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Abstract The aim of this work is to derive logarithmic Sobolev inequalities,
with respect to the Fock vacuum state and for the second quantized Hamiltonian
d� .H� � �I/ of an ideal Bose gas with Dirichlet boundary conditions in a finite
volume �, from the free energy variation with respect to a Gibbs temperature
state and from the monotonicity of the relative entropy. Hypercontractivity of the
semigroup e�ˇd� .H�/ is also deduced.
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1 Introduction

In the 1938 the mathematical physicist S.L. Sobolev proved the following inequality

�Z

Rn
j .x/jp dx

�2=p � cn

Z

Rn
jr .x/j2 dx;  2 C1c .R

n/ ;

for n � 3, p D 2n
n�2 and some constant cn > 0. Due to the possible interpretation

of the Dirichlet integral on the right hand side as an energy functional, their are of
great use in mathematical physics and became such a basic tool of investigation in
linear and nonlinear PDE, that is impossible to exaggerate their importance.

In QuantumMechanics, Dirichlet integrals are the quadratic form of the Laplace
operatorH0 WD �� that represent the kinetic energy observable of a finite system of
particles and the use of the inequality above provides, among other things, classes
of possibly unbounded potentials V whose quantum Hamiltonians H0 C V are self-
adjoint on the Lebesgue space L2.Rn; dx/.
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At a more fundamental level, E. Lieb recognized in the Sobolev inequalities
an uncertainty principle which is one of the fundamental ingredients to prove the
Stability of the Matter [8].

In 1976, L. Gross [7] proved the following Logarithmic Sobolev inequality for
f 2 C1c .R

n/ and k fkL2.Rn;�/ D 1

Z

Rn
�.dx/j f .x/j2 log j f .x/j2 �

Z

Rn
�.dx/jrf .x/j2

with respect to the Gaussian probability measure �.dx/ D .2�/�n=2e�jxj2=2dx.
He demonstrated that this inequality is an infinitesimal version of the Nelson’s
hypercontractivity

ke�teHukL4.Rn;�/ � kukL2.Rn;�/; t > 0 ; u 2 L2.Rn; �/

of the Ornstein-Uhlenbeck semigroup e�teH generated by the ground state represen-
tation eH of the Hamiltonian H D 1

2
.�� C jxj2 � 1/ of the quantum harmonic

oscillator (see [10]).
A first key difference between SI and LSI is that in the latter, the constant in front

the Gaussian Dirichlet integral is dimension independent. This fact allowed Gross
to prove LSI on infinite dimensional Gaussian Banach spaces, providing a useful
tool to infinite dimensional analysis.

Both E. Nelson and L. Gross were motivated in discovering their results by
the problems of constructive Quantum Field Theory where hypercontractivity and
logarithmic Sobolev inequalities provide sufficient compactness near the bottom
of the spectrum of free Hamiltonians H0 to prove essential self-adjointness, lower
semiboundedness, existence and finite degeneracy of the ground state as well its
uniqueness in case of ergodicity, for interacting HamiltoniansH0CV (see [6, 9] and
also [13, 14]).

Among the applications of infinite dimensional LSI to Mathematical Physics, we
recall the work of E. Carlen and D. Stroock [3] on the extension of the Bakry-Emery
criterion and its use to prove LSI for non product Gibbs measures for continuous
spin systems as well as the work of D. Stroock and B. Zegarlinski [15] about the
equivalence of LSI with the Dobrushin-Shlosman mixing condition for lattice gases
with compact continuous spin space.

Later, E.B. Davies and B. Simon [5] discovered that families of LSI

Z

X
dm juj2 log juj2 � ˇE Œu�C b.ˇ/; ˇ > 0 ; kukL2.X;�/ D 1

on a locally compact measured space .X; �/, are deeply connected with the
ultracontractivity of the heat semigroup associated to the Dirichlet form E , provided
the local norm b.ˇ/ is not too singular as ˇ goes to zero. This theory was
subsequently used by E.B. Davies [D] to get sharp off diagonal bounds upon the
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heat kernel of the Markovian semigroup generated by a Dirichlet form E satisfying
such logarithmic Sobolev inequality.

The first aim of this work is prove logarithmic Sobolev inequalities LSI.�/,
with respect to the Fock vacuum state !�F or measure ��F , for the second quantized
Hamiltonian ˇd� .H���I/ (at fixed inverse temperature ˇ > 0 and activity� 2 R)
of a gas of non interacting identical particles obeying the Bose-Einstein statistics
and confined in a bounded Euclidean domain where they are subject to Dirichlet
boundary conditions.

Our second aim is to introduce a new approach to logarithmic Sobolev inequality
based on two fundamental ideas of Quantum Statistical Mechanics, namely, the
relation between Helmholtz free energy, Gibbs states and relative entropy, on one
hand, and the monotonicity of relative entropy, on the other hand.

2 Logarithmic Sobolev Inequalities for Ideal Bosons Gas in
Finite Volume

To properly state the main result of the paper and introduce notations, we start to
describe the framework of the work. For the standard fundamental result we will
use, we refer to the standard classical monographies [2, 13].

Warning: Whenever a self-adjoint operator H is semi-bounded, to ease notation
the expression . ;H / will be denote the value of the lower semicontinuous
quadratic form of H at an element  of its quadratic form domain.

Let � � R
d be a bounded Euclidean domain and H� be the Dirichlet-Laplacian

operator on the complex Hilbert space h� WD L2.�/, considered with respect to the
Lebesgue measure on �, defined as the closure of �� on the domain C1

c .�/.
Denote by F.h�/ the bosonic Fock space and by U.h�/ the CCR algebra builded

on h�, when considered as a symplectic real vector space with the symplectic form

	. f ; g/ WD Im . f ; g/h�; f ; g 2 h� :

The vacuumvector˝ 2 F.h�/ is cyclic forU.h�/ and defines on it the Fock vacuum
state

!�F .A/ WD .˝;A˝/h� :

The annihilation and creation operators fa. f /; a�. f / W f 2 h�g define the self-
adjoint field operators f˚. f / W f 2 h�g

˚. f / WD a. f /C a�. f /p
2
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which give rise to the Weyl unitaries

W. f / WD ei˚. f /

that satisfy the Weyl’s form of the Canonical Commutation Relation

W. f /W.g/ D W. f C g/e�i	. f ;g/=2; f ; g 2 h� :

The subspace L2
R
.�/ of real functions is a Lagrangian submanifold of L2.�/ in the

sense that the symplectic form vanishes identically so that the corresponding Weyl
operators commute

W. f /W.g/ D W. f C g/ D W.g/W. f /; f ; g 2 L2
R
.�/

and the (double commutant) von Neumann algebra

M� WD fW. f / 2 B.F.h�// W f 2 L2
R
.�/g00

is abelian. By a fundamental theorem due to J. von Neumann,M� is identical with
the weak closure of the subspace of linear combinations of Weyl unitaries in the
algebra of all bounded operators on the Fock space.

The Fock vacuum state !�F is normal on M� so that the pair .M�; !
�
F /

can be realized as the abelian von Neumann algebra L1.Q�;��F / of essentially
bounded measurable functions on a suitable measurable space Q�, endowed with a
probability measure. The fundamental relation

!�F .W. f // D !�F .e
i˚. f // D e� 1

4k fk2 ; f 2 h�

allow the identification of the system of self-adjoint operators f˚. f / W f 2 hR�g as a
Gaussian random field (or process) f
. f / W f 2 hR�g on a Gaussian space .Q�; ��F /,
where the following relations hold true for f ; g 2 hR�

!�F .˚. f /˚.g// D
Z

Q�


. f /
.g/ d��F D 1

2
. f ; g/h� D 1

2

Z

�

f .x/g.x/dx:

Under the Segal isomorphism, the complex Hilbert space L2.Q�;��F / is identified
with the Fock space F.h�/ and the constant function 1 on Q� is identified or with
the identity I operator, when considered as the unit of L1.Q�;��F /, or with the
vacuum vector˝ , when considered as an element of L2.Q�;��F /.

We shall make use of the particular realization of the Gaussian random process
where Q� is the infinite product of the one-point compactification of the real line
Q� WD ˘1

nD1 PR and where the Gaussian measure ��F is the infinite product of copies
of the Gaussian probability measure on PR

�.dx/ WD �� 1
2 e�x2dx :
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Choosing an orthonormal basis f fn W n � 1g � hR�, the field operator ˚. fn/ is
identified with the multiplication operator 
. fn/ on L2.Q�;��F /

.
. fn/g/.x1; : : : / D xng.x1; : : : /; .x1; : : : / 2 Q� ; g 2 L2.Q�;�
�
F / :

Notice that, using the Segal isomorphism, the relative entropy HM�.!1; !2/ of
restrictions to the abelian von Neumann algebra M� of states !1 ; !2 of the CCR
algebra U.h�/, appears as

HM�.!2; !1/ D
Z

Q�

d�2 ln
�d�2
d�1

�

in terms of the probability measures �1, �2 on Q� representing !1, !2 restricted to
M�, provided �2 is absolutely continuous with respect to �1.

We shall denote by

!�ˇ .A/ WD Tr .e�ˇK�� A/
Tr .e�ˇK�� /

(1)

the Gibbs grand canonical equilibrium state, at inverse temperature ˇ > 0 and
activity � < inf 	.H�/, over the CCR algebra U.h�/, corresponding to the second
quantization Hamiltonian K�� WD d� .H� � �I/ on F.h�/ of the one-particle
Hamiltonian H� � �I on L2.�/ [2, 5.2.5]. Concerning the existence of the Gibbs
state above, notice that, since � is bounded then e�ˇH� is trace class for any ˇ > 0
and consequently, by [2] Proposition 5.2.27, e�ˇK�� is trace class too for any ˇ > 0

(and in fact for any real �). We shall denote by N� WD d� .I/ the number operator
on F.h�/. For a unit vector  2 F.h�/, we shall denote by ! the corresponding
vector state on U.h�/, as well as its restriction to M�.

The first step to the main result of the work is the following observation.

Lemma 1 (Free Energy Variation, Gibbs State and Relative Entropy) Denote
by N the von Neumann algebra B.F.h�// of all bounded operators on the Fock
space. On its normal state space N�;1, identified with the space of nonnegative trace
class operators � such that Tr .�/ D 1 (called density matrices), define the energy
functional

E W N�;1 ! Œ0;C1�; E.�/ WD Tr .�1=2K�� �
1=2/; � 2 N�;1 ;

the von Neumann entropy functional

SN W N�;1 ! Œ0;C1�; SN.�/ WD �Tr .� ln �/; � 2 N�;1 ;
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and the Helmholtz free energy functional at inverse temperature ˇ > 0

Fˇ W N�;1 ! Œ0;C1�; Fˇ.�/ WD E.�/� 1

ˇ
S.�/; � 2 N�;1 :

The free energy functional attains its minimum value Fˇ.�ˇ/ D �ˇ�1 ln Tr .e�ˇK�� /
at the Gibbs state !�ˇ , represented by the density matrix �ˇ WD e�ˇK�� =Tr .e�ˇK�� /.
Moreover, the variation of the free energy with respect to the Gibbs state, is
proportional by ˇ, to the relative entropy HN of the states

0 � HN.�; �ˇ/ D ˇ.F.�/ � F.�ˇ//; � 2 N�;1 : (2)

Proof We may assume that ˇ D 1 and that Tr .e�ˇK�� / D 1. By the cyclicity of the
trace

F1.�1/ D E.�1/ � SN.�1/ D Tr .�1=21 K�� �
1=2
1 /C Tr .�1 ln �1/

D �Tr .�1=21 .ln e�K�� /�
1=2
1 /C Tr .�1 ln �1/

D �Tr .�1=21 .ln �1/�
1=2
1 /C Tr .�1 ln �1/

D �Tr .�1 ln �1/C Tr .�1 ln �1/ D 0

and, for all � 2 N�;1, by the definition of the relative entropy HN (see [16]) we have

F1.�/ D E.�/� SN.�/ D Tr .�1=2K�� �
1=2/C Tr .� ln �/

D �Tr .�1=2.ln �1/�1=2/C Tr .� ln �/

D Tr .�1=2.ln � � ln �1/�1=2/

D HN.�; �1/ :

The second step in the proof of the our main result is the following fundamental
property.

Theorem 1 (Relative Entropy Monotonicity, [16] Theorem 4’) Let !1 ; !2 be
normal states on N WD B.F.h�// and !0

1, !
0
2 their restriction to the von Neumann

subalgebra M�. Denoting by HN and HM� , the relative entropy on N and M�,
respectively, one has

HM�.!
0
1; !

0
2/ � HN.!1; !2/ : (3)
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More explicitly, if �1, �2 are the density matrices representing !1, !2 and�1, �2 are
the probability measures on Q� representing the restrictions !0

1, !
0
2, then one has

Z

Q�

d�2
�d�1
d�2

�
ln

�d�1
d�2

�
� Tr .�1=21 .ln �1 � ln �2/�

1=2
1 / : (4)

The following is the main result of the work.

Theorem 2 Let � � R
d be a bounded Euclidean domain and H� be the Dirichlet-

Laplacian operator on h� WD L2.�/. Denote by K�� WD d� .H� � �I/ its second
quantization on the Fock space F.h�/, with activity � < inf 	.H�/.

Then the following logarithmic Sobolev inequalities hold true for any ˇ > 0 and
k kF.h�/ D 1

HM�.! ; !
�
F / � ˇ. ;K��  /C ln Tr e�ˇK�� C4d.ˇ; �/. ;N� /Cd.ˇ; �/ (5)

where z WD eˇ� and d.ˇ; �/ WD Tr .ze�ˇH�.I C ze�ˇH�/�1/. In terms of the free
energy of the system the inequality reads as follows

HM�.! ; !
�
F / � ˇ.F.! / � F.!�ˇ //C 4d.ˇ; �/. ;N� /C d.ˇ; �/ : (6)

Notice that, whenM� is identified with L1.Q�; d��F /, we have

HM�.! ; !
�
F / D

Z

Q�

d��F j j2 ln j j2; k kL2.Q�;��F / D 1 :

Notice also that, by a classical result [4, 1.9], the following bound holds true

d.ˇ; �/ � z.1C ze�ˇ�0 /�1.4�ˇ/�d=2j�j; ˇ > 0 :

Proof Denoting by � and �ˇ the probability measures on Q� representing the
restriction to M� ' L1.Q�;�F/ of the normal states represented by the density
matrix � and �ˇ, by Uhlmann’s monotonicity theorem [16] or Theorem 1 above, we
have

HM�.�;�ˇ/ � HN.�; �ˇ/; � 2 N�;1

so that, by Lemma 1 above, the following inequality holds true

HM�.�;�ˇ/ � ˇ.F.�/� F.�ˇ//; � 2 N�;1:

The density matrix � representing a vector state ! is the orthogonal projection
onto the subspace generated by  . On it the von Neumann entropy vanishes
S.� / D 0 and the value of the energy functional is given by E.� / D
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Tr .�1=2 K�� �
1=2
 / D . ;K��  / so that F.� / D ˇ. ;K��  /. Denoting by � D

j j2 � �F the probability measure on Q� representing the restriction to M� of the
state represented by � , we obtain the following logarithmic Sobolev inequality
with respect to the Gaussian measure �ˇ

HM�.� ; �ˇ/ � ˇ. ;K�� /C ln Tr .e�ˇK�� /; k kF.h�/ D 1

which can be written as
Z

Q�

d� ln
�d� 
d�ˇ

�
� ˇ. ;K��  /C ln Tr .e�ˇK�� /; k kF.h�/ D 1

and as
Z

Q�

d�ˇ
�d� 
d�ˇ

�
ln

�d� 
d�ˇ

�
� ˇ. ;K��  /C ln Tr .e�ˇK�� /; k kF.h�/ D 1 :

Since

d� 
d�ˇ

D j j2 d�
�
F

d�ˇ

we have, for k kF.h�/ D 1,

Z

Q�

d��F

� d�ˇ
d��F

��d� 
d�ˇ

�
ln

�d� 
d�ˇ

�
� ˇ. ;K��  /C ln Tr .e�ˇK�� /

Z

Q�

d��F
�d� 
d��F

�
ln

�d� 
d�ˇ

�
� ˇ. ;K��  /C ln Tr .e�ˇK�� /

Z

Q�

d��F
�d� 
d��F

�
ln

�d� 
d��F

d��F
d�ˇ

�
� ˇ. ;K��  /C ln Tr .e�ˇK�� /

Z

Q�

d��F j j2 ln
�
j j2 d�

�
F

d�ˇ

�
� ˇ. ;K��  /C ln Tr .e�ˇK�� /

Z

Q�

d��F j j2 ln j j2 � ˇ. ;K��  /C ln Tr .e�ˇK�� /C

C
Z

Q�

d��F j j2 ln
� d�ˇ
d��F

�

(7)

provided we show that measure associated to the Gibbs state is absolutely continu-
ous with respect to the one associated to the Fock vacuum state.
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Since e�ˇH� is trace class on h�, by Proposition 5.2.7 and Theorem 5.2.8 in [2],
the operator e�ˇK�� is trace class over the Fock space F.h�/ and the Gibbs grand
canonical equilibrium state !�ˇ is a gauge-invariant quasi-free state over the CCR
algebra U.h�/ with two-point function

!�ˇ .a
�. f /a.g// D .g;T�ˇ;�f /; f ; g 2 h�

where T�ˇ;� WD ze�ˇH�.I � ze�ˇH�/�1 and z WD eˇ�. Since !�F .W. f // D e� 1
4 k fk2h� ,

by Example 5.2.18 in [2] Example 5.2.18 we have that the two-point function of
the Fock vacuum state vanishes identically so that the operator T�F defined by its
two-point function vanishes too

0 D !�F .a
�. f /a.g// DW .g;T�F f /; f ; g 2 h� :

Since T�ˇ;� � ze�ˇH�.I � ze�ˇ�0 /�1 then T�ˇ;� is a trace class operator and

q
T�ˇ;� �

q
T�F D

q
T�ˇ;�

is an Hilbert-Schmidt operator. By [1], main Theorem p. 285, the state !�ˇ is quasi-

equivalent to the Fock vacuum state !�F in the sense that they have quasi-equivalent
GNS representation and thus give rise to the same (abelian) von Neumann algebra
M� which can be identified with L1.Q�;��F / . We thus have the mutual absolute
continuity of the Gaussian measures ��ˇ and ��F on Q� representing the states !�ˇ
and !�F . By [12], Theorem 3, the Radon-Nikodym derivative d��ˇ =d�

�
F is given by

d��ˇ
d��F

. f / D .det .A//�1=2 expŒ. f ; .I � A�1/f /�; f 2 h� ;

where

A WD I C ze�ˇH�

I � ze�ˇH� ; I � A�1 D I � I � ze�ˇH�

I C ze�ˇH� D 2ze�ˇH�

I C ze�ˇH� ;

provided we show that detA is well defined. In fact, since

0 � A � I D 2ze�ˇH�

I � ze�ˇH� � 2eˇ�

1 � e�ˇ.�0��/ e
�ˇH� ;

the trace class property of e�ˇH� implies the same property for A � I and then

detA � eTr .A�I/ < C1 :
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In particular

ln
d��ˇ
d��F

. f / D �1
2
ln detA C . f ; .I � A�1/f /

D �1
2
ln detA C . f ; 2ze�ˇH�.I C ze�ˇH�/�1f / :

Recall now that, in the model where the space Q� of the Gaussian random
process associated to h� is identified with the infinite product of the one-point
compactification of the real line Q� WD ˘1

nD1 PR, the logarithm of the Radon-
Nikodym derivative above is the random variable which associates to .x1; x2; : : : / 2
Q� the value

ln
d��ˇ
d��F

.x1; x2; : : : / D �1
2
ln detA C

1X
nD1

2ze�ˇ�n.1C ze�ˇ�n/�1x2n :

If we choose as a basis for h� the normalized eigenfunctions f fn 2 h� W n � 1g
of H� corresponding to the eigenvalues f�n 2 .0;C1/ W n � 1g, H�fn D �nfn,
then the self-adjoint operator on the Fock space corresponding to the real random
variable ln d��ˇ =d�

�
F is given by

ln
d��ˇ
d��F

D �1
2

�
ln detA

�
I C

1X
nD1

2ze�ˇ�n.1C ze�ˇ�n/�1
. fn/2 :

Since by [2] Lemma 5.2.12


. fn/
2 � 2a�. fn/a. fn/C I D 2N. fn/C I ;

we have

ln
d��ˇ
d��F

� �1
2

�
ln detA

�
I C

1X
nD1

2ze�ˇ�n.1C ze�ˇ�n/�1.2N. fn/C I/ :

Since moreover

ln detA D
1X
nD1

ln
�1C ze�ˇ�n
1 � ze�ˇ�n

�
;
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setting

b.ˇ; �/ WD
1X
nD1

2ze�ˇ�n
1C ze�ˇ�n C 1

2
ln

�
1 � 2ze�ˇ�n

1C ze�ˇ�n
�
;

c.ˇ; �/ WD 4

1X
nD1

ze�ˇ�n.1C ze�ˇ�n/�1

we have

ln
d��ˇ
d��F

� b.ˇ; �/I C c.ˇ; �/N :

If d.ˇ; �/ WD P1
nD1 ze�ˇ�n.1 C ze�ˇ�n/�1 then b.ˇ; �/ � d.ˇ; �/ and c.ˇ; �/ D

4d.ˇ; �/ so that

ln
d��ˇ
d��F

� d.ˇ; �/I C 4d.ˇ; �/N : (8)

From the intrinsic logarithmic Sobolev inequality (2.8) for the operator K�� on the
Gaussian space L2.Q�;��F / obtained above, we have

Z

Q�

d��F j j2 ln j j2 � ˇ. ;K��  /C ln Tr e�ˇK�� C
Z

Q�

d��F j j2 ln d��ˇ
d��F

(9)

for k kL2.Q�;��F / D 1, which, on the Fock space, reads as follows

HM�.! ; !
�
F / � ˇ. ;K��  /C ln Tr e�ˇK�� C . ; ln

d��ˇ
d��F

 / (10)

for k kF.h�/ D 1. By the bound (2.8) above we have the desired logarithmic
Sobolev inequalities (2.5)

HM�.! ; !
�
F / � ˇ. ;K��  /C ln Tr e�ˇK�� C 4d.ˇ; �/. ;N� /C d.ˇ; �/

for k kF.h�/ D 1.

Corollary 1 There exists ˇ0 > 0 depending on 0 < � < �0 such that the following
logarithmic Sobolev inequalities hold true for all ˇ � ˇ0

HM�.! ; �
�
F / � ˇ. ; d� .H�/ /C ln Tr e�ˇK�� C zTr .e�ˇH�/; (11)

HM�.! ; �
�
F / � ˇ. ; d� .H�/ /C z

1 � ze�ˇ�0 Tr .e
�ˇH�/ (12)

with k kF.h�/ D 1.
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Proof Since K�� D d� .H� � �I/ D d� .H�/ � �N, from the theorem above we
have

HM�
.! ;!

�
F / �

� ˇ. ; d� .H�/ /C ln Tr e�ˇK�� C d.ˇ; �/C .4d.ˇ; �/� ˇ�/. ;N /

for all k kF.h�/ D 1. Since d.ˇ; �/ � zTr .e�ˇH�/ and d.ˇ; �/ is decreasing to
0 as ˇ increase to C1, there exists ˇ0 > 0 such that 4d.ˇ; �/ � ˇ� � 0 for all
ˇ � ˇ0 and we get (2.11). Finally, by Proposition 5.2.27 in [2] we have

ln Tr .e�ˇK�� / � z.1 � ze�ˇ�0 /�1Tr .e�ˇH�/

so that

ln Tr e�ˇK�� C zTr .e�ˇH�/ � Œz C z.1 � ze�ˇ�0 /�1�Tr .e�ˇH�/ �
� z

1 � ze�ˇ�0 Tr .e
�ˇH�/

from which (2.12) follows.

Corollary 2 The semigroup fe�ˇd� .H�/ W ˇ > 0g is hypercontractive, i.e. it is
Markovian in the sense that it is positivity preserving and contractive on Lp.Q�;��F /
for any p 2 Œ0;C1� and e�ˇ0H� is bounded from L2.Q�;��F / to L4.Q�;��F /.
In particular, the following logarithmic Sobolev inequality holds true for some
ˇh > ˇ0

HM�.! ; �
�
F / � ˇh. ; d� .H

�/ /; k kF.h�/ D 1 : (13)

Proof Since ˇH� � 0 for all ˇ > 0, then e�ˇd� .H�/ D d� .e�ˇH�/ is positive
preserving (see [11]). Since, by construction, e�ˇd� .H�/˝ D ˝ for all ˇ > 0, the
semigroup is also contractive onM� ' L1.Q�;��F /, hence Markovian.

Fix now 0 < � < �0 and consider the value ˇ0 determined in Corollary 2.
Since, by construction, the spectrum of d� .H�/ is discrete, 0 D inf 	.d� .H�//

and the logarithmic Sobolev inequality (2.12) holds true, the stated results follow
from Theorem 6.1.22 ii) in [5].
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