

Fig. 7. Timeline of the experiment with 12 threads and 48 partitions for each of the
policies. We show the number of tasks assigned to the GPUs in each moment.

running in parallel. The reason is that LeastProcesses is capable of balancing
the inequalities in the execution of the tasks. In this case, a more exhaustive
analysis discovers that the first GPU (Tesla) takes around 50% more time to
process tasks than the others solutions. LeastProcesses detects that the num-
ber of tasks in that GPU is higher and sends the tasks to the other ones which
are faster and less overloaded. However in all three policies, we can appreciate
regular spikes that are attributed to the finalization of the tasks assigned to
the thread. Since we have 48 partitions that equals 48 tasks, each thread will
be assigned 4 tasks. In this change of tasks, the GPUs are unused because the
mapping functions have not started yet, being the cause of the performance
spikes.

6.3 Evaluation with Multiple Nodes

For the evaluation of a bigger volume we chose to execute the application over
a set of nodes ranging from three to five, all of similar characteristics to the one
employed in the first experiments. The resource manager used was Apache Yarn.
All the nodes possessed at least one GPU. The input data for this evaluation
was a set of 360 projections of 2048× 2048 pixels (5.7 GB) to obtain a resulting
volume of 2048 × 2048 × 2048 voxels (32 GB).

Table 1 depicts some of the results for a different number of partitions, nodes,
threads, and executors. As a reference, the time needed for a backprojection of
that size in a Tesla K40c, a high-end graphics card, is on average 7 min 33 s. If we
compare with the best result in Apache Spark (7 min 36 s), we can see that both
of them require the same execution time. However, and since Yarn, or any other
available resource manager, does not take into account the installed accelerators
in the node for the task scheduling and resource allocation, we could still have
room for more optimization with a GPU-aware global resource manager.

514 E. Serrano et al.

Table 1. Execution of the Spark application over different nodes for a 2048 × 2048 ×
2048 volume of result.

Nodes Executors Threads per executor Partitions Time

5 5 2 120 7min 36.0 s

3 3 2 60 9 min 51.756 s

3 3 4 60 7 min 42.368 s

3 3 5 40 7 min 38.091 s

7 Conclusions

This work presented an approach for using GPUs inside the Apache Spark frame-
work. The details of the solution and tools employed have been described. This
prototype is based on PyCUDA, although it can be generalized to other pro-
gramming languages that have bindings with the GPUs available, such as Java.
Moreover, we provide an additional intranode scheduler to Apache Spark for
achieving a better exploitation of the available resources. This scheduler is based
on different policies that have been evaluated over multiple configurations.

We have evaluated this approach through the migration of a medical imaging
reconstruction application. When the number of employed GPUs increases, our
architecture exploits better the available computational resources. This is shown
in a better way when a policy uses dynamical parameters of the GPU, such as
the number of processes in execution. We also show that for more of one node
we can obtain at least the same time as the one obtained with a high-end GPU
and, that with a better global scheduler and resource manager the overall results
will improve.

The following work steps will be to accomplish a wider evaluation over a dis-
tributed heterogeneous cluster, along with the extension of the GPU scheduler to
cluster level and the policies implemented. Also, we will test this approach with
other applications such as iterative reconstruction algorithms or other medical
imaging techniques. At the end, we will incorporate this approach to an analysis
phase of the images in terms of different parameters such as quality or radiation
dose.

Acknowledgements. This work has been partially supported by the Spanish MIN-
ISTERIO DE ECONOMÍA Y COMPETITIVIDAD under the project grant TIN2016-
79637-P TOWARDS UNIFICATION OF HPC AND BIG DATA PARADIGMS, and
by NECRA RTC-2014-3028-1 project. We also want to thank NVidia for providing the
device Tesla K40 which with we have been able to perform the experiments.

References

1. Hadoop. http://hadoop.apache.org/
2. RPyC - Transparent, Symmetric Distributed Computing – RPyC. https://rpyc.

readthedocs.io/en/latest/index.html

http://hadoop.apache.org/
https://rpyc.readthedocs.io/en/latest/index.html
https://rpyc.readthedocs.io/en/latest/index.html

Architecture for the Execution of Tasks in Apache Spark 515

3. Blas, J.G., Abella, M., Isaila, F., Carretero, J., Desco, M.: Surfing the optimization
space of a multiple-GPU parallel implementation of a x-ray tomography reconstruc-
tion algorithm. J. Syst. Softw. 95, 166–175 (2014)

4. Boubela, R.N., Kalcher, K., Huf, W., Našel, C., Moser, E.: Big data approaches
for the analysis of large-scale fMRI data using apache spark and GPU processing:
a demonstration on resting-state fMRI data from the human connectome project.
Front. Neurosci. 9, Article no. 492 (2015)

5. Caino-Lores, S., Fernandez, A.G., Garcia-Carballeira, F., Perez, J.C.: A cloudifica-
tion methodology for multidimensional analysis: implementation and application
to a railway power simulator. Simul. Model. Pract. Theory 55, 46–62 (2015)

6. Cao, L., Juan, P., Zhang, Y.: Real-time deconvolution with GPU and spark for
big imaging data analysis. In: Wang, G., Zomaya, A., Perez, G.M., Li, K. (eds.)
ICA3PP 2015. LNCS, vol. 9530, pp. 240–250. Springer, Cham (2015). doi:10.1007/
978-3-319-27137-8 19

7. Feldkamp, L., Davis, L., Kress, J.: Practical cone-beam algorithm. JOSA A 1(6),
612–619 (1984)

8. Grossman, M., Breternitz, M., Sarkar, V.: HadoopCL: MapReduce on distributed
heterogeneous platforms through seamless integration of Hadoop and OpenCL.
In: 2013 IEEE 27th International, Parallel and Distributed Processing Symposium
Workshops & Ph.D. Forum (IPDPSW), pp. 1918–1927. IEEE (2013)

9. He, W., Cui, H., Lu, B., Zhao, J., Li, S., Ruan, G., Xue, J., Feng, X., Yang, W.,
Yan, Y.: Hadoop+: modeling and evaluating the heterogeneity for MapReduce
applications in heterogeneous clusters. In: Proceedings of 29th ACM on Interna-
tional Conference on Supercomputing, pp. 143–153. ACM (2015)

10. Klöckner, A., Pinto, N., Lee, Y., Catanzaro, B., Ivanov, P., Fasih, A.: PyCUDA
and PyOpenCL: a scripting-based approach to GPU run-time code generation.
Parallel Comput. 38(3), 157–174 (2012)

11. Li, P., Luo, Y., Zhang, N., Cao, Y.: HeteroSpark: a heterogeneous CPU/GPU spark
platform for machine learning algorithms. In: 2015 IEEE International Conference
on Networking, Architecture and Storage (NAS), pp. 347–348. IEEE (2015)

12. Mader, K.: Scaling Up Fast: Real-time Image Processing and Analytics Using
Spark. https://spark-summit.org/2014/talk/scaling-up-fast-real-time-image-proce
ssing-and-analytics-using-spark

13. Meng, B., Pratx, G., Xing, L.: Ultrafast and scalable cone-beam CT reconstruction
using MapReduce in a cloud computing environment. Med. Phys. 38(12), 6603–
6609 (2011)

14. Okur, S., Radoi, C., Lin, Y.: Hadoop+ Aparapi: making heterogeneous MapReduce
programming easier

15. Sweeney, C., Liu, L., Arietta, S., Lawrence, J.: HIPI: a hadoop image processing
interface for image-based MapReduce tasks. Chris, University of Virginia (2011)

16. Wallskog Pappas, A.: Migration of legacy applications to the cloud - a review on
methodology and tools for migration to the cloud. Bachelor thesis, University of
Umea (2014)

17. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin,
M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: a fault-tolerant abstrac-
tion for in-memory cluster computing. In: Proceedings of 9th USENIX Conference
on Networked Systems Design and Implementation, p. 2. USENIX Association
(2012)

18. Zheng, H.X., Wu, J.M.: Accelerate K-means algorithm by using GPU in the hadoop
framework. In: Chen, Y., Balke, W.-T., Xu, J., Xu, W., Jin, P., Lin, X., Tang, T.,
Hwang, E. (eds.) WAIM 2014. LNCS, vol. 8597, pp. 177–186. Springer, Cham
(2014). doi:10.1007/978-3-319-11538-2 17

http://dx.doi.org/10.1007/978-3-319-27137-8_19
http://dx.doi.org/10.1007/978-3-319-27137-8_19
https://spark-summit.org/2014/talk/scaling-up-fast-real-time-image-processing-and-analytics-using-spark
https://spark-summit.org/2014/talk/scaling-up-fast-real-time-image-processing-and-analytics-using-spark
http://dx.doi.org/10.1007/978-3-319-11538-2_17

PELGA - Performance Engineering for
Large-Scale Graph Analytics

Parametric Multi-step Scheme
for GPU-Accelerated Graph Decomposition

into Strongly Connected Components

Stefano Aldegheri1, Jǐŕı Barnat2, Nicola Bombieri1(B), Federico Busato1,
and Milan Češka3

1 Department of Computer Science, University of Verona, Verona, Italy
nicola.bombieri@univr.it

2 Faculty of Informatics, Masaryk University, Brno, Czech Republic
3 Faculty of Information Technology, Brno University of Technology,

Brno, Czech Republic

Abstract. The problem of decomposing a directed graph into strongly
connected components (SCCs) is a fundamental graph problem that is
inherently present in many scientific and commercial applications. Clearly,
there is a strong need for good high-performance, e.g., GPU-accelerated,
algorithms to solve it. Unfortunately, among existing GPU-enabled algo-
rithms to solve the problem, there is none that can be considered the best
on every graph, disregarding the graph characteristics. Indeed, the choice
of the right and most appropriate algorithm to be used is often left to inex-
perienced users. In this paper, we introduce a novel parametric multi-step
scheme to evaluate existing GPU-accelerated algorithms for SCC decom-
position in order to alleviate the burden of the choice and to help the user to
identify which combination of existing techniques for SCC decomposition
would fit an expected use case the most. We support our scheme with an
extensive experimental evaluation that dissects correlations between the
internal structure of GPU-based algorithms and their performance on var-
ious classes of graphs. The measurements confirm that there is no algo-
rithm that would beat all other algorithms in the decomposition on all
of the classes of graphs. Our contribution thus represents an important
step towards an ultimate solution of automatically adjusted scheme for the
GPU-accelerated SCC decomposition.

1 Introduction

Fundamental graph algorithms such as breadth first search, spanning tree con-
struction, shortest paths, etc., are building blocks to many applications. Sequen-
tial implementations of these algorithms become impractical in those application
domains where large graphs need to be processed. As a result, parallel algorithms
for the processing of large graphs have been devised to efficiently use compute

This work has been supported by the IT4Innovations Excellence in Science project
No. LQ1602, the BUT FIT project FIT-S-14-2486, and the Czech Science Foundation
grants Nos. GA16-24707Y and GA15-08772S.

c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 519–531, 2017.
DOI: 10.1007/978-3-319-58943-5 42

520 S. Aldegheri et al.

clusters and multi-core architectures. The transformation of a sequential algo-
rithm into a scalable parallel algorithm, however, is not an easy task. Typi-
cally, the best sequential algorithm is not necessarily the best parallel algorithm
from the practical point of view. This is especially the case of massively par-
allel graphics processing units (GPUs). These devices contain several hundreds
of arithmetic units and can be harnessed to provide tremendous acceleration
for many computation intensive scientific applications. The key to effective uti-
lization of GPUs for scientific computing is the design and implementation of
data-parallel algorithms that can scale to hundreds of tightly coupled processing
units following a single instruction multiple thread (SIMT) model.

In this paper we focus on the problem of decomposing a directed graph into
its strongly connected components (SCC decomposition). This problem has many
applications leading to very large graphs, including for example web analysis [16],
which require high performance processing.

Parallelization of the SCC decomposition is a particularly difficult problem.
The reason is that the optimal (i.e., linear) sequential algorithm by Tarjan [21]
strongly relies on the depth-first search which is difficult to be computed in par-
allel. In our previous work [2] we have shown how selected nonlinear parallel
SCC decomposition algorithms, namely the Forward-Backward (FB) algo-
rithm [9,17], the Coloring algorithm [19] and the OBF algorithm [3], can be
modified in order to be accelerated on a vector processing SIMT architecture.
In particular, we have decomposed the algorithms into primitive data-parallel
graph operations and reformulated the recursion present in the algorithms by
means of iterative procedures. This approach has been recently improved by
warp-wise and block-wise task allocation for primitive graph operations [8,15].
The authors of [8] have further proposed a SIMT parallelisation of multi-step
algorithms by [12,20] extending the FB algorithm and combining it with the
Coloring algorithm.

This paper presents a new parametric multi-step scheme that allows us to
compactly define a set of algorithms for SCC graph decomposition as well as a
type of the parallelisation for individual graph operations. The scheme covers
the existing algorithms and techniques mentioned above, but also introduces
several new variants of the multistep algorithm. We use the scheme to carry out
an extensive experimental evaluation that helps us to dissect the performance of
the individual parameterisation on various classes of graphs. Our results indicate
that there is no single algorithm that would outperform other algorithms on all
type of graphs. Moreover, the results show that there is a nontrivial correlation
between the parameterisation and the performance.

Based on the evaluation we identify, for each type of graphs, the key para-
meters of the scheme that significantly affect the performance and relate such
behaviour to the structural properties of the graph. Such analysis is essential
for designing an adaptive scheme that would either automatically select an ade-
quate parameterisation based on a priori knowledge of the graph structure or
automatically switch to a more viable parameterisation during the decomposi-
tion process. The automatic tuning of parameters is part of our current and
future work.

Parametric Multi-step Scheme for GPU-Accelerated Graph Decomposition 521

2 Parallel Algorithms for SSC Decomposition

In this section we briefly present existing techniques and algorithms for parallel
SCC decomposition that form basic building blocks for the parametric scheme.

2.1 Parallel Graph Algorithms for GPUs

In order to design scalable parallel graph algorithms that can effectively utilise
modern GPUs, one has to consider key features of the underlying architecture
and to employ suitable data structures. Typical GPUs consist of multiple Stream
Multiprocessors (SM) with each SM following the SIMT model. This approach
establishes a hierarchy of threads arranged into blocks that are assigned for par-
allel execution on SMs. Threads are hardwired into groups of 32 called warps,
which form a basic scheduling unit and execute instructions in a lock-step man-
ner. A sufficient number of threads has to be dispatched to hide the memory
access latency and maximise the utilisation. Memory requests exhibiting spa-
tial locality are coalesced to improve the performance. A typical GPU program
consists of a CPU host code that calls GPU kernels executing the same scalar
sequential program in many independent data-parallel threads.

Data structures encoding the graph have to allow independent thread-local
data processing and coalesced access. The adjacency list representation is typ-
ically encoded as two one-dimensional arrays [10]. One array keeps the target
vertices of all the edges. The second array keeps an index to the first array for
every vertex. The index points to the position of the first edge emanating from
the corresponding vertex. Other data associated to a vertex are organised in
vectors as well. In [2,8,15], techniques for improving memory consumption and
access pattern for SCC decomposition algorithms have been proposed.

The core procedure of every graph algorithm is the graph traversal. The
SCC decomposition algorithms build on several types of the traversal as
explained in the next section. Parallelisation of this procedure fundamen-
tally affects the overall performance of the decomposition. There exist sev-
eral approaches [5,10,11,18] that differ in the granularity of the task allocation
(thread-per-vertex vs. warp-per-vertex vs. block-per-vertex) and in the number
of vertices/edges processed during a single kernel (linear vs. quadratic paral-
lelisation). In the context of the SCC decomposition the performance of these
approaches significantly depends on the structure of the graphs and the type
of the traversal. The parametric scheme presented in Sect. 3 captures various
parallelisation strategies.

2.2 Forward-Backward algorithm

The Forward-Backward (FB) algorithm [9] represents the fundamental algo-
rithm for parallel SCC decomposition. It is listed as Algorithm 1 and proceeds as
follows. A vertex called pivot is selected and the strongly connected component
the pivot belongs to is computed as the intersection of the forward and back-
ward closure of the pivot. Computation of the closures divides the graph into

522 S. Aldegheri et al.

four subgraphs that are all SCC-closed. These subgraphs are (1) the strongly
connected component with the pivot, (2) the subgraph given by vertices in the
forward closure (3) the subgraph given by vertices in the backward closure, and
(4) the subgraph given by the remaining vertices. The later three subgraphs form
independent instances of the same problem, and therefore, they are recursively
processed in parallel. The time complexity of the FB algorithm is O(n · (m+n))
since it performs O(m+n) work to detect a single strongly connected component.

Practical performance of the algorithm may be further improved by perform-
ing elimination of leading and terminal trivial strongly connected components –
the so-called trimming [17]. The Trimming procedure builds upon a topological
sort elimination. A vertex cannot be part of a non-trivial strongly connected
component if its in-degree (out-degree) is zero. Therefore, such a vertex can
be safely removed from the graph as a trivial SCC, before the pivot vertex is
selected. The elimination can be iteratively repeated until no more vertices with
zero in-degree (out-degree) exist.

In [2] we designed a GPU-acceleration of the FB algorithm that provides a
good performance and scalability on regular graphs. In [15] the acceleration is
improved by the linear parallelisation of the graph traversal and by a better pivot
selection, which result in a performance gain including also a good performance
on less regular graphs. The main limitation of the FB algorithm is that it per-
forms O(m+ n) work to detect a single SCC. This mitigates the benefits of the
GPU-acceleration if the graph contains many small but non-trivial components.

Algorithm 1. FB

1 Procedure FB(V)
2 begin
3 pivot ← PivotSelection(V)
4 F ← FWD-Reach(pivot, V)
5 B ← BWD-Reach(pivot, V)
6 F ∩ B is SCC
7 in parallel do
8 FB(F \ B)
9 FB(B \ F)

10 FB(V \ (F ∪ B))

Algorithm 2. Coloring

1 Procedure Coloring(V)
2 begin
3 (maxColor, Vk) ←

FWD-MaxColor(V)
4 for k ∈ maxColor in parallel do
5 Bk ← BWD(k, Vk)
6 Bk is SCC
7 if (Vk \ Bk �= ∅) then
8 Coloring(Vk \ Bk)

2.3 Coloring Algorithm

The Coloring algorithm [19] is capable of detecting many strongly connected
components in a single recursion step, however, for the price of an O(n · (m+n))
procedure. Therefore, the time complexity of the algorithm is O((l+1)·n·(m+n))
where l is the longest path in the component graph.

The pseudo-code of the algorithm is listed as Algorithm 2. It propagates
unique and totally ordered identifiers (colors) associated with vertices. Initially,
each vertex keeps its own color. The colors are iteratively propagated along edges
of the graph (line 3) so that each vertex keeps only the maximum color among
the initial color and colors that have been propagated into it (maximal preced-
ing color). After a fixpoint is reached (no color update is possible), the colors

Parametric Multi-step Scheme for GPU-Accelerated Graph Decomposition 523

associated with vertices partition the graph into multiple SCC-closed subgraphs
Vk. All vertices of a subgraph are reachable from the vertex v whose color is
associated with the subgraph. Therefore, the backward closure of v restricted to
the subgraph forms a SCC component that is removed from the graph before
the next recursion step. Propagation procedure is rather expensive if there are
multiple large components which limits the overall performance [2].

2.4 Other Algorithms

Both the presented algorithms typically show limited performance and poor scal-
ability when applied to large real-world graph instances with many nontrivial
components and a high diameter. Fundamental properties of these graphs have
been consider to propose a series of extensions of the FB algorithm [12] and a
multistep algorithm [20] that adequately combines the FB and Coloring algo-
rithms. These two, originally multicore, algorithms have been recently redesigned
to allow data-parallel processing [8], which led to the fastest GPU-accelerated
SCC decomposition.

Barnat and Moravec [3] introduced the OBF algorithm that aims at decom-
posing the graph in more than three SCC-closed subgraphs within a single
recursion step. However, unlike the Coloring algorithm, the price of the OBF
procedure is O(m + n). Despite the better asymptotical complexity, our pre-
vious work [2] and also our more recent attempts indicate that effective data-
parallelisation of the OBF algorithm is a very hard problem and the approaches
based on the multistep algorithm performs generally better on SIMT-based
architectures.

Very recently a multi-core version of the Tarjan algorithm based on paral-
lelisation of depth-first search [4] has been proposed. It preserves the liner com-
plexity of SCC decomposition and on a variety of graph instances it outperforms
previous multi-core solutions. However, on real-word graphs it considerably lags
behind the approaches by [12,20] and the proposed parallelisation is principally
not suitable for SIMT architectures.

3 Multi-step Parametric Scheme for SCC Decomposition

This section introduces a new multi-step scheme for SCC decomposition, which
consists of two levels of parametrization. The first allows setting the individ-
ual steps of the algorithm, while the second allows defining the parallelisation
strategy for the graph traversal.

3.1 Parametric Multi-step Algorithm

The multi-step algorithm consists of 3 steps: (1) It iterations of the Trimming
procedure that identifies trivial components of the graph (see Sect. 2.2), (2) If
iterations of the FB algorithm that aims at identifying big components, and

524 S. Aldegheri et al.

(3) the Coloring algorithm that decomposes the rest of the graph. The algo-
rithm parameterisation determines the values of It and If . Algorithm 3 depicts
the host code for the GPU-accelerated version of the algorithm.

In the first step (lines 1–2), the kernel oneStepTrimming implements a
single iteration of the trimming procedure. It identifies and eliminates vertices
of G that form trivial SCCs. It stores the eliminated vertices in the array scc.
Note that the proposed scheme does not perform the trimming procedure in the
later steps of the algorithm, i.e., within every FB iteration as in [2], since the
Coloring algorithm handles the remaining trivial components more efficiently.

Algorithm 3. Parametric Multi-step

Input : G = (V, E), parameters It and If
Output: SCC decomposition of G

1 for i = 1; i ≤ It ∧ scc �= V ; i = i + 1 do
2 oneStepTrimming(G, scc)

3 for i = 1; i ≤ If ∧ V �= scc; i = i + 1 do
4 PivotSelection(G, pivots, ranges)
5 FWD-Reach(G, pivots, ranges, visited.f)
6 BWD-Reach(G, pivots, ranges, visited.b)
7 Update(scc, range, visited)

8 while terminate = false do
9 FWD-MaxColor(G, ranges, colors)

10 BWD-Reach(G, ranges, colors, visited.b)
11 Update(range, visited.b, colors, scc)

In the second step (lines
3–7), the algorithm selects a
single pivot from the remain-
ing (i.e., not eliminated)
part of the graph, it com-
putes the forward and back-
ward closure for such a ver-
tex, and it marks the four
subgraphs (see Sect. 2.2) by
using the Update kernel.
Then, through further iter-
ations of the second step,
the algorithm selects multiple
pivots and computes multiple
closures restricted to the individual subgraphs. The array ranges is used to
maintain the identification of the subgraphs, while the arrays visited indicate
the vertices visited during the closure computations. The array scc is updated
at every iteration to store all vertices that has been already identified in a SCC.
For the pivot selection over multiple subgraphs, the algorithm implements the
approach proposed in [8] extended to apply the heuristics defined in [20] to
favour vertices with a high in-degree and out-degree. The FWD-Reach and
BWD-Reach kernels implement parallel BFS visits of the graph, which have
been adequately modified for providing reachability results.

The last step implements the coloring algorithm, which is iteratively applied
to decompose the remaining subgraphs. The max color is propagated to the
successor non-eliminated vertices, and stored in the array colors (line 9). The
parametric BWD-Reach kernel implements the backward closure to identify
a single component for each subgraph. Finally, the updating kernel partitions
each subgraph into multiple subgraphs based on the max colors and updates the
ranges accordingly for the next iteration.

Note that in our implementation the data associated to vertices in the form
of the aforementioned arrays are merged and stored in two 32-bit arrays.

Parametric Multi-step Scheme for GPU-Accelerated Graph Decomposition 525

3.2 Parallelisation Strategy for Graph Traversal

Another dimension of parameterisation relates to the way reachability proce-
dures are implemented within the FB and Coloring parts of the Algorithm 3
(lines 5, 6, and 10 respectively).

Recall that when computing the reachability relation (closure), the longest
path along which the algorithm has to traverse is given by the diameter of the
graph. Assuming that the closure computation consists of multiple kernel calls,
where each kernel call shortens this distance by at least one, we immediately have
that the diameter of the graph also gives the bound on the number of kernel calls
needed. However, there are multiple strategies how to implement such a single
kernel call. If the kernel call is guaranteed to shorten the distance only by one,
but its complexity itself is linear (e.g. it inspects all vertices/edges), we obtain
an overall procedure that computes the closure in a quadratic amount of work
in the worst case with respect to the size of the graph.

Alternatively, we may employ a strategy that mimics the serial graph tra-
versal procedure and uses queue of vertices to be processed as the underlying
data structure (the so called frontier queue). In such the case, the complexity
of the kernel call is proportional to the amount of vertices processed and the
overall complexity of the procedure remains linear. And indeed, when dealing
with large graphs, it has been shown that this works the best among various
GPU-oriented implementations [5]. On the other hand, the overhead introduced
by the maintianance of the frontier queue may render the linear solution inef-
ficient when applied to compute the closure operation on subgraphs with small
diameter.

In our parametric scheme we, therefore, allow to specify which strategy should
be used to compute the closures in individual phases. In particular, we support
the three following options.

1. Quadratic parallelisation (Q). The closure computation is based on the
quadratic parallel breadth-first search as proposed in [10]. It implements the
simplest static workload partitioning and vertex-per-thread mapping, thus
involving the smallest runtime computation overhead. This strategy works
the best for large graphs with regular structure and small diameter.

2. Quadratic parallelisation with Virtual Warps (QVW). In this strategy we
also employ the quadratic parallel breadth-first search, however, the workload
partitioning and mapping rely on the virtual warps as proposed in [11]. This
modification allows for almost even workload assigned to individual threads,
which after all results in reduced branching divergence – an aspect very crucial
for the performance of GPU algorithm. Virtual warps also allow improved
coalescing of memory accesses since more threads of a virtual warp access to
adjacent addresses in the global memory. This strategy is supposed to work
the best for graphs with uneven edge distribution.

3. Linear parallelisation (L). This strategy is our own implementation of the
linear closure procedure as proposed in [5]. It provides a highly tunable solu-
tion that allows efficient handling of very irregular graphs with the overhead

526 S. Aldegheri et al.

of queue maintenance and dynamic load balancing at the runtime. This strat-
egy should work the best for graphs with large diameter and nonuniform edge
distribution.

Since the Trimming step is typically performed only through a couple of
iterations, the strategy used in the Trimming kernel rely on a very light thread-
per-vertex allocation and the quadratic parallelisation. The overhead of the linear
or even more complex approach in this step would never pay off. The very
same strategy has also been used for the implementation of the maximal color
propagation in the Coloring phase (line 9 of Algorithm 3).

4 Experimental Results

The experimental results have been run on a dataset of 17 graphs, which have
been collected to represent very different structure of the graphs. The dataset
covers both synthetic and real-world graphs from different sources and con-
texts such as social networks, road networks, and recursive graph models. The
real-world graphs have been selected from Stanford Network Analysis Platform
(SNAP) [14], Koblenz Network Collection [13], and University of Florida Sparse
Matrix Collection [6], while the random and R-MAT graphs have been generated
by using the GTGraph tool [1].

Table 1 summarizes the graph features in terms of number of vertices (in
million), edges (in million), average degree, the percentage of vertices with out-
degree equal to zero (d(v) = 0), out-degree standard deviation, average diameter
(over 100 BFS from random sources), number of SCCs, percentage of vertices in
the largest SCC, and the percentage of vertices in SCCs with size equal to one.

Table 1. Characteristics of the graph dataset.

Graph name Vertices Edges Avg. N. of Std. Avg. N. of Largest Trivial

degree d(v) = 0 deviation diameter SCCs SCC SCCs

amazon-2008 [14] 0.7M 5.2M 7.0 12.0% 3.9 25.7 90,660 85% 12%

LiveJournal [14] 4.8M 69.0M 14.2 11.1% 36.1 12.6 971,232 79% 20%

Flickr [13] 2.3M 33.1M 14.4 32.3% 87.7 8.0 277,277 70% 19%

R-MAT [1] 10.0M 120.0M 12.0 20.2% 22.3 7.8 2,083,372 79% 21%

cit-Patents [14] 3.8M 16.5M 4.4 44.6% 7.8 4.2 3,774,768 0% 100%

Random [1] 10.0M 120.0M 12.0 0.0% 3.5 9.0 125 100% 0%

Pokec [14] 1.6M 30.6M 18.8 12.4% 32.1 9.9 325,892 80% 20%

Language [13] 0.4M 1.2M 3.0 0.0% 20.7 33.6 2,456 99% 1%

Baidu [13] 23.9M 58.3M 8.3 22.7% 23.2 12.8 1,503,003 28% 69%

Pre2 [13] 0.7M 6.0M 9.0 0.0% 22.1 60.7 391 100% 0%

CA-road [14] 23.9M 5.5M 2.8 0.3% 1.0 655.9 2,638 100% 0%

web-Berkstan [13] 0.9M 7.6M 2.8 0.7% 16.4 465.6 109,409 49% 15%

SSCA8 [1] 8.4M 99.0M 11.8 0.2% 4.4 1,535.9 55,900 97% 0%

trec-w10g [13] 1.6M 8.0M 5.0 4.4% 72.0 54.8 531,539 29% 31%

Fullchip [6] 3.0M 26.6M 8.9 0.0% 23.1 37.2 35 100% 0%

USA-road [7] 23.9M 58.3M 2.4 0.0% 0.9 6,277.0 1 100% 0%

Wiki-Talk [14] 18.3M 127.3M 9.4 93.8% 80.0 0.4 14,459,546 21% 79%

Parametric Multi-step Scheme for GPU-Accelerated Graph Decomposition 527

The table underlines, for instance, that road networks, such as CA-road and
USA-road, present in general a single SCC, a low average degree, and a low
number of vertices with d(v) = 0. In contrast, social networks (LiveJournal and
Flickr) and the R-MAT model show small-world network properties, which imply
one large SCC and a high number of single-vertex SCCs.

We run the experiments on a Linux system (Ubuntu 14.04) with a NVIDIA
Kepler Tesla K40 GPU device with 12 GB of memory, CUDA Toolkit 7.5, AMD
Phenom II X6 1055T 3 GHz host processor, and gcc host compiler v. 4.8.4.

We compared three implementations: a sequential version that implements
the Tarjan algorithm [21], which is considered the most efficient sequential algo-
rithm. The data-parallel GPU implementation by Devshatwar et al. [8], the
fastest GPU solution at the state of the art, and the proposed approach. Table 2
reports the results in terms of runtime (milliseconds) and performance (million
of edges per seconds - MTEPS). The results of the proposed implementation
are the best we obtained through the parameter configuration, as explained in
the following. All the reported values are the average of ten runs. The results
show that the application throughput (MTEPS) of the parallel implementa-
tions is directly related to the size and the average diameter of graphs. For
instance, cit-Patents graph shows a high value of MTEPS due to a low average
diameter and a regular degree distribution that allow a high GPU utilisation.
On the other hand, the performance of the sequential version depends on the
number of vertices and edges of the graphs.

Table 3 presents the configuration of the proposed parametric approach that
leads to the best performance and compares such performance to those provided
by the “static” solution of Devshatwar et al. The configurations are expressed in

Table 2. Runtime (milliseconds) and performance of the three implementations.

Graph name Sequential SCC Devshatwar et al. [8] Proposed implementation

Time MTEPS Time MTEPS Time MTEPS

amazon-2008 162 32 16 325 17 305

LiveJournal 2, 575 26 86 802 87 793

Flickr 821 40 54 611 54 611

R-MAT 9, 182 13 193 621 192 625

cit-Patents 536 31 16 1, 031 16 1, 031

Random 10, 619 11 231 519 218 550

Pokec 1, 344 23 42 729 33 927

Language 75 16 29 41 22 55

Baidu 582 100 70 832 50 1, 166

Pre2 127 47 30 200 19 316

CA-road 223 25 166 33 79 70

web-Berkstan 94 81 1, 754 4 717 11

SSCA8 4, 237 23.4 1, 174 84 465 213

trec-w10g 147 54 12, 508 1 2, 218 4

Fullchip 547 49 506 53 72 369

USA-road 2, 191 27 7, 041 8 669 87

Wiki-Talk 5, 835 22 18, 907 7 731 174

528 S. Aldegheri et al.

Table 3. Parametrization results and performance comparison.

Graph name FB alg. Coloring Trimming FB Speedup vs. Speedup vs.

alg. steps steps sequential Devshatwar et al.[8]

amazon-2008 QV W /L Q/L 1 1 9.5x 0.9x

LiveJournal QV W Q/L 1 1 29.6x 1.0x

Flickr QV W /L Q/L 1 1 15.2x 1.0x

R-MAT QV W Q/L 1 1 47.8x 1.0x

cit-Patents Q/L Q/L 1 1 33.5x 1.0x

Random QV W Q/L 0 1 48.7x 1.1x

Pokec QV W L 1 1 40.7x 1.3x

Language L Q 0 2 3.4x 1.3x

Baidu L L 3 1 11.6x 1.4x

Pre2 L L 0 1 6.7x 1.6x

CA-road L L 0 1 2.8x 2.1x

web-Berkstan L L FULL 17 0.1x 2.4x

SSCA8 L L 0 1 9.1x 2.5x

trec-w10g L L 2 20 0.1x 5.6x

Fullchip L L 0 1 7.6x 7.0x

USA-road L Q 0 1 3.3x 10.5x

Wiki-Talk L L 5 1 8.0x 25.9x

terms of which strategy is used in the FB and in the coloring step, i.e., linear (L),
static quadratic (Q), and quadratic with virtual warps (QVW), and the number
of iterations of the trimming and FB steps. Notations Q/L or QVW /L indicate
that the two algorithms provide similar performance.

The proposed implementation provides similar performance compared to
Devshatwar et al. for the first six graphs of the dataset, while it reports speedup
up to 26 times for the other graphs. This is due to the parametric feature of
the proposed approach, which allows properly combining the quadratic and lin-
ear algorithms and tuning the algorithm iterations for each step i.e. trimming
(It parameter), forward-backward (If parameter), and coloring. In particular,
graphs with low average diameter, such as Flickr, R-MAT, cit-Patents, Random,
show good performance also with the quadratic traversal algorithms due to less
overhead compared to the linear approach that maintains frontier data queues.

The LiveJournal graph presents the same average diameter of Baidu but
shows different SCC characteristics. LiveJournal has a very large SCC and a
small percentage of trivial components, while Baidu the opposite. In this case, a
high number of vertices with out-degree equal to zero (22.7%) favours quadratic
parallelisation and one iteration of trimming.

The amazon-2008 graph, even though it has a middle-sized average diameter,
shows the best results with the quadratic approach. This is due to its very small
size (amazon-2008 is the second smallest graph in the dataset). The Language
graph has similar size but it has a high unbalanced out-degree distribution (i.e.,
standard deviation 20.7 versus 3.9 of amazon-2008) and thus the load balancing
techniques implemented in the linear BFS outperforms the quadratic paralleli-
sation of the FB algorithm.

Parametric Multi-step Scheme for GPU-Accelerated Graph Decomposition 529

The proposed parametric implementation clearly outperforms the static
Devshatwar et al. approach on graphs with high average diameter, such as USA-
Road, and not uniform workload, such as Wiki-Talk (std. deviation equal to 80)
thanks to the switch to the linear algorithm, which is more efficient in such a
kind of graphs. Finally, both parallel implementations provide poor performance
in Web-Berkstan and trec-w10g graphs due to the lack of data parallelism, which
results from the small size, high diameter and low average out-degree.

We can also observe that the trimming step in road networks (CA-Road and
USA-Road), Pre2, Random and Fullchip graphs does not significantly improve
the overall performance, since the graphs contain small number of trivial SCCs.
The web-Berkstan and trec-w10g require a high number of FB algorithm steps
due to a high number of middle-sized SCCs. For instance, trec-w10g graph has
the sum of the percentages of the largest SCC (29%) and trivial SCCs (31%)
equal to 61% which indicates a remaining of 39% of middle-sized SCCs.

Figure 1 illustrates the impact of the parameters It and If on the overall
performance for the selected graphs. The performance is represented using a

Tr
im

m
in

g
st

ep
s

FB steps
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

1

2

3

4

5

Full

>=100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

(a) Amazon-2008

Tr
im

m
in

g
st

ep
s

FB steps
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

1

2

3

4

5

Full

>=100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

(b) Wiki-Talk

Tr
im

m
in

g
st

ep
s

FB steps
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

1

2

3

4

5

Full

>=100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

(c) Flickr

Tr
im

m
in

g
st

ep
s

FB steps
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

1

2

3

4

5

Full

>=100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

(d) R-MAT

Fig. 1. Performance analysis through parametrization of It and If . Performance are
represented using a color scale where lighter colors denote lower runtime. (Color figure
online)

530 S. Aldegheri et al.

color scale – lighter colors denote lower runtime. The linear parallelisation eval-
uated on Amazon-2008 (Fig. 1a) shows that the performance strongly depends
on the number of FB iterations (If set around 1 gives the best results), while
the number of trimming iterations does not affect the execution time. The linear
parallelisation applied to Wiki-Talk (Fig. 1b) shows the opposite behaviour: If
has a very low impact on the performance, while setting a wrong It (e.g., It
equal to 1 as in Devshatwar et al.) leads to 60% performance decrease. Such a
different behaviour of performance over It and If relies on the different charac-
teristics of the two graphs. Amazon-2008 has one large SCC and a very small
number of trivial SCCs, while Wiki-Talk has a high number of trivial SCCs. The
performance of the linear parallelisation over It and If on graphs Flickr and
R-MAT shows a more uniform behaviour (Fig. 1c and d), since the graphs have
one large SCC but also a high number of trivial SCCs.

5 Conclusions

We have presented a novel parametric multi-step scheme to evaluate existing
GPU-accelerated algorithms for SCC decomposition. The extensive experimen-
tal results clearly indicate that there is no algorithm that would be the best for all
classes of the graphs. We have dissected correlations between the internal struc-
ture of the algorithms and their performance on structurally different graphs.
Our contribution, thus, represents an important step towards an ultimate solu-
tion of automatically adjusted GPU-aware algorithm for SCC decomposition.

References

1. Bader, D.A., Madduri, K.: GTgraph: a synthetic graph generator suite. Technical
report GA 30332, Georgia Institute of Technology, Atlanta (2006)

2. Barnat, J., Bauch, P., Brim, L., Češka, M.: Computing strongly connected compo-
nents in parallel on CUDA. In: IPDPS 2011, pp. 541–552. IEEE Computer Society
(2011)

3. Barnat, J., Moravec, P.: Parallel algorithms for finding SCCs in implicitly
given graphs. In: Brim, L., Haverkort, B., Leucker, M., Pol, J. (eds.) FMICS
2006. LNCS, vol. 4346, pp. 316–330. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-70952-7 22

4. Bloemen, V., Laarman, A., van de Pol, J.: Multi-core on-the-fly SCC decomposi-
tion. In: PPoPP 2016, pp. 8:1–8:12. ACM (2016)

5. Busato, F., Bombieri, N.: BFS-4K: an efficient implementation of BFS for kepler
GPU architectures. IEEE Trans. Parallel Distrib. Syst. 26(7), 1826–1838 (2015).
ISSN 1045-9219

6. Davis, T.A., Hu, Y.: The University of Florida sparse matrix collection. ACM
Trans. Math. Softw. (TOMS) 38(1), 1 (2011)

7. Demetrescu, C., Goldberg, A.V., Johnson, D.S.: The Shortest Path Problem: Ninth
DIMACS Implementation Challenge, vol. 74. American Mathematical Society,
Providence (2009)

http://dx.doi.org/10.1007/978-3-540-70952-7_22
http://dx.doi.org/10.1007/978-3-540-70952-7_22

Parametric Multi-step Scheme for GPU-Accelerated Graph Decomposition 531

8. Devshatwar, S., Amilkanthwar, M., Nasre, R.: GPU centric extensions for parallel
strongly connected components computation. In: GPGPU 2016, pp. 2–11. ACM
(2016)

9. Fleischer, L.K., Hendrickson, B., Pınar, A.: On identifying strongly connected com-
ponents in parallel. In: Rolim, J. (ed.) IPDPS 2000. LNCS, vol. 1800, pp. 505–511.
Springer, Heidelberg (2000). doi:10.1007/3-540-45591-4 68

10. Harish, P., Narayanan, P.J.: Accelerating large graph algorithms on the GPU using
CUDA. In: Aluru, S., Parashar, M., Badrinath, R., Prasanna, V.K. (eds.) HiPC
2007. LNCS, vol. 4873, pp. 197–208. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-77220-0 21

11. Hong, S., Kim, S., Oguntebi, T., Olukotun, K.: Accelerating CUDA graph algo-
rithms at maximum warp. In: PPoPP 2011, pp. 267–276. ACM (2011)

12. Hong, S., Rodia, N.C., Olukotun, K.: On fast parallel detection of strongly con-
nected components (SCC) in small-world graphs. In: SC 2013, pp. 92:1–92:11. ACM
(2013)

13. Kunegis, J.: Konect: the koblenz network collection. In: WWW 2013, pp. 1343–
1350. ACM (2013)

14. Leskovec, J., Sosič, R.: SNAP: a general purpose network analysis and graph mining
library in C++. http://snap.stanford.edu/snap. Accessed May 2016

15. Li, G., Zhu, Z., Cong, Z., Yang, F.: Efficient decomposition of strongly connected
components on GPUs. J. Syst. Architect. 60(1), 1–10 (2014)

16. Liu, X., et al.: IMGPU: GPU accelerated influence maximization in large-scale
social networks. IEEE Trans. Parallel Distrib. Syst. 25(1), 136–145 (2014)

17. McLendon, W., Hendrickson, B., Plimpton, S.J., Rauchwerger, L.: Finding strongly
connected components in distributed graphs. J. Parallel Distrib. Comput. 65(8),
901–910 (2005)

18. Merrill, D., Garland, M., Grimshaw, A.: Scalable GPU graph traversal. In: PPoPP
2012, pp. 117–128. ACM (2012)

19. Orzan, S.: On distributed verification and verified distribution. Ph.D. thesis, Free
University of Amsterdam (2004)

20. Slota, G.M., Rajamanickam, S., Madduri, K.: BFS and coloring-based parallel
algorithms for strongly connected components and related problems. In: IPDPS
2014, pp. 550–559. IEEE Computer Society (2014)

21. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2),
146–160 (1972)

http://dx.doi.org/10.1007/3-540-45591-4_68
http://dx.doi.org/10.1007/978-3-540-77220-0_21
http://dx.doi.org/10.1007/978-3-540-77220-0_21
http://snap.stanford.edu/snap

Investigations on Path Indexing for Graph
Databases

Jonathan M. Sumrall1, George H.L. Fletcher2(B), Alexandra Poulovassilis3,
Johan Svensson1, Magnus Vejlstrup1, Chris Vest1, and Jim Webber1

1 Neo Technology, San Mateo, USA
{max.sumrall,johan,magnus.vejlstrup,chris.vest,

jim.webber}@neotechnology.com
2 Eindhoven University of Technology, Eindhoven, The Netherlands

g.h.l.fletcher@tue.nl
3 Birkbeck, University of London, London, UK

ap@dcs.bbk.ac.uk

Abstract. Graph databases have become an increasingly popular choice
for the management of the massive network data sets arising in many con-
temporary applications. We investigate the effectiveness of path index-
ing for accelerating query processing in graph database systems, using
as an exemplar the widely used open-source Neo4j graph database. We
present a novel path index design which supports efficient ordered access
to paths in a graph dataset. Our index is fully persistent and designed
for external memory storage and retrieval. We also describe a compres-
sion scheme that exploits the limited differences between consecutive
keys in the index, as well as a workload-driven approach to indexing. We
demonstrate empirically the speed-ups achieved by our implementation,
showing that the path index yields query run-times from 2x up to 8000x
faster than Neo4j. Empirical evaluation also shows that our scheme leads
to smaller indexes than using general-purpose LZ4 compression. The
complete stand-alone implementation of our index, as well as supporting
tooling such as a bulk-loader, are provided as open source for further
research and development.

1 Introduction

Massive graph-structured data collections are increasingly common in modern
application scenarios such as social networks and linked open data. Consequently,
there has been a flurry of development of graph database systems to support
scalable analytics on massive graphs. The selection and manipulation of paths
forms the core of querying graph datasets. However, the feasibility of a path-
centric approach to indexing massive graphs is an open problem and, to date, no
study has been performed on the benefits of path indexing for processing graph
queries in industry-strength graph databases. To our knowledge, this work is
the first to provide a design and implementation of a path index specifically
for graph databases, as well as an empirical study of the performance of such
indexes.
c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 532–544, 2017.
DOI: 10.1007/978-3-319-58943-5 43

Investigations on Path Indexing for Graph Databases 533

Related Work. The study of path indexing has a long history, with a rich
variety of strategies developed in the context of object-oriented [3] and XML
[16] databases, and more recently in the indexing of graph data [17]. Related
work includes approaches to creating structural summaries of semi-structured
data, such as DataGuides [8], T-index [12], AK-index [11] and DK-index [4].
IndexFabric [6] indexes paths in tree-structured data by representing every path
in the tree as a string and storing it in a Patricia tree. GraphGrep [14] uses a
hash-based method to find occurrences of paths within subgraphs of a graph.
For a more detailed review of previous approaches to indexing graph-structured
data, we refer the reader to [15]. To our knowledge, the novel approach to path
indexing that we present in this paper has not been studied or applied before in
the context of any actively supported graph database system.

Contributions. We introduce a path-oriented index for graph-structured data
and highlight its benefits for accelerating graph query processing, focusing on
the processing of path queries. Our index implementation, which is based on the
venerable B+tree data structure, has been custom-built from scratch specifically
to be based in external memory and to support and leverage the path struc-
tures found in graph datasets. The complete index implementation, as well as
supporting tooling such as a bulk-loader, are available open source for further
research and development.1

We show that use of our index yields, on average, orders of magnitude
faster query processing times compared with Neo4j2, a popular open-source
native graph database which offers features such as being fully transactional
and supporting a declarative graph query language, Cypher. We stress that
our performance studies here compare our standalone index with a fully-fledged
graph DBMS. Hence, the performance figures must be interpreted in this light.
Nonetheless, the significantly faster query processing times achieved by our index
is a clear indication that our solution warrants further investigation towards
practical deployment in graph DBMSs. We also highlight the design and bene-
fits of a simple yet highly effective path-centric compression scheme used in our
index. We note that, to our knowledge, the proposed approach to path indexing
is not found in any current graph database system, and thus the contributions
of this paper and their potential for practical impact extend beyond our specific
demonstration here by comparison to Neo4j.

Organization. In the next section we define our graph data model and path
queries. In Sect. 3 we describe our path index implementation, including index
design, initialization and compression. In Sect. 4 we present an empirical eval-
uation of our implementation. We conclude in Sect. 5 with a summary of our
contributions and directions of further work.

1 https://github.com/jsumrall/Path-Index.
2 http://neo4j.com/docs/stable/.

https://github.com/jsumrall/Path-Index
http://neo4j.com/docs/stable/

534 J.M. Sumrall et al.

2 Graphs and Path Queries

Data Model. Although modern graph DBMSs such as Neo4j support a richer
property graph data model, we restrict our attention to just the path structure
of graphs. In particular, we adopt a basic model of finite, edge-labeled, directed
graphs G = 〈N,E,L〉 where: N is a finite set of nodes; L is a finite set of edge
labels; and E ⊆ N × L × N is a set of labeled directed edges.

Given a graph G, our interest is in indexing paths in G. The simplest paths
are edges between adjacent nodes. In particular, for each edge (s, �, t) ∈ E, we
say there is a path of length one from s to t (resp., from t to s) having label �
(resp., �−1).3

In general, for k > 0, let pathsk(G) denote the set of all vectors of nodes
(n1, . . . , nj+1) ∈ N × · · · × N

︸ ︷︷ ︸

j+1 times

, for 1 � j � k, such that there is a path of length

one from ni to ni + 1 in G, for each 1 � i � j. The label-path of a given path
(n1, �1, n2), (n2, �2, n3), . . . , (nj , �j , nj+1) is the sequence of edge labels �1�2 · · · �j
along the path.

As an example, consider a graph Gex with node set {sue, tom, zoe, chem101}
and edge set

{(sue, takesCourse, chem101), (zoe, teacherOf, chem101),
(tom, takesCourse, chem101), (sue, knows, tom), (tom, knows, zoe)}.

Then there are two distinct paths in Gex of length two from sue to zoe, with
respective label-paths knows · knows and takesCourse · teacherOf−1.

Queries. We focus on the evaluation of path queries, which are specified by
projections on label-paths over L. Given a label-path � = �1�2 · · · �k and, for
some r ≥ 0, a list of indices i1, . . . , ir each in the range [1, k + 1], the semantics
of evaluating πi1,...,ir (�) on G is the set of all vectors of nodes (m1, . . . , mr) ∈
N × · · · × N
︸ ︷︷ ︸

r times

such that there is a path (n1, �1, n2), (n2, �2, n3), . . . , (nk, �k, nk+1)

in G with mj = nij for each 1 ≤ j ≤ r.
As an example, the following query selects all node pairs (x, z) such that x

takes a course taught by z:

π1,3(takesCourse · teacherOf−1).

It evaluates to the result set {(sue, zoe), (tom, zoe)} on the graph Gex above.
Here, we consider the execution of path queries of length at most k, for some

fixed k. Compilation strategies for arbitrary graph queries targeting our path
indexes is outside the scope of this paper and is a topic of ongoing study. In
particular, preliminary work along these lines is reported by Fletcher et al. [7]
which studies the use of path indexing for accelerating regular path queries on
graphs.

3 �−1 denotes the inverse of edge label �, which we just treat as normal edge label.

Investigations on Path Indexing for Graph Databases 535

3 Path Indexing

In this section we describe our path indexing approach, focusing on the require-
ments, design, initialization and compression of our path indexes. The main
objective is to maintain an index on the set pathsk(G) of a graph G, for some
fixed k, so as to accelerate the execution of path queries. A secondary goal is to
design methods for optimizing the index structure, so as to reduce the overall
size of the index and the cost of building, using and updating it. The size of
pathsk(G) may exceed the amount of internal memory available and hence the
index design must target external memory. For detailed discussion of the design
space considered and the design choices made, we refer the reader to [15].

3.1 Index Design

Path Keys. Given a graph G, our path index maintains an index on the set
pathsk(G), for some fixed k. Members of this set need to be represented in a
standard fashion, using a scheme such that specific elements of a path can be
identified, different paths can be compared to each other, and paths can be
serialized. This indexible form of a path is called a key.

To make a transformation from label-paths to keys, we first assign an ordering
to the elements of L. Under this ordering, we convert each label to an integer
value in the range 1, . . . , |L|. As noted above, we also consider the inverse of
labels: for a label identified by integer i, the inverse of the label is assigned
the value |L| + i. A k-label-path can now be uniquely identified by a vector
(v1, . . . , vk) where each vi is in the range 1, . . . , 2|L|. Based on this vector rep-
resentation of label-paths, a unique integer is assigned to each label-path: the
label-path’s identifier. These identifiers are stored in a mapping dictionary, imple-
mented using a hash map. During query evaluation, the mapping dictionary is
consulted to identify the corresponding identifier for that particular label-path.

To represent specific paths of G, the sequence of nodes along a path must also
be considered. Each node is differentiated from all other nodes in the graph by
a unique integer identifier (e.g. as generated by the graph DBMS; in the case of
Neo4j, this corresponds to the physical address of the node). Concatenating the
identifier of a path’s label-path with the identifiers of the nodes along the path,
a path can be represented as a vector consisting of first its label-path identifier
followed by its node identifiers. Therefore our data representation of a key is as
a series of integer values, and for a path of length k, the size of the key is k + 1
integer values (of 8 bytes each).

Storage and Search. We use a B+tree [5] as the underlying storage mechanism
for keys. This allows keys to be stored and retrieved in sorted order efficiently
for large sets of keys which may exceed the amount of internal memory in the
system. It also allows for searching using any prefix of the keys stored in the
index, e.g. a label-path identifier. Moreover, our path index implementation can
also support alternative sort orderings of the paths, which may be desirable for
join processing as part of a fully-fledged query processor; further discussion of
this is can be found in [15].

536 J.M. Sumrall et al.

Page Design. Our index is designed to be disk-based, and therefore careful
attention has been paid to how the bytes of the internal and leaf pages of the
index are arranged. All pages contain a header with essential information includ-
ing sub-tree references and the number of elements in the page. Individual ele-
ments are assumed to be of equal size, and therefore delimiter values between
elements are not needed.

Figure 1 details the structure of internal pages and leaf pages. The internal
pages contain a 25 byte header, followed by references to children pages, followed
by the keys which sort the children pages. Leaf pages contain the 25 byte header,
followed by the keys. Since the header contains information about the number of
keys in the page, it is possible to directly navigate to specific keys by calculating
an offset value based on the size of the keys and the ordered position of the
desired key.

Header

25 B

Child Child

8 B 8 B

Key

(k + 2) ∗ 8 B

(a) Internal Page

Header

25 B

Key Key Key

(k + 2) ∗ 8 B (k + 2) ∗ 8 B (k + 2) ∗ 8 B

(b) Leaf Page

Fig. 1. Layout of the internal pages and leaf pages of the index.

3.2 Index Compression

We recall that the first value of a key is a label-path id and the subsequent values
are node ids, i.e. a key is of the form pathID, nodeID1, nodeID2, nodeID3,
Within the index, keys are sorted lexicographically, first by pathID, then by
nodeID1, then by nodeID2, and so on. This ordering causes neighbouring keys
to be similar. Indeed, many keys will often have the same values of pathID and
nodeID1 in particular, since many neighboring keys have the same label-path ids
and the same starting node ids along the path. This is similar to the observation
of Neumann and Weikum [13] on efficiently storing RDF triples, and allows for a
similar compression scheme. The compression method we use involves not storing
the full key, but only storing the difference between successive keys. This results
in a high compression, as the change between keys is very often quite small.

For each value in a key, the delta (i.e., integer distance) to obtain this value
from the value in the same position in the previous key is calculated. Once each
delta is obtained, the minimum number of bytes necessary to store the largest
delta for this key is found. Each delta is then standardized in length to only
that minimum number of bytes. A header byte contains a value representing the
size of all these deltas. The largest possible delta would require 8 bytes and the
minimum delta we consider is 1 byte.

Investigations on Path Indexing for Graph Databases 537

Often, the prefix of a key can be identical to that of the previous key in the
page, while the final value in the key can require a large delta. In the compression
scheme above, we allocate a number of bytes to store the large delta, but the
delta for the first few values would be zero. To compress even further, the first
5 bits in the header can be used to signal when the corresponding value has a
delta of zero, essentially forming a gap in the series of deltas stored for this key.
We call these “gap bits”. By enabling a gap bit, we can avoid writing the delta
for that value altogether, and only write the values which have a non-zero delta.
An illustration of our compressed key structure can be found in Fig. 2.

Gap Payload

2 Bits 6 Bits

Header

Delta

1-8 Bytes

Path ID

Delta

1-8 Bytes

Node ID

Delta

1-8 Bytes

Node ID

Fig. 2. Structure of a compressed key with gap bits for a path with k = 1.

Compression is applied to individual leaf pages, not across pages. Compress-
ing larger portions of the index would produce a smaller index, but at a cost of
greater complexity in maintaining the index under updates. By only compressing
individual pages, we can still traverse to any leaf page and immediately begin
reading keys. If larger portions of the index were compressed together, then those
additional portions would need to be fetched and decompressed before beginning
to read keys.

Compression is also not applied to pages representing internal pages in the
index. Internal pages account for a much smaller share of the total number of
pages in the index, as most pages are leaves. Further, we assume that internal
pages will be accessed often during traversals, and the additional decompression
time on these pages may not justify the possible space savings.

3.3 Index Initialization: Full vs. Workload-Based Indexing

We have explored two approaches to populating the index. The first is to generate
and store all possible paths up to length k. We first perform an external merge
sort on the length-1 paths (i.e. the graph’s edge set E), and their inverses, and
bulk load them into our path index. With the k = 1 index constructed, the k = 2
index is constructed by performing a merge join on the opposing end nodes of the
length-1 paths. In general, the k = n1 index is constructed by performing a join
on two full length-k1 and length-k2 indexes, where k1 + k2 = n + 1 holds true.
For large values of k, this requires an extensive time and space commitment,
as we see below. The payoff is that the expected query execution time on any
arbitrary k-path query will be very low.

As an alternative to this off-line construction of all paths up to length k, it is
possible to index on demand (i.e. as a background process during query execution
time) only those paths needed to fulfill a given query workload, i.e. to index a

538 J.M. Sumrall et al.

finite set of path queries of arbitrary length. Such an index is first initialized
with the length-1 paths, i.e. with the graph’s edge set E. Then, as encountered
in the query workload, longer paths (of arbitrary length) are dynamically built
and added to the index by performing joins on the initial 1-paths and subsequent
longer paths which have already been indexed. We refer to the indexes for the
first method as full k indexes and the latter as workload-based indexes.

4 Evaluation

We now describe a set of experiments that investigate our index compression
scheme, index sizes, and query execution times using path indexing. All experi-
ments were performed on a 2.0 GHz i7 processor with 8 GB of main memory and
a solid state drive, running OSX 10.10. Experiments were run on three different
datasets, drawn from different sources and of different sizes. Two datasets, the
Lehigh University Benchmark (LUBM) dataset [10] and the Linked Data Bench-
mark Council (LDBC) dataset [2] are synthetic datasets, while the Advogato
dataset [1] is a real-world dataset. All experiments were conducted using the
latest version of Neo4j available at the time, Neo4j 2.3.0-M01. We focus here on
our experiments with the LUBM and refer the reader to [15] for details of the
experiments with the other two datasets.

LUBM graphs model a university scenario (e.g., nodes represent universities,
departments, students, teachers, ...). We generated a graph with 50 universities,
containing approximately 6.8 million unique edges. We followed the same data
preparation steps as taken by Gubichev and Then [9], except our dataset was
not enriched with inferred facts derived from ontology rules. For example, nodes
of type Associate Professor do not also get the more general label Professor.
LUBM is provided with 14 different queries. Here, we use roughly the same
queries as used by Gubichev and Then [9], with substitutions for the length-0
queries. Our queries are listed in the Appendix.

4.1 Index Compression Evaluation

Evaluation of our compression scheme shows that it results in significantly
reduced index sizes compared to the uncompressed index size. Further, our com-
pression method outperforms general-purpose LZ4 compression4 in terms of both
speed and scale of compression. A comparison of the size of indexes resulting
from each compression technique is shown in Table 1, while a comparison of the
speed of the compression techniques is shown in Table 2. The comparison was
undertaken by inserting sequentially increasing keys into the index and mea-
suring throughput time and final index size. The evaluation was undertaken for
indexes with key sizes of k = 1, 2, 3. However, the size of the k = 3 index with-
out compression and with the LZ4 algorithm was either too large for our test
system or took a significant amount of time. We also include here results for our

4 https://github.com/jpountz/lz4-java.

https://github.com/jpountz/lz4-java

Investigations on Path Indexing for Graph Databases 539

Table 1. Index size.

Index Uncompressed LZ4 Path index

k = 1 0.16 GB 0.053 GB 0.02 GB

k = 2 15.99 GB 3.67 GB 1.69 GB

k = 3 - - 41.58 GB

Workload-based - - 0.1 GB

Table 2. Indexing time, rounded to the nearest minute.

Index Uncompressed LZ4 Path Index

k = 1 < 1 min 4min < 1 min

k = 2 28 min 266min 27 min

k = 3 - - 178 min

Workload-based - - 4 min

workload-based index, built using the query workload of the LUBM benchmark,
which significantly lowers storage overhead and compression time. Overall, the
comparison shows that our scheme outperforms the LZ4 algorithm in terms of
both speed and scale of compression.

4.2 Index Size Evaluation

The right-most column of Table 1 shows the index sizes. These results show that
the size of the index as k increases becomes a limiting factor to the usability of
the index. However, while the index sizes may be large, the evaluation time for
path queries using the index remains very low (see below). Moreover, although
the full indexes can grow to be quite large, the workload-based index has very
low overhead while still supporting efficient query processing, as we see next.

4.3 Query Execution Evaluation

We compare query execution time using our path index with that using Neo4j,
subject to the provisos discussed in the Introduction. Only the time needed
to retrieve the results is compared for each query: the time needed to open
and close the database or index, and to open and close a transaction event is
ignored. Six runs were conducted for each query, with each run consisting of
5 executions of the query. Between each run, the system’s caches were flushed.
The first execution after a cache flush was considered a “cold” run, with empty
caches, and the subsequent runs were considered “warm” runs, where caching is
likely to result in lower evaluation times. For each query therefore, we obtained
6 “cold run” timings and 24 “warm run” timings. For each set of cold-run and
warm-run timings of each query, we excluded 10% of the data from each end of

540 J.M. Sumrall et al.

the range of recorded results, eliminating outliers due to nondeterminism in the
runtime environment. We report here the mean of the remaining values, focusing
on the warm run experiments. A full analysis, including both the warm and the
cold runs, can be found in [15].

Full Indexes. We first consider path query performance on a full k = 3 index.
Results are reported in Table 3, where we give the time to the first result and
the time to the last result. For both Neo4j and our path index, the time to
the first result is measured as the time from immediately before Neo4j’s or the
path index’s find operation is executed, and the time immediately after the first
result is found. The time to the last result is measured as the time immediately
before Neo4j’s or the path index’s find operation is executed, until the time
immediately after the last result is found.

In addition to using the full-length k-paths in the index, queries are also
evaluated using the (k − 1)-paths in the index for Queries 4–10, for comparison
purposes. For example, looking at Query 7 in Table 3, we see under the column
labeled “Index k = 2” the time needed to evaluate Query 7 using the k = 2 and
k = 1 subpaths of the query and joining the results (using a merge join). This

Table 3. Average times (ms) to retrieve the first result and the last result in Neo4j
and in the Path Index.

Neo4j Index k = 3 Index k = 2 Index k = 1 Speedup

Q1
First Result 480 - - 0.19 2526x
Last Result 2080 - - 37 56x

Q2
First Result 2014 - - 1 2014x
Last Result 2014 - - 1 2014x

Q3
First Result 413 - - 0.05 8260x
Last Result 1352 - - 4 338x

Q4
First Result 774 - 0.8 173 967x
Last Result 3741 - 112 10932 33x

Q5
First Result 457 - 2 45 228x
Last Result 13303 - 1439 4645 9x

Q6
First Result 437 - 2 47 218x
Last Result 2225 - 107 2831 20x

Q7
First Result 8 2 2.4 - 4x
Last Result 2221 32 179 - 69x

Q8
First Result 1 1 2 - 1x
Last Result 5319 1992 493 - 2x

Q9
First Result 1 2 2 - 0.5x
Last Result 1378 8 179 - 172x

Q10
First Result 1 3 2 - 0.3x
Last Result 1392 4 16 - 348x

Avg
First Result 458 2 1 < 1 1444x
Last Result 3502 509 552 14 306x

Investigations on Path Indexing for Graph Databases 541

Table 4. Workload experiment with paths constructed from the k = 1 index with
joined results inserted into the index (average time to last result, in ms).

Query Plan Index Index Neo4j Speed
Const- Query up
ruction

Q4 takesCourse �� teacherOf−1 30289 119 3741 31x

Q5 memberOf �� subOrganizationOf−1 129499 775 13303 17x

Q6 memberOf �� subOrganizationOf 11113 39 2225 57x

Q7A undergraduateDegreeFrom �� Query 6−1 769 < 1 2221 2221x

Q7B
P7B = subOrganizationOf−1 �� memberOf−1

undergraduateDegreeFrom �� P7B 15832 < 1 2221 2221x

Q8A hasAdvisor �� Query4−1 836 2 5319 2659x

Q8B
P8B = teacherOf �� takesCourse−1

hasAdvisor �� P8B 2703 2 5319 2659x

Q9
P9 = worksFor �� subOrganizationOf−1

headOf−1 �� P9 8807 2 1378 689x

Q10
P10 = worksFor �� subOrganizationOf
headOf−1 �� P10 822 < 1 1392 1392x

Avg 22296 104 4124 1327x

gives us an indication of query evaluation times if the index only contained the
smaller subpaths and not the full k = 3 path. The column “Index k = 1” for
Query 7 is blank, as these experiments only show the times needed to perform a
single (merge) join to evaluate a given query. Evaluating Query 7 using only the
k = 1 paths is possible, but would require joining two subpaths first, and then
undertaking a sort merge join with the third subpath or performing a hash join
with the third subpath.

Workload-Based Indexes. Experiments were also conducted on workload-
based indexes built at runtime, where the necessary k = 1 paths are joined to
form the paths of length 2 in the queries, or joined a third time to form the paths
of length 3. Table 4 shows the cost of building and using the workload-based
indexes. The alternatives A/B for Queries 7 and 8 arise from whether or not to
reuse paths already constructed in the index from previous query evaluations.

Summary. The above results demonstrate that both full and workload-based
path indexes have much lower evaluation times for all path queries compared
to Neo4j. Our experiments on the LDBC and Advogato datasets confirm and
further strengthen the results reported here, for both warm and cold runs (see
[15] for details).

5 Concluding Remarks

This paper has presented a new and simple path indexing approach to improve
path query performance for graph database systems. Our empirical study has

542 J.M. Sumrall et al.

demonstrated the significant potential of path indexes for graph databases. Keep-
ing in mind that Neo4j is a fully-fledged graph DBMS, our experiments show
that, for every query trialled, path indexing provides a non-trivial, often multiple
orders of magnitude, improvement in query evaluation time. We have demon-
strated the practicality of workload-driven path indexes, where the additional
time to first evaluate and store the results of a path query is relatively large, but
subsequent query times using the index provide significant speedups, amortizing
the index build cost over the lifetime of the query workload. Furthermore, our
workload-based indexes are an order of magnitude smaller than the full index.
Our implementation includes supporting tools, e.g. for bulk loading the index
with paths from the graph in an efficient way. As indicated in the Introduction,
the complete codebase is available open-source for further study.

Our empirical results show that workload-based indexing offers the most
promise in terms of index size, index construction time, and query performance.
Further study of the design, engineering, and deployment in practical graph data-
base systems of these types of indexes is the natural progression of this work.
Additional experiments need to be conducted to identify how to best build the
index based on encountered queries. Possibilities include examining query logs
and building indexes based on frequent queries. Study of index maintenance
under mixed transactional workloads is another interesting direction of future
study, i.e. policies for updating the path indexes in the face of insertions and
deletions of edges in the data graph. Efficient index updates may be achieved by
supporting multiple indexes, supporting fast retrieval for multiple dimensions of
label-paths. Finally, another important direction for future research is compi-
lation strategies for richer query languages such as Cypher targeting our path
indexes as one of the alternative access paths available in the DBMS.

Appendix: LUBM Cypher Queries

Q1: MATCH (x)-[:memberOf]->(y) RETURN ID(x),ID(y)

Q2: MATCH (x)-[:memberOf]->(y)

WHERE x.URI ="http://www.Department0...Student207"

RETURN ID(x), ID(y)

Q3: MATCH (x)-[:worksFor]->(y) RETURN ID(x),ID(y)

Q4: MATCH (x)-[:takesCourse]->(y)<-[:teacherOf]-(z)

RETURN ID(x),ID(y),ID(z)

Q5: MATCH (x)-[:memberOf]->(y)<-[:subOrganizationOf]-(z)

RETURN ID(x),ID(y),ID(z)

Q6: MATCH (x)-[:memberOf]->(y)-[:subOgranizationOf]->(z)

RETURN ID(x),ID(y),ID(z)

Q7: MATCH (x)-[:undergraduateDegreeFrom]->(y)

Investigations on Path Indexing for Graph Databases 543

<-[:subOrganizationOf]-(z)<-[:memberOf]-(x)

RETURN ID(x),ID(y),ID(z)

Q8: MATCH (x)-[:hasAdvisor]->(y)-[:teacherOf]->(z)<-[:takesCourse]-(x)

RETURN ID(x),ID(y),ID(z)

Q9: MATCH (x)<-[:headOf]-(y)-[:worksFor]->(z)<-[:subOrganisationOf]-(w)

RETURN ID(x),ID(y),ID(z),ID(w)

Q10:MATCH (x)<-[:headOf]-(y)-[:worksFor]->(z)-[:subOrganisationOf]->(w)

RETURN ID(x),ID(y),ID(z),ID(w)

References

1. Advogato network dataset - KONECT, October 2014. http://konect.uni-koblenz.
de/networks/advogato

2. Angles, R., et al.: The linked data benchmark council. ACM SIGMOD Rec. 43(1),
27–31 (2014). http://dl.acm.org/citation.cfm?id=2627692.2627697

3. Bertino, E., et al.: Object-oriented databases. In: Bertino, E., et al. (eds.) Indexing
Techniques for Advanced Database Systems, pp. 1–38. Kluwer, Alphen aan den
Rijn (1997)

4. Chen, Q., Lim, A., Ong, K.W.: D(k)-index. In: Proceedings of SIGMOD 2003,
p. 134. ACM Press, San Diego, June 2003. http://dl.acm.org/citation.cfm?
id=872757.872776

5. Comer, D.: The ubiquitous B-tree. ACM Comput. Surv. 11(2), 121–137 (1979).
http://dl.acm.org/citation.cfm?id=356770.356776

6. Cooper, B., Sample, N., Franklin, M.J., Hjaltason, G.R., Shadmon, M.: A fast
index for semistructured data. In: Proceedings VLDB 2001, pp. 341–350. Mor-
gan Kaufmann Publishers Inc., Roma, September 2001. http://dl.acm.org/citation.
cfm?id=645927.672202

7. Fletcher, G.H.L., Peters, J., Poulovassilis, A.: Efficient regular path query evalua-
tion using path indexes. In: Proceedings of EDBT 2016, pp. 636–639 (2016)

8. Goldman, R., Widom, J.: DataGuides: enabling query formulation and optimiza-
tion in semistructured databases. In: Proceedings of VLDB 1997, pp. 436–445.
Morgan Kaufmann Publishers Inc., Athens, Greece, August 1997. http://dl.acm.
org/citation.cfm?id=645923.671008

9. Gubichev, A., Then, M.: Graph pattern matching - do we have to reinvent the
wheel?. In: Proceedings of GRADES 2014, pp. 1–7 (2014)

10. Guo, Y., et al.: LUBM: a benchmark for OWL knowledge base systems. J. Web
Seman. 3(2–3), 158–182 (2005)

11. Kaushik, R., Shenoy, P., Bohannon, P., Gudes, E.: Exploiting local similarity for
indexing paths in graph-structured data. In: Proceedings of ICDE 2002, pp. 129–
140. IEEE Computer Society, San Jose (2002). http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=994703

12. Milo, T., Suciu, D.: Index structures for path expressions. In: Beeri, C., Buneman,
P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 277–295. Springer, Heidelberg (1999).
doi:10.1007/3-540-49257-7 18

13. Neumann, T., Weikum, G.: The RDF-3X engine for scalable management
of RDF data. VLDB J. 19(1), 91–113 (2009). http://dl.acm.org/citation.cfm?
id=1731351.1731354

http://konect.uni-koblenz.de/networks/advogato
http://konect.uni-koblenz.de/networks/advogato
http://dl.acm.org/citation.cfm?id=2627692.2627697
http://dl.acm.org/citation.cfm?id=872757.872776
http://dl.acm.org/citation.cfm?id=872757.872776
http://dl.acm.org/citation.cfm?id=356770.356776
http://dl.acm.org/citation.cfm?id=645927.672202
http://dl.acm.org/citation.cfm?id=645927.672202
http://dl.acm.org/citation.cfm?id=645923.671008
http://dl.acm.org/citation.cfm?id=645923.671008
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=994703
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=994703
http://dx.doi.org/10.1007/3-540-49257-7_18
http://dl.acm.org/citation.cfm?id=1731351.1731354
http://dl.acm.org/citation.cfm?id=1731351.1731354

544 J.M. Sumrall et al.

14. Shasha, D., Wang, J.T.L., Giugno, R.: Algorithmics and applications of tree and
graph searching. In: Proceedings of PODS 2002, p. 39. ACM Press, Madison, June
2002. http://dl.acm.org/citation.cfm?id=543613.543620

15. Sumrall, J.: Path indexing for efficient path query processing in graph databases.
Master’s thesis, Eindhoven University of Technology (2015)

16. Wong, K.F., Yu, J.X., Tang, N.: Answering XML queries using path-based indexes:
a survey. WWW J. 9(3), 277–299 (2006)

17. Yan, X., Han, J.: Graph indexing. In: Aggarwal, C.C., Wang, H. (eds.) Managing
and Mining Graph Data, pp. 161–180. Springer, Heidelberg (2010)

http://dl.acm.org/citation.cfm?id=543613.543620

Improving Performance of Distributed Graph
Traversals via Application-Aware Plug-In Work

Scheduler

Jesun Sahariar Firoz(B), Marcin Zalewski, Martina Barnas,
and Andrew Lumsdaine

Center for Research in Extreme Scale Technologies (CREST), Indiana University,
Bloomington, IN, USA

{jsfiroz,zalewski,mbarnas,lums}@indiana.edu

Abstract. Unordered graph algorithms can offer efficient resource uti-
lization that is advantageous for performance in distributed setting.
Unordered execution allows for parallel computation without synchro-
nization. In unordered algorithms, work is data-driven and can be per-
formed in any order, refining the result as the algorithm progresses.
Unfortunately, a sub-optimal work ordering may lead to more time spent
on correcting the results than on useful work. On HPC systems, the
issue is compounded by irregular nature of distributed graph algorithms
which makes them sensitive to the whole software/hardware stack, col-
lectively referred to as runtime. In this paper, we consider an exam-
ple of such algorithms: Distributed Control (DC) single-source shortest
paths (SSSP). DC relies on performance gains stemming from the inher-
ent asynchrony of unordered algorithms while optimizing work ordering
locally. We demonstrate that distributed runtime scheduling policy can
prevent effective work ordering optimization. We show that lifting and
delegating some scheduling decisions to the algorithm level can result in
significantly better performance. We propose that this strategy can be
useful for performance engineering.

1 Introduction

Large data sets in application areas such as physical networks, social media,
bioinformatics, genomics and marketing, to name a few, are well represented by
graphs and studied using graph analytics. Ever increasing size of data forces
graph analytics to be performed on distributed systems including supercomput-
ers. It is anticipated that the largest, most complex of such data sets, notably,
e.g., in precision medicine, do or will require exascale computing resources.
Achieving exascale is a nontrivial undertaking demanding a concerted effort
at all levels of software/hardware stack. In order to utilize the modern sys-
tems, distributed graph algorithms need to be designed to scale. Scaling in turn
requires that the algorithms are designed in a manner that maximizes asychrony.
Unfortunately, supercomputing resources are notoriously inefficient for irregular
applications.
c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 545–556, 2017.
DOI: 10.1007/978-3-319-58943-5 44

546 J.S. Firoz et al.

Irregular applications like graph algorithms may exhibit little locality, rarely
require any significant computation per memory access, and result in high-rate
communication of small messages. In graph applications, work items are gener-
ated in an unpredictable pattern. This makes performance of distributed graph
algorithms dependent on the whole software/hardware stack, which includes not
just the algorithm itself but all levels of the runtime and the hardware. The sen-
sitivity to runtime is correlated with the level of achieved asychrony [7,21]. More-
over, it has been shown that the performance is further dependent on the type
of input graph [11], and even a starting point within the same input graph [5].

In this paper, we propose a solution to how these issues can be ameliorated.
Our approach is motivated by the recognition that formulating an algorithm to
exploit optimistic parallelism [14] is contingent upon adequate assistance from
the runtime. Design choices for general-purpose runtime systems are driven by
the need to support a wide range of applications at scale. Yet, for many appli-
cations, a specific interleaving of execution of algorithm logic and runtime logic
is necessary to achieve performance. While dynamic adaptive runtime systems,
such as HPX-5 [10], can bookkeep information to assist an algorithm to per-
form better, a mechanism utilizing the application programmer’s insight could
improve performance even further. Note that any distributed graph algorithm
consists of three parts: work items, data structures, and application-level sched-
uler. For achieving efficient optimistic parallelism, the application developer can
provide application-aware scheduling policy to the runtime to be incorporated
into the runtime-level scheduler. In this way, the runtime system could utilize
programmer’s knowledge of the particular algorithm and provide performance
benefits due to better scheduling. Here we propose a mechanism to do so.

Specifically, we implement a family of unordered algorithms [20] for SSSP
in HPX-5, based on an earlier implementation of distributed control (DC)
SSSP [21]. We have chosen SSSP because SSSP and its variation Breadth First
Search (BFS) appear as a kernel for many other graph applications. These
include, for example, betweenness centrality and connected components. Addi-
tionally, they are good representative problems to study system behavior, as
proposed by Graph500 benchmark [17]. Previously, we have categorized and
demonstrated the relevance of detailed description of a runtime used in the con-
text of executing graph algorithms, and shown that DC is particularly sensitive
to lower-level details of the runtime [6,7]. Here we study effects of runtime-level
scheduler and network progression. We propose to incorporate an application-
level plug-in scheduler in general-purpose asynchronous many-task runtime.

The paper is organized as follows: In Sect. 2, we briefly summarize the DC and
Δ-stepping algorithms for SSSP. We use Δ-stepping for comparison. In Sect. 3,
we discuss the HPX-5 scheduler and the influence of HPX-5 runtime on graph
traversal algorithms, DC in particular. Next, in Sect. 4, we introduce our refine-
ments of the basic DC algorithm based on adaptive network progress frequency
and flow control. We present performance comparison of different algorithms
with our proposed algorithm in Sect. 5. Finally, we discuss the related work
in Sect. 6, and we conclude in Sect. 7.

Improving Performance of Distributed Graph Traversals 547

2 Background

Let us denote an undirected graph with n vertices and m edges by G(V,E). Here
V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , em} represent vertex set and edge set
respectively. Each edge ei is a triple (vj , vk, wjk) consisting of two endpoint ver-
tices and the edge weight. We assume that each edge has a nonzero cost (weight)
for traversal. In single source shortest path (SSSP) problem, given a graph G and
a source vertex s, we are interested in finding the shortest distance between s
and all other vertices in the graph. In this section we briefly describe the basic
Distributed Control based SSSP algorithm [21] and Δ-stepping algorithm [15].
Both of these algorithms approximate the optimal work ordering of Dijkstra’s
sequential SSSP algorithm [2], but each does that in a different way.

2.1 Basic Distributed Control Algorithm

DC is a work scheduling method that removes overhead of synchronization and
global data structures while providing partial ordering of work items according
to a priority measure. The algorithm starts by initialization of the distance
map and by relaxing the source vertex. The work on the graph is performed
by removing a work item (a vertex and a distance pair) from the thread-local
priority queue in every iteration and then relaxing the vertex targeted by the
work item. Vertex relaxation checks whether the distance sent to a vertex v
is better than the distance already in the distance map, and it sends a relax
message (work item) to all the neighbors of v with the new distance computed
from v’s distance dv and the weight of the edge between v and v’s neighbors vn.
A receive handler receives the messages sent from the relax function, and inserts
the incoming work items into the thread-local priority queue. When a handler
finishes executing, it is counted as finished in termination detection. Note that
there is no synchronization barrier in the algorithm. All ordering is achieved
locally in thread-local priority queues, and all ordering performed on the thread
level adds up to an approximation of a perfect global ordering.

2.2 Δ-Stepping

Δ-Stepping approximates the ideal priority ordering by arranging work items
into distance ranges (buckets) of size Δ and executing buckets in order. In each
epoch i, vertices within the range iΔ − (i + 1)Δ contained in a bucket Bi are
processed asynchronously by worker threads. Within a bucket, work items are
not ordered, and can be executed in parallel. Processing a bucket may produce
extra work for the same bucket or for the successive buckets. After processing
each bucket, all processes must synchronize before processing the next bucket to
maintain work item ordering approximation. The more buckets (the smaller the
Δ value), the more time spent on synchronization. Similarly, the fewer buckets
(the larger the Δ value), the more sub-optimal work the algorithm generates
because larger buckets provide less ordering. With Δ = 1, Δ-stepping produces
ordering equivalent to the ordering of the Dijkstra’s algorithm (a priority queue
ordering of all work items).

548 J.S. Firoz et al.

3 Interaction of DC with the HPX-5 Scheduler

The HPX-5 runtime system is an initial implementation of the ParalleX
model [8]. HPX-5 represents work as parcels. The HPX-5 runtime scheduler is
responsible for executing actions associated with parcels. It is a multi-threaded,
cooperative, work-stealing thread scheduler, where heavy-weight worker threads
run scheduler loops that select parcels to be executed. Specifically, each worker
thread in HPX-5 maintains a last-in-first-out (LIFO) queue of parcels, with a
possibility of stealing the oldest parcels from other threads. The light-weight
threads executing parcels can yield, and HPX-5 maintains separate queue for
yielded threads. Parcels can be sent to particular heavy-weight scheduler threads
using mail queues. Newly generated parcels may be destined for remote locali-
ties, and HPX-5 provides transparent network layer with robust implementation
based on Photon [13] and an implementation based on the MPI interface.

Algorithm 1. HPX-5 scheduler loop
Input: Plug-In algorithm-level scheduler As with a work produce fp func-
tion

1: while A task ti or a work item wi available do
2: if Mtid �= ∅ then {Mailbox queue (per thread)}
3: Execute ti ← Mtid .pop() and continue
4: else if Yq �= ∅ then {Yield queue (per process)}
5: Execute ti ← Yq.pop() and continue
6: else if Ltid �= ∅ then {LIFO queue (per thread)}
7: Execute ti ← Ltid .pop() and continue
8: else if wi ← fp not NULL then {Plug-In scheduler}
9: Execute wi and continue

10: else if Nr �= ∅ then {Network receive queue}
11: Ltid .enqueue(Nr) and continue
12: else {Steal from another thread tid ′}
13: Try work stealing from Ltid′ and continue
14: end if
15: end while

Every HPX-5 worker thread running the scheduler keeps spinning until it
finds a parcel to execute or it has been signaled to stop. The scheduler loop is
outlined in Algorithm1. The mailboxes are given the highest priority, followed
by the yield queue, followed by the LIFO queue. Next, a plug-in-scheduler, an
extension we discuss in more detail in Sect. 4 gets a chance to execute. Finally,
when the scheduler is unable to obtain work from thread-local sources, it first
attempts to progress the network and then to steal work from other scheduler
threads. It is important to note that executing work in any of the steps causes the
loop to start from the beginning. So, for example, all mail tasks will be processed
before any LIFO queue tasks, and no network progress will be performed before
all work sources that come before it in the scheduler loop are exhausted. While

Improving Performance of Distributed Graph Traversals 549

this approach works well for some applications, it turns out that it does not work
well for algorithms like DC that depend on continuous feedback for efficient
scheduling.

Our DC approach draws concept from optimistic parallelization and self-
stabilization [3]. To achieve optimistic parallelism via asynchrony, DC eliminates
global synchronization barriers. However, to reduce the amount of sub-optimal
work, DC performs local ordering of work items. This necessitates runtime sup-
port for quick delivery of messages so that they can be ordered as soon as
possible. When we implemented DC based SSSP algorithm in HPX-5 with the
default HPX-5 scheduler, we made a couple of observations on the interaction
between the default HPX-5 scheduler and the DC algorithm. As the scheduler
does not distinguish between runtime tasks and algorithmic work items, it indis-
criminately puts both tasks and work item parcels, received over the network,
in the current worker’s LIFO queue. It then chooses a parcel to execute from
the queue, if available, or go through the steps in Algorithm1 to find and sched-
ule one. This mixing of execution of tasks and work items can hurt algorithm’s
performance because, in the runtime level, at a particular instance of time, a
tradeoff exists between executing tasks vs. work items. For instance, we have
encountered situations where most of the work is stuck in the network buffers
while the scheduler tries to execute parcels from the application-level priority
queue. This left the algorithm to compare and choose from a smaller number
of work items. This results dwindling priority queues used for local ordering in
DC , even if work items are available in the transport buffers.

Based on these observation, we posit that distinguishing runtime tasks from
algorithmic work items by maintaining seperate data structures for them to facil-
itate scheduling and having a way to provide an algorithm-specific scheduling
policy as a plug-in scheduler in the runtime scheduler can benefit unordered
algorithms in several ways. First, by separating these sets of works, runtime
has better control over when to schedule what type of work. Secondly, runtime
can exploit programmer’s knowledge about algorithmic work items. For exam-
ple, application programmer can provide an ordering policy for the work items
(priority for parcels containing shorter distances). Third, we note that irregular
graph algorithms are communication bound, rather than computation intensive.
If, at any particular time instance, the application level does not have enough
work items to work on or compare with, it can voluntarily give up control to
other scheduling mechanisms like network progress to fetch more work from
the underlying transport. Delaying network progression till exhaustion of work
items eliminates the chance of propagating better work from other localities.
Such interleaving execution of runtime tasks, work items, and network progress
can boost the performance of an unordered algorithm.

To alleviate these issues, we extend the default HPX-5 scheduler with a
provision for the application-level programmer to incorporate a configurable,
plug-in scheduler. The application-level plug-in scheduler consists of 3 parts:
work consumer, work producer, and work Stealing. In the next section, we discuss
a plug-in scheduler we designed for DC , and in Sect. 5 its performance.

550 J.S. Firoz et al.

4 Distributed Control with Adaptive Frequency
and Flow Control

Algorithm 2 shows the pseudo code for the DC plug-in scheduler algorithm. The
algorithm consists of 3 parts: the work produce function fp that manages extrac-
tion of algorithmic work items from the local priority queue, the message handler
that receives tasks from other workers, and the relax function that updates dis-
tances and generates new work. The basic task of fp is to remove work items
from the thread-level priority queue and to return them to the runtime sched-
uler for execution and the basic task of the relax function is to send updates to
all neighbors of the vertex being relaxed. In this section, we discuss a plug-in-
scheduler implementation that goes beyond these basic tasks by employing flow
control and adaptive frequency scheduling.

4.1 Flow Control

Local ordering in DC produces more optimal work orderings when more work is
available to order in thread-local priority queues. The runtime, however, needs to
deliver messages across the network through multiple layers of implementation.
This causes a tension between DC and the runtime, where on one hand it is best
to deliver majority of work items into DC priority queues, but, on the other hand,
minimizing the amount of work items that are in-flight in the runtime comes at
a cost of runtime overhead. We implement a flow control mechanisms to allow
DC to control the flow of network communication through the HPX-5 runtime
using customizable parameters.

Work items are moved out from the network layers of HPX-5 when the sched-
uler loop in Algorithm1 runs network progress (Line 10). The only way that con-
trol reaches Line 10 is when the work produce function returns a null work item
(Line 8 in Algorithm 1). Our plug-in scheduler DC maintains an approximate
measure of work items that have been sent over the network but not yet deliv-
ered. To maintain the approximation, we keep a locality-based global counter
sync count of work items that have been sent with a request of remote comple-
tion notification. When this count grows over some threshold sync threshold , fp
returns control back to the runtime (Line 3 of Algorithm2).

In Relax function, when the worker thread propagates updated distance to
the neighbors (Line 3), it checks how many asynchronous sends has been posted
(Line 4). If the count has reached a particular threshold send threshold , a send
with continuation is performed and the sync count value is incremented to keep
track of how many continuations are expected (Lines 8–9). When calls with con-
tinuation are completed remotely, the continuation decrements the sync count
value on the locality from which the original send call was made. At every send
with continuation, the thread-local send count is reset to 0. The call with con-
tinuation is performed with the hpx call with continuation HPX-5 function:

1 hpx_call_with_continuation(addr , action , c_target ,
c_action , ...)

Improving Performance of Distributed Graph Traversals 551

Algorithm 2. DC with Adaptive Frequency and Flow Control
Work produce, fp

1: if sync count == sync threshold then
2: {Outstanding no. synchronous calls reached the threshold}
3: return NULL
4: else
5: if not qtid .empty() and qtid .size() > last queue size then
6: freq [tid] − − {Process work from the priority queue less frequently}
7: else
8: freq [tid] + + {Process work from the priority queue more frequently}
9: end if

10: last queue size ← qtid .size()
11: if not q.empty() and processed count [tid] − − > 0 then
12: (v, d) ← qtid .pop() {next work item to process}
13: return wi ← (v, d)
14: else
15: processed count [tid] = freq [tid]
16: {Reset the number of work items to be processed in the next iteration}
17: return NULL
18: end if
19: end if

Receive handler
Input: Work item (v, d)

1: qtid .push(v, d) {insert work item into priority queue}
Relax

Input: Work item (v, d), distances D

1: if d < D(v) then
2: D(v) ← d
3: for vn ∈ neighbors(G, v) : do
4: if send count [tid] < send threshold then
5: send count [tid] − −
6: send async((vn, dv + weight(v, vn)))
7: else
8: sync count + +
9: send async with cont((vn, dv + weight(v, vn)), λ.sync count − −)

10: send count[tid] = send threshold
11: end if
12: end for
13: end if

hpx call with continuation takes an address addr (local or remote) and
invokes the specified action action at that address. Once that action has fin-
ished executing, the continuation action c action is invoked at c target address.
Implementing flow control is very easy with the semantics provided by the
hpx call with continuation interface as the continuation is “fire and forget,”
and it is automatically handled by the runtime.

552 J.S. Firoz et al.

4.2 Adapting Frequency of Network Progress

If the current locality keeps receiving messages and the network progress keeps
succeeding with adequate amount of work items received over the network, it is
an indication that either the algorithm is in the middle of its execution phase
or a lot of messages are destined to the current locality. It is thus useful to keep
retrieving messages from the network receive buffer and put them in the priority
queues in the algorithm level. In this way, when the algorithm gets a chance to
progress, it has robust amount of work items in the priority queue to compare
and make choices from and minimize the possibility of executing sub-optimal
work items.

To get an idea of successful network progression, the algorithm checks the
current priority queue size in the fp function and compares it with the size seen
the last time. Growing size of the priority queue is an indication of successful
network probing (Line 5). As mentioned earlier, its better to fetch more work
items from the network aggressively if the network progression keeps returning a
lot of received messages. To achieve this, the algorithm maintains a thread-local
counter freq. Whenever the queue size grows, the freq counter is decremented to
indicate that fewer elements will be processed from the priority queue and control
will be given to the scheduler to progress the network more frequently (Line 6
in Work produce).

It is noteworthy to mention here that progressing the network for every vertex
processed is not a viable option. The reason is that network progress incurs
much more overhead compared to processing a vertex. Although eager network
progress can assist in the reduction of useless work by increasing priority queues’
size, it has detrimental effect on algorithm performance due to the associated
overhead.

5 Experimental Results

In this section, we evaluate several algorithms based on DC and compare their
performance with Δ-stepping algorithm. In the following discussion, algorithms
without plug-in scheduler carry np subscript, algorithms which give up control to
the runtime schedule at a fixed frequency carry ff subscript, algorithms with flow
control carry fc subscript, and algorithms with adaptive frequency for network
progress carry af subscript.

5.1 Experimental Setup

We conducted all our experiments on a Cray XC40 system. Each compute node
on this system has 32 cores with clockrate of 2.7 GHz, and 64 GB memory. For
input, we used Graph500 graphs [9]. For each algorithm, we run 4 problem
instances and report the average the execution time with standard deviation of
mean as the measurement for uncertainty. We have used Δ = 1 for Δ-Stepping
algorithm. We chose the optimal number of threads for each algorithm. The

Improving Performance of Distributed Graph Traversals 553

Fig. 1. Performance and work statistics of SSSP algorithms in weak scaling. With full
featured plug-in scheduler, DC (green squares) outperforms Δ-stepping (blue circles)
(Color figure online)

graph is distributed across different nodes in 1D fashion and represented with a
distributed adjacency list data structure. We have compiled our code with gcc
5.1 and with optimization level −O3.

5.2 Comparison of Δ-Stepping and Five Versions of DC Algorithms

Figure 1 shows the execution time taken by different SSSP algorithms. DC, which
uses the plug-in capability but does not have flow control or adaptive frequency
heuristic performs worse than DCnp. Adding a fixed frequency heuristic for
network progression helped DCff to perform comparatively up to 8 compute
nodes but for larger scale its performance deteriorates. Although for smaller
scales fixed frequency heuristic is good enough, to achieve better scaling, the
algorithm needs to adjust the network probing according to the work profile,
which we do in DCaf . Compared to DCff , this heuristic worked better with
scale 24 graph input but did not perform well with scale 25 input. In DCff ,fc ,
we add flow control. Flow control mechanism helps DCff ,fc in achieving almost
identical performance as Δ-stepping algorithm. Finally, DCaf ,fc performs the
best. Flow control and adaptive frequency together make DCaf ,fc achieve better
work ordering and balance in executing tasks and work items. Figure 1 also shows
the work profiles for different SSSP algorithms. Although Δ-Stepping executes
less work items, it takes longer time. On the other hand, DCaf ,fc algorithm
executes more work due to sub-optimal work generation but still runs faster.
This is due to the fact that, with proper flow control and adaptive frequency
heuristic, DCaf ,fc can schedule work items efficiently and interleave runtime
progress and work item execution in a proper manner.

554 J.S. Firoz et al.

Fig. 2. Performance and work profile of DCaf ,fc with varying send threshold and
sync threshold on 64 nodes with scale 25 Graph500 input. Within the range of val-
ues we experimented with, the optimal value of (#send threshold , #sync threshold) is
(10000, 2).

5.3 Performance of DCaf ,fc with various send threshold and
sync threshold value

Figure 2 illustrates how the performance of DCaf ,fc varies with different combi-
nations of values for (send threshold , sync threshold). The results are obtained
on 64 nodes and with scale 25 Graph500 input. As can be seen from the figure,
a send count value of 10000 and sync count value of 2 gives the best perfor-
mance for DCaf ,fc . In this case, for every 10000 sent messages, we have issued
2 calls with continuation which gives algorithm DCaf ,fc better opportunity to
progress asynchronously. During our experiments, a cursory search for good val-
ues for (send threshold , sync threshold) parameters resulted in the (200, 100)
pair. Thus, we have restricted our search space within the vicinity of 20000
messages and experimented with different combinations of (send threshold ,
sync threshold) for generating 20000 messages. As can be seen from the figure,
the execution time reaches a minimum with send threshold of 10000 and
sync threshold of 2 and then starts increasing with larger (send threshold ,
sync threshold) values. Although the total activity count keep increasing, a right
combination of (send threshold , sync threshold) value helps to overcome the
overhead of executing more work by scheduling work in a timely fashion and
gaining better performance in general.

6 Related Work

Nguyen and Pingali [19] have shown that performance of algorithms for vari-
ous irregular applications can improve significantly by selecting right schedul-
ing policies. They evaluated different synthesized schedulers for shared memory
systems.

Distributed runtimes sometimes allow programmers to specify priorities. For
example, Charm++ [12] has provision for controlling delivery of messages by

Improving Performance of Distributed Graph Traversals 555

allowing users to adjust delivery order of messages by setting the queuing strat-
egy (FIFO, LIFO) as well as two mechanisms for setting priorities (integer and
bitvector) [1]. Another recent runtime, Grappa [18], maintains 4 queues: ready
worker queue, deadline task queue, private task queue and public task queue
for tasks. The deadline task queue manages high priority system tasks. Grappa
scheduler allows threads to yield to tolerate communication latency and also has
provision for distributed work stealing. Although, in [18], it has been mentioned
that programmers can direct scheduling explicitly, its not clear how this can be
done from the application level. UPC [4] provides topology-aware hierarchical
work stealing [16] based scheduling mechanism.

7 Conclusion

Unordered distributed graph algorithms enable better utilization of resources
in HPC systems, but their performance is sensitive to the underlying runtime
system. In this paper we have shown on the example of DC SSSP how to improve
performance by modifying the algorithm with a plug-in scheduler that bridges
the application and the runtime system. The plug-in scheduler then provides an
algorithmic specific scheduling policy to the runtime scheduler, thus lifting some
functionality of the lower stacks into the algorithm level. A special provision
for this feature needs to be made in the runtime system. We have implemented
this in HPX-5, and have shown that performance of DC varies with different
heuristics. The plug-in scheduler is useful for improving performance.

References

1. Charm++ Documentation (2016). http://charm.cs.illinois.edu/manuals/html/
charm++/10.html

2. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math.
1(1), 269–271 (1959)

3. Dijkstra, E.W.: Self-stabilization in spite of distributed control. In: Dijkstra, E.W.
(ed.) Selected Writings on Computing: A Personal Perspective, pp. 41–46. Springer,
Heidelberg (1982)

4. El-Ghazawi, T., Carlson, W., Sterling, T., Yelick, K.: UPC: Distributed Shared-
Memory Programming. Wiley, Hoboken (2003)

5. Firoz, J.S., Barnas, M., Zalewski, M., Lumsdaine, A.: The value of variance. In:
7th ACM/SPEC International Conference on Performance Engineering (ICPE).
ACM (2016)

6. Firoz, J.S., Zalewski, M., Barnas, M., Kanewala, T.A., Lumsdaine, A.: Con-
text matters: distributed graph algorithms and runtime systems. In: Platform for
Advanced Scientific Computing (PASC) (2016)

7. Firoz, J.S., Kanewala, T.A., Zalewski, M., Barnas, M., Lumsdaine, A.: Impor-
tance of runtime considerations in performance engineering of large-scale distrib-
uted graph algorithms. In: Hunold, S., et al. (eds.) Euro-Par 2015. LNCS, vol.
9523, pp. 553–564. Springer, Cham (2015). doi:10.1007/978-3-319-27308-2 45

http://charm.cs.illinois.edu/manuals/html/charm++/10.html
http://charm.cs.illinois.edu/manuals/html/charm++/10.html
http://dx.doi.org/10.1007/978-3-319-27308-2_45

556 J.S. Firoz et al.

8. Gao, G., Sterling, T., Stevens, R., Hereld, M., Zhu, W.: ParalleX: a study of a new
parallel computation model. In: International Parallel and Distributed Processing
Symposium, pp. 1–6, March 2007

9. Graph500: Version 2 Specification (2016). https://github.com/graph500/graph500/
tree/v2-spec

10. HPX-5 Runtime (2016). http://hpx.crest.iu.edu/
11. Iosup, A., Hegeman, T., Ngai, W.L., Heldens, S., Pérez, A.P., Manhardt, T.,

Chafi, H., Capota, M., Sundaram, N., Anderson, M., et al.: LDBC Graphalytics: A
Benchmark for Large-scale Graph Analysis on Parallel and Distributed Platforms,
a Technical Report (2016)

12. Kale, L.V., Krishnan, S.: Charm++: a portable concurrent object oriented sys-
tem based on C++. In: Proceedings of the Eighth Annual Conference on Object-
Oriented Programming Systems, Languages, and Applications, OOPSLA 1993, pp.
91–108. ACM, New York (1993)

13. Kissel, E., Swany, M.: Photon: remote memory access middleware for high-
performance runtime systems. In: First Annual Workshop on Emerging Parallel
and Distributed Runtime Systems and Middleware, IPDRM 2016 (2016)

14. Kulkarni, M., Pingali, K.: Scheduling issues in optimistic parallelization. In: IEEE
International Parallel and Distributed Processing Symposium, IPDPS 2007, pp.
1–7. IEEE (2007)

15. Meyer, U., Sanders, P.: Δ-stepping: a parallelizable shortest path algorithm. J.
Algorithms 49(1), 114–152 (2003)

16. Min, S.J., Iancu, C., Yelick, K.: Hierarchical work stealing on manycore clusters.
In: Fifth Conference on PGAS Programming Models (2011)

17. Murphy, R.C., Wheeler, K.B., Barrett, B.W., Ang, J.A.: Introducing the graph
500 benchmark. Cray User’s Group (CUG) (2010)

18. Nelson, J., Holt, B., Myers, B., Briggs, P., Ceze, L., Kahan, S., Oskin, M.: Grappa:
a latency-tolerant runtime for large-scale irregular applications. Technical report,
Technical Report UW-CSE-14-02-01, University of Washington (2014)

19. Nguyen, D., Pingali, K.: Synthesizing concurrent schedulers for irregular algo-
rithms. In: Proceedings of the Sixteenth International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS XVI, pp.
333–344. ACM, New York (2011)

20. Pingali, K., Nguyen, D., Kulkarni, M., Burtscher, M., Hassaan, M.A., Kaleem, R.,
Lee, T.H., Lenharth, A., Manevich, R., Méndez-Lojo, M., et al.: The tao of paral-
lelism in algorithms. ACM SIGPLAN Not. 46(6), 12–25 (2011)

21. Zalewski, M., Kanewala, T.A., Firoz, J.S., Lumsdaine, A.: Distributed control:
priority scheduling for single source shortest paths without synchronization. In:
Proceedings of the Fourth Workshop on Irregular Applications: Architectures and
Algorithms, pp. 17–24. IEEE (2014)

https://github.com/graph500/graph500/tree/v2-spec
https://github.com/graph500/graph500/tree/v2-spec
http://hpx.crest.iu.edu/

Synthetic Graph Generation for Systematic
Exploration of Graph Structural Properties

Merijn Verstraaten(B), Ana Lucia Varbanescu, and Cees de Laat

University of Amsterdam, Amsterdam, The Netherlands
{m.e.verstraaten,a.l.varbanescu,delaat}@uva.nl

Abstract. High performance graph processing poses significant chal-
lenges for both algorithm and platform designers due to the large per-
formance variability it exhibits: performance depends on the algorithm,
the dataset, and the (hardware/software) platform. Traditionally, per-
formance variability is tackled by extensive benchmarking, modeling,
and, eventually, better or smarter algorithms. Our own research into the
impact of datasets on the performance of graph algorithms has convinced
us that such extensive benchmarking is very difficult for graph processing
simply because we lack input data: the public datasets and graph gener-
ation tools currently available are insufficient for a systematic investiga-
tion of the impact of different graph properties. In this work we propose
to alleviate this problem by using evolutionary computing as a method
to generate graphs. Our goal is allow users to request graphs with a given
set of properties (e.g., number of vertices, number of edges, degree dis-
tribution), and enable the generator to evolve graphs until they satisfy
the request. Such a fine-grain, flexible exploration of graphs and their
properties will finally enable a statistical take on performance analysis
and modeling for graph processing. To this end, our work-in-progress
paper presents the design of our generator, discusses the challenges and
trade-offs to be encountered, and reveals our preliminary results.

1 Introduction

Graph processing is an important part of data science, due to the flexibility of
graphs as a model for highly interrelated data. Combined with the increasing
size of datasets, this results in a lot of research being invested in parallel and
distributed solutions for graph processing [1,7,8,12–14,16,21,23].

Most such graph processing frameworks simplify working with graphs by hid-
ing the underlying complexity: they maintain a separation between a front-end
that lets users specify their algorithm using high-level primitives or domain spe-
cific languages, and a back-end that provides high-performance implementations
of these primitives for the given software or hardware platform.

In practice, there are often many different ways to implement the same prim-
itive. Different implementations perform best on different hardware: a model
that performs well on a CPU might perform horribly on Xeon Phi, GPU, or
other accelerators. And to make matters worse, performance is also impacted
c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 557–570, 2017.
DOI: 10.1007/978-3-319-58943-5 45

558 M. Verstraaten et al.

by the structural properties of the graph being processed. While many stud-
ies have already empirically proven this variability for various combinations of
algorithms, datasets, and hardware platforms, little progress has been made to
quantify or model these sources of performance variation [27,28].

During our efforts to quantify this impact, we ran into an important prob-
lem: to conduct any sort of systematic benchmarking to quantify the impact of
different structural graph properties, we need control over the input datasets.
Specifically, we need datasets with graphs that are similar in all but one prop-
erty: the property whose impact we try to isolate. No repository of such datasets
exists. Instead, most research on graph processing uses (1) input data from sev-
eral publicly available real world data sets, such as SNAP [18], or (2) syntheti-
cally generated graphs using well-known generators/models, such as R-MAT [6],
Kronecker graphs [19], and scale-free graphs [15]. These models produce graphs
that mimic “real world” networks (such as social networks or various bioinfor-
matics models), and are not flexible enough to generate the fine-grained graph
variations we are looking for.

Instead, we propose a generator that allows on-demand graph generation
with user-specified parameters—e.g., number of vertices, edges, connected com-
ponents, and/or degree distribution. Using evolutionary computing, a population
of graphs is being evolved in the search of the particular graph configuration the
user is looking for. The main challenges for this approach are (discussed fur-
ther in Sect. 2) (1) selecting a good representation of the graph, which will in
turn impact both the design and the output of the evolutionary algorithm, (2)
quick convergence, which essentially translates to fast do can the requested graph
be found, and (3) scalability, which basically determines whether this method
can actually generate large enough graphs without running out of resources
(including the user’s patience). While genetic algorithms have been used in the
past [2] to attempt graph generation, they seem to have failed in at least one of
these aspects, as seen in Sect. 3, and thus are not used to generate graphs that
are relevant, size-wise, for existing graph processing benchmarking [4]. This is
why, we argue, these benchmarks use existing datasets from various sources, like
SNAP [18], KONECT [17], or in-house generators [10].

Thus, in this work, we provide a specific method for using evolutionary
algorithms for fine-grain, controlled graph generation. Moreover, our generator
enables users to specify not only the size of the network, but also its degree dis-
tribution. In this paper, we present the design of our method, we describe our
first prototype, and discuss initial results. Our results (see Sect. 4) show that we
can, indeed, generate graphs with controlled degree distributions.

2 Design and Implementation

Our end goal is to generate graphs that allow us to explore the impact of different
graph properties in a systematic manner. This section introduces the require-
ments and our proposed design to reach this goal.

Synthetic Graph Generation for Systematic Exploration 559

2.1 Requirements

Essentially, our generator has to be a “tool” capable of generating graphs that
match a set of structural properties of interest. Specifically, this requires the
following:

• Fine granularity: vary as little as a single property at a time.
• Possibility to expand: add new structural properties.
• Scalability: generate small and large graphs within a reasonable time budget.

In essence, this graph generation problem translates the search problem of
finding a graph or set of graphs conforming to a set of potentially interdependent
properties in the search space potential graphs. Therefore, our design is based
on an efficient search method in large spaces: evolutionary computing.

2.2 Evolutionary Computing for Graph Generation

Evolutionary computing is the collective name given to a range of techniques
based on principles of natural evolution, such as natural selection and inheri-
tance. A key features of evolutionary computing techniques is their ability to
produce good results when dealing with large search spaces large numbers of
interdependent parameters; these properties makes evolutionary computing an
appealing starting point for our problem.

The basic principle behind most evolutionary computing algorithms is simple:

1. Generate an initial population of candidate solutions.
2. Select a number of solutions for reproduction based on their quality.
3. Perform crossover1 between selected solutions.
4. With a small probability, randomly change the result.
5. Select survivors for the next generation based on quality.

There are endless variations on how to select parents, the probability of ran-
dom mutations, how to select survivors, and how many new solutions should be
generated in every generation. There are several standard choices that appear to
work well for most algorithms, avoiding the need to perform substantial bench-
marking to determine the right choices.

However, some of the remaining choices are problem specific and have a large
impact on the performance. Since evolutionary algorithms are stochastic, an
important point of concern is the time it takes to converge to a set of acceptable
graphs. As we want both fine tuning and large scale graphs, we are faced with a
large search space and, potentially, a long running algorithm. For example, the
larger graphs in SNAP are above 4 million vertices (e.g., soc-Livejournal). This
result in an absurdly large search space.

The key to getting obtaining acceptable convergence speeds is to ensure that
the primitives used for generating new candidates cover enough of the search
1 With crossover parts of the “genetic code” of different solutions are mixed/

recombined to form new solutions.

560 M. Verstraaten et al.

space quickly. As such, the crossover operation is very important. The key idea
behind crossover is that it combines successful or interesting parts of two solu-
tions, resulting in an even better solution.

Another important choice is the rate of mutation: too low and the algorithm
takes too long to explore promising related solutions; too high and the algorithm
may never converge on any optimal points, continuously hopping over them.

2.3 Solution Representation

For the specific problem of graph generation, an essential choice to be made is
that of the solution representation. What a candidate solution looks like strongly
impacts the crossover and mutation primitives we can efficiently implement.
Several sensible choices exist:

• Individual graphs represented as a connectivity matrix
• Individual graphs represented as an edge list
• Generating functions, i.e. a function that generates one specific graph
• Graph generators, i.e. a generator that generates graphs according to some

patterns

Connectivity Matrices. The most straightforward method of implementing
mutation in a connectivity matrix-based representation consists of randomly
inserting edges and deleting edges. This is done by flipping an index in the
matrix from 0 to 1 and vice versa. Now mutation is a matter of, randomly
selecting indices to flip.

For crossover there are three simple methods:

Edge-wise, for every index in the connectivity matrix, randomly select a parent
and keeps its value.

Vertex-wise, for every vertex in the graph, randomly select a parent and keep
it’s edge related to that vertex.

Single-point, select a random point and for every edge before that point keep
the edges of the first graph, for the remaining edges, keep those of the second
graph.

Edge-wise crossover results in a very thorough mixing of two candidate solu-
tions, keeping roughly 50% of the edges from the first and 50% of the second
parent. Additionally, it is easy to implement. However, indiscriminately picking
edges from either parent will almost certainly destroy any interesting subsections
of the graph, the exact thing that crossover is supposed to maintain.

Vertex-wise crossover will preserve significantly more structure from the indi-
vidual parents, since all vertices from one parent will keep parts of their envi-
ronment from that parent.

Single-point crossover is even more conservative, since it always preserves
sequential sets of vertices. However, since vertices are not necessarily sequentially
connected it is unclear if this preserves significantly more structure than vertex-
wise crossover. It is also unclear whether this actually produces a net-benefit for
convergence.

Synthetic Graph Generation for Systematic Exploration 561

Edge Lists. The crossover primitives described for connectivity matrices apply
equally well to the edge list representation. Mutations that insert or delete are
also simple to implement. The biggest difference with connectivity matrices is
that certain restrictions are easier to impose on the generation process.

For example, with edge list it is simpler to generate graphs with a fixed
number of edges. Instead of inserting and deleting edges, they are only mutated
by moving, changing the origin and/or destination of edges to move them.

On the other hand, edge list representations make it more complex to guaran-
tee that the number of vertices in a graph stays constant across crossover and/or
mutation. A property that is simple to maintain when performing crossover
and/or mutation on connectivity matrices. As such the two representations are
complementary depending on the kind of graphs we wish to generate.

Generating Functions. One of the biggest problems with the straightforward
solutions proposed above (i.e., directly evolving graphs) is that the entirely ran-
dom permutation can take a long time to converge on more complicated struc-
tures that might be needed to achieve the desired properties. Think of properties
such as clustering coefficient.

By evolving a generating function, rather than a graph, such structures are
easier to generate, resulting in a faster convergence to desired result graphs.
Something similar has been tried in HyperNEAT [11,24], where the authors
wanted to scale up the work done on generating neural networks using NEAT [25,
26] (see Sect. 3 for more details) to neural networks of millions of nodes. In
HyperNEAT they evolve Compositional Pattern Producing Networks (CPPN);
these are, essentially, generating functions for neural networks.

CPPNs were designed to be effective at generating complex structures, such
as symmetries, repetition, and repetition with variation. The work on Hyper-
NEAT shows that CPPNs can produce complex neural networks. We expect
that they will be similarly effective for producing complex graphs. The only
open question is whether CPPNs limit the structure of the generated graph in
a way that makes it impossible to generate graphs with the desired properties.
Our initial expectation is that this should not be a problem.

Generating Generators. A final approach is to generate generators. In this
case, instead of evolving a generating function that only produces a single graph,
we evolve a generator for a set of graphs.

This approach has been tried before by Bach et al. [2] and Bailey et al. [3].
The main advantage of this approach is that instead of a single graph, the result
is a generator for a set of graphs making it easier to produce many similar graphs.
However, this comes with the same caveat as the previous section, it is unclear
whether the evolved generators can actually produce graphs with the desired
properties. It seems unlikely that the type of generators proposed in [2] are
sufficiently flexible. Additionally, some initial tests showed that implementation
used by Bach et al. has scalability problems, even for very small graphs (∼1,000
vertices). Similarly, in [3] there is no discussion about which types of graphs are

562 M. Verstraaten et al.

ruled out by the design of their generator. Additionally, the authors do not seem
to have tried to scale the approach beyond a few 100 vertices (Table 1).

Table 1. Comparison of different generation methods.

Fine-grain control Convergence

Connectivity matrix Very good Slow

Edge list Very good Slow

Generating function Sufficient Fast

Generator Questionable Fast

2.4 Implementation

We started with a prototype implementation that evolves connectivity matrices
directly to test the feasibility of this approach to generating graphs. The reason
for using connectivity matrices over edge lists is two fold: (1) it was simpler to
implement with our existing file format, (2) we were more interested in generat-
ing graphs with a fixed number of vertices. For our experiments we focused on
generating weakly-connected graphs with specific degree distributions.

The first step with any evolutionary algorithm is to define the fitness function.
This function maps the candidate solution to a quality metric that indicates the
solution’s quality.

Matching the distribution of degrees in a graph to a specific distribution is
straightforward. The Kolmogorov-Smirnov (KS) test for goodness of fit [22] com-
pares an Empirical Distribution Function (EDF) with a Cumulative Distribution
Function (CDF) and gives us the absolute difference between the two. We start
with the null-hypothesis that the EDF and CDF come from the same distrib-
ution. For tests with N samples2 we can use the critical values 1.07√

N
(p = 0.2),

1.14√
N

(p = 0.15), and 1.22√
N

(p = 0.1) to verify whether this null-hypothesis should
be rejected.

Similarly, we need a metric to judge the weak-connectivity of our graph.
We chose to use the percentage of the graph’s vertices that were in the same
weakly-connected component3 as our measure, as this was easiest to compute
efficiently.

This gives us two independent fitness measures in a range from 0 to 1. For
our evolutionary algorithm we need a single fitness metric that can be easily
compared. Usual ways to combine multiple fitness criteria are weighted sum
of criteria or using a Pareto ranking. For our initial experiments we simply
multiplied both values together. Experiments showed that weak-connectivity of
the graphs converged to 1 in a few generations. As a result, multiplying the

2 With N larger than 35.
3 Specifically, the weakly-connected component containing vertex 0.

Synthetic Graph Generation for Systematic Exploration 563

fitness reduces directly to the result of our Kolmogorov-Smirnov goodness of fit
result.

Our algorithm design4 consisted of:

Population size. 100 candidate solutions.
Parent selection. Weighted random selection.
Number of children. 100 new children every generation.
Crossover. Edge-wise, vertex-wise, single-point.
Mutation rate. 1

0.1N2 , where N is the number of vertices.
Survivors. Keep best 20% plus weighted random selection.

Our initial populations consists of 100 randomly generated graphs. These
graphs we created by computing the approximate number of edges expected
for a given number of nodes and a distribution, and then uniform randomly
initialising that many edges in our connectivity matrix to 1.

To generate 100 new children we used weighted random selection to pick 100
pairs of graphs from the current population. We generate a new graph by cross-
ing over the two parents and uniform randomly mutating edges in the resulting
graph. After the children have been generated the child and parent populations
are combined. The top 20% of this population is automatically kept, for the
remainder we used weighted random selection to determine survivors. After sur-
vivors have been selected all other graphs are removed.

The population size, parent selection, and number of children are all fairly
standard values from the evolutionary computing literature. These values seem
to work for nearly any problem and adjusting them is unlikely to improve the
convergence speed.

The choices for crossover, mutation, and survivor selection are are interesting
to adjust. Mutations are responsible for both exploring the neighbourhood of
existing candidate solutions (by slightly permuting them), and jumping to new
areas in the search space by introducing new edges into the gene pool. High
mutation rates make it easier to discover new regions of the search space, at
the risk of continuously skipping over good solutions. Low mutation rates make
exploration around existing solutions easier, but can slow the rate with which
new regions are explored.

Crossover combines (successful) sections of different graphs together, explor-
ing the search space between those two graphs. The idea is that by captur-
ing child solutions that contain valuable parts of both parents will produce an
even better fitness. However, this requires crossover to preserve “valuable” sub-
structures. Experimenting with different crossover strategies can thus make this
operation more effective.

In Sect. 4 we will compare our initial feasibility experiments with the results
from related work described in the next section.

4 The actual implementation can be found at https://github.com/merijn/
GPU-benchmarks.

https://github.com/merijn/GPU-benchmarks
https://github.com/merijn/GPU-benchmarks

564 M. Verstraaten et al.

3 Related Work

There are two complementary reasons for research into graph generators and
graph models: (1) real data might be unavailable, because it is proprietary or
can’t be obtained [20], (2) we want to better understand what the essential
features of a given type of graph are [5].

Because of the above reasons the focus is on studying and mimicking specific
types of real world graphs. The result is that these models are tailored to gener-
ating only these types of graphs. This means they are limited in flexibility and
the number of parameters that can be tuned. As such they are less suited to our
goal of more systematically exploring the different kinds of possible graphs and
their impact.

One of the first and most well-known models of graph generation is the Erdös-
Rényi model [9]. This model, however did not quite capture the properties of
many real world graphs. For example, it does not follow the power law degree
distribution found in many real world graphs. The Erdös-Rényi model was later
subsumed as a special case of the R-MAT model [6], which can model both power
law degree distributions as wel as deviations from it.

Kronecker graphs [19] uses the Kronecker product of a matrix to generate
graphs. The authors presented a tool for fitting the graphs generated using this
method to the parameters of existing graphs, showing that this makes it pos-
sible to approximate real graphs, and use these fitted parameters to study the
properties of graphs.

The neural networks community in AI has done research into generating
graphs for their neural networks. One of the more promising approach is Neu-
roEvolution of Augmenting Topologies (NEAT) [25,26]. NEAT uses evolutionary
computing starting out with a minimal neural network and incrementally adding
vertices and edges to this network. This works well, but has significant scaling
issues.

Due to the constructive graph generation approach of adding individual ver-
tices and edges it is very time consuming and memory intensive to produce large
neural networks. Additionally, the larger the neural network becomes, the harder
it is to produce the complex patterns required to solve their AI problems.

Since the principle of NEAT works well for small neural networks there was
follow up research trying to scale NEAT to neural networks of millions of vertices.
This resulted in HyperNEAT [11,24].

Instead of evolving a neural network directly HyperNEAT evolves a gener-
ating function for the eventual neural network. As described in Sect. 2 these
generating functions are designed to more easily produce complex and recurring
patterns such as symmetry, anti-symmetry, repetition, repetition with variation,
etc. In practice this succeeds in producing neural networks that are orders of
magnitude larger than those generated with NEAT. The two main concerns
with the HyperNEAT approach is whether the generating functions invented
can cover a sufficiently exhaustive subset of possible graphs.

Additionally, one of the steps in HyperNEAT consists of mapping a hyper-
cube pattern (produced by the generating function) to a lower-dimensional space

Synthetic Graph Generation for Systematic Exploration 565

to obtain the actual graph. Depending on mapping method chosen this may
result in super-linear complexity, while for scalability reasons it is desirable for
the complexity to stay linear in the number of vertices and/or edges.

The work of [2,3] was already mentioned in Sect. 2. Both attempt to evolve
generators/models for the generation of graphs. The generators consists of
sequences of operations that insert/construct certain motifs or permute the exist-
ing graphs.

The nice property of these approaches is that once a graph generator has
been evolved it can used to produce an entire set of comparable graphs. The
results in both papers show that they can successfully produce very different
kinds of graphs. Evolving a generators is also desirable because they can more
easily produce more complex patterns and structures, which should lead to faster
convergence.

However, there are some downsides to the methods used in both papers.
Using an iterative, constructive approach to generation means that generating
larger graphs is slow and very memory intensive. In [3] the largest graphs gen-
erated are about 1,000 vertices, the generator from [2] already struggles with
graphs that size. Given that we are interested in generating graphs that are
several orders of magnitude larger this scalability is a serious problem. Addi-
tionally, it is unclear whether the motifs and generators proposed in both
papers are sufficiently expressive to cover an exhaustive portion of the search
space.

4 Initial Results and Analysis

Our initial implementation, as described in Sect. 2, is based on the idea of evolv-
ing graphs directly using their representation as a connectivity matrix. The main
reason for this design was based on the simplicity of its implementation.

There are three main problems when using evolutionary computing to gen-
erate graphs:

Exhaustiveness, if a graph meeting our criteria exists, will we find it?
Convergence, how many generations does it take to find a solution?
Scalability, can we generate sufficiently large graphs?

For evolutionary algorithms that evolve graphs directly, exhaustiveness
is not a problem. The evolutionary approach is just a probabilistic exhaustive
search of the entire search space. Our initial tests generating some small graphs
with different degree distributions show that our implementation is able to
successfully produce different distributions (e.g. uniform, exponential, normal).
Figures 1, 2, and 3 show plots of the EDF for different example graphs generated
using this method. We don’t see any theoretical reasons this would not generalise
to any other distribution.

The next concern is convergence, how many generations does it take to find
the solutions of interest? With tests on small graphs of 100 vertices we saw the
solutions converge to good quality results in about 200 generations. Moving on

566 M. Verstraaten et al.

Fig. 1. Empirical degree distribution of graph generated with uniform degree distrib-
ution (0–100).

Fig. 2. Empirical degree distribution of graph generated with exponential degree dis-
tribution (λ = 0.1).

Fig. 3. Empirical degree distribution of graph generated with normal degree distribu-
tion (μ = 50, σ = 10).

Synthetic Graph Generation for Systematic Exploration 567

to bigger graphs, such as 1,000 or more vertices we see very rapid improvement
in the first few tens of generations, but with improvement gradually slows down
afterwards.

From experimenting with different combinations of crossover and mutation
rates, it is clear that these primitives have an important role. Our initial experi-
ments used edge-wise crossover, which took too long to converge, even on small
graphs. With vertex-wise crossover, the number of generations required to con-
verge to a good solution was reduced by 1 to 2 orders of magnitude.

We expect that the convergence plateau hit while generating larger graphs
is caused by our crossover method being too simplistic. That is, it does not
preserve the structure enough. By randomly keeping vertices from either parent
any inherited improvements might be offset by inherited regression, resulting
in most children not being a significant improvement over either parents and
plateauing before reaching a good solution. Similarly, there are concerns with
the simplistic uniform random mutation we are currently using. A completely
uniform random mutation rate results in mutations always pressing candidates
in the direction of a connectivity matrix that is 50% edges. If the percentage
of edges is lower than 50% our randomly selected mutations are more likely
to insert edges than delete them. And vice versa if the graph has more than
50% edges. At the time of the submission, we experiment with more complex
techniques, but we have not yet found the best one5.

Our final concern is scalability. The rate with which we explore the search
space is linearly related to the number of generations, therefore we expect that
larger graphs (i.e., larger search spaces) require more generations to produce.
Besides fast convergence (i.e., keeping the number of generation as small as
possible), there is also the concern of how scalable our primitives are (i.e., how
long does one generation take). If evaluating the fitness function, performing
crossover, or applying mutations are expensive, each generation will become
prohibitively expensive to compute.

Our initial prototype aims to generate graphs as large as the largest graphs
in SNAP. We don’t think generating much bigger graphs is likely to contribute
meaningfully to our investigation into the impact of graph structure on perfor-
mance, but that remains an open question for future research. Anyway, such
graphs have a couple of million vertices and tens of million edges (e.g., soc-
LiveJournal has 4M vertices and 68M edges). In an initial test on a graph
of 10 thousand vertices and 50 million edges, the entire process of crossover,
mutation, and fitness computation takes approximately 20 s (per generation).
Based on this number, we foresee no scalability problems: the implementation
is linear in the number of edges and the generation of new children is trivially
parallelisable.

5 More results to be presented in the final paper. Current code and results are available
at https://github.com/merijn/GPU-benchmarks.

https://github.com/merijn/GPU-benchmarks

568 M. Verstraaten et al.

5 Summary and Next Steps

Our original goal was to build a tool, in the form of a synthetic graph generator,
that uses evolutionary computing to allow a thorough, fine-grain, on-demand
exploration of graphs and their properties. How far are we?

Our initial tests indicate that evolutionary computing is suitable for this task:
we are able to generate graphs of thousands of vertices within minutes. There are
no fundamental challenges for the exhaustiveness, convergence, and scalability
of the approach. However, our current prototype is rudimentary. Although our
primitives can handle graphs of the sizes we target without a problem, tackling
the convergence problem for such large graphs is not yet feasible in a reasonable
amount of time. The immediate action needed to speed up this convergence is
to experiment with new primitives for crossover and mutation, to ensuring that
the improvements in population quality do not plateau.

It is of course possible that more complex primitives for crossover and muta-
tion are too expensive to compute on larger graphs, with a net result of no
improvement in the time it takes to generate graphs. If we will reach this dead-
end, we will proceed to plan B: use evolution to generate functions, which in
turn will generate graphs. A crossover process similar to that found in Hyper-
NEAT would be more successful in preserving complex structure and thus result
in faster convergence. However, we would still have to explore whether the gen-
erating functions produced this way can cover the search space exhaustively
enough for our purposes.

To summarize, we believe our results indicate that fine-grain graph generation
can be achieved using evolutionary computing. In fact, the graphs we generated
are empirical evidence that evolutionary computing is a more flexible approach
than the existing graph generators and models. The biggest challenge we are
facing now is the trade-off between scalability and dataset scale: convergence
speeds slow down as we scale up the size of graphs we wish to generate. Our
current experiments with different crossover and mutation methods indicate that
convergence can be improved significantly, but we cannot yet claim to have found
the right balance.

References

1. Avery, C.: Giraph: large-scale graph processing infrastructure on hadoop. In: Pro-
ceedings of the Hadoop Summit, Santa Clara (2011)

2. Bach, B., Spritzer, A., Lutton, E., Fekete, J.-D.: Interactive random graph gen-
eration with evolutionary algorithms. In: Didimo, W., Patrignani, M. (eds.) GD
2012. LNCS, vol. 7704, pp. 541–552. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-36763-2 48

3. Bailey, A., Ventresca, M., Ombuki-Berman, B.: Automatic generation of graph
models for complex networks by genetic programming. In: Proceedings of the 14th
Annual Conference on Genetic and Evolutionary Computation, pp. 711–718. ACM
(2012)

http://dx.doi.org/10.1007/978-3-642-36763-2_48
http://dx.doi.org/10.1007/978-3-642-36763-2_48

Synthetic Graph Generation for Systematic Exploration 569

4. Capotă, M., Hegeman, T., Iosup, A., Prat-Pérez, A., Erling, O., Boncz, P.: Graph-
alytics: a big data benchmark for graph-processing platforms. In: Proceedings of
the GRADES 2015, pp. 7:1–7:6. ACM (2015)

5. Chakrabarti, D., Faloutsos, C.: Graph mining: laws, generators, and algorithms.
ACM Comput. Surv. (CSUR) 38(1), 2 (2006)

6. Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-MAT: a recursive model for graph
mining. In: SDM, vol. 4, pp. 442–446. SIAM (2004)

7. T. G. S. Committee: The graph 500 list, 2010–2016
8. Elser, B., Montresor, A.: An evaluation study of bigdata frameworks for graph

processing. In: Big Data (2013)
9. Erdös, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung.

Acad. Sci 5, 17–61 (1960)
10. Erling, O., Averbuch, A., Larriba-Pey, J., Chafi, H., Gubichev, A., Prat, A.,

Pham, M.-D., Boncz, P.: The LDBC social network benchmark: interactive work-
load. In: Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data, SIGMOD 2015, pp. 619–630. ACM, New York (2015)

11. Gauci, J., Stanley, K.O.: Autonomous evolution of topographic regularities in arti-
ficial neural networks. Neural Comput. 22(7), 1860–1898 (2010)

12. Guo, Y., Biczak, M., Varbanescu, A.L., Iosup, A., Martella, C., Willke, T.L.: How
well do graph-processing platforms perform? An empirical performance evaluation
and analysis. In: IPDPS (2014)

13. Guo, Y., Varbanescu, A.L., Iosup, A., Epema, D.: An empirical performance eval-
uation of GPU-enabled graph-processing systems. In: CCGrid 2015 (2015)

14. Han, M., Daudjee, K., Ammar, K., Ozsu, M.T., Wang, X., Jin, T.: An experimental
comparison of pregel-like graph processing systems. VLDB 7, 1047–1058 (2014)

15. Holme, P., Kim, B.J.: Growing scale-free networks with tunable clustering. Phys.
Rev. E 65(2), 026107 (2002)

16. Hong, S., Depner, S., Manhardt, T., Van Der Lugt, J., Verstraaten, M., Chafi, H.:
PGX.D: a fast distributed graph processing engine. In: Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis, p. 58. ACM (2015)

17. Kunegis, J.: KONECT: the Koblenz network collection. In: Proceedings of the
22nd International Conference on World Wide Web, WWW 2013 Companion, pp.
1343–1350 (2013)

18. Leskovec, J.: Stanford Network Analysis Platform (SNAP). Stanford University,
Stanford (2006)

19. Leskovec, J., Chakrabarti, D., Kleinberg, J., Faloutsos, C., Ghahramani, Z.: Kro-
necker graphs: an approach to modeling networks. J. Mach. Learn. Res. 11, 985–
1042 (2010)

20. Lothian, J., Powers, S., Sullivan, B.D., Baker, M., Schrock, J., Poole, S.W.: Syn-
thetic graph generation for data-intensive HPC benchmarking: background and
framework (2013)

21. Lu, Y., Cheng, J., Yan, D., Wu, H.: Large-scale distributed graph computing sys-
tems: an experimental evaluation. VLDB 8, 281–292 (2014)

22. Massey Jr., F.J.: The Kolmogorov-Smirnov test for goodness of fit. J. Am. Stat.
Assoc. 46(253), 68–78 (1951)

23. Satish, N., Sundaram, N., Patwary, M.A., Seo, J., Park, J., Hassaan, M.A.,
Sengupta, S., Yin, Z., Dubey, P.: Navigating the maze of graph analytics frame-
works using massive graph datasets. In: SIGMOD (2014)

24. Stanley, K.O., D’Ambrosio, D.B., Gauci, J.: A hypercube-based encoding for evolv-
ing large-scale neural networks. Artif. Life 15(2), 185–212 (2009)

570 M. Verstraaten et al.

25. Stanley, K.O., Miikkulainen, R.: Efficient reinforcement learning through evolving
neural network topologies. Netw. (Phenotype) 1(2), 3 (1996)

26. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting
topologies. Evol. Comput. 10(2), 99–127 (2002)

27. Varbanescu, A.L., Verstraaten, M., Penders, A., Sips, H., de Laat, C.: Can porta-
bility improve performance? An empirical study of parallel graph analytics. In:
ICPE 2015 (2015)

28. Verstraaten, M., Varbanescu, A.L., de Laat, C.: Quantifying the performance
impact of graph structure on neighbour iteration strategies for pagerank. In:
Hunold, S., et al. (eds.) Euro-Par 2015. LNCS, vol. 9523, pp. 528–540. Springer,
Cham (2015). doi:10.1007/978-3-319-27308-2 43

http://dx.doi.org/10.1007/978-3-319-27308-2_43

Towards the Next Generation of Large-Scale
Network Archives

Stijn Heldens1(B), Ana Varbanescu2, Wing Lung Ngai1, Tim Hegeman1,
and Alexandru Iosup1

1 Delft University of Technology, Delft, The Netherlands
s.j.heldens@tudelft.nl

2 University of Amsterdam, Amsterdam, The Netherlands

Abstract. Both data and computer scientists need graph (network)
datasets in the design, comparison, and tuning of important scientific
results and practical artifacts. Despite the abundance of data in prac-
tice, freely available datasets are usually difficult to access, limited in
size and diversity, and are collected in small static archives.

This work presents our vision towards a next generation of graph
data archives. Therefore, we formulate six key requirements to guide the
design of such archives. We further propose GraphPedia, a prototype
architecture that addresses these requirements, and provides a large col-
lection of different graphs, in many different storage formats, rich meta-
data, advanced searching, and on-demand graph generation. Once the
open implementation challenges are resolved, GraphPedia will become a
dynamic meeting space for exchanging graphs.

1 Introduction

Data and computer scientists are increasingly using graphs (or networks1)
datasets [9,14,18] in their work. Relevant graph datasets are useful in devel-
oping, comparing, and deploying both algorithms [1,16,21], whose results lead
to data-driven decisions, and systems [8,10,19,23,25], that can execute these
graph processing algorithms.

Despite the existence of large amount of data in practice, researchers have
limited access to highly diverse and large-scale graphs. In fact, many research
contributions in data and computer science are validated on just a handful of
graphs [17,18,22] from a limited set of repositories or, in worse cases, on non-
public datasets. This limits the credibility and reproducibility of results, and
thus the quality of the scientific and practical processes.

There are many reasons for this sparsity of publicly available graph datasets.
Some are technical, as researchers might lack the expertise or budget to set up an
infrastructure to allow others to access their datasets. Some are organizational,
as researchers from one field of study might not come into contact with other
domains. Some are just inconveniences, like the lack of a universal storage format

1 Throughout this paper, the terms graph and network have the same meaning and
are used interchangeably.

c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 571–579, 2017.
DOI: 10.1007/978-3-319-58943-5 46

572 S. Heldens et al.

for graphs which results in different incompatible formats [2,12,15] being used
by different researchers.

A small number of archives do offer graph datasets: SNAP [15], KONECT [13],
and UFSMC [5]. However, they represent an outdated generation of network
archives, lackingthe large-scaleanddiversityofneededtoaddressthequicklychang-
ing needs of today’s graph producers and consumers.

We believe that this problem is hindering research in graph processing and
propose to build the next generation of graph archives. By drawing inspiration
from the few existing archives, in this article we propose a new type of graph
archive. Our contribution is threefold:

1. We identify a set of six requirements for next-generation network archives
(Sect. 3). The requirements focus on a new type of archive: dynamic, with
enhanced search and content generation, provenance and impact analysis,
and support for user-content.

2. We introduce an archive following this new approach, GraphPedia (Sect. 4). We
discuss the key features of our design, and how they match the requirements.

3. We discuss the main research challenges that lay ahead before GraphPedia
can be fully implemented in practice (Sect. 5). We discuss in particular here
issues of efficiency and convenience (e.g., data formats), community building,
and supporting emerging trends in graph processing.

2 State-of-the-Art in Network Datasets

In practice, there are two ways in which researchers obtain graph datasets: down-
load them from public graph repositories or create them using synthetic graph
generators. We discuss both options in this section.

2.1 Real-World Network Repositories

We survey five major repositories for real-world graphs which are publicly acces-
sible (Table 1), sorted chronologically by the year of their establishment. All
these network archives share (at least) four significant drawbacks that charac-
terize the state-of-the-art. First, the archives are small (less than 300 datasets,
except UFSMC), static, and manually managed. They do not encourage their
users to add new datasets to expand the collection. WEBSCOPE even requires
an account which needs to manually approved before given access to the datasets.
Second, the archives only provides datasets in specific storage formats. SNAP
and KONECT offer only the edge list format, GTA stores dataset in their cus-
tom GTF format, while UFSMC offers three matrix formats. Third, the archives
do not perform impact analysis that indicates how the datasets are used in
research, with the exception of WEBSCOPE which requests explicitly attribu-
tion for usage. Fourth, it is difficult to select specific datasets by filtering and
searching. While UFMSMC does offer a stand-alone Java program to browse
through the datasets, the datasets are not categorized but rather loosely sorted
by source.

Towards the Next Generation of Large-Scale Network Archives 573

Table 1. Five major repositories for real-world graphs datasets.

Maintainer Established #Datasets #Formats Domains Statistics

SNAP [15] Stanford Univ 2005 Small (∼ 100) 1 Various (16) Basic

UFSMC [5] Univ. of Florida 2011 Medium (2757) 3 Various Comprehensive

GTA [9] TU Delft 2012 Tiny (15) 1 Gaming Description only

KONECT [13] Univ. of Koblenz 2014 Small (253) 1 Various (23) Comprehensive

WEBSCOPE [26] Yahoo Labs 2016 Tiny (8) 1 Web None

It is our goal to propose next generation archives that alleviate all these
problems by design.

2.2 Synthetic Network Generators

Synthetic network generators are designed to enable graph generation based on
users’ input. Many graph generators emerged in the past [3], with the explicit
goal of testing the correctness and scalability of graph processing algorithms.

For example, random graphs are generated by picking pairs of vertices under
some random probability distribution and then connecting them by edges. Using
a uniform probability leads to the well-known Erdős-Rényi model [6].

Because random graphs do not reflect the characteristics of real-world net-
works, more realistic generators have been proposed. For example, LDBC
DATAGEN [7] generates large-scale social networks, R-MAT [20] generates scale-
free networks, and the Internet Graph Generator [24] produces “World Wide
Web”-like graphs.

Although most generators are publicly available, they are usually signifi-
cantly limited in efficiency and usability: processing time is often prohibitive and
deployement is non-trivial. Furthermore, the generated graphs or used parame-
ters (e.g., seed) are rarely archived, making experiments difficult to reproduce
and expand. These limitations forced existing archives to ignore synthetic graphs.
Our goal is to alleviate these issues and incorporate synthetic graphs into next
generation archives.

3 Requirements for Next-Generation Network Archives

Based on the observations listed in Sect. 2, we define a number of essential
requirements for a next generation network archive.

(R1) Variety. Graphs from different domains have different properties and char-
acteristics, which impacts the performance of graph algorithm and systems.
It is important that the archive includes many types of graphs and reflects
the variety of datasets in the real-world.

(R2) Encourage Sharing. An archive should not just be a static collection
of datasets, it should be a meeting space for researchers to exchange
both knowledge and data. The archive must provide the means for this
collaboration.

574 S. Heldens et al.

(R3) Different storage formats. A universal storage format for graphs does
not exist and many different formats are used in practice. Converting
between formats is not always trivial, and this inconvenience can limit
users’ choices. An archive should offer as many popular graph formats as
possible.

(R4) Usability. The archive should not be an enumeration of available datasets
without any context. Instead, we envision an interactive system that allows
users to browse and search the large collection of available datasets.

(R5) Synthetic datasets. The archive should provide access to synthetic
datasets, even created based on users’ demands. Although many generators
are publicly available, deploying and using them correctly and efficiently is
not always trivial.

(R6) Provenance and impact. An archive should mention where the datasets
originate from (provenance) and how they are used in research (impact).
This allows users to assess the value of a dataset, and enables the commu-
nity to report relevant results.

4 Design of GraphPedia

In this section, we present the design of GraphPedia as the first representative
of the new generation of graph archives. We explain how GraphPedia addresses
the requirements listed in Sect. 3, which ultimately define its architecture.

4.1 Data Model of Graphs

To address requirement (R1), GraphPedia uses a generic data model that can be
used to represent many different types of graphs. Each graph consists of a set of
vertices, each uniquely identified by an integer, and a set of edges, each consisting
of the identifiers of its endpoints. Edges can either be directed (i.e., edges are
uni-directional) or undirected (i.e., edges are bidirectional). Multiple edges are
allowed between two vertices, thus enabling multi-edge graphs. Additionally,
both vertices and edges can have a list of named properties to store data such as
timestamps (temporal graphs), weights (weighted graphs), or labels (bipartite
graphs). A similar data model is used in the Graphalytics benchmark [11].

4.2 Virtual Meeting Space

To address requirements (R1) and (R2), GraphPedia allows its users to add new
datasets to the archive. These datasets are added after (semi-)automated valida-
tion by a GraphPedia moderator, to avoid storing incorrect, irrelevant, or simply
duplicate datasets. The possibility to share graphs benefits both the contributors
and the users of the archive. Contributors benefit since it helps them gain recog-
nition of their work and it allows them to share knowledge with peers. Users
benefit because continuously extending the archive increases both the volume
and the variety of the archive over time. Ideally, this dynamic interaction will
also enable interdisciplinary interactions.

Towards the Next Generation of Large-Scale Network Archives 575

4.3 Storage Formats

To tackle requirement (R3), GraphPedia enables access to every dataset in many
different storage formats. Datasets are internally stored once using a single uni-
fied format. Whenever a user requests a different format, the dataset is either
retrieved from a cache, or it is being converted into the appropriate format on-
the-fly. This approach keeps the required storage capacity under control, while
potentially offering large number of formats.

4.4 Network Metrics

To address requirement (R4), GraphPedia presents many graph metrics for each
dataset [4]. Users can therefore quickly gain valuable insight, and decide whether
a dataset is useful for their application.

Overall, metrics can be classified into three categories.

– Basic metrics describe the basic struture and are light-weight. Examples are
number of vertices, density, average degree, and number of components.

– Complex metrics describe more complex characteristics. Examples are the
average clustering coefficient, spectral norm, diameter, and Lorenz curve.

– Property metrics describe the distribution of the vertex/edge properties.
Basic statistics can be given for these properties, such as mean, mini-
mum/maximum, and standard deviation.

Clearly, an initial selection of metrics to offer needs to be made, but the
design must be flexible enough to add more such metrics on-demand.

4.5 User-Interface

Also addressing requirement (R4), GraphPedia allows users to quickly select
the relevant datasets for their application. This is an essential feature, since the
archive grows over time (e.g., due to user contributions, but not only). Graph-
Pedia will include advanced searching to allow users to select, filter, and sort
datasets based on their domain, description, and graph characteristics. Note that
the graph metrics play a fundamental role here, since they enable characteristics-
driven search within the archive.

4.6 Generated Graphs

To cover requirement (R5), GraphPedia does not only offer static real-world
datasets, but also provides a service to generate synthetic graphs. Multiple graph
generators will be integrated into GraphPedia. Users can obtain a synthetic
graph by specifying the type of generator and the corresponding parameters. If
this graph is already present in the archive or in its cache, it can be downloaded
immediately. Otherwise, the graph will be generated and cached. Once a graph is
demanded multiple times, a GraphPedia moderator will decide whether it should
be made a permanent member of the archive.

576 S. Heldens et al.

In addition to traditional generators, GraphPedia must also offer the ability
to “replicate” an existing real-world graph at different scale. Thus, users can
“shrink” a graph that is appropriate but too large, or “expand” a small real-world
graph to a larger scale, for example to test functionality or study performance
at different scales.

4.7 Provenance and Impact

An added value of a centralized archive is the possiblity to study provenance and
impact of its items. The archive should contain, as much as possible, datasets
with a full “pedigree”: source of data, time of collection, extraction procedure,
etc. For users providing new data, evidence must be provided (publications, lab
reports, raw data, etc.) for the ownership and open nature of the data. This
provenance meta-data will be published (annonymized if needed) togehter with
the data. In terms of impact, the archive should list, for every dataset, the pub-
lications that use it. This information enables researchers to assess how often
datasets are used, and which research communities favor the use of particular
graphs. It also facilitates a fair comparison and the reproducibility of experi-
mental results.

4.8 Architecture

Figure 1 depicts a high-level overview of the GraphPedia architecture. Users can
access the archive via its web-based frontend (1). The backend of the architecture
consists of a number of components: a database for datasets’ meta-data (2),
separate storage, cached, for the raw datasets themselves (3) (implemented, for
example, as a fast (distributed) file system), and a processing platform to handle
the processing jobs (4) (e.g., format conversion, synthetic graph generation, or
metrics computation).

The web-interface provides four actions: search datasets, download datasets,
upload datasets, and generate datasets. Searching for datasets is performed using
the data from the meta-data storage. When downloading a graph, the format
converter (5) fetches the raw dataset from the dataset storage, and converts it

Fig. 1. High-level overview of GraphPedia architecture.

Towards the Next Generation of Large-Scale Network Archives 577

into the appropriate format. We note that for most edge-based formats, this can
be done in a streaming fashion, reducing storage requirement and conversion
time. When uploading a graph, the graph is submitted to quality assurance (6)
for approval. Once the submission is successfully checked and approved, it is
added to the dataset storage. When generating a graph, a new job is submitted
to the processing platform and the resulting graph is added to storage once the
job completes. For every new dataset (both uploaded and generated graphs),
its meta-data is also added to the meta-data storage. Additionally, jobs are
submitted to the processing platform to calculate graph metrics. The results are
also saved in the meta-data storage.

5 Open Challenges

There are several challenges in realizing the implementation of GraphPedia.
First challenge is efficiency. Since GraphPedia is not just a static collection

of datasets, but its provides interactive services that can convert and generate
graphs, efficiency is essential to successfully build a large, diverse, dynamic, yet
still usable archive. For example, a single user that submits very large conversion
and generation jobs, should not prevent other users from submitting smaller
jobs. The same job submitted frequently should avoid repeated reprocessing,
but its results should be cached and reused More research is required to design
and deploy solutions that enable (and measure) the overall efficiency of such a
system.

Second, to measure the impact of different datasets, GraphPedia must dis-
cover all publications that use each dataset. Finding these publications manually
is virtually impossible. Thus, automated tools are needed to periodically scan all
relevant published work, eventually extracting the ones that use the GraphPedia
datasets. Research in information retrieval is required to build this tool.

Third, the topic of licensing needs to be thoroughly studied. It cannot be
assumed that all datasets are in the Public Domain and users should be able
choose a suitable license for their work, which must be respected by the archive
and its users.

Finally, although synthetic graph generation is a well-studied research topic,
shrinking and expanding are less known. Research is required to find efficient
techniques and tools that can be integrated into GraphPedia while preserving its
efficiency. Alternative approaches, such as generating new graphs to mimic exist-
ing graphs following non-standard distributions, also require additional research.
In particular, capturing and reproducing accurately the characteristics of any
type of graph is still an open challenge.

6 Conclusion

Relevant network datasets are increasingly needed, both by data scientists devel-
oping and deploying methods to extract meaningful information and by com-
puter scientists developing and tuning systems that enable processing diverse

578 S. Heldens et al.

and large-scale network data. Addressing this need, our work proposes Graph-
Pedia, a next generation archive for network data.

Key to our design, we do not see GraphPedia as a static collection of datasets,
but as a virtual meeting space that allows researchers to meet and share their
data. Additionally, GraphPedia offers many novel features such as rich meta-
data, advanced searching and filtering, different storage formats, and synthetic
graphs on-demand. Overall, GraphPedia will benefit many different research
communities, including graph algorithm designers, graph system researchers,
and performance engineers.

We are currently tackling practical concerns in implementing GraphPedia,
including increasing efficiency and providing a variety of graph storage formats.
We will further focus on maintaining the community and continuously support-
ing emerging topics in graphs.

References

1. Bader, D.A., Kintali, S., Madduri, K., Mihail, M.: Approximating betweenness
centrality. In: Bonato, A., Chung, F.R.K. (eds.) WAW 2007. LNCS, vol. 4863, pp.
124–137. Springer, Heidelberg (2007). doi:10.1007/978-3-540-77004-6 10

2. Brandes, U., Eiglsperger, M., Lerner, J., Pich, C.: Graph markup language
(GraphML). Citeseer (2010)

3. Chakrabarti, D., Faloutsos, C.: Graph mining: laws, generators, and algorithms.
ACM Comput. Surv. 38(1), 2 (2006)

4. Chebotarev, P.: Studying new classes of graph metrics. In: Nielsen, F., Barbaresco, F.
(eds.) GSI 2013. LNCS, vol. 8085, pp. 207–214. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-40020-9 21

5. Davis, T.A., Hu, Y.: The University of Florida sparse matrix collection. ACM
Trans. Math. Softw. (TOMS) 38(1), 1 (2011)

6. Erdős, P., Rényi, A.: On random graphs i. Publ. Math. Debrecen 6, 290–297 (1959)
7. Erling, O., Averbuch, A., Larriba-Pey, J., Chafi, H., Gubichev, A., Prat, A.,

Pham, M.D., Boncz, P.: The LDBC social network benchmark: interactive work-
load. In: SIGMOD International Conference on Management of Data. ACM (2015)

8. Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin, C.: Powergraph: distrib-
uted graph-parallel computation on natural graphs. In: USENIX Symposium on
Operating Systems Design and Implementation (2012)

9. Guo, Y., Iosup, A.: The game trace archive. In: 11th Annual Workshop on Network
and Systems Support for Games (NetGames) (2012)

10. Hong, S., Depner, S., Manhardt, T., Van Der Lugt, J., Verstraaten, M., Chafi, H.:
PGX.D: a fast distributed graph processing engine. In: Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis. ACM (2015)

11. Iosup, A., Hegeman, T., Ngai, W., Heldens, S., Prat, A., Manhardt, T., Chafi, H.,
Capota, M., Sundaram, N., Anderson, M., et al.: LDBC graphalytics: a benchmark
for large-scale graph analysis on parallel and distributed platforms. Proc. VLDB
Endow. 9(12), 1317–1328 (2016)

12. Klyne, G., Carroll, J.J.: Resource description framework (RDF): concepts
and abstract syntax. Technical report, W3C (2006). http://www.w3.org/TR/
rdf-concepts/

http://dx.doi.org/10.1007/978-3-540-77004-6_10
http://dx.doi.org/10.1007/978-3-642-40020-9_21
http://dx.doi.org/10.1007/978-3-642-40020-9_21
http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/TR/rdf-concepts/

Towards the Next Generation of Large-Scale Network Archives 579

13. Kunegis, J.: Konect: the koblenz network collection. In: Proceedings of the 22nd
International Conference on World Wide Web Companion, pp. 1343–1350 (2013)

14. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws,
shrinking diameters and possible explanations. In: SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, pp. 177–187. ACM (2005)

15. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data

16. Leskovec, J., Lang, K.J., Mahoney, M.: Empirical comparison of algorithms for
network community detection. In: Proceedings of the 19th International Conference
on World Wide Web, pp. 631–640. ACM (2010)

17. Lu, Y., Cheng, J., Yan, D., Wu, H.: Large-scale distributed graph computing sys-
tems: an experimental evaluation. Proc. VLDB Endow. 8(3), 281–292 (2014)

18. Lumsdaine, A., Gregor, D., Hendrickson, B., Berry, J.: Challenges in parallel graph
processing. Parallel Process. Lett. 17(01), 5–20 (2007)

19. Malewicz, G., Austern, M.H., Bik, A.J., Dehnert, J.C., Horn, I., Leiser, N.,
Czajkowski, G.: Pregel: a system for large-scale graph processing. In: SIGMOD
International Conference on Management of Data, pp. 135–146. ACM (2010)

20. Murphy, R.C., Wheeler, K.B., Barrett, B.W., Ang, J.A.: Introducing the graph
500. Cray Users Group (CUG) (2010)

21. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking:
bringing order to the web. Technical report, Stanford InfoLab, November 1999

22. Satish, N., Sundaram, N., Patwary, M.M.A., Seo, J., Park, J., Hassaan, M.A.,
Sengupta, S., Yin, Z., Dubey, P.: Navigating the maze of graph analytics frame-
works using massive graph datasets. In: SIGMOD International Conference on
Management of Data, pp. 979–990. ACM (2014)

23. Sundaram, N., Satish, N., Patwary, M.M.A., Dulloor, S.R., Anderson, M.J.,
Vadlamudi, S.G., Das, D., Dubey, P.: Graphmat: high performance graph ana-
lytics made productive. Proc. VLDB Endow. 8(11), 1214–1225 (2015)

24. Tauro, S.L., Palmer, C., Siganos, G., Faloutsos, M.: A simple conceptual model for
the internet topology. In: GLOBECOM Global Telecommunications Conference,
vol. 3, pp. 1667–1671. IEEE (2001)

25. Xin, R.S., Gonzalez, J.E., Franklin, M.J., Stoica, I.: Graphx: A resilient distrib-
uted graph system on spark. In: First International Workshop on Graph Data
Management Experiences and Systems. ACM (2013)

26. Labs, Y.: Webscope. https://webscope.sandbox.yahoo.com/

http://snap.stanford.edu/data
https://webscope.sandbox.yahoo.com/

REPPAR - International Workshop on
Reproducibility in Parallel Computing

Computation-Aware Dynamic Frequency
Scaling: Parsimonious Evaluation of the
Time-Energy Trade-Off Using Design

of Experiments

Luis Felipe Millani(B) and Lucas Mello Schnorr

Graduate Program in Computer Science (PPGC) Informatics Institute,
Federal University of Rio Grande do Sul (UFRGS),

Caixa Postal 15064, Porto Alegre, RS 91501-970, Brazil
{lfgmillani,schnorr}@inf.ufrgs.br

Abstract. A promising approach to improve the energy-efficiency of
HPC applications is to apply energy-saving techniques for different code
regions according to their characteristics (blocking communication, load
imbalance). Since most applications have many parallel code regions, this
strategy requires extensive experimental time to find all the time-energy
trade-offs for a given application. In this paper we make use of Design
of Experiments (DoE) to (1) reduce the experimental time considering a
parsimonious evaluation of execution time and energy; and (2) define the
Pareto front with all interesting time-energy trade-offs. We report the use
of our methodology for seven benchmarks, each with interesting Pareto
fronts with distinct shapes. Among them, out of the 25 parallel regions
of the MiniFE benchmark, we detect configurations which reduce energy
in 9.27% with a non-significant penalty in runtime when compared with
using the high frequency for all regions; and, for the Graph500 benchmark
with 17 parallel regions, 7.0% execution time reduction with a increase of
2.4% in energy consumption, when comparing against running all regions
in the lowest frequency.

1 Introduction

Performance has historically overshadowed energy efficiency in the HPC field.
This scenario is changing and initiatives focusing on energy efficiency, like the
Green500 list [24], have gained importance. The current leader of Green500 offers
only 7.0GFLOPs per watt. Considering a 20MW exascale supercomputer, the
efficiency would have to be of at least 50GFLOPs per watt. Improvements must
be made from both the hardware and software sides to make the leap in energy
efficiency. Strategies for energy reduction in parallel applications are a step for-
ward to address the problem from the software side.

Software energy reduction strategies can be divided in two groups: inter-node
[2], acting in the system level; and intra-node, where code regions are subject
to power manipulation. Usually, application idle states trigger these strate-
gies. Opportunities appear during load imbalances [19], blocking communication

c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 583–595, 2017.
DOI: 10.1007/978-3-319-58943-5 47

584 L.F. Millani and L.M. Schnorr

phases [16,21], inter-node communication [15], MPI operations [26], and wait
states [13]. Correlating power consumption to source code is also explored [6].
Dynamic Voltage Frequency Scaling [9] (DVFS) is frequently used, attempting
different processor frequencies to execute code regions, targeting energy savings
with minimal or no performance loss [5].

HPC applications commonly have many parallel regions subject to frequency
scaling. For example, Graph500 [18] has 17 parallel regions; MiniFE [7] has 25.
Large HPC codes may have hundreds depending on the application complexity
and code size. It is unrealistic to evaluate all time-energy trade-offs considering
several processor frequencies. The experimental time would be too large, even
more as replications are necessary to account for variability. Others [5,14] have
adopted similar per-region strategies but they use simple experimental designs
meant to find not all time-energy trade-offs, but a single per-region frequency
combination (details in Sect. 2).

The objective of this work is to discover all the time-energy trade-offs when
adopting per-region processor frequency scaling. We tackle the explosion in
experimental time with a workflow based on Design of Experiments (DoE) tech-
niques [27], such as screening and full factorial designs, ANOVA, and main effect
plots [17]. Final results are analyzed with a customized bivariate Pareto front
plot demonstrating experimental variability. As far as we know, this is the first
time such combined framework is used to evaluate energy savings in HPC.

We report the use of our methodology for seven OpenMP benchmarks with
many parallel code regions, each with interesting Pareto fronts with distinct
shapes. Among them, out of the 25 parallel regions of the MiniFE benchmark,
we detect configurations which reduce energy in 9.27% with a non-significant
penalty in runtime when compared with using the high frequency for all regions;
and, for the Graph500 benchmark with 17 parallel regions, we obtain a 7%
execution time reduction with a 2.4% increase in energy consumption, when
comparing against running all regions in the lowest frequency.

Section 2 positions our work against related work. Section 3 presents basic
concepts about DoE. Section 4 details our methodology. Section 5 has the evalu-
ation of seven benchmarks. Conclusion and future work appears in Sect. 6. The
source code of this paper, including all data that has been used, is publicly
available as an org file on https://github.com/lfgmillani/reppar2016/.

2 Related Work

There has been a lot of effort to save energy with minimal performance loss
in HPC systems. We focus in application-aware strategies that consider code
regions. Freeh and Lowenthal [5] propose per-phase frequency scaling in HPC
applications. They define the best processor frequency combination by testing
all possible frequencies one by one, sequentially and in order. This is an one-
phase at a time design, with a linear experimental time according to the number
of phases and processor frequencies. Our approach differs in two main aspects.
First, while they verify one factor at a time, our approach combines screening,

https://github.com/lfgmillani/reppar2016
https://github.com/lfgmillani/reppar2016

Computation-Aware Dynamic Frequency Scaling 585

rapidly discovering regions affecting outcomes, with full factorial designs, detect-
ing all time-energy trade-offs. One factor at a time designs capture only a small
subset of such trade-offs. Second, while Freeh et al. evaluate all available fre-
quencies, we are limited to two. Statistical data analysis lacks established tools
to analyze measurements with three or more levels per factor (see Sect. 3 for
details).

Laurenzano et al. [14] also propose a fine-grained approach to define the best
per-loop processor frequency. They generate a series of loops configured with
different CPU and memory behavior. In a system characterization step, each loop
configuration is evaluated against all possible processor frequencies, ultimately
defining which frequency is the best. The real HPC application loops are each
one profiled for cache hit rates, flops, and number of memory accesses, forming
a loop signature. Frequency determination is obtained by searching the closest
point of the loop signature in the system characterization data. Our methodology
differs because it works directly with the application code in our screening warm
up step. Our methodology also enables the discovery of all time-energy trade-offs
that belong to the Pareto front, instead of searching for a single best combination
as they do. Laurenzano’s approach has been extended by Tiwari et al. [25] with
Green Queue, using eight dimensions for frequency selection. Peraza et al. [20]
combine power models and performance measurements, using a method that
requires only one application run per frequency configuration. Such technique
makes it impossible to detect correlations between frequency configurations on
different parts of the program, something we address in our method by using a
full factorial design.

There are other approaches. Use of runtime systems [21] to detect frequencies
for code regions that give a good balance between performance and energy, those
that use profile-based information [8] to find the best frequencies, and analyti-
cal [13] and prediction models [6]. Preparatory measurements with all available
frequencies are also conducted by Dick et al. [3] on a numerical simulation code
to deduce the best frequencies in a per-routine basis.

3 Background on Design of Experiments

In Design of Experiments (DoE), factors are variables that can affect the out-
come, such as the compiler used, the CPU architecture, the number of cores,
etc. They can be quantitative or qualitative. We present a background of DoE
concepts, essential for a good understanding of our experimental methodology.

Full Factorial Designs. The full factorial experimental design keeps the effect
of factors orthogonal [17], when level distribution is balanced. The orthogonality
is important when analyzing experimental results, as it allows the effect of each
factor to be estimated independently. With n factors, a two-level full factorial
design requires 2n experiments. Since experimental size grows exponentially with
the number of factors, its adoption is unfeasible with many factors. Full factor-
ial designs enable the detection of interactions among factors. Such interaction
means that simultaneous changes in multiple factors have combined effects in the

586 L.F. Millani and L.M. Schnorr

measured outcome. This implies that a factor’s effect in the outcome depends on
another factor. As far as we know, factor interaction is undeveloped (see Sect. 2),
being one of the advantages of our approach. Full factorial designs can also be
generated for more levels. With l levels and n factors, this kind of design requires
ln experiments. Although possible, the use of l > 2 is rare in statistics since there
is no rigorous statistical analysis available as of today. For that reason, we limit
our methodology to two-level full factorial designs, forcing the analyst to choose
two frequencies out of those available. Main effects plots can be used to ana-
lyze results obtained from factorial designs. They quantify how much each of
the factors affects the response. The main effect of each factor is the difference
between the mean response for that factor considering its two possible levels [1].

Fractional and Screening Designs. The sparsity of effects principle asserts a
system is usually dominated by main effects and low order interactions [17]. As
such, identifying factors responsible for the majority of the effect being measured
does not require expensive 2n full factorial designs. This principle does not hold
when there are complex interactions between the factors. Fractional factorial
and screening designs require less experimental effort than full factorial designs
and still give a good exploration of the configuration space. These designs can
be used to screen which factors have the most effect. While common in some
sciences due to the high cost of each experiment, fractional factorial designs are
not often used in parallel computing, where the preference is with one-factor-at-
a-time designs or in rare cases full factorial designs. Fractional designs can be
extremely useful when the full factorial design requires many experiments, as it
can reduce experimental time. Even for a low number of factors the number of
experiments can be considerably reduced. These designs have 2k−p runs, where
k is the number of factors and p is used to limit the experiment size, at the price
of losing complex relations as p grows. Plackett-Burman (PB) designs are a
kind of fractional design that is mostly used for screening [23]. The number of
runs of Plackett-Burman designs is always a multiple of four. A PB design is
identical to a fractional design iff its number of runs is a power of two. When it
is not, PB designs are non-geometrical. This kind of design has more complex
aliasing patterns, making analysis of the interactions between the factors more
difficult. When there are only minor interactions, the non-geometric designs can
save experimental time. Screening designs with more than two levels are still an
open research question in statistics. Three-level screening exists [12], but only
for quantitative levels, which can be the case for processor frequency.

4 DoE-Based Methodology to Find Time-Energy
Trade-Offs

The objective of our DoE-based methodology is to find all interesting Pareto
front cases where the energy-performance correlation balances towards HPC
goals, which is minimal performance losses. Figure 1 gives an overview of the
methodology, which is detailed in the next subsections. It starts with the screen-
ing phase (on the left), where initial parallel code regions (from A to F) have

Computation-Aware Dynamic Frequency Scaling 587

Fig. 1. Our DoE-based methodology to find all time-energy trade-offs.

their impact on the outcome quickly measured. Results are evaluated with a
combination of ANOVA and main effects analysis, both provided by most sta-
tistical tools. The objective is to detect which code regions significantly affect
the outcome. Those which do (B, E, and F in the example) are used in the full
factorial phase (right). There, all time-energy trade-offs are discovered using full
factorial designs, allowing the detection of interactions among code regions. We
employ Pareto and ANOVA to analyze full factorial results.

4.1 Screening Parallel Code Regions, ANOVA and Main Effects
Plot

The screening experimental phase uses a two-level Plackett-Burman design,
attempting to identify parallel code regions that affect energy consumption and
execution time. For simplicity, the parallel code regions comprise OpenMP’s par-
allel code blocks. These code regions are the factors, while the levels are the
possible frequencies. The screening phase uses only two frequencies – low and
high – out of those available in current processors. It is up to the performance
analyst to define values to be considered as low and high frequencies.

Analysis of variance (ANOVA) and main effects plots [17] are used to analyze
measurements. While ANOVA gives a confidence level of which code regions
affect the outcome when the frequency changes, it does not tell the magnitude
or direction of such change. Main effects plots are complementary because they
cover exactly these points, allowing us to rank regions based on how much they
affect the outcome when the processor frequency is changed. For the second phase
we select only regions that are significant according to ANOVA and whose effect
is significant compared to the effect of other code regions.

4.2 Full Factorial Design, ANOVA and Pareto Analysis

This phase considers only regions that truly affect the outcome, according to
screening. The objective is to search for parallel code regions for which the
processor frequency could be reduced without too much performance penalty;
or regions whose execution time is not too negatively affected while offering
high energy savings. We also look for parallel code region interactions when
scaling frequency. Measurement variability is addressed through experimental
replication, obtaining significance levels through ANOVA.

588 L.F. Millani and L.M. Schnorr

Results of this final phase are analyzed through ANOVA tests and Pareto
plots. They are complementary because ANOVA tests enable a quick verifica-
tion of effect interactions among parallel code regions. Average energy consump-
tion and execution time are represented using customized Pareto plots, where
each point is the result of a frequency combination for code regions. Confidence
regions [11] in the time-energy space are shown around average points, quanti-
fying experimental variability. We also define the Pareto front [4] by connecting
the best time-energy trade-offs (see Figs. 3 and 4).

5 Experimental Evaluation

We evaluate seven OpenMP-based benchmarks using our DoE methodology.
Energy consumption is measured for the whole execution time, while we use
DVFS [9] to control processor frequency. Parallel code regions (factors), iden-
tified through letters, are marked manually for evaluation. This process could
be automated during compilation, for instance by defining a new region for each
parallel task or loop. Our experiments use one node, although the methodol-
ogy could be extended for use in a heterogeneous cluster. In that case, differ-
ent regions could be used to differentiate between CPU and accelerator code
for the same task. For each code region, we verify how the low and high fre-
quency (levels) affect two outcomes: energy consumption and execution time.
We present our benchmarks and the experimental platform below; a full analysis
of Graph500; and global results of the six remaining benchmarks.

Case studies: Table 1 lists the OpenMP benchmarks with the number of
regions, and the low and high processor frequency for each of them. BFS and
Delaunay belong to PBBS [22], while the Graph500 [18] is a benchmark on its
own. MiniFE, HPCCG, CoMD, and Pathfinder are part of the Mantevo [7] suite.

Table 1. HPC Benchmarks description with low/high frequency parameters in GHz.

Benchmark Description Regions Low High

BFS [22] Breadth-first search 7 1.5 2.3

Delaunay [22] Triangular mesh generation 16 1.5 2.3

Graph500 [18] Data-intensive load 17 1.8 2.3

MiniFE [7] Unstructured finite element 25 1.5 2.3

HPCCG [7] Synthetic linear system 7 1.5 2.3

CoMD [7] Molecular dynamics 14 1.5 2.3

Pathfinder [7] Signature search 7 1.2 2.3

Experimental Platform: Experiments are executed on orion, a machine of
the GPPD Team of INF/UFRGS. This machine has two Intel Xeon E5-2630
Sandy Bridge processors, with 24 cores (12 physical), with 32 GB of memory.

Computation-Aware Dynamic Frequency Scaling 589

The processor has twelve clock frequencies, from 1.2 to 2.3 GHz. Benchmarks are
compiled with GCC 5.1.1, using the -O3 optimization flag. Energy consumption
of the package and memory are measured through Intel’s RAPL counters [10].

5.1 Full Analysis of Graph500 Benchmark

Seventeen parallel code regions (from A to Q) of the Graph500 benchmark have
been manually instrumented. Table 2 shows the ANOVA results of each factor’s
impact on energy (left) and time (right). The number of stars on each line’s end
indicates the significance of each factor’s impact. For example, the three stars
of region J indicates that a low to high frequency change has a 99.9% chance
of impacting both energy and execution time. Therefore, scaling frequency on
regions J and L has a 99.9% chance of affecting energy consumption, while on
regions E, I and J the impact is on execution time. Figure 2 is the main effect
plots for energy (top) and execution time (bottom). It shows the magnitude of
the effect when one factor changes its level from low to high. For example, region
J increases energy consumption when it goes from low to high, while reducing
execution time. We conclude that regions J, L and E have a non-negligible impact
on energy when we upscale the processor frequency. Remaining regions could be
kept in the highest processor frequency since downscaling has no effect on energy.
We observe that regions I, J and E have smaller execution time when upscaling
frequency. Remaining regions make no significant difference on execution time,
at a 99% confidence level. A promising code region to act upon is I, where we
can see in the main effects plot that a significative execution time reduction
appears with a minor energy consumption increase when upscaling, compared
to the rest. Regions E, I, J and L are the only regions whose scaling affects
energy consumption or execution time, with a 99% confidence level (two stars).
These regions were selected for the full factorial phase.

A

en
er

gy

− +38
50

39
50

40
50 B

− +

C

− +

D

− +

E

− +

F

− +

G

− +

H

− +

I

− +

J

− +

K

− +

L

− +

M

− +

N

− +

O

− +

P

− +

Q

− +

A

tim
e

− +

39
40

41

B

− +

C

− +

D

− +

E

− +

F

− +

G

− +

H

− +

I

− +

J

− +

K

− +

L

− +

M

− +

N

− +

O

− +

P

− +

Q

− +

Fig. 2. Main effect plots of energy (top) and exec. time (bottom) of Graph500 screening.

Table 3 shows the ANOVA for the full factorial experiments. Regions E, I, J
and L affect execution time and energy consumption at a 99.9% confidence level.

590 L.F. Millani and L.M. Schnorr

Table 2. ANOVA of energy (left) and execution time (right) of Graph500 screening.

Table 3. ANOVA of energy (left) and time (right) of Graph500 full factorial experi-
ments.

Figure 3 presents the Pareto plot showing the correlation between energy savings
(in the Y axis) and execution time (in X). The blue line represents the Pareto
front, connecting the best time-energy trade-offs. Each point is the average of 50
executions. An ellipse around each point represents the confidence region in the
bivariate space according to a 99% confidence level. The HIGH and LOW labels
indicate points where all regions are in the high and low frequency. Pareto points
are labeled with the corresponding high (+) and low (−) frequency configuration
for the E, I, J and L parallel regions, in that order.

The Pareto front is composed of seven points: LOW, HIGH, and five region-
based trade-offs. Table 4 details the region-based points against HIGH (at the
left) and LOW (right). Most of the region-based points in the Pareto front,
when compared to HIGH, offer more energy reduction than performance loss.
The only exception is the configuration (+ - - -) whose execution time loss
against HIGH is larger than gains in energy consumption. Comparing to LOW,
the more interesting result comes from configuration (+ + - -): so setting only
regions E and I to the high frequency gives an execution time reduction of 7.0%
while increasing energy consumption by 2.4%. Remaining comparison against
LOW show that runtime gains are always greater than the increase in energy.
Next section shows the Pareto front results of six other benchmarks.

Computation-Aware Dynamic Frequency Scaling 591

+++−

−++−

++−−
−+−− +−−−

HIGH

LOW

3700

3800

3900

4000

4100

4200

37 38 39 40 41 42
Time (s)

En
er

gy
 (J

)
Per−Region
Frequency
Configuration

−−−+
−−−−

−−+−
−−++
−+−−
−+−+
−++−
−+++
+−−−
+−−+
+−+−
+−++
++−−
++−+
+++−
++++

Fig. 3. Time-Energy Pareto plot containing the results for the Graph500 benchmark.

Table 4. Pareto front points and their performance/energy trade-offs for Graph500.

E I J L Time (%/High) Energy (%/High) Time (%/Low) Energy (%/Low)

- + - - 8.18 −8.39 −3.67 1.60

- + + - 3.51 −5.28 −7.82 5.05

+ - - - 9.74 −8.46 −2.28 1.52

+ + - - 4.42 −7.70 −7.02 2.37

+ + + - 1.50 −3.41 −9.62 7.12

5.2 Global Results Considering Remaining Benchmarks

Figure 4 depicts the detailed Pareto plots for the other benchmarks. Each one
shows distinct trade-offs, detailed as follows. BFS. The Pareto front is composed
of two region-based points: -++ and +--. Remaining region-based points and
HIGH and LOW get grouped around these two points, with no significant differ-
ence. As we can see, our methodology fails to detect important trade-offs between
energy and execution time for this benchmark. It discovers, however, an anom-
aly with the two points that are above the LOW group but far from the Pareto
front. Such anomaly, which should be avoided, provides no performance gains
and higher energy cost. Delaunay. Only two parallel regions were considered
relevant for the full factorial. Results are similar to BFS: the two region-based
points are very similar to the LOW and HIGH points, considering experimental
variability. There is a significant different in energy consumption when moving
from LOW to +-. MiniFE. Five parallel regions were considered for MiniFE. As
we can see in the Pareto plot, four groups of region-based points are formed: two
of them around the LOW and HIGH points, and two that present other energy

592 L.F. Millani and L.M. Schnorr

−++

+−−
LOW

HIGH

400

420

440

460

4.0 4.5 5.0
Time (s)

E
ne

rg
y

(J
)

−+

+−

LOW

HIGH

540

570

600

630

660

6.0 6.5
Time (s)

E
ne

rg
y

(J
)

+++−+

+−+++
+−−−+

LOW

HIGH

3750

4000

4250

4500

4750

42 45 48 51
Time (s)

E
ne

rg
y

(J
)

+−

−+

HIGH

LOW

3000

3300

3600

3900

32.0 32.4 32.8
Time (s)

E
ne

rg
y

(J
)

+−

−+

HIGH

LOW

2100

2150

2200

2250

22 24 26 28 30
Time (s)

E
ne

rg
y

(J
)

HIGH

LOW

5100

5150

5200

5250

5300

70 80 90 100
Time (s)

E
ne

rg
y

(J
)

Fig. 4. Detailed Pareto plots for six benchmarks.

performance trade-offs. Combinations below the HIGH group have interesting
results. The Pareto point +-+++, for instance, reduces energy by 9.27% with
a minor penalty in execution time when compared to HIGH. Another region-
based point with combination +++-+ in the HIGH group provides a potential
reduction both in time (1.64%) and in energy (1.63%), but results are unclear
since there is some overlap with the HIGH point considering the confidence
region. For this benchmark, fixing all regions in the lowest frequency would be
insufficient to bring enough benefits in energy while causing a large slowdown.
In this case, our methodology clearly captures the new trade-off. HPCCG.
The screening phase has detected only two parallel regions for this benchmark.
Results show that the combination -+ offers an energy reduction of 21.35% with
a non-significant execution time penalty of only 2.04% when compared to the
HIGH point. The other region-based point +- demonstrates energy reduction
of 4.21% with a 1.36% penalty in time, also non-significant. These values are
based on 50 replications for each combination, indicating a small variability in
energy but large in execution time probably due to the small timespan. CoMD.
Experiments with CoMD with two parallel code regions showed a high vari-
ability after 50 replications. The energy scale is very small, indicating that any
changes in frequency cause minor energy gains but large performance penalties.
The region-based point +- offers 1.97% energy reduction causing 4.1% slowdown,
when compared to HIGH. We can conclude that this benchmark is unsuited to

Computation-Aware Dynamic Frequency Scaling 593

energy gains with minor performance losses. Pathfinder. Only one region has
been selected for the full factorial tests probably indicating that such region is
the benchmark’s compute-bound. The HIGH point dominates the LOW point,
forming a simple Pareto front. We can see that running the parallel code region
in LOW frequency causes a 40% slowdown for the application with no significant
gains in energy reduction.

6 Conclusion

We propose a workflow based on Design of Experiments to evaluate the time-
energy trade-offs when per-region frequency scaling is adopted in HPC applica-
tions. Our approach consists of two phases: a screening phase using ANOVA and
main effects plots to identify which regions deserve further investigation; and a
detailed phase using full factorial designs along with ANOVA and Pareto plots
for measurement analysis. We evaluated our strategy with seven OpenMP bench-
marks: BFS, Delaunay, Graph500, MiniFE, HPCCG, CoMD and Pathfinder. Our
DoE-based methodology enables the discovery of different time-energy trade-offs:
for MiniFE, we have found region-based frequency configurations that enable a
9.27% improvement in energy with no significant change in runtime; and for
Graph500, a time reduction of 7.0% with an increase of 2.4% in energy con-
sumption, when compared with using the lowest frequency for all regions. In the
other benchmarks, per-region frequency scaling resulted in little to no energy
improvements when compared against using only one frequency for all regions.
Another interesting result is that measurement variability makes the limits of
the Pareto front unclear. Distinct Pareto front shape might help better under-
stand the impact of region-based frequency scaling for each HPC application.
Planned future work includes a full factorial analysis when all processor frequen-
cies are considered. We also plan to improve the interpretation of the screening
by including the time taken to execute each parallel code region.

Acknowledgements. We thank CAPES and CNPq for partially funding this work.
In addition, we thank Arnaud Legrand for his ideas on design of experiments that
inspired us to develop the work of this paper, and for his series of lectures on Scientific
Methodology and Performance Evaluation (SMPE).

References

1. Box, G.E., Hunter, J.S., Hunter, W.G.: Statistics for experimenters: design, inno-
vation, and discovery. AMC 10, 12 (2005)

2. Cicotti, P., Tiwari, A., Carrington, L.: Efficient speed (ES): Adaptive DVFS and
clock modulation for energy efficiency. In: International Conference on Cluster
Computing, pp. 158–166 (2014)

3. Dick, B., Vogel, A., Khabi, D., Rupp, M., Küster, U., Wittum, G.: Utilization of
empirically determined energy-optimal CPU-frequencies in a numerical simulation
code. Comput. Vis. Sci. 17(2), 89–97 (2015)

4. Ehrgott, M.: Multicriteria Optimization. LNEMS. Springer, Heidelberg (2000)

594 L.F. Millani and L.M. Schnorr

5. Freeh, V.W., Lowenthal, D.K.: Using multiple energy gears in MPI programs on
a power-scalable cluster. In: Symposium on Principles and Practice of Parallel
Programming. ACM (2005)

6. Ge, R., Feng, X., Song, S., Chang, H.C., Li, D., Cameron, K.: Powerpack: energy
profiling and analysis of high-performance systems and applications. IEEE Trans.
Parallel Distrib. Syst. 21(5), 658–671 (2010)

7. Heroux, M.A., Doerfler, D.W., Crozier, P.S., Willenbring, J.M., Edwards, H.C.,
Williams, A., Rajan, M., Keiter, E.R., Thornquist, H.K., Numrich, R.W.: Improv-
ing performance via mini-applications. Technical report, SAND2009-5574, Sandia
(2009)

8. Hotta, Y., Sato, M., Kimura, H., Matsuoka, S., Boku, T., Takahashi, D.: Profile-
based Optimization of power performance by using dynamic voltage scaling on a
PC cluster. In: IPDPS (2006)

9. Hsu, C.H., Feng, W.: A feasibility analysis of power awareness in commodity-based
high-performance clusters. In: Cluster Computing, pp. 1–10. IEEE (2005)

10. Intel: Intel 64 and IA-32 Architectures Software Developer’s Manual - Volume 3B.
Intel Corporation, September 201

11. Johnson, R.A., Wichern, D.W. (eds.): Applied Multivariate Statistical Analysis.
Prentice-Hall Inc., Upper Saddle River (1988)

12. Jones, B., Nachtsheim, C.J.: A class of three-level designs for definitive screening
in the presence of second-order effects. Qual. Technol. 43(1), 1–15 (2011)

13. Kerbyson, D., Vishnu, A., Barker, K.: Energy templates: exploiting application
information to save energy. In: IEEE International Conference on Cluster Com-
puting, pp. 25–233 (2011)

14. Laurenzano, M.A., Meswani, M., Carrington, L., Snavely, A., Tikir, M.M.,
Poole, S.: Reducing energy usage with memory and computation-aware dynamic
frequency scaling. In: Jeannot, E., Namyst, R., Roman, J. (eds.) Euro-Par
2011. LNCS, vol. 6852, pp. 79–90. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-23400-2 9

15. Lim, M.Y., Freeh, V.W., Lowenthal, D.K.: Adaptive, transparent CPU scaling
algorithms leveraging inter-node MPI communication regions. Parallel Comput.
7(10–11), 667–683 (2011)

16. Lim, M., Freeh, V.W., Lowenthal, D.: Adaptive, transparent frequency and voltage
scaling of communication phases in MPI programs. In: Supercomputing, p. 14
(2006)

17. Montgomery, D.C.: Design and Analysis of Experiments. Wiley, Hoboken (2008)
18. Murphy, R.C., Wheeler, K.B., Barrett, B.W., Ang, J.A.: Introducing the graph

500. Cray User’s Group (CUG) (2010)
19. Padoin, E., Castro, M., Pilla, L., Navaux, P., Mehaut, J.F.: Saving energy by

exploiting residual imbalances on iterative applications. In: International Confer-
ence on HPC (2014)

20. Peraza, J., Tiwari, A., Laurenzano, M., Carrington, L., Snavely, A.: PMaC’s green
queue: a framework for selecting energy optimal DVFS configurations in large scale
MPI applications. Concur. Comput.: Pract. Exp. 28(2), 211–231 (2013)

21. Rountree, B., Lownenthal, D.K., de Supinski, B.R., Schulz, M., Freeh, V.W.,
Bletsch, T.: Adagio: making DVS practical for complex HPC applications. In:
Proceedings of the 23rd International Conference on Supercomputing, pp. 460–
469. ACM (2009)

http://dx.doi.org/10.1007/978-3-642-23400-2_9
http://dx.doi.org/10.1007/978-3-642-23400-2_9

Computation-Aware Dynamic Frequency Scaling 595

22. Shun, J., Blelloch, G.E., Fineman, J.T., Gibbons, P.B., Kyrola, A., Simhadri, H.V.,
Tangwongsan, K.: Brief announcement: the problem based benchmark suite. In:
24th Annual ACM Symposium on Parallelism Algorithms and Architectures, pp.
68–70. ACM, New York (2012)

23. Simpson, T., Poplinski, J., Koch, P.N., Allen, J.: Metamodels for computer-based
engineering design: survey and recomm. Eng. Comput. 17(2), 129–150 (2001)

24. Feng, W.C., Cameron, K.: The Green500 list: encouraging sustainable supercom-
puting. Computer 40(12), 50–55 (2007). doi:10.1109/MC.2007.445. ISSN 0018-
9162

25. Tiwari, A., Laurenzano, M., Peraza, J., Carrington, L., Snavely, A.: Green queue:
customized large-scale clock frequency scaling. In: International Conference on
Cloud and Green Computing, pp. 260–267, November 2012

26. Venkatesh, A., Vishnu, A., Hamidouche, K., Tallent, N., Panda, D.D., Kerbyson,
D., Hoisie, A.: A case for application-oblivious energy-efficient MPI runtime. In:
International Conference for High Performance Computing, Networking, Storage
and Analysis, NY, USA, pp. 29:1–29:12 (2015)

27. Wu, C., Hamada, M., Wu, C.: Experiments: Planning, Analysis, and Parameter
Design Optimization. Wiley, New York (2000)

http://dx.doi.org/10.1109/MC.2007.445

The Information Needed for Reproducing
Shared Memory Experiments

Vincent Gramoli(B)

Data61-CSIRO and University of Sydney, Sydney, Australia
vincent.gramoli@sydney.edu.au

Abstract. Reproducibility of experiments is key to research advances.
Unfortunately, experiments involving concurrent programs are rarely
reproducible. In this paper, we focus on multi-threaded executions where
threads synchronize to access shared memory and present a series of
causes for performance variations that illustrate the difficulty of repro-
ducing a concurrent experiment. As one can guess, our experimental
results are not intended to be reproducible but are meant to illustrate
conditions that affect conclusions one can draw out of concurrent exper-
iments.

Keywords: Reproducibility · Synchrobench · Artifact · NUMA ·
cTDP · JIT · Pinning

1 Introduction

Science advances faster when researchers do not follow false leads. Interestingly,
scientists give the rise of computing tools as a pretext for disclosing informa-
tion regarding scientific experiments and explains that, with some exceptions,
not releasing the source program for results that depend on computation is
“intolerable” [1]. The journal Nature allows editors to even decide to reject
papers if the computer code is unavailable [2]. In computer science research,
however, researchers rarely share their source code at the time of publication.
Some may not respond to requests asking to share their source code for the sake
of reproducibility. And when computer scientists share their code, they some-
times share a different version than what they used in their experiments [3]:
“The shoemaker’s son always goes barefoot.”

That said, remarkable efforts from the programming language community
were recently devoted to encourage the reproducibility of computer science
experiments [4]. In recent editions of programming language conferences, authors
had the opportunity to submit an artifact containing their documented source
code as well as scripts and required libraries. For example, conferences like OOP-
SLA and ECOOP accepted artifact submissions since 2013, POPL and PLDI
started in 2014 and PPoPP, CGO and CAV started in 2015.1 After submission,

1 http://evaluate.inf.usi.ch/artifacts.

c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 596–608, 2017.
DOI: 10.1007/978-3-319-58943-5 48

http://evaluate.inf.usi.ch/artifacts

The Information Needed for Reproducing Shared Memory Experiments 597

the artifact gets evaluated along four criteria: (i) consistency indicating whether
the artifact helps reproducing the results of the paper, (ii) completeness indi-
cating whether the fraction of the reproducible results represent a large fraction
of the paper results, (ii) documentation indicating whether the documentation
helps applying the method to new inputs, and (iv) simplicity indicating whether
the artifact is easy to reuse.

Unfortunately, the replay of shared memory program executions is known to
be a difficult problem. One of the reasons is that multi-threaded executions are
non-deterministic [5]: the output of the program is not tied to its input. This non-
determinism affects the debugging process as it makes it difficult to reproduce
an error-prone execution that involves a data race at a particular combinaison
of points in the executions of multiple threads [6]. It also affects performance
monitoring by leading to different performance based on a precise ordering of
memory accesses by concurrent threads [7]. Overall, it makes the reproducibility
of an experiment highly dependent on a variety of factors external to the pro-
gram, like the hardware, the operating system, the programming language and
the benchmark.

In this paper we show the importance of documenting these environmental
factors for reproducibility. To illustrate our claim we measure the performance
variations of Synchrobench, a benchmark suite to evaluate synchronization tech-
niques and shared memory programs [8], when playing with OS, language, hard-
ware and benchmark parameters. In particular, we show that core pinning can
improve the benchmark performance up to 24%, just-in-time optimizations can
lead to 3.4% performance boost, compilation of bytecode to native code can boost
performance by 3.9×, and that configurable Termal Design Power (cTDP) can
lead to 34% performance boost. Similar to the measurement bias of natural and
social sciences [9] our goal is to outline the measurement bias in the particular
context of concurrent programming when varying a parameter rather than cap-
turing precisely all the causes of the performance we obtained in a particular
case.

In Sect. 2 we present the problem through a running example. In Sect. 3 we
show the impact of the operating system version on the performance of con-
current programs. In Sects. 4 and 5 we show the impact of the hardware con-
figuration and the programming language on the performance, respectively. In
Sect. 6 we show the impact of the definition of benchmark parameters on the
performance and Sect. 7 concludes.

2 The Problem of Insufficient Description

To illustrate the difficulty of reproducing a concurrent program execution, let
us take a simple concurrent list-based set benchmark example. The benchmark
consists of a linked list data structure implementing a set, exporting operations
insert(v) that returns false if v belongs to the set, otherwise it inserts the
value v to the set and returns true; delete(v) that returns false if v does
not belong to the set, otherwise it removes v from the set and returns true; and

598 V. Gramoli

a contains(v) that returns true if v is in the set, otherwise it returns false.
Indicating that the benchmark written in Java gives the number of operations
executed per second with up to k threads on a k-way Intel Xeon machine with
20% updates is insufficient for anyone else to reproduce these experiments. In
particular, one must at least indicate details regarding:

– the operating system: the version of the operating system, the memory access
policy in use, how threads are pinned to cores;

– the programming language: the version, parameters of the compiler used;
– the hardware: whether overclocking is possible, whether k hardware threads

are provided by k independent cores or through hyperthreading;
– the benchmark: how does the benchmark works and what are the parameters.

As we evaluate in the next sections, the impact induced by some changes in each
of these environmental settings, meaning the type of operating system, the com-
piler, the architecture or the benchmark can dramatically affect the performance
results. Trying to reproduce such an experiment without such information would
likely lead to different results and conclusions.

3 The Operating System Impact

The operating system may or may not be aware of multi-threading within cores
to decide on an appropriate strategy to pin threads to cores, a strategy that can
dramatically impact performance.

3.1 Core Pinning

Thread placement or core pinning is known to greatly impact performance by
either minimizing conflicts or maximizing sharing, typically on TLB and caches.
In particular, core pinning can have a higher impact on AMD Opteron than

Die 0 Die 1

Socket 0

Die 2 Die 3

Socket 1

Die 4 Die 5

Socket 2

Die 6 Die 7

Socket 3

(a) SD config: same
socket, same die

Die 0 Die 1

Socket 0

Die 2 Die 3

Socket 1

Die 4 Die 5

Socket 2

Die 6 Die 7

Socket 3

(b) SND config:
same socket, differ-
ent dies

Die 0 Die 1

Socket 0

Die 2 Die 3

Socket 1

Die 4 Die 5

Socket 2

Die 6 Die 7

Socket 3

(c) NSD config: dif-
ferent sockets - same
die

Die 0 Die 1

Socket 0

Die 2 Die 3

Socket 1

Die 4 Die 5

Socket 2

Die 6 Die 7

Socket 3

(d) NSND config:
different sockets -
different dies

Fig. 1. Core pinning strategies as 4 block diagrams of the 4 AMD Opteron 6378 mul-
ticore machine

The Information Needed for Reproducing Shared Memory Experiments 599

Fig. 2. The impact of the core pinning on a multi-socket NUMA machine: some work-
loads may benefit from local resource sharing and lead to better performance under a
compact core pinning strategy than under a scatter core pinning strategy (error bars
represent the sample standard deviation)

on Sun UltraSPARC [8] and in general the strategy differs depending on the
programming language and the operating system used.

To illustrate the impact of core pinning on performance of concurrent
programs, we implemented different core pinning strategies in Synchrobench
C/C++ on an AMD Opteron 6378 featuring four different sockets. Each AMD
socket contains multi-chip modules, meaning that two distinct CPU dies are
placed in the same processor package [10]. Each socket embeds two different dies
connected to an individual memory controllers—memory controllers are omitted
in this figure for the sake of clarity. Each die embeds 8 individual cores, leading
to a total of 64 cores as indicated in Fig. 1.

Figure 2 depicts the performance of one of the fastest concurrent skip lists
to date, the Rotating skip list [11], of the C/C++ version of Synchrobench
with four different core pinning strategies. Each experiment ran with C/C++
Synchrobench parameters -i2M-r4M-t8, indicating that 8 threads accessed the
skip list initialized with 2M elements randomly chosen among a range of 4M
elements [8]. The only difference was the way these threads were pinned to cores,
as represented in Fig. 1. We implemented explicit placement strategies in Syn-
chrobench and measured the performance obtained: SD means same socket and
same die first, SND means same socket different dies first, NSD means different
sockets and same die first, and NSND means different sockets and different dies
first.

The best performance is obtained with the SD configuration while the worst
performance is obtained with the NSND configuration. In particular the perfor-
mance degrades as threads get scattered further apart. This indicates that the
performance benefits from the sharing of resources of the same die and the same
socket. Overall, we observed that the choice of the configuration could boost the

600 V. Gramoli

performance by 24%, when comparing the best configuration, SD, to the worst
configuration, NSND.

Another important performance factor of concurrent programs executed on
multicore machines is the memory [12]. The AMD machine we presented above
offers a non-uniform access to memory, hence called NUMA. It is especially
important to understand the policy used by the operating system of a NUMA
machines to select a memory controller to allocate a page in memory [13].

3.2 Variations Across OS Versions

The operating system can adopt different core pinning strategies based on its
version. This variation implies that the same concurrent program running on
two different versions of the same operating system would experience different
performances.

A typical example is the Solaris operating system. On Solaris, threads of the
HotSpot JVM are bound to lightweight processes. When a lightweight process
for a thread is created, the kernel assigns it to a locality group. In versions
10 and 11 of Solaris, the core pinning strategy differs substantially as Dave
Dice pointed out in his blog [14]. More precisely, in the version 10 of Solaris,
the core pinning strategy balances threads over dies, then over cores, then over
pipelines whereas in the version 11 of Solaris, the strategy groups the threads of
a unique process on the same locality group until the workload exhausts half of
the resources of this locality group. Our previous experience when using Solaris
10 on an UltraSPARC T2 [8] confirmed that the lightweight processes mapped
to the HotSpot JVM were scattered across the physical cores.

4 The Hardware Impact

In this section, we illustrate the impact of the hardware on the performance of the
concurrent program. In particular, we discuss the difference between exploiting
k hardware threads and k cores and the automatic overclocking that may bias
conclusions regarding performance scalability with concurrency.

4.1 Core Multi-threading

Core multi-threading is a technique used by hardware manufacturers to allow
multiple threads to share the pipeline, the CPU and caches and to execute
multiple instructions per cycle on a single processor. For example, Power8
supports simultaneous multi-threading allowing up to 8 hardware contexts to
run on a single core. Intel supports hyperthreading allowing up to 2 hardware
contexts to run on a single core. With simultaneous multi-threading one physical
core appears as multiple processors to the operating system.

In Communications of the ACM [15], we quantified the slowdown due to
hyperthreading. We indicated the performance obtained when running some
benchmarks on two Xeon machines: one using two single-core hyperthreaded

The Information Needed for Reproducing Shared Memory Experiments 601

Xeon CPUs and another Xeon with 4 non-hyperthreaded cores. The slow-down
was significant at 4 threads as hyperthreading was used in only one of the two
machines. Such a difference was explained partially by the fact that in one case,
hyperthreading makes two threads share the same processor while in the other
case, the processors are not shared. This simple observation led to the conclusion
that, in contrast to previous experimental observations, software transactional
memories, despite some limitations [16], could scale with the level of concurrency,
making it an interesting paradigm rather than a simple “research toy”.

4.2 Dynamic Frequency Adjustment

One should be cautious when testing scalability of a concurrent program as
its ability to perform better as the level of concurrency increases. The usual
scalability graph would plot the performance on the y-axis while the number of
threads increases on the x-axis, however, cores may automatically get overclocked
if only few threads are active. These higher frequencies at low thread counts
can thus result in having fewer threads performing better than more threads.
However, this poor scalability is not necessarily due to the contention of the
concurrent program, but can be due to an architectural feature as we explain
below.

Multicore manufacturers implemented techniques, like dynamic frequency
scaling, to reduce the energy consumption [17] when some processes are idle and
they also implemented features, like Turbo Boost, that optimizes the perfor-
mance of one cores when others are inactive. In particular, manufacturers provide
Configurable TDP (cTDP): Intel explains that the processor may “operate at a
power level that is higher than its TDP configuration”.2 The AMD Turbo Core
technology increases similarly the core frequency within the thermal and power
limits of the accelerated processing unit.3 This features are enabled depending
on the number of cores running. Similar techniques exist on other architectures
as well. The On Chip Controller (OCC) is a co-processor embedded directly on
the POWER processor die that controls the frequency, power consumption and
temperature to maximize performance while minimizing energy usage [18].

Figure 3 compares the Synchrobench performance one can obtain with and
without Turbo Boost when running the Versioned List benchmark with a single
thread (-t1) on a machine with two Intel Xeon E5-2450 running 8 hyperthreaded
cores each, for a total of 32 hardware threads. More precisely, the list of parame-
ters for Synchrobench Java is -W0-t1-d5000-u40-i0-r50-bVersionedListSet.
In each of five iterations of the benchmarks, we compare the throughput obtained
from the same benchmark with Turbo Boost disabled (w/o Turbo Boost) and
with Turbo Boost enabled (w/ Turbo Boost). As its name indicates, Turbo
Boost increases performance substantially as we observed a gain in performance
between 36% and 38% in each iteration.

2 http://www.intel.com/content/www/us/en/architecture-and-technology/
turbo-boost/turbo-boost-technology.html.

3 http://www.amd.com/en-us/innovations/software-technologies/turbo-core.

http://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html
http://www.amd.com/en-us/innovations/software-technologies/turbo-core

602 V. Gramoli

Fig. 3. The impact of the use of dynamic clock frequency adjustment on the perfor-
mance results: Turbo Boost dynamically increases the clock frequency of a computing
core when less cores are active, hence leading potentially to higher single-threaded
performance

5 The Programming Language Impact

The choice of programming languages may affect the performance. For example,
Java would favor portability rather than low-level optimizations so that in the
JDK 9, the package sun.misc.Unsafe would not be usable explicitly. In C/C++,
however, one could still pack two data items in one memory word, by exploiting
the otherwise unused low-order bit of an x86 aligned memory word. This opti-
mization can speedup the execution by requiring one compare-and-swap to set
both data items.

5.1 JVM Optimizations

Another optimization may come from running the JVM for long enough. For
example, explaining that the plotted value was measured as the average of 5
runs of the experiments may not be enough information to be able to reproduce
the same experiment. In particular in Java, repeating the same experiments as
part of the same JVM instance may lead to better performance than running it
as part of separate JVM instances.

In Synchrobench, one has the option to run a benchmark, like the Versioned
List [19], in five consecutive iterations within the same JVM instances: the user
simply has to invoke the benchmark with option -n5 so that the benchmark will
run five times in a row, restarting from scratch by cleaning up the data structure
between two consecutive runs.

java -server -cp bin \
contention.benchmark.Test -W 0 -t 2 -d 5000 -u 40 -i 0 -r 50 \
-b linkedlists.lockbased.VersionedListSet -n 5

The Information Needed for Reproducing Shared Memory Experiments 603

The performance results obtained after running the previous command will
be, on average, higher than the performance results obtained after running the
following command five times. The only difference is that the user runs the
benchmark five times manually, each time specifying that the benchmark should
run only once (-n1).

java -server -cp bin \
contention.benchmark.Test -W 0 -t 2 -d 5000 -u 40 -i 0 -r 50 \
-b linkedlists.lockbased.VersionedListSet -n 1

Figure 4 shows steady performance results for the five results when each
iteration is run as part of individual JVM instances: the variation is up to 4‰
of the minimum throughput. However, it also shows that the performance varies
much more when the five runs are part of the same JVM instance. This variation
is up to 3.5% of the minimum throughput. Moreover, the performance obtained
in these five consecutive iterations increases with time, which indicates that the
performance of the benchmark is optimized during the runtime of the JVM.

Note that in Java, because synchronized is built into the JVM it
can perform optimizations such as lock elision for thread-confined lock
objects and lock-coarsening to eliminate synchronization with intrinsic locks,
which indicates that it is better to use synchronized locks rather than
ReentrantLock for performance reasons [20]. There are two Java imple-
mentations of the Versioned List [19,21] in Synchrobench, one uses the
java.util.concurrent.locks.StampedLock present in the JDK since Java
8, whereas the other uses custom versioned locks. The Versioned list, called
VersionedListSet used here is the one with the custom versioned locks

Fig. 4. The impact of the JVM optimizations on performance: the Java code is typically
optimized at runtime by the JVM, hence a longer execution within the same JVM
instance may lead to better performance than several shorter executions within different
instances

604 V. Gramoli

as opposed to the VersionedListSetStampLock benchmark that relies on
StampedLock.

5.2 Compiler Optimizations

For example, running Synchrobench Java with the following parameters:

java -Djava.compiler=NONE -server -cp bin \
contention.benchmark.Test -W 5 -t 4 -d 5000 -u 40 -i 1024 \
-r 2048 -b linkedlists.lockbased.VersionedListSet

will run the Versioned linked list [19] implementing a list-based set initialized
with 210 values (-i1024) taken in a range of 211 elements (-r2048), with only 4
threads (-t4), during 5 s (-d5000) with attempted update ratio of 40% (-u40).
The important parameter -Djava.compiler=NONE guarantees that the bytecode
will not be compiled to native code during the execution.

Figure 5 depicts the performance results observed with the compiler enabled
and with the compiler disabled while running this workload 5 times on an Intel
Xeon with 2 sockets of 8 hyperthreaded cores. The compiler offers a 4-fold
speedup on average.

Note that other optimizations exist with different compilers. An example is
the GNU compiler collection, gcc, that takes an optimization flag as an argument
on the command line to optimize the performance of the program. Hence, forget-
ting to mention the compilation flags may prevent someone else from reproducing
the concurrent experiment. Moreover, recent versions of gcc allow for automatic
padding of in-memory structures to minimize automatically false-sharing that
may trigger unnecessary cache invalidation leading to performance drops. This
is in contrast with earlier versions of the same compiler where padding had to
be coded explicitly.

Fig. 5. The impact of the compilation process on the performance: preventing the Java
bytecode from being compiled into native code leads to lower performance than when
the code gets compiled

The Information Needed for Reproducing Shared Memory Experiments 605

6 Benchmarks

Benchmarks are necessary to demonstrate the performance of new concurrent
programs. In particular, macro-benchmarks and applications offer realistic work-
loads while micro-benchmarks typically offer a refined set of tests to nail down
the causes of performance variation. These benchmarks are often tuned to test
a particular program and are rarely well documented, making it impossible to
reproduce experiments.

6.1 Lack of Documentation

Micro-benchmarking is popular to evaluate new concurrent programs. They are
invaluable tools that complement macro evaluations and profiling tool boxes. In
particular, they are instrumental in confirming how an algorithm can improve the
performance of data structures even though the same algorithm negligibly boosts
a particular application on a specific hardware or OS [8]. Interestingly, micro-
benchmarks are often designed specifically to evaluate a particular concurrent
program of synchronization technique [22] and are usually tuned for this purpose.
Moreover they are poorly documented, which makes it impossible to reproduce
their experiments.

A typical example is the evaluation of contention in concurrent programs.
Contention is due to having multiple threads accessing the same shared resources
while at least one is trying to modify it. Benchmarks often features a tunable
update parameter that allows the programmer to evaluate the performance of
a program at different contention levels. In the list-based set example we men-
tion in Sect. 2, one may think that an update is either an insert or a delete
operation and that the contains is clearly not an update but rather a read-only
operation. This observation, however, is a bit simplistic as one could also con-
sider that an insert and a delete that returns false without modifying the
list-based set are rather read-only operations but are not updates.

6.2 Parameter Definitions

To illustrate the importance of precisely defining parameters we compare
the performance of two list-based sets using the exact same parameters
-W0-t1-d5000-u40-i0-r50 to compare the performance one would obtain.
Update operations in these list algorithms traverse the list until they find
the closest node where to insert a node or to delete a node. The Lazy linked
list [23] (linkedlists.lockbased.LazyLinkedListSortedSet) protects the
nodes around this position before the value of the first node is read whereas the
Versioned linked list [19] (linkedlists.lockbased.VersionedListSet) pro-
tects the nodes around this position only if a node is to be inserted or removed.

The problem as indicated on Fig. 6 is that whether the update is effective,
meaning that it actually modifies the data structure, matters. In case the update
is unsuccessful, then the data structure will not be updated and the resulting
attempted update can be viewed as a read-only operation.

606 V. Gramoli

Fig. 6. The impact of attempted vs. effective updates: when update can fail, an
algorithm that executes failed updates as read-only operations scales better than an
algorithm that acquires locks even during failed updates.

As the Lazy list locks the data structures even if the structure is not updated,
it offers significantly lower performance than the Versioned list. In particular,
as the list is initially empty, all the removals executed at the beginning of the
experiment will probably fail at removing any node, because the node is likely
to be absent. Acquiring locks for these attempted updates prevents the Lazy list
from scaling with the level of concurrency. By constrast, acquiring locks only
when necessary allows the Versioned list to scale with the number of hardware
threads without suffering from read-only attempted updates. The speedup of the
Versioned list over the Lazy list increases with the level of concurrency as well. To
conclude, the notion of “update” in benchmarks has to be carefully documented,
like it is documented in Synchrobench for example, to indicate whether updates
represent modifications or simply invocations of potentially read-only operations.

7 Conclusion

Synchrobench offers an open-source micro-benchmark suite that was used in
multiple institutions for teaching and research. Its C/C++ and Java versions
were accepted by the artifact evaluation committee of PPoPP 2015. In this
paper we presented the difficulty of reproducing shared memory experiments
by illustrating various factors, not restricted to the benchmark, that may affect
the performance of concurrent programs. We encourage researchers to document
these factors and make use of existing benchmark suites, like Synchrobench, to
simplify reproducibility.

Acknowledgments. Some of the observations reported here were presented at the
Winter School organized by the ACM SIGOPS France in March 2016. I wish to thank
Tim Harris for fruitful discussions on the topic of publishing experimental results of
concurrent programs. This research was supported under Australian Research Council’s

The Information Needed for Reproducing Shared Memory Experiments 607

Discovery Projects funding scheme (project number 160104801) entitled “Data Struc-
tures for Multi-Core”. Vincent Gramoli is the recipient of the Australian Research
Council Discovery International Award.

References

1. Ince, D.C., Hatton, L., Graham-Cumming, J.: The case for open computer
programs. Nature 482, 485–488 (2012)

2. Code share: Papers in nature journals should make computer code accessible where
possible. Nature 514, October 2014

3. Collberg, C., Proebsting, T.A.: Repeatability in computer systems research.
Commun. ACM 59(3), 62–69 (2016)

4. Blackburn, S.M., Diwan, A., Hauswirth, M., Sweeney, P.F., Amaral, J.N.,
Babka,V., Binder, W., Brecht,T., Bulej, L., Eeckhout, L., Fischmeister, S.,
Frampton, D., Garner, R., Georges, A., Hendren, L.J., Hind, M., Hosking, A.L.,
Jones, R., Kalibera, T., Moret, P., Nystrom, N., Pankratius, V., Tuma, P.: Can
you trust your experimental results? (2012)

5. Devietti, J., Lucia, B., Ceze, L., Oskin, M.: DMP: deterministic shared memory
multiprocessing. In: Proceedings of 14th International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS, vol. XIV,
pp. 85–96 (2009)

6. Russinovich, M., Cogswell, B.: Replay for concurrent non-deterministic shared-
memory applications. In: Proceedings of ACM SIGPLAN 1996 Conference on Pro-
gramming Language Design and Implementation, PLDI 1996, pp. 258–266 (1996)

7. Choi, J.D., Srinivasan, H.: Deterministic replay of Java multithreaded applications.
In: Proceedings of SIGMETRICS Symposium on Parallel and Distributed Tools,
SPDT 1998, pp. 48–59 (1998)

8. Gramoli, V.: More than you ever wanted to know about synchronization: syn-
chrobench, measuring the impact of the synchronization on concurrent algorithms.
In: Proceedings of 20th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP 2015, pp. 1–10 (2015)

9. Mytkowicz, T., Diwan, A., Hauswirth, M., Sweeney, P.F.: Producing wrong data
without doing anything obviously wrong! In: Proceedings of 14th International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS, vol. XIV, pp. 265–276. ACM, New York (2009)

10. Braithwaite, R., McCormick, P., Chun Feng, W.: Empirical memory-access cost
models in multicore NUMA architectures. In: Proceedings of International Confer-
ence on Parallel Processing (ICPP) (2011)

11. Dick, I., Fekete, A., Gramoli, V.: A skip list for multicore. Pract. Exp. Concurr.
Comput. 29(4) (2016)

12. Drepper, U.: What every programmer should know about memory (2007)
13. Harris, T.: Do not believe everything you read in the papers. Personal Communi-

cation at the NICTA SSRG 4th Summer School, February 2016
14. Dice, D.: Thread placement policies on NUMA systems - update (2012)
15. Dragojević, A., Felber, P., Gramoli, V., Guerraoui, R.: Why STM can be more

than a research toy. Commun. ACM 54(4), 70–77 (2011)
16. Gramoli, V., Guerraoui, R.: Democratizing transactional programming. Commun.

ACM (CACM) 57(1), 86–93 (2014)

608 V. Gramoli

17. Groen, M., Gramoli, V.: Multicore vs manycore: the energy cost of concurrency.
In: Dutot, P.-F., Trystram, D. (eds.) Euro-Par 2016. LNCS, vol. 9833, pp. 545–557.
Springer, Cham (2016). doi:10.1007/978-3-319-43659-3 40

18. Rosendahl, T.: On chip controller (OCC). In: 1st Annual OpenPOWER Summit
(2015)

19. Gramoli, V., Kuznetsov, P., Ravi, S., Shang, D.: A concurrency-optimal list-based
set. Technical report, February 2015. arXiv:1502.01633v1

20. Goetz, B., Peierls, T., Bloch, J., Bowbeer, J., Lea, D., Holmes, D.: Java Concur-
rency in Practice. Addison-Wesley Professional, Boston (2005)

21. Gramoli, V., Kuznetsov, P., Ravi, S., Shang, D.: Brief announcement: a
concurrency-optimal list-based set. In: 29th International Symposium on Distrib-
uted Computing (DISC) (2015)

22. Harmanci, D., Felber, P., Gramoli, V., Fetzer, C.: TMunit: testing transac-
tional memories. In: 4th ACM SIGPLAN Workshop on Transactional Computing
(TRANSACT) (2009)

23. Heller, S., Herlihy, M., Luchangco, V., Moir, M., Scherer, W.N., Shavit, N.: A lazy
concurrent list-based set algorithm. In: Anderson, J.H., Prencipe, G., Wattenhofer,
R. (eds.) OPODIS 2005. LNCS, vol. 3974, pp. 3–16. Springer, Heidelberg (2006).
doi:10.1007/11795490 3

http://dx.doi.org/10.1007/978-3-319-43659-3_40
http://arxiv.org/abs/1502.01633v1
http://dx.doi.org/10.1007/11795490_3

Reproducible, Accurately Rounded
and Efficient BLAS

Chemseddine Chohra1,2,3(B), Philippe Langlois1,2,3, and David Parello1,2,3

1 Univ. Perpignan Via Domitia, Digits, Architectures et Logiciels Informatiques,
66860 Perpignan, France

{Chemseddine.Chohra,Philippe.Langlois,David.Parello}@univ-perp.fr
2 Univ. Montpellier II, Laboratoire d’Informatique Robotique Et de

Microélectronique de Montpellier, UMR 5506, 34095 Montpellier, France
3 CNRS, Paris, France

Abstract. Numerical reproducibility failures rise in parallel computa-
tion because floating-point summation is non-associative. Massively par-
allel and optimized executions dynamically modify the floating-point
operation order. Hence, numerical results may change from one run to
another. We propose to ensure reproducibility by extending as far as
possible the IEEE-754 correct rounding property to larger operation
sequences. We introduce our RARE-BLAS (Reproducible, Accurately
Rounded and Efficient BLAS) that benefits from recent accurate and effi-
cient summation algorithms. Solutions for level 1 (asum, dot and nrm2)
and level 2 (gemv) routines are presented. Their performance is stud-
ied compared to the Intel MKL library and other existing reproducible
algorithms. For both shared and distributed memory parallel systems,
we exhibit an extra-cost of 2× in the worst case scenario, which is sat-
isfying for a wide range of applications. For Intel Xeon Phi accelerator
a larger extra-cost (4× to 6×) is observed, which is still helpful at least
for debugging and validation steps.

1 Introduction and Background

The increasing power of supercomputers leads to a higher amount of floating-
point operations to be performed in parallel. The IEEE-754 [8] standard defines
the representation of floating-point numbers and requires the addition operation
to be correctly rounded. However because of errors generated by every addition,
the accumulation of more than two floating-point numbers is non-associative.
The combination of the non-deterministic behavior in parallel programs and the
non-associativity of floating-point accumulation yields non-reproducible numer-
ical results.

Numerical reproducibility is important for debugging and validating pro-
grams. Some solutions have been given in parallel programming libraries. Static
data scheduling and deterministic reduction ensure the numerical reproducibil-
ity of the library OpenMP. Nevertheless the number of threads has to be set for
all runs [15]. Intel MKL library (starting with 11.0 release) introduces CNR [15]
c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 609–620, 2017.
DOI: 10.1007/978-3-319-58943-5 49

610 C. Chohra et al.

(Conditional Numerical Reproducibility). This feature limits the use of instruc-
tion set extensions to ensure numerical reproducibility between different archi-
tectures. Unfortunately this decreases significantly the performance especially
on recent architectures, and requires the number of threads to remain the same
from run to run to ensure reproducible results.

First algorithmic solutions are proposed in [4]. Algorithms ReprodSum and
FastReprodSum ensure numerical reproducibility independently of the oper-
ation order. Therefore numerical results do not depend anymore on hardware
configuration. The performance of these latter is improved with the algorithm
OneReduction [6] by relying on indexed floating-point numbers [5] and requir-
ing a single reduction operation to reduce the communication cost on distributed
memory parallel platforms. However, those solutions do not improve accuracy.
The computed result even if it is reproducible, it is still exposed to accuracy
problems. Especially when we address an ill-conditioned problem.

Another way to guarantee reproducibility is to compute correctly rounded
results. Recent works [1,2,11] show that a accurately rounded floating-point
summation can be calculated with very little or even no extra-cost. With accu-
rately rounded we mean that the result is either correctly rounded (the nearest
floating-point number to the exact result) or faithfully rounded (one of the two
floating-point numbers that surround the exact result). We have analyzed in [1]
different summation algorithms, and identified those suited for an efficient paral-
lel implementation on recent hardware. Parallel algorithms for correctly rounded
dot and asum and for a faithfully rounded nrm2 have been designed relying on
the most efficient summation algorithms. Their implementation exhibits interest-
ing performance with 2× extra-cost in the worst case scenario on shared memory
parallel systems [1].

In this paper we extend our approach to an other type of parallel platforms
and to higher BLAS level. We consider the matrix-vector multiplication from
the level 2 BLAS. We complete our shared memory parallel implementation
with solution for a distributed memory model, and confirm its scalability with
tests on the Occigen supercomputer1. We also present tests on the Intel Xeon Phi
accelerator to illustrate the portability and appreciate the efficiency of our imple-
mentation on a many-core accelerator. The efficiency of our correctly rounded
dot product scales well on distributed memory parallel systems. Compared to
optimized but not reproducible implementations, it has no substantial extra-cost
up to about 1600 threads (128 sockets, 12 cores). On Intel Xeon Phi accelerator
the extra-cost increases up to 6× mainly because our solution benefits less from
the high memory bandwidth of this architecture compared to MKL’s implemen-
tation. Nevertheless they still could be useful for validation, debugging or for
applications that require precision or reproducible results.

This paper is organized as follows. Section 2 presents our sequential algo-
rithms for reproducible and accurate BLAS. Parallel versions are presented in
Sect. 3. Section 4 is devoted to implementation and detailed results, and Sect. 5
includes some conclusions and the description of future work.

1 https://www.cines.fr/en/occigen-the-new-supercomputeur/.

https://www.cines.fr/en/occigen-the-new-supercomputeur/

Reproducible, Accurately Rounded and Efficient BLAS 611

2 Sequential RARE BLAS

We present the algorithms for accurately rounded BLAS. This section starts
briefly recalling our sequential level 1 BLAS subroutines (dot, asum and nrm2)
already introduced in [1]. Then the accurately rounded matrix-vector multipli-
cation is introduced.

2.1 Sequential Algorithms for the Level 1 BLAS

In this section we focus on the sum of absolute values (asum), the dot product
(dot), and the euclidean norm (nrm2).

Sum of Absolute Values. The condition number of a sum is defined as
cond(

∑
pi) =

∑ |pi|/
∑

pi. For the sum of absolute values the condition number
is known to equal 1. This justifies the use of algorithm SumK [13].

Picking carefully the value of K ensures that computing asum(p) as
SumK(p) is faithfully rounded. Such appropriate value of K only depends on
the vector size. We have K = 2 for n ≤ 225, and K = 3 for n ≤ 234. For n ≤ 239

which represents 4TB of data, K = 4 is sufficient [1].

Dot Product. Using Dekker’s TwoProd [3], the dot product of two n-vectors
can be transformed without error to a sum of a 2n-vector. The sum of the
transformed vector is correctly rounded using a mixed solution. For small vectors
that fit in high level cache and that can be reused with no memory extra-cost,
the algorithm FastAccSum [14] is used, the algorithms HybridSum [17] or
OnlineExact [18] are preferred for large vectors (both algorithms exhibit barely
the same performance). The idea of these algorithms is to add elements that share
the same exponent to a dedicated accumulator —in practice one or two floating-
point numbers respectively. Therefore, the 2n-vector is error-free replaced by a
smaller accumulator vector (of size 4096 or 2048 respectively). Here the result
and the error calculated with TwoProd are directly accumulated. Finally we
apply the distillation algorithm iFastSum [17] to the accumulator vector to
compute the correctly rounded dot product.

Euclidean Norm. The euclidean norm of a vector p is defined as (
∑

p2i)
1/2.

The sum
∑

p2i can be correctly rounded using the previous dot product. Finally,
we apply a square root that returns a faithfully rounded euclidean norm [7].
numbers that enclose the exact result). This does not allow us to compute a
correctly rounded norm-2 but this faithful rounding is reproducible.

2.2 Sequential Algorithms for the Level 2 BLAS

Matrix-vector multiplication is defined in the BLAS as y = αA · x + βy. In the
following, we denote yi = αa(i) · x + βyi, where a(i) is the ith row of matrix A.

612 C. Chohra et al.

Algorithm 1 details our proposed reproducible computation: (1) The first
step transforms the dot product a(i) · x into a sum of non-overlapping floating-
point numbers. This error-free transform uses a minimum extra storage: the
transformed result is stored in one array of maximum size 40 (the floating-point
number range divided by the mantissa size). This process is done in different
ways depending on the vector size. For small vectors we use TwoProd to create
a 2n-vector. The distillation algorithm iFastSum [17] is then used to reduce the
vector size. For large ones we do not create the 2n-vector. The result and the
error of TwoProd are directly accumulated in accordance to their exponent as
requested by HybridSum or OnlineExact. After the dot product has been error-
free transformed to a smaller vector, the same distillation process is applied. Let
us remark that this step does not compute the dot product a(i) ·x but transforms
it without error in a small floating point vector. (2) The second step evaluates
multiplications by the scalars α and β using TwoProd. Again data is transformed
with no error. (3) Finally we distillate the results of the previous steps to get a
correctly rounded result of yi = αa(i) · x + βyi. The same process is repeated for
each row of the matrix A.

3 Parallel RARE BLAS

This section presents our parallel reproducible version of Level 1 and 2 BLAS.

3.1 Parallel Algorithms for the Level 1 BLAS

Sum of Absolute Values. The natural parallel version of algorithm SumK
introduced in [16] is used for parallel asum. Two stages are required. (1) The
first one consists in applying the sequential algorithm SumK on local data with-
out performing the final error compensation. So we end with K floating point
numbers per thread. (2) The second stage gathers all these numbers in a single
vector. Afterwards the master thread applies a sequential SumK on this vector.

Dot Product and Euclidean Norm. Figure 1 illustrates our correctly
rounded dot product. Note that for step 1, the two entry vectors of the dot
product are equally split between the threads. We use the same transformation
as the one presented in Sect. 2.2 to error-free transform the local dot product.
The accumulation of elements with the same exponent is only done for large vec-
tors. As before C ′ vector size equals 4096 or 2048. For small vectors we create
a 2n-vector using only TwoProd. Distillation in step 2 mainly aims at reducing
the communication cost of the union that yields the vector C. Since all trans-
formations up to C are error-free, the final call to iFastSum in step 3 returns
the correctly rounded result for the dot product.

The euclidean norm is faithfully rounded as explained for the sequential case.
Even if we do not calculate a correctly rounded result for euclidean norm, it is
guaranteed to be reproducible because it only depends on a reproducible dot
product.

Reproducible, Accurately Rounded and Efficient BLAS 613

Data: A : m × n-matrix; x : n-vector; y : m-vector; α, β :double precision float;
Result: the input vector y updated as y = αA · x + βy;
for row in 1 : m do

currentrow = A[row, 1 : n];
if currentrow and x fit in cache then

declare 2n-vector C;
for column in 1 : n do

(result, error) = TwoProd(currentrow[column], x[column]);
C[column] = result; C[n + column] = error;

end

else
declare the accumulator vector C;
for column in 1 : n do

(result, error) = TwoProd(currentrow[column], x[column]);
accumulate result and error to corresponding accumulator in C;

end

end
declare a vector distil;
distil = distillationProcess(C);
declare a vector finalTransformation;
size = sizeOf(distil);
/* Step 2 : multiply by the scalars α and β */

for i in 1 : size do
(result, error) = TwoProd(distil[i], α);
finalTransformation[i] = result;
finalTransformation[size + i] = error;

end
(result, error) = TwoProd(y[row], β);
finalTransformation[size × 2 + 1] = result;
finalTransformation[size × 2 + 2] = error;

/* Step 3 : use iFastSum to calculate the correctly rounded

result */

y[row] = iFastSum(finalTransformation);
end

Algorithm 1: Correctly rounded matrix-vector multiplication

3.2 Parallel Algorithms for the Level 2 BLAS

For matrix-vector multiplication, several algorithms are available according to
the matrix decomposition. The three possible ones are: row layout, column layout
and block decomposition. We opt for row layout decomposition because the
algorithms we use are more efficient when working on large vectors. This choice
also avoids the additional cost of reduction.

Figure 2 shows how our parallel matrix-vector multiplication is performed.
The vector x must be attainable for all threads. On the other side the matrix A
and the vector y are split into p parts where p is the number of threads. Each

614 C. Chohra et al.

[
]

[
]

[
]

X[n]

[
]

Y[n]

[
]

C’

[
]

C’

TwoProd and

exp accumulate

TwoProd and

exp accumulate

[
]

[
]

distillation

distillation

∪

[
]

C

iFastSum(C)

Step 1 Step 2 Step 3

Fig. 1. Parallel algorithm for correctly rounded dot product

A x y

A(3)

A(2)

A(1)

A(0)

y(3)

y(2)

y(1)

y(0)

· =

-

-

-

-

-

Fig. 2. Parallel algorithm for correctly rounded matrix-vector multiplication

thread handles the panel A(i) of A and the sub-vector y(i) of y. y(i) is updated
with αA(i) · x + βy(i) as described in Sect. 2.2.

4 Test and Results

In this section, we illustrate the performance and accuracy results of our pro-
posed solution to accurate and reproducible level 1 and level 2 BLAS.

4.1 Experimental Framework

We consider the three frameworks described in Table 1. They are significant of
today’s practise of floating-point computing.

We test the efficiency of the sequential and the shared memory parallel imple-
mentation on platform A. Platform B illustrates the many core accelerator use.
The scalability of our approach on large supercomputers is exhibited on plat-
form C (Occigen supercomputer). Only the dot product has been tested on
platform C. Data for dot product are generated as in [13]. The same idea is used

Reproducible, Accurately Rounded and Efficient BLAS 615

Table 1. Experimental frameworks

A Processor dual Xeon E5-2650 v2 16 cores (8 per socket), No
hyper-threading. L1/L2 = 32/256 KB per core. L3 = shared 20
MB per socket.

Bandwidth 59,7 GB/s

Compiler Intel ICC 16.0.0

Options -O3 -xHost -fp-model double -fp-model strict -funroll-all-loops

Libraries Intel OpenMP 5. Intel MKL 11.3.

B Processor Intel Xeon Phi 7120 accelerator, 60 cores, 4 threads per core.
L1/L2 = 32/512 KB per core.

Bandwidth 352 GB/s

Compiler Intel ICC 16.0.0

Options -O3 -mmic -fp-model double -fp-model strict -funroll-all-loops

Libraries Intel OpenMP 5. Intel MKL 11.3.

C Processor 4212 Xeon E5-2690 v3 (12 cores per socket), No hyper-threading.
L1/L2 = 32/256 KB per core. L3 = shared 30 MB per socket.

Bandwidth 68 GB/s

Compiler Intel ICC 15.0.0

Options -O3 -xHost -fp-model double -fp-model strict -funroll-all-loops

Libraries Intel OpenMP 5. Intel MKL 11.2. OpenMPI 1.8

to generate condition dependent data for matrix-vector multiplication (multiple
dot products with a shared vector).

4.2 Implementation and Performance Results

We compare the performance results of our implementation to the highly opti-
mized Intel MKL library, and to implementations based on algorithm OneRe-
duction used on the library ReproBLAS [12]. We have implemented an OpenMP
parallel version of this algorithm since ReproBLAS offers only an MPI par-
allel version. We derive reproducible version of dot, nrm2, asum and gemv
by replacing all non-associative accumulations by the algorithm OneReduc-
tion [6]. These versions are denoted OneReductionDot, OneReductionAsum,
OneReductionNrm2 and OneReductionGemv.

CNR feature [15] is not considered because it does not guarantee repro-
ducibility between sequential and parallel runs. Running time is measured in
cycles using the RDTSC instruction. In the parallel case, RDTSC calls have
been made out of parallel region before and after function calls. We take the
minimum running time over 8 executions for gemv and 16 executions for other
routines to improve result consistency. We note up to 3% difference in number of
cycles between different runs. This difference is due to turbo boost and operating
system interruption and it is known that performance results can not be exactly
reproduced.

616 C. Chohra et al.

Sequential Performance. Tests are run on platform A. Results for dot, asum
and nrm2 are presented in [1]. These accurately rounded versions exhibit respec-
tively 5×, 2× and 9× extra-cost.

Our Rgemv matrix-vector multiplication computes a correctly rounded result
using iFastSum for small matrices and HybridSum for large ones, this latter
being slightly more efficient than OnlineExact on both platforms A and B. As
shown in Fig. 3a, Rgemv costs 8 times more compared to MKL in this sequential
case.

(a) Sequential (b) Parallel

Fig. 3. Extra-cost of correctly rounded matrix-vector multiplication (cond=108)

Shared Memory Parallel Performance. Tests have also been done on plat-
form A where 16 cores are used with no hyper-threading. We use OpenMP to
implement our parallel algorithms. As for the sequential case, results for dot,
asum and nrm2 are presented in [1]. The dot and asum do not exhibit any
extra-cost compared to classic versions, and nrm2 has 2× extra-cost.

For the matrix-vector multiplication, the correctly rounded algorithm costs
about twice more compared to MKL as shown in Fig. 3b. As in the sequential
case, MKLGemv certainly use cache blocking and so benefits from a better
memory bandwidth use. Nevertheless our parallel implementation scales well
and its extra-cost now reaches the 2× ratio.

Xeon Phi Performance. There is not much difference between implementation
for Xeon Phi and previous CPU ones. Thread level parallelism is implemented
using OpenMP and intrinsic functions are used to benefit from the available
instruction set extensions. A FMA (Fused Multiply and Add) is also available.
Therefore TwoProd is replaced by 2MultFMA [10] which only requires two
FMAs to compute the product and its error, and so improves performance.

Reproducible, Accurately Rounded and Efficient BLAS 617

(a) Sum of absolute values (b) Dot product (cond = 1016)

(c) Euclidean norm (d) Matrix-vector multiply (cond = 108)

Fig. 4. Extra-cost of Xeon Phi implementation compared to classical algorithms

Figure 4 exhibits respective ratios of 2×, 4×, 6× and 6× for asum, dot prod-
uct, euclidean norm and matrix-vector multiplication. So the extra-cost of accu-
rately rounded implementations is larger for this accelerator than for the CPU.
Indeed MKL based implementations of these memory bounded routines benefit
from both higher memory bandwidth and large vector capabilities (AVX-512)
provided by the Xeon Phi more than our accurate ones. Note that on our cor-
rectly rounded dot product algorithms there is no efficient way to vectorize the
accumulation to the elements of vector C since the access to those elements is
not contiguous (see Algorithm 1 and Fig. 1).

Distributed Memory Parallel Performance. Finally we present perfor-
mance on distributed memory systems. Only dot product tests have been run
on the Occigen supercomputer. In this case we have two levels of parallelism:
OpenMP is used for thread level parallelism on a single socket, and OpenMPI
library for socket communication. The algorithm scalability is tested on a single
data set with input vectors of length 107 and condition number is 1032.

Figure 5a shows the scalability for a single socket configuration. It is not a
surprise that MKLDot does not scale so far since it is quickly limited by the

618 C. Chohra et al.

memory bandwidth. OneReductionDot and Rdot scale well up to exhibit no
extra-cost compared to optimized MKLDot. Again such scaling occurs until
being limited by the memory bandwidth.

(a) Single socket (b) Multi socket normalized by ClassicDot

Fig. 5. Performance of the distributed memory parallel implementations.

Performance for the multi socket configuration is presented in Fig. 5b.
X-axis shows the number of sockets where all the 12 available cores are used.
Y-axis shows execution time normalized to ClassicDot (socket local MKLDots
followed by a MPI sum reduction).

Algorithms Rdot and OneReductionDot stay almost as efficient as Classic-
Dot. All algorithms exhibit similar performance because they rely all on a single
communication.

4.3 Accuracy Results

We present here accuracy results for dot and gemv variants. In both Fig. 6a and
b, we show the relative error according to the condition number of the prob-
lem. Relative errors are calculated according to MPFR library [9] results. The
two subroutines nrm2 and asum are excluded from this test because condition
number is fixed for both of them. The condition number for the dot product is
defined as cond(

∑
Xi ·Yi) =

∑ |Xi|·|Yi|/|∑ Xi ·Yi|. In almost all cases, solutions
based on algorithm OneReduction besides being reproducible are more accurate
than MKL. However, for ill-conditioned problems both MKL and OneReduction
derived implementation give worthless results. On the other side RARE-BLAS
subroutines ensure that results are always correctly rounded independently from
the condition number.

5 Conclusion and Future Work

We have presented algorithms that compute reproducible and accurately
rounded results for BLAS. Level 1 and 2 subroutines have been addressed in

Reproducible, Accurately Rounded and Efficient BLAS 619

(a) Accuracy results for (b) Accuracy results fordot gemv

Fig. 6. Accuracy results for dot and gemv

this paper. Implementations of these algorithms have been tested on three plat-
forms significant of the floating-point computing practice. While existing solu-
tions tackle only the reproducibility problem, our proposed solutions aim at
ensuring both reproducibility and the best precision. We compare them to opti-
mized Intel MKL implementations. We measure interesting performance on CPU
based parallel environments. Extra-cost on CPU when all available cores are used
is at worst twice. Nevertheless performance on Xeon Phi accelerator is lagging
behind: extra-cost is between 4 and 6 times more. Nevertheless, our algorithms
remain efficient enough to be used for validation or debugging programs, and also
for parallel applications that can sacrifice performance to increase the accuracy
and the reproducibility of their results.

Our plan for future development includes achieving reproducibility and pre-
cision for other BLAS subroutines. We are currently designing an accurate and
reproducible version of triangular solver. Other Level 3 BLAS routines will be
addressed even if the performance gap with optimized libraries will enforce the
previously identified restriction of the application scope.

References

1. Chohra, C., Langlois, P., Parello, D.: Implementation and Efficiency of Repro-
ducible Level 1 BLAS (2015). http://hal-lirmm.ccsd.cnrs.fr/lirmm-01179986

2. Collange, S., Defour, D., Graillat, S., Iakymchuk, R.: Numerical reproducibility
for the parallel reduction on multi- and many-core architectures. Parallel Comput.
49(C), 83–97 (2015). http://dx.doi.org/10.1016/j.parco.2015.09.001

3. Dekker, T.J.: A floating-point technique for extending the available precision.
Numer. Math. 18, 224–242 (1971)

4. Demmel, J.W., Nguyen, H.D.: Fast reproducible floating-point summation. In: Pro-
ceedings of 21th IEEE Symposium on Computer Arithmetic, Austin, Texas, USA
(2013)

5. Demmel, J.W., Nguyen, H.D.: Toward Hardware Support for Reproducible
Floating-Point Computation. In: SCAN 2014, Würzburg, Germany, September
2014

http://hal-lirmm.ccsd.cnrs.fr/lirmm-01179986
http://dx.doi.org/10.1016/j.parco.2015.09.001

620 C. Chohra et al.

6. Demmel, J.W., Nguyen, H.D.: Parallel reproducible summation. IEEE Trans. Com-
put. 64(7), 2060–2070 (2015)

7. Graillat, S., Lauter, C., Tang, P.T.P., Yamanaka, N., Oishi, S.: Efficient calculations
of faithfully rounded l2-norms of n-vectors. ACM Trans. Math. Softw. 41(4), 24:1–
24:20 (2015). http://doi.acm.org/10.1145/2699469

8. IEEE Task P754: IEEE 754–2008, Standard for Floating-Point Arithmetic. Insti-
tute of Electrical and Electronics Engineers, New York, August 2008

9. The MPFR library (2004). http://www.mpfr.org/. Accessed 8 July 2016
10. Muller, J.M., Brisebarre, N., de Dinechin, F., Jeannerod, C.P., Lefèvre, V.,

Melquiond, G., Revol, N., Stehlé, D., Torres, S.: Handbook of Floating-Point Arith-
metic. Birkhäuser, Boston (2010)

11. Neal, R.M.: Fast exact summation using small and large superaccumulators. CoRR
abs/1505.05571 (2015). http://arxiv.org/abs/1505.05571

12. Nguyen, H.D., Demmel, J., Ahrens, P.: ReproBLAS: Reproducible BLAS. http://
bebop.cs.berkeley.edu/reproblas/

13. Ogita, T., Rump, S.M., Oishi, S.: Accurate sum and dot product. SIAM J. Sci.
Comput. 26(6), 1955–1988 (2005)

14. Rump, S.M.: Ultimately fast accurate summation. SIAM J. Sci. Comput. 31(5),
3466–3502 (2009)

15. Todd, R.: Run-to-Run Numerical Reproducibility with the Intel Math Kernel
Library and Intel Composer XE 2013. Intel Corporation, Technical report (2013)

16. Yamanaka, N., Ogita, T., Rump, S., Oishi, S.: A parallel algorithm for accurate
dot product. Parallel Comput. 34(68), 392–410 (2008)

17. Zhu, Y.K., Hayes, W.B.: Correct rounding and hybrid approach to exact floating-
point summation. SIAM J. Sci. Comput. 31(4), 2981–3001 (2009)

18. Zhu, Y.K., Hayes, W.B.: Algorithm 908: online exact summation of floating-point
streams. ACM Trans. Math. Softw. 37(3), 37:1–37:13 (2010)

http://doi.acm.org/10.1145/2699469
http://www.mpfr.org/
http://arxiv.org/abs/1505.05571
http://bebop.cs.berkeley.edu/reproblas/
http://bebop.cs.berkeley.edu/reproblas/

RESILIENCE - Workshop on Resiliency
in High Performance Computing in

Clusters, Clouds, and Grids

Horseshoes and Hand Grenades: The Case
for Approximate Coordination in Local

Checkpointing Protocols

Patrick M. Widener(B), Kurt B. Ferreira, and Scott Levy

Center for Computing Research, Sandia National Laboratories,
Albuquerque, NM, USA

{pwidene,kbferre,sllevy}@sandia.gov

Abstract. Fault-tolerance poses a major challenge for future large-scale
systems. Active research into coordinated, uncoordinated, and hybrid
checkpointing systems has explored how the introduction of asynchrony
can address anticipated scalability issues. While fully uncoordinated
approaches have been shown to have significant delays, the degree of
sychronization required to keep overheads low has not yet been signifi-
cantly addressed. In this paper, we use a simulation-based approach to
show the impact of synchronization on local checkpoint activity. Specifi-
cally, we show the degree of synchronization needed to keep the impacts
of local checkpointing low is attainable with current technology for a
number of key production HPC workloads. Our work provides a critical
analysis and comparison of synchronization and local checkpointing. This
enables users and system administrators to fine-tune the checkpointing
scheme to the application and system characteristics available.

1 Introduction

In response to alarming projections of high failure rates due to the increas-
ing scale and complexity of high-performance computing (HPC) systems [5],
researchers have devoted significant effort to the development of methods and
techniques that will enable the deployment of resilient extreme-scale HPC sys-
tems and applications.

The current de facto standard for fault tolerance on HPC systems is coordi-
nated checkpoint/restart (cCR). The overhead of cCR increases with the number
of application processes. Current projections indicate that on next-generation
systems more than half of an application’s execution time may be consumed by
the overhead of cCR [15]. Much of this overhead results from contention for stor-
age resources: at the end of each checkpoint interval every application process
simultaneously attempts to write out its checkpoint data to persistent storage.

Sandia National Laboratories is a multi-program laboratory managed and operated
by Sandia Corporation, a wholly-owned subsidiary of Lockheed Martin Corporation,
for the U.S. Department of Energy’s National Nuclear Security Administration under
contract DE-AC04-94AL85000. SAND2016-5027C.

c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 623–634, 2017.
DOI: 10.1007/978-3-319-58943-5 50

624 P.M. Widener et al.

Uncoordinated checkpoint/restart (uCR) attempts to reduce contention for
storage resources by allowing application processes to checkpoint independently.
However, the performance impact of eliminating all inter-process coordination
of checkpointing activities has been shown to be prohibitive because of the way
that checkpointing-induced delays propagate and aggregate along communica-
tion dependencies [17].

In this paper, we examine the space between these two checkpoint protocol
extremes, and investigate the impact of approximate checkpoint coordination on
application performance. Approximate coordination reduces the contention for
persistent storage resources in cCR and impedes the propagation of delays in
uCR. Specifically, this paper makes the following contributions:

– a discussion of a new method, approximate coordination, for reducing the
overhead of uCR;

– a description of a simulation-based approach for studying degrees of check-
point coordination; and

– an initial examination of the impact of the degree of checkpoint coordina-
tion on application performance in an idealized scenario where no contention
for persistent storage exists (e.g., node-local burst buffers are available for
checkpoint storage).

p0

p1

p2

m1

m2

t1 t2

(a) without
checkpoint/restart

p0 δ

p1 δ

p2 δ

m1

m2

t1 + δ t2 + δ

(b) coordinated
checkpoint/restart

p0 δ

p1 δ

p2

m1

m2

t1 + δ t2 + 2δ

(c) uncoordinated
checkpoint/restart

Fig. 1. Propagation of uncoordinated checkpointing delay through application com-
munication dependencies. The processes p1, p2, and p3 exchange two messages m1 and
m2 in each of the three scenarios. The black regions marked with δ represent delays
due to the taking of checkpoints. The grey regions represent stalls due to unsatisfied
message dependencies.

The remainder of this paper is structured as follows: Sect. 2 provides a discus-
sion of checkpoint/restart and motivates our study of approximate coordination.
Section 3 describes our experimental approach and Sect. 4 presents the results of
these initial experiments. Section 5 discusses related work. Finally, Sect. 6 dis-
cusses potential future work and summarizes our initial study of approximate
checkpoint coordination.

Horseshoes and Hand Grenades: The Case for Approximate Coordination 625

2 Background

The most common fault tolerance techniques on today’s systems are based on
checkpoint/restart. In the fundamental operation of checkpoint/restart, an appli-
cation’s processes periodically record their current state onto stable storage (cre-
ating a checkpoint). When a failure occurs, the application is restarted from a
saved checkpoint. To ensure that a set of saved checkpoints represents a con-
sistent state, some checkpoint/restart techniques require additional data to be
saved (e.g., all sent messages). Several algorithms have been developed to ensure
that a set of processes records a consistent state, deriving from seminal work on
distributed system snapshots by Chandy and Lamport [8].

In this paper, we consider the two checkpoint/restart-based techniques intro-
duced in the preceding section: cCR, and uCR. cCR stops the execution of all
application processes at the same logical time and records a snapshot of the
current state of each process. There are several benefits to cCR. Tight coor-
dination of the timing of checkpoints across application processes ensures that
the most recent checkpoint represents a consistent state of the machine [12]. As
a result, there is no need to store multiple checkpoints or to record any other
execution details (e.g., sent messages). Additionally, inter-process coordination
of the timing of checkpoints limits the propagation of checkpointing-induced
delays. As shown in Fig. 1b, because every process checkpoints simultaneously,
the relative timing of inter-process communication events is preserved. However,
because cCR requires that every application process take a checkpoint at the
same time, contention for persistent-storage resources may degrade application
performance. On next-generation systems, the overheads of coordination and
those due to contention for storage resources may be prohibitive. In some cases,
an application may spend more of its time on the overhead of cCR than on the
computation for which it was designed [15].

To reduce the overhead of contention for storage resources, uCR allows
every process to decide when to checkpoint entirely independently from its
peers [7,18,22]. However, because of the lack of checkpoint coordination addi-
tional information is required in order to guarantee the existence of a set of
checkpoints that represent a consistent state of the machine. One common way
to resolve this issue is message logging. For example, if every process logs every
message it sends, then when one process fails it restarts from its last checkpoint.
The surviving processes re-send all of the messages that were sent to the failed
process in the interval between its failure and its last checkpoint.

If the timing of checkpoints is entirely independent, checkpointing-induced
delays can propagate and aggregate, much like OS noise (or jitter) [17]. For
example, Fig. 1c shows how checkpointing-delays may propagate along commu-
nication dependencies. Because process p0 is delayed because it is taking a check-
point, process p1 stalls waiting on the receipt of messages m1, and the stall of p1
causes p2 to stall. Similarly, because process p1 is subsequently delayed by its own
checkpoint, process p2 continues to stall waiting on the receipt of message m2.

In this paper, we consider the novel question of whether and to what degree
approximate coordination of the timing of checkpoints may be able to improve

626 P.M. Widener et al.

on the performance resulting from the total lack of coordination in uCR without
incurring the overheads of resource contention in cCR. In other words, we seek
to answer the question of how uncoordinated uCR can be while still limiting the
propagation of checkpoint-induced delays.

3 Experimental Approach

In this section, we describe the experimental approach used to investigate
the influence of approximate checkpoint coordination. First, we describe how
we model the impact of checkpoint/restart techniques on application perfor-
mance. We then discuss how we simulate various degrees of uCR checkpoint
coordination.

3.1 Modeling Local Checkpoint/Restart

In general, the communication structure of Message Passing Interface (MPI) pro-
grams cannot be determined offline because message matches cannot be estab-
lished statically [6]. This makes modeling application performance analytically
challenging even if all parameters of the application (e.g., the complete commu-
nication structure and all relative inter-process timings) are known. We therefore
use discrete-event simulation to evaluate the impact of local checkpointing activ-
ities on the performance of real applications.

Our simulation-based approach models checkpointing activities as CPU
detours: periods of time during which the CPU is taken from the application
and used to compute and commit checkpoint data. This approach allows a level
of fidelity and control not always possible in implementation-based approaches.
It also allows us to examine application performance on systems that are much
larger than those that are generally available for systems research.

Our simulation framework is based on LogGOPSim [21] and the tool chain
developed by Levy et al. [24]. LogGOPSim uses the LogGOPS model, an exten-
sion of the well-known LogP model [9], to account for the temporal cost of com-
munication events. An application’s communication events are generated from
traces of the application’s execution. These traces contain the sequence of MPI
operations invoked by each application process. LogGOPSim uses these traces
to reproduce all communication dependencies, including indirect dependencies
between processes which do not communicate directly.

LogGOPSim can also extrapolate traces from small application runs; a trace
collected by running the application with p processes can be extrapolated to sim-
ulate performance of the application running with k ·p processes. The extrapola-
tion produces exact communication patterns for MPI collective operations and
approximates point-to-point communications [21]. The validation of LogGOPSim
and its trace extrapolation features have been documented previously [20,21].
Similarly, its ability to accurately predict local checkpointing overheads has also
been documented [17,24,25].

Horseshoes and Hand Grenades: The Case for Approximate Coordination 627

3.2 Simulating the Role of Coordination

To simulate the impact of depriving the application of CPU cycles in order to
perform local checkpoints, LogGOPSim accepts a checkpointing trace: an ordered
list of checkpoints, expressed as the start time and duration of each checkpointing
event. In this paper, we use a checkpoint interval of 120 s and a checkpoint
commit time of 1 s. Although the optimal checkpoint interval is not known unless
checkpoints are totally coordinated, this checkpoint interval would be optimal
for cCR on a platform whose system MTBF is approximately 2 h.

LogGOPSim can simulate the degree of checkpointing coordination among
application processes by adding an initial offset to the replay of the execution
trace. Using an initial offset of zero for application processes will simulate a
perfectly coordinated checkpointing scheme. At the other extreme, choosing a
uniformly distributed random initial offset for each simulated process will simu-
late a completely uncoordinated approach. Choosing this offset randomly from
a normal distribution will simulate different degrees of coordination depending
on the standard deviation of the distribution used. Example probability density
functions are shown in Fig. 2. The x-axis in this figure is the time offset from
the mean and the y-axis is the probability of a node using that offset value. This
figure helps illustrate the range of the degree of approximate coordination that
we consider. From the figure, as expected, the greater the standard deviation,
the greater the likelihood of a large offset value.

We make two simplifying assumptions in our simulation approach:

– The perfect process synchronization we simulate is not achievable in prac-
tice. Even using strong coordination protocols such as those derived from
Chandy & Lamport, there will still be some time skew between checkpoint
commits in a real-world system. Using a simulation approach allows us to
apply a global clock to all simulated process checkpoints.

– Our checkpointing simulation assumes no contention for storage resources
even when checkpoints are tightly coordinated. In practice, storage resources
are typically shared — even node-local ones such as burst buffers. By disre-
garding contention for these resources, we can observe directly the impact of
coordination in local checkpoint propagation.

As a result of these assumptions, the data we present may be optimistic for
highly-coordinated checkpointing cases.

3.3 Application Descriptions

In the remainder of the paper, we present results from simulation experiments
based on the behavior of a set of four workloads. These workloads were chosen to
be representative of scientific applications that are currently in use and compu-
tational kernels thought to be important for future extreme-scale computational
science. They include:

628 P.M. Widener et al.

Relative Offset from Mean (sec.)

P
ro

ba
bi

lit
y

D
en

si
ty

10−3

10−2

10−1

100

−50 −25 0 25 50

stddev=100s
stddev=20s
stddev=1s
stddev=0.1s

Fig. 2. Normally distributed probability density function of the degree of coordination
as a function of standard deviation.

– LAMMPS: A scientific application developed by Sandia National Laboratories
to perform molecular dynamics simulations. For our experiments, we used the
Lennard-Jones(LJ) potential [30].

– CTH: A code developed at Sandia National Laboratories for modeling
complex problems that are characterized by large deformations or strong
shocks [11].

– HPCCG: A conjugate gradient solver from the Mantevo suite of mini-
applications [19,31].

– LULESH: An application that represents the behavior of a typical
hydrocode [23].

CTH and LAMMPS are important U.S. Department of Energy (DOE) appli-
cations which run for long periods of time on production machines and exhibit
a range of different communication structures. HPCCG represents an impor-
tant computational pattern in key HPC applications. LULESH is an exascale
application proxy from the DOE ExMatEx co-design center [14].

4 Results

We conducted a set of experiments to quantify the effects of checkpointing syn-
chronization for uCR in our chosen workloads. As described in the previous
section, we staggered the starting offset of simulated checkpointing activity for
each simulated process to produce different degrees of synchronization. Com-
pletely uncoordinated checkpointing is simulated by choosing a uniformly dis-
tributed random starting offset for each process, and completely coordinated

Horseshoes and Hand Grenades: The Case for Approximate Coordination 629

checkpointing by using the same offset for each process. Producing offsets rep-
resenting varying degrees of synchronization is done by drawing values from a
normal distribution with mean 0 and a given standard deviation; changing the
standard deviation of the distribution changes the degree of synchronization.
We chose the following standard deviations for our trials: 1 µs, 100 µs, 75 ms,
100 ms, and 1, 20, 40, 60, 80, and 100 s. In our discussion below we refer to each
different distribution of offsets by the value of its associated standard deviation.

Fig. 3. Application slowdown with varying degrees of synchronization at 32Ki
processes, measured relative to each totally coordinated case.

The results of these experiments are presented in Figs. 3 and 4. Figure 3
shows the application slowdown caused by using uCR with varying degrees of
synchronization for each of our representative workloads at a fixed application
size of 32 Ki processes1. We then examined each application in detail for slow-
downs at varying process counts (Fig. 4). In each of these figures, we present
the slowdown as a percentage of the runtime for a cCR (totally-coordinated
checkpointing) execution of the simulation.

For each of the workloads we studied, a significant and increasing per-
formance slowdown occurs as checkpoint synchronization among processes is
relaxed beyond 100 ms. Previous work in this area has demonstrated that com-
pletely unsynchronized checkpointing will result in severe slowdowns [17]; as this
figure also makes clear, some synchronization between checkpointing processes
is necessary.
1 Throughout this paper, we use the binary prefixes defined by the International Elec-

trotechnical Commission (IEC). For example, 1 Ki processes is equivalent to 1024
processes.

630 P.M. Widener et al.

(a) LAMMPS-LJ (b) LULESH

(c) HPCCG (d) CTH

Fig. 4. Slowdown in applications at different process counts with varying degrees of
checkpoint coordination, measured relative to each totally coordinated case.

Determining the degree of synchronization required in order to maintain per-
formance then becomes the issue, and it is here that our results imply an impor-
tant insight. Relatively loose synchronization is sufficient to keep the slowdown
induced by checkpointing activity to a level much lower than that produced by
completely uncoordinated checkpointing. The results presented in Fig. 4 show
that if the pattern of checkpoints for all processes follows a normal distribution
with standard deviation 100 ms (i.e., on average, 95% of process checkpoints
will occur in a 200 ms time window), application runtime is increased by less
than 5%. Synchronizing processes to this degree is well within the capabilities
of systems with hardware support (such as a dedicated global interconnect or
specialized equipment such as a GPS card), which have achieved clock skews on
the order of 1µs [1,2]. Even software-based solutions such as NTP are able to
achieve synchronization well within the 100 ms case we discuss here [27,29].

Even extremely loose synchronization with standard deviation on the order of
1 s produces approximately 10% application slowdown for our studied workloads.
This is a value easily realizable in modern HPC systems and is also possible with
acceptable reliability in wide-area or cloud-computing contexts. We also note

Horseshoes and Hand Grenades: The Case for Approximate Coordination 631

that much tighter synchronization of uCR checkpointing does not improve per-
formance markedly over that provided at the 100 ms standard-deviation value.
Finally, this result is observed for a range of process counts, indicating that this
effect is relatively insensitive to scale for this degree of synchronization.

5 Related Work

In this paper, we study the impact of approximate checkpoint coordination
on application performance. In this section, we provide an overview of related
publications.

The xSim simulator [13] has been used to study the effects of interference
amplification and absorption on MPI collectives. Its authors propose its use
as a tool for future HPC hardware/software co-design. Pradipta De et al. [10]
proposed an emulation approach for studying similar performance impacts. Our
simulation framework differs from these approaches in its ability to simulate
interference overheads for systems of tens or hundreds of thousands of processes
with modest hardware requirements. Our simulation framework also makes a
different tradeoff between the level of detail produced and simulation time than
these tools do, allowing it to be used for rapid evaluation of different application
configurations.

Checkpoint/restart protocols in HPC systems have been extensively studied.
There are many descriptions of the foundations of both coordinated and uncoor-
dinated CR protocols available in the literature [4,22,26]. The complete lack of
checkpoint coordination in uCR has been frequently relied upon as an important
feature [7,18,22].

Beyond uCR and cCR, many other checkpoint/restart protocols have been
proposed. Alvisi et al. examined the performance impact of coarse-grained com-
munication patterns on the performance of three communication-induced check-
point/restart (ciCR) algorithms [3]. ciCR uses the application’s communication
patterns to avoid checkpoints that cannot be used to recover a consistent global
state. Hierarchical checkpointing attempts group application processes into clus-
ters that communicate frequently with each other [18,28]. cCR is used within
a cluster and uCR plus message logging is used between clusters. Because the
number of processes in a cluster is smaller than the total application, contention
for filesystem resources is reduced. Also, because most of the communication is
within a cluster, the volume of message log data is also reduced.

Our study has origins in published research that characterizes application
behavior in the presence of OS noise [16,20]. Collectively, this research shows that
the pattern of OS noise events determines the impact on application performance
and the benefits of coordination. Moreover, it shows that perfect coordination
of OS noise events can significantly reduce performance impact.

Ferreira et al. [17] used an analogy to OS noise to show that when the timing
of checkpoints is completely uncoordinated, checkpoint-induced delays have the
potential to propagate and significantly degrade application performance.

In this paper, we extend the results of these studies of OS noise to examine
how approximate coordination impacts application performance. Specifically, we

632 P.M. Widener et al.

show that perfect coordination is unnecessary to mitigate the performance cost
of uCR; it may be sufficient to approximately coordinate OS noise events (e.g.,
local checkpoints).

6 Conclusions and Future Work

Developers of resilient HPC applications face design decisions about how best
to implement fault-tolerance measures for extreme-scale computing. As coordi-
nated checkpointing reaches a predicted scalability ceiling, a better understand-
ing of the performance implications of introducing uncoordinated checkpointing
is necessary. This paper contributes in several ways. We have: introduced the
concept of approximate coordination for reducing the overhead of uncoordinated
checkpointing; described a validated simulation-based technique for studying the
coordination of processes using uncoordinated checkpointing; and presented an
examination, carried out using our simulation framework, of the impact that
varying degrees of checkpoint coordination has on application performance. Our
results show that, while a degree of coordination between processes is necessary
in order to avoid severe performance penalties, this degree can be quite modest.
Dedicated hardware support for process synchronization is not necessary, and
software-based coordination provides a degree of synchronization sufficient to
keep checkpointing-related performance slowdowns below 10%.

We are pursuing several directions of future work based on this research. The
projections we have presented here do not consider contention between processes
for I/O bandwidth; we plan to refine our simulation approach to account for this.
We also are working to determine which application and checkpointing features
contribute to slowdowns in performance, and to characterize their interactions.
Finally, we will use our extended simulation framework to provide more detailed
information about how applications can leverage the synchronization of their
processes to avoid performance issues.

References

1. Adiga, N., et al.: An overview of the BlueGene/L supercomputer. In: ACM/IEEE
2002 Conference Supercomputing, p. 60, November 2002

2. Almási, G., Heidelberger, P., Archer, C.J., Martorell, X., Erway, C.C., Moreira,
J.E., Steinmacher-Burow, B., Zheng, Y.: Optimization of MPI collective commu-
nication on BlueGene/L systems. In: Proceedings of the 19th Annual International
Conference on Supercomputing, ICS 2005, NY, USA, pp. 253–262 (2005). http://
doi.acm.org/10.1145/1088149.1088183

3. Alvisi, L., Elnozahy, E., Rao, S., Husain, S., de Mel, A.: An analysis of communi-
cation induced checkpointing. In: Twenty-Ninth Annual International Symposium
on Fault-Tolerant Computing, 1999, Digest of Papers, pp. 242–249 (1999)

4. Alvisi, L., Marzullo, K.: Message logging: pessimistic, optimistic, causal, and opti-
mal. IEEE Trans. Softw. Eng. 24(2), 149–159 (1998)

http://doi.acm.org/10.1145/1088149.1088183
http://doi.acm.org/10.1145/1088149.1088183

Horseshoes and Hand Grenades: The Case for Approximate Coordination 633

5. Bergman, K., Borkar, S., Campbell, D., Carlson, W., Dally, W., Denneau, M.,
Franzon, P., Harrod, W., Hill, K., Hiller, J., Karp, S., Keckler, S., Klein, D.,
Kogge, P., Lucas, R., Richards, M., Scarpelli, A., Scott, S., Snavely, A., Sterling,
T., Williams, R.S., Yelick, K.: Exascale computing study: technology challenges in
achieving exascale systems, September 2008. http://www.science.energy.gov/ascr/
Research/CS/DARPA/exascale-hardware(2008).pdf

6. Bronevetsky, G.: Communication-sensitive static dataflow for parallel message
passing applications. In: Proceedings of the 7th Annual IEEE/ACM International
Symposium on Code Generation and Optimization, pp. 1–12. IEEE Computer
Society (2009)

7. Cappello, F.: Fault tolerance in petascale/exascale systems: current knowledge,
challenges and research opportunities. IJHPCA 23(3), 212–226 (2009)

8. Chandy, K.M., Lamport, L.: Distributed snapshots: determining global states of
distributed systems. ACM Trans. Comp. Syst. 3(1), 63–75 (1985)

9. Culler, D., Karp, R., Patterson, D., Sahay, A., Schauser, K.E., Santos, E., Subra-
monian, R., von Eicken, T.: LogP: towards a realistic model of parallel computa-
tion. SIGPLAN Not. 28(7), 1–12 (1993)

10. De, P., Kothari, R., Mann, V.: A trace-driven emulation framework to predict
scalability of large clusters in presence of OS jitter. In: 2008 IEEE International
Conference on Cluster Computing, pp. 232–241. IEEE (2008)

11. Hertel Jr., E.S., Bell, R.L., Elrick, M.G., Farnsworth, A.V., Kerley, G.I., McGlaun,
J.M., Petney, S.V., Silling, S.A., Taylor, P.A., Yarrington, L.: CTH: a software
family for multi-dimensional shock physics analysis. In: Proceedings of the 19th
International Symposium on Shock Waves, pp. 377–382 July 1993

12. Elnozahy, E.N., Alvisi, L., Wang, Y.M., Johnson, D.B.: A survey of rollback-
recovery protocols in message-passing systems. ACM Comput. Surv. 34(3), 375–
408 (2002)

13. Engelmann, C.: Investigating operating system noise in extreme-scale high-
performance computing systems using simulation. In: Proceedings of the 11th
IASTED International Conference on Parallel and Distributed Computing and
Networks (PDCN 2013), pp. 11–13 (2013)

14. Exascale Co-Design Center for Materials in Extreme Environments (ExMatEx).
http://exmatex.lanl.gov/. Accessed 10 June 2013

15. Ferreira, K., Riesen, R., Stearley, J., Laros, J.H., Oldfield, R., Pedretti, K., Bridges,
P., Arnold, D., Brightwell, R.: Evaluating the viability of process replication relia-
bility for exascale systems. In: Proceedings of the ACM/IEEE International Con-
ference on High Performance Computing, Networking, Storage, and Analysis, (SC
2011), November 2011

16. Ferreira, K.B., Brightwell, R., Bridges, P.G.: Characterizing application sensitivity
to OS interference using kernel-level noise injection. In: Proceedings of the 2008
ACM/IEEE Conference on Supercomputing (SC 2008), November 2008

17. Ferreira, K.B., Widener, P., Levy, S., Arnold, D., Hoefler, T.: Understanding the
effects of communication and coordination on checkpointing at scale. In: Proceed-
ings of the 2014 International Conference for High Performance Computing, Net-
working, Storage and Analysis (Supercomputing) (2014)

18. Guermouche, A., Ropars, T., Brunet, E., Snir, M., Cappello, F.: Uncoordinated
checkpointing without domino effect for send-deterministic MPI applications. In:
International Parallel Distributed Processing Symposium (IPDPS), pp. 989–1000,
May 2011

http://www.science.energy.gov/ascr/Research/CS/DARPA/exascale-hardware(2008).pdf
http://www.science.energy.gov/ascr/Research/CS/DARPA/exascale-hardware(2008).pdf
http://exmatex.lanl.gov/

634 P.M. Widener et al.

19. Heroux, M.A., Doerfler, D.W., Crozier, P.S., Willenbring, J.M., Edwards, H.C.,
Williams, A., Rajan, M., Keiter, E.R., Thornquist, H.K., Numrich, R.W.: Improv-
ing performance via mini-applications. Technical report, SAND2009-5574, Sandia
National Laboratories (2009)

20. Hoefler, T., Schneider, T., Lumsdaine, A.: Characterizing the influence of sys-
tem noise on large-scale applications by simulation. In: Proceedings of the 2010
ACM/IEEE International Conference for High Performance Computing, Network-
ing, Storage and Analysis, pp. 1–11. IEEE Computer Society (2010)

21. Hoefler, T., Schneider, T., Lumsdaine, A.: LogGOPSim: simulating large-scale
applications in the LogGOPS model. In: Proceedings of the 19th ACM Inter-
national Symposium on High Performance Distributed Computing, pp. 597–604.
ACM (2010)

22. Johnson, D.B., Zwaenepoel, W.: Recovery in distributed systems using asynchro-
nous message logging and checkpointing. In: Proceedings of the Seventh Annual
ACM Symposium on Principles of Distributed Computing, pp. 171–181 (1988)

23. Karlin, I., Bhatele, A., Chamberlain, B.L., Cohen, J., Devito, Z., Gokhale, M.,
Haque, R., Hornung, R., Keasler, J., Laney, D., Luke, E., Lloyd, S., McGraw, J.,
Neely, R., Richards, D., Schulz, M., Still, C.H., Wang, F., Wong, D.: LULESH
programming model and performance ports overview. Technical report LLNL-TR-
608824, Lawrence Livermore National Laboratory, December 2012

24. Levy, S., Topp, B., Ferreira, K.B., Arnold, D., Hoefler, T., Widener, P.: Using
simulation to evaluate the performance of resilience strategies at scale. In: 2013
SC Companion: High Performance Computing, Networking, Storage and Analysis
(SCC). IEEE (2013)

25. Levy, S., Topp, B., Ferreira, K.B., Arnold, D., Widener, P., Hoefler, T.: Using
simulation to evaluate the performance of resilience strategies and process failures.
Technical report SAND2014-0688, Sandia National Laboratories (2014)

26. Maloney, A., Goscinski, A.: A survey and review of the current state of rollback-
recovery for cluster systems. Concurr. Comput. Pract. Exp. 21(12), 1632–1666
(2009). doi:10.1002/cpe.1413. ISSN 1532-0634

27. Mills, D.L.: Internet time synchronization: the network time protocol. IEEE Trans.
Commun. 39(10), 1482–1493 (1991)

28. Monnet, S., Morin, C., Badrinath, R.: A hierarchical checkpointing protocol for
parallel applications in cluster federations. In: 2004 Proceedings of 18th Interna-
tional Parallel and Distributed Processing Symposium, p. 211. IEEE (2004)

29. Murta, C.D., Torres Jr., P.R.T., Mohapatra, P.: Characterizing quality of time
and topology in a time synchronization network. In: IEEE Globecom 2006, pp.
1–5, November 2006

30. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Com-
put. Phys. 117(1), 1–19 (1995)

31. Sandia National Laboratory: Mantevo project home page, January 2014. http://
mantevo.org

http://dx.doi.org/10.1002/cpe.1413
http://mantevo.org
http://mantevo.org

A Massively-Parallel, Fault-Tolerant Solver
for High-Dimensional PDEs

Mario Heene1(B), Alfredo Parra Hinojosa2, Hans-Joachim Bungartz2,
and Dirk Pflüger1

1 University of Stuttgart, Universitätsstraße 38, 70569 Stuttgart, Germany
{mario.heene,dirk.pflueger}@ipvs.uni-stuttgart.de

2 Technical University of Munich, Boltzmannstraße 3, 85748 Garching, Germany
{hinojosa,bungartz}@in.tum.de

Abstract. We investigate the effect of hard faults on a massively-
parallel implementation of the Sparse Grid Combination Technique
(SGCT), an efficient numerical approach for the solution of high-
dimensional time-dependent PDEs. The SGCT allows us to increase the
spatial resolution of a solver to a level that is out of scope with classical
discretization schemes due to the curse of dimensionality. We exploit the
inherent data redundancy of this algorithm to obtain a scalable and fault-
tolerant implementation without the need of checkpointing or process
replication. It is a lossy approach that can guarantee convergence for a
large number of faults and a wide range of applications. We present first
results using our fault simulation framework – and the first convergence
and scalability results with simulated faults and algorithm-based fault
tolerance for PDEs in more than three dimensions.

Keywords: Fault tolerance · Scalability · High-dimensional PDEs

1 Introduction

For quite some time, the HPC community has acknowledged the central role of
hardware faults in large-scale simulations. During 2013, the Blue Waters petas-
cale system exhibited a mean time between failures (MTBF) of 4.2 h [7]. The
MTBF is becoming so small that it is approaching the checkpointing interval [5].
This makes it clear that alternative approaches to resilience are not only con-
venient but urgently necessary. This concern has brought together experts from
across the scientific spectrum to come up with new solutions [6].

Fault tolerance can be addressed either at the system level (error-correcting
code, checkpointing, replication) or at the algorithmic level. There have been
promising advances in both areas in the last few years, such as in-memory check-
pointing [21] (system-level) or the use of machine learning techniques to identify
PDE solvers that are robust against faults [4] (algorithmic level). Sometimes it is
possible to use a combination of both approaches in order to get the best of both
worlds [16], but in general this is not possible. Although some algorithms are
c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 635–647, 2017.
DOI: 10.1007/978-3-319-58943-5 51

636 M. Heene et al.

fault tolerant by construction (e.g., iterative, randomized and restarted schemes),
most do not have properties that can be used for algorithmic fault tolerance.
These algorithms will largely rely on system-level resilience.

We are now approaching the exascale era, which aggravates the problem of
resilience. Given how little we know about the hardware- and system-level speci-
fications of future exascale systems, it is crucial to exploit algorithm-based fault
tolerance beyond checksum schemes. Algorithm-based resilience, which we inter-
pret broadly as using the properties of numerical schemes to overcome failures,
has the advantage of not relying heavily on the specifications of the system.
Also, the resource overhead required to implement resilient algorithms is usually
much smaller than the more common system-level approaches (most noticeably
replication and checkpointing). This is the approach we have adopted for solving
high-dimensional PDEs efficiently, using an algorithm that can deal with faults
at the algorithmic level: the Sparse Grid Combination Technique (SGCT) [8].

The SGCT is an extrapolation method that helps to alleviate the curse of
dimensionality for a wide variety of problems. In particular, we are interested
in solving PDEs. The idea of the SGCT is the following: since solving a d-
dimensional PDE on a finely discretized grid with, say, 2n discretization points
per dimension is usually infeasible (it requires a total of O(2dn) points, leading
to the so called curse of dimensionality), one solves the PDE multiple times,
each time on an anisotropic grid of smaller resolution. The different solutions
are then combined with appropriate weights in order to approximate the high-
definition solution. This algorithm has been shown to scale up to more than
180 000 cores [12] and now has been made fault tolerant (called the Fault Tolerant
Combination Technique, FTCT) [10]. This makes it a promising candidate for
an exascale-ready algorithm, and in this paper we try to support this claim.
In particular, we introduce our fault-simulation layer; we present an efficient
parallelization strategy for the FTCT and apply it to the well-established PDE
toolbox DUNE [2]; we show that the overhead to ensure fault tolerance on a full
supercomputer is very small, since it requires neither checkpointing nor process
replication; and we show the very first results for a fault-tolerant solution of
a higher-dimensional PDE in a massively parallel system: the time-dependent
advection-diffusion equation in 5 dimensions.

In previous work we have applied the FTCT to the plasma physics code
GENE [15], which solves the (5+1)D gyrokinetic equations. We carried out tests
in serial with simulated faults and gave initial estimates of the computational
costs [17]. The authors in [19] carried out tests in parallel in 2 and 3 dimensions,
but only with up to about 3000 cores. Our parallelization strategy extends to any
dimension and performs well on a full supercomputer, representing a significant
improvement of the state of the art.

2 The Sparse Grid Combination Technique

Consider a function u(x) ∈ V ⊂ C([0, 1]d), where x = (x1, . . . , xd) ∈ IRd.
This function could represent the solution of a PDE, which we would like to

A Massively-Parallel, Fault-Tolerant Solver for High-Dimensional PDEs 637

approximate via a discrete function ui(x) ∈ Vi ⊂ V . The SGCT (introduced
by Griebel et al. in the nineties [8]) mitigates the curse of dimensionality. In its
most general form it can be stated as

un ≈ u(c)
n =

∑

i∈I
ciui. (1)

We call the weights ci ∈ IR combination coefficients; each ui is a solution of
the PDE on a coarse, anisotropic regular grid Ωi := Ωi1 × · · · × Ωid , which has
mesh size hi := (hi1 , . . . , hid) := 2−i. Each ui is called a component solution, the
corresponding grids Ωi are called component grids, u

(c)
n is the combined solution

and the grid Ω
(c)
n , on which the combined solution lives, is the combined grid.

The set I is a set of multi-indices, and it defines over which grids the combination
is to be performed. Only certain choices of the index set give combinations that
properly approximate un. For instance, the classical combination technique is
given by

u(c)
n =

d−1∑

q=0

(−1)q

(
d − 1

q

) ∑

‖i‖1=n+(d−1)−q

ui. (2)

+1

+1

+1

−1

−1

i2

i11 2 3

1

2

3
+

Ω(1,3)

+
Ω(2,2)

+
Ω(3,1)

−
Ω(1,2)

−
Ω(2,1)

=

Ω
(c)

(3,3)

≈
Ω(3,3)

Fig. 1. The classical combination technique in 2D for n = (3, 3) (n = 3).

An example in 2D can be seen in Fig. 1 with the choice n = (3, 3) (n = 3).
The five component solutions ui are weighted with coefficients ci = ±1. The
grids depicted have boundary points in both dimensions (2ij + 1 total points
per dimension), but one can also leave out the boundary points on a given
dimension. Each of these grids has only O(h−1

n) discretization points, and there
are O(d(log h−1

n)d−1) such grids [18]. The crucial advantage of the combination
technique is that the solutions on the component grids are independent of each
other and can therefore be computed in parallel. The results then have to be
combined in a reduction step, either once at the end of the computation or, for
time-dependent problems, every certain number of time steps.

In general, the combination coefficients in (1) are calculated using the formula

ci =
∑

i≤j≤i+1

(−1)|j−i|χI (j), (3)

638 M. Heene et al.

with i ≥ 1, where χI is the indicator function of set I [9]. This is an application
of the inclusion/exclusion principle if the set I is viewed as a lattice.

Since the most anisotropic grids in the combination technique can introduce
some instabilities, one can truncate the combination by defining a minimum level
of resolution imin s.t. imin ≤ i ≤ n, ∀i ∈ I. For example, the choice n = (3, 3)
and imin = (2, 2) results in the combination u

(c)
(3,3) = u(2,3) + u(3,2) − u(2,2).

The combined solution is usually formulated in the space of the sparse grid.
In order to combine the solutions ui efficiently, they first have to be transformed
from their nodal basis representation into the hierarchical basis of the sparse grid
by hierarchization [12]. In the sparse grid space they can be combined simply
by adding up the hierarchical surpluses at all grid points. The inverse operation
(going from the hierarchical to the nodal basis) is called dehierarchization.

These are all the components required to implement the combination tech-
nique in serial. A parallel (and scalable) combination technique presents several
challenges, many of which we have addressed in previous work. We have devel-
oped a framework to run the combination technique on a massively parallel
system, which we now briefly describe.

3 A Software Framework for a Massively Parallel
Combination Technique

The combination technique offers two levels of parallelism. First, all combina-
tion solutions ui can be computed independently of each other. And second, each
ui can be solved with an existing parallel solver. But the parallel combination
technique is not straightforward to implement, especially for time-dependent
problems, which we are most interested in. The basic workflow is given in
Algorithm 1.

We need three ingredients to make the combination technique scale: (i) a
good parallelization strategy; (ii) a suitable load balancing scheme to distribute

Algorithm 1. The Combination Technique in Parallel

1 Choose parameters of combination technique (n and imin), generate set I and compute
combination coefficients ci;

2 for i ∈ I do
3 ui ← u(x, t = 0) ; // Set all initial conditions

4 while not converged do
5 for i ∈ I do in parallel
6 ui ← solve(ui,Nt); // Solve Nt time steps of PDE on grid Ωi

7 ui ← hierarchize(ui); // Hierarchize in place

8 if faults detected then
9 recover(); // Recover from faults: use the FTCT

10 u(c)
n ←∑

i∈I ciui; // Combine solution (reduce and scatter)

11 for i ∈ I do in parallel

12 ui ← dehierarchize(u(c)
n); // Transform back to nodal basis

A Massively-Parallel, Fault-Tolerant Solver for High-Dimensional PDEs 639

Fig. 2. Manager-worker model. In this example, 11 tasks are distributed among 4
groups of processes, each composed of 2 nodes, with 4 processes per node. A task
corresponds to a component grid distributed over all processes of a group.

the workload properly; and (iii) efficient algorithms for distributed systems for
the hierarchization/dehierarchization and to combine the component solutions.

(i) Parallelization Strategy: A Manager-Worker Model. To parallelize the com-
bination technique we use the manager-worker model depicted in Fig. 2. First,
we create groups of MPI processes, and each group might comprise several com-
pute nodes. A manager process generates a list of tasks – in this case, the list
of component solutions ui to be computed – and distributes them evenly among
the groups. Each group in turn has a master process that coordinates the work
within its group and communicates with the manager. Each group computes all
the component grids it has been assigned to one after the other, asynchronously
and independently to the rest of the groups. Almost all of the MPI communi-
cation is done within the groups, and only the combination step requires inter-
group communication. This framework is implemented within the sparse grid
library SG++ [1]. A more detailed description can be found in [13].

(ii) Load Balancing. The different combination solutions take different times to
be solved. The manager has to take this into consideration when distributing the
tasks. We have developed a load balancing scheme that estimates the runtime
of each ui based on the number of grid points and its degree of anisotropy [11].

(iii) Efficient and Scalable Algorithms for Distributed Systems. The combination
step and the hierarchization/dehierarchization steps require inter-node commu-
nication. Keeping this overhead small is crucial for the parallel combination tech-
nique. In previous work we have exploited the hierarchical structure of sparse
grids to optimize the combination step [14]. The resulting algorithm outperforms
non-hierarchical algorithms by orders of magnitude. We have also adapted the
hierarchization algorithm to scale well in distributed systems [12]. Furthermore,
we have presented a massively parallel implementation of the combination step,
which scales up to more than 180 000 cores in [13].

These three ingredients are sufficient to ensure scalability with the combina-
tion technique, but the algorithm would crash in the presence of faults. There
is, however, a well-understood version of the combination technique that can
tolerate faults. In the following, we describe the principle behind it and the
implementation in our framework.

640 M. Heene et al.

4 The Fault-Tolerant Combination Technique

Existing petascale systems can experience faults at various levels, from outright
node failure to I/O network malfunctioning or software errors [5]. In this work
we focus on hardware failures at node level, which are already quite frequent and
will be more common as we approach exascale [5]. What effect do faults have on
the combination technique (Algorithm1)? The answer partly depends on when
the faults occur. Recall that there are four main operations in the algorithm:
solve, hierarchize, combine, and dehierarchize. In previous work we have shown
that most of the computing time is spent on the actual PDE solver, even in the
worst-case scenario where we combine after every time step [13]. Therefore it is
reasonable to assume that faults are most likely to occur during the solver call.

+1

+1

+1

+1

+1

+1

−1

−1

−1

−1

−1

×
×

i2

i11 2 3 4 5 6

1
2
3
4
5
6

+1

+1

+1

+1

−1

−1

−1

0

0

0+1

−1

i2

i11 2 3 4 5 6

1
2
3
4
5
6

Fig. 3. The fault-tolerant combination technique in 2D with two faults, and the result-
ing alternative combination.

If we look back at our parallelization scheme (Fig. 2) we can see what would
happen if one or multiple nodes fail: the component grids assigned to the corre-
sponding process groups are lost, at least for the number of time steps being sim-
ulated at the time of the fault. We avoid the need of checkpointing by applying
the Fault Tolerant Combination Technique (FTCT) [10], an algorithmic app-
roach to recover the combined solution in the presence of faults. The FTCT
is illustrated in Fig. 3. If faults occur, the combination solutions that are lost
are given a combination coefficient of zero, and an alternative combination is
computed. The new combination avoids using the lost solutions, at the price
of having a sparse grid with fewer grid points. It is thus a lossy approach, but
as we will show in Sect. 6, the losses are very small. Furthermore, some addi-
tional component grids that are not originally needed for the combination (e.g.,
solution u(1,4) in the figure) have to be computed: They are required for the
recovery step. In rare cases, some of the coarsest combination solutions have to
be recomputed. Nevertheless, the total overhead is very small. For more details
we refer the reader to [10,17].

4.1 Implementation of the FTCT

Our implementation is based on the ULFM specification [3], currently being the
most mature specification of a fault-tolerant MPI. It adds further functionality

A Massively-Parallel, Fault-Tolerant Solver for High-Dimensional PDEs 641

to the MPI Standard which enables to detect crashed processes and to exclude
these processes from future communication.

There are two cases how a process group is detected to have failed. The
master process detects that a process in its own group has failed and notifies
the manager. This is implemented by an MPI Barrier on the group, which will
return an error code if a process of the group has failed. If a master process
crashes, this is detected by the manager. The manager waits for a message from
the master process of each group, which signals whether the computation was
successful, or whether a process of the group failed. This is implemented with
MPI Wait, which will return an error code if the master process has failed.
For the case that the application code is not prepared to handle errors in MPI
calls (e.g., it does not have a predefined exit strategy), it might block forever
after a process failed. We would deal with such cases by using time-outs in the
manager process. If a group does not finish its computations within reasonable
time (relative to the other groups), it will be marked as having failed. However,
we have not yet implemented such a procedure.

After a fault has been detected, the following recovery steps are performed:

1. Create new MPI communicators that exclude the process ranks of the whole
failed group, using the functions MPI Comm revoke and MPI Comm shrink.

2. Compute new combination coefficients to correct the combined solution
according to the FTCT algorithm.

3. Redistribute the tasks of the failed group to the living groups. Perform ini-
tialization routines if necessary (e.g., set up data structures, etc.).

4. If it is necessary to recompute some of the tasks, initialize these tasks with the
last combined solution and compute them (for the required number of time
steps). The last combined solution is still available on all alive process groups
from the last combination step (basically this is an in-memory checkpoint of
the combined solution that we get “for free” at each combination step).

The corrected combined solution will be computed during the next combination
step (line 10 in Algorithm 1). The lost tasks that were not recomputed have a
combination coefficient of zero and do not contribute to the combined solution.
Afterwards, the combination coefficients are reset to the original coefficients (for
the next combination step) and Algorithm1 is resumed normally. We only use
the reduced set of component grids to recover the combined solution at the
current time step, but we proceed the computation with the full original set of
component grids.

Our algorithm can tolerate any number of faults, as long as one healthy
group is left to continue the computations. In this work we only detect and
correct process failures during the computation phase, but the same procedure
could be used for failures during the combination step. To protect the algorithm
from the very unlikely event of the manager process failing, one could use a
replication strategy, e.g., a second manager process on a different node.

642 M. Heene et al.

4.2 Fault Simulation Layer

For our experiments we did not use an actual fault-tolerant MPI implementation,
because there was none readily available on the HPC systems we had access to.
Instead we realized a home-grown fault simulation layer between our framework
and the actual MPI system, which can simulate failed processes. This layer
extends the MPI system by borrowing some functions of the ULFM interface,
emulating the external behaviour of ULFM, e.g., returning appropriate error
codes. But our actual internal implementation can differ from ULFM, since we
do not consider actual process faults, but only simulated faults. The functions we
extended include the most common point-to-point and collective operations, as
well as some of the new fault tolerance functions, such as MPI Comm shrink and
MPI Comm revoke. With the fault simulation layer we can let processes crash
virtually. When a process calls a function named kill me() at any point in
the code, it stops its normal operation and goes idle. When this happens, it
only handles background operations of the fault simulation layer, and it can
be detected as failed by other processes. If, for example, this process was the
destination of an MPI Send, or if it participated in a collective communication
such as MPI Allreduce, the functions would (according to the specification)
return on the other processes with the error message MPI ERR PROC FAILED.
Details on the fault simulation layer can be found in [20].

Of course, the fault simulation layer does not provide representative results
for the runtime or scalability of the new fault tolerance functions, e.g.,
MPI Comm shrink. However, we do not expect the runtime of these functions
to add a significant overhead to our FTCT algorithm, since the contribution to
the overall runtime is very low. In contrast, if we used a preliminary FT-MPI
implementation (e.g., ULFM, which we expect to be significantly slower than
the vendor specific implementation), we would expect a noticeable setback in
the performance and scalability of our algorithms, since they all rely heavily on
fast communication. The fault simulation layer does come with a certain over-
head, but we have the advantage that we can choose, for a given MPI function,
between its fault tolerant version or its standard version. By only using the fault
tolerant version where it is really necessary (e.g., for detecting faults and shrink-
ing the communicators), but not in the application code or in the performance
critical parts, the impact on the performance is negligible.

Assuming that a future FT-MPI implementation provided by the system
vendor will be comparably fast to existing implementations, we can get realistic
numbers for the overhead of the FTCT on current HPC systems for a large
number of cores. This is a major goal of this work. In the future we plan to
compare the performance of the FTCT using ULFM and our current approach in
order to quantify our arguments. One further advantage of the fault simulation
layer is its portability. Since it runs out of the box with any standard MPI
implementation, we can easily repeat our experiments on a different HPC system
without worrying about installing and running ULFM.

A Massively-Parallel, Fault-Tolerant Solver for High-Dimensional PDEs 643

5 Experimental Setup

Our test problem is the d-dimensional advection-diffusion equation

∂tu − Δu + a · ∇u = f in Ω × [0, T) (4)
u(·, t) = 0 in ∂Ω

with Ω = [0, 1]d, a = (1, 1, ..., 1)T and u(·, 0) = e−100
∑d

i=1(xi−0.5)2 , implemented
in the PDE-framework DUNE-pdelab. For the spatial discretization we use the
finite volume element (FVE) method on rectangular d-dimensional grids. Here,
we use a simple explicit Euler scheme for the time integration. Future work will
comprise a geometric multigrid solver that works with regular anisotropic grids.
We chose this problem as its numerics are well understood and it allows us to
investigate our algorithms in arbitrary dimensionality.

The solve function in Algorithm1 corresponds to computing a component
solution ui with DUNE for one time step Δt in parallel using all processes of the
corresponding process group. As DUNE uses its own data structures, after each
call to DUNE the data has to be copied and converted to the data structure
of the component grid. After the combination step the data is copied back into
DUNE in order to set the new initial values for the next time step. For our
experiments we use the same time step size for all component grids and combine
after each time step. We simulate process failures by calling the kill me function
of our fault simulation layer. The iteration at which the process fails and the
rank of the process are defined a priori in a parameters file.

6 Results

6.1 Convergence

The theoretical convergence of the combination technique (and its fault tolerant
version) has been studied before [8,10], and our experiments confirm previous
results. In all our convergence experiments we vary the number of process groups
and let one random group fail, so the percentage of failed tasks varies accord-
ingly. Which exact group fails makes almost no difference, since the tasks are
distributed homogeneously among the groups. Thus, we show the results only for
one simulation run. Additionally, we did not observe a noticeable difference in
the quality of the solution when varying the time step at which the fault occurs.
The results shown correspond to a fault simulated during the second iteration
(so that all tasks are already assigned to the groups). We compute the relative

l2-error e = ‖u(c)
n −uref‖2
‖uref‖2

at the end of the simulation (t = 0.10 and Δt = 10−4 in
2D, and t = 0.05 and Δt = 10−3 in 5D), interpolating each combination solution
to the resolution of the reference grid. We combine after every time step.

Figure 4 (left) shows the convergence of the combination technique in 2D with
imin = (3, 3), and increasing n, compared to a full grid reference solution of level
n = (11, 11). The recovered combination technique with faults is only minimally

644 M. Heene et al.

worse than without faults (1%–3% worse), even when half of the tasks fail. The
difference is more visible in 5D, Fig. 4 (right), where we chose imin = (3, 3, 3, 3, 3)
and a reference solution of size n = (6, 6, 6, 6, 6). To our best knowledge, this is
the first, fully fault-tolerant convergence experiment in 5 dimensions with the
combination technique. Figure 5 (left) shows a one-dimensional projection of the
combined solution at t = 0.05 for n = (5, 5, 5, 5, 5) computed on four groups.
This shows an excellent match.

(6,6) (7,7) (8,8) (9,9) (10,10)

n

10−2

10−1

l 2
er
ro
r

no faults
2 groups (∼50% faults)
4 groups (∼25% faults)
8 groups (∼12% faults)
16 groups (∼6% faults)

(4,4,4,4,4) (5,5,5,5,5) (6,6,6,6,6)

n

10−1

100

l 2
er
ro
r

no faults
2 groups (∼50% faults)
4 groups (∼25% faults)

Fig. 4. Convergence of the convection-diffusion equation using the combination tech-
nique, with and without faults. A single process fault causes an entire group to fail.
Left: 2D case. Right: 5D case.

0.0 0.2 0.4 0.6 0.8 1.0
x0

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

u

no faults
∼25% faults

8192 16384 32768 65536
processes

101

102

103

ru
nt
im

e
[s
]

solve 8
solve 16
solve 32
redistribute 8
redistribute 16
redistribute 32
recompute 8
recompute 16
recompute 32

Fig. 5. Left: One-dimensional projection of the 5D solution with and without faults for
imin = (3, 3, 3, 3, 3) and n = (5, 5, 5, 5, 5). Right: 5D scaling experiments. The number
in the legend indicates the number of process groups.

A Massively-Parallel, Fault-Tolerant Solver for High-Dimensional PDEs 645

6.2 Scalability

We performed scaling experiments on the supercomputer Hazel Hen to investi-
gate the overhead of the FTCT in a massively parallel setup. We used a 5D com-
bination technique with n = (8, 8, 7, 7, 7) and imin = (4, 4, 3, 3, 3). This resulted
in 126 component grids. Note that a computation of the full grid Ωn would not
be feasible anymore – not even on the full machine. For the parallelization we
used 8192, 16384, 32768 and 65536 processes distributed on 8, 16 or 32 process
groups of size 512, 1024, 2048 or 4096. In all cases one process failed in the
second iteration and the entire corresponding group is removed. For the same
number of groups, always a process in the same group failed.

Figure 5 shows the time to solve all the component grids for one time step
(using all groups, before the fault occurs), the time to redistribute the component
grids of the failed group and the time to recompute certain tasks if necessary.
Our application code has a rather bad node-level performance, but it scales well
when the size of the process group is increased. The time for the combination
can be neglected in these experiments since it was below one second in all cases.
Two factors cause our curves to look slightly erratic. First, we show results for
only one experiment per configuration. This is due to the long time and large
computing resources it takes to run each simulation, which makes statistical
studies infeasible. Second, there is some degree of randomness in the assignment
of the tasks to the process groups, so even when the same group fails, the tasks
to be redistributed or recomputed can vary in each run. The time to redistribute
a task essentially is the time its initialization routine takes. For 16 and 32 groups
the number of tasks to be redistributed is lower than the number of groups, so
the time to redistribute is dominated by the slowest task. Furthermore, in our
case the initialization function does not scale with the number of processes. This
explains why the time to redistribute did not always decrease.

It is not easy to specify the exact overhead of the FTCT, since it depends
on various parameters, such as the expected number of time steps between two
failures, the number of time steps computed in the solve step and the ratio
between the initialization time and the cost of one time step. However, we can
easily formulate upper bounds for the two most costly steps of the recovery
process. The redistribute step can never take longer than to initialize all tasks.
The recompute step can never take longer than the solve step. This means, if
the cost of the initialization is small compared to the total amount of work done
between two process failures, the overhead of the FTCT will be negligible. This
is the main conclusion to be drawn from our experiments.

After the recovery, the time for the solve step increases, since less process
groups are available. In the future we plan to mitigate this problem by not
removing the whole process group, but instead shrinking it to a smaller size.
The optimal case for our algorithm would be an MPI system that allows to
request new MPI processes at runtime after a node or process failure happened.

646 M. Heene et al.

7 Conclusions

Our parallelization strategy for the combination technique can handle hard faults
on a large-scale supercomputer on the algorithmic level with only a small over-
head. The accuracy of the fault-tolerant combination technique remains very
close to the original combination technique after faults occur. In low dimen-
sions, this has been observed before. We were able to show that this holds as
well in a higher-dimensional setting. In the future we plan to repeat our exper-
iments with an actual fault tolerant MPI implementation; we will explore ways
to exclude single processes instead of whole groups; and we will investigate the
effect of silent data corruption additionally to hard faults.

References

1. SG++ library. http://sgpp.sparsegrids.org/
2. Bastian, P., et al.: A generic grid interface for parallel and adaptive scientific com-

puting. Part I: abstract framework. Computing 82(2–3), 103–119 (2008)
3. Bland, W., et al.: A proposal for user-level failure mitigation in the MPI-3 standard.

University of Tennessee (2012)
4. Callenes-Sloan, J., McNamara, H.: Algorithm selection for error resilience in sci-

entific computing. In: Dependable Computing (PRDC), pp. 96–105. IEEE (2014)
5. Cappello, F., et al.: Toward exascale resilience: 2014 update. Supercomput. Front.

Innov. 1(1), 5–28 (2014)
6. Cappello, F., et al.: Toward exascale resilience. Int. J. High Perform. Comput.

Appl. 23(4), 374–388 (2009)
7. Di Martino, C., et al.: Lessons learned from the analysis of system failures at

petascale: the case of blue waters. In: Dependable Systems and Networks (DSN),
pp. 610–621. IEEE (2014)

8. Griebel, M., Schneider, M., Zenger, C.: A combination technique for the solution of
sparse grid problems. In: Iterative Methods in Linear Algebra, pp. 263–281 (1992)

9. Harding, B.: Adaptive sparse grids and extrapolation techniques. In: Garcke, J.,
Pflüger, D. (eds.) Sparse Grids and Applications - Stuttgart 2014. LNCSE, vol.
109, pp. 79–102. Springer, Cham (2016). doi:10.1007/978-3-319-28262-6 4

10. Harding, B., et al.: Fault tolerant computation with the sparse grid combination
technique. SIAM J. Scient. Comput. 37(3), C331–C353 (2015)

11. Heene, M., Kowitz, C., Pflüger, D.: Load balancing for massively parallel com-
putations with the sparse grid combination technique. In: Parallel Computing:
Accelerating Computational Science and Engineering, pp. 574–583 (2014)

12. Heene, M., Pflüger, D.: Efficient and scalable distributed-memory hierarchization
algorithms for the sparse grid combination technique. In: Parallel Computing: On
the Road to Exascale (2016)

13. Heene, M., Pflüger, D.: Scalable algorithms for the solution of higher-dimensional
PDEs. In: Bungartz, H.-J., Neumann, P., Nagel, W.E. (eds.) Software for Exascale
Computing - SPPEXA 2013-2015. LNCSE, vol. 113, pp. 165–186. Springer, Cham
(2016). doi:10.1007/978-3-319-40528-5 8

14. Hupp, P., Heene, M., Jacob, R., Pflüger, D.: Global communication schemes for
the numerical solution of high-dimensional PDEs. Parallel Comput. 52, 78–105
(2016)

http://sgpp.sparsegrids.org/
http://dx.doi.org/10.1007/978-3-319-28262-6_4
http://dx.doi.org/10.1007/978-3-319-40528-5_8

A Massively-Parallel, Fault-Tolerant Solver for High-Dimensional PDEs 647

15. Jenko, F., et al.: Electron temperature gradient driven turbulence. Phys. Plasmas
(1994-Present) 7(5), 1904–1910 (2000). http://www.genecode.org/

16. Li, D., Chen, Z., Wu, P., Vetter, J.S.: Rethinking algorithm-based fault tolerance
with a cooperative software-hardware approach. In: Proceedings of the Interna-
tional Conference on HPC, Networking, Storage and Analysis, p. 44. ACM (2013)

17. Hinojosa, A.P., Kowitz, C., Heene, M., Pflüger, D., Bungartz, H.-J.: Towards
a fault-tolerant, scalable implementation of GENE. In: Mehl, M., Bischoff, M.,
Schäfer, M. (eds.) Recent Trends in Computational Engineering - CE2014. LNCSE,
vol. 105, pp. 47–65. Springer, Cham (2015). doi:10.1007/978-3-319-22997-3 3

18. Pflüger, D.: Spatially Adaptive Sparse Grids for High-Dimensional Problems.
Verlag Dr. Hut, München (2010)

19. Strazdins, P.E., Ali, M.M., Harding, B.: Highly scalable algorithms for the sparse
grid combination technique. In: 2015 IEEE International Parallel and Distributed
Processing Symposium Workshop (IPDPSW), pp. 941–950, May 2015

20. Walter, J.: Design and implementation of a fault simulation layer for the combi-
nation technique on HPC systems. Master’s thesis, University of Stuttgart (2016)

21. Zheng, G., Ni, X., Kalé, L.V.: A scalable double in-memory checkpoint and restart
scheme towards exascale. In: 2012 IEEE/IFIP 42nd International Conference on
Dependable Systems and Networks Workshops (DSN-W), pp. 1–6. IEEE (2012)

http://www.genecode.org/
http://dx.doi.org/10.1007/978-3-319-22997-3_3

On the Inherent Resilience of Integer Operations

Laura Monroe1(B), William M. Jones2, Scott R. Lavigne2,
Claude H. Davis IV3, Qiang Guan1, and Nathan DeBardeleben1

1 Los Alamos National Laboratory, Los Alamos, NM, USA
{lmonroe,qguan,ndebard}@lanl.gov

2 Coastal Carolina University, Conway, SC, USA
{wjones,srlavigne}@coastal.edu

3 Clemson University, Clemson, SC, USA
clauded@coastal.edu

Abstract. It is of great interest to correctly quantify corruption rates
in computing systems. Masking effects of individual operations can com-
plicate this effort by hiding faults. Beyond this, identification of fault-
masking operations may be useful in designing resilient algorithms.

We discuss here fault masking that is mathematically inherent to sev-
eral integer operations. This is not hardware-dependent, so these integer
operations will mask faults on any system upon which they are imple-
mented mathematically correctly.

We show the inherent mathematical resilience of multiplication to
faults, and discuss the mathematical model of this fault masking. We
validate this model through exhaustive and sampled experimentation,
and show that model and experiments exactly match, and that both
closely match observations on a micro-benchmark under soft-error injec-
tion. We also discuss resilience on other integer operators.

Keywords: Resilience · Fault tolerance · Silent data corruption · Soft
errors

1 Introduction

Data corruption in high-performance computation (HPC) can be devastating.
This is especially true for scientific and national security applications, where
computationally complex multi-physics simulations may be the only real way to
experiment. Data corruption in this context can cause errors in the calculation
that might not even be seen, and thus cause an incorrect result to be accepted.

Thus, it is important to understand the nature and behavior of the physical
phenomena that cause faults, and the interactions of these faults with applica-
tions. This is usually done by measuring their rates, and then identifying the

N. DeBardeleben—A portion of this work was performed at the Ultrascale Systems
Research Center (USRC) at Los Alamos National Laboratory, supported by the U.S.
Department of Energy contract DE-FC02-06ER25750. The publication has been
assigned the LANL identifier LA-UR-16-26414.

c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 648–659, 2017.
DOI: 10.1007/978-3-319-58943-5 52

On the Inherent Resilience of Integer Operations 649

impacts they have on running applications. Many studies investigate the impact
of silent data corruption (SDC) on application behavior and correctness by using
simulation-based fault injection studies to support their conclusions [5,7].

In contrast to this experimental approach, this paper is based on theory. We
develop a first-principles mathematical approach that analyzes the impact of
data corruption on low-level operations such as multiplication, within higher-
level applications such as matrix multiplication. We then validate these models
using experimental results. This theoretical approach strengthens our fault injec-
tion work, and provides an exemplar of the development of analytic models of
masked errors on general integer operations. This work is complementary to
some emerging work done recently on floating point numbers [4].

The genesis of this work was a fault-injection study on fault-tolerant matrix
multiplication. Because of the way we injected the faults, all injections should
have resulted in observable error. Instead, we were surprised to find that in
some of the trials, the output was completely correct. The fault injector was
mature and well-validated, and the code we were testing was simple; still, we
examined both suites carefully and found no bugs. When we finally turned to the
mathematics beneath the code, we found the unexpected theoretical resilience
of the multiplication operator that we discuss here. The model we developed
matches the error statistics seen in the study, so this mathematical resilience
completely explains the unanticipated result.

The contributions of this work are as follows:

– We present an analytical approach to fault analysis and resilience that is the-
oretically justifiable and explains experimental results. This kind of approach
can be used to better estimate resilience and actual error rates.

– We use this approach to develop an analytical model to calculate the resilience
inherent to the integer multiplication operation.

– We validate this model through exhaustive and sampled experimentation,
and demonstrate that the theoretical model and targeted experimentation
exactly match each other, and that together, they closely match the observed
behavior in a micro-benchmark under soft-error injection.

– We quantify a “built-in” resilience that may be inherent to many mathemat-
ical operations, using integer multiplication as one example. These character-
istics are interesting because they provide a measure of resilience that is not
coupled with any hardware or software-based fault tolerance mechanisms.

– We present a masking behavior that can influence the process of analysis.

2 Theory of Multiplicative Resilience

In this section, we discuss our theoretical model for resilience of integer multipli-
cation. The concept is quite simple: if a is multiplied by b, and b is a multiple of
2k, the multiplication essentially invokes a left shift on a by k bits, and any faults
in the leftmost k bits of a disappear. Simple as this is, it was unanticipated, and
was not our initial approach to analyzing the unexpectedly correct results in our
experiment. We have not found this effect mentioned in the literature.

650 L. Monroe et al.

Throughout, we use the term “wordlength” to describe the length of an
integer native to the architecture, and the term “bitlength” to describe the
minimum number of bits needed to represent a given integer. We do not show
the proofs in this short paper, for the sake of brevity.

2.1 Multiplicative Resilience from Overflow Implementation

The implementation of integer multiplicative overflow is truncation at n bits, on
every n-bit machine we have tested. If a× b does not overflow, faults are benign
if the least n bits of the result are the same as the least n bits of a × b.

For example, consider the 8-bit multiplication 4 × 16. The correct result is
64. If there happened to be a single bitflip in the 6th bit of the first factor, the
product becomes (26 + 4) × 16 = 1088. Truncating this result to the lowest 8
bits gives 64, and the correct answer is returned.

This happens whenever b = b′ × 2s, b′ odd, and the bitflips on a take place
only within the top s bit positions. Then the entire error will be truncated when
the overflow is truncated. If the bitflips occur in the top s bits of a, then the result
is correct. This means that benign behavior of multiplicative faults depends only
on the power of 2 dividing b and on where the bitflips occur in a.

This is a mathematical property of multiplication. The only machine contin-
gency that affects this result is the treatment of overflow, which is undefined.
Every machine we have tested implements overflow by truncating, and this per-
mits the multiplicative resilience we describe in this paper.

Multiplicative behavior upon overflow is undefined in the C/C++ spec [3].
Although there are some non-language compliant compiler-specific options that
in some cases can alter the behavior of overflow, these are often ignored. Addi-
tionally, there are run-time checks that can be incorporated to detect the possi-
bility of overflow prior to and after instruction execution; however, this function-
ality is in most cases compiler- and OS-specific, and is almost never enabled by
default. Furthermore, this type of protection can be costly as it involves inserting
additional instructions after every operation that may result in overflow, which
can result in lower run-time performance [3]; an unwanted characteristic in HPC.

This illustrates how the implementation of undefined behavior might be used
to affect the resilience of a given operation. For example, one might implement to
recover the most significant bits upon overflow. This would not give the resilience
to high-bit faults described here, but might give other forms of resilience.

Proposition 1. Let multiplication overflow be implemented via truncation.
Let n be the wordlength, let a be an n-bit integer having some number k of bitflips,
and let b be an n-bit integer such that 2j is the largest power of 2 dividing b, so
b = 2j × b′ and b′ is odd.
Let h be the bit of smallest index in a (where indices start at 0) that is flipped.
Then a × b gives the same answer pre- and post-bitflip if and only if h ≥ n − j.

In the next two corollaries, we consider the case where overflow does not occur
in the original multiplication a× b. We do this as these corollaries are concerned
with correctness, and the calculation will not be correct if there is overflow.

On the Inherent Resilience of Integer Operations 651

Corollary 1. Let the conditions on a, b, h and the bitflips be as in Proposition 1,
and let a× b give the same answer pre- and post-bitflip. If a× b does not produce
overflow, then abitflipped × b will be correct.

Corollary 2. If b is odd, a × b will always be in error.
If b is even, a × b may be correct, if the faults in a fall into the right bits and
a × b does not produce overflow.

2.2 Probability of Benign Faults on a Uniform Fault Model

We calculate the probability of faults before integer multiply being benign, where
an arbitrary k faults following a uniform distribution are injected into n-bit
signed integers a or b.

Let 0 ≤ a < 2m and 0 ≤ b < 2m, for some number of bits m, with m < n.
We permit faults to fall anywhere in the n available bits. A special case of this
calculation is when a and b vary over all n-bit signed integers, so m = n − 1.

We note that Proposition 1 may be applied to an arbitrary fault model
(including one resulting from a data protection scheme with some SDC). Given
the fault rate (protected or not) for a particular hardware or the number of unde-
tected faults possible for a particular ECC scheme, the combinatorial calculation
may be performed for that rate or number of faults.

General Probability of Benign Faults. To calculate the overall probability
of a benign result after k bitflips, we calculate the number of benign results after
k faults, and divide by the total number of (a, b) pairs having k faults. This gives
the probability of a benign result.

benign (a, b, faults)
total (a, b, faults)

We count the total number of (a, b �= 0, faults) triples by calculating a
sum ranging over the set of b �= 0, so ranging from 1 to 2m − 1. For each a
corresponding to a b, there are

(
n
k

)
ways of choosing k faults on n bits.

Let num benign ab be the number of a corresponding to each b �= 0 having
0 s in the j least significant bits and set of k faults. This number will differ
according to the conditions imposed on a and b (i.e., overflow allowed or not in
their product). We leave num benign ab as a general variable, and obtain

(
n
k

)
2m +

m−1∑

j=k

(
j
k

) 2(m−j−1)−1∑

i=0

num benign ab

(
n
k

)
2m +

2m−1∑

b=1

(
n
k

)
num ab

(1)

Formula (1) is the general expression of the probability of a benign result upon
k bitflips. We now distinguish between the cases where a × b is permitted to
produce overflow, and where a × b is not.

652 L. Monroe et al.

Probability of Benign Faults When Overflow is Permitted. Since over-
flow is permitted, the multiply calculation will not get the correct answer if it
does overflow. For this case, then, we do not look for correctness per se, but
merely ask that the multiply get the same answers in the faulty and fault-free
calculations.

num ab is the total number of a corresponding to each b �= 0 and set of k
faults. We do not care if a× b overflows, so all a are eligible, and num ab is 2m.

num benign ab is the number of a corresponding to each b �= 0 having 0 s in
the j least significant bits and set of k faults. Again, there are 2m of these.

Substituting 2m for num ab and num benign ab in Formula (1), we obtain

(
n
k

)
2m +

m−1∑

j=k

(
j
k

) 2(m−j−1)−1∑

i=0

2m

(
n
k

)
2m +

2m−1∑

b=1

(
n
k

)
2m

This reduces to
(
n
k

)
+

m−1∑

j=k

(
(
j
k

)
2(m−j−1))

(
n
k

)
2m

(2)

Proposition 2. Let integers a and b of word length n and bitlength m be mul-
tiplied, with overflow permitted, and let k faults occur in one of the integers.
Then the probability of masked-benign results in this integer multiply increases
as word length n decreases. In other words, the resilience of integer multiply with
overflow permitted increases with shorter word length.

Probability of Benign Faults When Overflow is Not Permitted. In this
case, a and b are chosen so that a × b does not overflow. This is the meaningful
case, since overflow multiply values are incorrect.

This restriction means that a×b ≤ 2n−1−1, or a ≤ 2n−1−1
b . We have the addi-

tional restriction that both a and b are less than 2m. We find values for num ab
and num benign ab and substitute them in to Formula 1, for a probability in the
no-overflow case.

We obtain the following values for num ab and num benign ab:

num ab = min(2m, �2(n−1) − 1
b

� + 1)

num benign ab = min(2m, � 2(n−1) − 1
2j × (2i + 1)

� + 1)

and obtain an overall probability in the case of no overflow of

(
n
k

)
2m +

m−1∑

j=k

(
(
j
k

)2(m−j−1)−1∑

i=0

min(2m, � 2(n−1)−1
2j×(2i+1)� + 1))

(
n
k

)
(2m +

2m−1∑

b=1

min(2m, � 2(n−1)−1
b � + 1))

(3)

On the Inherent Resilience of Integer Operations 653

Conjecture 1. Let integers a and b of wordlength n and bitlength m be multi-
plied, with overflow not permitted, and let k faults occur in one of the integers.
Then the probability of masked-benign results in this integer multiply increases
as wordlength n decreases. In other words, the resilience of integer multiply with
overflow not permitted increases with shorter word length.

All experimental evidence we have generated supports this conjecture. The con-
jecture is clearly true in the case where m ≤ �n

2 �, for word lengths ≥ n: this
reduces to the overflow case described in Proposition 2, since no two m-bitlength
integers multiplied together can have more than 2m ≤ n bits, so cannot overflow.

Special Case: 1 Bitflip with Overflow Permitted. We calculate this case
explicitly because it reduces to such a simple form. Setting m = n−1, and k = 1
gives the following formula directly from Formula 2.

n +
n−2∑

j=1

j × 2(n−j−2)

n × 2(n−1)
=

1
n

(4)

0

5

10

15

20

25

30

35

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Bit length of factors

P
er

ce
nt

ag
e

of
 m

as
ke

d
be

ni
gn

 fa
ul

ts

4−bit (overflow NOT allowed)

8−bit (overflow NOT allowed)

16−bit (overflow NOT allowed)

32−bit (overflow NOT allowed)

4−bit (overflow allowed)

8−bit (overflow allowed)

16−bit (overflow allowed)

32−bit (overflow allowed)

Theoretic resilience of multiply after 1 bitflip
When overflow is allowed and NOT allowed

Fig. 1. Results from the analytical model when a and b are chosen such that overflow
will not occur in a ∗ b as well as when overflow is allowed to occur (calculated only
to bitlength of a and b equal to 27, because of the large amount of time needed to
compute the summations for larger bitlength). Note the relatively high percentage of
multiplicative resilience when the bitlength of the factors is smaller compared to the
architectural width.

654 L. Monroe et al.

2.3 Implications

The theoretical results have three implications: (1) There is non-trivial resilience
occurring naturally in multiply, contingent only on overflow handling, (2)
Resilience is better when overflow is not permitted on the product of a and
b, and (3) Improved resilience is obtained in some cases by using the smallest
wordlength possible for a variable (experimental evidence supports this in all
cases).

Figure 1 represents the resilience of multiply when a and b have been screened
to preclude overflow as well as when overflow is allowed. The results for the two
sets of data are the same, up to the point where bitlength of a and b are about half
of wordlength. After that, when overflow is allowed, we see continued decreasing
convergence to the resilience when a and b are the entire wordlength.

3 Experimental Verification via Exhaustive Multiplication
Testing

We verify the theoretical model described in Sect. 2 by simply multiplying inte-
gers after bitflips, and calculating the percentage of time the product is correct.
Where possible, we exhaustively compute all combinations of a ∗ b, for every
bit-flip that can occur in a. When it is too time-consuming to accomplish this,
we sample from the overall space of all possible combinations of a ∗ b.

3.1 Exhaustive Search

Although the analytic model discussed in Sect. 2 is parameterized to handle a
configurable multiple bit-flips (k) and arbitrary-sized a’s and b’s, in this section
we focus on 32-bit integer multiplication, and single bit-flips to a. We have cho-
sen these parameters because they match the situation in our micro benchmark,
discussed in Sect. 4. Note, it is not necessary to flip bits in b, since integer mul-
tiplication is commutative.

In the first strategy, “Exhaustive”, we loop across all possible combinations
of a ∗ b, where 0 ≤ a, b ≤ 2i − 1, where i can be chosen for ranges of a and b that
are of interest for comparing to a particular application under consideration.
Then for each product, we look across possible single-bit bit-flips and count up
the number of times that the uncorrupted product is equal to the product that
results under fault injection. Using this count, we compute a simple percentage
of the combinations to result in unmasked benign errors.

3.2 Sampled Search

The above “Exhaustive” strategy works well, provided that the ranges of a and
b are small enough that the total number of combinations does not become
prohibitively expensive to compute. For the machine used in this research, the
“cut-off” point for 32-bit integers occurs when i is chosen to be larger than

On the Inherent Resilience of Integer Operations 655

Table 1. The correspondence between theoretical calculations and experimental results
for 32-bit wordlength. Entries represent the percentage of benign bitflips. Experimental
and theoretical values are an exact match where we tested exhaustively (bitlength up to
17), and are a close match where we sampled (bitlength greater than 17).

Bitlength Experiment:
no overflow

Theory: no
overflow

Experiment:
overflow

Theory:
overflow

3 25.78% 25.78% 25.78% 25.78%

4 14.06% 14.06% 14.06% 14.06%

5 8.40% 8.40% 8.40% 8.40%

6 5.66% 5.66% 5.66% 5.66%

7 4.35% 4.35% 4.35% 4.35%

8 3.71% 3.71% 3.71% 3.71%

9 3.41% 3.41% 3.41% 3.41%

...

25 3.17% 3.18% 3.13% 3.13%

26 3.23% 3.22% 3.13% 3.13%

27 3.23% 3.30% 3.13% 3.13%

28 3.39% – 3.13% –

29 3.65% – 3.13% –

30 4.15% – 3.13% –

31 6.45% – 3.13% –

32 6.91% – 3.13% –

roughly 17 bits. As such, we were interested in a sampled approach that would
allow us to verify the theoretic model for larger values of i. We refer to this
strategy as “Sampled”. It is similar to the prior strategy in that we look across
all possible values of b, but that for each of these values, we randomly choose a,
0 ≤ a ≤ 2i − 1, and then randomly flip one of a’s 32 bits. The number of trials
across a, a trials, is chosen to be large enough to give an adequate sampling in
a, without the need to iterate across all possible a, as is done in the “Exhaustive”
approach.

3.3 Comparison of Experimentation to Theoretical Model

We show in Table 1 a set of experimental results and theoretical calculations
for single bitflips on 32-bit integers. When a and b have bitlength greater than
18, we sampled as above, but otherwise we exhaustively tested every a, b, bitflip
combination possible. Note, the results for bits 14 to 22 were identical to those
for bits 13 and 23, and were therefore omitted from table in the interest of space.

As seen in the table, the theoretical model exactly matches the experimen-
tal data from the exhaustive testing, and matches very closely the sampled
data. In every case we tested, the experimental results matched the theoretic

656 L. Monroe et al.

model. When we conducted an exhaustive experiment, the experimental proba-
bilities matched the theoretical calculation exactly. When we sampled, for larger
wordlength and bitlength, the sampled results were extremely close.

The theoretical formula is a double summation depending on bitlength and
has high time complexity, so can be hard to calculate for large bitlength. Entries
in the table represented as “–” denotes these missing calculations. Sampling and
multiplying (a,b) pairs is a Monte Carlo method of approximating the theoretical
calculations, and in practice converges fast to a useable solution. The experiment
columns thus adequately represent the percentage where we did not do the full
theoretical calculation.

4 Experimental Verification via Matrix Multiplication
Micro-Benchmark

We verify multiplicative resilience in another way by running a common fault-
tolerant matrix multiplication algorithm [2,8,9] (ABFT-MM). We injected faults
into randomly selected multiplication operands as the inner-products are com-
puted, and observed how often faults were actually caught and corrected. This
also allows us to observe the results of multiplicative resilience on more complex
code similar to algorithms run in the field.

We provide the results of extensive experimentation under random fault injec-
tion and compare these results to those predicted by the theoretical model, as
well as those obtained via the sampling multiplicative test discussed in Sects. 2
and 3.

4.1 ABFT-MM Experimentation and Results

We present the results of studying an integer implementation of ABFT MM
in the presence of injected faults using the F-SEFI fault injector [6] based on
QEMU [1]. In this benchmark, we targeted the fault injection on the traditional
triply-nested FOR LOOP structure of the dense matrix multiply. Specifically,
we used F-SEFI to corrupt a single randomly-chosen bit in the output of a
randomly-chosen IMUL operation in the algorithm’s inner-product calculation.

Our benchmark included roughly 60,000 matrix multiplication trials within
F-SEFI. In each of these trials, both input matrices A and B were randomly
generated where each element, e, ranged from 0 ≤ e ≤ 2i − 1, for 3 ≤ i ≤ 7,
giving a bitlength of i + 1 for signed integers. These ranges were chosen to
illustrate the impact of increasing used bitlengths while at the same time, were
capped by 127 so as to guarantee that overflow would not occur during the
dot-product calculation for matrices of size 45 × 45 using 32-bit signed integer
datatypes.

After each execution, a pre-computed “golden” answer for the matrix product
under fault injection, C ′, was compared to the result of the ABFT MM after error
detection and correction to determine whether the algorithm had successfully
detected and corrected any errors in C ′.

On the Inherent Resilience of Integer Operations 657

Table 2. Masked Benign error rates

Bit-length 4 5 6 7 8

ABFT-MM 14.1% 8.2% 5.82% 4.32% 3.84%

Theoretical 14.06% 8.4% 5.66% 4.35% 3.71%

Exhaustive 14.06% 8.4% 5.66% 4.35% 3.71%

Sampled 14.06% 8.4% 5.66% 4.35% 3.73%

These results in Table 2 also provide data that allows us to easily compare
the empirical results from ABFT-MM under fault injection in F-SEFI with data
derived from the theoretical model and other experimental models discussed in
Sects. 2 and 3.2. These results show that under fault injection, the percentage of
benign errors in ABFT-MM closely matches those predicted by the theoretical
model.

5 Preliminary Results on Other Operations

5.1 Experimental Results

We have experimentally demonstrated that this masked benign behavior is not
unique to integer multiplication. By making use of the exhaustive search strategy,
we explore the resilience of integer division, and modulo, and contrast these with
our prior findings for integer multiplication, as shown in Fig. 2. It should be noted
that while multiplication is commutative, division and modulo are not, and as
such, we provide experimental results for each operation, a OP b, both where
the bitflip is in a and also where the bitflip is in b, as well as an average across
these two results.

These experimental results are provocative, and strongly suggest that this
masked benign behavior is present in operations beyond integer multiplication.
With this in mind, we intend to explore other integer and floating point arith-
metic operations, from both an experimental and theoretical point of view, in
our future work.

5.2 Partial Theory of Division Resilience

We present here some preliminary results on the resilience of the integer division
operator. We examine the case where only the numerator experiences bitflips,
and show experimental verification of the propositions and experimental support
for the conjectures. Again, we do not present the proofs of these, in the interest
of brevity.

Experimental evidence shows that integer division is much more resilient than
integer multiply. Future work will include a complete demonstration as shown
earlier for the integer multiplication operator.

658 L. Monroe et al.

0

20

40

60

80

4 6 8 10 12 14 16
Bit length of operands

Pe
rc

en
ta

ge
 o

f m
as

ke
d

be
ni

gn
 fa

ul
ts

a/b (bitflip in a) a%b (bitflip in a) a*b overflow not allowed

a/b avg a%b avg a*b overflow allowed

a/b (bitflip in b) a%b (bitflip in b)

Experimental resilience of select
integer operations after 1 bitflip

Fig. 2. Results from an exhaustive search for 16-bit a and b space, testing every possible
bitflip on a or b as specified, for integer multiplication, division and modulo. Note the
relatively high percentage of resilience across each of these operations.

This gives a path forward for the case of the division operator, and demon-
strates that a mathematical approach to resilience on arithmetic operators com-
pletely shown for multiplication may be extended to other operators.

Division Resilience When Numerator Has an Arbitrary Number of
Bitflips. As a proof of concept, we consider the case where only the numerator
experiences bitflips.

Proposition 3. Let b be an n-bit integer equal to 2k for some k, and let a be an
integer such that 0 ≤ a < 2n. Assuming equal probability for any combination of
bitflips, the overall percentage of correct answers on a

b when a experiences some
number of bitflips is 2k

2n = 1
2n−k .

Conjecture 2. Let b be an n-bit integer, not necessarily a power of 2, and let a be
an integer such that 0 ≤ a < 2n. Assuming equal probability for any combination
of bitflips, then the overall percentage of correct answers on integer divide when
bitflips occur only on a is close to b

2n .

Proposition 4. Let b be an n-bit integer equal to 2k for some k, and let a be
an integer such that 0 ≤ a < 2n. Then the overall percentage of correct answers

on a
b when a experiences m bitflips is (k

m)
(n
m) .

On the Inherent Resilience of Integer Operations 659

Corollary 3. Let b be an n-bit integer equal to 2k for some k, and let a be an
integer such that 0 ≤ a < 2n. Let p(i) be the probability that i faults occur in a
given fault model. Then the overall probability of correct results using that fault

model on integer divide when bitflips occur only on a is
∑n

0 p(i)
(ki)
(ni)

6 Conclusion

Providing an analytic model for the impact that soft errors have on low-level
operations forms the basis for establishing confidence in any injection-based
empirical study. In this work, we’ve established this model for integer multipli-
cation and have begun investigation into other integer operations. Furthermore,
we have shown a non-trivial multiplicative resilience under the integer multi-
plication operator and have experimentally shown that the resilience increases
as wordlength gets shorter, and that our analytic models are clearly supported
through extensive experimentation that also shows promise for other integer
operators as well.

References

1. Bellard, F.: QEMU, a fast and portable dynamic translator. In: Proceedings of
USENIX Annual Technical Conference (ATEC) (2005)

2. Bosilca, G., Delmas, R., Dongarra, J., Langou, J.: Algorithm-based fault tolerance
applied to high performance computing. J. Parallel Distrib. Comput. 69(4), 410–416
(2009)

3. Dietz, W., Li, P., Regehr, J., Adve, V.: Understanding integer overflow in c/c++.
In: Proceedings of the 34th International Conference on Software Engineering, ICSE
2012, pp. 760–770. IEEE Press, Piscataway (2012). http://dl.acm.org/citation.cfm?
id=2337223.2337313

4. Elliott, J., Hoemmen, M., Mueller, F.: Exploiting data representation for fault tol-
erance. J. Comput. Sci. (2016). http://www.sciencedirect.com/science/article/pii/
S1877750315300491

5. Guan, Q., DeBardeleben, N., Artkinson, B., Robey, R., Jones, W.M.: Towards build-
ing resilient scientific applications: resilience analysis on the impact of soft error and
transient error tolerance with the CLAMR hydrodynamics mini-app. In: 2015 IEEE
International Conference on Cluster Computing, pp. 176–179, September 2015

6. Guan, Q., Debardeleben, N., Blanchard, S., Fu, S.: F-SEFI: a fine-grained soft error
fault injection tool for profiling application vulnerability. In: 2014 IEEE 28th Inter-
national Parallel and Distributed Processing Symposium, May 2014

7. Guan, Q., DeBardeleben, N., Blanchard, S., Fu, S.: Empirical studies of the soft error
susceptibility of sorting algorithms to statistical fault injection. In: Proceedings of
the 5th Workshop on Fault Tolerance for HPC at eXtreme Scale, FTXS 2015, NY,
USA, pp. 35–40 (2015). http://doi.acm.org/10.1145/2751504.2751512

8. Huang, K.H., Abraham, J.: Algorithm-based fault tolerance for matrix operations.
IEEE Trans. Comput. C–33(6), 518–528 (1984)

9. Jou, J.Y., Abraham, J.: Fault-tolerant matrix arithmetic and signal processing on
highly concurrent computing structures. Proc. IEEE 74(5), 732–741 (1986)

http://dl.acm.org/citation.cfm?id=2337223.2337313
http://dl.acm.org/citation.cfm?id=2337223.2337313
http://www.sciencedirect.com/science/article/pii/S1877750315300491
http://www.sciencedirect.com/science/article/pii/S1877750315300491
http://doi.acm.org/10.1145/2751504.2751512

Pragma-Controlled Source-to-Source Code
Transformations for Robust Application

Execution

Pedro C. Diniz1(B), Chunhua Liao2, Daniel J. Quinlan2, and Robert F. Lucas1

1 USC Information Sciences Institute,
4676 Admiralty Way, Suite 1001, Marina del Rey, CA 90292, USA

{pedro,rflucas}@isi.edu
2 Lawrence Livermore National Laboratory,

7000 East Avenue, Livermore, CA 94550, USA
{liao6,dquinlan}@llnl.gov

Abstract. The most widely used resiliency approach today, based on
Checkpoint and Restart (C/R) recovery, is not expected to remain viable
in the presence of the accelerated fault and error rates in future Exascale-
class systems. In this paper, we introduce a series of pragma direc-
tives and the corresponding source-to-source transformations that are
designed to convey to a compiler, and ultimately a fault-aware run-time
system, key information about the tolerance to memory errors in selected
sections of an application. These directives, implemented in the ROSE
compiler infrastructure, convey information about storage mapping and
error tolerance but also amelioration and recovery using externally pro-
vided functions and multi-threading. We present preliminary results of
the use of a subset of these directives for a simple implementation of
the conjugate-gradient numerical solver in the presence of uncorrected
memory errors, showing that it is possible to implement simple recovery
strategies with very low programmer effort and execution time overhead.

1 Introduction

The resilience of High Performance Computing (HPC) applications in the pres-
ence of faults and errors on future extreme scale supercomputing systems is a
growing concern. With process technology scaling, future exascale-class systems
will be constructed from transistor devices which are less reliable than those used
today. Furthermore, the recent trend of aggressive scaling of processor cores and
memory chips in order to drive floating-point performance suggests that future
exascale class systems will require exponential growth in compute and memory
resources [1,13]. However, with increase in the number of system components,
the overall reliability of the system will decrease proportionally. The projections
on fault rates based on current HPC systems and technology roadmaps pre-
dict that exascale class systems will experience several errors per day. This will
impact long running scientific applications which will terminate abnormally, or
worse, may complete with incorrect results [4].
c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 660–670, 2017.
DOI: 10.1007/978-3-319-58943-5 53

Pragma-Controlled Source-to-Source Code Transformations 661

The de-facto approach used today to provide resilient operation is based on
Checkpoint and Restart (C/R) which periodically commits the application state
to persistent storage. Recovery is initiated only upon failure of a process and
entails terminating all the remaining processes and restarting the application
from the latest stable global checkpoint. If unchecked by aggressively reducing
its frequency and/or the volume of saved data, this approach is inviable. As the
applications scale to leverage the capabilities of these large scale machines, the
amount of state to be gathered will grow considerably, resulting in proportional
increases in the intervals required to create and commit checkpoints as well
as recover them from storage. Given that the projected Mean Time to Failure
(MTTF) of the exascale systems will be of the order of a few minutes [1], C/R
will no longer be effective in scenarios where the C/R interval is greater than
the system MTTF.

Still, various HPC applications offer rich possibilities to algorithmically
detect and correct the errors in their program state. Algorithm-based fault toler-
ance (ABFT) [2,9] techniques for linear algebra kernels enable the identification
of the error location and correction of bit flip errors using checksum error encod-
ing in the data structures and adapting the algorithms to operate on the encoded
data. Similarly, iterative numerical algorithms such as the Adaptive Multi-Grid
Solver [5], can tolerate errors at the expense of longer convergence rates or itera-
tions. Even more extreme, algorithms that rely on random events, as is the case
of algorithm that leverage Monte-Carlo simulation techniques can (in specific
contexts) tolerate memory errors provided they do not lead to catastrophic pro-
gram behavior. Yet, in the face of the wealth of such application acceptability
or tolerance characteristics, such algorithmic features are not exposed to the
programming environment due to the lack of convenient interfaces.

In this paper, we extend our previous approach that is based on programming
model extensions that incorporates simple language-level support that is tightly
coupled with the compiler and runtime system to adaptively and dynamically
apply redundancy [11,12]. The approach allows users to specify various detec-
tions conditions that strongly suggest silent-data corruption in addition to the
traditional error detection through abnormal program execution. The program-
ming model extension described here is based on #pragma directives which are
then translated as source-to-source code transformations to support application
level detection and recovery strategies through retry and multi-threading check-
ing and correction semantics. These detection and recovery mechanisms can be
coupled with an introspection runtime system enabling the use of redundant
multithreading when too many faults are observed. We have implemented these
directives and the corresponding code transformations in the ROSE Compiler
Infrastructure [16] and use them to demonstrate their suitability to an illus-
trative scientific kernel – the conjugate gradient iterative solver. The results,
albeit very preliminary, do reveal that with very little programming effort, this
pragma-based code transformations approach substantially increases the ability
of selected section of codes to survive uncorrected memory errors.

662 P.C. Diniz et al.

2 Pragma-Based Code Transformation Directives

We next present the various pragma directives and illustrate their use via source-
to-source transformations and examples. We begin with the simplest forms where
fault-tolerance is indicated to very sophisticated source code transformations
where detection and recovery with redundant code execution is used.

2.1 Hardware Error Detection and Correction

In this work we assume that some, but not all the memory faults are corrected via
hardware mechanisms such as Error-Correcting-Codes (ECC) and chipKill [14].
As such, the only faults that are signaled via hardware that trigger the execu-
tion of the amelioration actions defined by the directives described here, include
detected but uncorrected memory errors.1

2.2 Tolerant Storage Declaration

This first tolerant directive simply indicates that a specific data declaration (to
follow the directive) can tolerate a specific maximum number of (uncorrected)
errors. Alternatively, when present, the directive also indicates that the corre-
sponding data structure should be placed in a specific data storage as indicated
by a secondary integer identifier.2 The directive has the syntax shown below
where exp1 and (the optional) exp2 denote compile-time integer values.

#pragma failsafe tolerant (exp1 : exp2)

A simple example of the use of this directive is shown below where the array A
is to be allocated preferentially to the storage labelled with id zero and can only
tolerate 1 uncorrected error.

#pragma failsafe tolerant (1: 0)

int A[M][N];

In the absence of both expression exp1 and exp2 fields, the run-time system
assumes that any number of errors are to be tolerated for this specific variable.

This pragma is also applicable to global variables or heap-allocated variables,
although the later needs to be explicitly controlled by the use of a tolerant variant

1 As a minor point, we further assume that upon restart (via state restore) data is
flush out of cache storages so that erroneous values are not restore as part of the
application’s state.

2 We envision a memory system where distinct regions of the storage space have
distinct resilience characteristics each of which is identified by a unique numerical
or symbolic identifier.

Pragma-Controlled Source-to-Source Code Transformations 663

of malloc3. The variable to be associated with this behavior can either be a scalar
or a statically allocated arrays. In case of a pointer variable, it is the pointer
that needs to be labelled as tolerant but not the heap-allocated storage it points
to. To that effect we also provide a variant of the malloc function labelled as
tolerant malloc(size, N, K). Upon parsing and translation the compiler will
produce a simple text file, with the scope of the variables labelled as tolerant
and the corresponding statically declared name including the numeric values for
exp1 and exp2.

This tolerant data is then parsed by the run-time system and can be incor-
porated as part of an introspection system. As variables that are deemed less
tolerant reach their limit of tolerated errors, they can be migrated to increas-
ingly more robust regions of the address space thus allowing a run-time system
to dynamically manage the underlying state of the machine while meeting (or
at least attempting to meet) the tolerance requirements of each data structure.

2.3 Sentinel Values for Silent Data Corruption Detection

These constructs, akin to the #assert specify a user-defined predicates that
must hold at specific execution points of the application. Using these pragmas
the user can attempt to correct silent data or uncorrected errors in specific
variables and thus proceed with the computation. Still, and even in the event
of user amelioration, error variables record the error events and interface with a
resilience introspection engine for subsequent application adaptivity.

The syntax of this pragma is shown below and it is the programmers respon-
sibility to ensure that the evaluation scope of the arguments of the handler
functions and assertion predicates are appropriately scoped.

#pragma failsafe assert (predicate) error (function handler)

A simple example of the use of this pragma is shown below:

#pragma failsafe assert (a > 0) error (MyFunction(&b))

where it is assumed that MyFunction is an integer-returning function and where
a non-zero value will indicate the inability to correct an erroneous condition and
a zero valued return success in correcting such situation. The translation of the
above directive in terms of source C code is as shown below.

3 Automatically, converting the heap-allocated use of a malloc into a tolerant-malloc
is rather tricky to do statically as in the general case a compiler would have to track
the use of address as function argument and allocation across procedure boundaries
to understand when the address of a pointer could have been declared in another
scope as tolerant. As a results we restrict the use of this pragma to the storage that
is statically allocated either at the file or at the global scope levels.

664 P.C. Diniz et al.

i f (p r ed i c a t e (. . .) == 0){
i f (f unc t i on hand l e r (. . .) != 0){

f a i l s a f e e r r o r ++;
FAILSAFE REPORT ERROR(0 , f a i l s a f e e r r o r) ;
f a i l s a f e e r r o r f l a g = 0 ;

} e l s e {
FAILSAFE REPORT CORRECTION(0 , f a i l s a f e e r r o r) ;

}
}

In the absence of the error clause, and should the predicate evaluation not
hold at runtime, the generated code will terminate the applications execution
via the exit function as illustrated in the sample code below.

i f (p r ed i c a t e (. . .) == 0){
FAILSAFE REPORT ERROR EXIT(0) ;

}

2.4 User-Controlled State Saving and Restoring with Retry

In order to provide users with the capability to control the saving and restoring
of program state, we have included a save/restore directive. The directive thus
include which program variables constitute relevant program state that needs to
be saved and restored and for how many retries the execution of the subsequence
control-flow program blocks should be attempted.

This directive can be combined with the assert pragmas described above to
detect erroneous execution conditions resulted from silent data corruption.

#pragma failsafe save restore (var list) retry (exp)

{/* code block */ }

This directive is translated into code that saves the state of the set of variables
listed in the var list into auxiliary variable via a memory copy construct4 Upon
detection of an uncorrected error in the code block, the control is transferred to
the beginning of the block with the state of the saved variable reinstated. The
snippet of code below depicts the structure of the generated code as the result
of the translation of this directive for a retry value of 2.

i n t f s num t r i e s ;
v o l a t i l e i n t f s num er ro r s ;
f s num t r i e s = 0 ;
f s num er ro r s = 0 ;
<code f o r sav ing data ob j ec t s>
do {

i f (f s num t r i e s != 0){
4 In the current implementation only supports scalar and statically allocated array

variables with known compile-time bounds. The support of dynamically allocated
arrays with multiple pointer levels can, however, pose serious implementation chal-
lenges in terms of correctness and performance.

Pragma-Controlled Source-to-Source Code Transformations 665

<code f o r r e s t o r e data ob j ec t s>
}
f s num er ro r s = 0 ;
<o r i g i n a l code block here>
f s num t r i e s++;

} whi le ((f s num er ro r s != 0) && (f s num t r i e s < 2)) ;
i f (f s num er ro r s != 0){

FAIL SAFE EXCEPTION() ;
}

2.5 Redundancy-Based Fault Detection and Recovery

In addition to the pragmas described above, we have also implemented two
simple redundancy-based detection and recovery pragmas, namely, using dual
and triple computing redundancy that can in some context detect and correct,
respectively, errors in the computation by direct comparison of the values in a
selected lists of variables. As with the previous pragma directive, a maximum
number of retries is attempted before an abnormal execution is reported.

#pragma failsafe dual redundancy save restore (var list1)

compare (var list2) retry (exp)

{ /* code block */ }

In addition to the aspects of computation redundancy this directive extends
the notion of redundancy by including dual and triple threading (using the
OpenMP directives) and detection of errors via the direct comparison of a
selected set of variables specified in the compare list var list2 which is assumed
to be disjoint of var list1 the former list assumed to be the output of the code
block. In other words all the variables in var list1 are output variables of the
computation so their state need not be saved and restored upon re-execution.

For a simple but generic code, the dual redundancy directive can be trans-
lated into the source code as shown below with a maximum retry of 2 times. The
triple redundancy variant would include three OpenMP threads and three,
rather than two, copies of the variable specified in the compare list.

i n t f s num t r i e s ;
v o l a t i l e i n t f s num er ro r s ;
< de c l a r a t i o n o f dup l i ca t ed o f v a r i a b l e s in v a r l i s t 2 >
. . .
f s num t r i e s = 0 ;
f s num er ro r s = 0 ;
<code f o r sav ing data in v a r l i s t 1 >
do

i f (f s num t r i e s != 0){
<code f o r r e s t o r e data in var l i s t 1 >

}
f s num er ro r s = 0 ;

666 P.C. Diniz et al.

#omp p a r a l l e l num threads (2)
{

<o r i g i n a l code r e l a b e l i n g v a r i a b l e s in v a r l i s t 2 >
}

<compare v a r i a b l e s in v a r l i s t 2 f o r each thread>

i f (mismatch (v a r l i s t 2))
f s num er ro r s++;

f s num t r i e s++;
} whi le ((f s num er ro r s != 0) && (f s num t r i e s < 2)) ;
i f (f s num er ro r s != 0){

FAIL SAFE EXCEPTION() ;
}

The code variant for triple redundancy, includes a voting functions rather
than a compare function to determine of the three concurrent threads have
executed correctly.

3 Experimental Evaluation

We conducted a set of preliminary experiments to evaluate the ability of the
proposed program pragmas to lead to applications that survive uncorrected (but
detected) memory errors.

For these experiments we focused on a key numerical kernel code, the popular
conjugate-gradient iterative linear system solver for the system Ax = b. We used
an input 40×32 A matrix with a specific structure with a randomly generated b
vector as the linear system to be solved. The algorithm requires about 4 MBytes
of storage for the system matrix and 0.223 MBytes for the auxiliary intermediate
computation vectors. As the system matrix A remains constant throughout the
computation, we opted to use checksum column- and row-wise error correction
for detected but uncorrected memory errors afflicting the address space regions
associated with A.

For these experiments we use the fault-injection infrastructure described in
[10] to inject memory errors in the data address space of the application at
specific error rates, leading to approximately a single memory error per algorithm
iteration to one error per 20 iterations (or a single error per system solve cycle).
In these experiments we do not inject errors in the code section of the application
address space.

For the errors impinging on data section we opt from two different amelio-
ration strategies. When the error impinging on A we recover by executing the
error correction using the column- and row-wise checksums and restart the solver
iteration. When the memory error impinges on the auxiliary vectors, we restart
the iteration of the algorithm using the previous iterations values of the x vector
only as all the other vectors used are temporaries5

5 In the parlance of the compiler analysis, there vectors can be privatizable as no data
flows across iterations of the loop through them.

Pragma-Controlled Source-to-Source Code Transformations 667

The Table 1 below present the numerical results showing the overhead of the
use of the #pragma failsafe save restore directive for this example. In the
absence of any error of software copy overhead, the specific linear system requires
21 iterations to converge for a preselected numerical convergence tolerance over
10.680 secs for a sequential execution on a desktop computing system.

Table 1. Execution times vs. injected memory rates for CG simple solver.

Error Checksum Iteration restart Algorithm Execution Execution

Interval (secs) Recovery Recovery Iterations Time (secs) Overhead

2 12 1 34 23.761 122.5%

4 5 1 27 20.537 92.3%

5 4 1 26 18.569 73.9%

10 1 1 23 15.368 4.5%

20 1 0 22 11.310 0.6%

A couple of simple observations are in order. First, in this controlled exper-
iments, all executions are survivable as the error rate is not high enough that
the maximum number of retries (set at 2) for the same iteration of the algo-
rithm is ever exceeded. Second, as the storage size of the matrix A dwarfs the
storage space of the auxiliary vectors it was thus expected that the number of
errors impinging on the matrix A. As such the retries with checksum correctness
and copy of previous state are more numerous (and also computationally more
expensive) that simple retries where the only the vector x and a couple of integer
control variables need to be restated.

4 Implementation Status

We have implemented the parsing and the corresponding source-to-source code
transformations of the #pragma directives described here in the ROSE compiler
infrastructure [16] and tested them for simple C programs. Still, the current
implementation has some limitations. First, the code generation for the direc-
tives can only support the comparison and voting of the values of either scalar
variables or statically declared arrays with compile-time dimension bounds. In
other words, we do not yet support the use of dynamically allocated arrays.
Second, there is currently no checking of the disjointness of the compare and
save/restore list of variables in the redundancy directives. Lastly, there is also no
data-flow analysis verification that the variables in the compare list are strictly
output, i.e., only output variables.

5 Related Work

The most widely HPC programming models do not contain capabilities to offer
error resilient application execution. However, various researchers have begun

668 P.C. Diniz et al.

exploring the possibility of incorporating resiliency capabilities into the pro-
gramming models. The abstraction of transactions has been proposed to capture
programmers fault tolerance knowledge. The basic idea is that the application
code is divided into blocks of code at the end of which the results of the com-
putation or communication are checked for correctness before proceeding. If the
block execution condition is not met, the results are discarded and the block can
be re-executed. Such an approach was proposed for HPC applications through
the concept of Containment Domains [6] which are based on weak transactional
semantics. They enforce the check for correctness of the data value generated
within the containment domain before it is communicated to other domains.
These domains can be hierarchical and provide means for local error recovery.

Other research has focused on discovery idempotent regions of code that
can be freely re-executed without the need to checkpoint and restart program
state. Their original proposal however [15] was based on language level support
for C/C++ that allowed the application developer to define idempotent regions
through specification of relax blocks and recover blocks that perform recovery
when a fault occurs. The FaultTM scheme adapts the concept of hardware based
transactional memory where atomicity of computation is guaranteed. The app-
roach entails application programmer created vulnerable sections of code for
which a backup thread is created. Both the original and the backup thread are
executed as atomic transactions and their respective committed result values
compared [17].

Complementary to approaches that focus on resiliency of computational
blocks, the Global View of Resiliency (GVR) project [8] concentrates on appli-
cation data and guarantees resilience through multiple snapshot versions of the
data whose creation is controlled by the programmer through program anno-
tations. Bridges et al. [3] proposed a malloc failable that uses a callback
mechanism with the library to handle memory failures on dynamically allocated
memory, so that the application programmer can specify recovery actions. In the
Global Arrays Partitioned Global Address Space (PGAS) implementation, set
of library API for checkpoint and restart with bindings for C/C++/FORTRAN
the enable the application programmer to create array checkpoints [7].

6 Conclusion and Future Work

The very limited experiments presented here do confirm the potential benefits of
the programming language extension to increase the survivability rate of iterative
scientific algorithms such as the case of conjugate gradient linear solvers. Here
we have only exploited the use of a limited form of computation redundancy for
error detection and amelioration.

Clearly, an extension of the practical impact of the use of the proposed
#pragma directives needs to be carried out, in particular to algorithms other than
scientific iterative solvers. In particular, we are actively working on the concur-
rent threading implementation which require the manipulation of the state of
the shared cache storage.

Pragma-Controlled Source-to-Source Code Transformations 669

This work also suggests a richer interface that would allow programmer to
control the need to restore state of the program based on the progress of the
algorithm. This is the case of storage whose life-time includes long periods of
inactivity and can thus be considered intermittently dead or simply not con-
tributing to the corruption of further state. Such interface would clearly allow
a run-time system to use less expensive recovery strategies than a full-blown
computation or iteration restart.

Acknowledgment. Partial support for this work was provided by the US Army
Research Office (Award W911NF-13-1-0219) and through the Scientific Discovery
through Advanced Computing (SciDAC) program funded by U.S. Department of
Energy, Office of Science, Advanced Scientific Computing Research under award num-
ber DE-SC0006844. This work was performed under the auspices of the U.S. Depart-
ment of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-
07NA27344.

References

1. Bergman, K., et. al: ExaScale computing study: technology challenges in achieving
exascale systems (2008)

2. Bosilca, G., Delmas, R., Dongarra, J., Langou, J.: Algorithmic Based Fault Toler-
ance Applied to High Performance Computing. CoRR abs/0806.3121 (2008)

3. Bridges, P.G., Hoemmen, M., Ferreira, K.B., Heroux, M.A., Soltero, P.,
Brightwell, R.: Cooperative application/OS DRAM fault recovery. In:
Alexander, M., et al. (eds.) Euro-Par 2011. LNCS, vol. 7156, pp. 241–250. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-29740-3 28

4. Cappello, F., Geist, A., Gropp, W., Kale, L., Kramer, W., Snir, M.: Toward exas-
cale resilience. Int. J. High Perform. Comput. Appl. 23(4), 374–388 (2009)

5. Casas, M., de Supinski, B.R., Bronevetsky, G., Schulz, M.: Fault resilience of the
algebraic multi-grid solver. In: Proceedings of the 26th ACM International Con-
ference on Supercomputing, ICS 2012, pp. 91–100 (2012)

6. Chung, J., Lee, I., Sullivan, M., Ryoo, J.H., Kim, D.W., Yoon, D.H., Kaplan, L.,
Erez, M.: Containment domains: a scalable, efficient, and flexible resilience scheme
for exascale systems. In: Proceedings of the International Conference on High Per-
formance Computing, Networking, Storage and Analysis, SC 2012, CA, USA, pp.
58:1–58:11. IEEE Computer Society Press, Los Alamitos (2012)

7. Dinan, J., Singri, A., Sadayappan, P., Krishnamoorthy, S.: Selective recovery from
failures in a task parallel programming model. In: Proceedings of the 2010 10th
IEEE/ACM International Conference on Cluster, Cloud and Grid Computing,
CCGRID 2010, pp. 709–714. IEEE Computer Society, Washington, DC (2010)

8. Fujita, H., Schreiber, R., Chien, A.: Its time for new programming models for
unreliable hardware, provocative ideas session. In: Proceedings of the International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS) (2013)

9. Huang, K.H., Abraham, J.A.: Algorithm-based fault tolerance for matrix opera-
tions. IEEE Trans. Comput. 33(6), 518–528 (1984)

10. Hukerikar, S., Diniz, P., Lucas, R.: A programming model for resilience in extreme
scale computing. In: Proceedings of the Dependable Systems and Networks Work-
shops (DSN-W), June 2012

http://dx.doi.org/10.1007/978-3-642-29740-3_28

670 P.C. Diniz et al.

11. Hukerikar, S., Diniz, P., Lucas, R., Teranishi, K.: Opportunistic application-level
fault detection through adaptive redundant multithreading. In: Proceedings of the
International Conference on High Performance Computing Simulation (HPCS),
pp. 243–250, July 2014

12. Hukerikar, S., Teranishi, K., Diniz, P., Lucas, R.: An evaluation of lazy fault detec-
tion based on adaptive redundant multithreading. In: Proceedings of the IEEE
High Performance Extreme Computing Conference (HPEC), pp. 1–6, September
2014

13. Dongarra, J., et al.: The international exascale software project roadmap. Int. J.
High Perform. Comput. Appl. 25(1), 3–60 (2011)

14. Jian, X., Sartori, J., Duwe, H., Kumar, R.: High performance, energy efficient
chipkill correct memory with multidimensional parity. IEEE Comput. Archit. Lett.
12(2), 39–42 (2013)

15. de Kruijf, M., Nomura, S., Sankaralingam, K.: Relax: an architectural framework
for software recovery of hardware faults. In: Proceedings of the 37th Annual Inter-
national Symposium on Computer Architecture, ISCA 2010, NY, USA, pp. 497–
508. ACM, New York (2010)

16. Quinlan, D., et. al: The ROSE Compiler Infrastructure. http://rosecompiler.org
17. Yalcin, G., Unsal, O., Cristal, A.: FaulTM: error detection and recovery using hard-

ware transactional memory. In: Proceedings of the Conference on Design, Automa-
tion and Test in Europe (DATE), DATE 2013, San Jose, CA, USA, pp. 220–225
(2013)

http://rosecompiler.org

A Cooperative Approach to Virtual Machine
Based Fault Injection

Thomas Naughton1(B), Christian Engelmann1, Geoffroy Vallée1,
Ferrol Aderholdt1, and Stephen L. Scott1,2

1 Oak Ridge National Laboratory Computer Science and Mathematics Division,
Oak Ridge, TN 37831, USA

naughtont@ornl.gov
2 Computer Science, Tennessee Tech University, Cookville, TN 38505, USA

Abstract. Resilience investigations often employ fault injection (FI)
tools to study the effects of simulated errors on a target system. It is
important to keep the target system under test (SUT) isolated from the
controlling environment in order to maintain control of the experiement.
Virtual machines (VMs) have been used to aid these investigations due
to the strong isolation properties of system-level virtualization. A key
challenge in fault injection tools is to gain proper insight and context
about the SUT. In VM-based FI tools, this challenge of target context is
increased due to the separation between host and guest (VM). We discuss
an approach to VM-based FI that leverages virtual machine introspec-
tion (VMI) methods to gain insight into the target’s context running
within the VM. The key to this environment is the ability to provide
basic information to the FI system that can be used to create a map of
the target environment. We describe a proof-of-concept implementation
and a demonstration of its use to introduce simulated soft errors into an
iterative solver benchmark running in user-space of a guest VM.

Keywords: Fault injection · Virtualization · Virtual machine introspec-
tion · Resilience tools

1 Introduction

Tools for controllably experimenting with synthetic failures are an essential ele-
ment of resilience investigation. These tools generally employ some form of soft-
ware implemented fault injection (SWIFI) since it is highly adaptable, in contrast

T. Naughton—This manuscript has been authored by UT-Battelle, LLC under Con-
tract No.DE-AC05-00OR22725 with the U.S. Department of Energy. The United
States Government retains and the publisher, by accepting the article for publi-
cation, acknowledges that the United States Government retains a non-exclusive,
paid-up, irrevocable, world-wide license to publish or reproduce the published form
of this manuscript, or allow others to do so, for United States Government purposes.
The Department of Energy will provide public access to these results of federally
sponsored research in accordance with the DOE Public Access Plan (http://energy.
gov/downloads/doe-public-access-plan).

c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 671–682, 2017.
DOI: 10.1007/978-3-319-58943-5 54

http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan

672 T. Naughton et al.

to hardware based approaches [11]. However, low-level hardware approaches have
some advantages for performing tests that can originate at the lowest layers of
the system. System-level virtualization has been explored as a way to combine
the advantages of SWIFI with the low-level hardware oriented approaches using
virtual machines (VMs) [14,18,21].

There are several advantages to using virtual machines with fault injection.
The use of virtualization allows for strong isolation between the system under
test (SUT) and control environment. The VMs provide a basis to customize
the target environment and setup repeatable testing configurations. The strong
isolation provided by the VMs can be beneficial for resilience experiments that
might include tests that compromise the overall investigation environment, e.g.,
data corruption, high crash rates.

A major challenge of virtual machine based fault injection (VMFI) is provid-
ing adequate context about the target to inform site selection choices. Addition-
ally, the target’s context must be sufficiently understood in order to monitor the
target’s status and interpret the effects of injected errors. The lack of insight into
the target (guest) context is a common issue with virtualization and emerges in
many instances where information maintained within the guest’s context would
be useful outside the guest VM, e.g., process monitoring. The technique of vir-
tual machine introspection (VMI) was developed to overcome just these types
of challenges and has been applied to performance monitoring and security.

We have used VMI methods with VM-based fault injection to bridge the gap
between the target (in guest) and controller (outside guest). We describe the
approach and demonstrate a proof-of-concept experiment where we can perform
fault injection on a process in a VM using commands from the host (outside the
VM). This approach maintains the strong isolation of VMFI and leverages VMI
methods to gain target context.
The primary contributions of this paper are:

– The presentation of tools for HPC Resilience investigations that support
experiments at both user and kernel levels, which can be performed with
strong separation between control and system under test environments;

– A description of a cooperative VM-based fault-injection (FI) mechanism,
which includes a discussion of how VMI can benefit FI;

– The demonstration of proposed FI mechanism to study soft error resilience
in iterative solver benchmark running in user-space of guest VM.

2 Background

2.1 Virtualization

The virtualization of physical hardware enables a privileged software layer to
multiplex the underlying physical resources. This management layer is called a
virtual machine monitor (VMM), or hypervisor, and is responsible for providing
VMs with efficient, controlled access to the physical resources [20,23]. The VMM
runs on a host machine, and a VM runs on the VMM. The VM is often termed

A Cooperative Approach to Virtual Machine Based Fault Injection 673

the guest and the operating system (OS) running in the VM is termed the guest
operating system (or guest OS). There are two categories of VMMs that are
distinguished by their position in the software stack with respect to the physical
hardware [20]: (i) executes directly on the hardware (type-I), (ii) executes atop
or within a host OS (type-II).

There are several open-source and commercial offerings for virtualization.
Palacios [13] is a VMM that has been developed specifically for use in high-
performance computing (HPC) environments. It can be embedded within the
Kitten light-weight kernel or Linux OS. The implementation uses hardware
extensions available in modern x86 processors to provide efficient virtualization.
Palacios runs on standard x86 commodity clusters and Cray XT/XK super-
computers. Palacios is currently being used as part of the Hobbes OS research
project [2].

2.2 Virtual Machine Introspection

Virtual machine introspection allows for a guest’s internal state to be exposed
to an external viewer, commonly another VM [19], the VMM [1], or a process on
the host [8]. Because the VM is executing on a software or hardware abstraction
of physical resources, the amount of state exposed by VMI is extensive, ranging
from device registers to the memory of the guest. This allows for the external
software to both observe and modify the guest’s state. However, the view of the
guest’s state is often difficult to understand because of the “semantic gap” [4].
To overcome this obstacle, researchers often create a bridge across the semantic
gap by means of a memory map of a particular process or the guest OS. An
example of this bridge with respect to Linux is the System.map file, which holds
a significant amount of information including the virtual address of the various
functions, data structures, and other data residing within the kernel.

2.3 Fault Injection

Virtualization offers several useful mechanisms for implementing fault injection.
Suesskraut et al. [24] used VMs to speed FI campaigns by taking a snapshot of the
full execution state before an experiment and then rolling back to the pre-injection
state. This also allows for all software dependencies to be fully contained within
the guest VM to allow tests to be spread across multiple physical machines. This
encapsulation of the experimental environment was noted by Clark et al. [6] as a
benefit for reproducing results and performing repeatable research.

DeBardeleben et. al [7,9] have used virtualization to develop a platform for
vulnerability assessments. Their approach is based on the widely used QEMU
emulator, which supports a dynamic translation layer for evaluating the instruc-
tions executed by the guest VM. Their tool, F-SEFI, can be used to study the
effect of soft errors on applications. They have used the tools to simulate soft
errors to affect instruction operands (e.g., corruption of operands to FMUL instruc-
tion), which can be done randomly or on a per-function basis for an application.
They model soft errors as single or multi-bit corruptions and can inject the errors

674 T. Naughton et al.

on a deterministic and probabilistic basis. This work uses a different virtualiza-
tion environment (QEMU) from our type-II virtualization software (Palacios).
Also, they introduce errors at the instruction level via the dynamic translation
layer of QEMU, whereas our approach introduces errors via a character device
that exposes the guest’s memory with VM introspection techniques to identify
the full process and memory layout for the target environment.

Le and Tamir [14] highlight advantages and challenges associated with using
virtualization for FI based on their experiences developing and using the Gigan
tool. They studied the fidelity of software implemented fault injection (SWIFI)
running injection campaigns in a virtualized context versus running without vir-
tualization (i.e., on bare hardware) and found the environments are compara-
ble with some clear benefits for SWIFI based studies, i.e., isolation, logging, fast
boot and crash detection. Their Xen based tool, Gigan, employed fault injectors
at the (a) VMM level for injecting from outside the guest VM, and (b) kernel
level for targeting kernel-space data structures and user-space processes within
the VM. Lastly, they used the Gigan FI tool to develop a more robust hypervisor
(ReHype) [14].

Note, others [5,22] have investigated the fidelity of SWIFI in comparison
to other FI approaches, showing that in some instances the software-based app-
roach may be susceptible to an overestimation of errors in contrast to non-SWIFI
approaches. The lessons being that single-bit failures introduced via SWIFI at
the program level (in contrast to RTL or environment/hardware) may overes-
timate the effects of bit-flips. This has a bearing on vulnerability analysis that
is derived from synthetic injection campaigns. Koopman [12] cited similar con-
cerns for avoiding pitfalls when using fault-injection as a basis for dependability
benchmarking. Therefore, the mechanisms employed in our work may not accu-
rately mirror true hardware vulnerabilities, but have use for application testing
and controlled experimentation where the user is mindful of the potential over-
estimations associated with SWIFI.

Li et al. [15] developed a binary instrumentation fault injection tool for study-
ing soft errors in HPC applications. Their tool, BIFIT, is based on the PIN instru-
mentation tool and includes failure characterization based on injections into spe-
cific symbols/data-structures in the target HPC application based on profiling
information for the applications. This work did not employ virtualization, but did
study the effects of simulated “soft errors” on three HPC applications (Nek50000,
S3D & GTC) by injecting bit-flips into global, heap and stack data objects.
They limited the injections to application specific data, i.e., exclude middle-ware
libraries, and observed that global data was significant to the influence of all three
application’s output and execution state. They also observed time and location
of the injection is significant for each application with injections at later stages
of application execution seeming to have a greater influence on the application’s
output & execution state. These soft error injections also affected the execution
duration (walltime) of these applications, often with a 2x or greater increase in
execution time. In our experiments, we target a different HPC application but
focused on application specific data that is algorithmically important.

A Cooperative Approach to Virtual Machine Based Fault Injection 675

3 Cooperative Approach to Fault Injection

The placement of the SUT in a virtual machine enables FI campaigns to maintain
a separation between the target and controlling system, regardless of whether
the victim resides in user or kernel space. The separation of virtual/physical
resources allows the resilience tests to operate within a guest virtual machine.
The FI tests can be run from within the VM or from the host level entirely outside
of the guest context. This division permits the host to control the guest, and can
be an opportunity to modify the state within the guest (e.g., inject virtual device
errors, inject data corruption into guest memory). This separation does increase
the complexity involved in the experimental environment and requires additional
steps to overcome the semantic gap between the host and guest contexts.

3.1 Fault Injection Mechanism

The FI mechanism is implemented using a modification to the Palacios VMM
that exports the guest VM’s memory as a character device in the host OS. This
device file enables host-level access to the memory of the guest OS and user-space
tasks. A VM FI utility (VMFI) that runs on the host is configured with details
about primary data-structures of the guest OS, e.g., address of the task structure
symbol init task. This provides details about the context of the kernel running
in the guest VM and is similar to techniques used for VMI [17].

In the guest OS, another utility is used to provide a well-known marker to
search for within the list of tasks. This is a small launch utility called wrapper
that simply starts a command, i.e., fork()/exec(). This wrapper command is
used to identify the process to target within the guest context.

On startup the wrapper utility prints its process identifier (PID). This PID
can be passed as input to the VMFI utility, running outside of the VM, or the
VMFI utility can be used to scan for the wrapper process in the VM. In the case
of scanning for the wrapper process, the list of tasks within the guest OS is tra-
versed (from outside the guest OS) to find all instances where the process name
matches and the associated PID is displayed. This information (PID) then pro-
vides the necessary pointers to obtain the children tasks started by the wrapper
and details about memory associated with those children. This lookup procedure
results in the VMFI utility knowing the location of the memory associated with
the wrapper’s child process, which is the target (victim) application running in
the guest OS.

The startup of the wrapper and vmfi are currently manual steps. The other
critical data that is necessary for the VMFI utility to function correctly is: the
symbol names and addresses for the target application (that will run within the
guest OS), and the value to write to the victim’s target address. These target
addresses are limited to symbol names in order to simplify the lookup process.
The value to inject is provided as input to the VMFI utility. A brief description
with example usage information for the VMFI and wrapper utilities is given in
Figs. 1 and 2.

676 T. Naughton et al.

Fig. 1. Usage information for wrapper utility that runs within the guest VM context.

Fig. 2. Usage information for VMFI utility that runs on the host (outside VM).

4 Evaluation

When performing fault injection experiments the integrity of the target environ-
ment can be corrupted and lead to unexpected behavior. The use of virtualiza-
tion provides a software layer that strengthens the isolation between the guest
(target) and host (control). The following tests were performed to demonstrate
the cooperative approach to VM-based experiments that use guest system and
application context running in the VM to perform fault injection from the host
environment (outside the VM). While not tested here, the VM-based FI app-
roach can be used for tests targetting system software in the VM that operates in
a privileged mode and could crash or misbehave, without affecting the controller
on the host.

4.1 Setup

The experiment used the Palacios VMM running within a Linux v3.5.0 host
OS. The guest OS is a Linux v2.6.33.7 kernel using Busybox v1.20 to create

A Cooperative Approach to Virtual Machine Based Fault Injection 677

a very small system installation. The guest VM configuration included shadow
memory paging. The guest used bridged networking, whereby a Linux virtio
network interface in the guest was connected to the host’s network interface.
The HPCCG: Simple Conjugate Gradient Benchmark [16] was used as the target
application. All tests were performed on a Linux cluster testbed (SAL9000) at
ORNL. The machines in the cluster have 1 AMD64 CPU with 24 cores, 64 GB
of memory, and dual-bonded 1 Gbps Ethernet. The host operating system was
Ubuntu Linux 12.04 LTS.

4.2 Guest Application Errors

To investigate the feasibility of doing host-level injections into a guest-level con-
text, the FI mechanism for Palacios described in Sect. 3 was leveraged. The
HPCCG benchmark was used to test this FI functionality. The benchmark per-
forms an iterative refinement until reaching a solution within a given threshold,
or until a maximum number of iterations are performed. Previous studies have
found iterative algorithms to be resilient to some errors [3], possibly at the cost
of taking longer to converge on an appropriate value. The HPCCG benchmark
has also been identified as a more representative metric for current scientific
applications and was identified by Heroux and Dongarra as an alternate metric
for future Top 500 indexes [10]. The HPCCG benchmark was slightly modified
to expose the rtrans variable in the HPCCG function to be a global symbol. This
was necessary in order for the vmfi utility to locate a target address within
the guest OS. The rtrans variable was selected through manual code inspec-
tion; the variable is used throughout the life of the iterative application. The
only other change to HPCCG was to vary the value of tolerance to allow the
algorithm to adjust the solution threshold. For example, tolerance=0.0 results
in the algorithm always running to the maximum number of iterations [16], in
contrast to setting tolerance=0.0000001 that allows for a slight margin that
can satisfy the threshold and (possibly) terminate before the maximum number
of iterations. The binary was statically linked and run in serial mode (i.e., no
use of MPI or OpenMP).

Fig. 3. Diagram showing the VM+FI setup with an application (e.g., HPCCG) target
running in the Guest VM.

678 T. Naughton et al.

The overall layout is shown in Fig. 3. The host level vmfi injects a value into
a specified memory address within the context of an application running within
the VM. The application used in our tests, HPCCG, is reflected by the orange
App (HPCCG) box that resides in the space of the VM (green box). Figure 3
also illustrates the vmfi utility running outside the VM context and injecting
an error into the target running within the VM.

4.3 Discussion and Observations

The guest application error testing confirmed that the host-level injector func-
tioned correctly and caused non-fatal errors in the target application, HPCCG.
The intent was to simulate, at a very course-grain, data corruption of a key
variable in the HPCCG program. The application was run 30 times both with
and without injected errors. The same input parameters were used for all runs,
nx = 100, ny = 200, nz = 100, which are the blocks of the matrix in the x/y/z
dimensions [16], e.g., wrapper ./test HPCCG tol0.0 100 200 100. These val-
ues were selected to fit the available memory size and keep the execution time
for the benchmark within the VM to a small amount of time to speed testing.
The default maximum iterations max iter=150 was used, and the tolerance was
set to tolerance=0.0000001. All non-error cases resulted in identical output
for the value of the Residual (rtrans) on each iteration, and the Final residual
printed at the end (normr) as shown in Table 1(a). The same tests were re-run
with errors injected into the rtrans variable during the execution. The fault
injections took place at 1 second intervals and injected a random value between
1..100. This value was written as 4-bytes into the target variable (rtrans) to
emulate multiple bit-flips in a single data value. As expected, there were no fatal
errors as the changes were controlled to be only in the specific data value of
rtrans, but there were slight perturbations due to the data errors as shown by

Table 1. The effects to the Final residual (normr). These statistics show the results for
the serial HPCCG test without (a) and with (b) random data errors. In the error case,
values between [1..100] at 1 second intervals were injected into the rtrans variable. The
statistics are based on the Final residual at the end of the benchmark. The parameters
for the benchmark were nx = 100, ny = 200, nz = 100, and tolerance = 0.0000001.

(a) HPCCG No Errors

Field Value

Num. runs 30
Minimum 8.97885e-08
Maximum 8.97885e-08
Mean 8.97885e-08
Median 8.97885e-08
Mode 8.97885e-08

Variance 0
Std.Dev. 0

(b) HPCCG With Errors

Field Value

Num. runs 30
Minimum 8.97878e-08
Maximum 8.97881e-08
Mean 8.97879766666667e-08
Median 8.9788e-08
Mode 8.9788e-08

Variance 8.0500807188788e-27
Std.Dev. 8.97222420522292e-14

A Cooperative Approach to Virtual Machine Based Fault Injection 679

Table 1(b) which did not occur in the non-error case of the benchmark. This
experiment verified the ability to perform silent data corruption into an applica-
tion running in a guest OS context from the host OS. All tests (with and without
errors) completed in 74 iterations.

5 Conclusion

The use of VMs offers the ability to strongly separate the target from the hosting
environment, which is useful when conducting fault injection experiments. The
hosting platform has full access to the virtual guest context, but the details
within the guest VM are not transparent from outside the guest’s context. To
overcome this issue a cooperative approach was explored where details about
the guest OS were made available to tools in the host context. In the guest
context, additional wrapper command was added that provides information that
host level tools can be leveraged to lookup details within the guest context.
Additionally, the symbol maps for the guest kernel and application were made
available to the host-level VMFI tools. This cooperative approach helps to reduce
the semantic gap between the VM/host contexts.

The VM also provides a reusable execution context to support repeatable test
configurations. This is very useful when creating a cooperative testing environ-
ment because the guest configuration is well known and customized as appropri-
ate. Therefore assumptions can be made for the purposes of the FI experiments.
For example, pre-compiled binaries can be placed in the VM that are also avail-
able on the host so symbol information (name/address) can be used for the FI
experiments. This holds for the guest OS too, which can be made available at the
host level for performing experiments on guest kernel data structures (e.g., via
embedded VMM debuggers) or for accessing information about processes within
the guest OS. The key insight being that the VM offers a customizable container
that can be adapted as needed to simplify and aid FI experiments. The VM also
offers full access to the guest context that would otherwise be difficult to achieve
from a purely software approach.

A disadvantage of this low-level VMFI approach is an increased level of com-
plexity and an increased semantic gap. This gap emerges because the higher level
contextual information about the application (target) is divorced from the lower
level VM vantage point. To overcome this challenge additional capabilities may
need to be put in place, i.e., cooperative services, that provide additional infor-
mation about the application context. For example, while the memory region
for a guest OS is known by the VMM, the guest OS specific data structures
within the VM are opaque. Therefore, a cooperative exchange of data is neces-
sary to inform the host about details associated with the guest OS. For example,
providing the VMM with a system map with the symbol names and address of
functions and data structures of the guest OS running within the VM.

The prototype VMFI approach that we discussed in this paper was greatly
influenced by VMI techniques. As demonstrated in the experiment, we were able
to use these techniques to inject errors from outside the VM into specific data

680 T. Naughton et al.

structures of a real benchmark (HPCCG) running within the guest VM. The
iterative solver (HPCCG) reached the correct result, as expected, but the effects
of our silent data corruption were detectable in an increased variance in the final
residual (normr). While this experiment is very simplistic, it does show that the
VMFI tool is working correctly and is usable for studies on applications running
within a VM.

This work used the strong isolation of VMs to separate the FI controller
from the FI target. Another approach that would be interesting to explore is
the use of container-based virtualization to provide the isolation between the FI
controller and target. The failure isolation properties of VMs and containers are
not identical, and the container-based environments are restricted to a single
OS kernel. Therefore, if the intent was to pursue FI campaigns against low-level
system software (e.g., guest OS targets), the VMFI approach would be a better
option than a container-based approach. However, if the target is an entirely
user-space application, the isolation between containers may be sufficient for
the FI experiments. A container-based approach would not suffer the semantic
gap problem associated with VMs because there is a single OS kernel and the FI
controller (outside container) could have full visibility of all running processes. In
general, further investigation is required to better understand the failure isolation
properties of these single and multiple kernel approaches to virtualization.

Acknowledgements. This material is based upon work supported by the U.S.
Department of Energy, Office of Science, Advanced Scientific Computing Research
program.

References

1. Aderholdt, F., Ghafoor, S., Siraj, A., Scott, S.L.: Integrity based intrusion detec-
tion system for enterprise and cloud environments. In: Proceedings of the 4th
IEEE/ACM International Conference on Utility and Cloud Computing (2011)

2. Brightwell, R., Oldfield, R., Maccabe, A.B., Bernholdt, D.E.: Hobbes: Composition
and virtualization as the foundations of an extreme-scale OS/R. In: Proceedings
of the 3rd International Workshop on Runtime and Operating Systems for Super-
computers (ROSS), ROSS 2013, NY, USA, pp. 2:1–2:8 (2013). http://doi.acm.org/
10.1145/2491661.2481427

3. Bronevetsky, G., de Supinski, B.: Soft error vulnerability of iterative linear algebra
methods. In: Proceedings of the 22nd Annual International Conference on Super-
computing, ICS 2008, NY, USA, pp. 155–164 (2008). http://doi.acm.org/10.1145/
1375527.1375552

4. Chen, P.M., Noble, B.D.: When virtual is better than real. In: Proceedings of the
Eighth Workshop on Hot Topics in Operating Systems, HOTOS 2001, pp. 133–138
(2001) http://dl.acm.org/citation.cfm?id=874075.876409

5. Cho, H., Mirkhani, S., Cher, C.Y., Abraham, J.A., Mitra, S.: Quantitative eval-
uation of soft error injection techniques for robust system design. In: 2013 50th
ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–10, May 2013

http://doi.acm.org/10.1145/2491661.2481427
http://doi.acm.org/10.1145/2491661.2481427
http://doi.acm.org/10.1145/1375527.1375552
http://doi.acm.org/10.1145/1375527.1375552
http://dl.acm.org/citation.cfm?id=874075.876409

A Cooperative Approach to Virtual Machine Based Fault Injection 681

6. Clark, B., Deshane, T., Dow, E., Evanchik, S., Finlayson, M., Herne, J., Matthews,
J.N.: Xen and the art of repeated research. In: Proceedings of the Annual Confer-
ence on USENIX Annual Technical Conference, ATEC 2004, pp. 47–47. USENIX
Association, Berkeley (2004). http://dl.acm.org/citation.cfm?id=1247415.1247462

7. DeBardeleben, N., Blanchard, S., Guan, Q., Zhang, Z., Fu, S.: Experimental frame-
work for injecting logic errors in a virtual machine to profile applications for soft
error resilience. In: Alexander, M., et al. (eds.) Euro-Par 2011. LNCS, vol. 7156,
pp. 282–291. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29740-3 32

8. Garfinkel, T., Rosenblum, M.: A virtual machine introspection based architecture
for intrusion detection. In: Proceedings of Network and Distributed Systems Secu-
rity Symposium, February 2003

9. Guan, Q., Debardeleben, N., Blanchard, S., Fu, S.: F-SEFI: a fine-grained soft
error fault injection tool for profiling application vulnerability. In: 2014 IEEE 28th
International Parallel and Distributed Processing Symposium, pp. 1245–1254, May
2014

10. Heroux, M.A., Dongarra, J.: Toward a new metric for ranking high performance
computing systems. Technical Report SAND2013-4744, Sandia National Laborato-
ries. http://www.sandia.gov/∼maherou/docs/∼HPCG-Benchmark.pdf. Accessed
26 April 2014

11. Hsueh, M.C., Tsai, T.K., Iyer, R.K.: Fault injection techniques and tools. Computer
30(4), 75–82 (1997)

12. Koopman, P.: What’s wrong with fault injection as a benchmarking tool? In:
Proceedings of the Workshop on Dependability Benchmarking (WDB 2002),
25 June 2002. (In Conjunction with IEEE Conference on Dependable Systems
and Networks (DSN-2002)) http://homepages.laas.fr/kanoun/ifip wg 10 4 sigdeb/
external/02-06-25/index.html

13. Lange, J., Pedretti, K., Hudson, T., Dinda, P., Cui, Z., Xia, L., Bridges, P., Gocke,
A., Jaconette, S., Levenhagen, M., Brightwell, R.: Palacios and Kitten: new high
performance operating systems for scalable virtualized and native supercomputing.
In: IEEE International Symposium on Parallel Distributed Processing (IPDPS),
pp. 1–12, April 2010

14. Le, M., Tamir, Y.: Fault injection in virtualized systems - challenges and applica-
tions. Trans. Dependable Secure Comput. 12(3), 284–297 (2015). http://www.cs.
ucla.edu/∼tamir/papers/tdsc15.pdf

15. Li, D., Vetter, J.S., Yu, W.: Classifying soft error vulnerabilities in extreme-scale
scientific applications using a binary instrumentation tool. In: International Con-
ference for High Performance Computing, Networking, Storage and Analysis (SC).
ACM, November 2012

16. Mantevo mini-application downloads, http://www.mantevo.org/packages.php,
project URL: http://www.mantevo.org/packages.php. Accessed 6 April 2014

17. Nance, K., Bishop, M., Hay, B.: Virtual machine introspection: observation or
interference? IEEE Secur. Priv. 6(5), 32–37 (2008)

18. Naughton, T., Vallée, G., Engelmann, C., Scott, S.L.: A case for virtual machine
based fault injection in a high-performance computing environment. Euro-Par
2011. LNCS, vol. 7155, pp. 234–243. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-29737-3 27

19. Payne, B.D., Carbone, M., Sharif, M., Lee, W.: Lares: an architecture for secure
active monitoring using virtualization. In: Proceedings of the IEEE Symposium on
Security and Privacy, May 2008

20. Popek, G.J., Goldberg, R.P.: Formal requirements for virtualizable third generation
architectures. Commun. ACM 17(7), 412–421 (1974)

http://dl.acm.org/citation.cfm?id=1247415.1247462
http://dx.doi.org/10.1007/978-3-642-29740-3_32
http://www.sandia.gov/~maherou/docs/~HPCG-Benchmark.pdf
http://homepages.laas.fr/kanoun/ifip_wg_10_4_sigdeb/external/02-06-25/index.html
http://homepages.laas.fr/kanoun/ifip_wg_10_4_sigdeb/external/02-06-25/index.html
http://www.cs.ucla.edu/~tamir/papers/tdsc15.pdf
http://www.cs.ucla.edu/~tamir/papers/tdsc15.pdf
http://www.mantevo.org/packages.php
http://www.mantevo.org/packages.php
http://dx.doi.org/10.1007/978-3-642-29737-3_27
http://dx.doi.org/10.1007/978-3-642-29737-3_27

682 T. Naughton et al.

21. Potyra, S., Sieh, V., Cin, M.D.: Evaluating fault-tolerant system designs using
FAUmachine. In: Proceedings of the 2007 Workshop on Engineering Fault Tolerant
Systems (EFTS 2007), NY, USA, p. 9. ACM, New York (2007)

22. Schirmeier, H., Borchert, C., Spinczyk, O.: Avoiding pitfalls in fault-injection
based comparison of program susceptibility to soft errors. In: 2015 45th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks, pp.
319–330, June 2015

23. Smith, J.E., Nair, R.: Virtual Machines: Versatile Platforms for Systems and
Processes. Morgan Kaufmann, Burlington (2005)

24. Süßkraut, M., Creutz, S., Fetzer, C.: Fast fault injection with virtual machines (Fast
Abstract). In: Supplement of the 37th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN2007). http://wwwse.inf.tu-dresden.
de/papers/preprint-suesskraut2007DSNb.pdf

http://wwwse.inf.tu-dresden.de/papers/preprint-suesskraut2007DSNb.pdf
http://wwwse.inf.tu-dresden.de/papers/preprint-suesskraut2007DSNb.pdf

ROME - Workshop on Runtime and
Operating Systems for the Many-Core

Era

Dealing with Layers of Obfuscation
in Pseudo-Uniform Memory Architectures

Randolf Rotta(B), Robert Kuban, Mark Simon Schöps, and Jörg Nolte(B)

Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany
{rottaran,kubanrob,schoema3,joerg.nolte}@b-tu.de

Abstract. Pseudo-Uniform Memory Architectures hide the memory’s
throughput bottlenecks and the network’s latency differences in order
to provide near-peak average throughput for computations on large
datasets. This obviates the need for application-level partitioning and
load balancing between NUMA domains but the performance of cross-
core communication still depends on the actual placement of the involved
variables and cores, which can result in significant variation within appli-
cations and between application runs.

This paper analyses the pseudo-uniform memory latency on the Intel
Xeon Phi Knights Corner processor, derives strategies for the optimised
placement of important variables, and discusses the role of localised
coordination in pUMA systems. For example, a basic cache line ping-
pong benchmark showed a 3x speedup between adjacent cores. Therefore,
pUMA systems combined with support for controlled placement of small
datasets are an interesting option when processor-wide load balancing is
difficult while localised coordination is feasible.

1 Introduction

Large-scale multi- and many-core processors have to compromise between the
scalability of the memory architecture, its space and power consumption, and
the usability for application developers. Efficient memory interconnects are usu-
ally inherently non-uniform and their latency varies with the distance between
core and memory while the peak throughput diminishes with growing distance.
Therefore, tasks and their data should be placed close together in order to reduce
latency and increase throughput but, at the same time, should be distributed in
order to increase parallelism and balance the load over multiple bottlenecks [1].

Coherent caching layers further complicate the situation. Directory-based
coherency protocols [2] as well as distributed shared caches [3,4] employ global
directory components that route requests to recent copies and coordinate global
invalidation and updating. In order to resolve throughput bottlenecks at these
components, multiple of them are distributed across the network and the request
load should be distributed uniformly across them.

Non-Uniform Memory Architectures group memory channels, directories,
and compute cores such that an almost uniform low latency and high throughput
is provided within each group—also known as NUMA domain or node. In order
c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 685–696, 2017.
DOI: 10.1007/978-3-319-58943-5 55

686 R. Rotta et al.

to utilise the system’s peak throughput, it is the application’s responsibility to
balance data and compute tasks across these domains. This requires basically
the same strategies as in distributed systems, for example a domain decompo-
sition with bin-packing for load balancing. As a positive side effect, this also
results in a more localised coordination, which enables synchronisation with low
latency and low congestion. However, while successful on medium-sized NUMA
systems, the effort and load balancing challenge increases with the ratio between
a growing number of domains and the size of the shared memory.

A more convenient alternative are pseudo-Uniform Memory Architectures
that use hardware-based address interleaving, for example with cache line gran-
ularity, in order to uniformly distribute the load over many memory channels and
coherence directories. Provided that the network can cope with the aggregated
peak throughput, applications do not need to worry neither about throughput
bottlenecks nor the co-located placement of data and tasks.

Unfortunately, this is true only for throughput-bound computations on large-
enough datasets: any synchronisation between cores is still dominated by the
cache coherence latency, which depends on the distance between the involved
cores and coherence directory. While the hardware’s interleaving has no mitigat-
ing effect on the usually small synchronisation variables, their seemingly random
spatial placement leads to difficult-to-predict overheads and performance vari-
ations. For synchronisation, the convenient pseudo-uniformity becomes a layer
of obfuscation [5]. A few badly positioned synchronisation variables can slow
down the whole application. Analysing such performance bottlenecks is further
impaired by placement-dependent variation between repeated runs of the same
application outside of the developer’s control.

This paper studies the pseudo-uniform architecture of the Intel Xeon Phi
Knights Corner (KNC) many-core processor [6] and derives strategies for the
optimised placement of synchronisation variables and similar latency-bound
objects. The KNC provides 59–61 cores with four hardware threads each, four
memory controllers, and 64 cache coherence directories—all connected via a
shared point-to-point ring network. Compared to previous Xeon processors, the
path between a core, the responsible directory, and the destination cache or
memory controller can be very long, which results in considerable placement-
dependent latency variation.

To this end, we reconstruct a mapping from cache line addresses to neigh-
bouring cores based on latency measurements and use this mapping to initialise
a pUMA-aware cache line allocator. For a basic cache line ping-pong pattern,
this pUMA-aware placement enabled a 3x speedup between adjacent cores.

The next section reviews related work with respect to memory architectures
and locality awareness. Section 3 devises generic experiments to study the effects
of interleaving across directories and memory channels. Then, Sect. 4 discusses
the experiment results obtained on the Intel Xeon Phi KNC. Finally, Sect. 5
discusses the broader implications on placement and coordination on the KNC
and similar pUMA architectures.

Dealing with Pseudo-Uniform Memory Architectures 687

2 Related Work

This section surveys performance studies related to the Intel XeonPhi KNC
processor and uniform memory architectures. The last part reviews coordination
strategies from NUMA systems with relevance to uniform memory architectures.

Studies Related to the Intel Xeon Phi KNC. The Larrabee architecture for visual
computing [7] is the ancestor of the Knights Corner processors. The article pro-
poses a many-core architecture based on simple x86 cores with SIMD short vec-
tor units, private L2 caches, and an on-chip ring network for cache coherency.
In order to keep the ring latency small compared to the latency of the DRAM
memory channels, multiple “short linked” rings are proposed without discussing
implications for the cache coherency. The authors point out that synchronisa-
tion between threads within a core is fast because of the shared L1 cache and
cross-core synchronisation is inherently much slower. Hence, computations that
access the same data should be placed onto the same core.

Based on the available technical documentation and micro-benchmarks on
the KNC 5110P, Ramos and Hoefler [8] provide a detailed overview of the KNC’s
directory-based cache coherence and present a quantitative performance model
for cross-core communication. Likewise, Fang et al. [9,10] published extensive
studies of the KNC. Both groups consider the average latency over a large num-
ber of cache lines and report similar results. Reading from any other cache takes
243 cycles in average and reading from the memory takes 318–346 cycles in
average. The latency of reading a single cache line from another core’s cache is
examined in [10]. There, a latency variation from 160–340 cycles depending on
the partner core is visible. The authors note, that the latency does not relate to
the distance of both cores because of the distributed coherence directories.

Gerofi et al. [5] studied the “hidden non-uniformity” of the KNC processor
with respect to reading from main memory. They show a 60% variation in latency
when reading different cache lines from the main memory and propose a respec-
tive memory allocator that reduces this cache miss latency. The authors argue,
that such placement could speed up algorithms that exhibit difficult to predict
access patterns, for example, because of recursive data structures like linked lists,
trees, and graphs. Their evaluation demonstrates a 17–28% throughput improve-
ment for an A* shortest path algorithm with optimised allocation of the graph
nodes. In contrast to [5], the present paper focuses on cross-core communication,
that is the latency of accessing another core’s cache.

Other UMA and pUMA Systems. The IBM Cyclops processor [11] has 16 embed-
ded memory banks and the contiguous address space can be interleaved over
caches and memory banks in order to balance the congestion. A crossbar switch
is used to provide uniform latency between all cores, caches, and memory banks.
Similarly, the Oracle Sparc T5 processors [12] use a crossbar for uniform latency.

Multi-socket Intel Xeon processors are operated as NUMA systems usually
with one (pseudo-)uniform domain per socket. However, the address interleav-
ing is configurable and can span multiple sockets [13] by combining bits of the

688 R. Rotta et al.

physical address into a 3 bit target index. The “low-order” interleave uses bits
6–8 as target, which distributes consecutive lines over adjacent targets, and the
“low/mid-hash” interleave uses bits 6–8 exclusive-or bits 16–18. In addition, the
“hemisphere” variant replaces the first target bit with an exclusive-or of the bits
6, 10, 13, and 19 in order to better distribute accesses with a fixed stride.

To a limited degree, interleaving can be implemented by software. The proces-
sor’s virtual address spaces can be used for interleaving on page granularity [1,14]
and applications can distribute the placement of their data structures [15].

The Tilera Tile processors use a distributed shared L2 cache with a local
cache at each core [4]. Requests are routed to the line’s home cache, which is
configured on page-size granularity. While interleaving over multiple L2 compo-
nents is possible, synchronisation variables can simply be allocated in dedicated
pages with known placement.

Coordination in NUMA Systems. Alongside the ratio of parallel to sequential
computations, the scalability depends considerably on the overhead associated
with distributing tasks across threads and synchronising the actions of concur-
rently active tasks. This overhead depends on the communication latency and
the congestion on memory channels and network [1] and, thus, also on the con-
tention as number of threads competing for a shared resource [16].

Some NUMA strategies reduce the latency by moving shared variables closer
to their threads. One example is frequent polling on locally cached flags and rare
signalling to remote flags as done by queue locks [17,18] and work stealing [19].
Tightly related are strategies that reduce contention by distributing the load over
multiple peers. Examples are the replication of services [20] and hierarchically
distributed locks [21]. Software Combining generalises both aspects by combining
multiple local accesses into fewer remote messages [16,17,22].

Finally, some strategies reduce the data migration between NUMA domains,
for example, by keeping related tasks in the same domain as in hierarchical work
stealing [19], preferring threads of the same domain as in cohort locking [23], or
moving tasks to specific domains as in delegation locks [24].

3 Measuring Latency: Reading from Caches vs. Memory

Latency-bound phases can be accelerated by reducing the stall time when reading
from main memory with unpredictable access patterns (like [5]) and by reduc-
ing the latency when synchronising nearby threads via shared variables. Both
aspects cannot be mitigated by hardware or software prefetching. The objec-
tive therefore is to reduce the latency by placing the data into cache lines that
are locally managed and stored. Unfortunately, the pUMA address interleav-
ing, while balancing the congestion for improved throughput, obfuscates the
actual placement. In lack of documentation about the interleaving, latency mea-
surements can uncover sufficient information for a pUMA-aware allocator, for
example by assigning lines to the cores with lowest latency. This section devises
latency measurements that provide such information.

Dealing with Pseudo-Uniform Memory Architectures 689

Assuming a processor with cache coherence based on a shared distributed
directory and private caches per core, the latency depends on the distances
between the client core (C), the responsible directory component (D), and the
remote cache that currently owns the line (O) or respectively the responsi-
ble memory channel (M). The responsible directory and memory channel are
selected by the hardware’s interleaving scheme. The directory tracks the sharing
state of previously accessed lines and routes read requests accordingly to the
current owner cache or to a memory channel. Similar to Ramos and Hoefler [8]
two cases can be distinguished as illustrated in Fig. 1: Cache Read is routed to
the current owner cache (O) and Memory Read is routed to the off-chip memory
(M) because the line is invalid (not present) in all caches.

Directory

Core

Directory Memory

Core Owner

Directory

(a) Cache Read

Directory

Core

Directory Memory

Core Core

Directory

(b) Memory Read

Fig. 1. Communication path for reading a line from another cache or the memory.

The read latency for both cases is dC,D + dD,O/M + dO/M,C + o, where dx,y
is the latency introduced by the network between x and y, and o is the process-
ing overhead for cache, directory, and memory lookups. The network latency
grows with the distance and the link congestion, whereas the processing over-
head grows with the contention. The unwanted influence of the congestion and
contention can be circumvented by recording the minimum latency over multiple
measurements and putting all unneeded cores into sleep.

Cache Read Benchmark. Given the address of a cache line, the directory D is
fixed while C and O can be chosen. Intuitively, any two cores C,O that minimise
the latency for a fixed line must be neighbours in the network. For such pairs,
the latency is approximately 2dC,D + o and can be used to study the placement
of the directories relative to cores. Basically, each line can be assigned to the
core that has the lowest read latency with one of its neighbours.

Similar to [8], the measurement proceeds as follows for each line and client
core: An arbitrary neighbour core writes to the line in order to become the owner
(O) and invalidate the line in all other caches. Then, it sets a helper flag in an
unrelated line to notify the client core (C). This core (C) then measures the
time needed for reading from the cache line. The n-smallest latency values and
according core IDs are recorded inside each line.

The basic benchmark can be accelerated by considering two lines and two
adjacent cores: Each line contains one flag for notification and measurement
and the line is initially owned by the respective core. One core (C) measures the
time needed for accessing the other core’s flag by using the atomic fetch-and-add

690 R. Rotta et al.

instruction while the other core (O) reads the same flag using the atomic fetch-
and-add instruction with zero increment. Thus, the line’s ownership is trans-
ferred just once for the measurement and immediately back to the other core
(O) due to the polling. The other core (O) is notified about the finished mea-
surement by seeing the incremented value. Then, both cores change their role
(C,O) and operate on the other cache line.

Memory Read Benchmark. Given the address of a cache line, both D and M are
fixed while the core C can be chosen freely. When selecting a core with minimal
distance to the directory, the latency is approximately 2dC,M + o and can be
used to study the placement of the memory channels relative to directories. By
taking the smallest memory read latency over all cores, the best core for each
line can be found without needing to know the responsible directory.

Similar to [5], the measurement proceeds as follows for each line and core: The
core (C) writes to the line in order to invalidate it in all other caches and then
uses the wbinvd or similar instructions to write the line back to main memory.
Then, the time needed for reading the line is measured. The n-smallest latency
values and according core IDs are recorded inside each line.

4 Two Layers of Interleaving on the Xeon Phi KNC

This section discusses results of the Cache Read and Memory Read benchmarks
obtained on the KNC processor. Subsequently, a ping-pong micro-benchmark
like in [8] is examined as prototype of many synchronisation protocols.

The processor (B1PRQ-5110P) used in this study has 60 in-order cores with
fair time multiplexing among 4 hardware threads per core and a frequency of
1.05 GHz. In order to reduce fluctuations caused by the other threads, they are
put into sleep with the delay instruction. The measurements use the core’s
time stamp counter via the rdtsc instruction, which has quite low fluctuations
because of the simple cores and sleeping threads.

The cores, directories, and memory channels are spread across a ring network
and, thus, each core has two adjacent neighbours. Actually, multiple rings in
both directions are used and these rings do not necessarily take the same path
across the chip area. An exact assignment of cache lines to directories will be
difficult because each directory has multiple nearby cores that should observe
similarly low latency in the benchmark’s described above. Messages on the ring
can “bounce” [6] at their destination due to contention. This causes the message
to traverse the whole ring until reaching the destination again. Hence, unrelated
memory traffic should be avoided in order to reduce contention at the directories.

Each core has a hardware prefetcher that discovers access patterns [9] and
reads the next lines speculatively. In order to protect the Memory Read bench-
mark we considered power-of-two large address ranges and selected the next line
by reversing the bit order in the cache line’s index.

In order to reduce interference as much as possible, we implemented the
benchmarks as kernel extension of the MyThOS operating system prototype.

Dealing with Pseudo-Uniform Memory Architectures 691

During the boot sequence, the studied address range is reserved to keep other
data structures away. The timer interrupts were disabled on all hardware threads.

100

200

300

400

0 256 512 768 1024
cache line

la
te

nc
y

fro
m

 c
or

e
0

to
 1

100

200

300

400

0 256 512 768 1024
cache line

la
te

nc
y

fro
m

 b
es

t p
ai

r

Fig. 2. Cache Read latency (in cycles) from one core pair versus the best pair.

0%

1%

2%

3%

4%

0604020
core

ne
ar

es
t c

ac
he

 li
ne

s

(a) Distribution of lines to best core.

100

200

300

400

0 16 32 48 64
tag directory

la
te

nc
y

fro
m

 c
or

e
0

to
 1

(b) Latency by responsible directory.

Fig. 3. Distribution of the directories across the ring and distance to core 0.

Cache Read Results. Figure 2 shows the Cache Read latency measured from
core 0 to 1 as well as the best latency over all pairs. For a fixed pair of cores,
the latency ranges from 136 to 396 cycles with an average latency of 262 cycles
(248,9 ns). This is comparable to the 243 cycles [10], respectively 235.8 ns [8],
found in the literature. Considering the best pair, the latency ranges from 135
to just 152 cycles with 95% of the lines below 140 cycles.

In conclusion, the responsible directory of each line is near to at least one
core and its neighbours. Thus, synchronisation between nearby cores has a good
potential for acceleration by placing the synchronisation variables in lines man-
aged by nearby directories. The average latency for a single access can be reduced
from 260 to 140 cycles and, more importantly, the worst case latency of 400 cycles
can be avoided systematically.

Figure 3(a) shows the distribution of lines over cores based on the minimal
latency. Most cores have the lowest latency for around 1.7% of the lines as can be
expected for 60 cores. However, distributing 64 directories over 60 cores cannot
be completely fair. While some cores get less or no lines, their neighbours seem
to be nearer to these directories. Fortunately, the excess amount can be balanced
over neighbours without increasing the latency much. For example, we assigned
lines greedily to one of the three-best cores with fewest assigned lines.

692 R. Rotta et al.

After careful examination, we were able to partially recover the mapping
from cache line address to directory for the 256 KiB range starting at 4 GiB in
the physical address space. Figure 3(b) shows the latency from core 0 to 1 for
60 different lines for each directory. The bidirectional ring topology is clearly
visible: The latency raises until the directory is located at the opposite of the
ring and then falls again.

For our KNC the mapping worked as follows: Let c17...0 be the bits of the
line’s physical address excluding the 6 lowest bits of the offset inside the line.
The directory index d5...0 then is

d5...0 = (c2 ⊕ c5 ⊕ c11; c1 ⊕ c4 ⊕ c10; c0 ⊕ c3 ⊕ c9; c2 ⊕ c8; c1 ⊕ c7; c0 ⊕ c6),

where ⊕ denotes the exclusive-or and; divides the individual bits. This scheme
is reasonably close to the interleaving documented for multisocket Intel Xeon
processors [13] as described in Sect. 2. Please note, that bits from outside the
examined 256 KiB address range are missing above and the mapping may vary
between variants of the KNC processor. In addition, the distance between the
cores and these directories can vary depending on disabled cores.

100

200

300

400

0 1024 2048 3072 4096 5120 6144 7168 8192
cache line

la
te

nc
y

fro
m

 c
or

e
0

100

200

300

400

0 1024 2048 3072 4096 5120 6144 7168 8192
cache line

la
te

nc
y

fro
m

 b
es

t c
or

e

Fig. 4. Memory Read latency (in cycles) from one core versus the best core.

Memory Read Results. Figure 4 shows the Memory Read latency measured from
core 0 as well as the best latency across all cores. For a fixed core, the latency
varies from 211 to 441 cycles with an average of 350 cycles (332.5 ns). When
accessing the lines from the respective best core, the latency still varies from
195 to 400 cycles with an average of 314 cycles. The latencies for memory read
latencies found in the literature are 302 cycles [9] for reads with a stride of 64
byte when the dataset is larger than 512 KiB. Ramos and Hoefler [8] report
an even lower mean memory read latency of 278.8 ns. The repeating pattern in
Fig. 4 suggest that there are address ranges where such low average latency can
be observed.

In conclusion, reading from memory can be accelerated only by selecting a
subset of lines with sufficiently low latency. Following Sect. 3, the best core’s
latency corresponds to the distance between directory and memory channel. If
the lines would be interleaved across the memory channels near the responsible
directory, the worst latency would be much better than the worst ring distance
of 200 cycles. Therefore we can assume, that the lines are interleaved across the
memory channels independently of the interleaving across directories.

Dealing with Pseudo-Uniform Memory Architectures 693

read atomic fetch−and−add

200

400

600

800

1000

1200

1400

1600

1 15 30 1 15 30
distance between the cores

m
ea

n
la

te
nc

y
[n

s]

Placement: worst best

Fig. 5. Ping-pong round-trip time depending on distance between the cores.

Ping-Pong Benchmark Results. In practise, the latency of reading from a shared
variable is just half the story because actual synchronisation protocols have
write to the variable. The time needed to acquire exclusive write access from the
directory and the time until other cores observe the new value has to be taken
into account. Furthermore, protocols may consist of multiple write/read steps
which can amplify the impact of the placement-dependent overhead.

As first micro-benchmark for synchronisation scenarios, we implemented a
single-line ping-pong similar to [8]. The average ping-pong latency over 1000
runs was measured for multiple cache lines with optimal and worst placement
as well as for different distances between the participating cores. A read and an
atomic variant have been examined. The read variant implements the polling
by repeatedly reading from the flag until the value changes. This temporarily
brings the line into a shared state between both cores. The atomic fetch-and-add
variant polls by adding zero. Here, the line is never shared and just the ownership
travels between cores [25].

Figure 5 shows the distribution of the round-trip time as boxplots for cache
lines placed near to one of the two cores (“best”) and farthest away from both
cores (“worst”). For the read variant and adjacent cores, the average round-trip
time is 577 ns for the best placement and 1434 ns for the worst placement. With
growing distance, the placement’s impact diminished, reaching an average of
990 ns. For the atomic variant and adjacent cores, the average round-trip time is
222 ns for the best placement and just 685 ns for the worst placement. Again, the
placement’s impact diminished with growing distance and reaches an average of
433 ns. In comparison, Ramos et al. reported 497 ns for this situation [8]. The
atomic variant also shows much smaller fluctuations.

The results show that the placement information obtained by the Cache Read
benchmark can be used to improve the average latency of actual communication
schemes provided that the communicating cores are near to each other. Without
pUMA-aware placement the round-trip time would fluctuate up to 3x over the
best-case time depending on the distance between cores and directory. For com-
munication patterns that involve shared cache lines, the invalidation broadcasts
caused by the request for ownership add considerable overhead and fluctua-
tion. Polling by non-mutating writes or write-hint prefetches [25] can reduce the
round-trip time up to 2.5x over read-based polling.

694 R. Rotta et al.

5 Implications for pUMA-Aware Coordination

Pseudo-uniform memory may improve the usability of NUMA architectures as
data and tasks do not need to be partitioned over a large number of domains. One
example are nested parallel computation like in OpenMP and Cilk. However, the
scalability of coordination-intensive computations still depends on minimising
communication overheads while the pseudo-uniform address interleaving spreads
the local communication involuntarily across the whole system.

This paper analysed the address interleaving across memory channels and
cache coherence directories on the Intel Xeon Phi KNC processor. The micro-
benchmarks show that both layers of interleaving are independent and, hence,
different placement strategies are needed for optimised reading from memory
versus optimised communication between cores. Just a subset of the available
cache lines is useful for large linked data structures like linked lists, trees, and
graphs as studied in [5]. In contrast, a significant latency reduction is achievable
for access to shared variables provided that the communicating cores are in
proximity to the responsible coherence directory.

As [8,10] pointed out, the impact of contention at the coherence directories
is considerable with 60 ns extra latency per concurrent thread in the ping-pong
example. This situation arises naturally when a large number of threads accesses
the same synchronisation variables, for example global semaphores and barriers.
Hierarchical strategies and software combining strategies as reviewed in Sect. 2
can mitigate this contention bottleneck. These approaches lead naturally to a
spatial partitioning of the cores in order to keep the majority of the communi-
cation localised. In such settings, the pUMA-aware placement of the local syn-
chronisation variables should provide noticeable additional acceleration while
reducing placement-dependent latency and throughput variations.

Ideal candidates for such improvements are scalable services of parallel run-
time environments and of the operating system, for example the distributed
memory and thread management, cross-core thread synchronisation, basic mes-
saging and notification primitives, and application-level task schedulers.

On the practical side, improved system support is needed: For a pure user-
land implementation, pinning of mapped pages in the virtual memory manage-
ment, the translation from virtual to physical addresses, and the assignment
from cache lines to nearby cores is needed. The KNC’s Linux supports the first
two aspects but leaves the assignment to the application. Without control over
the used physical address ranges, applications would need on-line measurements
or a large database like in [5]. Instead, a pUMA kernel module could provide a
mmap service that returns pages pre-initialised with the assignment to nearby
cores.

Acknowledgments. This work was financed by the German Federal Ministry of Edu-
cation and Research (BMBF) in the MyThOS project, grant no. 01IH13003C.

Dealing with Pseudo-Uniform Memory Architectures 695

References

1. Dashti, M., Fedorova, A., Funston, J., Gaud, F., Lachaize, R., Lepers, B.,
Quema, V., Roth, M.: Traffic management: a holistic approach to memory place-
ment on NUMA systems. In: Proceedings of the Eighteenth International Confer-
ence on Architectural Support for Programming Languages and Operating Sys-
tems, ASPLOS 2013, pp. 381–394. ACM, New York (2013)

2. Agarwal, A., Simoni, R., Hennessy, J., Horowitz, M.: An evaluation of directory
schemes for cache coherence. SIGARCH Comput. Archit. News 16(2), 280–298
(1988)

3. Hackenberg, D., Molka, D., Nagel, W.E.: Comparing cache architectures and
coherency protocols on x86–64 multicore SMP systems. In: Proceedings of the 42nd
Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 42,
pp. 413–422. ACM, New York (2009)

4. Choi, I., Zhao, M., Yang, X., Yeung, D.: Experience with improving distributed
shared cache performance on tilera’s tile processor. Comput. Archit. Lett. 10(2),
45–48 (2011)

5. Gerofi, B., Takagi, M., Ishikawa, Y.: Exploiting hidden non-uniformity of uniform
memory access on manycore CPUs. In: Lopes, L., et al. (eds.) Euro-Par 2014. LNCS,
vol. 8806, pp. 242–253. Springer, Cham (2014). doi:10.1007/978-3-319-14313-2 21

6. Intel Corporation: Intel Xeon Phi Coprocessor System Software Developers Guide.
https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-system-soft
ware-developers-guide

7. Seiler, L., Carmean, D., Sprangle, E., Forsyth, T., Abrash, M., Dubey, P., Junkins, S.,
Lake, A., Sugerman, J., Cavin, R., et al.: Larrabee: a many-core x86 architecture for
visual computing. In: ACM Transactions on Graphics (TOG), vol. 27, p. 18. ACM
(2008)

8. Ramos, S., Hoefler, T.: Modeling communication in cache-coherent SMP systems: a
case-study with Xeon Phi. In: Proceedings of the 22nd International Symposium on
High-Performance Parallel and Distributed Computing, HPDC 2013, pp. 97–108.
ACM, New York (2013)

9. Fang, J., Sips, H., Zhang, L., Xu, C., Che, Y., Varbanescu, A.L.: Test-driving Intel
Xeon Phi. In: Proceedings of the 5th ACM/SPEC International Conference on
Performance Engineering, ICPE 2014, pp. 137–148. ACM, New York (2014)

10. Fang, Z., Mehta, S., Yew, P.C., Zhai, A., Greensky, J., Beeraka, G., Zang, B.:
Measuring microarchitectural details of multi- and many-core memory systems
through microbenchmarking. ACM Trans. Archit. Code Optim. 11(4) 55:1–55:26
(2015)

11. Cascaval, C., Castanos, J.G., Ceze, L., Denneau, M., Gupta, M., Lieber, D.,
Moreira, J.E., Strauss, K., Warren, H.S.: Evaluation of a multithreaded archi-
tecture for cellular computing. In: 2002 Proceedings of Eighth International Sym-
posium on High-Performance Computer Architecture, pp. 311–321, February 2002

12. Feehrer, J., Jairath, S., Loewenstein, P., Sivaramakrishnan, R., Smentek, D.,
Turullols, S., Vahidsafa, A.: The Oracle Sparc T5 16-core processor scales to eight
sockets. IEEE Micro 33(2), 48–57 (2013)

13. Intel Corporation: Intel Xeon Processor 7500 Series Datasheet, vol. 2, March 2010.
http://www.intel.com/content/www/us/en/processors/xeon/xeon-processor-7500
7500-series-vol-2-datasheet.html

14. Lameter, C.: NUMA (non-uniform memory access): an overview. Queue, 11(7)
40:40–40:51 (2013)

http://dx.doi.org/10.1007/978-3-319-14313-2_21
https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-system-software-developers-guide
https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-system-software-developers-guide
http://www.intel.com/content/www/us/en/processors/xeon/xeon-processor-75007500-series-vol-2-datasheet.html
http://www.intel.com/content/www/us/en/processors/xeon/xeon-processor-75007500-series-vol-2-datasheet.html

696 R. Rotta et al.

15. Bianchini, R., Crovella, M.E., Kontothanassis, L., LeBlanc, T.J.: Software inter-
leaving. In: 1994 Proceedings of Sixth IEEE Symposium on Parallel and Distrib-
uted Processing, pp. 56–65, October 1994

16. Tang, P., Yew, P.C.: Software combining algorithms for distributing hot-spot
addressing. J. Parallel Distrib. Comput. 10(2), 130–139 (1990)

17. Mellor-Crummey, J.M., Scott, M.L.: Algorithms for scalable synchronization on
shared-memory multiprocessors. ACM Trans. Comput. Syst. 9(1), 21–65 (1991)

18. Magnusson, P., Landin, A., Hagersten, E.: Queue locks on cache coherent multi-
processors. In: 1994 Proceedings of Eighth International Parallel Processing Sym-
posium, pp. 165–171, April 1994

19. Min, S.J., Iancu, C., Yelick, K.: Hierarchical work stealing on manycore clusters. In:
5th Conference on Partitioned Global Address Space Programming Models (2011)

20. Gamsa, B., Krieger, O., Appavoo, J., Stumm, M.: Tornado: maximizing locality
and concurrency in a shared memory multiprocessor operating system. In: Proceed-
ings of the Third Symposium on Operating Systems Design and Implementation,
OSDI 1999, Berkeley, CA, USA, pp. 87–100. USENIX Association (1999)

21. Radovic, Z., Hagersten, E.: Hierarchical backoff locks for nonuniform communi-
cation architectures. In: Proceedings of the Ninth International Symposium on
High-Performance Computer Architecture, HPCA-9 2003, pp. 241–252, February
2003

22. Yew, P.C., Tzeng, N.F., Lawrie, D.H.: Distributing hot-spot addressing in large-
scale multiprocessors. IEEE Trans. Comput. C-36(4) 388–395 (1987)

23. Dice, D., Marathe, V.J., Shavit, N.: Lock cohorting: a general technique for design-
ing NUMA locks. SIGPLAN Not. 47(8), 247–256 (2012)

24. Fatourou, P., Kallimanis, N.D.: Revisiting the combining synchronization tech-
nique. SIGPLAN Not. 47(8), 257–266 (2012)

25. David, T., Guerraoui, R., Trigonakis, V.: Everything you always wanted to know
about synchronization but were afraid to ask. In: Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles SOSP 2013, pp. 33–48. ACM,
New York (2013)

Exploring Task Parallelism for Heterogeneous
Systems Using Multicore Task Management API

Suyang Zhu1, Sunita Chandrasekaran2(B), Peng Sun1, Barbara Chapman1,
Marcus Winter3, and Tobias Schuele3

1 Department of Computer Science, University of Houston, Houston, USA
zsuyang@uh.edu, {psun5,chapman}@cs.uh.edu

2 Department of Computer and Information Sciences,
University of Delaware, Newark, USA

schandra@udel.edu
3 Siemens Corporate Technology, Princeton, USA

{marcus.winter.ext,tobias.schuele}@siemens.com

Abstract. Current trends in multicore platform design indicate that
heterogeneous systems are here to stay. Such systems include processors
with specialized accelerators supporting different instruction sets and
different types of memory spaces among several other features. These
features increase the programming effort to port applications to target
platforms. We need effective programming strategies that can exploit the
rich feature set of such heterogeneous multicore architectures and yet not
require increased learning curve to apply these strategies.

To distribute workload effectively across such systems that have dif-
ferent cores running at different speed, we have explored task-based pro-
gramming models in this paper. This model allows decomposition of a
problem into a set of tasks for simultaneous execution. We present a
task-based approach that employs the Multicore Association’s (MCA)
Task Management API (MTAPI), a robust, cross-platform, scalable API
that avoids unnecessary synchronization thus offering a tiered and flex-
ible approach and distributing workload efficiently across processors of
varying types. For evaluation purposes, we use an NVIDIA Jetson TK1
board (ARM + GPU) as our test bed. As applications, we employ codes
from benchmark suites such as Rodinia and BOTS.

Keywords: Multicore systems · Runtime · Heterogeneity · Accelera-
tors · MTAPI

1 Introduction

Embedded multicore systems are widely used in areas such as networking, auto-
mobiles, and robotics. Some of these systems even compete with HPC plat-
forms [1] and are promising to deliver high GFLOPS/Watt. Since parallelism
has become a major driving force in computing, microprocessor vendors con-
centrate on integrating accelerators together with the central processing unit
c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 697–708, 2017.
DOI: 10.1007/978-3-319-58943-5 56

698 S. Zhu et al.

(CPU) on the same platform. The current trend of such platforms is that they
are heterogeneous in nature, i.e., their operating systems and memory spaces
are usually different [2] from traditional platforms. For example, Qualcomm’s
heterogeneous processor Snapdragon 810 integrates an ARM Cortex CPU and
an Adreno 430 GPU on the same chip. Such an integration produces hardware
platforms that satisfy the requirements regarding performance, flexibility, and
energy consumption of embedded systems. Unfortunately the software to port
applications to such systems is often still immature and typically fine tuned for
a specific platform. As a result, maintaining a single code base across multiple
platforms is not feasible; this is a major concern.

Programming models designed for high performance computing (HPC) plat-
forms are not necessarily the best for handling embedded multicore systems,
especially when these systems have limited resources, such as a small number of
cores, or limited memory. Among the models, a high-level directive-based model
is OpenMP [3] that has been recently extended to support accelerators. How-
ever embedded systems are still unique unlike traditional accelerators such as
GPUs, so OpenMP in its current status will still not be suitable for embedded
devices. An alternate language is OpenCL [4] that is known for its portability
but OpenCL involves steep learning curve making it a challenge to adopt the
language on hardware.

To address these challenges, the Multicore Association (MCA)1 was formed
by a group of leading-edge companies addresses the programming challenges of
heterogeneous embedded multicore platforms. MCA’s primary objective is the
definition of a set of open specifications and application program interfaces (API)
to facilitate multicore product development. MCA offers industry standard APIs
for data sharing among different types of cores namely the Multicore Resource
Management API (MRAPI), inter-core communication namely the Multicore
Communication API (MCAPI), and for task management namely the Multicore
Task Management API (MTAPI). Since the APIs are system agnostic, they
facilitate development of portable code, thus improving the feasibility of running
the same application on more than just one hardware platform.

This paper makes the following contributions:

– Creates a light-weight, task-based portable software stack to target resource-
constrained heterogeneous embedded multicore systems using MTAPI

– Assesses the software stack by evaluation case studies on an embedded plat-
form equipped with ARM processors and GPUs

– Showcases two open source MTAPI implementations for programmers to use2

Note: This paper does not aim to compare and contrast between the two imple-
mentations. Instead, the goal is to discuss how they can be used by software
developers to port applications to heterogeneous multicore systems.

1 https://www.multicore-association.org.
2 UH-MTAPI and Siemens MTAPI: Software created by researchers at the University

of Houston and Siemens.

https://www.multicore-association.org

Exploring Task Parallelism for Heterogeneous Systems 699

The rest of the paper is organized as follows: Sect. 2 discusses the state-of-
the-art and Sect. 3 gives an overview of MTAPI. The design and implementa-
tion strategies of our runtime library (RTL) implementation is given in Sect. 4.
Section 5 discusses the experimental results and Sect. 6 presents conclusions
along with some ideas for future work.

2 Related Work

In this section, we discuss some state-of-the-art parallel programming models for
heterogeneous multicore systems from the task parallelism perspective.

OpenMP has been widely used in HPC for exploring shared memory paral-
lelism [5] until recent advancements in the standard to support heterogeneous
systems. OpenMP 3.1 ratified tasks, and task parallelism for multicore SoCs was
implemented by several frameworks [6–8] deployed on shared memory systems.
OpenMP 4.0 extended tasks to support task dependencies evaluated in [9] again
using traditional shared memory-based architectures.

Other task-based efforts include Intel’s TBB [10] that treats operations as
tasks and assigns them to multiple cores through a runtime library. As most
frameworks, however, TBB targets desktop or server applications and is not
designed for low-footprint embedded and heterogeneous systems.

Cilk [11] is a C language extensions developed by MIT for multithreaded
parallel computing. While Cilk simplifies task parallel applications, it only sup-
ports shared memory environment which limits its application to homogeneous
systems.

OpenCL [4] is a standard designed for data parallel processing used to pro-
gram CPUs, GPUs, DSPs, FPGAs, etc. Although the standard can target mul-
tiple platforms, there is a steep learning curve making it a challenge to be
adaptable.

OmpSs (OpenMP SuperScalar) [12] is a task-based programming model
which exploits parallelism based on annotations using pragmas. OmpSs has been
extended to many-core processors with accelerators such as multiple GPU sys-
tems. However, OmpSs needs special compiler support which limits its usability
for embedded, heterogeneous systems.

StarPU [13] is a tasking API that allows developers to design applications
in heterogeneous environments. StarPU’s runtime schedules the tasks and cor-
responding data transfers among the CPU and GPU accelerators. However,
the necessary extension plug-in for GCC puts constraints on the deployment
of StarPU to embedded systems with limited resources or bare-metal devices.

As discussed above, there are many approaches that explore task parallelism.
However, they may not be best suited for embedded platforms which, unlike
traditional platforms, lack plenty of resources and sometimes do not even have an
OS. Additionally, many embedded systems are subject to real-time constraints
and forbid dynamic memory allocation during operation which is completely
ignored by the discussed approaches.

700 S. Zhu et al.

Our prior work in [14] uses MCAPI to establish communication through well-
pipelined DMA protocols between Freescale P4080’s Power Architecture and
the specialized RegEx Pattern Matching Engine (PME) accelerator. We also
created an abstraction layer for easy programmability by translating OpenMP
to MRAPI [15,16]. Designed and implemented in ANSI C, MCAPI and MRAPI
do not require specific compiler support or user-defined language extensions.

3 MTAPI Overview

Figure 1 gives an overview of MTAPI. Applications can be developed by directly
calling the MTAPI interface or via further abstraction layers such as OpenMP
(a translation from OpenMP to MTAPI is described in [17]). MTAPI can be
implemented on most operating systems or even bare metal thanks to its simple
design and minimal dependencies.

CPU
Core 0

CPU Memory GPU Memory

CPU
Core 2 GPU CPU

Core 3
CPU

Core 1

OS 1 OS 2 OS 3 CUDA lib Bare Metal

Co-Proc

Flash
Memory

MTAPI Runtime Library

DOMAIN

NODE 0 NODE 2 NODE 3

High-Level Programming Model Interfaces
(e.g., OpenMP)

NODE 2 NODE 3

Applications

Fig. 1. MTAPI framework

In the following, we describe the main concepts of MTAPI.

Node: An MTAPI node is an independent unit of execution. A node can be a
process, a thread, a thread pool, a general purpose processor or an accelerator.

Job and Action: A job is an abstraction representing the work and is implemented
by one or more actions. For example, a job can be implemented by one action
on the CPU and another action on the GPU. The MTAPI system binds tasks
to the most suitable actions during runtime.

Task: An MTAPI task is an instance of a job together with its data environ-
ment. Tasks are very light-weight with fine granularity which allows creating,
scheduling, and executing numerous tasks in parallel. A task can be offloaded to

Exploring Task Parallelism for Heterogeneous Systems 701

a neighboring node other than its origin node depending on the dynamic action
binding. Therefore, optimized and efficient scheduling algorithms are desired for
task management on heterogeneous multicore platforms.

Queue: A queue is defined by the MTAPI specification to guarantee sequential
execution of tasks.

Group: MTAPI groups are defined for synchronization purposes. A group is
similar to a barrier in other task models. Tasks attached to the same group
must be completed before the next step by calling mtapi group wait.

Related work on MTAPI includes the European Space Agency (ESA) cre-
ating an MTAPI implementation [18] for a LEON4 processor, which is a syn-
thesizable VHDL model of a 32-bit processor compliant with the SPARC V8
architectures. Wallentowitz et al. [19] developed a baseline implementation and
plans for deploying MCAPI and MTAPI on tiled many-core SoCs.

This project is in collaboration with Siemens who created an own industry-
grade MTAPI implementation as part of a larger open source project called
Embedded Multicore Building Blocks (EMB2) [20]. EMB2 has been specifically
designed for embedded systems and the typical requirements that accompany
them, such as predictable memory consumption, which is essential for safety-
critical applications, and real-time capability. For the latter, the library supports
task priorities and affinities, and the scheduling strategy can be optimized for
non-functional requirements such as minimal latency and fairness.

Besides the task scheduler, EMB2 provides parallel algorithms like loops and
reductions, concurrent data structures, and high-level patterns for implementing
stream processing applications. These building blocks are largely implemented
in a non-blocking (lock-free) fashion, thus preventing frequently encountered pit-
falls like lock contention, deadlocks, and priority inversion. As another advantage
in real-time systems, the algorithms and data structures give certain progress
guarantees [21].

We evaluate both the implementations and demonstrate the usability and
applicability of MTAPI for heterogeneous embedded multicore platforms.

4 MTAPI Design and Usage

4.1 Job Scheduling and Actions

As mentioned earlier, MTAPI decomposes computations into multiple tasks,
schedules them among the available processing units, and combines the results
after synchronization. Here a task is defined as a light-weight operation that
describes the job to be done. However, during the task-creation cycle, the task
does not know with which action it will be associated. MTAPI provides a
dynamic binding policy between tasks and actions. This is to facilitate jobs
to be scheduled on more than one hardware type. The scheduler handles the
load-balancing issues. Depending on the where the task is located, it is marked
either a local task or a remote task. If the task is assigned to an action resid-
ing on the same node, the task is marked as a local task; otherwise the task is

702 S. Zhu et al.

marked as a remote task. Figure 2 gives an example the relationship between
task and action. In the example, tasks a, b and d are assigned actions a, b, and,
d, respectively, on remote nodes other than node 1, thus becoming remote tasks.
On the other hand, task c is associated with action c on node 1, making it a
local task. Each node consists of different processors.

Node 1 (e. g CPU/DSP)
MTAPI Runtime

Node 2 (e. g CUDA Node)
MTAPI Runtime

Node 3 (e. g Co-processor)
MTAPI Runtime

Applica
tion

Task 1

Action III
Implemented by

Action I

Action II

Implemented by

Implemented by

Task 2

Task 3

Job b

Job a
accomplishes

accomplishes

Fig. 2. MTAPI Job and Action

The MTAPI RTL defines an abstract interface for thread control including
thread creation, termination, and synchronization using mutexes or semaphores.
MTAPI kernel developers may implement this interface with particular thread
libraries for the target platform, thus making MTAPI portable across a wide
range of architectures. This portable and flexible approach is one of the appealing
factors of MTAPI.

Listing 1.1 demonstrates the matrix multiplication program using MTAPI. In
this code, we see there are two action functions that implements the matrix mul-
tiplication job. ActionFunction GPU is implemented with CUDA kernel while
ActionFunction CPU is implemented with sequential CPU kernel. After defin-
ing the two action functions, we initialize the MTAPI environment by attaching
these two actions to the same matrix multiplication job. Then we create three
tasks respectively. arg GPU and arg CPU are pointers to the matrix data. These
tasks are then assigned to different actions to execute. Thus, the GPU and CPU
are utilized to do the computation in parallel.

Exploring Task Parallelism for Heterogeneous Systems 703

void ActionFunction GPU (
const void∗ arguments ,
const mtap i s i z e t arguments s i ze ,
void∗ r e su l t ,
const mtap i s i z e t r e s u l t s i z e ,
const void∗ node l o ca l da ta ,
const mtap i s i z e t n od e l o c a l d a t a s i z e ,
mtap i t a sk con t ex t t ∗ const context

)
{

Argument t∗ arg = (Argument t ∗) arguments ;
k e rne l (arg−>A, arg−>B, arg−>C, arg−>n) ;

}

void ActionFunction CPU (
const void∗ arguments ,
const mtap i s i z e t arguments s i ze ,
void∗ r e su l t ,
const mtap i s i z e t r e s u l t s i z e ,
const void∗ node l o ca l da ta ,
const mtap i s i z e t n od e l o c a l d a t a s i z e ,
mtap i t a sk con t ex t t ∗ const context

)
{

Argument t∗ arg = (Argument t ∗) arguments ;
i ter matmul (arg−>A, arg−>B, arg−>C, arg−>n) ;

}

mtap i a c t i on c r e a t e (JOBID, ActionFunction CPU , NULL, 0 ,
NULL, &s ta tu s) ;

mtap i a c t i on c r e a t e (JOBID, ActionFunction GPU , NULL, 0 ,
NULL, &s ta tu s) ;

mtap i t a sk hnd l t task [3] ;
task [0] = mtap i t a s k s t a r t (0 , job , arg CPU , s izeof (

Argument t) , NULL, 0 , NULL, group , &s ta tu s) ;
task [1] = mtap i t a s k s t a r t (0 , job , arg GPU , s izeof (

Argument t) , NULL, 0 , NULL, group , &s ta tu s) ;
task [2] = mtap i t a s k s t a r t (0 , job , arg GPU2 , s izeof (

Argument t) , NULL, 0 , NULL, group , &s ta tu s) ;
mtap i ta sk wa i t (task [0] , MTAPI INFINITE , &s ta tu s) ;
mtap i ta sk wa i t (task [1] , MTAPI INFINITE , &s ta tu s) ;
mtap i ta sk wa i t (task [2] , MTAPI INFINITE , &s ta tu s) ;

Listing 1.1. MTAPI Matrix Multiplication Kernel

704 S. Zhu et al.

4.2 Inter-Node Communication

Essentially, each node has one receiver thread and a sender thread. These threads
initialize the MCAPI environment and create MCAPI endpoints for message
passing through MCAPI function calls. They together compose the MCAPI
communication layer between nodes within the domain. Technically, the data
and information transported between MTAPI nodes are packed as an MCAPI
message. MCAPI then transports these messages across the nodes for load bal-
ancing of tasks, information update, and synchronization. The message contains
the domain ID, node ID, and port ID. Once a message is created, it is inserted
into a central message queue on the node waiting for the sender to initiate the
communication. Every message is assigned a priority. The high priority messages
such as action updates are inserted at the head of the message queue while the
low priority messages, like load balancing, are inserted at the tail of the queue.
The sender wraps the MTAPI message into an MCAPI message, according to
its type, and sends it to its destination node. The receiver thread keeps listen-
ing to its neighboring nodes to check if there is an MCAPI message sent to this
node. Upon receipt of an MCAPI message, the receiver decodes the MCAPI mes-
sage and creates an MTAPI message carrying the necessary information. Then,
the receiver pushes the newly created MTAPI message into the message queue,
waiting for the next cycle of message processing by the sender thread. Finally,
the receiver thread continues listening to its neighbor nodes. In the UH-MTAPI
design, a priority scheduler manages the message queue. The priority scheduler
uses a centralized message queue, where the messages are sorted.

5 Performance Evaluation

In this section, we evaluate the Siemens MTAPI implementation3 and UH-
MTAPI4. We select applications from BOTS [7] and Rodinia Benchmarks [22]
to demonstrate their performance. The benchmarks are executed on NVIDIA’s
Jetson TK1 embedded development platform [23] with a Tegra K1 processor
which integrates a 4-Plus-1 quad-core ARM Cortex-A15 processor and a Kepler
GPU with 192 cores. We use the GCC OpenMP implementation shipped with
the board by NVIDIA as reference for comparison purposes.

SparseLU Benchmark: The SparseLU factorization benchmark from BOTS
computes an LU matrix factorization for sparse matrices. A sparse matrix con-
tains submatrix blocks that may not be allocated. The vacancy of certain unal-
located submatrix blocks leads to imbalance. Thus, task parallelism has better
performance over other work sharing directives such as OpenMP’s parallel
for. In the SparseLU factorization, tasks are created only for the allocated sub-
matrix blocks to reduce the overhead caused by imbalance.

The sparse matrix contains 50 × 50 submatrices, where each submatrix has
size 100 × 100 on both hardware platforms. We collect multiple metrics such
3 https://github.com/siemens/embb.
4 https://github.com/MCAPro2015/OpenMP MCA Project.

https://github.com/siemens/embb
https://github.com/MCAPro2015/OpenMP_MCA_Project

Exploring Task Parallelism for Heterogeneous Systems 705

as execution time, matrix size, and number of threads. The execution time for
calculating the speed-up is measured on the CPU for the core part of the com-
putation, excluding I/O and initial setup.

Figure 3(a) shows the speed-up using different implementations. The
UH-MTAPI implementation demonstrates comparable performance with the
Siemens MTAPI implementation as well as GCC’s OpenMP version. Both
Siemens and UH-MTAPI implementations achieve a roughly linear speed-up
which indicates their scalability on multicore processors.

Heartwall Benchmark: The Heartwall tracking benchmark is an application
from Rodina [22] which tracks the changing shapes of a mouse heart wall. We
reorganized it by splitting loop parallelism into tasks, where each task han-
dles a chunk of the image data. The image procedures are encapsulated in an
action function that processes the data associated with the corresponding tasks.
Figure 3(b) shows the speed-up over a single thread. We observe that task par-
allelism conducted by UH-MTAPI matches the performance of data parallelism
offered by OpenMP parallel for and the Siemens MTAPI implementation.
However, none of the three versions meets the expectation of linear speedup as
the number of threads increases.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

2 3 4

Sp
ee

d-
up

 V
S

se
ri

al

of threads

SparseLU

GCC-OpenMP
Siemens-MTAPI

UH-MTAPI

(a) SparseLU benchmark

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

2 3 4

Sp
ee

d-
up

 V
S

se
ri

al

of threads

Heartwall

GCC-OpenMP
Siemens-MTAPI

UH-MTAPI

(b) Heartwall benchmark

Fig. 3. Speed-up for SparseLU and Heartwall benchmarks with OpenMP, Siemens
MTAPI and UH-MTAPI on NVIDIA Tegra TK1 board

Matrix-Matrix Multiplication: This benchmark (multiplication for dense
matrices) is relatively compute-intensive. The complexity of a traditional multi-
plication of two square matrices is O(n3). Although matrix multiplication can be
implemented using the parallel working directives such as OpenMP’s parallel for,
the computation takes a lot of time due to the limited number of CPU threads
and poor data locality. In contrast, heterogeneous systems with accelerators such
as GPUs are a good fit for such algorithms, specifically as their architecture
with a large amount of processing units allow to run many threads concurrently.
Additionally, GPU matrix-matrix multiplication algorithms are potentially more
cache friendly than CPU algorithms [24]. We implemented different types of
action functions targeting the different processing units. The CPU action is

706 S. Zhu et al.

implemented in C++ while the GPU action relies on CUDA [25]. Moreover, we
designed four different approaches to execute the benchmark and an additional
approach was used by Siemens to achieve maximum performance using both
CPU and GPU:

ARM-Seq. Sequential implementation on ARM CPU.
MTAPI-CPU. MTAPI implementation with a single action for ARM CPU.
MTAPI-CPU-GPU. MTAPI implementation with actions for CPU and

GPU.
MTAPI-GPU. MTAPI implementation with a single action for GPU.
MTAPI-CPU-GPU-Opt. Same as MTAPI-CPU-GPU, but with work item

sizes tailored to the particular needs of the respective computation units and
copying of data to the GPU overlapped with computation.

Figure 4(a) shows the normalized execution times for matrix sizes 128, 256,
512, and 1024 for UH-MTAPI. Figure 4(a) shows the results for Siemens MTAPI.
We observe that the ARM action has comparable performance with the GPU
action for matrices with sizes less than 128.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

128 256 512 1024

E
xe

cu
tio

n
tim

e(
no

rm
al

iz
ed

)

Matrix Size

UH MTAPI

ARM-Seq
MTAPI-ARM

MTAPI-ARM-GPU
MTAPI-GPU

(a) UH-MTAPI

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

128 256 512 1024

E
xe

cu
tio

n
tim

e(
no

rm
al

iz
ed

)

Matrix Size

Siemens

ARM-Seq
MTAPI-ARM

MTAPI-ARM-GPU
MTAPI-GPU

MTAPI-ARM-GPU-Opt

(b) Siemens MTAPI

Fig. 4. Normalized execution time for matrix multiplication with UH-MTAPI and
Siemens MTAPI on NVIDIA Tegra TK1 board

The data being copied between the CPU and the GPU pose a major com-
munication overhead. However, as the matrix size increases, the data copying
time can be largely ignored for which reason the GPU action outperforms the
CPU action. A simple distribution of the work to both processing units did not
yield a speedup. In fact, the CPU action is far slower than the GPU action, and
equally sized work items let the GPU finish while the CPU is still calculating.
For this reason, the optimized version uses bigger work items for the GPU and
smaller ones for the CPU. Moreover, data is transferred asynchronously, thus
hiding the transfer time in computations. This technique results in a speedup in
all tested cases, but the contribution of the CPU shrinks with increasing matrix
size as expected.

Exploring Task Parallelism for Heterogeneous Systems 707

6 Conclusion and Future Work

Programming models for heterogeneous multicore systems are important yet
challenging. In this paper, we described the design and implementation of a par-
allel programming standard, the Multicore Task Management API (MTAPI).
MTAPI enables application-level task parallelism on embedded devices with
symmetric or asymmetric multicore processors. We showed that MTAPI pro-
vides a convenient way to develop portable and scalable applications targeting
heterogeneous systems in a straight-forward manner. Our experimental results of
MTAPI using different benchmarks show competitive performance compared to
OpenMP while being more flexible. In the future, we will target further platforms
such as DSPs.

Our sincere gratitude to the anonymous reviewers and many thanks to
Markus Levy, President of the Multicore Association for his continued support.

References

1. Stotzer, E., Jayaraj, A., Ali, M., Friedmann, A., Mitra, G., Rendell, A.P.,
Lintault, I.: OpenMP on the low-power TI keystone II ARM/DSP system-on-chip.
In: Rendell, A.P., Chapman, B.M., Müller, M.S. (eds.) IWOMP 2013. LNCS, vol.
8122, pp. 114–127. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40698-0 9

2. Li, T., Brett, P., Knauerhase, R., Koufaty, D., Reddy, D., Hahn, S.: Operating
system support for overlapping-ISA heterogeneous multi-core architectures. In:
IEEE 16th International Symposium on High Performance Computer Architec-
ture (HPCA), pp. 1–12. IEEE (2010)

3. Dagum, L., Enon, R.: OpenMP: an industry standard API for shared-memory
programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998)

4. Stone, J.E., Gohara, D., Shi, G.: OpenCL: a parallel programming standard for
heterogeneous computing systems. Comput. Sci. Eng. 12(1–3), 66–73 (2010)

5. Chapman, B., Jost, G., Van Der Pas, R.: Using OpenMP: Portable Shared Memory
Parallel Programming, vol. 10. MIT Press, Cambridge (2008)

6. Chapman, B., Huang, L., Biscondi, E., Stotzer, E., Shrivastava, A., Gatherer, A.:
Implementing OpenMP on a high performance embedded multicore MPSoC. In:
Parallel and Distributed Processing, pp. 1–8. IEEE (2009)

7. Duran, A., Corbalán, J., Ayguadé, E.: Evaluation of OpenMP task scheduling
strategies. In: Eigenmann, R., Supinski, B.R. (eds.) IWOMP 2008. LNCS, vol.
5004, pp. 100–110. Springer, Heidelberg (2008). doi:10.1007/978-3-540-79561-2 9

8. Liao, C., Hernandez, O., Chapman, B., et al.: OpenUH: an optimizing, portable
OpenMP compiler. Concurrency Comput.: Practice Exp. 19(18), 2317–2332 (2007)

9. Ghosh, P., Yan, Y., Eachempati, D., Chapman, B.: A prototype implementa-
tion of OpenMP task dependency support. In: Rendell, A.P., Chapman, B.M.,
Müller, M.S. (eds.) IWOMP 2013. LNCS, vol. 8122, pp. 128–140. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-40698-0 10

10. Reinders, J.: Intel Threading Building Blocks: Outfitting C++ for Multi-core
Processor Parallelism. O’Reilly Media Inc., Sebastopol (2007)

11. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H.
Zhou, Y.: Cilk: an efficient multithreaded runtime system, vol. 30. ACM (1995)

http://dx.doi.org/10.1007/978-3-642-40698-0_9
http://dx.doi.org/10.1007/978-3-540-79561-2_9
http://dx.doi.org/10.1007/978-3-642-40698-0_10

708 S. Zhu et al.

12. Duran, A., Ayguadé, E., Badia, R.M., Labarta, J., Martinell, L., Martorell, X.,
Planas, J.: OmpSS: a proposal for programming heterogeneous multi-core archi-
tectures. Parallel Process. Lett. 21(02), 173–193 (2011)

13. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.-A.: StarPU: a unified plat-
form for task scheduling on heterogeneous multicore architectures. Concurrency
Comput.: Practice Exp. 23(2), 187–198 (2011)

14. Sun, P., Chandrasekaran, S., Chapman, B.: Targeting Heterogeneous SoCs using
MCAPI. In: SRC TECHCON 2014, in the GRC Research Category Section 29.1
(2014)

15. Wang, C., Chandrasekaran, S., Sun, P., et al.: Portable mapping of openMP to
multicore embedded systems using MCA APIs. In: Proceedings of LCTES 2013,
pp. 153–162 (2013)

16. Wang, C., Chandrasekaran, S., Chapman, B., Holt, J.: libEOMP: a portable
OpenMP runtime library based on MCA APIs for embedded systems. In: Pro-
ceedings of PMAM, pp. 83–92 (2013)

17. Sun, P., Chandrasekaran, S., Zhu, S., Chapman, B.: Deploying OpenMP task par-
allelism on multicore embedded systems with MCA task APIs. In: Proceedings of
IEEE HPCC (2015, to appear)

18. Cederman, D., Hellstrom, D., Sherrill, J., Bloom, G., Patte, M., Zulianello, M.:
RTEMS SMP for LEON3/LEON4 multi-processor devices. In: Data Systems in
Aerospace (2014)

19. Wallentowitz, S., Wagner, P., Tempelmeier, M., et al.: Open tiled manycore system-
on-chip. arXiv preprint arXiv:1304.5081 (2013)

20. Siemens. Embedded Multicore Building Blocks. https://github.com/siemens/embb
21. Herlihy, M., Shavit, N.: On the nature of progress. In: Fernàndez Anta, A.,

Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp. 313–328. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-25873-2 22

22. Che, S., Boyer, M., Meng, J., et al.: Rodinia: a benchmark suite for heterogeneous
computing. In: Proceedings of IISWC, pp. 44–54. IEEE (2009)

23. NVIDIA Jetson TK1 Development Kit. http://developer.download.nvidia.com/
embedded/jetson/TK1/docs/Jetson platform brief May2014.pdf

24. Fatahalian, K., Sugerman, J., Hanrahan, P.: Understanding the efficiency of GPU
algorithms for matrix-matrix multiplication. In: Proceedings of Conference on
Graphics Hardware, pp. 133–137. ACM (2004)

25. NVIDIA. CUDA programming guide (2008)

http://arxiv.org/abs/1304.5081
https://github.com/siemens/embb
http://dx.doi.org/10.1007/978-3-642-25873-2_22
http://developer.download.nvidia.com/embedded/jetson/TK1/docs/Jetson_platform_brief_May2014.pdf
http://developer.download.nvidia.com/embedded/jetson/TK1/docs/Jetson_platform_brief_May2014.pdf

Reducing Response Time with Preheated Caches

Mathias Gottschlag(B) and Frank Bellosa(B)

Karlsruhe Institute of Technology, Karlsruhe, Germany
os@itec.kit.edu

Abstract. CPU performance is increasingly limited by thermal dissipa-
tion, and soon aggressive power management will be beneficial for per-
formance. Especially, temporarily idle parts of the chip (including the
caches) should be power-gated in order to reduce leakage power. Cur-
rent CPUs already lose their cache state whenever the CPU is idle for
extended periods of time, which causes a performance loss when execu-
tion is resumed, due to the high number of cache misses when the working
set is fetched from external memory. In a server system, the first net-
work request during this period suffers from increased response time.
We present a technique to reduce this overhead by preheating the caches
in advance before the network request arrives at the server: Our design
predicts the working set of the server application by analyzing the cache
contents after similar requests have been processed. As soon as an esti-
mate of the working set is available, a predictable network architecture
starts to announce future incoming network packets to the server, which
then loads the predicted working set into the cache. Our experiments
show that, if this preheating step is complete when the network packet
arrives, the response time overhead is reduced by an average of 80%.

Keywords: Leakage power · Caches · Preheating · Response time ·
Working set estimation

1 Introduction

CPU performance is increasingly limited by thermal dissipation. While smaller
feature sizes provide us with additional transistors which could be used to imple-
ment more and more cores on one chip, the increased power density will soon
create a situation where a significant portion of the available chip area has to be
powered off (dark silicon [5]). Several techniques have been developed to make
use of additional chip area even if continuous usage of the whole chip would vio-
late thermal limits. One such technique is Computational Sprinting, which lets
a CPU temporarily utilize all of the chip area to reduce the response time of the
system. At other points in time, the chip is operating with significantly reduced
power dissipation to keep the average power below the thermal limit [12].

We envision computational sprinting to be useful in a data center environ-
ment, because many web services have critical response time requirements. In
such a setting, a server system would process several requests at full performance
c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 709–720, 2017.
DOI: 10.1007/978-3-319-58943-5 57

710 M. Gottschlag and F. Bellosa

and therefore with low response times, and then would enter a low-power state
in order to reduce the chip temperature. As leakage power is responsible for
a significant part of the overall power consumption in modern CPUs [8], deep
CPU sleep states (e.g., the ACPI PC7 state of modern Intel CPUs) shut down
as much of the chip area as possible, including the caches [13]. As a result, the
caches lose their state during idle periods. When the CPU resumes execution,
the server application therefore incurs a performance loss because the working
set has to be fetched from external memory. For the nginx web server serving
a static web site, we have measured the response time overhead caused by cold
caches to be as high as 35%.

The high response time from the initially cold caches would affect the tail
latency of the system, even if, as described above, we expect servers to process
requests in bursts between low-power periods. In modern large-scale web services,
however, the tail latency of single systems is critical: Because operations are often
parallelized on hundreds of machines (e.g., database shards), the final result will
be delayed even if a single sub-operation experiences increased latency [2]. It
is therefore important to reduce the impact of power management on the tail
latency of server systems.

Zhu et al. propose anticipatory wakeups as a technique to hide the exit
latency of CPU sleep states by waking the CPU up in advance before an event
occurs [17]. Our experiments, however, have shown that the exit latency is low
compared to the latency overhead caused by cold caches. Additionally, antici-
patory wakeups can only function when the wakeup source is well predictable,
whereas incoming network packets are hardly predictable. In this paper, we build
upon the theory of anticipatory wakeups and extend it to solve these two prob-
lems. The key contributions of this paper, which are elaborated in Sect. 3, are
as follows:

– We describe a technique to construct a fine-grained estimate of the working
set of a server application. Such an estimate is required for efficient cache
preheating. We generate the estimate by analyzing the tag bits of the last-
level cache.

– We present a technique to predict future incoming network packets, in order to
enable the system to wake up early and preheat the cache in anticipation of the
network packets. Our design uses a network architecture which implements
congestion control in a central arbiter. Having an overview over all packets
sent in the near future, this arbiter is able to announce future packets to the
receiver system.

– We discuss a mechanism to preheat the cache in anticipation of an event,
so that the response time to that event is reduced significantly because the
working set is already present in the caches.

These contributions are evaluated with measurements of a prototype imple-
mentation (see Sects. 4 and 5). We outline further improvements and future work
in Sect. 6.

Reducing Response Time with Preheated Caches 711

2 Background and Related Work

Leakage-Power Reduction: Leakage power dominates the power consump-
tion of modern CPUs with small feature sizes [8], and as caches constitute a
significant portion of the chip area, many approaches have been developed to
reduce their leakage power. These approaches can be categorized into destruc-
tive and nondestructive techniques, depending on whether the cache contents
are destroyed by the power management technique. Nondestructive techniques
usually have lower impact on performance, but also provide lower power-saving
advantages. For example, drowsy caches [3] can temporarily reduce the supply
voltage of the cache to a point where the memory cells retain their content, but no
access is possible. Significantly better leakage power reduction can be achieved
by completely disconnecting memory cells from the power supply. Gated-Vdd

[11] is a technique which performs such destructive power gating and combines
it with a dynamically resizable cache. The decision to shrink or grow the cache
is based on the number of cache misses during a time interval, and the inactive
parts of the cache are disabled to conserve power.

This policy is completely reactive and uses very simple heuristics. Some
dynamic situations however require a more flexible predictive approach for maxi-
mum performance: For example, the cache should be completely disabled during
idle periods, but the content should be restored before the system is reactivated
again. Such predictive tasks require information which is commonly only known
to the operating system.

In a similar scenario, Zhu et al. therefore propose strong software engage-
ment of the OS with the power management mechanisms of the hardware [17].
Especially, they show that the operating system can hide the wakeup latency of
current CPUs by predicting future events and waking the CPU up in advance,
so that it is fully awake by the arrival time of the events [17]. We extend these
anticipatory wakeups with a technique to predict future incoming network pack-
ets and with a mechanism to preheat the caches when they have been flushed
by the low-power state.

Centrally Arbitrated Networks: To be able to preheat the cache contents
for an incoming network packet, our system needs to know the arrival time of
that packet in advance. We use a network architecture with a central arbiter
to predict future packets. Such networks have been studied in-depth [4,10,14],
albeit with a different goal: Central arbiters are frequently used to implement
connection switching, which has been proposed for low-latency traffic in data
center networks.

Packet switching requires queues in all switches in order to deal with tem-
porary congestion in some network segments, and these queues can significantly
delay the queued packets. Connection switching, however, can provide superior
network latencies compared to networks with traditional packet switching and
congestion control [10]. In networks based on connection switching, a network
arbiter temporarily allocates a connection with a fixed guaranteed bandwidth to

712 M. Gottschlag and F. Bellosa

a pair of systems. As the arbiter has a global view of the network, it can prevent
any congestion by exclusively allocating network links to a single connection [4].
Despite the differences between such a network architecture and current net-
work stacks, connection switching can be implemented on top of off-the-shelf
ethernet hardware [14] and can even coexist with traditional packet switching
by assigning different types of packets to different priority classes [10].

Adaptive Pre-paging: Whenever a network packet has been predicted, our
design loads the predicted working set of the server application into the cache.
Similar techniques have been developed to reduce the overhead caused by the
migration of virtual machines [6]:

Post-copy migration of virtual machines achieves low downtimes by imme-
diately resuming the virtual machine at the target system and then using on-
demand paging to move the working set from the source system to the target.
The problem of this technique is that initially, right after execution has been
resumed on the target system, the whole working set is still placed on the source
system. Therefore, many expensive page faults are generated. One approach to
reduce the number of page faults is to already move the predicted working set of
the virtual machine to the target system before execution is resumed (adaptive
pre-paging) [6]. We use a similar approach to improve performance right after
a system has resumed from a deep sleep state. However, instead of preventing
page faults, we try to prevent cache misses by loading the estimated working
set into the cache before execution is resumed. Our design therefore predicts the
working set with cache line granularity instead of page granularity.

Adaptive pre-paging is further extended by Zhang et al. in their Picocenter
virtualization system [16], which uses adaptive pre-paging to quickly restore
virtual machines from checkpoints. The Picocenter system differentiates between
different types of events which can reactivate a virtual machine (e.g., network
packets which target different server applications) and creates a separate working
set prediction for each type, by logging which pages have been accessed in the
past after similar events. We employ a similar technique to maintain separate
predicted working sets, and we select one of them to be loaded into the cache
depending on the target port of the incoming network packet. In contrast to
the Picocenter virtualization system, though, our design can already predict the
type of future incoming network packets before they arrive.

3 Design

We present a system which loads the working set into the cache right before a
network packet arrives. As shown in Fig. 1, our design consists of two phases:
Initially, in the working set estimation phase, the system estimates the working
set of the active server application. Once an estimate is available, the system
enters the cache preheating phase. It resumes regular operation, with one excep-
tion: Whenever the system is woken up from a deep sleep state, the predicted
working set is fetched into the CPU caches in order to reduce the response time

Reducing Response Time with Preheated Caches 713

Fig. 1. The two phases of our cache preheating solution: first, the working set of the
server application is estimated, then the estimate is used to preheat the caches for all
following network requests. Incoming network packets are announced by an external
component (described in Sect. 3.2).

of the system. For most server applications, the principle of locality is valid even
over long timeframes, so the working set does not significantly change over time.
Therefore, working set estimation is only performed once, but the predicted
working set is reused to preheat the caches many times.

Working set estimation and cache preheating are implemented as part of
the OS and are designed to work with arbitrary unmodified server applications.
Similarly, the extensions to the network architecture as described in Sect. 3.2 are
completely transparent to both the server application and its clients.

3.1 Working Set Estimation

In current systems, working set estimation is usually performed with page gran-
ularity, for example to provide efficient virtual memory. Often, the application
only requires parts of a page, though. A cache preheating system should not load
more data into the cache than necessary, so the working set must be predicted
with cache line granularity. On current hardware, we have identified two hard-
ware mechanisms which can be used to provide fine-grained information about
the current working set.

First, some CPU architectures are able to trace and record all cache misses.
The list of the cache misses and the accessed memory locations can be analyzed
to create an estimate of the application’s working set. For example, current Intel
processors provide processor event-based sampling (PEBS) as a tracing facility
for various types of events [7]. PEBS monitors an event counter and stores a
copy of the most important CPU registers (along with the accessed memory
address in case of memory events) to a buffer whenever the counter reaches a
user-defined value. In theory, this facility can be used to trace all cache misses.
In practice, however, whenever an event is logged, PEBS frequently misses other
events which occur at approximately the same time [9]. It is therefore neither an
effective working set estimation mechanism, nor is it efficient, as it also causes
significant overhead when every event is recorded.

714 M. Gottschlag and F. Bellosa

Alternatively, the working set can be estimated by analyzing cache contents.
The tag bits in the cache can be translated into a list of physical addresses which
have been accessed by the application since the last cache flush. Among others,
the ARM Cortex-A15 and Cortex-A57 cores provide the RAMINDEX register
[1] which can be used to read and write arbitrary portions of cache memory,
including tag bits. In the absence of any conflict or capacity cache misses, the
resulting list of addresses is complete and, unlike any simple PEBS-based trac-
ing mechanism, does not miss some addresses which have been accessed. Our
experiments show that directly after a cache flush there are rarely any conflict
or capacity misses.

As cache tag bit analysis is a viable technique for working set estimation, we
use a ARM Cortex-A15 system as the basis of our design: First, the caches are
flushed to remove any unwanted data from the cache, and hardware prefetch-
ing is temporarily disabled to ensure that only accessed data is loaded into the
cache. Afterwards, the server resumes normal operation and processes incoming
network requests. After one or more requests have been processed, the last-level
cache tag memory is read and analyzed. The result is a list of all memory loca-
tions which have been accessed since the cache flush. Future invocations of the
server application might access slightly different memory locations, though. For
example, network buffers are likely placed at different locations. To remove such
dynamic regions from the working set, all these steps are repeated several times
(8 times in our prototype). The final working set estimate then only contains
those memory locations which have been repeatedly accessed.

3.2 Network Packet Prediction

Once a good working set estimate is available, the system switches back to regu-
lar operation, but activates cache preheating. The cache preheating mechanism
however not only requires a prediction of the working set, but the system also
needs to know when to preheat the caches. Because the arrival time of network
packets is usually highly nondeterministic, anticipatory cache preheating is not
possible with traditional network architectures. Our solution makes use of a cen-
trally arbitrated network architecture such as Fastpass [10] to predict future
incoming network packets.

Figure 2 shows how a central arbiter can announce future packets: First, the
sender requests a time slot to send the packet. The network arbiter receives all

Fig. 2. Future network packets are announced by the network arbiter in advance, so
that the receiver can preheat the caches in anticipation of the packets.

Reducing Response Time with Preheated Caches 715

such requests from all systems in the network, and creates a schedule for the
packets. Normally, this schedule only needs to be sent to the sender systems so
that they know when to send their packets. In our system, however, the schedule
is also sent to all affected receiver systems as an announcement of future network
packets. When a system receives such an announcement while it is in a low-power
state with flushed caches, it wakes up a CPU core which then starts to preheat
the caches so that the network packet can be efficiently processed.

Ideally, the receiver system not only knows in advance when packets arrive,
but also which type of request they carry. When different types of requests are
processed, the server applications can have significantly different working sets.
While the network is mostly oblivious to the type of request carried by a network
packet, some indicators are transferred along with the data (e.g., the target TCP
port). We modify the network arbitration scheme so that the sender system not
only announces the target address to the arbiter, but also includes the target
port. The arbiter forwards this information to the receiver system, which can,
depending on the port, preheat the predicted working set of the corresponding
server application.

3.3 Preheating

When an incoming packet has been announced by the network arbiter, the receiv-
ing system wakes the CPU and loads the estimated working set into the last-level
cache. The main problem here is the short time span between the announcement
and the arrival of the packet. For example, Fastpass calculates schedules only
65µs in advance [10]. Waking up the CPU requires half of that time already [13],
so only approximately 30µs are left to preheat the cache. Preheating is there-
fore highly time-critical. However, the nginx web server only requires 235.8 KiB
to serve a static website from RAM, and even a TPC-C-like MariaDB workload
only requires 621.8 KiB to serve most requests. The required memory bandwidth
to load these working sets into RAM in the available time (7.5 GiB/s and 19.8
GiB/s respectively) is well within the capabilities of current server hardware.

To preheat the last-level cache, the preheating code loops over all memory
locations in the working set and loads them into the cache. To effectively utilize
all the available memory bandwidth, the memory locations are sorted by increas-
ing physical address. A linear access order minimizes the number of DRAM row
activations and therefore improves memory throughput. As sorting is costly, the
data is sorted as a preprocessing step during the working set estimation phase.

Additionally, the working set description is run-length encoded. Compression
of the working set description increases the preheating memory throughput, as
less additional data needs to be fetched from RAM. Run-length encoding pro-
vides significantly lower computational complexity compared to more complex
cache state compression methods found in literature (e.g., dictionary-based com-
pression [15]). The decoding overhead is low enough that it can be mostly hidden
behind memory operations. Also, the regular structure of the addresses enables
sufficient compression factors: Applications frequently access long consecutive
memory regions, so many consecutive cache lines can be described in one “run”.

716 M. Gottschlag and F. Bellosa

As an example, the working set description of the nginx web server can be
reduced by 68%, from 14528 bytes (one 32-bit address per 64-byte cache line in
the working set) down to 4596 bytes, thereby increasing preheating performance
by 5.7%.

These optimizations produce a fairly optimized memory access pattern which
utilizes most of the available memory bandwidth. However, on modern systems,
a single core often cannot saturate the memory bandwidth anymore. On our
prototype platform, parallelizing the preheating code on two cores results in a
10% performance gain.

4 Evaluation

We have conducted a prototypical evaluation of our design, in order to answer
the following questions: Can cache preheating be used to reduce the response
time to network requests when the caches have been flushed? Is such preheating
efficient enough so that it is a viable technique when combined with existing
network architectures?

In this paper, we present a proof of concept based on a limited prototype
which, while not being functionally complete, is able to show that cache pre-
heating is a viable technique. Our prototype is designed to run on a system
with ARM Cortex-A15 cores, and all benchmarks are executed on a Hardkernel
Odroid-XU3 single board computer. This system provides a Samsung Exynos
5422 SoC with four Cortex-A15 cores and four Cortex-A7 cores.

The system’s network support is limited to an USB ethernet adapter, which
prevents any meaningful network latency benchmarks. Therefore, our prototype
is not yet integrated with a real predictable network architecture, but instead
simulates the network architecture in the benchmark client. The benchmarked
server application is executed on a Cortex-A15 along with the cache preheating
software, whereas the benchmark client is executed on a Cortex-A7 core on the
same system, connected by a local TCP connection. As the SoC provides separate
last-level caches for the different types of cores, this setup mostly isolates the
cache footprints of the two processes. For the response time comparisons below,
the benchmark client optionally flushes the caches of the Cortex-A15 cores to
simulate CPU sleep states and optionally triggers cache preheating before issuing
any request. The Cortex-A15 cores have private 64 KiB L1 caches as well as a
shared 2 MiB L2 cache. The latter has shown to be large enough to accomodate
the working sets of our benchmarks. Applications with a larger working set
require a more complex approach to working set estimation.

4.1 Response Time Reduction

We measure the response time of several benchmark applications to show that
preheating effectively mitigates the performance penalty of cold caches. We com-
pare the response time with warm caches, flushed caches, and after caches have
been first flushed and then preheated. Our three main benchmark applications

Reducing Response Time with Preheated Caches 717

are the nginx web server and the memcached key-value store, both serving static
data, and a more complex dynamic TPC-C-like workload (DBT-2) executed on
the MariaDB database.

Figure 3 shows the cumulative histogram of the response time of 100000
requests to the three applications. In all three cases, the average response time
of requests is significantly reduced by cache preheating compared to when the
requests hit cold caches as shown in Table 1. On average, the response time over-
head (difference between response times for cold and warm caches) is reduced by
79.8%. To show that this improvement can be attributed to cache preheating,
we also measure the average number of cycles per instruction (CPI). The CPI
are a good indicator for the effectiveness of cache preheating, because a reduced
number of cache misses is only beneficial for performance if it in turn reduces
the number of CPU stall cycles. Our experiments show that the response time
improvement is accompanied by 66% less cache misses (on average) as well as
significantly improved CPI.

Fig. 3. Cumulative histogram of the response time with and without cache preheating.

Table 1. Averaged benchmark results with cold, warm and preheated caches as well
as the corresponding cycles per instruction, predicted working set size and preheating
costs.

Response time (µs) CPI Working set Preheating

Warm Cold Preheated Warm Cold Preheated

nginx 367.6 498.0 388.5 3.63 5.78 4.12 235.8 KiB 77.4µs

memcached 178.8 238.8 188.5 3.81 5.66 4.30 142.3 KiB 53.0µs

MariaDB 3970 4320 4069 2.20 2.44 2.29 621.8 KiB 146.4µs

4.2 Preheating Cost

Packets are only announced several dozens of microseconds in advance, thereby
limiting the time available for loading the working set into the caches. Along

718 M. Gottschlag and F. Bellosa

with the response time, we have also measured the time required for preheating
(in the “preheating” column of Table 1). The cost of preheating is approximately
linear to the size of the predicted working set.

We have stated in Sect. 3.3 that preheating must not take more than 30µs.
Our prototype clearly violates this limit for all selected benchmarks, with
preheating taking between 53.0 and 146.4µs. The achieved average memory
throughput is 3.17 GiB/s, which is close to the maximum throughput which can
be achieved with well optimized code.

5 Discussion

Our evaluation shows that cache preheating improves response time significantly
over cold caches. The potential response time reduction is large enough that the
resulting energy savings should compensate the energy cost of preheating. In our
prototype, however, cache preheating requires up to four times more time than
is available between the CPU waking up and the request packet arriving. As a
result, the cache would not be completely preheated by the time the network
request arrives. In this section, we make the case that our preheating design
provides a benefit even in these scenarios. Further, we argue that server hardware
should be able to preheat cache working sets before the network request arrives.

In our prototype, network requests would arrive with preheating still in
progress. At that time, our system could naively complete preheating and process
the request afterwards. From our experiments, we can deduct that our approach
still improves response times over cold caches: The delay from preheating’s tar-
diness is less than the reduction of request processing time it achieves, causing
a net improvement of response time.

With memcached for example, we found preheating to overshoot the 30µs
available (see Sect. 3.3) by 23µs. However, preheating reduced the request
processing time by 50µs (see Table 1), thereby lowering the response time by
27µs (11%) overall. Similarly, even for the MariaDB benchmark which over-
shoots the preheating deadline by almost 120µs, our preheating approach would
still provide a 130µs response time reduction.

In practice, server hardware will require significantly less time, though, and
can preheat the caches in time for the arriving network packets. Current server
systems provide significantly higher memory bandwidth than the hardware plat-
form of our prototype. The memory throughput of the Hardkernel Odroid-XU3
system is merely 3.17 GiB/s in our benchmarks, and even the pmbw parallel
memory bandwidth benchmark only achieves slightly better results for a com-
pletely sequential access pattern. According to the pmbw benchmark, a recent
Intel Skylake system with dual-channel memory in contrast provides almost 8
times more bandwidth. This performance increase should allow preheating to
be completed in time before the corresponding network packet arrives, even for
complex workloads such as the presented MariaDB benchmark.

Reducing Response Time with Preheated Caches 719

6 Conclusion and Outlook

Deep CPU sleep states have negative effects on server response times, yet such
power management methods are required in order to improve overall performance
in a world with significant amounts of dark silicon. We have identified frequent
cache flushes as the most problematic side effect of aggressive power manage-
ment. Previous work usually suggested different power management methods
which keep the cache state intact, but waste significant amounts of energy instead
or which reduce performance. We argue that a more efficient system can be built
if the operating system is in charge of cache content management.

We propose a system which preheats the caches in anticipation of events
which cause the system to resume from a deep sleep state, in order to mitigate
the effect of cold caches. When the arrival time of the next wakeup event is
known, the estimated working set can be loaded into the cache in order to reduce
the cache miss rate shortly after the event. We also describe a method to predict
future incoming network packets with the help of a centrally arbitrated network
architecture. Benchmarks show that such cache preheating can mitigate most of
the overhead caused by cold caches. The time required to preheat the caches is
too long in our current prototype though, due to the low memory bandwidth
of our prototype platform. We show that cache preheating still results in a net
response time reduction, and we argue that current server hardware provides
enough memory bandwidth that cache preheating is completed quickly enough.

Our working set estimation code is currently limited to certain ARM CPU
cores. On Intel CPUs, we are therefore evaluating whether PEBS—despite its
limitations—can be used to trace all cache misses and to derive the working
set from them. Additionally, we are currently integrating our cache preheating
system with the Fastpass [10] network architecture, in order to be able to use
cache preheating in a representative server system and to evaluate its effect on
power usage in such a system.

References

1. Cortex-A15 Technical Reference Manual: 4.3.57. RAM Index Register. http://
infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0438c/BABEJEAJ.
html. Accessed 05 May 2015

2. Dean, J., Barroso, L.A.: The tail at scale. Commun. ACM 56(2), 74–80 (2013)
3. Flautner, K., Kim, N.S., Martin, S., Blaauw, D., Mudge, T.: Drowsy caches: simple

techniques for reducing leakage power. In: Proceedings of the 29th Annual Inter-
national Symposium on Computer Architecture (ISCA 2002), pp. 148–157. IEEE
(2002)

4. Grosvenor, M.P., Schwarzkopf, M., Moore, A.W.: R2D2: bufferless, switchless data
center networks using commodity Ethernet hardware. In: ACM SIGCOMM Com-
puter Communication Review, vol. 43, pp. 507–508. ACM (2013)

5. Hardavellas, N., Ferdman, M., Falsafi, B., Ailamaki, A.: Toward dark silicon in
servers. IEEE Micro 31, 6–15 (2011)

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0438c/BABEJEAJ.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0438c/BABEJEAJ.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0438c/BABEJEAJ.html

720 M. Gottschlag and F. Bellosa

6. Hines, M.R., Gopalan, K.: Post-copy based live virtual machine migration using
adaptive pre-paging and dynamic self-ballooning. In: Proceedings of the 2009 ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environments
(VEE 2009), pp. 51–60. ACM (2009)

7. Intel Corporation: IntelR©64 and IA-32 Architectures Software Developer’s
Manual - vol. 3: System Programming Guide. No. 325384-058US, April 2016

8. Kim, N.S., Austin, T., Baauw, D., Mudge, T., Flautner, K., Hu, J.S., Irwin, M.J.,
Kandemir, M., Narayanan, V.: Leakage current: Moore’s law meets static power.
Computer 36(12), 68–75 (2003). IEEE

9. Larysch, F.: Fine-grained estimation of memory bandwidth utilization. Master the-
sis, Operating Systems Group, Karlsruhe Institute of Technology (KIT), Germany,
March 2016

10. Perry, J., Ousterhout, A., Balakrishnan, H., Shah, D., Fugal, H.: Fastpass: a cen-
tralized “zero-queue” datacenter network. ACM SIGCOMM Comput. Commun.
Rev. 44(4), 307–318 (2015)

11. Powell, M., Yang, S.H., Falsafi, B., Roy, K., Vijaykumar, T.: Gated-Vdd: a cir-
cuit technique to reduce leakage in deep-submicron cache memories. In: Proceed-
ings of the 2000 International Symposium on Low Power Electronics and Design
(ISPLED), pp. 90–95. ACM (2000)

12. Raghavan, A., Luo, Y., Chandawalla, A., Papaefthymiou, M., Pipe, K.P.,
Wenisch, T.F., Martin, M.M.K.: Computational sprinting. In: Proceedings of
the 18th International Symposium on High Performance Computer Architecture
(HPCA), pp. 1–12. IEEE (2012)

13. Schöne, R., Molka, D., Werner, M.: Wake-up latencies for processor idle states on
current x86 processors. Comput. Sci. Res. Dev. 30(2), 219–227 (2015). Springer

14. Vattikonda, B.C., Porter, G., Vahdat, A., Snoeren, A.C.: Practical TDMA for
datacenter Ethernet. In: Proceedings of the 7th ACM European Conference on
Computer Systems (EuroSys 2012), pp. 225–238. ACM (2012)

15. Vishnoi, A., Panda, P.R., Balakrishnan, M.: Cache aware compression for processor
debug support. In: Proceedings of the Conference on Design, Automation and
Test in Europe (DATE 2009), pp. 208–213. European Design and Automation
Association (2009)

16. Zhang, L., Litton, J., Cangialosi, F., Benson, T., Levin, D., Mislove, A.: Picocen-
ter: supporting long-lived, mostly-idle applications in cloud environments. In: Pro-
ceedings of the 11th European Conference on Computer Systems (EuroSys 2016),
p. 37. ACM (2016)

17. Zhu, Q., Zhu, M., Wu, B., Shen, X., Shen, K., Wang, Z.: Software engagement with
sleeping CPUs. In: 15th Workshop on Hot Topics in Operating Systems (HotOS
XV). USENIX Association, May 2015

Viability of Virtual Machines in HPC

A State of the Art Analysis

Jens Breitbart1(B), Simon Pickartz2, Josef Weidendorfer1,
and Antonello Monti2

1 Chair for Computer Architecture, Department of Informatics,
Technical University Munich, Munich, Germany
{j.breitbart,josef.weidendorfer}@tum.de

2 Institute for Automation of Complex Power Systems, E.ON ERC,
RWTH Aachen University, Aachen, Germany
{spickartz,amonti}@eonerc.rwth-aachen.de

Abstract. Virtualization is common in various areas ranging from
mobiles to large data centers operated by cloud providers. Theoreti-
cally, virtualization provides various benefits that could be useful to HPC
as well, e.g., suspend a large application before system maintenance or
migrate a process before a node fails due to hardware malfunctioning.

In this paper, we analyze the current state of the art of virtual
machines for HPC with respect to their performance and energy con-
sumption. Furthermore, we report on our findings on the compatibility
of the current HPC software stack with virtual machines and how they
complicate application analysis and application tuning, as well as how
current HPC hardware limits some benefits of VMs.

1 Introduction

Due to numerous advantages, virtualization is omnipresent in seemingly all areas
of computing nowadays. Mobiles use virtualized instruction sets for a simplified
application develop- and deployment. Embedded systems rely on virtualization
to run multiple specialized operating systems for resource partitioning within one
device. Desktop users employ Virtual Machines (VMs) to run different operating
systems for an isolation of applications running on the same hardware, and even
large commercial data centers rely on VMs for a flexible assignment of resources
to their customers. As a result, most of today’s processors have all kinds of
hardware support for effective virtualization built-in, there is a large choice of
hypervisors which can use these hardware features, and all major operating
systems run well both as guests or hosts in virtualization scenarios.

Despite this pervasive support and various use cases, this technology is cur-
rently not employed in High-Performance Computing (HPC). In this paper we
investigate some use cases and benefits of virtualization and perform an analysis

J. Breitbart and S. Pickartz—Supported by the Federal Ministry of Education and
Research (BMBF) under Grant 01IH13004 (Project FaST).

c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 721–733, 2017.
DOI: 10.1007/978-3-319-58943-5 58

722 J. Breitbart et al.

of the state-of-the-art with respect to the HPC software stack, the performance,
the energy consumption, and the support for current hardware. We also examine
its impact on the exploitation of today’s many-core architectures. The additional
degree of freedom with respect to the mapping of the applications onto the hard-
ware topology provides new facilities for performance fine-tuning. Our findings
reveal that using VMs hardly results in any overhead. Furthermore, VM migra-
tion may facilitate an increased overall system throughput, but requires special
support within the communication stack when using HPC interconnects. How-
ever, VMs complicate application analysis and tuning, as the new virtualization
layer is not well supported in tools and various benefits of VMs like stopping
and migrating are not possible with the default HPC software stack. Overall, we
conclude that VMs are still not ready for large scale deployment in HPC.

The paper is organized as follows. First, Sect. 2 describes VMs and their
implementation, followed by Sects. 3 and 4 which introduce the hardware and
applications/benchmarks used for the rest of the paper. Section 5 shows our mea-
surements with memory bandwidth limited and compute bound applications.
Section 6 introduces possible benefits of using VMs in HPC, whereas Sect. 7 dis-
cusses if these benefits can currently be achieved. The paper finishes with an
overview of related work and conclusions, in Sects. 8 and 9, respectively.

2 Virtual Machines

In this paper, we focus on system VMs, which virtualize the target hardware,
i.e., a process is started on the native host hardware that itself provides a com-
plete substitute for a system and boots a new Operating System (OS). The
hypervisor is a software used for the management of multiple guest VMs. Mod-
ern x86 hypervisors implementations rely on hardware support such as Intel’s
VT-x extension [20] or AMD-V. The former was introduced with the Pentium 4
processor in 2005 and is almost identical to AMD-V, which was introduced only
half a year later.

As applications running within VMs have their own virtual address space
within the address space of the process representing the VM, an additional
dimension of virtual memory/address translation is introduced including addi-
tional page tables (so called guest page tables). The address space of the VM is
typically accessed by means of guest physical addresses and the address space
of the application running within the VM by guest virtual addresses; host phys-
ical/virtual addresses refer to the native equivalents. Memory accesses from
within the VM require a translation from guest virtual addresses to host phys-
ical addresses. This is performed in two steps: the guest’s page tables translate
guest virtual addresses to guest physical/host virtual addresses, which are again
translated to host physical addresses. This so-called two level page walk is sup-
ported via VT-x in hardware by nested paging [2]. With VT-x the Translation
Lookaside Buffer (TLB) caches mappings involve both translation levels.

VMs introduce a further degree of freedom with respect to the mapping
of virtual CPUs (VCPUs) onto Hardware Thread Contexts (HTCs). Although

Viability of Virtual Machines in HPC 723

any VM configuration is feasible, the following three are of main interest when
scheduling parallel applications on NUMA systems:

Outside pinning. Fill up the threads/processes VCPUs by VCPUs and pin
theses to the physical cores in accordance to the pinning strategy suitable for
the particular application. This configuration only uses as many VCPUs as
needed by the application.

Outside pinning (all VCPUs). In contrast to the previous one, in this con-
figuration all VCPUs are passed to the VM regardless of the amount of
threads/processes being executed.

Host-topology. Map the host’s topology onto that of the VM, i.e., perform an
identity mapping of VCPUs to CPUs, and pin the threads/processes within
the VM with the respective strategy from above.

3 Hardware Overview

All measurements were performed on two-socket NUMA nodes equipped with
two Intel Xeon E5-2670 CPUs based on Intel’s Sandy Bridge architecture. Each
CPU has 8 cores resulting in a total of 16 CPU cores in the entire system whereby
each core has support for two HTCs resulting in a total of 32 HTCs for the whole
system. The L3 cache is shared among all cores of a CPU, both L1 and L2 cache
as well as the instruction pipeline are shared among HTCs of the same core. Our
systems are equipped with a total of 128 GiB of RAM (64 GiB per CPU) each.
Furthermore, there are both a QDR InfiniBand Host Channel Adapter and a
1 Gbit/s Ethernet network card in the systems.

The so-called thermal design power (TDP) of each CPU in our system is
115 W, i.e., the CPU consumes about 115 W on average when all 8 cores are
active and measured for a reasonably long time frame. Energy measurements
were carried out by using two mechanisms: (1) the so-called Running Average
Power Limit (RAPL) CPU counters which measure CPU cores, DRAM and CPU
package energy consumption and (2) a MEGWARE Clustsafe, which measures
the energy consumption of a whole system on the primary side.

4 Applications/Benchmarks

We used two example applications in this paper: a slightly modified version of
mpiBLAST 1.6.0 and the CG solver from the numerical library LAMA [5,10].
Furthermore, we used the well known STREAM benchmark for an assessment
of the impact of virtualization on memory-bound applications [14].

4.1 mpiBLAST

mpiBLAST is an application from computational biology. Using MPI-only, it is a
parallel version of the original BLAST algorithm for a heuristical comparison of
local similarities between genome or protein sequences from different organisms.

724 J. Breitbart et al.

Due to its embarrassingly parallel nature, mpiBLAST allows for perfect scal-
ing across tens of thousands of compute cores [11]. mpiBLAST uses a two-level
master-slave approach and requires therefore at least 3 processes. The data struc-
tures used in the different steps of the BLAST search typically fit into the L1
cache resulting in a low number of cache misses. The search mostly consists of
a series of indirections resolved from L1 cache hits allowing for good overlap-
ping of different searches on the two HTCs of one core. Our modified version of
mpiBLAST is available on GitHub1. In contrast to the original mpiBLAST we
removed all sleep() function calls which were supposed to prevent busy waiting.

4.2 LAMA

LAMA is an open-source C++ library for numerical linear algebra. We use
LAMA’s standard implementation of a Conjugate Gradient (CG) solver, a hybrid
OpenMP/MPI application. The library is compiled with Intel’s MKL library to
use basic BLAS operations within a step of the CG solver. Each solver iteration
contains various global reduction operations resulting in frequent synchroniza-
tion of threads as well as MPI tasks. As the involved data structures do not
fit into CPU caches, the performance is fundamentally limited by main mem-
ory bandwidth and inter-core/node bandwidth for reduction operations. Thus,
the CG solver obtains the best performance with just using a few cores. Conse-
quently, it benefits from the so-called scatter pinning, i.e., threads are equally
distributed among the NUMA domains and main memory bandwidth of all CPUs
can be saturated with fewer threads. We use scatter pinning for all measurements
involving LAMA.

5 Performance and Energy Consumption

Figure 1 presents the results of our scalability analysis of mpiBLAST and
LAMA’s CG solver. Figure 2 shows the average power consumption during the
measurements and energy consumption of one application run. Each meter point
was captured by the execution of the respective application in a loop for 30 min
and averaging the individual results afterwards.

5.1 Memory Bandwidth Applications

The available memory bandwidth is slightly lower within a VM resulting an
overhead of less than 5% (cf. Table 1). For the “Small” measurements2 the TLBs
can store all required translations generating hardly any page walks. Although
running STREAM on the “Large” array size should result in more page walks, we
notice a small overhead decrease. Hence, the effect of the additional page walk
is in the order of measurement noise. As a result, memory bandwidth bound

1 https://github.com/jbreitbart/mpifast.
2 An array of 153 MiB (458 MiB STREAM memory consumption in total).

https://github.com/jbreitbart/mpifast

Viability of Virtual Machines in HPC 725

Fig. 1. Runtime of mpiBLAST and LAMA’s CG Solver with varying number of
processes/threads for all three VM configurations. The overhead is computed based
on the native execution.

applications may suffer from a small constant performance loss, when running
inside a VM. We use all 32 HTCs, compact pinning, and the host-topology
configuration for the shown STREAM measurements.

As the CG solver is memory-bound, it scales up to only 11 threads with an
average runtime of 41.45 s in native execution. At this meter point using a VM
results in a performance penalty of around 6%. In accordance with our previous
findings the CG solver only scales up to 8 threads within a VM (cf. Fig. 1) due
to the lower memory bandwidth. Considering its best performance at 8 threads
with 42.44 s (outside pinning) and 42.97 s (host-topology), we get an effective
performance degradation of less than 4%. For thread counts exceeding 25 the
VM outperforms native execution which is due less remote memory accesses
within the VM. There is hardly any difference in energy consumption between
native execution and using a VM (cf. Fig. 2). We expect this to be a result from
different first-touch runtime behavior.

726 J. Breitbart et al.

Fig. 2. Power required while running LAMA’s CG Solver/mpiBLAST (line chart)
exclusively and the energy required for one run (bar chart). Uncore, RAM, and cores
are measured by the RAPL counters. The remainder is the difference between the
ClustSafe measurements and the sum of all RAPL counter values.

Table 1. STREAM benchmark results on array sizes of 152.6 MiB (Small) and 1.22 GiB
(Large). The throughput is given in GiB/s and the Overhead (OHD) in %.

Kernel Small Large

Native VM OHD Native VM OHD

Copy 53.23 50.76 4.64 65.22 63.69 2.34

Scale 64.27 62.79 2.30 65.99 64.73 1.91

Add 67.18 65.18 2.97 67.06 65.27 2.66

Triad 67.18 64.94 3.33 67.17 65.26 2.84

5.2 Compute Bound Applications

We do not expect compute bound applications to suffer a major performance
loss when running in VM and Fig. 1 mostly confirms our expectations. The trend
is the same for both, native execution and the virtualized environment showing

Viability of Virtual Machines in HPC 727

the best performance with 32 processes. The VM only generates little overhead
of up to 3% in runtime and even less for energy consumption. However, there
is one notable effect: when we start to use two HTCs per core for computation,
outside pinning with a VCPU count equal to the number of processes has sig-
nificant impacts on the generated overhead, e.g., about 6% for 18 processes. As
mpiBLAST almost entirely works on data residing within the first-level cache, a
higher number of cache miss is the most probable reason which may stem from
additional system noise. However, further research is required to identify the
exact cause.

6 Benefits of Virtualization

So far we have only shown that VMs have a small impact on performance and
energy consumption. However, we have not discussed any of their potential ben-
efits for HPC.

6.1 Isolation

In cloud computing VMs are often used for provisioning of isolated environments
between different customers. In HPC, computing centers achieve the required
isolation by a dedication of complete compute nodes to users. This strategy
decreases the overall system utilization if the application is not capabable of a
full system exploitation. To our knowledge, only few HPC computing centers
schedule jobs at a finer granularity purely relying on Linux for a prevention of
resources conflicts. Furthermore, this strategy cannot be applied if users explic-
itly specify thread affinities.

Nonetheless, co-scheduling jobs with diverse resource demands is known to
increase overall system throughput [4]. For an evaluation of the performance
penalties caused by VMs in such a scenario, we co-scheduled mpiBLAST and
LAMA each within their own VM on the same host. As mpiBLAST performance
is insensitive regarding the pinning, we derive its pinning from the requirements
of LAMA, i.e., scatter pinning is used.

Figures 3 and 4 show the results of our measurements for both runtime and
energy consumption. The efficiency is computed based on the fastest native
execution, i.e., with 16 processes in co-scheduling mpiBLAST achieves about
45% of the performance of its native execution with 32 processes and LAMA
achieves about 80% of the performance of its native execution with 11 threads.
In general, we observe an increase of the overall application throughput similar
to the results presented in [4]. The power consumption (cf. Fig. 4) is slightly
increased compared to the exclusive application runs. This, however, is expected
behavior as the system is doing more work while achieving a higher energy
efficiency when taking the application throughput into account.

728 J. Breitbart et al.

Fig. 3. Application runtime (bar chart, left y-axis) and efficiency (line chart, right
y-axis) when running both LAMA and mpiBLAST concurrently. The efficiency is com-
puted based on the most efficient exclusive application run. The x-axis shows the
number of mpiBLAST processes running, the HTCs used by LAMA can be computed
via 31 minus the number of mpiBLAST processes. We used 31 HTCs in total to allow
for comparisons with [4].

Fig. 4. Power Consumption when Co-scheduling LAMA and mpiBLAST. Uncore,
RAM, and cores are measured by the RAPL counters. The remainder is the differ-
ence between the ClustSafe measurements and the sum of all RAPL counter values.

6.2 Transparent Start, Stop, and Migrate

VMs can be stopped and restarted at any time transparently from within the
VM. Such a feature may ease hardware maintenances during applications runs
without losing the current progress. Furthermore, VMs can also be restarted on
another host or migrated from one host to another. Cloud providers leverage
this feature exactly for these reasons: VMs are moved to nodes with little or no
load for hardware/software maintenances or load balancing without generating
application downtimes.

HPC centers typically take their system off-line for maintenance and do not
apply any automatic load balancing. Resources are dedicated to jobs regardless
of their actual usage. However, based on the results of our co-scheduling mea-
surements (cf. Sect. 5), we can also show that VM migration can contribute to
an increased overall system throughput. Figure 5 presents an example schedule

Viability of Virtual Machines in HPC 729

Fig. 5. Co-scheduling vs. Exclusive scheduling.

and the resulting runtime of three jobs. We expect the jobs mpiBLAST (long)
and mpiBLAST (short) to be in the job queue at the beginning and LAMA
to be added shortly after the start of mpiBLAST (short). The exclusive case
runs natively on the hardware, whereas the co-scheduling case employs VMs
in conjunction with migration reducing the runtime by about 16%. This per-
formance increase stems from the fact that LAMA memory-bound and profits
from the execution on two nodes. Executing LAMA on two nodes is only possible
via migration, as Node 1 is already fully utilized by the job mpiBLAST (long).
The migration time (27 s) is very short compared to the total runtime of the
jobs. The energy consumption is almost identical for both scenarios with the co-
scheduling case consuming 3.1 MJ and the exclusive scheduling requiring 3.2 MJ.
We used Ethernet to communicate between the two nodes, as Infiniband can-
not be used in conjunction with migration without changes to the software
stack [16,17].

7 State of the Art

Despite the benefits of virtualization for HPC, there are certain limitations that
come with this technology. This section summarizes implications thereof to the
HPC software stack.

7.1 HPC Hardware/Software Support

As noted before, common hard- and software come with support for virtualiza-
tion. However, major challenges are OS-bypass techniques, i.e., hardware that
is directly controlled in user space such as InfiniBand or GPUs. Their employ-
ment requires support of the HPC software stack whereas two approaches for
their virtualization are common: (1) the device is entirely emulated in software
which typically results in unacceptable performance penalties, or (2) the guest
is granted direct access to the hardware device via PCIe pass-through [1]. This
is usually done in conjunction with Single Root I/O Virtualization (SR-IOV)

730 J. Breitbart et al.

enabling the device virtualization in hardware such that it can be passed to
multiple VMs at the same time at nearly native performance [18].

However, VM migration is impossible with attached pass-through devices.
A hypervisor may unplug any device at any time, though the communication
stack has to deal with such events. Most MPI implementation cannot handle an
unplugging of the InfiniBand card during runtime and seemingly no hypervisor
can communicate with the MPI processes to coordinate the unplug. As a result,
migration is not possible for HPC applications without adjustments to the soft-
ware stack [16]. NVIDIA does not provide SR-IOV support for their GPUs, but
proposes a propriatary technology called GRID. As a result, GRID can only be
used with a small subset of the available hypervisors (VMWare, Xen) that are
directly supported by NVIDIA. AMD announced SR-IOV support at the end of
20153. However, neither AMD nor NVIDIA solve the issues that come with VM
migration.

Initially Kernel-based Virtual Machine (KVM) restricted VMs to run within
a single NUMA domain [9] only. However, this limitation has been resolved
with Version 2.0 released in 2014 allowing for the provision of virtual NUMA
topologies to VMs comprising multiple VCPUs. This has implications to both
GNU OpenMP and Intel OpenMP as the pinning strategies may not behave
correctly, depending on the CPU/VCPU mappings.

Inter-VM intra-host communication is usually rather slow, unless a local-
ity aware MPI implementation is deployed. Support for this feature, however,
requires an experimental feature (ivshmem) that was added with the latest KVM
version released in December 2015. Usually, a virtual Ethernet device (or an IB
device passed through to the VM) is used for this communication path, even
though shared memory would be possible [15]. Running multiple VMs with the
same application on the same host is important, as the size of a VM is also
the granularity at which processes may be migrated between nodes. Overall,
migration is an interesting feature, however currently no HPC system scheduler
leverages this mechanism for automatic load balancing. Besides being a non-
trivial task by itself, VM migration limits the usable hardware.

7.2 Increased Complexity

The additional software layer that comes with virtualization adds to the com-
plexity of the system. This layer complicates various tasks that are common in
HPC. For example, we were unable to pinpoint the exact reason for the per-
formance difference of running LAMA with a high number of threads within
a VM compared to native execution. We observe a reduction of remote mem-
ory accesses when running within a VM. Further investigations with a currently
unreleased NUMA simulator indicate an unstable first touch behavior, i.e., the
exact distribution between NUMA nodes depends on the runtime characteristics,
although it is identical in native execution among various runs. We would not

3 http://www.amd.com/en-us/press-releases/Pages/amd-unveils-worlds-2015aug31.a
spx.

http://www.amd.com/en-us/press-releases/Pages/amd-unveils-worlds-2015aug31.aspx
http://www.amd.com/en-us/press-releases/Pages/amd-unveils-worlds-2015aug31.aspx

Viability of Virtual Machines in HPC 731

be surprised if other applications reveal similar subtle (performance) bugs when
running within a VM that could result in a notable performance degradation.

The virtualization layer adds a degree of freedom with respect to the affin-
ity, i.e., the VCPUs have to be mapped to the real cores in addition to the
threads/processes that map onto the VCPUs. As current OpenMP and MPI
implementations lack support for this two-level pinning, we had to implement
it manually for all measurements. Depending on the exact pinning strategy, we
could observe efficiency variations of up to 10%.

8 Related Work

Virtualization is regularly evaluated for HPC in the recent years [12,19,21]. How-
ever, the focus is usually put on the comparison of different hypervisors on the
overhead for common HPC workloads and not on the overall HPC stack. Further-
more, the migration of VMs—one of the main arguments for virtualization—is
a topic of major interest [7]. Huang et al. present Nomad, a thin virtualization
layer between the user processes and the InfiniBand hardware for a transparent
VM migration with attached pass-through devices [8].

For effective co-scheduling, an understanding of the resource utilization and
the mutual influence of applications is beneficial. Different proposals exist to
come up with good predictions, often based on empirical slow-down measure-
ments [3,6,13].

9 Conclusion

In this paper we studied the current state of the art of VMs for HPC. When
looking at raw performance and energy efficiency number, VMs arguably have
almost no drawback. VMs can offer various benefits for computing centers like
stopping and restarting jobs or automatic load balancing, but the HPC software
and hardware stack prevents the deployment of such features. The increased
complexity when using VMs also adds to the burden of HPC specialists analyz-
ing and optimizing applications. The additional indirection complicates finding
the source of potential performance degradation, as we found no tool that can
correlate host measurements to guest processes.

There are still various areas of research to be explored. We have prelimi-
nary OS noise/jitter measurements that indicate higher noise when using VMs,
which can limit scalability of some applications. Further work is required to
exactly quantify the impact. Furthermore, we plan to investigate the benefits of
migration at a larger scale.

732 J. Breitbart et al.

References

1. Intel Virtualization Technology for Directed I/O. Technical report, Intel Corpora-
tion (2014)

2. Bhargava, R., Serebrin, B., et al.: Accelerating two-dimensional page walks for
virtualized systems. In: ASPLOS XIII: Proceedings of the 13th International Con-
ference Architectural Support for Programming Languages and Operating System
ACM (2008)

3. de Blanche, A., Lundqvist, T.: Addressing characterization methods for memory
contention aware co-scheduling. J. Supercomput. 71(4), 1451–1483 (2015)

4. Breitbart, J., Trinitis, C., et al.: Case study on co-scheduling for HPC applications.
In: Proceedings of International Workshop Scheduling and Resource Management
for Parallel and Distributed Systems, September 2015

5. Darling, A., Carey, L., et al.: The Design, Implementation, and Evaluation of
mpiBLAST. In: Proceedings of ClusterWorld, June 2003

6. Eklov, D., Nikoleris, N., et al.: Bandwidth bandit: quantitative characterization of
memory contention. In: IEEE/ACM International Symposium on Code Generation
and Optimization (CGO) 2013, February 2013

7. Huang, W., Gao, Q., et al.: High performance virtual machine migration with
RDMA over modern interconnects. In: 2007 IEEE International Conference on
Cluster Computing (CLUSTER). IEEE (2007)

8. Huang, W., Liu, J., et al.: Nomad: migrating OS-bypass networks in virtual
machines. In: VEE 2007: Proceedings of the 3rd International Conference on Vir-
tual Execution Environments. ACM (2007)

9. Ibrahim, K.Z., Hofmeyr, S.A., et al.: Characterizing the performance of parallel
applications on multi-socket virtual machines. In: CCGRID (2011)

10. Kraus, J., Förster, M., et al.: Using LAMA for efficient AMG on hybrid clusters.
Comput. Sci. Res. Dev. 28(2), 211–220 (2013)

11. Lin, H., Balaji, P., et al.: Massively parallel genomic sequence search on the Blue
Gene/P architecture. In: International Conference for High Performance Comput-
ing, Networking, Storage and Analysis (SC 2008). IEEE (2008)

12. Luszczek, P., Meek, E., Moore, S., Terpstra, D., Weaver, V.M., Dongarra, J.: Evalu-
ation of the HPC challenge benchmarks in virtualized environments. In: Alexander,
M., et al. (eds.) Euro-Par 2011. LNCS, vol. 7156, pp. 436–445. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-29740-3 49

13. Mars, J., Vachharajani, N., et al.: Contention aware execution: online contention
detection and response. In: Proceedings of the 8th Annual IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization (CGO) (2010)

14. McCalpin, J.D.: Memory bandwidth and machine balance in current high per-
formance computers. IEEE Computer Society Technical Committee on Computer
Architecture (TCCA) Newsletter, December 1995. https://www.cs.virginia.edu/
stream/ref.html#citing

15. Pickartz, S., Breitbart, J., et al.: Implications of process-migration in virtualized
environments. In: Proceedings of 1th Workshop Co-Scheduling of HPC Applica-
tions, January 2016

16. Pickartz, S., Clauss, C., et al.: Application migration in HPC–a driver of the exas-
cale era? In: International Conference High Performance Computing and Simula-
tion (HPCS), July 2016

17. Pickartz, S., Clauss, C., et al.: Non-intrusive migration of MPI processes in OS-
bypass networks. In: Parallel and Distributed Processing Symposium Workshops
(IPDPSW) (2016)

http://dx.doi.org/10.1007/978-3-642-29740-3_49
https://www.cs.virginia.edu/stream/ref.html#citing
https://www.cs.virginia.edu/stream/ref.html#citing

Viability of Virtual Machines in HPC 733

18. Pickartz, S., Gad, R., Lankes, S., Nagel, L., Süß, T., Brinkmann, A., Krempel,
S.: Migration techniques in HPC environments. In: Lopes, L., et al. (eds.) Euro-
Par 2014. LNCS, vol. 8806, pp. 486–497. Springer, Cham (2014). doi:10.1007/
978-3-319-14313-2 41

19. Regola, N., Ducom, J.C.: Recommendations for virtualization technologies in high
performance computing. In: CloudCom (2010)

20. Uhlig, R., Neiger, G., et al.: Intel virtualization technology. Computer 38(5), 48–56
(2005)

21. Younge, A.J., Henschel, R., et al.: Analysis of virtualization technologies for high
performance computing environments. In: IEEE International Conference on Cloud
Computing (CLOUD). IEEE (2011)

http://dx.doi.org/10.1007/978-3-319-14313-2_41
http://dx.doi.org/10.1007/978-3-319-14313-2_41

UCHPC - UnConventional
High-Performance Computing

The ICARUS White Paper: A Scalable,
Energy-Efficient, Solar-Powered HPC Center

Based on Low Power GPUs

Markus Geveler(B), Dirk Ribbrock, Daniel Donner, Hannes Ruelmann,
Christoph Höppke, David Schneider, Daniel Tomaschewski, and Stefan Turek

Institute for Applied Mathematics, TU Dortmund, Vogelpothsweg 87, 44227
Dortmund, Germany

markus.geveler@math.tu-dortmund.de,

http://www.icarus-green-hpc.org

Abstract. We present a unique approach for integrating research in
High Performance Computing (HPC) as well as photovoltaic (PV) solar
farming and battery technologies into a container-based compute center
designed for a maximum of energy efficiency, performance and extensi-
bility/scalability. We use NVIDIA Jetson TK1 boards to build a con-
siderably dimensioned cluster of 60 low-power GPUs, attach a 7.5 kWp
solar farm and a 8 kWh Lithium-Ion battery power supply and integrate
everything into a single-container, standalone housing. We demonstrate
the success of our system by evaluating the performance and energy effi-
ciency for common versatile dense and sparse linear algebra kernels as
well as a full CFD code. By this work we can show, that with current
technology, energy consumption-induced follow-up cost of HPC can be
reduced to zero.

Keywords: Energy-efficient HPC · ARM cluster · GPGPU · Solar
power · Battery power supply

1 Introduction

In the age of transitioning from nuclear- and fossil-driven energy supplies to
renewables, besides energy harvesting and energy grids adapting to this decen-
tralized energy production, energy consumers (such as computer hardware) have
to be adapted, which in principle means a necessary increase in energy efficiency.
Today’s HPC centers mostly rely on massively parallel distributed memory clus-
ters whose compute nodes are also multi-level parallel and heterogeneous. The
nodes usually comprise one or more high-end server CPUs based on the x86,
Power, or SPARC architectures optionally accelerated by GPUs or other (accel-
erator) hardware. Large HPC sites of this type have substantial energy require-
ments so that the associated expenses over the lifetime of the system may reach
the same order of magnitude as the initial acquisition costs. In addition, the
energy supply for supercomputers is not always an integral part of its overall
c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 737–749, 2017.
DOI: 10.1007/978-3-319-58943-5 59

738 M. Geveler et al.

design - consumers (such as the compute-cluster, cooling, networking, manage-
ment hardware) are often developed independently from the key technologies of
the energy revolution, e.g. renewable energy sources, battery- and power-grid
techniques. The Power Wall has been accepted to be one of the major challenges
in high scale computing. However, as a consequence of decades of performance-
centric hardware development, there is a huge gap between pure performance and
energy efficiency in these designs: The Top500 list’s best performing HPC sys-
tem (dissipating power in the 20 MW range making a power supply by local solar
farming for instance an impossible-to-achieve aim) is only ranked 84th on the cor-
responding Green500 list, whereas the most energy-efficient system in place only
performs 160th in the metric of raw floating point performance [4,17]. The most
obvious feature all Green500 top ten systems share is, that they rely on acceler-
ators - mostly GPUs, but the top three even on an unconventional micro archi-
tecture. From an HPC center’s point of view, there are two possible ways to tune
the energy efficiency: For a given HPC installation, an optimal reduced processor
voltage and frequency can be found [23,24], or – at the hardware-design stage
– more energy efficient hardware components can be selected. Recently, power
and energy metrics started being included into performance models for numerical
software [1,2,12,15]. However, developers of scientific software can (if at all) only
control the energy efficiency of their ‘production’-code, while hardware of the tar-
geted HPC centers is out of their influence. The most impacting reason for this is
the fact, that the cluster design is prone to principles of mass markets or in other
words, HPC users do not determine the properties of available compute hard-
ware. The users are literally trapped between very ‘traditional’ chip vendor- and
HPC center construction markets concentrating on raw performance and being
as much versatile as possible on the one hand and relatively application-oblivious
acquisition processes on the HPC-site level (i.e. university-level- or even regional
resources) on the other. Hence, there is a huge potential in energy savings in
HPC. Recently, a game-changing impulse in this regard for HPC may come
from mobile/embedded computing with devices featuring a long history of being
developed under one major aspect: they have had to be operated with a (limited)
battery power supply. Hence, as opposed to x86 and other commodity designs
(with a focus on chipset compatibility and performance), the resulting energy
efficiency advantage can be made accessible to the HPC community. In our ear-
lier work [10] we demonstrated reductions in the energy-to-solution of simula-
tions by using ARM-based processors. Those findings were obtained on a cluster
prototype built with NVIDIA Tegra 2 and continued later with Tegra 3 micro-
architecture [21]. Both chips are based on the Cortex-A9 processor; our current
work employs NVIDIA Tegra K1 with Cortex-A15 CPUs [6] and – focused in this
paper – the embedded GPU. In the meantime, using low-power (ARM) hardware
in the HPC context, especially as a ‘low energy-to-solution’ alternative to com-
modity CPUs, has become an active research topic [3]. With the NVIDIA Tegra
K1, even a programmable embedded low power Kepler GPU becomes accessible
alongside the ARM cores on one System-on-Chip (SoC), making a huge jump
in theoretical peak performance whilst preserving minimum power requirements.

The ICARUS White Paper 739

This may hence offer a way to change hosting of simulations, making them acces-
sible to more universities/enterprises/data centers. Also, we believe that in order
to make a change it is necessary to take a look at the problem of too much over-
all energy consumption (and therefore carbon dioxide pollution) from a greater
angle than any scientific field alone can provide. Our idea is to bring to life
a lighthouse project, that overcomes the limits regarding (energy) efficiency of
scientific software development on the one hand side and standard HPC center
construction on the other. Our system combines the high ends in energy-efficient
floating point hardware, renewable energies and battery storage with a self-made
housing and cooling. Normally, we are concerned with hardware-oriented simu-
lation software. In this paper, we deliberately switch angles designing a versatile,
extensible and scalable HPC resource at zero follow-up cost after installation.
Our approach comprises 60 NVIDIA Tegra K1 SoC that is 240 ARM CPU cores
and 60 GPUs offering a theoretical peak performance of more than 21 TFlop/s
at a total power dissipation of less than 1 kW with no additional energy costs
due to an insular solar power supply and battery system. We show for a range
of very versatile numerical kernels, that compared to commodity CPUs and
-accelerators, energy efficiency is enhanced to a great extend. Also, we demon-
strate, that such a system can be built by means of mass-market components
and that it works properly with a 7.5 kWp solar power supply and a 8 kWh bat-
tery. The remainder of this paper is organised as follows: In Sect. 2 we provide
a deep-as possible insight into all components of the project. We then dedicate
Sect. 3 to evaluating the system, putting a clear focus on the HPC aspects but
also presenting first results concerning the whole system. Finally, we conclude
in Sect. 4.

2 System Design

ICARUS is short hand for Insular Compute center for Applied Mathematics,
powered by Renewables, built upon Unconventional hardware combined with
high-end Simulation Software. It is intended to be a system integration pilot
project covering two pillars of the energy revolution, namely renewable energies
and energy-efficient consumers [9].

2.1 System Overview

There are several basic design principles for ICARUS: All energy consumers
have to fulfill the latest standards regarding energy efficiency. For the digital
components such as switches for instance, the IEEE 802.3az [13] standard has
to be applicable. The system has to be independent, which means in particular,
independence from the public energy grid and any architectural constraints. The
reason for this choice is to free it from any infrastructural necessities in order to
maintain versatility of operation. For instance with its holistic design, ICARUS
can be used standalone in areas with little or no power grid development. The
supercomputer component as well as its housing, cooling, management hardware,

740 M. Geveler et al.

solar power supply and battery storage must be able to be used in parallel, with-
out inducing super linear cost in any regard (such as space, monetary- and energy
cost) in order to be scalable. With respect to these paradigms, ICARUS is aggre-
gated by the following key components: (1) A prototype of a compute-cluster
built solely from compute nodes with mobile SoCs featuring programmable float-
ing point accelerators. This is our main focus and is described in Sect. 2.2. (2) A
state-of-the-art photovoltaic solar farm that is sufficiently dimensioned to pro-
vide power for operating the cluster under full load whole day plus charging
the battery both in summer that is, with sufficient sun harvesting at weather
in Dortmund, Germany. (3) For operation at night, a sufficiently sized battery
rack is employed that is capable to power the cluster under full load after full
charge for 8 h without sunlight. (4) A simple housing that contains everything
(except the solar modules of the PV farm). We achieve the goal of scalability by
the design of a housing implemented by a modified oversees cargo container see
Sect. 2.3. Images of the fully assembled system can be found in Fig. 1. Years after
the ICARUS project started in 2013, there are several comparable approaches
nowadays. Recently, NASA published a data center in a container, in order to be
movable and scalable [18]. Another container-based data center is commercially
available as a standalone, fuel- and battery-power supply driven resource [14].
Using mobile SoCs in the context of HPC and building small clusters of uncon-
ventional hardware [5,11] as well as exploring Jetson TK1 for this purpose has
also been performed [20] or at least considered [16] by others. However, to the
best of our knowledge there is currently no group or enterprise that has driven
this kind of system integration this far and ICARUS is the only container-based
system combined with customised renewable energies power supply.

(a) primary PV mod-
ules

(b) secondary PV
modules

(c) assembled helix (d) full cluster

Fig. 1. ICARUS system construction site in March 2016 and cluster assembly.

2.2 The Tegra K1 Cluster

The system’s core component is the NVIDIA Jetson TK1 development board
released in late 2014. The Tegra K1 chip is a SoC hosting a quad-core 32 Bit
ARM Cortex-A15 CPU and a programmable Low-Power Kepler GPU sharing
the DRAM. The chip is of special interest because of the CUDA-capable GPU
promising a theoretical (single precision) performance of around 300 GFlops/s
at a power dissipation of ca. 10 W. The Jetson is a carrier board intended as
development environment for the Tegra K1 SoC. It includes everything to be

The ICARUS White Paper 741

used as a standalone, ‘single-circuit’ computer, featuring (inter alia) a GigaBit
Ethernet adapter, a small fan for cooling the SoC, an SD-card slot (which we use
for secondary storage) and a Ubuntu-based Linux OS [19]. In the course of this
paper, we denote a single Jetson board to be one compute node in ICARUS.
For comparison in Sect. 3, we employ two workstations representing different
hardware generations, featuring (1) a Haswell CPU and a GeForce 980 Ti, rep-
resenting the high-end in commodity (desktop) computer hardware. (2) An older
IvyBride CPU alongside GeForce GTX660 and Tesla K20x GPUs, representing
an average workstation with desktop- and compute GPUs. Hardware details can
be obtained from Tables 1 and 2. It must be noted, that the Jetson TK1 is not
exactly intended to serve as a cluster node. A slightly over sized fan and (for
the purpose of HPC) unwanted board components such as I/O pins stemming
from the intention to be used in embedded systems both induce a power dissipa-
tion malus. The greatest drawback of the board is its comparatively small RAM
(2 GB). However, recently, the Tegra K1 has also been released as a card-sized
compute module [22]. In addition, the 64 Bit follow up to the Tegra K1, called
Tegra X1 has become available in 2016, featuring the augmented 1.9 GHz ARM
Cortex-A57 CPU, a 1 GHz Maxwell GPU, almost doubling the theoretical peak
performance via its much better LPDDR4 memory interface.

Fig. 2. Power- (blue) and network (red) topology of the cluster. (Color figure online)

The network in ICARUS is composed of three 28 port GiB Ethernet switches
(Cisco SG300-28) with a switching capacity of 56 GB/s and a power dissipation
of 19–20 W peak only due to fanless cooling. We depict the network topology in
Fig. 2. Note that for technical reasons, we provide access to the cluster via a ded-
icated gateway node. The additional Ethernet port on that board is provided
by a compatible Mini-PCI-e-to-Ethernet adapter. The on-board eMMC mem-
ory (16 GB) is used for the operating system and primary data. In addition,
we provide each with a 128 GB Ultra SDXC 128 GB 40 MB/s Class 1 SD-card.

742 M. Geveler et al.

Table 1. CPU Hardware details and measured base (idle-) power of carrier environ-
ments.

i5-3470 i5-4690K Jetson TK1

Micro-
architecture

Ivy Bridge Haswell Cortex-A15
(Tegra K1)

Ncores 4 4 4

Clock speed 3.20 GHz (turbo
3.60 GHz)

3.50 GHz (turbo
3.9 GHz)

2.3 GHz

L1-cache 4× 32KB +
4× 32KB

4× 32 KB +
4× 32 KB

32KB +
32KB

L2-/L3-cache 4× 256KB/6 MB 4× 256 KB/6 MB 2MB/–

Memory type DDR3 DDR3 LPDDR3

Peak memory
bandwidth

25.6 GByte/s 25.6 GByte/s 14.9 GByte/s

Pbase 51W (Intel chipset) 41W (Intel chipset) 3.9 W (Jetson
TK1)

Release date Q2’12 Q2’14 Q2’14

Table 2. GPU Hardware details and measured base (idle-) power of carrier environ-
ments.

GTX 660/Tesla
K20x systems

GTX 980
system

Jetson TK1

Micro-architecture Kepler Maxwell Kepler

Memory type GDDR5 GDDR5 LPDDR3

Peak memory
bandwidth

144.2/250 GByte/s 336.5 GByte/s 14.9 GByte/s

Peak performance (SP) 1881/3935GFlop/s 6054GFlop/s 326GFlop/s

Peak performance (DP) 78/1312GFlop/s 189GFlop/s 13GFlop/s

Pbase 41/45W (Intel
chipset)

51W (Intel
chipset)

3.9 W (Jetson
TK1)

Release date Q3’12 Q2’15 Q2’14

For mass storage, the Max-Planck Institute for the Dynamics of Complex Sys-
tems has developed an energy-efficient RAID system intended to be used within
ICARUS. This system is based on the BananaPi board and with its mere 50 W of
peak power dissipation, it is a perfect device for ICARUS. All compute hardware
and switches together (plus management hardware and power loss in the con-
verters) ICARUS is calculated to be a less-than 1 kWp system. The boards (and
PDUs, see below) are built into a single, modified rack unit whose side-panels
have been removed for a maximum of passive cooling. The boards have been
aligned in a ‘double-helix’ layout, which has proved itself to be very effective for

The ICARUS White Paper 743

avoiding heat-nests. This unique construction can be assembled using commer-
cially available metal or plastics standoffs of different lengths. Full cluster images
are depicted in Fig. 5. Due to its new and unique design, some compounds had to
be constructed from scratch, such as a mount for the Jetson TK1 power adapter
which we constructed using 3D-printing.

2.3 Power Supply, Housing, Cooling

The photovoltaic farming is implemented by 30 solar modules (Heckert Nemo 60
P) with a single peak power generation of 255 W each, resulting in a 7.65 kWp
solar farm. The high output is needed due to the need of charging the bat-
tery whilst providing an additional 1 kW of power for the (peaked-out) cluster.
DC/AC conversion is done by 2 converters (SMA Sunny Boy) and the energy-
buffering (i.e. control of battery charge/discharge in conjunction with providing
solar power to the consumers) is performed by an island converter (SMA Sunny
Island). As power distribution units (PDU), we employ 3 rack PDUs for vertical
installation (APC Rack PDU 2 G AP8959, see Fig. 2) with 24 outlets each. To
one of these, we attach a sensor for temperature and humidity. These PDUs
can be remotely used for monitoring and control the different banks/outlets.
In addition, for the purpose of double checking, to each AC-inlet, we attach a
high-sampling-rate energy meter that connects via Bluetooth to a central man-
agement unit (SMA Sunny HomeManager). This way, we can monitor power
dissipation levels even ‘in front of’ the PDUs. Both, climate and power data is
collected by a dashboard-system that runs on a RaspberryPi, adding only negli-
gible power consumption. For energy storage, we use a lithium ion battery rack
(HOPPECKE sun powerpack premium), scaled for providing close to 8 kWh of
energy for the night (and day times with weather providing too low power lev-
els from the solar system). In order to be independent from any architectural
infrastructure, we designed all subsystems for being able to be packed into a
heavily modified overseas cargo container a so called Steel Dry Cargo Container
(High Cube) with dimensions 20 × 8 × 10 feet. Here, the main task is to pro-
vide a climate-proof isolation in order to keep the hardware cool in summer and
warm in winter times. For this purpose, we lined the walls, roof and floor with
a 120 mm commodity heat-isolation. In addition, we provide it with fans (three
inlets, three outlets), powered by secondary PV units in order to induce a proper
airflow within the container for ventilation and cooling, see Fig. 1(b). In winter,
these fans can also be used to heat up the airflow at the inlet.

3 Exploring the System’s Limits

3.1 Hardware- and Energy Efficiency, Scalability

In the following, we will provide energy- as well as performance measurements.
Energy measurements are provided via taking the power P at the AC inlet of the
carrier system, multiplied by execution time T . In the case of cluster benchmarks,

744 M. Geveler et al.

we include total power consumption that is, including dissipation induced by all
electric consumers of the system such as switches, converters, etc. For energy
measurement, in this study, we consider an ideal race-to-idle situation, where
a core is either ‘on’ (i.e., operating at a preset peak frequency) or ‘off’ (i.e., cut
off from the system clock) and neglect frequent adjustments of voltage and clock
speed as well as any dynamic power dissipation due to heat.

Results for the single node measurements for the general matrix multiply ker-
nel are depicted in Fig. 3. In the (two leftmost) plots denoted CPU, we show the
results (log scale) for different numbers of cores: with increasing core count, per-
formance increases (data point ‘moves’ to the right), and E decreases (data point
‘moves’ downwards) since power behaves like P = Pbase+kPcore, k = 1 . . . Ncores.
We employ kernels based on the newest versions of OpenBLAS on the CPUs and
cuBLAS, respectively, on the GPUs. What we can find first is, that the Cortex-
A15 cannot compete with its x86 counterparts for computationally intense tasks
(as expected). Note that this is not the case for memory-bound codes, that is less
computationally intense kernels with lower flop per byte ratio. All three CPU
architectures behave as expected for this type of task, when increasing the num-
ber of threads used (i.e. good scaling) with the exception of the Cortex-A15 on 4
threads suffering due to its comparatively thin memory interface. However, the
primary design paradigm of ICARUS was the exploitation of the GPUs. Hence,
in the remainder of the single node benchmarks in this paper, we concentrate
on the GPGPU architectures. Here, for S/DGEMM we can find that the Tegra
K1 can beat the GTX660 GPU easily in terms of energy to solution (as a metric
for energy efficiency). This is due to the mobile chip achieving 210 GFlop/s in
single and 12 GFlop/s in double precision respectively, both at approximately
only 14 W power dissipation in its host system. The GTX660 on the other side
can offer 1000 GFlop/s in single at around 171 W and – with slightly more power
– 1.6 GFlop/s using 64 Bit precision. In the plots, speedup as well as power-down
values between the Tegra K1 and the respective other systems, that ultimately
lead to this higher energy efficiency. Note that concerning energy-to-solution, the
low-power Kepler GPU can even outperform a compute card of that time, the
Tesla K20x in single precision. Taking the high-end GTX980 Ti into account,
the Tegra has to surrender to its tremendous more than 6000 GFlop/s in sin-
gle precision sustainable performance at an average overall power dissipation
of 271 W. Surprisingly, with DGEMM, the relation between performance and
power favors the Tegra K1, which can be addressed to the 980 Ti being almost
30 times slower with double precision than with 32 Bit data. This phenomenon
however is not present in the comparison with the Tesla model. However, the
fact, that the Tegra can even compete with (slightly outdated) commodity float-
ing point specialists on this ‘far end’ of the range of computational intensities
is promising when taking the advances on this segment of the chip market into
account, even already with the Tegra X1, that virtually doubles performance at
constant power.

As a common member of the class of memory-bound operations (i.e. low
flop per byte ratio) we examine the sparse matrix vector multiply (SpMV).

The ICARUS White Paper 745

101 102
101.6

101.8

102

102.2

102.4

Perf [GFlop/s]

E
[J

]
SGEMM CPU

101 102

102

102.2

102.4

Perf [GFlop/s]

E
[J

]

DGEMM CPU

0 2,000 4,000 6,000
0

10

20

speeddown x5,
powerdown x8

Perf [GFlop/s]

E
[J

]

SGEMM GPU

0 200 400 600 800 1,0001,200
0

50

100

150

200

250

speeddown x16,
powerdown x19

Perf [GFlop/s]

E
[J

]

DGEMM GPU

commodity(2015) commodity(2012 desktop) Jetson TK1(2014) commodity(2012 compute)

Fig. 3. Total energy consumption (E) and performance (Perf) of the dense matrix
matrix product in single (SGEMM) and double (DGEMM) precision for all covered
hardware architectures.

This kernel is versatile (especially in the context of PDE-based simulations) and
very well understood regarding optimisation for GPUs. In previous work we
have demonstrated how very sophisticated multigrid solvers can be constructed
out of combinations from calls to SpMV based on ELLPACK-type storage and
kernels [7]. Benchmark results are given in Fig. 4 analogously to those in the
GPU part of the S/DGEMM results. Modelling the relative performance of this
type of kernel on different architectures boils down to the comparison of the
respective memory interfaces. Here, only more on-chip memory bandwidth can
generate speedup. As one can see in the results, the speedups perfectly align with
the factor that lies between the values for memory bandwidth: The LPDDR3
memory of the Tegra SoC can only a tenth of that of the GTX660. With its 12
times lower power dissipation however, the Jetson board remains more energy-
efficient than its desktop counterpart as well as the Tesla card, regardless if
computing in single or double precision. However now, the Tegra system stands
no chance against the advanced 340 GByte/s interface of the GTX980 Ti.

0 20 40 60
0

0.1

0.2

0.3

speeddown x10 , powerdown x12

Perf [GFlop/s]

E
[J

]

SSPMV GPU

0 10 20 30 40
0

0.1

0.2

0.3 speeddown x9 , powerdown x12

Perf [GFlop/s]

E
[J

]

DSPMV GPU

commodity(2015) commodity(2012 desktop) Jetson TK1(2014) commodity(2012 compute)

(a) SpMV

10−1 100 101

102

103
1

1

1

2
48163256

1 1

1

1

2
4816

32
56

T [s]

E
[J

]

LBM

(b) LBM

Fig. 4. SpMV and CFD benchmarks. Left: SpMV performance and energy to solution.
Right: LBM solver time- and energy to solution (upper data series: CPU, lower series:
GPU).

As a final benchmark, we demonstrate the effectiveness of the full
ICARUS Tegra K1 cluster with a sophisticated CFD solver based on the

746 M. Geveler et al.

Lattice-Boltzmann method, optimised for GPU as well as CPU execution [8].
In Fig. 4 we depict how energy and time to solution behave in a strong scaling
test in single precision (note, that this time, a smaller value on the x-axis means
higher performance). We give the used number of nodes for each data-point and,
in the CPU case, use four threads per node. We also relate the cluster results
to the competitor workstations as in the S/DGEMM benchmark. Concerning
the total energy consumption, we add the measured energy consumed by the
switches needed for the respective number of nodes (that is every 20 nodes add
the energy value of the switch). This can be seen for instance in the rise of the
energy level when going from 16 to 32 nodes. In both CPU and GPU configura-
tions, the ICARUS systems scales well and provides higher energy efficiency then
the respective architecture with the host-workstations. Note, that the increase
in power when using additional nodes is very small and is dominated by the
necessity to use an additional switch. The potential for scaling up the cluster
is therefore quite high. We can also determine the number of ICARUS nodes
needed for beating the reference workstations in terms of time to solution: For
the Cortex-A15, we can see, that with 4 or more ICARUS nodes, lower execu-
tion time is needed than with the commodity hardware, at a considerably lower
energy consumption. This state is reached with 16 ICARUS GPUs, where the
combined GK20a beat even the most augmented floating point accelerator at
the time of writing this paper in both, performance and energy efficiency.

3.2 Energy Supply, Temperature and Humidity

For solar systems, the solar cycle is of major importance and it is elemental
to know the time-spread of the hours of sunshine, which additionally includes
charging breaks effected by cloudy conditions. Figure 5(a, left) shows power P
over time T in April, with sunrise at 6 am and sunset at 9 pm. The complete
charging power of the solar system can be used, because the energy spent over
night needs to be recovered, and the battery charging status is entering a hot-
loading-phase in which it reaches a peak at 2.6 kW (this value can rise up to
7.5 kW). After fully charging the battery, the power decreases to the usage of
the compute cluster in idle mode at approximately 0.36 kW between 11 am and
1 pm. Afterwards, the energy consumption of the cluster increases due to some
calculations performed on it. Figure 5(a, right) shows the percentaged charge of
the battery in May for two different load intensities on the respective previous
day. Here it can be seen, that even on slightly cloudy days, it is possible to
reach the full charge of the battery, proofing that the dimensioning of the power
supply system is correct for the current cluster size. Concerning cooling of the
system, currently we observe that the climate in the server room is very stable
and beneficial for the cluster: on the warmest day in July (with 31 ◦C external
temperature and around 50% relative humidity) we measure an average ambient
temperature of 33 ◦C and an ambient relative humidity of around 35% within
the conmtainer. The Tegra boards are usually as cool as 39–43 ◦ in idle mode
and up to 53–68 ◦ under load, which prooves our custom made cooling system
to be sufficiently dimensioned.

The ICARUS White Paper 747

6 8 10 12 14 16 18 20 22 24
0

0.5

1

1.5

2

2.5

charging

idle

medium usage

high usage

su
n
ri
se

T [h]
P

[k
W

]
0 2 4 6 8 10 12 14 16 18 20 22 24

0

20

40

60

80

100

T [h]

C
ha

rg
e

[%
]

current power drain current battery charge

Fig. 5. Typical daytime solar power provision and nighttime battery discharge cycles.

4 Conclusion, Discussion, and Future Work

Since starting operation in March 2016, ICARUS has passed all our expectations.
Even almost three years after starting its design, we were able to show, that
the Tegra K1 can compete with state-of-the art commodity hardware. In this
paper, we are the first to publish a system-integration success that combines a
technology-mixture from these very different fields. However, we have only just
begun to explore the limits of the cluster and its power supply systems. Also,
the dynamics of the mobile compute hardware market is so fast, that hardware
from a current generation, i.e. Tegra X1 must be added. All together, we find our
approach for energy-efficient HPC based on unconventional embedded hardware
to be well worth the effort.

Acknowledgements. ICARUS hardware is financed by MIWF NRW under the lead
of MERCUR. This work has been supported in part by the German Research Foun-
dation (DFG) through the Priority Program 1648 ‘Software for Exascale Computing’
(grant TU 102/48). We thank the participants of student project Modeling and Sim-
ulation 2015/16 at TU Dortmund for initial support. We also want to thank Markus
Borowski at Borowski GmbH for advice regarding the solar farming and battery supply
as well as Björn Henkel at Bloedorn Containers for his advice in designing the container
unit.

References

1. Anzt, H., Quintana-Ort́ı, E.S.: Improving the energy efficiency of sparse linear sys-
tem solvers on multicore and manycore systems. Phil. Trans. R. Soc. A 372(2018)
(2014)

2. Benner, P., Ezzatti, P., Quintana-Ort́ı, E., Remón, A.: On the impact of opti-
mization on the time-power-energy balance of dense linear algebra factoriza-
tions. In: Aversa, R., Ko�lodziej, J., Zhang, J., Amato, F., Fortino, G. (eds.)
ICA3PP 2013. LNCS, vol. 8286, pp. 3–10. Springer, Cham (2013). doi:10.1007/
978-3-319-03889-6 1

http://dx.doi.org/10.1007/978-3-319-03889-6_1
http://dx.doi.org/10.1007/978-3-319-03889-6_1

748 M. Geveler et al.

3. Castelló, A., Duato, J., Mayo, R., Peña, A.S., Quintana-Ort́ı, E.S., Roca, V., Silla,
F.: On the Use of Remote GPUs and Low-Power Processors for the Acceleration of
Scientific Applications. In: The 4 International Conference on Smart Grids, Green
Communications and IT Energy-aware Technologies ENERGY 2014, pp. 57–62
(2014)

4. Feng, W., Cameron, K., Scogland, T., Subraumaniam, B.: Green500 list, July 2015.
http://www.green500.org/lists/green201506

5. Fürlinger, K., Klausecker, C., Kranzlmüller, D.: Towards energy efficient parallel
computing on consumer electronic devices. In: Kranzlmüller, D., Toja, A.M. (eds.)
ICT-GLOW 2011. LNCS, vol. 6868, pp. 1–9. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-23447-7 1

6. Geveler, M., Reuter, B., Aizinger, V., Göddeke, D., Turek, S.: Energy efficiency
of the simulation of three-dimensional coastal ocean circulation on modern com-
modity and mobile processors - a case study based on the Haswell and Cortex-
A15 microarchitectures. Comput. Sci. Res. Dev. 31, 225–234 (2016). doi:10.1007/
s00450-016-0324-5

7. Geveler, M., Ribbrock, D., Göddeke, D., Zajac, P., Turek, S.: Towards a complete
FEM-based simulation toolkit on GPUs: unstructured grid finite element geometric
multigrid solvers with strong smoothers based on sparse approximate inverses.
Comput. Fluids 80, 327–332 (2013). doi:10.1016/j.compfluid.2012.01.025

8. Geveler, M., Ribbrock, D., Mallach, S., Göddeke, D., Turek, S.: A simulation suite
for Lattice-Boltzmann based real-time-CFD applications exploiting multi-level par-
allelism on modern multi- and many-core architectures. J. Comput. Sci. 2, 113–123
(2011). doi:10.1016/j.jocs.2011.01.008

9. Geveler, M., Turek, S.: ICARUS project homepage (2016). http://www.
icarus-green-hpc.org

10. Göddeke, D., Komatitsch, D., Geveler, M., Ribbrock, D., Rajovic, N., Puzovic, N.,
Ramirez, A.: Energy efficiency vs. performance of the numerical solution of PDEs:
an application study on a low-power arm-based cluster. J. Comput. Phys. 237,
132–150 (2013)

11. Grasso, I., Radojkovic, P., Rajovic, N., Gelado, I., Ramirez, A.: Energy efficient
HPC on embedded SoCs: optimization techniques for mali GPU. In: Proceedings
of the 2014 IEEE 28th International Parallel and Distributed Processing Sym-
posium, IPDPS 2014, pp. 123–132. IEEE Computer Society, Washington, D.C.
(2014). http://dx.doi.org/10.1109/IPDPS.2014.24

12. Hager, G., Treibig, J., Habich, J., Wellein, G.: Exploring performance and power
properties of modern multi-core chips via simple machine models. Concurr. Com-
put.: Pract. Exp. 28(2), 189–210 (2016)

13. IEEE: IEEE 802.3 standard (2015). http://standards.ieee.org/getieee802/
download/802.3bm-2015.pdf

14. InfoTech: Mobile Data Center MDC40 (2015). https://www.infotech.de/2
MDC40/2015 Oktober/Data%20sheet.pdf

15. Malas, T.M., Hager, G., Ltaief, H., Keyes, D.E.: Towards energy efficiency and
maximum computational intensity for stencil algorithms using wavefront diamond
temporal blocking. CoRR abs/1410.5561 (2014). http://arxiv.org/abs/1410.5561

16. Mantovani, F.: High performance computing based on mobile embed-
ded processors. In: International conferences, Mont-Blanc Project
(2015). https://www.montblanc-project.eu/sites/default/files/publications/
Mont-Blanc-EMiT15-lq-public.pdf

17. Meuer, H., Strohmeier, E., Dongarra, J., Simon, H., Meuer, M.: Top500 list, July
2015. http://top500.org/lists/2015/06/

http://www.green500.org/lists/green201506
http://dx.doi.org/10.1007/978-3-642-23447-7_1
http://dx.doi.org/10.1007/978-3-642-23447-7_1
http://dx.doi.org/10.1007/s00450-016-0324-5
http://dx.doi.org/10.1007/s00450-016-0324-5
http://dx.doi.org/10.1016/j.compfluid.2012.01.025
http://dx.doi.org/10.1016/j.jocs.2011.01.008
http://www.icarus-green-hpc.org
http://www.icarus-green-hpc.org
http://dx.doi.org/10.1109/IPDPS.2014.24
http://standards.ieee.org/getieee802/download/802.3bm-2015.pdf
http://standards.ieee.org/getieee802/download/802.3bm-2015.pdf
https://www.infotech.de/2_MDC40/2015_Oktober/Data%20sheet.pdf
https://www.infotech.de/2_MDC40/2015_Oktober/Data%20sheet.pdf
http://arxiv.org/abs/1410.5561
https://www.montblanc-project.eu/sites/default/files/publications/Mont-Blanc-EMiT15-lq-public.pdf
https://www.montblanc-project.eu/sites/default/files/publications/Mont-Blanc-EMiT15-lq-public.pdf
http://top500.org/lists/2015/06/

The ICARUS White Paper 749

18. NASA: High End Computing Capability, Project Status Report (2015). https://
www.nas.nasa.gov/hecc/assets/monthlies/pdf/HECC 10-15.pdf. Modular Super-
computing Facility

19. NVIDIA Corp: NVIDIA Jetson TK1 Development Kit - Bringing GPU-Accelerated
Computing to Embedded Systems (2014). http://developer.download.nvidia.com/
embedded/jetson/TK1/docs/Jetson platform brief May2014.pdf

20. Paolucci, P.S., Ammendola, R., Biagioni, A., Frezza, O., Cicero, F.L., Lonardo, A.,
Martinelli, M., Pastorelli, E., Simula, F., Vicini, P.: Power, energy and speed of
embedded and server multi-cores applied to distributed simulation of spiking neural
networks: ARM in NVIDIA tegra vs intel xeon quad-cores. CoRR abs/1505.03015
(2015). http://arxiv.org/abs/1505.03015

21. Rajovic, N., Rico, A., Vipond, J., Gelado, I., Puzovic, N., Ramirez, A.: Experiences
with mobile processors for energy efficient HPC. In: Design, Automation Test in
Europe Conference Exhibition (DATE) 2013, pp. 464–468, March 2013

22. Toradex: Tegra K1 System on Module - Pressemitteilung (2016). https://www.
toradex.com/de/news/toradex-embedded-computer-nvidia-tegra-k1

23. Treibig, J., Dolz, M.F., Guillen, C., Navarrete, C., Knobloch, M., Rountree, B.:
Tools and methods for measuring and tuning the energy efficiency of HPC systems.
Sci. Program. 22, 273–283 (2014)

24. Wittmann, M., Hager, G., Zeiser, T., Wellein, G.: An analysis of energy-optimized
lattice-Boltzmann CFD simulations from the chip to the highly parallel level. CoRR
abs/1304.7664 (2013). http://arxiv.org/abs/1304.7664

https://www.nas.nasa.gov/hecc/assets/monthlies/pdf/HECC_10-15.pdf
https://www.nas.nasa.gov/hecc/assets/monthlies/pdf/HECC_10-15.pdf
http://developer.download.nvidia.com/embedded/jetson/TK1/docs/Jetson_platform_brief_May2014.pdf
http://developer.download.nvidia.com/embedded/jetson/TK1/docs/Jetson_platform_brief_May2014.pdf
http://arxiv.org/abs/1505.03015
https://www.toradex.com/de/news/toradex-embedded-computer-nvidia-tegra-k1
https://www.toradex.com/de/news/toradex-embedded-computer-nvidia-tegra-k1
http://arxiv.org/abs/1304.7664

Exploiting In-Memory Processing Capabilities
for Density Functional Theory Applications

Paul F. Baumeister1(B), Thorsten Hater1, Dirk Pleiter1, Hans Boettiger2,
Thilo Maurer2, and José R. Brunheroto3

1 Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich, Germany
p.baumeister@fz-juelich.de

2 IBM Deutschland Research & Development GmbH, 71032 Böblingen, Germany
3 IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA

Abstract. Processing-in-memory (PIM) is an approach to address the
data transport challenge in future HPC architectures and various designs
have been explored in the past. Despite, it remains unclear how scien-
tific applications could efficiently exploit massively-parallel HPC archi-
tectures integrating PIM modules. In this paper we address this question
for material science applications for which we ported relevant kernels to
the Active Memory Cube architecture developed by IBM Research.

1 Introduction

Over at least two decades exponential growth of arithmetic performance of
HPC architectures could be sustained. Exploiting this performance becomes
more challenging as with growing complexity massively-parallel architectures
will become limited by data transport. One approach to mitigate this problem
is to move processing pipelines closer to the locations where data is stored, as it
is done in processing-in-memory (PIM) architectures. Such architectures could
be particularly attractive for future, power-constrained supercomputers, because
potentially energy consuming data movements may be avoided. A recent example
of PIM architectures is IBM Research’s Active Memory Cube (AMC) [18].

While there are architectural arguments in favour of PIM-based HPC archi-
tectures, it remains unclear how efficiently such architectures could be exploited
by relevant scientific applications. The goal of this paper is to explore this ques-
tion for two materials science applications on the basis of the AMC architecture.

As of today, materials science applications consume a significant fraction of
the available HPC resources. It is one of the areas in science and engineering
that will significantly benefit from further growth of computational resources
and is expected to require exascale computing capabilities in the future.

A key technique in materials sciences is Density Functional Theory (DFT).
DFT simulations give access to an accurate prediction of the electronic ground
state structure, equilibrium geometries and thermodynamic properties of most
classes of materials, see [5] for an overview. The approach has grown from funda-
mental research to wide application in the field of materials research and design.

c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 750–762, 2017.
DOI: 10.1007/978-3-319-58943-5 60

Exploiting In-Memory Processing Capabilities for DFT Applications 751

In this paper we consider two selected DFT-based applications, which dif-
fer significantly in terms of application performance characteristics. Both have
in common that they are highly scalable on current supercomputers. We have
ported performance relevant parts of these codes to the AMC architecture to
evaluate the performance in cycle-accurate simulations and assess the overall
benefits from performance profiles obtained on existing systems.

This paper makes the following contributions:

– We show results from implementations of relevant kernels of selected DFT
applications on a future processing-in-memory architecture and provide a
performance analysis based on cycle accurate simulations.

– To better understand the opportunities of such future technology, we provide
an assessment of future requirements of DFT applications.

– Based on results from implementation and performance analysis we explore
the features of the AMC architecture as well as its hardware parameters.

In the next section we provide background information on DFT-based meth-
ods and future developments in this application area, which is followed by details
of the AMC architecture in Sect. 3. After discussing details and performance
characteristics of the specific DFT applications considered in this paper (Sect. 4)
we discuss their implementation on AMC (Sect. 5). Based on an analysis of the
obtained performance, which is presented in Sect. 6, we discuss the suitability of
the AMC architecture in Sect. 7. Before concluding we provide a short overview
on related work in Sect. 8.

2 Application Background

In this investigation, we analyse kernels of two different implementations of Den-
sity Functional Theory (DFT), juRS [4] and KKRnano [23]. Both applications
are optimised for high scalability and to address problems with a large number
of atoms, Natom � 1, 000, on massively-parallel machines. Their approach to the
problem differs as juRS solves for eigenstates of the DFT Hamiltonian whereas
KKRnano finds the electronic structure by operator inversion. KKRnano even
allows a truncation of very long-ranged interactions and, thus, transits into an
O(Natom) scaling behaviour. The linear scaling mode makes a million atoms fea-
sible as computer systems grow. So far, more than 200, 000 atomic sites could
already be processed during a pioneering run on an IBM Blue Gene/QTM system
providing a peak performance of 5.9 PFlop/s [25].

Future application requirements. While we will use today’s applications to
evaluate a future technology, i.e. the Active Memory Cube, we also analyse
future requirements of these applications. Based on a questionnaire we analysed
together with domain experts on how, e.g., the application domain, the used
methods and algorithms, problem size and the resource requirements are
expected to evolve.

752 P.F. Baumeister et al.

According to [6] the development of methods for ab initio studies exhibits
various trends, one being the development towards a more precise methodology
overcoming the drawbacks of approximations made in current applications [17].
More computing resources will be required to either facilitate high throughput for
medium-sized problems as well as to address large-scale challenges. The former
will, e.g., be required to scan parameter spaces and evaluate high-dimensional
phase diagrams. The latter involves problems where a large number of atoms,
Natom, are required. Challenging problems are related to broken symmetries,
i.e. crystals with impurities, random alloys or amorphous materials. To address
these questions Natom � 105 atoms are often necessary.

The aforementioned applications, juRS and KKRnano, target such large
problem sizes. With the O(Natom)-mode of KKRnano exascale compute
resources allow to determine the electronic structure of a million atoms within
less than an hour and structural relaxation within a single day.

3 Active Memory Cubes

Recently, several new high-bandwidth memory technologies have been intro-
duced. Both, Hybrid Memory Cube (HMC) [14] as well as High Bandwidth
Memory (HBM) [15] have in common that they foresee a stack of DRAM dies
on top of a logical die. This logic die is currently mainly foreseen to facilitate data
transport, e.g. in the HMC architecture the logic die implements the memory
controller and a network interface via which the processor can access the mem-
ory. But in principle also processing of data could be supported at this level.
This approach is explored in a recent architectural proposal by IBM Research:
the Active Memory Cube (AMC) [18]. In this architecture 32 computational
lanes are added to the logic die, which also have access to the memory, i.e. the
memory becomes dual-ported as it continues to be accessible from the CPU.

Fig. 1. Sketch of the AMC lane architecture. For more details see [18].

Each lane is composed of four computation slices, which comprise a load-
store unit (LSU) as well as an arithmetic-logic unit (ALU), plus a control unit.
Each slice has a register file, which includes 32 scalar plus 16 vector computation

Exploiting In-Memory Processing Capabilities for DFT Applications 753

registers. All registers are 64-bit wide and each vector register has 32 elements.
See Fig. 1 for a sketch of the AMC lane architecture.

The computational lanes are micro-coded. In each clock cycle a lane can
process one Very Long Instruction Word (VLIW) composed of nine sub-
instructions. The instructions are read from a buffer which can hold 512 VLIW
instructions. Due to the length of a VLIW instructions it is important to reduce
the required number of these instructions. In this architecture this is facilitated
through a temporal single-instruction-multiple-data (SIMD) paradigm. Instruc-
tions can be repeated up to 32 times, matching the length of the vector registers.

The arithmetic pipelines take 64-bit input operands and can complete in
each clock cycle one double-precision Fused Multiply-Add (FMA) or a two-way
SIMD single-precision FMA. Thus, up to 8 double-precision floating-point (FP)
operations can be completed per clock cycle in one lane. The peak performance
of one AMC running at a clock speed of 1.25 GHz is thus 320 GFlop/s in double-
precision. A slice can read the vector registers of the other slices, which allows to
distribute data over multiple register files. Furthermore, double-precision com-
plex arithmetic with real and imaginary part distributed over different slices can
be implemented without the need for data re-ordering instructions.

Load/store requests are buffered in a load-store queue with 192 entries. A lane
can load or store 8 Byte/cycle from or to the internal interconnect, i.e. the ratio
of memory bandwidth vs. FP performance is 1 Byte/Flop and thus significantly
larger than in typical processor architectures. Additional non-exposed arithmetic
units are given inside the memory controllers allowing to issue atomic update
operations onto memory locations. Here, the instruction set architecture foresees
integer and also 64-bit FP addition operations.

Each AMC features a network interface with a bandwidth of 32 GByte/s. It
can be used to connect to a processor or to chain multiple AMC devices in a
similar way as HMC devices.

The execution model foresees main programs to be executed on a general-
purpose CPU with computational lanes being used for off-loading small kernels.
It is planned to have VLIW instructions for the off-loaded kernels being gener-
ated by a compiler controlled through directives, e.g. OpenMP-4.0, see [18] for
details. Such a compiler is not yet available and therefore all sequences of VLIW
instructions have been implemented manually.

The maximum power envelope for dies within a 3D stack is small, since layers
cannot be cooled individually, yet. Assuming a design based on 14 nm technology,
the power consumption for an AMC device is expected to be around 10 W.

4 Applications and Performance Characteristics

Real-space grid DFT: juRS represent the DFT Hamiltonian on a uniform Carte-
sian real-space grid and follows the approach of iterative diagonalisation, see [4]
for details. The application of the grid Hamiltonian to wave functions reads

Ĥ |Ψk〉 =
[
− �

2

2m
(∂xx + ∂yy + ∂zz) + Vloc(x, y, z)

]
|Ψk〉 . (1)

754 P.F. Baumeister et al.

The 3D Laplacian represents the kinetic energy operator in real-space represen-
tation. In juRS, it is approximated by an 8th-order finite-differences (FD) scheme
which leads to a 3D stencil operation on a uniform lattice of grid points. This
allows for a controllable accuracy and avoids FFTs and the related parallel scal-
ability issues completely. The selected FD approximation is symmetric around
the central coefficient, c0, with legs of 4 constant coefficients reaching into both
directions of each of the three spatial dimensions, see left side of Fig. 2. On most
architectures, the decomposition into three 1D FD stencils is benefitial. Then,
only one stencil (x, kernel fdd-Vx) carries the central coefficients and the local
potential Vloc(x, y, z), see right side of Fig. 2, and the kernel fdd-yz with its
eight non-zero coefficients is called twice with different array strides. The grid
Hamiltonian may be applied to several wave functions Ψ with index k at once
in order to bundle communication of grid-halos. Details about the requirements
of the juRS finite-difference kernel are summarized in Table 1.

Fig. 2. Decomposition of a 3D finite-difference stencil (left) into three 1D stencils
(right). The central coefficient of the y and z-direction (horizontal and vertical) are
merged into that of x (red) leaving gaps.(Color figure online)

Table 1. Requirements for the relevant DFT kernels. The arithmetic intensity (AI),
given in the limit of nx|y|z → ∞, represents the ratio between compute and data
movement in Flop/Byte.

Kernel Flops Loads (8 Byte) Stores AI

fdd-Vx 32 · 17 nx 32 · (8 + nx) + nx 32 nx 1.1

fdd-yz 32 · 16 ny|z 32 · (8 + 2 ny|z) 32 ny|z 0.7

zgemm-16 32768 1536 512 2.0

Green function DFT: KKRnano directly inverts the the DFT Hamiltonian
matrix, H. Instead of finding eigenstates, we search for columns of the Green
function, x, i.e. a linear equation with multiple right-hand sides is solved. The
so-called tight-binding or screened formulation of the Green function formalism
allows for representing the Hamiltonian as short-ranged in real-space [26], i.e. its

Exploiting In-Memory Processing Capabilities for DFT Applications 755

application to a trial vector only couples elements that are associated to basis
functions localised on neighbouring atomic sites.

The parallelisation strategy foresees one atom per MPI process and we typ-
ically deal with 16 basis functions per atom and energy, resolving states with
different angular momentum. The solutions are found using the transpose-free
quasi-minimal residual technique [8] for 16 right hand sides at a time. Here, the
performance of the application depends almost exclusively on that of applying
the matrix H to vector x as

yi =
∑
j

Hijxj , yi, Hij , xj ∈ C
16×16. (2)

All elements of this equation are complex matrices of dimension 16, which thus
leads to a large number of multiplications of (double-precision) complex matrices
of dimension 16. These are implemented in a kernel called zgemm-16.

For this kernel we have an arithmetic intensity AI = 2 (see Table 1). As each
AMC lane features a compute performance versus memory bandwidth ratio of 1
Flop/Byte we expect the performance of this kernel to be limited by the compute
capability.

5 Implementation on AMC

KKRnano. The most important kernel of KKRnano, zgemm-16, can be consid-
ered as a specialised version of the BLAS routine zgemm which implements the
operation

C ← C + A · B, A,B,C ∈ C
16×16. (3)

Equation (2) is evaluated many times to solve the linear set of equations itera-
tively and the kernel zgemm-16 is invoked even more often. Within each applica-
tion of the Hamiltonian to a vector, zgemm-16 is executed about 16000 times per
atom in KKRnano’s O(Natom)-mode and even more times without truncation
for linear scaling.

Our implementation in microcode makes use of the fact that the AMC’s
vector registers of each lane can hold up to 6 kbyte of data. Therefore, all ele-
ments of A can be kept in the vector registers once they are loaded. Register
spills can be avoided completely. The elements of B are loaded successively into
scalar registers. The loops can be fully unrolled resulting in a kernel compris-
ing 16384 multiply-add operations. Exploiting the temporal (SIMD) paradigm
of pipelining we only need 384 VLIW instructions for implementing this kernel
(neglecting some entry and exit code). Due to the organisation of the vector
register hardware, random access is to vector register elements not possible.
This necessitates the reorganisation of the matrix-matrix product algorithm to
accumulate multiple results simultaneously, in our case 16 real and 16 imaginary
values. In other words, we compute one column of the solution matrix leveraging
the SIMD-in-time model

C0...15,j ← C0...15,j +
∑
k

A0...15,k · Bk,j (4)

756 P.F. Baumeister et al.

juRS finite-differences. As the Hamiltonian is always applied to a larger set of
independent states at a time, we tile the set with index k into coherent subsets
of length 32 to match to AMC’s vector length.

A single-pass implementation of the finite-difference Laplacian stencil on a
3D array with nx × ny × nz lattice sites can only exploit data re-use in the
direction of the traversal of the 3D stencil. This corresponds to an arithmetic
intensity of 49 Flop/144Byte = 0.34Flop/Byte. On AMC such an implementa-
tion would be memory-bandwidth-bound. As no caches are present on the AMC,
it is advantageous to decompose the 3D stencil and perform three passes of a
1D FD stencil with index strides 1, nx and nxny for the x-, y-, and z-direction,
respectively, as described in Sect. 4 and Fig. 2. An overview of the characteristic
numbers of the FD kernels fdd-Vx and fdd-yz is given in Table 1.

Figure 3 explains the slice-parallelisation strategy of the 1D FD derivative for
the implementation on AMC. Elements of the source array A holding the set of
wave functions to be derived are distributed in a cyclic fashion over the four slices.
All slices process the same sequence of instructions except for a phase shift by one
VLIW (32 cycles due to the vectorisation) between adjacent slices. Therefore,
all slices access the same lattice element at the same time exploiting that the
read access to a vector register is shared across the slices of a lane. We schedule
the load instruction on elements of A seven VLIWs (although Fig. 3 shows only
a distance of four VLIWs) before all four slices access the shared vector register
holding elements of A for reading. This is equivalent to 7×32 cycles between the
issuing of the load and the usage of the element if no stalls are encountered. This
hides the typical memory access latencies of the AMC. Furthermore, a four-fold
loop unrolling allows for an efficient register allocation for this microcode so that
4 × 4 elements on 32 independent grids are processed per iteration.

1
2
8

c
y
c
l
e
s

t
i
m
e

s1 ld A[1]

s3 ld A[3]

s0 ld A[4]

s0 st T[0]

s1 st T[1]

s2 st T[2]

s3 st T[3]

s
l
i
c
e

0

s
l
i
c
e

1

s
l
i
c
e

2

s
l
i
c
e

3

s2 ld A[7]

s1 ld A[6]

s3 ld A[5]

s2 ld A[−2]

s3 ld A[−1]

s0 ld A[−4]

s1 ld A[−3]

s0 ld A[0]

s2 ld A[2]

Fig. 3. Slice parallelisation scheme for finite-differences. Data flows from left to right
while time propagates from top to bottom in the diagram.

Exploiting In-Memory Processing Capabilities for DFT Applications 757

The kernel fdd-Vx utilises the memory bandwidth mostly for loading ele-
ments of A and for storing the target array T. All arithmetic instructions are
double-precision FMAs except for the first element. Therefore, 8 Byte are loaded,
8 Byte stored and 17 Flop performed per lattice site. Hence, the AI is about
1 Flop/Byte. The kernel fdd-yz for the other two derivatives ∂yy and ∂zz con-
sists of update operations, i.e. we need to load the source array A and the target
array T before updating T, which increases the amount of data to be loaded by
50% compared to fdd-Vx. Due to the missing central FD coefficient, we per-
form 8FMAs per 24 Byte, i.e. an AI of 0.7. This is below the specifications of
the AMC with a ratio of at least 1 Flop/Byte, therefore, we expect this kernel to
be memory-bound. As an alternative to this load-update-store scheme, atomic
update operations can reduce the pressure on the memory interface.

6 Performance Analysis

The relevant performance metric for the investigate compute kernels is GFlop/s.
During the analysis, we define the floating-point efficiency εFP as the ratio of
achieved FP performance over the maximum of the AMC of 256 Flop/cycle or
320 GFlop/s when using all 32 lanes.

KKRnano. The fully unrolled implementation of the double-precision
C

16×16-matrix-matrix multiplication requires only 4886AMC cycles to finish on
a single lane. This is equivalent to a floating-point efficiency εFP = 84%. As this
kernel has a high theoretical arithmetic intensity (AI) (see Table 1), we expect
it to be compute bound. There are two potential causes for a lower effective
performance. First, the time required to setup the registers and read the corre-
sponding values from the stack memory. Second, the time overhead for offloading
and returning control to the CPU.

The data layout for the complex arrays was tuned to allow for load combines,
i.e. bundled memory requests of 16 or 32 Byte of data with adjacent memory
addresses. This reduces the total number of memory requests which is important
to sustain the performance also in multi-lane execution.

The resulting implementation is highly efficient, the instructions issued to the
four ALUs are almost exclusively FMAs (98%) and only very few slots remain
empty (2%). About 600 cycles are spent to setup the kernel and preload the initial
values of the first matrix, A, which is then kept in the vector registers during
kernel execution. Values of B are streamed through the scalar registers indi-
vidually. Accordingly, the kernel utilises the memory interface efficiently (LSU
instruction mix: 8% load, 5% store, 88% nop).

Most rows of H in KKRnano contain around 14 non-zero matrices. By intro-
ducing an index list into the kernel that contains the start addresses of the next
pair of small matrices we can pipeline zgemm-16 and, hence, distribute the start-
up latency over the execution time for all elements in a row. Furthermore, we
could save the storing and loading of C increasing the AI to 3.5. Asymptotically,
we expect εFP � 98% for a fully pipelined implementation of the block sparse
matrix product, with a single kernel per row of 14 blocks.

758 P.F. Baumeister et al.

We investigate the behaviour of the kernel when scaling to multiple processing
elements. Each is issuing a separate instance of the problem, simulating the
final implementation, where each lane concurrently computes one block of y and
traverses a row of block in H. Results of multi-lane experiments can be found in
Table 2. Here, excellent scaling is observed when increasing the number of active
lanes. The sustained performance on all 32 lanes of an AMC is 262 GFlop/s which
corresponds to εFP = 82%. With more lanes working in parallel the number of
stall cycles relative to those spent on executing instructions grows significantly.
We suspect congestion on the memory system to be the cause. The effect was
larger for allocation strategies controlling the placement in memory vaults other
than the one used for these measurements. This indicates that the balancing of
the memory requests to the different vault controllers is a crucial compontent to
multi-lane efficiency. As each lane processes a disjoint problem set, the amount
of memory requests in flight increases proportionally puts more load on the
internal interconnect. We presented the optimal result from high level tuning of
the memory locality. While more fine grained control on the actual location of
memory allocations could alleviate the issue for elements of H, the access into
y is hard to optimise.

juRS. The AI of the FD kernel fdd-Vx ranges in a field where small changes
in terms of requested memory traffic lead to a transition from being FP perfor-
mance limited to memory-bandwidth-bound, compare Table 1. Both fdd-kernels
process the grid in rows of the length of one of the domain dimensions. Each row
starts and ends with a halo region of four grid elements that need to be loaded
but do not exhibit an 8 or 9-fold data re-use as it is in the bulk of the row. There-
fore, shorter rows have a reduced average AI and, consequently, larger domain
sizes lead to larger εFP. In addition to the halo-related overhead, the loads expe-
rience congestion effects when executed on multiple lanes as shown in Table 2 for
fdd-Vx. Here, the number of lattice sites in one domain was 16×162 or 32×322

where the row length nx is 16 and 32, respectively. The number of rows that are
processed independently, 162 and 322, were distributed evenly among the num-
ber of lanes. Taking the halo-related overhead into account, the corresponding
AIs are 0.84 and 0.93 Flop/Byte, respectively, compare Table 1. These translate
into a maximum efficiency that is achieved only on a single lane in the smaller
case. All multi-lane runs exhibit memory congestion effects that infer additional
stall cycles and, hence, lower the total FP efficiency. Nevertheless, a sustained
efficiency εFP = 43% can be measured.

For the fdd-yz kernel, the amount of memory accesses can be reduced by one
third using the AtomicAdd instruction rather than a usual LoadStore scheme.
Then, the atomic store operation only sends the numerical difference to be added
to the content of the (64-bit) memory location. This allows to improve the single-
lane efficiency from εFP = 60% to 80% for a domain of 32 × 32 grid points.

Application performance. It is difficult to make predictions of the overall speed-
up of the juRS Hamiltonian action as the balance between the FD operations
and other kernels depends on the input. This includes the species of atoms, their

Exploiting In-Memory Processing Capabilities for DFT Applications 759

Table 2. Results for the execution of the juRS finite-difference derivative fdd-Vx and
KKRnano zgemm-16 kernels on L AMC lanes.

fdd-Vx 163 fdd-Vx 323 zgemm-16

L Cycles Stalls εFP Cycles Stalls εFP Cycles Stalls εFP GFlop/s

1 324 k 45 k 0.86 2.6 M 366 k 0.85 4886 682 0.83 8.4

2 186 k 47 k 0.74 1.4 M 293 k 0.79 4807 603 0.85 17.0

4 126 k 56 k 0.55 904 k 347 k 0.61 4893 689 0.83 33.5

8 63 k 28 k 0.55 454 k 176 k 0.61 4955 751 0.82 66.1

16 29 k 11 k 0.60 216 k 77 k 0.64 5007 803 0.81 130.9

32 20 k 11 k 0.43 160 k 90 k 0.43 4991 787 0.82 262.6

density, the grid spacing, and the required accuracy of the projector representa-
tion. All these can change significantly for different types of runs. Typically, the
application spends between 30 to 60% in FD operations. However, on standard
CPU architectures we found the FP efficiency for these kernels to be typically
εFP � 10%. For instance, on BG/Q [4] εFP could be as low as 2%. For all ker-
nels, which we have ported to AMC, we observe an efficiency εFP ≥ 43%. We
thus expect the execution for the juRS Hamiltonian to be at least 7× faster
on a single AMC device compared to a BG/Q processor, that features a peak
performance of 204.8 GFlop/s.

As the fraction of the work executed within the kernels considered in this
paper reduces for larger Natom, we refrain from make predictions on the overall
application performance of juRS in the presence of AMC devices.

7 Discussion of AMC Architecture

For all kernels investigated here, the arithmetic intensities are high which results
in a good usage of the ALU pipeline. The implementations exhibit a constant
flow of arithmetic instructions inside the bulk of a kernel execution. Merely
during startup and finalisation some VLIWs are found that carry only LSU
instructions. Table 3 shows a measure of the NOP instructions. For example the
zgemm-16 kernel that runs 4886 cycles is implemented with only 1.6% pure LSU
instructions for all slices. Also for the juRS-kernels the number of ALU-NOP
instructions is independent of the problem size. In contrast, the number of LSU-
NOP instructions is large and scales with the problem size, therefore, the fraction
of LSU-NOP instructions over possible LSU instruction slots is given here. The
largest usage of LSU instructions is 25% found at fdd-yz in the LoadStore
scheme. Using the AtomicAdd scheme, this fraction is halfed.

The AMC architecture exhibits also other useful features for processing lin-
ear algebra tasks within DFT applications. Of particular interest are variants of
real and complex double-precision matrix-matrix multiplications where a com-
plete set of variants of multiply-add instructions, strong vectorisation and the

760 P.F. Baumeister et al.

Table 3. Usage of AMC hardware resources and NOP-metric for the microcode.

Kernel ALU-NOP LSU-NOP VLIW VectorReg.

fdd-Vx 163 89% 216 (42%) 6

fdd-yz 194 75% 206 (40%) 8

zgemm-16 78 88% 398 (78%) 16

overlap of load latencies with computations allows to achieve high efficiencies
for sparse operator arithmetics. For the investigated kernels, 32 elements in each
vector and four slices per lane can be employed to a full extent. In all kernels,
load latencies are hidden by unrolling loops and the possibility to issue load or
store instructions in the same cycle with arithmetic operations allows to run at
floating-point efficiencies close to 100% given that the AI is sufficiently high.
The manually assembled micro-code implementations of the kernels make use
of most of the 32 scalar registers per slice. The number of used vector registers
per slice and the filling of the instruction buffer are listed in the right columns
of Table 3 for the different kernels. Only for the zgemm-16 kernel all 16 vector
registers have been used. The latter indicates that the size of the register file
is suitable for these application kernels. Despite completely unrolled loops in
zgemm-16 the instruction buffer with up to 512 VLIWs is large enough to host
the instructions for the investigated operations without reloading.

All kernels make extensive use of overlapping load latencies with computa-
tions. When scheduling the loads in the sequence of VLIWs we have to balance
between too early which would stall the lane due to overfilling of the load queue
and too late which leads to stall cycles waiting for data to arrive. A shorter load
queue than 192 items is expected to increase the pressure on this trade-off and
the dependence of the total runtime on memory congestion effects.

8 Related Work

Over the last years numerous DFT simulation codes have been developed for
high-end HPC systems. For some of these codes performance analysis results for
different architectures have been published. The authors of [2,4] focus on the
performance of the CP2K and juRS codes on the Blue Gene architecture. An
overview of performance evaluations for Quantum Espresso on different high-
end HPC systems is given in [10]. Recently, there has been increased interest in
exploiting massively-parallel compute devices like GPUs for this type of appli-
cations [9,11,12,20,21,24].

Extensive research on PIM architectures has been performed in the 90s result-
ing in various architectures being proposed and explored, including Computa-
tional RAM [7], Intelligent RAM [19], DIVA [13], Gilgamesh [22], and FlexRAM
[16]. Recently, a reviving interest can be observed (see, e.g., [1,18]). Different
application kernels have been mapped to these architectures to explore their per-
formance, with focus on kernels that feature irregular memory access patterns.

Exploiting In-Memory Processing Capabilities for DFT Applications 761

Similar to the approach taken for this work, we analysed the relevant kernels of a
fluid dynamics code using the Lattice Boltzmann method and the Dirac operator
from a Lattice Quantum Chromodynamics application and implemented these
for the AMC architecture [3].

9 Conclusions

By porting relevant kernels of high-scalable density functional theory applica-
tions to the Active Memory Cube (AMC) we could demonstrate the potential
of this architecture to be efficiently used for such scientific applications, where
regular linear algebra and stencil operations dominate.

In particular, matrix-matrix multiplications can be executed efficiently even
if it involves many tasks with small matrix dimensions. Using a suitable data
layout for complex numbers a floating-point efficiency εFP � 80% could be
achieved, which is significantly above the efficiency of about 15% observed on
Blue Gene/QTM for the same kernel. When using KKRnano in its linear scaling
mode with 2229 atoms in the interaction region on BG/Q, about 91% of the time
is spent in this kernel. Therefore, a single AMC has the potential to speed-up
the overall application by a factor 5, while a single AMC is expected to consume
about 5 times less power compared to a BG/Q processor. For this energy effi-
ciency assessment the power consumed by the CPU is, however, not taken into
account.

In addition to variants of matrix-matrix operations, we investigated a stencil
operation that arises from 3D finite-difference derivatives and can be mapped
to 1D stencils. Here, a floating-point efficiency εFP = 43% could be measured.
A speed-up of the juRS Hamiltonian depends on the balance between finite-
difference kernel and other tasks, which in return depend on several input quan-
tities. Thus a typical overall speed-up of the application is difficult to assess.

For any of the relevant kernels we observed a floating-point efficiency εFP >
40%, which corresponds to a double-precision floating-point performance of at
least 128 GFlop/s within an estimated power-envelope of 10 W. In particular the
implementation of matrix-matrix multiplications with εFP � 80% translates into
25 GFlop/s per Watt. This significantly exceeds power efficiencies on current
architectures, it takes, however, only the power consumed by the AMC into
account.

In regard of the hand-written microcode implementations generated for this
investigation it remains unclear if compilers (once fully functional) will achieve
similar performance numbers.

Acknowledgments. We thank the AMC team at IBM Research, in particular Jaime
Moreno, for sharing their knowledge on the AMC, continued help and many fruitful
discussions. We also acknowledge the collaboration of Stefan Blügel and his group.

References

1. Ahn, J., et al.: PIM-enabled instructions. In: Proceedings of the ISCA 2015, p. 336
(2015)

762 P.F. Baumeister et al.

2. Alam, S., Bekas, C., Boettiger, H., et al.: IBM J. Res. Dev. 57(1), 161–169 (2013)
3. Baumeister, P.F., Boettiger, H., Brunheroto, J.R., Hater, T., Maurer, T., Nobile,

A., Pleiter, D.: Accelerating LBM and LQCD application Kernels by in-memory
processing. In: Kunkel, J.M., Ludwig, T. (eds.) ISC High Performance 2015. LNCS,
vol. 9137, pp. 96–112. Springer, Cham (2015). doi:10.1007/978-3-319-20119-1 8

4. Baumeister, P.F.: Ph.D. thesis, RWTH Aachen University (2012)
5. Becke, A.D.: J. Chem. Phys. 140(18), 18A301 (2014) and references therein
6. Blügel, S., Wortmann, D., et al.: EIC Co-design Questionnaire for DFT. (Unpub-

lished)
7. Elliott, D.G., et al.: Computational RAM. In: Proceedings IEEE, p. 30.6.1 (1992)
8. Freund, R.W., Nachtigal, N.: QMR. Numer. Math. 60(1), 315 (1991)
9. Genovese, L., Ospici, M., Deutsch, T., et al.: J. Chem. Phys. 131(3), 034103 (2009)

10. Girotto, I., et al.: Enabling of Quantum ESPRESSO. PRACE (2012)
11. Hacene, M., et al.: Accelerating VASP. J. Comput. Chem. 33(32), 2581–2589 (2012)
12. Hakala, S., Havu, V., Enkovaara, J., Nieminen, R.: Parallel electronic structure

calculations using multiple graphics processing units (GPUs). In: Manninen, P.,
Öster, P. (eds.) PARA 2012. LNCS, vol. 7782, pp. 63–76. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-36803-5 4

13. Hall, M., et al.: Mapping irregular applications to DIVA. In: SC 1999 Conference,
p. 57 (1999)

14. Hybrid Memory Cube Consortium: Hybrid Memory Cube specification (2013)
15. JEDEC: JEDEC Standard High Bandwidth Memory (HBM) DRAM Spec. (2013)
16. Kang, Y., Huang, W., et al.: FlexRAM. In: ICCD 1999 Conference, pp. 192–201

(1999)
17. Kümmel, S., Kronik, L.: Rev. Mod. Phys. 80, 3–60 (2008)
18. Nair, R., Antao, S.F., et al.: IBM J. Res. Dev. 59(2/3), 17:1–17:14 (2015)
19. Patterson, D., et al.: A case for intelligent RAM. IEEE Micro 17(2), 34–44 (1997)
20. Solcà, R., Kozhevnikov, A., Haidar, A., Tomov, S., Dongarra, J., Schulthess, T.C.:

Efficient implementation of quantum materials simulations on distributed CPU-
GPU systems. In: Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, pp. 10:1–10:12. ACM, New
York (2015). doi:10.1145/2807591.2807654, ISBN 978-1-4503-3723-6

21. Spiga, F., Girotto, I.: phiGEMM. In: Euromicro 2012 Proceedings, p. 368 (2012)
22. Sterling, T.L., Zima, H.P.: Gilgamesh. In: SC 2002 Proceedings, p. 48 (2002)
23. Thiess, A., Zeller, R., et al.: KKRnano. Phys. Rev. B 85, 235103 (2012)
24. Wang, L., Wu, Y., Jia, W., Gao, W., Chi, X., Wang, L.-W.: Large scale plane

wave pseudopotential density functional theory calculations on GPU clusters. In:
Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 71:1–71:10. ACM, New York (2011). doi:10.
1145/2063384.2063479, ISBN 978-1-4503-0771-0

25. Zeller, R.: KKRnano. VSR Seminar, October 2014, JSC, FZ Jülich, Germany
(2014)

26. Zeller, R., et al.: Phys. Rev. B 52, 8807–8812 (1995)

http://dx.doi.org/10.1007/978-3-319-20119-1_8
http://dx.doi.org/10.1007/978-3-642-36803-5_4
http://dx.doi.org/10.1145/2807591.2807654
http://dx.doi.org/10.1145/2063384.2063479
http://dx.doi.org/10.1145/2063384.2063479

Are Low-Power SoCs Feasible for Heterogenous
HPC Workloads?

Max Plauth(B) and Andreas Polze

Operating Systems and Middleware Group, Hasso Plattner Institute for Software
Systems Engineering, University of Potsdam, Potsdam, Germany

{max.plauth,andreas.polze}@hpi.uni-potsdam.de

Abstract. Energy efficiency has become a crucial aspect in the domain
of High Performance Computing since running costs for electricity often
exceed the initial acquisition costs. In consequence, low-power System-
on-a-Chip designs are drawing much attention from the HPC commu-
nity. Driven by the demand for high performance and long battery life in
mobile consumer devices, all building blocks of SoCs are undergoing dras-
tic improvements. In addition to the end-user availability of SoCs based
on the ARMv8-A instruction set architecture, heterogenous aspects rang-
ing from the big.LITTLE paradigm to compute-capable GPUs are gain-
ing popularity. Focusing on the heterogenous nature of SoCs, we investi-
gate both performance and energy consumption of todays state-of-the-art
SoCs for heterogenous workloads using the Rodinia benchmark suite.
Based on the results, we anticipate the potential of forthcoming SoC
designs in the HPC domain.

1 Introduction

In the domain of High Performance Computing (HPC), energy consumption has
always been an important factor in the design of new HPC setups. Recently
however, the aspect of energy efficiency has acquired an additional facet for the
HPC sector, as increasing energy costs have reached a level where the running
costs exceed the initial acquisition costs. This issue is reflected by the emergence
of numerous conferences1, workshops2 and projects3 that are solely dedicated
to the goal of increasing energy efficiency in the HPC domain. Animated by
the motive of energy efficiency, the search for new approaches has engaged the
interest of the HPC community in low-power System-on-a-Chip (SoC) designs
[1,5,19–21].

Originating from the embedded and mobile sectors, the prime design goals of
SoC designs are energy efficiency and reduced manufacturing costs [8]. However,
the tremendous demand for compute intensive applications such as multimedia
capabilities of high-end smartphones has driven major advances in the compute

1 Energy-Aware High Performance Computing, http://www.ena-hpc.org.
2 UnConventional High Performance Computing, http://uchpc.lrr.in.tum.de.
3 Green500 List, http://www.green500.org.

c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 763–774, 2017.
DOI: 10.1007/978-3-319-58943-5 61

http://www.ena-hpc.org
http://uchpc.lrr.in.tum.de
http://www.green500.org

764 M. Plauth and A. Polze

performance of modern SoCs as well. In addition to steady improvements of
the chip design, SoCs have a history of employing special purpose hardware
accelerators to meet high computational demands at a minimum level of energy
consumption [23].

Focusing on the heterogenous property of SoCs, this paper evaluates the feasi-
bility of state-of-the-art SoCs for heterogenous HPC workloads using the Rodinia
benchmark suite [6]. Furthermore, the memory subsystem of all test platforms
is evaluated using the STREAM [16,17] benchmark and TinyMemBench [22].
In addition to mere Time-to-Computation (TtC) performance measurements,
we also provide energy readings and the corresponding Energy-to-Computation
(EtC) ratings. This evaluation targets recent trends such as heterogenous multi-
processing introduced by the big.LITTLE CPU paradigm as well as general pur-
pose compute capabilities of SoC-grade GPUs. Furthermore, this work extends
the scope of the evaluation to include SoCs based on the 64 bit ARMv8-A archi-
tecture, since previous evaluations of SoC hardware for HPC use cases have
mostly dealt with hardware based on the 32 bit ARMv7-A architecture. For the
measurements, we employed a variety of Single Board Computers (SBCs) to
cover the range of the aforementioned characteristics.

To provide a representative for the current state of the art in x86 64 based
systems, all tests were also performed on a rack-scale HPE Moonshot system.
Even though technically the employed cartridges do not comprise SoC hardware,
the growing density of rack-scale server systems indicates increasing opportuni-
ties for the use of SoCs in future rack-scale systems.

We provide the following contributions:

– We investigate the heterogenous properties of state-of-the-art SoCs, elaborat-
ing on both the compute capabilities of SoC-grade GPUs and the heteroge-
nous multiprocessing feature of big.LITTLE CPUs.

– We analyze improvements of ARMv8-A compared to ARMV7-A SoCs.
– Based on the narrowing gap between ARM and x86 64 based SoCs, we antic-

ipate the potential of forthcoming ARM designs in the HPC domain.

This work is structured as follows: In Sect. 2, we are going to present an
overview of related publications that deal with the evaluation of low-power hard-
ware for HPC workloads. Based on the research gaps, the Sect. 3 presents the
choice of target platforms that will be evaluated in the further course of this
work. In Sect. 4, all details of our benchmarking procedure are explicated. Sub-
sequently, Sect. 5 presents the detailed results retrieved from our benchmark
procedure and provides a thorough discussion. Finally, Sect. 6 concludes this
work with final thoughts.

2 Related Work

In 2002, one of the first attempts at using low-power hardware in HPC scenarios
was GreenDestiny, which accommodates a cluster of 240 Transmeta TM5600
667-MHz CPUs in a single rack and achieved 13.5 MFLOPS/Watt roughly an

Are Low-Power SoCs Feasible for Heterogenous HPC Workloads? 765

improvement of a factor two compared to competing systems built from COTS
hardware at the time [24]. In a similar approach presented in 2005, MegaProto
is built from 512 Transmeta TM8820 CPUs and achieved roughly 100 MFLOP-
S/Watt [18]. Unfortunately, even though the specifications of both approaches
looked promising, neither one found its way into larger installations.

In an economic study conducted by HP Labs in 2011, the authors prognosti-
cated that with further improvements of the production node, employing SoCs in
server and HPC systems would yield major economic benefits in the future [15].
In 2013, the Mont-Blanc project [19] demonstrated the practical feasibility of
employing ARM-based SoCs for HPC workloads using the Tibidabo cluster [20].
Tibidabo was the first ARM-based HPC cluster and was built from 128 NVIDIA
Tegra 2 dual-core ARM Cortex-A9 processors. The setup achieved roughly 120
MFLOPS/Watt, which was competitive with CPUs from Intel (Xeon X5660)
and AMD (Opteron 6128) at the time. The biggest issue of the hardware was
the lack of Gigabit Ethernet and the unstable implementation of PCI Express.
On the software side, linux distributions lacked the support for hardware floating
point units and there was no software support for employing GPU-based acceler-
ators for general purpose computations using CUDA or OpenCL. However, the
authors reached a positive verdict and stated that the Cortex-A15 might reach
competitive performance levels and that switching to the ARMv8-A architecture
would yield drastic performance improvements.

In 2015, two publications have surfaced that investigate the performance
characteristics of ARMv8-A-based SoCs. The publication by Rusitoru [21] takes
on a very abstract approach, as the architectural properties of the ARMv8-A
architecture are evaluated for HPC workloads using simulated hardware. This
work explores the sensitivities of HPC workloads for in-order and out-of-order
cpu configurations. A more practical approach has been applied in the work of
Abdurachmanov et al. [1], which evaluates the performance of the Applied Micro
X-Gene SoC for high throughput scientific computing tasks and compares the
performance to an Intel Xeon CPU and a Xeon Phi accelerator card. While the
X-Gene fails to keep up with the performance of the Intel-based platforms, it
yields a much better performance per joule ratio. The authors conclude that
ARM-based SoCs like the X-Gene are very promising and that with improving
maturity of compilers and further hardware iterations, ARM-based SoCs might
become valid competitors to x86 64-based CPUs.

Focusing on energy consumption versus performance tradeoffs, a very recent
publication by Calore et al. [5] investigated the interactions between HPC
workloads and energy consumption using Tegra K1 SoCs, which are based on
the ARM Cortex-A15. Using a time-accurate measurement setup, the authors
observed both compute performance and energy consumption for a benchmark
that has been implemented for both the CPU and the GPU portion of the
SoC. As the measurements were performed at different clock speeds and energy
states, the evaluation yielded Time-to-Computation (TtC) as well as Energy-to-
Computation (EtC) figures for many configurations. The authors came to the
conclusion that due to significant background energy dissipation, the best overall

766 M. Plauth and A. Polze

energy efficiency can be reached when all resources are driven at the fastest clock-
speed in order to complete computations faster and then cut power.

Finally, the performance behavior of the heterogenous multiprocessing fea-
ture of big.LITTLE CPUs has been investigated by Butko et al. [4]. In their work,
the authors used the OpenMP-based CPU implementations from the Rodinia
benchmark suite [6] to evaluate the performance of the Samsung Exynos 5422
SoC, which comprises four ARM Cortex-A7 cores and four ARM Cortex-A15
cores. Contrary to the näıve assumption that running all cores simultaneously
would yield certain performance improvements, the authors demonstrated that
the best performance could be achieved using the Cortex-A15 cores only. In most
benchmarks, using the Cortex-A7 cores as well resulted in severely decreased
performance, which suggests that current parallel programming paradigms are
unable to deal with the heterogenous CPUs where cores come with varying per-
formance characteristics.

3 Hardware Targets

In this work, we are using the latest generation of Single Board Computers
(SBCs) in order to cover three major points of interest:

– Heterogeneous multiprocessing in big.LITTLE CPUs.
– Performance and compute capabilities of SoC-grade GPUs.
– Architectural improvements of ARMv8-A compared to ARMV7-A.

We decided to use SBCs due to their wide availability even though high-end
ARMv8-A SoCs are available in server-scale hardware like the HPE ProLiant
m400 Server Cartridge [12], which is based on the Applied Micro X-Gene SoC.
The large demand from the hobbyist community has created a large spectrum
ranging from low-cost, low-power hardware to more performant products. From
the upper range of the performance spectrum, we are employing the Odroid-XU4
[3,10] to cover both the aspects of heterogenous multiprocessing in big.LITTLE
CPUs as well as the compute capabilities of SoC-grade GPUs. However, the
XU4 still uses ARMv7-A-based CPU designs (ARM Cortex-A7 and A15) and
thus does not represent recent advances in ARM processor design. For the inves-
tigation of advances introduced by ARMv8-A, we are using the Odroid-C2 [11]
and the Raspberry Pi 3 [7], which are both based on the ARM Cortex-A53. It
should be noted that the A53 is a low-power design, which is intended to be used
as the energy efficient counterpart to the more powerful A57 in ARMv8-A-based
big.LITTLE CPUs. The detailed specifications of all SBCs utilized in this work
are denoted in Table 1.

To evaluate whether energy efficient SoCs might become a serious threat to
the predominance of x86 64 in the field of High Performance Computing and to
the server market in general, we extended our measurements to include the HPE
ProLiant m710p Server Cartridge (detailed specifications denoted in Table 2).
Systems belonging to the class of so-called Rack-Scale Computers [14] are par-
ticularly interesting, as energy-efficient but performant SoCs are the prime tar-
get for a system architecture that aims at highly increased levels of hardware

Are Low-Power SoCs Feasible for Heterogenous HPC Workloads? 767

Table 1. Detailed specifications of the employed Single Board Computers (SBCs).

Raspberry Pi 3 [7] Odroid C-2 [11] Odroid XU-4 [3,10]

SoC Broadcom BCM2837 Amlogic S905 Samsung Exynos 5422

CPU 4×ARM Cortex-A53 4×ARM Cortex-A53 ARM big.LITTLE octa
core

1.2 GHz, in-order 2.0 GHz, in-order 4×A7, 1.5 GHz,
in-order

4×A15, 2.0 GHz,
out-of-order

Arch ARMv8-A (64 bit) ARMv8-A (64 bit) ARMv7-A (32 bit)

L1$ (I/D) 32 KB/32 KB 32KB/32 KB 32 KB/32 KB

L2$ 512 KB 512KB 512 KB (A7), 2 MB
(A15)

Memory 1 GB LPDDR2 2GB DDR3 2 GB LPDDR3

900 MHz 32 bit/912 Mhz 32 bit/933 MHz, PoP

GPU BCM VideoCore IV ARM Mali-450 ARM Mali-T628 MP6

Compute no no OpenCL 1.1

OS Ubuntu MATE 15.10 Ubuntu MATE 16.04 Ubuntu MATE 15.10

Kernel 4.1.18-v7+ (armv7l) 3.14.29-29 (aarch64) 3.10.96-78 (armv7l,
HMP)

Compiler GCC v5.2.1 GCC v5.3.1 GCC v5.2.1

Table 2. Detailed specifications of the x86 64 based reference system.

HPE ProLiant m710p Server Cartridge [13]

CPU Intel Xeon E3-1284L v4, 4C/8T, 2.90 GHz, out-of-order

Arch x86 64

L1$ (I/D) 32 KB/32 KB (per core)

L2$ 256 KB (per core)

L3$ 6 MB (shared)

L4$ 128 MB eDRAM

Memory 32 GB, 4×8 GB PC3L-12800 (DDR3-1600) SODIMM

GPU Iris Pro Graphics P6300 BroadWell GT3

Compute OpenCL 1.2

OS Ubuntu 16.04 LTS

Kernel Linux 4.4.0-21 (x86 64)

Compiler GCC v5.3.1

768 M. Plauth and A. Polze

density. Even though the Intel Xeon E3-1284L v4 employed in the m710p is no
SoC, it represents the latest advances of performance-optimized x86 64 hardware
targeting compact and energy efficient form factors.

4 Benchmark Procedure

Corresponding to the focus on heterogenous hardware, we used a selection of
tests from the Rodinia benchmark suite [6], which is specialized on heterogenous
computing environments. The Rodinia suite comprises more than 20 benchmarks
from various application domains, each implemented in OpenMP, OpenCL and
CUDA. To provide an additional level of categorization, each benchmark is clas-
sified according to the Berkley Dwarves [2].

With the goal of prohibiting any bias, we ignored the specific hardware
characteristics of each target platform and did not apply any modifications to
the benchmark implementations, except for minor adaptations of the makefiles.
While the OpenMP-based implementations for CPUs worked flawlessly on all
platforms, the OpenCL-based implementations had certain issues on the ARM
Mali-T628 MP6 GPU of the Odroid-XU4. Implemented with high-end worksta-
tion and server-grade GPUs in mind, several benchmarks failed to run properly
on the XU4 without profound alterations of the implementation. As this forced
us to narrow down the choice of benchmarks, we decided to pick one benchmark
per Berkley Dwarf covered by the Rodinia benchmark suite:

– Structured Grid : Leukocyte tracking
– Unstructured Grid : Computational Fluid Dynamics
– Dense Linear Algebra: k-Nearest Neighbors
– Graph Traversal : Breadth-First Search

Except for the leukocyte tracking benchmark, all workloads are memory-
bound [6] and thus sensitive to memory performance. Hence, memory bandwidth
was measured using the STREAM benchmark [16,17], whereas TinyMemBench
[22] was used to obtain memory latency measurements.

All performance measurements were performed on a clean, freshly rebooted
system with no other active users or background tasks running. In order to
retrieve a sufficiently meaningful dataset, each benchmark was executed 10 times.
Furthermore, each benchmark was preceded by a warm-up run in order to elimi-
nate any confounding factors. The power consumption values denoted in Table 3

Table 3. Power consumption in watts for the states Off, Idle and Load.

RPI 3 C2 XU4 (A7) XU4 (A15) XU4 (GPU) m710p (CPU) m710p (GPU)

Off 0.50 1.00 0.70 0.70 0.70 9.85 9.85

Idle 1.70 2.30 3.80 3.80 3.80 20.65 20.65

Load 2.70 4.10 5.10 11.70 6.60 79.45 67.93

Are Low-Power SoCs Feasible for Heterogenous HPC Workloads? 769

were measured using a power consumption meter switched in between the SBC
power supply and the wall socket. For the m710p cartridge, the readings were
retrieved from the management interface of the cartridge chassis.

5 Results and Discussion

In this section, we provide Time-to-Computation (TtC) and Energy-to-
Computation (EtC) results for application domains representing four major
Berkley Dwarves: Structured Grid (see Fig. 1), Unstructured Grid (see Fig. 2),
Dense Linear Algebra (see Fig. 3) and Graph Traversal (see Fig. 4). Except
for the Structured Grid benchmark, all presented benchmarks are memory-
bound [6].

RPI 3

C2 (
32

)

C2 (
64

)

XU4 (
A7)

XU4 (
A15

)

XU4 (
GPU)

m71
0p

 (C
PU)

m71
0p

 (G
PU)

0

50

100

150

Ti
m

e-
to

-C
om

pu
ta

tio
n

[s
]

RPI 3

C2 (
32

)

C2 (
64

)

XU4 (
A7)

XU4 (
A15

)

XU4 (
GPU)

m71
0p

 (C
PU)

m71
0p

 (G
PU)

0

100

200

300

400 Energy-to-C
om

putation [J]

Fig. 1. Results of the Structured Grid benchmark (Leukocyte Tracking).

RPI 3

C2 (
32

)

C2 (
64

)

XU4 (
A7)

XU4 (
A15

)

XU4 (
GPU)

m71
0p

 (C
PU)

m71
0p

 (G
PU)

0

100

200

300

400

500

Ti
m

e-
to

-C
om

pu
ta

tio
n

[s
]

RPI 3

C2 (
32

)

C2 (
64

)

XU4 (
A7)

XU4 (
A15

)

XU4 (
GPU)

m71
0p

 (C
PU)

m71
0p

 (G
PU)

0

500

1000

1500 Energy-to-C
om

putation [J]

Fig. 2. Results of the Unstructured Grid benchmark (Computational Fluid Dynamics).

5.1 Heterogenous Properties

Analyzing the heterogeneous multiprocessing properties of the Odroid-XU4
(XU4), we were able to reproduce the findings of Butko et al. [4], that using
both the A7 and A15 cores simultaneously results in decreased performance lev-
els (data not shown). As this result has been expected, we were more interested

770 M. Plauth and A. Polze

RPI 3

C2 (
32

)

C2 (
64

)

XU4 (
A7)

XU4 (
A15

)

XU4 (
GPU)

m71
0p

 (C
PU)

m71
0p

 (G
PU)

0.0

0.1

0.2

0.3

Ti
m

e-
to

-C
om

pu
ta

tio
n

[s
]

RPI 3

C2 (
32

)

C2 (
64

)

XU4 (
A7)

XU4 (
A15

)

XU4 (
GPU)

m71
0p

 (C
PU)

m71
0p

 (G
PU)

0.0

0.2

0.4

0.6

0.8 Energy-to-C
om

putation [J]

Fig. 3. Results of the Dense Linear Algebra benchmark (k-Nearest Neighbors).

RPI 3

C2 (
32

)

C2 (
64

)

XU4 (
A7)

XU4 (
A15

)

XU4 (
GPU)

m71
0p

 (C
PU)

m71
0p

 (G
PU)

0.0

0.2

0.4

0.6

0.8

Ti
m

e-
to

-C
om

pu
ta

tio
n

[s
]

RPI 3

C2 (
32

)

C2 (
64

)

XU4 (
A7)

XU4 (
A15

)

XU4 (
GPU)

m71
0p

 (C
PU)

m71
0p

 (G
PU)

0

1

2

3

4

5 Energy-to-C
om

putation [J]

Fig. 4. Results of the Graph Traversal benchmark (Breadth-First Search).

in conditions where only the A7 or the A15 cores are used exclusively in order
to evaluate whether the decreased compute performance of A7 cores might yield
better EtC performance.

Except for the Dense Linear Algebra benchmark presented in Fig. 3, the
A15 cores delivered much better TtC values, even mitigating the higher power
consumption (see Table 3) in terms of EtC performance. These observations
agree with Calore et al. [5], who recommended that running at high performance
configurations and then turning of the system yields the best energy efficiency.

Comparing the OpenCL compute performance of the ARM Mali-T628 MP6
GPU with the CPU performance of the A15, the GPU provides significantly
faster TtC performance in all disciplines except for Graph Traversal (see Fig. 4).
With almost half the power consumption however (see Table 3), the GPU exceeds
CPU performance in the EtC category. While these results are already impressive
enough, it should be noted that without further modifications to the benchmark
code, only four out of six shader cores can be utilized and various optimization
schemes remain untapped, including the use of vector types and zero-copy mem-
ory transfers. As a result thereof, the GPU employed in the XU4 offers a lot of
potential for further performance improvements.

Are Low-Power SoCs Feasible for Heterogenous HPC Workloads? 771

5.2 Improvements of ARMv8-A

The Raspberry Pi 3 (RPI 3) and the Odroid-C2 (C2) represent two different SoC
designs that are based on the A53 CPU. Both in terms of TtC and EtC per-
formance, the RPI 3 represents a low-key configuration, whereas the C2 demon-
strates the strengths of the A53 design. In addition, the availability of a Linux
kernel supporting the aarch64 state makes the C2 the prime target for analyzing
the improvements introduced by the ARMv8-A architecture.

Foremost, all benchmarks demonstrate that regardless of running in 32
or 64 bit mode, the A53 provides decent improvements compared to the A7
both with respect to TtC and EtC performance. Providing decent performance
improvements at reduced energy uptake levels, the A53 delivers EtC performance
improvements of 105% (Structured Grid, Fig. 1), 71% (Unstructured Grid, Fig. 2)
and 186% (Dense Linear Algebra, Fig. 3).

Focusing on the 64 bit mode of operation, both the Structured Grid bench-
mark (see Fig. 1) and the Dense Linear Algebra benchmark (see Fig. 3) demon-
strate performance improvements of 24% and 73% compared to the 32 bit mode
of operation, respectively. In contrast to that, the 64 bit mode causes a mild
slowdown for the Unstructured Grid benchmark (see Fig. 2) and the Graph Tra-
versal benchmark (see Fig. 4) with 5% and 10% respectively. While the beneficial
benchmarks seem to profit from the increased register count and width of the
aarch64 mode, the slight performance drop in the remaining disciplines might
be caused by the amenable state of platform specific optimizations of current
aarch64 compilers [1]. Both with improvements on the compiler side and manual
optimizations on the benchmark side, it seems probable that decent performance
improvements could be achieved for all conditions.

5.3 Competitiveness with x86 64

In terms of TtC performance, the x86 64 CPU evaluated in our benchmarks is
far ahead of the ARM-based CPUs. However, this outcome should not come as
a surprise, as comparing SBCs to high end server cartridges is close to a com-
parison between apples and oranges. Most notably, SBCs employ a much more
basic configuration level of the memory subsystem, which is demonstrated by
the memory subsystem performance discussed in Sect. 3. While the investigated
SBCs employ single channel memory controllers and lower clock frequencies of
the memory chips, the x86 64 system features a multi-channel memory con-
troller and much higher memory frequencies. While this limitation is inherent
to the class of SBCs, ARM-based SoCs targeted at server applications such as
the Applied Micro X-Gene have demonstrated that memory subsystems with
competitive performance can be implemented [9].

Taking on the position of EtC performance, the overall picture changes dras-
tically as most ARM-based SoCs delivered better results in this discipline. With
todays available technology, this win comes at the price of much higher compu-
tation times. However, if we consider the heterogenous aspects of SoCs and com-
pare SoC-grade GPUs with x86 64 CPUs, the XU4 SBC manages to get close to

772 M. Plauth and A. Polze

the CPU performance of the m710p cartridge in the Structured Grid and Dense
Linear Algebra benchmarks (see Figs. 1 and 3, respectively). Of course, the Iris
Pro GPU on the x86 64 side also manages to provide performance boosts both
in terms of TtC and EtC, but the SoC-grade GPU of the XU4 still manages to
keep up in the latter discipline (Fig. 5).

RPI 3

C2 (
32

)

C2 (
64

)

XU4 (
A7)

XU4 (
A15

)

XU4 (
Both)

m71
0p

0

2000

4000

6000
12000

14000

16000

B
an

dw
id

th
 [M

B
/s

]

Copy
Scale
Add
Triad

64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8
65

53
6

0

50

100

150

200

250

Block Size [KiB]

m710p

RPI 3
C2
XU4 (A7)
XU4 (A15)

Latency [ns]

Fig. 5. Memory bandwidth as reported by the STREAM benchmark [16,17] (left).
Dual read memory latency relative to L1$ as retrieved by TinyMemBench [22] (right).

6 Conclusion

Focusing on the heterogenous capabilities and architectural improvements of
SoCs, this paper evaluated the feasibility of state-of-the-art SoCs for heteroge-
nous HPC workloads using the Rodinia benchmark suite [6]. Furthermore, the
memory subsystem of all test platforms was evaluated using the STREAM
[16,17] benchmark and TinyMemBench [22]. Next to Time-to-Computation mea-
surements, we also provided Energy-to-Computation figures to address the press-
ing subject of energy efficiency.

In our evaluation, we incorporated recent trends such as heterogenous mul-
tiprocessing introduced by the big.LITTLE CPU paradigm as well as general
purpose compute capabilities of SoC-grade GPUs. Furthermore, this work inves-
tigated the improvements introduced by the ARMv8-A architecture, since pre-
vious evaluations of SoC hardware for HPC use cases have mostly dealt with
hardware based on the 32 bit ARMv7-A architecture.

Considering that already lower-end in-order execution SoCs based on the
Cortex-A53 indicated decent performance improvements compared to previous
generations, promising improvements in the field of ARM-based CPUs are on
their way. Similarly, surprising performance levels both in terms of Time-to-
Computation and Energy-to-Computation were observed for SoC-grade GPUs.
In an attempt to anticipate the near future based on our findings, the trend
towards heterogeneous designs will be the key to superior performance. Hence,
the potential of utilizing energy efficient hardware in compute intensive scenarios
seems to be growing steadily.

Are Low-Power SoCs Feasible for Heterogenous HPC Workloads? 773

Disclaimer

This paper reflects only the authors’ views and the European Commission is not
responsible for any use that may be made of the information it contains.

Acknowledgement. This paper has received funding from the European Union’s
Horizon 2020 research and innovation programme 2014–2018 under grant agreement
No. 644866.

References

1. Abdurachmanov, D., Bockelman, B., Elmer, P., Eulisse, G., Knight, R.,
Muzaffar, S.: Heterogeneous high throughput scientific computing with APM X-
Gene and Intel Xeon Phi. J. Phys.: Conf. Ser. 608(1), 012033 (2015)

2. Asanovic, K., Bodik, R., Catanzaro, B.C., Gebis, J.J., Husbands, P., Keutzer, K.,
Patterson, D.A., Plishker, W.L., Shalf, J., Williams, S.W., Yelick, K.A.: The
landscape of parallel computing research: a view from berkeley. Technical report
UCB/EECS-2006-183, EECS Department, University of California, Berkeley,
December 2006

3. Aufranc, J.L.: ARM Cortex A15/A17 SoCs Comparison. http://www.cnx-
software.com/2014/05/21/comparison-nvidia-tegra-k1-samsung-exynos-5422-rock
chip-rk3288-allwinner-a80/

4. Butko, A., Bessad, L., Novo, D., Bruguier, F., Gamatié, A., Sassatelli, G.,
Torres, L., Robert, M.: OpenMP scheduling on ARM big.LITTLE architecture. In:
Proceedings of the Ninth International Workshop on Programmability and Archi-
tectures for Heterogeneous Multicores (MULTIPROG), Prague, Czech Republic,
January 2016

5. Calore, E., Schifano, S.F., Tripiccione, R.: Energy-performance tradeoffs for
HPC applications on low power processors. In: Hunold, S., et al. (eds.) Euro-
Par 2015. LNCS, vol. 9523, pp. 737–748. Springer, Cham (2015). doi:10.1007/
978-3-319-27308-2 59

6. Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J.W., Lee, S.H., Skadron, K.:
Rodinia: a benchmark suite for heterogeneous computing. In: Proceedings of the
2009 IEEE International Symposium on Workload Characterization (IISWC), pp.
44–54. IEEE, October 2009

7. element14 Community: Raspberry Pi 3 Specifications (2016). https://www.
element14.com/community/community/raspberry-pi?ICID=rpimain-pi3doc-techs
pecs

8. Flautner, K., Flynn, D., Roberts, D., Patel, D.I.: IEM926: an energy efficient SoC
with dynamic voltage scaling, p. 30324, February 2004

9. Gelas, J.D.: X-Gene 1, Atom C2000 and Xeon E3: Exploring the Scale-Out Server
World. http://www.anandtech.com/show/8357/exploring-the-low-end-and-micro-
server-platforms

10. Hardkernel Co., Ltd: ODROID-XU4 Hardware Information (2015). http://odroid.
com/dokuwiki/doku.php?id=en:xu4 hardware

11. Hardkernel Co., Ltd: ODROID-C2 Hardware Information (2016). http://odroid.
com/dokuwiki/doku.php?id=en:c2 hardware

12. Hewlett Packard Enterprise: HPE ProLiant m400 Server Cartridge Quick
Specs. (2015) https://www.hpe.com/h20195/v2/GetDocument.aspx?docname=c0
4384048

http://www.cnx-software.com/2014/05/21/comparison-nvidia-tegra-k1-samsung-exynos-5422-rockchip-rk3288-allwinner-a80/
http://www.cnx-software.com/2014/05/21/comparison-nvidia-tegra-k1-samsung-exynos-5422-rockchip-rk3288-allwinner-a80/
http://www.cnx-software.com/2014/05/21/comparison-nvidia-tegra-k1-samsung-exynos-5422-rockchip-rk3288-allwinner-a80/
http://dx.doi.org/10.1007/978-3-319-27308-2_59
http://dx.doi.org/10.1007/978-3-319-27308-2_59
https://www.element14.com/community/community/raspberry-pi?ICID=rpimain-pi3doc-techspecs
https://www.element14.com/community/community/raspberry-pi?ICID=rpimain-pi3doc-techspecs
https://www.element14.com/community/community/raspberry-pi?ICID=rpimain-pi3doc-techspecs
http://www.anandtech.com/show/8357/exploring-the-low-end-and-micro-server-platforms
http://www.anandtech.com/show/8357/exploring-the-low-end-and-micro-server-platforms
http://odroid.com/dokuwiki/doku.php?id=en:xu4_hardware
http://odroid.com/dokuwiki/doku.php?id=en:xu4_hardware
http://odroid.com/dokuwiki/doku.php?id=en:c2_hardware
http://odroid.com/dokuwiki/doku.php?id=en:c2_hardware
https://www.hpe.com/h20195/v2/GetDocument.aspx?docname=c04384048
https://www.hpe.com/h20195/v2/GetDocument.aspx?docname=c04384048

774 M. Plauth and A. Polze

13. Hewlett Packard Enterprise: HPE ProLiant m710p Server Cartridge Quick-
Specs (2015). https://www.hpe.com/h20195/v2/GetDocument.aspx?docname=
c04760473

14. Intel Corporation: Intel Rack Scale Architecture Overview, September, 2013.
http://presentations.interop.com/events/las-vegas/2013/free-sessions---keynote-p
resentations/download/463

15. Li, S., Lim, K., Faraboschi, P., Chang, J., Ranganathan, P., Jouppi, N.P.: System-
level integrated server architectures for scale-out datacenters. In: Proceedings of
the 44th Annual IEEE/ACM International Symposium on Microarchitecture -
MICRO-44 2011, p. 260. ACM, New York, December 2011

16. McCalpin, J.D.: Stream: sustainable memory bandwidth in high performance
computers. Technical report, University of Virginia, Charlottesville, Virginia
(1991–2007). A continually updated Technical report. http://www.cs.virginia.edu/
stream/

17. McCalpin, J.D.: Memory bandwidth and machine balance in current high perfor-
mance computers. In: IEEE Computer Society Technical Committee on Computer
Architecture (TCCA) Newsletter, pp. 19–25, December 1995

18. Nakashima, H., Nakamura, H., Sato, M., Boku, T., Matsuoka, S., Takahashi, D.,
Hotta, Y.: MegaProto: 1 TFlops/10kW rack is feasible even with only commodity
technology. In: ACM/IEEE SC 2005 Conference (SC 2005), pp. 28–28. IEEE (2005)

19. Rajovic, N., Carpenter, P.M., Gelado, I., Puzovic, N., Ramirez, A., Valero, M.:
Supercomputing with commodity CPUs: are mobile SoCs ready for HPC? In:
Proceedings of the 2013 International Conference for High Performance Comput-
ing, Networking, Storage and Analysis (SC), pp. 1–12. ACM Press, New York,
November 2013

20. Rajovic, N., Rico, A., Puzovic, N., Adeniyi-Jones, C., Ramirez, A.: Tibidabo: mak-
ing the case for an ARM-based HPC system. Future Gener. Comput. Syst. 36,
322–334 (2014)

21. Rusitoru, R.: ARMv8 micro-architectural design space exploration for high per-
formance computing using fractional factorial. In: Proceedings of the 6th Interna-
tional Workshop on Performance Modeling, Benchmarking, and Simulation of High
Performance Computing Systems, pp. 8:1–8:10, PMBS 2015. ACM, New York,
November 2015

22. Siamashka, S.: TinyMemBench. https://github.com/ssvb/tinymembench
23. Silven, O., Jyrkkä, K.: Observations on power-efficiency trends in mobile commu-

nication devices. EURASIP J. Embed. Syst. 2007, 1–10 (2007)
24. Warren, M., Weigle, E.: High-density computing: a 240-processor Beowulf in one

cubic meter. In: ACM/IEEE SC 2002 Conference (SC 2002), pp. 61–61. IEEE
(2002)

https://www.hpe.com/h20195/v2/GetDocument.aspx?docname=c04760473
https://www.hpe.com/h20195/v2/GetDocument.aspx?docname=c04760473
http://presentations.interop.com/events/las-vegas/2013/free-sessions---keynote-presentations/download/463
http://presentations.interop.com/events/las-vegas/2013/free-sessions---keynote-presentations/download/463
http://www.cs.virginia.edu/stream/
http://www.cs.virginia.edu/stream/
https://github.com/ssvb/tinymembench

In-Cache Streaming: Morphable Infrastructure
for Many-Core Processing Systems

Nuno Neves(B), Adrien Mussio, Fabien Gonçalves, Pedro Tomás,
and Nuno Roma

INESC-ID, Instituto Superior Técnico, Universidade de Lisboa,
Rua Alves Redol, 9, 1000-029 Lisboa, Portugal

nuno.neves@inesc-id.pt

Abstract. Although conventional cache structures often reduce or mit-
igate the memory wall problem, they often struggle when dealing with
memory-bound applications or with arbitrarily complex memory access
patterns that are hard (or even impossible) to capture with dynamic
prefetching mechanisms. Stream-based communication infrastructures
have proved to efficiently tackle such issues in certain application
domains, by allowing the programmer to explicitly describe the mem-
ory access pattern to achieve increased system throughputs. However,
most conventional computing architectures only adopt a single interfac-
ing paradigm, making it difficult to efficiently handle both communi-
cation approaches. To circumvent this problem, an efficient unification
is herein proposed by means of a seamless adaptation of the communi-
cation infrastructure, capable of simultaneously providing both address-
based and stream-based models. This newly proposed in-cache streaming
infrastructure is able to dynamically adapt memory resources accord-
ing to runtime application requirements, while mitigating the hardware
requirements related to the co-existence of both cache and stream buffers.
The presented experimental evaluation considered arithmetic, bioinfor-
matics and image processing applications and it showed that the pro-
posed structure is capable of increasing their performance up to 14x,
5x and 12x, respectively, with a limited amount of additional hardware
resources.

1 Introduction

The ever increasing demand for computational processing power at a significantly
low-energy consumption has pushed the research for alternative heterogeneous
and often specialized many-core processing architectures. However, the design
of such architectures is usually mainly focused on the processing blocks, often
neglecting the power/performance impact of the inherent data transfers and
general data indexing. In fact, a common approach is to rely on conventional
cache structures to avoid the usually high memory access latencies. However,
although they are well suited for compute-bound applications, they struggle
when the application dataset is very large and does not fit in the cache, or

c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 775–787, 2017.
DOI: 10.1007/978-3-319-58943-5 62

776 N. Neves et al.

when dealing with memory-bound applications, or even with arbitrarily complex
memory access patterns, where data locality cannot be efficiently exploited.

Several solutions have been proposed to handle those applications and access
patterns, usually relying on efficient prefetching techniques [5,7] and/or stream-
based communication systems capable of handling complex data-patterns [6,11].
However, although viable, these techniques can hardly deal with certain appli-
cation domains (e.g. those based on graphs, on dynamically indexed procedures
or on non-deterministic/runtime generated data access patterns), whose imple-
mentation is usually more efficient with conventional cache-based approaches.

This duality presents an interesting opportunity to combine both approaches
in a single and adaptable communication infrastructure that is capable of in-
time switching its paradigm to better suit a running application. Moreover, by
combining the advantages of such approaches in a single structure, highly efficient
and adaptable communication systems can be deployed, providing the means for
exploiting both data-locality and complex data access patterns.

Accordingly, a novel in-cache streaming architecture is herein proposed based
on a dynamic adaptation of cache memories at the processing nodes, in order to
exploit both stream-based and address-based communication paradigms with the
same hardware infrastructure. The proposed architecture is based on a hybrid
in-cache stream controller that takes advantage of a conventional n-way set-
associative cache organization, by making each way individually usable as a
stream buffer, capable of accommodating multiple streams. At the main memory
side, the proposed infrastructure relies on a specially devised shared memory con-
troller that combines a conventional address-based memory access controller with
an efficient stream generation controller (that deploys the stream-based commu-
nication paradigm previously proposed in [11]). The communication between
all the system’s Processing Elements (PEs) and the main (shared) memory is
assured by a high-performance and low-footprint ring-type Network on Chip
(NoC), supported by a dedicated message-based protocol.

The envisaged approach contrasts to (and complements) other established
strategies based on the sole exploitation of adaptable data-processing structures.
Several examples use dynamic reconfiguration capabilities of nowadays Field-
Programmable Gate Array (FPGA) devices, where the processing infrastructures
can adapt to the target application by reconfiguring its PEs in runtime [1,10,12].
However, such adaptation is usually only applied to the processing architecture,
since the reconfiguration process still results in non-negligible time overheads
and power dissipation that can greatly impact the performance and energy con-
sumption of the communication infrastructure. Nonetheless, energy-efficiency
has been targeted with the adaptation of the communication subsystem, such
as cache architectures with dynamically reconfigurable parameters [13] (such as
size and associativity); power-gated hybrid designs built with combinations of
different memory technologies [2]; or partial reconfiguration of local scratchpad
memories into second level caches, to support implicit and explicit communi-
cation [8]. However, although widely adaptable, all these approaches still incur
in inevitable delays in the reconfiguration process and struggle when dealing

In-Cache Streaming: Morphable Infrastructure 777

with complex memory access patterns. On the contrary, the efficient and adapt-
able communication structure that is now proposed is deployed by exploiting a
coarser-grained adaptation, that is capable of efficiently and seamlessly switching
between address-based and stream-based communication paradigms.

The proposed in-cache streaming architecture capabilities for prefetching
and data reutilization through stream-based communication were demonstrated
through an experimental evaluation using three benchmark applications. When
compared to a baseline conventional cache setup, the obtained result, with a
system configuration with 16 PEs, show performance increases of up to 14x for
a block matrix multiplication application, 5x for a biological sequence alignment
algorithm and 12x for an histogram equalization kernel.

2 Data Streaming with Compiler-Assisted Prefetching

In many common applications (including memory-bound), the PEs are able to
perform elementary operations much faster than the main memory accesses,
leading to considerable performance losses when off-chip memory modules are
accessed. Although a multi-level cache hierarchy can considerably mitigate such
overheads, it still presents several drawbacks, namely those resulting from the
common utilization of shared communication infrastructures, allied with the
inherent main memory access concurrency and bus contention; and also those
resulting from the intrinsic characteristics of the executed applications (e.g.
memory-bound kernels or complex memory access patterns), which in turn result
in reduced data-locality exploitation.

2.1 Dynamic and Static Prefetching

Advanced static and dynamic prefetching techniques are often considered to
hide data transfer overheads behind the PEs computation, by fetching data
from memory in advance and storing it in local buffers or caches.

Dynamic prefetching usually relies on complex dedicated modules aggregated
to the PEs (or caches), which analyze the recent memory access pattern and try
to predict future accesses based on prediction heuristics. The most commonly
used techniques are based on stride prefetching, where the prefetcher calculates
the difference (or stride) between the most recent requested addresses and issues
requests to memory for subsequent addresses based on that difference. However,
although such an approach allows a complete abstraction of the prefetching
procedure from the application perspective, it can fall short in arbitrarily com-
plex access patterns. Moreover, this technique imposes an increased amount of
resources, often related to the adopted level of prefetching aggressiveness [5].

In contrast, static prefetching is usually performed with the aid of compile-
time procedures, where the code is pre-analyzed to extract/model the applica-
tion memory access pattern. Such information is then fed to on-chip prefetching
modules, which autonomously generate the required memory address sequence.
Such an approach requires far simpler hardware structures, since no on-time

778 N. Neves et al.

analysis is performed, thus resulting in lower-footprint and more energy efficient
controllers, at the cost of an increased pre-processing effort. Furthermore, sta-
tic prefetching also promotes the exploitation of highly efficient stream-based
communication means, allied to several other approaches to further improve the
communication efficiency, such as data reutilization and reorganization, comple-
mented with implicit stream manipulation operations [11].

2.2 Stream-Based Communication and Data Reutilization

Instead of relying on prefetching structures, stream-based communication sys-
tems rely on dedicated address generation units to pre-fetch the data, according
to pre-determined memory access sequences, and on generating the requested
data stream. Such units are commonly devised based on the fact that, inde-
pendently of their application domain, many algorithms are characterized by
memory access patterns represented by an n-dimensional affine function [4],
where the memory address (y) is calculated based on an initial offset, increment
variables xk and stride multiplication factors, as follows:

y(x1,· · ·,xn) = offset +
n∑

k=1

xk × stridek, xk ∈ {0, · · · , sizek}

Since such representation allows indexing many regular access patterns, it is
commonly used by Direct Memory Access (DMA) controllers and other similar
data-fetch controllers, although typically restricted to 2D patterns (n = 2).

Fig. 1. 3D data-pattern descriptor specification, illustrating its (A) tree-based hierar-
chical organization, (B) the descriptor parameter encoding, and (C) a pattern descrip-
tion example. The numbers in (A) indicate the order in which the descriptors are solved
and in (C) the order in which data blocks are accessed.

Naturally, to describe other arbitrarily complex memory access patterns,
affine functions with higher dimensionality can be used, and even allied with
hierarchical combinations of several functions, where the affine functions in the
higher levels of the hierarchy are used to calculate either the offset or the stride
of the functions in the lower levels. Hence, each complex data stream can be
defined by a set of descriptors, each encapsulating the set of parameters required
to generate the sequence of addresses at a given hierarchy level.

In-Cache Streaming: Morphable Infrastructure 779

Accordingly, the herein proposed stream-based infrastructure adopts the
3D tree-based descriptor specification, previously proposed in [11] (depicted in
Fig. 1). Such memory access pattern is represented by the tuple {offset, hsize,
stride, vsize, span, dsize, level, next}, specifying the starting address of
the first memory block (offset), the size of each contiguous block (hsize),
the starting position of the next contiguous block with relation to the previous
(stride), the number of repetitions of the two previous parameters (vsize), the
starting of the next 2D pattern in relation to the previous (span), and the num-
ber of repetitions of the four previous parameters (dsize). Also, several descrip-
tors can be combined in a tree-based hierarchical scheme (depicted in Fig. 1.A),
in which multiple parent-child relations are established between descriptors, rep-
resenting dependencies between different descriptor levels. Hence, each descriptor
has a reference to a child descriptor (next) and a reference to a descriptor that
shares the same parent descriptor (level).

To allow detaching the PEs computational effort from the memory address
generation, and to promote the re-utilization of data streams among multiple
PEs, multiple address-generation units can co-exist within a single many-core
system. Hence, to maximize the utilization efficiency of the available memory
bandwidth, a stream management unit, included in the memory controller (see
Fig. 2.A), is used to broadcast multiple streams (from the main memory) to one
or more PEs, or to organize the writting of data from multiple streams (generated
by the PEs) to the main memory. On the other hand, special-purpose stream
controllers are located next to the PEs, to manage the flow of data into/out
of each PE, effectively allowing data to be directly streamed from one PE to
another, or to be broadcasted to multiple PEs or to the main memory.

Fig. 2. Morphable communication infrastructure overview (A), comprising the pro-
posed in-cache stream controllers at the PEs interface, the main memory controller and
a ring-based NoC. The main memory controller is composed of a SMC (B), responsible
for generating/storing data stream to/from the main memory, to which the address
generation is performed by a dedicated DTC (C).

780 N. Neves et al.

3 In-Cache Streaming Architecture

The herein proposed in-cache streaming architecture allows each individual PE
to seamlessly switch its local communication infrastructure between two dis-
tinct paradigms: (i) conventional memory-addressed data access; and (ii) packed-
stream data access. However, to avoid a complete switching of the two paradigms,
which could result in potential performance penalties in non-pure streaming
applications, the proposed approach allows morphing a PE n-way set-associative
cache memory into a set of n1 cache ways plus n−n1 stream buffers, each capa-
ble of holding multiple streams. Accordingly, not only does the proposed app-
roach support both memory-addressed and packed-stream data accesses, but it
also supports mixed scenarios composed of compile-time predictable and non-
predictable/runtime generated memory access patterns. To attain such a mor-
phable infrastructure, the proposed approach relies on an in-cache stream con-
troller to seamless adapt (in runtime) the cache memory according to the instan-
taneous requirements of the running application (see Fig. 2.A).

3.1 Hybrid Cache/Stream Infrastructure

The proposed in-cache streaming controller, supported by a specially devised
main memory controller, comprises two independent modules: a hybrid cache
controller and a stream controller (depicted in Fig. 3), together with an internal
n-way set-associative memory that is managed by one of these modules at a
time. The adoption of such a switched control structure (instead of relying on
dynamic reconfiguration) ensures an immediate switch of the communication
paradigm, since no reconfiguration time is imposed.

Fig. 3. Hybrid Controller architecture. The cache controller and the stream controller
(supported by the information stored in the stream table) perform an exclusive access
to an n-way set-associative cache memory depending on the requests received from the
PE and from the communication infrastructure.

In-Cache Streaming: Morphable Infrastructure 781

In-Cache Stream Controller: The default memory-addressed communica-
tion paradigm can be assured by a conventional cache controller (see Fig. 3),
using any arbitrarily replacement and write policies. Notwithstanding, the used
controller is implemented by means of a simple and efficient hardware structure
that deploys a write-through-invalidate, write no-allocate snooping protocol on
the local memory, managed by a binary-tree-based Pseudo-Least Recently Used
(LRU) replacement policy.

The cache access time is limited to two clock cycles (disregarding cache miss
penalties) and hit/miss-related action is taken according to the coherence and
consistency protocols in place. PE requests are only answered with a wait state
when there is a read miss, until the required data is fetched. Upon a write miss
scenario, the written data block is immediately sent to the main memory and
is followed by an invalidation broadcast, thus minimizing the waiting times and
the number of on-the-fly messages in the communication infrastructure.

Fig. 4. Configuration example, where a 4-way cache is configured to use 2 ways for
conventional memory-address mode and 2 ways for stream mode.

On the other hand, in order to reuse the resources of the n-way set-associative
cache memory for a stream-based communication, its access mechanism has to
be conveniently adapted. Hence, each cache way is viewed as an independent
buffering structure and it is accessed with a dedicated set of read and write
pointers to the memory region where a stream is stored. This transforms the
n-way set-associative memory in m independent stream buffers, each capable of
storing multiple streams, while allowing the remaining n−m ways to be accessed
using traditional memory-address load/store operations (see Fig. 4).

Accordingly, the stream-based paradigm requires a set of auxiliary data
structures (stored in a programmable stream table), including the information
and the state of every stream currently stored and handled by the controller.
Each table entry (depicted in Fig. 3) comprises: (i) a unique stream identifier;
(ii) the way used for buffering the stream; (iii) pointers to the start and end of
the buffering region within the way; (iv) pointers for identifying the PE local

782 N. Neves et al.

read/write positions in the inbound/outbound stream; (v) the stream destination
(own identification, if it is an incoming stream); and (vi) a read/write pointer
for identifying the current read/write position for a Message-Protocol Manager,
which transparently handles the communication of the data into/out of the PE.

Hence, whenever a read/write request is performed for a given stream iden-
tifier (see Fig. 4), the local memory is accessed according to the information
depicted in the stream table, with the consequent update of its read/write point-
ers. Outgoing streams are automatically sent as soon as they become available
and its transmission is granted by the scheduling manager of the processor aggre-
gate. However, the output transmission does not immediately erase the stream
data from the local memory, allowing the data to be reused by the PE.

Main Memory Controller: The in-cache stream controllers are served by
a remote main memory controller (see Fig. 2.A), composed of: (i) a low-profile
DMA controller, to perform address-based memory operations; and (ii) a Stream
Management Controller (SMC) (depicted in Fig. 2.B), which generates and saves
the streams, according to the patterns described by the hierarchical set of
descriptors stored in the pattern descriptor memory.

The SMC memory access is handled by a special Descriptor Tree Controller
(DTC) [11] that deploys the 3D descriptor specification and resolves the pro-
cedure described in Sect. 2.2. Accordingly, the DTC (depicted in Fig. 2.C) is
composed of: (i) a tree iterator, that manages the flow of the descriptor tree;
and (ii) an Address Generation Unit (AGU), that generates the correct sequence
of memory addresses, according to a given descriptor. On the other hand, the
stream generation/storage is performed by temporarily saving the data in a
stream buffer, redirecting it (either to the PEs or the main memory) according
to a local stream table (as in the in-cache stream controller) (see Fig. 2.B).

3.2 Interface Configuration and Parameterization

To handle both memory-address and stream-based read/write requests at each
PE, a generic and parameterizable interface is provided. In particular, each PE
request to the cache addressing space is handled by the cache controller, whereas
requests to the stream addressing space are handled by the steam controller,
where the stream identifier is encoded in the interface’s address and the local
memory is accessed according to the stream table.

The hybrid controller interfaces with the communication infrastructure by
means of two input/output register-based buffers. Such an approach not only
allows contention mitigation through intermediate buffering, but it also pro-
vides isolation between the PEs and the interconnection operating frequencies,
allowing them to operate with different clock frequencies. Each buffer accommo-
dates a complete message to/from the NoC. Hence, depending on the assigned
message type (see protocol definition in Sect. 3.3), incoming messages are han-
dled either by the cache controller or the stream controller. Outgoing messages
are generated by one of the controllers, depending on which is activated at the
time.

In-Cache Streaming: Morphable Infrastructure 783

3.3 Unified Message-Passing Protocol

To abstract the underlying ring-based NoC infrastructure from the PEs mor-
phable interface perspective, and to keep the impact on the performance of the
inter-communication between the system components as low as possible, a sim-
ple message-passing protocol was adopted, which consists on a 32-bit header, an
optional memory address and a number of data words that, at most, add up to
the size of a cache line. The header is composed of: (i) a message identification;
(ii) flags for invalidate, read/write and data access mode (memory-addressed or
packed-stream); (iii) message size; and (iv) identification of the message sender.

The bidirectional ring-based NoC infrastructure itself was devised to deploy
a very efficient and low-profile interconnection. Hence, each node routes the
incoming messages to/from its two adjacent nodes (right and left) and to/from
its connected component. To overcome the contention caused by simultaneously
arriving packets, a simple round-robin priority function was devised that rotates
the priority between channels upon the completion of a message transmission.

4 Experimental Evaluation

To validate the proposed infrastructure, a complete prototype was imple-
mented in a Xilinx VC707 board, equipped with a XC7VX485T Virtex-7 FPGA
and a 1 GB DDR3 SODIMM 800 MHz/1600 Mbps memory module. The pro-
posed infrastructure was evaluated against a conventional cache-based sys-
tem, using three representative benchmarks from the computational algebra,
image processing and bioinformatics domains. For such purpose, both computing
infrastructures are composed of multiple PEs, each one comprising an adapted
MB-LITE [9] processor, a private scratchpad for program data, and a memory-
mapped interface to the proposed in-cache stream controller.

To guarantee a fair and realistic comparison, the cache configuration of the
baseline system was made identical to a typical ARM Cortex A7 configuration.
Hence, each PE is associated with a 8KB 4-way set-associative cache memory
with 64-Byte cache lines. According to the considered cache line size, each mes-
sage of the proposed communication protocol is composed of (at most) 16 32-bit
data words plus the header and the address fields, totaling an 18-word message.

4.1 Hardware Resource Overhead

The FPGA implementation results are presented in Table 1. Despite the added
versatility of the offered streaming capabilities, the results obtained for the
devised in-cache stream controller represent a very low increase of the hard-
ware resources, with an impact as small as 28 MHz in the maximum operating
frequency. In fact, each of the devised components requires less than 2% of
the FPGA resources. Moreover, due to the inherent scalability of the adopted
ring-based NoC interconnection, it can be efficiently used to support a very large
number of processing elements, being the only limiting factor the increased com-
munication latency between nodes. The presented BRAM utilization refers to the

784 N. Neves et al.

buffering structures that are present at each component, except for the in-cache
stream controller where they are implemented with registers.

4.2 Performance Evaluation

To evaluate and demonstrate the data-transfer and communication capabilities
of the proposed infrastructure, three different benchmarks were considered.

Table 1. Resource usage of the morphable communication infrastructure

Available
resources

Baseline
cache ctrl.

In-cache
stream ctrl.

Main memory
stream ctrl.

Ring node

Slices 75,900 1896 2370 852 155

LUTs 303,600 3602 4367 1666 297

Registers 607,200 365 1176 991 164

BRAM 3,090 0 0 2 2

Max. freq. [MHz] - 238 210 232 278

– A Block-based Matrix Multiplication kernel that performs the C = C +
AB operation, where A, B and C are 128 × 128 matrices, divided in 8 × 8
sub-blocks, in order to maximize the cache usage. Since the matrices do not
entirely fit in the cache memory, each row of matrix A is fetched once from
memory (and maintained in the cache memory for as long as it is required),
while matrix B is fetched once for each sub-block of matrix C.

– A Biological Sequence Alignment application that performs the computation
of the alignment score between a reference and several query sequences (all
randomly generated with a size of 1024 symbols). Two steps are considered,
namely: (i) a pre-processing stage, where sequence data is reorganized to
generate a query profile; and (ii) the computation of the alignment score
matrix, by using the algorithm proposed in [3].

– A Histogram Equalization application to enhance the contrast by adjusting
the intensities of a 256×256 pixels image. Two steps are required: (i) compu-
tation of the 8-bit image intensity histogram and corresponding cumulative
distribution function (CDF), and (ii) scaling of the image intensities accord-
ing to the obtained CDF. The first step is applied by evenly distributing the
original image to the different PEs, such that multiple partial histograms are
firstly obtained and then reduced and accumulated in a single PE, in order
to generate the CDF. In the second step, each PE reads the CDF and applies
the image intensity scaling to an individual block of the original image.

The first benchmark highlights the prefetching and broadcasting capabil-
ities of the proposed system, the second one illustrates the proposed system
capabilities when dealing with complex memory access patterns and data reor-
ganization and the third demonstrates the advantages of deploying a morphable

In-Cache Streaming: Morphable Infrastructure 785

communication infrastructure that can adapt itself to the requirements of a run-
ning application. The obtained results for the three evaluation benchmarks are
depicted in the graphs of Fig. 5, by considering a variable number of PEs.

Fig. 5. Comparison of the proposed morphable infrastructure with the considered base-
line conventional cache-based system, in what concerns data transfer and manipulation
latency (top graphs) and performance scalability (bottom graphs). (Color figure online)

In particular, the bar plots present the data transfer clock cycle reduction
attained by the proposed framework due to the offered streaming and broad-
casting capabilities. As it can be observed, the proposed infrastructure provides
a significant reduction of the data transfer overheads in all benchmarks, which
results from an efficient data prefetching and reutilization, allowing not only
a mitigation of the shared memory latency, but also a reduction of the total
number of memory accesses, therefore decreasing the contention in the shared
interconnections. Naturally, these offered advantages are directly reflected in
the resulting performance, as presented in the line plots, representing: the sys-
tem performance scalability (n-PEs vs 1-PE) when relying on traditional pure
cache-based approaches (orange); the system performance scalability (n-PEs vs
1-PE) when relying on the proposed morphable infrastructure (blue); and the
speedup offered by an n-PE processing system using the proposed morphable
infrastructure, regarding a traditional n-PE based system (black).

A careful analysis of the presented results evidences a poor scalability of the
conventional cache-based system (orange), which even leads to a performance
degradation when a higher number of PEs is used. On the other hand, the
proposed morphable infrastructure is characterized by data transfer overheads
that are mostly mitigated by its prefetching capabilities, partially aided by the
broadcast capabilities of the supporting ring interconnection. As a result, a per-
formance speedup of up to 15.03x, 15.9x and 4.7x is observed in the block matrix
multiplication (Fig. 5.A), biological sequence alignment (Fig. 5.B) and histogram
equalization (Fig. 5.C) benchmarks, respectively, with a 16-PE configuration.

786 N. Neves et al.

5 Conclusion

A novel in-cache streaming architecture for many-core systems was proposed.
Depending of the PE data request, the devised controller is able to deploy both
conventional memory-addressing and stream-based communication paradigms
and offers a rather convenient set of streaming capabilities, such as prefetching,
complex memory access generation and stream manipulation, supporting a seam-
lessly switching between these communication paradigms without any significant
impact in the data-transfer performance. The underlying communication is sup-
ported on a ring-based NoC interconnection, able to deploy a low-contention
and broadcast-capable communication through a very low resource and scalable
structure. When compared to a baseline conventional cache, with system con-
figurations of up to 16 PEs, the obtained results show performance increases
of up to 14x for a block matrix multiplication application, 5x for a biological
sequence alignment algorithm and 12x for an histogram equalization kernel.

Acknowledgment. This work was partially supported by national funds through
Fundação para a Ciância e a Tecnologia (FCT) under project UID/CEC/50021/2013
and research grant SFRH/BD/100697/2014.

References

1. Chau, T.C.P., Niu, X., Eele, A., Luk, W., Cheung, P.Y.K., Maciejowski, J.: Hetero-
geneous reconfigurable system for adaptive particle filters in real-time applications.
In: Brisk, P., Figueiredo Coutinho, J.G., Diniz, P.C. (eds.) ARC 2013. LNCS, vol.
7806, pp. 1–12. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36812-7 1

2. Chen, Y.T., Cong, J., Huang, H., Liu, B., Liu, C., Potkonjak, M., Reinman, G.:
Dynamically reconfigurable hybrid cache: an energy-efficient last-level cache design.
In: Design, Automation & Test in Europe Conference & Exhibition (DATE), 2012,
pp. 45–50. IEEE (2012)

3. Farrar, M.: Striped Smith-Waterman speeds database searches six times over other
SIMD implementations. Bioinformatics 23(2), 156 (2007)

4. Ghosh, S., Martonosi, M., et al.: Cache miss equations: an analytical representation
of cache misses. In: ACM International Conference on Supercomputing, pp. 317–
324. ACM Press (1997)

5. Guo, Y., Narayanan, P., Bennaser, M.A., Chheda, S., Moritz, C.A.: Energy-efficient
hardware data prefetching. IEEE Trans. Very Large Scale Integr. Syst. 19(2), 250–
263 (2011)

6. Hussain, T., Shafiq, M., Pericàs, M., Navarro, N., Ayguadé, E.: PPMC: a pro-
grammable pattern based memory controller. In: Choy, O.C.S., Cheung, R.C.C.,
Athanas, P., Sano, K. (eds.) ARC 2012. LNCS, vol. 7199, pp. 89–101. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-28365-9 8

7. Jain, A., Lin, C.: Linearizing irregular memory accesses for improved corre-
lated prefetching. In: IEEE/ACM International Symposium on Microarchitecture
(MICRO-46), pp. 247–259. ACM (2013)

http://dx.doi.org/10.1007/978-3-642-36812-7_1
http://dx.doi.org/10.1007/978-3-642-28365-9_8

In-Cache Streaming: Morphable Infrastructure 787

8. Kalokerinos, G., Papaefstathiou, V., Nikiforos, G., Kavadias, S., Katevenis,
M., Pnevmatikatos, D., Yang, X.: FPGA implementation of a configurable
cache/scratchpad memory with virtualized user-level RDMA capability. In: Inter-
national Symposium on Systems, Architectures, Modeling, and Simulation, 2009
(SAMOS 2009), pp. 149–156. IEEE (2009)

9. Kranenburg, T., van Leuken, R.: MB-LITE: a robust, light-weight soft-core imple-
mentation of the MicroBlaze architecture. In: Design, Automation and Test in
Europe Conference and Exhibition (DATE), pp. 997–1000, March 2010

10. Modarressi, M., Tavakkol, A., Sarbazi-Azad, H.: Application-aware topology recon-
figuration for on-chip networks. IEEE Trans. Very Large Scale Integr. Syst. 19(11),
2010–2022 (2011)

11. Neves, N., Tomás, P., Roma, N.: Efficient data-stream management for shared-
memory many-core systems. In: 2015 25th International Conference on Field Pro-
grammable Logic and Applications (FPL), pp. 508–515. IEEE (2015)

12. Pal, R., Paul, K., Prasad, S.: ReKonf: a reconfigurable adaptive manycore archi-
tecture. In: IEEE International Symposium on Parallel and Distributed Processing
with Applications (ISPA), pp. 182–191 (2012)

13. Sundararajan, K.T., Jones, T.M., Topham, N.P.: The smart cache: an energy-
efficient cache architecture through dynamic adaptation. Int. J. Parallel Program.
41(2), 305–330 (2013)

A Low-Cost Energy-Efficient Raspberry Pi
Cluster for Data Mining Algorithms

João Saffran1, Gabriel Garcia1, Matheus A. Souza1(B), Pedro H. Penna2,
Márcio Castro2, Lúıs F.W. Góes1, and Henrique C. Freitas1

1 Computer Architecture and Parallel Processor Team (CArT),
Pontif́ıcia Universidade Católica de Minas Gerais (PUC Minas),

Belo Horizonte, Brazil
{joao.saffran,gabriel.garcia,matheus.alcantara}@sga.pucminas.br,

{lfwgoes,cota}@pucminas.br
2 Laboratório de Pesquisa em Sistemas Distribúıdos (LAPeSD),

Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
pedro.penna@posgrad.ufsc.br, marcio.castro@ufsc.br

Abstract. Data mining algorithms are essential tools to extract infor-
mation from the increasing number of large datasets, also called Big
Data. However, these algorithms demand huge amounts of computing
power to achieve reliable results. Although conventional High Perfor-
mance Computing (HPC) platforms can deliver such performance, they
are commonly expensive and power-hungry. This paper presents a study
of an unconventional low-cost energy-efficient HPC cluster composed
of Raspberry Pi nodes. The performance, power and energy efficiency
obtained from this unconventional platform is compared with a well-
known coprocessor used in HPC (Intel Xeon Phi) for two data mining
algorithms: Apriori and K-Means. The experimental results showed that
the Raspberry Pi cluster can consume up to 88.35% and 85.17% less
power than Intel Xeon Phi when running Apriori and K-Means, respec-
tively, and up to 45.51% less energy when running Apriori.

Keywords: Raspberry Pi cluster · Intel Xeon Phi · Apriori · K-Means

1 Introduction

Petaflop computing relied on the advent of massively parallel architectures,
such as vector processing units and manycore processors. For instance, Graphics
Processing Units (GPUs) and the Intel Xeon Phi have been used extensively in
current High Performance Computing (HPC) platforms, since they have proven
to significantly increase the overall processing power of these platforms. However,
several challenges still have to be overcome to reach the exascale computing era
[11,15]. First, current cutting-edge parallel machines are power-hungry. This char-
acteristic has motivated the community to seek for strategies to reduce energy
consumption while delivering high performance [3,16]. Second, HPC platforms
are expensive to obtain, which may be unaffordable for small- and medium-size
c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 788–799, 2017.
DOI: 10.1007/978-3-319-58943-5 63

A Low-Cost Energy-Efficient Raspberry Pi Cluster 789

institutes. In this context, the use of such architectures might be unworkable, but
the demand for performance must not be disregarded.

One of the research domains that are gaining attention in the HPC commu-
nity is Big Data, which is a term applied to data sets whose size or type is beyond
the ability of relational databases to capture, manage, and process the data with
low-latency. Big Data comes from sensors, devices, video/audio, networks, log
files, transactional applications, web, and social media (much of it generated in
real time and in a very large scale). To extract insights from unstructured data
in a feasible time, Big Data applications usually exploit HPC platforms.

The already mentioned massively parallel architectures (e.g., GPUs and the
Intel Xeon Phi) have been used to process Big Data applications with high
performance. However, their expensive financial cost and recent issues related
to energy consumption leads the scientific community to consider the use of
low-cost and low-power architectures to build scalable machines. This way, high
performance may be achieved with lower financial cost [4,13].

In this paper, we study the use of an unconventional low-cost energy-efficient
HPC cluster composed of eight Raspberry Pi boards, interconnected by a net-
work switch, to verify whether it can be used as an alternative for HPC. Although
these boards are not optimized for high performance, they can be considered as
a good candidate to scalable systems with very low energy consumption.

Our main goal is to evaluate the performance, power and energy consumption
of the Raspberry Pi cluster for two well-known data mining algorithms commonly
used in Big Data applications: Apriori and K-Means. The results obtained with
the Raspberry Pi cluster are compared with a well-known coprocessor used exten-
sively in HPC (Intel Xeon Phi). Our results show that the Raspberry Pi cluster
can achieve better energy efficiency than Intel Xeon Phi, consuming up to 45.51%
less energy than Intel Xeon Phi when running Apriori and K-Means kernels.

The remainder of this paper is organized as follows. Section 2 presents an
overview of the related work. In Sect. 3 we briefly present the architectures used
in this work. In Sect. 4 we describe the applications we have chosen and explain
their implementations. Section 5 presents our experimental methodology and the
evaluation of the observed results. Finally, in Sect. 6, we present our conclusions
and suggestions for future research.

2 Motivation and Related Work

As aforementioned, the energy efficiency of parallel computers is an obstacle
to be overcome on the way to the exascale era. Future HPC computers will
be limited to about 20 MW of power consumption in the coming decade [3,18].
Thus, energy efficiency is a relevant aspect to be addressed.

Recently, many high performance architectures have been designed driven
by low-power consumption constraints. Kruger [9] proposed a cluster of low-
cost Parallella boards, each one featuring a 16-core Epiphany RISC System-on-
Chip (SoC) and a dual-core ARM Cortex-A9. They concluded that the cluster
achieved better performance than an Intel i5-3570. However, Parallella lacks

790 J. Saffran et al.

hardware for complex arithmetic operations, which can degrade the performance
of few specific applications. Although they mention the importance of energy
efficiency, the work did not present a rigorous power consumption analysis.

Similarly to our work, d’Amore et al. [5] proposed the use of Raspberry
Pi boards. They built a cluster of six Raspberry Pi boards to evaluate the
performance of Big Data applications. The authors concluded that the clus-
ter is an affordable solution to their problem, but the work only focused on how
the data can be retrieved and used. However, the authors did not conduct any
power/energy or quantitative performance evaluation.

In order to analyze the power efficiency of different processors, Aroca and
Gonçalves [2] compared Intel, AMD and ARM processors. They used five dif-
ferent processors in their analysis, running web servers, database servers and
serial applications from the Linpack benchmark. They concluded that devices
with low-power characteristics (e.g., the Intel Atom and ARM ones) are good
candidates to compose the infrastructure of data centers. On the other hand,
aspects of HPC systems were not considered, such as parallel applications that
are mainly CPU-bound.

Other initiatives are also worried about these issues related to energy con-
sumption. ARM processors attempt to be a suitable alternative for low-power
consumption in HPC. This is the proposal of the Mont-Blanc and Mont-Blanc2
projects [14], which intend to design a new computer architecture to establish
HPC standards based on energy-efficient platforms. Similarly, the Glasgow Rasp-
berry Pi Cloud (PiCloud) [17] is a cluster of Raspberry Pi devices designed to
be a scale model of a cloud computing platform, in order to address cloud sim-
ulations and applications.

Both projects proved to be energy efficient in their proposals, which reinforces
the applicability of our work, that evaluates the behavior of Big Data applica-
tion kernels in parallel architectures, as well as in [5]. We compare the use of a
cluster of low-cost and low-power platforms with a coprocessor designed specifi-
cally for HPC (Intel Xeon Phi). Furthermore, we measure the power and energy
consumption of both architectures when running two data mining algorithms
used in the Big Data research domain.

3 Experimental Platforms

In this section we detail the platforms that we considered in this work, high-
lighting their main features.

3.1 Intel Xeon Phi

The Intel Xeon Phi is a 64-bit coprocessor that primarily targets HPC workloads.
This coprocessor features Intel’s Many Integrated Core (MIC) architecture and
provides full compatibility with the x86-64 Instruction Set Architecture (ISA)1.
1 Intel markets this coprocessor with several different specifications. In this work we

refer as Intel Xeon Phi to the one codenamed Knight’s Corner.

A Low-Cost Energy-Efficient Raspberry Pi Cluster 791

Fig. 1. Overview of the Intel Xeon Phi coprocessor.

An overview of the Intel Xeon Phi is presented in Fig. 1. It features 61 dual-
issue, out-of-order processing cores with 4-way simultaneous multithreading,
enabling up to 244 working threads. Cores are interconnected by a bidirectional
ring topology. Each core has 32 kB instruction and 32 kB data L1 caches and
256 kB of L2 cache, which is the last level of cache in the architecture. All caches
are private and coherent. With regard to power consumption, this coprocessor
has a Thermal Design Power (TDP) of 300 W. The Intel Xeon Phi coprocessor is
usually connected to a host machine through a Peripheral Component Intercon-
nect Express (PCIe) bus. A single Intel Xeon Phi board may have up to 16 GB
of memory.

3.2 Raspberry Pi Cluster

The Raspberry Pi is a low-cost general purpose SoC. It has a quad-core 64-bit
processor based on the ARMv7 architecture. In our work, we used a Raspberry
Pi 2, which features a quad-core Cortex-A7 CPU running at 900 MHz. Each of
the four cores has 64 kB instruction and 64 kB data L1 caches and 512 kB of L2
cache shared among all cores. The L2 is the last level cache in Raspberry Pi 2.
The total amount of memory is 1 GB.

This type of SoC is not usually used in HPC due to its low performance. How-
ever, some characteristics make it much more energy efficient, e.g., the absence
of peripheral controllers and hardware support for complex arithmetic oper-
ations. Hence, given the possibility of scaling this type of architectures, the
overall energy efficiency of a larger system could be improved while achieving
decent performance. The Raspberry has all components that conventional com-
puters have, thus, it can be connected to a local area network using an Ethernet
interface. Many Raspberry units can be clustered, conceiving a low-power and
low-cost system with high potential to achieve high performance [4,13].

A schematic diagram of our Raspberry Pi cluster is depicted in Fig. 2. In
our work, we opted to group eight Raspberry Pi 2 devices in order to conceive

792 J. Saffran et al.

Network Layer 3 Switch

Shared L2 Cache
512kB

Inst. Cache
64kB

Data Cache
64kB

ARMv7 CPU

Fig. 2. The Raspberry Pi cluster (left) and a overview of the ARM Cortex-A7 (right).

the cluster. The devices were interconnected by the means of a layer 3 switch,
constituting a local network.

4 Data Mining Algorithms

To conduct our work, we chose two data mining algorithms used in the Big Data
domain. These algorithms play an important role in different fields, including
pattern recognition, image analysis and bioinformatics [19]. In this section, we
detail these algorithms and their parallel versions.

4.1 Association Rule Learning

Association rule learning is a very common method used to discover relations
between variables in large databases. Apriori is a state-of-the-art association
rule machine-learning technique used for frequent itemset mining [1]. Given a
list of itemsets, it identifies association rules between those items based on their
frequency. These rules reveal subsets of items that frequently occur together
in the same itemsets. The algorithm is driven by the following rule: all non-
empty frequent itemsets must be also frequent. This rule allows the algorithm to
eliminate all itemsets that are not composed of frequent item subsets, reducing
significantly the search space. The Apriori algorithm works as follows. For each
association rule A → B, where A and B are subsets of items of a frequent
itemset, the Apriori algorithm calculates its confidence, presented in Eq. 1. High
confidence levels mean that most of the time an itemset A is present in a frequent
itemset, the itemset B is also there.

Conf(A,B) =
support(A ∧ B)
support(A)

(1)

In this paper, the multi-threaded version of the algorithm follows a Map-
Reduce parallel pattern. After identifying the itemsets of size K = 1, items from
S are distributed among the threads (Map stage). Each thread then counts the
occurrences of its subset of items ei ∈ S. With all frequencies calculated, the

A Low-Cost Energy-Efficient Raspberry Pi Cluster 793

subsets are regrouped (Reduce stage). Thus, the itemsets that do not meet the
minimum support (i.e. a threshold used to eliminate infrequent itemsets) are
removed, and then the confidence is calculated to form the association rules.
This steps are repeated incrementing K until the subsets of size K are empty.

In the distributed version, the itemsets are assigned first to the nodes instead
of threads. Each node then runs a multi-threaded version of the algorithm,
exactly as described before.

4.2 K-Means Clustering

The K-Means clustering is a clustering approach widely used and studied [12].
Formally, the K-Means clustering problem can be defined as follows. Given a set
of n points in a real d-dimensional space, the problem is to partition these n
points into k partitions, so as to minimize the mean squared distance from each
point to the center of the partition it belongs to. Several heuristics have been
proposed to address the K-Means clustering problem [6,8]. We opted to use the
Lloyd’s algorithm [7], which is based on an iterative strategy that finds a locally
minimum solution for the problem. The minimum Euclidean distance between
partitions and centroids is used to cluster the data points. The algorithm takes
as input the set of data points, the number of partitions k, and the minimum
accepted distance between each point and the centroids.

The K-Means algorithm works as follows. First, data points are evenly and
randomly distributed among the k partitions, and the initial centroids are com-
puted. Then, data points are re-clustered into partitions taking into account
the minimum Euclidean distance between them and the centroids. The centroid
of each partition is recalculated taking the mean of all points in the partition.
The whole procedure is repeated until no centroid is changed and every point is
farther than the minimum accepted distance.

The multi-threaded version of this algorithm takes an additional parameter
t, that is the total number of threads. An unique range of points and partitions is
assigned to each thread, with two processing phases, A and B. In phase A, each
thread re-clusters its own range of points into the k partitions. In phase B, each
thread works in its own range of partitions, in order to recalculate centroids.

The distributed K-Means algorithm takes the number of available nodes that,
by themselves, spawn working threads. The strategy employed in this algorithm
is to first distribute the data points and replicate the data centroids among the
available nodes, and then to loop over a two-phase iteration. In the first phase,
partitions are populated, as in the multi-threaded algorithm, and in the second
phase, data centroids are recalculated. For this recalculation, first each node
uses its local data points to compute partial centroids, i.e., a partial sum of data
points and population within a partition. Next, nodes exchange partial centroids
so that each peer ends up with the partial centroids of the same partitions.
Finally, nodes compute their local centroids and broadcast them.

794 J. Saffran et al.

5 Experimental Results

In this section, we first describe the experimental setup and discuss important
implementation details for each platform. Then, we present the results obtained
with the data mining algorithms on both platforms.

5.1 Setup and Implementation Details

We used the multi-threaded implementations of both algorithms to carry out the
experiments on the Intel Xeon Phi, since the memory is shared among all cores in
this processor. More precisely, we parallelized the algorithms using the OpenMP
programming model and we compiled them with Intel C/C++ Compiler (icc)
version 16.0.1.

The Intel’s MIC System Management and Configuration (MICSMC) tool
was used to monitor the processor’s power consumption. Power measurements
obtained from MICSMC are very accurate as shown in [10]. Intel Xeon Phi can be
either used in offload or native modes. In the former mode, the main application
code is executed on the host and performance-critical sections of the application
are offloaded to the coprocessor. In the latter mode, the entire application is
executed on the coprocessor. In this paper, we chose the latter since we intend
to compare the performance and energy consumption of the coprocessor only.

For the Raspberry Pi cluster, on the other hand, we adopted a hybrid pro-
gramming model: we used the OpenMPI library to implement the distributed
version of the applications (i.e., to make use of all nodes available in the Rasp-
berry Pi cluster) and OpenMP inside each node to exploit four cores available
in it. We compiled both applications with mpicc version 1.4.5 with GNU C
Compiler (GCC) version 4.6.3. To measure the energy consumption of this clus-
ter, we used a watt-meter instrument connected before the power supply of the
devices, except the network switch, taking the total consumption in kilowatts-
hour (kWh) of the whole system. The Eq. 2 was used to convert our results to
Joules (J).

E(J) = 1000 × 3600 × E(kWh) (2)

The power consumption was calculated for the Raspberry Pi cluster, as well
as the energy consumption, for the Intel Xeon Phi. To calculate these values, we
used Eq. 3.

E(J) = P (W) × t(s) (3)

We ran each application varying the number of available nodes or threads,
depending on the target platform. For the Raspberry Pi cluster, we used four
threads per cluster and varied the number of nodes in 4 (12.5% of the total
number of cores), 8 (25% of the total number of cores), 16 (50% of the total
number of cores) and 32 (all available cores). Similarly, we varied the number of
threads proportionally to the number of cores available in the Intel Xeon Phi,
i.e., 30, 60, 120 and 240 threads. This allows us to compare both platforms when
the same percentages of the overall resources available in each platform are used.

A Low-Cost Energy-Efficient Raspberry Pi Cluster 795

(a) (b) (c) (d)

LargeStandard Huge

Fig. 3. Execution time: (a) Raspberry Pi cluster - Apriori, (b) Raspberry Pi cluster -
K-Means, (c) Intel Xeon Phi - Apriori (d), Intel Xeon Phi - K-Means.

Three workload sizes were defined for each algorithm, to evaluate the behav-
ior of both systems when the workload increases. For the Apriori algorithm, the
increase on the workload size can be achieved by reducing the minimum support.
We used the following minimum support values: 70 for the standard workload,
60 for large and 50 for huge. For K-Means, we increased the number of data
points to be clustered. We used the following number of data points: 214 for the
standard workload, 215 for large and 216 for the huge one.

Finally, we performed 10 runs for each configuration (number of
threads/nodes and workload sizes) and computed the average execution time
and power. The maximum standard deviation observed in Raspberry Pi cluster
executions was 11.04%, while the Intel Xeon Phi presented at most 7.07%.

5.2 Evaluation

We used three metrics to compare the platforms: execution time, power con-
sumption, and energy consumption. Figure 3 presents the execution time of the
algorithms when executed on both architectures. As it can be observed, Apriori
proved to be more scalable than K-Means. It was possible to reduce the execution
time by 82.05% with the Apriori when changing from 1 node to 8 nodes in the
Raspberry Pi cluster, while in K-Means with same configurations the reduction
was about 74.97%. This is due to the fact that the Apriori algorithm has more
independent work units than the K-Means, which leads to less synchronization
when parallel work finishes.

Comparing the Raspberry Pi cluster and Intel Xeon Phi execution time,
the Intel Xeon Phi presented better results. It is an architecture with more
processing power, featuring a larger thread support (up to 240), thus it was
an expected behavior. However, the Intel Xeon Phi presented poorer scalability
than the Raspberry Pi cluster for both algorithms. For instance, the maximum
execution time reduction, starting from 30 threads, was 73.85% when running
K-Means with the full architecture (240 threads). The communication in the
Raspberry Pi cluster, although done by the means of a local area network, is

796 J. Saffran et al.

(a) (b) (c) (d)

LargeStandard Huge

Fig. 4. Power consumption: (a) Raspberry Pi cluster - Apriori, (b) Raspberry Pi cluster -
K-Means, (c) Intel Xeon Phi - Apriori (d), Intel Xeon Phi - K-Means.

not surpassed by the synchronization time spent by the 240 threads on the Intel
Xeon Phi, in the case of Apriori. Considering K-Means, it presents a similar
behavior when increasing the resources of the architectures. On the other hand,
with this application, the increase in the workload has run better in the Intel
Xeon Phi. It is worth noting that the multi-threaded version of the codes are
the same for both architectures, without specific optimizations. Thus, despite
the Intel Xeon Phi code could be improved, the Raspberry Pi cluster presents
better efficiency with a lower number of threads (32 at full use).

Figure 4 presents the observed power consumption in our experiment. The
applications are naturally unbalanced, thus, the power consumption varies
depending on the execution time spent by each work unit, which are irregu-
lar (the cores and nodes present different times to solve their own work unit).
With the Apriori algorithm, changing the workload size results in less variation
in power consumption than when running the K-Means algorithm. Usually, with
Apriori, the power consumption reduces when increasing the workload size. With
respect to K-Means running in the Raspberry Pi cluster, the power consumption
reduces when the workload size is increased, but with the Intel Xeon Phi the
opposite occurs. In the Raspberry Pi cluster, each node has its own slave process
and, when it finishes its computation, the power consumption of the entire node
is drastically reduced while other nodes are still active.

We noticed a much more significant variation in power consumption on the
Raspberry Pi cluster than on the Intel Xeon Phi. This is due to the fact that
when less cores are used on the Intel Xeon Phi, the coprocessor idle cores keep
consuming a portion of the energy, since they are in the same device. On the
Raspberry Pi cluster, there is less impact from this fact, since the devices are
completely independent. Overall, the Raspberry Pi cluster is superior when com-
pared to Intel Xeon Phi. It was possible to obtain up to 88.35% of reduction in
power consumption with Apriori when using the Raspberry Pi cluster over the
Intel Xeon Phi. In the same way, for K-Means, the biggest reduction was 85.17%.

Figure 5 presents the energy consumption results, which were obtained by
multiplying the average power by the execution time. As it can be observed, the

A Low-Cost Energy-Efficient Raspberry Pi Cluster 797

(a) (b) (c) (d)

LargeStandard Huge

Fig. 5. Energy consumption: (a) Raspberry Pi cluster - Apriori, (b) Raspberry Pi
cluster - K-Means, (c) Intel Xeon Phi - Apriori (d), Intel Xeon Phi - K-Means

energy consumption increases as we increase the workload size. This is due the
increase in the execution time that the algorithms spent to reach a solution.

Another observation concerns the energy consumed when varying the num-
ber of threads/nodes. We observed a significant reduction in energy consump-
tion when more threads are used. This can be explained by the fact that if
more resources are used, the power consumption increases, but the time to solu-
tion tends to decrease, due to the increase in the computational power. Thus,
since the power consumption is less determinant than the execution time in our
experiment, the energy consumption decreases when more resources are used.

In summary, the Raspberry Pi cluster proved to be more energy efficient than
the Intel Xeon Phi for Apriori, although the opposite occurs with K-Means. This
is due to the higher execution time difference for K-Means, since as more time
is spent running an application more energy is consumed during this time. The
Apriori algorithm was less energy-efficient in the Raspberry Pi cluster when using
more than a single node, however, when more nodes are employed, the Raspberry
Pi cluster starts to be more energy-efficient, consuming up to 45.51% less energy
than the Intel Xeon Phi. With respect to the financial costs, as mentioned before,
the Raspberry Pi cluster is about ten times cheaper than the Intel Xeon Phi,
thus presenting better price-performance ratio (i.e., cost-benefit).

6 Concluding Remarks

In this paper we evaluated the performance, power and energy consumption of an
unconventional low-cost energy-efficient HPC cluster composed of Raspberry Pi
nodes when running two well-known data mining algorithms used in Big Data
(Apriori and K-Means). The results obtained on this cluster were compared
to a coprocessor widely adopted in the HPC domain (Intel Xeon Phi). Our
results showed that the Raspberry Pi cluster achieved a better tradeoff between
execution time and power consumption for the Apriori kernel. On the other
hand, the Intel Xeon Phi presented better performance on K-Means.

798 J. Saffran et al.

As future work, we propose to apply load balancing strategies on both appli-
cations to improve their performances. Moreover, we intend to implement par-
allel versions of these applications for Graphical Processor Units (GPUs), and
use more HPC devices, for instance, a cluster of Xeon Phi boards. This would
allow us to compare this architecture with the ones used in our work. Finally,
we also intend to study the impacts on the energy efficiency and performance of
the Raspberry Pi cluster when running application kernels from other domains,
such as image processing and computational fluid dynamics.

Acknowledgement. This work was partially supported by FAPEMIG, FAPESC,
CAPES, CNPq and STIC-AmSud and was developed in the context of EnergySFE
and ExaSE cooperation projects.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: Proceedings of the 20th International Conference on Very Large
Data Bases, pp. 487–499, VLDB 1994. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA (1994)

2. Aroca, R.V., Gonçalves, L.M.G.: Towards green data centers: a comparison of
x86 and ARM architectures power efficiency. J. Parallel Distrib. Comput. 72(12),
1770–1780 (2012)

3. Ashby, S., Beckman, P., Chen, J., Colella, P., et al.: The opportunities and chal-
lenges of exascale computing. Technical report, Summary report of the advanced
scientific computing advisory committee (ASCAC) subcommittee - Office of Sci-
ence, U.S. Department of Energy Fall (2010)

4. Cox, S.J., Cox, J.T., Boardman, R.P., et al.: Iridis-Pi: a low-cost, compact demon-
stration cluster. Cluster Comput. 17(2), 349–358 (2013)

5. d’Amore, M., Baggio, R., Valdani, E.: A practical approach to big data in tourism:
a low cost Raspberry Pi cluster. In: Tussyadiah, I., Inversini, A. (eds.) Information
and Communication Technologies in Tourism 2015, pp. 169–181. Springer, Cham
(2015). doi:10.1007/978-3-319-14343-9 13

6. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall Inc.,
Upper Saddle River (1988)

7. Kanungo, T., Mount, D., Netanyahu, N., et al.: An efficient k-means clustering
algorithm: analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell.
24(7), 881–892 (2002)

8. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster
Analysis. Wiley, New York (1990)

9. Kruger, M.J.: Building a Parallella board cluster. Bachelor of science honours the-
sis, Rhodes University, Grahamstown, South Africa (2015)

10. Lawson, G., Sosonkina, M., Shen, Y.: Energy evaluation for applications with dif-
ferent thread affinities on the Intel Xeon Phi. In: Workshop on Applications for
Multi-Core Architectures (WAMCA), pp. 54–59. IEEE Computer Society (2014)

11. Lim, D.J., Anderson, T.R., Shott, T.: Technological forecasting of supercomputer
development: the march to exascale computing. Omega 51, 128–135 (2015)

12. MacQueen, J.: Some methods for classification and analysis of multivariate observa-
tions. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics

http://dx.doi.org/10.1007/978-3-319-14343-9_13

A Low-Cost Energy-Efficient Raspberry Pi Cluster 799

and Probability, volume 1: Statistics, pp. 281–297. University of California Press,
Berkeley (1967)

13. Pfalzgraf, A.M., Driscoll, J.A.: A low-cost computer cluster for high-performance
computing education. In: IEEE International Conference on Electro/Information
Technology, pp. 362–366, June 2014

14. Rajovic, N., Carpenter, P.M., Gelado, I., Puzovic, N., Ramirez, A., Valero, M.:
Supercomputing with commodity CPUS: are mobile SoCs ready for HPC? In: Pro-
ceedings of the International Conference on High Performance Computing, Net-
working, Storage and Analysis, SC 2013, NY, USA, pp. 40:1–40:12 (2013). http://
doi.acm.org/10.1145/2503210.2503281

15. Simon, H.D.: Barriers to exascale computing. In: Daydé, M., Marques, O.,
Nakajima, K. (eds.) VECPAR 2012. LNCS, vol. 7851, pp. 1–3. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-38718-0 1

16. Trefethen, A.E., Thiyagalingam, J.: Energy-aware software: challenges, opportuni-
ties and strategies. J. Comput. Sci. 4(6), 444–449 (2013). Scalable Algorithms for
Large-Scale Systems Workshop (ScalA2011), Supercomputing 2011

17. Tso, F.P., White, D.R., Jouet, S., Singer, J., Pezaros, D.P.: The glasgow Raspberry
Pi cloud: a scale model for cloud computing infrastructures. In: 33rd International
Conference on Distributed Computing Systems Workshops, pp. 108–112. IEEE,
July 2013

18. Villa, O., Johnson, D.R., O’Connor, M., et al.: Scaling the power wall: a path to
exascale. In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 830–841. IEEE Press (2014)

19. Xu, R., Wunsch, D.: Survey of clustering algorithms. IEEE Trans. Neural Netw.
16(3), 645–678 (2005)

http://doi.acm.org/10.1145/2503210.2503281
http://doi.acm.org/10.1145/2503210.2503281
http://dx.doi.org/10.1007/978-3-642-38718-0_1

Theano-MPI: A Theano-Based Distributed
Training Framework

He Ma1(B), Fei Mao2, and Graham W. Taylor1

1 School of Engineering, University of Guelph, Guelph, Canada
{hma02,gwtaylor}@uoguelph.ca

2 SHARCNET, Compute Canada, London, Canada
feimao@sharcnet.ca

Abstract. We develop a scalable and extendable training framework
that can utilize GPUs across nodes in a cluster and accelerate the train-
ing of deep learning models based on data parallelism. Both synchronous
and asynchronous training are implemented in our framework, where
parameter exchange among GPUs is based on CUDA-aware MPI. In
this report, we analyze the convergence and capability of the frame-
work to reduce training time when scaling the synchronous training
of AlexNet and GoogLeNet from 2 GPUs to 8 GPUs. In addition, we
explore novel ways to reduce the communication overhead caused by
exchanging parameters. Finally, we release the framework as open-source
for further research on distributed deep learning (https://github.com/
uoguelph-mlrg/Theano-MPI).

1 Introduction

With the constant improvement of hardware and discovery of new architectures,
algorithms, and applications, deep learning is gaining popularity in both acad-
emia and industry. Object recognition [20], is now dominated by deep learning
methods, which in many cases, rival human performance. Recent success in areas
such as activity recognition from video [13] and statistical machine translation
[14] is an example of deep learning’s ascent both in performance and at scale.

With the new generations of GPU cards and increased device memory,
researchers are able to design and train models with more than 140 million parame-
ters (c.f. VGGNet [21]) and models that are as deep as 150 layers (c.f. ResNet [9]).

The emergence of larger datasets, e.g. ImageNet [20] and MS-COCO [18],
challenges artificial intelligence research and leads us to design deeper and more
expressive models so that the complexity of models is sufficient for the task.

Despite of the increased computing power of GPUs, it usually takes weeks
to train such large models to desired accuracy on a single GPU. This is due to
the increased time associated with training deeper models and iterating over the
examples in larger datasets. This is where distributed training of deep learning
models becomes crucial, especially for activities such as model search which may
involve training and evaluating models thousands of times.

c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 800–813, 2017.
DOI: 10.1007/978-3-319-58943-5 64

https://github.com/uoguelph-mlrg/Theano-MPI
https://github.com/uoguelph-mlrg/Theano-MPI

Theano-MPI: A Theano-Based Distributed Training Framework 801

A näıve approach to scaling up is running several copies of the same model in
parallel on multiple computing resources (e.g. GPUs), each computing its share
of the dataset and averaging their parameters at every iteration. This approach
is summarized as data parallelism, and its efficient implementation is the focus
of our work. More sophisticated forms of distributed training, including model
parallelism are important but outside the current scope of our framework.

Theano [23] is an open-source Python library for developing complex algo-
rithms via mathematical expressions. It is often used for facilitating machine
learning research. Its support for automatic symbolic differentiation and GPU-
accelerated computing has made it popular within the deep learning community.
Like other deep learning platforms, including Caffe [12], Torch [3], TensorFlow
[1] and MXNet [2], Theano uses CUDA as one of its main backends for GPU
accelerated computation. Since a single GPU is limited by its device memory
and available threads when solving compute-intensive problems, very recently
researchers have started to build multi-GPU support into the most popular
frameworks. This includes the multi-GPU version of Caffe (FireCaffe [11]), Torch
and Theano (Platoon).

Because the Theano environment usually compiles models for one GPU per
process, we need to drive multiple GPUs using multiple processes. So finding a
way to communicate between processes becomes a fundamental problem within
a multi-GPU framework. There are several existing approaches of implementing
inter-process communication besides manually programming on sockets, such
as Signals, Message Queues, Message Passing, Pipes, Shared Memory, Memory
Mapped Files, etc. However, among those approaches, Message Passing is most
suitable for collective communication between multiple programs across a cluster
because of its well-developed point-to-point and collective protocols. Message
Passing Interface (MPI) is a language-independent communication protocol that
can undertake the task of inter-process communication across machines. It is a
standardized message-passing system designed for programming on large-scale
parallel applications.

Parameter transfer is a basic operation in the distributed training of
deep learning models. Therefore, the transfer speed between processes severely
impacts the overall data throughput speedup1. Since the parameters to be trans-
ferred are computed on GPUs, a GPU-to-GPU transfer is required. Compared to
the basic transfer() function in Theano, NVIDIA GPUDirect P2P technology
makes this possible by transferring data between GPUs without passing through
host memory. Specifically, it enables CUDA devices to perform direct read and
write operations on other CUDA host and device memory. In the context of MPI,
GPUDirect P2P technology allows a GPUArray memory buffer to be transferred
in basic point-to-point and collective operations, making MPI “CUDA-Aware”.

Leveraging CUDA-aware MPI, we have developed a scalable training frame-
work that provides multi-node and multi-GPU support to Theano and efficient
inter-GPU parameter transfer at the same time. To the best of our knowledge,

1 We define data throughput speedup as the change in total time taken to process a
certain amount of examples. It includes both training and communication time.

802 H. Ma et al.

this is to-date the most convenient way to deploy Theano processes on a multi-
node multi-GPU cluster.

2 Related Work

The idea of exploiting data parallelism in machine learning has been widely
explored in recent years in both asynchronous and synchronous ways. To accel-
erate the training of a speech recognition model on distributed CPU cores, Down-
Pour, an asynchronous parameter exchanging method [6], was proposed. It was
the largest-scale method to-date for distributed training of neural networks. It
was later found that controlling the maximum staleness of parameter updates
received by the server leads to faster training convergence [10] on problems like
topic modeling, matrix factorization and lasso regression compared to a purely
asynchronous approach. For accelerating image classification on the CIFAR and
ImageNet datasets, an elastic averaging strategy between asynchronous workers
and the server was later proposed [25]. This algorithm allows more exploration of
local optima than DownPour and alleviates the need for frequent communication
between workers and the server.

Krizhevsky proposed his trick on parallelizing the training of AlexNet [16]
on multiple GPUs in a synchronous way [15]. This work showed that eight GPU
workers training on the same batch size of 128 can give up to 6.25× data through-
put speedup and nearly the same convergence as trained on a single GPU when
exploiting both model and data parallelism. Notably, the increase in effective
batch size2 leads to very small changes in the final convergence of AlexNet when
the learning rate is scaled properly. Following his work, a Theano-based two-
GPU synchronous framework [7] for accelerating the training of AlexNet was
proposed, where both weights and momentum are averaged between two GPUs
after each iteration. The model converges to the same level as using a single
GPU but in less time.

There has been more development on the acceleration of vision-based deep
learning in recent years. NVIDIA developed a multi-GPU deep learning frame-
work, DIGITS, which shows 3.5× data throughput speedup when training
AlexNet on 4 GPUs. Purine [17] pipelines the propagation of gradients between
iterations and overlaps the communication of large weights in fully connected lay-
ers with the rest of back-propagation, giving near 12× data throughput speedup
when training GoogLeNet [22] on 12 GPUs. Similarly, MXNet [2] also shows a
super-linear data throughput speedup on training GoogLeNet under a distrib-
uted training setting.

The Platoon project is a multi-GPU extension for Theano, created and main-
tained by the official Theano team. It currently supports only asynchronous data
parallelism inside one compute node based on posix ipc shared memory. In com-
parison, our framework, Theano-MPI, is designed to support GPUs that are dis-
tributed over multiple nodes in a cluster, providing convenient process manage-
ment and faster inter-GPU memory exchanging based on CUDA-aware MPI.
2 Effective batch size = batch size × number of workers.

Theano-MPI: A Theano-Based Distributed Training Framework 803

3 Implementation

Our goal is to make the field of distributed deep learning more accessible by
developing a scalable training framework with two key components. First is
Theano as a means of constructing an architecture and optimizing it by Sto-
chastic Gradient Descent (SGD). Second is Massage Passing Interface (MPI) as
an inter-process parameter exchanger. We also aim to explore various ways to
reduce communication overhead in parallel SGD and expose some phenomena
that affect convergence and speedup when training deep learning models in a
distributed framework.

3.1 Hardware and Software Environment

The software was developed and tested on a PI-contributed SHARCNET cluster,
named copper. As shown in Fig. 1, each node in the cluster is a dual socket system
with two NVIDIA Tesla K80 GPUs on each socket. The whole cluster is inter-
connected with Mellonox Infiniband FDR. We also tested on another cluster,
mosaic, which features distributed GPUs across nodes connected by Infiniband
QDR. Each node has one NVIDIA K20m GPU.

Fig. 1. Hardware connection layout of a copper node

For high-level access to MPI functionality, we use its Python binding mpi4py,
compiled against OpenMPI 1.8.7. All models mentioned in this report are con-
structed in Theano 0.8 and their implementation is available in our Github
project. Convolution and pooling operations in the computational graph depend
on CUDA 7.0 and the cuDNN v4 library. We also support cudaconvnet as an
alternative backend.

3.2 The BSP Structure

Bulk Synchronous Parallel (BSP) [24] is an intuitive way to implement parallel
computing. In the BSP paradigm, workers proceed with training in a synchro-
nous way. Figure 2a shows a 4 GPU example of the proposed BSP structure

804 H. Ma et al.

where the same model is built and run within four processes, P0, P1, P2, P3.
Each process uses one CPU and one GPU. After the model’s training graph is
compiled on the GPU, those parameters in the graph become arrays in GPU
memory whose values can be retrieved from device to host and set from host
to device. When training starts, the training dataset is split into four parts.
In every iteration, each worker process takes a mini-batch of examples from its
share and performs SGD on it. After that, all workers are synchronized and
model parameters are exchanged between worker processes in a collective way.

Fig. 2. A 4-GPU example of the BSP structure where arrows indicate communication
for parameter exchange.

3.3 CUDA-Aware Parameter Exchanging

Synchronous parameter exchange is an array reduction problem which con-
sists of both data transfer and calculation. The GPUDirect P2P technology
allows exchanging parameters between GPUs without passing through host
memory, making MPI functions “CUDA-aware”. Based on this, we explored
various strategies trying to minimize the data transfer and calculation time, and
make more efficient use of QPI, PCIe and network card bandwidth during data
transfer. The basic strategy is to use the MPI Allreduce() function. However,
the CUDA-aware version of it in OpenMPI 1.8.7 does not give much improve-
ment since any collective MPI function with arithmetic operations still needs to
copy data to host memory. Functions like Alltoall() and Allgather() do not
involve any arithmetic and therefore the CUDA-aware version of them (Fig. 2b)
can avoid passing through host memory unless data transfer crossing the QPI bus
is needed. We therefore implemented a CUDA-aware Alltoall-sum-Allgather
strategy which separates the data transfer and computation. An example of this
strategy is demonstrated in Fig. 3. Here, the summation kernels required for

Theano-MPI: A Theano-Based Distributed Training Framework 805

Fig. 3. An example demonstrating the reduction of arrays on rank 0 and rank 1 with
the proposed Alltoall-sum-Allgather strategy compared to MPI Allreduce. Sub-arrays
of data items (indicated by same-coloured boxes) need to be summed and the results
exchanged with the other ranks. (Color figure online)

parameter exchange are executed in parallel on GPUs. Our test shows the GPU
summation kernel takes only 1.6% of the total communication time.

Using low precision data types for weights or activations (or both) in the
forward pass during training of deep neural networks has received much recent
interest [4,5]. It was shown that training Maxout networks [8] at 10 bits fixed
point precision can still yield near state-of-art test accuracy [5]. In light of this,
we also implemented the transfer of parameters at half-precision while summing
them at full precision, in order to further reduce communication overhead.

Figure 4 shows the improvement of the combination of strategies over MPI
Allreduce. The “ASA” strategy shows three times faster communication relative
to MPI Allreduce and the half precision version of it gives nearly 6 times
faster performance. Those results are obtained on cluster mosaic with distributed
GPUs. Each node hosts one GPU.

Fig. 4. Computation (train) vs. relative communication overhead of different parame-
ter exchanging strategies during training AlexNet-128b (AR: Allreduce, ASA: CUDA-
aware Alltoall-sum-Allgather).

806 H. Ma et al.

Due to the limitation imposed by the Global Interpreter Lock (GIL) in
Python, overlapping the communication with the gradient calculation as in [17]
has not yet been implemented in our framework. We expect this, if implemented,
would substantially reduce the communication cost of exchanging large matrices
in fully-connected layers.

3.4 Parallel Loading

For large-scale visual recognition applications such as ImageNet LSVRC, the
data required for training is on the order of hundreds of Gigabytes. Therefore, it
is difficult to load all image data completely into memory after training starts.
Instead, images are stored as batch files on local or remote disks and loaded one
file at a time by each process. Loading image batches x from disk can be time
consuming3. It is affected by various factors, including file size, file format, disk
I/O capability and network bandwidth if reading from remote disks. If in every
iteration, the training process waits for all data to load in order to proceed, one
can imagine the time cost by loading data will be critical to the overall per-
formance. One way to circumvent this, given the independence of loading and
training, is to load those files in parallel with the forward and backward propa-
gations on the last loaded batch. This assumes loading one batch of images takes
shorter than one iteration of training the model. This auxiliary loading process
should follow the procedure outlined in Algorithm1 to collaborate efficiently
with its corresponding training process:

Different from the multiprocessing and Queue messaging method in [7], we
used the MPI Spawn function to start a child process from each training process
and used the resulting MPI intra-communicator to pass messages between the
training process and its child process. As shown in Algorithm1, the parallel
loading process can read image files, subtract the mean image, crop sub-images
and finally load preprocessed data onto GPUs. By doing this, we are able to
overlap the most compute-intensive part (Step 10 to 13 in Algorithm 1) with
forward and backward graph propagation in the training process.

4 Benchmarking

Exchanging parameters is a necessary aspect of parallel SGD, however, it can be
achieved in a variety of different ways. Parameters updated during SGD include
weights (and biases), momentum (if using momentum SGD) and raw gradients.
Averaging weights after gradient descent (AWAGD) [7,15] is a straightforward
parallel SGD scheme. We have proven [19] that training a perceptron using
this scheme on multiple GPUs can either be equivalent to or a close approxi-
mate of sequential SGD training on a single GPU depending on whether or not
effective batch size is kept constant. In this scheme, the learning rate is scaled

3 Loading labels y, on the other hand, is much faster, therefore labels can be loaded
completely into memory.

Theano-MPI: A Theano-Based Distributed Training Framework 807

Algorithm 1. The parallel loading process
Require:

Host memory allocated for loading image batch hostdatax.
GPU memory allocated for preprocessed image batch gpudatax

GPU memory allocated for the actual model graph input inputx,
mode=None, recv=None, filename=None.
Mean image image mean

Ensure:
1: while True do
2: Receive the mode (train, validate or stop) from training process
3: if recv=“stop” then
4: break
5: else
6: mode ← recv
7: Receive the first filename to be loaded from training process filename ← recv
8: while True do
9: Load file “filename” from disk into host memory hostdatax.

10: hostdatax = hostdatax − image mean
11: Crop and mirror hostdatax according to mode.
12: Transfer hostdatax from host to GPU device memory gpudatax.
13: Wait for training on the last inputx to finish by receiving the next filename

to be loaded.
14: if recv in [“stop”, “train”, “val”] then
15: break
16: else
17: filename ← recv
18: Transfer gpudatax to inputx.
19: Synchronize GPU context.
20: Notify training process to precede with the newly loaded inputx

with the number of GPUs used [15], namely k. It can also be shown that this
scheme is equivalent to summing up the parameter updates from all GPUs before
performing gradient descent (SUBGD), which does not require scaling up the
learning rate. However, our experiments show that tuning the learning rate is
still dependent on k to ensure initial convergence of the model. Table 1 lists the
learning rates we used and the convergence we achieved in training AlexNet4

and GoogLeNet5 at different scales (number of workers).
Recent work has applied low precision to weights and activations during train-

ing [5]. In the extreme, binary data types have been considered [4]. This enables
efficient operation of the low-precision network both at deployment (test time)
and during the forward propagation stage during training. However, gradients

4 Top-5 error at epoch 62. The implementation is based on theano alexnet from
uoguelph-mlrg. https://github.com/uoguelph-mlrg/theano alexnet.

5 Top-5 error at epoch 70. BVLC GoogLeNet implementation in Caffe is refer-
enced in building the model. https://github.com/BVLC/caffe/tree/master/models/
bvlc googlenet. The top-5 error is taken from [22].

https://github.com/uoguelph-mlrg/theano_alexnet
https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet
https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet

808 H. Ma et al.

used for parameter updates must still be stored at high-precision or learning
will fail. Our training results of AlexNet and GoogLeNet, however, show that
the reduced-precision parameter exchange does not affect much final conver-
gence. This can be seen from Table 1, where the validation top-5 error from the
“fp16” training is almost the same as its full precision counterpart.

Table 1. Trade-off between accuracy and speedup under different hyper parameter
settings in training AlexNet and GoogLeNet based on the ASA strategy. The learning
rate reported was the best one found empirically for the particular setting (HP: hyper-
parameters, LR: learning rate, BS: batch size).

of workers AlexNet GoogLeNet

HP Result HP Result

LR BS Accuracy Speedup LR BS Accuracy Speedup

1 GPU 0.01 128 19.75% 1× 0.01 32 10.51% 1×
2 GPU 0.01 128 20.00% 1.7× 0.007 32 10.20% 1.9×
4 GPU 0.01 128 20.38% 3.4× 0.005 32 10.48% 3.7×
8 GPU 0.005 128 20.73% 6.7× 0.005 32 10.87% 7.2×
8 GPU-fp16 0.005 128 20.67% 7.1× 0.005 32 10.86% 7.3×
8 GPU 0.005 32 20.10% 4.9× -

8 GPU-fp16 0.005 32 20.17% 5.7× -

Figures 5 and 6 show the convergence of two models trained with SUBGD
and the Alltoall-sum-Allgather strategy, in which AlexNet is trained on 1, 2,
4 and 8 GPUs with momentum SGD and 128 batch size on each GPU6. Similarly,
GoogLeNet is trained on 2, 4 and 8 GPUs with a batch size of 32. We see that
as more workers are used, the effective batch size becomes too large and the
approximation from parallel SGD to sequential SGD becomes worse. As shown
in Table 1, one way to preserve convergence at such a large-scale is to reduce the
batch size (from 128 to 32) on each worker so that the effective batch size stays
small. This gives the model more potential to explore further at low learning
rates, though the accuracy improvement at the beginning is slow. However, using
smaller batch sizes means more frequent parameter exchanges between workers,
which demands attention toward further reducing the communication overhead.

The speedup of training AlexNet and GoogLeNet are evaluated on 8 distrib-
uted GPU nodes (1 GPU per node). To show the performance of accelerating
larger models, we build VGGNet and test its scaling performance on 8 GPUs in a
single node (in copper). This setup meets the memory requirements of VGGNet.
Table 2 gives an overview of the structural difference between those three mod-
els. Table 3 reports the training and communication time taken to process 5,120
images across different models. We see that these three models scale differently

6 Tested on the ILSVRC14 dataset [20].

Theano-MPI: A Theano-Based Distributed Training Framework 809

Fig. 5. Validation top-5 error of AlexNet trained at different scales (and batch sizes).
Best viewed in colour.

Fig. 6. Validation top-5 error of GoogLeNet trained at different scales. Best viewed in
colour.

in the framework due to differences in the complexity of their operations as well
as the number of free parameters. CUDA-aware parameter exchanging helps
boost the speedup of the framework, especially when the number of parameters
is relatively large.

Observing the GoogLeNet benchmark result in Fig. 6, we would expect that
the framework provides a convergence speedup close to the throughput speedup
reported in Table 3, if the convergence of parallel SGD closely approximates that
of sequential SGD. However, it is difficult to give the exact convergence speedup
provided by the framework, since different settings of the hyper-parameters
(learning rate tuning policy, weight decay, batch size, cropping randomness)
leads to a different convergence path and complicates comparison.

Besides the synchronous framework, we also explored reducing the commu-
nication overhead in the asynchronous setting. Referencing the implementation
of EASGD in Platoon, a Theano-based multi-GPU framework that exploits data
parallelism, we re-implemented the framework based on the CUDA-aware MPI
SendRecv() function without the Round-Robin scheme [25]. Our test shows,
when training AlexNet on 8 GPUs, the asynchronous communication overhead
in our framework is 42% lower than that in Platoon when worker processes com-
municate with the server in the most frequent way (τ = 1). We also performed
a grid search on the hyper-parameters α and τ to achieve better convergence

810 H. Ma et al.

Table 2. Structural comparison between the three architectures which were imple-
mented for benchmarking.

Model Deptha # of parametersb

AlexNet 8 60,965,224

GoogLeNet 22 13,378,280c

VGGNet 19 138,357,544
aIn terms of the amount of parameter-
containing layers.
bIn terms of the amount of float32 parame-
ters.
cThis includes the parameters of the two
auxiliary classifiers.

Table 3. Communication overhead per 5,120 images (s)/speedup on 8 GPUs for
different models (AR: Allreduce, ASA: CUDA-aware Alltoall-sum-Allgather, ASA16:
CUDA-aware Alltoall-sum-Allgather w/float16).

Model Train(1 GPU) AR ASA ASA16

AlexNet-128b 3.90 (31.2) 2.01/5.3× 0.75/6.7× 0.47/7.1×
AlexNet-32b 4.56 (36.40) 8.03/2.9× 2.94/4.9× 1.83/5.7×
GoogLeNet-32b 16.82 (134.9) 2.07/7.1× 1.96/7.2× 1.76/7.3×
VGGNet-32b 51.79 (405.2) 41.41/4.3× 8.60/6.7× 4.84/7.2×

when training AlexNet on eight distributed GPUs, each processing a batch size
of 128. The best top-5 error we achieved from this framework was 21.12% at a
global epoch of 49 when the moving rate was α = 0.5 and averaging period was
τ = 1 with a data throughput speedup of 6.7×.

5 Discussion

We have attempted to scale up the training of deep learning models in an acces-
sible way by developing a scalable training framework built around Theano. Key
technical features of our framework are more efficient interprocess communica-
tion strategies and parallel data loading techniques. Factors affecting the speedup
of the framework can be associated with the model to be trained (i.e. architec-
tural), the training data loading strategy, synchronization in the computational
graph, implementation of GPU kernels, system memory and network bandwidth.

Importantly, we try not to compromise the convergence of models trained
under our framework since measured speedup is based on the time taken to reach
a certain error rate. However, the convergence achieved by a parallel framework
also depends on the tuning of that framework’s hyper-parameters. The conver-
gence results in Table 1 can therefore be improved if better hyper-parameters
are found. Factors affecting model convergence include the number of worker

Theano-MPI: A Theano-Based Distributed Training Framework 811

processes, effective batch size and corresponding learning rate, parameter aver-
aging frequency τ7, moving rate α in EASGD and the initialization of model
parameters.

The main contributions of our work include: providing multi-node and
improved multi-GPU support to the Theano library based on MPI, eliminating
substantial communication overhead, exposing convergence and speedup phe-
nomena in parallel SGD, and an implementation of a more efficient parallel
loading method.

Our effort towards eliminating the communication overhead involves several
aspects: leveraging CUDA-aware MPI for direct data transfer, separating data
transfer and summation for more efficient summation on GPUs, and exploring
half precision data transfer for faster communication. Our benchmarking results
show that our effort on eliminating communication overhead works well on both
the 1-GPU-per-node cluster, mosaic, and the 8-GPU-per-node cluster, copper.

Note that the multi-node testing results in this report are obtained without
GPUDirect RDMA support due to a limitation in the cluster configuration.
Also, the QPI bus topology of a copper node limits the usage of GPUDirect
P2P technology. This is because the GPUDirect P2P requires all GPUs to be
under the same PCIe switch. If a path traversing the QPI is needed, the data
transfer would go through CPU RAM first. As a result, further improvement
of communication performance based on the current hardware setting would
involve consideration of overlapping data transfer with the summation kernel,
overlapping parameter exchange with gradient calculation, and designing better
inter-node and intra-node strategies that could balance the bandwidth usage
among QPI, PCIe and Infiniband networking.

Acknowledgements. We thank the developers of Theano, and specifically Platoon,
which demonstrates a way to build asynchronous training structures. We are also grate-
ful for funding and support from Compute Canada, CFI, SRI, and DARPA.

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S.,
Davis, A., Dean, J., Devin, M., et al.: Tensorflow: large-scale machine learning on
heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016)

2. Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., Xiao, T., Xu, B., Zhang, C.,
Zhang, Z.: MXNet: a flexible and efficient machine learning library for heteroge-
neous distributed systems. arXiv preprint arXiv:1512.01274 (2015)

3. Collobert, R., Kavukcuoglu, K., Farabet, C.: Torch7: a matlab-like environment
for machine learning. In: BigLearn, NIPS Workshop (2011)

4. Courbariaux, M., Bengio, Y.: Binarynet: training deep neural networks with
weights and activations constrained to +1 or −1. arXiv preprint arXiv:1602.02830
(2016)

7 In BSP, we use τ = 1 since larger τ tends to affect convergence in the same way as
increasing batch size.

http://arxiv.org/abs/1603.04467
http://arxiv.org/abs/1512.01274
http://arxiv.org/abs/1602.02830

812 H. Ma et al.

5. Courbariaux, M., Bengio, Y., David, J.P.: Low precision arithmetic for deep learn-
ing. arXiv preprint arXiv:1412.7024 (2014)

6. Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., et al.: Large scale distrib-
uted deep networks. In: Advances in Neural Information Processing Systems, vol.
25, pp. 1232–1240 (2012)

7. Ding, W., Wang, R., Mao, F., Taylor, G.: Theano-based large-scale visual recog-
nition with multiple GPUs. arXiv preprint arXiv:1412.2302 (2014)

8. Goodfellow, I.J., Warde-Farley, D., Mirza, M., Courville, A.C., Bengio, Y.: Maxout
networks. ICML 3(28), 1319–1327 (2013)

9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
arXiv preprint arXiv:1512.03385 (2015)

10. Ho, Q., Cipar, J., Cui, H., Lee, S., Kim, J., et al.: More effective distributed ML via
a stale synchronous parallel parameter server. In: Advances in Neural Information
Processing Systems, vol. 26, pp. 1223–1231. Curran Associates, Inc. (2013)

11. Iandola, F.N., Ashraf, K., Moskewicz, M.W., Keutzer, K.: Firecaffe: near-linear
acceleration of deep neural network training on compute clusters. arXiv preprint
arXiv:1511.00175 (2015)

12. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R.,
Guadarrama, S., Darrell, T.: Caffe: Convolutional architecture for fast feature
embedding. In: Proceedings of the 22nd ACM International Conference on Multi-
media, pp. 675–678. ACM (2014)

13. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-
scale video classification with convolutional neural networks. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 1725–1732
(2014)

14. Koehn, P., Haddow, B.: Towards effective use of training data in statistical machine
translation. In: Proceedings of the Seventh Workshop on Statistical Machine
Translation, WMT 2012, pp. 317–321. Association for Computational Linguistics,
Stroudsburg (2012)

15. Krizhevsky, A.: One weird trick for parallelizing convolutional neural networks.
arXiv preprint arXiv:1404.5997 (2014)

16. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

17. Lin, M., Li, S., Luo, X., Yan, S.: Purine: a bi-graph based deep learning framework.
arXiv preprint arXiv:1412.6249 (2014)

18. Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla,
T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755.
Springer, Cham (2014). doi:10.1007/978-3-319-10602-1 48

19. Ma, H.: Developing a scalable deep learning framework based on MPI. Master’s
thesis, University of Guelph, Guelph, ON, CA (2015)

20. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., et al.: Imagenet large
scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

21. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

22. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9
(2015)

http://arxiv.org/abs/1412.7024
http://arxiv.org/abs/1412.2302
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1511.00175
http://arxiv.org/abs/1404.5997
http://arxiv.org/abs/1412.6249
http://dx.doi.org/10.1007/978-3-319-10602-1_48
http://arxiv.org/abs/1409.1556

Theano-MPI: A Theano-Based Distributed Training Framework 813

23. Theano Development Team: Theano: A Python framework for fast computation of
mathematical expressions. arXiv preprint arXiv:1605.02688 (2016)

24. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8),
103 (1990)

25. Zhang, S., Choromanska, A.E., LeCun, Y.: Deep learning with elastic averaging
sgd. In: Advances in Neural Information Processing Systems, vol. 28, pp. 685–693.
Curran Associates, Inc. (2015)

http://arxiv.org/abs/1605.02688

Acceleration of Turbomachinery Steady
Simulations on GPU

Mohamed Hassanine Aissa1(B), Lasse Müller1,
Tom Verstraete1, and Cornelis Vuik2

1 Von Karman Institute for Fluid Dynamics,
Waterloosesteenweg 72, 1640 Sint-Genesius-Rode, Belgium

aissa@vki.ac.be
2 Delft University of Technology, 2628 CD Delft, The Netherlands

http://www.vki.ac.be

Abstract. Steady state simulations in Computational Fluid Dynam-
ics (CFD), which rely on implicit time integration, are not experiencing
great accelerations on GPUs. Moreover, most of the reported acceleration
effort concerns solving the linear system of equations while neglecting the
acceleration potential of running the entire simulation on the GPU. In
this paper, we present the software implementation of an implicit RANS
CFD solver, which is fully running on GPU. We use the GMRES linear
solver of the Paralution package combined with the incomplete LU fac-
torization for the preconditioning. We propose also a control mechanism -
on-demand factorization - capable of reducing the number of times an
incomplete LU factorization is performed. The on-demand factorization
accelerates the linear solver without altering the flow convergence. The
GPU implementation achieved a speedups of 9.2x compared to a single-
core CPU and 3.5x compared to a 4-cores CPU for 3-D flow predictions
in turbine applications.

Keywords: Steady CFD · Linear systems · GPU · ILU · Krylov sub-
space · GMRES

1 Introduction

1.1 Sparse Linear Systems in Turbomachinery

Turbomachinery components are nowadays designed by using optimization algo-
rithms, which scan the design space guided by CFD simulations [1]. These algo-
rithms require therefore a large number of simulations making any time gain
on the CFD level very beneficial for the overall optimization procedure. These
steady CFD simulations advance an initial flow solution based on an explicit
or implicit numerical time integration scheme. Implicit schemes are more stable
and faster to converge due to a larger allowed time step. This property comes
however at a high cost of assembling and solving a linear system of equations

c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 814–825, 2017.
DOI: 10.1007/978-3-319-58943-5 65

Acceleration of Turbomachinery Steady Simulations on GPU 815

Ax = b at every flow iteration. The system assembly comprises the computa-
tion of the system matrix A and the right-hand side b. The linear solver, due to
the sparsity character, uses an iterative solver such as the Generalized Minimal
Residual Algorithm for Solving Non-symmetric Linear Systems (GMRES) [6].

For CFD problems in turbomachinery, this system of equations is large but
sparse. With the growth of the problem size and complexity, the use of High Per-
formance Computing (HPC) becomes inevitable. In this field, Graphics Process-
ing Units (GPUs) are gaining in importance through the reported speedups of
many CFD applications [2,4]. While dense matrix vector operations are very
efficient on GPUs [5], solving a sparse linear system of equations is more chal-
lenging, since there are less independent operations for the large GPU com-
putational power. Moreover, most linear systems require a factorization-based
preconditioner to converge, which enhances the serial aspect of the algorithm
and thus reduces drastically the GPU performance gain.

1.2 Related Work

In some GPU-accelerated applications [9,20] with a major part of the execution
time for the linear solver, the CPU is used for the system assembly, for which
the high porting effort is not worth the performance gain. A linear solver is in
general implemented on a GPU using a low-level programming language. The
flexibility of the low-level approach makes it possible to adapt the data storage
and the algorithm to the sparsity pattern (non-zero elements distribution) of
the system matrix in order to enhance the performance. In this context, the
effort is concentrated on accelerating the sparse matrix-vector product (SpMV),
which constitutes the core of many linear solvers. Bell and Garland [20] exam-
ined the optimization possibilities for SpMV on GPU without reordering the
system matrix. He identified the diagonal format (DIA) as suitable for struc-
tured meshes and the Hybrid matrix format (HYB) for unstructured ones. The
optimization is part of the CUSP library. Cecka et al. [10] did similar work for
problems based on Finite Element Methods (FEM). He examined the effect of
the memory optimization on the overall performance comparing local, global and
shared memory. Istvan and Giles [11] reviewed relevant research for SpMV on
GPU and concentrated on GPU tuning of SpMV operations for the Compressed
Sparse Row (CSR) matrix format making use of the L1-cache locality, shared
memory, and thread cooperation. The author presented a speedup of 1.4x over
cuSparse and suggested that cache hit maximization was the key method behind
the observed performance gain.

GPU iterative solver performance has been gradually increasing but the bot-
tleneck remains the serial preconditioners such as the Incomplete LU factoriza-
tion (ILU). These functions have been the subject of extended research [15]. In
order improve the performance, the system matrix has to be reordered. This
expose more fine-grained parallelism and thus provide the GPU with more inde-
pendent instructions. Level-scheduling is one established alternative to elevate
the parallelism of the factorization, where independent rows of the system matrix
are implicitly grouped in the same level. Graph-coloring is another method

816 M.H. Aissa et al.

where an explicit reordering is performed giving independent matrix elements the
same color, then every color is thread-safe for a massively parallel linear solver.
Naumov et al. [12] showed a parallel graph coloring method reaching a higher
parallelism than in level scheduling. His work is included in the cuSparse Nvidia
library. Another method to extract more parallelism, introduced by Chow and
Patel [19], is to transform the ILU factorization in a minimization problem of a
set of equations that could be computed in groups independently. Groups can
be so small to contain only one equation making it possible for every non-zero
element of the incomplete L and U matrices to be computed asynchronously and
in parallel. This ILU version can be found in ViennaCL1.

1.3 Contributions

In this work, the reference CFD simulation is performed on CPU using PETSc [8]
and 70% of the execution time is spend on the system assembly, while the rest
is for the system linear solver. The same balance is also found in some FEM
applications, e.g. Darve et al. [13] ported a CPU application based on PETSc
with 80% of execution time for the system assembly. This observation motivated
us to port the assembly part to the GPU to avoid any data transfer to the CPU
during the simulation. The linear solver is the preconditioned GMRES solver
of the Paralution library2, which uses building blocks of the efficient cuSparse
library. This library has been reported [18] to allow a speedup of factor 5x for
a neutron diffusion problem. Paralution performs, however, the assembly of the
system matrix on the host, which implies a data transfer from GPU to the host
CPU. To address this issue we developed an interface to connect the system of
equations, which is assembled on the GPU, to the linear solver. We propose an
algorithm - on-demand LU factorization- to optimize the frequent use of linear
solvers in steady simulations. The algorithm is capable of reducing the number
of times an ILU preconditioner matrix is built for the linear solver without
altering the flow accuracy. This new technique enables the linear solver to use
previously computed LU matrix as preconditioner instead of computing a new
one in every iteration. We combine this technique with standard ILU to deliver
the best speedups for coarse and fine meshes.

Our contributions are:

– A GPU solver based on implicit time stepping with no CPU-GPU data trans-
fer.

– An on-demand ILU preconditioner build to reduce the computational time.
– Analysis of the advantages and drawbacks of the GPU for implicit solvers.
– An interface to Paralution and ViennaCL linear solvers.
– A sorting algorithm to transform unordered matrix entries to COO then CSR.

The rest of the paper is structured as follow: Sect. 2 introduces the numerical
scheme used by the CFD solver while Sect. 3 describes the implementation of
1 Rupp, K. “ViennaCL.” http://viennacl.sourceforge.net.
2 PARALUTION Labs “PARALUTION v1.0.0”, 2015, http://www.paralution.com.

http://viennacl.sourceforge.net
http://www.paralution.com

Acceleration of Turbomachinery Steady Simulations on GPU 817

the solver on the GPU. Results are shown in Sect. 4 and main findings are sum-
marized in Sect. 5.

2 Numerical Scheme

The flow solver uses a cell-centered finite volume discretization on multiblock
structured grids. It solves the Reynolds-Averaged Navier Stokes (RANS) equa-
tions in time-dependent integral form [16]:

∂

∂t

∫
Ω

W dΩ +
∮

∂Ω

(Fc − Fv)dS =
∫

Ω

QdΩ, (1)

with W = {ρ, ρVx, ρVy, ρVz, ρE} the vector of conservative variables, Ω the cell
volume and S the cell surface. The convective fluxes Fc are computed using
a Roe upwind approximation of a Riemann Solver while second order accu-
racy is achieved through the MUSCL approach (Monotone Upstream-Centered
Schemes for Conservation Law). The viscous fluxes Fv are approximated using
a central discretization scheme. The source term Q contains contributions from
the Spalart-Allmaras (SA) one-equation turbulence model.

The implicit time integration on steady simulations follows the equation
below: [

(ΩI)
Δt

+
(

δR

δW

)]
ΔW n = −Rn. (2)

with R the residual containing the fluxes and the source term, ΔW = W n+1 −
W n the solution change, I the identity matrix and δR

δW an approximate Jacobian
matrix. When Eq. 2 is applied to the entire mesh a large linear system is build
with the form Ax = b. Residuals and Jacobian are first evaluated on cell surfaces
and then summed in a local assembly procedure (see Eq. 1). The global assem-
bly concatenates the local items to a large global matrix and right-hand side
containing all the problem unknowns. A multistage time stepping method such
as implicit Runge-Kutta [17] solves multiple successive linear systems for every
flow iteration, in which only the right-hand side is updated then multiplied by a
different stage coefficient α. The nature of the flow solved in this work and the
mesh complexity leads to a stiff system matrix that requires further treatment,
e.g. preconditioning, to enhance the linear system convergence. A preconditioner
is any form of modification to the original linear system, which accelerates the
convergence of an iterative method [7]. The linear system of equations is modified
as follow:

M−1Ax = M−1b, (3)
with M the preconditioning matrix. M can be filled by an incomplete factor-
ization of the original system matrix: A = LU − R, where L and U are upper
and lower matrices respectively while R is the residual of the factorization. The
general algorithm of the incomplete LU factorization can be found in [7]. This
factorization - involving a Gaussian elimination process - is inherently serial with
recursive computations, in which every value of the L and U matrices depends
on the computation of several values of previous rows and columns. This depen-
dency makes any parallelization difficult.

818 M.H. Aissa et al.

3 Flow Solver Implementation

The reference CPU-based implicit solver, written in C++, solves the linear sys-
tem of equations using the PETSc package. The residual and flux Jacobians
are computed serially in a loop over all mesh faces. Profiling has revealed that
the ILU preconditioner is not the bottleneck in the CPU implementation taking
a small portion of the execution time. Three libraries have been considered for
solving the linear system of equations on GPU: PETSc (GPU version), viennaCL
and Paralution. While PETSc requires only a small change on the data type of
the system matrix and right-hand side to run the linear solver on GPU, the
library does not provide a GPU implementation of incomplete LU factorization.
Moreover, it does not accept external data computed on GPU, which reduces the
scope of the parallelization to the linear solver minimizing the expected global
speedup. A second alternative is to use ViennaCL. While this OpenCL-based
library can process data residing on the GPU, it performs a costly data copy
from CUDA type of data to OpenCL. The third alternative is Paralution, which
can process data residing on the GPU and is at the same time based on CUDA
cuSparse library. The latter library has been chosen for the linear solver. To
describe the flow solver implementation, we first introduce briefly some GPU
computing techniques used in this work before we present the two main parts
of the GPU flow solver (see Fig. 1) namely the system assembly and the linear
solver.

Fig. 1. Flow solver algorithm with an outer loop for the flow iteration: W n+1 = W n +
ΔW , and an inner loop of Runge-Kutta cycles for the computation of ΔW

3.1 GPU Computing

The GPU is a co-processor featuring a large number of cores organized in stream-
ing multiprocessors, which access directly a global memory. Every multiproces-
sor is a set of scalar processors with access to a shared memory local to the
multiprocessor. Each of these processors has its own local and register mem-
ory. Programs running on GPU are called kernels. When calling a kernel the
GPU starts a large number of threads (unit of execution) grouped in blocks of
threads. Threads among the same block are grouped in warps of 32 threads with
consecutive thread ID that execute the same instructions. When threads of the
same warp execute different operations, they are executed serially and this per-
formance decreasing situation is called thread divergence. The GPU acceleration

Acceleration of Turbomachinery Steady Simulations on GPU 819

is based on overlapping the memory access time (latency) with computations.
When a warp is blocked waiting for data the GPU schedules another warp to
take over with no overhead for the scheduling. This technique is more effective,
if a kernel with a large number of blocks is executed, as more warps are likely
to be available for the scheduler. An accurate measure of code performance on
GPU is the throughput as floating operations per second which combines arith-
metical and memory performance. A first hint to optimize a GPU code then is
through increasing the number of active warps, which can run simultaneously
(occupancy). At the same time occupancy should not be the only key of per-
formance assessment, as it can be misleading for some cases [3]. In the second
place, the algorithm should ensure that neighboring threads, which run together
in one warp, access neighbor memory positions in order to avoid long wait times
for variables load. This access is called a coalesced access.

The number of active warps defining the occupancy is proportional to the
number of started threads and the memory consumption per thread in terms
of registers and shared-memory. The variables declared in a kernel are locally
saved in fast access registers until there are no registers anymore and the rest
of the data is stored in global memory. Since all threads share a certain amount
of registers the kernel consumption on registers limits the number of blocks of
threads that could run simultaneously. In case the kernel needs to start few
threads, a technique called multi-streaming can be used to increase the number
of active warps by starting multiple independent kernels at the same time. Every
kernel contributes to the occupancy by providing active warps. This is different
from the standard one-stream approach, in which kernels are executed one after
the other. As this section is intended to provide a short overview of techniques
used in this work, further details to the GPU architecture and the programming
model along with some applications can be found in: [20,24].

3.2 System Assembly

The global system matrix is a concatenation of local block matrices, which are
divided in diagonal and off-diagonal blocks. The dominance of the diagonal
blocks, which contain the inverse of the time step, improves the convergence of
the linear solver. Therefore, when small time steps are used (see Eq. 2) GMRES
converges with fast Jacobi preconditioner without the need for factorization.
However, large time steps decrease the diagonal dominance and with it the con-
dition number requiring thus the incomplete LU factorization to accelerate the
linear solver convergence. The off-diagonal blocks contain mainly the flux Jaco-
bians defining the bandwidth of the matrix.

Within the finite volume scheme, the global assembly of the linear system is
made by looping over the cell faces in the mesh. On every cell face a contribution
to the cell local system matrix is computed along with a residual. Since every
cell receives the contributions of six faces, a risk of race condition is eminent, in
which up to six threads simultaneously update the system matrix of the same
cell. To avoid race conditions atomic add or graph-coloring are generally used.
These techniques are known for deteriorating the coalesced access.

820 M.H. Aissa et al.

In this work another alternative that conserves the data coalescence has been
chosen, in which the contributions are stored along with their positions in the sys-
tem matrix (row, column). The face contribution belonging to two neighbor-cells
is stored twice with the belonging cell index and sign. Computing and storing
all face contributions leads to three large arrays: two for indices (column array,
row array) and a third array for the contribution’s value. Contributions belong-
ing to the same cell are identified over identical index in column and row arrays
then summed up using sort and reduce functions of the THRUST library [14]. This
library generates 3 arrays free of repetition hosting the positions and values of all
non-zero elements (nnz) of the system matrix. This data arrangement is known
under Coordinate format (COO). The COO format stores nnz values in double
precision and 2∗nnz integers. To reduce the storage size while keeping the same
information content, the row array can be transformed in row offset array, in
which the column offset of the first non-zero element in every row is stored. This
operation is performed by the CUSP library, which provides the CSR arrays
that constitute the input for the iterative solver of Paralution. A similar but less
complicated algorithm allows to sort and scan the right-hand side for duplicated
entries. Finally, all Kernels in this work are based on the same global memory
access pattern and the coalesced access is assured by using the thread index as
an offset for the array index.

3.3 Linear Solver with on-demand Factorization

The flow solver has a modular design with an interface to PETSc, Paralution
and ViennaCL libraries. We use the GMRES linear solver of Paralution library
along with the incomplete LU preconditioner (ILU). To accelerate the linear
solver while preserving the accuracy of the solution, the LU matrix should be
provided for a lower cost. As reported by many authors [7,19], the accuracy of
the Lower Upper matrices affects the conditioning of the system leading to a
larger number of linear system iterations to convergence. Since iterations of the
linear solver are faster on the GPU than the incomplete LU factorization, the
additional inner iterations cost generally less time than performing the incom-
plete LU factorization. The accuracy of the factorization is here traded against
performance.

To decrease the time spent in the factorization, the linear solver uses the
LU matrix of previous flow iteration. As a result, the linear solver skips the
factorization for some flow iterations. The factorization is performed only on-
demand, when the LU quality is so decreased that the linear solver needs more
iterations to converge than a user defined threshold:

Pseudo-code of the on-demand LU factorization

if (itr> MAX_ITR) M <-LU_Factorization (A)
(x, itr) <- GMRES (A,M,b)

where A,M and b are defined in Eq. 3. The maximum number of iterations
MAX ITR depends on the condition number and thus on the time step. As

Acceleration of Turbomachinery Steady Simulations on GPU 821

the time step depends on the CFL and the mesh cell size a relation between
MAX ITR and CFL number can be found for a given mesh:

MAX ITR = a + b ∗ CFL, (4)

with a and b two tuning parameters. Parameter a plays an important role for
applications with a low CFL number and b increases with the mesh refinement.
The on-demand factorization changes only the entries of L and U matrices not
the ordering of the non-zero elements, therefore it does not affect the flow solver
convergence and accuracy.

4 Results

The numerical results were obtained using a Tesla K40 GPU with a theoreti-
cal peak performance of 1,682 Gflops in double precision and 12 GB of global
memory. The GPU implementation is realized with CUDA 7.0. The host CPU
(double quad-core) is an Intel(R) Xeon(R) CPU E5-2640 with a clock rate of
2.50 GHz and a 15 MB cache size. The CPU parallelization is performed on mesh
block level, as blocks are distributed to processors (1 to 4) assuring a good load
balancing. For the benchmark case with seven mesh blocks of different sizes,
using more than 4 processors deteriorates the load balancing which damage the
CPU performance. Therefore a maximum of 4 CPU cores is used.

The test case is a transonic flow over the LS89 inlet guide vane cascade [21],
which experiences a turning of 74◦ through the NGV geometry and a passage
shock with a peak Mach number of 1.15. The validation of the flow solver against
experimental data can be found in [23]. The stopping criterion for the linear
solver is a 10−6 reduction of the relative Residual and the flow solver stops when
the minimization of the L2 norm of the residual reaches 10−6. The 2-stages
Runge-Kutta (RK) time stepping method has been chosen for the benchmark,
since the RK methods with more stages presented no flow convergence acceler-
ation in the treated CFD case while costing extra execution-time. Two types of
meshes are treated (coarse and fine) to explore the GPU potential (see Table 1).

Table 1. Characteristics of used meshes and underlying linear systems

Mesh NCells NRows nnz nnz/row

Coarse 40k 200k 5.7M [20 . . . 30]

Fine 300k 1500k 52.6M [20 . . . 35]

4.1 Assembly Acceleration

The assembly phase on the GPU experiences a 7x acceleration for the coarse
mesh compared to a single-core CPU and 12x acceleration for the fine one (see
Figs. 2 and 3). The multi-streaming contributed to the speedup by 10% improve

822 M.H. Aissa et al.

Fig. 2. Speedups of the flow solver on the coarse mesh with GPU ILU and on-demand
ILU compared to a single-core to 4-cores CPU

Fig. 3. Speedups of the flow solver on the fine mesh with GPU ILU and on-demand
ILU compared to a single-core to 4-cores CPU

of the performance compared to the one-stream GPU version for the coarse
mesh. The coalesced memory access has more impact on the performance with
an improve of 23% compared to a striped access for the same coarse mesh. A
multiblock mesh layout originates, in general, from the mesh generator designed
to improve the mesh quality towards accurate CFD results. For complicated
geometries it leads to multi-block meshes presenting blocks of different sizes and
many interfaces between the mesh blocks.

An analysis of the achieved acceleration is proposed by addressing possibili-
ties for further improvements considering: first large, then small mesh blocks and
finally the interface update between all kind of blocks. Large blocks provide the
GPU kernels with a high amount of independent operations for processing at the
same time, which maximizes the number of active threads. The limiting factor
in this case is the register usage. Since the kernels are starting large number of
threads and computing long algorithms, the total number of used registers is very

Acceleration of Turbomachinery Steady Simulations on GPU 823

high. The register consumption limits the achieved occupancy (see Sect. 3.1). A
way to improve the occupancy for these kernels is to divide them when possible
into small, less memory demanding, sub-kernels. Blocks with few cells on the
other hand, are in fact not limited by register usage but by the small number
of started threads. The GPU is not provided with enough active threads to hide
the memory latency. In this case, the multi-streams technique (see Sect. 3.1) can
improve the occupancy by starting more than one kernel at the same time. The
mesh block interfaces require a cell update between blocks and this procedure
involves few cells proportional to the surface to volume ratio (rStoV ∗ NCells). A
solution is to use a mesh generator that takes into account the reduction of the
number of blocks and neighboring blocks along with the increase of block size in
terms of cells (e.g. hMETIS [22]). The higher speedup of the assembly phase on
the GPU for the fine mesh is then due to the larger blocks and lower surface to
volume ratio.

4.2 Linear Solver Acceleration

The linear solver on the coarse mesh is 40% slower than on the single-core CPU.
This is mainly caused by: (1) the ILU preconditioner, (2) the total number of
linear solver calls and (3) the size of the system matrix. The ILU preconditioner
contains low fine-grained parallelism and is more efficient on CPU. Moreover, the
CPU implementation of ILU factorization has a set of techniques to improve the
linear solver convergence, which decreases dramatically the GPU performance
once ported to the GPU. This results on the flow solver using GPU ILU to
perform 32% more linear solver iterations. The flow convergence is on the other
hand exactly the same for CPU and GPU implementation in terms of number
of flow iterations, this for the sake of a fair comparison.

For 2-stages RK, the flow requires 827 flow iterations to converge. The stan-
dard ILU performs one factorization per flow iteration, while the on-demand
ILU (ILU-OD) reduces the total number of factorization to only 113. This corre-
sponds to a decrease of 86%, which explains the improved speedup for the linear
solver when ILU-OD is used. The on-demand ILU is only as fast as a 2-cores
CPU, because the size of the system matrix is not enough to observe the advan-
tage of GPUs for sparse matrix-vector products (SpMV). The fine mesh presents,
on the other hand, a larger system matrix with more non-zero elements. While
the standard ILU implementation is 1.8x faster than the single-core ILU, the
ILU-OD is 5.5x faster than single-core ILU and 2.05x faster than a 4-cores CPU.
The on-demand mechanism decreased here also the number of factorization by
86%. In addition to that the size of the matrix showed the advantage of GPU
for SpMV.

4.3 Global Acceleration of the Flow Solver

The global speedup depends heavily on the mesh size. For the fine mesh the
GPU performance reaches a speedup of 4.8 and 9.43 for the flow solver using
ILU and ILU-OD respectively compared to a single-core CPU. ILU and ILU-OD

824 M.H. Aissa et al.

are 1.8x and 3.4x faster than 4-cores CPU. On the coarse mesh, the acceleration
is 2.07x and 3.35x for ILU and ILU-OD respectively compared to a single-core
CPU. This correspond to a speedup of 1.15x and 1.5x compared to a 4-cores
CPU. The larger contribution of the speedup is done in the assembly phase.

GPUs are rather adapted for system assembly as a stencil-based operation
and for solving very large sparse linear systems not exceeding the storage capac-
ity of GPUs. Small linear systems are solved more efficiently on cache-based
machines. Moreover GPUs are inherently co-processor and cannot replace a
CPU for the entire simulation including pre- and post-processing. Therefore,
the cooperation between the two architectures is more of interest rather than
the competition for speedups as the latter can be misleading [25].

5 Conclusion

In this paper, we presented a flow solver with one order of magnitude accelera-
tion on GPU compared to an optimized serial CPU version. We demonstrated
that implicit time stepping in CFD applications can profit from the GPU com-
putational power, provided an appropriate GPU occupancy is reached and a
good mesh in terms of surface to volume ratio is used. As the bottleneck of the
GPU flow solver is the incomplete LU factorization, the on-demand ILU factor-
ization presented in this work improved the overall speedup by 60% to 80%. The
on-demand ILU can be applied as well on cache-based processors (x86) but it is
expected to have a very limited effect since factorization is not a bottleneck for
serial execution. On the other hand it is expected to improve the performance of
other SIMD machines (e.g. Xeon Phi). This once again shows that acceleration
techniques can be very different on various architectures.

Acknowledgments. The research leading to these results has received funding from
the European Union Seventh Framework Programme (FP7/2007-2013), Marie Curie
Initial Training Networks (ITN) action, under grant agreement no. 316394, AMEDEO.
We are also grateful to NVIDIA for the hardware donation.

References

1. Shahpar, S., Caloni, S.: Aerodynamic optimization of high-pressure turbines for
lean-burn combustion system. J. Eng. Gas Turbines Power 135(5), 055001 (2013)

2. Brandvik, T., Pullan, G.: Acceleration of a two-dimensional Euler flow solver using
commodity graphics hardware. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
221(12), 1745–1748 (2007)

3. Volkov, V.: Better performance at lower occupancy. In: Proceedings of the GPU
Technology Conference, GTC, vol. 10 (2010)

4. Lin, F., et al.: A multi-block viscous flow solver based on GPU parallel methodol-
ogy. Comput. Fluids 95, 19–39 (2014)

5. Barrachina, S., Castillo, M., Igual, F.D., Mayo, R., Quintana-Ort́ı, E.S.: Solving
dense linear systems on graphics processors. In: Luque, E., Margalef, T., Beńıtez, D.
(eds.) Euro-Par 2008. LNCS, vol. 5168, pp. 739–748. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-85451-7 79

http://dx.doi.org/10.1007/978-3-540-85451-7_79

Acceleration of Turbomachinery Steady Simulations on GPU 825

6. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869
(1986)

7. Saad, Y.: Iterative Methods for Sparse Linear Systems. Siam, New Delhi (2003)
8. Balay, S., et al.: PETSc Users Manual Revision 3.5. No. ANL-95/11 Rev. 3.5.

Argonne National Laboratory (ANL) (2014)
9. Serban, G., et al.: GPU acceleration for FEM-based structural analysis. Arch.

Comput. Methods Eng. 20(2), 111–121 (2013)
10. Cecka, C., et al.: Assembly of finite element methods on graphics processors. Int.

J. Numer. Methods Eng. 85(5), 640–669 (2011)
11. Istvan, R., Giles, M.: Efficient sparse matrix-vector multiplication on cache-based

GPUs. In: Innovative Parallel Computing (InPar). IEEE (2012)
12. Naumov, M., et al.: Parallel Graph Coloring with Applications to the Incomplete-

LU Factorization on the GPU. NVIDIA TR NVR-2015-001, May 2015
13. Wong, J., Kuhl, E., Darve, E.: A new sparse matrix vector multiplication graphics

processing unit algorithm designed for finite element problems. Int. J. Numer.
Methods Eng. 102(12), 1784–1814 (2015)

14. Bell, N., Hoberock, J.: Thrust: a productivity-oriented library for CUDA. In: GPU
Computing Gems: Jade Edition (2012)

15. Saad, Y.V., der Vorst, H.A.: Iterative solution of linear systems in the 20th century.
J. Comput. Appl. Math. 123, 1–33 (2000)

16. Blazek, J.: Computational Fluid Dynamics: Principles and Applications. Elsevier,
Amsterdam (2005)

17. Xu, S., et al.: Stabilisation of discrete steady adjoint solvers. J. Comput. Phys.
299, 175–195 (2015)

18. Trost, N., et al.: Accelerating COBAYA3 on multi-core CPU and GPU systems
using PARALUTION. Ann. Nucl. Energy 82, 252–259 (2014)

19. Chow, E., Patel, A.: Fine-grained parallel incomplete LU factorization. SIAM J.
Sci. Comput. 37(2), C169–C193 (2015)

20. Bell, N., Garland, M.: Implementing sparse matrix-vector multiplication on
throughput-oriented processors. In: Proceedings of the Conference on High Per-
formance Computing Networking, Storage and Analysis. ACM (2009)

21. Arts, T., et al.: Aero-thermal Investigation of a highly loaded transonic linear
Turbine Guide Vane Cascade von Karman Institute for Fluid Dynamics TN-174
(1990)

22. Karypis, G., Kumar, V.: hMETIS 1.5: a hypergraph partitioning package. Technical
report, Department of Computer Science, University of Minnesota (1998)

23. Aissa, M.H., Verstraete, T., Vuik, C.: Aerodynamic optimization of supersonic com-
pressor cascade using differential evolution on GPU. In: 13th International Confer-
ence of Numerical Analysis and Applied Mathematics (ICNAAM 2015) September
23–29 2015, Rhodes, Greece (2015)

24. Garland, M., et al.: Parallel computing experiences with CUDA. IEEE Micro 4,
13–27 (2008)

25. Lee, V.W., et al.: Debunking the 100X GPU vs. CPU myth: an evaluation of
throughput computing on CPU and GPU. In: ACM SIGARCH Computer Archi-
tecture News, vol. 38, no. 3. ACM (2010)

Author Index

Abella, Monica 504
Acosta, Alejandro 96
Aderholdt, Ferrol 671
Afonso, Sergio 96
Agullo, Emmanuel 69, 83, 175
Aissa, Mohamed Hassanine 814
Aldegheri, Stefano 519
Aliaga, José I. 121
Almeida, Francisco 96
Amoretti, Michele 248

Banga, Julio R. 397
Barnas, Martina 545
Barnat, Jiří 519
Baumeister, Paul F. 750
Bellosa, Frank 709
Bialon, Raphael 296
Blas, Javier Garcia 504
Boettiger, Hans 750
Bollhöfer, Matthias 121
Bombieri, Nicola 519
Bosilca, George 175
Brambilla, Giacomo 248
Breitbart, Jens 721
Brenner, Paul 347
Brunheroto, José R. 750
Bungartz, Hans-Joachim 635
Busato, Federico 519
Buttari, Alfredo 175

Carillo, Michele 322
Carlini, Emanuele 272
Carretero, Jesus 504
Casanovas-García, Josep 334
Castro, Márcio 788
Cesario, Eugenio 224
Češka, Milan 519
Chandrasekaran, Sunita 697
Chapman, Barbara 697
Chisholm, Robert 311
Chohra, Chemseddine 609
Cojean, T. 56
Cordasco, Gennaro 322
Cramwinckel, Joris 199

da Silva, Rafael Ferreira 108
Damas, Miguel 372
Davis IV, Claude H. 648
de Laat, Cees 557
DeBardeleben, Nathan 648
Deelman, Ewa 108
Diniz, Pedro C. 660
Doallo, Ramón 397
Donner, Daniel 737
Dufrechou, Ernesto 121

Elvira, Juan 433
Engelmann, Christian 671
Escobar, Juan José 372
Ezzatti, Pablo 121

Fahringer, Thomas 149
Ferreira, Kurt B. 623
Firoz, Jesun Sahariar 545
Fletcher, George H.L. 532
Freitas, Henrique C. 788

Garcia, Gabriel 788
Garzón, E.M. 468
Gec, Sandi 236
Geveler, Markus 737
Giordano, Andrea 224
Giraud, Luc 69, 83
Góes, Luís F.W. 788
Gonçalves, Fabien 775
González, Jesús 372
González, Patricia 397
González-Domínguez, Jorge 421
Gottschlag, Mathias 709
Graffi, Kalman 296
Gramoli, Vincent 596
Grunzke, Richard 480
Guan, Qiang 648
Guermouche, Abdou 56, 69, 175
Guerreiro, João 134

Hater, Thorsten 750
Heene, Mario 635

Hegeman, Tim 571
Heldens, Stijn 571
Heller, Thomas 149
Hernandez, Miguel 433
Hernández, Porfidio 457
Hinojosa, Alfredo Parra 635
Höppke, Christoph 737
Howell, Aaron 347
Hugo, A. 56
Hundt, Christian 421

Ilic, Aleksandar 134
Iosup, Alexandru 571

Jäkel, René 480
Jones, William M. 648
Jordan, Herbert 149
Jug, Florian 480
Jünger, Daniel 421

Karlsson, Johan 433
Kecskemeti, Gabor 284
Kertesz, Attila 284
Kimovski, Dragi 236, 260
Król, Dariusz 108
Kuban, Robert 685

Langlois, Philippe 609
Lavigne, Scott R. 648
Lenis, Josefina 492
Levy, Scott 623
Li, Xiaoye S. 162
Liao, Chunhua 660
Lopez, Florent 175
López, Pedro García 211
Lucas, Robert F. 660
Luecke, Glenn R. 409
Lulli, Alessandro 272
Lumsdaine, Andrew 545
Lutteropp, Sarah 187
Lynch, Vickie E. 108

Ma, He 800
Maddock, Steve 311
Mao, Fei 800
Marosi, Attila Csaba 284
Mastroianni, Carlo 224
Matsutani, Hiroki 41
Maurer, Thilo 750

Mello Schnorr, Lucas 583
Millani, Luis Felipe 583
Monroe, Laura 648
Montañola-Sales, Cristina 334
Monti, Antonello 721
Morishima, Shin 41
Müller, Lasse 814
Mussio, Adrien 775
Myers, Gene 480

Nagel, Wolfgang E. 480
Nakov, Stojce 69, 83
Namyst, R. 56
Naughton, Thomas 671
Navarro, Javier 457
Neumann, Philipp 3
Neves, Nuno 775
Ngai, Wing Lung 571
Nolte, Jörg 685

Ortega, G. 468
Ortega, Julio 372
Ostermann, Simon 260
Ouyang, Linqiang 359

Papadimitriou, Michail 199
Pardo, Xoán C. 397
Parello, David 609
Park, Jin H. 359
Pellegrini, Alessandro 334
Penas, David R. 397
Penna, Pedro H. 788
Pfaffe, Philip 187
Pflüger, Dirk 635
Pickartz, Simon 721
Plauth, Max 763
Pleiter, Dirk 750
Polze, Andreas 763
Poulovassilis, Alexandra 532
Prodan, Radu 236, 260

Quaglia, Francesco 334
Quinlan, Daniel J. 660
Quintana-Ortí, Enrique S. 121

Ramos-Onsins, Sebastián 457
Ribbrock, Dirk 737
Ricci, Laura 272
Richmond, Paul 311

828 Author Index

Rodríguez, Marc Ruiz 211
Roma, Nuno 134, 775
Roman, J. 69
Rotta, Randolf 685
Ruelmann, Hannes 737

Saffran, João 788
Sakellariou, Rizos 28
Sánchez-Artigas, Marc 211
Santander-Jiménez, Sergio 384
Sarje, Abhinav 162
Saurabh, Nishant 236, 260
Scheirle, Bernhard 187
Schmidt, Bertil 421
Schneider, David 737
Schöps, Mark Simon 685
Schuele, Tobias 697
Schuller, Bernd 480
Scott, Stephen L. 671
Senar, Miquel Angel 492
Serrano, Estefania 504
Serrapica, Flavio 322
Souza, Matheus A. 788
Spagnuolo, Carmine 322
Stankovski, Vlado 236
Suárez, D. 468
Sukhoroslov, Oleg 16
Sumrall, Jonathan M. 532
Sun, Peng 697
Svensson, Johan 532
Szufel, Przemysaw 322

Tabik, S. 468
Taylor, Graham W. 800
Teijeiro, Diego 397

Thoman, Peter 149
Tillmann, Martin 187
Tomás, Pedro 134, 775
Tomaschewski, Daniel 737
Torreno, Oscar 445
Trelles, Oswaldo 433, 445
Turek, Stefan 737

Upton, Alex 433

Vallée, Geoffroy 671
Varbanescu, Ana Lucia 199, 557
Varbanescu, Ana 571
Vega-Rodríguez, Miguel A. 384
Vejlstrup, Magnus 532
Vera, Gonzalo 457
Verstraaten, Merijn 557
Verstraete, Tom 814
Vest, Chris 532
Vicidomini, Luca 322
Vuik, Cornelis 814

Wacrenier, P.A. 56
Webber, Jim 532
Weeks, Nathan T. 409
Weidendorfer, Josef 721
Widener, Patrick M. 623
Winter, Marcus 697
Wright, Nicholas 162

Zalewski, Marcin 545
Zangerl, Peter 149
Zanichelli, Francesco 248
Zellner, Michael 3
Zerr, Kevin 187
Zhu, Suyang 697

Author Index 829

	Preface
	Organization
	Contents
	EUROEDUPAR - European Workshop on Parallel and Distributed Computing Education for Undergraduate Students
	Lattice Boltzmann Flow Simulation on Android Devices for Interactive Mobile-Based Learning
	1 Introduction
	2 Lattice Boltzmann Method
	3 LB2M
	3.1 Software Design
	3.2 Simulation Engine
	3.3 Visualization
	3.4 Interactive Simulation Workflow and Usage

	4 Benchmarking
	4.1 Related Work and Performance
	4.2 Interactivity

	5 LB2M for Teaching
	5.1 Exercise 1: Cavity Flow
	5.2 Exercise 2: The Reynolds Number
	5.3 Supporting Students at Interactive Computer-Based Learning

	6 Summary
	References

	Using Everest Platform for Teaching Parallel and Distributed Computing
	1 Introduction
	2 Related Work
	3 Technical Aspects
	3.1 Everest Overview
	3.2 Generic Services for Running Parallel Programs
	3.3 Problem-Specific Services for Programming Assignments

	4 Use Cases
	4.1 Multi-threaded Programming
	4.2 Parallel Programming
	4.3 Distributed Data Processing

	5 Conclusion and Future Work
	References

	Experiences with Teaching a Second Year Distributed Computing Course
	1 Introduction
	2 Syllabus
	2.1 Background
	2.2 Lecture Topics
	2.3 Laboratory Assignments

	3 Objectives and Key Abstraction Pillars
	4 Discussion
	5 Conclusion
	References

	HETEROPAR - Workshop on Algorithms, Models and Tools for Parallel Computing on Heterogeneous Platforms
	Distributed In-GPU Data Cache for Document-Oriented Data Store via PCIe over 10Gbit Ethernet
	1 Introduction
	2 Background and Related Work
	2.1 GPU-Based Regular Expression Matching
	2.2 GPU-Based Document-Oriented Data Store

	3 DistGPU Cache and Its Partition Method
	3.1 System Overview
	3.2 Partitioning of Documents Values with Hash Function
	3.3 Toward Schema-Less Data Structure
	3.4 Assignment of Buckets to GPU Devices
	3.5 GPU Processing for DistGPU Cache

	4 Evaluations
	4.1 Evaluation Environment
	4.2 Performance with Different Bucket Sizes
	4.3 Performance with Local and Remote GPUs
	4.4 Performance Comparison with MongoDB

	5 Summary
	References

	Resource Aggregation for Task-Based Cholesky Factorization on Top of Heterogeneous Machines
	1 Introduction
	2 Related Work
	3 Background
	4 A Runtime Solution to Deal with Nested Parallelism
	4.1 Adapting MCT and Performance Models for Parallel Tasks

	5 Experimental Results
	6 Conclusion
	References

	Task-Based Conjugate Gradient: From Multi-GPU Towards Heterogeneous Architectures
	1 Introduction
	2 Baseline Sequential Task Flow (STF) Conjugate Gradient Algorithm
	3 Experimental Setup
	4 Achieving Efficient Software Pipelining
	4.1 Assessment of the Proposed Task-Based CG Algorithm
	4.2 Relieving Synchronization Points
	4.3 Reducing Communication Volume by Packing Data
	4.4 2D Decomposition

	5 Performance Analysis
	6 Towards a Fully Heterogeneous CG Solver
	References

	Task-Based Sparse Hybrid Linear Solver for Distributed Memory Heterogeneous Architectures
	1 Introduction
	2 Baseline MPI Hybrid (Direct/Iterative) Solver
	2.1 Method
	2.2 Baseline MPI Parallelization

	3 Related Work
	4 Design of Task-Based Sparse Hybrid Linear Solver for Distributed Memory Heterogeneous Architectures
	4.1 Overall Design of the MPI+task Extension of MaPHyS
	4.2 The StarPU Task-Based Runtime System

	5 Experimental Results
	6 Concluding Remarks
	References

	Automatic Generation of OpenCL Code for ARM Architectures
	1 Introduction
	2 The Development Model in Android
	3 Paralldroid
	4 OpenCL Code Generation
	4.1 Execution Model
	4.2 Data Model
	4.3 Paralldroid Example
	4.4 Error Handling

	5 Computational Results
	6 Conclusion
	References

	Workflow Performance Profiles: Development and Analysis
	1 Introduction
	2 Performance Profiles of Scientific Workflows
	2.1 End-to-End Approach to Performance Profiles Generation
	2.2 Generating Performance Profiles in Practice with HPC

	3 Experimental Evaluation
	3.1 Scientific Workflow Application
	3.2 Experiment Configuration and Execution Environment
	3.3 Experimental Results and Discussion

	4 Related Work
	5 Conclusions and Future Work
	References

	A Data-Parallel ILUPACK for Sparse General and Symmetric Indefinite Linear Systems
	1 Introduction
	2 Solution of Sparse Linear Systems with ILUPACK
	2.1 Computation of the Preconditioner
	2.2 Iterative Solution and Application of the Preconditioner

	3 Data-Parallel Variants of ILUPACK
	3.1 Unsymmetric Linear Systems
	3.2 Symmetric Indefinite Linear Systems
	3.3 Parallelization of SpMV and Other Kernels

	4 Experimental Evaluation
	4.1 Test Cases
	4.2 Evaluation of GMRES and BiCG
	4.3 Evaluation of SQMR

	5 Concluding Remarks and Future Work
	References

	Performance and Power-Aware Classification for Frequency Scaling of GPGPU Applications
	1 Introduction
	2 Application Classification for GPGPU DVFS
	3 Experimental Results
	3.1 Classification Parameters
	3.2 Performance-Aware Algorithm Evaluation
	3.3 Power-Aware Algorithm Evaluation
	3.4 Energy Clusters

	4 Conclusion
	References

	IWMSE - International Workshop on Multicore Software Engineering
	A Context-Aware Primitive for Nested Recursive Parallelism
	1 Introduction
	2 Motivation and Main Idea
	3 Method
	3.1 The rec Operator
	3.2 The prec Operator
	3.3 The Runtime System
	3.4 Implementation

	4 Evaluation
	4.1 Fibonacci
	4.2 The prec Impact
	4.3 Application Benchmarks

	5 Related Work
	6 Conclusion and Future Work
	References

	Achieving High Parallel Efficiency on Modern Processors for X-Ray Scattering Data Analysis
	1 Introduction and Background
	2 Computational Kernels
	2.1 An Analytical Form Factor Kernel
	2.2 A Numerical Form Factor Kernel

	3 Computational Platforms and Performance Modeling
	4 Threading
	5 Vectorization
	5.1 Compiler-Based Auto-Vectorization
	5.2 Intel Math Kernel Library Vector Functions
	5.3 Hand-Vectorization
	5.4 Vectorizing Analytical Cylinder Form Factor Kernel
	5.5 Vectorizing Numerical Form Factor Kernel

	6 Roofline Performance Modeling
	7 Conclusions and Further Discussions
	References

	Exploiting a Parametrized Task Graph Model for the Parallelization of a Sparse Direct Multifrontal Solver
	1 Introduction
	2 Related Work
	2.1 Parallel Programming Models for Task-Based Algorithms
	2.2 Task-Based Runtime Systems for Modern Architectures

	3 Multifrontal QR Method
	4 Design of a Task-Based Multifrontal QR Factorization with Explicit Dependencies
	4.1 The Factorization
	4.2 qr_1d.jdf, qr_2d.jdf
	4.3 assembly.jdf
	4.4 Discussion

	5 Early Experimental Results
	6 Concluding Remarks
	References

	Parallel String Matching
	1 Introduction
	2 Problem Definition
	3 Related Work
	4 Implementation
	4.1 Knuth-Morris-Pratt
	4.2 Shift-Or
	4.3 Hash3
	4.4 SSEF
	4.5 Variants of the Backward-Oracle-Matching
	4.6 Exact-Packed-String-Matching

	5 Evaluation
	5.1 Results

	6 Conclusion
	References

	Speed-Up Computational Finance Simulations with OpenCL on Intel Xeon Phi
	1 Introduction
	2 Background
	2.1 Scenario Based ALM
	2.2 The OpenCL Programing Lanaguage
	2.3 Intel Xeon Phi Co-processor

	3 OpenCL Implementation
	3.1 Scenario Based ALM
	3.2 OpenCL Implementation
	3.3 Optimizations

	4 Results
	4.1 Performance Impact of the Optimizations
	4.2 Speed-Up Scalability

	5 Conclusion and Future Work
	References

	LSDVE - Workshop on Large-Scale Distributed Virtual Environments
	TallyNetworks: Protecting Your Private Opinions with Edge-Centric Computing
	1 Introduction
	2 Related Work
	3 Background: Blind Signatures
	4 TallyNetworks
	4.1 Main Idea
	4.2 Entities
	4.3 Security Threats
	4.4 Protocol Steps
	4.5 One-Hop Architecture: Membership
	4.6 Kademlia CAST and SYNC

	5 Analysis
	5.1 Security Analysis
	5.2 Experimental Analysis

	6 Conclusion
	References

	Balancing Speedup and Accuracy in Smart City Parallel Applications
	1 Introduction
	2 Smart Avenue Scenario
	3 Petri Net Model for the Computation
	4 Performance Results: Speedup and Accuracy of Computation
	4.1 Computation Time and Speedup
	4.2 Accuracy of the Computation

	5 Conclusion and Future Work
	References

	Multi-objective Optimization Framework for VMI Distribution in Federated Cloud Repositories
	1 Introduction
	2 Background
	2.1 Multi-objective Optimization
	2.2 Elitist Non-dominated Sorting Genetic Algorithm - NSGA-II

	3 Multi-objective Optimization Framework for VMI Distribution
	3.1 Framework Description
	3.2 Initial VM Image Upload
	3.3 Offline VM Image Redistribution

	4 Experimental Evaluation
	5 Conclusion and Future Work
	References

	Adgt.js: A Web Application Framework for Peer-to-Peer Location-Based Services
	1 Introduction
	2 Adaptive Distributed Geographic Table (ADGT)
	3 Technologies
	3.1 WebRTC
	3.2 WebSocket
	3.3 Geolocation
	3.4 ECMAScript

	4 Implementation
	5 Realizing LBSs with Adgt.js
	6 Related Work
	7 Conclusion
	References

	VM Image Repository and Distribution Models for Federated Clouds: State of the Art, Possible Directions and Open Issues
	1 Introduction
	2 Existing VMI Repository Systems
	2.1 VMRC
	2.2 OpenStack Glance
	2.3 Amazon Image Service

	3 State of the Art
	3.1 VM Image Storage Repository
	3.2 VMI Distribution
	3.3 Unicast Distribution

	4 Discussion
	4.1 Summary
	4.2 Possible Directions and Open Issues

	5 Conclusion
	References

	TRACE: Generating Traces from Mobility Models for Distributed Virtual Environments
	1 Introduction
	2 Related Works
	3 The Tool
	4 Case Study: Blue Banana
	5 Experimental Results
	5.1 Evaluating the Crowding Generated
	5.2 Evaluating the Bandwidth to Transmit Objects
	5.3 Evaluating the Computational Time and Scalability

	6 Conclusions
	References

	Towards a Methodology to Form Microservices from Monolithic Ones
	1 Introduction
	2 Related Work
	3 The ENTICE Project
	4 The Proposed Methodology
	4.1 Recipe Based Image Synthesis
	4.2 Targeted Size Optimisation

	5 Conclusion
	References

	Misrouted Prophecy -- On the Impact of Security Attacks on PRoPHET
	1 Introduction
	2 PRoPHET Routing Protocol
	3 Related Work
	4 Attack Tree
	4.1 Attack Types

	5 Evaluation
	5.1 Simulation Setup
	5.2 Metrics
	5.3 Simulation Results

	6 Summary
	6.1 Conclusion
	6.2 Future Work

	References

	PADABS -Workshop on Parallel and Distributed Agent-Based Simulations
	A Standardised Benchmark for Assessing the Performance of Fixed Radius Near Neighbours
	1 Introduction
	2 Related Research
	3 Benchmark Model
	3.1 Model Specification
	3.2 Effective Usage

	4 Assessed Frameworks
	5 Results
	6 Conclusion
	References

	D-MASON on the Cloud: An Experience with Amazon Web Services
	1 Introduction
	2 Background
	2.1 D-Mason
	2.2 Amazon Web Services
	2.3 StarCluster

	3 D-Mason on the Cloud
	3.1 D-Mason Web System Management

	4 Performance and Cost Evaluation
	5 Conclusion
	References

	Load-Sharing Policies in Parallel Simulation of Agent-Based Demographic Models
	1 Introduction
	2 Related Work
	3 Reference Programming Model
	4 Load-Sharing Policies
	4.1 Policy 1---Future Event List and GVT Advancement
	4.2 Policy 2---Implicit Synchronization
	4.3 Policy 3---Implicit and Explicit Synchronization

	5 Experimental Results
	6 Conclusions
	References

	Computational Considerations for a Global Human Well-Being Simulation
	1 Introduction
	1.1 Related Work

	2 Creating a Global Scale Human Well-Being Simulation
	2.1 A Target Framework
	2.2 Algorithm Analysis
	2.3 Tests at 1 Billion

	3 Toward a Modular Framework for 10 Billion
	3.1 Computational Limits
	3.2 Vision of a Global Collaboration Platform
	3.3 Future Work

	References

	PBIO - International Workshop on Parallelism in Bioinformatics
	High Performance Small RNA Detection with Pipelined Task Parallel Computation Model
	1 Introduction
	2 Related Work and Background
	2.1 Covariance Model Based Alignment

	3 Cmsearch Filtering Pipeline
	3.1 Stage 1
	3.2 Stage 2
	3.3 Stage 3
	3.4 Stage 4

	4 Proposed Approaches: Pipelined Task Parallel Computation Models
	4.1 Pipelined Task Parallel (PTP) Computation Model
	4.2 PTP Computation Model with Static Load Balancing
	4.3 PTP Computation Model with Dynamic Load Balancing

	5 Experimental Results
	6 Conclusion
	References

	Improving Memory Accesses for Heterogeneous Parallel Multi-objective Feature Selection on EEG Classification
	1 Introduction
	2 Multi-objective Feature Selection
	3 OpenCL Codes for Multi-objective Feature Selection
	4 Experimental Results
	5 Conclusions
	References

	Improving Multiobjective Phylogenetic Searches by Using a Parallel -Dominance Based Adaptation of the Firefly Algorithm
	1 Introduction
	2 Phylogenetic Reconstruction Problem
	3 A Parallel -Dominance Based Proposal
	4 Experimental Results
	5 Conclusions
	References

	Evaluation of Parallel Differential Evolution Implementations on MapReduce and Spark
	1 Introduction
	2 Background and Related Work
	3 Implementing DE on MR and Spark
	4 Experimental Results
	5 Conclusions
	References

	Performance Analysis and Optimization of SAMtools Sorting
	1 Introduction
	2 Related Work
	3 Performance Profiling
	4 Optimizations
	5 Benchmark Results
	6 Future Work
	7 Conclusions
	References

	Ultra-Fast Detection of Higher-Order Epistatic Interactions on GPUs
	1 Introduction
	2 Background
	3 CUDA Implementation
	3.1 Data Preparation
	3.2 Clustering
	3.3 Candidate Selection
	3.4 Exhaustive Search

	4 Experimental Evaluation
	5 Conclusion
	References

	A Framework for Accessible Cluster-Enabled Epistatic Analysis
	Abstract
	1 Introduction
	2 Galaxy Implementation
	2.1 Workflow Steps

	3 Infrastructure
	4 Validation
	5 Conclusions and Future Work
	Acknowledgment
	References

	Two-Level Parallelism to Accelerate Multiple Genome Comparisons
	1 Introduction
	2 Related Work
	3 System and Methods
	3.1 The Pairwise Genome Comparison Application
	3.2 Generic Overview of the Parallelization Approaches
	3.3 Details of the Parallelization Strategies of the Second Level

	4 Results
	4.1 Infrastructure
	4.2 Dataset
	4.3 Speedup of the Performed Two-Level Parallelization

	5 Discussion
	5.1 Speedup of the Multiple Genome Comparison Study
	5.2 Dictionary Step Speedup
	5.3 Hits Step Speedup
	5.4 Sort Hits Step Speedup
	5.5 FragHits Step Speedup
	5.6 Overall Application Speedup in a Pairwise Comparison
	5.7 Time Reduction

	6 Conclusions
	References

	Improving Bioinformatics Analysis of Large Sequence Datasets Parallelizing Tools for Population Genomics
	1 Introduction
	2 GH Caller
	3 Parallelization
	4 Experimentation and Results
	5 Conclusions and Future Work
	References

	A Data Partitioning Model for Highly Heterogeneous Systems
	1 Introduction and Motivation
	2 Related Work
	3 Preliminary Considerations
	4 Our Data-Partitioning Model
	4.1 The Learning Stage
	4.2 Model for Finding the Optimal Mapping

	5 Experiments and Evaluation
	6 Conclusions and Future Work
	References

	Seamless HPC Integration of Data-Intensive KNIME Workflows via UNICORE
	1 Introduction
	2 Utilized Methods and Implementation
	2.1 Fiji/ImageJ2 and KNIME
	2.2 HPC Middleware UNICORE
	2.3 Workflow Integration on a Cluster

	3 Results
	3.1 Seamlessness Cluster Integration
	3.2 Evaluation of Job Scaling
	3.3 Middleware Induced Overhead
	3.4 Runtimes for Increasingly Large Datasets

	4 Conclusion
	5 Outlook
	References

	Optimized Execution Strategies for Sequence Aligners on NUMA Architectures
	1 Introduction
	2 Related Work
	3 NUMA Systems
	4 Sequence Aligners
	5 Allocation Strategies and Data Partitioning
	5.1 Analysis and Optimization of Shared Data Distribution (Part A)
	5.2 Data Replication and Partitioning Strategies (Part B)

	6 Experimental Results
	7 Conclusions
	References

	Architecture for the Execution of Tasks in Apache Spark in Heterogeneous Environments
	1 Introduction
	2 Related Work
	3 Background
	3.1 Apache Spark
	3.2 Python and PyCUDA

	4 GPU Support for Heterogeneous Platforms in Spark
	5 Medical Image Processing Use Case
	6 Evaluation
	6.1 Overall Execution Time
	6.2 Occupancy of the GPUs in the Different Policies
	6.3 Evaluation with Multiple Nodes

	7 Conclusions
	References

	PELGA - Performance Engineering for Large-Scale Graph Analytics
	Parametric Multi-step Scheme for GPU-Accelerated Graph Decomposition into Strongly Connected Components
	1 Introduction
	2 Parallel Algorithms for SSC Decomposition
	2.1 Parallel Graph Algorithms for GPUs
	2.2 Forward-Backward algorithm
	2.3 Coloring Algorithm
	2.4 Other Algorithms

	3 Multi-step Parametric Scheme for SCC Decomposition
	3.1 Parametric Multi-step Algorithm
	3.2 Parallelisation Strategy for Graph Traversal

	4 Experimental Results
	5 Conclusions
	References

	Investigations on Path Indexing for Graph Databases
	1 Introduction
	2 Graphs and Path Queries
	3 Path Indexing
	3.1 Index Design
	3.2 Index Compression
	3.3 Index Initialization: Full vs. Workload-Based Indexing

	4 Evaluation
	4.1 Index Compression Evaluation
	4.2 Index Size Evaluation
	4.3 Query Execution Evaluation

	5 Concluding Remarks
	References

	Improving Performance of Distributed Graph Traversals via Application-Aware Plug-In Work Scheduler
	1 Introduction
	2 Background
	2.1 Basic Distributed Control Algorithm
	2.2 -Stepping

	3 Interaction of DC with the HPX-5 Scheduler
	4 Distributed Control with Adaptive Frequency and Flow Control
	4.1 Flow Control
	4.2 Adapting Frequency of Network Progress

	5 Experimental Results
	5.1 Experimental Setup
	5.2 Comparison of -Stepping and Five Versions of DC Algorithms
	5.3 Performance of DCaf,fc with various send_threshold and sync_threshold value

	6 Related Work
	7 Conclusion
	References

	Synthetic Graph Generation for Systematic Exploration of Graph Structural Properties
	1 Introduction
	2 Design and Implementation
	2.1 Requirements
	2.2 Evolutionary Computing for Graph Generation
	2.3 Solution Representation
	2.4 Implementation

	3 Related Work
	4 Initial Results and Analysis
	5 Summary and Next Steps
	References

	Towards the Next Generation of Large-Scale Network Archives
	1 Introduction
	2 State-of-the-Art in Network Datasets
	2.1 Real-World Network Repositories
	2.2 Synthetic Network Generators

	3 Requirements for Next-Generation Network Archives
	4 Design of GraphPedia
	4.1 Data Model of Graphs
	4.2 Virtual Meeting Space
	4.3 Storage Formats
	4.4 Network Metrics
	4.5 User-Interface
	4.6 Generated Graphs
	4.7 Provenance and Impact
	4.8 Architecture

	5 Open Challenges
	6 Conclusion
	References

	REPPAR - International Workshop on Reproducibility in Parallel Computing
	Computation-Aware Dynamic Frequency Scaling: Parsimonious Evaluation of the Time-Energy Trade-Off Using Design of Experiments
	1 Introduction
	2 Related Work
	3 Background on Design of Experiments
	4 DoE-Based Methodology to Find Time-Energy Trade-Offs
	4.1 Screening Parallel Code Regions, ANOVA and Main Effects Plot
	4.2 Full Factorial Design, ANOVA and Pareto Analysis

	5 Experimental Evaluation
	5.1 Full Analysis of Graph500 Benchmark
	5.2 Global Results Considering Remaining Benchmarks

	6 Conclusion
	References

	The Information Needed for Reproducing Shared Memory Experiments
	1 Introduction
	2 The Problem of Insufficient Description
	3 The Operating System Impact
	3.1 Core Pinning
	3.2 Variations Across OS Versions

	4 The Hardware Impact
	4.1 Core Multi-threading
	4.2 Dynamic Frequency Adjustment

	5 The Programming Language Impact
	5.1 JVM Optimizations
	5.2 Compiler Optimizations

	6 Benchmarks
	6.1 Lack of Documentation
	6.2 Parameter Definitions

	7 Conclusion
	References

	Reproducible, Accurately Rounded and Efficient BLAS
	1 Introduction and Background
	2 Sequential RARE BLAS
	2.1 Sequential Algorithms for the Level 1 BLAS
	2.2 Sequential Algorithms for the Level 2 BLAS

	3 Parallel RARE BLAS
	3.1 Parallel Algorithms for the Level 1 BLAS
	3.2 Parallel Algorithms for the Level 2 BLAS

	4 Test and Results
	4.1 Experimental Framework
	4.2 Implementation and Performance Results
	4.3 Accuracy Results

	5 Conclusion and Future Work
	References

	RESILIENCE - Workshop on Resiliency in High Performance Computing in Clusters, Clouds, and Grids
	Horseshoes and Hand Grenades: The Case for Approximate Coordination in Local Checkpointing Protocols
	1 Introduction
	2 Background
	3 Experimental Approach
	3.1 Modeling Local Checkpoint/Restart
	3.2 Simulating the Role of Coordination
	3.3 Application Descriptions

	4 Results
	5 Related Work
	6 Conclusions and Future Work
	References

	A Massively-Parallel, Fault-Tolerant Solver for High-Dimensional PDEs
	1 Introduction
	2 The Sparse Grid Combination Technique
	3 A Software Framework for a Massively Parallel Combination Technique
	4 The Fault-Tolerant Combination Technique
	4.1 Implementation of the FTCT
	4.2 Fault Simulation Layer

	5 Experimental Setup
	6 Results
	6.1 Convergence
	6.2 Scalability

	7 Conclusions
	References

	On the Inherent Resilience of Integer Operations
	1 Introduction
	2 Theory of Multiplicative Resilience
	2.1 Multiplicative Resilience from Overflow Implementation
	2.2 Probability of Benign Faults on a Uniform Fault Model
	2.3 Implications

	3 Experimental Verification via Exhaustive Multiplication Testing
	3.1 Exhaustive Search
	3.2 Sampled Search
	3.3 Comparison of Experimentation to Theoretical Model

	4 Experimental Verification via Matrix Multiplication Micro-Benchmark
	4.1 ABFT-MM Experimentation and Results

	5 Preliminary Results on Other Operations
	5.1 Experimental Results
	5.2 Partial Theory of Division Resilience

	6 Conclusion
	References

	Pragma-Controlled Source-to-Source Code Transformations for Robust Application Execution
	1 Introduction
	2 Pragma-Based Code Transformation Directives
	2.1 Hardware Error Detection and Correction
	2.2 Tolerant Storage Declaration
	2.3 Sentinel Values for Silent Data Corruption Detection
	2.4 User-Controlled State Saving and Restoring with Retry
	2.5 Redundancy-Based Fault Detection and Recovery

	3 Experimental Evaluation
	4 Implementation Status
	5 Related Work
	6 Conclusion and Future Work
	References

	A Cooperative Approach to Virtual Machine Based Fault Injection
	1 Introduction
	2 Background
	2.1 Virtualization
	2.2 Virtual Machine Introspection
	2.3 Fault Injection

	3 Cooperative Approach to Fault Injection
	3.1 Fault Injection Mechanism

	4 Evaluation
	4.1 Setup
	4.2 Guest Application Errors
	4.3 Discussion and Observations

	5 Conclusion
	References

	ROME - Workshop on Runtime and Operating Systems for the Many-Core Era
	Dealing with Layers of Obfuscation in Pseudo-Uniform Memory Architectures
	1 Introduction
	2 Related Work
	3 Measuring Latency: Reading from Caches vs. Memory
	4 Two Layers of Interleaving on the Xeon Phi KNC
	5 Implications for pUMA-Aware Coordination
	References

	Exploring Task Parallelism for Heterogeneous Systems Using Multicore Task Management API
	1 Introduction
	2 Related Work
	3 MTAPI Overview
	4 MTAPI Design and Usage
	4.1 Job Scheduling and Actions
	4.2 Inter-Node Communication

	5 Performance Evaluation
	6 Conclusion and Future Work
	References

	Reducing Response Time with Preheated Caches
	1 Introduction
	2 Background and Related Work
	3 Design
	3.1 Working Set Estimation
	3.2 Network Packet Prediction
	3.3 Preheating

	4 Evaluation
	4.1 Response Time Reduction
	4.2 Preheating Cost

	5 Discussion
	6 Conclusion and Outlook
	References

	Viability of Virtual Machines in HPC
	1 Introduction
	2 Virtual Machines
	3 Hardware Overview
	4 Applications/Benchmarks
	4.1 mpiBLAST
	4.2 LAMA

	5 Performance and Energy Consumption
	5.1 Memory Bandwidth Applications
	5.2 Compute Bound Applications

	6 Benefits of Virtualization
	6.1 Isolation
	6.2 Transparent Start, Stop, and Migrate

	7 State of the Art
	7.1 HPC Hardware/Software Support
	7.2 Increased Complexity

	8 Related Work
	9 Conclusion
	References

	UCHPC - UnConventional High-Performance Computing
	The ICARUS White Paper: A Scalable, Energy-Efficient, Solar-Powered HPC Center Based on Low Power GPUs
	1 Introduction
	2 System Design
	2.1 System Overview
	2.2 The Tegra K1 Cluster
	2.3 Power Supply, Housing, Cooling

	3 Exploring the System's Limits
	3.1 Hardware- and Energy Efficiency, Scalability
	3.2 Energy Supply, Temperature and Humidity

	4 Conclusion, Discussion, and Future Work
	References

	Exploiting In-Memory Processing Capabilities for Density Functional Theory Applications
	1 Introduction
	2 Application Background
	3 Active Memory Cubes
	4 Applications and Performance Characteristics
	5 Implementation on AMC
	6 Performance Analysis
	7 Discussion of AMC Architecture
	8 Related Work
	9 Conclusions
	References

	Are Low-Power SoCs Feasible for Heterogenous HPC Workloads?
	1 Introduction
	2 Related Work
	3 Hardware Targets
	4 Benchmark Procedure
	5 Results and Discussion
	5.1 Heterogenous Properties
	5.2 Improvements of ARMv8-A
	5.3 Competitiveness with x86_64

	6 Conclusion
	References

	In-Cache Streaming: Morphable Infrastructure for Many-Core Processing Systems
	1 Introduction
	2 Data Streaming with Compiler-Assisted Prefetching
	2.1 Dynamic and Static Prefetching
	2.2 Stream-Based Communication and Data Reutilization

	3 In-Cache Streaming Architecture
	3.1 Hybrid Cache/Stream Infrastructure
	3.2 Interface Configuration and Parameterization
	3.3 Unified Message-Passing Protocol

	4 Experimental Evaluation
	4.1 Hardware Resource Overhead
	4.2 Performance Evaluation

	5 Conclusion
	References

	A Low-Cost Energy-Efficient Raspberry Pi Cluster for Data Mining Algorithms
	1 Introduction
	2 Motivation and Related Work
	3 Experimental Platforms
	3.1 Intel Xeon Phi
	3.2 Raspberry Pi Cluster

	4 Data Mining Algorithms
	4.1 Association Rule Learning
	4.2 K-Means Clustering

	5 Experimental Results
	5.1 Setup and Implementation Details
	5.2 Evaluation

	6 Concluding Remarks
	References

	Theano-MPI: A Theano-Based Distributed Training Framework
	1 Introduction
	2 Related Work
	3 Implementation
	3.1 Hardware and Software Environment
	3.2 The BSP Structure
	3.3 CUDA-Aware Parameter Exchanging
	3.4 Parallel Loading

	4 Benchmarking
	5 Discussion
	References

	Acceleration of Turbomachinery Steady Simulations on GPU
	1 Introduction
	1.1 Sparse Linear Systems in Turbomachinery
	1.2 Related Work
	1.3 Contributions

	2 Numerical Scheme
	3 Flow Solver Implementation
	3.1 GPU Computing
	3.2 System Assembly
	3.3 Linear Solver with on-demand Factorization

	4 Results
	4.1 Assembly Acceleration
	4.2 Linear Solver Acceleration
	4.3 Global Acceleration of the Flow Solver

	5 Conclusion
	References

	Author Index

