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Abstract In this survey, we review recent results concerning the canonical dis-
persive flow eitH led by a Schrödinger Hamiltonian H. We study, in particular,
how the time decay of space Lp-norms depends on the frequency localization of
the initial datum with respect to the some suitable spherical expansion. A quite
complete description of the phenomenon is given in terms of the eigenvalues and
eigenfunctions of the restriction of H to the unit sphere, and a comparison with
some uncertainty inequality is presented.
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1 Introduction

For  D  .t; x/ W R � R
d ! C, let us consider the free Schrödinger equation

@t D i� ;  .0; x/ D  0.x/: (1)

Solving (1) with initial datum  0.x/ 2 L2.Rd/ is to find a wavefunction  2
C 1.RIL2.Rd// such that b .t; �/ D e�itj�j2

b 0.�/, the hat denoting the Fourier
transform in the x-variable

b .t; �/ WD
Z

Rd
e�itx�� .t; x/ dx:

Computing the distributional Fourier transform of e�itj�j2 , one finds that the unique
solution to (1), in the above sense, is given by

 .t; x/ D .4�it/� d
2 ei

jxj2

4t �  0.x/ D .4�it/� d
2 ei

jxj2

4t

Z

Rd
ei

x�y
2t ei

jyj2

4t  0.y/ dy: (2)
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From now on, we will denote by eit� the one-parameter flow on L2.Rd/ defined by
formula (2), namely eit� 0.�/ D  .t; �/, being  as in (2). By Plancherel Theorem
it follows that eit� is unitary on L2.Rd/, namely

�

�eit� 0.�/
�

�

L2.Rd/
D k 0kL2.Rd/; 8t 2 R: (3)

By (2), it also immediately follows that

�

�eit� 0.�/
�

�

L1.Rd/
6 Cjtj� d

2 k 0kL1.Rd/; 8t 2 R; (4)

with a constant C > 0 independent on t and  0. The last inequality, together
with (3), gives by Riesz-Thorin the full list of time decay estimates for the free
Schrödinger equation

�

�eit� 0.�/
�

�

Lp.Rd/
6 Cjtj�d

�

1
2� 1

p

�

k 0kLp0
.Rd/; 8t 2 R; 8p > 2 (5)

where the constant C only depends on p and d. Inequalities (5) turn out to be a
crucial tool in Scattering Theory and Nonlinear Analysis; in particular, a suitable
time average of the same leads to the so called Strichartz estimates (see the standard
reference [23]), which play a fundamental role both for fixed point results and as
Restriction Theorems for the Fourier transform:

�

�eit� 0
�

�

L
q
t Lrx

6 Ck 0kL2.Rd/; (6)

with 2=q D d=2� d=r, q > 2 and .q; r; d/ ¤ .2;1; 2/, and

�

�eit� 0.�/
�

�

Lp.Rd/
WD
�

�

�

�

�eit� 0.�/
�

�

Lr.Rd/

�

�

�

Lq.R/
:

From now on, we point our attention on estimate (4) and try to give it a deeper
insight. First of all, it is clear by (2) that a crucial role is played by the plane wave
K.x; y/ WD ei

x�y
2t which is uniformly bounded with respect to the x; y variables, for

any fixed time t ¤ 0, i.e.

sup
x;y2Rd

ˇ

ˇ

ˇei
x�y
2t

ˇ

ˇ

ˇ D 1 < 1; 8t ¤ 0: (7)

We stress that a completely analogous behavior occurs when one solves, for positive
times, the Heat Equation

@tu D �u; u.0; x/ D u0.x/ 2 Lp.Rd/; (8)
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since the solution is given by the convolution

u.t; x/ D .4�t/�
d
2 e

�jxj2

4t � u0.x/; .t > 0/ (9)

for all p 2 Œ1;C1�. This shows that (8) satisfies the same a priori estimates (5) as
equation (1). Notice that (1) and (8) enjoy the same scaling invariance: namely, if  
and u solve (1) and (8), respectively, then the rescaled function  �; u�, where

f�.t; x/ WD f
� t

�2
;
x

�

�

� > 0:

solve the same equations as  and u, respectively, for any � > 0. In addition,
the Gaussian decay in (9) is much smoother than the oscillating character of the
fundamental solution in (2), and leads to much stronger phenomena than the ones
led by the dispersive flow eit�. Nevertheless, from the point of view of estimate (4)
the behavior is the same for the flows et�; eit�, when t > 0. Our first question is the
following:

A is the time decay of the flows et�; eit� related to the lowest frequency behavior of
the corresponding fundamental solutions?

We now pass to a more precise analysis of the decay estimate in (4), to describe some
additional phenomenon which is hidden in formula (2). To this aim, let us recall
the Jacobi-Anger expansion of plane waves, which combined with the Addition
Theorem for spherical harmonics (see for example [21, formula (4.8.3), p. 116] and
[2, Corollary 1]) yields

eix�y D .2�/d=2
�jxjjyj�� d�2

2

1
X

`D0
i`J`C d�2

2

�jxjjyj�
� m
X̀

mD1
Y`;m

�

x
jxj
�

Y`;m
� y

jyj
�

�

(10)

for all x; y 2 R
d. Here J� denotes the �-th Bessel function of the first kind

J�.t/ D
�

t

2

�� 1
X

kD0

.�1/k
� .k C 1/� .k C � C 1/

�

t

2

�2k

and the Y`;m are usual spherical harmonics. Recalling that J�.t/ � t� , for � > 0, as t
goes to 0, we see that an additional time-decay, for t large is hidden in formula (2),
in the term ei

x�y
t . Roughly speaking, we expect that initial data localized at higher

frequencies (with respect to the spherical harmonics expansion) decay polynomially
faster along a Schrödinger evolution, in suitable topologies. This leads to our second
question:

B how can the above described phenomenon be quantified, and how stable is it
under lower-order perturbations?
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Looking to identity (10), the presence of spherical harmonics and special functions
gives the hint that the spherical laplacian is playing an important role in the
description of the abovementioned phenomena. The aim of this survey is to describe
this role, giving partial answers to the above questions and leaving some open
problems, corroborated by some recent results.

2 A Stationary Viewpoint: Hardy’s Inequality

We devote a preliminary section to introduce an interesting stationary viewpoint of
the above picture, related to some uncertainty inequalities. To this aim, we recall the
well known Hardy’s inequality:

.d � 2/2
4

Z

Rd

j .x/j2
jxj2 dx 6

Z

Rd
jr .x/j2 dx; .d > 3/ (11)

which holds for any function  2 PH1.Rd/, being PH1.Rd/ the completion of
C1
c .Rd/ with respect to the seminorm

k fk2PH1.Rd/
WD
Z

Rd
jrf j2 dx;

taking its quotient by the equivalence relation

f � g if 9c 2 R W f D g C c:

The constant in front of inequality (11) is sharp, and it is not attained on any function
 for which the right-hand side is finite, as we see in a while. Inequality (11) can be
rewritten in operator terms as

�� � �

jxj2 > 0; 8� 6 .d � 2/2
4

.d > 3/: (12)

This has to be interpreted in the sense of the associated quadratic form. The proof
of (11) relies on the following fact: given a symmetric operator S and a skew-
symmetric operatorA on L2, one can (formally) compute

0 6
Z

Rd
j.A C S / j2 dx D

Z

Rd
jA  j2 dxC

Z

Rd
jS j2 dx�

Z

Rd
 ŒA ;S �  dx;

where ŒA ;S � D AS � SA . Then the choices

A WD r; S WD d � 2

2

x

jxj2 ) ŒA ;S � D .d � 2/2
2jxj2
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immediately give (11) for functions  smooth enough, and a regularization
argument completes the proof. Also notice the equality in (11) is attained when
.A C S / � 0, which yields the maximizing function  .x/ D jxj1� d

2 , and we
see that jr j … L2, as mentioned above. In addition, one immediately realizes that,
given eA D @r D r � x

jxj , then

Œ eA ;S � D ŒA ;S � D .d � 2/2
2jxj2 ;

which yields the more precise inequality

.d � 2/2
4

Z

Rd

j .x/j2
jxj2 dx 6

Z

Rd
j@r .x/j2 dx; .d > 3/ (13)

In other words, inequality (13) shows that the angular component of �� is not
playing a role in (11)–(12). To understand this fact, it is convenient to use spherical
coordinates and write

� D @2r C d � 1

r
@r C 1

r2
�Sd�1 ; (14)

being�Sd�1 the spherical laplacian, i.e. the Laplace-Beltrami operator on the .d�1/-
dimensional unit sphere.We recall that��Sd�1 is a (positive) operator with compact
inverse, hence it has purely point spectrum which accumulates at infinity, which is
explicitly given by the set

	 .��Sd�1 / D 	p .��Sd�1 / D f`.`C d � 2/g`D0;1;2;:::: (15)

Spherical harmonics fY`;mg are associated eigenfunctions, which form a complete
orthonormal set in L2.Sd�1/. Denoting by H` the eigenspace associated to the
`-th eigenvalue of ��Sd�1 , by D` its algebraic dimension, and by H`;m the space
generated by Y`;m, we have the well known decomposition

L2.Sd�1/ D
M

l>0
16m6D`

H`;m

Therefore any function  2 L2.Rd/ has a (unique) expansion

 .x/ D
1
X

`D0

D
X̀

mD1
 `;m.r/Y`;m.!/ x D r!; r WD jxj (16)



140 L. Fanelli

and moreover

k f .r!/kL2.Sd�1/ D
X

`>0
16m6D`

j f`;mj2:

We can hence use (14) to write

Z

Rd
jr j2 dx D �

Z

Rd
 � dx (17)

D �
Z

Rd
 

�

@2r C d � 1
r

@r 

�

dx
„ ƒ‚ …

DWI

C
Z

Rd

1

jxj2 h ;��Sd�1 iL2.Sd�1/ dx:
„ ƒ‚ …

DWII

where the brackets h�; �iL2.Sd�1/ denote the inner product in L2.Sd�1/. Arguing as
above we see that

I > .d � 2/2

4

Z

Rd

j .x/j2
jxj2 dx; .d > 3/

which is inequality (13). On the other hand, it follows by (15) that

II > 0;

therefore no additional contribution to (11) is given by ��Sd�1 . Nevertheless, given
 2 L2.Rd�1/, if  0;1 D 0 in the expansion (16) (notice that H0;1 coincides with the
space of L2-radial functions), then by (15) it follows that

h ;��Sd�1 iL2.Sd�1/ > .d � 1/k .!/kL2.Sd�1/ if  0;1 D 0

and inequality (13) improves:

Z

Rd
j@r .x/j2 dx >

�

.d � 2/2

4
C .d � 1/

�Z

Rd

j .x/j2
jxj2 dx; .d > 2/  0;1 D 0:

(18)

Notice that the previous gives a non trivial 2D-inequality, holding on functions  
which are orthogonal to L2-radial functions. More in general, given  2 L2.Rd/, let

`0 WD minf` 2 N such that 9m D 1; : : : ;D` W  `;m ¤ 0g:

Then, by (17), the following Hardy’s inequality holds:

Z

Rd
j@r .x/j2 dx >

�

.d � 2/2
4

C `0.`0 C d � 2/
�Z

Rd

j .x/j2
jxj2 dx: .d > 1/

(19)
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Inequality (19) is a quantitative stationary manifestation of the phenomenon
described by question B in the Introduction. Here it is clear that the improvement
comes from the angular component of the free Hamiltonian. In addition, the above
arguments clearly suggest that the sharp constant in front of inequality (19) only
depends the lowest energies, which is reminiscent of questionA in the Introduction.

Having this in mind, we now see how linear lower-order perturbations of the free
spherical Hamiltonian can perturb the spectral picture in (15), with consequences
on the Hardy’s inequality (19).

Example 1 (0-Order Perturbations) For a 2 R, consider the shifted Hamiltonians
in dimension d > 3

H D ��C a

jxj2 ; L D ��Sd�1 C a:

Clearly L only has point spectrum, which is just a shift of (15)

	 .L/ D 	p .L/ D f`.`C d � 2/C ag`D0;1;2;:::
and spherical harmonics are still eigenfunctions. The corresponding Hardy’s
inequality is trivially

�

.d � 2/2
4

C a

�Z

Rd

j .x/j2
jxj2 dx 6

Z

Rd
jr .x/j2 dxCa

Z

Rd

j .x/j2
jxj2 dx: .d > 3/

(20)

More in general, if a D a.!/ W S
d�1 ! R, then it is still true that L as only

point spectrum, but the picture is more complicated. A typical phenomenon is the
formation of clusters of eigenvalues around the (shifted) free eigenvalues. The size
of the clusters depends on some universal dimensional quantity related to a.!/ (see
e.g. the standard references [3, 20, 29, 30, 33] and Lemma 1 below). Moreover, for
the lowest eigenvalue of L we have


0 WD min 	 .L/ D inf
!2Sd�1

a.!/:

One easily see by the same arguments as above that the following Hardy’s inequality
holds

�

.d � 2/2

4
C 
0

�Z

Rd

j .x/j2
jxj2 dx 6

Z

Rd
 H dx: (21)

Example 2 (1st-Order Perturbations) Let A 2 L2loc.R
d/, and recall the diamagnetic

inequality

j.�ir C A/ .x/j > jrj .x/jj:
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This gives for free, together with (11), that

.d � 2/2
4

Z

Rd

j .x/j2
jxj2 dx 6

Z

Rd
j.�ir C A/ .x/j dx; .d > 3/: (22)

We wonder if an improvement to the best constant of inequality (22) can occur, due
to the presence of an angular perturbation of the associated Hamiltonian, in the same
style as in the above example. The main example we have in mind is given by the
2D-Aharonov-Bohm vector potential: for � 2 R, consider let us denote by

A W R2 ! R
2; A.x; y/ WD �

� �y

x2 C y2
;

x

x2 C y2

�

and consider the following quadratic form

qŒ � WD
Z

R2

j.�ir C A/ j2 dx:

Since q is positive, we can consider the Friedrichs’ extension of the self-adjoint
Hamiltonian H WD �r2

A, on the natural form domain induced by q (see Sect. 3
below for details). The angular component of H is the operator

L WD ��ir
S1 C A .!/

�2
; A W S1 ! S

1; A .x; y/ D �

 

�y
p

x2 C y2
;

x
p

x2 C y2

!

:

As above, L has compact inverse and its spectrum is explicitly given by

	.L/ D 	p.L/ D f.�� z/2gz2Z:

Therefore, the lowest eigenvalue is given by


0 WD min 	.L/ D dist .�;Z/2 > 0

and we gain the following 2D-Hardy’s inequality, proved in [24]


0

Z

R2

j .x/j2
jxj2 dx 6

Z

R2

j.�ir C A/ j2 dx: (23)

As soon as � … Z, this is an improvement with respect to the free case A � 0, in
which such an inequality cannot hold for any function  such that jr j 2 L2.R2/
(since the weight jxj�2 is not locally integrable in 2D).
In view of the above considerations, we will restrict our attention, from now on,
to some scaling-critical electromagnetic Hamiltonians and we will present some
recent results which partially answer to questions A and B in the Introduction of
this survey.
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3 Decay Estimates: Main Results

From now on, for any x 2 R
d, we denote by x D r!, r D jxj. Let

A D A.!/ W Sd�1 ! R
d; a D a.!/ W Sd�1 ! R

be 0-degree homogeneous functions, and consider the quadratic form

qŒ � WD
Z

Rd

ˇ

ˇ

ˇ

ˇ

�

�ir C A.!/

r

�

 .x/

ˇ

ˇ

ˇ

ˇ

2

dx C
Z

Rd

a.!/

r2
j .x/j2 dx: (24)

As we see in the sequel, under suitable conditions, a self-adjoint Hamiltonian

H WD
�

�ir C A.!/

r

�2

C a.!/

r2
; (25)

associated to q (Friedrichs’ Extension) is well defined on a domain containing
L2.Rd/, therefore the L2-initial value problem

(

i@t D �iH ;

 .0/ D  0 2 L2.Rd/;
(26)

for the wavefunction  D  .t; x/ W R � R
d ! C makes sense. Here d > 2, and we

choose a transversal gauge for the magnetic vector potential, i.e. we assume

A.!/ � ! D 0 for all ! 2 S
d�1: (27)

Notice that equation (26) is invariant under the scaling u�.x; t/ WD u.x=�; t=�2/,
which is the same of the free Schrödinger equation.

The aim is to understand the role of the spherical operator L associated to H,
defined by

L D � � irSd�1 C A
�2 C a.!/; (28)

where rSd�1 is the spherical gradient on the unit sphere S
d�1. Assuming

a 2 L1.Sd�1IR/;A 2 C 1.Sd�1IRd/, then the spectrum of the operator L
is formed by a diverging sequence of real eigenvalues with finite multiplicity

0.A; a/ 6 
1.A; a/ 6 � � � 6 
k.A; a/ 6 � � � (see e.g. [16, Lemma A.5]),
where each eigenvalue is repeated according to its multiplicity. Moreover we have
that limk!1
k.A; a/ D C1. To each k > 1, we can associate a L2

�

S
d�1;C

�

-
normalized eigenfunction 'k of the operator L on S

d�1 corresponding to the k-th
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eigenvalue 
k.A; a/, i.e. satisfying

8

<

:

L'k D 
k.A; a/ 'k; in Sd�1;
R

Sd�1 j'kj2 dS.�/ D 1:
(29)

In particular, if d D 2, 'k are one-variable 2�-periodic functions, i.e. 'k.0/ D
'k.2�/. Since the eigenvalues 
k.A; a/ are repeated according to their multiplicity,
exactly one eigenfunction 'k corresponds to each index k > 1. We can choose the
functions 'k in such a way that they form an orthonormal basis of L2.Sd�1;C/. We
also introduce the numbers

˛k WD d � 2

2
�
s

�

d � 2
2

�2

C 
k. A; a/; ˇk WD
s

�

d � 2

2

�2

C 
k.A; a/;

(30)

so that ˇk D d�2
2

� ˛k, for k D 1; 2; : : : .
Under the condition


0.A; a/ > � .d � 2/2

4
(31)

the quadratic form q in (24) associated to H is positive definite, and the Friedrichs’
extension of H is well defined, with domain

D WD ˚

f 2 H1�.Rd/ W Hf 2 L2.Rd/
	

; (32)

where H1�.Rd/ is the completion of C1
c .R

d n f0g;C/ with respect to the norm

k fkH1�.Rd/ D
�Z

RN

�

jrf .x/j2 C j f .x/j2
jxj2 C j f .x/j2

�

�

dx

�1=2

:

By the Hardy’s inequality (11), H1�.Rd/ D H1.Rd/ with equivalent norms if d > 3,
while H1�.Rd/ is strictly smaller than H1.Rd/ if d D 2. Furthermore, from condition
(31) and [16, Lemma 2.2], it follows that H1�.Rd/ coincides with the space obtained
by completion of C1

c .R
d n f0g;C/ with respect to the norm naturally associated to

H, i.e.

qŒ �C k k22:

We remark thatH could be not essentially self-adjoint. Indeed, in the caseA � 0,
Kalf, Schmincke, Walter, andWüst [22] and Simon [28] proved that H is essentially
self-adjoint if and only if
0.0; a/ > �� d�2

2

�2C1 and, consequently, admits a unique
self-adjoint extension (which coincides with the Friedrichs’ extension); otherwise,
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i.e. if 
0.0; a/ < �� d�2
2

�2 C 1, H is not essentially self-adjoint and admits infinitely
many self-adjoint extensions, among which the Friedrichs’ extension is the only one
whose domain is included in the domain of the associated quadratic form (see also
[9, Remark 2.5]).

The Friedrichs’ extension H naturally extends to a self adjoint operator on the
dual D? of D and the unitary group e�itH extends to a group of isometries on the
dual ofD which will be still denoted as e�itH (see [6], Section 1.6 for further details).
Then for every  0 2 L2.Rd/,

 .t; x/ WD e�itH 0.x/ 2 C .RIL2.Rd//\ C 1.RID?/;

is the unique solution to (26).
Now, by means of (29) and (30) define the following kernel:

K.x; y/ D
1
X

kD�1
i�ˇk j�˛k .jxjjyj/'k

�

x
jxj
�

'k
� y

jyj
�

; (33)

where

j�.r/ WD r� d�2
2 J�C d�2

2
.r/

and J� denotes the usual Bessel function of the first kind

J�.t/ D
�

t

2

�� 1
X

kD0

.�1/k
� .k C 1/� .k C � C 1/

�

t

2

�2k

:

Notice that (33) reduces to (10), in the free case A � a � 0. The first result we
mention in this survey is the following representation formula for e�itH :

Theorem 1 (L. Fanelli, V. Felli, M. Fontelos, A. Primo—[12]) Let d > 3, a 2
L1.Sd�1;R/ and A 2 C1.Sd�1;RN/, and assume (27) and (31). Then, for any
 0 2 L2.Rd/,

e�itH 0.x/ D e
ijxj2

4t

i.2t/d=2

Z

Rd
K

�

xp
2t
;

yp
2t

�

ei
jyj2

4t  0.y/ dy: (34)

As an immediate consequence, we see by (34) that the analog to condition (7) gives
for H the complete list of usual time decay estimates (5):

Corollary 1 Let d > 3, a 2 L1.Sd�1;R/ and A 2 C1.Sd�1;RN/, and assume (27)
and (31). If

sup
x;y2Rd

jK.x; y/j < 1; (35)
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then

�

�e�itH 0.�/
�

�

Lp.Rd/
6 Cjtj�d

�

1
2� 1

p

�

k 0kLp0
.Rd/; 8t 2 R; 8p > 2; (36)

for some C > 0 independent on  0.
In the two last decades, estimates (36) were intensively studied by several authors.
The following is an incomplete list of results about this topic [1, 7, 8, 10, 11, 17,
18, 25–27, 31, 32, 34–37]. In all these papers, the potentials are sub-critical with
respect to the functional scale of the Hardy’s inequality (11): in other words, the
critical potentials in (25) are never considered, and it does not seem that one could
handle them by perturbation techniques, which are a common factor of all the above
mentioned papers. Now, formula (34) and Corollary 1 give a usual tool to reduce
matters to prove time decay, to a spectral analysis problem. This allowed us to prove
some new positive results concerning with estimates (36). In 2D, the picture is quite
well understood, thanks to the following theorem.

Theorem 2 (L. Fanelli, V. Felli, M. Fontelos, A. Primo—[13]) Let d D 2, a 2
W1;1.S1;R/, A 2 W1;1.S1;R2/ satisfying (27) and 
1.A; a/ > 0, and H be given
by (25). Then, for any  0 2 L2.Rd/ \ Lp

0
.Rd/,

�

�e�itH 0.�/
�

�

Lp.R2/
6 Cjtj�2

�

1
2� 1

p

�

k 0kLp0
.R2/; 8t 2 R; 8p > 2; (37)

for some C > 0 independent on  0.
Theorem 2 is proved in [13]. The core consists in proving that (35) holds, and
a crucial role is played by the following Lemma, which gives a quite explicit
expansion of eigenvalues and eigenfunctions of L, generalizing the results in [20]:

Lemma 1 (L. Fanelli, V. Felli, M. Fontelos, A. Primo—[13]) Let a 2 W1;1.S1/,
ea WD 1

2�

R 2�

0
a.s/ ds, A 2 W1;1.S1/ such that

eA D 1

2�

Z 2�

0

A.s/ ds 62 1

2
Z: (38)

Then there exist k�; ` 2 N such that f
k W k > k�g D f�j W j 2 Z; j jj > `g,
q

�j �ea D .sgn j/
�

eA � 


eA C 1
2

˘

�

C j jj C O
�

1
j jj3
�

; as j jj ! C1

and

�j Dea C
�

j CeA � 


eA C 1
2

˘

�2 C O
�

1
j2

�

; as j jj ! C1: (39)
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Furthermore, for all j 2 Z, j jj > `, there exists a L2
�

S
1;C

�

-normalized
eigenfunction 'j of the operator L on S

1 corresponding to the eigenvalue �j such
that

'j.�/ D 1p
2�

e�i
�

ŒeAC1=2��CR �0 A.t/ dt
�
�

ei.eACj/� C Rj.�/
�

; (40)

where kRjkL1.S1/ D O
�

1
j jj3
�

as j jj ! 1. In the above formula b�c denotes the floor
function bxc D maxfk 2 Z W k 6 xg.
Analogous results to Lemma 1 can be proved (and are in part available) in higher
dimension d > 3. Nevertheless, the higher dimensional scenario is quite more
complicate, and some chaotic behavior of the eigenvalues of L can occur. This makes
the generic validity of (36) completely unclear in dimension d > 3. In this direction,
the only result which is available at the moment is concerned with the 3D-inverse
square electric potential, and reads as follows:

Theorem 3 (L. Fanelli, V. Felli, M. Fontelos, A. Primo—[12]) Let d D 3, A � 0

and a.!/ � a 2 R, with a > � 1
4
.

i) If a > 0, then, for any  0 2 L2.R3/\ Lp
0
.R3/,

�

�e�itH 0.�/
�

�

Lp.R2/
6 Cjtj�3

�

1
2� 1

p

�

k 0kLp0
.R2/; 8t 2 R; 8p > 2;

(41)

for some C > 0 which does not depend on  0.
ii) If � 1

4
< a < 0, let ˛1 as in (30), and define

k kp;˛1 WD
�Z

R3

.1C jxj�˛1/2�pj .x/jp dx
�1=p

; p > 1:

Then the following estimates hold

�

�e�itH 0.�/
�

�

p;˛1
6 C.1C jtj˛0/1� 2

p

jtj3
�

1
2� 1

p

� k kp0 ;˛0 ; p > 2;
1

p
C 1

p0 D 1; (42)

for some constant C > 0 which does not depend on  0.

Remark 1 It is interesting to remark that, in the range �1=4 < a < 0, (41) does not
hold, while the full set of usual Strichartz estimates hold (see [4, 5]). This is now
clearly understood in terms of formula (34): notice that, if a D 
0 < 0, then ˛0 > 0
and a negative-index Bessel function appears in the kernel K given by (33); since
negative-index functions J� are singular at the origin, one cannot either expect the
solution (34) to be in L1.
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This can be proved as a general fact:

Theorem 4 (L. Fanelli, V. Felli, M. Fontelos, A. Primo—[13]) Let d > 3, a 2
L1.Sd�1;R/, A 2 C1.Sd�1;Rd/, and assume (27), (31), and 
0 < 0. Then, for
almost every t 2 R, e�itH.L1/ 6� L1; in particular e�itH is not a bounded operator
from L1.Rd/ to L1.Rd/.
The above phenomenon can be quantified. To this aim, let us restrict our attention
to the case

H D ��C a

jxj2 ; x 2 R
3:

Let us define

Vn;j.x/ D jxj�˛j e� jxj2

4 Pj;n

� jxj2
2

�

 j

� x

jxj
�

; n; j 2 N; j > 1; (43)

where Pj;n is the polynomial of degree n given by

Pj;n.t/ D
n
X

iD0

.�n/i
�

d
2

� ˛j
�

i

ti

iŠ
;

denoting as .s/i, for all s 2 R, the Pochhammer’s symbol

.s/i D
i�1
Y

jD0
.s C j/; .s/0 D 1:

Moreover, for all k > 1, define

Uk D span
˚

Vn;j W n 2 N; 1 6 j < k
	 	 L2.RN/:

The functions Vn;j spans L2.R3/ (see [14] for details). Moreover, as initial data
for (1), these functions have a quite explicit evolution: indeed, denoting by eVn;j WD
Vn;j=kVn;jk2, the following identity holds:

e�itH
eVn;j.x/ D e

it
�

��C a
jxj2

�

Vn;j.x/ (44)

D .1C t2/�
d
4C ˛j

2 jxj�˛j e
�jxj2

4.1Ct2/

kVn;jkL2.Rd/

e
i jxj2 t
4.1Ct2/ e�i�n;j arctan t j

�

x
jxj
�

Pn;j
� jxj2
2.1Ct2/

�

:

Formula (44) has been proved in [14]. Clearly, if a D 
0 > 0, then ˛0 6 0 and the
first functioneV1;0 decays polynomially faster than usual, in a weighted space. This
is reminiscent to questionB in the Introduction, and gives us the following evolution
version of the frequency-dependent Hardy’s inequality (19):
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Theorem 5 (L. Fanelli, V. Felli, M. Fontelos, A. Primo—[14]) Let d D 3, a D

0 > 0, ˛0 as in (30).

(i) There exists C > 0 such that, for all  0 2 L2.R3/ with jxj�˛0 0 2 L1.R3/,

�

�jxj˛0e�itH 0.�/
�

�

L1 6 Cjtj� 3
2C˛0kjxj�˛0 0kL1 :

(ii) For all k 2 N, k > 1, there exists Ck > 0 such that, for all  0 2 U ?
k with

jxj�˛k 0 2 L1.R3/,

�

�jxj˛k e�itH 0.�/
�

�

L1 6 Ckjtj� 3
2C˛kkjxj�˛k 0kL1 :

Some analogous results, only concerningwith the decay of the first frequency space,
had been previously proven in [15, 19].

To complete the survey, we leave some open questions.

(i) Concerning Theorems 2, 3, does any general result hold in dimension d > 3?
(ii) In what extent can one perturb the models in (25)? What is the real role played

by the scaling invariance?
(iii) The proof of formula (34) strongly relies on some pseudoconformal law

associated to the free Schrödinger flow (Appell transform; see [12]). Is there
any analog for other dispersive models, e.g. the wave equation?

(iv) One can use formula (34) to represent the wave operators

W˙ WD L2 � lim
t!˙1 eitHe�itH0 ; H0 WD ��:

What can one prove about the boundedness ofW˙ in Lp.Rd/, in the same style
as in [31, 32, 34–37] (at least in 2D, having in mind Theorem 2.

(v) By standard TT?-arguments, one can obtain some weighted Strichartz esti-
mates by Theorem 5. Which kind of informations do these estimates give for
nonlinear Schrödinger equations associated to H?
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